[PATCH 15/57][Arm][GAS] Add support for MVE instructions: vcls, vclz and vfmas
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
037e8744 6905 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6906 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
5ee91343
AV
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
a302e574 6923 OP_RMQ, /* MVE vector register. */
1b883319 6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6925
60f993ce
AV
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
a302e574
AV
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
c19d1205 6932 OP_REGLST, /* ARM register list */
4b5a202f 6933 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
037e8744 6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6942
5287ad62 6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
5287ad62 6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
5287ad62 6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6954 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6955 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6956 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6957 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6958 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6959 OP_RNDQMQ_Ibig,
5287ad62 6960 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6961 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6962 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6963
6964 OP_I0, /* immediate zero */
c19d1205
ZW
6965 OP_I7, /* immediate value 0 .. 7 */
6966 OP_I15, /* 0 .. 15 */
6967 OP_I16, /* 1 .. 16 */
5287ad62 6968 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6969 OP_I31, /* 0 .. 31 */
6970 OP_I31w, /* 0 .. 31, optional trailing ! */
6971 OP_I32, /* 1 .. 32 */
5287ad62
JB
6972 OP_I32z, /* 0 .. 32 */
6973 OP_I63, /* 0 .. 63 */
c19d1205 6974 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6975 OP_I64, /* 1 .. 64 */
6976 OP_I64z, /* 0 .. 64 */
c19d1205 6977 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6978
6979 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6980 OP_I7b, /* 0 .. 7 */
6981 OP_I15b, /* 0 .. 15 */
6982 OP_I31b, /* 0 .. 31 */
6983
6984 OP_SH, /* shifter operand */
4962c51a 6985 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6986 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6987 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6988 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6989 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6990 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6991 OP_EXP, /* arbitrary expression */
6992 OP_EXPi, /* same, with optional immediate prefix */
6993 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6994 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6995 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6996 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6997 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6998
6999 OP_CPSF, /* CPS flags */
7000 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7001 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7002 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7003 OP_COND, /* conditional code */
92e90b6e 7004 OP_TB, /* Table branch. */
c19d1205 7005
037e8744
JB
7006 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7007
c19d1205 7008 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7009 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7010 OP_RR_EXi, /* ARM register or expression with imm prefix */
7011 OP_RF_IF, /* FPA register or immediate */
7012 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7013 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7014
7015 /* Optional operands. */
7016 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7017 OP_oI31b, /* 0 .. 31 */
5287ad62 7018 OP_oI32b, /* 1 .. 32 */
5f1af56b 7019 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7020 OP_oIffffb, /* 0 .. 65535 */
7021 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7022
7023 OP_oRR, /* ARM register */
60f993ce 7024 OP_oLR, /* ARM LR register */
c19d1205 7025 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7026 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7027 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7028 OP_oRND, /* Optional Neon double precision register */
7029 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7030 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7031 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7032 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7033 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7034 register. */
c19d1205
ZW
7035 OP_oSHll, /* LSL immediate */
7036 OP_oSHar, /* ASR immediate */
7037 OP_oSHllar, /* LSL or ASR immediate */
7038 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7039 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7040
1b883319
AV
7041 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7042
5be8be5d
DG
7043 /* Some pre-defined mixed (ARM/THUMB) operands. */
7044 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7045 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7046 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7047
c19d1205
ZW
7048 OP_FIRST_OPTIONAL = OP_oI7b
7049};
a737bd4d 7050
c19d1205
ZW
7051/* Generic instruction operand parser. This does no encoding and no
7052 semantic validation; it merely squirrels values away in the inst
7053 structure. Returns SUCCESS or FAIL depending on whether the
7054 specified grammar matched. */
7055static int
5be8be5d 7056parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7057{
5be8be5d 7058 unsigned const int *upat = pattern;
c19d1205
ZW
7059 char *backtrack_pos = 0;
7060 const char *backtrack_error = 0;
99aad254 7061 int i, val = 0, backtrack_index = 0;
5287ad62 7062 enum arm_reg_type rtype;
4962c51a 7063 parse_operand_result result;
5be8be5d 7064 unsigned int op_parse_code;
efd6b359 7065 bfd_boolean partial_match;
c19d1205 7066
e07e6e58
NC
7067#define po_char_or_fail(chr) \
7068 do \
7069 { \
7070 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7071 goto bad_args; \
e07e6e58
NC
7072 } \
7073 while (0)
c19d1205 7074
e07e6e58
NC
7075#define po_reg_or_fail(regtype) \
7076 do \
dcbf9037 7077 { \
e07e6e58 7078 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7079 & inst.operands[i].vectype); \
e07e6e58 7080 if (val == FAIL) \
477330fc
RM
7081 { \
7082 first_error (_(reg_expected_msgs[regtype])); \
7083 goto failure; \
7084 } \
e07e6e58
NC
7085 inst.operands[i].reg = val; \
7086 inst.operands[i].isreg = 1; \
7087 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7088 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7089 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7090 || rtype == REG_TYPE_VFD \
7091 || rtype == REG_TYPE_NQ); \
1b883319 7092 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7093 } \
e07e6e58
NC
7094 while (0)
7095
7096#define po_reg_or_goto(regtype, label) \
7097 do \
7098 { \
7099 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7100 & inst.operands[i].vectype); \
7101 if (val == FAIL) \
7102 goto label; \
dcbf9037 7103 \
e07e6e58
NC
7104 inst.operands[i].reg = val; \
7105 inst.operands[i].isreg = 1; \
7106 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7107 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7108 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7109 || rtype == REG_TYPE_VFD \
e07e6e58 7110 || rtype == REG_TYPE_NQ); \
1b883319 7111 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7112 } \
7113 while (0)
7114
7115#define po_imm_or_fail(min, max, popt) \
7116 do \
7117 { \
7118 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7119 goto failure; \
7120 inst.operands[i].imm = val; \
7121 } \
7122 while (0)
7123
57785aa2 7124#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7125 do \
7126 { \
57785aa2
AV
7127 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7128 reg_type); \
e07e6e58
NC
7129 if (val == FAIL) \
7130 goto label; \
7131 inst.operands[i].reg = val; \
7132 inst.operands[i].isscalar = 1; \
7133 } \
7134 while (0)
7135
7136#define po_misc_or_fail(expr) \
7137 do \
7138 { \
7139 if (expr) \
7140 goto failure; \
7141 } \
7142 while (0)
7143
7144#define po_misc_or_fail_no_backtrack(expr) \
7145 do \
7146 { \
7147 result = expr; \
7148 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7149 backtrack_pos = 0; \
7150 if (result != PARSE_OPERAND_SUCCESS) \
7151 goto failure; \
7152 } \
7153 while (0)
4962c51a 7154
52e7f43d
RE
7155#define po_barrier_or_imm(str) \
7156 do \
7157 { \
7158 val = parse_barrier (&str); \
ccb84d65
JB
7159 if (val == FAIL && ! ISALPHA (*str)) \
7160 goto immediate; \
7161 if (val == FAIL \
7162 /* ISB can only take SY as an option. */ \
7163 || ((inst.instruction & 0xf0) == 0x60 \
7164 && val != 0xf)) \
52e7f43d 7165 { \
ccb84d65
JB
7166 inst.error = _("invalid barrier type"); \
7167 backtrack_pos = 0; \
7168 goto failure; \
52e7f43d
RE
7169 } \
7170 } \
7171 while (0)
7172
c19d1205
ZW
7173 skip_whitespace (str);
7174
7175 for (i = 0; upat[i] != OP_stop; i++)
7176 {
5be8be5d
DG
7177 op_parse_code = upat[i];
7178 if (op_parse_code >= 1<<16)
7179 op_parse_code = thumb ? (op_parse_code >> 16)
7180 : (op_parse_code & ((1<<16)-1));
7181
7182 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7183 {
7184 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7185 backtrack_pos = str;
7186 backtrack_error = inst.error;
7187 backtrack_index = i;
7188 }
7189
b6702015 7190 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7191 po_char_or_fail (',');
7192
5be8be5d 7193 switch (op_parse_code)
c19d1205
ZW
7194 {
7195 /* Registers */
7196 case OP_oRRnpc:
5be8be5d 7197 case OP_oRRnpcsp:
c19d1205 7198 case OP_RRnpc:
5be8be5d 7199 case OP_RRnpcsp:
c19d1205 7200 case OP_oRR:
a302e574
AV
7201 case OP_RRe:
7202 case OP_RRo:
60f993ce
AV
7203 case OP_LR:
7204 case OP_oLR:
c19d1205
ZW
7205 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7206 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7207 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7208 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7209 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7210 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7211 case OP_oRND:
5ee91343
AV
7212 case OP_RNDMQR:
7213 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7214 break;
7215 try_rndmq:
7216 case OP_RNDMQ:
7217 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7218 break;
7219 try_rnd:
5287ad62 7220 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7221 case OP_RVC:
7222 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7223 break;
7224 /* Also accept generic coprocessor regs for unknown registers. */
7225 coproc_reg:
7226 po_reg_or_fail (REG_TYPE_CN);
7227 break;
c19d1205
ZW
7228 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7229 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7230 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7231 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7232 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7233 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7234 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7235 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7236 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7237 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7238 case OP_oRNQ:
5ee91343
AV
7239 case OP_RNQMQ:
7240 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7241 break;
7242 try_nq:
5287ad62 7243 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7244 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
5ee91343
AV
7245 case OP_oRNDQMQ:
7246 case OP_RNDQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7248 break;
7249 try_rndq:
477330fc 7250 case OP_oRNDQ:
5287ad62 7251 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7252 case OP_RVSDMQ:
7253 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7254 break;
7255 try_rvsd:
477330fc 7256 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7257 case OP_RVSD_COND:
7258 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7259 break;
477330fc
RM
7260 case OP_oRNSDQ:
7261 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7262 case OP_RNSDQMQR:
7263 po_reg_or_goto (REG_TYPE_RN, try_mq);
7264 break;
7265 try_mq:
7266 case OP_oRNSDQMQ:
7267 case OP_RNSDQMQ:
7268 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7269 break;
7270 try_nsdq2:
7271 po_reg_or_fail (REG_TYPE_NSDQ);
7272 inst.error = 0;
7273 break;
a302e574
AV
7274 case OP_RMQ:
7275 po_reg_or_fail (REG_TYPE_MQ);
7276 break;
477330fc
RM
7277 /* Neon scalar. Using an element size of 8 means that some invalid
7278 scalars are accepted here, so deal with those in later code. */
57785aa2 7279 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7280
7281 case OP_RNDQ_I0:
7282 {
7283 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7284 break;
7285 try_imm0:
7286 po_imm_or_fail (0, 0, TRUE);
7287 }
7288 break;
7289
7290 case OP_RVSD_I0:
7291 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7292 break;
7293
1b883319
AV
7294 case OP_RSVDMQ_FI0:
7295 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7296 break;
7297 try_rsvd_fi0:
aacf0b33
KT
7298 case OP_RSVD_FI0:
7299 {
7300 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7301 break;
7302 try_ifimm0:
7303 if (parse_ifimm_zero (&str))
7304 inst.operands[i].imm = 0;
7305 else
7306 {
7307 inst.error
7308 = _("only floating point zero is allowed as immediate value");
7309 goto failure;
7310 }
7311 }
7312 break;
7313
477330fc
RM
7314 case OP_RR_RNSC:
7315 {
57785aa2 7316 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7317 break;
7318 try_rr:
7319 po_reg_or_fail (REG_TYPE_RN);
7320 }
7321 break;
7322
886e1c73
AV
7323 case OP_RNSDQ_RNSC_MQ:
7324 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7325 break;
7326 try_rnsdq_rnsc:
477330fc
RM
7327 case OP_RNSDQ_RNSC:
7328 {
57785aa2
AV
7329 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7330 inst.error = 0;
477330fc
RM
7331 break;
7332 try_nsdq:
7333 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7334 inst.error = 0;
477330fc
RM
7335 }
7336 break;
7337
dec41383
JW
7338 case OP_RNSD_RNSC:
7339 {
57785aa2 7340 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7341 break;
7342 try_s_scalar:
57785aa2 7343 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7344 break;
7345 try_nsd:
7346 po_reg_or_fail (REG_TYPE_NSD);
7347 }
7348 break;
7349
5d281bf0
AV
7350 case OP_RNDQMQ_RNSC:
7351 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7352 break;
7353 try_rndq_rnsc:
477330fc
RM
7354 case OP_RNDQ_RNSC:
7355 {
57785aa2 7356 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7357 break;
7358 try_ndq:
7359 po_reg_or_fail (REG_TYPE_NDQ);
7360 }
7361 break;
7362
7363 case OP_RND_RNSC:
7364 {
57785aa2 7365 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7366 break;
7367 try_vfd:
7368 po_reg_or_fail (REG_TYPE_VFD);
7369 }
7370 break;
7371
7372 case OP_VMOV:
7373 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7374 not careful then bad things might happen. */
7375 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7376 break;
7377
f601a00c
AV
7378 case OP_RNDQMQ_Ibig:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7380 break;
7381 try_rndq_ibig:
477330fc
RM
7382 case OP_RNDQ_Ibig:
7383 {
7384 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7385 break;
7386 try_immbig:
7387 /* There's a possibility of getting a 64-bit immediate here, so
7388 we need special handling. */
8335d6aa
JW
7389 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7390 == FAIL)
477330fc
RM
7391 {
7392 inst.error = _("immediate value is out of range");
7393 goto failure;
7394 }
7395 }
7396 break;
7397
7398 case OP_RNDQ_I63b:
7399 {
7400 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7401 break;
7402 try_shimm:
7403 po_imm_or_fail (0, 63, TRUE);
7404 }
7405 break;
c19d1205
ZW
7406
7407 case OP_RRnpcb:
7408 po_char_or_fail ('[');
7409 po_reg_or_fail (REG_TYPE_RN);
7410 po_char_or_fail (']');
7411 break;
a737bd4d 7412
55881a11 7413 case OP_RRnpctw:
c19d1205 7414 case OP_RRw:
b6702015 7415 case OP_oRRw:
c19d1205
ZW
7416 po_reg_or_fail (REG_TYPE_RN);
7417 if (skip_past_char (&str, '!') == SUCCESS)
7418 inst.operands[i].writeback = 1;
7419 break;
7420
7421 /* Immediates */
7422 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7423 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7424 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7425 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7426 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7427 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7428 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7429 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7430 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7431 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7432 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7433 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7434
7435 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7436 case OP_oI7b:
7437 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7438 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7439 case OP_oI31b:
7440 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7441 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7442 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7443 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7444
7445 /* Immediate variants */
7446 case OP_oI255c:
7447 po_char_or_fail ('{');
7448 po_imm_or_fail (0, 255, TRUE);
7449 po_char_or_fail ('}');
7450 break;
7451
7452 case OP_I31w:
7453 /* The expression parser chokes on a trailing !, so we have
7454 to find it first and zap it. */
7455 {
7456 char *s = str;
7457 while (*s && *s != ',')
7458 s++;
7459 if (s[-1] == '!')
7460 {
7461 s[-1] = '\0';
7462 inst.operands[i].writeback = 1;
7463 }
7464 po_imm_or_fail (0, 31, TRUE);
7465 if (str == s - 1)
7466 str = s;
7467 }
7468 break;
7469
7470 /* Expressions */
7471 case OP_EXPi: EXPi:
e2b0ab59 7472 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7473 GE_OPT_PREFIX));
7474 break;
7475
7476 case OP_EXP:
e2b0ab59 7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7478 GE_NO_PREFIX));
7479 break;
7480
7481 case OP_EXPr: EXPr:
e2b0ab59 7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7483 GE_NO_PREFIX));
e2b0ab59 7484 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7485 {
c19d1205
ZW
7486 val = parse_reloc (&str);
7487 if (val == -1)
7488 {
7489 inst.error = _("unrecognized relocation suffix");
7490 goto failure;
7491 }
7492 else if (val != BFD_RELOC_UNUSED)
7493 {
7494 inst.operands[i].imm = val;
7495 inst.operands[i].hasreloc = 1;
7496 }
a737bd4d 7497 }
c19d1205 7498 break;
a737bd4d 7499
e2b0ab59
AV
7500 case OP_EXPs:
7501 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7502 GE_NO_PREFIX));
7503 if (inst.relocs[i].exp.X_op == O_symbol)
7504 {
7505 inst.operands[i].hasreloc = 1;
7506 }
7507 else if (inst.relocs[i].exp.X_op == O_constant)
7508 {
7509 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7510 inst.operands[i].hasreloc = 0;
7511 }
7512 break;
7513
b6895b4f
PB
7514 /* Operand for MOVW or MOVT. */
7515 case OP_HALF:
7516 po_misc_or_fail (parse_half (&str));
7517 break;
7518
e07e6e58 7519 /* Register or expression. */
c19d1205
ZW
7520 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7521 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7522
e07e6e58 7523 /* Register or immediate. */
c19d1205
ZW
7524 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7525 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7526
c19d1205
ZW
7527 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7528 IF:
7529 if (!is_immediate_prefix (*str))
7530 goto bad_args;
7531 str++;
7532 val = parse_fpa_immediate (&str);
7533 if (val == FAIL)
7534 goto failure;
7535 /* FPA immediates are encoded as registers 8-15.
7536 parse_fpa_immediate has already applied the offset. */
7537 inst.operands[i].reg = val;
7538 inst.operands[i].isreg = 1;
7539 break;
09d92015 7540
2d447fca
JM
7541 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7542 I32z: po_imm_or_fail (0, 32, FALSE); break;
7543
e07e6e58 7544 /* Two kinds of register. */
c19d1205
ZW
7545 case OP_RIWR_RIWC:
7546 {
7547 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7548 if (!rege
7549 || (rege->type != REG_TYPE_MMXWR
7550 && rege->type != REG_TYPE_MMXWC
7551 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7552 {
7553 inst.error = _("iWMMXt data or control register expected");
7554 goto failure;
7555 }
7556 inst.operands[i].reg = rege->number;
7557 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7558 }
7559 break;
09d92015 7560
41adaa5c
JM
7561 case OP_RIWC_RIWG:
7562 {
7563 struct reg_entry *rege = arm_reg_parse_multi (&str);
7564 if (!rege
7565 || (rege->type != REG_TYPE_MMXWC
7566 && rege->type != REG_TYPE_MMXWCG))
7567 {
7568 inst.error = _("iWMMXt control register expected");
7569 goto failure;
7570 }
7571 inst.operands[i].reg = rege->number;
7572 inst.operands[i].isreg = 1;
7573 }
7574 break;
7575
c19d1205
ZW
7576 /* Misc */
7577 case OP_CPSF: val = parse_cps_flags (&str); break;
7578 case OP_ENDI: val = parse_endian_specifier (&str); break;
7579 case OP_oROR: val = parse_ror (&str); break;
1b883319 7580 try_cond:
c19d1205 7581 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7582 case OP_oBARRIER_I15:
7583 po_barrier_or_imm (str); break;
7584 immediate:
7585 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7586 goto failure;
52e7f43d 7587 break;
c19d1205 7588
fa94de6b 7589 case OP_wPSR:
d2cd1205 7590 case OP_rPSR:
90ec0d68
MGD
7591 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7593 {
7594 inst.error = _("Banked registers are not available with this "
7595 "architecture.");
7596 goto failure;
7597 }
7598 break;
d2cd1205
JB
7599 try_psr:
7600 val = parse_psr (&str, op_parse_code == OP_wPSR);
7601 break;
037e8744 7602
32c36c3c
AV
7603 case OP_VLDR:
7604 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7605 break;
7606 try_sysreg:
7607 val = parse_sys_vldr_vstr (&str);
7608 break;
7609
477330fc
RM
7610 case OP_APSR_RR:
7611 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7612 break;
7613 try_apsr:
7614 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7615 instruction). */
7616 if (strncasecmp (str, "APSR_", 5) == 0)
7617 {
7618 unsigned found = 0;
7619 str += 5;
7620 while (found < 15)
7621 switch (*str++)
7622 {
7623 case 'c': found = (found & 1) ? 16 : found | 1; break;
7624 case 'n': found = (found & 2) ? 16 : found | 2; break;
7625 case 'z': found = (found & 4) ? 16 : found | 4; break;
7626 case 'v': found = (found & 8) ? 16 : found | 8; break;
7627 default: found = 16;
7628 }
7629 if (found != 15)
7630 goto failure;
7631 inst.operands[i].isvec = 1;
f7c21dc7
NC
7632 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7633 inst.operands[i].reg = REG_PC;
477330fc
RM
7634 }
7635 else
7636 goto failure;
7637 break;
037e8744 7638
92e90b6e
PB
7639 case OP_TB:
7640 po_misc_or_fail (parse_tb (&str));
7641 break;
7642
e07e6e58 7643 /* Register lists. */
c19d1205 7644 case OP_REGLST:
4b5a202f 7645 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7646 if (*str == '^')
7647 {
5e0d7f77 7648 inst.operands[i].writeback = 1;
c19d1205
ZW
7649 str++;
7650 }
7651 break;
09d92015 7652
4b5a202f
AV
7653 case OP_CLRMLST:
7654 val = parse_reg_list (&str, REGLIST_CLRM);
7655 break;
7656
c19d1205 7657 case OP_VRSLST:
efd6b359
AV
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7659 &partial_match);
c19d1205 7660 break;
09d92015 7661
c19d1205 7662 case OP_VRDLST:
efd6b359
AV
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7664 &partial_match);
c19d1205 7665 break;
a737bd4d 7666
477330fc
RM
7667 case OP_VRSDLST:
7668 /* Allow Q registers too. */
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7670 REGLIST_NEON_D, &partial_match);
477330fc
RM
7671 if (val == FAIL)
7672 {
7673 inst.error = NULL;
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7675 REGLIST_VFP_S, &partial_match);
7676 inst.operands[i].issingle = 1;
7677 }
7678 break;
7679
7680 case OP_VRSDVLST:
7681 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7682 REGLIST_VFP_D_VPR, &partial_match);
7683 if (val == FAIL && !partial_match)
7684 {
7685 inst.error = NULL;
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7688 inst.operands[i].issingle = 1;
7689 }
7690 break;
7691
7692 case OP_NRDLST:
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7694 REGLIST_NEON_D, &partial_match);
477330fc 7695 break;
5287ad62 7696
35c228db
AV
7697 case OP_MSTRLST4:
7698 case OP_MSTRLST2:
7699 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7700 1, &inst.operands[i].vectype);
7701 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7702 goto failure;
7703 break;
5287ad62 7704 case OP_NSTRLST:
477330fc 7705 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7706 0, &inst.operands[i].vectype);
477330fc 7707 break;
5287ad62 7708
c19d1205 7709 /* Addressing modes */
35c228db
AV
7710 case OP_ADDRMVE:
7711 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7712 break;
7713
c19d1205
ZW
7714 case OP_ADDR:
7715 po_misc_or_fail (parse_address (&str, i));
7716 break;
09d92015 7717
4962c51a
MS
7718 case OP_ADDRGLDR:
7719 po_misc_or_fail_no_backtrack (
477330fc 7720 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7721 break;
7722
7723 case OP_ADDRGLDRS:
7724 po_misc_or_fail_no_backtrack (
477330fc 7725 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7726 break;
7727
7728 case OP_ADDRGLDC:
7729 po_misc_or_fail_no_backtrack (
477330fc 7730 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7731 break;
7732
c19d1205
ZW
7733 case OP_SH:
7734 po_misc_or_fail (parse_shifter_operand (&str, i));
7735 break;
09d92015 7736
4962c51a
MS
7737 case OP_SHG:
7738 po_misc_or_fail_no_backtrack (
477330fc 7739 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7740 break;
7741
c19d1205
ZW
7742 case OP_oSHll:
7743 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7744 break;
09d92015 7745
c19d1205
ZW
7746 case OP_oSHar:
7747 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7748 break;
09d92015 7749
c19d1205
ZW
7750 case OP_oSHllar:
7751 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7752 break;
09d92015 7753
1b883319
AV
7754 case OP_RMQRZ:
7755 case OP_oRMQRZ:
7756 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7757 break;
7758 try_rr_zr:
7759 po_reg_or_goto (REG_TYPE_RN, ZR);
7760 break;
7761 ZR:
7762 po_reg_or_fail (REG_TYPE_ZR);
7763 break;
7764
c19d1205 7765 default:
5be8be5d 7766 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7767 }
09d92015 7768
c19d1205
ZW
7769 /* Various value-based sanity checks and shared operations. We
7770 do not signal immediate failures for the register constraints;
7771 this allows a syntax error to take precedence. */
5be8be5d 7772 switch (op_parse_code)
c19d1205
ZW
7773 {
7774 case OP_oRRnpc:
7775 case OP_RRnpc:
7776 case OP_RRnpcb:
7777 case OP_RRw:
b6702015 7778 case OP_oRRw:
c19d1205
ZW
7779 case OP_RRnpc_I0:
7780 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7781 inst.error = BAD_PC;
7782 break;
09d92015 7783
5be8be5d
DG
7784 case OP_oRRnpcsp:
7785 case OP_RRnpcsp:
7786 if (inst.operands[i].isreg)
7787 {
7788 if (inst.operands[i].reg == REG_PC)
7789 inst.error = BAD_PC;
5c8ed6a4
JW
7790 else if (inst.operands[i].reg == REG_SP
7791 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7792 relaxed since ARMv8-A. */
7793 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7794 {
7795 gas_assert (thumb);
7796 inst.error = BAD_SP;
7797 }
5be8be5d
DG
7798 }
7799 break;
7800
55881a11 7801 case OP_RRnpctw:
fa94de6b
RM
7802 if (inst.operands[i].isreg
7803 && inst.operands[i].reg == REG_PC
55881a11
MGD
7804 && (inst.operands[i].writeback || thumb))
7805 inst.error = BAD_PC;
7806 break;
7807
1b883319 7808 case OP_RVSD_COND:
32c36c3c
AV
7809 case OP_VLDR:
7810 if (inst.operands[i].isreg)
7811 break;
7812 /* fall through. */
1b883319 7813
c19d1205
ZW
7814 case OP_CPSF:
7815 case OP_ENDI:
7816 case OP_oROR:
d2cd1205
JB
7817 case OP_wPSR:
7818 case OP_rPSR:
c19d1205 7819 case OP_COND:
52e7f43d 7820 case OP_oBARRIER_I15:
c19d1205 7821 case OP_REGLST:
4b5a202f 7822 case OP_CLRMLST:
c19d1205
ZW
7823 case OP_VRSLST:
7824 case OP_VRDLST:
477330fc 7825 case OP_VRSDLST:
efd6b359 7826 case OP_VRSDVLST:
477330fc
RM
7827 case OP_NRDLST:
7828 case OP_NSTRLST:
35c228db
AV
7829 case OP_MSTRLST2:
7830 case OP_MSTRLST4:
c19d1205
ZW
7831 if (val == FAIL)
7832 goto failure;
7833 inst.operands[i].imm = val;
7834 break;
a737bd4d 7835
60f993ce
AV
7836 case OP_LR:
7837 case OP_oLR:
7838 if (inst.operands[i].reg != REG_LR)
7839 inst.error = _("operand must be LR register");
7840 break;
7841
1b883319
AV
7842 case OP_RMQRZ:
7843 case OP_oRMQRZ:
7844 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7845 inst.error = BAD_PC;
7846 break;
7847
a302e574
AV
7848 case OP_RRe:
7849 if (inst.operands[i].isreg
7850 && (inst.operands[i].reg & 0x00000001) != 0)
7851 inst.error = BAD_ODD;
7852 break;
7853
7854 case OP_RRo:
7855 if (inst.operands[i].isreg)
7856 {
7857 if ((inst.operands[i].reg & 0x00000001) != 1)
7858 inst.error = BAD_EVEN;
7859 else if (inst.operands[i].reg == REG_SP)
7860 as_tsktsk (MVE_BAD_SP);
7861 else if (inst.operands[i].reg == REG_PC)
7862 inst.error = BAD_PC;
7863 }
7864 break;
7865
c19d1205
ZW
7866 default:
7867 break;
7868 }
09d92015 7869
c19d1205
ZW
7870 /* If we get here, this operand was successfully parsed. */
7871 inst.operands[i].present = 1;
7872 continue;
09d92015 7873
c19d1205 7874 bad_args:
09d92015 7875 inst.error = BAD_ARGS;
c19d1205
ZW
7876
7877 failure:
7878 if (!backtrack_pos)
d252fdde
PB
7879 {
7880 /* The parse routine should already have set inst.error, but set a
5f4273c7 7881 default here just in case. */
d252fdde 7882 if (!inst.error)
5ee91343 7883 inst.error = BAD_SYNTAX;
d252fdde
PB
7884 return FAIL;
7885 }
c19d1205
ZW
7886
7887 /* Do not backtrack over a trailing optional argument that
7888 absorbed some text. We will only fail again, with the
7889 'garbage following instruction' error message, which is
7890 probably less helpful than the current one. */
7891 if (backtrack_index == i && backtrack_pos != str
7892 && upat[i+1] == OP_stop)
d252fdde
PB
7893 {
7894 if (!inst.error)
5ee91343 7895 inst.error = BAD_SYNTAX;
d252fdde
PB
7896 return FAIL;
7897 }
c19d1205
ZW
7898
7899 /* Try again, skipping the optional argument at backtrack_pos. */
7900 str = backtrack_pos;
7901 inst.error = backtrack_error;
7902 inst.operands[backtrack_index].present = 0;
7903 i = backtrack_index;
7904 backtrack_pos = 0;
09d92015 7905 }
09d92015 7906
c19d1205
ZW
7907 /* Check that we have parsed all the arguments. */
7908 if (*str != '\0' && !inst.error)
7909 inst.error = _("garbage following instruction");
09d92015 7910
c19d1205 7911 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7912}
7913
c19d1205
ZW
7914#undef po_char_or_fail
7915#undef po_reg_or_fail
7916#undef po_reg_or_goto
7917#undef po_imm_or_fail
5287ad62 7918#undef po_scalar_or_fail
52e7f43d 7919#undef po_barrier_or_imm
e07e6e58 7920
c19d1205 7921/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7922#define constraint(expr, err) \
7923 do \
c19d1205 7924 { \
e07e6e58
NC
7925 if (expr) \
7926 { \
7927 inst.error = err; \
7928 return; \
7929 } \
c19d1205 7930 } \
e07e6e58 7931 while (0)
c19d1205 7932
fdfde340
JM
7933/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7934 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7935 is the BadReg predicate in ARM's Thumb-2 documentation.
7936
7937 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7938 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7939#define reject_bad_reg(reg) \
7940 do \
7941 if (reg == REG_PC) \
7942 { \
7943 inst.error = BAD_PC; \
7944 return; \
7945 } \
7946 else if (reg == REG_SP \
7947 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7948 { \
7949 inst.error = BAD_SP; \
7950 return; \
7951 } \
fdfde340
JM
7952 while (0)
7953
94206790
MM
7954/* If REG is R13 (the stack pointer), warn that its use is
7955 deprecated. */
7956#define warn_deprecated_sp(reg) \
7957 do \
7958 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7959 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7960 while (0)
7961
c19d1205
ZW
7962/* Functions for operand encoding. ARM, then Thumb. */
7963
d840c081 7964#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7965
9db2f6b4
RL
7966/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7967
7968 The only binary encoding difference is the Coprocessor number. Coprocessor
7969 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7970 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7971 exists for Single-Precision operation. */
7972
7973static void
7974do_scalar_fp16_v82_encode (void)
7975{
5ee91343 7976 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7977 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7978 " the behaviour is UNPREDICTABLE"));
7979 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7980 _(BAD_FP16));
7981
7982 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7983 mark_feature_used (&arm_ext_fp16);
7984}
7985
c19d1205
ZW
7986/* If VAL can be encoded in the immediate field of an ARM instruction,
7987 return the encoded form. Otherwise, return FAIL. */
7988
7989static unsigned int
7990encode_arm_immediate (unsigned int val)
09d92015 7991{
c19d1205
ZW
7992 unsigned int a, i;
7993
4f1d6205
L
7994 if (val <= 0xff)
7995 return val;
7996
7997 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7998 if ((a = rotate_left (val, i)) <= 0xff)
7999 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8000
8001 return FAIL;
09d92015
MM
8002}
8003
c19d1205
ZW
8004/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8005 return the encoded form. Otherwise, return FAIL. */
8006static unsigned int
8007encode_thumb32_immediate (unsigned int val)
09d92015 8008{
c19d1205 8009 unsigned int a, i;
09d92015 8010
9c3c69f2 8011 if (val <= 0xff)
c19d1205 8012 return val;
a737bd4d 8013
9c3c69f2 8014 for (i = 1; i <= 24; i++)
09d92015 8015 {
9c3c69f2
PB
8016 a = val >> i;
8017 if ((val & ~(0xff << i)) == 0)
8018 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8019 }
a737bd4d 8020
c19d1205
ZW
8021 a = val & 0xff;
8022 if (val == ((a << 16) | a))
8023 return 0x100 | a;
8024 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8025 return 0x300 | a;
09d92015 8026
c19d1205
ZW
8027 a = val & 0xff00;
8028 if (val == ((a << 16) | a))
8029 return 0x200 | (a >> 8);
a737bd4d 8030
c19d1205 8031 return FAIL;
09d92015 8032}
5287ad62 8033/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8034
8035static void
5287ad62
JB
8036encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8037{
8038 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8039 && reg > 15)
8040 {
b1cc4aeb 8041 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8042 {
8043 if (thumb_mode)
8044 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8045 fpu_vfp_ext_d32);
8046 else
8047 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8048 fpu_vfp_ext_d32);
8049 }
5287ad62 8050 else
477330fc
RM
8051 {
8052 first_error (_("D register out of range for selected VFP version"));
8053 return;
8054 }
5287ad62
JB
8055 }
8056
c19d1205 8057 switch (pos)
09d92015 8058 {
c19d1205
ZW
8059 case VFP_REG_Sd:
8060 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8061 break;
8062
8063 case VFP_REG_Sn:
8064 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8065 break;
8066
8067 case VFP_REG_Sm:
8068 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8069 break;
8070
5287ad62
JB
8071 case VFP_REG_Dd:
8072 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8073 break;
5f4273c7 8074
5287ad62
JB
8075 case VFP_REG_Dn:
8076 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8077 break;
5f4273c7 8078
5287ad62
JB
8079 case VFP_REG_Dm:
8080 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8081 break;
8082
c19d1205
ZW
8083 default:
8084 abort ();
09d92015 8085 }
09d92015
MM
8086}
8087
c19d1205 8088/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8089 if any, is handled by md_apply_fix. */
09d92015 8090static void
c19d1205 8091encode_arm_shift (int i)
09d92015 8092{
008a97ef
RL
8093 /* register-shifted register. */
8094 if (inst.operands[i].immisreg)
8095 {
bf355b69
MR
8096 int op_index;
8097 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8098 {
5689c942
RL
8099 /* Check the operand only when it's presented. In pre-UAL syntax,
8100 if the destination register is the same as the first operand, two
8101 register form of the instruction can be used. */
bf355b69
MR
8102 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8103 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8104 as_warn (UNPRED_REG ("r15"));
8105 }
8106
8107 if (inst.operands[i].imm == REG_PC)
8108 as_warn (UNPRED_REG ("r15"));
8109 }
8110
c19d1205
ZW
8111 if (inst.operands[i].shift_kind == SHIFT_RRX)
8112 inst.instruction |= SHIFT_ROR << 5;
8113 else
09d92015 8114 {
c19d1205
ZW
8115 inst.instruction |= inst.operands[i].shift_kind << 5;
8116 if (inst.operands[i].immisreg)
8117 {
8118 inst.instruction |= SHIFT_BY_REG;
8119 inst.instruction |= inst.operands[i].imm << 8;
8120 }
8121 else
e2b0ab59 8122 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8123 }
c19d1205 8124}
09d92015 8125
c19d1205
ZW
8126static void
8127encode_arm_shifter_operand (int i)
8128{
8129 if (inst.operands[i].isreg)
09d92015 8130 {
c19d1205
ZW
8131 inst.instruction |= inst.operands[i].reg;
8132 encode_arm_shift (i);
09d92015 8133 }
c19d1205 8134 else
a415b1cd
JB
8135 {
8136 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8137 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8138 inst.instruction |= inst.operands[i].imm;
8139 }
09d92015
MM
8140}
8141
c19d1205 8142/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8143static void
c19d1205 8144encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8145{
2b2f5df9
NC
8146 /* PR 14260:
8147 Generate an error if the operand is not a register. */
8148 constraint (!inst.operands[i].isreg,
8149 _("Instruction does not support =N addresses"));
8150
c19d1205 8151 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8152
c19d1205 8153 if (inst.operands[i].preind)
09d92015 8154 {
c19d1205
ZW
8155 if (is_t)
8156 {
8157 inst.error = _("instruction does not accept preindexed addressing");
8158 return;
8159 }
8160 inst.instruction |= PRE_INDEX;
8161 if (inst.operands[i].writeback)
8162 inst.instruction |= WRITE_BACK;
09d92015 8163
c19d1205
ZW
8164 }
8165 else if (inst.operands[i].postind)
8166 {
9c2799c2 8167 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8168 if (is_t)
8169 inst.instruction |= WRITE_BACK;
8170 }
8171 else /* unindexed - only for coprocessor */
09d92015 8172 {
c19d1205 8173 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8174 return;
8175 }
8176
c19d1205
ZW
8177 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8178 && (((inst.instruction & 0x000f0000) >> 16)
8179 == ((inst.instruction & 0x0000f000) >> 12)))
8180 as_warn ((inst.instruction & LOAD_BIT)
8181 ? _("destination register same as write-back base")
8182 : _("source register same as write-back base"));
09d92015
MM
8183}
8184
c19d1205
ZW
8185/* inst.operands[i] was set up by parse_address. Encode it into an
8186 ARM-format mode 2 load or store instruction. If is_t is true,
8187 reject forms that cannot be used with a T instruction (i.e. not
8188 post-indexed). */
a737bd4d 8189static void
c19d1205 8190encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8191{
5be8be5d
DG
8192 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8193
c19d1205 8194 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8195
c19d1205 8196 if (inst.operands[i].immisreg)
09d92015 8197 {
5be8be5d
DG
8198 constraint ((inst.operands[i].imm == REG_PC
8199 || (is_pc && inst.operands[i].writeback)),
8200 BAD_PC_ADDRESSING);
c19d1205
ZW
8201 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8202 inst.instruction |= inst.operands[i].imm;
8203 if (!inst.operands[i].negative)
8204 inst.instruction |= INDEX_UP;
8205 if (inst.operands[i].shifted)
8206 {
8207 if (inst.operands[i].shift_kind == SHIFT_RRX)
8208 inst.instruction |= SHIFT_ROR << 5;
8209 else
8210 {
8211 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8212 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8213 }
8214 }
09d92015 8215 }
e2b0ab59 8216 else /* immediate offset in inst.relocs[0] */
09d92015 8217 {
e2b0ab59 8218 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8219 {
8220 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8221
8222 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8223 cannot use PC in addressing.
8224 PC cannot be used in writeback addressing, either. */
8225 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8226 BAD_PC_ADDRESSING);
23a10334 8227
dc5ec521 8228 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8229 if (warn_on_deprecated
8230 && !is_load
8231 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8232 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8233 }
8234
e2b0ab59 8235 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8236 {
8237 /* Prefer + for zero encoded value. */
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
e2b0ab59 8240 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8241 }
09d92015 8242 }
09d92015
MM
8243}
8244
c19d1205
ZW
8245/* inst.operands[i] was set up by parse_address. Encode it into an
8246 ARM-format mode 3 load or store instruction. Reject forms that
8247 cannot be used with such instructions. If is_t is true, reject
8248 forms that cannot be used with a T instruction (i.e. not
8249 post-indexed). */
8250static void
8251encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8252{
c19d1205 8253 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8254 {
c19d1205
ZW
8255 inst.error = _("instruction does not accept scaled register index");
8256 return;
09d92015 8257 }
a737bd4d 8258
c19d1205 8259 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8260
c19d1205
ZW
8261 if (inst.operands[i].immisreg)
8262 {
5be8be5d 8263 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8264 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8265 BAD_PC_ADDRESSING);
eb9f3f00
JB
8266 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8267 BAD_PC_WRITEBACK);
c19d1205
ZW
8268 inst.instruction |= inst.operands[i].imm;
8269 if (!inst.operands[i].negative)
8270 inst.instruction |= INDEX_UP;
8271 }
e2b0ab59 8272 else /* immediate offset in inst.relocs[0] */
c19d1205 8273 {
e2b0ab59 8274 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8275 && inst.operands[i].writeback),
8276 BAD_PC_WRITEBACK);
c19d1205 8277 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8278 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8279 {
8280 /* Prefer + for zero encoded value. */
8281 if (!inst.operands[i].negative)
8282 inst.instruction |= INDEX_UP;
8283
e2b0ab59 8284 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8285 }
c19d1205 8286 }
a737bd4d
NC
8287}
8288
8335d6aa
JW
8289/* Write immediate bits [7:0] to the following locations:
8290
8291 |28/24|23 19|18 16|15 4|3 0|
8292 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8293
8294 This function is used by VMOV/VMVN/VORR/VBIC. */
8295
8296static void
8297neon_write_immbits (unsigned immbits)
8298{
8299 inst.instruction |= immbits & 0xf;
8300 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8301 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8302}
8303
8304/* Invert low-order SIZE bits of XHI:XLO. */
8305
8306static void
8307neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8308{
8309 unsigned immlo = xlo ? *xlo : 0;
8310 unsigned immhi = xhi ? *xhi : 0;
8311
8312 switch (size)
8313 {
8314 case 8:
8315 immlo = (~immlo) & 0xff;
8316 break;
8317
8318 case 16:
8319 immlo = (~immlo) & 0xffff;
8320 break;
8321
8322 case 64:
8323 immhi = (~immhi) & 0xffffffff;
8324 /* fall through. */
8325
8326 case 32:
8327 immlo = (~immlo) & 0xffffffff;
8328 break;
8329
8330 default:
8331 abort ();
8332 }
8333
8334 if (xlo)
8335 *xlo = immlo;
8336
8337 if (xhi)
8338 *xhi = immhi;
8339}
8340
8341/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8342 A, B, C, D. */
09d92015 8343
c19d1205 8344static int
8335d6aa 8345neon_bits_same_in_bytes (unsigned imm)
09d92015 8346{
8335d6aa
JW
8347 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8348 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8349 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8350 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8351}
a737bd4d 8352
8335d6aa 8353/* For immediate of above form, return 0bABCD. */
09d92015 8354
8335d6aa
JW
8355static unsigned
8356neon_squash_bits (unsigned imm)
8357{
8358 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8359 | ((imm & 0x01000000) >> 21);
8360}
8361
8362/* Compress quarter-float representation to 0b...000 abcdefgh. */
8363
8364static unsigned
8365neon_qfloat_bits (unsigned imm)
8366{
8367 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8368}
8369
8370/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8371 the instruction. *OP is passed as the initial value of the op field, and
8372 may be set to a different value depending on the constant (i.e.
8373 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8374 MVN). If the immediate looks like a repeated pattern then also
8375 try smaller element sizes. */
8376
8377static int
8378neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8379 unsigned *immbits, int *op, int size,
8380 enum neon_el_type type)
8381{
8382 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8383 float. */
8384 if (type == NT_float && !float_p)
8385 return FAIL;
8386
8387 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8388 {
8335d6aa
JW
8389 if (size != 32 || *op == 1)
8390 return FAIL;
8391 *immbits = neon_qfloat_bits (immlo);
8392 return 0xf;
8393 }
8394
8395 if (size == 64)
8396 {
8397 if (neon_bits_same_in_bytes (immhi)
8398 && neon_bits_same_in_bytes (immlo))
c19d1205 8399 {
8335d6aa
JW
8400 if (*op == 1)
8401 return FAIL;
8402 *immbits = (neon_squash_bits (immhi) << 4)
8403 | neon_squash_bits (immlo);
8404 *op = 1;
8405 return 0xe;
c19d1205 8406 }
a737bd4d 8407
8335d6aa
JW
8408 if (immhi != immlo)
8409 return FAIL;
8410 }
a737bd4d 8411
8335d6aa 8412 if (size >= 32)
09d92015 8413 {
8335d6aa 8414 if (immlo == (immlo & 0x000000ff))
c19d1205 8415 {
8335d6aa
JW
8416 *immbits = immlo;
8417 return 0x0;
c19d1205 8418 }
8335d6aa 8419 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8420 {
8335d6aa
JW
8421 *immbits = immlo >> 8;
8422 return 0x2;
c19d1205 8423 }
8335d6aa
JW
8424 else if (immlo == (immlo & 0x00ff0000))
8425 {
8426 *immbits = immlo >> 16;
8427 return 0x4;
8428 }
8429 else if (immlo == (immlo & 0xff000000))
8430 {
8431 *immbits = immlo >> 24;
8432 return 0x6;
8433 }
8434 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8435 {
8436 *immbits = (immlo >> 8) & 0xff;
8437 return 0xc;
8438 }
8439 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8440 {
8441 *immbits = (immlo >> 16) & 0xff;
8442 return 0xd;
8443 }
8444
8445 if ((immlo & 0xffff) != (immlo >> 16))
8446 return FAIL;
8447 immlo &= 0xffff;
09d92015 8448 }
a737bd4d 8449
8335d6aa 8450 if (size >= 16)
4962c51a 8451 {
8335d6aa
JW
8452 if (immlo == (immlo & 0x000000ff))
8453 {
8454 *immbits = immlo;
8455 return 0x8;
8456 }
8457 else if (immlo == (immlo & 0x0000ff00))
8458 {
8459 *immbits = immlo >> 8;
8460 return 0xa;
8461 }
8462
8463 if ((immlo & 0xff) != (immlo >> 8))
8464 return FAIL;
8465 immlo &= 0xff;
4962c51a
MS
8466 }
8467
8335d6aa
JW
8468 if (immlo == (immlo & 0x000000ff))
8469 {
8470 /* Don't allow MVN with 8-bit immediate. */
8471 if (*op == 1)
8472 return FAIL;
8473 *immbits = immlo;
8474 return 0xe;
8475 }
26d97720 8476
8335d6aa 8477 return FAIL;
c19d1205 8478}
a737bd4d 8479
5fc177c8 8480#if defined BFD_HOST_64_BIT
ba592044
AM
8481/* Returns TRUE if double precision value V may be cast
8482 to single precision without loss of accuracy. */
8483
8484static bfd_boolean
5fc177c8 8485is_double_a_single (bfd_int64_t v)
ba592044 8486{
5fc177c8 8487 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8488 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8489
8490 return (exp == 0 || exp == 0x7FF
8491 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8492 && (mantissa & 0x1FFFFFFFl) == 0;
8493}
8494
3739860c 8495/* Returns a double precision value casted to single precision
ba592044
AM
8496 (ignoring the least significant bits in exponent and mantissa). */
8497
8498static int
5fc177c8 8499double_to_single (bfd_int64_t v)
ba592044
AM
8500{
8501 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8502 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8503 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8504
8505 if (exp == 0x7FF)
8506 exp = 0xFF;
8507 else
8508 {
8509 exp = exp - 1023 + 127;
8510 if (exp >= 0xFF)
8511 {
8512 /* Infinity. */
8513 exp = 0x7F;
8514 mantissa = 0;
8515 }
8516 else if (exp < 0)
8517 {
8518 /* No denormalized numbers. */
8519 exp = 0;
8520 mantissa = 0;
8521 }
8522 }
8523 mantissa >>= 29;
8524 return (sign << 31) | (exp << 23) | mantissa;
8525}
5fc177c8 8526#endif /* BFD_HOST_64_BIT */
ba592044 8527
8335d6aa
JW
8528enum lit_type
8529{
8530 CONST_THUMB,
8531 CONST_ARM,
8532 CONST_VEC
8533};
8534
ba592044
AM
8535static void do_vfp_nsyn_opcode (const char *);
8536
e2b0ab59 8537/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8538 Determine whether it can be performed with a move instruction; if
8539 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8540 return TRUE; if it can't, convert inst.instruction to a literal-pool
8541 load and return FALSE. If this is not a valid thing to do in the
8542 current context, set inst.error and return TRUE.
a737bd4d 8543
c19d1205
ZW
8544 inst.operands[i] describes the destination register. */
8545
c921be7d 8546static bfd_boolean
8335d6aa 8547move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8548{
53365c0d 8549 unsigned long tbit;
8335d6aa
JW
8550 bfd_boolean thumb_p = (t == CONST_THUMB);
8551 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8552
8553 if (thumb_p)
8554 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8555 else
8556 tbit = LOAD_BIT;
8557
8558 if ((inst.instruction & tbit) == 0)
09d92015 8559 {
c19d1205 8560 inst.error = _("invalid pseudo operation");
c921be7d 8561 return TRUE;
09d92015 8562 }
ba592044 8563
e2b0ab59
AV
8564 if (inst.relocs[0].exp.X_op != O_constant
8565 && inst.relocs[0].exp.X_op != O_symbol
8566 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8567 {
8568 inst.error = _("constant expression expected");
c921be7d 8569 return TRUE;
09d92015 8570 }
ba592044 8571
e2b0ab59
AV
8572 if (inst.relocs[0].exp.X_op == O_constant
8573 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8574 {
5fc177c8
NC
8575#if defined BFD_HOST_64_BIT
8576 bfd_int64_t v;
8577#else
ba592044 8578 offsetT v;
5fc177c8 8579#endif
e2b0ab59 8580 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8581 {
ba592044
AM
8582 LITTLENUM_TYPE w[X_PRECISION];
8583 LITTLENUM_TYPE * l;
8584
e2b0ab59 8585 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8586 {
ba592044
AM
8587 gen_to_words (w, X_PRECISION, E_PRECISION);
8588 l = w;
8589 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8590 }
ba592044
AM
8591 else
8592 l = generic_bignum;
3739860c 8593
5fc177c8
NC
8594#if defined BFD_HOST_64_BIT
8595 v =
8596 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8597 << LITTLENUM_NUMBER_OF_BITS)
8598 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8599 << LITTLENUM_NUMBER_OF_BITS)
8600 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8601 << LITTLENUM_NUMBER_OF_BITS)
8602 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8603#else
ba592044
AM
8604 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8605 | (l[0] & LITTLENUM_MASK);
5fc177c8 8606#endif
8335d6aa 8607 }
ba592044 8608 else
e2b0ab59 8609 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8610
8611 if (!inst.operands[i].issingle)
8335d6aa 8612 {
12569877 8613 if (thumb_p)
8335d6aa 8614 {
53445554
TP
8615 /* LDR should not use lead in a flag-setting instruction being
8616 chosen so we do not check whether movs can be used. */
12569877 8617
53445554 8618 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8619 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8620 && inst.operands[i].reg != 13
8621 && inst.operands[i].reg != 15)
12569877 8622 {
fc289b0a
TP
8623 /* Check if on thumb2 it can be done with a mov.w, mvn or
8624 movw instruction. */
12569877
AM
8625 unsigned int newimm;
8626 bfd_boolean isNegated;
8627
8628 newimm = encode_thumb32_immediate (v);
8629 if (newimm != (unsigned int) FAIL)
8630 isNegated = FALSE;
8631 else
8632 {
582cfe03 8633 newimm = encode_thumb32_immediate (~v);
12569877
AM
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = TRUE;
8636 }
8637
fc289b0a
TP
8638 /* The number can be loaded with a mov.w or mvn
8639 instruction. */
ff8646ee
TP
8640 if (newimm != (unsigned int) FAIL
8641 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8642 {
fc289b0a 8643 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8644 | (inst.operands[i].reg << 8));
fc289b0a 8645 /* Change to MOVN. */
582cfe03 8646 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8647 inst.instruction |= (newimm & 0x800) << 15;
8648 inst.instruction |= (newimm & 0x700) << 4;
8649 inst.instruction |= (newimm & 0x0ff);
8650 return TRUE;
8651 }
fc289b0a 8652 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8653 else if ((v & ~0xFFFF) == 0
8654 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8655 {
582cfe03 8656 int imm = v & 0xFFFF;
12569877 8657
582cfe03 8658 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8659 inst.instruction |= (inst.operands[i].reg << 8);
8660 inst.instruction |= (imm & 0xf000) << 4;
8661 inst.instruction |= (imm & 0x0800) << 15;
8662 inst.instruction |= (imm & 0x0700) << 4;
8663 inst.instruction |= (imm & 0x00ff);
8664 return TRUE;
8665 }
8666 }
8335d6aa 8667 }
12569877 8668 else if (arm_p)
ba592044
AM
8669 {
8670 int value = encode_arm_immediate (v);
12569877 8671
ba592044
AM
8672 if (value != FAIL)
8673 {
8674 /* This can be done with a mov instruction. */
8675 inst.instruction &= LITERAL_MASK;
8676 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8677 inst.instruction |= value & 0xfff;
8678 return TRUE;
8679 }
8335d6aa 8680
ba592044
AM
8681 value = encode_arm_immediate (~ v);
8682 if (value != FAIL)
8683 {
8684 /* This can be done with a mvn instruction. */
8685 inst.instruction &= LITERAL_MASK;
8686 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8687 inst.instruction |= value & 0xfff;
8688 return TRUE;
8689 }
8690 }
934c2632 8691 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8692 {
ba592044
AM
8693 int op = 0;
8694 unsigned immbits = 0;
8695 unsigned immlo = inst.operands[1].imm;
8696 unsigned immhi = inst.operands[1].regisimm
8697 ? inst.operands[1].reg
e2b0ab59 8698 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8699 ? 0
8700 : ((bfd_int64_t)((int) immlo)) >> 32;
8701 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8702 &op, 64, NT_invtype);
8703
8704 if (cmode == FAIL)
8705 {
8706 neon_invert_size (&immlo, &immhi, 64);
8707 op = !op;
8708 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8709 &op, 64, NT_invtype);
8710 }
8711
8712 if (cmode != FAIL)
8713 {
8714 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8715 | (1 << 23)
8716 | (cmode << 8)
8717 | (op << 5)
8718 | (1 << 4);
8719
8720 /* Fill other bits in vmov encoding for both thumb and arm. */
8721 if (thumb_mode)
eff0bc54 8722 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8723 else
eff0bc54 8724 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8725 neon_write_immbits (immbits);
8726 return TRUE;
8727 }
8335d6aa
JW
8728 }
8729 }
8335d6aa 8730
ba592044
AM
8731 if (t == CONST_VEC)
8732 {
8733 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8734 if (inst.operands[i].issingle
8735 && is_quarter_float (inst.operands[1].imm)
8736 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8737 {
ba592044
AM
8738 inst.operands[1].imm =
8739 neon_qfloat_bits (v);
8740 do_vfp_nsyn_opcode ("fconsts");
8741 return TRUE;
8335d6aa 8742 }
5fc177c8
NC
8743
8744 /* If our host does not support a 64-bit type then we cannot perform
8745 the following optimization. This mean that there will be a
8746 discrepancy between the output produced by an assembler built for
8747 a 32-bit-only host and the output produced from a 64-bit host, but
8748 this cannot be helped. */
8749#if defined BFD_HOST_64_BIT
ba592044
AM
8750 else if (!inst.operands[1].issingle
8751 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8752 {
ba592044
AM
8753 if (is_double_a_single (v)
8754 && is_quarter_float (double_to_single (v)))
8755 {
8756 inst.operands[1].imm =
8757 neon_qfloat_bits (double_to_single (v));
8758 do_vfp_nsyn_opcode ("fconstd");
8759 return TRUE;
8760 }
8335d6aa 8761 }
5fc177c8 8762#endif
8335d6aa
JW
8763 }
8764 }
8765
8766 if (add_to_lit_pool ((!inst.operands[i].isvec
8767 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8768 return TRUE;
8769
8770 inst.operands[1].reg = REG_PC;
8771 inst.operands[1].isreg = 1;
8772 inst.operands[1].preind = 1;
e2b0ab59
AV
8773 inst.relocs[0].pc_rel = 1;
8774 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8775 ? BFD_RELOC_ARM_THUMB_OFFSET
8776 : (mode_3
8777 ? BFD_RELOC_ARM_HWLITERAL
8778 : BFD_RELOC_ARM_LITERAL));
8779 return FALSE;
8780}
8781
8782/* inst.operands[i] was set up by parse_address. Encode it into an
8783 ARM-format instruction. Reject all forms which cannot be encoded
8784 into a coprocessor load/store instruction. If wb_ok is false,
8785 reject use of writeback; if unind_ok is false, reject use of
8786 unindexed addressing. If reloc_override is not 0, use it instead
8787 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8788 (in which case it is preserved). */
8789
8790static int
8791encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8792{
8793 if (!inst.operands[i].isreg)
8794 {
99b2a2dd
NC
8795 /* PR 18256 */
8796 if (! inst.operands[0].isvec)
8797 {
8798 inst.error = _("invalid co-processor operand");
8799 return FAIL;
8800 }
8335d6aa
JW
8801 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8802 return SUCCESS;
8803 }
8804
8805 inst.instruction |= inst.operands[i].reg << 16;
8806
8807 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8808
8809 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8810 {
8811 gas_assert (!inst.operands[i].writeback);
8812 if (!unind_ok)
8813 {
8814 inst.error = _("instruction does not support unindexed addressing");
8815 return FAIL;
8816 }
8817 inst.instruction |= inst.operands[i].imm;
8818 inst.instruction |= INDEX_UP;
8819 return SUCCESS;
8820 }
8821
8822 if (inst.operands[i].preind)
8823 inst.instruction |= PRE_INDEX;
8824
8825 if (inst.operands[i].writeback)
09d92015 8826 {
8335d6aa 8827 if (inst.operands[i].reg == REG_PC)
c19d1205 8828 {
8335d6aa
JW
8829 inst.error = _("pc may not be used with write-back");
8830 return FAIL;
c19d1205 8831 }
8335d6aa 8832 if (!wb_ok)
c19d1205 8833 {
8335d6aa
JW
8834 inst.error = _("instruction does not support writeback");
8835 return FAIL;
c19d1205 8836 }
8335d6aa 8837 inst.instruction |= WRITE_BACK;
09d92015
MM
8838 }
8839
8335d6aa 8840 if (reloc_override)
e2b0ab59
AV
8841 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8842 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8843 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8844 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8845 {
8335d6aa 8846 if (thumb_mode)
e2b0ab59 8847 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8848 else
e2b0ab59 8849 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8850 }
8335d6aa
JW
8851
8852 /* Prefer + for zero encoded value. */
8853 if (!inst.operands[i].negative)
8854 inst.instruction |= INDEX_UP;
8855
8856 return SUCCESS;
09d92015
MM
8857}
8858
5f4273c7 8859/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8860 First some generics; their names are taken from the conventional
8861 bit positions for register arguments in ARM format instructions. */
09d92015 8862
a737bd4d 8863static void
c19d1205 8864do_noargs (void)
09d92015 8865{
c19d1205 8866}
a737bd4d 8867
c19d1205
ZW
8868static void
8869do_rd (void)
8870{
8871 inst.instruction |= inst.operands[0].reg << 12;
8872}
a737bd4d 8873
16a1fa25
TP
8874static void
8875do_rn (void)
8876{
8877 inst.instruction |= inst.operands[0].reg << 16;
8878}
8879
c19d1205
ZW
8880static void
8881do_rd_rm (void)
8882{
8883 inst.instruction |= inst.operands[0].reg << 12;
8884 inst.instruction |= inst.operands[1].reg;
8885}
09d92015 8886
9eb6c0f1
MGD
8887static void
8888do_rm_rn (void)
8889{
8890 inst.instruction |= inst.operands[0].reg;
8891 inst.instruction |= inst.operands[1].reg << 16;
8892}
8893
c19d1205
ZW
8894static void
8895do_rd_rn (void)
8896{
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 inst.instruction |= inst.operands[1].reg << 16;
8899}
a737bd4d 8900
c19d1205
ZW
8901static void
8902do_rn_rd (void)
8903{
8904 inst.instruction |= inst.operands[0].reg << 16;
8905 inst.instruction |= inst.operands[1].reg << 12;
8906}
09d92015 8907
4ed7ed8d
TP
8908static void
8909do_tt (void)
8910{
8911 inst.instruction |= inst.operands[0].reg << 8;
8912 inst.instruction |= inst.operands[1].reg << 16;
8913}
8914
59d09be6
MGD
8915static bfd_boolean
8916check_obsolete (const arm_feature_set *feature, const char *msg)
8917{
8918 if (ARM_CPU_IS_ANY (cpu_variant))
8919 {
5c3696f8 8920 as_tsktsk ("%s", msg);
59d09be6
MGD
8921 return TRUE;
8922 }
8923 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8924 {
8925 as_bad ("%s", msg);
8926 return TRUE;
8927 }
8928
8929 return FALSE;
8930}
8931
c19d1205
ZW
8932static void
8933do_rd_rm_rn (void)
8934{
9a64e435 8935 unsigned Rn = inst.operands[2].reg;
708587a4 8936 /* Enforce restrictions on SWP instruction. */
9a64e435 8937 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8938 {
8939 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8940 _("Rn must not overlap other operands"));
8941
59d09be6
MGD
8942 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8943 */
8944 if (!check_obsolete (&arm_ext_v8,
8945 _("swp{b} use is obsoleted for ARMv8 and later"))
8946 && warn_on_deprecated
8947 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8948 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8949 }
59d09be6 8950
c19d1205
ZW
8951 inst.instruction |= inst.operands[0].reg << 12;
8952 inst.instruction |= inst.operands[1].reg;
9a64e435 8953 inst.instruction |= Rn << 16;
c19d1205 8954}
09d92015 8955
c19d1205
ZW
8956static void
8957do_rd_rn_rm (void)
8958{
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.instruction |= inst.operands[2].reg;
8962}
a737bd4d 8963
c19d1205
ZW
8964static void
8965do_rm_rd_rn (void)
8966{
5be8be5d 8967 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8968 constraint (((inst.relocs[0].exp.X_op != O_constant
8969 && inst.relocs[0].exp.X_op != O_illegal)
8970 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8971 BAD_ADDR_MODE);
c19d1205
ZW
8972 inst.instruction |= inst.operands[0].reg;
8973 inst.instruction |= inst.operands[1].reg << 12;
8974 inst.instruction |= inst.operands[2].reg << 16;
8975}
09d92015 8976
c19d1205
ZW
8977static void
8978do_imm0 (void)
8979{
8980 inst.instruction |= inst.operands[0].imm;
8981}
09d92015 8982
c19d1205
ZW
8983static void
8984do_rd_cpaddr (void)
8985{
8986 inst.instruction |= inst.operands[0].reg << 12;
8987 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8988}
a737bd4d 8989
c19d1205
ZW
8990/* ARM instructions, in alphabetical order by function name (except
8991 that wrapper functions appear immediately after the function they
8992 wrap). */
09d92015 8993
c19d1205
ZW
8994/* This is a pseudo-op of the form "adr rd, label" to be converted
8995 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8996
8997static void
c19d1205 8998do_adr (void)
09d92015 8999{
c19d1205 9000 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9001
c19d1205
ZW
9002 /* Frag hacking will turn this into a sub instruction if the offset turns
9003 out to be negative. */
e2b0ab59
AV
9004 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9005 inst.relocs[0].pc_rel = 1;
9006 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9007
fc6141f0 9008 if (support_interwork
e2b0ab59
AV
9009 && inst.relocs[0].exp.X_op == O_symbol
9010 && inst.relocs[0].exp.X_add_symbol != NULL
9011 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9012 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9013 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9014}
b99bd4ef 9015
c19d1205
ZW
9016/* This is a pseudo-op of the form "adrl rd, label" to be converted
9017 into a relative address of the form:
9018 add rd, pc, #low(label-.-8)"
9019 add rd, rd, #high(label-.-8)" */
b99bd4ef 9020
c19d1205
ZW
9021static void
9022do_adrl (void)
9023{
9024 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9025
c19d1205
ZW
9026 /* Frag hacking will turn this into a sub instruction if the offset turns
9027 out to be negative. */
e2b0ab59
AV
9028 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9029 inst.relocs[0].pc_rel = 1;
c19d1205 9030 inst.size = INSN_SIZE * 2;
e2b0ab59 9031 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9032
fc6141f0 9033 if (support_interwork
e2b0ab59
AV
9034 && inst.relocs[0].exp.X_op == O_symbol
9035 && inst.relocs[0].exp.X_add_symbol != NULL
9036 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9037 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9038 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9039}
9040
b99bd4ef 9041static void
c19d1205 9042do_arit (void)
b99bd4ef 9043{
e2b0ab59
AV
9044 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9045 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9046 THUMB1_RELOC_ONLY);
c19d1205
ZW
9047 if (!inst.operands[1].present)
9048 inst.operands[1].reg = inst.operands[0].reg;
9049 inst.instruction |= inst.operands[0].reg << 12;
9050 inst.instruction |= inst.operands[1].reg << 16;
9051 encode_arm_shifter_operand (2);
9052}
b99bd4ef 9053
62b3e311
PB
9054static void
9055do_barrier (void)
9056{
9057 if (inst.operands[0].present)
ccb84d65 9058 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9059 else
9060 inst.instruction |= 0xf;
9061}
9062
c19d1205
ZW
9063static void
9064do_bfc (void)
9065{
9066 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9067 constraint (msb > 32, _("bit-field extends past end of register"));
9068 /* The instruction encoding stores the LSB and MSB,
9069 not the LSB and width. */
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= inst.operands[1].imm << 7;
9072 inst.instruction |= (msb - 1) << 16;
9073}
b99bd4ef 9074
c19d1205
ZW
9075static void
9076do_bfi (void)
9077{
9078 unsigned int msb;
b99bd4ef 9079
c19d1205
ZW
9080 /* #0 in second position is alternative syntax for bfc, which is
9081 the same instruction but with REG_PC in the Rm field. */
9082 if (!inst.operands[1].isreg)
9083 inst.operands[1].reg = REG_PC;
b99bd4ef 9084
c19d1205
ZW
9085 msb = inst.operands[2].imm + inst.operands[3].imm;
9086 constraint (msb > 32, _("bit-field extends past end of register"));
9087 /* The instruction encoding stores the LSB and MSB,
9088 not the LSB and width. */
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9093}
9094
b99bd4ef 9095static void
c19d1205 9096do_bfx (void)
b99bd4ef 9097{
c19d1205
ZW
9098 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9099 _("bit-field extends past end of register"));
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9104}
09d92015 9105
c19d1205
ZW
9106/* ARM V5 breakpoint instruction (argument parse)
9107 BKPT <16 bit unsigned immediate>
9108 Instruction is not conditional.
9109 The bit pattern given in insns[] has the COND_ALWAYS condition,
9110 and it is an error if the caller tried to override that. */
b99bd4ef 9111
c19d1205
ZW
9112static void
9113do_bkpt (void)
9114{
9115 /* Top 12 of 16 bits to bits 19:8. */
9116 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9117
c19d1205
ZW
9118 /* Bottom 4 of 16 bits to bits 3:0. */
9119 inst.instruction |= inst.operands[0].imm & 0xf;
9120}
09d92015 9121
c19d1205
ZW
9122static void
9123encode_branch (int default_reloc)
9124{
9125 if (inst.operands[0].hasreloc)
9126 {
0855e32b
NS
9127 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9128 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9129 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9130 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9131 ? BFD_RELOC_ARM_PLT32
9132 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9133 }
b99bd4ef 9134 else
e2b0ab59
AV
9135 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9136 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9137}
9138
b99bd4ef 9139static void
c19d1205 9140do_branch (void)
b99bd4ef 9141{
39b41c9c
PB
9142#ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9145 else
9146#endif
9147 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9148}
9149
9150static void
9151do_bl (void)
9152{
9153#ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 {
9156 if (inst.cond == COND_ALWAYS)
9157 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9158 else
9159 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9160 }
9161 else
9162#endif
9163 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9164}
b99bd4ef 9165
c19d1205
ZW
9166/* ARM V5 branch-link-exchange instruction (argument parse)
9167 BLX <target_addr> ie BLX(1)
9168 BLX{<condition>} <Rm> ie BLX(2)
9169 Unfortunately, there are two different opcodes for this mnemonic.
9170 So, the insns[].value is not used, and the code here zaps values
9171 into inst.instruction.
9172 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9173
c19d1205
ZW
9174static void
9175do_blx (void)
9176{
9177 if (inst.operands[0].isreg)
b99bd4ef 9178 {
c19d1205
ZW
9179 /* Arg is a register; the opcode provided by insns[] is correct.
9180 It is not illegal to do "blx pc", just useless. */
9181 if (inst.operands[0].reg == REG_PC)
9182 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9183
c19d1205
ZW
9184 inst.instruction |= inst.operands[0].reg;
9185 }
9186 else
b99bd4ef 9187 {
c19d1205 9188 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9189 conditionally, and the opcode must be adjusted.
9190 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9191 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9192 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9193 inst.instruction = 0xfa000000;
267bf995 9194 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9195 }
c19d1205
ZW
9196}
9197
9198static void
9199do_bx (void)
9200{
845b51d6
PB
9201 bfd_boolean want_reloc;
9202
c19d1205
ZW
9203 if (inst.operands[0].reg == REG_PC)
9204 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9205
c19d1205 9206 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9207 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9208 it is for ARMv4t or earlier. */
9209 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9210 if (!ARM_FEATURE_ZERO (selected_object_arch)
9211 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9212 want_reloc = TRUE;
9213
5ad34203 9214#ifdef OBJ_ELF
845b51d6 9215 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9216#endif
584206db 9217 want_reloc = FALSE;
845b51d6
PB
9218
9219 if (want_reloc)
e2b0ab59 9220 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9221}
9222
c19d1205
ZW
9223
9224/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9225
9226static void
c19d1205 9227do_bxj (void)
a737bd4d 9228{
c19d1205
ZW
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bxj is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9233}
9234
c19d1205
ZW
9235/* Co-processor data operation:
9236 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9237 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9238static void
9239do_cdp (void)
9240{
9241 inst.instruction |= inst.operands[0].reg << 8;
9242 inst.instruction |= inst.operands[1].imm << 20;
9243 inst.instruction |= inst.operands[2].reg << 12;
9244 inst.instruction |= inst.operands[3].reg << 16;
9245 inst.instruction |= inst.operands[4].reg;
9246 inst.instruction |= inst.operands[5].imm << 5;
9247}
a737bd4d
NC
9248
9249static void
c19d1205 9250do_cmp (void)
a737bd4d 9251{
c19d1205
ZW
9252 inst.instruction |= inst.operands[0].reg << 16;
9253 encode_arm_shifter_operand (1);
a737bd4d
NC
9254}
9255
c19d1205
ZW
9256/* Transfer between coprocessor and ARM registers.
9257 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9258 MRC2
9259 MCR{cond}
9260 MCR2
9261
9262 No special properties. */
09d92015 9263
dcbd0d71
MGD
9264struct deprecated_coproc_regs_s
9265{
9266 unsigned cp;
9267 int opc1;
9268 unsigned crn;
9269 unsigned crm;
9270 int opc2;
9271 arm_feature_set deprecated;
9272 arm_feature_set obsoleted;
9273 const char *dep_msg;
9274 const char *obs_msg;
9275};
9276
9277#define DEPR_ACCESS_V8 \
9278 N_("This coprocessor register access is deprecated in ARMv8")
9279
9280/* Table of all deprecated coprocessor registers. */
9281static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9282{
9283 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9284 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9285 DEPR_ACCESS_V8, NULL},
9286 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9287 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9288 DEPR_ACCESS_V8, NULL},
9289 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9290 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9291 DEPR_ACCESS_V8, NULL},
9292 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9293 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9294 DEPR_ACCESS_V8, NULL},
9295 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9296 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9297 DEPR_ACCESS_V8, NULL},
9298};
9299
9300#undef DEPR_ACCESS_V8
9301
9302static const size_t deprecated_coproc_reg_count =
9303 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9304
09d92015 9305static void
c19d1205 9306do_co_reg (void)
09d92015 9307{
fdfde340 9308 unsigned Rd;
dcbd0d71 9309 size_t i;
fdfde340
JM
9310
9311 Rd = inst.operands[2].reg;
9312 if (thumb_mode)
9313 {
9314 if (inst.instruction == 0xee000010
9315 || inst.instruction == 0xfe000010)
9316 /* MCR, MCR2 */
9317 reject_bad_reg (Rd);
5c8ed6a4 9318 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9319 /* MRC, MRC2 */
9320 constraint (Rd == REG_SP, BAD_SP);
9321 }
9322 else
9323 {
9324 /* MCR */
9325 if (inst.instruction == 0xe000010)
9326 constraint (Rd == REG_PC, BAD_PC);
9327 }
9328
dcbd0d71
MGD
9329 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9330 {
9331 const struct deprecated_coproc_regs_s *r =
9332 deprecated_coproc_regs + i;
9333
9334 if (inst.operands[0].reg == r->cp
9335 && inst.operands[1].imm == r->opc1
9336 && inst.operands[3].reg == r->crn
9337 && inst.operands[4].reg == r->crm
9338 && inst.operands[5].imm == r->opc2)
9339 {
b10bf8c5 9340 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9341 && warn_on_deprecated
dcbd0d71 9342 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9343 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9344 }
9345 }
fdfde340 9346
c19d1205
ZW
9347 inst.instruction |= inst.operands[0].reg << 8;
9348 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9349 inst.instruction |= Rd << 12;
c19d1205
ZW
9350 inst.instruction |= inst.operands[3].reg << 16;
9351 inst.instruction |= inst.operands[4].reg;
9352 inst.instruction |= inst.operands[5].imm << 5;
9353}
09d92015 9354
c19d1205
ZW
9355/* Transfer between coprocessor register and pair of ARM registers.
9356 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9357 MCRR2
9358 MRRC{cond}
9359 MRRC2
b99bd4ef 9360
c19d1205 9361 Two XScale instructions are special cases of these:
09d92015 9362
c19d1205
ZW
9363 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9364 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9365
5f4273c7 9366 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9367
c19d1205
ZW
9368static void
9369do_co_reg2c (void)
9370{
fdfde340
JM
9371 unsigned Rd, Rn;
9372
9373 Rd = inst.operands[2].reg;
9374 Rn = inst.operands[3].reg;
9375
9376 if (thumb_mode)
9377 {
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rn);
9380 }
9381 else
9382 {
9383 constraint (Rd == REG_PC, BAD_PC);
9384 constraint (Rn == REG_PC, BAD_PC);
9385 }
9386
873f10f0
TC
9387 /* Only check the MRRC{2} variants. */
9388 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9389 {
9390 /* If Rd == Rn, error that the operation is
9391 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9392 constraint (Rd == Rn, BAD_OVERLAP);
9393 }
9394
c19d1205
ZW
9395 inst.instruction |= inst.operands[0].reg << 8;
9396 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9397 inst.instruction |= Rd << 12;
9398 inst.instruction |= Rn << 16;
c19d1205 9399 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9400}
9401
c19d1205
ZW
9402static void
9403do_cpsi (void)
9404{
9405 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9406 if (inst.operands[1].present)
9407 {
9408 inst.instruction |= CPSI_MMOD;
9409 inst.instruction |= inst.operands[1].imm;
9410 }
c19d1205 9411}
b99bd4ef 9412
62b3e311
PB
9413static void
9414do_dbg (void)
9415{
9416 inst.instruction |= inst.operands[0].imm;
9417}
9418
eea54501
MGD
9419static void
9420do_div (void)
9421{
9422 unsigned Rd, Rn, Rm;
9423
9424 Rd = inst.operands[0].reg;
9425 Rn = (inst.operands[1].present
9426 ? inst.operands[1].reg : Rd);
9427 Rm = inst.operands[2].reg;
9428
9429 constraint ((Rd == REG_PC), BAD_PC);
9430 constraint ((Rn == REG_PC), BAD_PC);
9431 constraint ((Rm == REG_PC), BAD_PC);
9432
9433 inst.instruction |= Rd << 16;
9434 inst.instruction |= Rn << 0;
9435 inst.instruction |= Rm << 8;
9436}
9437
b99bd4ef 9438static void
c19d1205 9439do_it (void)
b99bd4ef 9440{
c19d1205 9441 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9442 process it to do the validation as if in
9443 thumb mode, just in case the code gets
9444 assembled for thumb using the unified syntax. */
9445
c19d1205 9446 inst.size = 0;
e07e6e58
NC
9447 if (unified_syntax)
9448 {
5ee91343
AV
9449 set_pred_insn_type (IT_INSN);
9450 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9451 now_pred.cc = inst.operands[0].imm;
e07e6e58 9452 }
09d92015 9453}
b99bd4ef 9454
6530b175
NC
9455/* If there is only one register in the register list,
9456 then return its register number. Otherwise return -1. */
9457static int
9458only_one_reg_in_list (int range)
9459{
9460 int i = ffs (range) - 1;
9461 return (i > 15 || range != (1 << i)) ? -1 : i;
9462}
9463
09d92015 9464static void
6530b175 9465encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9466{
c19d1205
ZW
9467 int base_reg = inst.operands[0].reg;
9468 int range = inst.operands[1].imm;
6530b175 9469 int one_reg;
ea6ef066 9470
c19d1205
ZW
9471 inst.instruction |= base_reg << 16;
9472 inst.instruction |= range;
ea6ef066 9473
c19d1205
ZW
9474 if (inst.operands[1].writeback)
9475 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9476
c19d1205 9477 if (inst.operands[0].writeback)
ea6ef066 9478 {
c19d1205
ZW
9479 inst.instruction |= WRITE_BACK;
9480 /* Check for unpredictable uses of writeback. */
9481 if (inst.instruction & LOAD_BIT)
09d92015 9482 {
c19d1205
ZW
9483 /* Not allowed in LDM type 2. */
9484 if ((inst.instruction & LDM_TYPE_2_OR_3)
9485 && ((range & (1 << REG_PC)) == 0))
9486 as_warn (_("writeback of base register is UNPREDICTABLE"));
9487 /* Only allowed if base reg not in list for other types. */
9488 else if (range & (1 << base_reg))
9489 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9490 }
9491 else /* STM. */
9492 {
9493 /* Not allowed for type 2. */
9494 if (inst.instruction & LDM_TYPE_2_OR_3)
9495 as_warn (_("writeback of base register is UNPREDICTABLE"));
9496 /* Only allowed if base reg not in list, or first in list. */
9497 else if ((range & (1 << base_reg))
9498 && (range & ((1 << base_reg) - 1)))
9499 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9500 }
ea6ef066 9501 }
6530b175
NC
9502
9503 /* If PUSH/POP has only one register, then use the A2 encoding. */
9504 one_reg = only_one_reg_in_list (range);
9505 if (from_push_pop_mnem && one_reg >= 0)
9506 {
9507 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9508
4f588891
NC
9509 if (is_push && one_reg == 13 /* SP */)
9510 /* PR 22483: The A2 encoding cannot be used when
9511 pushing the stack pointer as this is UNPREDICTABLE. */
9512 return;
9513
6530b175
NC
9514 inst.instruction &= A_COND_MASK;
9515 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9516 inst.instruction |= one_reg << 12;
9517 }
9518}
9519
9520static void
9521do_ldmstm (void)
9522{
9523 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9524}
9525
c19d1205
ZW
9526/* ARMv5TE load-consecutive (argument parse)
9527 Mode is like LDRH.
9528
9529 LDRccD R, mode
9530 STRccD R, mode. */
9531
a737bd4d 9532static void
c19d1205 9533do_ldrd (void)
a737bd4d 9534{
c19d1205 9535 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9536 _("first transfer register must be even"));
c19d1205
ZW
9537 constraint (inst.operands[1].present
9538 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9539 _("can only transfer two consecutive registers"));
c19d1205
ZW
9540 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9541 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9542
c19d1205
ZW
9543 if (!inst.operands[1].present)
9544 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9545
c56791bb
RE
9546 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9547 register and the first register written; we have to diagnose
9548 overlap between the base and the second register written here. */
ea6ef066 9549
c56791bb
RE
9550 if (inst.operands[2].reg == inst.operands[1].reg
9551 && (inst.operands[2].writeback || inst.operands[2].postind))
9552 as_warn (_("base register written back, and overlaps "
9553 "second transfer register"));
b05fe5cf 9554
c56791bb
RE
9555 if (!(inst.instruction & V4_STR_BIT))
9556 {
c19d1205 9557 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9558 destination (even if not write-back). */
9559 if (inst.operands[2].immisreg
9560 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9561 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9562 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9563 }
c19d1205
ZW
9564 inst.instruction |= inst.operands[0].reg << 12;
9565 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9566}
9567
9568static void
c19d1205 9569do_ldrex (void)
b05fe5cf 9570{
c19d1205
ZW
9571 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9572 || inst.operands[1].postind || inst.operands[1].writeback
9573 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9574 || inst.operands[1].negative
9575 /* This can arise if the programmer has written
9576 strex rN, rM, foo
9577 or if they have mistakenly used a register name as the last
9578 operand, eg:
9579 strex rN, rM, rX
9580 It is very difficult to distinguish between these two cases
9581 because "rX" might actually be a label. ie the register
9582 name has been occluded by a symbol of the same name. So we
9583 just generate a general 'bad addressing mode' type error
9584 message and leave it up to the programmer to discover the
9585 true cause and fix their mistake. */
9586 || (inst.operands[1].reg == REG_PC),
9587 BAD_ADDR_MODE);
b05fe5cf 9588
e2b0ab59
AV
9589 constraint (inst.relocs[0].exp.X_op != O_constant
9590 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9591 _("offset must be zero in ARM encoding"));
b05fe5cf 9592
5be8be5d
DG
9593 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9594
c19d1205
ZW
9595 inst.instruction |= inst.operands[0].reg << 12;
9596 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9597 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9598}
9599
9600static void
c19d1205 9601do_ldrexd (void)
b05fe5cf 9602{
c19d1205
ZW
9603 constraint (inst.operands[0].reg % 2 != 0,
9604 _("even register required"));
9605 constraint (inst.operands[1].present
9606 && inst.operands[1].reg != inst.operands[0].reg + 1,
9607 _("can only load two consecutive registers"));
9608 /* If op 1 were present and equal to PC, this function wouldn't
9609 have been called in the first place. */
9610 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9611
c19d1205
ZW
9612 inst.instruction |= inst.operands[0].reg << 12;
9613 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9614}
9615
1be5fd2e
NC
9616/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9617 which is not a multiple of four is UNPREDICTABLE. */
9618static void
9619check_ldr_r15_aligned (void)
9620{
9621 constraint (!(inst.operands[1].immisreg)
9622 && (inst.operands[0].reg == REG_PC
9623 && inst.operands[1].reg == REG_PC
e2b0ab59 9624 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9625 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9626}
9627
b05fe5cf 9628static void
c19d1205 9629do_ldst (void)
b05fe5cf 9630{
c19d1205
ZW
9631 inst.instruction |= inst.operands[0].reg << 12;
9632 if (!inst.operands[1].isreg)
8335d6aa 9633 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9634 return;
c19d1205 9635 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9636 check_ldr_r15_aligned ();
b05fe5cf
ZW
9637}
9638
9639static void
c19d1205 9640do_ldstt (void)
b05fe5cf 9641{
c19d1205
ZW
9642 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9643 reject [Rn,...]. */
9644 if (inst.operands[1].preind)
b05fe5cf 9645 {
e2b0ab59
AV
9646 constraint (inst.relocs[0].exp.X_op != O_constant
9647 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9648 _("this instruction requires a post-indexed address"));
b05fe5cf 9649
c19d1205
ZW
9650 inst.operands[1].preind = 0;
9651 inst.operands[1].postind = 1;
9652 inst.operands[1].writeback = 1;
b05fe5cf 9653 }
c19d1205
ZW
9654 inst.instruction |= inst.operands[0].reg << 12;
9655 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9656}
b05fe5cf 9657
c19d1205 9658/* Halfword and signed-byte load/store operations. */
b05fe5cf 9659
c19d1205
ZW
9660static void
9661do_ldstv4 (void)
9662{
ff4a8d2b 9663 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9664 inst.instruction |= inst.operands[0].reg << 12;
9665 if (!inst.operands[1].isreg)
8335d6aa 9666 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9667 return;
c19d1205 9668 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9669}
9670
9671static void
c19d1205 9672do_ldsttv4 (void)
b05fe5cf 9673{
c19d1205
ZW
9674 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9675 reject [Rn,...]. */
9676 if (inst.operands[1].preind)
b05fe5cf 9677 {
e2b0ab59
AV
9678 constraint (inst.relocs[0].exp.X_op != O_constant
9679 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9680 _("this instruction requires a post-indexed address"));
b05fe5cf 9681
c19d1205
ZW
9682 inst.operands[1].preind = 0;
9683 inst.operands[1].postind = 1;
9684 inst.operands[1].writeback = 1;
b05fe5cf 9685 }
c19d1205
ZW
9686 inst.instruction |= inst.operands[0].reg << 12;
9687 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9688}
b05fe5cf 9689
c19d1205
ZW
9690/* Co-processor register load/store.
9691 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9692static void
9693do_lstc (void)
9694{
9695 inst.instruction |= inst.operands[0].reg << 8;
9696 inst.instruction |= inst.operands[1].reg << 12;
9697 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9698}
9699
b05fe5cf 9700static void
c19d1205 9701do_mlas (void)
b05fe5cf 9702{
8fb9d7b9 9703 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9704 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9705 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9706 && !(inst.instruction & 0x00400000))
8fb9d7b9 9707 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9708
c19d1205
ZW
9709 inst.instruction |= inst.operands[0].reg << 16;
9710 inst.instruction |= inst.operands[1].reg;
9711 inst.instruction |= inst.operands[2].reg << 8;
9712 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9713}
b05fe5cf 9714
c19d1205
ZW
9715static void
9716do_mov (void)
9717{
e2b0ab59
AV
9718 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9719 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9720 THUMB1_RELOC_ONLY);
c19d1205
ZW
9721 inst.instruction |= inst.operands[0].reg << 12;
9722 encode_arm_shifter_operand (1);
9723}
b05fe5cf 9724
c19d1205
ZW
9725/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9726static void
9727do_mov16 (void)
9728{
b6895b4f
PB
9729 bfd_vma imm;
9730 bfd_boolean top;
9731
9732 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9733 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9734 _(":lower16: not allowed in this instruction"));
e2b0ab59 9735 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9736 _(":upper16: not allowed in this instruction"));
c19d1205 9737 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9738 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9739 {
e2b0ab59 9740 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9741 /* The value is in two pieces: 0:11, 16:19. */
9742 inst.instruction |= (imm & 0x00000fff);
9743 inst.instruction |= (imm & 0x0000f000) << 4;
9744 }
b05fe5cf 9745}
b99bd4ef 9746
037e8744
JB
9747static int
9748do_vfp_nsyn_mrs (void)
9749{
9750 if (inst.operands[0].isvec)
9751 {
9752 if (inst.operands[1].reg != 1)
477330fc 9753 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9754 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9755 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9756 do_vfp_nsyn_opcode ("fmstat");
9757 }
9758 else if (inst.operands[1].isvec)
9759 do_vfp_nsyn_opcode ("fmrx");
9760 else
9761 return FAIL;
5f4273c7 9762
037e8744
JB
9763 return SUCCESS;
9764}
9765
9766static int
9767do_vfp_nsyn_msr (void)
9768{
9769 if (inst.operands[0].isvec)
9770 do_vfp_nsyn_opcode ("fmxr");
9771 else
9772 return FAIL;
9773
9774 return SUCCESS;
9775}
9776
f7c21dc7
NC
9777static void
9778do_vmrs (void)
9779{
9780 unsigned Rt = inst.operands[0].reg;
fa94de6b 9781
16d02dc9 9782 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9783 {
9784 inst.error = BAD_SP;
9785 return;
9786 }
9787
40c7d507
RR
9788 /* MVFR2 is only valid at ARMv8-A. */
9789 if (inst.operands[1].reg == 5)
9790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9791 _(BAD_FPU));
9792
f7c21dc7 9793 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9794 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9795 {
9796 inst.error = BAD_PC;
9797 return;
9798 }
9799
16d02dc9
JB
9800 /* If we get through parsing the register name, we just insert the number
9801 generated into the instruction without further validation. */
9802 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9803 inst.instruction |= (Rt << 12);
9804}
9805
9806static void
9807do_vmsr (void)
9808{
9809 unsigned Rt = inst.operands[1].reg;
fa94de6b 9810
f7c21dc7
NC
9811 if (thumb_mode)
9812 reject_bad_reg (Rt);
9813 else if (Rt == REG_PC)
9814 {
9815 inst.error = BAD_PC;
9816 return;
9817 }
9818
40c7d507
RR
9819 /* MVFR2 is only valid for ARMv8-A. */
9820 if (inst.operands[0].reg == 5)
9821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9822 _(BAD_FPU));
9823
16d02dc9
JB
9824 /* If we get through parsing the register name, we just insert the number
9825 generated into the instruction without further validation. */
9826 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9827 inst.instruction |= (Rt << 12);
9828}
9829
b99bd4ef 9830static void
c19d1205 9831do_mrs (void)
b99bd4ef 9832{
90ec0d68
MGD
9833 unsigned br;
9834
037e8744
JB
9835 if (do_vfp_nsyn_mrs () == SUCCESS)
9836 return;
9837
ff4a8d2b 9838 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9839 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9840
9841 if (inst.operands[1].isreg)
9842 {
9843 br = inst.operands[1].reg;
806ab1c0 9844 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9845 as_bad (_("bad register for mrs"));
9846 }
9847 else
9848 {
9849 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9850 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9851 != (PSR_c|PSR_f),
d2cd1205 9852 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9853 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9854 }
9855
9856 inst.instruction |= br;
c19d1205 9857}
b99bd4ef 9858
c19d1205
ZW
9859/* Two possible forms:
9860 "{C|S}PSR_<field>, Rm",
9861 "{C|S}PSR_f, #expression". */
b99bd4ef 9862
c19d1205
ZW
9863static void
9864do_msr (void)
9865{
037e8744
JB
9866 if (do_vfp_nsyn_msr () == SUCCESS)
9867 return;
9868
c19d1205
ZW
9869 inst.instruction |= inst.operands[0].imm;
9870 if (inst.operands[1].isreg)
9871 inst.instruction |= inst.operands[1].reg;
9872 else
b99bd4ef 9873 {
c19d1205 9874 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9875 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9876 inst.relocs[0].pc_rel = 0;
b99bd4ef 9877 }
b99bd4ef
NC
9878}
9879
c19d1205
ZW
9880static void
9881do_mul (void)
a737bd4d 9882{
ff4a8d2b
NC
9883 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9884
c19d1205
ZW
9885 if (!inst.operands[2].present)
9886 inst.operands[2].reg = inst.operands[0].reg;
9887 inst.instruction |= inst.operands[0].reg << 16;
9888 inst.instruction |= inst.operands[1].reg;
9889 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9890
8fb9d7b9
MS
9891 if (inst.operands[0].reg == inst.operands[1].reg
9892 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9893 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9894}
9895
c19d1205
ZW
9896/* Long Multiply Parser
9897 UMULL RdLo, RdHi, Rm, Rs
9898 SMULL RdLo, RdHi, Rm, Rs
9899 UMLAL RdLo, RdHi, Rm, Rs
9900 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9901
9902static void
c19d1205 9903do_mull (void)
b99bd4ef 9904{
c19d1205
ZW
9905 inst.instruction |= inst.operands[0].reg << 12;
9906 inst.instruction |= inst.operands[1].reg << 16;
9907 inst.instruction |= inst.operands[2].reg;
9908 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9909
682b27ad
PB
9910 /* rdhi and rdlo must be different. */
9911 if (inst.operands[0].reg == inst.operands[1].reg)
9912 as_tsktsk (_("rdhi and rdlo must be different"));
9913
9914 /* rdhi, rdlo and rm must all be different before armv6. */
9915 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9916 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9917 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9918 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9919}
b99bd4ef 9920
c19d1205
ZW
9921static void
9922do_nop (void)
9923{
e7495e45
NS
9924 if (inst.operands[0].present
9925 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9926 {
9927 /* Architectural NOP hints are CPSR sets with no bits selected. */
9928 inst.instruction &= 0xf0000000;
e7495e45
NS
9929 inst.instruction |= 0x0320f000;
9930 if (inst.operands[0].present)
9931 inst.instruction |= inst.operands[0].imm;
c19d1205 9932 }
b99bd4ef
NC
9933}
9934
c19d1205
ZW
9935/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9936 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9937 Condition defaults to COND_ALWAYS.
9938 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9939
9940static void
c19d1205 9941do_pkhbt (void)
b99bd4ef 9942{
c19d1205
ZW
9943 inst.instruction |= inst.operands[0].reg << 12;
9944 inst.instruction |= inst.operands[1].reg << 16;
9945 inst.instruction |= inst.operands[2].reg;
9946 if (inst.operands[3].present)
9947 encode_arm_shift (3);
9948}
b99bd4ef 9949
c19d1205 9950/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9951
c19d1205
ZW
9952static void
9953do_pkhtb (void)
9954{
9955 if (!inst.operands[3].present)
b99bd4ef 9956 {
c19d1205
ZW
9957 /* If the shift specifier is omitted, turn the instruction
9958 into pkhbt rd, rm, rn. */
9959 inst.instruction &= 0xfff00010;
9960 inst.instruction |= inst.operands[0].reg << 12;
9961 inst.instruction |= inst.operands[1].reg;
9962 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9963 }
9964 else
9965 {
c19d1205
ZW
9966 inst.instruction |= inst.operands[0].reg << 12;
9967 inst.instruction |= inst.operands[1].reg << 16;
9968 inst.instruction |= inst.operands[2].reg;
9969 encode_arm_shift (3);
b99bd4ef
NC
9970 }
9971}
9972
c19d1205 9973/* ARMv5TE: Preload-Cache
60e5ef9f 9974 MP Extensions: Preload for write
c19d1205 9975
60e5ef9f 9976 PLD(W) <addr_mode>
c19d1205
ZW
9977
9978 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9979
9980static void
c19d1205 9981do_pld (void)
b99bd4ef 9982{
c19d1205
ZW
9983 constraint (!inst.operands[0].isreg,
9984 _("'[' expected after PLD mnemonic"));
9985 constraint (inst.operands[0].postind,
9986 _("post-indexed expression used in preload instruction"));
9987 constraint (inst.operands[0].writeback,
9988 _("writeback used in preload instruction"));
9989 constraint (!inst.operands[0].preind,
9990 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9991 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9992}
b99bd4ef 9993
62b3e311
PB
9994/* ARMv7: PLI <addr_mode> */
9995static void
9996do_pli (void)
9997{
9998 constraint (!inst.operands[0].isreg,
9999 _("'[' expected after PLI mnemonic"));
10000 constraint (inst.operands[0].postind,
10001 _("post-indexed expression used in preload instruction"));
10002 constraint (inst.operands[0].writeback,
10003 _("writeback used in preload instruction"));
10004 constraint (!inst.operands[0].preind,
10005 _("unindexed addressing used in preload instruction"));
10006 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10007 inst.instruction &= ~PRE_INDEX;
10008}
10009
c19d1205
ZW
10010static void
10011do_push_pop (void)
10012{
5e0d7f77
MP
10013 constraint (inst.operands[0].writeback,
10014 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10015 inst.operands[1] = inst.operands[0];
10016 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10017 inst.operands[0].isreg = 1;
10018 inst.operands[0].writeback = 1;
10019 inst.operands[0].reg = REG_SP;
6530b175 10020 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10021}
b99bd4ef 10022
c19d1205
ZW
10023/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10024 word at the specified address and the following word
10025 respectively.
10026 Unconditionally executed.
10027 Error if Rn is R15. */
b99bd4ef 10028
c19d1205
ZW
10029static void
10030do_rfe (void)
10031{
10032 inst.instruction |= inst.operands[0].reg << 16;
10033 if (inst.operands[0].writeback)
10034 inst.instruction |= WRITE_BACK;
10035}
b99bd4ef 10036
c19d1205 10037/* ARM V6 ssat (argument parse). */
b99bd4ef 10038
c19d1205
ZW
10039static void
10040do_ssat (void)
10041{
10042 inst.instruction |= inst.operands[0].reg << 12;
10043 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10044 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10045
c19d1205
ZW
10046 if (inst.operands[3].present)
10047 encode_arm_shift (3);
b99bd4ef
NC
10048}
10049
c19d1205 10050/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10051
10052static void
c19d1205 10053do_usat (void)
b99bd4ef 10054{
c19d1205
ZW
10055 inst.instruction |= inst.operands[0].reg << 12;
10056 inst.instruction |= inst.operands[1].imm << 16;
10057 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10058
c19d1205
ZW
10059 if (inst.operands[3].present)
10060 encode_arm_shift (3);
b99bd4ef
NC
10061}
10062
c19d1205 10063/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10064
10065static void
c19d1205 10066do_ssat16 (void)
09d92015 10067{
c19d1205
ZW
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10070 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10071}
10072
c19d1205
ZW
10073static void
10074do_usat16 (void)
a737bd4d 10075{
c19d1205
ZW
10076 inst.instruction |= inst.operands[0].reg << 12;
10077 inst.instruction |= inst.operands[1].imm << 16;
10078 inst.instruction |= inst.operands[2].reg;
10079}
a737bd4d 10080
c19d1205
ZW
10081/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10082 preserving the other bits.
a737bd4d 10083
c19d1205
ZW
10084 setend <endian_specifier>, where <endian_specifier> is either
10085 BE or LE. */
a737bd4d 10086
c19d1205
ZW
10087static void
10088do_setend (void)
10089{
12e37cbc
MGD
10090 if (warn_on_deprecated
10091 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10092 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10093
c19d1205
ZW
10094 if (inst.operands[0].imm)
10095 inst.instruction |= 0x200;
a737bd4d
NC
10096}
10097
10098static void
c19d1205 10099do_shift (void)
a737bd4d 10100{
c19d1205
ZW
10101 unsigned int Rm = (inst.operands[1].present
10102 ? inst.operands[1].reg
10103 : inst.operands[0].reg);
a737bd4d 10104
c19d1205
ZW
10105 inst.instruction |= inst.operands[0].reg << 12;
10106 inst.instruction |= Rm;
10107 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10108 {
c19d1205
ZW
10109 inst.instruction |= inst.operands[2].reg << 8;
10110 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10111 /* PR 12854: Error on extraneous shifts. */
10112 constraint (inst.operands[2].shifted,
10113 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10114 }
10115 else
e2b0ab59 10116 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10117}
10118
09d92015 10119static void
3eb17e6b 10120do_smc (void)
09d92015 10121{
e2b0ab59
AV
10122 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10123 inst.relocs[0].pc_rel = 0;
09d92015
MM
10124}
10125
90ec0d68
MGD
10126static void
10127do_hvc (void)
10128{
e2b0ab59
AV
10129 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10130 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10131}
10132
09d92015 10133static void
c19d1205 10134do_swi (void)
09d92015 10135{
e2b0ab59
AV
10136 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10137 inst.relocs[0].pc_rel = 0;
09d92015
MM
10138}
10139
ddfded2f
MW
10140static void
10141do_setpan (void)
10142{
10143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10144 _("selected processor does not support SETPAN instruction"));
10145
10146 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10147}
10148
10149static void
10150do_t_setpan (void)
10151{
10152 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10153 _("selected processor does not support SETPAN instruction"));
10154
10155 inst.instruction |= (inst.operands[0].imm << 3);
10156}
10157
c19d1205
ZW
10158/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10159 SMLAxy{cond} Rd,Rm,Rs,Rn
10160 SMLAWy{cond} Rd,Rm,Rs,Rn
10161 Error if any register is R15. */
e16bb312 10162
c19d1205
ZW
10163static void
10164do_smla (void)
e16bb312 10165{
c19d1205
ZW
10166 inst.instruction |= inst.operands[0].reg << 16;
10167 inst.instruction |= inst.operands[1].reg;
10168 inst.instruction |= inst.operands[2].reg << 8;
10169 inst.instruction |= inst.operands[3].reg << 12;
10170}
a737bd4d 10171
c19d1205
ZW
10172/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10173 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10174 Error if any register is R15.
10175 Warning if Rdlo == Rdhi. */
a737bd4d 10176
c19d1205
ZW
10177static void
10178do_smlal (void)
10179{
10180 inst.instruction |= inst.operands[0].reg << 12;
10181 inst.instruction |= inst.operands[1].reg << 16;
10182 inst.instruction |= inst.operands[2].reg;
10183 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10184
c19d1205
ZW
10185 if (inst.operands[0].reg == inst.operands[1].reg)
10186 as_tsktsk (_("rdhi and rdlo must be different"));
10187}
a737bd4d 10188
c19d1205
ZW
10189/* ARM V5E (El Segundo) signed-multiply (argument parse)
10190 SMULxy{cond} Rd,Rm,Rs
10191 Error if any register is R15. */
a737bd4d 10192
c19d1205
ZW
10193static void
10194do_smul (void)
10195{
10196 inst.instruction |= inst.operands[0].reg << 16;
10197 inst.instruction |= inst.operands[1].reg;
10198 inst.instruction |= inst.operands[2].reg << 8;
10199}
a737bd4d 10200
b6702015
PB
10201/* ARM V6 srs (argument parse). The variable fields in the encoding are
10202 the same for both ARM and Thumb-2. */
a737bd4d 10203
c19d1205
ZW
10204static void
10205do_srs (void)
10206{
b6702015
PB
10207 int reg;
10208
10209 if (inst.operands[0].present)
10210 {
10211 reg = inst.operands[0].reg;
fdfde340 10212 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10213 }
10214 else
fdfde340 10215 reg = REG_SP;
b6702015
PB
10216
10217 inst.instruction |= reg << 16;
10218 inst.instruction |= inst.operands[1].imm;
10219 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10220 inst.instruction |= WRITE_BACK;
10221}
a737bd4d 10222
c19d1205 10223/* ARM V6 strex (argument parse). */
a737bd4d 10224
c19d1205
ZW
10225static void
10226do_strex (void)
10227{
10228 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10229 || inst.operands[2].postind || inst.operands[2].writeback
10230 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10231 || inst.operands[2].negative
10232 /* See comment in do_ldrex(). */
10233 || (inst.operands[2].reg == REG_PC),
10234 BAD_ADDR_MODE);
a737bd4d 10235
c19d1205
ZW
10236 constraint (inst.operands[0].reg == inst.operands[1].reg
10237 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10238
e2b0ab59
AV
10239 constraint (inst.relocs[0].exp.X_op != O_constant
10240 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10241 _("offset must be zero in ARM encoding"));
a737bd4d 10242
c19d1205
ZW
10243 inst.instruction |= inst.operands[0].reg << 12;
10244 inst.instruction |= inst.operands[1].reg;
10245 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10246 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10247}
10248
877807f8
NC
10249static void
10250do_t_strexbh (void)
10251{
10252 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10253 || inst.operands[2].postind || inst.operands[2].writeback
10254 || inst.operands[2].immisreg || inst.operands[2].shifted
10255 || inst.operands[2].negative,
10256 BAD_ADDR_MODE);
10257
10258 constraint (inst.operands[0].reg == inst.operands[1].reg
10259 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10260
10261 do_rm_rd_rn ();
10262}
10263
e16bb312 10264static void
c19d1205 10265do_strexd (void)
e16bb312 10266{
c19d1205
ZW
10267 constraint (inst.operands[1].reg % 2 != 0,
10268 _("even register required"));
10269 constraint (inst.operands[2].present
10270 && inst.operands[2].reg != inst.operands[1].reg + 1,
10271 _("can only store two consecutive registers"));
10272 /* If op 2 were present and equal to PC, this function wouldn't
10273 have been called in the first place. */
10274 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10275
c19d1205
ZW
10276 constraint (inst.operands[0].reg == inst.operands[1].reg
10277 || inst.operands[0].reg == inst.operands[1].reg + 1
10278 || inst.operands[0].reg == inst.operands[3].reg,
10279 BAD_OVERLAP);
e16bb312 10280
c19d1205
ZW
10281 inst.instruction |= inst.operands[0].reg << 12;
10282 inst.instruction |= inst.operands[1].reg;
10283 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10284}
10285
9eb6c0f1
MGD
10286/* ARM V8 STRL. */
10287static void
4b8c8c02 10288do_stlex (void)
9eb6c0f1
MGD
10289{
10290 constraint (inst.operands[0].reg == inst.operands[1].reg
10291 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10292
10293 do_rd_rm_rn ();
10294}
10295
10296static void
4b8c8c02 10297do_t_stlex (void)
9eb6c0f1
MGD
10298{
10299 constraint (inst.operands[0].reg == inst.operands[1].reg
10300 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10301
10302 do_rm_rd_rn ();
10303}
10304
c19d1205
ZW
10305/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10306 extends it to 32-bits, and adds the result to a value in another
10307 register. You can specify a rotation by 0, 8, 16, or 24 bits
10308 before extracting the 16-bit value.
10309 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10310 Condition defaults to COND_ALWAYS.
10311 Error if any register uses R15. */
10312
e16bb312 10313static void
c19d1205 10314do_sxtah (void)
e16bb312 10315{
c19d1205
ZW
10316 inst.instruction |= inst.operands[0].reg << 12;
10317 inst.instruction |= inst.operands[1].reg << 16;
10318 inst.instruction |= inst.operands[2].reg;
10319 inst.instruction |= inst.operands[3].imm << 10;
10320}
e16bb312 10321
c19d1205 10322/* ARM V6 SXTH.
e16bb312 10323
c19d1205
ZW
10324 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10325 Condition defaults to COND_ALWAYS.
10326 Error if any register uses R15. */
e16bb312
NC
10327
10328static void
c19d1205 10329do_sxth (void)
e16bb312 10330{
c19d1205
ZW
10331 inst.instruction |= inst.operands[0].reg << 12;
10332 inst.instruction |= inst.operands[1].reg;
10333 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10334}
c19d1205
ZW
10335\f
10336/* VFP instructions. In a logical order: SP variant first, monad
10337 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10338
10339static void
c19d1205 10340do_vfp_sp_monadic (void)
e16bb312 10341{
57785aa2
AV
10342 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10343 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10344 _(BAD_FPU));
10345
5287ad62
JB
10346 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10348}
10349
10350static void
c19d1205 10351do_vfp_sp_dyadic (void)
e16bb312 10352{
5287ad62
JB
10353 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10354 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10355 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10356}
10357
10358static void
c19d1205 10359do_vfp_sp_compare_z (void)
e16bb312 10360{
5287ad62 10361 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10362}
10363
10364static void
c19d1205 10365do_vfp_dp_sp_cvt (void)
e16bb312 10366{
5287ad62
JB
10367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10368 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10369}
10370
10371static void
c19d1205 10372do_vfp_sp_dp_cvt (void)
e16bb312 10373{
5287ad62
JB
10374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10376}
10377
10378static void
c19d1205 10379do_vfp_reg_from_sp (void)
e16bb312 10380{
57785aa2
AV
10381 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10382 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10383 _(BAD_FPU));
10384
c19d1205 10385 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10387}
10388
10389static void
c19d1205 10390do_vfp_reg2_from_sp2 (void)
e16bb312 10391{
c19d1205
ZW
10392 constraint (inst.operands[2].imm != 2,
10393 _("only two consecutive VFP SP registers allowed here"));
10394 inst.instruction |= inst.operands[0].reg << 12;
10395 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10396 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10397}
10398
10399static void
c19d1205 10400do_vfp_sp_from_reg (void)
e16bb312 10401{
57785aa2
AV
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10404 _(BAD_FPU));
10405
5287ad62 10406 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10407 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10408}
10409
10410static void
c19d1205 10411do_vfp_sp2_from_reg2 (void)
e16bb312 10412{
c19d1205
ZW
10413 constraint (inst.operands[0].imm != 2,
10414 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10415 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10416 inst.instruction |= inst.operands[1].reg << 12;
10417 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10418}
10419
10420static void
c19d1205 10421do_vfp_sp_ldst (void)
e16bb312 10422{
5287ad62 10423 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10424 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10425}
10426
10427static void
c19d1205 10428do_vfp_dp_ldst (void)
e16bb312 10429{
5287ad62 10430 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10431 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10432}
10433
c19d1205 10434
e16bb312 10435static void
c19d1205 10436vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10437{
c19d1205
ZW
10438 if (inst.operands[0].writeback)
10439 inst.instruction |= WRITE_BACK;
10440 else
10441 constraint (ldstm_type != VFP_LDSTMIA,
10442 _("this addressing mode requires base-register writeback"));
10443 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10444 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10445 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10446}
10447
10448static void
c19d1205 10449vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10450{
c19d1205 10451 int count;
e16bb312 10452
c19d1205
ZW
10453 if (inst.operands[0].writeback)
10454 inst.instruction |= WRITE_BACK;
10455 else
10456 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10457 _("this addressing mode requires base-register writeback"));
e16bb312 10458
c19d1205 10459 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10460 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10461
c19d1205
ZW
10462 count = inst.operands[1].imm << 1;
10463 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10464 count += 1;
e16bb312 10465
c19d1205 10466 inst.instruction |= count;
e16bb312
NC
10467}
10468
10469static void
c19d1205 10470do_vfp_sp_ldstmia (void)
e16bb312 10471{
c19d1205 10472 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10473}
10474
10475static void
c19d1205 10476do_vfp_sp_ldstmdb (void)
e16bb312 10477{
c19d1205 10478 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10479}
10480
10481static void
c19d1205 10482do_vfp_dp_ldstmia (void)
e16bb312 10483{
c19d1205 10484 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10485}
10486
10487static void
c19d1205 10488do_vfp_dp_ldstmdb (void)
e16bb312 10489{
c19d1205 10490 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10491}
10492
10493static void
c19d1205 10494do_vfp_xp_ldstmia (void)
e16bb312 10495{
c19d1205
ZW
10496 vfp_dp_ldstm (VFP_LDSTMIAX);
10497}
e16bb312 10498
c19d1205
ZW
10499static void
10500do_vfp_xp_ldstmdb (void)
10501{
10502 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10503}
5287ad62
JB
10504
10505static void
10506do_vfp_dp_rd_rm (void)
10507{
57785aa2
AV
10508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10509 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10510 _(BAD_FPU));
10511
5287ad62
JB
10512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10514}
10515
10516static void
10517do_vfp_dp_rn_rd (void)
10518{
10519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10521}
10522
10523static void
10524do_vfp_dp_rd_rn (void)
10525{
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528}
10529
10530static void
10531do_vfp_dp_rd_rn_rm (void)
10532{
57785aa2
AV
10533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10535 _(BAD_FPU));
10536
5287ad62
JB
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10540}
10541
10542static void
10543do_vfp_dp_rd (void)
10544{
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10546}
10547
10548static void
10549do_vfp_dp_rm_rd_rn (void)
10550{
57785aa2
AV
10551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10552 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10553 _(BAD_FPU));
10554
5287ad62
JB
10555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10557 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10558}
10559
10560/* VFPv3 instructions. */
10561static void
10562do_vfp_sp_const (void)
10563{
10564 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10565 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10566 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10567}
10568
10569static void
10570do_vfp_dp_const (void)
10571{
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10573 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10574 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10575}
10576
10577static void
10578vfp_conv (int srcsize)
10579{
5f1af56b
MGD
10580 int immbits = srcsize - inst.operands[1].imm;
10581
fa94de6b
RM
10582 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10583 {
5f1af56b 10584 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10585 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10586 inst.error = _("immediate value out of range, expected range [0, 16]");
10587 return;
10588 }
fa94de6b 10589 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10590 {
10591 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10592 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10593 inst.error = _("immediate value out of range, expected range [1, 32]");
10594 return;
10595 }
10596
5287ad62
JB
10597 inst.instruction |= (immbits & 1) << 5;
10598 inst.instruction |= (immbits >> 1);
10599}
10600
10601static void
10602do_vfp_sp_conv_16 (void)
10603{
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10605 vfp_conv (16);
10606}
10607
10608static void
10609do_vfp_dp_conv_16 (void)
10610{
10611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10612 vfp_conv (16);
10613}
10614
10615static void
10616do_vfp_sp_conv_32 (void)
10617{
10618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10619 vfp_conv (32);
10620}
10621
10622static void
10623do_vfp_dp_conv_32 (void)
10624{
10625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10626 vfp_conv (32);
10627}
c19d1205
ZW
10628\f
10629/* FPA instructions. Also in a logical order. */
e16bb312 10630
c19d1205
ZW
10631static void
10632do_fpa_cmp (void)
10633{
10634 inst.instruction |= inst.operands[0].reg << 16;
10635 inst.instruction |= inst.operands[1].reg;
10636}
b99bd4ef
NC
10637
10638static void
c19d1205 10639do_fpa_ldmstm (void)
b99bd4ef 10640{
c19d1205
ZW
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 switch (inst.operands[1].imm)
10643 {
10644 case 1: inst.instruction |= CP_T_X; break;
10645 case 2: inst.instruction |= CP_T_Y; break;
10646 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10647 case 4: break;
10648 default: abort ();
10649 }
b99bd4ef 10650
c19d1205
ZW
10651 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10652 {
10653 /* The instruction specified "ea" or "fd", so we can only accept
10654 [Rn]{!}. The instruction does not really support stacking or
10655 unstacking, so we have to emulate these by setting appropriate
10656 bits and offsets. */
e2b0ab59
AV
10657 constraint (inst.relocs[0].exp.X_op != O_constant
10658 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10659 _("this instruction does not support indexing"));
b99bd4ef 10660
c19d1205 10661 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10662 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10663
c19d1205 10664 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10665 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10666
c19d1205
ZW
10667 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10668 {
10669 inst.operands[2].preind = 0;
10670 inst.operands[2].postind = 1;
10671 }
10672 }
b99bd4ef 10673
c19d1205 10674 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10675}
c19d1205
ZW
10676\f
10677/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10678
c19d1205
ZW
10679static void
10680do_iwmmxt_tandorc (void)
10681{
10682 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10683}
b99bd4ef 10684
c19d1205
ZW
10685static void
10686do_iwmmxt_textrc (void)
10687{
10688 inst.instruction |= inst.operands[0].reg << 12;
10689 inst.instruction |= inst.operands[1].imm;
10690}
b99bd4ef
NC
10691
10692static void
c19d1205 10693do_iwmmxt_textrm (void)
b99bd4ef 10694{
c19d1205
ZW
10695 inst.instruction |= inst.operands[0].reg << 12;
10696 inst.instruction |= inst.operands[1].reg << 16;
10697 inst.instruction |= inst.operands[2].imm;
10698}
b99bd4ef 10699
c19d1205
ZW
10700static void
10701do_iwmmxt_tinsr (void)
10702{
10703 inst.instruction |= inst.operands[0].reg << 16;
10704 inst.instruction |= inst.operands[1].reg << 12;
10705 inst.instruction |= inst.operands[2].imm;
10706}
b99bd4ef 10707
c19d1205
ZW
10708static void
10709do_iwmmxt_tmia (void)
10710{
10711 inst.instruction |= inst.operands[0].reg << 5;
10712 inst.instruction |= inst.operands[1].reg;
10713 inst.instruction |= inst.operands[2].reg << 12;
10714}
b99bd4ef 10715
c19d1205
ZW
10716static void
10717do_iwmmxt_waligni (void)
10718{
10719 inst.instruction |= inst.operands[0].reg << 12;
10720 inst.instruction |= inst.operands[1].reg << 16;
10721 inst.instruction |= inst.operands[2].reg;
10722 inst.instruction |= inst.operands[3].imm << 20;
10723}
b99bd4ef 10724
2d447fca
JM
10725static void
10726do_iwmmxt_wmerge (void)
10727{
10728 inst.instruction |= inst.operands[0].reg << 12;
10729 inst.instruction |= inst.operands[1].reg << 16;
10730 inst.instruction |= inst.operands[2].reg;
10731 inst.instruction |= inst.operands[3].imm << 21;
10732}
10733
c19d1205
ZW
10734static void
10735do_iwmmxt_wmov (void)
10736{
10737 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10738 inst.instruction |= inst.operands[0].reg << 12;
10739 inst.instruction |= inst.operands[1].reg << 16;
10740 inst.instruction |= inst.operands[1].reg;
10741}
b99bd4ef 10742
c19d1205
ZW
10743static void
10744do_iwmmxt_wldstbh (void)
10745{
8f06b2d8 10746 int reloc;
c19d1205 10747 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10748 if (thumb_mode)
10749 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10750 else
10751 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10752 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10753}
10754
c19d1205
ZW
10755static void
10756do_iwmmxt_wldstw (void)
10757{
10758 /* RIWR_RIWC clears .isreg for a control register. */
10759 if (!inst.operands[0].isreg)
10760 {
10761 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10762 inst.instruction |= 0xf0000000;
10763 }
b99bd4ef 10764
c19d1205
ZW
10765 inst.instruction |= inst.operands[0].reg << 12;
10766 encode_arm_cp_address (1, TRUE, TRUE, 0);
10767}
b99bd4ef
NC
10768
10769static void
c19d1205 10770do_iwmmxt_wldstd (void)
b99bd4ef 10771{
c19d1205 10772 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10773 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10774 && inst.operands[1].immisreg)
10775 {
10776 inst.instruction &= ~0x1a000ff;
eff0bc54 10777 inst.instruction |= (0xfU << 28);
2d447fca
JM
10778 if (inst.operands[1].preind)
10779 inst.instruction |= PRE_INDEX;
10780 if (!inst.operands[1].negative)
10781 inst.instruction |= INDEX_UP;
10782 if (inst.operands[1].writeback)
10783 inst.instruction |= WRITE_BACK;
10784 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10785 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10786 inst.instruction |= inst.operands[1].imm;
10787 }
10788 else
10789 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10790}
b99bd4ef 10791
c19d1205
ZW
10792static void
10793do_iwmmxt_wshufh (void)
10794{
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[1].reg << 16;
10797 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10798 inst.instruction |= (inst.operands[2].imm & 0x0f);
10799}
b99bd4ef 10800
c19d1205
ZW
10801static void
10802do_iwmmxt_wzero (void)
10803{
10804 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10805 inst.instruction |= inst.operands[0].reg;
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[0].reg << 16;
10808}
2d447fca
JM
10809
10810static void
10811do_iwmmxt_wrwrwr_or_imm5 (void)
10812{
10813 if (inst.operands[2].isreg)
10814 do_rd_rn_rm ();
10815 else {
10816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10817 _("immediate operand requires iWMMXt2"));
10818 do_rd_rn ();
10819 if (inst.operands[2].imm == 0)
10820 {
10821 switch ((inst.instruction >> 20) & 0xf)
10822 {
10823 case 4:
10824 case 5:
10825 case 6:
5f4273c7 10826 case 7:
2d447fca
JM
10827 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10828 inst.operands[2].imm = 16;
10829 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10830 break;
10831 case 8:
10832 case 9:
10833 case 10:
10834 case 11:
10835 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10836 inst.operands[2].imm = 32;
10837 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10838 break;
10839 case 12:
10840 case 13:
10841 case 14:
10842 case 15:
10843 {
10844 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10845 unsigned long wrn;
10846 wrn = (inst.instruction >> 16) & 0xf;
10847 inst.instruction &= 0xff0fff0f;
10848 inst.instruction |= wrn;
10849 /* Bail out here; the instruction is now assembled. */
10850 return;
10851 }
10852 }
10853 }
10854 /* Map 32 -> 0, etc. */
10855 inst.operands[2].imm &= 0x1f;
eff0bc54 10856 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10857 }
10858}
c19d1205
ZW
10859\f
10860/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10861 operations first, then control, shift, and load/store. */
b99bd4ef 10862
c19d1205 10863/* Insns like "foo X,Y,Z". */
b99bd4ef 10864
c19d1205
ZW
10865static void
10866do_mav_triple (void)
10867{
10868 inst.instruction |= inst.operands[0].reg << 16;
10869 inst.instruction |= inst.operands[1].reg;
10870 inst.instruction |= inst.operands[2].reg << 12;
10871}
b99bd4ef 10872
c19d1205
ZW
10873/* Insns like "foo W,X,Y,Z".
10874 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10875
c19d1205
ZW
10876static void
10877do_mav_quad (void)
10878{
10879 inst.instruction |= inst.operands[0].reg << 5;
10880 inst.instruction |= inst.operands[1].reg << 12;
10881 inst.instruction |= inst.operands[2].reg << 16;
10882 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10883}
10884
c19d1205
ZW
10885/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10886static void
10887do_mav_dspsc (void)
a737bd4d 10888{
c19d1205
ZW
10889 inst.instruction |= inst.operands[1].reg << 12;
10890}
a737bd4d 10891
c19d1205
ZW
10892/* Maverick shift immediate instructions.
10893 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10894 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10895
c19d1205
ZW
10896static void
10897do_mav_shift (void)
10898{
10899 int imm = inst.operands[2].imm;
a737bd4d 10900
c19d1205
ZW
10901 inst.instruction |= inst.operands[0].reg << 12;
10902 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10903
c19d1205
ZW
10904 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10905 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10906 Bit 4 should be 0. */
10907 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10908
c19d1205
ZW
10909 inst.instruction |= imm;
10910}
10911\f
10912/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10913
c19d1205
ZW
10914/* Xscale multiply-accumulate (argument parse)
10915 MIAcc acc0,Rm,Rs
10916 MIAPHcc acc0,Rm,Rs
10917 MIAxycc acc0,Rm,Rs. */
a737bd4d 10918
c19d1205
ZW
10919static void
10920do_xsc_mia (void)
10921{
10922 inst.instruction |= inst.operands[1].reg;
10923 inst.instruction |= inst.operands[2].reg << 12;
10924}
a737bd4d 10925
c19d1205 10926/* Xscale move-accumulator-register (argument parse)
a737bd4d 10927
c19d1205 10928 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10929
c19d1205
ZW
10930static void
10931do_xsc_mar (void)
10932{
10933 inst.instruction |= inst.operands[1].reg << 12;
10934 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10935}
10936
c19d1205 10937/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10938
c19d1205 10939 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10940
10941static void
c19d1205 10942do_xsc_mra (void)
b99bd4ef 10943{
c19d1205
ZW
10944 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 inst.instruction |= inst.operands[1].reg << 16;
10947}
10948\f
10949/* Encoding functions relevant only to Thumb. */
b99bd4ef 10950
c19d1205
ZW
10951/* inst.operands[i] is a shifted-register operand; encode
10952 it into inst.instruction in the format used by Thumb32. */
10953
10954static void
10955encode_thumb32_shifted_operand (int i)
10956{
e2b0ab59 10957 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10958 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10959
9c3c69f2
PB
10960 constraint (inst.operands[i].immisreg,
10961 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10962 inst.instruction |= inst.operands[i].reg;
10963 if (shift == SHIFT_RRX)
10964 inst.instruction |= SHIFT_ROR << 4;
10965 else
b99bd4ef 10966 {
e2b0ab59 10967 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10968 _("expression too complex"));
10969
10970 constraint (value > 32
10971 || (value == 32 && (shift == SHIFT_LSL
10972 || shift == SHIFT_ROR)),
10973 _("shift expression is too large"));
10974
10975 if (value == 0)
10976 shift = SHIFT_LSL;
10977 else if (value == 32)
10978 value = 0;
10979
10980 inst.instruction |= shift << 4;
10981 inst.instruction |= (value & 0x1c) << 10;
10982 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10983 }
c19d1205 10984}
b99bd4ef 10985
b99bd4ef 10986
c19d1205
ZW
10987/* inst.operands[i] was set up by parse_address. Encode it into a
10988 Thumb32 format load or store instruction. Reject forms that cannot
10989 be used with such instructions. If is_t is true, reject forms that
10990 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10991 that cannot be used with a D instruction. If it is a store insn,
10992 reject PC in Rn. */
b99bd4ef 10993
c19d1205
ZW
10994static void
10995encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10996{
5be8be5d 10997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10998
10999 constraint (!inst.operands[i].isreg,
53365c0d 11000 _("Instruction does not support =N addresses"));
b99bd4ef 11001
c19d1205
ZW
11002 inst.instruction |= inst.operands[i].reg << 16;
11003 if (inst.operands[i].immisreg)
b99bd4ef 11004 {
5be8be5d 11005 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11006 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11007 constraint (inst.operands[i].negative,
11008 _("Thumb does not support negative register indexing"));
11009 constraint (inst.operands[i].postind,
11010 _("Thumb does not support register post-indexing"));
11011 constraint (inst.operands[i].writeback,
11012 _("Thumb does not support register indexing with writeback"));
11013 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11014 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11015
f40d1643 11016 inst.instruction |= inst.operands[i].imm;
c19d1205 11017 if (inst.operands[i].shifted)
b99bd4ef 11018 {
e2b0ab59 11019 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11020 _("expression too complex"));
e2b0ab59
AV
11021 constraint (inst.relocs[0].exp.X_add_number < 0
11022 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11023 _("shift out of range"));
e2b0ab59 11024 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11025 }
e2b0ab59 11026 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11027 }
11028 else if (inst.operands[i].preind)
11029 {
5be8be5d 11030 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11031 constraint (is_t && inst.operands[i].writeback,
c19d1205 11032 _("cannot use writeback with this instruction"));
4755303e
WN
11033 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11034 BAD_PC_ADDRESSING);
c19d1205
ZW
11035
11036 if (is_d)
11037 {
11038 inst.instruction |= 0x01000000;
11039 if (inst.operands[i].writeback)
11040 inst.instruction |= 0x00200000;
b99bd4ef 11041 }
c19d1205 11042 else
b99bd4ef 11043 {
c19d1205
ZW
11044 inst.instruction |= 0x00000c00;
11045 if (inst.operands[i].writeback)
11046 inst.instruction |= 0x00000100;
b99bd4ef 11047 }
e2b0ab59 11048 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11049 }
c19d1205 11050 else if (inst.operands[i].postind)
b99bd4ef 11051 {
9c2799c2 11052 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11053 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11054 constraint (is_t, _("cannot use post-indexing with this instruction"));
11055
11056 if (is_d)
11057 inst.instruction |= 0x00200000;
11058 else
11059 inst.instruction |= 0x00000900;
e2b0ab59 11060 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11061 }
11062 else /* unindexed - only for coprocessor */
11063 inst.error = _("instruction does not accept unindexed addressing");
11064}
11065
11066/* Table of Thumb instructions which exist in both 16- and 32-bit
11067 encodings (the latter only in post-V6T2 cores). The index is the
11068 value used in the insns table below. When there is more than one
11069 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11070 holds variant (1).
11071 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11072#define T16_32_TAB \
21d799b5
NC
11073 X(_adc, 4140, eb400000), \
11074 X(_adcs, 4140, eb500000), \
11075 X(_add, 1c00, eb000000), \
11076 X(_adds, 1c00, eb100000), \
11077 X(_addi, 0000, f1000000), \
11078 X(_addis, 0000, f1100000), \
11079 X(_add_pc,000f, f20f0000), \
11080 X(_add_sp,000d, f10d0000), \
11081 X(_adr, 000f, f20f0000), \
11082 X(_and, 4000, ea000000), \
11083 X(_ands, 4000, ea100000), \
11084 X(_asr, 1000, fa40f000), \
11085 X(_asrs, 1000, fa50f000), \
11086 X(_b, e000, f000b000), \
11087 X(_bcond, d000, f0008000), \
4389b29a 11088 X(_bf, 0000, f040e001), \
f6b2b12d 11089 X(_bfcsel,0000, f000e001), \
f1c7f421 11090 X(_bfx, 0000, f060e001), \
65d1bc05 11091 X(_bfl, 0000, f000c001), \
f1c7f421 11092 X(_bflx, 0000, f070e001), \
21d799b5
NC
11093 X(_bic, 4380, ea200000), \
11094 X(_bics, 4380, ea300000), \
11095 X(_cmn, 42c0, eb100f00), \
11096 X(_cmp, 2800, ebb00f00), \
11097 X(_cpsie, b660, f3af8400), \
11098 X(_cpsid, b670, f3af8600), \
11099 X(_cpy, 4600, ea4f0000), \
11100 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11101 X(_dls, 0000, f040e001), \
21d799b5
NC
11102 X(_eor, 4040, ea800000), \
11103 X(_eors, 4040, ea900000), \
11104 X(_inc_sp,00dd, f10d0d00), \
11105 X(_ldmia, c800, e8900000), \
11106 X(_ldr, 6800, f8500000), \
11107 X(_ldrb, 7800, f8100000), \
11108 X(_ldrh, 8800, f8300000), \
11109 X(_ldrsb, 5600, f9100000), \
11110 X(_ldrsh, 5e00, f9300000), \
11111 X(_ldr_pc,4800, f85f0000), \
11112 X(_ldr_pc2,4800, f85f0000), \
11113 X(_ldr_sp,9800, f85d0000), \
60f993ce 11114 X(_le, 0000, f00fc001), \
21d799b5
NC
11115 X(_lsl, 0000, fa00f000), \
11116 X(_lsls, 0000, fa10f000), \
11117 X(_lsr, 0800, fa20f000), \
11118 X(_lsrs, 0800, fa30f000), \
11119 X(_mov, 2000, ea4f0000), \
11120 X(_movs, 2000, ea5f0000), \
11121 X(_mul, 4340, fb00f000), \
11122 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11123 X(_mvn, 43c0, ea6f0000), \
11124 X(_mvns, 43c0, ea7f0000), \
11125 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11126 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11127 X(_orr, 4300, ea400000), \
11128 X(_orrs, 4300, ea500000), \
11129 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11130 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11131 X(_rev, ba00, fa90f080), \
11132 X(_rev16, ba40, fa90f090), \
11133 X(_revsh, bac0, fa90f0b0), \
11134 X(_ror, 41c0, fa60f000), \
11135 X(_rors, 41c0, fa70f000), \
11136 X(_sbc, 4180, eb600000), \
11137 X(_sbcs, 4180, eb700000), \
11138 X(_stmia, c000, e8800000), \
11139 X(_str, 6000, f8400000), \
11140 X(_strb, 7000, f8000000), \
11141 X(_strh, 8000, f8200000), \
11142 X(_str_sp,9000, f84d0000), \
11143 X(_sub, 1e00, eba00000), \
11144 X(_subs, 1e00, ebb00000), \
11145 X(_subi, 8000, f1a00000), \
11146 X(_subis, 8000, f1b00000), \
11147 X(_sxtb, b240, fa4ff080), \
11148 X(_sxth, b200, fa0ff080), \
11149 X(_tst, 4200, ea100f00), \
11150 X(_uxtb, b2c0, fa5ff080), \
11151 X(_uxth, b280, fa1ff080), \
11152 X(_nop, bf00, f3af8000), \
11153 X(_yield, bf10, f3af8001), \
11154 X(_wfe, bf20, f3af8002), \
11155 X(_wfi, bf30, f3af8003), \
60f993ce 11156 X(_wls, 0000, f040c001), \
53c4b28b 11157 X(_sev, bf40, f3af8004), \
74db7efb
NC
11158 X(_sevl, bf50, f3af8005), \
11159 X(_udf, de00, f7f0a000)
c19d1205
ZW
11160
11161/* To catch errors in encoding functions, the codes are all offset by
11162 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11163 as 16-bit instructions. */
21d799b5 11164#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11165enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11166#undef X
11167
11168#define X(a,b,c) 0x##b
11169static const unsigned short thumb_op16[] = { T16_32_TAB };
11170#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11171#undef X
11172
11173#define X(a,b,c) 0x##c
11174static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11175#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11176#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11177#undef X
11178#undef T16_32_TAB
11179
11180/* Thumb instruction encoders, in alphabetical order. */
11181
92e90b6e 11182/* ADDW or SUBW. */
c921be7d 11183
92e90b6e
PB
11184static void
11185do_t_add_sub_w (void)
11186{
11187 int Rd, Rn;
11188
11189 Rd = inst.operands[0].reg;
11190 Rn = inst.operands[1].reg;
11191
539d4391
NC
11192 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11193 is the SP-{plus,minus}-immediate form of the instruction. */
11194 if (Rn == REG_SP)
11195 constraint (Rd == REG_PC, BAD_PC);
11196 else
11197 reject_bad_reg (Rd);
fdfde340 11198
92e90b6e 11199 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11200 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11201}
11202
c19d1205 11203/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11204 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11205
11206static void
11207do_t_add_sub (void)
11208{
11209 int Rd, Rs, Rn;
11210
11211 Rd = inst.operands[0].reg;
11212 Rs = (inst.operands[1].present
11213 ? inst.operands[1].reg /* Rd, Rs, foo */
11214 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11215
e07e6e58 11216 if (Rd == REG_PC)
5ee91343 11217 set_pred_insn_type_last ();
e07e6e58 11218
c19d1205
ZW
11219 if (unified_syntax)
11220 {
0110f2b8
PB
11221 bfd_boolean flags;
11222 bfd_boolean narrow;
11223 int opcode;
11224
11225 flags = (inst.instruction == T_MNEM_adds
11226 || inst.instruction == T_MNEM_subs);
11227 if (flags)
5ee91343 11228 narrow = !in_pred_block ();
0110f2b8 11229 else
5ee91343 11230 narrow = in_pred_block ();
c19d1205 11231 if (!inst.operands[2].isreg)
b99bd4ef 11232 {
16805f35
PB
11233 int add;
11234
5c8ed6a4
JW
11235 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11236 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11237
16805f35
PB
11238 add = (inst.instruction == T_MNEM_add
11239 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11240 opcode = 0;
11241 if (inst.size_req != 4)
11242 {
0110f2b8 11243 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11244 appropriate. */
0110f2b8
PB
11245 if (Rd == REG_SP && Rs == REG_SP && !flags)
11246 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11247 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11248 opcode = T_MNEM_add_sp;
11249 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11250 opcode = T_MNEM_add_pc;
11251 else if (Rd <= 7 && Rs <= 7 && narrow)
11252 {
11253 if (flags)
11254 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11255 else
11256 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11257 }
11258 if (opcode)
11259 {
11260 inst.instruction = THUMB_OP16(opcode);
11261 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11262 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11263 || (inst.relocs[0].type
11264 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11265 {
11266 if (inst.size_req == 2)
e2b0ab59 11267 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11268 else
11269 inst.relax = opcode;
11270 }
0110f2b8
PB
11271 }
11272 else
11273 constraint (inst.size_req == 2, BAD_HIREG);
11274 }
11275 if (inst.size_req == 4
11276 || (inst.size_req != 2 && !opcode))
11277 {
e2b0ab59
AV
11278 constraint ((inst.relocs[0].type
11279 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11280 && (inst.relocs[0].type
11281 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11282 THUMB1_RELOC_ONLY);
efd81785
PB
11283 if (Rd == REG_PC)
11284 {
fdfde340 11285 constraint (add, BAD_PC);
efd81785
PB
11286 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11287 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11288 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11289 _("expression too complex"));
e2b0ab59
AV
11290 constraint (inst.relocs[0].exp.X_add_number < 0
11291 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11292 _("immediate value out of range"));
11293 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11294 | inst.relocs[0].exp.X_add_number;
11295 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11296 return;
11297 }
11298 else if (Rs == REG_PC)
16805f35
PB
11299 {
11300 /* Always use addw/subw. */
11301 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11302 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11303 }
11304 else
11305 {
11306 inst.instruction = THUMB_OP32 (inst.instruction);
11307 inst.instruction = (inst.instruction & 0xe1ffffff)
11308 | 0x10000000;
11309 if (flags)
e2b0ab59 11310 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11311 else
e2b0ab59 11312 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11313 }
dc4503c6
PB
11314 inst.instruction |= Rd << 8;
11315 inst.instruction |= Rs << 16;
0110f2b8 11316 }
b99bd4ef 11317 }
c19d1205
ZW
11318 else
11319 {
e2b0ab59 11320 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11321 unsigned int shift = inst.operands[2].shift_kind;
11322
c19d1205
ZW
11323 Rn = inst.operands[2].reg;
11324 /* See if we can do this with a 16-bit instruction. */
11325 if (!inst.operands[2].shifted && inst.size_req != 4)
11326 {
e27ec89e
PB
11327 if (Rd > 7 || Rs > 7 || Rn > 7)
11328 narrow = FALSE;
11329
11330 if (narrow)
c19d1205 11331 {
e27ec89e
PB
11332 inst.instruction = ((inst.instruction == T_MNEM_adds
11333 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11334 ? T_OPCODE_ADD_R3
11335 : T_OPCODE_SUB_R3);
11336 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11337 return;
11338 }
b99bd4ef 11339
7e806470 11340 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11341 {
7e806470
PB
11342 /* Thumb-1 cores (except v6-M) require at least one high
11343 register in a narrow non flag setting add. */
11344 if (Rd > 7 || Rn > 7
11345 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11346 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11347 {
7e806470
PB
11348 if (Rd == Rn)
11349 {
11350 Rn = Rs;
11351 Rs = Rd;
11352 }
c19d1205
ZW
11353 inst.instruction = T_OPCODE_ADD_HI;
11354 inst.instruction |= (Rd & 8) << 4;
11355 inst.instruction |= (Rd & 7);
11356 inst.instruction |= Rn << 3;
11357 return;
11358 }
c19d1205
ZW
11359 }
11360 }
c921be7d 11361
fdfde340 11362 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11363 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11364 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11365 constraint (Rs == REG_PC, BAD_PC);
11366 reject_bad_reg (Rn);
11367
c19d1205
ZW
11368 /* If we get here, it can't be done in 16 bits. */
11369 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11370 _("shift must be constant"));
11371 inst.instruction = THUMB_OP32 (inst.instruction);
11372 inst.instruction |= Rd << 8;
11373 inst.instruction |= Rs << 16;
5f4cb198
NC
11374 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11375 _("shift value over 3 not allowed in thumb mode"));
11376 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11377 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11378 encode_thumb32_shifted_operand (2);
11379 }
11380 }
11381 else
11382 {
11383 constraint (inst.instruction == T_MNEM_adds
11384 || inst.instruction == T_MNEM_subs,
11385 BAD_THUMB32);
b99bd4ef 11386
c19d1205 11387 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11388 {
c19d1205
ZW
11389 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11390 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11391 BAD_HIREG);
11392
11393 inst.instruction = (inst.instruction == T_MNEM_add
11394 ? 0x0000 : 0x8000);
11395 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11396 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11397 return;
11398 }
11399
c19d1205
ZW
11400 Rn = inst.operands[2].reg;
11401 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11402
c19d1205
ZW
11403 /* We now have Rd, Rs, and Rn set to registers. */
11404 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11405 {
c19d1205
ZW
11406 /* Can't do this for SUB. */
11407 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11408 inst.instruction = T_OPCODE_ADD_HI;
11409 inst.instruction |= (Rd & 8) << 4;
11410 inst.instruction |= (Rd & 7);
11411 if (Rs == Rd)
11412 inst.instruction |= Rn << 3;
11413 else if (Rn == Rd)
11414 inst.instruction |= Rs << 3;
11415 else
11416 constraint (1, _("dest must overlap one source register"));
11417 }
11418 else
11419 {
11420 inst.instruction = (inst.instruction == T_MNEM_add
11421 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11422 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11423 }
b99bd4ef 11424 }
b99bd4ef
NC
11425}
11426
c19d1205
ZW
11427static void
11428do_t_adr (void)
11429{
fdfde340
JM
11430 unsigned Rd;
11431
11432 Rd = inst.operands[0].reg;
11433 reject_bad_reg (Rd);
11434
11435 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11436 {
11437 /* Defer to section relaxation. */
11438 inst.relax = inst.instruction;
11439 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11440 inst.instruction |= Rd << 4;
0110f2b8
PB
11441 }
11442 else if (unified_syntax && inst.size_req != 2)
e9f89963 11443 {
0110f2b8 11444 /* Generate a 32-bit opcode. */
e9f89963 11445 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11446 inst.instruction |= Rd << 8;
e2b0ab59
AV
11447 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11448 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11449 }
11450 else
11451 {
0110f2b8 11452 /* Generate a 16-bit opcode. */
e9f89963 11453 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11454 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11455 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11456 inst.relocs[0].pc_rel = 1;
fdfde340 11457 inst.instruction |= Rd << 4;
e9f89963 11458 }
52a86f84 11459
e2b0ab59
AV
11460 if (inst.relocs[0].exp.X_op == O_symbol
11461 && inst.relocs[0].exp.X_add_symbol != NULL
11462 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11463 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11464 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11465}
b99bd4ef 11466
c19d1205
ZW
11467/* Arithmetic instructions for which there is just one 16-bit
11468 instruction encoding, and it allows only two low registers.
11469 For maximal compatibility with ARM syntax, we allow three register
11470 operands even when Thumb-32 instructions are not available, as long
11471 as the first two are identical. For instance, both "sbc r0,r1" and
11472 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11473static void
c19d1205 11474do_t_arit3 (void)
b99bd4ef 11475{
c19d1205 11476 int Rd, Rs, Rn;
b99bd4ef 11477
c19d1205
ZW
11478 Rd = inst.operands[0].reg;
11479 Rs = (inst.operands[1].present
11480 ? inst.operands[1].reg /* Rd, Rs, foo */
11481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11482 Rn = inst.operands[2].reg;
b99bd4ef 11483
fdfde340
JM
11484 reject_bad_reg (Rd);
11485 reject_bad_reg (Rs);
11486 if (inst.operands[2].isreg)
11487 reject_bad_reg (Rn);
11488
c19d1205 11489 if (unified_syntax)
b99bd4ef 11490 {
c19d1205
ZW
11491 if (!inst.operands[2].isreg)
11492 {
11493 /* For an immediate, we always generate a 32-bit opcode;
11494 section relaxation will shrink it later if possible. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11497 inst.instruction |= Rd << 8;
11498 inst.instruction |= Rs << 16;
e2b0ab59 11499 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11500 }
11501 else
11502 {
e27ec89e
PB
11503 bfd_boolean narrow;
11504
c19d1205 11505 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11506 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11507 narrow = !in_pred_block ();
e27ec89e 11508 else
5ee91343 11509 narrow = in_pred_block ();
e27ec89e
PB
11510
11511 if (Rd > 7 || Rn > 7 || Rs > 7)
11512 narrow = FALSE;
11513 if (inst.operands[2].shifted)
11514 narrow = FALSE;
11515 if (inst.size_req == 4)
11516 narrow = FALSE;
11517
11518 if (narrow
c19d1205
ZW
11519 && Rd == Rs)
11520 {
11521 inst.instruction = THUMB_OP16 (inst.instruction);
11522 inst.instruction |= Rd;
11523 inst.instruction |= Rn << 3;
11524 return;
11525 }
b99bd4ef 11526
c19d1205
ZW
11527 /* If we get here, it can't be done in 16 bits. */
11528 constraint (inst.operands[2].shifted
11529 && inst.operands[2].immisreg,
11530 _("shift must be constant"));
11531 inst.instruction = THUMB_OP32 (inst.instruction);
11532 inst.instruction |= Rd << 8;
11533 inst.instruction |= Rs << 16;
11534 encode_thumb32_shifted_operand (2);
11535 }
a737bd4d 11536 }
c19d1205 11537 else
b99bd4ef 11538 {
c19d1205
ZW
11539 /* On its face this is a lie - the instruction does set the
11540 flags. However, the only supported mnemonic in this mode
11541 says it doesn't. */
11542 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11543
c19d1205
ZW
11544 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11545 _("unshifted register required"));
11546 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11547 constraint (Rd != Rs,
11548 _("dest and source1 must be the same register"));
a737bd4d 11549
c19d1205
ZW
11550 inst.instruction = THUMB_OP16 (inst.instruction);
11551 inst.instruction |= Rd;
11552 inst.instruction |= Rn << 3;
b99bd4ef 11553 }
a737bd4d 11554}
b99bd4ef 11555
c19d1205
ZW
11556/* Similarly, but for instructions where the arithmetic operation is
11557 commutative, so we can allow either of them to be different from
11558 the destination operand in a 16-bit instruction. For instance, all
11559 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11560 accepted. */
11561static void
11562do_t_arit3c (void)
a737bd4d 11563{
c19d1205 11564 int Rd, Rs, Rn;
b99bd4ef 11565
c19d1205
ZW
11566 Rd = inst.operands[0].reg;
11567 Rs = (inst.operands[1].present
11568 ? inst.operands[1].reg /* Rd, Rs, foo */
11569 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11570 Rn = inst.operands[2].reg;
c921be7d 11571
fdfde340
JM
11572 reject_bad_reg (Rd);
11573 reject_bad_reg (Rs);
11574 if (inst.operands[2].isreg)
11575 reject_bad_reg (Rn);
a737bd4d 11576
c19d1205 11577 if (unified_syntax)
a737bd4d 11578 {
c19d1205 11579 if (!inst.operands[2].isreg)
b99bd4ef 11580 {
c19d1205
ZW
11581 /* For an immediate, we always generate a 32-bit opcode;
11582 section relaxation will shrink it later if possible. */
11583 inst.instruction = THUMB_OP32 (inst.instruction);
11584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11585 inst.instruction |= Rd << 8;
11586 inst.instruction |= Rs << 16;
e2b0ab59 11587 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11588 }
c19d1205 11589 else
a737bd4d 11590 {
e27ec89e
PB
11591 bfd_boolean narrow;
11592
c19d1205 11593 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11594 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11595 narrow = !in_pred_block ();
e27ec89e 11596 else
5ee91343 11597 narrow = in_pred_block ();
e27ec89e
PB
11598
11599 if (Rd > 7 || Rn > 7 || Rs > 7)
11600 narrow = FALSE;
11601 if (inst.operands[2].shifted)
11602 narrow = FALSE;
11603 if (inst.size_req == 4)
11604 narrow = FALSE;
11605
11606 if (narrow)
a737bd4d 11607 {
c19d1205 11608 if (Rd == Rs)
a737bd4d 11609 {
c19d1205
ZW
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= Rd;
11612 inst.instruction |= Rn << 3;
11613 return;
a737bd4d 11614 }
c19d1205 11615 if (Rd == Rn)
a737bd4d 11616 {
c19d1205
ZW
11617 inst.instruction = THUMB_OP16 (inst.instruction);
11618 inst.instruction |= Rd;
11619 inst.instruction |= Rs << 3;
11620 return;
a737bd4d
NC
11621 }
11622 }
c19d1205
ZW
11623
11624 /* If we get here, it can't be done in 16 bits. */
11625 constraint (inst.operands[2].shifted
11626 && inst.operands[2].immisreg,
11627 _("shift must be constant"));
11628 inst.instruction = THUMB_OP32 (inst.instruction);
11629 inst.instruction |= Rd << 8;
11630 inst.instruction |= Rs << 16;
11631 encode_thumb32_shifted_operand (2);
a737bd4d 11632 }
b99bd4ef 11633 }
c19d1205
ZW
11634 else
11635 {
11636 /* On its face this is a lie - the instruction does set the
11637 flags. However, the only supported mnemonic in this mode
11638 says it doesn't. */
11639 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11640
c19d1205
ZW
11641 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11642 _("unshifted register required"));
11643 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11644
11645 inst.instruction = THUMB_OP16 (inst.instruction);
11646 inst.instruction |= Rd;
11647
11648 if (Rd == Rs)
11649 inst.instruction |= Rn << 3;
11650 else if (Rd == Rn)
11651 inst.instruction |= Rs << 3;
11652 else
11653 constraint (1, _("dest must overlap one source register"));
11654 }
a737bd4d
NC
11655}
11656
c19d1205
ZW
11657static void
11658do_t_bfc (void)
a737bd4d 11659{
fdfde340 11660 unsigned Rd;
c19d1205
ZW
11661 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11662 constraint (msb > 32, _("bit-field extends past end of register"));
11663 /* The instruction encoding stores the LSB and MSB,
11664 not the LSB and width. */
fdfde340
JM
11665 Rd = inst.operands[0].reg;
11666 reject_bad_reg (Rd);
11667 inst.instruction |= Rd << 8;
c19d1205
ZW
11668 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11669 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11670 inst.instruction |= msb - 1;
b99bd4ef
NC
11671}
11672
c19d1205
ZW
11673static void
11674do_t_bfi (void)
b99bd4ef 11675{
fdfde340 11676 int Rd, Rn;
c19d1205 11677 unsigned int msb;
b99bd4ef 11678
fdfde340
JM
11679 Rd = inst.operands[0].reg;
11680 reject_bad_reg (Rd);
11681
c19d1205
ZW
11682 /* #0 in second position is alternative syntax for bfc, which is
11683 the same instruction but with REG_PC in the Rm field. */
11684 if (!inst.operands[1].isreg)
fdfde340
JM
11685 Rn = REG_PC;
11686 else
11687 {
11688 Rn = inst.operands[1].reg;
11689 reject_bad_reg (Rn);
11690 }
b99bd4ef 11691
c19d1205
ZW
11692 msb = inst.operands[2].imm + inst.operands[3].imm;
11693 constraint (msb > 32, _("bit-field extends past end of register"));
11694 /* The instruction encoding stores the LSB and MSB,
11695 not the LSB and width. */
fdfde340
JM
11696 inst.instruction |= Rd << 8;
11697 inst.instruction |= Rn << 16;
c19d1205
ZW
11698 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11699 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11700 inst.instruction |= msb - 1;
b99bd4ef
NC
11701}
11702
c19d1205
ZW
11703static void
11704do_t_bfx (void)
b99bd4ef 11705{
fdfde340
JM
11706 unsigned Rd, Rn;
11707
11708 Rd = inst.operands[0].reg;
11709 Rn = inst.operands[1].reg;
11710
11711 reject_bad_reg (Rd);
11712 reject_bad_reg (Rn);
11713
c19d1205
ZW
11714 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11715 _("bit-field extends past end of register"));
fdfde340
JM
11716 inst.instruction |= Rd << 8;
11717 inst.instruction |= Rn << 16;
c19d1205
ZW
11718 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11719 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11720 inst.instruction |= inst.operands[3].imm - 1;
11721}
b99bd4ef 11722
c19d1205
ZW
11723/* ARM V5 Thumb BLX (argument parse)
11724 BLX <target_addr> which is BLX(1)
11725 BLX <Rm> which is BLX(2)
11726 Unfortunately, there are two different opcodes for this mnemonic.
11727 So, the insns[].value is not used, and the code here zaps values
11728 into inst.instruction.
b99bd4ef 11729
c19d1205
ZW
11730 ??? How to take advantage of the additional two bits of displacement
11731 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11732
c19d1205
ZW
11733static void
11734do_t_blx (void)
11735{
5ee91343 11736 set_pred_insn_type_last ();
e07e6e58 11737
c19d1205 11738 if (inst.operands[0].isreg)
fdfde340
JM
11739 {
11740 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11741 /* We have a register, so this is BLX(2). */
11742 inst.instruction |= inst.operands[0].reg << 3;
11743 }
b99bd4ef
NC
11744 else
11745 {
c19d1205 11746 /* No register. This must be BLX(1). */
2fc8bdac 11747 inst.instruction = 0xf000e800;
0855e32b 11748 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11749 }
11750}
11751
c19d1205
ZW
11752static void
11753do_t_branch (void)
b99bd4ef 11754{
0110f2b8 11755 int opcode;
dfa9f0d5 11756 int cond;
2fe88214 11757 bfd_reloc_code_real_type reloc;
dfa9f0d5 11758
e07e6e58 11759 cond = inst.cond;
5ee91343 11760 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11761
5ee91343 11762 if (in_pred_block ())
dfa9f0d5
PB
11763 {
11764 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11765 branches. */
dfa9f0d5 11766 cond = COND_ALWAYS;
dfa9f0d5
PB
11767 }
11768 else
11769 cond = inst.cond;
11770
11771 if (cond != COND_ALWAYS)
0110f2b8
PB
11772 opcode = T_MNEM_bcond;
11773 else
11774 opcode = inst.instruction;
11775
12d6b0b7
RS
11776 if (unified_syntax
11777 && (inst.size_req == 4
10960bfb
PB
11778 || (inst.size_req != 2
11779 && (inst.operands[0].hasreloc
e2b0ab59 11780 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11781 {
0110f2b8 11782 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11783 if (cond == COND_ALWAYS)
9ae92b05 11784 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11785 else
11786 {
ff8646ee
TP
11787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11788 _("selected architecture does not support "
11789 "wide conditional branch instruction"));
11790
9c2799c2 11791 gas_assert (cond != 0xF);
dfa9f0d5 11792 inst.instruction |= cond << 22;
9ae92b05 11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11794 }
11795 }
b99bd4ef
NC
11796 else
11797 {
0110f2b8 11798 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11799 if (cond == COND_ALWAYS)
9ae92b05 11800 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11801 else
b99bd4ef 11802 {
dfa9f0d5 11803 inst.instruction |= cond << 8;
9ae92b05 11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11805 }
0110f2b8
PB
11806 /* Allow section relaxation. */
11807 if (unified_syntax && inst.size_req != 2)
11808 inst.relax = opcode;
b99bd4ef 11809 }
e2b0ab59
AV
11810 inst.relocs[0].type = reloc;
11811 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11812}
11813
8884b720 11814/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11815 between the two is the maximum immediate allowed - which is passed in
8884b720 11816 RANGE. */
b99bd4ef 11817static void
8884b720 11818do_t_bkpt_hlt1 (int range)
b99bd4ef 11819{
dfa9f0d5
PB
11820 constraint (inst.cond != COND_ALWAYS,
11821 _("instruction is always unconditional"));
c19d1205 11822 if (inst.operands[0].present)
b99bd4ef 11823 {
8884b720 11824 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11825 _("immediate value out of range"));
11826 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11827 }
8884b720 11828
5ee91343 11829 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11830}
11831
11832static void
11833do_t_hlt (void)
11834{
11835 do_t_bkpt_hlt1 (63);
11836}
11837
11838static void
11839do_t_bkpt (void)
11840{
11841 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11842}
11843
11844static void
c19d1205 11845do_t_branch23 (void)
b99bd4ef 11846{
5ee91343 11847 set_pred_insn_type_last ();
0855e32b 11848 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11849
0855e32b
NS
11850 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11851 this file. We used to simply ignore the PLT reloc type here --
11852 the branch encoding is now needed to deal with TLSCALL relocs.
11853 So if we see a PLT reloc now, put it back to how it used to be to
11854 keep the preexisting behaviour. */
e2b0ab59
AV
11855 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11856 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11857
4343666d 11858#if defined(OBJ_COFF)
c19d1205
ZW
11859 /* If the destination of the branch is a defined symbol which does not have
11860 the THUMB_FUNC attribute, then we must be calling a function which has
11861 the (interfacearm) attribute. We look for the Thumb entry point to that
11862 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11863 if ( inst.relocs[0].exp.X_op == O_symbol
11864 && inst.relocs[0].exp.X_add_symbol != NULL
11865 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11866 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11867 inst.relocs[0].exp.X_add_symbol
11868 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11869#endif
90e4755a
RE
11870}
11871
11872static void
c19d1205 11873do_t_bx (void)
90e4755a 11874{
5ee91343 11875 set_pred_insn_type_last ();
c19d1205
ZW
11876 inst.instruction |= inst.operands[0].reg << 3;
11877 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11878 should cause the alignment to be checked once it is known. This is
11879 because BX PC only works if the instruction is word aligned. */
11880}
90e4755a 11881
c19d1205
ZW
11882static void
11883do_t_bxj (void)
11884{
fdfde340 11885 int Rm;
90e4755a 11886
5ee91343 11887 set_pred_insn_type_last ();
fdfde340
JM
11888 Rm = inst.operands[0].reg;
11889 reject_bad_reg (Rm);
11890 inst.instruction |= Rm << 16;
90e4755a
RE
11891}
11892
11893static void
c19d1205 11894do_t_clz (void)
90e4755a 11895{
fdfde340
JM
11896 unsigned Rd;
11897 unsigned Rm;
11898
11899 Rd = inst.operands[0].reg;
11900 Rm = inst.operands[1].reg;
11901
11902 reject_bad_reg (Rd);
11903 reject_bad_reg (Rm);
11904
11905 inst.instruction |= Rd << 8;
11906 inst.instruction |= Rm << 16;
11907 inst.instruction |= Rm;
c19d1205 11908}
90e4755a 11909
91d8b670
JG
11910static void
11911do_t_csdb (void)
11912{
5ee91343 11913 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11914}
11915
dfa9f0d5
PB
11916static void
11917do_t_cps (void)
11918{
5ee91343 11919 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11920 inst.instruction |= inst.operands[0].imm;
11921}
11922
c19d1205
ZW
11923static void
11924do_t_cpsi (void)
11925{
5ee91343 11926 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11927 if (unified_syntax
62b3e311
PB
11928 && (inst.operands[1].present || inst.size_req == 4)
11929 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11930 {
c19d1205
ZW
11931 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11932 inst.instruction = 0xf3af8000;
11933 inst.instruction |= imod << 9;
11934 inst.instruction |= inst.operands[0].imm << 5;
11935 if (inst.operands[1].present)
11936 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11937 }
c19d1205 11938 else
90e4755a 11939 {
62b3e311
PB
11940 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11941 && (inst.operands[0].imm & 4),
11942 _("selected processor does not support 'A' form "
11943 "of this instruction"));
11944 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11945 _("Thumb does not support the 2-argument "
11946 "form of this instruction"));
11947 inst.instruction |= inst.operands[0].imm;
90e4755a 11948 }
90e4755a
RE
11949}
11950
c19d1205
ZW
11951/* THUMB CPY instruction (argument parse). */
11952
90e4755a 11953static void
c19d1205 11954do_t_cpy (void)
90e4755a 11955{
c19d1205 11956 if (inst.size_req == 4)
90e4755a 11957 {
c19d1205
ZW
11958 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11959 inst.instruction |= inst.operands[0].reg << 8;
11960 inst.instruction |= inst.operands[1].reg;
90e4755a 11961 }
c19d1205 11962 else
90e4755a 11963 {
c19d1205
ZW
11964 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11965 inst.instruction |= (inst.operands[0].reg & 0x7);
11966 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11967 }
90e4755a
RE
11968}
11969
90e4755a 11970static void
25fe350b 11971do_t_cbz (void)
90e4755a 11972{
5ee91343 11973 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11974 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11975 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11976 inst.relocs[0].pc_rel = 1;
11977 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11978}
90e4755a 11979
62b3e311
PB
11980static void
11981do_t_dbg (void)
11982{
11983 inst.instruction |= inst.operands[0].imm;
11984}
11985
11986static void
11987do_t_div (void)
11988{
fdfde340
JM
11989 unsigned Rd, Rn, Rm;
11990
11991 Rd = inst.operands[0].reg;
11992 Rn = (inst.operands[1].present
11993 ? inst.operands[1].reg : Rd);
11994 Rm = inst.operands[2].reg;
11995
11996 reject_bad_reg (Rd);
11997 reject_bad_reg (Rn);
11998 reject_bad_reg (Rm);
11999
12000 inst.instruction |= Rd << 8;
12001 inst.instruction |= Rn << 16;
12002 inst.instruction |= Rm;
62b3e311
PB
12003}
12004
c19d1205
ZW
12005static void
12006do_t_hint (void)
12007{
12008 if (unified_syntax && inst.size_req == 4)
12009 inst.instruction = THUMB_OP32 (inst.instruction);
12010 else
12011 inst.instruction = THUMB_OP16 (inst.instruction);
12012}
90e4755a 12013
c19d1205
ZW
12014static void
12015do_t_it (void)
12016{
12017 unsigned int cond = inst.operands[0].imm;
e27ec89e 12018
5ee91343
AV
12019 set_pred_insn_type (IT_INSN);
12020 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12021 now_pred.cc = cond;
12022 now_pred.warn_deprecated = FALSE;
12023 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12024
12025 /* If the condition is a negative condition, invert the mask. */
c19d1205 12026 if ((cond & 0x1) == 0x0)
90e4755a 12027 {
c19d1205 12028 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12029
c19d1205 12030 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12031 {
12032 /* No conversion needed. */
5ee91343 12033 now_pred.block_length = 1;
5a01bb1d 12034 }
c19d1205 12035 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12036 {
12037 mask ^= 0x8;
5ee91343 12038 now_pred.block_length = 2;
5a01bb1d 12039 }
e27ec89e 12040 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12041 {
12042 mask ^= 0xC;
5ee91343 12043 now_pred.block_length = 3;
5a01bb1d 12044 }
c19d1205 12045 else
5a01bb1d
MGD
12046 {
12047 mask ^= 0xE;
5ee91343 12048 now_pred.block_length = 4;
5a01bb1d 12049 }
90e4755a 12050
e27ec89e
PB
12051 inst.instruction &= 0xfff0;
12052 inst.instruction |= mask;
c19d1205 12053 }
90e4755a 12054
c19d1205
ZW
12055 inst.instruction |= cond << 4;
12056}
90e4755a 12057
3c707909
PB
12058/* Helper function used for both push/pop and ldm/stm. */
12059static void
4b5a202f
AV
12060encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12061 bfd_boolean writeback)
3c707909 12062{
4b5a202f 12063 bfd_boolean load, store;
3c707909 12064
4b5a202f
AV
12065 gas_assert (base != -1 || !do_io);
12066 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12067 store = do_io && !load;
3c707909
PB
12068
12069 if (mask & (1 << 13))
12070 inst.error = _("SP not allowed in register list");
1e5b0379 12071
4b5a202f 12072 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12073 && writeback)
12074 inst.error = _("having the base register in the register list when "
12075 "using write back is UNPREDICTABLE");
12076
3c707909
PB
12077 if (load)
12078 {
e07e6e58 12079 if (mask & (1 << 15))
477330fc
RM
12080 {
12081 if (mask & (1 << 14))
12082 inst.error = _("LR and PC should not both be in register list");
12083 else
5ee91343 12084 set_pred_insn_type_last ();
477330fc 12085 }
3c707909 12086 }
4b5a202f 12087 else if (store)
3c707909
PB
12088 {
12089 if (mask & (1 << 15))
12090 inst.error = _("PC not allowed in register list");
3c707909
PB
12091 }
12092
4b5a202f 12093 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12094 {
12095 /* Single register transfers implemented as str/ldr. */
12096 if (writeback)
12097 {
12098 if (inst.instruction & (1 << 23))
12099 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12100 else
12101 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12102 }
12103 else
12104 {
12105 if (inst.instruction & (1 << 23))
12106 inst.instruction = 0x00800000; /* ia -> [base] */
12107 else
12108 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12109 }
12110
12111 inst.instruction |= 0xf8400000;
12112 if (load)
12113 inst.instruction |= 0x00100000;
12114
5f4273c7 12115 mask = ffs (mask) - 1;
3c707909
PB
12116 mask <<= 12;
12117 }
12118 else if (writeback)
12119 inst.instruction |= WRITE_BACK;
12120
12121 inst.instruction |= mask;
4b5a202f
AV
12122 if (do_io)
12123 inst.instruction |= base << 16;
3c707909
PB
12124}
12125
c19d1205
ZW
12126static void
12127do_t_ldmstm (void)
12128{
12129 /* This really doesn't seem worth it. */
e2b0ab59 12130 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12131 _("expression too complex"));
12132 constraint (inst.operands[1].writeback,
12133 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12134
c19d1205
ZW
12135 if (unified_syntax)
12136 {
3c707909
PB
12137 bfd_boolean narrow;
12138 unsigned mask;
12139
12140 narrow = FALSE;
c19d1205
ZW
12141 /* See if we can use a 16-bit instruction. */
12142 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12143 && inst.size_req != 4
3c707909 12144 && !(inst.operands[1].imm & ~0xff))
90e4755a 12145 {
3c707909 12146 mask = 1 << inst.operands[0].reg;
90e4755a 12147
eab4f823 12148 if (inst.operands[0].reg <= 7)
90e4755a 12149 {
3c707909 12150 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12151 ? inst.operands[0].writeback
12152 : (inst.operands[0].writeback
12153 == !(inst.operands[1].imm & mask)))
477330fc 12154 {
eab4f823
MGD
12155 if (inst.instruction == T_MNEM_stmia
12156 && (inst.operands[1].imm & mask)
12157 && (inst.operands[1].imm & (mask - 1)))
12158 as_warn (_("value stored for r%d is UNKNOWN"),
12159 inst.operands[0].reg);
3c707909 12160
eab4f823
MGD
12161 inst.instruction = THUMB_OP16 (inst.instruction);
12162 inst.instruction |= inst.operands[0].reg << 8;
12163 inst.instruction |= inst.operands[1].imm;
12164 narrow = TRUE;
12165 }
12166 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12167 {
12168 /* This means 1 register in reg list one of 3 situations:
12169 1. Instruction is stmia, but without writeback.
12170 2. lmdia without writeback, but with Rn not in
477330fc 12171 reglist.
eab4f823
MGD
12172 3. ldmia with writeback, but with Rn in reglist.
12173 Case 3 is UNPREDICTABLE behaviour, so we handle
12174 case 1 and 2 which can be converted into a 16-bit
12175 str or ldr. The SP cases are handled below. */
12176 unsigned long opcode;
12177 /* First, record an error for Case 3. */
12178 if (inst.operands[1].imm & mask
12179 && inst.operands[0].writeback)
fa94de6b 12180 inst.error =
eab4f823
MGD
12181 _("having the base register in the register list when "
12182 "using write back is UNPREDICTABLE");
fa94de6b
RM
12183
12184 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12185 : T_MNEM_ldr);
12186 inst.instruction = THUMB_OP16 (opcode);
12187 inst.instruction |= inst.operands[0].reg << 3;
12188 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12189 narrow = TRUE;
12190 }
90e4755a 12191 }
eab4f823 12192 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12193 {
eab4f823
MGD
12194 if (inst.operands[0].writeback)
12195 {
fa94de6b 12196 inst.instruction =
eab4f823 12197 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12198 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12199 inst.instruction |= inst.operands[1].imm;
477330fc 12200 narrow = TRUE;
eab4f823
MGD
12201 }
12202 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12203 {
fa94de6b 12204 inst.instruction =
eab4f823 12205 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12206 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12207 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12208 narrow = TRUE;
eab4f823 12209 }
90e4755a 12210 }
3c707909
PB
12211 }
12212
12213 if (!narrow)
12214 {
c19d1205
ZW
12215 if (inst.instruction < 0xffff)
12216 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12217
4b5a202f
AV
12218 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12219 inst.operands[1].imm,
12220 inst.operands[0].writeback);
90e4755a
RE
12221 }
12222 }
c19d1205 12223 else
90e4755a 12224 {
c19d1205
ZW
12225 constraint (inst.operands[0].reg > 7
12226 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12227 constraint (inst.instruction != T_MNEM_ldmia
12228 && inst.instruction != T_MNEM_stmia,
12229 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12230 if (inst.instruction == T_MNEM_stmia)
f03698e6 12231 {
c19d1205
ZW
12232 if (!inst.operands[0].writeback)
12233 as_warn (_("this instruction will write back the base register"));
12234 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12235 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12236 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12237 inst.operands[0].reg);
f03698e6 12238 }
c19d1205 12239 else
90e4755a 12240 {
c19d1205
ZW
12241 if (!inst.operands[0].writeback
12242 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12243 as_warn (_("this instruction will write back the base register"));
12244 else if (inst.operands[0].writeback
12245 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12246 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12247 }
12248
c19d1205
ZW
12249 inst.instruction = THUMB_OP16 (inst.instruction);
12250 inst.instruction |= inst.operands[0].reg << 8;
12251 inst.instruction |= inst.operands[1].imm;
12252 }
12253}
e28cd48c 12254
c19d1205
ZW
12255static void
12256do_t_ldrex (void)
12257{
12258 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12259 || inst.operands[1].postind || inst.operands[1].writeback
12260 || inst.operands[1].immisreg || inst.operands[1].shifted
12261 || inst.operands[1].negative,
01cfc07f 12262 BAD_ADDR_MODE);
e28cd48c 12263
5be8be5d
DG
12264 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12265
c19d1205
ZW
12266 inst.instruction |= inst.operands[0].reg << 12;
12267 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12268 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12269}
e28cd48c 12270
c19d1205
ZW
12271static void
12272do_t_ldrexd (void)
12273{
12274 if (!inst.operands[1].present)
1cac9012 12275 {
c19d1205
ZW
12276 constraint (inst.operands[0].reg == REG_LR,
12277 _("r14 not allowed as first register "
12278 "when second register is omitted"));
12279 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12280 }
c19d1205
ZW
12281 constraint (inst.operands[0].reg == inst.operands[1].reg,
12282 BAD_OVERLAP);
b99bd4ef 12283
c19d1205
ZW
12284 inst.instruction |= inst.operands[0].reg << 12;
12285 inst.instruction |= inst.operands[1].reg << 8;
12286 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12287}
12288
12289static void
c19d1205 12290do_t_ldst (void)
b99bd4ef 12291{
0110f2b8
PB
12292 unsigned long opcode;
12293 int Rn;
12294
e07e6e58
NC
12295 if (inst.operands[0].isreg
12296 && !inst.operands[0].preind
12297 && inst.operands[0].reg == REG_PC)
5ee91343 12298 set_pred_insn_type_last ();
e07e6e58 12299
0110f2b8 12300 opcode = inst.instruction;
c19d1205 12301 if (unified_syntax)
b99bd4ef 12302 {
53365c0d
PB
12303 if (!inst.operands[1].isreg)
12304 {
12305 if (opcode <= 0xffff)
12306 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12307 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12308 return;
12309 }
0110f2b8
PB
12310 if (inst.operands[1].isreg
12311 && !inst.operands[1].writeback
c19d1205
ZW
12312 && !inst.operands[1].shifted && !inst.operands[1].postind
12313 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12314 && opcode <= 0xffff
12315 && inst.size_req != 4)
c19d1205 12316 {
0110f2b8
PB
12317 /* Insn may have a 16-bit form. */
12318 Rn = inst.operands[1].reg;
12319 if (inst.operands[1].immisreg)
12320 {
12321 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12322 /* [Rn, Rik] */
0110f2b8
PB
12323 if (Rn <= 7 && inst.operands[1].imm <= 7)
12324 goto op16;
5be8be5d
DG
12325 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12326 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12327 }
12328 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12329 && opcode != T_MNEM_ldrsb)
12330 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12331 || (Rn == REG_SP && opcode == T_MNEM_str))
12332 {
12333 /* [Rn, #const] */
12334 if (Rn > 7)
12335 {
12336 if (Rn == REG_PC)
12337 {
e2b0ab59 12338 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12339 opcode = T_MNEM_ldr_pc2;
12340 else
12341 opcode = T_MNEM_ldr_pc;
12342 }
12343 else
12344 {
12345 if (opcode == T_MNEM_ldr)
12346 opcode = T_MNEM_ldr_sp;
12347 else
12348 opcode = T_MNEM_str_sp;
12349 }
12350 inst.instruction = inst.operands[0].reg << 8;
12351 }
12352 else
12353 {
12354 inst.instruction = inst.operands[0].reg;
12355 inst.instruction |= inst.operands[1].reg << 3;
12356 }
12357 inst.instruction |= THUMB_OP16 (opcode);
12358 if (inst.size_req == 2)
e2b0ab59 12359 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12360 else
12361 inst.relax = opcode;
12362 return;
12363 }
c19d1205 12364 }
0110f2b8 12365 /* Definitely a 32-bit variant. */
5be8be5d 12366
8d67f500
NC
12367 /* Warning for Erratum 752419. */
12368 if (opcode == T_MNEM_ldr
12369 && inst.operands[0].reg == REG_SP
12370 && inst.operands[1].writeback == 1
12371 && !inst.operands[1].immisreg)
12372 {
12373 if (no_cpu_selected ()
12374 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12375 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12376 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12377 as_warn (_("This instruction may be unpredictable "
12378 "if executed on M-profile cores "
12379 "with interrupts enabled."));
12380 }
12381
5be8be5d 12382 /* Do some validations regarding addressing modes. */
1be5fd2e 12383 if (inst.operands[1].immisreg)
5be8be5d
DG
12384 reject_bad_reg (inst.operands[1].imm);
12385
1be5fd2e
NC
12386 constraint (inst.operands[1].writeback == 1
12387 && inst.operands[0].reg == inst.operands[1].reg,
12388 BAD_OVERLAP);
12389
0110f2b8 12390 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12391 inst.instruction |= inst.operands[0].reg << 12;
12392 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12393 check_ldr_r15_aligned ();
b99bd4ef
NC
12394 return;
12395 }
12396
c19d1205
ZW
12397 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12398
12399 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12400 {
c19d1205
ZW
12401 /* Only [Rn,Rm] is acceptable. */
12402 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12403 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12404 || inst.operands[1].postind || inst.operands[1].shifted
12405 || inst.operands[1].negative,
12406 _("Thumb does not support this addressing mode"));
12407 inst.instruction = THUMB_OP16 (inst.instruction);
12408 goto op16;
b99bd4ef 12409 }
5f4273c7 12410
c19d1205
ZW
12411 inst.instruction = THUMB_OP16 (inst.instruction);
12412 if (!inst.operands[1].isreg)
8335d6aa 12413 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12414 return;
b99bd4ef 12415
c19d1205
ZW
12416 constraint (!inst.operands[1].preind
12417 || inst.operands[1].shifted
12418 || inst.operands[1].writeback,
12419 _("Thumb does not support this addressing mode"));
12420 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12421 {
c19d1205
ZW
12422 constraint (inst.instruction & 0x0600,
12423 _("byte or halfword not valid for base register"));
12424 constraint (inst.operands[1].reg == REG_PC
12425 && !(inst.instruction & THUMB_LOAD_BIT),
12426 _("r15 based store not allowed"));
12427 constraint (inst.operands[1].immisreg,
12428 _("invalid base register for register offset"));
b99bd4ef 12429
c19d1205
ZW
12430 if (inst.operands[1].reg == REG_PC)
12431 inst.instruction = T_OPCODE_LDR_PC;
12432 else if (inst.instruction & THUMB_LOAD_BIT)
12433 inst.instruction = T_OPCODE_LDR_SP;
12434 else
12435 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12436
c19d1205 12437 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12438 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12439 return;
12440 }
90e4755a 12441
c19d1205
ZW
12442 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12443 if (!inst.operands[1].immisreg)
12444 {
12445 /* Immediate offset. */
12446 inst.instruction |= inst.operands[0].reg;
12447 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12448 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12449 return;
12450 }
90e4755a 12451
c19d1205
ZW
12452 /* Register offset. */
12453 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12454 constraint (inst.operands[1].negative,
12455 _("Thumb does not support this addressing mode"));
90e4755a 12456
c19d1205
ZW
12457 op16:
12458 switch (inst.instruction)
12459 {
12460 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12461 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12462 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12463 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12464 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12465 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12466 case 0x5600 /* ldrsb */:
12467 case 0x5e00 /* ldrsh */: break;
12468 default: abort ();
12469 }
90e4755a 12470
c19d1205
ZW
12471 inst.instruction |= inst.operands[0].reg;
12472 inst.instruction |= inst.operands[1].reg << 3;
12473 inst.instruction |= inst.operands[1].imm << 6;
12474}
90e4755a 12475
c19d1205
ZW
12476static void
12477do_t_ldstd (void)
12478{
12479 if (!inst.operands[1].present)
b99bd4ef 12480 {
c19d1205
ZW
12481 inst.operands[1].reg = inst.operands[0].reg + 1;
12482 constraint (inst.operands[0].reg == REG_LR,
12483 _("r14 not allowed here"));
bd340a04 12484 constraint (inst.operands[0].reg == REG_R12,
477330fc 12485 _("r12 not allowed here"));
b99bd4ef 12486 }
bd340a04
MGD
12487
12488 if (inst.operands[2].writeback
12489 && (inst.operands[0].reg == inst.operands[2].reg
12490 || inst.operands[1].reg == inst.operands[2].reg))
12491 as_warn (_("base register written back, and overlaps "
477330fc 12492 "one of transfer registers"));
bd340a04 12493
c19d1205
ZW
12494 inst.instruction |= inst.operands[0].reg << 12;
12495 inst.instruction |= inst.operands[1].reg << 8;
12496 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12497}
12498
c19d1205
ZW
12499static void
12500do_t_ldstt (void)
12501{
12502 inst.instruction |= inst.operands[0].reg << 12;
12503 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12504}
a737bd4d 12505
b99bd4ef 12506static void
c19d1205 12507do_t_mla (void)
b99bd4ef 12508{
fdfde340 12509 unsigned Rd, Rn, Rm, Ra;
c921be7d 12510
fdfde340
JM
12511 Rd = inst.operands[0].reg;
12512 Rn = inst.operands[1].reg;
12513 Rm = inst.operands[2].reg;
12514 Ra = inst.operands[3].reg;
12515
12516 reject_bad_reg (Rd);
12517 reject_bad_reg (Rn);
12518 reject_bad_reg (Rm);
12519 reject_bad_reg (Ra);
12520
12521 inst.instruction |= Rd << 8;
12522 inst.instruction |= Rn << 16;
12523 inst.instruction |= Rm;
12524 inst.instruction |= Ra << 12;
c19d1205 12525}
b99bd4ef 12526
c19d1205
ZW
12527static void
12528do_t_mlal (void)
12529{
fdfde340
JM
12530 unsigned RdLo, RdHi, Rn, Rm;
12531
12532 RdLo = inst.operands[0].reg;
12533 RdHi = inst.operands[1].reg;
12534 Rn = inst.operands[2].reg;
12535 Rm = inst.operands[3].reg;
12536
12537 reject_bad_reg (RdLo);
12538 reject_bad_reg (RdHi);
12539 reject_bad_reg (Rn);
12540 reject_bad_reg (Rm);
12541
12542 inst.instruction |= RdLo << 12;
12543 inst.instruction |= RdHi << 8;
12544 inst.instruction |= Rn << 16;
12545 inst.instruction |= Rm;
c19d1205 12546}
b99bd4ef 12547
c19d1205
ZW
12548static void
12549do_t_mov_cmp (void)
12550{
fdfde340
JM
12551 unsigned Rn, Rm;
12552
12553 Rn = inst.operands[0].reg;
12554 Rm = inst.operands[1].reg;
12555
e07e6e58 12556 if (Rn == REG_PC)
5ee91343 12557 set_pred_insn_type_last ();
e07e6e58 12558
c19d1205 12559 if (unified_syntax)
b99bd4ef 12560 {
c19d1205
ZW
12561 int r0off = (inst.instruction == T_MNEM_mov
12562 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12563 unsigned long opcode;
3d388997
PB
12564 bfd_boolean narrow;
12565 bfd_boolean low_regs;
12566
fdfde340 12567 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12568 opcode = inst.instruction;
5ee91343 12569 if (in_pred_block ())
0110f2b8 12570 narrow = opcode != T_MNEM_movs;
3d388997 12571 else
0110f2b8 12572 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12573 if (inst.size_req == 4
12574 || inst.operands[1].shifted)
12575 narrow = FALSE;
12576
efd81785
PB
12577 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12578 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12579 && !inst.operands[1].shifted
fdfde340
JM
12580 && Rn == REG_PC
12581 && Rm == REG_LR)
efd81785
PB
12582 {
12583 inst.instruction = T2_SUBS_PC_LR;
12584 return;
12585 }
12586
fdfde340
JM
12587 if (opcode == T_MNEM_cmp)
12588 {
12589 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12590 if (narrow)
12591 {
12592 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12593 but valid. */
12594 warn_deprecated_sp (Rm);
12595 /* R15 was documented as a valid choice for Rm in ARMv6,
12596 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12597 tools reject R15, so we do too. */
12598 constraint (Rm == REG_PC, BAD_PC);
12599 }
12600 else
12601 reject_bad_reg (Rm);
fdfde340
JM
12602 }
12603 else if (opcode == T_MNEM_mov
12604 || opcode == T_MNEM_movs)
12605 {
12606 if (inst.operands[1].isreg)
12607 {
12608 if (opcode == T_MNEM_movs)
12609 {
12610 reject_bad_reg (Rn);
12611 reject_bad_reg (Rm);
12612 }
76fa04a4
MGD
12613 else if (narrow)
12614 {
12615 /* This is mov.n. */
12616 if ((Rn == REG_SP || Rn == REG_PC)
12617 && (Rm == REG_SP || Rm == REG_PC))
12618 {
5c3696f8 12619 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12620 "deprecated when r%u is the destination "
12621 "register."), Rm, Rn);
12622 }
12623 }
12624 else
12625 {
12626 /* This is mov.w. */
12627 constraint (Rn == REG_PC, BAD_PC);
12628 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12629 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12630 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12631 }
fdfde340
JM
12632 }
12633 else
12634 reject_bad_reg (Rn);
12635 }
12636
c19d1205
ZW
12637 if (!inst.operands[1].isreg)
12638 {
0110f2b8 12639 /* Immediate operand. */
5ee91343 12640 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12641 narrow = 0;
12642 if (low_regs && narrow)
12643 {
12644 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12645 inst.instruction |= Rn << 8;
e2b0ab59
AV
12646 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12647 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12648 {
a9f02af8 12649 if (inst.size_req == 2)
e2b0ab59 12650 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12651 else
12652 inst.relax = opcode;
72d98d16 12653 }
0110f2b8
PB
12654 }
12655 else
12656 {
e2b0ab59
AV
12657 constraint ((inst.relocs[0].type
12658 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12659 && (inst.relocs[0].type
12660 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12661 THUMB1_RELOC_ONLY);
12662
0110f2b8
PB
12663 inst.instruction = THUMB_OP32 (inst.instruction);
12664 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12665 inst.instruction |= Rn << r0off;
e2b0ab59 12666 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12667 }
c19d1205 12668 }
728ca7c9
PB
12669 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12670 && (inst.instruction == T_MNEM_mov
12671 || inst.instruction == T_MNEM_movs))
12672 {
12673 /* Register shifts are encoded as separate shift instructions. */
12674 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12675
5ee91343 12676 if (in_pred_block ())
728ca7c9
PB
12677 narrow = !flags;
12678 else
12679 narrow = flags;
12680
12681 if (inst.size_req == 4)
12682 narrow = FALSE;
12683
12684 if (!low_regs || inst.operands[1].imm > 7)
12685 narrow = FALSE;
12686
fdfde340 12687 if (Rn != Rm)
728ca7c9
PB
12688 narrow = FALSE;
12689
12690 switch (inst.operands[1].shift_kind)
12691 {
12692 case SHIFT_LSL:
12693 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12694 break;
12695 case SHIFT_ASR:
12696 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12697 break;
12698 case SHIFT_LSR:
12699 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12700 break;
12701 case SHIFT_ROR:
12702 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12703 break;
12704 default:
5f4273c7 12705 abort ();
728ca7c9
PB
12706 }
12707
12708 inst.instruction = opcode;
12709 if (narrow)
12710 {
fdfde340 12711 inst.instruction |= Rn;
728ca7c9
PB
12712 inst.instruction |= inst.operands[1].imm << 3;
12713 }
12714 else
12715 {
12716 if (flags)
12717 inst.instruction |= CONDS_BIT;
12718
fdfde340
JM
12719 inst.instruction |= Rn << 8;
12720 inst.instruction |= Rm << 16;
728ca7c9
PB
12721 inst.instruction |= inst.operands[1].imm;
12722 }
12723 }
3d388997 12724 else if (!narrow)
c19d1205 12725 {
728ca7c9
PB
12726 /* Some mov with immediate shift have narrow variants.
12727 Register shifts are handled above. */
12728 if (low_regs && inst.operands[1].shifted
12729 && (inst.instruction == T_MNEM_mov
12730 || inst.instruction == T_MNEM_movs))
12731 {
5ee91343 12732 if (in_pred_block ())
728ca7c9
PB
12733 narrow = (inst.instruction == T_MNEM_mov);
12734 else
12735 narrow = (inst.instruction == T_MNEM_movs);
12736 }
12737
12738 if (narrow)
12739 {
12740 switch (inst.operands[1].shift_kind)
12741 {
12742 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12743 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12744 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12745 default: narrow = FALSE; break;
12746 }
12747 }
12748
12749 if (narrow)
12750 {
fdfde340
JM
12751 inst.instruction |= Rn;
12752 inst.instruction |= Rm << 3;
e2b0ab59 12753 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12754 }
12755 else
12756 {
12757 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12758 inst.instruction |= Rn << r0off;
728ca7c9
PB
12759 encode_thumb32_shifted_operand (1);
12760 }
c19d1205
ZW
12761 }
12762 else
12763 switch (inst.instruction)
12764 {
12765 case T_MNEM_mov:
837b3435 12766 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12767 results. Don't allow this. */
12768 if (low_regs)
12769 {
12770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12771 "MOV Rd, Rs with two low registers is not "
12772 "permitted on this architecture");
fa94de6b 12773 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12774 arm_ext_v6);
12775 }
12776
c19d1205 12777 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12778 inst.instruction |= (Rn & 0x8) << 4;
12779 inst.instruction |= (Rn & 0x7);
12780 inst.instruction |= Rm << 3;
c19d1205 12781 break;
b99bd4ef 12782
c19d1205
ZW
12783 case T_MNEM_movs:
12784 /* We know we have low registers at this point.
941a8a52
MGD
12785 Generate LSLS Rd, Rs, #0. */
12786 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12787 inst.instruction |= Rn;
12788 inst.instruction |= Rm << 3;
c19d1205
ZW
12789 break;
12790
12791 case T_MNEM_cmp:
3d388997 12792 if (low_regs)
c19d1205
ZW
12793 {
12794 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12795 inst.instruction |= Rn;
12796 inst.instruction |= Rm << 3;
c19d1205
ZW
12797 }
12798 else
12799 {
12800 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12801 inst.instruction |= (Rn & 0x8) << 4;
12802 inst.instruction |= (Rn & 0x7);
12803 inst.instruction |= Rm << 3;
c19d1205
ZW
12804 }
12805 break;
12806 }
b99bd4ef
NC
12807 return;
12808 }
12809
c19d1205 12810 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12811
12812 /* PR 10443: Do not silently ignore shifted operands. */
12813 constraint (inst.operands[1].shifted,
12814 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12815
c19d1205 12816 if (inst.operands[1].isreg)
b99bd4ef 12817 {
fdfde340 12818 if (Rn < 8 && Rm < 8)
b99bd4ef 12819 {
c19d1205
ZW
12820 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12821 since a MOV instruction produces unpredictable results. */
12822 if (inst.instruction == T_OPCODE_MOV_I8)
12823 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12824 else
c19d1205 12825 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12826
fdfde340
JM
12827 inst.instruction |= Rn;
12828 inst.instruction |= Rm << 3;
b99bd4ef
NC
12829 }
12830 else
12831 {
c19d1205
ZW
12832 if (inst.instruction == T_OPCODE_MOV_I8)
12833 inst.instruction = T_OPCODE_MOV_HR;
12834 else
12835 inst.instruction = T_OPCODE_CMP_HR;
12836 do_t_cpy ();
b99bd4ef
NC
12837 }
12838 }
c19d1205 12839 else
b99bd4ef 12840 {
fdfde340 12841 constraint (Rn > 7,
c19d1205 12842 _("only lo regs allowed with immediate"));
fdfde340 12843 inst.instruction |= Rn << 8;
e2b0ab59 12844 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12845 }
12846}
b99bd4ef 12847
c19d1205
ZW
12848static void
12849do_t_mov16 (void)
12850{
fdfde340 12851 unsigned Rd;
b6895b4f
PB
12852 bfd_vma imm;
12853 bfd_boolean top;
12854
12855 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12856 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12857 {
33eaf5de 12858 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12860 }
e2b0ab59 12861 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12862 {
33eaf5de 12863 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12865 }
12866
fdfde340
JM
12867 Rd = inst.operands[0].reg;
12868 reject_bad_reg (Rd);
12869
12870 inst.instruction |= Rd << 8;
e2b0ab59 12871 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12872 {
e2b0ab59 12873 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12874 inst.instruction |= (imm & 0xf000) << 4;
12875 inst.instruction |= (imm & 0x0800) << 15;
12876 inst.instruction |= (imm & 0x0700) << 4;
12877 inst.instruction |= (imm & 0x00ff);
12878 }
c19d1205 12879}
b99bd4ef 12880
c19d1205
ZW
12881static void
12882do_t_mvn_tst (void)
12883{
fdfde340 12884 unsigned Rn, Rm;
c921be7d 12885
fdfde340
JM
12886 Rn = inst.operands[0].reg;
12887 Rm = inst.operands[1].reg;
12888
12889 if (inst.instruction == T_MNEM_cmp
12890 || inst.instruction == T_MNEM_cmn)
12891 constraint (Rn == REG_PC, BAD_PC);
12892 else
12893 reject_bad_reg (Rn);
12894 reject_bad_reg (Rm);
12895
c19d1205
ZW
12896 if (unified_syntax)
12897 {
12898 int r0off = (inst.instruction == T_MNEM_mvn
12899 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12900 bfd_boolean narrow;
12901
12902 if (inst.size_req == 4
12903 || inst.instruction > 0xffff
12904 || inst.operands[1].shifted
fdfde340 12905 || Rn > 7 || Rm > 7)
3d388997 12906 narrow = FALSE;
fe8b4cc3
KT
12907 else if (inst.instruction == T_MNEM_cmn
12908 || inst.instruction == T_MNEM_tst)
3d388997
PB
12909 narrow = TRUE;
12910 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12911 narrow = !in_pred_block ();
3d388997 12912 else
5ee91343 12913 narrow = in_pred_block ();
3d388997 12914
c19d1205 12915 if (!inst.operands[1].isreg)
b99bd4ef 12916 {
c19d1205
ZW
12917 /* For an immediate, we always generate a 32-bit opcode;
12918 section relaxation will shrink it later if possible. */
12919 if (inst.instruction < 0xffff)
12920 inst.instruction = THUMB_OP32 (inst.instruction);
12921 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12922 inst.instruction |= Rn << r0off;
e2b0ab59 12923 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12924 }
c19d1205 12925 else
b99bd4ef 12926 {
c19d1205 12927 /* See if we can do this with a 16-bit instruction. */
3d388997 12928 if (narrow)
b99bd4ef 12929 {
c19d1205 12930 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12931 inst.instruction |= Rn;
12932 inst.instruction |= Rm << 3;
b99bd4ef 12933 }
c19d1205 12934 else
b99bd4ef 12935 {
c19d1205
ZW
12936 constraint (inst.operands[1].shifted
12937 && inst.operands[1].immisreg,
12938 _("shift must be constant"));
12939 if (inst.instruction < 0xffff)
12940 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12941 inst.instruction |= Rn << r0off;
c19d1205 12942 encode_thumb32_shifted_operand (1);
b99bd4ef 12943 }
b99bd4ef
NC
12944 }
12945 }
12946 else
12947 {
c19d1205
ZW
12948 constraint (inst.instruction > 0xffff
12949 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12950 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12951 _("unshifted register required"));
fdfde340 12952 constraint (Rn > 7 || Rm > 7,
c19d1205 12953 BAD_HIREG);
b99bd4ef 12954
c19d1205 12955 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12956 inst.instruction |= Rn;
12957 inst.instruction |= Rm << 3;
b99bd4ef 12958 }
b99bd4ef
NC
12959}
12960
b05fe5cf 12961static void
c19d1205 12962do_t_mrs (void)
b05fe5cf 12963{
fdfde340 12964 unsigned Rd;
037e8744
JB
12965
12966 if (do_vfp_nsyn_mrs () == SUCCESS)
12967 return;
12968
90ec0d68
MGD
12969 Rd = inst.operands[0].reg;
12970 reject_bad_reg (Rd);
12971 inst.instruction |= Rd << 8;
12972
12973 if (inst.operands[1].isreg)
62b3e311 12974 {
90ec0d68
MGD
12975 unsigned br = inst.operands[1].reg;
12976 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12977 as_bad (_("bad register for mrs"));
12978
12979 inst.instruction |= br & (0xf << 16);
12980 inst.instruction |= (br & 0x300) >> 4;
12981 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12982 }
12983 else
12984 {
90ec0d68 12985 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12986
d2cd1205 12987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12988 {
12989 /* PR gas/12698: The constraint is only applied for m_profile.
12990 If the user has specified -march=all, we want to ignore it as
12991 we are building for any CPU type, including non-m variants. */
823d2571
TG
12992 bfd_boolean m_profile =
12993 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12994 constraint ((flags != 0) && m_profile, _("selected processor does "
12995 "not support requested special purpose register"));
12996 }
90ec0d68 12997 else
d2cd1205
JB
12998 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12999 devices). */
13000 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13001 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13002
90ec0d68
MGD
13003 inst.instruction |= (flags & SPSR_BIT) >> 2;
13004 inst.instruction |= inst.operands[1].imm & 0xff;
13005 inst.instruction |= 0xf0000;
13006 }
c19d1205 13007}
b05fe5cf 13008
c19d1205
ZW
13009static void
13010do_t_msr (void)
13011{
62b3e311 13012 int flags;
fdfde340 13013 unsigned Rn;
62b3e311 13014
037e8744
JB
13015 if (do_vfp_nsyn_msr () == SUCCESS)
13016 return;
13017
c19d1205
ZW
13018 constraint (!inst.operands[1].isreg,
13019 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13020
13021 if (inst.operands[0].isreg)
13022 flags = (int)(inst.operands[0].reg);
13023 else
13024 flags = inst.operands[0].imm;
13025
d2cd1205 13026 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13027 {
d2cd1205
JB
13028 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13029
1a43faaf 13030 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13031 If the user has specified -march=all, we want to ignore it as
13032 we are building for any CPU type, including non-m variants. */
823d2571
TG
13033 bfd_boolean m_profile =
13034 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13035 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13036 && (bits & ~(PSR_s | PSR_f)) != 0)
13037 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13038 && bits != PSR_f)) && m_profile,
13039 _("selected processor does not support requested special "
13040 "purpose register"));
62b3e311
PB
13041 }
13042 else
d2cd1205
JB
13043 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13044 "requested special purpose register"));
c921be7d 13045
fdfde340
JM
13046 Rn = inst.operands[1].reg;
13047 reject_bad_reg (Rn);
13048
62b3e311 13049 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13050 inst.instruction |= (flags & 0xf0000) >> 8;
13051 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13052 inst.instruction |= (flags & 0xff);
fdfde340 13053 inst.instruction |= Rn << 16;
c19d1205 13054}
b05fe5cf 13055
c19d1205
ZW
13056static void
13057do_t_mul (void)
13058{
17828f45 13059 bfd_boolean narrow;
fdfde340 13060 unsigned Rd, Rn, Rm;
17828f45 13061
c19d1205
ZW
13062 if (!inst.operands[2].present)
13063 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13064
fdfde340
JM
13065 Rd = inst.operands[0].reg;
13066 Rn = inst.operands[1].reg;
13067 Rm = inst.operands[2].reg;
13068
17828f45 13069 if (unified_syntax)
b05fe5cf 13070 {
17828f45 13071 if (inst.size_req == 4
fdfde340
JM
13072 || (Rd != Rn
13073 && Rd != Rm)
13074 || Rn > 7
13075 || Rm > 7)
17828f45
JM
13076 narrow = FALSE;
13077 else if (inst.instruction == T_MNEM_muls)
5ee91343 13078 narrow = !in_pred_block ();
17828f45 13079 else
5ee91343 13080 narrow = in_pred_block ();
b05fe5cf 13081 }
c19d1205 13082 else
b05fe5cf 13083 {
17828f45 13084 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13085 constraint (Rn > 7 || Rm > 7,
c19d1205 13086 BAD_HIREG);
17828f45
JM
13087 narrow = TRUE;
13088 }
b05fe5cf 13089
17828f45
JM
13090 if (narrow)
13091 {
13092 /* 16-bit MULS/Conditional MUL. */
c19d1205 13093 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13094 inst.instruction |= Rd;
b05fe5cf 13095
fdfde340
JM
13096 if (Rd == Rn)
13097 inst.instruction |= Rm << 3;
13098 else if (Rd == Rm)
13099 inst.instruction |= Rn << 3;
c19d1205
ZW
13100 else
13101 constraint (1, _("dest must overlap one source register"));
13102 }
17828f45
JM
13103 else
13104 {
e07e6e58
NC
13105 constraint (inst.instruction != T_MNEM_mul,
13106 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13107 /* 32-bit MUL. */
13108 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13109 inst.instruction |= Rd << 8;
13110 inst.instruction |= Rn << 16;
13111 inst.instruction |= Rm << 0;
13112
13113 reject_bad_reg (Rd);
13114 reject_bad_reg (Rn);
13115 reject_bad_reg (Rm);
17828f45 13116 }
c19d1205 13117}
b05fe5cf 13118
c19d1205
ZW
13119static void
13120do_t_mull (void)
13121{
fdfde340 13122 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13123
fdfde340
JM
13124 RdLo = inst.operands[0].reg;
13125 RdHi = inst.operands[1].reg;
13126 Rn = inst.operands[2].reg;
13127 Rm = inst.operands[3].reg;
13128
13129 reject_bad_reg (RdLo);
13130 reject_bad_reg (RdHi);
13131 reject_bad_reg (Rn);
13132 reject_bad_reg (Rm);
13133
13134 inst.instruction |= RdLo << 12;
13135 inst.instruction |= RdHi << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm;
13138
13139 if (RdLo == RdHi)
c19d1205
ZW
13140 as_tsktsk (_("rdhi and rdlo must be different"));
13141}
b05fe5cf 13142
c19d1205
ZW
13143static void
13144do_t_nop (void)
13145{
5ee91343 13146 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13147
c19d1205
ZW
13148 if (unified_syntax)
13149 {
13150 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13151 {
c19d1205
ZW
13152 inst.instruction = THUMB_OP32 (inst.instruction);
13153 inst.instruction |= inst.operands[0].imm;
13154 }
13155 else
13156 {
bc2d1808
NC
13157 /* PR9722: Check for Thumb2 availability before
13158 generating a thumb2 nop instruction. */
afa62d5e 13159 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13160 {
13161 inst.instruction = THUMB_OP16 (inst.instruction);
13162 inst.instruction |= inst.operands[0].imm << 4;
13163 }
13164 else
13165 inst.instruction = 0x46c0;
c19d1205
ZW
13166 }
13167 }
13168 else
13169 {
13170 constraint (inst.operands[0].present,
13171 _("Thumb does not support NOP with hints"));
13172 inst.instruction = 0x46c0;
13173 }
13174}
b05fe5cf 13175
c19d1205
ZW
13176static void
13177do_t_neg (void)
13178{
13179 if (unified_syntax)
13180 {
3d388997
PB
13181 bfd_boolean narrow;
13182
13183 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13184 narrow = !in_pred_block ();
3d388997 13185 else
5ee91343 13186 narrow = in_pred_block ();
3d388997
PB
13187 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13188 narrow = FALSE;
13189 if (inst.size_req == 4)
13190 narrow = FALSE;
13191
13192 if (!narrow)
c19d1205
ZW
13193 {
13194 inst.instruction = THUMB_OP32 (inst.instruction);
13195 inst.instruction |= inst.operands[0].reg << 8;
13196 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13197 }
13198 else
13199 {
c19d1205
ZW
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13203 }
13204 }
13205 else
13206 {
c19d1205
ZW
13207 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13208 BAD_HIREG);
13209 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13210
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
13214 }
13215}
13216
1c444d06
JM
13217static void
13218do_t_orn (void)
13219{
13220 unsigned Rd, Rn;
13221
13222 Rd = inst.operands[0].reg;
13223 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13224
fdfde340
JM
13225 reject_bad_reg (Rd);
13226 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13227 reject_bad_reg (Rn);
13228
1c444d06
JM
13229 inst.instruction |= Rd << 8;
13230 inst.instruction |= Rn << 16;
13231
13232 if (!inst.operands[2].isreg)
13233 {
13234 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13235 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13236 }
13237 else
13238 {
13239 unsigned Rm;
13240
13241 Rm = inst.operands[2].reg;
fdfde340 13242 reject_bad_reg (Rm);
1c444d06
JM
13243
13244 constraint (inst.operands[2].shifted
13245 && inst.operands[2].immisreg,
13246 _("shift must be constant"));
13247 encode_thumb32_shifted_operand (2);
13248 }
13249}
13250
c19d1205
ZW
13251static void
13252do_t_pkhbt (void)
13253{
fdfde340
JM
13254 unsigned Rd, Rn, Rm;
13255
13256 Rd = inst.operands[0].reg;
13257 Rn = inst.operands[1].reg;
13258 Rm = inst.operands[2].reg;
13259
13260 reject_bad_reg (Rd);
13261 reject_bad_reg (Rn);
13262 reject_bad_reg (Rm);
13263
13264 inst.instruction |= Rd << 8;
13265 inst.instruction |= Rn << 16;
13266 inst.instruction |= Rm;
c19d1205
ZW
13267 if (inst.operands[3].present)
13268 {
e2b0ab59
AV
13269 unsigned int val = inst.relocs[0].exp.X_add_number;
13270 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13271 _("expression too complex"));
13272 inst.instruction |= (val & 0x1c) << 10;
13273 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13274 }
c19d1205 13275}
b05fe5cf 13276
c19d1205
ZW
13277static void
13278do_t_pkhtb (void)
13279{
13280 if (!inst.operands[3].present)
1ef52f49
NC
13281 {
13282 unsigned Rtmp;
13283
13284 inst.instruction &= ~0x00000020;
13285
13286 /* PR 10168. Swap the Rm and Rn registers. */
13287 Rtmp = inst.operands[1].reg;
13288 inst.operands[1].reg = inst.operands[2].reg;
13289 inst.operands[2].reg = Rtmp;
13290 }
c19d1205 13291 do_t_pkhbt ();
b05fe5cf
ZW
13292}
13293
c19d1205
ZW
13294static void
13295do_t_pld (void)
13296{
fdfde340
JM
13297 if (inst.operands[0].immisreg)
13298 reject_bad_reg (inst.operands[0].imm);
13299
c19d1205
ZW
13300 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13301}
b05fe5cf 13302
c19d1205
ZW
13303static void
13304do_t_push_pop (void)
b99bd4ef 13305{
e9f89963 13306 unsigned mask;
5f4273c7 13307
c19d1205
ZW
13308 constraint (inst.operands[0].writeback,
13309 _("push/pop do not support {reglist}^"));
e2b0ab59 13310 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13311 _("expression too complex"));
b99bd4ef 13312
e9f89963 13313 mask = inst.operands[0].imm;
d3bfe16e 13314 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13315 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13316 else if (inst.size_req != 4
c6025a80 13317 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13318 ? REG_LR : REG_PC)))
b99bd4ef 13319 {
c19d1205
ZW
13320 inst.instruction = THUMB_OP16 (inst.instruction);
13321 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13322 inst.instruction |= mask & 0xff;
c19d1205
ZW
13323 }
13324 else if (unified_syntax)
13325 {
3c707909 13326 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13327 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13328 }
13329 else
13330 {
13331 inst.error = _("invalid register list to push/pop instruction");
13332 return;
c19d1205 13333 }
4b5a202f
AV
13334}
13335
13336static void
13337do_t_clrm (void)
13338{
13339 if (unified_syntax)
13340 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13341 else
13342 {
13343 inst.error = _("invalid register list to push/pop instruction");
13344 return;
13345 }
c19d1205 13346}
b99bd4ef 13347
efd6b359
AV
13348static void
13349do_t_vscclrm (void)
13350{
13351 if (inst.operands[0].issingle)
13352 {
13353 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13354 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13355 inst.instruction |= inst.operands[0].imm;
13356 }
13357 else
13358 {
13359 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13360 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13361 inst.instruction |= 1 << 8;
13362 inst.instruction |= inst.operands[0].imm << 1;
13363 }
13364}
13365
c19d1205
ZW
13366static void
13367do_t_rbit (void)
13368{
fdfde340
JM
13369 unsigned Rd, Rm;
13370
13371 Rd = inst.operands[0].reg;
13372 Rm = inst.operands[1].reg;
13373
13374 reject_bad_reg (Rd);
13375 reject_bad_reg (Rm);
13376
13377 inst.instruction |= Rd << 8;
13378 inst.instruction |= Rm << 16;
13379 inst.instruction |= Rm;
c19d1205 13380}
b99bd4ef 13381
c19d1205
ZW
13382static void
13383do_t_rev (void)
13384{
fdfde340
JM
13385 unsigned Rd, Rm;
13386
13387 Rd = inst.operands[0].reg;
13388 Rm = inst.operands[1].reg;
13389
13390 reject_bad_reg (Rd);
13391 reject_bad_reg (Rm);
13392
13393 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13394 && inst.size_req != 4)
13395 {
13396 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13397 inst.instruction |= Rd;
13398 inst.instruction |= Rm << 3;
c19d1205
ZW
13399 }
13400 else if (unified_syntax)
13401 {
13402 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
c19d1205
ZW
13406 }
13407 else
13408 inst.error = BAD_HIREG;
13409}
b99bd4ef 13410
1c444d06
JM
13411static void
13412do_t_rrx (void)
13413{
13414 unsigned Rd, Rm;
13415
13416 Rd = inst.operands[0].reg;
13417 Rm = inst.operands[1].reg;
13418
fdfde340
JM
13419 reject_bad_reg (Rd);
13420 reject_bad_reg (Rm);
c921be7d 13421
1c444d06
JM
13422 inst.instruction |= Rd << 8;
13423 inst.instruction |= Rm;
13424}
13425
c19d1205
ZW
13426static void
13427do_t_rsb (void)
13428{
fdfde340 13429 unsigned Rd, Rs;
b99bd4ef 13430
c19d1205
ZW
13431 Rd = inst.operands[0].reg;
13432 Rs = (inst.operands[1].present
13433 ? inst.operands[1].reg /* Rd, Rs, foo */
13434 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13435
fdfde340
JM
13436 reject_bad_reg (Rd);
13437 reject_bad_reg (Rs);
13438 if (inst.operands[2].isreg)
13439 reject_bad_reg (inst.operands[2].reg);
13440
c19d1205
ZW
13441 inst.instruction |= Rd << 8;
13442 inst.instruction |= Rs << 16;
13443 if (!inst.operands[2].isreg)
13444 {
026d3abb
PB
13445 bfd_boolean narrow;
13446
13447 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13448 narrow = !in_pred_block ();
026d3abb 13449 else
5ee91343 13450 narrow = in_pred_block ();
026d3abb
PB
13451
13452 if (Rd > 7 || Rs > 7)
13453 narrow = FALSE;
13454
13455 if (inst.size_req == 4 || !unified_syntax)
13456 narrow = FALSE;
13457
e2b0ab59
AV
13458 if (inst.relocs[0].exp.X_op != O_constant
13459 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13460 narrow = FALSE;
13461
13462 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13463 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13464 if (narrow)
13465 {
e2b0ab59 13466 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13467 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13468 inst.instruction |= Rs << 3;
13469 inst.instruction |= Rd;
13470 }
13471 else
13472 {
13473 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13474 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13475 }
c19d1205
ZW
13476 }
13477 else
13478 encode_thumb32_shifted_operand (2);
13479}
b99bd4ef 13480
c19d1205
ZW
13481static void
13482do_t_setend (void)
13483{
12e37cbc
MGD
13484 if (warn_on_deprecated
13485 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13486 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13487
5ee91343 13488 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13489 if (inst.operands[0].imm)
13490 inst.instruction |= 0x8;
13491}
b99bd4ef 13492
c19d1205
ZW
13493static void
13494do_t_shift (void)
13495{
13496 if (!inst.operands[1].present)
13497 inst.operands[1].reg = inst.operands[0].reg;
13498
13499 if (unified_syntax)
13500 {
3d388997
PB
13501 bfd_boolean narrow;
13502 int shift_kind;
13503
13504 switch (inst.instruction)
13505 {
13506 case T_MNEM_asr:
13507 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13508 case T_MNEM_lsl:
13509 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13510 case T_MNEM_lsr:
13511 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13512 case T_MNEM_ror:
13513 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13514 default: abort ();
13515 }
13516
13517 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13518 narrow = !in_pred_block ();
3d388997 13519 else
5ee91343 13520 narrow = in_pred_block ();
3d388997
PB
13521 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13522 narrow = FALSE;
13523 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13524 narrow = FALSE;
13525 if (inst.operands[2].isreg
13526 && (inst.operands[1].reg != inst.operands[0].reg
13527 || inst.operands[2].reg > 7))
13528 narrow = FALSE;
13529 if (inst.size_req == 4)
13530 narrow = FALSE;
13531
fdfde340
JM
13532 reject_bad_reg (inst.operands[0].reg);
13533 reject_bad_reg (inst.operands[1].reg);
c921be7d 13534
3d388997 13535 if (!narrow)
c19d1205
ZW
13536 {
13537 if (inst.operands[2].isreg)
b99bd4ef 13538 {
fdfde340 13539 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13540 inst.instruction = THUMB_OP32 (inst.instruction);
13541 inst.instruction |= inst.operands[0].reg << 8;
13542 inst.instruction |= inst.operands[1].reg << 16;
13543 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13544
13545 /* PR 12854: Error on extraneous shifts. */
13546 constraint (inst.operands[2].shifted,
13547 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13548 }
13549 else
13550 {
13551 inst.operands[1].shifted = 1;
3d388997 13552 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13553 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13554 ? T_MNEM_movs : T_MNEM_mov);
13555 inst.instruction |= inst.operands[0].reg << 8;
13556 encode_thumb32_shifted_operand (1);
13557 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13558 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13559 }
13560 }
13561 else
13562 {
c19d1205 13563 if (inst.operands[2].isreg)
b99bd4ef 13564 {
3d388997 13565 switch (shift_kind)
b99bd4ef 13566 {
3d388997
PB
13567 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13568 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13569 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13570 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13571 default: abort ();
b99bd4ef 13572 }
5f4273c7 13573
c19d1205
ZW
13574 inst.instruction |= inst.operands[0].reg;
13575 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13576
13577 /* PR 12854: Error on extraneous shifts. */
13578 constraint (inst.operands[2].shifted,
13579 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13580 }
13581 else
13582 {
3d388997 13583 switch (shift_kind)
b99bd4ef 13584 {
3d388997
PB
13585 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13586 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13587 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13588 default: abort ();
b99bd4ef 13589 }
e2b0ab59 13590 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13591 inst.instruction |= inst.operands[0].reg;
13592 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13593 }
13594 }
c19d1205
ZW
13595 }
13596 else
13597 {
13598 constraint (inst.operands[0].reg > 7
13599 || inst.operands[1].reg > 7, BAD_HIREG);
13600 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13601
c19d1205
ZW
13602 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13603 {
13604 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13605 constraint (inst.operands[0].reg != inst.operands[1].reg,
13606 _("source1 and dest must be same register"));
b99bd4ef 13607
c19d1205
ZW
13608 switch (inst.instruction)
13609 {
13610 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13611 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13612 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13613 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13614 default: abort ();
13615 }
5f4273c7 13616
c19d1205
ZW
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13619
13620 /* PR 12854: Error on extraneous shifts. */
13621 constraint (inst.operands[2].shifted,
13622 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13623 }
13624 else
b99bd4ef 13625 {
c19d1205
ZW
13626 switch (inst.instruction)
13627 {
13628 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13629 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13630 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13631 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13632 default: abort ();
13633 }
e2b0ab59 13634 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13635 inst.instruction |= inst.operands[0].reg;
13636 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13637 }
13638 }
b99bd4ef
NC
13639}
13640
13641static void
c19d1205 13642do_t_simd (void)
b99bd4ef 13643{
fdfde340
JM
13644 unsigned Rd, Rn, Rm;
13645
13646 Rd = inst.operands[0].reg;
13647 Rn = inst.operands[1].reg;
13648 Rm = inst.operands[2].reg;
13649
13650 reject_bad_reg (Rd);
13651 reject_bad_reg (Rn);
13652 reject_bad_reg (Rm);
13653
13654 inst.instruction |= Rd << 8;
13655 inst.instruction |= Rn << 16;
13656 inst.instruction |= Rm;
c19d1205 13657}
b99bd4ef 13658
03ee1b7f
NC
13659static void
13660do_t_simd2 (void)
13661{
13662 unsigned Rd, Rn, Rm;
13663
13664 Rd = inst.operands[0].reg;
13665 Rm = inst.operands[1].reg;
13666 Rn = inst.operands[2].reg;
13667
13668 reject_bad_reg (Rd);
13669 reject_bad_reg (Rn);
13670 reject_bad_reg (Rm);
13671
13672 inst.instruction |= Rd << 8;
13673 inst.instruction |= Rn << 16;
13674 inst.instruction |= Rm;
13675}
13676
c19d1205 13677static void
3eb17e6b 13678do_t_smc (void)
c19d1205 13679{
e2b0ab59 13680 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13682 _("SMC is not permitted on this architecture"));
e2b0ab59 13683 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13684 _("expression too complex"));
e2b0ab59 13685 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13686 inst.instruction |= (value & 0xf000) >> 12;
13687 inst.instruction |= (value & 0x0ff0);
13688 inst.instruction |= (value & 0x000f) << 16;
24382199 13689 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13690 set_pred_insn_type_last ();
c19d1205 13691}
b99bd4ef 13692
90ec0d68
MGD
13693static void
13694do_t_hvc (void)
13695{
e2b0ab59 13696 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13697
e2b0ab59 13698 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13699 inst.instruction |= (value & 0x0fff);
13700 inst.instruction |= (value & 0xf000) << 4;
13701}
13702
c19d1205 13703static void
3a21c15a 13704do_t_ssat_usat (int bias)
c19d1205 13705{
fdfde340
JM
13706 unsigned Rd, Rn;
13707
13708 Rd = inst.operands[0].reg;
13709 Rn = inst.operands[2].reg;
13710
13711 reject_bad_reg (Rd);
13712 reject_bad_reg (Rn);
13713
13714 inst.instruction |= Rd << 8;
3a21c15a 13715 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13716 inst.instruction |= Rn << 16;
b99bd4ef 13717
c19d1205 13718 if (inst.operands[3].present)
b99bd4ef 13719 {
e2b0ab59 13720 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13721
e2b0ab59 13722 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13723
e2b0ab59 13724 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13725 _("expression too complex"));
b99bd4ef 13726
3a21c15a 13727 if (shift_amount != 0)
6189168b 13728 {
3a21c15a
NC
13729 constraint (shift_amount > 31,
13730 _("shift expression is too large"));
13731
c19d1205 13732 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13733 inst.instruction |= 0x00200000; /* sh bit. */
13734
13735 inst.instruction |= (shift_amount & 0x1c) << 10;
13736 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13737 }
13738 }
b99bd4ef 13739}
c921be7d 13740
3a21c15a
NC
13741static void
13742do_t_ssat (void)
13743{
13744 do_t_ssat_usat (1);
13745}
b99bd4ef 13746
0dd132b6 13747static void
c19d1205 13748do_t_ssat16 (void)
0dd132b6 13749{
fdfde340
JM
13750 unsigned Rd, Rn;
13751
13752 Rd = inst.operands[0].reg;
13753 Rn = inst.operands[2].reg;
13754
13755 reject_bad_reg (Rd);
13756 reject_bad_reg (Rn);
13757
13758 inst.instruction |= Rd << 8;
c19d1205 13759 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13760 inst.instruction |= Rn << 16;
c19d1205 13761}
0dd132b6 13762
c19d1205
ZW
13763static void
13764do_t_strex (void)
13765{
13766 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13767 || inst.operands[2].postind || inst.operands[2].writeback
13768 || inst.operands[2].immisreg || inst.operands[2].shifted
13769 || inst.operands[2].negative,
01cfc07f 13770 BAD_ADDR_MODE);
0dd132b6 13771
5be8be5d
DG
13772 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13773
c19d1205
ZW
13774 inst.instruction |= inst.operands[0].reg << 8;
13775 inst.instruction |= inst.operands[1].reg << 12;
13776 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13777 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13778}
13779
b99bd4ef 13780static void
c19d1205 13781do_t_strexd (void)
b99bd4ef 13782{
c19d1205
ZW
13783 if (!inst.operands[2].present)
13784 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13785
c19d1205
ZW
13786 constraint (inst.operands[0].reg == inst.operands[1].reg
13787 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13788 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13789 BAD_OVERLAP);
b99bd4ef 13790
c19d1205
ZW
13791 inst.instruction |= inst.operands[0].reg;
13792 inst.instruction |= inst.operands[1].reg << 12;
13793 inst.instruction |= inst.operands[2].reg << 8;
13794 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13795}
13796
13797static void
c19d1205 13798do_t_sxtah (void)
b99bd4ef 13799{
fdfde340
JM
13800 unsigned Rd, Rn, Rm;
13801
13802 Rd = inst.operands[0].reg;
13803 Rn = inst.operands[1].reg;
13804 Rm = inst.operands[2].reg;
13805
13806 reject_bad_reg (Rd);
13807 reject_bad_reg (Rn);
13808 reject_bad_reg (Rm);
13809
13810 inst.instruction |= Rd << 8;
13811 inst.instruction |= Rn << 16;
13812 inst.instruction |= Rm;
c19d1205
ZW
13813 inst.instruction |= inst.operands[3].imm << 4;
13814}
b99bd4ef 13815
c19d1205
ZW
13816static void
13817do_t_sxth (void)
13818{
fdfde340
JM
13819 unsigned Rd, Rm;
13820
13821 Rd = inst.operands[0].reg;
13822 Rm = inst.operands[1].reg;
13823
13824 reject_bad_reg (Rd);
13825 reject_bad_reg (Rm);
c921be7d
NC
13826
13827 if (inst.instruction <= 0xffff
13828 && inst.size_req != 4
fdfde340 13829 && Rd <= 7 && Rm <= 7
c19d1205 13830 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13831 {
c19d1205 13832 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13833 inst.instruction |= Rd;
13834 inst.instruction |= Rm << 3;
b99bd4ef 13835 }
c19d1205 13836 else if (unified_syntax)
b99bd4ef 13837 {
c19d1205
ZW
13838 if (inst.instruction <= 0xffff)
13839 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13840 inst.instruction |= Rd << 8;
13841 inst.instruction |= Rm;
c19d1205 13842 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13843 }
c19d1205 13844 else
b99bd4ef 13845 {
c19d1205
ZW
13846 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13847 _("Thumb encoding does not support rotation"));
13848 constraint (1, BAD_HIREG);
b99bd4ef 13849 }
c19d1205 13850}
b99bd4ef 13851
c19d1205
ZW
13852static void
13853do_t_swi (void)
13854{
e2b0ab59 13855 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13856}
b99bd4ef 13857
92e90b6e
PB
13858static void
13859do_t_tb (void)
13860{
fdfde340 13861 unsigned Rn, Rm;
92e90b6e
PB
13862 int half;
13863
13864 half = (inst.instruction & 0x10) != 0;
5ee91343 13865 set_pred_insn_type_last ();
dfa9f0d5
PB
13866 constraint (inst.operands[0].immisreg,
13867 _("instruction requires register index"));
fdfde340
JM
13868
13869 Rn = inst.operands[0].reg;
13870 Rm = inst.operands[0].imm;
c921be7d 13871
5c8ed6a4
JW
13872 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13873 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13874 reject_bad_reg (Rm);
13875
92e90b6e
PB
13876 constraint (!half && inst.operands[0].shifted,
13877 _("instruction does not allow shifted index"));
fdfde340 13878 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13879}
13880
74db7efb
NC
13881static void
13882do_t_udf (void)
13883{
13884 if (!inst.operands[0].present)
13885 inst.operands[0].imm = 0;
13886
13887 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13888 {
13889 constraint (inst.size_req == 2,
13890 _("immediate value out of range"));
13891 inst.instruction = THUMB_OP32 (inst.instruction);
13892 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13893 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13894 }
13895 else
13896 {
13897 inst.instruction = THUMB_OP16 (inst.instruction);
13898 inst.instruction |= inst.operands[0].imm;
13899 }
13900
5ee91343 13901 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13902}
13903
13904
c19d1205
ZW
13905static void
13906do_t_usat (void)
13907{
3a21c15a 13908 do_t_ssat_usat (0);
b99bd4ef
NC
13909}
13910
13911static void
c19d1205 13912do_t_usat16 (void)
b99bd4ef 13913{
fdfde340
JM
13914 unsigned Rd, Rn;
13915
13916 Rd = inst.operands[0].reg;
13917 Rn = inst.operands[2].reg;
13918
13919 reject_bad_reg (Rd);
13920 reject_bad_reg (Rn);
13921
13922 inst.instruction |= Rd << 8;
c19d1205 13923 inst.instruction |= inst.operands[1].imm;
fdfde340 13924 inst.instruction |= Rn << 16;
b99bd4ef 13925}
c19d1205 13926
e12437dc
AV
13927/* Checking the range of the branch offset (VAL) with NBITS bits
13928 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13929static int
13930v8_1_branch_value_check (int val, int nbits, int is_signed)
13931{
13932 gas_assert (nbits > 0 && nbits <= 32);
13933 if (is_signed)
13934 {
13935 int cmp = (1 << (nbits - 1));
13936 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13937 return FAIL;
13938 }
13939 else
13940 {
13941 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13942 return FAIL;
13943 }
13944 return SUCCESS;
13945}
13946
4389b29a
AV
13947/* For branches in Armv8.1-M Mainline. */
13948static void
13949do_t_branch_future (void)
13950{
13951 unsigned long insn = inst.instruction;
13952
13953 inst.instruction = THUMB_OP32 (inst.instruction);
13954 if (inst.operands[0].hasreloc == 0)
13955 {
13956 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13957 as_bad (BAD_BRANCH_OFF);
13958
13959 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13960 }
13961 else
13962 {
13963 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13964 inst.relocs[0].pc_rel = 1;
13965 }
13966
13967 switch (insn)
13968 {
13969 case T_MNEM_bf:
13970 if (inst.operands[1].hasreloc == 0)
13971 {
13972 int val = inst.operands[1].imm;
13973 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13974 as_bad (BAD_BRANCH_OFF);
13975
13976 int immA = (val & 0x0001f000) >> 12;
13977 int immB = (val & 0x00000ffc) >> 2;
13978 int immC = (val & 0x00000002) >> 1;
13979 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13980 }
13981 else
13982 {
13983 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13984 inst.relocs[1].pc_rel = 1;
13985 }
13986 break;
13987
65d1bc05
AV
13988 case T_MNEM_bfl:
13989 if (inst.operands[1].hasreloc == 0)
13990 {
13991 int val = inst.operands[1].imm;
13992 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13993 as_bad (BAD_BRANCH_OFF);
13994
13995 int immA = (val & 0x0007f000) >> 12;
13996 int immB = (val & 0x00000ffc) >> 2;
13997 int immC = (val & 0x00000002) >> 1;
13998 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13999 }
14000 else
14001 {
14002 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14003 inst.relocs[1].pc_rel = 1;
14004 }
14005 break;
14006
f6b2b12d
AV
14007 case T_MNEM_bfcsel:
14008 /* Operand 1. */
14009 if (inst.operands[1].hasreloc == 0)
14010 {
14011 int val = inst.operands[1].imm;
14012 int immA = (val & 0x00001000) >> 12;
14013 int immB = (val & 0x00000ffc) >> 2;
14014 int immC = (val & 0x00000002) >> 1;
14015 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14016 }
14017 else
14018 {
14019 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14020 inst.relocs[1].pc_rel = 1;
14021 }
14022
14023 /* Operand 2. */
14024 if (inst.operands[2].hasreloc == 0)
14025 {
14026 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14027 int val2 = inst.operands[2].imm;
14028 int val0 = inst.operands[0].imm & 0x1f;
14029 int diff = val2 - val0;
14030 if (diff == 4)
14031 inst.instruction |= 1 << 17; /* T bit. */
14032 else if (diff != 2)
14033 as_bad (_("out of range label-relative fixup value"));
14034 }
14035 else
14036 {
14037 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14038 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14039 inst.relocs[2].pc_rel = 1;
14040 }
14041
14042 /* Operand 3. */
14043 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14044 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14045 break;
14046
f1c7f421
AV
14047 case T_MNEM_bfx:
14048 case T_MNEM_bflx:
14049 inst.instruction |= inst.operands[1].reg << 16;
14050 break;
14051
4389b29a
AV
14052 default: abort ();
14053 }
14054}
14055
60f993ce
AV
14056/* Helper function for do_t_loloop to handle relocations. */
14057static void
14058v8_1_loop_reloc (int is_le)
14059{
14060 if (inst.relocs[0].exp.X_op == O_constant)
14061 {
14062 int value = inst.relocs[0].exp.X_add_number;
14063 value = (is_le) ? -value : value;
14064
14065 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14066 as_bad (BAD_BRANCH_OFF);
14067
14068 int imml, immh;
14069
14070 immh = (value & 0x00000ffc) >> 2;
14071 imml = (value & 0x00000002) >> 1;
14072
14073 inst.instruction |= (imml << 11) | (immh << 1);
14074 }
14075 else
14076 {
14077 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14078 inst.relocs[0].pc_rel = 1;
14079 }
14080}
14081
14082/* To handle the Scalar Low Overhead Loop instructions
14083 in Armv8.1-M Mainline. */
14084static void
14085do_t_loloop (void)
14086{
14087 unsigned long insn = inst.instruction;
14088
5ee91343 14089 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14090 inst.instruction = THUMB_OP32 (inst.instruction);
14091
14092 switch (insn)
14093 {
14094 case T_MNEM_le:
14095 /* le <label>. */
14096 if (!inst.operands[0].present)
14097 inst.instruction |= 1 << 21;
14098
14099 v8_1_loop_reloc (TRUE);
14100 break;
14101
14102 case T_MNEM_wls:
14103 v8_1_loop_reloc (FALSE);
14104 /* Fall through. */
14105 case T_MNEM_dls:
14106 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14107 inst.instruction |= (inst.operands[1].reg << 16);
14108 break;
14109
14110 default: abort();
14111 }
14112}
14113
a302e574
AV
14114/* MVE instruction encoder helpers. */
14115#define M_MNEM_vabav 0xee800f01
14116#define M_MNEM_vmladav 0xeef00e00
14117#define M_MNEM_vmladava 0xeef00e20
14118#define M_MNEM_vmladavx 0xeef01e00
14119#define M_MNEM_vmladavax 0xeef01e20
14120#define M_MNEM_vmlsdav 0xeef00e01
14121#define M_MNEM_vmlsdava 0xeef00e21
14122#define M_MNEM_vmlsdavx 0xeef01e01
14123#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14124#define M_MNEM_vmullt 0xee011e00
14125#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14126#define M_MNEM_vst20 0xfc801e00
14127#define M_MNEM_vst21 0xfc801e20
14128#define M_MNEM_vst40 0xfc801e01
14129#define M_MNEM_vst41 0xfc801e21
14130#define M_MNEM_vst42 0xfc801e41
14131#define M_MNEM_vst43 0xfc801e61
14132#define M_MNEM_vld20 0xfc901e00
14133#define M_MNEM_vld21 0xfc901e20
14134#define M_MNEM_vld40 0xfc901e01
14135#define M_MNEM_vld41 0xfc901e21
14136#define M_MNEM_vld42 0xfc901e41
14137#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14138#define M_MNEM_vstrb 0xec000e00
14139#define M_MNEM_vstrh 0xec000e10
14140#define M_MNEM_vstrw 0xec000e40
14141#define M_MNEM_vstrd 0xec000e50
14142#define M_MNEM_vldrb 0xec100e00
14143#define M_MNEM_vldrh 0xec100e10
14144#define M_MNEM_vldrw 0xec100e40
14145#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14146#define M_MNEM_vmovlt 0xeea01f40
14147#define M_MNEM_vmovlb 0xeea00f40
14148#define M_MNEM_vmovnt 0xfe311e81
14149#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14150#define M_MNEM_vadc 0xee300f00
14151#define M_MNEM_vadci 0xee301f00
14152#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14153#define M_MNEM_vaddlv 0xee890f00
14154#define M_MNEM_vaddlva 0xee890f20
14155#define M_MNEM_vaddv 0xeef10f00
14156#define M_MNEM_vaddva 0xeef10f20
a302e574 14157
5287ad62 14158/* Neon instruction encoder helpers. */
5f4273c7 14159
5287ad62 14160/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14161
5287ad62
JB
14162/* An "invalid" code for the following tables. */
14163#define N_INV -1u
14164
14165struct neon_tab_entry
b99bd4ef 14166{
5287ad62
JB
14167 unsigned integer;
14168 unsigned float_or_poly;
14169 unsigned scalar_or_imm;
14170};
5f4273c7 14171
5287ad62
JB
14172/* Map overloaded Neon opcodes to their respective encodings. */
14173#define NEON_ENC_TAB \
14174 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14175 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14176 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14177 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14178 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14179 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14180 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14181 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14182 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14183 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14184 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14185 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14186 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14187 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14188 /* Register variants of the following two instructions are encoded as
e07e6e58 14189 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14190 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14191 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14192 X(vfma, N_INV, 0x0000c10, N_INV), \
14193 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14194 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14195 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14196 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14197 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14198 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14199 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14200 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14201 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14202 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14203 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14204 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14205 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14206 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14207 X(vshl, 0x0000400, N_INV, 0x0800510), \
14208 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14209 X(vand, 0x0000110, N_INV, 0x0800030), \
14210 X(vbic, 0x0100110, N_INV, 0x0800030), \
14211 X(veor, 0x1000110, N_INV, N_INV), \
14212 X(vorn, 0x0300110, N_INV, 0x0800010), \
14213 X(vorr, 0x0200110, N_INV, 0x0800010), \
14214 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14215 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14216 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14217 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14218 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14219 X(vst1, 0x0000000, 0x0800000, N_INV), \
14220 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14221 X(vst2, 0x0000100, 0x0800100, N_INV), \
14222 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14223 X(vst3, 0x0000200, 0x0800200, N_INV), \
14224 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14225 X(vst4, 0x0000300, 0x0800300, N_INV), \
14226 X(vmovn, 0x1b20200, N_INV, N_INV), \
14227 X(vtrn, 0x1b20080, N_INV, N_INV), \
14228 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14229 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14230 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14231 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14232 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14233 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14234 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14235 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14236 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14237 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14238 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14239 X(vseleq, 0xe000a00, N_INV, N_INV), \
14240 X(vselvs, 0xe100a00, N_INV, N_INV), \
14241 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14242 X(vselgt, 0xe300a00, N_INV, N_INV), \
14243 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14244 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14245 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14246 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14247 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14248 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14249 X(sha3op, 0x2000c00, N_INV, N_INV), \
14250 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14251 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14252
14253enum neon_opc
14254{
14255#define X(OPC,I,F,S) N_MNEM_##OPC
14256NEON_ENC_TAB
14257#undef X
14258};
b99bd4ef 14259
5287ad62
JB
14260static const struct neon_tab_entry neon_enc_tab[] =
14261{
14262#define X(OPC,I,F,S) { (I), (F), (S) }
14263NEON_ENC_TAB
14264#undef X
14265};
b99bd4ef 14266
88714cb8
DG
14267/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14268#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14269#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14270#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14271#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14272#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14273#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14274#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14275#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14276#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14277#define NEON_ENC_SINGLE_(X) \
037e8744 14278 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14279#define NEON_ENC_DOUBLE_(X) \
037e8744 14280 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14281#define NEON_ENC_FPV8_(X) \
14282 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14283
88714cb8
DG
14284#define NEON_ENCODE(type, inst) \
14285 do \
14286 { \
14287 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14288 inst.is_neon = 1; \
14289 } \
14290 while (0)
14291
14292#define check_neon_suffixes \
14293 do \
14294 { \
14295 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14296 { \
14297 as_bad (_("invalid neon suffix for non neon instruction")); \
14298 return; \
14299 } \
14300 } \
14301 while (0)
14302
037e8744
JB
14303/* Define shapes for instruction operands. The following mnemonic characters
14304 are used in this table:
5287ad62 14305
037e8744 14306 F - VFP S<n> register
5287ad62
JB
14307 D - Neon D<n> register
14308 Q - Neon Q<n> register
14309 I - Immediate
14310 S - Scalar
14311 R - ARM register
14312 L - D<n> register list
5f4273c7 14313
037e8744
JB
14314 This table is used to generate various data:
14315 - enumerations of the form NS_DDR to be used as arguments to
14316 neon_select_shape.
14317 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14318 - a table used to drive neon_select_shape. */
b99bd4ef 14319
037e8744 14320#define NEON_SHAPE_DEF \
57785aa2
AV
14321 X(4, (R, R, S, S), QUAD), \
14322 X(4, (S, S, R, R), QUAD), \
1b883319
AV
14323 X(3, (I, Q, Q), QUAD), \
14324 X(3, (I, Q, R), QUAD), \
a302e574 14325 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14326 X(3, (D, D, D), DOUBLE), \
14327 X(3, (Q, Q, Q), QUAD), \
14328 X(3, (D, D, I), DOUBLE), \
14329 X(3, (Q, Q, I), QUAD), \
14330 X(3, (D, D, S), DOUBLE), \
14331 X(3, (Q, Q, S), QUAD), \
5ee91343 14332 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14333 X(3, (R, R, Q), QUAD), \
14334 X(2, (R, Q), QUAD), \
037e8744
JB
14335 X(2, (D, D), DOUBLE), \
14336 X(2, (Q, Q), QUAD), \
14337 X(2, (D, S), DOUBLE), \
14338 X(2, (Q, S), QUAD), \
14339 X(2, (D, R), DOUBLE), \
14340 X(2, (Q, R), QUAD), \
14341 X(2, (D, I), DOUBLE), \
14342 X(2, (Q, I), QUAD), \
14343 X(3, (D, L, D), DOUBLE), \
14344 X(2, (D, Q), MIXED), \
14345 X(2, (Q, D), MIXED), \
14346 X(3, (D, Q, I), MIXED), \
14347 X(3, (Q, D, I), MIXED), \
14348 X(3, (Q, D, D), MIXED), \
14349 X(3, (D, Q, Q), MIXED), \
14350 X(3, (Q, Q, D), MIXED), \
14351 X(3, (Q, D, S), MIXED), \
14352 X(3, (D, Q, S), MIXED), \
14353 X(4, (D, D, D, I), DOUBLE), \
14354 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14355 X(4, (D, D, S, I), DOUBLE), \
14356 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14357 X(2, (F, F), SINGLE), \
14358 X(3, (F, F, F), SINGLE), \
14359 X(2, (F, I), SINGLE), \
14360 X(2, (F, D), MIXED), \
14361 X(2, (D, F), MIXED), \
14362 X(3, (F, F, I), MIXED), \
14363 X(4, (R, R, F, F), SINGLE), \
14364 X(4, (F, F, R, R), SINGLE), \
14365 X(3, (D, R, R), DOUBLE), \
14366 X(3, (R, R, D), DOUBLE), \
14367 X(2, (S, R), SINGLE), \
14368 X(2, (R, S), SINGLE), \
14369 X(2, (F, R), SINGLE), \
d54af2d0
RL
14370 X(2, (R, F), SINGLE), \
14371/* Half float shape supported so far. */\
14372 X (2, (H, D), MIXED), \
14373 X (2, (D, H), MIXED), \
14374 X (2, (H, F), MIXED), \
14375 X (2, (F, H), MIXED), \
14376 X (2, (H, H), HALF), \
14377 X (2, (H, R), HALF), \
14378 X (2, (R, H), HALF), \
14379 X (2, (H, I), HALF), \
14380 X (3, (H, H, H), HALF), \
14381 X (3, (H, F, I), MIXED), \
dec41383
JW
14382 X (3, (F, H, I), MIXED), \
14383 X (3, (D, H, H), MIXED), \
14384 X (3, (D, H, S), MIXED)
037e8744
JB
14385
14386#define S2(A,B) NS_##A##B
14387#define S3(A,B,C) NS_##A##B##C
14388#define S4(A,B,C,D) NS_##A##B##C##D
14389
14390#define X(N, L, C) S##N L
14391
5287ad62
JB
14392enum neon_shape
14393{
037e8744
JB
14394 NEON_SHAPE_DEF,
14395 NS_NULL
5287ad62 14396};
b99bd4ef 14397
037e8744
JB
14398#undef X
14399#undef S2
14400#undef S3
14401#undef S4
14402
14403enum neon_shape_class
14404{
d54af2d0 14405 SC_HALF,
037e8744
JB
14406 SC_SINGLE,
14407 SC_DOUBLE,
14408 SC_QUAD,
14409 SC_MIXED
14410};
14411
14412#define X(N, L, C) SC_##C
14413
14414static enum neon_shape_class neon_shape_class[] =
14415{
14416 NEON_SHAPE_DEF
14417};
14418
14419#undef X
14420
14421enum neon_shape_el
14422{
d54af2d0 14423 SE_H,
037e8744
JB
14424 SE_F,
14425 SE_D,
14426 SE_Q,
14427 SE_I,
14428 SE_S,
14429 SE_R,
14430 SE_L
14431};
14432
14433/* Register widths of above. */
14434static unsigned neon_shape_el_size[] =
14435{
d54af2d0 14436 16,
037e8744
JB
14437 32,
14438 64,
14439 128,
14440 0,
14441 32,
14442 32,
14443 0
14444};
14445
14446struct neon_shape_info
14447{
14448 unsigned els;
14449 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14450};
14451
14452#define S2(A,B) { SE_##A, SE_##B }
14453#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14454#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14455
14456#define X(N, L, C) { N, S##N L }
14457
14458static struct neon_shape_info neon_shape_tab[] =
14459{
14460 NEON_SHAPE_DEF
14461};
14462
14463#undef X
14464#undef S2
14465#undef S3
14466#undef S4
14467
5287ad62
JB
14468/* Bit masks used in type checking given instructions.
14469 'N_EQK' means the type must be the same as (or based on in some way) the key
14470 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14471 set, various other bits can be set as well in order to modify the meaning of
14472 the type constraint. */
14473
14474enum neon_type_mask
14475{
8e79c3df
CM
14476 N_S8 = 0x0000001,
14477 N_S16 = 0x0000002,
14478 N_S32 = 0x0000004,
14479 N_S64 = 0x0000008,
14480 N_U8 = 0x0000010,
14481 N_U16 = 0x0000020,
14482 N_U32 = 0x0000040,
14483 N_U64 = 0x0000080,
14484 N_I8 = 0x0000100,
14485 N_I16 = 0x0000200,
14486 N_I32 = 0x0000400,
14487 N_I64 = 0x0000800,
14488 N_8 = 0x0001000,
14489 N_16 = 0x0002000,
14490 N_32 = 0x0004000,
14491 N_64 = 0x0008000,
14492 N_P8 = 0x0010000,
14493 N_P16 = 0x0020000,
14494 N_F16 = 0x0040000,
14495 N_F32 = 0x0080000,
14496 N_F64 = 0x0100000,
4f51b4bd 14497 N_P64 = 0x0200000,
c921be7d
NC
14498 N_KEY = 0x1000000, /* Key element (main type specifier). */
14499 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14500 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14501 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14502 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14503 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14504 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14505 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14506 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14507 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14508 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14509 N_UTYP = 0,
4f51b4bd 14510 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14511};
14512
dcbf9037
JB
14513#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14514
5287ad62
JB
14515#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14516#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14517#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14518#define N_S_32 (N_S8 | N_S16 | N_S32)
14519#define N_F_16_32 (N_F16 | N_F32)
14520#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14521#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14522#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14523#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14524#define N_I_MVE (N_I8 | N_I16 | N_I32)
14525#define N_F_MVE (N_F16 | N_F32)
14526#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14527
14528/* Pass this as the first type argument to neon_check_type to ignore types
14529 altogether. */
14530#define N_IGNORE_TYPE (N_KEY | N_EQK)
14531
037e8744
JB
14532/* Select a "shape" for the current instruction (describing register types or
14533 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14534 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14535 function of operand parsing, so this function doesn't need to be called.
14536 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14537
14538static enum neon_shape
037e8744 14539neon_select_shape (enum neon_shape shape, ...)
5287ad62 14540{
037e8744
JB
14541 va_list ap;
14542 enum neon_shape first_shape = shape;
5287ad62
JB
14543
14544 /* Fix missing optional operands. FIXME: we don't know at this point how
14545 many arguments we should have, so this makes the assumption that we have
14546 > 1. This is true of all current Neon opcodes, I think, but may not be
14547 true in the future. */
14548 if (!inst.operands[1].present)
14549 inst.operands[1] = inst.operands[0];
14550
037e8744 14551 va_start (ap, shape);
5f4273c7 14552
21d799b5 14553 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14554 {
14555 unsigned j;
14556 int matches = 1;
14557
14558 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14559 {
14560 if (!inst.operands[j].present)
14561 {
14562 matches = 0;
14563 break;
14564 }
14565
14566 switch (neon_shape_tab[shape].el[j])
14567 {
d54af2d0
RL
14568 /* If a .f16, .16, .u16, .s16 type specifier is given over
14569 a VFP single precision register operand, it's essentially
14570 means only half of the register is used.
14571
14572 If the type specifier is given after the mnemonics, the
14573 information is stored in inst.vectype. If the type specifier
14574 is given after register operand, the information is stored
14575 in inst.operands[].vectype.
14576
14577 When there is only one type specifier, and all the register
14578 operands are the same type of hardware register, the type
14579 specifier applies to all register operands.
14580
14581 If no type specifier is given, the shape is inferred from
14582 operand information.
14583
14584 for example:
14585 vadd.f16 s0, s1, s2: NS_HHH
14586 vabs.f16 s0, s1: NS_HH
14587 vmov.f16 s0, r1: NS_HR
14588 vmov.f16 r0, s1: NS_RH
14589 vcvt.f16 r0, s1: NS_RH
14590 vcvt.f16.s32 s2, s2, #29: NS_HFI
14591 vcvt.f16.s32 s2, s2: NS_HF
14592 */
14593 case SE_H:
14594 if (!(inst.operands[j].isreg
14595 && inst.operands[j].isvec
14596 && inst.operands[j].issingle
14597 && !inst.operands[j].isquad
14598 && ((inst.vectype.elems == 1
14599 && inst.vectype.el[0].size == 16)
14600 || (inst.vectype.elems > 1
14601 && inst.vectype.el[j].size == 16)
14602 || (inst.vectype.elems == 0
14603 && inst.operands[j].vectype.type != NT_invtype
14604 && inst.operands[j].vectype.size == 16))))
14605 matches = 0;
14606 break;
14607
477330fc
RM
14608 case SE_F:
14609 if (!(inst.operands[j].isreg
14610 && inst.operands[j].isvec
14611 && inst.operands[j].issingle
d54af2d0
RL
14612 && !inst.operands[j].isquad
14613 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14614 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14615 || (inst.vectype.elems == 0
14616 && (inst.operands[j].vectype.size == 32
14617 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14618 matches = 0;
14619 break;
14620
14621 case SE_D:
14622 if (!(inst.operands[j].isreg
14623 && inst.operands[j].isvec
14624 && !inst.operands[j].isquad
14625 && !inst.operands[j].issingle))
14626 matches = 0;
14627 break;
14628
14629 case SE_R:
14630 if (!(inst.operands[j].isreg
14631 && !inst.operands[j].isvec))
14632 matches = 0;
14633 break;
14634
14635 case SE_Q:
14636 if (!(inst.operands[j].isreg
14637 && inst.operands[j].isvec
14638 && inst.operands[j].isquad
14639 && !inst.operands[j].issingle))
14640 matches = 0;
14641 break;
14642
14643 case SE_I:
14644 if (!(!inst.operands[j].isreg
14645 && !inst.operands[j].isscalar))
14646 matches = 0;
14647 break;
14648
14649 case SE_S:
14650 if (!(!inst.operands[j].isreg
14651 && inst.operands[j].isscalar))
14652 matches = 0;
14653 break;
14654
14655 case SE_L:
14656 break;
14657 }
3fde54a2
JZ
14658 if (!matches)
14659 break;
477330fc 14660 }
ad6cec43
MGD
14661 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14662 /* We've matched all the entries in the shape table, and we don't
14663 have any left over operands which have not been matched. */
477330fc 14664 break;
037e8744 14665 }
5f4273c7 14666
037e8744 14667 va_end (ap);
5287ad62 14668
037e8744
JB
14669 if (shape == NS_NULL && first_shape != NS_NULL)
14670 first_error (_("invalid instruction shape"));
5287ad62 14671
037e8744
JB
14672 return shape;
14673}
5287ad62 14674
037e8744
JB
14675/* True if SHAPE is predominantly a quadword operation (most of the time, this
14676 means the Q bit should be set). */
14677
14678static int
14679neon_quad (enum neon_shape shape)
14680{
14681 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14682}
037e8744 14683
5287ad62
JB
14684static void
14685neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14686 unsigned *g_size)
5287ad62
JB
14687{
14688 /* Allow modification to be made to types which are constrained to be
14689 based on the key element, based on bits set alongside N_EQK. */
14690 if ((typebits & N_EQK) != 0)
14691 {
14692 if ((typebits & N_HLF) != 0)
14693 *g_size /= 2;
14694 else if ((typebits & N_DBL) != 0)
14695 *g_size *= 2;
14696 if ((typebits & N_SGN) != 0)
14697 *g_type = NT_signed;
14698 else if ((typebits & N_UNS) != 0)
477330fc 14699 *g_type = NT_unsigned;
5287ad62 14700 else if ((typebits & N_INT) != 0)
477330fc 14701 *g_type = NT_integer;
5287ad62 14702 else if ((typebits & N_FLT) != 0)
477330fc 14703 *g_type = NT_float;
dcbf9037 14704 else if ((typebits & N_SIZ) != 0)
477330fc 14705 *g_type = NT_untyped;
5287ad62
JB
14706 }
14707}
5f4273c7 14708
5287ad62
JB
14709/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14710 operand type, i.e. the single type specified in a Neon instruction when it
14711 is the only one given. */
14712
14713static struct neon_type_el
14714neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14715{
14716 struct neon_type_el dest = *key;
5f4273c7 14717
9c2799c2 14718 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14719
5287ad62
JB
14720 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14721
14722 return dest;
14723}
14724
14725/* Convert Neon type and size into compact bitmask representation. */
14726
14727static enum neon_type_mask
14728type_chk_of_el_type (enum neon_el_type type, unsigned size)
14729{
14730 switch (type)
14731 {
14732 case NT_untyped:
14733 switch (size)
477330fc
RM
14734 {
14735 case 8: return N_8;
14736 case 16: return N_16;
14737 case 32: return N_32;
14738 case 64: return N_64;
14739 default: ;
14740 }
5287ad62
JB
14741 break;
14742
14743 case NT_integer:
14744 switch (size)
477330fc
RM
14745 {
14746 case 8: return N_I8;
14747 case 16: return N_I16;
14748 case 32: return N_I32;
14749 case 64: return N_I64;
14750 default: ;
14751 }
5287ad62
JB
14752 break;
14753
14754 case NT_float:
037e8744 14755 switch (size)
477330fc 14756 {
8e79c3df 14757 case 16: return N_F16;
477330fc
RM
14758 case 32: return N_F32;
14759 case 64: return N_F64;
14760 default: ;
14761 }
5287ad62
JB
14762 break;
14763
14764 case NT_poly:
14765 switch (size)
477330fc
RM
14766 {
14767 case 8: return N_P8;
14768 case 16: return N_P16;
4f51b4bd 14769 case 64: return N_P64;
477330fc
RM
14770 default: ;
14771 }
5287ad62
JB
14772 break;
14773
14774 case NT_signed:
14775 switch (size)
477330fc
RM
14776 {
14777 case 8: return N_S8;
14778 case 16: return N_S16;
14779 case 32: return N_S32;
14780 case 64: return N_S64;
14781 default: ;
14782 }
5287ad62
JB
14783 break;
14784
14785 case NT_unsigned:
14786 switch (size)
477330fc
RM
14787 {
14788 case 8: return N_U8;
14789 case 16: return N_U16;
14790 case 32: return N_U32;
14791 case 64: return N_U64;
14792 default: ;
14793 }
5287ad62
JB
14794 break;
14795
14796 default: ;
14797 }
5f4273c7 14798
5287ad62
JB
14799 return N_UTYP;
14800}
14801
14802/* Convert compact Neon bitmask type representation to a type and size. Only
14803 handles the case where a single bit is set in the mask. */
14804
dcbf9037 14805static int
5287ad62 14806el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14807 enum neon_type_mask mask)
5287ad62 14808{
dcbf9037
JB
14809 if ((mask & N_EQK) != 0)
14810 return FAIL;
14811
5287ad62
JB
14812 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14813 *size = 8;
c70a8987 14814 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14815 *size = 16;
dcbf9037 14816 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14817 *size = 32;
4f51b4bd 14818 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14819 *size = 64;
dcbf9037
JB
14820 else
14821 return FAIL;
14822
5287ad62
JB
14823 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14824 *type = NT_signed;
dcbf9037 14825 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14826 *type = NT_unsigned;
dcbf9037 14827 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14828 *type = NT_integer;
dcbf9037 14829 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14830 *type = NT_untyped;
4f51b4bd 14831 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14832 *type = NT_poly;
d54af2d0 14833 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14834 *type = NT_float;
dcbf9037
JB
14835 else
14836 return FAIL;
5f4273c7 14837
dcbf9037 14838 return SUCCESS;
5287ad62
JB
14839}
14840
14841/* Modify a bitmask of allowed types. This is only needed for type
14842 relaxation. */
14843
14844static unsigned
14845modify_types_allowed (unsigned allowed, unsigned mods)
14846{
14847 unsigned size;
14848 enum neon_el_type type;
14849 unsigned destmask;
14850 int i;
5f4273c7 14851
5287ad62 14852 destmask = 0;
5f4273c7 14853
5287ad62
JB
14854 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14855 {
21d799b5 14856 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14857 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14858 {
14859 neon_modify_type_size (mods, &type, &size);
14860 destmask |= type_chk_of_el_type (type, size);
14861 }
5287ad62 14862 }
5f4273c7 14863
5287ad62
JB
14864 return destmask;
14865}
14866
14867/* Check type and return type classification.
14868 The manual states (paraphrase): If one datatype is given, it indicates the
14869 type given in:
14870 - the second operand, if there is one
14871 - the operand, if there is no second operand
14872 - the result, if there are no operands.
14873 This isn't quite good enough though, so we use a concept of a "key" datatype
14874 which is set on a per-instruction basis, which is the one which matters when
14875 only one data type is written.
14876 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14877 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14878
14879static struct neon_type_el
14880neon_check_type (unsigned els, enum neon_shape ns, ...)
14881{
14882 va_list ap;
14883 unsigned i, pass, key_el = 0;
14884 unsigned types[NEON_MAX_TYPE_ELS];
14885 enum neon_el_type k_type = NT_invtype;
14886 unsigned k_size = -1u;
14887 struct neon_type_el badtype = {NT_invtype, -1};
14888 unsigned key_allowed = 0;
14889
14890 /* Optional registers in Neon instructions are always (not) in operand 1.
14891 Fill in the missing operand here, if it was omitted. */
14892 if (els > 1 && !inst.operands[1].present)
14893 inst.operands[1] = inst.operands[0];
14894
14895 /* Suck up all the varargs. */
14896 va_start (ap, ns);
14897 for (i = 0; i < els; i++)
14898 {
14899 unsigned thisarg = va_arg (ap, unsigned);
14900 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14901 {
14902 va_end (ap);
14903 return badtype;
14904 }
5287ad62
JB
14905 types[i] = thisarg;
14906 if ((thisarg & N_KEY) != 0)
477330fc 14907 key_el = i;
5287ad62
JB
14908 }
14909 va_end (ap);
14910
dcbf9037
JB
14911 if (inst.vectype.elems > 0)
14912 for (i = 0; i < els; i++)
14913 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14914 {
14915 first_error (_("types specified in both the mnemonic and operands"));
14916 return badtype;
14917 }
dcbf9037 14918
5287ad62
JB
14919 /* Duplicate inst.vectype elements here as necessary.
14920 FIXME: No idea if this is exactly the same as the ARM assembler,
14921 particularly when an insn takes one register and one non-register
14922 operand. */
14923 if (inst.vectype.elems == 1 && els > 1)
14924 {
14925 unsigned j;
14926 inst.vectype.elems = els;
14927 inst.vectype.el[key_el] = inst.vectype.el[0];
14928 for (j = 0; j < els; j++)
477330fc
RM
14929 if (j != key_el)
14930 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14931 types[j]);
dcbf9037
JB
14932 }
14933 else if (inst.vectype.elems == 0 && els > 0)
14934 {
14935 unsigned j;
14936 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14937 after each operand. We allow some flexibility here; as long as the
14938 "key" operand has a type, we can infer the others. */
dcbf9037 14939 for (j = 0; j < els; j++)
477330fc
RM
14940 if (inst.operands[j].vectype.type != NT_invtype)
14941 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14942
14943 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14944 {
14945 for (j = 0; j < els; j++)
14946 if (inst.operands[j].vectype.type == NT_invtype)
14947 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14948 types[j]);
14949 }
dcbf9037 14950 else
477330fc
RM
14951 {
14952 first_error (_("operand types can't be inferred"));
14953 return badtype;
14954 }
5287ad62
JB
14955 }
14956 else if (inst.vectype.elems != els)
14957 {
dcbf9037 14958 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14959 return badtype;
14960 }
14961
14962 for (pass = 0; pass < 2; pass++)
14963 {
14964 for (i = 0; i < els; i++)
477330fc
RM
14965 {
14966 unsigned thisarg = types[i];
14967 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14968 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14969 enum neon_el_type g_type = inst.vectype.el[i].type;
14970 unsigned g_size = inst.vectype.el[i].size;
14971
14972 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14973 integer types if sign-specific variants are unavailable. */
477330fc 14974 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14975 && (types_allowed & N_SU_ALL) == 0)
14976 g_type = NT_integer;
14977
477330fc 14978 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14979 them. Some instructions only care about signs for some element
14980 sizes, so handle that properly. */
477330fc 14981 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14982 && ((g_size == 8 && (types_allowed & N_8) != 0)
14983 || (g_size == 16 && (types_allowed & N_16) != 0)
14984 || (g_size == 32 && (types_allowed & N_32) != 0)
14985 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14986 g_type = NT_untyped;
14987
477330fc
RM
14988 if (pass == 0)
14989 {
14990 if ((thisarg & N_KEY) != 0)
14991 {
14992 k_type = g_type;
14993 k_size = g_size;
14994 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14995
14996 /* Check architecture constraint on FP16 extension. */
14997 if (k_size == 16
14998 && k_type == NT_float
14999 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15000 {
15001 inst.error = _(BAD_FP16);
15002 return badtype;
15003 }
477330fc
RM
15004 }
15005 }
15006 else
15007 {
15008 if ((thisarg & N_VFP) != 0)
15009 {
15010 enum neon_shape_el regshape;
15011 unsigned regwidth, match;
99b253c5
NC
15012
15013 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15014 if (ns == NS_NULL)
15015 {
15016 first_error (_("invalid instruction shape"));
15017 return badtype;
15018 }
477330fc
RM
15019 regshape = neon_shape_tab[ns].el[i];
15020 regwidth = neon_shape_el_size[regshape];
15021
15022 /* In VFP mode, operands must match register widths. If we
15023 have a key operand, use its width, else use the width of
15024 the current operand. */
15025 if (k_size != -1u)
15026 match = k_size;
15027 else
15028 match = g_size;
15029
9db2f6b4
RL
15030 /* FP16 will use a single precision register. */
15031 if (regwidth == 32 && match == 16)
15032 {
15033 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15034 match = regwidth;
15035 else
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
15040 }
15041
477330fc
RM
15042 if (regwidth != match)
15043 {
15044 first_error (_("operand size must match register width"));
15045 return badtype;
15046 }
15047 }
15048
15049 if ((thisarg & N_EQK) == 0)
15050 {
15051 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15052
15053 if ((given_type & types_allowed) == 0)
15054 {
a302e574 15055 first_error (BAD_SIMD_TYPE);
477330fc
RM
15056 return badtype;
15057 }
15058 }
15059 else
15060 {
15061 enum neon_el_type mod_k_type = k_type;
15062 unsigned mod_k_size = k_size;
15063 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15064 if (g_type != mod_k_type || g_size != mod_k_size)
15065 {
15066 first_error (_("inconsistent types in Neon instruction"));
15067 return badtype;
15068 }
15069 }
15070 }
15071 }
5287ad62
JB
15072 }
15073
15074 return inst.vectype.el[key_el];
15075}
15076
037e8744 15077/* Neon-style VFP instruction forwarding. */
5287ad62 15078
037e8744
JB
15079/* Thumb VFP instructions have 0xE in the condition field. */
15080
15081static void
15082do_vfp_cond_or_thumb (void)
5287ad62 15083{
88714cb8
DG
15084 inst.is_neon = 1;
15085
5287ad62 15086 if (thumb_mode)
037e8744 15087 inst.instruction |= 0xe0000000;
5287ad62 15088 else
037e8744 15089 inst.instruction |= inst.cond << 28;
5287ad62
JB
15090}
15091
037e8744
JB
15092/* Look up and encode a simple mnemonic, for use as a helper function for the
15093 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15094 etc. It is assumed that operand parsing has already been done, and that the
15095 operands are in the form expected by the given opcode (this isn't necessarily
15096 the same as the form in which they were parsed, hence some massaging must
15097 take place before this function is called).
15098 Checks current arch version against that in the looked-up opcode. */
5287ad62 15099
037e8744
JB
15100static void
15101do_vfp_nsyn_opcode (const char *opname)
5287ad62 15102{
037e8744 15103 const struct asm_opcode *opcode;
5f4273c7 15104
21d799b5 15105 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15106
037e8744
JB
15107 if (!opcode)
15108 abort ();
5287ad62 15109
037e8744 15110 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15111 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15112 _(BAD_FPU));
5287ad62 15113
88714cb8
DG
15114 inst.is_neon = 1;
15115
037e8744
JB
15116 if (thumb_mode)
15117 {
15118 inst.instruction = opcode->tvalue;
15119 opcode->tencode ();
15120 }
15121 else
15122 {
15123 inst.instruction = (inst.cond << 28) | opcode->avalue;
15124 opcode->aencode ();
15125 }
15126}
5287ad62
JB
15127
15128static void
037e8744 15129do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15130{
037e8744
JB
15131 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15132
9db2f6b4 15133 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15134 {
15135 if (is_add)
477330fc 15136 do_vfp_nsyn_opcode ("fadds");
037e8744 15137 else
477330fc 15138 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15139
15140 /* ARMv8.2 fp16 instruction. */
15141 if (rs == NS_HHH)
15142 do_scalar_fp16_v82_encode ();
037e8744
JB
15143 }
15144 else
15145 {
15146 if (is_add)
477330fc 15147 do_vfp_nsyn_opcode ("faddd");
037e8744 15148 else
477330fc 15149 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15150 }
15151}
15152
15153/* Check operand types to see if this is a VFP instruction, and if so call
15154 PFN (). */
15155
15156static int
15157try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15158{
15159 enum neon_shape rs;
15160 struct neon_type_el et;
15161
15162 switch (args)
15163 {
15164 case 2:
9db2f6b4
RL
15165 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15166 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15167 break;
5f4273c7 15168
037e8744 15169 case 3:
9db2f6b4
RL
15170 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15171 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15172 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15173 break;
15174
15175 default:
15176 abort ();
15177 }
15178
15179 if (et.type != NT_invtype)
15180 {
15181 pfn (rs);
15182 return SUCCESS;
15183 }
037e8744 15184
99b253c5 15185 inst.error = NULL;
037e8744
JB
15186 return FAIL;
15187}
15188
15189static void
15190do_vfp_nsyn_mla_mls (enum neon_shape rs)
15191{
15192 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15193
9db2f6b4 15194 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15195 {
15196 if (is_mla)
477330fc 15197 do_vfp_nsyn_opcode ("fmacs");
037e8744 15198 else
477330fc 15199 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15200
15201 /* ARMv8.2 fp16 instruction. */
15202 if (rs == NS_HHH)
15203 do_scalar_fp16_v82_encode ();
037e8744
JB
15204 }
15205 else
15206 {
15207 if (is_mla)
477330fc 15208 do_vfp_nsyn_opcode ("fmacd");
037e8744 15209 else
477330fc 15210 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15211 }
15212}
15213
62f3b8c8
PB
15214static void
15215do_vfp_nsyn_fma_fms (enum neon_shape rs)
15216{
15217 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15218
9db2f6b4 15219 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15220 {
15221 if (is_fma)
477330fc 15222 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15223 else
477330fc 15224 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15225
15226 /* ARMv8.2 fp16 instruction. */
15227 if (rs == NS_HHH)
15228 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15229 }
15230 else
15231 {
15232 if (is_fma)
477330fc 15233 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15234 else
477330fc 15235 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15236 }
15237}
15238
037e8744
JB
15239static void
15240do_vfp_nsyn_mul (enum neon_shape rs)
15241{
9db2f6b4
RL
15242 if (rs == NS_FFF || rs == NS_HHH)
15243 {
15244 do_vfp_nsyn_opcode ("fmuls");
15245
15246 /* ARMv8.2 fp16 instruction. */
15247 if (rs == NS_HHH)
15248 do_scalar_fp16_v82_encode ();
15249 }
037e8744
JB
15250 else
15251 do_vfp_nsyn_opcode ("fmuld");
15252}
15253
15254static void
15255do_vfp_nsyn_abs_neg (enum neon_shape rs)
15256{
15257 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15258 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15259
9db2f6b4 15260 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15261 {
15262 if (is_neg)
477330fc 15263 do_vfp_nsyn_opcode ("fnegs");
037e8744 15264 else
477330fc 15265 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15266
15267 /* ARMv8.2 fp16 instruction. */
15268 if (rs == NS_HH)
15269 do_scalar_fp16_v82_encode ();
037e8744
JB
15270 }
15271 else
15272 {
15273 if (is_neg)
477330fc 15274 do_vfp_nsyn_opcode ("fnegd");
037e8744 15275 else
477330fc 15276 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15277 }
15278}
15279
15280/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15281 insns belong to Neon, and are handled elsewhere. */
15282
15283static void
15284do_vfp_nsyn_ldm_stm (int is_dbmode)
15285{
15286 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15287 if (is_ldm)
15288 {
15289 if (is_dbmode)
477330fc 15290 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15291 else
477330fc 15292 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15293 }
15294 else
15295 {
15296 if (is_dbmode)
477330fc 15297 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15298 else
477330fc 15299 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15300 }
15301}
15302
037e8744
JB
15303static void
15304do_vfp_nsyn_sqrt (void)
15305{
9db2f6b4
RL
15306 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15307 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15308
9db2f6b4
RL
15309 if (rs == NS_FF || rs == NS_HH)
15310 {
15311 do_vfp_nsyn_opcode ("fsqrts");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HH)
15315 do_scalar_fp16_v82_encode ();
15316 }
037e8744
JB
15317 else
15318 do_vfp_nsyn_opcode ("fsqrtd");
15319}
15320
15321static void
15322do_vfp_nsyn_div (void)
15323{
9db2f6b4 15324 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15325 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15326 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15327
9db2f6b4
RL
15328 if (rs == NS_FFF || rs == NS_HHH)
15329 {
15330 do_vfp_nsyn_opcode ("fdivs");
15331
15332 /* ARMv8.2 fp16 instruction. */
15333 if (rs == NS_HHH)
15334 do_scalar_fp16_v82_encode ();
15335 }
037e8744
JB
15336 else
15337 do_vfp_nsyn_opcode ("fdivd");
15338}
15339
15340static void
15341do_vfp_nsyn_nmul (void)
15342{
9db2f6b4 15343 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15344 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15345 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15346
9db2f6b4 15347 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15348 {
88714cb8 15349 NEON_ENCODE (SINGLE, inst);
037e8744 15350 do_vfp_sp_dyadic ();
9db2f6b4
RL
15351
15352 /* ARMv8.2 fp16 instruction. */
15353 if (rs == NS_HHH)
15354 do_scalar_fp16_v82_encode ();
037e8744
JB
15355 }
15356 else
15357 {
88714cb8 15358 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15359 do_vfp_dp_rd_rn_rm ();
15360 }
15361 do_vfp_cond_or_thumb ();
9db2f6b4 15362
037e8744
JB
15363}
15364
1b883319
AV
15365/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15366 (0, 1, 2, 3). */
15367
15368static unsigned
15369neon_logbits (unsigned x)
15370{
15371 return ffs (x) - 4;
15372}
15373
15374#define LOW4(R) ((R) & 0xf)
15375#define HI1(R) (((R) >> 4) & 1)
15376
15377static unsigned
15378mve_get_vcmp_vpt_cond (struct neon_type_el et)
15379{
15380 switch (et.type)
15381 {
15382 default:
15383 first_error (BAD_EL_TYPE);
15384 return 0;
15385 case NT_float:
15386 switch (inst.operands[0].imm)
15387 {
15388 default:
15389 first_error (_("invalid condition"));
15390 return 0;
15391 case 0x0:
15392 /* eq. */
15393 return 0;
15394 case 0x1:
15395 /* ne. */
15396 return 1;
15397 case 0xa:
15398 /* ge/ */
15399 return 4;
15400 case 0xb:
15401 /* lt. */
15402 return 5;
15403 case 0xc:
15404 /* gt. */
15405 return 6;
15406 case 0xd:
15407 /* le. */
15408 return 7;
15409 }
15410 case NT_integer:
15411 /* only accept eq and ne. */
15412 if (inst.operands[0].imm > 1)
15413 {
15414 first_error (_("invalid condition"));
15415 return 0;
15416 }
15417 return inst.operands[0].imm;
15418 case NT_unsigned:
15419 if (inst.operands[0].imm == 0x2)
15420 return 2;
15421 else if (inst.operands[0].imm == 0x8)
15422 return 3;
15423 else
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 case NT_signed:
15429 switch (inst.operands[0].imm)
15430 {
15431 default:
15432 first_error (_("invalid condition"));
15433 return 0;
15434 case 0xa:
15435 /* ge. */
15436 return 4;
15437 case 0xb:
15438 /* lt. */
15439 return 5;
15440 case 0xc:
15441 /* gt. */
15442 return 6;
15443 case 0xd:
15444 /* le. */
15445 return 7;
15446 }
15447 }
15448 /* Should be unreachable. */
15449 abort ();
15450}
15451
15452static void
15453do_mve_vpt (void)
15454{
15455 /* We are dealing with a vector predicated block. */
15456 if (inst.operands[0].present)
15457 {
15458 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15459 struct neon_type_el et
15460 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15461 N_EQK);
15462
15463 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15464
15465 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15466
15467 if (et.type == NT_invtype)
15468 return;
15469
15470 if (et.type == NT_float)
15471 {
15472 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15473 BAD_FPU);
15474 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15475 inst.instruction |= (et.size == 16) << 28;
15476 inst.instruction |= 0x3 << 20;
15477 }
15478 else
15479 {
15480 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15481 BAD_EL_TYPE);
15482 inst.instruction |= 1 << 28;
15483 inst.instruction |= neon_logbits (et.size) << 20;
15484 }
15485
15486 if (inst.operands[2].isquad)
15487 {
15488 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15489 inst.instruction |= LOW4 (inst.operands[2].reg);
15490 inst.instruction |= (fcond & 0x2) >> 1;
15491 }
15492 else
15493 {
15494 if (inst.operands[2].reg == REG_SP)
15495 as_tsktsk (MVE_BAD_SP);
15496 inst.instruction |= 1 << 6;
15497 inst.instruction |= (fcond & 0x2) << 4;
15498 inst.instruction |= inst.operands[2].reg;
15499 }
15500 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15501 inst.instruction |= (fcond & 0x4) << 10;
15502 inst.instruction |= (fcond & 0x1) << 7;
15503
15504 }
15505 set_pred_insn_type (VPT_INSN);
15506 now_pred.cc = 0;
15507 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15508 | ((inst.instruction & 0xe000) >> 13);
15509 now_pred.warn_deprecated = FALSE;
15510 now_pred.type = VECTOR_PRED;
15511 inst.is_neon = 1;
15512}
15513
15514static void
15515do_mve_vcmp (void)
15516{
15517 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15518 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15519 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15520 if (!inst.operands[2].present)
15521 first_error (_("MVE vector or ARM register expected"));
15522 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15523
15524 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15525 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15526 && inst.operands[1].isquad)
15527 {
15528 inst.instruction = N_MNEM_vcmp;
15529 inst.cond = 0x10;
15530 }
15531
15532 if (inst.cond > COND_ALWAYS)
15533 inst.pred_insn_type = INSIDE_VPT_INSN;
15534 else
15535 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15536
15537 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15538 struct neon_type_el et
15539 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15540 N_EQK);
15541
15542 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15543 && !inst.operands[2].iszr, BAD_PC);
15544
15545 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15546
15547 inst.instruction = 0xee010f00;
15548 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15549 inst.instruction |= (fcond & 0x4) << 10;
15550 inst.instruction |= (fcond & 0x1) << 7;
15551 if (et.type == NT_float)
15552 {
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15554 BAD_FPU);
15555 inst.instruction |= (et.size == 16) << 28;
15556 inst.instruction |= 0x3 << 20;
15557 }
15558 else
15559 {
15560 inst.instruction |= 1 << 28;
15561 inst.instruction |= neon_logbits (et.size) << 20;
15562 }
15563 if (inst.operands[2].isquad)
15564 {
15565 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15566 inst.instruction |= (fcond & 0x2) >> 1;
15567 inst.instruction |= LOW4 (inst.operands[2].reg);
15568 }
15569 else
15570 {
15571 if (inst.operands[2].reg == REG_SP)
15572 as_tsktsk (MVE_BAD_SP);
15573 inst.instruction |= 1 << 6;
15574 inst.instruction |= (fcond & 0x2) << 4;
15575 inst.instruction |= inst.operands[2].reg;
15576 }
15577
15578 inst.is_neon = 1;
15579 return;
15580}
15581
f30ee27c
AV
15582static void
15583do_mve_vfmas (void)
15584{
15585 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15586 struct neon_type_el et
15587 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15588
15589 if (inst.cond > COND_ALWAYS)
15590 inst.pred_insn_type = INSIDE_VPT_INSN;
15591 else
15592 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15593
15594 if (inst.operands[2].reg == REG_SP)
15595 as_tsktsk (MVE_BAD_SP);
15596 else if (inst.operands[2].reg == REG_PC)
15597 as_tsktsk (MVE_BAD_PC);
15598
15599 inst.instruction |= (et.size == 16) << 28;
15600 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15601 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15602 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15603 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15604 inst.instruction |= inst.operands[2].reg;
15605 inst.is_neon = 1;
15606}
15607
5d281bf0
AV
15608static void
15609do_mve_vcmul (void)
15610{
15611 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15612 struct neon_type_el et
15613 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15614
15615 if (inst.cond > COND_ALWAYS)
15616 inst.pred_insn_type = INSIDE_VPT_INSN;
15617 else
15618 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15619
15620 unsigned rot = inst.relocs[0].exp.X_add_number;
15621 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15622 _("immediate out of range"));
15623
15624 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15625 || inst.operands[0].reg == inst.operands[2].reg))
15626 as_tsktsk (BAD_MVE_SRCDEST);
15627
15628 inst.instruction |= (et.size == 32) << 28;
15629 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15630 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15631 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15632 inst.instruction |= (rot > 90) << 12;
15633 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15634 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15635 inst.instruction |= LOW4 (inst.operands[2].reg);
15636 inst.instruction |= (rot == 90 || rot == 270);
15637 inst.is_neon = 1;
15638}
15639
037e8744
JB
15640static void
15641do_vfp_nsyn_cmp (void)
15642{
9db2f6b4 15643 enum neon_shape rs;
1b883319
AV
15644 if (!inst.operands[0].isreg)
15645 {
15646 do_mve_vcmp ();
15647 return;
15648 }
15649 else
15650 {
15651 constraint (inst.operands[2].present, BAD_SYNTAX);
15652 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15653 BAD_FPU);
15654 }
15655
037e8744
JB
15656 if (inst.operands[1].isreg)
15657 {
9db2f6b4
RL
15658 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15659 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15660
9db2f6b4 15661 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15662 {
15663 NEON_ENCODE (SINGLE, inst);
15664 do_vfp_sp_monadic ();
15665 }
037e8744 15666 else
477330fc
RM
15667 {
15668 NEON_ENCODE (DOUBLE, inst);
15669 do_vfp_dp_rd_rm ();
15670 }
037e8744
JB
15671 }
15672 else
15673 {
9db2f6b4
RL
15674 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15675 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15676
15677 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15678 {
15679 case N_MNEM_vcmp:
15680 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15681 break;
15682 case N_MNEM_vcmpe:
15683 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15684 break;
15685 default:
15686 abort ();
15687 }
5f4273c7 15688
9db2f6b4 15689 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15690 {
15691 NEON_ENCODE (SINGLE, inst);
15692 do_vfp_sp_compare_z ();
15693 }
037e8744 15694 else
477330fc
RM
15695 {
15696 NEON_ENCODE (DOUBLE, inst);
15697 do_vfp_dp_rd ();
15698 }
037e8744
JB
15699 }
15700 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15701
15702 /* ARMv8.2 fp16 instruction. */
15703 if (rs == NS_HI || rs == NS_HH)
15704 do_scalar_fp16_v82_encode ();
037e8744
JB
15705}
15706
15707static void
15708nsyn_insert_sp (void)
15709{
15710 inst.operands[1] = inst.operands[0];
15711 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15712 inst.operands[0].reg = REG_SP;
037e8744
JB
15713 inst.operands[0].isreg = 1;
15714 inst.operands[0].writeback = 1;
15715 inst.operands[0].present = 1;
15716}
15717
15718static void
15719do_vfp_nsyn_push (void)
15720{
15721 nsyn_insert_sp ();
b126985e
NC
15722
15723 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15724 _("register list must contain at least 1 and at most 16 "
15725 "registers"));
15726
037e8744
JB
15727 if (inst.operands[1].issingle)
15728 do_vfp_nsyn_opcode ("fstmdbs");
15729 else
15730 do_vfp_nsyn_opcode ("fstmdbd");
15731}
15732
15733static void
15734do_vfp_nsyn_pop (void)
15735{
15736 nsyn_insert_sp ();
b126985e
NC
15737
15738 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15739 _("register list must contain at least 1 and at most 16 "
15740 "registers"));
15741
037e8744 15742 if (inst.operands[1].issingle)
22b5b651 15743 do_vfp_nsyn_opcode ("fldmias");
037e8744 15744 else
22b5b651 15745 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15746}
15747
15748/* Fix up Neon data-processing instructions, ORing in the correct bits for
15749 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15750
88714cb8
DG
15751static void
15752neon_dp_fixup (struct arm_it* insn)
037e8744 15753{
88714cb8
DG
15754 unsigned int i = insn->instruction;
15755 insn->is_neon = 1;
15756
037e8744
JB
15757 if (thumb_mode)
15758 {
15759 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15760 if (i & (1 << 24))
477330fc 15761 i |= 1 << 28;
5f4273c7 15762
037e8744 15763 i &= ~(1 << 24);
5f4273c7 15764
037e8744
JB
15765 i |= 0xef000000;
15766 }
15767 else
15768 i |= 0xf2000000;
5f4273c7 15769
88714cb8 15770 insn->instruction = i;
037e8744
JB
15771}
15772
5ee91343
AV
15773static void
15774mve_encode_qqr (int size, int fp)
15775{
15776 if (inst.operands[2].reg == REG_SP)
15777 as_tsktsk (MVE_BAD_SP);
15778 else if (inst.operands[2].reg == REG_PC)
15779 as_tsktsk (MVE_BAD_PC);
15780
15781 if (fp)
15782 {
15783 /* vadd. */
15784 if (((unsigned)inst.instruction) == 0xd00)
15785 inst.instruction = 0xee300f40;
15786 /* vsub. */
15787 else if (((unsigned)inst.instruction) == 0x200d00)
15788 inst.instruction = 0xee301f40;
15789
15790 /* Setting size which is 1 for F16 and 0 for F32. */
15791 inst.instruction |= (size == 16) << 28;
15792 }
15793 else
15794 {
15795 /* vadd. */
15796 if (((unsigned)inst.instruction) == 0x800)
15797 inst.instruction = 0xee010f40;
15798 /* vsub. */
15799 else if (((unsigned)inst.instruction) == 0x1000800)
15800 inst.instruction = 0xee011f40;
15801 /* Setting bits for size. */
15802 inst.instruction |= neon_logbits (size) << 20;
15803 }
15804 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15805 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15806 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15807 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15808 inst.instruction |= inst.operands[2].reg;
15809 inst.is_neon = 1;
15810}
15811
a302e574
AV
15812static void
15813mve_encode_rqq (unsigned bit28, unsigned size)
15814{
15815 inst.instruction |= bit28 << 28;
15816 inst.instruction |= neon_logbits (size) << 20;
15817 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15818 inst.instruction |= inst.operands[0].reg << 12;
15819 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15820 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15821 inst.instruction |= LOW4 (inst.operands[2].reg);
15822 inst.is_neon = 1;
15823}
15824
886e1c73
AV
15825static void
15826mve_encode_qqq (int ubit, int size)
15827{
15828
15829 inst.instruction |= (ubit != 0) << 28;
15830 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15831 inst.instruction |= neon_logbits (size) << 20;
15832 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15833 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15834 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15835 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15836 inst.instruction |= LOW4 (inst.operands[2].reg);
15837
15838 inst.is_neon = 1;
15839}
15840
26c1e780
AV
15841static void
15842mve_encode_rq (unsigned bit28, unsigned size)
15843{
15844 inst.instruction |= bit28 << 28;
15845 inst.instruction |= neon_logbits (size) << 18;
15846 inst.instruction |= inst.operands[0].reg << 12;
15847 inst.instruction |= LOW4 (inst.operands[1].reg);
15848 inst.is_neon = 1;
15849}
886e1c73 15850
037e8744
JB
15851/* Encode insns with bit pattern:
15852
15853 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15854 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 15855
037e8744
JB
15856 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15857 different meaning for some instruction. */
15858
15859static void
15860neon_three_same (int isquad, int ubit, int size)
15861{
15862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15864 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15865 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15866 inst.instruction |= LOW4 (inst.operands[2].reg);
15867 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15868 inst.instruction |= (isquad != 0) << 6;
15869 inst.instruction |= (ubit != 0) << 24;
15870 if (size != -1)
15871 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15872
88714cb8 15873 neon_dp_fixup (&inst);
037e8744
JB
15874}
15875
15876/* Encode instructions of the form:
15877
15878 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15879 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
15880
15881 Don't write size if SIZE == -1. */
15882
15883static void
15884neon_two_same (int qbit, int ubit, int size)
15885{
15886 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15887 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15888 inst.instruction |= LOW4 (inst.operands[1].reg);
15889 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15890 inst.instruction |= (qbit != 0) << 6;
15891 inst.instruction |= (ubit != 0) << 24;
15892
15893 if (size != -1)
15894 inst.instruction |= neon_logbits (size) << 18;
15895
88714cb8 15896 neon_dp_fixup (&inst);
5287ad62
JB
15897}
15898
15899/* Neon instruction encoders, in approximate order of appearance. */
15900
15901static void
15902do_neon_dyadic_i_su (void)
15903{
037e8744 15904 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15905 struct neon_type_el et = neon_check_type (3, rs,
15906 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 15907 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15908}
15909
15910static void
15911do_neon_dyadic_i64_su (void)
15912{
037e8744 15913 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15914 struct neon_type_el et = neon_check_type (3, rs,
15915 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 15916 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15917}
15918
15919static void
15920neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 15921 unsigned immbits)
5287ad62
JB
15922{
15923 unsigned size = et.size >> 3;
15924 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15925 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15926 inst.instruction |= LOW4 (inst.operands[1].reg);
15927 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15928 inst.instruction |= (isquad != 0) << 6;
15929 inst.instruction |= immbits << 16;
15930 inst.instruction |= (size >> 3) << 7;
15931 inst.instruction |= (size & 0x7) << 19;
15932 if (write_ubit)
15933 inst.instruction |= (uval != 0) << 24;
15934
88714cb8 15935 neon_dp_fixup (&inst);
5287ad62
JB
15936}
15937
15938static void
15939do_neon_shl_imm (void)
15940{
15941 if (!inst.operands[2].isreg)
15942 {
037e8744 15943 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15944 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
15945 int imm = inst.operands[2].imm;
15946
15947 constraint (imm < 0 || (unsigned)imm >= et.size,
15948 _("immediate out of range for shift"));
88714cb8 15949 NEON_ENCODE (IMMED, inst);
cb3b1e65 15950 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15951 }
15952 else
15953 {
037e8744 15954 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15955 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15956 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15957 unsigned int tmp;
15958
15959 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
15960 vshl.xx Dd, Dm, Dn
15961 whereas other 3-register operations encoded by neon_three_same have
15962 syntax like:
15963 vadd.xx Dd, Dn, Dm
15964 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15965 here. */
627907b7
JB
15966 tmp = inst.operands[2].reg;
15967 inst.operands[2].reg = inst.operands[1].reg;
15968 inst.operands[1].reg = tmp;
88714cb8 15969 NEON_ENCODE (INTEGER, inst);
037e8744 15970 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15971 }
15972}
15973
15974static void
15975do_neon_qshl_imm (void)
15976{
15977 if (!inst.operands[2].isreg)
15978 {
037e8744 15979 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15980 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 15981 int imm = inst.operands[2].imm;
627907b7 15982
cb3b1e65
JB
15983 constraint (imm < 0 || (unsigned)imm >= et.size,
15984 _("immediate out of range for shift"));
88714cb8 15985 NEON_ENCODE (IMMED, inst);
cb3b1e65 15986 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
15987 }
15988 else
15989 {
037e8744 15990 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15991 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15992 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15993 unsigned int tmp;
15994
15995 /* See note in do_neon_shl_imm. */
15996 tmp = inst.operands[2].reg;
15997 inst.operands[2].reg = inst.operands[1].reg;
15998 inst.operands[1].reg = tmp;
88714cb8 15999 NEON_ENCODE (INTEGER, inst);
037e8744 16000 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16001 }
16002}
16003
627907b7
JB
16004static void
16005do_neon_rshl (void)
16006{
16007 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16008 struct neon_type_el et = neon_check_type (3, rs,
16009 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16010 unsigned int tmp;
16011
16012 tmp = inst.operands[2].reg;
16013 inst.operands[2].reg = inst.operands[1].reg;
16014 inst.operands[1].reg = tmp;
16015 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16016}
16017
5287ad62
JB
16018static int
16019neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16020{
036dc3f7
PB
16021 /* Handle .I8 pseudo-instructions. */
16022 if (size == 8)
5287ad62 16023 {
5287ad62 16024 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16025 FIXME is this the intended semantics? There doesn't seem much point in
16026 accepting .I8 if so. */
5287ad62
JB
16027 immediate |= immediate << 8;
16028 size = 16;
036dc3f7
PB
16029 }
16030
16031 if (size >= 32)
16032 {
16033 if (immediate == (immediate & 0x000000ff))
16034 {
16035 *immbits = immediate;
16036 return 0x1;
16037 }
16038 else if (immediate == (immediate & 0x0000ff00))
16039 {
16040 *immbits = immediate >> 8;
16041 return 0x3;
16042 }
16043 else if (immediate == (immediate & 0x00ff0000))
16044 {
16045 *immbits = immediate >> 16;
16046 return 0x5;
16047 }
16048 else if (immediate == (immediate & 0xff000000))
16049 {
16050 *immbits = immediate >> 24;
16051 return 0x7;
16052 }
16053 if ((immediate & 0xffff) != (immediate >> 16))
16054 goto bad_immediate;
16055 immediate &= 0xffff;
5287ad62
JB
16056 }
16057
16058 if (immediate == (immediate & 0x000000ff))
16059 {
16060 *immbits = immediate;
036dc3f7 16061 return 0x9;
5287ad62
JB
16062 }
16063 else if (immediate == (immediate & 0x0000ff00))
16064 {
16065 *immbits = immediate >> 8;
036dc3f7 16066 return 0xb;
5287ad62
JB
16067 }
16068
16069 bad_immediate:
dcbf9037 16070 first_error (_("immediate value out of range"));
5287ad62
JB
16071 return FAIL;
16072}
16073
f601a00c
AV
16074enum vfp_or_neon_is_neon_bits
16075{
16076NEON_CHECK_CC = 1,
16077NEON_CHECK_ARCH = 2,
16078NEON_CHECK_ARCH8 = 4
16079};
16080
16081/* Call this function if an instruction which may have belonged to the VFP or
16082 Neon instruction sets, but turned out to be a Neon instruction (due to the
16083 operand types involved, etc.). We have to check and/or fix-up a couple of
16084 things:
16085
16086 - Make sure the user hasn't attempted to make a Neon instruction
16087 conditional.
16088 - Alter the value in the condition code field if necessary.
16089 - Make sure that the arch supports Neon instructions.
16090
16091 Which of these operations take place depends on bits from enum
16092 vfp_or_neon_is_neon_bits.
16093
16094 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16095 current instruction's condition is COND_ALWAYS, the condition field is
16096 changed to inst.uncond_value. This is necessary because instructions shared
16097 between VFP and Neon may be conditional for the VFP variants only, and the
16098 unconditional Neon version must have, e.g., 0xF in the condition field. */
16099
16100static int
16101vfp_or_neon_is_neon (unsigned check)
16102{
16103/* Conditions are always legal in Thumb mode (IT blocks). */
16104if (!thumb_mode && (check & NEON_CHECK_CC))
16105 {
16106 if (inst.cond != COND_ALWAYS)
16107 {
16108 first_error (_(BAD_COND));
16109 return FAIL;
16110 }
16111 if (inst.uncond_value != -1)
16112 inst.instruction |= inst.uncond_value << 28;
16113 }
16114
16115
16116 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16117 || ((check & NEON_CHECK_ARCH8)
16118 && !mark_feature_used (&fpu_neon_ext_armv8)))
16119 {
16120 first_error (_(BAD_FPU));
16121 return FAIL;
16122 }
16123
16124return SUCCESS;
16125}
16126
16127static int
16128check_simd_pred_availability (int fp, unsigned check)
16129{
16130if (inst.cond > COND_ALWAYS)
16131 {
16132 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16133 {
16134 inst.error = BAD_FPU;
16135 return 1;
16136 }
16137 inst.pred_insn_type = INSIDE_VPT_INSN;
16138 }
16139else if (inst.cond < COND_ALWAYS)
16140 {
16141 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16142 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16143 else if (vfp_or_neon_is_neon (check) == FAIL)
16144 return 2;
16145 }
16146else
16147 {
16148 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16149 && vfp_or_neon_is_neon (check) == FAIL)
16150 return 3;
16151
16152 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16153 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16154 }
16155return 0;
16156}
16157
5287ad62
JB
16158static void
16159do_neon_logic (void)
16160{
16161 if (inst.operands[2].present && inst.operands[2].isreg)
16162 {
037e8744 16163 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16164 if (rs == NS_QQQ
16165 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16166 == FAIL)
16167 return;
16168 else if (rs != NS_QQQ
16169 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16170 first_error (BAD_FPU);
16171
5287ad62
JB
16172 neon_check_type (3, rs, N_IGNORE_TYPE);
16173 /* U bit and size field were set as part of the bitmask. */
88714cb8 16174 NEON_ENCODE (INTEGER, inst);
037e8744 16175 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16176 }
16177 else
16178 {
4316f0d2
DG
16179 const int three_ops_form = (inst.operands[2].present
16180 && !inst.operands[2].isreg);
16181 const int immoperand = (three_ops_form ? 2 : 1);
16182 enum neon_shape rs = (three_ops_form
16183 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16184 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16185 /* Because neon_select_shape makes the second operand a copy of the first
16186 if the second operand is not present. */
16187 if (rs == NS_QQI
16188 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16189 == FAIL)
16190 return;
16191 else if (rs != NS_QQI
16192 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16193 first_error (BAD_FPU);
16194
16195 struct neon_type_el et;
16196 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16197 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16198 else
16199 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16200 | N_KEY, N_EQK);
16201
16202 if (et.type == NT_invtype)
16203 return;
21d799b5 16204 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16205 unsigned immbits;
16206 int cmode;
5f4273c7 16207
5f4273c7 16208
4316f0d2
DG
16209 if (three_ops_form)
16210 constraint (inst.operands[0].reg != inst.operands[1].reg,
16211 _("first and second operands shall be the same register"));
16212
88714cb8 16213 NEON_ENCODE (IMMED, inst);
5287ad62 16214
4316f0d2 16215 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16216 if (et.size == 64)
16217 {
16218 /* .i64 is a pseudo-op, so the immediate must be a repeating
16219 pattern. */
4316f0d2
DG
16220 if (immbits != (inst.operands[immoperand].regisimm ?
16221 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16222 {
16223 /* Set immbits to an invalid constant. */
16224 immbits = 0xdeadbeef;
16225 }
16226 }
16227
5287ad62 16228 switch (opcode)
477330fc
RM
16229 {
16230 case N_MNEM_vbic:
16231 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16232 break;
16233
16234 case N_MNEM_vorr:
16235 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16236 break;
16237
16238 case N_MNEM_vand:
16239 /* Pseudo-instruction for VBIC. */
16240 neon_invert_size (&immbits, 0, et.size);
16241 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16242 break;
16243
16244 case N_MNEM_vorn:
16245 /* Pseudo-instruction for VORR. */
16246 neon_invert_size (&immbits, 0, et.size);
16247 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16248 break;
16249
16250 default:
16251 abort ();
16252 }
5287ad62
JB
16253
16254 if (cmode == FAIL)
477330fc 16255 return;
5287ad62 16256
037e8744 16257 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16260 inst.instruction |= cmode << 8;
16261 neon_write_immbits (immbits);
5f4273c7 16262
88714cb8 16263 neon_dp_fixup (&inst);
5287ad62
JB
16264 }
16265}
16266
16267static void
16268do_neon_bitfield (void)
16269{
037e8744 16270 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16271 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16272 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16273}
16274
16275static void
dcbf9037 16276neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16277 unsigned destbits)
5287ad62 16278{
5ee91343 16279 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16280 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16281 types | N_KEY);
5287ad62
JB
16282 if (et.type == NT_float)
16283 {
88714cb8 16284 NEON_ENCODE (FLOAT, inst);
5ee91343
AV
16285 if (rs == NS_QQR)
16286 mve_encode_qqr (et.size, 1);
16287 else
16288 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16289 }
16290 else
16291 {
88714cb8 16292 NEON_ENCODE (INTEGER, inst);
5ee91343
AV
16293 if (rs == NS_QQR)
16294 mve_encode_qqr (et.size, 0);
16295 else
16296 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16297 }
16298}
16299
5287ad62
JB
16300
16301static void
16302do_neon_dyadic_if_su_d (void)
16303{
16304 /* This version only allow D registers, but that constraint is enforced during
16305 operand parsing so we don't need to do anything extra here. */
dcbf9037 16306 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16307}
16308
5287ad62
JB
16309static void
16310do_neon_dyadic_if_i_d (void)
16311{
428e3f1f
PB
16312 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16313 affected if we specify unsigned args. */
16314 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16315}
16316
f5f10c66
AV
16317static void
16318do_mve_vstr_vldr_QI (int size, int elsize, int load)
16319{
16320 constraint (size < 32, BAD_ADDR_MODE);
16321 constraint (size != elsize, BAD_EL_TYPE);
16322 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16323 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16324 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16325 _("destination register and offset register may not be the"
16326 " same"));
16327
16328 int imm = inst.relocs[0].exp.X_add_number;
16329 int add = 1;
16330 if (imm < 0)
16331 {
16332 add = 0;
16333 imm = -imm;
16334 }
16335 constraint ((imm % (size / 8) != 0)
16336 || imm > (0x7f << neon_logbits (size)),
16337 (size == 32) ? _("immediate must be a multiple of 4 in the"
16338 " range of +/-[0,508]")
16339 : _("immediate must be a multiple of 8 in the"
16340 " range of +/-[0,1016]"));
16341 inst.instruction |= 0x11 << 24;
16342 inst.instruction |= add << 23;
16343 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16344 inst.instruction |= inst.operands[1].writeback << 21;
16345 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16346 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16347 inst.instruction |= 1 << 12;
16348 inst.instruction |= (size == 64) << 8;
16349 inst.instruction &= 0xffffff00;
16350 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16351 inst.instruction |= imm >> neon_logbits (size);
16352}
16353
16354static void
16355do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16356{
16357 unsigned os = inst.operands[1].imm >> 5;
16358 constraint (os != 0 && size == 8,
16359 _("can not shift offsets when accessing less than half-word"));
16360 constraint (os && os != neon_logbits (size),
16361 _("shift immediate must be 1, 2 or 3 for half-word, word"
16362 " or double-word accesses respectively"));
16363 if (inst.operands[1].reg == REG_PC)
16364 as_tsktsk (MVE_BAD_PC);
16365
16366 switch (size)
16367 {
16368 case 8:
16369 constraint (elsize >= 64, BAD_EL_TYPE);
16370 break;
16371 case 16:
16372 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16373 break;
16374 case 32:
16375 case 64:
16376 constraint (elsize != size, BAD_EL_TYPE);
16377 break;
16378 default:
16379 break;
16380 }
16381 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16382 BAD_ADDR_MODE);
16383 if (load)
16384 {
16385 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16386 _("destination register and offset register may not be"
16387 " the same"));
16388 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16389 BAD_EL_TYPE);
16390 constraint (inst.vectype.el[0].type != NT_unsigned
16391 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16392 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16393 }
16394 else
16395 {
16396 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16397 }
16398
16399 inst.instruction |= 1 << 23;
16400 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16401 inst.instruction |= inst.operands[1].reg << 16;
16402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16403 inst.instruction |= neon_logbits (elsize) << 7;
16404 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16405 inst.instruction |= LOW4 (inst.operands[1].imm);
16406 inst.instruction |= !!os;
16407}
16408
16409static void
16410do_mve_vstr_vldr_RI (int size, int elsize, int load)
16411{
16412 enum neon_el_type type = inst.vectype.el[0].type;
16413
16414 constraint (size >= 64, BAD_ADDR_MODE);
16415 switch (size)
16416 {
16417 case 16:
16418 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16419 break;
16420 case 32:
16421 constraint (elsize != size, BAD_EL_TYPE);
16422 break;
16423 default:
16424 break;
16425 }
16426 if (load)
16427 {
16428 constraint (elsize != size && type != NT_unsigned
16429 && type != NT_signed, BAD_EL_TYPE);
16430 }
16431 else
16432 {
16433 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16434 }
16435
16436 int imm = inst.relocs[0].exp.X_add_number;
16437 int add = 1;
16438 if (imm < 0)
16439 {
16440 add = 0;
16441 imm = -imm;
16442 }
16443
16444 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16445 {
16446 switch (size)
16447 {
16448 case 8:
16449 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16450 break;
16451 case 16:
16452 constraint (1, _("immediate must be a multiple of 2 in the"
16453 " range of +/-[0,254]"));
16454 break;
16455 case 32:
16456 constraint (1, _("immediate must be a multiple of 4 in the"
16457 " range of +/-[0,508]"));
16458 break;
16459 }
16460 }
16461
16462 if (size != elsize)
16463 {
16464 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16465 constraint (inst.operands[0].reg > 14,
16466 _("MVE vector register in the range [Q0..Q7] expected"));
16467 inst.instruction |= (load && type == NT_unsigned) << 28;
16468 inst.instruction |= (size == 16) << 19;
16469 inst.instruction |= neon_logbits (elsize) << 7;
16470 }
16471 else
16472 {
16473 if (inst.operands[1].reg == REG_PC)
16474 as_tsktsk (MVE_BAD_PC);
16475 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16476 as_tsktsk (MVE_BAD_SP);
16477 inst.instruction |= 1 << 12;
16478 inst.instruction |= neon_logbits (size) << 7;
16479 }
16480 inst.instruction |= inst.operands[1].preind << 24;
16481 inst.instruction |= add << 23;
16482 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16483 inst.instruction |= inst.operands[1].writeback << 21;
16484 inst.instruction |= inst.operands[1].reg << 16;
16485 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16486 inst.instruction &= 0xffffff80;
16487 inst.instruction |= imm >> neon_logbits (size);
16488
16489}
16490
16491static void
16492do_mve_vstr_vldr (void)
16493{
16494 unsigned size;
16495 int load = 0;
16496
16497 if (inst.cond > COND_ALWAYS)
16498 inst.pred_insn_type = INSIDE_VPT_INSN;
16499 else
16500 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16501
16502 switch (inst.instruction)
16503 {
16504 default:
16505 gas_assert (0);
16506 break;
16507 case M_MNEM_vldrb:
16508 load = 1;
16509 /* fall through. */
16510 case M_MNEM_vstrb:
16511 size = 8;
16512 break;
16513 case M_MNEM_vldrh:
16514 load = 1;
16515 /* fall through. */
16516 case M_MNEM_vstrh:
16517 size = 16;
16518 break;
16519 case M_MNEM_vldrw:
16520 load = 1;
16521 /* fall through. */
16522 case M_MNEM_vstrw:
16523 size = 32;
16524 break;
16525 case M_MNEM_vldrd:
16526 load = 1;
16527 /* fall through. */
16528 case M_MNEM_vstrd:
16529 size = 64;
16530 break;
16531 }
16532 unsigned elsize = inst.vectype.el[0].size;
16533
16534 if (inst.operands[1].isquad)
16535 {
16536 /* We are dealing with [Q, imm]{!} cases. */
16537 do_mve_vstr_vldr_QI (size, elsize, load);
16538 }
16539 else
16540 {
16541 if (inst.operands[1].immisreg == 2)
16542 {
16543 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16544 do_mve_vstr_vldr_RQ (size, elsize, load);
16545 }
16546 else if (!inst.operands[1].immisreg)
16547 {
16548 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16549 do_mve_vstr_vldr_RI (size, elsize, load);
16550 }
16551 else
16552 constraint (1, BAD_ADDR_MODE);
16553 }
16554
16555 inst.is_neon = 1;
16556}
16557
35c228db
AV
16558static void
16559do_mve_vst_vld (void)
16560{
16561 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16562 return;
16563
16564 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16565 || inst.relocs[0].exp.X_add_number != 0
16566 || inst.operands[1].immisreg != 0,
16567 BAD_ADDR_MODE);
16568 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16569 if (inst.operands[1].reg == REG_PC)
16570 as_tsktsk (MVE_BAD_PC);
16571 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16572 as_tsktsk (MVE_BAD_SP);
16573
16574
16575 /* These instructions are one of the "exceptions" mentioned in
16576 handle_pred_state. They are MVE instructions that are not VPT compatible
16577 and do not accept a VPT code, thus appending such a code is a syntax
16578 error. */
16579 if (inst.cond > COND_ALWAYS)
16580 first_error (BAD_SYNTAX);
16581 /* If we append a scalar condition code we can set this to
16582 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16583 else if (inst.cond < COND_ALWAYS)
16584 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16585 else
16586 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16587
16588 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16589 inst.instruction |= inst.operands[1].writeback << 21;
16590 inst.instruction |= inst.operands[1].reg << 16;
16591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16592 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16593 inst.is_neon = 1;
16594}
16595
26c1e780
AV
16596static void
16597do_mve_vaddlv (void)
16598{
16599 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16600 struct neon_type_el et
16601 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16602
16603 if (et.type == NT_invtype)
16604 first_error (BAD_EL_TYPE);
16605
16606 if (inst.cond > COND_ALWAYS)
16607 inst.pred_insn_type = INSIDE_VPT_INSN;
16608 else
16609 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16610
16611 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16612
16613 inst.instruction |= (et.type == NT_unsigned) << 28;
16614 inst.instruction |= inst.operands[1].reg << 19;
16615 inst.instruction |= inst.operands[0].reg << 12;
16616 inst.instruction |= inst.operands[2].reg;
16617 inst.is_neon = 1;
16618}
16619
5287ad62 16620static void
5ee91343 16621do_neon_dyadic_if_su (void)
5287ad62 16622{
5ee91343
AV
16623 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16624 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16625 N_SUF_32 | N_KEY);
16626
16627 if (check_simd_pred_availability (et.type == NT_float,
16628 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16629 return;
16630
5ee91343
AV
16631 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16632}
16633
16634static void
16635do_neon_addsub_if_i (void)
16636{
16637 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16638 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16639 return;
16640
5ee91343
AV
16641 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16642 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16643 N_EQK, N_IF_32 | N_I64 | N_KEY);
16644
16645 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16646 /* If we are parsing Q registers and the element types match MVE, which NEON
16647 also supports, then we must check whether this is an instruction that can
16648 be used by both MVE/NEON. This distinction can be made based on whether
16649 they are predicated or not. */
16650 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16651 {
16652 if (check_simd_pred_availability (et.type == NT_float,
16653 NEON_CHECK_ARCH | NEON_CHECK_CC))
16654 return;
16655 }
16656 else
16657 {
16658 /* If they are either in a D register or are using an unsupported. */
16659 if (rs != NS_QQR
16660 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16661 return;
16662 }
16663
5287ad62
JB
16664 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16665 affected if we specify unsigned args. */
dcbf9037 16666 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16667}
16668
16669/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16670 result to be:
16671 V<op> A,B (A is operand 0, B is operand 2)
16672 to mean:
16673 V<op> A,B,A
16674 not:
16675 V<op> A,B,B
16676 so handle that case specially. */
16677
16678static void
16679neon_exchange_operands (void)
16680{
5287ad62
JB
16681 if (inst.operands[1].present)
16682 {
e1fa0163
NC
16683 void *scratch = xmalloc (sizeof (inst.operands[0]));
16684
5287ad62
JB
16685 /* Swap operands[1] and operands[2]. */
16686 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16687 inst.operands[1] = inst.operands[2];
16688 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16689 free (scratch);
5287ad62
JB
16690 }
16691 else
16692 {
16693 inst.operands[1] = inst.operands[2];
16694 inst.operands[2] = inst.operands[0];
16695 }
16696}
16697
16698static void
16699neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16700{
16701 if (inst.operands[2].isreg)
16702 {
16703 if (invert)
477330fc 16704 neon_exchange_operands ();
dcbf9037 16705 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16706 }
16707 else
16708 {
037e8744 16709 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16710 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16711 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16712
88714cb8 16713 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16714 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16715 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16716 inst.instruction |= LOW4 (inst.operands[1].reg);
16717 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16718 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16719 inst.instruction |= (et.type == NT_float) << 10;
16720 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16721
88714cb8 16722 neon_dp_fixup (&inst);
5287ad62
JB
16723 }
16724}
16725
16726static void
16727do_neon_cmp (void)
16728{
cc933301 16729 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16730}
16731
16732static void
16733do_neon_cmp_inv (void)
16734{
cc933301 16735 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16736}
16737
16738static void
16739do_neon_ceq (void)
16740{
16741 neon_compare (N_IF_32, N_IF_32, FALSE);
16742}
16743
16744/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16745 scalars, which are encoded in 5 bits, M : Rm.
16746 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16747 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16748 index in M.
16749
16750 Dot Product instructions are similar to multiply instructions except elsize
16751 should always be 32.
16752
16753 This function translates SCALAR, which is GAS's internal encoding of indexed
16754 scalar register, to raw encoding. There is also register and index range
16755 check based on ELSIZE. */
5287ad62
JB
16756
16757static unsigned
16758neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16759{
dcbf9037
JB
16760 unsigned regno = NEON_SCALAR_REG (scalar);
16761 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16762
16763 switch (elsize)
16764 {
16765 case 16:
16766 if (regno > 7 || elno > 3)
477330fc 16767 goto bad_scalar;
5287ad62 16768 return regno | (elno << 3);
5f4273c7 16769
5287ad62
JB
16770 case 32:
16771 if (regno > 15 || elno > 1)
477330fc 16772 goto bad_scalar;
5287ad62
JB
16773 return regno | (elno << 4);
16774
16775 default:
16776 bad_scalar:
dcbf9037 16777 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16778 }
16779
16780 return 0;
16781}
16782
16783/* Encode multiply / multiply-accumulate scalar instructions. */
16784
16785static void
16786neon_mul_mac (struct neon_type_el et, int ubit)
16787{
dcbf9037
JB
16788 unsigned scalar;
16789
16790 /* Give a more helpful error message if we have an invalid type. */
16791 if (et.type == NT_invtype)
16792 return;
5f4273c7 16793
dcbf9037 16794 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16795 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16796 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16797 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16798 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16799 inst.instruction |= LOW4 (scalar);
16800 inst.instruction |= HI1 (scalar) << 5;
16801 inst.instruction |= (et.type == NT_float) << 8;
16802 inst.instruction |= neon_logbits (et.size) << 20;
16803 inst.instruction |= (ubit != 0) << 24;
16804
88714cb8 16805 neon_dp_fixup (&inst);
5287ad62
JB
16806}
16807
16808static void
16809do_neon_mac_maybe_scalar (void)
16810{
037e8744
JB
16811 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16812 return;
16813
16814 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16815 return;
16816
5287ad62
JB
16817 if (inst.operands[2].isscalar)
16818 {
037e8744 16819 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16820 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 16821 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 16822 NEON_ENCODE (SCALAR, inst);
037e8744 16823 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16824 }
16825 else
428e3f1f
PB
16826 {
16827 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16828 affected if we specify unsigned args. */
16829 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16830 }
5287ad62
JB
16831}
16832
62f3b8c8
PB
16833static void
16834do_neon_fmac (void)
16835{
16836 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16837 return;
16838
16839 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16840 return;
16841
16842 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16843}
16844
5287ad62
JB
16845static void
16846do_neon_tst (void)
16847{
037e8744 16848 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16849 struct neon_type_el et = neon_check_type (3, rs,
16850 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 16851 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16852}
16853
16854/* VMUL with 3 registers allows the P8 type. The scalar version supports the
16855 same types as the MAC equivalents. The polynomial type for this instruction
16856 is encoded the same as the integer type. */
16857
16858static void
16859do_neon_mul (void)
16860{
037e8744
JB
16861 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16862 return;
16863
16864 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16865 return;
16866
5287ad62
JB
16867 if (inst.operands[2].isscalar)
16868 do_neon_mac_maybe_scalar ();
16869 else
cc933301 16870 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
16871}
16872
16873static void
16874do_neon_qdmulh (void)
16875{
16876 if (inst.operands[2].isscalar)
16877 {
037e8744 16878 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16879 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16880 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16881 NEON_ENCODE (SCALAR, inst);
037e8744 16882 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16883 }
16884 else
16885 {
037e8744 16886 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16887 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16888 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16889 NEON_ENCODE (INTEGER, inst);
5287ad62 16890 /* The U bit (rounding) comes from bit mask. */
037e8744 16891 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16892 }
16893}
16894
26c1e780
AV
16895static void
16896do_mve_vaddv (void)
16897{
16898 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
16899 struct neon_type_el et
16900 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16901
16902 if (et.type == NT_invtype)
16903 first_error (BAD_EL_TYPE);
16904
16905 if (inst.cond > COND_ALWAYS)
16906 inst.pred_insn_type = INSIDE_VPT_INSN;
16907 else
16908 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16909
16910 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16911
16912 mve_encode_rq (et.type == NT_unsigned, et.size);
16913}
16914
c2dafc2a
AV
16915static void
16916do_mve_vadc (void)
16917{
16918 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16919 struct neon_type_el et
16920 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
16921
16922 if (et.type == NT_invtype)
16923 first_error (BAD_EL_TYPE);
16924
16925 if (inst.cond > COND_ALWAYS)
16926 inst.pred_insn_type = INSIDE_VPT_INSN;
16927 else
16928 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16929
16930 mve_encode_qqq (0, 64);
16931}
16932
16933static void
16934do_mve_vbrsr (void)
16935{
16936 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16937 struct neon_type_el et
16938 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16939
16940 if (inst.cond > COND_ALWAYS)
16941 inst.pred_insn_type = INSIDE_VPT_INSN;
16942 else
16943 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16944
16945 mve_encode_qqr (et.size, 0);
16946}
16947
16948static void
16949do_mve_vsbc (void)
16950{
16951 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
16952
16953 if (inst.cond > COND_ALWAYS)
16954 inst.pred_insn_type = INSIDE_VPT_INSN;
16955 else
16956 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16957
16958 mve_encode_qqq (1, 64);
16959}
16960
886e1c73
AV
16961static void
16962do_mve_vmull (void)
16963{
16964
16965 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16966 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16967 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16968 && inst.cond == COND_ALWAYS
16969 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16970 {
16971 if (rs == NS_QQQ)
16972 {
16973
16974 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16975 N_SUF_32 | N_F64 | N_P8
16976 | N_P16 | N_I_MVE | N_KEY);
16977 if (((et.type == NT_poly) && et.size == 8
16978 && ARM_CPU_IS_ANY (cpu_variant))
16979 || (et.type == NT_integer) || (et.type == NT_float))
16980 goto neon_vmul;
16981 }
16982 else
16983 goto neon_vmul;
16984 }
16985
16986 constraint (rs != NS_QQQ, BAD_FPU);
16987 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16988 N_SU_32 | N_P8 | N_P16 | N_KEY);
16989
16990 /* We are dealing with MVE's vmullt. */
16991 if (et.size == 32
16992 && (inst.operands[0].reg == inst.operands[1].reg
16993 || inst.operands[0].reg == inst.operands[2].reg))
16994 as_tsktsk (BAD_MVE_SRCDEST);
16995
16996 if (inst.cond > COND_ALWAYS)
16997 inst.pred_insn_type = INSIDE_VPT_INSN;
16998 else
16999 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17000
17001 if (et.type == NT_poly)
17002 mve_encode_qqq (neon_logbits (et.size), 64);
17003 else
17004 mve_encode_qqq (et.type == NT_unsigned, et.size);
17005
17006 return;
17007
17008neon_vmul:
17009 inst.instruction = N_MNEM_vmul;
17010 inst.cond = 0xb;
17011 if (thumb_mode)
17012 inst.pred_insn_type = INSIDE_IT_INSN;
17013 do_neon_mul ();
17014}
17015
a302e574
AV
17016static void
17017do_mve_vabav (void)
17018{
17019 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17020
17021 if (rs == NS_NULL)
17022 return;
17023
17024 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17025 return;
17026
17027 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17028 | N_S16 | N_S32 | N_U8 | N_U16
17029 | N_U32);
17030
17031 if (inst.cond > COND_ALWAYS)
17032 inst.pred_insn_type = INSIDE_VPT_INSN;
17033 else
17034 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17035
17036 mve_encode_rqq (et.type == NT_unsigned, et.size);
17037}
17038
17039static void
17040do_mve_vmladav (void)
17041{
17042 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17043 struct neon_type_el et = neon_check_type (3, rs,
17044 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17045
17046 if (et.type == NT_unsigned
17047 && (inst.instruction == M_MNEM_vmladavx
17048 || inst.instruction == M_MNEM_vmladavax
17049 || inst.instruction == M_MNEM_vmlsdav
17050 || inst.instruction == M_MNEM_vmlsdava
17051 || inst.instruction == M_MNEM_vmlsdavx
17052 || inst.instruction == M_MNEM_vmlsdavax))
17053 first_error (BAD_SIMD_TYPE);
17054
17055 constraint (inst.operands[2].reg > 14,
17056 _("MVE vector register in the range [Q0..Q7] expected"));
17057
17058 if (inst.cond > COND_ALWAYS)
17059 inst.pred_insn_type = INSIDE_VPT_INSN;
17060 else
17061 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17062
17063 if (inst.instruction == M_MNEM_vmlsdav
17064 || inst.instruction == M_MNEM_vmlsdava
17065 || inst.instruction == M_MNEM_vmlsdavx
17066 || inst.instruction == M_MNEM_vmlsdavax)
17067 inst.instruction |= (et.size == 8) << 28;
17068 else
17069 inst.instruction |= (et.size == 8) << 8;
17070
17071 mve_encode_rqq (et.type == NT_unsigned, 64);
17072 inst.instruction |= (et.size == 32) << 16;
17073}
17074
643afb90
MW
17075static void
17076do_neon_qrdmlah (void)
17077{
17078 /* Check we're on the correct architecture. */
17079 if (!mark_feature_used (&fpu_neon_ext_armv8))
17080 inst.error =
17081 _("instruction form not available on this architecture.");
17082 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17083 {
17084 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17085 record_feature_use (&fpu_neon_ext_v8_1);
17086 }
17087
17088 if (inst.operands[2].isscalar)
17089 {
17090 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17091 struct neon_type_el et = neon_check_type (3, rs,
17092 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17093 NEON_ENCODE (SCALAR, inst);
17094 neon_mul_mac (et, neon_quad (rs));
17095 }
17096 else
17097 {
17098 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17099 struct neon_type_el et = neon_check_type (3, rs,
17100 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17101 NEON_ENCODE (INTEGER, inst);
17102 /* The U bit (rounding) comes from bit mask. */
17103 neon_three_same (neon_quad (rs), 0, et.size);
17104 }
17105}
17106
5287ad62
JB
17107static void
17108do_neon_fcmp_absolute (void)
17109{
037e8744 17110 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17111 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17112 N_F_16_32 | N_KEY);
5287ad62 17113 /* Size field comes from bit mask. */
cc933301 17114 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17115}
17116
17117static void
17118do_neon_fcmp_absolute_inv (void)
17119{
17120 neon_exchange_operands ();
17121 do_neon_fcmp_absolute ();
17122}
17123
17124static void
17125do_neon_step (void)
17126{
037e8744 17127 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17128 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17129 N_F_16_32 | N_KEY);
17130 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17131}
17132
17133static void
17134do_neon_abs_neg (void)
17135{
037e8744
JB
17136 enum neon_shape rs;
17137 struct neon_type_el et;
5f4273c7 17138
037e8744
JB
17139 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17140 return;
17141
037e8744 17142 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17143 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17144
485dee97
AV
17145 if (check_simd_pred_availability (et.type == NT_float,
17146 NEON_CHECK_ARCH | NEON_CHECK_CC))
17147 return;
17148
5287ad62
JB
17149 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17150 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17151 inst.instruction |= LOW4 (inst.operands[1].reg);
17152 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17153 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17154 inst.instruction |= (et.type == NT_float) << 10;
17155 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17156
88714cb8 17157 neon_dp_fixup (&inst);
5287ad62
JB
17158}
17159
17160static void
17161do_neon_sli (void)
17162{
037e8744 17163 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17164 struct neon_type_el et = neon_check_type (2, rs,
17165 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17166 int imm = inst.operands[2].imm;
17167 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17168 _("immediate out of range for insert"));
037e8744 17169 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17170}
17171
17172static void
17173do_neon_sri (void)
17174{
037e8744 17175 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17176 struct neon_type_el et = neon_check_type (2, rs,
17177 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17178 int imm = inst.operands[2].imm;
17179 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17180 _("immediate out of range for insert"));
037e8744 17181 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17182}
17183
17184static void
17185do_neon_qshlu_imm (void)
17186{
037e8744 17187 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17188 struct neon_type_el et = neon_check_type (2, rs,
17189 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17190 int imm = inst.operands[2].imm;
17191 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17192 _("immediate out of range for shift"));
5287ad62
JB
17193 /* Only encodes the 'U present' variant of the instruction.
17194 In this case, signed types have OP (bit 8) set to 0.
17195 Unsigned types have OP set to 1. */
17196 inst.instruction |= (et.type == NT_unsigned) << 8;
17197 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17198 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17199}
17200
17201static void
17202do_neon_qmovn (void)
17203{
17204 struct neon_type_el et = neon_check_type (2, NS_DQ,
17205 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17206 /* Saturating move where operands can be signed or unsigned, and the
17207 destination has the same signedness. */
88714cb8 17208 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17209 if (et.type == NT_unsigned)
17210 inst.instruction |= 0xc0;
17211 else
17212 inst.instruction |= 0x80;
17213 neon_two_same (0, 1, et.size / 2);
17214}
17215
17216static void
17217do_neon_qmovun (void)
17218{
17219 struct neon_type_el et = neon_check_type (2, NS_DQ,
17220 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17221 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17222 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17223 neon_two_same (0, 1, et.size / 2);
17224}
17225
17226static void
17227do_neon_rshift_sat_narrow (void)
17228{
17229 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17230 or unsigned. If operands are unsigned, results must also be unsigned. */
17231 struct neon_type_el et = neon_check_type (2, NS_DQI,
17232 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17233 int imm = inst.operands[2].imm;
17234 /* This gets the bounds check, size encoding and immediate bits calculation
17235 right. */
17236 et.size /= 2;
5f4273c7 17237
5287ad62
JB
17238 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17239 VQMOVN.I<size> <Dd>, <Qm>. */
17240 if (imm == 0)
17241 {
17242 inst.operands[2].present = 0;
17243 inst.instruction = N_MNEM_vqmovn;
17244 do_neon_qmovn ();
17245 return;
17246 }
5f4273c7 17247
5287ad62 17248 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17249 _("immediate out of range"));
5287ad62
JB
17250 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17251}
17252
17253static void
17254do_neon_rshift_sat_narrow_u (void)
17255{
17256 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17257 or unsigned. If operands are unsigned, results must also be unsigned. */
17258 struct neon_type_el et = neon_check_type (2, NS_DQI,
17259 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17260 int imm = inst.operands[2].imm;
17261 /* This gets the bounds check, size encoding and immediate bits calculation
17262 right. */
17263 et.size /= 2;
17264
17265 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17266 VQMOVUN.I<size> <Dd>, <Qm>. */
17267 if (imm == 0)
17268 {
17269 inst.operands[2].present = 0;
17270 inst.instruction = N_MNEM_vqmovun;
17271 do_neon_qmovun ();
17272 return;
17273 }
17274
17275 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17276 _("immediate out of range"));
5287ad62
JB
17277 /* FIXME: The manual is kind of unclear about what value U should have in
17278 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17279 must be 1. */
17280 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17281}
17282
17283static void
17284do_neon_movn (void)
17285{
17286 struct neon_type_el et = neon_check_type (2, NS_DQ,
17287 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17288 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17289 neon_two_same (0, 1, et.size / 2);
17290}
17291
17292static void
17293do_neon_rshift_narrow (void)
17294{
17295 struct neon_type_el et = neon_check_type (2, NS_DQI,
17296 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17297 int imm = inst.operands[2].imm;
17298 /* This gets the bounds check, size encoding and immediate bits calculation
17299 right. */
17300 et.size /= 2;
5f4273c7 17301
5287ad62
JB
17302 /* If immediate is zero then we are a pseudo-instruction for
17303 VMOVN.I<size> <Dd>, <Qm> */
17304 if (imm == 0)
17305 {
17306 inst.operands[2].present = 0;
17307 inst.instruction = N_MNEM_vmovn;
17308 do_neon_movn ();
17309 return;
17310 }
5f4273c7 17311
5287ad62 17312 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17313 _("immediate out of range for narrowing operation"));
5287ad62
JB
17314 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17315}
17316
17317static void
17318do_neon_shll (void)
17319{
17320 /* FIXME: Type checking when lengthening. */
17321 struct neon_type_el et = neon_check_type (2, NS_QDI,
17322 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17323 unsigned imm = inst.operands[2].imm;
17324
17325 if (imm == et.size)
17326 {
17327 /* Maximum shift variant. */
88714cb8 17328 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17329 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17330 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17331 inst.instruction |= LOW4 (inst.operands[1].reg);
17332 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17333 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17334
88714cb8 17335 neon_dp_fixup (&inst);
5287ad62
JB
17336 }
17337 else
17338 {
17339 /* A more-specific type check for non-max versions. */
17340 et = neon_check_type (2, NS_QDI,
477330fc 17341 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17342 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17343 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17344 }
17345}
17346
037e8744 17347/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17348 the current instruction is. */
17349
6b9a8b67
MGD
17350#define CVT_FLAVOUR_VAR \
17351 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17352 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17353 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17354 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17355 /* Half-precision conversions. */ \
cc933301
JW
17356 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17357 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17358 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17359 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17360 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17361 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17362 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17363 Compared with single/double precision variants, only the co-processor \
17364 field is different, so the encoding flow is reused here. */ \
17365 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17366 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17367 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17368 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17369 /* VFP instructions. */ \
17370 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17371 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17372 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17373 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17374 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17375 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17376 /* VFP instructions with bitshift. */ \
17377 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17378 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17379 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17380 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17381 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17382 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17383 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17384 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17385
17386#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17387 neon_cvt_flavour_##C,
17388
17389/* The different types of conversions we can do. */
17390enum neon_cvt_flavour
17391{
17392 CVT_FLAVOUR_VAR
17393 neon_cvt_flavour_invalid,
17394 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17395};
17396
17397#undef CVT_VAR
17398
17399static enum neon_cvt_flavour
17400get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17401{
6b9a8b67
MGD
17402#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17403 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17404 if (et.type != NT_invtype) \
17405 { \
17406 inst.error = NULL; \
17407 return (neon_cvt_flavour_##C); \
5287ad62 17408 }
6b9a8b67 17409
5287ad62 17410 struct neon_type_el et;
037e8744 17411 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17412 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17413 /* The instruction versions which take an immediate take one register
17414 argument, which is extended to the width of the full register. Thus the
17415 "source" and "destination" registers must have the same width. Hack that
17416 here by making the size equal to the key (wider, in this case) operand. */
17417 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17418
6b9a8b67
MGD
17419 CVT_FLAVOUR_VAR;
17420
17421 return neon_cvt_flavour_invalid;
5287ad62
JB
17422#undef CVT_VAR
17423}
17424
7e8e6784
MGD
17425enum neon_cvt_mode
17426{
17427 neon_cvt_mode_a,
17428 neon_cvt_mode_n,
17429 neon_cvt_mode_p,
17430 neon_cvt_mode_m,
17431 neon_cvt_mode_z,
30bdf752
MGD
17432 neon_cvt_mode_x,
17433 neon_cvt_mode_r
7e8e6784
MGD
17434};
17435
037e8744
JB
17436/* Neon-syntax VFP conversions. */
17437
5287ad62 17438static void
6b9a8b67 17439do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17440{
037e8744 17441 const char *opname = 0;
5f4273c7 17442
d54af2d0
RL
17443 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17444 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17445 {
037e8744
JB
17446 /* Conversions with immediate bitshift. */
17447 const char *enc[] =
477330fc 17448 {
6b9a8b67
MGD
17449#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17450 CVT_FLAVOUR_VAR
17451 NULL
17452#undef CVT_VAR
477330fc 17453 };
037e8744 17454
6b9a8b67 17455 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17456 {
17457 opname = enc[flavour];
17458 constraint (inst.operands[0].reg != inst.operands[1].reg,
17459 _("operands 0 and 1 must be the same register"));
17460 inst.operands[1] = inst.operands[2];
17461 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17462 }
5287ad62
JB
17463 }
17464 else
17465 {
037e8744
JB
17466 /* Conversions without bitshift. */
17467 const char *enc[] =
477330fc 17468 {
6b9a8b67
MGD
17469#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17470 CVT_FLAVOUR_VAR
17471 NULL
17472#undef CVT_VAR
477330fc 17473 };
037e8744 17474
6b9a8b67 17475 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17476 opname = enc[flavour];
037e8744
JB
17477 }
17478
17479 if (opname)
17480 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17481
17482 /* ARMv8.2 fp16 VCVT instruction. */
17483 if (flavour == neon_cvt_flavour_s32_f16
17484 || flavour == neon_cvt_flavour_u32_f16
17485 || flavour == neon_cvt_flavour_f16_u32
17486 || flavour == neon_cvt_flavour_f16_s32)
17487 do_scalar_fp16_v82_encode ();
037e8744
JB
17488}
17489
17490static void
17491do_vfp_nsyn_cvtz (void)
17492{
d54af2d0 17493 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17494 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17495 const char *enc[] =
17496 {
6b9a8b67
MGD
17497#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17498 CVT_FLAVOUR_VAR
17499 NULL
17500#undef CVT_VAR
037e8744
JB
17501 };
17502
6b9a8b67 17503 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17504 do_vfp_nsyn_opcode (enc[flavour]);
17505}
f31fef98 17506
037e8744 17507static void
bacebabc 17508do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17509 enum neon_cvt_mode mode)
17510{
17511 int sz, op;
17512 int rm;
17513
a715796b
TG
17514 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17515 D register operands. */
17516 if (flavour == neon_cvt_flavour_s32_f64
17517 || flavour == neon_cvt_flavour_u32_f64)
17518 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17519 _(BAD_FPU));
17520
9db2f6b4
RL
17521 if (flavour == neon_cvt_flavour_s32_f16
17522 || flavour == neon_cvt_flavour_u32_f16)
17523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17524 _(BAD_FP16));
17525
5ee91343 17526 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17527
17528 switch (flavour)
17529 {
17530 case neon_cvt_flavour_s32_f64:
17531 sz = 1;
827f64ff 17532 op = 1;
7e8e6784
MGD
17533 break;
17534 case neon_cvt_flavour_s32_f32:
17535 sz = 0;
17536 op = 1;
17537 break;
9db2f6b4
RL
17538 case neon_cvt_flavour_s32_f16:
17539 sz = 0;
17540 op = 1;
17541 break;
7e8e6784
MGD
17542 case neon_cvt_flavour_u32_f64:
17543 sz = 1;
17544 op = 0;
17545 break;
17546 case neon_cvt_flavour_u32_f32:
17547 sz = 0;
17548 op = 0;
17549 break;
9db2f6b4
RL
17550 case neon_cvt_flavour_u32_f16:
17551 sz = 0;
17552 op = 0;
17553 break;
7e8e6784
MGD
17554 default:
17555 first_error (_("invalid instruction shape"));
17556 return;
17557 }
17558
17559 switch (mode)
17560 {
17561 case neon_cvt_mode_a: rm = 0; break;
17562 case neon_cvt_mode_n: rm = 1; break;
17563 case neon_cvt_mode_p: rm = 2; break;
17564 case neon_cvt_mode_m: rm = 3; break;
17565 default: first_error (_("invalid rounding mode")); return;
17566 }
17567
17568 NEON_ENCODE (FPV8, inst);
17569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17570 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17571 inst.instruction |= sz << 8;
9db2f6b4
RL
17572
17573 /* ARMv8.2 fp16 VCVT instruction. */
17574 if (flavour == neon_cvt_flavour_s32_f16
17575 ||flavour == neon_cvt_flavour_u32_f16)
17576 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17577 inst.instruction |= op << 7;
17578 inst.instruction |= rm << 16;
17579 inst.instruction |= 0xf0000000;
17580 inst.is_neon = TRUE;
17581}
17582
17583static void
17584do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17585{
17586 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17587 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17588 NS_FH, NS_HF, NS_FHI, NS_HFI,
17589 NS_NULL);
6b9a8b67 17590 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17591
cc933301
JW
17592 if (flavour == neon_cvt_flavour_invalid)
17593 return;
17594
e3e535bc 17595 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17596 if (mode == neon_cvt_mode_z
e3e535bc 17597 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17598 && (flavour == neon_cvt_flavour_s16_f16
17599 || flavour == neon_cvt_flavour_u16_f16
17600 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17601 || flavour == neon_cvt_flavour_u32_f32
17602 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17603 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17604 && (rs == NS_FD || rs == NS_FF))
17605 {
17606 do_vfp_nsyn_cvtz ();
17607 return;
17608 }
17609
9db2f6b4
RL
17610 /* ARMv8.2 fp16 VCVT conversions. */
17611 if (mode == neon_cvt_mode_z
17612 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17613 && (flavour == neon_cvt_flavour_s32_f16
17614 || flavour == neon_cvt_flavour_u32_f16)
17615 && (rs == NS_FH))
17616 {
17617 do_vfp_nsyn_cvtz ();
17618 do_scalar_fp16_v82_encode ();
17619 return;
17620 }
17621
037e8744 17622 /* VFP rather than Neon conversions. */
6b9a8b67 17623 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 17624 {
7e8e6784
MGD
17625 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17626 do_vfp_nsyn_cvt (rs, flavour);
17627 else
17628 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17629
037e8744
JB
17630 return;
17631 }
17632
17633 switch (rs)
17634 {
037e8744 17635 case NS_QQI:
dd9634d9
AV
17636 if (mode == neon_cvt_mode_z
17637 && (flavour == neon_cvt_flavour_f16_s16
17638 || flavour == neon_cvt_flavour_f16_u16
17639 || flavour == neon_cvt_flavour_s16_f16
17640 || flavour == neon_cvt_flavour_u16_f16
17641 || flavour == neon_cvt_flavour_f32_u32
17642 || flavour == neon_cvt_flavour_f32_s32
17643 || flavour == neon_cvt_flavour_s32_f32
17644 || flavour == neon_cvt_flavour_u32_f32))
17645 {
17646 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17647 return;
17648 }
17649 else if (mode == neon_cvt_mode_n)
17650 {
17651 /* We are dealing with vcvt with the 'ne' condition. */
17652 inst.cond = 0x1;
17653 inst.instruction = N_MNEM_vcvt;
17654 do_neon_cvt_1 (neon_cvt_mode_z);
17655 return;
17656 }
17657 /* fall through. */
17658 case NS_DDI:
037e8744 17659 {
477330fc 17660 unsigned immbits;
cc933301
JW
17661 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17662 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 17663
dd9634d9
AV
17664 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17665 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17666 return;
17667
17668 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17669 {
17670 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17671 _("immediate value out of range"));
17672 switch (flavour)
17673 {
17674 case neon_cvt_flavour_f16_s16:
17675 case neon_cvt_flavour_f16_u16:
17676 case neon_cvt_flavour_s16_f16:
17677 case neon_cvt_flavour_u16_f16:
17678 constraint (inst.operands[2].imm > 16,
17679 _("immediate value out of range"));
17680 break;
17681 case neon_cvt_flavour_f32_u32:
17682 case neon_cvt_flavour_f32_s32:
17683 case neon_cvt_flavour_s32_f32:
17684 case neon_cvt_flavour_u32_f32:
17685 constraint (inst.operands[2].imm > 32,
17686 _("immediate value out of range"));
17687 break;
17688 default:
17689 inst.error = BAD_FPU;
17690 return;
17691 }
17692 }
037e8744 17693
477330fc
RM
17694 /* Fixed-point conversion with #0 immediate is encoded as an
17695 integer conversion. */
17696 if (inst.operands[2].present && inst.operands[2].imm == 0)
17697 goto int_encode;
477330fc
RM
17698 NEON_ENCODE (IMMED, inst);
17699 if (flavour != neon_cvt_flavour_invalid)
17700 inst.instruction |= enctab[flavour];
17701 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17702 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17703 inst.instruction |= LOW4 (inst.operands[1].reg);
17704 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17705 inst.instruction |= neon_quad (rs) << 6;
17706 inst.instruction |= 1 << 21;
cc933301
JW
17707 if (flavour < neon_cvt_flavour_s16_f16)
17708 {
17709 inst.instruction |= 1 << 21;
17710 immbits = 32 - inst.operands[2].imm;
17711 inst.instruction |= immbits << 16;
17712 }
17713 else
17714 {
17715 inst.instruction |= 3 << 20;
17716 immbits = 16 - inst.operands[2].imm;
17717 inst.instruction |= immbits << 16;
17718 inst.instruction &= ~(1 << 9);
17719 }
477330fc
RM
17720
17721 neon_dp_fixup (&inst);
037e8744
JB
17722 }
17723 break;
17724
037e8744 17725 case NS_QQ:
dd9634d9
AV
17726 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17727 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17728 && (flavour == neon_cvt_flavour_s16_f16
17729 || flavour == neon_cvt_flavour_u16_f16
17730 || flavour == neon_cvt_flavour_s32_f32
17731 || flavour == neon_cvt_flavour_u32_f32))
17732 {
17733 if (check_simd_pred_availability (1,
17734 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17735 return;
17736 }
17737 else if (mode == neon_cvt_mode_z
17738 && (flavour == neon_cvt_flavour_f16_s16
17739 || flavour == neon_cvt_flavour_f16_u16
17740 || flavour == neon_cvt_flavour_s16_f16
17741 || flavour == neon_cvt_flavour_u16_f16
17742 || flavour == neon_cvt_flavour_f32_u32
17743 || flavour == neon_cvt_flavour_f32_s32
17744 || flavour == neon_cvt_flavour_s32_f32
17745 || flavour == neon_cvt_flavour_u32_f32))
17746 {
17747 if (check_simd_pred_availability (1,
17748 NEON_CHECK_CC | NEON_CHECK_ARCH))
17749 return;
17750 }
17751 /* fall through. */
17752 case NS_DD:
7e8e6784
MGD
17753 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17754 {
7e8e6784 17755
dd9634d9
AV
17756 NEON_ENCODE (FLOAT, inst);
17757 if (check_simd_pred_availability (1,
17758 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
17759 return;
17760
17761 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17762 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17763 inst.instruction |= LOW4 (inst.operands[1].reg);
17764 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17765 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17766 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17767 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 17768 inst.instruction |= mode << 8;
cc933301
JW
17769 if (flavour == neon_cvt_flavour_u16_f16
17770 || flavour == neon_cvt_flavour_s16_f16)
17771 /* Mask off the original size bits and reencode them. */
17772 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17773
7e8e6784
MGD
17774 if (thumb_mode)
17775 inst.instruction |= 0xfc000000;
17776 else
17777 inst.instruction |= 0xf0000000;
17778 }
17779 else
17780 {
037e8744 17781 int_encode:
7e8e6784 17782 {
cc933301
JW
17783 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17784 0x100, 0x180, 0x0, 0x080};
037e8744 17785
7e8e6784 17786 NEON_ENCODE (INTEGER, inst);
037e8744 17787
dd9634d9
AV
17788 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17789 {
17790 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17791 return;
17792 }
037e8744 17793
7e8e6784
MGD
17794 if (flavour != neon_cvt_flavour_invalid)
17795 inst.instruction |= enctab[flavour];
037e8744 17796
7e8e6784
MGD
17797 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17799 inst.instruction |= LOW4 (inst.operands[1].reg);
17800 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17801 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17802 if (flavour >= neon_cvt_flavour_s16_f16
17803 && flavour <= neon_cvt_flavour_f16_u16)
17804 /* Half precision. */
17805 inst.instruction |= 1 << 18;
17806 else
17807 inst.instruction |= 2 << 18;
037e8744 17808
7e8e6784
MGD
17809 neon_dp_fixup (&inst);
17810 }
17811 }
17812 break;
037e8744 17813
8e79c3df
CM
17814 /* Half-precision conversions for Advanced SIMD -- neon. */
17815 case NS_QD:
17816 case NS_DQ:
bc52d49c
MM
17817 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17818 return;
8e79c3df
CM
17819
17820 if ((rs == NS_DQ)
17821 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17822 {
17823 as_bad (_("operand size must match register width"));
17824 break;
17825 }
17826
17827 if ((rs == NS_QD)
17828 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17829 {
17830 as_bad (_("operand size must match register width"));
17831 break;
17832 }
17833
17834 if (rs == NS_DQ)
477330fc 17835 inst.instruction = 0x3b60600;
8e79c3df
CM
17836 else
17837 inst.instruction = 0x3b60700;
17838
17839 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17840 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17841 inst.instruction |= LOW4 (inst.operands[1].reg);
17842 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 17843 neon_dp_fixup (&inst);
8e79c3df
CM
17844 break;
17845
037e8744
JB
17846 default:
17847 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
17848 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17849 do_vfp_nsyn_cvt (rs, flavour);
17850 else
17851 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 17852 }
5287ad62
JB
17853}
17854
e3e535bc
NC
17855static void
17856do_neon_cvtr (void)
17857{
7e8e6784 17858 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
17859}
17860
17861static void
17862do_neon_cvt (void)
17863{
7e8e6784
MGD
17864 do_neon_cvt_1 (neon_cvt_mode_z);
17865}
17866
17867static void
17868do_neon_cvta (void)
17869{
17870 do_neon_cvt_1 (neon_cvt_mode_a);
17871}
17872
17873static void
17874do_neon_cvtn (void)
17875{
17876 do_neon_cvt_1 (neon_cvt_mode_n);
17877}
17878
17879static void
17880do_neon_cvtp (void)
17881{
17882 do_neon_cvt_1 (neon_cvt_mode_p);
17883}
17884
17885static void
17886do_neon_cvtm (void)
17887{
17888 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
17889}
17890
8e79c3df 17891static void
c70a8987 17892do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 17893{
c70a8987
MGD
17894 if (is_double)
17895 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 17896
c70a8987
MGD
17897 encode_arm_vfp_reg (inst.operands[0].reg,
17898 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17899 encode_arm_vfp_reg (inst.operands[1].reg,
17900 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17901 inst.instruction |= to ? 0x10000 : 0;
17902 inst.instruction |= t ? 0x80 : 0;
17903 inst.instruction |= is_double ? 0x100 : 0;
17904 do_vfp_cond_or_thumb ();
17905}
8e79c3df 17906
c70a8987
MGD
17907static void
17908do_neon_cvttb_1 (bfd_boolean t)
17909{
d54af2d0 17910 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 17911 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 17912
c70a8987
MGD
17913 if (rs == NS_NULL)
17914 return;
dd9634d9
AV
17915 else if (rs == NS_QQ || rs == NS_QQI)
17916 {
17917 int single_to_half = 0;
17918 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17919 return;
17920
17921 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17922
17923 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17924 && (flavour == neon_cvt_flavour_u16_f16
17925 || flavour == neon_cvt_flavour_s16_f16
17926 || flavour == neon_cvt_flavour_f16_s16
17927 || flavour == neon_cvt_flavour_f16_u16
17928 || flavour == neon_cvt_flavour_u32_f32
17929 || flavour == neon_cvt_flavour_s32_f32
17930 || flavour == neon_cvt_flavour_f32_s32
17931 || flavour == neon_cvt_flavour_f32_u32))
17932 {
17933 inst.cond = 0xf;
17934 inst.instruction = N_MNEM_vcvt;
17935 set_pred_insn_type (INSIDE_VPT_INSN);
17936 do_neon_cvt_1 (neon_cvt_mode_z);
17937 return;
17938 }
17939 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17940 single_to_half = 1;
17941 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17942 {
17943 first_error (BAD_FPU);
17944 return;
17945 }
17946
17947 inst.instruction = 0xee3f0e01;
17948 inst.instruction |= single_to_half << 28;
17949 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17950 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17951 inst.instruction |= t << 12;
17952 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17953 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17954 inst.is_neon = 1;
17955 }
c70a8987
MGD
17956 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17957 {
17958 inst.error = NULL;
17959 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17960 }
17961 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17962 {
17963 inst.error = NULL;
17964 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17965 }
17966 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17967 {
a715796b
TG
17968 /* The VCVTB and VCVTT instructions with D-register operands
17969 don't work for SP only targets. */
17970 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17971 _(BAD_FPU));
17972
c70a8987
MGD
17973 inst.error = NULL;
17974 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17975 }
17976 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17977 {
a715796b
TG
17978 /* The VCVTB and VCVTT instructions with D-register operands
17979 don't work for SP only targets. */
17980 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17981 _(BAD_FPU));
17982
c70a8987
MGD
17983 inst.error = NULL;
17984 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17985 }
17986 else
17987 return;
17988}
17989
17990static void
17991do_neon_cvtb (void)
17992{
17993 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
17994}
17995
17996
17997static void
17998do_neon_cvtt (void)
17999{
c70a8987 18000 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18001}
18002
5287ad62
JB
18003static void
18004neon_move_immediate (void)
18005{
037e8744
JB
18006 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18007 struct neon_type_el et = neon_check_type (2, rs,
18008 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18009 unsigned immlo, immhi = 0, immbits;
c96612cc 18010 int op, cmode, float_p;
5287ad62 18011
037e8744 18012 constraint (et.type == NT_invtype,
477330fc 18013 _("operand size must be specified for immediate VMOV"));
037e8744 18014
5287ad62
JB
18015 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18016 op = (inst.instruction & (1 << 5)) != 0;
18017
18018 immlo = inst.operands[1].imm;
18019 if (inst.operands[1].regisimm)
18020 immhi = inst.operands[1].reg;
18021
18022 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18023 _("immediate has bits set outside the operand size"));
5287ad62 18024
c96612cc
JB
18025 float_p = inst.operands[1].immisfloat;
18026
18027 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18028 et.size, et.type)) == FAIL)
5287ad62
JB
18029 {
18030 /* Invert relevant bits only. */
18031 neon_invert_size (&immlo, &immhi, et.size);
18032 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18033 with one or the other; those cases are caught by
18034 neon_cmode_for_move_imm. */
5287ad62 18035 op = !op;
c96612cc
JB
18036 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18037 &op, et.size, et.type)) == FAIL)
477330fc
RM
18038 {
18039 first_error (_("immediate out of range"));
18040 return;
18041 }
5287ad62
JB
18042 }
18043
18044 inst.instruction &= ~(1 << 5);
18045 inst.instruction |= op << 5;
18046
18047 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18048 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18049 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18050 inst.instruction |= cmode << 8;
18051
18052 neon_write_immbits (immbits);
18053}
18054
18055static void
18056do_neon_mvn (void)
18057{
18058 if (inst.operands[1].isreg)
18059 {
037e8744 18060 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18061
88714cb8 18062 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18063 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18064 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18065 inst.instruction |= LOW4 (inst.operands[1].reg);
18066 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18067 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18068 }
18069 else
18070 {
88714cb8 18071 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18072 neon_move_immediate ();
18073 }
18074
88714cb8 18075 neon_dp_fixup (&inst);
5287ad62
JB
18076}
18077
18078/* Encode instructions of form:
18079
18080 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18081 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18082
18083static void
18084neon_mixed_length (struct neon_type_el et, unsigned size)
18085{
18086 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18087 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18088 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18089 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18090 inst.instruction |= LOW4 (inst.operands[2].reg);
18091 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18092 inst.instruction |= (et.type == NT_unsigned) << 24;
18093 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18094
88714cb8 18095 neon_dp_fixup (&inst);
5287ad62
JB
18096}
18097
18098static void
18099do_neon_dyadic_long (void)
18100{
5ee91343
AV
18101 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18102 if (rs == NS_QDD)
18103 {
18104 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18105 return;
18106
18107 NEON_ENCODE (INTEGER, inst);
18108 /* FIXME: Type checking for lengthening op. */
18109 struct neon_type_el et = neon_check_type (3, NS_QDD,
18110 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18111 neon_mixed_length (et, et.size);
18112 }
18113 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18114 && (inst.cond == 0xf || inst.cond == 0x10))
18115 {
18116 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18117 in an IT block with le/lt conditions. */
18118
18119 if (inst.cond == 0xf)
18120 inst.cond = 0xb;
18121 else if (inst.cond == 0x10)
18122 inst.cond = 0xd;
18123
18124 inst.pred_insn_type = INSIDE_IT_INSN;
18125
18126 if (inst.instruction == N_MNEM_vaddl)
18127 {
18128 inst.instruction = N_MNEM_vadd;
18129 do_neon_addsub_if_i ();
18130 }
18131 else if (inst.instruction == N_MNEM_vsubl)
18132 {
18133 inst.instruction = N_MNEM_vsub;
18134 do_neon_addsub_if_i ();
18135 }
18136 else if (inst.instruction == N_MNEM_vabdl)
18137 {
18138 inst.instruction = N_MNEM_vabd;
18139 do_neon_dyadic_if_su ();
18140 }
18141 }
18142 else
18143 first_error (BAD_FPU);
5287ad62
JB
18144}
18145
18146static void
18147do_neon_abal (void)
18148{
18149 struct neon_type_el et = neon_check_type (3, NS_QDD,
18150 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18151 neon_mixed_length (et, et.size);
18152}
18153
18154static void
18155neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18156{
18157 if (inst.operands[2].isscalar)
18158 {
dcbf9037 18159 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18160 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18161 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18162 neon_mul_mac (et, et.type == NT_unsigned);
18163 }
18164 else
18165 {
18166 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18167 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18168 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18169 neon_mixed_length (et, et.size);
18170 }
18171}
18172
18173static void
18174do_neon_mac_maybe_scalar_long (void)
18175{
18176 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18177}
18178
dec41383
JW
18179/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18180 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18181
18182static unsigned
18183neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18184{
18185 unsigned regno = NEON_SCALAR_REG (scalar);
18186 unsigned elno = NEON_SCALAR_INDEX (scalar);
18187
18188 if (quad_p)
18189 {
18190 if (regno > 7 || elno > 3)
18191 goto bad_scalar;
18192
18193 return ((regno & 0x7)
18194 | ((elno & 0x1) << 3)
18195 | (((elno >> 1) & 0x1) << 5));
18196 }
18197 else
18198 {
18199 if (regno > 15 || elno > 1)
18200 goto bad_scalar;
18201
18202 return (((regno & 0x1) << 5)
18203 | ((regno >> 1) & 0x7)
18204 | ((elno & 0x1) << 3));
18205 }
18206
18207bad_scalar:
18208 first_error (_("scalar out of range for multiply instruction"));
18209 return 0;
18210}
18211
18212static void
18213do_neon_fmac_maybe_scalar_long (int subtype)
18214{
18215 enum neon_shape rs;
18216 int high8;
18217 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18218 field (bits[21:20]) has different meaning. For scalar index variant, it's
18219 used to differentiate add and subtract, otherwise it's with fixed value
18220 0x2. */
18221 int size = -1;
18222
18223 if (inst.cond != COND_ALWAYS)
18224 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18225 "behaviour is UNPREDICTABLE"));
18226
01f48020 18227 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18228 _(BAD_FP16));
18229
18230 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18231 _(BAD_FPU));
18232
18233 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18234 be a scalar index register. */
18235 if (inst.operands[2].isscalar)
18236 {
18237 high8 = 0xfe000000;
18238 if (subtype)
18239 size = 16;
18240 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18241 }
18242 else
18243 {
18244 high8 = 0xfc000000;
18245 size = 32;
18246 if (subtype)
18247 inst.instruction |= (0x1 << 23);
18248 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18249 }
18250
18251 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18252
18253 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18254 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18255 so we simply pass -1 as size. */
18256 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18257 neon_three_same (quad_p, 0, size);
18258
18259 /* Undo neon_dp_fixup. Redo the high eight bits. */
18260 inst.instruction &= 0x00ffffff;
18261 inst.instruction |= high8;
18262
18263#define LOW1(R) ((R) & 0x1)
18264#define HI4(R) (((R) >> 1) & 0xf)
18265 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18266 whether the instruction is in Q form and whether Vm is a scalar indexed
18267 operand. */
18268 if (inst.operands[2].isscalar)
18269 {
18270 unsigned rm
18271 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18272 inst.instruction &= 0xffffffd0;
18273 inst.instruction |= rm;
18274
18275 if (!quad_p)
18276 {
18277 /* Redo Rn as well. */
18278 inst.instruction &= 0xfff0ff7f;
18279 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18280 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18281 }
18282 }
18283 else if (!quad_p)
18284 {
18285 /* Redo Rn and Rm. */
18286 inst.instruction &= 0xfff0ff50;
18287 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18288 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18289 inst.instruction |= HI4 (inst.operands[2].reg);
18290 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18291 }
18292}
18293
18294static void
18295do_neon_vfmal (void)
18296{
18297 return do_neon_fmac_maybe_scalar_long (0);
18298}
18299
18300static void
18301do_neon_vfmsl (void)
18302{
18303 return do_neon_fmac_maybe_scalar_long (1);
18304}
18305
5287ad62
JB
18306static void
18307do_neon_dyadic_wide (void)
18308{
18309 struct neon_type_el et = neon_check_type (3, NS_QQD,
18310 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18311 neon_mixed_length (et, et.size);
18312}
18313
18314static void
18315do_neon_dyadic_narrow (void)
18316{
18317 struct neon_type_el et = neon_check_type (3, NS_QDD,
18318 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18319 /* Operand sign is unimportant, and the U bit is part of the opcode,
18320 so force the operand type to integer. */
18321 et.type = NT_integer;
5287ad62
JB
18322 neon_mixed_length (et, et.size / 2);
18323}
18324
18325static void
18326do_neon_mul_sat_scalar_long (void)
18327{
18328 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18329}
18330
18331static void
18332do_neon_vmull (void)
18333{
18334 if (inst.operands[2].isscalar)
18335 do_neon_mac_maybe_scalar_long ();
18336 else
18337 {
18338 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18339 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18340
5287ad62 18341 if (et.type == NT_poly)
477330fc 18342 NEON_ENCODE (POLY, inst);
5287ad62 18343 else
477330fc 18344 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18345
18346 /* For polynomial encoding the U bit must be zero, and the size must
18347 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18348 obviously, as 0b10). */
18349 if (et.size == 64)
18350 {
18351 /* Check we're on the correct architecture. */
18352 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18353 inst.error =
18354 _("Instruction form not available on this architecture.");
18355
18356 et.size = 32;
18357 }
18358
5287ad62
JB
18359 neon_mixed_length (et, et.size);
18360 }
18361}
18362
18363static void
18364do_neon_ext (void)
18365{
037e8744 18366 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18367 struct neon_type_el et = neon_check_type (3, rs,
18368 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18369 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18370
18371 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18372 _("shift out of range"));
5287ad62
JB
18373 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18374 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18375 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18376 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18377 inst.instruction |= LOW4 (inst.operands[2].reg);
18378 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18379 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18380 inst.instruction |= imm << 8;
5f4273c7 18381
88714cb8 18382 neon_dp_fixup (&inst);
5287ad62
JB
18383}
18384
18385static void
18386do_neon_rev (void)
18387{
037e8744 18388 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18389 struct neon_type_el et = neon_check_type (2, rs,
18390 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18391 unsigned op = (inst.instruction >> 7) & 3;
18392 /* N (width of reversed regions) is encoded as part of the bitmask. We
18393 extract it here to check the elements to be reversed are smaller.
18394 Otherwise we'd get a reserved instruction. */
18395 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18396 gas_assert (elsize != 0);
5287ad62 18397 constraint (et.size >= elsize,
477330fc 18398 _("elements must be smaller than reversal region"));
037e8744 18399 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18400}
18401
18402static void
18403do_neon_dup (void)
18404{
18405 if (inst.operands[1].isscalar)
18406 {
037e8744 18407 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18408 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18409 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18410 unsigned sizebits = et.size >> 3;
dcbf9037 18411 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18412 int logsize = neon_logbits (et.size);
dcbf9037 18413 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18414
18415 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18416 return;
037e8744 18417
88714cb8 18418 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18419 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18421 inst.instruction |= LOW4 (dm);
18422 inst.instruction |= HI1 (dm) << 5;
037e8744 18423 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18424 inst.instruction |= x << 17;
18425 inst.instruction |= sizebits << 16;
5f4273c7 18426
88714cb8 18427 neon_dp_fixup (&inst);
5287ad62
JB
18428 }
18429 else
18430 {
037e8744
JB
18431 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18432 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18433 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 18434 /* Duplicate ARM register to lanes of vector. */
88714cb8 18435 NEON_ENCODE (ARMREG, inst);
5287ad62 18436 switch (et.size)
477330fc
RM
18437 {
18438 case 8: inst.instruction |= 0x400000; break;
18439 case 16: inst.instruction |= 0x000020; break;
18440 case 32: inst.instruction |= 0x000000; break;
18441 default: break;
18442 }
5287ad62
JB
18443 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18444 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18445 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18446 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18447 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18448 variants, except for the condition field. */
037e8744 18449 do_vfp_cond_or_thumb ();
5287ad62
JB
18450 }
18451}
18452
57785aa2
AV
18453static void
18454do_mve_mov (int toQ)
18455{
18456 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18457 return;
18458 if (inst.cond > COND_ALWAYS)
18459 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18460
18461 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18462 if (toQ)
18463 {
18464 Q0 = 0;
18465 Q1 = 1;
18466 Rt = 2;
18467 Rt2 = 3;
18468 }
18469
18470 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18471 _("Index one must be [2,3] and index two must be two less than"
18472 " index one."));
18473 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18474 _("General purpose registers may not be the same"));
18475 constraint (inst.operands[Rt].reg == REG_SP
18476 || inst.operands[Rt2].reg == REG_SP,
18477 BAD_SP);
18478 constraint (inst.operands[Rt].reg == REG_PC
18479 || inst.operands[Rt2].reg == REG_PC,
18480 BAD_PC);
18481
18482 inst.instruction = 0xec000f00;
18483 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18484 inst.instruction |= !!toQ << 20;
18485 inst.instruction |= inst.operands[Rt2].reg << 16;
18486 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18487 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18488 inst.instruction |= inst.operands[Rt].reg;
18489}
18490
18491static void
18492do_mve_movn (void)
18493{
18494 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18495 return;
18496
18497 if (inst.cond > COND_ALWAYS)
18498 inst.pred_insn_type = INSIDE_VPT_INSN;
18499 else
18500 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18501
18502 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18503 | N_KEY);
18504
18505 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18506 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18507 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18508 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18509 inst.instruction |= LOW4 (inst.operands[1].reg);
18510 inst.is_neon = 1;
18511
18512}
18513
5287ad62
JB
18514/* VMOV has particularly many variations. It can be one of:
18515 0. VMOV<c><q> <Qd>, <Qm>
18516 1. VMOV<c><q> <Dd>, <Dm>
18517 (Register operations, which are VORR with Rm = Rn.)
18518 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18519 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18520 (Immediate loads.)
18521 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18522 (ARM register to scalar.)
18523 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18524 (Two ARM registers to vector.)
18525 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18526 (Scalar to ARM register.)
18527 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18528 (Vector to two ARM registers.)
037e8744
JB
18529 8. VMOV.F32 <Sd>, <Sm>
18530 9. VMOV.F64 <Dd>, <Dm>
18531 (VFP register moves.)
18532 10. VMOV.F32 <Sd>, #imm
18533 11. VMOV.F64 <Dd>, #imm
18534 (VFP float immediate load.)
18535 12. VMOV <Rd>, <Sm>
18536 (VFP single to ARM reg.)
18537 13. VMOV <Sd>, <Rm>
18538 (ARM reg to VFP single.)
18539 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18540 (Two ARM regs to two VFP singles.)
18541 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18542 (Two VFP singles to two ARM regs.)
57785aa2
AV
18543 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18544 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18545 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18546 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18547
037e8744
JB
18548 These cases can be disambiguated using neon_select_shape, except cases 1/9
18549 and 3/11 which depend on the operand type too.
5f4273c7 18550
5287ad62 18551 All the encoded bits are hardcoded by this function.
5f4273c7 18552
b7fc2769
JB
18553 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18554 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18555
5287ad62 18556 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18557 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18558
18559static void
18560do_neon_mov (void)
18561{
57785aa2
AV
18562 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18563 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18564 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18565 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18566 NS_NULL);
037e8744
JB
18567 struct neon_type_el et;
18568 const char *ldconst = 0;
5287ad62 18569
037e8744 18570 switch (rs)
5287ad62 18571 {
037e8744
JB
18572 case NS_DD: /* case 1/9. */
18573 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18574 /* It is not an error here if no type is given. */
18575 inst.error = NULL;
18576 if (et.type == NT_float && et.size == 64)
477330fc
RM
18577 {
18578 do_vfp_nsyn_opcode ("fcpyd");
18579 break;
18580 }
037e8744 18581 /* fall through. */
5287ad62 18582
037e8744
JB
18583 case NS_QQ: /* case 0/1. */
18584 {
57785aa2 18585 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18586 return;
18587 /* The architecture manual I have doesn't explicitly state which
18588 value the U bit should have for register->register moves, but
18589 the equivalent VORR instruction has U = 0, so do that. */
18590 inst.instruction = 0x0200110;
18591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18592 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18593 inst.instruction |= LOW4 (inst.operands[1].reg);
18594 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18595 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18596 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18597 inst.instruction |= neon_quad (rs) << 6;
18598
18599 neon_dp_fixup (&inst);
037e8744
JB
18600 }
18601 break;
5f4273c7 18602
037e8744
JB
18603 case NS_DI: /* case 3/11. */
18604 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18605 inst.error = NULL;
18606 if (et.type == NT_float && et.size == 64)
477330fc
RM
18607 {
18608 /* case 11 (fconstd). */
18609 ldconst = "fconstd";
18610 goto encode_fconstd;
18611 }
037e8744
JB
18612 /* fall through. */
18613
18614 case NS_QI: /* case 2/3. */
57785aa2 18615 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 18616 return;
037e8744
JB
18617 inst.instruction = 0x0800010;
18618 neon_move_immediate ();
88714cb8 18619 neon_dp_fixup (&inst);
5287ad62 18620 break;
5f4273c7 18621
037e8744
JB
18622 case NS_SR: /* case 4. */
18623 {
477330fc
RM
18624 unsigned bcdebits = 0;
18625 int logsize;
18626 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18627 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 18628
05ac0ffb
JB
18629 /* .<size> is optional here, defaulting to .32. */
18630 if (inst.vectype.elems == 0
18631 && inst.operands[0].vectype.type == NT_invtype
18632 && inst.operands[1].vectype.type == NT_invtype)
18633 {
18634 inst.vectype.el[0].type = NT_untyped;
18635 inst.vectype.el[0].size = 32;
18636 inst.vectype.elems = 1;
18637 }
18638
477330fc
RM
18639 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18640 logsize = neon_logbits (et.size);
18641
57785aa2
AV
18642 if (et.size != 32)
18643 {
18644 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18645 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18646 return;
18647 }
18648 else
18649 {
18650 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18651 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18652 _(BAD_FPU));
18653 }
18654
18655 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18656 {
18657 if (inst.operands[1].reg == REG_SP)
18658 as_tsktsk (MVE_BAD_SP);
18659 else if (inst.operands[1].reg == REG_PC)
18660 as_tsktsk (MVE_BAD_PC);
18661 }
18662 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18663
477330fc 18664 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
18665 constraint (x >= size / et.size, _("scalar index out of range"));
18666
477330fc
RM
18667
18668 switch (et.size)
18669 {
18670 case 8: bcdebits = 0x8; break;
18671 case 16: bcdebits = 0x1; break;
18672 case 32: bcdebits = 0x0; break;
18673 default: ;
18674 }
18675
57785aa2 18676 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18677
18678 inst.instruction = 0xe000b10;
18679 do_vfp_cond_or_thumb ();
18680 inst.instruction |= LOW4 (dn) << 16;
18681 inst.instruction |= HI1 (dn) << 7;
18682 inst.instruction |= inst.operands[1].reg << 12;
18683 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
18684 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18685 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18686 }
18687 break;
5f4273c7 18688
037e8744 18689 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
18690 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18691 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18692 _(BAD_FPU));
b7fc2769 18693
037e8744
JB
18694 inst.instruction = 0xc400b10;
18695 do_vfp_cond_or_thumb ();
18696 inst.instruction |= LOW4 (inst.operands[0].reg);
18697 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18698 inst.instruction |= inst.operands[1].reg << 12;
18699 inst.instruction |= inst.operands[2].reg << 16;
18700 break;
5f4273c7 18701
037e8744
JB
18702 case NS_RS: /* case 6. */
18703 {
477330fc
RM
18704 unsigned logsize;
18705 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18706 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18707 unsigned abcdebits = 0;
037e8744 18708
05ac0ffb
JB
18709 /* .<dt> is optional here, defaulting to .32. */
18710 if (inst.vectype.elems == 0
18711 && inst.operands[0].vectype.type == NT_invtype
18712 && inst.operands[1].vectype.type == NT_invtype)
18713 {
18714 inst.vectype.el[0].type = NT_untyped;
18715 inst.vectype.el[0].size = 32;
18716 inst.vectype.elems = 1;
18717 }
18718
91d6fa6a
NC
18719 et = neon_check_type (2, NS_NULL,
18720 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
18721 logsize = neon_logbits (et.size);
18722
57785aa2
AV
18723 if (et.size != 32)
18724 {
18725 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18726 && vfp_or_neon_is_neon (NEON_CHECK_CC
18727 | NEON_CHECK_ARCH) == FAIL)
18728 return;
18729 }
18730 else
18731 {
18732 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18733 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18734 _(BAD_FPU));
18735 }
18736
18737 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18738 {
18739 if (inst.operands[0].reg == REG_SP)
18740 as_tsktsk (MVE_BAD_SP);
18741 else if (inst.operands[0].reg == REG_PC)
18742 as_tsktsk (MVE_BAD_PC);
18743 }
18744
18745 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18746
477330fc 18747 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 18748 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
18749
18750 switch (et.size)
18751 {
18752 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18753 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18754 case 32: abcdebits = 0x00; break;
18755 default: ;
18756 }
18757
57785aa2 18758 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18759 inst.instruction = 0xe100b10;
18760 do_vfp_cond_or_thumb ();
18761 inst.instruction |= LOW4 (dn) << 16;
18762 inst.instruction |= HI1 (dn) << 7;
18763 inst.instruction |= inst.operands[0].reg << 12;
18764 inst.instruction |= (abcdebits & 3) << 5;
18765 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 18766 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18767 }
18768 break;
5f4273c7 18769
037e8744 18770 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
18771 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18772 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18773 _(BAD_FPU));
037e8744
JB
18774
18775 inst.instruction = 0xc500b10;
18776 do_vfp_cond_or_thumb ();
18777 inst.instruction |= inst.operands[0].reg << 12;
18778 inst.instruction |= inst.operands[1].reg << 16;
18779 inst.instruction |= LOW4 (inst.operands[2].reg);
18780 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18781 break;
5f4273c7 18782
037e8744
JB
18783 case NS_FF: /* case 8 (fcpys). */
18784 do_vfp_nsyn_opcode ("fcpys");
18785 break;
5f4273c7 18786
9db2f6b4 18787 case NS_HI:
037e8744
JB
18788 case NS_FI: /* case 10 (fconsts). */
18789 ldconst = "fconsts";
4ef4710f 18790 encode_fconstd:
58ed5c38
TC
18791 if (!inst.operands[1].immisfloat)
18792 {
4ef4710f 18793 unsigned new_imm;
58ed5c38 18794 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
18795 float imm = (float) inst.operands[1].imm;
18796 memcpy (&new_imm, &imm, sizeof (float));
18797 /* But the assembly may have been written to provide an integer
18798 bit pattern that equates to a float, so check that the
18799 conversion has worked. */
18800 if (is_quarter_float (new_imm))
18801 {
18802 if (is_quarter_float (inst.operands[1].imm))
18803 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18804
18805 inst.operands[1].imm = new_imm;
18806 inst.operands[1].immisfloat = 1;
18807 }
58ed5c38
TC
18808 }
18809
037e8744 18810 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
18811 {
18812 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18813 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
18814
18815 /* ARMv8.2 fp16 vmov.f16 instruction. */
18816 if (rs == NS_HI)
18817 do_scalar_fp16_v82_encode ();
477330fc 18818 }
5287ad62 18819 else
477330fc 18820 first_error (_("immediate out of range"));
037e8744 18821 break;
5f4273c7 18822
9db2f6b4 18823 case NS_RH:
037e8744
JB
18824 case NS_RF: /* case 12 (fmrs). */
18825 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
18826 /* ARMv8.2 fp16 vmov.f16 instruction. */
18827 if (rs == NS_RH)
18828 do_scalar_fp16_v82_encode ();
037e8744 18829 break;
5f4273c7 18830
9db2f6b4 18831 case NS_HR:
037e8744
JB
18832 case NS_FR: /* case 13 (fmsr). */
18833 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
18834 /* ARMv8.2 fp16 vmov.f16 instruction. */
18835 if (rs == NS_HR)
18836 do_scalar_fp16_v82_encode ();
037e8744 18837 break;
5f4273c7 18838
57785aa2
AV
18839 case NS_RRSS:
18840 do_mve_mov (0);
18841 break;
18842 case NS_SSRR:
18843 do_mve_mov (1);
18844 break;
18845
037e8744
JB
18846 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18847 (one of which is a list), but we have parsed four. Do some fiddling to
18848 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18849 expect. */
18850 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
18851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18852 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18853 _(BAD_FPU));
037e8744 18854 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 18855 _("VFP registers must be adjacent"));
037e8744
JB
18856 inst.operands[2].imm = 2;
18857 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18858 do_vfp_nsyn_opcode ("fmrrs");
18859 break;
5f4273c7 18860
037e8744 18861 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
18862 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18863 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18864 _(BAD_FPU));
037e8744 18865 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 18866 _("VFP registers must be adjacent"));
037e8744
JB
18867 inst.operands[1] = inst.operands[2];
18868 inst.operands[2] = inst.operands[3];
18869 inst.operands[0].imm = 2;
18870 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18871 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 18872 break;
5f4273c7 18873
4c261dff
NC
18874 case NS_NULL:
18875 /* neon_select_shape has determined that the instruction
18876 shape is wrong and has already set the error message. */
18877 break;
18878
5287ad62
JB
18879 default:
18880 abort ();
18881 }
18882}
18883
57785aa2
AV
18884static void
18885do_mve_movl (void)
18886{
18887 if (!(inst.operands[0].present && inst.operands[0].isquad
18888 && inst.operands[1].present && inst.operands[1].isquad
18889 && !inst.operands[2].present))
18890 {
18891 inst.instruction = 0;
18892 inst.cond = 0xb;
18893 if (thumb_mode)
18894 set_pred_insn_type (INSIDE_IT_INSN);
18895 do_neon_mov ();
18896 return;
18897 }
18898
18899 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18900 return;
18901
18902 if (inst.cond != COND_ALWAYS)
18903 inst.pred_insn_type = INSIDE_VPT_INSN;
18904
18905 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18906 | N_S16 | N_U16 | N_KEY);
18907
18908 inst.instruction |= (et.type == NT_unsigned) << 28;
18909 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18910 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18911 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18912 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18913 inst.instruction |= LOW4 (inst.operands[1].reg);
18914 inst.is_neon = 1;
18915}
18916
5287ad62
JB
18917static void
18918do_neon_rshift_round_imm (void)
18919{
037e8744 18920 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
18921 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18922 int imm = inst.operands[2].imm;
18923
18924 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18925 if (imm == 0)
18926 {
18927 inst.operands[2].present = 0;
18928 do_neon_mov ();
18929 return;
18930 }
18931
18932 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18933 _("immediate out of range for shift"));
037e8744 18934 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 18935 et.size - imm);
5287ad62
JB
18936}
18937
9db2f6b4
RL
18938static void
18939do_neon_movhf (void)
18940{
18941 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18942 constraint (rs != NS_HH, _("invalid suffix"));
18943
7bdf778b
ASDV
18944 if (inst.cond != COND_ALWAYS)
18945 {
18946 if (thumb_mode)
18947 {
18948 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18949 " the behaviour is UNPREDICTABLE"));
18950 }
18951 else
18952 {
18953 inst.error = BAD_COND;
18954 return;
18955 }
18956 }
18957
9db2f6b4
RL
18958 do_vfp_sp_monadic ();
18959
18960 inst.is_neon = 1;
18961 inst.instruction |= 0xf0000000;
18962}
18963
5287ad62
JB
18964static void
18965do_neon_movl (void)
18966{
18967 struct neon_type_el et = neon_check_type (2, NS_QD,
18968 N_EQK | N_DBL, N_SU_32 | N_KEY);
18969 unsigned sizebits = et.size >> 3;
18970 inst.instruction |= sizebits << 19;
18971 neon_two_same (0, et.type == NT_unsigned, -1);
18972}
18973
18974static void
18975do_neon_trn (void)
18976{
037e8744 18977 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18978 struct neon_type_el et = neon_check_type (2, rs,
18979 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 18980 NEON_ENCODE (INTEGER, inst);
037e8744 18981 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18982}
18983
18984static void
18985do_neon_zip_uzp (void)
18986{
037e8744 18987 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18988 struct neon_type_el et = neon_check_type (2, rs,
18989 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18990 if (rs == NS_DD && et.size == 32)
18991 {
18992 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18993 inst.instruction = N_MNEM_vtrn;
18994 do_neon_trn ();
18995 return;
18996 }
037e8744 18997 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18998}
18999
19000static void
19001do_neon_sat_abs_neg (void)
19002{
037e8744 19003 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19004 struct neon_type_el et = neon_check_type (2, rs,
19005 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19006 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19007}
19008
19009static void
19010do_neon_pair_long (void)
19011{
037e8744 19012 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19013 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19014 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19015 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19016 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19017}
19018
19019static void
19020do_neon_recip_est (void)
19021{
037e8744 19022 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19023 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19024 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19025 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19026 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19027}
19028
19029static void
19030do_neon_cls (void)
19031{
f30ee27c
AV
19032 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19033 return;
19034
19035 enum neon_shape rs;
19036 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19037 rs = neon_select_shape (NS_QQ, NS_NULL);
19038 else
19039 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19040
5287ad62
JB
19041 struct neon_type_el et = neon_check_type (2, rs,
19042 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19043 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19044}
19045
19046static void
19047do_neon_clz (void)
19048{
f30ee27c
AV
19049 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19050 return;
19051
19052 enum neon_shape rs;
19053 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19054 rs = neon_select_shape (NS_QQ, NS_NULL);
19055 else
19056 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19057
5287ad62
JB
19058 struct neon_type_el et = neon_check_type (2, rs,
19059 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19060 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19061}
19062
19063static void
19064do_neon_cnt (void)
19065{
037e8744 19066 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19067 struct neon_type_el et = neon_check_type (2, rs,
19068 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19069 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19070}
19071
19072static void
19073do_neon_swp (void)
19074{
037e8744
JB
19075 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19076 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19077}
19078
19079static void
19080do_neon_tbl_tbx (void)
19081{
19082 unsigned listlenbits;
dcbf9037 19083 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19084
5287ad62
JB
19085 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19086 {
dcbf9037 19087 first_error (_("bad list length for table lookup"));
5287ad62
JB
19088 return;
19089 }
5f4273c7 19090
5287ad62
JB
19091 listlenbits = inst.operands[1].imm - 1;
19092 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19093 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19094 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19095 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19096 inst.instruction |= LOW4 (inst.operands[2].reg);
19097 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19098 inst.instruction |= listlenbits << 8;
5f4273c7 19099
88714cb8 19100 neon_dp_fixup (&inst);
5287ad62
JB
19101}
19102
19103static void
19104do_neon_ldm_stm (void)
19105{
19106 /* P, U and L bits are part of bitmask. */
19107 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19108 unsigned offsetbits = inst.operands[1].imm * 2;
19109
037e8744
JB
19110 if (inst.operands[1].issingle)
19111 {
19112 do_vfp_nsyn_ldm_stm (is_dbmode);
19113 return;
19114 }
19115
5287ad62 19116 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19117 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19118
19119 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19120 _("register list must contain at least 1 and at most 16 "
19121 "registers"));
5287ad62
JB
19122
19123 inst.instruction |= inst.operands[0].reg << 16;
19124 inst.instruction |= inst.operands[0].writeback << 21;
19125 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19126 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19127
19128 inst.instruction |= offsetbits;
5f4273c7 19129
037e8744 19130 do_vfp_cond_or_thumb ();
5287ad62
JB
19131}
19132
19133static void
19134do_neon_ldr_str (void)
19135{
5287ad62 19136 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19137
6844b2c2
MGD
19138 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19139 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19140 if (!is_ldr
6844b2c2 19141 && inst.operands[1].reg == REG_PC
ba86b375 19142 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19143 {
94dcf8bf 19144 if (thumb_mode)
6844b2c2 19145 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19146 else if (warn_on_deprecated)
5c3696f8 19147 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19148 }
19149
037e8744
JB
19150 if (inst.operands[0].issingle)
19151 {
cd2f129f 19152 if (is_ldr)
477330fc 19153 do_vfp_nsyn_opcode ("flds");
cd2f129f 19154 else
477330fc 19155 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19156
19157 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19158 if (inst.vectype.el[0].size == 16)
19159 do_scalar_fp16_v82_encode ();
5287ad62
JB
19160 }
19161 else
5287ad62 19162 {
cd2f129f 19163 if (is_ldr)
477330fc 19164 do_vfp_nsyn_opcode ("fldd");
5287ad62 19165 else
477330fc 19166 do_vfp_nsyn_opcode ("fstd");
5287ad62 19167 }
5287ad62
JB
19168}
19169
32c36c3c
AV
19170static void
19171do_t_vldr_vstr_sysreg (void)
19172{
19173 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19174 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19175
19176 /* Use of PC is UNPREDICTABLE. */
19177 if (inst.operands[1].reg == REG_PC)
19178 inst.error = _("Use of PC here is UNPREDICTABLE");
19179
19180 if (inst.operands[1].immisreg)
19181 inst.error = _("instruction does not accept register index");
19182
19183 if (!inst.operands[1].isreg)
19184 inst.error = _("instruction does not accept PC-relative addressing");
19185
19186 if (abs (inst.operands[1].imm) >= (1 << 7))
19187 inst.error = _("immediate value out of range");
19188
19189 inst.instruction = 0xec000f80;
19190 if (is_vldr)
19191 inst.instruction |= 1 << sysreg_vldr_bitno;
19192 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19193 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19194 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19195}
19196
19197static void
19198do_vldr_vstr (void)
19199{
19200 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19201
19202 /* VLDR/VSTR (System Register). */
19203 if (sysreg_op)
19204 {
19205 if (!mark_feature_used (&arm_ext_v8_1m_main))
19206 as_bad (_("Instruction not permitted on this architecture"));
19207
19208 do_t_vldr_vstr_sysreg ();
19209 }
19210 /* VLDR/VSTR. */
19211 else
19212 {
19213 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19214 as_bad (_("Instruction not permitted on this architecture"));
19215 do_neon_ldr_str ();
19216 }
19217}
19218
5287ad62
JB
19219/* "interleave" version also handles non-interleaving register VLD1/VST1
19220 instructions. */
19221
19222static void
19223do_neon_ld_st_interleave (void)
19224{
037e8744 19225 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19226 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19227 unsigned alignbits = 0;
19228 unsigned idx;
19229 /* The bits in this table go:
19230 0: register stride of one (0) or two (1)
19231 1,2: register list length, minus one (1, 2, 3, 4).
19232 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19233 We use -1 for invalid entries. */
19234 const int typetable[] =
19235 {
19236 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19237 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19238 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19239 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19240 };
19241 int typebits;
19242
dcbf9037
JB
19243 if (et.type == NT_invtype)
19244 return;
19245
5287ad62
JB
19246 if (inst.operands[1].immisalign)
19247 switch (inst.operands[1].imm >> 8)
19248 {
19249 case 64: alignbits = 1; break;
19250 case 128:
477330fc 19251 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19252 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19253 goto bad_alignment;
19254 alignbits = 2;
19255 break;
5287ad62 19256 case 256:
477330fc
RM
19257 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19258 goto bad_alignment;
19259 alignbits = 3;
19260 break;
5287ad62
JB
19261 default:
19262 bad_alignment:
477330fc
RM
19263 first_error (_("bad alignment"));
19264 return;
5287ad62
JB
19265 }
19266
19267 inst.instruction |= alignbits << 4;
19268 inst.instruction |= neon_logbits (et.size) << 6;
19269
19270 /* Bits [4:6] of the immediate in a list specifier encode register stride
19271 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19272 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19273 up the right value for "type" in a table based on this value and the given
19274 list style, then stick it back. */
19275 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19276 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19277
19278 typebits = typetable[idx];
5f4273c7 19279
5287ad62 19280 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19281 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19282 BAD_EL_TYPE);
5287ad62
JB
19283
19284 inst.instruction &= ~0xf00;
19285 inst.instruction |= typebits << 8;
19286}
19287
19288/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19289 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19290 otherwise. The variable arguments are a list of pairs of legal (size, align)
19291 values, terminated with -1. */
19292
19293static int
aa8a0863 19294neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19295{
19296 va_list ap;
19297 int result = FAIL, thissize, thisalign;
5f4273c7 19298
5287ad62
JB
19299 if (!inst.operands[1].immisalign)
19300 {
aa8a0863 19301 *do_alignment = 0;
5287ad62
JB
19302 return SUCCESS;
19303 }
5f4273c7 19304
aa8a0863 19305 va_start (ap, do_alignment);
5287ad62
JB
19306
19307 do
19308 {
19309 thissize = va_arg (ap, int);
19310 if (thissize == -1)
477330fc 19311 break;
5287ad62
JB
19312 thisalign = va_arg (ap, int);
19313
19314 if (size == thissize && align == thisalign)
477330fc 19315 result = SUCCESS;
5287ad62
JB
19316 }
19317 while (result != SUCCESS);
19318
19319 va_end (ap);
19320
19321 if (result == SUCCESS)
aa8a0863 19322 *do_alignment = 1;
5287ad62 19323 else
dcbf9037 19324 first_error (_("unsupported alignment for instruction"));
5f4273c7 19325
5287ad62
JB
19326 return result;
19327}
19328
19329static void
19330do_neon_ld_st_lane (void)
19331{
037e8744 19332 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19333 int align_good, do_alignment = 0;
5287ad62
JB
19334 int logsize = neon_logbits (et.size);
19335 int align = inst.operands[1].imm >> 8;
19336 int n = (inst.instruction >> 8) & 3;
19337 int max_el = 64 / et.size;
5f4273c7 19338
dcbf9037
JB
19339 if (et.type == NT_invtype)
19340 return;
5f4273c7 19341
5287ad62 19342 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19343 _("bad list length"));
5287ad62 19344 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19345 _("scalar index out of range"));
5287ad62 19346 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19347 && et.size == 8,
19348 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19349
5287ad62
JB
19350 switch (n)
19351 {
19352 case 0: /* VLD1 / VST1. */
aa8a0863 19353 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19354 32, 32, -1);
5287ad62 19355 if (align_good == FAIL)
477330fc 19356 return;
aa8a0863 19357 if (do_alignment)
477330fc
RM
19358 {
19359 unsigned alignbits = 0;
19360 switch (et.size)
19361 {
19362 case 16: alignbits = 0x1; break;
19363 case 32: alignbits = 0x3; break;
19364 default: ;
19365 }
19366 inst.instruction |= alignbits << 4;
19367 }
5287ad62
JB
19368 break;
19369
19370 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19371 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19372 16, 32, 32, 64, -1);
5287ad62 19373 if (align_good == FAIL)
477330fc 19374 return;
aa8a0863 19375 if (do_alignment)
477330fc 19376 inst.instruction |= 1 << 4;
5287ad62
JB
19377 break;
19378
19379 case 2: /* VLD3 / VST3. */
19380 constraint (inst.operands[1].immisalign,
477330fc 19381 _("can't use alignment with this instruction"));
5287ad62
JB
19382 break;
19383
19384 case 3: /* VLD4 / VST4. */
aa8a0863 19385 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19386 16, 64, 32, 64, 32, 128, -1);
5287ad62 19387 if (align_good == FAIL)
477330fc 19388 return;
aa8a0863 19389 if (do_alignment)
477330fc
RM
19390 {
19391 unsigned alignbits = 0;
19392 switch (et.size)
19393 {
19394 case 8: alignbits = 0x1; break;
19395 case 16: alignbits = 0x1; break;
19396 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19397 default: ;
19398 }
19399 inst.instruction |= alignbits << 4;
19400 }
5287ad62
JB
19401 break;
19402
19403 default: ;
19404 }
19405
19406 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19407 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19408 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19409
5287ad62
JB
19410 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19411 inst.instruction |= logsize << 10;
19412}
19413
19414/* Encode single n-element structure to all lanes VLD<n> instructions. */
19415
19416static void
19417do_neon_ld_dup (void)
19418{
037e8744 19419 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19420 int align_good, do_alignment = 0;
5287ad62 19421
dcbf9037
JB
19422 if (et.type == NT_invtype)
19423 return;
19424
5287ad62
JB
19425 switch ((inst.instruction >> 8) & 3)
19426 {
19427 case 0: /* VLD1. */
9c2799c2 19428 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19429 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19430 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19431 if (align_good == FAIL)
477330fc 19432 return;
5287ad62 19433 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19434 {
19435 case 1: break;
19436 case 2: inst.instruction |= 1 << 5; break;
19437 default: first_error (_("bad list length")); return;
19438 }
5287ad62
JB
19439 inst.instruction |= neon_logbits (et.size) << 6;
19440 break;
19441
19442 case 1: /* VLD2. */
19443 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19444 &do_alignment, 8, 16, 16, 32, 32, 64,
19445 -1);
5287ad62 19446 if (align_good == FAIL)
477330fc 19447 return;
5287ad62 19448 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19449 _("bad list length"));
5287ad62 19450 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19451 inst.instruction |= 1 << 5;
5287ad62
JB
19452 inst.instruction |= neon_logbits (et.size) << 6;
19453 break;
19454
19455 case 2: /* VLD3. */
19456 constraint (inst.operands[1].immisalign,
477330fc 19457 _("can't use alignment with this instruction"));
5287ad62 19458 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19459 _("bad list length"));
5287ad62 19460 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19461 inst.instruction |= 1 << 5;
5287ad62
JB
19462 inst.instruction |= neon_logbits (et.size) << 6;
19463 break;
19464
19465 case 3: /* VLD4. */
19466 {
477330fc 19467 int align = inst.operands[1].imm >> 8;
aa8a0863 19468 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19469 16, 64, 32, 64, 32, 128, -1);
19470 if (align_good == FAIL)
19471 return;
19472 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19473 _("bad list length"));
19474 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19475 inst.instruction |= 1 << 5;
19476 if (et.size == 32 && align == 128)
19477 inst.instruction |= 0x3 << 6;
19478 else
19479 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19480 }
19481 break;
19482
19483 default: ;
19484 }
19485
aa8a0863 19486 inst.instruction |= do_alignment << 4;
5287ad62
JB
19487}
19488
19489/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19490 apart from bits [11:4]. */
19491
19492static void
19493do_neon_ldx_stx (void)
19494{
b1a769ed
DG
19495 if (inst.operands[1].isreg)
19496 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19497
5287ad62
JB
19498 switch (NEON_LANE (inst.operands[0].imm))
19499 {
19500 case NEON_INTERLEAVE_LANES:
88714cb8 19501 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19502 do_neon_ld_st_interleave ();
19503 break;
5f4273c7 19504
5287ad62 19505 case NEON_ALL_LANES:
88714cb8 19506 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19507 if (inst.instruction == N_INV)
19508 {
19509 first_error ("only loads support such operands");
19510 break;
19511 }
5287ad62
JB
19512 do_neon_ld_dup ();
19513 break;
5f4273c7 19514
5287ad62 19515 default:
88714cb8 19516 NEON_ENCODE (LANE, inst);
5287ad62
JB
19517 do_neon_ld_st_lane ();
19518 }
19519
19520 /* L bit comes from bit mask. */
19521 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19522 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19523 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19524
5287ad62
JB
19525 if (inst.operands[1].postind)
19526 {
19527 int postreg = inst.operands[1].imm & 0xf;
19528 constraint (!inst.operands[1].immisreg,
477330fc 19529 _("post-index must be a register"));
5287ad62 19530 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19531 _("bad register for post-index"));
5287ad62
JB
19532 inst.instruction |= postreg;
19533 }
4f2374c7 19534 else
5287ad62 19535 {
4f2374c7 19536 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19537 constraint (inst.relocs[0].exp.X_op != O_constant
19538 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19539 BAD_ADDR_MODE);
19540
19541 if (inst.operands[1].writeback)
19542 {
19543 inst.instruction |= 0xd;
19544 }
19545 else
19546 inst.instruction |= 0xf;
5287ad62 19547 }
5f4273c7 19548
5287ad62
JB
19549 if (thumb_mode)
19550 inst.instruction |= 0xf9000000;
19551 else
19552 inst.instruction |= 0xf4000000;
19553}
33399f07
MGD
19554
19555/* FP v8. */
19556static void
19557do_vfp_nsyn_fpv8 (enum neon_shape rs)
19558{
a715796b
TG
19559 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19560 D register operands. */
19561 if (neon_shape_class[rs] == SC_DOUBLE)
19562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19563 _(BAD_FPU));
19564
33399f07
MGD
19565 NEON_ENCODE (FPV8, inst);
19566
9db2f6b4
RL
19567 if (rs == NS_FFF || rs == NS_HHH)
19568 {
19569 do_vfp_sp_dyadic ();
19570
19571 /* ARMv8.2 fp16 instruction. */
19572 if (rs == NS_HHH)
19573 do_scalar_fp16_v82_encode ();
19574 }
33399f07
MGD
19575 else
19576 do_vfp_dp_rd_rn_rm ();
19577
19578 if (rs == NS_DDD)
19579 inst.instruction |= 0x100;
19580
19581 inst.instruction |= 0xf0000000;
19582}
19583
19584static void
19585do_vsel (void)
19586{
5ee91343 19587 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19588
19589 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19590 first_error (_("invalid instruction shape"));
19591}
19592
73924fbc
MGD
19593static void
19594do_vmaxnm (void)
19595{
5ee91343 19596 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
19597
19598 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19599 return;
19600
19601 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19602 return;
19603
cc933301 19604 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
19605}
19606
30bdf752
MGD
19607static void
19608do_vrint_1 (enum neon_cvt_mode mode)
19609{
9db2f6b4 19610 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
19611 struct neon_type_el et;
19612
19613 if (rs == NS_NULL)
19614 return;
19615
a715796b
TG
19616 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19617 D register operands. */
19618 if (neon_shape_class[rs] == SC_DOUBLE)
19619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19620 _(BAD_FPU));
19621
9db2f6b4
RL
19622 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19623 | N_VFP);
30bdf752
MGD
19624 if (et.type != NT_invtype)
19625 {
19626 /* VFP encodings. */
19627 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19628 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 19629 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19630
19631 NEON_ENCODE (FPV8, inst);
9db2f6b4 19632 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
19633 do_vfp_sp_monadic ();
19634 else
19635 do_vfp_dp_rd_rm ();
19636
19637 switch (mode)
19638 {
19639 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19640 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19641 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19642 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19643 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19644 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19645 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19646 default: abort ();
19647 }
19648
19649 inst.instruction |= (rs == NS_DD) << 8;
19650 do_vfp_cond_or_thumb ();
9db2f6b4
RL
19651
19652 /* ARMv8.2 fp16 vrint instruction. */
19653 if (rs == NS_HH)
19654 do_scalar_fp16_v82_encode ();
30bdf752
MGD
19655 }
19656 else
19657 {
19658 /* Neon encodings (or something broken...). */
19659 inst.error = NULL;
cc933301 19660 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
19661
19662 if (et.type == NT_invtype)
19663 return;
19664
5ee91343 19665 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19666 NEON_ENCODE (FLOAT, inst);
19667
19668 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19669 return;
19670
19671 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19672 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19673 inst.instruction |= LOW4 (inst.operands[1].reg);
19674 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19675 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19676 /* Mask off the original size bits and reencode them. */
19677 inst.instruction = ((inst.instruction & 0xfff3ffff)
19678 | neon_logbits (et.size) << 18);
19679
30bdf752
MGD
19680 switch (mode)
19681 {
19682 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19683 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19684 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19685 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19686 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19687 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19688 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19689 default: abort ();
19690 }
19691
19692 if (thumb_mode)
19693 inst.instruction |= 0xfc000000;
19694 else
19695 inst.instruction |= 0xf0000000;
19696 }
19697}
19698
19699static void
19700do_vrintx (void)
19701{
19702 do_vrint_1 (neon_cvt_mode_x);
19703}
19704
19705static void
19706do_vrintz (void)
19707{
19708 do_vrint_1 (neon_cvt_mode_z);
19709}
19710
19711static void
19712do_vrintr (void)
19713{
19714 do_vrint_1 (neon_cvt_mode_r);
19715}
19716
19717static void
19718do_vrinta (void)
19719{
19720 do_vrint_1 (neon_cvt_mode_a);
19721}
19722
19723static void
19724do_vrintn (void)
19725{
19726 do_vrint_1 (neon_cvt_mode_n);
19727}
19728
19729static void
19730do_vrintp (void)
19731{
19732 do_vrint_1 (neon_cvt_mode_p);
19733}
19734
19735static void
19736do_vrintm (void)
19737{
19738 do_vrint_1 (neon_cvt_mode_m);
19739}
19740
c28eeff2
SN
19741static unsigned
19742neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19743{
19744 unsigned regno = NEON_SCALAR_REG (opnd);
19745 unsigned elno = NEON_SCALAR_INDEX (opnd);
19746
19747 if (elsize == 16 && elno < 2 && regno < 16)
19748 return regno | (elno << 4);
19749 else if (elsize == 32 && elno == 0)
19750 return regno;
19751
19752 first_error (_("scalar out of range"));
19753 return 0;
19754}
19755
19756static void
19757do_vcmla (void)
19758{
5d281bf0
AV
19759 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19760 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19761 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19762 constraint (inst.relocs[0].exp.X_op != O_constant,
19763 _("expression too complex"));
19764 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
19765 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19766 _("immediate out of range"));
19767 rot /= 90;
5d281bf0
AV
19768
19769 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19770 return;
19771
c28eeff2
SN
19772 if (inst.operands[2].isscalar)
19773 {
5d281bf0
AV
19774 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19775 first_error (_("invalid instruction shape"));
c28eeff2
SN
19776 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19777 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19778 N_KEY | N_F16 | N_F32).size;
19779 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19780 inst.is_neon = 1;
19781 inst.instruction = 0xfe000800;
19782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19783 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19784 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19785 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19786 inst.instruction |= LOW4 (m);
19787 inst.instruction |= HI1 (m) << 5;
19788 inst.instruction |= neon_quad (rs) << 6;
19789 inst.instruction |= rot << 20;
19790 inst.instruction |= (size == 32) << 23;
19791 }
19792 else
19793 {
5d281bf0
AV
19794 enum neon_shape rs;
19795 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19796 rs = neon_select_shape (NS_QQQI, NS_NULL);
19797 else
19798 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19799
c28eeff2
SN
19800 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19801 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
19802 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19803 && (inst.operands[0].reg == inst.operands[1].reg
19804 || inst.operands[0].reg == inst.operands[2].reg))
19805 as_tsktsk (BAD_MVE_SRCDEST);
19806
c28eeff2
SN
19807 neon_three_same (neon_quad (rs), 0, -1);
19808 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19809 inst.instruction |= 0xfc200800;
19810 inst.instruction |= rot << 23;
19811 inst.instruction |= (size == 32) << 20;
19812 }
19813}
19814
19815static void
19816do_vcadd (void)
19817{
5d281bf0
AV
19818 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19819 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19820 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19821 constraint (inst.relocs[0].exp.X_op != O_constant,
19822 _("expression too complex"));
5d281bf0 19823
e2b0ab59 19824 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 19825 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
19826 enum neon_shape rs;
19827 struct neon_type_el et;
19828 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19829 {
19830 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19831 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19832 }
19833 else
19834 {
19835 rs = neon_select_shape (NS_QQQI, NS_NULL);
19836 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19837 | N_I16 | N_I32);
19838 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19839 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19840 "operand makes instruction UNPREDICTABLE"));
19841 }
19842
19843 if (et.type == NT_invtype)
19844 return;
19845
19846 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19847 | NEON_CHECK_CC))
19848 return;
19849
19850 if (et.type == NT_float)
19851 {
19852 neon_three_same (neon_quad (rs), 0, -1);
19853 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19854 inst.instruction |= 0xfc800800;
19855 inst.instruction |= (rot == 270) << 24;
19856 inst.instruction |= (et.size == 32) << 20;
19857 }
19858 else
19859 {
19860 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
19861 inst.instruction = 0xfe000f00;
19862 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19863 inst.instruction |= neon_logbits (et.size) << 20;
19864 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19865 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19866 inst.instruction |= (rot == 270) << 12;
19867 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19868 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19869 inst.instruction |= LOW4 (inst.operands[2].reg);
19870 inst.is_neon = 1;
19871 }
c28eeff2
SN
19872}
19873
c604a79a
JW
19874/* Dot Product instructions encoding support. */
19875
19876static void
19877do_neon_dotproduct (int unsigned_p)
19878{
19879 enum neon_shape rs;
19880 unsigned scalar_oprd2 = 0;
19881 int high8;
19882
19883 if (inst.cond != COND_ALWAYS)
19884 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19885 "is UNPREDICTABLE"));
19886
19887 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19888 _(BAD_FPU));
19889
19890 /* Dot Product instructions are in three-same D/Q register format or the third
19891 operand can be a scalar index register. */
19892 if (inst.operands[2].isscalar)
19893 {
19894 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19895 high8 = 0xfe000000;
19896 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19897 }
19898 else
19899 {
19900 high8 = 0xfc000000;
19901 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19902 }
19903
19904 if (unsigned_p)
19905 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19906 else
19907 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19908
19909 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19910 Product instruction, so we pass 0 as the "ubit" parameter. And the
19911 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19912 neon_three_same (neon_quad (rs), 0, 32);
19913
19914 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19915 different NEON three-same encoding. */
19916 inst.instruction &= 0x00ffffff;
19917 inst.instruction |= high8;
19918 /* Encode 'U' bit which indicates signedness. */
19919 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19920 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19921 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19922 the instruction encoding. */
19923 if (inst.operands[2].isscalar)
19924 {
19925 inst.instruction &= 0xffffffd0;
19926 inst.instruction |= LOW4 (scalar_oprd2);
19927 inst.instruction |= HI1 (scalar_oprd2) << 5;
19928 }
19929}
19930
19931/* Dot Product instructions for signed integer. */
19932
19933static void
19934do_neon_dotproduct_s (void)
19935{
19936 return do_neon_dotproduct (0);
19937}
19938
19939/* Dot Product instructions for unsigned integer. */
19940
19941static void
19942do_neon_dotproduct_u (void)
19943{
19944 return do_neon_dotproduct (1);
19945}
19946
91ff7894
MGD
19947/* Crypto v1 instructions. */
19948static void
19949do_crypto_2op_1 (unsigned elttype, int op)
19950{
5ee91343 19951 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
19952
19953 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19954 == NT_invtype)
19955 return;
19956
19957 inst.error = NULL;
19958
19959 NEON_ENCODE (INTEGER, inst);
19960 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19961 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19962 inst.instruction |= LOW4 (inst.operands[1].reg);
19963 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19964 if (op != -1)
19965 inst.instruction |= op << 6;
19966
19967 if (thumb_mode)
19968 inst.instruction |= 0xfc000000;
19969 else
19970 inst.instruction |= 0xf0000000;
19971}
19972
48adcd8e
MGD
19973static void
19974do_crypto_3op_1 (int u, int op)
19975{
5ee91343 19976 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
19977
19978 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19979 N_32 | N_UNT | N_KEY).type == NT_invtype)
19980 return;
19981
19982 inst.error = NULL;
19983
19984 NEON_ENCODE (INTEGER, inst);
19985 neon_three_same (1, u, 8 << op);
19986}
19987
91ff7894
MGD
19988static void
19989do_aese (void)
19990{
19991 do_crypto_2op_1 (N_8, 0);
19992}
19993
19994static void
19995do_aesd (void)
19996{
19997 do_crypto_2op_1 (N_8, 1);
19998}
19999
20000static void
20001do_aesmc (void)
20002{
20003 do_crypto_2op_1 (N_8, 2);
20004}
20005
20006static void
20007do_aesimc (void)
20008{
20009 do_crypto_2op_1 (N_8, 3);
20010}
20011
48adcd8e
MGD
20012static void
20013do_sha1c (void)
20014{
20015 do_crypto_3op_1 (0, 0);
20016}
20017
20018static void
20019do_sha1p (void)
20020{
20021 do_crypto_3op_1 (0, 1);
20022}
20023
20024static void
20025do_sha1m (void)
20026{
20027 do_crypto_3op_1 (0, 2);
20028}
20029
20030static void
20031do_sha1su0 (void)
20032{
20033 do_crypto_3op_1 (0, 3);
20034}
91ff7894 20035
48adcd8e
MGD
20036static void
20037do_sha256h (void)
20038{
20039 do_crypto_3op_1 (1, 0);
20040}
20041
20042static void
20043do_sha256h2 (void)
20044{
20045 do_crypto_3op_1 (1, 1);
20046}
20047
20048static void
20049do_sha256su1 (void)
20050{
20051 do_crypto_3op_1 (1, 2);
20052}
3c9017d2
MGD
20053
20054static void
20055do_sha1h (void)
20056{
20057 do_crypto_2op_1 (N_32, -1);
20058}
20059
20060static void
20061do_sha1su1 (void)
20062{
20063 do_crypto_2op_1 (N_32, 0);
20064}
20065
20066static void
20067do_sha256su0 (void)
20068{
20069 do_crypto_2op_1 (N_32, 1);
20070}
dd5181d5
KT
20071
20072static void
20073do_crc32_1 (unsigned int poly, unsigned int sz)
20074{
20075 unsigned int Rd = inst.operands[0].reg;
20076 unsigned int Rn = inst.operands[1].reg;
20077 unsigned int Rm = inst.operands[2].reg;
20078
5ee91343 20079 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20080 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20081 inst.instruction |= LOW4 (Rn) << 16;
20082 inst.instruction |= LOW4 (Rm);
20083 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20084 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20085
20086 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20087 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20088}
20089
20090static void
20091do_crc32b (void)
20092{
20093 do_crc32_1 (0, 0);
20094}
20095
20096static void
20097do_crc32h (void)
20098{
20099 do_crc32_1 (0, 1);
20100}
20101
20102static void
20103do_crc32w (void)
20104{
20105 do_crc32_1 (0, 2);
20106}
20107
20108static void
20109do_crc32cb (void)
20110{
20111 do_crc32_1 (1, 0);
20112}
20113
20114static void
20115do_crc32ch (void)
20116{
20117 do_crc32_1 (1, 1);
20118}
20119
20120static void
20121do_crc32cw (void)
20122{
20123 do_crc32_1 (1, 2);
20124}
20125
49e8a725
SN
20126static void
20127do_vjcvt (void)
20128{
20129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20130 _(BAD_FPU));
20131 neon_check_type (2, NS_FD, N_S32, N_F64);
20132 do_vfp_sp_dp_cvt ();
20133 do_vfp_cond_or_thumb ();
20134}
20135
5287ad62
JB
20136\f
20137/* Overall per-instruction processing. */
20138
20139/* We need to be able to fix up arbitrary expressions in some statements.
20140 This is so that we can handle symbols that are an arbitrary distance from
20141 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20142 which returns part of an address in a form which will be valid for
20143 a data instruction. We do this by pushing the expression into a symbol
20144 in the expr_section, and creating a fix for that. */
20145
20146static void
20147fix_new_arm (fragS * frag,
20148 int where,
20149 short int size,
20150 expressionS * exp,
20151 int pc_rel,
20152 int reloc)
20153{
20154 fixS * new_fix;
20155
20156 switch (exp->X_op)
20157 {
20158 case O_constant:
6e7ce2cd
PB
20159 if (pc_rel)
20160 {
20161 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20162 refer to in the object file. Unfortunately for us, gas's
20163 generic expression parsing will already have folded out
20164 any use of .set foo/.type foo %function that may have
20165 been used to set type information of the target location,
20166 that's being specified symbolically. We have to presume
20167 the user knows what they are doing. */
6e7ce2cd
PB
20168 char name[16 + 8];
20169 symbolS *symbol;
20170
20171 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20172
20173 symbol = symbol_find_or_make (name);
20174 S_SET_SEGMENT (symbol, absolute_section);
20175 symbol_set_frag (symbol, &zero_address_frag);
20176 S_SET_VALUE (symbol, exp->X_add_number);
20177 exp->X_op = O_symbol;
20178 exp->X_add_symbol = symbol;
20179 exp->X_add_number = 0;
20180 }
20181 /* FALLTHROUGH */
5287ad62
JB
20182 case O_symbol:
20183 case O_add:
20184 case O_subtract:
21d799b5 20185 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20186 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20187 break;
20188
20189 default:
21d799b5 20190 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20191 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20192 break;
20193 }
20194
20195 /* Mark whether the fix is to a THUMB instruction, or an ARM
20196 instruction. */
20197 new_fix->tc_fix_data = thumb_mode;
20198}
20199
20200/* Create a frg for an instruction requiring relaxation. */
20201static void
20202output_relax_insn (void)
20203{
20204 char * to;
20205 symbolS *sym;
0110f2b8
PB
20206 int offset;
20207
6e1cb1a6
PB
20208 /* The size of the instruction is unknown, so tie the debug info to the
20209 start of the instruction. */
20210 dwarf2_emit_insn (0);
6e1cb1a6 20211
e2b0ab59 20212 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20213 {
20214 case O_symbol:
e2b0ab59
AV
20215 sym = inst.relocs[0].exp.X_add_symbol;
20216 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20217 break;
20218 case O_constant:
20219 sym = NULL;
e2b0ab59 20220 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20221 break;
20222 default:
e2b0ab59 20223 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20224 offset = 0;
20225 break;
20226 }
20227 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20228 inst.relax, sym, offset, NULL/*offset, opcode*/);
20229 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20230}
20231
20232/* Write a 32-bit thumb instruction to buf. */
20233static void
20234put_thumb32_insn (char * buf, unsigned long insn)
20235{
20236 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20237 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20238}
20239
b99bd4ef 20240static void
c19d1205 20241output_inst (const char * str)
b99bd4ef 20242{
c19d1205 20243 char * to = NULL;
b99bd4ef 20244
c19d1205 20245 if (inst.error)
b99bd4ef 20246 {
c19d1205 20247 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20248 return;
20249 }
5f4273c7
NC
20250 if (inst.relax)
20251 {
20252 output_relax_insn ();
0110f2b8 20253 return;
5f4273c7 20254 }
c19d1205
ZW
20255 if (inst.size == 0)
20256 return;
b99bd4ef 20257
c19d1205 20258 to = frag_more (inst.size);
8dc2430f
NC
20259 /* PR 9814: Record the thumb mode into the current frag so that we know
20260 what type of NOP padding to use, if necessary. We override any previous
20261 setting so that if the mode has changed then the NOPS that we use will
20262 match the encoding of the last instruction in the frag. */
cd000bff 20263 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20264
20265 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20266 {
9c2799c2 20267 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20268 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20269 }
c19d1205 20270 else if (inst.size > INSN_SIZE)
b99bd4ef 20271 {
9c2799c2 20272 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20273 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20274 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20275 }
c19d1205
ZW
20276 else
20277 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20278
e2b0ab59
AV
20279 int r;
20280 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20281 {
20282 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20283 fix_new_arm (frag_now, to - frag_now->fr_literal,
20284 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20285 inst.relocs[r].type);
20286 }
b99bd4ef 20287
c19d1205 20288 dwarf2_emit_insn (inst.size);
c19d1205 20289}
b99bd4ef 20290
e07e6e58
NC
20291static char *
20292output_it_inst (int cond, int mask, char * to)
20293{
20294 unsigned long instruction = 0xbf00;
20295
20296 mask &= 0xf;
20297 instruction |= mask;
20298 instruction |= cond << 4;
20299
20300 if (to == NULL)
20301 {
20302 to = frag_more (2);
20303#ifdef OBJ_ELF
20304 dwarf2_emit_insn (2);
20305#endif
20306 }
20307
20308 md_number_to_chars (to, instruction, 2);
20309
20310 return to;
20311}
20312
c19d1205
ZW
20313/* Tag values used in struct asm_opcode's tag field. */
20314enum opcode_tag
20315{
20316 OT_unconditional, /* Instruction cannot be conditionalized.
20317 The ARM condition field is still 0xE. */
20318 OT_unconditionalF, /* Instruction cannot be conditionalized
20319 and carries 0xF in its ARM condition field. */
20320 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20321 OT_csuffixF, /* Some forms of the instruction take a scalar
20322 conditional suffix, others place 0xF where the
20323 condition field would be, others take a vector
20324 conditional suffix. */
c19d1205
ZW
20325 OT_cinfix3, /* Instruction takes a conditional infix,
20326 beginning at character index 3. (In
20327 unified mode, it becomes a suffix.) */
088fa78e
KH
20328 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20329 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20330 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20331 character index 3, even in unified mode. Used for
20332 legacy instructions where suffix and infix forms
20333 may be ambiguous. */
c19d1205 20334 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20335 suffix or an infix at character index 3. */
c19d1205
ZW
20336 OT_odd_infix_unc, /* This is the unconditional variant of an
20337 instruction that takes a conditional infix
20338 at an unusual position. In unified mode,
20339 this variant will accept a suffix. */
20340 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20341 are the conditional variants of instructions that
20342 take conditional infixes in unusual positions.
20343 The infix appears at character index
20344 (tag - OT_odd_infix_0). These are not accepted
20345 in unified mode. */
20346};
b99bd4ef 20347
c19d1205
ZW
20348/* Subroutine of md_assemble, responsible for looking up the primary
20349 opcode from the mnemonic the user wrote. STR points to the
20350 beginning of the mnemonic.
20351
20352 This is not simply a hash table lookup, because of conditional
20353 variants. Most instructions have conditional variants, which are
20354 expressed with a _conditional affix_ to the mnemonic. If we were
20355 to encode each conditional variant as a literal string in the opcode
20356 table, it would have approximately 20,000 entries.
20357
20358 Most mnemonics take this affix as a suffix, and in unified syntax,
20359 'most' is upgraded to 'all'. However, in the divided syntax, some
20360 instructions take the affix as an infix, notably the s-variants of
20361 the arithmetic instructions. Of those instructions, all but six
20362 have the infix appear after the third character of the mnemonic.
20363
20364 Accordingly, the algorithm for looking up primary opcodes given
20365 an identifier is:
20366
20367 1. Look up the identifier in the opcode table.
20368 If we find a match, go to step U.
20369
20370 2. Look up the last two characters of the identifier in the
20371 conditions table. If we find a match, look up the first N-2
20372 characters of the identifier in the opcode table. If we
20373 find a match, go to step CE.
20374
20375 3. Look up the fourth and fifth characters of the identifier in
20376 the conditions table. If we find a match, extract those
20377 characters from the identifier, and look up the remaining
20378 characters in the opcode table. If we find a match, go
20379 to step CM.
20380
20381 4. Fail.
20382
20383 U. Examine the tag field of the opcode structure, in case this is
20384 one of the six instructions with its conditional infix in an
20385 unusual place. If it is, the tag tells us where to find the
20386 infix; look it up in the conditions table and set inst.cond
20387 accordingly. Otherwise, this is an unconditional instruction.
20388 Again set inst.cond accordingly. Return the opcode structure.
20389
20390 CE. Examine the tag field to make sure this is an instruction that
20391 should receive a conditional suffix. If it is not, fail.
20392 Otherwise, set inst.cond from the suffix we already looked up,
20393 and return the opcode structure.
20394
20395 CM. Examine the tag field to make sure this is an instruction that
20396 should receive a conditional infix after the third character.
20397 If it is not, fail. Otherwise, undo the edits to the current
20398 line of input and proceed as for case CE. */
20399
20400static const struct asm_opcode *
20401opcode_lookup (char **str)
20402{
20403 char *end, *base;
20404 char *affix;
20405 const struct asm_opcode *opcode;
20406 const struct asm_cond *cond;
e3cb604e 20407 char save[2];
c19d1205
ZW
20408
20409 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20410 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20411 for (base = end = *str; *end != '\0'; end++)
721a8186 20412 if (*end == ' ' || *end == '.')
c19d1205 20413 break;
b99bd4ef 20414
c19d1205 20415 if (end == base)
c921be7d 20416 return NULL;
b99bd4ef 20417
5287ad62 20418 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20419 if (end[0] == '.')
b99bd4ef 20420 {
5287ad62 20421 int offset = 2;
5f4273c7 20422
267d2029 20423 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20424 use. */
267d2029 20425 if (unified_syntax && end[1] == 'w')
c19d1205 20426 inst.size_req = 4;
267d2029 20427 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20428 inst.size_req = 2;
20429 else
477330fc 20430 offset = 0;
5287ad62
JB
20431
20432 inst.vectype.elems = 0;
20433
20434 *str = end + offset;
b99bd4ef 20435
5f4273c7 20436 if (end[offset] == '.')
5287ad62 20437 {
267d2029 20438 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20439 non-unified ARM syntax mode). */
20440 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20441 return NULL;
477330fc 20442 }
5287ad62 20443 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20444 return NULL;
b99bd4ef 20445 }
c19d1205
ZW
20446 else
20447 *str = end;
b99bd4ef 20448
c19d1205 20449 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20450 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20451 end - base);
c19d1205 20452 if (opcode)
b99bd4ef 20453 {
c19d1205
ZW
20454 /* step U */
20455 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20456 {
c19d1205
ZW
20457 inst.cond = COND_ALWAYS;
20458 return opcode;
b99bd4ef 20459 }
b99bd4ef 20460
278df34e 20461 if (warn_on_deprecated && unified_syntax)
5c3696f8 20462 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20463 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20464 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20465 gas_assert (cond);
b99bd4ef 20466
c19d1205
ZW
20467 inst.cond = cond->value;
20468 return opcode;
20469 }
5ee91343
AV
20470 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20471 {
20472 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20473 */
20474 if (end - base < 2)
20475 return NULL;
20476 affix = end - 1;
20477 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20478 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20479 affix - base);
20480 /* If this opcode can not be vector predicated then don't accept it with a
20481 vector predication code. */
20482 if (opcode && !opcode->mayBeVecPred)
20483 opcode = NULL;
20484 }
20485 if (!opcode || !cond)
20486 {
20487 /* Cannot have a conditional suffix on a mnemonic of less than two
20488 characters. */
20489 if (end - base < 3)
20490 return NULL;
b99bd4ef 20491
5ee91343
AV
20492 /* Look for suffixed mnemonic. */
20493 affix = end - 2;
20494 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20495 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20496 affix - base);
20497 }
b99bd4ef 20498
c19d1205
ZW
20499 if (opcode && cond)
20500 {
20501 /* step CE */
20502 switch (opcode->tag)
20503 {
e3cb604e
PB
20504 case OT_cinfix3_legacy:
20505 /* Ignore conditional suffixes matched on infix only mnemonics. */
20506 break;
20507
c19d1205 20508 case OT_cinfix3:
088fa78e 20509 case OT_cinfix3_deprecated:
c19d1205
ZW
20510 case OT_odd_infix_unc:
20511 if (!unified_syntax)
0198d5e6 20512 return NULL;
1a0670f3 20513 /* Fall through. */
c19d1205
ZW
20514
20515 case OT_csuffix:
477330fc 20516 case OT_csuffixF:
c19d1205
ZW
20517 case OT_csuf_or_in3:
20518 inst.cond = cond->value;
20519 return opcode;
20520
20521 case OT_unconditional:
20522 case OT_unconditionalF:
dfa9f0d5 20523 if (thumb_mode)
c921be7d 20524 inst.cond = cond->value;
dfa9f0d5
PB
20525 else
20526 {
c921be7d 20527 /* Delayed diagnostic. */
dfa9f0d5
PB
20528 inst.error = BAD_COND;
20529 inst.cond = COND_ALWAYS;
20530 }
c19d1205 20531 return opcode;
b99bd4ef 20532
c19d1205 20533 default:
c921be7d 20534 return NULL;
c19d1205
ZW
20535 }
20536 }
b99bd4ef 20537
c19d1205
ZW
20538 /* Cannot have a usual-position infix on a mnemonic of less than
20539 six characters (five would be a suffix). */
20540 if (end - base < 6)
c921be7d 20541 return NULL;
b99bd4ef 20542
c19d1205
ZW
20543 /* Look for infixed mnemonic in the usual position. */
20544 affix = base + 3;
21d799b5 20545 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20546 if (!cond)
c921be7d 20547 return NULL;
e3cb604e
PB
20548
20549 memcpy (save, affix, 2);
20550 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20551 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20552 (end - base) - 2);
e3cb604e
PB
20553 memmove (affix + 2, affix, (end - affix) - 2);
20554 memcpy (affix, save, 2);
20555
088fa78e
KH
20556 if (opcode
20557 && (opcode->tag == OT_cinfix3
20558 || opcode->tag == OT_cinfix3_deprecated
20559 || opcode->tag == OT_csuf_or_in3
20560 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20561 {
c921be7d 20562 /* Step CM. */
278df34e 20563 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20564 && (opcode->tag == OT_cinfix3
20565 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20566 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20567
20568 inst.cond = cond->value;
20569 return opcode;
b99bd4ef
NC
20570 }
20571
c921be7d 20572 return NULL;
b99bd4ef
NC
20573}
20574
e07e6e58
NC
20575/* This function generates an initial IT instruction, leaving its block
20576 virtually open for the new instructions. Eventually,
5ee91343 20577 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20578 a new instruction needs to be included in the IT block.
20579 Finally, the block is closed with close_automatic_it_block ().
20580 The block closure can be requested either from md_assemble (),
20581 a tencode (), or due to a label hook. */
20582
20583static void
20584new_automatic_it_block (int cond)
20585{
5ee91343
AV
20586 now_pred.state = AUTOMATIC_PRED_BLOCK;
20587 now_pred.mask = 0x18;
20588 now_pred.cc = cond;
20589 now_pred.block_length = 1;
cd000bff 20590 mapping_state (MAP_THUMB);
5ee91343
AV
20591 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20592 now_pred.warn_deprecated = FALSE;
20593 now_pred.insn_cond = TRUE;
e07e6e58
NC
20594}
20595
20596/* Close an automatic IT block.
20597 See comments in new_automatic_it_block (). */
20598
20599static void
20600close_automatic_it_block (void)
20601{
5ee91343
AV
20602 now_pred.mask = 0x10;
20603 now_pred.block_length = 0;
e07e6e58
NC
20604}
20605
20606/* Update the mask of the current automatically-generated IT
20607 instruction. See comments in new_automatic_it_block (). */
20608
20609static void
5ee91343 20610now_pred_add_mask (int cond)
e07e6e58
NC
20611{
20612#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20613#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 20614 | ((bitvalue) << (nbit)))
e07e6e58 20615 const int resulting_bit = (cond & 1);
c921be7d 20616
5ee91343
AV
20617 now_pred.mask &= 0xf;
20618 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20619 resulting_bit,
5ee91343
AV
20620 (5 - now_pred.block_length));
20621 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20622 1,
5ee91343
AV
20623 ((5 - now_pred.block_length) - 1));
20624 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
20625
20626#undef CLEAR_BIT
20627#undef SET_BIT_VALUE
e07e6e58
NC
20628}
20629
20630/* The IT blocks handling machinery is accessed through the these functions:
20631 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
20632 set_pred_insn_type () optional, from the tencode functions
20633 set_pred_insn_type_last () ditto
20634 in_pred_block () ditto
e07e6e58 20635 it_fsm_post_encode () from md_assemble ()
33eaf5de 20636 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
20637
20638 Rationale:
20639 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
20640 initializing the IT insn type with a generic initial value depending
20641 on the inst.condition.
e07e6e58 20642 2) During the tencode function, two things may happen:
477330fc 20643 a) The tencode function overrides the IT insn type by
5ee91343
AV
20644 calling either set_pred_insn_type (type) or
20645 set_pred_insn_type_last ().
477330fc 20646 b) The tencode function queries the IT block state by
5ee91343 20647 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 20648
5ee91343
AV
20649 Both set_pred_insn_type and in_pred_block run the internal FSM state
20650 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
20651 type may incur in an invalid state (exiting the function),
20652 and b) querying the state requires the FSM to be updated.
20653 Specifically we want to avoid creating an IT block for conditional
20654 branches, so it_fsm_pre_encode is actually a guess and we can't
20655 determine whether an IT block is required until the tencode () routine
20656 has decided what type of instruction this actually it.
5ee91343
AV
20657 Because of this, if set_pred_insn_type and in_pred_block have to be
20658 used, set_pred_insn_type has to be called first.
477330fc 20659
5ee91343
AV
20660 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20661 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
20662 When a tencode () routine encodes an instruction that can be
20663 either outside an IT block, or, in the case of being inside, has to be
5ee91343 20664 the last one, set_pred_insn_type_last () will determine the proper
477330fc 20665 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 20666 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
20667 for covering other cases.
20668
5ee91343
AV
20669 Calling handle_pred_state () may not transition the IT block state to
20670 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 20671 still queried. Instead, if the FSM determines that the state should
5ee91343 20672 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
20673 after the tencode () function: that's what it_fsm_post_encode () does.
20674
5ee91343 20675 Since in_pred_block () calls the state handling function to get an
477330fc
RM
20676 updated state, an error may occur (due to invalid insns combination).
20677 In that case, inst.error is set.
20678 Therefore, inst.error has to be checked after the execution of
20679 the tencode () routine.
e07e6e58
NC
20680
20681 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 20682 any pending state change (if any) that didn't take place in
5ee91343 20683 handle_pred_state () as explained above. */
e07e6e58
NC
20684
20685static void
20686it_fsm_pre_encode (void)
20687{
20688 if (inst.cond != COND_ALWAYS)
5ee91343 20689 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 20690 else
5ee91343 20691 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 20692
5ee91343 20693 now_pred.state_handled = 0;
e07e6e58
NC
20694}
20695
20696/* IT state FSM handling function. */
5ee91343
AV
20697/* MVE instructions and non-MVE instructions are handled differently because of
20698 the introduction of VPT blocks.
20699 Specifications say that any non-MVE instruction inside a VPT block is
20700 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20701 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 20702 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
20703 The error messages provided depending on the different combinations possible
20704 are described in the cases below:
20705 For 'most' MVE instructions:
20706 1) In an IT block, with an IT code: syntax error
20707 2) In an IT block, with a VPT code: error: must be in a VPT block
20708 3) In an IT block, with no code: warning: UNPREDICTABLE
20709 4) In a VPT block, with an IT code: syntax error
20710 5) In a VPT block, with a VPT code: OK!
20711 6) In a VPT block, with no code: error: missing code
20712 7) Outside a pred block, with an IT code: error: syntax error
20713 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20714 9) Outside a pred block, with no code: OK!
20715 For non-MVE instructions:
20716 10) In an IT block, with an IT code: OK!
20717 11) In an IT block, with a VPT code: syntax error
20718 12) In an IT block, with no code: error: missing code
20719 13) In a VPT block, with an IT code: error: should be in an IT block
20720 14) In a VPT block, with a VPT code: syntax error
20721 15) In a VPT block, with no code: UNPREDICTABLE
20722 16) Outside a pred block, with an IT code: error: should be in an IT block
20723 17) Outside a pred block, with a VPT code: syntax error
20724 18) Outside a pred block, with no code: OK!
20725 */
20726
e07e6e58
NC
20727
20728static int
5ee91343 20729handle_pred_state (void)
e07e6e58 20730{
5ee91343
AV
20731 now_pred.state_handled = 1;
20732 now_pred.insn_cond = FALSE;
e07e6e58 20733
5ee91343 20734 switch (now_pred.state)
e07e6e58 20735 {
5ee91343
AV
20736 case OUTSIDE_PRED_BLOCK:
20737 switch (inst.pred_insn_type)
e07e6e58 20738 {
35c228db 20739 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20740 case MVE_OUTSIDE_PRED_INSN:
20741 if (inst.cond < COND_ALWAYS)
20742 {
20743 /* Case 7: Outside a pred block, with an IT code: error: syntax
20744 error. */
20745 inst.error = BAD_SYNTAX;
20746 return FAIL;
20747 }
20748 /* Case 9: Outside a pred block, with no code: OK! */
20749 break;
20750 case OUTSIDE_PRED_INSN:
20751 if (inst.cond > COND_ALWAYS)
20752 {
20753 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20754 */
20755 inst.error = BAD_SYNTAX;
20756 return FAIL;
20757 }
20758 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
20759 break;
20760
5ee91343
AV
20761 case INSIDE_VPT_INSN:
20762 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20763 a VPT block. */
20764 inst.error = BAD_OUT_VPT;
20765 return FAIL;
20766
e07e6e58
NC
20767 case INSIDE_IT_INSN:
20768 case INSIDE_IT_LAST_INSN:
5ee91343 20769 if (inst.cond < COND_ALWAYS)
e07e6e58 20770 {
5ee91343
AV
20771 /* Case 16: Outside a pred block, with an IT code: error: should
20772 be in an IT block. */
20773 if (thumb_mode == 0)
e07e6e58 20774 {
5ee91343
AV
20775 if (unified_syntax
20776 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20777 as_tsktsk (_("Warning: conditional outside an IT block"\
20778 " for Thumb."));
e07e6e58
NC
20779 }
20780 else
20781 {
5ee91343
AV
20782 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20783 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20784 {
20785 /* Automatically generate the IT instruction. */
20786 new_automatic_it_block (inst.cond);
20787 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20788 close_automatic_it_block ();
20789 }
20790 else
20791 {
20792 inst.error = BAD_OUT_IT;
20793 return FAIL;
20794 }
e07e6e58 20795 }
5ee91343 20796 break;
e07e6e58 20797 }
5ee91343
AV
20798 else if (inst.cond > COND_ALWAYS)
20799 {
20800 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20801 */
20802 inst.error = BAD_SYNTAX;
20803 return FAIL;
20804 }
20805 else
20806 gas_assert (0);
e07e6e58
NC
20807 case IF_INSIDE_IT_LAST_INSN:
20808 case NEUTRAL_IT_INSN:
20809 break;
20810
5ee91343
AV
20811 case VPT_INSN:
20812 if (inst.cond != COND_ALWAYS)
20813 first_error (BAD_SYNTAX);
20814 now_pred.state = MANUAL_PRED_BLOCK;
20815 now_pred.block_length = 0;
20816 now_pred.type = VECTOR_PRED;
20817 now_pred.cc = 0;
20818 break;
e07e6e58 20819 case IT_INSN:
5ee91343
AV
20820 now_pred.state = MANUAL_PRED_BLOCK;
20821 now_pred.block_length = 0;
20822 now_pred.type = SCALAR_PRED;
e07e6e58
NC
20823 break;
20824 }
20825 break;
20826
5ee91343 20827 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
20828 /* Three things may happen now:
20829 a) We should increment current it block size;
20830 b) We should close current it block (closing insn or 4 insns);
20831 c) We should close current it block and start a new one (due
20832 to incompatible conditions or
20833 4 insns-length block reached). */
20834
5ee91343 20835 switch (inst.pred_insn_type)
e07e6e58 20836 {
5ee91343
AV
20837 case INSIDE_VPT_INSN:
20838 case VPT_INSN:
35c228db 20839 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20840 case MVE_OUTSIDE_PRED_INSN:
20841 gas_assert (0);
20842 case OUTSIDE_PRED_INSN:
2b0f3761 20843 /* The closure of the block shall happen immediately,
5ee91343 20844 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
20845 force_automatic_it_block_close ();
20846 break;
20847
20848 case INSIDE_IT_INSN:
20849 case INSIDE_IT_LAST_INSN:
20850 case IF_INSIDE_IT_LAST_INSN:
5ee91343 20851 now_pred.block_length++;
e07e6e58 20852
5ee91343
AV
20853 if (now_pred.block_length > 4
20854 || !now_pred_compatible (inst.cond))
e07e6e58
NC
20855 {
20856 force_automatic_it_block_close ();
5ee91343 20857 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
20858 new_automatic_it_block (inst.cond);
20859 }
20860 else
20861 {
5ee91343
AV
20862 now_pred.insn_cond = TRUE;
20863 now_pred_add_mask (inst.cond);
e07e6e58
NC
20864 }
20865
5ee91343
AV
20866 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20867 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20868 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
20869 close_automatic_it_block ();
20870 break;
20871
20872 case NEUTRAL_IT_INSN:
5ee91343
AV
20873 now_pred.block_length++;
20874 now_pred.insn_cond = TRUE;
e07e6e58 20875
5ee91343 20876 if (now_pred.block_length > 4)
e07e6e58
NC
20877 force_automatic_it_block_close ();
20878 else
5ee91343 20879 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
20880 break;
20881
20882 case IT_INSN:
20883 close_automatic_it_block ();
5ee91343 20884 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
20885 break;
20886 }
20887 break;
20888
5ee91343 20889 case MANUAL_PRED_BLOCK:
e07e6e58 20890 {
5ee91343
AV
20891 int cond, is_last;
20892 if (now_pred.type == SCALAR_PRED)
e07e6e58 20893 {
5ee91343
AV
20894 /* Check conditional suffixes. */
20895 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20896 now_pred.mask <<= 1;
20897 now_pred.mask &= 0x1f;
20898 is_last = (now_pred.mask == 0x10);
20899 }
20900 else
20901 {
20902 now_pred.cc ^= (now_pred.mask >> 4);
20903 cond = now_pred.cc + 0xf;
20904 now_pred.mask <<= 1;
20905 now_pred.mask &= 0x1f;
20906 is_last = now_pred.mask == 0x10;
20907 }
20908 now_pred.insn_cond = TRUE;
e07e6e58 20909
5ee91343
AV
20910 switch (inst.pred_insn_type)
20911 {
20912 case OUTSIDE_PRED_INSN:
20913 if (now_pred.type == SCALAR_PRED)
20914 {
20915 if (inst.cond == COND_ALWAYS)
20916 {
20917 /* Case 12: In an IT block, with no code: error: missing
20918 code. */
20919 inst.error = BAD_NOT_IT;
20920 return FAIL;
20921 }
20922 else if (inst.cond > COND_ALWAYS)
20923 {
20924 /* Case 11: In an IT block, with a VPT code: syntax error.
20925 */
20926 inst.error = BAD_SYNTAX;
20927 return FAIL;
20928 }
20929 else if (thumb_mode)
20930 {
20931 /* This is for some special cases where a non-MVE
20932 instruction is not allowed in an IT block, such as cbz,
20933 but are put into one with a condition code.
20934 You could argue this should be a syntax error, but we
20935 gave the 'not allowed in IT block' diagnostic in the
20936 past so we will keep doing so. */
20937 inst.error = BAD_NOT_IT;
20938 return FAIL;
20939 }
20940 break;
20941 }
20942 else
20943 {
20944 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20945 as_tsktsk (MVE_NOT_VPT);
20946 return SUCCESS;
20947 }
20948 case MVE_OUTSIDE_PRED_INSN:
20949 if (now_pred.type == SCALAR_PRED)
20950 {
20951 if (inst.cond == COND_ALWAYS)
20952 {
20953 /* Case 3: In an IT block, with no code: warning:
20954 UNPREDICTABLE. */
20955 as_tsktsk (MVE_NOT_IT);
20956 return SUCCESS;
20957 }
20958 else if (inst.cond < COND_ALWAYS)
20959 {
20960 /* Case 1: In an IT block, with an IT code: syntax error.
20961 */
20962 inst.error = BAD_SYNTAX;
20963 return FAIL;
20964 }
20965 else
20966 gas_assert (0);
20967 }
20968 else
20969 {
20970 if (inst.cond < COND_ALWAYS)
20971 {
20972 /* Case 4: In a VPT block, with an IT code: syntax error.
20973 */
20974 inst.error = BAD_SYNTAX;
20975 return FAIL;
20976 }
20977 else if (inst.cond == COND_ALWAYS)
20978 {
20979 /* Case 6: In a VPT block, with no code: error: missing
20980 code. */
20981 inst.error = BAD_NOT_VPT;
20982 return FAIL;
20983 }
20984 else
20985 {
20986 gas_assert (0);
20987 }
20988 }
35c228db
AV
20989 case MVE_UNPREDICABLE_INSN:
20990 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20991 return SUCCESS;
e07e6e58 20992 case INSIDE_IT_INSN:
5ee91343 20993 if (inst.cond > COND_ALWAYS)
e07e6e58 20994 {
5ee91343
AV
20995 /* Case 11: In an IT block, with a VPT code: syntax error. */
20996 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20997 inst.error = BAD_SYNTAX;
20998 return FAIL;
20999 }
21000 else if (now_pred.type == SCALAR_PRED)
21001 {
21002 /* Case 10: In an IT block, with an IT code: OK! */
21003 if (cond != inst.cond)
21004 {
21005 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21006 BAD_VPT_COND;
21007 return FAIL;
21008 }
21009 }
21010 else
21011 {
21012 /* Case 13: In a VPT block, with an IT code: error: should be
21013 in an IT block. */
21014 inst.error = BAD_OUT_IT;
e07e6e58
NC
21015 return FAIL;
21016 }
21017 break;
21018
5ee91343
AV
21019 case INSIDE_VPT_INSN:
21020 if (now_pred.type == SCALAR_PRED)
21021 {
21022 /* Case 2: In an IT block, with a VPT code: error: must be in a
21023 VPT block. */
21024 inst.error = BAD_OUT_VPT;
21025 return FAIL;
21026 }
21027 /* Case 5: In a VPT block, with a VPT code: OK! */
21028 else if (cond != inst.cond)
21029 {
21030 inst.error = BAD_VPT_COND;
21031 return FAIL;
21032 }
21033 break;
e07e6e58
NC
21034 case INSIDE_IT_LAST_INSN:
21035 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21036 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21037 {
21038 /* Case 4: In a VPT block, with an IT code: syntax error. */
21039 /* Case 11: In an IT block, with a VPT code: syntax error. */
21040 inst.error = BAD_SYNTAX;
21041 return FAIL;
21042 }
21043 else if (cond != inst.cond)
e07e6e58
NC
21044 {
21045 inst.error = BAD_IT_COND;
21046 return FAIL;
21047 }
21048 if (!is_last)
21049 {
21050 inst.error = BAD_BRANCH;
21051 return FAIL;
21052 }
21053 break;
21054
21055 case NEUTRAL_IT_INSN:
5ee91343
AV
21056 /* The BKPT instruction is unconditional even in a IT or VPT
21057 block. */
e07e6e58
NC
21058 break;
21059
21060 case IT_INSN:
5ee91343
AV
21061 if (now_pred.type == SCALAR_PRED)
21062 {
21063 inst.error = BAD_IT_IT;
21064 return FAIL;
21065 }
21066 /* fall through. */
21067 case VPT_INSN:
21068 if (inst.cond == COND_ALWAYS)
21069 {
21070 /* Executing a VPT/VPST instruction inside an IT block or a
21071 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21072 */
21073 if (now_pred.type == SCALAR_PRED)
21074 as_tsktsk (MVE_NOT_IT);
21075 else
21076 as_tsktsk (MVE_NOT_VPT);
21077 return SUCCESS;
21078 }
21079 else
21080 {
21081 /* VPT/VPST do not accept condition codes. */
21082 inst.error = BAD_SYNTAX;
21083 return FAIL;
21084 }
e07e6e58 21085 }
5ee91343 21086 }
e07e6e58
NC
21087 break;
21088 }
21089
21090 return SUCCESS;
21091}
21092
5a01bb1d
MGD
21093struct depr_insn_mask
21094{
21095 unsigned long pattern;
21096 unsigned long mask;
21097 const char* description;
21098};
21099
21100/* List of 16-bit instruction patterns deprecated in an IT block in
21101 ARMv8. */
21102static const struct depr_insn_mask depr_it_insns[] = {
21103 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21104 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21105 { 0xa000, 0xb800, N_("ADR") },
21106 { 0x4800, 0xf800, N_("Literal loads") },
21107 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21108 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21109 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21110 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21111 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21112 { 0, 0, NULL }
21113};
21114
e07e6e58
NC
21115static void
21116it_fsm_post_encode (void)
21117{
21118 int is_last;
21119
5ee91343
AV
21120 if (!now_pred.state_handled)
21121 handle_pred_state ();
e07e6e58 21122
5ee91343
AV
21123 if (now_pred.insn_cond
21124 && !now_pred.warn_deprecated
5a01bb1d 21125 && warn_on_deprecated
df9909b8
TP
21126 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21127 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21128 {
21129 if (inst.instruction >= 0x10000)
21130 {
5c3696f8 21131 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21132 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21133 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21134 }
21135 else
21136 {
21137 const struct depr_insn_mask *p = depr_it_insns;
21138
21139 while (p->mask != 0)
21140 {
21141 if ((inst.instruction & p->mask) == p->pattern)
21142 {
df9909b8
TP
21143 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21144 "instructions of the following class are "
21145 "performance deprecated in ARMv8-A and "
21146 "ARMv8-R: %s"), p->description);
5ee91343 21147 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21148 break;
21149 }
21150
21151 ++p;
21152 }
21153 }
21154
5ee91343 21155 if (now_pred.block_length > 1)
5a01bb1d 21156 {
5c3696f8 21157 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21158 "instruction are performance deprecated in ARMv8-A and "
21159 "ARMv8-R"));
5ee91343 21160 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21161 }
21162 }
21163
5ee91343
AV
21164 is_last = (now_pred.mask == 0x10);
21165 if (is_last)
21166 {
21167 now_pred.state = OUTSIDE_PRED_BLOCK;
21168 now_pred.mask = 0;
21169 }
e07e6e58
NC
21170}
21171
21172static void
21173force_automatic_it_block_close (void)
21174{
5ee91343 21175 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21176 {
21177 close_automatic_it_block ();
5ee91343
AV
21178 now_pred.state = OUTSIDE_PRED_BLOCK;
21179 now_pred.mask = 0;
e07e6e58
NC
21180 }
21181}
21182
21183static int
5ee91343 21184in_pred_block (void)
e07e6e58 21185{
5ee91343
AV
21186 if (!now_pred.state_handled)
21187 handle_pred_state ();
e07e6e58 21188
5ee91343 21189 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21190}
21191
ff8646ee
TP
21192/* Whether OPCODE only has T32 encoding. Since this function is only used by
21193 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21194 here, hence the "known" in the function name. */
fc289b0a
TP
21195
21196static bfd_boolean
ff8646ee 21197known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21198{
21199 /* Original Thumb-1 wide instruction. */
21200 if (opcode->tencode == do_t_blx
21201 || opcode->tencode == do_t_branch23
21202 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21203 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21204 return TRUE;
21205
16a1fa25
TP
21206 /* Wide-only instruction added to ARMv8-M Baseline. */
21207 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21208 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21209 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21210 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21211 return TRUE;
21212
21213 return FALSE;
21214}
21215
21216/* Whether wide instruction variant can be used if available for a valid OPCODE
21217 in ARCH. */
21218
21219static bfd_boolean
21220t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21221{
21222 if (known_t32_only_insn (opcode))
21223 return TRUE;
21224
21225 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21226 of variant T3 of B.W is checked in do_t_branch. */
21227 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21228 && opcode->tencode == do_t_branch)
21229 return TRUE;
21230
bada4342
JW
21231 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21232 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21233 && opcode->tencode == do_t_mov_cmp
21234 /* Make sure CMP instruction is not affected. */
21235 && opcode->aencode == do_mov)
21236 return TRUE;
21237
ff8646ee
TP
21238 /* Wide instruction variants of all instructions with narrow *and* wide
21239 variants become available with ARMv6t2. Other opcodes are either
21240 narrow-only or wide-only and are thus available if OPCODE is valid. */
21241 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21242 return TRUE;
21243
21244 /* OPCODE with narrow only instruction variant or wide variant not
21245 available. */
fc289b0a
TP
21246 return FALSE;
21247}
21248
c19d1205
ZW
21249void
21250md_assemble (char *str)
b99bd4ef 21251{
c19d1205
ZW
21252 char *p = str;
21253 const struct asm_opcode * opcode;
b99bd4ef 21254
c19d1205
ZW
21255 /* Align the previous label if needed. */
21256 if (last_label_seen != NULL)
b99bd4ef 21257 {
c19d1205
ZW
21258 symbol_set_frag (last_label_seen, frag_now);
21259 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21260 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21261 }
21262
c19d1205 21263 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21264 int r;
21265 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21266 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21267
c19d1205
ZW
21268 opcode = opcode_lookup (&p);
21269 if (!opcode)
b99bd4ef 21270 {
c19d1205 21271 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21272 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21273 if (! create_register_alias (str, p)
477330fc 21274 && ! create_neon_reg_alias (str, p))
c19d1205 21275 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21276
b99bd4ef
NC
21277 return;
21278 }
21279
278df34e 21280 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21281 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21282
037e8744
JB
21283 /* The value which unconditional instructions should have in place of the
21284 condition field. */
21285 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21286
c19d1205 21287 if (thumb_mode)
b99bd4ef 21288 {
e74cfd16 21289 arm_feature_set variant;
8f06b2d8
PB
21290
21291 variant = cpu_variant;
21292 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21293 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21294 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21295 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21296 if (!opcode->tvariant
21297 || (thumb_mode == 1
21298 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21299 {
173205ca
TP
21300 if (opcode->tencode == do_t_swi)
21301 as_bad (_("SVC is not permitted on this architecture"));
21302 else
21303 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21304 return;
21305 }
c19d1205
ZW
21306 if (inst.cond != COND_ALWAYS && !unified_syntax
21307 && opcode->tencode != do_t_branch)
b99bd4ef 21308 {
c19d1205 21309 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21310 return;
21311 }
21312
fc289b0a
TP
21313 /* Two things are addressed here:
21314 1) Implicit require narrow instructions on Thumb-1.
21315 This avoids relaxation accidentally introducing Thumb-2
21316 instructions.
21317 2) Reject wide instructions in non Thumb-2 cores.
21318
21319 Only instructions with narrow and wide variants need to be handled
21320 but selecting all non wide-only instructions is easier. */
21321 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21322 && !t32_insn_ok (variant, opcode))
076d447c 21323 {
fc289b0a
TP
21324 if (inst.size_req == 0)
21325 inst.size_req = 2;
21326 else if (inst.size_req == 4)
752d5da4 21327 {
ff8646ee
TP
21328 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21329 as_bad (_("selected processor does not support 32bit wide "
21330 "variant of instruction `%s'"), str);
21331 else
21332 as_bad (_("selected processor does not support `%s' in "
21333 "Thumb-2 mode"), str);
fc289b0a 21334 return;
752d5da4 21335 }
076d447c
PB
21336 }
21337
c19d1205
ZW
21338 inst.instruction = opcode->tvalue;
21339
5be8be5d 21340 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21341 {
5ee91343 21342 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21343 it. */
21344 it_fsm_pre_encode ();
c19d1205 21345
477330fc 21346 opcode->tencode ();
e07e6e58 21347
477330fc
RM
21348 it_fsm_post_encode ();
21349 }
e27ec89e 21350
0110f2b8 21351 if (!(inst.error || inst.relax))
b99bd4ef 21352 {
9c2799c2 21353 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21354 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21355 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21356 {
c19d1205 21357 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21358 return;
21359 }
21360 }
076d447c
PB
21361
21362 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21363 instruction. */
9c2799c2 21364 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21365
e74cfd16
PB
21366 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21367 *opcode->tvariant);
ee065d83 21368 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21369 set those bits when Thumb-2 32-bit instructions are seen. The impact
21370 of relaxable instructions will be considered later after we finish all
21371 relaxation. */
ff8646ee
TP
21372 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21373 variant = arm_arch_none;
21374 else
21375 variant = cpu_variant;
21376 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21377 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21378 arm_ext_v6t2);
cd000bff 21379
88714cb8
DG
21380 check_neon_suffixes;
21381
cd000bff 21382 if (!inst.error)
c877a2f2
NC
21383 {
21384 mapping_state (MAP_THUMB);
21385 }
c19d1205 21386 }
3e9e4fcf 21387 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21388 {
845b51d6
PB
21389 bfd_boolean is_bx;
21390
21391 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21392 is_bx = (opcode->aencode == do_bx);
21393
c19d1205 21394 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21395 if (!(is_bx && fix_v4bx)
21396 && !(opcode->avariant &&
21397 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21398 {
84b52b66 21399 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21400 return;
b99bd4ef 21401 }
c19d1205 21402 if (inst.size_req)
b99bd4ef 21403 {
c19d1205
ZW
21404 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21405 return;
b99bd4ef
NC
21406 }
21407
c19d1205
ZW
21408 inst.instruction = opcode->avalue;
21409 if (opcode->tag == OT_unconditionalF)
eff0bc54 21410 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21411 else
21412 inst.instruction |= inst.cond << 28;
21413 inst.size = INSN_SIZE;
5be8be5d 21414 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21415 {
21416 it_fsm_pre_encode ();
21417 opcode->aencode ();
21418 it_fsm_post_encode ();
21419 }
ee065d83 21420 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21421 on a hypothetical non-thumb v5 core. */
845b51d6 21422 if (is_bx)
e74cfd16 21423 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21424 else
e74cfd16
PB
21425 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21426 *opcode->avariant);
88714cb8
DG
21427
21428 check_neon_suffixes;
21429
cd000bff 21430 if (!inst.error)
c877a2f2
NC
21431 {
21432 mapping_state (MAP_ARM);
21433 }
b99bd4ef 21434 }
3e9e4fcf
JB
21435 else
21436 {
21437 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21438 "-- `%s'"), str);
21439 return;
21440 }
c19d1205
ZW
21441 output_inst (str);
21442}
b99bd4ef 21443
e07e6e58 21444static void
5ee91343 21445check_pred_blocks_finished (void)
e07e6e58
NC
21446{
21447#ifdef OBJ_ELF
21448 asection *sect;
21449
21450 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21451 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21452 == MANUAL_PRED_BLOCK)
e07e6e58 21453 {
5ee91343
AV
21454 if (now_pred.type == SCALAR_PRED)
21455 as_warn (_("section '%s' finished with an open IT block."),
21456 sect->name);
21457 else
21458 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21459 sect->name);
e07e6e58
NC
21460 }
21461#else
5ee91343
AV
21462 if (now_pred.state == MANUAL_PRED_BLOCK)
21463 {
21464 if (now_pred.type == SCALAR_PRED)
21465 as_warn (_("file finished with an open IT block."));
21466 else
21467 as_warn (_("file finished with an open VPT/VPST block."));
21468 }
e07e6e58
NC
21469#endif
21470}
21471
c19d1205
ZW
21472/* Various frobbings of labels and their addresses. */
21473
21474void
21475arm_start_line_hook (void)
21476{
21477 last_label_seen = NULL;
b99bd4ef
NC
21478}
21479
c19d1205
ZW
21480void
21481arm_frob_label (symbolS * sym)
b99bd4ef 21482{
c19d1205 21483 last_label_seen = sym;
b99bd4ef 21484
c19d1205 21485 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21486
c19d1205
ZW
21487#if defined OBJ_COFF || defined OBJ_ELF
21488 ARM_SET_INTERWORK (sym, support_interwork);
21489#endif
b99bd4ef 21490
e07e6e58
NC
21491 force_automatic_it_block_close ();
21492
5f4273c7 21493 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21494 as Thumb functions. This is because these labels, whilst
21495 they exist inside Thumb code, are not the entry points for
21496 possible ARM->Thumb calls. Also, these labels can be used
21497 as part of a computed goto or switch statement. eg gcc
21498 can generate code that looks like this:
b99bd4ef 21499
c19d1205
ZW
21500 ldr r2, [pc, .Laaa]
21501 lsl r3, r3, #2
21502 ldr r2, [r3, r2]
21503 mov pc, r2
b99bd4ef 21504
c19d1205
ZW
21505 .Lbbb: .word .Lxxx
21506 .Lccc: .word .Lyyy
21507 ..etc...
21508 .Laaa: .word Lbbb
b99bd4ef 21509
c19d1205
ZW
21510 The first instruction loads the address of the jump table.
21511 The second instruction converts a table index into a byte offset.
21512 The third instruction gets the jump address out of the table.
21513 The fourth instruction performs the jump.
b99bd4ef 21514
c19d1205
ZW
21515 If the address stored at .Laaa is that of a symbol which has the
21516 Thumb_Func bit set, then the linker will arrange for this address
21517 to have the bottom bit set, which in turn would mean that the
21518 address computation performed by the third instruction would end
21519 up with the bottom bit set. Since the ARM is capable of unaligned
21520 word loads, the instruction would then load the incorrect address
21521 out of the jump table, and chaos would ensue. */
21522 if (label_is_thumb_function_name
21523 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21524 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21525 {
c19d1205
ZW
21526 /* When the address of a Thumb function is taken the bottom
21527 bit of that address should be set. This will allow
21528 interworking between Arm and Thumb functions to work
21529 correctly. */
b99bd4ef 21530
c19d1205 21531 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21532
c19d1205 21533 label_is_thumb_function_name = FALSE;
b99bd4ef 21534 }
07a53e5c 21535
07a53e5c 21536 dwarf2_emit_label (sym);
b99bd4ef
NC
21537}
21538
c921be7d 21539bfd_boolean
c19d1205 21540arm_data_in_code (void)
b99bd4ef 21541{
c19d1205 21542 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21543 {
c19d1205
ZW
21544 *input_line_pointer = '/';
21545 input_line_pointer += 5;
21546 *input_line_pointer = 0;
c921be7d 21547 return TRUE;
b99bd4ef
NC
21548 }
21549
c921be7d 21550 return FALSE;
b99bd4ef
NC
21551}
21552
c19d1205
ZW
21553char *
21554arm_canonicalize_symbol_name (char * name)
b99bd4ef 21555{
c19d1205 21556 int len;
b99bd4ef 21557
c19d1205
ZW
21558 if (thumb_mode && (len = strlen (name)) > 5
21559 && streq (name + len - 5, "/data"))
21560 *(name + len - 5) = 0;
b99bd4ef 21561
c19d1205 21562 return name;
b99bd4ef 21563}
c19d1205
ZW
21564\f
21565/* Table of all register names defined by default. The user can
21566 define additional names with .req. Note that all register names
21567 should appear in both upper and lowercase variants. Some registers
21568 also have mixed-case names. */
b99bd4ef 21569
dcbf9037 21570#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21571#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21572#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21573#define REGSET(p,t) \
21574 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21575 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21576 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21577 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21578#define REGSETH(p,t) \
21579 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21580 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21581 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21582 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21583#define REGSET2(p,t) \
21584 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21585 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21586 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21587 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21588#define SPLRBANK(base,bank,t) \
21589 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21590 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21591 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21592 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21593 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21594 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 21595
c19d1205 21596static const struct reg_entry reg_names[] =
7ed4c4c5 21597{
c19d1205
ZW
21598 /* ARM integer registers. */
21599 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 21600
c19d1205
ZW
21601 /* ATPCS synonyms. */
21602 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21603 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21604 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 21605
c19d1205
ZW
21606 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21607 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21608 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 21609
c19d1205
ZW
21610 /* Well-known aliases. */
21611 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21612 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21613
21614 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21615 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21616
1b883319
AV
21617 /* Defining the new Zero register from ARMv8.1-M. */
21618 REGDEF(zr,15,ZR),
21619 REGDEF(ZR,15,ZR),
21620
c19d1205
ZW
21621 /* Coprocessor numbers. */
21622 REGSET(p, CP), REGSET(P, CP),
21623
21624 /* Coprocessor register numbers. The "cr" variants are for backward
21625 compatibility. */
21626 REGSET(c, CN), REGSET(C, CN),
21627 REGSET(cr, CN), REGSET(CR, CN),
21628
90ec0d68
MGD
21629 /* ARM banked registers. */
21630 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21631 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21632 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21633 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21634 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21635 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21636 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21637
21638 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21639 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21640 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21641 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21642 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 21643 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
21644 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21645 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21646
21647 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21648 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21649 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21650 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21651 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21652 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21653 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 21654 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
21655 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21656
c19d1205
ZW
21657 /* FPA registers. */
21658 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21659 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21660
21661 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21662 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21663
21664 /* VFP SP registers. */
5287ad62
JB
21665 REGSET(s,VFS), REGSET(S,VFS),
21666 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
21667
21668 /* VFP DP Registers. */
5287ad62
JB
21669 REGSET(d,VFD), REGSET(D,VFD),
21670 /* Extra Neon DP registers. */
21671 REGSETH(d,VFD), REGSETH(D,VFD),
21672
21673 /* Neon QP registers. */
21674 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
21675
21676 /* VFP control registers. */
21677 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21678 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
21679 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21680 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21681 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21682 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 21683 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
21684
21685 /* Maverick DSP coprocessor registers. */
21686 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21687 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21688
21689 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21690 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21691 REGDEF(dspsc,0,DSPSC),
21692
21693 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21694 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21695 REGDEF(DSPSC,0,DSPSC),
21696
21697 /* iWMMXt data registers - p0, c0-15. */
21698 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21699
21700 /* iWMMXt control registers - p1, c0-3. */
21701 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21702 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21703 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21704 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21705
21706 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21707 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21708 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21709 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21710 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21711
21712 /* XScale accumulator registers. */
21713 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21714};
21715#undef REGDEF
21716#undef REGNUM
21717#undef REGSET
7ed4c4c5 21718
c19d1205
ZW
21719/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21720 within psr_required_here. */
21721static const struct asm_psr psrs[] =
21722{
21723 /* Backward compatibility notation. Note that "all" is no longer
21724 truly all possible PSR bits. */
21725 {"all", PSR_c | PSR_f},
21726 {"flg", PSR_f},
21727 {"ctl", PSR_c},
21728
21729 /* Individual flags. */
21730 {"f", PSR_f},
21731 {"c", PSR_c},
21732 {"x", PSR_x},
21733 {"s", PSR_s},
59b42a0d 21734
c19d1205
ZW
21735 /* Combinations of flags. */
21736 {"fs", PSR_f | PSR_s},
21737 {"fx", PSR_f | PSR_x},
21738 {"fc", PSR_f | PSR_c},
21739 {"sf", PSR_s | PSR_f},
21740 {"sx", PSR_s | PSR_x},
21741 {"sc", PSR_s | PSR_c},
21742 {"xf", PSR_x | PSR_f},
21743 {"xs", PSR_x | PSR_s},
21744 {"xc", PSR_x | PSR_c},
21745 {"cf", PSR_c | PSR_f},
21746 {"cs", PSR_c | PSR_s},
21747 {"cx", PSR_c | PSR_x},
21748 {"fsx", PSR_f | PSR_s | PSR_x},
21749 {"fsc", PSR_f | PSR_s | PSR_c},
21750 {"fxs", PSR_f | PSR_x | PSR_s},
21751 {"fxc", PSR_f | PSR_x | PSR_c},
21752 {"fcs", PSR_f | PSR_c | PSR_s},
21753 {"fcx", PSR_f | PSR_c | PSR_x},
21754 {"sfx", PSR_s | PSR_f | PSR_x},
21755 {"sfc", PSR_s | PSR_f | PSR_c},
21756 {"sxf", PSR_s | PSR_x | PSR_f},
21757 {"sxc", PSR_s | PSR_x | PSR_c},
21758 {"scf", PSR_s | PSR_c | PSR_f},
21759 {"scx", PSR_s | PSR_c | PSR_x},
21760 {"xfs", PSR_x | PSR_f | PSR_s},
21761 {"xfc", PSR_x | PSR_f | PSR_c},
21762 {"xsf", PSR_x | PSR_s | PSR_f},
21763 {"xsc", PSR_x | PSR_s | PSR_c},
21764 {"xcf", PSR_x | PSR_c | PSR_f},
21765 {"xcs", PSR_x | PSR_c | PSR_s},
21766 {"cfs", PSR_c | PSR_f | PSR_s},
21767 {"cfx", PSR_c | PSR_f | PSR_x},
21768 {"csf", PSR_c | PSR_s | PSR_f},
21769 {"csx", PSR_c | PSR_s | PSR_x},
21770 {"cxf", PSR_c | PSR_x | PSR_f},
21771 {"cxs", PSR_c | PSR_x | PSR_s},
21772 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21773 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21774 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21775 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21776 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21777 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21778 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21779 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21780 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21781 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21782 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21783 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21784 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21785 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21786 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21787 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21788 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21789 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21790 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21791 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21792 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21793 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21794 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21795 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21796};
21797
62b3e311
PB
21798/* Table of V7M psr names. */
21799static const struct asm_psr v7m_psrs[] =
21800{
1a336194
TP
21801 {"apsr", 0x0 }, {"APSR", 0x0 },
21802 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21803 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21804 {"psr", 0x3 }, {"PSR", 0x3 },
21805 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21806 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21807 {"epsr", 0x6 }, {"EPSR", 0x6 },
21808 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21809 {"msp", 0x8 }, {"MSP", 0x8 },
21810 {"psp", 0x9 }, {"PSP", 0x9 },
21811 {"msplim", 0xa }, {"MSPLIM", 0xa },
21812 {"psplim", 0xb }, {"PSPLIM", 0xb },
21813 {"primask", 0x10}, {"PRIMASK", 0x10},
21814 {"basepri", 0x11}, {"BASEPRI", 0x11},
21815 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
21816 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21817 {"control", 0x14}, {"CONTROL", 0x14},
21818 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21819 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21820 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21821 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21822 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21823 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21824 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21825 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21826 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
21827};
21828
c19d1205
ZW
21829/* Table of all shift-in-operand names. */
21830static const struct asm_shift_name shift_names [] =
b99bd4ef 21831{
c19d1205
ZW
21832 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21833 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21834 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21835 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21836 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
21837 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21838 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 21839};
b99bd4ef 21840
c19d1205
ZW
21841/* Table of all explicit relocation names. */
21842#ifdef OBJ_ELF
21843static struct reloc_entry reloc_names[] =
21844{
21845 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21846 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21847 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21848 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21849 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21850 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21851 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21852 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21853 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21854 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 21855 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
21856 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21857 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 21858 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 21859 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 21860 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 21861 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
21862 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21863 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21864 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21865 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21866 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21867 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
21868 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21869 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21870 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21871 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
21872};
21873#endif
b99bd4ef 21874
5ee91343 21875/* Table of all conditional affixes. */
c19d1205
ZW
21876static const struct asm_cond conds[] =
21877{
21878 {"eq", 0x0},
21879 {"ne", 0x1},
21880 {"cs", 0x2}, {"hs", 0x2},
21881 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21882 {"mi", 0x4},
21883 {"pl", 0x5},
21884 {"vs", 0x6},
21885 {"vc", 0x7},
21886 {"hi", 0x8},
21887 {"ls", 0x9},
21888 {"ge", 0xa},
21889 {"lt", 0xb},
21890 {"gt", 0xc},
21891 {"le", 0xd},
21892 {"al", 0xe}
21893};
5ee91343
AV
21894static const struct asm_cond vconds[] =
21895{
21896 {"t", 0xf},
21897 {"e", 0x10}
21898};
bfae80f2 21899
e797f7e0 21900#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
21901 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21902 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 21903
62b3e311
PB
21904static struct asm_barrier_opt barrier_opt_names[] =
21905{
e797f7e0
MGD
21906 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21907 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21908 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21909 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21910 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21911 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21912 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21913 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21914 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21915 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21916 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21917 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21918 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21919 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21920 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21921 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
21922};
21923
e797f7e0
MGD
21924#undef UL_BARRIER
21925
c19d1205
ZW
21926/* Table of ARM-format instructions. */
21927
21928/* Macros for gluing together operand strings. N.B. In all cases
21929 other than OPS0, the trailing OP_stop comes from default
21930 zero-initialization of the unspecified elements of the array. */
21931#define OPS0() { OP_stop, }
21932#define OPS1(a) { OP_##a, }
21933#define OPS2(a,b) { OP_##a,OP_##b, }
21934#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21935#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21936#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21937#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21938
5be8be5d
DG
21939/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21940 This is useful when mixing operands for ARM and THUMB, i.e. using the
21941 MIX_ARM_THUMB_OPERANDS macro.
21942 In order to use these macros, prefix the number of operands with _
21943 e.g. _3. */
21944#define OPS_1(a) { a, }
21945#define OPS_2(a,b) { a,b, }
21946#define OPS_3(a,b,c) { a,b,c, }
21947#define OPS_4(a,b,c,d) { a,b,c,d, }
21948#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21949#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21950
c19d1205
ZW
21951/* These macros abstract out the exact format of the mnemonic table and
21952 save some repeated characters. */
21953
21954/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21955#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21956 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 21957 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
21958
21959/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21960 a T_MNEM_xyz enumerator. */
21961#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21962 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21963#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21964 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
21965
21966/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21967 infix after the third character. */
21968#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 21969 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 21970 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 21971#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 21972 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 21973 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21974#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21975 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 21976#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21977 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21978#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21979 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 21980#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21981 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 21982
c19d1205 21983/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
21984 field is still 0xE. Many of the Thumb variants can be executed
21985 conditionally, so this is checked separately. */
c19d1205 21986#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21987 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21988 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21989
dd5181d5
KT
21990/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21991 Used by mnemonics that have very minimal differences in the encoding for
21992 ARM and Thumb variants and can be handled in a common function. */
21993#define TUEc(mnem, op, top, nops, ops, en) \
21994 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21995 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 21996
c19d1205
ZW
21997/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21998 condition code field. */
21999#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22000 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22001 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22002
22003/* ARM-only variants of all the above. */
6a86118a 22004#define CE(mnem, op, nops, ops, ae) \
5ee91343 22005 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22006
22007#define C3(mnem, op, nops, ops, ae) \
5ee91343 22008 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22009
cf3cf39d
TP
22010/* Thumb-only variants of TCE and TUE. */
22011#define ToC(mnem, top, nops, ops, te) \
22012 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22013 do_##te, 0 }
cf3cf39d
TP
22014
22015#define ToU(mnem, top, nops, ops, te) \
22016 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22017 NULL, do_##te, 0 }
cf3cf39d 22018
4389b29a
AV
22019/* T_MNEM_xyz enumerator variants of ToC. */
22020#define toC(mnem, top, nops, ops, te) \
22021 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22022 do_##te, 0 }
4389b29a 22023
f6b2b12d
AV
22024/* T_MNEM_xyz enumerator variants of ToU. */
22025#define toU(mnem, top, nops, ops, te) \
22026 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22027 NULL, do_##te, 0 }
f6b2b12d 22028
e3cb604e
PB
22029/* Legacy mnemonics that always have conditional infix after the third
22030 character. */
22031#define CL(mnem, op, nops, ops, ae) \
21d799b5 22032 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22033 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22034
8f06b2d8
PB
22035/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22036#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22037 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22038
57785aa2
AV
22039/* mov instructions that are shared between coprocessor and MVE. */
22040#define mcCE(mnem, op, nops, ops, ae) \
22041 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22042
e3cb604e
PB
22043/* Legacy coprocessor instructions where conditional infix and conditional
22044 suffix are ambiguous. For consistency this includes all FPA instructions,
22045 not just the potentially ambiguous ones. */
22046#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22047 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22048 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22049
22050/* Coprocessor, takes either a suffix or a position-3 infix
22051 (for an FPA corner case). */
22052#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22053 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22054 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22055
6a86118a 22056#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22057 { m1 #m2 m3, OPS##nops ops, \
22058 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22059 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22060
22061#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22062 xCM_ (m1, , m2, op, nops, ops, ae), \
22063 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22064 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22065 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22066 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22067 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22068 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22069 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22070 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22071 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22072 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22073 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22074 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22075 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22076 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22077 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22078 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22079 xCM_ (m1, le, m2, op, nops, ops, ae), \
22080 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22081
22082#define UE(mnem, op, nops, ops, ae) \
5ee91343 22083 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22084
22085#define UF(mnem, op, nops, ops, ae) \
5ee91343 22086 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22087
5287ad62
JB
22088/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22089 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22090 use the same encoding function for each. */
22091#define NUF(mnem, op, nops, ops, enc) \
22092 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22093 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22094
22095/* Neon data processing, version which indirects through neon_enc_tab for
22096 the various overloaded versions of opcodes. */
22097#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22098 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22099 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22100
22101/* Neon insn with conditional suffix for the ARM version, non-overloaded
22102 version. */
5ee91343 22103#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22104 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22105 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22106
037e8744 22107#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22108 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22109
22110#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22111 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22112
5287ad62 22113/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22114#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22115 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22116 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22117
037e8744 22118#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22119 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22120
22121#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22122 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22123
22124/* */
22125#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22126 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22127 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22128
22129
22130/* nCEF but for MVE predicated instructions. */
22131#define mnCEF(mnem, op, nops, ops, enc) \
22132 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22133
22134/* nCE but for MVE predicated instructions. */
22135#define mnCE(mnem, op, nops, ops, enc) \
22136 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22137
5ee91343
AV
22138/* NUF but for potentially MVE predicated instructions. */
22139#define MNUF(mnem, op, nops, ops, enc) \
22140 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22141 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22142
22143/* nUF but for potentially MVE predicated instructions. */
22144#define mnUF(mnem, op, nops, ops, enc) \
22145 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22146 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22147
22148/* ToC but for potentially MVE predicated instructions. */
22149#define mToC(mnem, top, nops, ops, te) \
22150 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22151 do_##te, 1 }
22152
22153/* NCE but for MVE predicated instructions. */
22154#define MNCE(mnem, op, nops, ops, enc) \
22155 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22156
22157/* NCEF but for MVE predicated instructions. */
22158#define MNCEF(mnem, op, nops, ops, enc) \
22159 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22160#define do_0 0
22161
c19d1205 22162static const struct asm_opcode insns[] =
bfae80f2 22163{
74db7efb
NC
22164#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22165#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22166 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22167 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22168 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22169 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22170 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22171 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22172 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22173 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22174 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22175 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22176 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22177 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22178 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22179 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22180 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22181 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22182
22183 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22184 for setting PSR flag bits. They are obsolete in V6 and do not
22185 have Thumb equivalents. */
21d799b5
NC
22186 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22187 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22188 CL("tstp", 110f000, 2, (RR, SH), cmp),
22189 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22190 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22191 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22192 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22193 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22194 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22195
22196 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22197 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22198 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22199 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22200
22201 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22202 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22203 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22204 OP_RRnpc),
22205 OP_ADDRGLDR),ldst, t_ldst),
22206 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22207
22208 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22209 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22210 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22211 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22212 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22213 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22214
21d799b5
NC
22215 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22216 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22217
c19d1205 22218 /* Pseudo ops. */
21d799b5 22219 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22220 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22221 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22222 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22223
22224 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22225 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22226 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22227 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22228 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22229 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22230 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22231 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22232 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22233 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22234 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22235 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22236 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22237
16a4cf17 22238 /* These may simplify to neg. */
21d799b5
NC
22239 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22240 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22241
173205ca
TP
22242#undef THUMB_VARIANT
22243#define THUMB_VARIANT & arm_ext_os
22244
22245 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22246 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22247
c921be7d
NC
22248#undef THUMB_VARIANT
22249#define THUMB_VARIANT & arm_ext_v6
22250
21d799b5 22251 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22252
22253 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22254#undef THUMB_VARIANT
22255#define THUMB_VARIANT & arm_ext_v6t2
22256
21d799b5
NC
22257 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22258 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22259 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22260
5be8be5d
DG
22261 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22262 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22263 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22264 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22265
21d799b5
NC
22266 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22267 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22268
21d799b5
NC
22269 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22270 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22271
22272 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22273 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22274 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22275
22276 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22277 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22278 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22279 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22280 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22281 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22282 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22283 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22284
c921be7d
NC
22285#undef ARM_VARIANT
22286#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22287#undef THUMB_VARIANT
22288#define THUMB_VARIANT & arm_ext_v4t
22289
21d799b5
NC
22290 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22291 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22292
c921be7d
NC
22293#undef THUMB_VARIANT
22294#define THUMB_VARIANT & arm_ext_v6t2
22295
21d799b5 22296 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22297 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22298
22299 /* Generic coprocessor instructions. */
21d799b5
NC
22300 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22301 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22302 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22303 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22304 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22305 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22306 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22307
c921be7d
NC
22308#undef ARM_VARIANT
22309#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22310
21d799b5 22311 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22312 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22313
c921be7d
NC
22314#undef ARM_VARIANT
22315#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22316#undef THUMB_VARIANT
22317#define THUMB_VARIANT & arm_ext_msr
22318
d2cd1205
JB
22319 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22320 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22321
c921be7d
NC
22322#undef ARM_VARIANT
22323#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22324#undef THUMB_VARIANT
22325#define THUMB_VARIANT & arm_ext_v6t2
22326
21d799b5
NC
22327 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22328 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22329 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22330 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22331 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22332 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22333 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22334 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22335
c921be7d
NC
22336#undef ARM_VARIANT
22337#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22338#undef THUMB_VARIANT
22339#define THUMB_VARIANT & arm_ext_v4t
22340
5be8be5d
DG
22341 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22342 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22343 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22344 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22345 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22346 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22347
c921be7d
NC
22348#undef ARM_VARIANT
22349#define ARM_VARIANT & arm_ext_v4t_5
22350
c19d1205
ZW
22351 /* ARM Architecture 4T. */
22352 /* Note: bx (and blx) are required on V5, even if the processor does
22353 not support Thumb. */
21d799b5 22354 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22355
c921be7d
NC
22356#undef ARM_VARIANT
22357#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22358#undef THUMB_VARIANT
22359#define THUMB_VARIANT & arm_ext_v5t
22360
c19d1205
ZW
22361 /* Note: blx has 2 variants; the .value coded here is for
22362 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22363 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22364 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22365
c921be7d
NC
22366#undef THUMB_VARIANT
22367#define THUMB_VARIANT & arm_ext_v6t2
22368
21d799b5
NC
22369 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22370 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22371 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22372 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22373 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22374 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22375 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22376 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22377
c921be7d 22378#undef ARM_VARIANT
74db7efb
NC
22379#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22380#undef THUMB_VARIANT
22381#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22382
21d799b5
NC
22383 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22384 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22385 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22386 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22387
21d799b5
NC
22388 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22389 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22390
21d799b5
NC
22391 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22392 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22393 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22394 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22395
21d799b5
NC
22396 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22397 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22398 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22399 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22400
21d799b5
NC
22401 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22402 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22403
03ee1b7f
NC
22404 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22405 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22406 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22407 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22408
c921be7d 22409#undef ARM_VARIANT
74db7efb
NC
22410#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22411#undef THUMB_VARIANT
22412#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22413
21d799b5 22414 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22415 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22416 ldrd, t_ldstd),
22417 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22418 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22419
21d799b5
NC
22420 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22421 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22422
c921be7d
NC
22423#undef ARM_VARIANT
22424#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22425
21d799b5 22426 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22427
c921be7d
NC
22428#undef ARM_VARIANT
22429#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22430#undef THUMB_VARIANT
22431#define THUMB_VARIANT & arm_ext_v6
22432
21d799b5
NC
22433 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22434 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22435 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22436 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22437 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22438 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22439 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22440 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22441 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22442 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22443
c921be7d 22444#undef THUMB_VARIANT
ff8646ee 22445#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22446
5be8be5d
DG
22447 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22448 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22449 strex, t_strex),
ff8646ee
TP
22450#undef THUMB_VARIANT
22451#define THUMB_VARIANT & arm_ext_v6t2
22452
21d799b5
NC
22453 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22454 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22455
21d799b5
NC
22456 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22457 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22458
9e3c6df6 22459/* ARM V6 not included in V7M. */
c921be7d
NC
22460#undef THUMB_VARIANT
22461#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22462 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22463 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22464 UF(rfeib, 9900a00, 1, (RRw), rfe),
22465 UF(rfeda, 8100a00, 1, (RRw), rfe),
22466 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22467 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22468 UF(rfefa, 8100a00, 1, (RRw), rfe),
22469 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22470 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22471 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22472 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22473 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22474 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22475 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22476 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22477 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22478 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22479 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22480 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22481
9e3c6df6
PB
22482/* ARM V6 not included in V7M (eg. integer SIMD). */
22483#undef THUMB_VARIANT
22484#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22485 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22486 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22487 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22488 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22489 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22490 /* Old name for QASX. */
74db7efb 22491 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22492 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22493 /* Old name for QSAX. */
74db7efb 22494 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22495 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22496 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22497 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22498 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22499 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22500 /* Old name for SASX. */
74db7efb 22501 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22502 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22503 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22504 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22505 /* Old name for SHASX. */
21d799b5 22506 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22507 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22508 /* Old name for SHSAX. */
21d799b5
NC
22509 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22510 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22511 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22512 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22513 /* Old name for SSAX. */
74db7efb 22514 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22515 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22516 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22517 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22518 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22519 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22520 /* Old name for UASX. */
74db7efb 22521 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22522 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22523 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22524 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22525 /* Old name for UHASX. */
21d799b5
NC
22526 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22527 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22528 /* Old name for UHSAX. */
21d799b5
NC
22529 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22530 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22531 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22532 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22533 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22534 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22535 /* Old name for UQASX. */
21d799b5
NC
22536 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22537 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22538 /* Old name for UQSAX. */
21d799b5
NC
22539 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22540 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22541 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22542 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22543 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22544 /* Old name for USAX. */
74db7efb 22545 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22546 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22547 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22548 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22549 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22550 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22551 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22552 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22553 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22554 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22555 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22556 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22557 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22558 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22559 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22560 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22561 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22562 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22563 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22564 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22565 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22566 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22567 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22568 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22569 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22570 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22571 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22572 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22573 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22574 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22575 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22576 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22577 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22578 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22579
c921be7d 22580#undef ARM_VARIANT
55e8aae7 22581#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22582#undef THUMB_VARIANT
55e8aae7 22583#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22584
21d799b5
NC
22585 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22586 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22587 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22588 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22589
c921be7d
NC
22590#undef THUMB_VARIANT
22591#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
22592 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22593 ldrexd, t_ldrexd),
22594 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22595 RRnpcb), strexd, t_strexd),
ebdca51a 22596
c921be7d 22597#undef THUMB_VARIANT
ff8646ee 22598#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
22599 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22600 rd_rn, rd_rn),
22601 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22602 rd_rn, rd_rn),
22603 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22604 strex, t_strexbh),
5be8be5d 22605 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22606 strex, t_strexbh),
21d799b5 22607 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 22608
c921be7d 22609#undef ARM_VARIANT
f4c65163 22610#define ARM_VARIANT & arm_ext_sec
74db7efb 22611#undef THUMB_VARIANT
f4c65163 22612#define THUMB_VARIANT & arm_ext_sec
c921be7d 22613
21d799b5 22614 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 22615
90ec0d68
MGD
22616#undef ARM_VARIANT
22617#define ARM_VARIANT & arm_ext_virt
22618#undef THUMB_VARIANT
22619#define THUMB_VARIANT & arm_ext_virt
22620
22621 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22622 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22623
ddfded2f
MW
22624#undef ARM_VARIANT
22625#define ARM_VARIANT & arm_ext_pan
22626#undef THUMB_VARIANT
22627#define THUMB_VARIANT & arm_ext_pan
22628
22629 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22630
c921be7d 22631#undef ARM_VARIANT
74db7efb 22632#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
22633#undef THUMB_VARIANT
22634#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22635
21d799b5
NC
22636 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22637 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22638 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22639 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 22640
21d799b5 22641 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 22642 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 22643
5be8be5d
DG
22644 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22645 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22646 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22647 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 22648
91d8b670
JG
22649#undef ARM_VARIANT
22650#define ARM_VARIANT & arm_ext_v3
22651#undef THUMB_VARIANT
22652#define THUMB_VARIANT & arm_ext_v6t2
22653
22654 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
22655 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22656 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
22657
22658#undef ARM_VARIANT
22659#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
22660#undef THUMB_VARIANT
22661#define THUMB_VARIANT & arm_ext_v6t2_v8m
22662 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22663 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22664
bf3eeda7 22665 /* Thumb-only instructions. */
74db7efb 22666#undef ARM_VARIANT
bf3eeda7
NS
22667#define ARM_VARIANT NULL
22668 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22669 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
22670
22671 /* ARM does not really have an IT instruction, so always allow it.
22672 The opcode is copied from Thumb in order to allow warnings in
22673 -mimplicit-it=[never | arm] modes. */
22674#undef ARM_VARIANT
22675#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
22676#undef THUMB_VARIANT
22677#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22678
21d799b5
NC
22679 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22680 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22681 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22682 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22683 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22684 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22685 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22686 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22687 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22688 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22689 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22690 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22691 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22692 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22693 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 22694 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
22695 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22696 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 22697
92e90b6e 22698 /* Thumb2 only instructions. */
c921be7d
NC
22699#undef ARM_VARIANT
22700#define ARM_VARIANT NULL
92e90b6e 22701
21d799b5
NC
22702 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22703 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22704 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22705 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22706 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22707 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 22708
eea54501
MGD
22709 /* Hardware division instructions. */
22710#undef ARM_VARIANT
22711#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
22712#undef THUMB_VARIANT
22713#define THUMB_VARIANT & arm_ext_div
22714
eea54501
MGD
22715 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22716 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 22717
7e806470 22718 /* ARM V6M/V7 instructions. */
c921be7d
NC
22719#undef ARM_VARIANT
22720#define ARM_VARIANT & arm_ext_barrier
22721#undef THUMB_VARIANT
22722#define THUMB_VARIANT & arm_ext_barrier
22723
ccb84d65
JB
22724 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22725 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22726 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 22727
62b3e311 22728 /* ARM V7 instructions. */
c921be7d
NC
22729#undef ARM_VARIANT
22730#define ARM_VARIANT & arm_ext_v7
22731#undef THUMB_VARIANT
22732#define THUMB_VARIANT & arm_ext_v7
22733
21d799b5
NC
22734 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22735 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 22736
74db7efb 22737#undef ARM_VARIANT
60e5ef9f 22738#define ARM_VARIANT & arm_ext_mp
74db7efb 22739#undef THUMB_VARIANT
60e5ef9f
MGD
22740#define THUMB_VARIANT & arm_ext_mp
22741
22742 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22743
53c4b28b
MGD
22744 /* AArchv8 instructions. */
22745#undef ARM_VARIANT
22746#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
22747
22748/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 22749#undef THUMB_VARIANT
4ed7ed8d 22750#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 22751
4ed7ed8d
TP
22752 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22753 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22754 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22755 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22756 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22757 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 22758 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
22759 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22760 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22761 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22762 stlex, t_stlex),
4b8c8c02
RE
22763 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22764 stlex, t_stlex),
22765 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22766 stlex, t_stlex),
4ed7ed8d
TP
22767#undef THUMB_VARIANT
22768#define THUMB_VARIANT & arm_ext_v8
53c4b28b 22769
4ed7ed8d 22770 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
22771 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22772 ldrexd, t_ldrexd),
22773 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22774 strexd, t_strexd),
f7dd2fb2
TC
22775
22776/* Defined in V8 but is in undefined encoding space for earlier
22777 architectures. However earlier architectures are required to treat
22778 this instuction as a semihosting trap as well. Hence while not explicitly
22779 defined as such, it is in fact correct to define the instruction for all
22780 architectures. */
22781#undef THUMB_VARIANT
22782#define THUMB_VARIANT & arm_ext_v1
22783#undef ARM_VARIANT
22784#define ARM_VARIANT & arm_ext_v1
22785 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22786
8884b720 22787 /* ARMv8 T32 only. */
74db7efb 22788#undef ARM_VARIANT
b79f7053
MGD
22789#define ARM_VARIANT NULL
22790 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22791 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22792 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22793
33399f07
MGD
22794 /* FP for ARMv8. */
22795#undef ARM_VARIANT
a715796b 22796#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 22797#undef THUMB_VARIANT
a715796b 22798#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
22799
22800 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22801 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22802 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22803 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
22804 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22805 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
30bdf752
MGD
22806 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22807 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22808 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22809 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22810 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22811 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22812 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 22813
91ff7894
MGD
22814 /* Crypto v1 extensions. */
22815#undef ARM_VARIANT
22816#define ARM_VARIANT & fpu_crypto_ext_armv8
22817#undef THUMB_VARIANT
22818#define THUMB_VARIANT & fpu_crypto_ext_armv8
22819
22820 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22821 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22822 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22823 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
22824 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22825 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22826 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22827 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22828 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22829 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22830 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
22831 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22832 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22833 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 22834
dd5181d5 22835#undef ARM_VARIANT
74db7efb 22836#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
22837#undef THUMB_VARIANT
22838#define THUMB_VARIANT & crc_ext_armv8
22839 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22840 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22841 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22842 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22843 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22844 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22845
105bde57
MW
22846 /* ARMv8.2 RAS extension. */
22847#undef ARM_VARIANT
4d1464f2 22848#define ARM_VARIANT & arm_ext_ras
105bde57 22849#undef THUMB_VARIANT
4d1464f2 22850#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
22851 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22852
49e8a725
SN
22853#undef ARM_VARIANT
22854#define ARM_VARIANT & arm_ext_v8_3
22855#undef THUMB_VARIANT
22856#define THUMB_VARIANT & arm_ext_v8_3
22857 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22858
c604a79a
JW
22859#undef ARM_VARIANT
22860#define ARM_VARIANT & fpu_neon_ext_dotprod
22861#undef THUMB_VARIANT
22862#define THUMB_VARIANT & fpu_neon_ext_dotprod
22863 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22864 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22865
c921be7d
NC
22866#undef ARM_VARIANT
22867#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
22868#undef THUMB_VARIANT
22869#define THUMB_VARIANT NULL
c921be7d 22870
21d799b5
NC
22871 cCE("wfs", e200110, 1, (RR), rd),
22872 cCE("rfs", e300110, 1, (RR), rd),
22873 cCE("wfc", e400110, 1, (RR), rd),
22874 cCE("rfc", e500110, 1, (RR), rd),
22875
22876 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22877 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22878 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22879 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22880
22881 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22882 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22883 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22884 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22885
22886 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22887 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22888 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22889 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22890 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22891 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22892 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22893 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22894 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22895 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22896 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22897 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22898
22899 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22900 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22901 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22902 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22903 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22904 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22905 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22906 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22907 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22908 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22909 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22910 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22911
22912 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22913 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22914 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22915 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22916 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22917 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22918 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22919 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22920 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22921 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22922 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22923 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22924
22925 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22926 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22927 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22928 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22929 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22930 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22931 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22932 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22933 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22934 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22935 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22936 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22937
22938 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22939 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22940 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22941 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22942 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22943 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22944 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22945 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22946 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22947 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22948 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22949 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22950
22951 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22952 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22953 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22954 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22955 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22956 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22957 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22958 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22959 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22960 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22961 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22962 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22963
22964 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22965 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22966 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22967 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22968 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22969 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22970 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22971 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22972 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22973 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22974 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22975 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22976
22977 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22978 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22979 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22980 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22981 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22982 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22983 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22984 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22985 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22986 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22987 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22988 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22989
22990 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22991 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22992 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22993 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22994 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22995 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22996 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22997 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22998 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22999 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23000 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23001 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23002
23003 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23004 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23005 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23006 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23007 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23008 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23009 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23010 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23011 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23012 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23013 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23014 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23015
23016 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23017 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23018 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23019 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23020 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23021 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23022 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23023 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23024 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23025 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23026 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23027 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23028
23029 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23030 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23031 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23032 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23033 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23034 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23035 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23036 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23037 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23038 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23039 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23040 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23041
23042 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23043 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23044 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23045 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23046 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23047 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23048 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23049 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23050 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23051 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23052 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23053 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23054
23055 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23056 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23057 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23058 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23059 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23060 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23061 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23062 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23063 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23064 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23065 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23066 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23067
23068 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23069 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23070 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23071 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23072 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23073 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23074 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23075 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23076 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23077 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23078 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23079 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23080
23081 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23082 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23083 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23084 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23085 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23086 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23087 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23088 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23089 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23090 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23091 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23092 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23093
23094 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23095 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23096 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23097 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23098 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23099 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23100 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23101 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23102 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23103 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23104 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23105 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23106
23107 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23108 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23109 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23110 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23111 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23112 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23113 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23114 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23115 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23116 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23117 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23118 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23119
23120 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23121 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23122 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23123 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23124 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23125 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23126 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23127 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23128 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23129 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23130 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23131 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23132
23133 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23134 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23135 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23136 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23137 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23138 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23139 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23140 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23141 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23142 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23143 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23144 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23145
23146 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23147 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23148 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23149 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23150 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23151 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23152 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23153 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23154 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23155 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23156 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23157 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23158
23159 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23160 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23161 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23162 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23163 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23164 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23165 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23166 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23167 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23168 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23169 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23170 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23171
23172 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23173 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23174 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23175 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23176 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23177 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23178 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23179 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23180 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23181 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23182 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23183 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23184
23185 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23186 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23187 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23188 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23189 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23190 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23191 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23192 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23193 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23194 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23195 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23196 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23197
23198 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23199 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23200 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23201 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23202 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23203 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23204 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23205 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23206 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23207 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23208 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23209 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23210
23211 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23212 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23213 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23214 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23215 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23216 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23217 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23218 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23219 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23220 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23221 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23222 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23223
23224 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23225 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23226 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23227 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23228 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23229 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23230 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23231 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23232 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23233 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23234 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23235 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23236
23237 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23238 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23239 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23240 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23241 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23242 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23243 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23244 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23245 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23246 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23247 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23248 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23249
23250 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23251 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23252 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23253 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23254 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23255 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23256 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23257 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23258 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23259 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23260 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23261 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23262
23263 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23264 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23265 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23266 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23267
23268 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23269 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23270 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23271 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23272 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23273 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23274 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23275 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23276 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23277 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23278 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23279 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23280
c19d1205
ZW
23281 /* The implementation of the FIX instruction is broken on some
23282 assemblers, in that it accepts a precision specifier as well as a
23283 rounding specifier, despite the fact that this is meaningless.
23284 To be more compatible, we accept it as well, though of course it
23285 does not set any bits. */
21d799b5
NC
23286 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23287 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23288 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23289 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23290 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23291 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23292 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23293 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23294 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23295 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23296 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23297 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23298 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23299
c19d1205 23300 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23301#undef ARM_VARIANT
23302#define ARM_VARIANT & fpu_fpa_ext_v2
23303
21d799b5
NC
23304 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23305 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23306 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23307 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23308 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23309 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23310
c921be7d
NC
23311#undef ARM_VARIANT
23312#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23313
c19d1205 23314 /* Moves and type conversions. */
21d799b5 23315 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23316 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23317 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23318 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23319 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23320 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23321 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23322 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23323 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23324 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23325 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23326
23327 /* Memory operations. */
21d799b5
NC
23328 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23329 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23330 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23331 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23332 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23333 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23334 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23335 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23336 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23337 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23338 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23339 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23340 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23341 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23342 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23343 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23344 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23345 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23346
c19d1205 23347 /* Monadic operations. */
21d799b5
NC
23348 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23349 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23350 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23351
23352 /* Dyadic operations. */
21d799b5
NC
23353 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23354 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23355 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23356 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23357 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23358 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23359 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23360 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23361 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23362
c19d1205 23363 /* Comparisons. */
21d799b5
NC
23364 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23365 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23366 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23367 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23368
62f3b8c8
PB
23369 /* Double precision load/store are still present on single precision
23370 implementations. */
23371 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23372 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23373 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23374 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23375 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23376 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23377 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23378 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23379 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23380 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23381
c921be7d
NC
23382#undef ARM_VARIANT
23383#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23384
c19d1205 23385 /* Moves and type conversions. */
21d799b5
NC
23386 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23387 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23388 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23389 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23390 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23391 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23392 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23393 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23394 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23395 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23396 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23397 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23398
c19d1205 23399 /* Monadic operations. */
21d799b5
NC
23400 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23401 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23402 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23403
23404 /* Dyadic operations. */
21d799b5
NC
23405 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23406 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23407 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23408 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23409 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23410 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23411 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23412 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23413 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23414
c19d1205 23415 /* Comparisons. */
21d799b5
NC
23416 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23417 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23418 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23419 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23420
037e8744
JB
23421/* Instructions which may belong to either the Neon or VFP instruction sets.
23422 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23423#undef ARM_VARIANT
23424#define ARM_VARIANT & fpu_vfp_ext_v1xd
23425#undef THUMB_VARIANT
23426#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23427
037e8744
JB
23428 /* These mnemonics are unique to VFP. */
23429 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23430 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23431 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23432 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23433 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23434 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23435 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23436 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23437
23438 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
23439 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23440 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23441 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23442
55881a11
MGD
23443 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23444 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23445 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23446 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23447 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23448 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23449
dd9634d9 23450 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23451 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23452 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23453 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23454
037e8744
JB
23455
23456 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23457 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23458
32c36c3c
AV
23459#undef THUMB_VARIANT
23460/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23461 by different feature bits. Since we are setting the Thumb guard, we can
23462 require Thumb-1 which makes it a nop guard and set the right feature bit in
23463 do_vldr_vstr (). */
23464#define THUMB_VARIANT & arm_ext_v4t
23465 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23466 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23467
9db2f6b4
RL
23468#undef ARM_VARIANT
23469#define ARM_VARIANT & arm_ext_fp16
23470#undef THUMB_VARIANT
23471#define THUMB_VARIANT & arm_ext_fp16
23472 /* New instructions added from v8.2, allowing the extraction and insertion of
23473 the upper 16 bits of a 32-bit vector register. */
23474 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23475 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23476
dec41383
JW
23477 /* New backported fma/fms instructions optional in v8.2. */
23478 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23479 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23480
c921be7d
NC
23481#undef THUMB_VARIANT
23482#define THUMB_VARIANT & fpu_neon_ext_v1
23483#undef ARM_VARIANT
23484#define ARM_VARIANT & fpu_neon_ext_v1
23485
5287ad62
JB
23486 /* Data processing with three registers of the same length. */
23487 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23488 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23489 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23490 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23491 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23492 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23493 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23494 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23495 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23496 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23497 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23498 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23499 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23500 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23501 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23502 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23503 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23504 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23505 /* If not immediate, fall back to neon_dyadic_i64_su.
23506 shl_imm should accept I8 I16 I32 I64,
23507 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23508 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23509 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23510 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23511 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23512 /* Logic ops, types optional & ignored. */
4316f0d2 23513 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23514 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23515 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23516 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23517 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23518 /* Bitfield ops, untyped. */
23519 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23520 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23521 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23522 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23523 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23524 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23525 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
23526 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23527 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23528 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23529 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23530 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23531 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23532 back to neon_dyadic_if_su. */
21d799b5
NC
23533 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23534 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23535 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23536 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23537 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23538 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23539 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23540 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23541 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23542 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23543 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23544 /* As above, D registers only. */
21d799b5
NC
23545 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23546 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23547 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23548 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23549 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23550 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23551 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23552 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23553 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23554 /* vtst takes sizes 8, 16, 32. */
23555 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23556 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23557 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23558 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23559 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23560 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23561 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23562 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23563 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23564 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23565 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23566 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23567 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23568 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23569 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23570 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23571 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23572 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23573 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23574 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23575 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23576 /* ARM v8.1 extension. */
643afb90
MW
23577 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23578 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23579 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23580 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23581
23582 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23583 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23584 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23585
23586 /* Data processing with two registers and a shift amount. */
23587 /* Right shifts, and variants with rounding.
23588 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23589 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23590 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23591 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23592 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23593 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23594 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23595 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23596 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23597 /* Shift and insert. Sizes accepted 8 16 32 64. */
23598 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23599 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23600 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23601 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23602 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23603 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23604 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23605 /* Right shift immediate, saturating & narrowing, with rounding variants.
23606 Types accepted S16 S32 S64 U16 U32 U64. */
23607 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23608 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23609 /* As above, unsigned. Types accepted S16 S32 S64. */
23610 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23611 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23612 /* Right shift narrowing. Types accepted I16 I32 I64. */
23613 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23614 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23615 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 23616 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 23617 /* CVT with optional immediate for fixed-point variant. */
21d799b5 23618 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 23619
4316f0d2
DG
23620 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23621 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
23622
23623 /* Data processing, three registers of different lengths. */
23624 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23625 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
23626 /* If not scalar, fall back to neon_dyadic_long.
23627 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
23628 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23629 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
23630 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23631 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23632 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23633 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23634 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23635 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23636 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23637 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23638 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
23639 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23640 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23641 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
23642 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23643 S16 S32 U16 U32. */
21d799b5 23644 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
23645
23646 /* Extract. Size 8. */
3b8d421e
PB
23647 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23648 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
23649
23650 /* Two registers, miscellaneous. */
23651 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23652 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23653 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23654 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23655 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23656 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23657 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23658 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
23659 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23660 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
23661 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23662 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23663 /* VMOVN. Types I16 I32 I64. */
21d799b5 23664 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 23665 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 23666 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 23667 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 23668 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
23669 /* VZIP / VUZP. Sizes 8 16 32. */
23670 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23671 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23672 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23673 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23674 /* VQABS / VQNEG. Types S8 S16 S32. */
23675 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23676 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23677 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23678 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23679 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23680 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23681 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23682 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23683 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 23684 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
23685 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23686 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23687 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23688 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23689 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
23690 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23691 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
23692 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23693 /* VCNT. Size 8. */
23694 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23695 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23696 /* Two address, untyped. */
23697 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23698 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23699 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
23700 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23701 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
23702
23703 /* Table lookup. Size 8. */
23704 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23705 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23706
c921be7d
NC
23707#undef THUMB_VARIANT
23708#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23709#undef ARM_VARIANT
23710#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23711
5287ad62 23712 /* Neon element/structure load/store. */
21d799b5
NC
23713 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23714 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23715 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23716 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23717 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23718 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23719 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23720 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 23721
c921be7d 23722#undef THUMB_VARIANT
74db7efb
NC
23723#define THUMB_VARIANT & fpu_vfp_ext_v3xd
23724#undef ARM_VARIANT
23725#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
23726 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23727 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23728 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23729 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23730 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23731 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23732 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23733 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23734 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23735
74db7efb 23736#undef THUMB_VARIANT
c921be7d
NC
23737#define THUMB_VARIANT & fpu_vfp_ext_v3
23738#undef ARM_VARIANT
23739#define ARM_VARIANT & fpu_vfp_ext_v3
23740
21d799b5 23741 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 23742 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23743 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23744 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23745 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23746 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23747 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23748 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23749 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 23750
74db7efb
NC
23751#undef ARM_VARIANT
23752#define ARM_VARIANT & fpu_vfp_ext_fma
23753#undef THUMB_VARIANT
23754#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
23755 /* Mnemonics shared by Neon and VFP. These are included in the
23756 VFP FMA variant; NEON and VFP FMA always includes the NEON
23757 FMA instructions. */
23758 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23759 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23760 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23761 the v form should always be used. */
23762 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23763 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23764 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23765 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23766 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23767 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23768
5287ad62 23769#undef THUMB_VARIANT
c921be7d
NC
23770#undef ARM_VARIANT
23771#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23772
21d799b5
NC
23773 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23774 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23775 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23776 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23777 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23778 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23779 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23780 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 23781
c921be7d
NC
23782#undef ARM_VARIANT
23783#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23784
21d799b5
NC
23785 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23786 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23787 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23788 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23789 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23790 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23791 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23792 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23793 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
23794 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23795 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23796 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23797 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23798 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23799 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
23800 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23801 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23802 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23803 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23804 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23805 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23806 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23807 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23808 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23809 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23810 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
23811 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23812 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23813 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
23814 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23815 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23816 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23817 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23818 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23819 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23820 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23821 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23822 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23823 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23824 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23825 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23826 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23827 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23828 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23829 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23830 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23831 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
23832 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23833 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23834 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23835 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23836 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23837 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23838 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23839 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23840 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23841 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23842 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23843 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23844 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23845 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23846 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23847 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23848 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23849 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23850 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23851 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23852 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23853 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23854 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23855 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23856 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23857 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23858 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23859 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23860 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23861 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23862 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23863 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23864 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23865 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23866 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23867 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23868 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23869 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23870 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23871 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23872 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23873 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23874 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23875 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23876 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23877 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23878 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23879 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23880 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23881 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23882 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23883 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23884 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23885 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23886 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23887 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23888 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23889 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23890 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23891 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23892 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23893 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23894 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23895 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23896 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23897 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23898 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23899 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23900 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23901 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23902 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23903 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23904 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23905 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23906 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23907 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23908 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23909 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23910 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23911 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23912 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23913 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23914 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23915 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23916 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23917 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23918 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23919 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23920 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23921 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23922 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23923 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23924 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23925 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23926 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23927 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23928 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23929 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23930 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23931 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23932 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23933 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23934 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23935 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23936 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23937 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23938 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23939 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23940 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23941 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23942 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23943 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23944 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23945 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23946 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 23947
c921be7d
NC
23948#undef ARM_VARIANT
23949#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23950
21d799b5
NC
23951 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23952 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23953 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23954 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23955 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23956 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23957 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23958 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23959 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23960 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23961 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23962 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23963 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23964 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23965 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23966 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23967 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23968 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23969 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23970 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23971 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23972 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23973 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23974 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23975 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23976 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23977 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23978 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23979 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23980 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23981 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23982 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23983 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23984 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23985 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23986 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23987 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23988 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23989 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23990 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23991 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23992 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23993 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23994 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23995 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23996 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23997 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23998 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23999 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24000 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24001 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24002 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24003 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24004 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24005 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24006 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24007 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24008
c921be7d
NC
24009#undef ARM_VARIANT
24010#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24011
21d799b5
NC
24012 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24013 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24014 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24015 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24016 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24017 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24018 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24019 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24020 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24021 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24022 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24023 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24024 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24025 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24026 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24027 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24028 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24029 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24030 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24031 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24032 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24033 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24034 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24035 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24036 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24037 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24038 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24039 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24040 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24041 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24042 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24043 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24044 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24045 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24046 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24047 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24048 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24049 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24050 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24051 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24052 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24053 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24054 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24055 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24056 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24057 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24058 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24059 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24060 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24061 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24062 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24063 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24064 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24065 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24066 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24067 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24068 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24069 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24070 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24071 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24072 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24073 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24074 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24075 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24076 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24077 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24078 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24079 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24080 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24081 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24082 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24083 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24084 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24085 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24086 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24087 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24088
7fadb25d
SD
24089 /* ARMv8.5-A instructions. */
24090#undef ARM_VARIANT
24091#define ARM_VARIANT & arm_ext_sb
24092#undef THUMB_VARIANT
24093#define THUMB_VARIANT & arm_ext_sb
24094 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24095
dad0c3bf
SD
24096#undef ARM_VARIANT
24097#define ARM_VARIANT & arm_ext_predres
24098#undef THUMB_VARIANT
24099#define THUMB_VARIANT & arm_ext_predres
24100 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24101 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24102 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24103
16a1fa25 24104 /* ARMv8-M instructions. */
4ed7ed8d
TP
24105#undef ARM_VARIANT
24106#define ARM_VARIANT NULL
24107#undef THUMB_VARIANT
24108#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24109 ToU("sg", e97fe97f, 0, (), noargs),
24110 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24111 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24112 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24113 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24114 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24115 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24116
24117 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24118 instructions behave as nop if no VFP is present. */
24119#undef THUMB_VARIANT
24120#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24121 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24122 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24123
24124 /* Armv8.1-M Mainline instructions. */
24125#undef THUMB_VARIANT
24126#define THUMB_VARIANT & arm_ext_v8_1m_main
24127 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24128 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24129 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24130 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24131 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24132
24133 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24134 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24135 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24136
efd6b359 24137 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24138 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24139
24140#undef THUMB_VARIANT
24141#define THUMB_VARIANT & mve_ext
1b883319
AV
24142
24143 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24144 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24145 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24146 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24147 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24148 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24149 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24150 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24151 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24152 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24153 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24154 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24155 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24156 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24157 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24158
5ee91343
AV
24159 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24160 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24161 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24162 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24163 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24164 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24165 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24166 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24167 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24168 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24169 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24170 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24171 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24172 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24173 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24174
a302e574 24175 /* MVE and MVE FP only. */
c2dafc2a
AV
24176 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24177 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24178 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24179 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24180 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24181 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24182 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24183 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24184 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24185 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24186 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24187 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24188 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24189 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24190 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24191 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24192
35c228db
AV
24193 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24194 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24195 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24196 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24197 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24198 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24199 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24200 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24201 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24202 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24203 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24204 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24205 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24206 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24207 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24208 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24209 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24210 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24211 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24212 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24213
57785aa2
AV
24214 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24215 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24216 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24217 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24218 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24219 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24220 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
57785aa2 24221
5d281bf0
AV
24222#undef THUMB_VARIANT
24223#define THUMB_VARIANT & mve_fp_ext
24224 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24225 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
5d281bf0 24226
5ee91343 24227#undef ARM_VARIANT
57785aa2 24228#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24229#undef THUMB_VARIANT
24230#define THUMB_VARIANT & arm_ext_v6t2
24231
57785aa2
AV
24232 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24233
24234#undef ARM_VARIANT
24235#define ARM_VARIANT & fpu_vfp_ext_v1xd
24236
24237 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24238 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24239 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24240 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24241
886e1c73
AV
24242 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24243 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24244 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24245
485dee97
AV
24246 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24247 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24248
57785aa2
AV
24249 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24250 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24251
1b883319
AV
24252 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24253 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24254
57785aa2
AV
24255#undef ARM_VARIANT
24256#define ARM_VARIANT & fpu_vfp_ext_v2
24257
24258 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24259 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24260 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24261 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24262
dd9634d9
AV
24263#undef ARM_VARIANT
24264#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24265 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24266 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24267 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24268 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24269
24270#undef ARM_VARIANT
5ee91343 24271#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24272 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24273 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24274 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24275 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24276 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24277 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24278 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24279 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24280 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
24281 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24282 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
5d281bf0
AV
24283
24284#undef ARM_VARIANT
24285#define ARM_VARIANT & arm_ext_v8_3
24286#undef THUMB_VARIANT
24287#define THUMB_VARIANT & arm_ext_v6t2_v8m
24288 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24289 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24290};
24291#undef ARM_VARIANT
24292#undef THUMB_VARIANT
24293#undef TCE
c19d1205
ZW
24294#undef TUE
24295#undef TUF
24296#undef TCC
8f06b2d8 24297#undef cCE
e3cb604e
PB
24298#undef cCL
24299#undef C3E
4389b29a 24300#undef C3
c19d1205
ZW
24301#undef CE
24302#undef CM
4389b29a 24303#undef CL
c19d1205
ZW
24304#undef UE
24305#undef UF
24306#undef UT
5287ad62
JB
24307#undef NUF
24308#undef nUF
24309#undef NCE
24310#undef nCE
c19d1205
ZW
24311#undef OPS0
24312#undef OPS1
24313#undef OPS2
24314#undef OPS3
24315#undef OPS4
24316#undef OPS5
24317#undef OPS6
24318#undef do_0
4389b29a
AV
24319#undef ToC
24320#undef toC
24321#undef ToU
f6b2b12d 24322#undef toU
c19d1205
ZW
24323\f
24324/* MD interface: bits in the object file. */
bfae80f2 24325
c19d1205
ZW
24326/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24327 for use in the a.out file, and stores them in the array pointed to by buf.
24328 This knows about the endian-ness of the target machine and does
24329 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24330 2 (short) and 4 (long) Floating numbers are put out as a series of
24331 LITTLENUMS (shorts, here at least). */
b99bd4ef 24332
c19d1205
ZW
24333void
24334md_number_to_chars (char * buf, valueT val, int n)
24335{
24336 if (target_big_endian)
24337 number_to_chars_bigendian (buf, val, n);
24338 else
24339 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24340}
24341
c19d1205
ZW
24342static valueT
24343md_chars_to_number (char * buf, int n)
bfae80f2 24344{
c19d1205
ZW
24345 valueT result = 0;
24346 unsigned char * where = (unsigned char *) buf;
bfae80f2 24347
c19d1205 24348 if (target_big_endian)
b99bd4ef 24349 {
c19d1205
ZW
24350 while (n--)
24351 {
24352 result <<= 8;
24353 result |= (*where++ & 255);
24354 }
b99bd4ef 24355 }
c19d1205 24356 else
b99bd4ef 24357 {
c19d1205
ZW
24358 while (n--)
24359 {
24360 result <<= 8;
24361 result |= (where[n] & 255);
24362 }
bfae80f2 24363 }
b99bd4ef 24364
c19d1205 24365 return result;
bfae80f2 24366}
b99bd4ef 24367
c19d1205 24368/* MD interface: Sections. */
b99bd4ef 24369
fa94de6b
RM
24370/* Calculate the maximum variable size (i.e., excluding fr_fix)
24371 that an rs_machine_dependent frag may reach. */
24372
24373unsigned int
24374arm_frag_max_var (fragS *fragp)
24375{
24376 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24377 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24378
24379 Note that we generate relaxable instructions even for cases that don't
24380 really need it, like an immediate that's a trivial constant. So we're
24381 overestimating the instruction size for some of those cases. Rather
24382 than putting more intelligence here, it would probably be better to
24383 avoid generating a relaxation frag in the first place when it can be
24384 determined up front that a short instruction will suffice. */
24385
24386 gas_assert (fragp->fr_type == rs_machine_dependent);
24387 return INSN_SIZE;
24388}
24389
0110f2b8
PB
24390/* Estimate the size of a frag before relaxing. Assume everything fits in
24391 2 bytes. */
24392
c19d1205 24393int
0110f2b8 24394md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24395 segT segtype ATTRIBUTE_UNUSED)
24396{
0110f2b8
PB
24397 fragp->fr_var = 2;
24398 return 2;
24399}
24400
24401/* Convert a machine dependent frag. */
24402
24403void
24404md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24405{
24406 unsigned long insn;
24407 unsigned long old_op;
24408 char *buf;
24409 expressionS exp;
24410 fixS *fixp;
24411 int reloc_type;
24412 int pc_rel;
24413 int opcode;
24414
24415 buf = fragp->fr_literal + fragp->fr_fix;
24416
24417 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24418 if (fragp->fr_symbol)
24419 {
0110f2b8
PB
24420 exp.X_op = O_symbol;
24421 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24422 }
24423 else
24424 {
0110f2b8 24425 exp.X_op = O_constant;
5f4273c7 24426 }
0110f2b8
PB
24427 exp.X_add_number = fragp->fr_offset;
24428 opcode = fragp->fr_subtype;
24429 switch (opcode)
24430 {
24431 case T_MNEM_ldr_pc:
24432 case T_MNEM_ldr_pc2:
24433 case T_MNEM_ldr_sp:
24434 case T_MNEM_str_sp:
24435 case T_MNEM_ldr:
24436 case T_MNEM_ldrb:
24437 case T_MNEM_ldrh:
24438 case T_MNEM_str:
24439 case T_MNEM_strb:
24440 case T_MNEM_strh:
24441 if (fragp->fr_var == 4)
24442 {
5f4273c7 24443 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24444 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24445 {
24446 insn |= (old_op & 0x700) << 4;
24447 }
24448 else
24449 {
24450 insn |= (old_op & 7) << 12;
24451 insn |= (old_op & 0x38) << 13;
24452 }
24453 insn |= 0x00000c00;
24454 put_thumb32_insn (buf, insn);
24455 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24456 }
24457 else
24458 {
24459 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24460 }
24461 pc_rel = (opcode == T_MNEM_ldr_pc2);
24462 break;
24463 case T_MNEM_adr:
24464 if (fragp->fr_var == 4)
24465 {
24466 insn = THUMB_OP32 (opcode);
24467 insn |= (old_op & 0xf0) << 4;
24468 put_thumb32_insn (buf, insn);
24469 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24470 }
24471 else
24472 {
24473 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24474 exp.X_add_number -= 4;
24475 }
24476 pc_rel = 1;
24477 break;
24478 case T_MNEM_mov:
24479 case T_MNEM_movs:
24480 case T_MNEM_cmp:
24481 case T_MNEM_cmn:
24482 if (fragp->fr_var == 4)
24483 {
24484 int r0off = (opcode == T_MNEM_mov
24485 || opcode == T_MNEM_movs) ? 0 : 8;
24486 insn = THUMB_OP32 (opcode);
24487 insn = (insn & 0xe1ffffff) | 0x10000000;
24488 insn |= (old_op & 0x700) << r0off;
24489 put_thumb32_insn (buf, insn);
24490 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24491 }
24492 else
24493 {
24494 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24495 }
24496 pc_rel = 0;
24497 break;
24498 case T_MNEM_b:
24499 if (fragp->fr_var == 4)
24500 {
24501 insn = THUMB_OP32(opcode);
24502 put_thumb32_insn (buf, insn);
24503 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24504 }
24505 else
24506 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24507 pc_rel = 1;
24508 break;
24509 case T_MNEM_bcond:
24510 if (fragp->fr_var == 4)
24511 {
24512 insn = THUMB_OP32(opcode);
24513 insn |= (old_op & 0xf00) << 14;
24514 put_thumb32_insn (buf, insn);
24515 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24516 }
24517 else
24518 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24519 pc_rel = 1;
24520 break;
24521 case T_MNEM_add_sp:
24522 case T_MNEM_add_pc:
24523 case T_MNEM_inc_sp:
24524 case T_MNEM_dec_sp:
24525 if (fragp->fr_var == 4)
24526 {
24527 /* ??? Choose between add and addw. */
24528 insn = THUMB_OP32 (opcode);
24529 insn |= (old_op & 0xf0) << 4;
24530 put_thumb32_insn (buf, insn);
16805f35
PB
24531 if (opcode == T_MNEM_add_pc)
24532 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24533 else
24534 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24535 }
24536 else
24537 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24538 pc_rel = 0;
24539 break;
24540
24541 case T_MNEM_addi:
24542 case T_MNEM_addis:
24543 case T_MNEM_subi:
24544 case T_MNEM_subis:
24545 if (fragp->fr_var == 4)
24546 {
24547 insn = THUMB_OP32 (opcode);
24548 insn |= (old_op & 0xf0) << 4;
24549 insn |= (old_op & 0xf) << 16;
24550 put_thumb32_insn (buf, insn);
16805f35
PB
24551 if (insn & (1 << 20))
24552 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24553 else
24554 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
24555 }
24556 else
24557 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24558 pc_rel = 0;
24559 break;
24560 default:
5f4273c7 24561 abort ();
0110f2b8
PB
24562 }
24563 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 24564 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
24565 fixp->fx_file = fragp->fr_file;
24566 fixp->fx_line = fragp->fr_line;
24567 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
24568
24569 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24570 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24571 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24572 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
24573}
24574
24575/* Return the size of a relaxable immediate operand instruction.
24576 SHIFT and SIZE specify the form of the allowable immediate. */
24577static int
24578relax_immediate (fragS *fragp, int size, int shift)
24579{
24580 offsetT offset;
24581 offsetT mask;
24582 offsetT low;
24583
24584 /* ??? Should be able to do better than this. */
24585 if (fragp->fr_symbol)
24586 return 4;
24587
24588 low = (1 << shift) - 1;
24589 mask = (1 << (shift + size)) - (1 << shift);
24590 offset = fragp->fr_offset;
24591 /* Force misaligned offsets to 32-bit variant. */
24592 if (offset & low)
5e77afaa 24593 return 4;
0110f2b8
PB
24594 if (offset & ~mask)
24595 return 4;
24596 return 2;
24597}
24598
5e77afaa
PB
24599/* Get the address of a symbol during relaxation. */
24600static addressT
5f4273c7 24601relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
24602{
24603 fragS *sym_frag;
24604 addressT addr;
24605 symbolS *sym;
24606
24607 sym = fragp->fr_symbol;
24608 sym_frag = symbol_get_frag (sym);
24609 know (S_GET_SEGMENT (sym) != absolute_section
24610 || sym_frag == &zero_address_frag);
24611 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24612
24613 /* If frag has yet to be reached on this pass, assume it will
24614 move by STRETCH just as we did. If this is not so, it will
24615 be because some frag between grows, and that will force
24616 another pass. */
24617
24618 if (stretch != 0
24619 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
24620 {
24621 fragS *f;
24622
24623 /* Adjust stretch for any alignment frag. Note that if have
24624 been expanding the earlier code, the symbol may be
24625 defined in what appears to be an earlier frag. FIXME:
24626 This doesn't handle the fr_subtype field, which specifies
24627 a maximum number of bytes to skip when doing an
24628 alignment. */
24629 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24630 {
24631 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24632 {
24633 if (stretch < 0)
24634 stretch = - ((- stretch)
24635 & ~ ((1 << (int) f->fr_offset) - 1));
24636 else
24637 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24638 if (stretch == 0)
24639 break;
24640 }
24641 }
24642 if (f != NULL)
24643 addr += stretch;
24644 }
5e77afaa
PB
24645
24646 return addr;
24647}
24648
0110f2b8
PB
24649/* Return the size of a relaxable adr pseudo-instruction or PC-relative
24650 load. */
24651static int
5e77afaa 24652relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
24653{
24654 addressT addr;
24655 offsetT val;
24656
24657 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
24658 if (fragp->fr_symbol == NULL
24659 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24660 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24661 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24662 return 4;
24663
5f4273c7 24664 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24665 addr = fragp->fr_address + fragp->fr_fix;
24666 addr = (addr + 4) & ~3;
5e77afaa 24667 /* Force misaligned targets to 32-bit variant. */
0110f2b8 24668 if (val & 3)
5e77afaa 24669 return 4;
0110f2b8
PB
24670 val -= addr;
24671 if (val < 0 || val > 1020)
24672 return 4;
24673 return 2;
24674}
24675
24676/* Return the size of a relaxable add/sub immediate instruction. */
24677static int
24678relax_addsub (fragS *fragp, asection *sec)
24679{
24680 char *buf;
24681 int op;
24682
24683 buf = fragp->fr_literal + fragp->fr_fix;
24684 op = bfd_get_16(sec->owner, buf);
24685 if ((op & 0xf) == ((op >> 4) & 0xf))
24686 return relax_immediate (fragp, 8, 0);
24687 else
24688 return relax_immediate (fragp, 3, 0);
24689}
24690
e83a675f
RE
24691/* Return TRUE iff the definition of symbol S could be pre-empted
24692 (overridden) at link or load time. */
24693static bfd_boolean
24694symbol_preemptible (symbolS *s)
24695{
24696 /* Weak symbols can always be pre-empted. */
24697 if (S_IS_WEAK (s))
24698 return TRUE;
24699
24700 /* Non-global symbols cannot be pre-empted. */
24701 if (! S_IS_EXTERNAL (s))
24702 return FALSE;
24703
24704#ifdef OBJ_ELF
24705 /* In ELF, a global symbol can be marked protected, or private. In that
24706 case it can't be pre-empted (other definitions in the same link unit
24707 would violate the ODR). */
24708 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24709 return FALSE;
24710#endif
24711
24712 /* Other global symbols might be pre-empted. */
24713 return TRUE;
24714}
0110f2b8
PB
24715
24716/* Return the size of a relaxable branch instruction. BITS is the
24717 size of the offset field in the narrow instruction. */
24718
24719static int
5e77afaa 24720relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
24721{
24722 addressT addr;
24723 offsetT val;
24724 offsetT limit;
24725
24726 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 24727 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24728 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24729 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24730 return 4;
24731
267bf995 24732#ifdef OBJ_ELF
e83a675f 24733 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
24734 if (S_IS_DEFINED (fragp->fr_symbol)
24735 && ARM_IS_FUNC (fragp->fr_symbol))
24736 return 4;
e83a675f 24737#endif
0d9b4b55 24738
e83a675f 24739 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 24740 return 4;
267bf995 24741
5f4273c7 24742 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24743 addr = fragp->fr_address + fragp->fr_fix + 4;
24744 val -= addr;
24745
24746 /* Offset is a signed value *2 */
24747 limit = 1 << bits;
24748 if (val >= limit || val < -limit)
24749 return 4;
24750 return 2;
24751}
24752
24753
24754/* Relax a machine dependent frag. This returns the amount by which
24755 the current size of the frag should change. */
24756
24757int
5e77afaa 24758arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
24759{
24760 int oldsize;
24761 int newsize;
24762
24763 oldsize = fragp->fr_var;
24764 switch (fragp->fr_subtype)
24765 {
24766 case T_MNEM_ldr_pc2:
5f4273c7 24767 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24768 break;
24769 case T_MNEM_ldr_pc:
24770 case T_MNEM_ldr_sp:
24771 case T_MNEM_str_sp:
5f4273c7 24772 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
24773 break;
24774 case T_MNEM_ldr:
24775 case T_MNEM_str:
5f4273c7 24776 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
24777 break;
24778 case T_MNEM_ldrh:
24779 case T_MNEM_strh:
5f4273c7 24780 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
24781 break;
24782 case T_MNEM_ldrb:
24783 case T_MNEM_strb:
5f4273c7 24784 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
24785 break;
24786 case T_MNEM_adr:
5f4273c7 24787 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24788 break;
24789 case T_MNEM_mov:
24790 case T_MNEM_movs:
24791 case T_MNEM_cmp:
24792 case T_MNEM_cmn:
5f4273c7 24793 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
24794 break;
24795 case T_MNEM_b:
5f4273c7 24796 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
24797 break;
24798 case T_MNEM_bcond:
5f4273c7 24799 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
24800 break;
24801 case T_MNEM_add_sp:
24802 case T_MNEM_add_pc:
24803 newsize = relax_immediate (fragp, 8, 2);
24804 break;
24805 case T_MNEM_inc_sp:
24806 case T_MNEM_dec_sp:
24807 newsize = relax_immediate (fragp, 7, 2);
24808 break;
24809 case T_MNEM_addi:
24810 case T_MNEM_addis:
24811 case T_MNEM_subi:
24812 case T_MNEM_subis:
24813 newsize = relax_addsub (fragp, sec);
24814 break;
24815 default:
5f4273c7 24816 abort ();
0110f2b8 24817 }
5e77afaa
PB
24818
24819 fragp->fr_var = newsize;
24820 /* Freeze wide instructions that are at or before the same location as
24821 in the previous pass. This avoids infinite loops.
5f4273c7
NC
24822 Don't freeze them unconditionally because targets may be artificially
24823 misaligned by the expansion of preceding frags. */
5e77afaa 24824 if (stretch <= 0 && newsize > 2)
0110f2b8 24825 {
0110f2b8 24826 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 24827 frag_wane (fragp);
0110f2b8 24828 }
5e77afaa 24829
0110f2b8 24830 return newsize - oldsize;
c19d1205 24831}
b99bd4ef 24832
c19d1205 24833/* Round up a section size to the appropriate boundary. */
b99bd4ef 24834
c19d1205
ZW
24835valueT
24836md_section_align (segT segment ATTRIBUTE_UNUSED,
24837 valueT size)
24838{
6844c0cc 24839 return size;
bfae80f2 24840}
b99bd4ef 24841
c19d1205
ZW
24842/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24843 of an rs_align_code fragment. */
24844
24845void
24846arm_handle_align (fragS * fragP)
bfae80f2 24847{
d9235011 24848 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
24849 {
24850 { /* ARMv1 */
24851 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24852 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24853 },
24854 { /* ARMv6k */
24855 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24856 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24857 },
24858 };
d9235011 24859 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
24860 {
24861 { /* Thumb-1 */
24862 {0xc0, 0x46}, /* LE */
24863 {0x46, 0xc0}, /* BE */
24864 },
24865 { /* Thumb-2 */
24866 {0x00, 0xbf}, /* LE */
24867 {0xbf, 0x00} /* BE */
24868 }
24869 };
d9235011 24870 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
24871 { /* Wide Thumb-2 */
24872 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24873 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24874 };
c921be7d 24875
e7495e45 24876 unsigned bytes, fix, noop_size;
c19d1205 24877 char * p;
d9235011
TS
24878 const unsigned char * noop;
24879 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
24880#ifdef OBJ_ELF
24881 enum mstate state;
24882#endif
bfae80f2 24883
c19d1205 24884 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
24885 return;
24886
c19d1205
ZW
24887 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24888 p = fragP->fr_literal + fragP->fr_fix;
24889 fix = 0;
bfae80f2 24890
c19d1205
ZW
24891 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24892 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 24893
cd000bff 24894 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 24895
cd000bff 24896 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 24897 {
7f78eb34
JW
24898 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24899 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
24900 {
24901 narrow_noop = thumb_noop[1][target_big_endian];
24902 noop = wide_thumb_noop[target_big_endian];
24903 }
c19d1205 24904 else
e7495e45
NS
24905 noop = thumb_noop[0][target_big_endian];
24906 noop_size = 2;
cd000bff
DJ
24907#ifdef OBJ_ELF
24908 state = MAP_THUMB;
24909#endif
7ed4c4c5
NC
24910 }
24911 else
24912 {
7f78eb34
JW
24913 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24914 ? selected_cpu : arm_arch_none,
24915 arm_ext_v6k) != 0]
e7495e45
NS
24916 [target_big_endian];
24917 noop_size = 4;
cd000bff
DJ
24918#ifdef OBJ_ELF
24919 state = MAP_ARM;
24920#endif
7ed4c4c5 24921 }
c921be7d 24922
e7495e45 24923 fragP->fr_var = noop_size;
c921be7d 24924
c19d1205 24925 if (bytes & (noop_size - 1))
7ed4c4c5 24926 {
c19d1205 24927 fix = bytes & (noop_size - 1);
cd000bff
DJ
24928#ifdef OBJ_ELF
24929 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24930#endif
c19d1205
ZW
24931 memset (p, 0, fix);
24932 p += fix;
24933 bytes -= fix;
a737bd4d 24934 }
a737bd4d 24935
e7495e45
NS
24936 if (narrow_noop)
24937 {
24938 if (bytes & noop_size)
24939 {
24940 /* Insert a narrow noop. */
24941 memcpy (p, narrow_noop, noop_size);
24942 p += noop_size;
24943 bytes -= noop_size;
24944 fix += noop_size;
24945 }
24946
24947 /* Use wide noops for the remainder */
24948 noop_size = 4;
24949 }
24950
c19d1205 24951 while (bytes >= noop_size)
a737bd4d 24952 {
c19d1205
ZW
24953 memcpy (p, noop, noop_size);
24954 p += noop_size;
24955 bytes -= noop_size;
24956 fix += noop_size;
a737bd4d
NC
24957 }
24958
c19d1205 24959 fragP->fr_fix += fix;
a737bd4d
NC
24960}
24961
c19d1205
ZW
24962/* Called from md_do_align. Used to create an alignment
24963 frag in a code section. */
24964
24965void
24966arm_frag_align_code (int n, int max)
bfae80f2 24967{
c19d1205 24968 char * p;
7ed4c4c5 24969
c19d1205 24970 /* We assume that there will never be a requirement
6ec8e702 24971 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 24972 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
24973 {
24974 char err_msg[128];
24975
fa94de6b 24976 sprintf (err_msg,
477330fc
RM
24977 _("alignments greater than %d bytes not supported in .text sections."),
24978 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 24979 as_fatal ("%s", err_msg);
6ec8e702 24980 }
bfae80f2 24981
c19d1205
ZW
24982 p = frag_var (rs_align_code,
24983 MAX_MEM_FOR_RS_ALIGN_CODE,
24984 1,
24985 (relax_substateT) max,
24986 (symbolS *) NULL,
24987 (offsetT) n,
24988 (char *) NULL);
24989 *p = 0;
24990}
bfae80f2 24991
8dc2430f
NC
24992/* Perform target specific initialisation of a frag.
24993 Note - despite the name this initialisation is not done when the frag
24994 is created, but only when its type is assigned. A frag can be created
24995 and used a long time before its type is set, so beware of assuming that
33eaf5de 24996 this initialisation is performed first. */
bfae80f2 24997
cd000bff
DJ
24998#ifndef OBJ_ELF
24999void
25000arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25001{
25002 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25003 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25004}
25005
25006#else /* OBJ_ELF is defined. */
c19d1205 25007void
cd000bff 25008arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25009{
e8d84ca1 25010 bfd_boolean frag_thumb_mode;
b968d18a 25011
8dc2430f
NC
25012 /* If the current ARM vs THUMB mode has not already
25013 been recorded into this frag then do so now. */
cd000bff 25014 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25015 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25016
e8d84ca1
NC
25017 /* PR 21809: Do not set a mapping state for debug sections
25018 - it just confuses other tools. */
25019 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25020 return;
25021
b968d18a 25022 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25023
f9c1b181
RL
25024 /* Record a mapping symbol for alignment frags. We will delete this
25025 later if the alignment ends up empty. */
25026 switch (fragP->fr_type)
25027 {
25028 case rs_align:
25029 case rs_align_test:
25030 case rs_fill:
25031 mapping_state_2 (MAP_DATA, max_chars);
25032 break;
25033 case rs_align_code:
b968d18a 25034 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25035 break;
25036 default:
25037 break;
cd000bff 25038 }
bfae80f2
RE
25039}
25040
c19d1205
ZW
25041/* When we change sections we need to issue a new mapping symbol. */
25042
25043void
25044arm_elf_change_section (void)
bfae80f2 25045{
c19d1205
ZW
25046 /* Link an unlinked unwind index table section to the .text section. */
25047 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25048 && elf_linked_to_section (now_seg) == NULL)
25049 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25050}
25051
c19d1205
ZW
25052int
25053arm_elf_section_type (const char * str, size_t len)
e45d0630 25054{
c19d1205
ZW
25055 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25056 return SHT_ARM_EXIDX;
e45d0630 25057
c19d1205
ZW
25058 return -1;
25059}
25060\f
25061/* Code to deal with unwinding tables. */
e45d0630 25062
c19d1205 25063static void add_unwind_adjustsp (offsetT);
e45d0630 25064
5f4273c7 25065/* Generate any deferred unwind frame offset. */
e45d0630 25066
bfae80f2 25067static void
c19d1205 25068flush_pending_unwind (void)
bfae80f2 25069{
c19d1205 25070 offsetT offset;
bfae80f2 25071
c19d1205
ZW
25072 offset = unwind.pending_offset;
25073 unwind.pending_offset = 0;
25074 if (offset != 0)
25075 add_unwind_adjustsp (offset);
bfae80f2
RE
25076}
25077
c19d1205
ZW
25078/* Add an opcode to this list for this function. Two-byte opcodes should
25079 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25080 order. */
25081
bfae80f2 25082static void
c19d1205 25083add_unwind_opcode (valueT op, int length)
bfae80f2 25084{
c19d1205
ZW
25085 /* Add any deferred stack adjustment. */
25086 if (unwind.pending_offset)
25087 flush_pending_unwind ();
bfae80f2 25088
c19d1205 25089 unwind.sp_restored = 0;
bfae80f2 25090
c19d1205 25091 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25092 {
c19d1205
ZW
25093 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25094 if (unwind.opcodes)
325801bd
TS
25095 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25096 unwind.opcode_alloc);
c19d1205 25097 else
325801bd 25098 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25099 }
c19d1205 25100 while (length > 0)
bfae80f2 25101 {
c19d1205
ZW
25102 length--;
25103 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25104 op >>= 8;
25105 unwind.opcode_count++;
bfae80f2 25106 }
bfae80f2
RE
25107}
25108
c19d1205
ZW
25109/* Add unwind opcodes to adjust the stack pointer. */
25110
bfae80f2 25111static void
c19d1205 25112add_unwind_adjustsp (offsetT offset)
bfae80f2 25113{
c19d1205 25114 valueT op;
bfae80f2 25115
c19d1205 25116 if (offset > 0x200)
bfae80f2 25117 {
c19d1205
ZW
25118 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25119 char bytes[5];
25120 int n;
25121 valueT o;
bfae80f2 25122
c19d1205
ZW
25123 /* Long form: 0xb2, uleb128. */
25124 /* This might not fit in a word so add the individual bytes,
25125 remembering the list is built in reverse order. */
25126 o = (valueT) ((offset - 0x204) >> 2);
25127 if (o == 0)
25128 add_unwind_opcode (0, 1);
bfae80f2 25129
c19d1205
ZW
25130 /* Calculate the uleb128 encoding of the offset. */
25131 n = 0;
25132 while (o)
25133 {
25134 bytes[n] = o & 0x7f;
25135 o >>= 7;
25136 if (o)
25137 bytes[n] |= 0x80;
25138 n++;
25139 }
25140 /* Add the insn. */
25141 for (; n; n--)
25142 add_unwind_opcode (bytes[n - 1], 1);
25143 add_unwind_opcode (0xb2, 1);
25144 }
25145 else if (offset > 0x100)
bfae80f2 25146 {
c19d1205
ZW
25147 /* Two short opcodes. */
25148 add_unwind_opcode (0x3f, 1);
25149 op = (offset - 0x104) >> 2;
25150 add_unwind_opcode (op, 1);
bfae80f2 25151 }
c19d1205
ZW
25152 else if (offset > 0)
25153 {
25154 /* Short opcode. */
25155 op = (offset - 4) >> 2;
25156 add_unwind_opcode (op, 1);
25157 }
25158 else if (offset < 0)
bfae80f2 25159 {
c19d1205
ZW
25160 offset = -offset;
25161 while (offset > 0x100)
bfae80f2 25162 {
c19d1205
ZW
25163 add_unwind_opcode (0x7f, 1);
25164 offset -= 0x100;
bfae80f2 25165 }
c19d1205
ZW
25166 op = ((offset - 4) >> 2) | 0x40;
25167 add_unwind_opcode (op, 1);
bfae80f2 25168 }
bfae80f2
RE
25169}
25170
c19d1205 25171/* Finish the list of unwind opcodes for this function. */
0198d5e6 25172
c19d1205
ZW
25173static void
25174finish_unwind_opcodes (void)
bfae80f2 25175{
c19d1205 25176 valueT op;
bfae80f2 25177
c19d1205 25178 if (unwind.fp_used)
bfae80f2 25179 {
708587a4 25180 /* Adjust sp as necessary. */
c19d1205
ZW
25181 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25182 flush_pending_unwind ();
bfae80f2 25183
c19d1205
ZW
25184 /* After restoring sp from the frame pointer. */
25185 op = 0x90 | unwind.fp_reg;
25186 add_unwind_opcode (op, 1);
25187 }
25188 else
25189 flush_pending_unwind ();
bfae80f2
RE
25190}
25191
bfae80f2 25192
c19d1205
ZW
25193/* Start an exception table entry. If idx is nonzero this is an index table
25194 entry. */
bfae80f2
RE
25195
25196static void
c19d1205 25197start_unwind_section (const segT text_seg, int idx)
bfae80f2 25198{
c19d1205
ZW
25199 const char * text_name;
25200 const char * prefix;
25201 const char * prefix_once;
25202 const char * group_name;
c19d1205 25203 char * sec_name;
c19d1205
ZW
25204 int type;
25205 int flags;
25206 int linkonce;
bfae80f2 25207
c19d1205 25208 if (idx)
bfae80f2 25209 {
c19d1205
ZW
25210 prefix = ELF_STRING_ARM_unwind;
25211 prefix_once = ELF_STRING_ARM_unwind_once;
25212 type = SHT_ARM_EXIDX;
bfae80f2 25213 }
c19d1205 25214 else
bfae80f2 25215 {
c19d1205
ZW
25216 prefix = ELF_STRING_ARM_unwind_info;
25217 prefix_once = ELF_STRING_ARM_unwind_info_once;
25218 type = SHT_PROGBITS;
bfae80f2
RE
25219 }
25220
c19d1205
ZW
25221 text_name = segment_name (text_seg);
25222 if (streq (text_name, ".text"))
25223 text_name = "";
25224
25225 if (strncmp (text_name, ".gnu.linkonce.t.",
25226 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25227 {
c19d1205
ZW
25228 prefix = prefix_once;
25229 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25230 }
25231
29a2809e 25232 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25233
c19d1205
ZW
25234 flags = SHF_ALLOC;
25235 linkonce = 0;
25236 group_name = 0;
bfae80f2 25237
c19d1205
ZW
25238 /* Handle COMDAT group. */
25239 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25240 {
c19d1205
ZW
25241 group_name = elf_group_name (text_seg);
25242 if (group_name == NULL)
25243 {
bd3ba5d1 25244 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25245 segment_name (text_seg));
25246 ignore_rest_of_line ();
25247 return;
25248 }
25249 flags |= SHF_GROUP;
25250 linkonce = 1;
bfae80f2
RE
25251 }
25252
a91e1603
L
25253 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25254 linkonce, 0);
bfae80f2 25255
5f4273c7 25256 /* Set the section link for index tables. */
c19d1205
ZW
25257 if (idx)
25258 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25259}
25260
bfae80f2 25261
c19d1205
ZW
25262/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25263 personality routine data. Returns zero, or the index table value for
cad0da33 25264 an inline entry. */
c19d1205
ZW
25265
25266static valueT
25267create_unwind_entry (int have_data)
bfae80f2 25268{
c19d1205
ZW
25269 int size;
25270 addressT where;
25271 char *ptr;
25272 /* The current word of data. */
25273 valueT data;
25274 /* The number of bytes left in this word. */
25275 int n;
bfae80f2 25276
c19d1205 25277 finish_unwind_opcodes ();
bfae80f2 25278
c19d1205
ZW
25279 /* Remember the current text section. */
25280 unwind.saved_seg = now_seg;
25281 unwind.saved_subseg = now_subseg;
bfae80f2 25282
c19d1205 25283 start_unwind_section (now_seg, 0);
bfae80f2 25284
c19d1205 25285 if (unwind.personality_routine == NULL)
bfae80f2 25286 {
c19d1205
ZW
25287 if (unwind.personality_index == -2)
25288 {
25289 if (have_data)
5f4273c7 25290 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25291 return 1; /* EXIDX_CANTUNWIND. */
25292 }
bfae80f2 25293
c19d1205
ZW
25294 /* Use a default personality routine if none is specified. */
25295 if (unwind.personality_index == -1)
25296 {
25297 if (unwind.opcode_count > 3)
25298 unwind.personality_index = 1;
25299 else
25300 unwind.personality_index = 0;
25301 }
bfae80f2 25302
c19d1205
ZW
25303 /* Space for the personality routine entry. */
25304 if (unwind.personality_index == 0)
25305 {
25306 if (unwind.opcode_count > 3)
25307 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25308
c19d1205
ZW
25309 if (!have_data)
25310 {
25311 /* All the data is inline in the index table. */
25312 data = 0x80;
25313 n = 3;
25314 while (unwind.opcode_count > 0)
25315 {
25316 unwind.opcode_count--;
25317 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25318 n--;
25319 }
bfae80f2 25320
c19d1205
ZW
25321 /* Pad with "finish" opcodes. */
25322 while (n--)
25323 data = (data << 8) | 0xb0;
bfae80f2 25324
c19d1205
ZW
25325 return data;
25326 }
25327 size = 0;
25328 }
25329 else
25330 /* We get two opcodes "free" in the first word. */
25331 size = unwind.opcode_count - 2;
25332 }
25333 else
5011093d 25334 {
cad0da33
NC
25335 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25336 if (unwind.personality_index != -1)
25337 {
25338 as_bad (_("attempt to recreate an unwind entry"));
25339 return 1;
25340 }
5011093d
NC
25341
25342 /* An extra byte is required for the opcode count. */
25343 size = unwind.opcode_count + 1;
25344 }
bfae80f2 25345
c19d1205
ZW
25346 size = (size + 3) >> 2;
25347 if (size > 0xff)
25348 as_bad (_("too many unwind opcodes"));
bfae80f2 25349
c19d1205
ZW
25350 frag_align (2, 0, 0);
25351 record_alignment (now_seg, 2);
25352 unwind.table_entry = expr_build_dot ();
25353
25354 /* Allocate the table entry. */
25355 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25356 /* PR 13449: Zero the table entries in case some of them are not used. */
25357 memset (ptr, 0, (size << 2) + 4);
c19d1205 25358 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25359
c19d1205 25360 switch (unwind.personality_index)
bfae80f2 25361 {
c19d1205
ZW
25362 case -1:
25363 /* ??? Should this be a PLT generating relocation? */
25364 /* Custom personality routine. */
25365 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25366 BFD_RELOC_ARM_PREL31);
bfae80f2 25367
c19d1205
ZW
25368 where += 4;
25369 ptr += 4;
bfae80f2 25370
c19d1205 25371 /* Set the first byte to the number of additional words. */
5011093d 25372 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25373 n = 3;
25374 break;
bfae80f2 25375
c19d1205
ZW
25376 /* ABI defined personality routines. */
25377 case 0:
25378 /* Three opcodes bytes are packed into the first word. */
25379 data = 0x80;
25380 n = 3;
25381 break;
bfae80f2 25382
c19d1205
ZW
25383 case 1:
25384 case 2:
25385 /* The size and first two opcode bytes go in the first word. */
25386 data = ((0x80 + unwind.personality_index) << 8) | size;
25387 n = 2;
25388 break;
bfae80f2 25389
c19d1205
ZW
25390 default:
25391 /* Should never happen. */
25392 abort ();
25393 }
bfae80f2 25394
c19d1205
ZW
25395 /* Pack the opcodes into words (MSB first), reversing the list at the same
25396 time. */
25397 while (unwind.opcode_count > 0)
25398 {
25399 if (n == 0)
25400 {
25401 md_number_to_chars (ptr, data, 4);
25402 ptr += 4;
25403 n = 4;
25404 data = 0;
25405 }
25406 unwind.opcode_count--;
25407 n--;
25408 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25409 }
25410
25411 /* Finish off the last word. */
25412 if (n < 4)
25413 {
25414 /* Pad with "finish" opcodes. */
25415 while (n--)
25416 data = (data << 8) | 0xb0;
25417
25418 md_number_to_chars (ptr, data, 4);
25419 }
25420
25421 if (!have_data)
25422 {
25423 /* Add an empty descriptor if there is no user-specified data. */
25424 ptr = frag_more (4);
25425 md_number_to_chars (ptr, 0, 4);
25426 }
25427
25428 return 0;
bfae80f2
RE
25429}
25430
f0927246
NC
25431
25432/* Initialize the DWARF-2 unwind information for this procedure. */
25433
25434void
25435tc_arm_frame_initial_instructions (void)
25436{
25437 cfi_add_CFA_def_cfa (REG_SP, 0);
25438}
25439#endif /* OBJ_ELF */
25440
c19d1205
ZW
25441/* Convert REGNAME to a DWARF-2 register number. */
25442
25443int
1df69f4f 25444tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25445{
1df69f4f 25446 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25447 if (reg != FAIL)
25448 return reg;
c19d1205 25449
1f5afe1c
NC
25450 /* PR 16694: Allow VFP registers as well. */
25451 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25452 if (reg != FAIL)
25453 return 64 + reg;
c19d1205 25454
1f5afe1c
NC
25455 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25456 if (reg != FAIL)
25457 return reg + 256;
25458
0198d5e6 25459 return FAIL;
bfae80f2
RE
25460}
25461
f0927246 25462#ifdef TE_PE
c19d1205 25463void
f0927246 25464tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25465{
91d6fa6a 25466 expressionS exp;
bfae80f2 25467
91d6fa6a
NC
25468 exp.X_op = O_secrel;
25469 exp.X_add_symbol = symbol;
25470 exp.X_add_number = 0;
25471 emit_expr (&exp, size);
f0927246
NC
25472}
25473#endif
bfae80f2 25474
c19d1205 25475/* MD interface: Symbol and relocation handling. */
bfae80f2 25476
2fc8bdac
ZW
25477/* Return the address within the segment that a PC-relative fixup is
25478 relative to. For ARM, PC-relative fixups applied to instructions
25479 are generally relative to the location of the fixup plus 8 bytes.
25480 Thumb branches are offset by 4, and Thumb loads relative to PC
25481 require special handling. */
bfae80f2 25482
c19d1205 25483long
2fc8bdac 25484md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25485{
2fc8bdac
ZW
25486 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25487
25488 /* If this is pc-relative and we are going to emit a relocation
25489 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25490 will need. Otherwise we want to use the calculated base.
25491 For WinCE we skip the bias for externals as well, since this
25492 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25493 if (fixP->fx_pcrel
2fc8bdac 25494 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25495 || (arm_force_relocation (fixP)
25496#ifdef TE_WINCE
25497 && !S_IS_EXTERNAL (fixP->fx_addsy)
25498#endif
25499 )))
2fc8bdac 25500 base = 0;
bfae80f2 25501
267bf995 25502
c19d1205 25503 switch (fixP->fx_r_type)
bfae80f2 25504 {
2fc8bdac
ZW
25505 /* PC relative addressing on the Thumb is slightly odd as the
25506 bottom two bits of the PC are forced to zero for the
25507 calculation. This happens *after* application of the
25508 pipeline offset. However, Thumb adrl already adjusts for
25509 this, so we need not do it again. */
c19d1205 25510 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25511 return base & ~3;
c19d1205
ZW
25512
25513 case BFD_RELOC_ARM_THUMB_OFFSET:
25514 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25515 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25516 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25517 return (base + 4) & ~3;
c19d1205 25518
2fc8bdac 25519 /* Thumb branches are simply offset by +4. */
e12437dc 25520 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25521 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25522 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25523 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25524 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25525 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25526 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25527 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25528 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25529 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25530 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25531 return base + 4;
bfae80f2 25532
267bf995 25533 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25534 if (fixP->fx_addsy
25535 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25536 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25537 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25538 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25539 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25540 return base + 4;
25541
00adf2d4
JB
25542 /* BLX is like branches above, but forces the low two bits of PC to
25543 zero. */
486499d0
CL
25544 case BFD_RELOC_THUMB_PCREL_BLX:
25545 if (fixP->fx_addsy
25546 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25547 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25548 && THUMB_IS_FUNC (fixP->fx_addsy)
25549 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25550 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25551 return (base + 4) & ~3;
25552
2fc8bdac
ZW
25553 /* ARM mode branches are offset by +8. However, the Windows CE
25554 loader expects the relocation not to take this into account. */
267bf995 25555 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
25556 if (fixP->fx_addsy
25557 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25559 && ARM_IS_FUNC (fixP->fx_addsy)
25560 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25561 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25562 return base + 8;
267bf995 25563
486499d0
CL
25564 case BFD_RELOC_ARM_PCREL_CALL:
25565 if (fixP->fx_addsy
25566 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25567 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25568 && THUMB_IS_FUNC (fixP->fx_addsy)
25569 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25570 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25571 return base + 8;
267bf995 25572
2fc8bdac 25573 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 25574 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 25575 case BFD_RELOC_ARM_PLT32:
c19d1205 25576#ifdef TE_WINCE
5f4273c7 25577 /* When handling fixups immediately, because we have already
477330fc 25578 discovered the value of a symbol, or the address of the frag involved
53baae48 25579 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
25580 see fixup_segment() in write.c
25581 The S_IS_EXTERNAL test handles the case of global symbols.
25582 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
25583 if (fixP->fx_pcrel
25584 && fixP->fx_addsy != NULL
25585 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25586 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25587 return base + 8;
2fc8bdac 25588 return base;
c19d1205 25589#else
2fc8bdac 25590 return base + 8;
c19d1205 25591#endif
2fc8bdac 25592
267bf995 25593
2fc8bdac
ZW
25594 /* ARM mode loads relative to PC are also offset by +8. Unlike
25595 branches, the Windows CE loader *does* expect the relocation
25596 to take this into account. */
25597 case BFD_RELOC_ARM_OFFSET_IMM:
25598 case BFD_RELOC_ARM_OFFSET_IMM8:
25599 case BFD_RELOC_ARM_HWLITERAL:
25600 case BFD_RELOC_ARM_LITERAL:
25601 case BFD_RELOC_ARM_CP_OFF_IMM:
25602 return base + 8;
25603
25604
25605 /* Other PC-relative relocations are un-offset. */
25606 default:
25607 return base;
25608 }
bfae80f2
RE
25609}
25610
8b2d793c
NC
25611static bfd_boolean flag_warn_syms = TRUE;
25612
ae8714c2
NC
25613bfd_boolean
25614arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 25615{
8b2d793c
NC
25616 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25617 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25618 does mean that the resulting code might be very confusing to the reader.
25619 Also this warning can be triggered if the user omits an operand before
25620 an immediate address, eg:
25621
25622 LDR =foo
25623
25624 GAS treats this as an assignment of the value of the symbol foo to a
25625 symbol LDR, and so (without this code) it will not issue any kind of
25626 warning or error message.
25627
25628 Note - ARM instructions are case-insensitive but the strings in the hash
25629 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
25630 lower case too. */
25631 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
25632 {
25633 char * nbuf = strdup (name);
25634 char * p;
25635
25636 for (p = nbuf; *p; p++)
25637 *p = TOLOWER (*p);
25638 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25639 {
25640 static struct hash_control * already_warned = NULL;
25641
25642 if (already_warned == NULL)
25643 already_warned = hash_new ();
25644 /* Only warn about the symbol once. To keep the code
25645 simple we let hash_insert do the lookup for us. */
3076e594 25646 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 25647 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
25648 }
25649 else
25650 free (nbuf);
25651 }
3739860c 25652
ae8714c2
NC
25653 return FALSE;
25654}
25655
25656/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25657 Otherwise we have no need to default values of symbols. */
25658
25659symbolS *
25660md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25661{
25662#ifdef OBJ_ELF
25663 if (name[0] == '_' && name[1] == 'G'
25664 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25665 {
25666 if (!GOT_symbol)
25667 {
25668 if (symbol_find (name))
25669 as_bad (_("GOT already in the symbol table"));
25670
25671 GOT_symbol = symbol_new (name, undefined_section,
25672 (valueT) 0, & zero_address_frag);
25673 }
25674
25675 return GOT_symbol;
25676 }
25677#endif
25678
c921be7d 25679 return NULL;
bfae80f2
RE
25680}
25681
55cf6793 25682/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
25683 computed as two separate immediate values, added together. We
25684 already know that this value cannot be computed by just one ARM
25685 instruction. */
25686
25687static unsigned int
25688validate_immediate_twopart (unsigned int val,
25689 unsigned int * highpart)
bfae80f2 25690{
c19d1205
ZW
25691 unsigned int a;
25692 unsigned int i;
bfae80f2 25693
c19d1205
ZW
25694 for (i = 0; i < 32; i += 2)
25695 if (((a = rotate_left (val, i)) & 0xff) != 0)
25696 {
25697 if (a & 0xff00)
25698 {
25699 if (a & ~ 0xffff)
25700 continue;
25701 * highpart = (a >> 8) | ((i + 24) << 7);
25702 }
25703 else if (a & 0xff0000)
25704 {
25705 if (a & 0xff000000)
25706 continue;
25707 * highpart = (a >> 16) | ((i + 16) << 7);
25708 }
25709 else
25710 {
9c2799c2 25711 gas_assert (a & 0xff000000);
c19d1205
ZW
25712 * highpart = (a >> 24) | ((i + 8) << 7);
25713 }
bfae80f2 25714
c19d1205
ZW
25715 return (a & 0xff) | (i << 7);
25716 }
bfae80f2 25717
c19d1205 25718 return FAIL;
bfae80f2
RE
25719}
25720
c19d1205
ZW
25721static int
25722validate_offset_imm (unsigned int val, int hwse)
25723{
25724 if ((hwse && val > 255) || val > 4095)
25725 return FAIL;
25726 return val;
25727}
bfae80f2 25728
55cf6793 25729/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
25730 negative immediate constant by altering the instruction. A bit of
25731 a hack really.
25732 MOV <-> MVN
25733 AND <-> BIC
25734 ADC <-> SBC
25735 by inverting the second operand, and
25736 ADD <-> SUB
25737 CMP <-> CMN
25738 by negating the second operand. */
bfae80f2 25739
c19d1205
ZW
25740static int
25741negate_data_op (unsigned long * instruction,
25742 unsigned long value)
bfae80f2 25743{
c19d1205
ZW
25744 int op, new_inst;
25745 unsigned long negated, inverted;
bfae80f2 25746
c19d1205
ZW
25747 negated = encode_arm_immediate (-value);
25748 inverted = encode_arm_immediate (~value);
bfae80f2 25749
c19d1205
ZW
25750 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25751 switch (op)
bfae80f2 25752 {
c19d1205
ZW
25753 /* First negates. */
25754 case OPCODE_SUB: /* ADD <-> SUB */
25755 new_inst = OPCODE_ADD;
25756 value = negated;
25757 break;
bfae80f2 25758
c19d1205
ZW
25759 case OPCODE_ADD:
25760 new_inst = OPCODE_SUB;
25761 value = negated;
25762 break;
bfae80f2 25763
c19d1205
ZW
25764 case OPCODE_CMP: /* CMP <-> CMN */
25765 new_inst = OPCODE_CMN;
25766 value = negated;
25767 break;
bfae80f2 25768
c19d1205
ZW
25769 case OPCODE_CMN:
25770 new_inst = OPCODE_CMP;
25771 value = negated;
25772 break;
bfae80f2 25773
c19d1205
ZW
25774 /* Now Inverted ops. */
25775 case OPCODE_MOV: /* MOV <-> MVN */
25776 new_inst = OPCODE_MVN;
25777 value = inverted;
25778 break;
bfae80f2 25779
c19d1205
ZW
25780 case OPCODE_MVN:
25781 new_inst = OPCODE_MOV;
25782 value = inverted;
25783 break;
bfae80f2 25784
c19d1205
ZW
25785 case OPCODE_AND: /* AND <-> BIC */
25786 new_inst = OPCODE_BIC;
25787 value = inverted;
25788 break;
bfae80f2 25789
c19d1205
ZW
25790 case OPCODE_BIC:
25791 new_inst = OPCODE_AND;
25792 value = inverted;
25793 break;
bfae80f2 25794
c19d1205
ZW
25795 case OPCODE_ADC: /* ADC <-> SBC */
25796 new_inst = OPCODE_SBC;
25797 value = inverted;
25798 break;
bfae80f2 25799
c19d1205
ZW
25800 case OPCODE_SBC:
25801 new_inst = OPCODE_ADC;
25802 value = inverted;
25803 break;
bfae80f2 25804
c19d1205
ZW
25805 /* We cannot do anything. */
25806 default:
25807 return FAIL;
b99bd4ef
NC
25808 }
25809
c19d1205
ZW
25810 if (value == (unsigned) FAIL)
25811 return FAIL;
25812
25813 *instruction &= OPCODE_MASK;
25814 *instruction |= new_inst << DATA_OP_SHIFT;
25815 return value;
b99bd4ef
NC
25816}
25817
ef8d22e6
PB
25818/* Like negate_data_op, but for Thumb-2. */
25819
25820static unsigned int
16dd5e42 25821thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
25822{
25823 int op, new_inst;
25824 int rd;
16dd5e42 25825 unsigned int negated, inverted;
ef8d22e6
PB
25826
25827 negated = encode_thumb32_immediate (-value);
25828 inverted = encode_thumb32_immediate (~value);
25829
25830 rd = (*instruction >> 8) & 0xf;
25831 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25832 switch (op)
25833 {
25834 /* ADD <-> SUB. Includes CMP <-> CMN. */
25835 case T2_OPCODE_SUB:
25836 new_inst = T2_OPCODE_ADD;
25837 value = negated;
25838 break;
25839
25840 case T2_OPCODE_ADD:
25841 new_inst = T2_OPCODE_SUB;
25842 value = negated;
25843 break;
25844
25845 /* ORR <-> ORN. Includes MOV <-> MVN. */
25846 case T2_OPCODE_ORR:
25847 new_inst = T2_OPCODE_ORN;
25848 value = inverted;
25849 break;
25850
25851 case T2_OPCODE_ORN:
25852 new_inst = T2_OPCODE_ORR;
25853 value = inverted;
25854 break;
25855
25856 /* AND <-> BIC. TST has no inverted equivalent. */
25857 case T2_OPCODE_AND:
25858 new_inst = T2_OPCODE_BIC;
25859 if (rd == 15)
25860 value = FAIL;
25861 else
25862 value = inverted;
25863 break;
25864
25865 case T2_OPCODE_BIC:
25866 new_inst = T2_OPCODE_AND;
25867 value = inverted;
25868 break;
25869
25870 /* ADC <-> SBC */
25871 case T2_OPCODE_ADC:
25872 new_inst = T2_OPCODE_SBC;
25873 value = inverted;
25874 break;
25875
25876 case T2_OPCODE_SBC:
25877 new_inst = T2_OPCODE_ADC;
25878 value = inverted;
25879 break;
25880
25881 /* We cannot do anything. */
25882 default:
25883 return FAIL;
25884 }
25885
16dd5e42 25886 if (value == (unsigned int)FAIL)
ef8d22e6
PB
25887 return FAIL;
25888
25889 *instruction &= T2_OPCODE_MASK;
25890 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25891 return value;
25892}
25893
8f06b2d8 25894/* Read a 32-bit thumb instruction from buf. */
0198d5e6 25895
8f06b2d8
PB
25896static unsigned long
25897get_thumb32_insn (char * buf)
25898{
25899 unsigned long insn;
25900 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25901 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25902
25903 return insn;
25904}
25905
a8bc6c78
PB
25906/* We usually want to set the low bit on the address of thumb function
25907 symbols. In particular .word foo - . should have the low bit set.
25908 Generic code tries to fold the difference of two symbols to
25909 a constant. Prevent this and force a relocation when the first symbols
25910 is a thumb function. */
c921be7d
NC
25911
25912bfd_boolean
a8bc6c78
PB
25913arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25914{
25915 if (op == O_subtract
25916 && l->X_op == O_symbol
25917 && r->X_op == O_symbol
25918 && THUMB_IS_FUNC (l->X_add_symbol))
25919 {
25920 l->X_op = O_subtract;
25921 l->X_op_symbol = r->X_add_symbol;
25922 l->X_add_number -= r->X_add_number;
c921be7d 25923 return TRUE;
a8bc6c78 25924 }
c921be7d 25925
a8bc6c78 25926 /* Process as normal. */
c921be7d 25927 return FALSE;
a8bc6c78
PB
25928}
25929
4a42ebbc
RR
25930/* Encode Thumb2 unconditional branches and calls. The encoding
25931 for the 2 are identical for the immediate values. */
25932
25933static void
25934encode_thumb2_b_bl_offset (char * buf, offsetT value)
25935{
25936#define T2I1I2MASK ((1 << 13) | (1 << 11))
25937 offsetT newval;
25938 offsetT newval2;
25939 addressT S, I1, I2, lo, hi;
25940
25941 S = (value >> 24) & 0x01;
25942 I1 = (value >> 23) & 0x01;
25943 I2 = (value >> 22) & 0x01;
25944 hi = (value >> 12) & 0x3ff;
fa94de6b 25945 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
25946 newval = md_chars_to_number (buf, THUMB_SIZE);
25947 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25948 newval |= (S << 10) | hi;
25949 newval2 &= ~T2I1I2MASK;
25950 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25951 md_number_to_chars (buf, newval, THUMB_SIZE);
25952 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25953}
25954
c19d1205 25955void
55cf6793 25956md_apply_fix (fixS * fixP,
c19d1205
ZW
25957 valueT * valP,
25958 segT seg)
25959{
25960 offsetT value = * valP;
25961 offsetT newval;
25962 unsigned int newimm;
25963 unsigned long temp;
25964 int sign;
25965 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 25966
9c2799c2 25967 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 25968
c19d1205 25969 /* Note whether this will delete the relocation. */
4962c51a 25970
c19d1205
ZW
25971 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25972 fixP->fx_done = 1;
b99bd4ef 25973
adbaf948 25974 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 25975 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
25976 for emit_reloc. */
25977 value &= 0xffffffff;
25978 value ^= 0x80000000;
5f4273c7 25979 value -= 0x80000000;
adbaf948
ZW
25980
25981 *valP = value;
c19d1205 25982 fixP->fx_addnumber = value;
b99bd4ef 25983
adbaf948
ZW
25984 /* Same treatment for fixP->fx_offset. */
25985 fixP->fx_offset &= 0xffffffff;
25986 fixP->fx_offset ^= 0x80000000;
25987 fixP->fx_offset -= 0x80000000;
25988
c19d1205 25989 switch (fixP->fx_r_type)
b99bd4ef 25990 {
c19d1205
ZW
25991 case BFD_RELOC_NONE:
25992 /* This will need to go in the object file. */
25993 fixP->fx_done = 0;
25994 break;
b99bd4ef 25995
c19d1205
ZW
25996 case BFD_RELOC_ARM_IMMEDIATE:
25997 /* We claim that this fixup has been processed here,
25998 even if in fact we generate an error because we do
25999 not have a reloc for it, so tc_gen_reloc will reject it. */
26000 fixP->fx_done = 1;
b99bd4ef 26001
77db8e2e 26002 if (fixP->fx_addsy)
b99bd4ef 26003 {
77db8e2e 26004 const char *msg = 0;
b99bd4ef 26005
77db8e2e
NC
26006 if (! S_IS_DEFINED (fixP->fx_addsy))
26007 msg = _("undefined symbol %s used as an immediate value");
26008 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26009 msg = _("symbol %s is in a different section");
26010 else if (S_IS_WEAK (fixP->fx_addsy))
26011 msg = _("symbol %s is weak and may be overridden later");
26012
26013 if (msg)
26014 {
26015 as_bad_where (fixP->fx_file, fixP->fx_line,
26016 msg, S_GET_NAME (fixP->fx_addsy));
26017 break;
26018 }
42e5fcbf
AS
26019 }
26020
c19d1205
ZW
26021 temp = md_chars_to_number (buf, INSN_SIZE);
26022
5e73442d
SL
26023 /* If the offset is negative, we should use encoding A2 for ADR. */
26024 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26025 newimm = negate_data_op (&temp, value);
26026 else
26027 {
26028 newimm = encode_arm_immediate (value);
26029
26030 /* If the instruction will fail, see if we can fix things up by
26031 changing the opcode. */
26032 if (newimm == (unsigned int) FAIL)
26033 newimm = negate_data_op (&temp, value);
bada4342
JW
26034 /* MOV accepts both ARM modified immediate (A1 encoding) and
26035 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26036 When disassembling, MOV is preferred when there is no encoding
26037 overlap. */
26038 if (newimm == (unsigned int) FAIL
26039 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26040 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26041 && !((temp >> SBIT_SHIFT) & 0x1)
26042 && value >= 0 && value <= 0xffff)
26043 {
26044 /* Clear bits[23:20] to change encoding from A1 to A2. */
26045 temp &= 0xff0fffff;
26046 /* Encoding high 4bits imm. Code below will encode the remaining
26047 low 12bits. */
26048 temp |= (value & 0x0000f000) << 4;
26049 newimm = value & 0x00000fff;
26050 }
5e73442d
SL
26051 }
26052
26053 if (newimm == (unsigned int) FAIL)
b99bd4ef 26054 {
c19d1205
ZW
26055 as_bad_where (fixP->fx_file, fixP->fx_line,
26056 _("invalid constant (%lx) after fixup"),
26057 (unsigned long) value);
26058 break;
b99bd4ef 26059 }
b99bd4ef 26060
c19d1205
ZW
26061 newimm |= (temp & 0xfffff000);
26062 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26063 break;
b99bd4ef 26064
c19d1205
ZW
26065 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26066 {
26067 unsigned int highpart = 0;
26068 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26069
77db8e2e 26070 if (fixP->fx_addsy)
42e5fcbf 26071 {
77db8e2e 26072 const char *msg = 0;
42e5fcbf 26073
77db8e2e
NC
26074 if (! S_IS_DEFINED (fixP->fx_addsy))
26075 msg = _("undefined symbol %s used as an immediate value");
26076 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26077 msg = _("symbol %s is in a different section");
26078 else if (S_IS_WEAK (fixP->fx_addsy))
26079 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26080
77db8e2e
NC
26081 if (msg)
26082 {
26083 as_bad_where (fixP->fx_file, fixP->fx_line,
26084 msg, S_GET_NAME (fixP->fx_addsy));
26085 break;
26086 }
26087 }
fa94de6b 26088
c19d1205
ZW
26089 newimm = encode_arm_immediate (value);
26090 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26091
c19d1205
ZW
26092 /* If the instruction will fail, see if we can fix things up by
26093 changing the opcode. */
26094 if (newimm == (unsigned int) FAIL
26095 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26096 {
26097 /* No ? OK - try using two ADD instructions to generate
26098 the value. */
26099 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26100
c19d1205
ZW
26101 /* Yes - then make sure that the second instruction is
26102 also an add. */
26103 if (newimm != (unsigned int) FAIL)
26104 newinsn = temp;
26105 /* Still No ? Try using a negated value. */
26106 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26107 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26108 /* Otherwise - give up. */
26109 else
26110 {
26111 as_bad_where (fixP->fx_file, fixP->fx_line,
26112 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26113 (long) value);
26114 break;
26115 }
b99bd4ef 26116
c19d1205
ZW
26117 /* Replace the first operand in the 2nd instruction (which
26118 is the PC) with the destination register. We have
26119 already added in the PC in the first instruction and we
26120 do not want to do it again. */
26121 newinsn &= ~ 0xf0000;
26122 newinsn |= ((newinsn & 0x0f000) << 4);
26123 }
b99bd4ef 26124
c19d1205
ZW
26125 newimm |= (temp & 0xfffff000);
26126 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26127
c19d1205
ZW
26128 highpart |= (newinsn & 0xfffff000);
26129 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26130 }
26131 break;
b99bd4ef 26132
c19d1205 26133 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26134 if (!fixP->fx_done && seg->use_rela_p)
26135 value = 0;
1a0670f3 26136 /* Fall through. */
00a97672 26137
c19d1205 26138 case BFD_RELOC_ARM_LITERAL:
26d97720 26139 sign = value > 0;
b99bd4ef 26140
c19d1205
ZW
26141 if (value < 0)
26142 value = - value;
b99bd4ef 26143
c19d1205 26144 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26145 {
c19d1205
ZW
26146 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26147 as_bad_where (fixP->fx_file, fixP->fx_line,
26148 _("invalid literal constant: pool needs to be closer"));
26149 else
26150 as_bad_where (fixP->fx_file, fixP->fx_line,
26151 _("bad immediate value for offset (%ld)"),
26152 (long) value);
26153 break;
f03698e6
RE
26154 }
26155
c19d1205 26156 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26157 if (value == 0)
26158 newval &= 0xfffff000;
26159 else
26160 {
26161 newval &= 0xff7ff000;
26162 newval |= value | (sign ? INDEX_UP : 0);
26163 }
c19d1205
ZW
26164 md_number_to_chars (buf, newval, INSN_SIZE);
26165 break;
b99bd4ef 26166
c19d1205
ZW
26167 case BFD_RELOC_ARM_OFFSET_IMM8:
26168 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26169 sign = value > 0;
b99bd4ef 26170
c19d1205
ZW
26171 if (value < 0)
26172 value = - value;
b99bd4ef 26173
c19d1205 26174 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26175 {
c19d1205
ZW
26176 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26177 as_bad_where (fixP->fx_file, fixP->fx_line,
26178 _("invalid literal constant: pool needs to be closer"));
26179 else
427d0db6
RM
26180 as_bad_where (fixP->fx_file, fixP->fx_line,
26181 _("bad immediate value for 8-bit offset (%ld)"),
26182 (long) value);
c19d1205 26183 break;
b99bd4ef
NC
26184 }
26185
c19d1205 26186 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26187 if (value == 0)
26188 newval &= 0xfffff0f0;
26189 else
26190 {
26191 newval &= 0xff7ff0f0;
26192 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26193 }
c19d1205
ZW
26194 md_number_to_chars (buf, newval, INSN_SIZE);
26195 break;
b99bd4ef 26196
c19d1205
ZW
26197 case BFD_RELOC_ARM_T32_OFFSET_U8:
26198 if (value < 0 || value > 1020 || value % 4 != 0)
26199 as_bad_where (fixP->fx_file, fixP->fx_line,
26200 _("bad immediate value for offset (%ld)"), (long) value);
26201 value /= 4;
b99bd4ef 26202
c19d1205 26203 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26204 newval |= value;
26205 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26206 break;
b99bd4ef 26207
c19d1205
ZW
26208 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26209 /* This is a complicated relocation used for all varieties of Thumb32
26210 load/store instruction with immediate offset:
26211
26212 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26213 *4, optional writeback(W)
c19d1205
ZW
26214 (doubleword load/store)
26215
26216 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26217 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26218 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26219 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26220 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26221
26222 Uppercase letters indicate bits that are already encoded at
26223 this point. Lowercase letters are our problem. For the
26224 second block of instructions, the secondary opcode nybble
26225 (bits 8..11) is present, and bit 23 is zero, even if this is
26226 a PC-relative operation. */
26227 newval = md_chars_to_number (buf, THUMB_SIZE);
26228 newval <<= 16;
26229 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26230
c19d1205 26231 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26232 {
c19d1205
ZW
26233 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26234 if (value >= 0)
26235 newval |= (1 << 23);
26236 else
26237 value = -value;
26238 if (value % 4 != 0)
26239 {
26240 as_bad_where (fixP->fx_file, fixP->fx_line,
26241 _("offset not a multiple of 4"));
26242 break;
26243 }
26244 value /= 4;
216d22bc 26245 if (value > 0xff)
c19d1205
ZW
26246 {
26247 as_bad_where (fixP->fx_file, fixP->fx_line,
26248 _("offset out of range"));
26249 break;
26250 }
26251 newval &= ~0xff;
b99bd4ef 26252 }
c19d1205 26253 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26254 {
c19d1205
ZW
26255 /* PC-relative, 12-bit offset. */
26256 if (value >= 0)
26257 newval |= (1 << 23);
26258 else
26259 value = -value;
216d22bc 26260 if (value > 0xfff)
c19d1205
ZW
26261 {
26262 as_bad_where (fixP->fx_file, fixP->fx_line,
26263 _("offset out of range"));
26264 break;
26265 }
26266 newval &= ~0xfff;
b99bd4ef 26267 }
c19d1205 26268 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26269 {
c19d1205
ZW
26270 /* Writeback: 8-bit, +/- offset. */
26271 if (value >= 0)
26272 newval |= (1 << 9);
26273 else
26274 value = -value;
216d22bc 26275 if (value > 0xff)
c19d1205
ZW
26276 {
26277 as_bad_where (fixP->fx_file, fixP->fx_line,
26278 _("offset out of range"));
26279 break;
26280 }
26281 newval &= ~0xff;
b99bd4ef 26282 }
c19d1205 26283 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26284 {
c19d1205 26285 /* T-instruction: positive 8-bit offset. */
216d22bc 26286 if (value < 0 || value > 0xff)
b99bd4ef 26287 {
c19d1205
ZW
26288 as_bad_where (fixP->fx_file, fixP->fx_line,
26289 _("offset out of range"));
26290 break;
b99bd4ef 26291 }
c19d1205
ZW
26292 newval &= ~0xff;
26293 newval |= value;
b99bd4ef
NC
26294 }
26295 else
b99bd4ef 26296 {
c19d1205
ZW
26297 /* Positive 12-bit or negative 8-bit offset. */
26298 int limit;
26299 if (value >= 0)
b99bd4ef 26300 {
c19d1205
ZW
26301 newval |= (1 << 23);
26302 limit = 0xfff;
26303 }
26304 else
26305 {
26306 value = -value;
26307 limit = 0xff;
26308 }
26309 if (value > limit)
26310 {
26311 as_bad_where (fixP->fx_file, fixP->fx_line,
26312 _("offset out of range"));
26313 break;
b99bd4ef 26314 }
c19d1205 26315 newval &= ~limit;
b99bd4ef 26316 }
b99bd4ef 26317
c19d1205
ZW
26318 newval |= value;
26319 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26320 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26321 break;
404ff6b5 26322
c19d1205
ZW
26323 case BFD_RELOC_ARM_SHIFT_IMM:
26324 newval = md_chars_to_number (buf, INSN_SIZE);
26325 if (((unsigned long) value) > 32
26326 || (value == 32
26327 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26328 {
26329 as_bad_where (fixP->fx_file, fixP->fx_line,
26330 _("shift expression is too large"));
26331 break;
26332 }
404ff6b5 26333
c19d1205
ZW
26334 if (value == 0)
26335 /* Shifts of zero must be done as lsl. */
26336 newval &= ~0x60;
26337 else if (value == 32)
26338 value = 0;
26339 newval &= 0xfffff07f;
26340 newval |= (value & 0x1f) << 7;
26341 md_number_to_chars (buf, newval, INSN_SIZE);
26342 break;
404ff6b5 26343
c19d1205 26344 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26345 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26346 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26347 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26348 /* We claim that this fixup has been processed here,
26349 even if in fact we generate an error because we do
26350 not have a reloc for it, so tc_gen_reloc will reject it. */
26351 fixP->fx_done = 1;
404ff6b5 26352
c19d1205
ZW
26353 if (fixP->fx_addsy
26354 && ! S_IS_DEFINED (fixP->fx_addsy))
26355 {
26356 as_bad_where (fixP->fx_file, fixP->fx_line,
26357 _("undefined symbol %s used as an immediate value"),
26358 S_GET_NAME (fixP->fx_addsy));
26359 break;
26360 }
404ff6b5 26361
c19d1205
ZW
26362 newval = md_chars_to_number (buf, THUMB_SIZE);
26363 newval <<= 16;
26364 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26365
16805f35 26366 newimm = FAIL;
bada4342
JW
26367 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26368 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26369 Thumb2 modified immediate encoding (T2). */
26370 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26371 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26372 {
26373 newimm = encode_thumb32_immediate (value);
26374 if (newimm == (unsigned int) FAIL)
26375 newimm = thumb32_negate_data_op (&newval, value);
26376 }
bada4342 26377 if (newimm == (unsigned int) FAIL)
92e90b6e 26378 {
bada4342 26379 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26380 {
bada4342
JW
26381 /* Turn add/sum into addw/subw. */
26382 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26383 newval = (newval & 0xfeffffff) | 0x02000000;
26384 /* No flat 12-bit imm encoding for addsw/subsw. */
26385 if ((newval & 0x00100000) == 0)
40f246e3 26386 {
bada4342
JW
26387 /* 12 bit immediate for addw/subw. */
26388 if (value < 0)
26389 {
26390 value = -value;
26391 newval ^= 0x00a00000;
26392 }
26393 if (value > 0xfff)
26394 newimm = (unsigned int) FAIL;
26395 else
26396 newimm = value;
26397 }
26398 }
26399 else
26400 {
26401 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26402 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26403 disassembling, MOV is preferred when there is no encoding
db7bf105 26404 overlap. */
bada4342 26405 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26406 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26407 but with the Rn field [19:16] set to 1111. */
26408 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26409 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26410 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26411 && value >= 0 && value <= 0xffff)
bada4342
JW
26412 {
26413 /* Toggle bit[25] to change encoding from T2 to T3. */
26414 newval ^= 1 << 25;
26415 /* Clear bits[19:16]. */
26416 newval &= 0xfff0ffff;
26417 /* Encoding high 4bits imm. Code below will encode the
26418 remaining low 12bits. */
26419 newval |= (value & 0x0000f000) << 4;
26420 newimm = value & 0x00000fff;
40f246e3 26421 }
e9f89963 26422 }
92e90b6e 26423 }
cc8a6dd0 26424
c19d1205 26425 if (newimm == (unsigned int)FAIL)
3631a3c8 26426 {
c19d1205
ZW
26427 as_bad_where (fixP->fx_file, fixP->fx_line,
26428 _("invalid constant (%lx) after fixup"),
26429 (unsigned long) value);
26430 break;
3631a3c8
NC
26431 }
26432
c19d1205
ZW
26433 newval |= (newimm & 0x800) << 15;
26434 newval |= (newimm & 0x700) << 4;
26435 newval |= (newimm & 0x0ff);
cc8a6dd0 26436
c19d1205
ZW
26437 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26438 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26439 break;
a737bd4d 26440
3eb17e6b 26441 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26442 if (((unsigned long) value) > 0xffff)
26443 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26444 _("invalid smc expression"));
2fc8bdac 26445 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26446 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26447 md_number_to_chars (buf, newval, INSN_SIZE);
26448 break;
a737bd4d 26449
90ec0d68
MGD
26450 case BFD_RELOC_ARM_HVC:
26451 if (((unsigned long) value) > 0xffff)
26452 as_bad_where (fixP->fx_file, fixP->fx_line,
26453 _("invalid hvc expression"));
26454 newval = md_chars_to_number (buf, INSN_SIZE);
26455 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26456 md_number_to_chars (buf, newval, INSN_SIZE);
26457 break;
26458
c19d1205 26459 case BFD_RELOC_ARM_SWI:
adbaf948 26460 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26461 {
26462 if (((unsigned long) value) > 0xff)
26463 as_bad_where (fixP->fx_file, fixP->fx_line,
26464 _("invalid swi expression"));
2fc8bdac 26465 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26466 newval |= value;
26467 md_number_to_chars (buf, newval, THUMB_SIZE);
26468 }
26469 else
26470 {
26471 if (((unsigned long) value) > 0x00ffffff)
26472 as_bad_where (fixP->fx_file, fixP->fx_line,
26473 _("invalid swi expression"));
2fc8bdac 26474 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26475 newval |= value;
26476 md_number_to_chars (buf, newval, INSN_SIZE);
26477 }
26478 break;
a737bd4d 26479
c19d1205
ZW
26480 case BFD_RELOC_ARM_MULTI:
26481 if (((unsigned long) value) > 0xffff)
26482 as_bad_where (fixP->fx_file, fixP->fx_line,
26483 _("invalid expression in load/store multiple"));
26484 newval = value | md_chars_to_number (buf, INSN_SIZE);
26485 md_number_to_chars (buf, newval, INSN_SIZE);
26486 break;
a737bd4d 26487
c19d1205 26488#ifdef OBJ_ELF
39b41c9c 26489 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26490
26491 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26492 && fixP->fx_addsy
34e77a92 26493 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26494 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26495 && THUMB_IS_FUNC (fixP->fx_addsy))
26496 /* Flip the bl to blx. This is a simple flip
26497 bit here because we generate PCREL_CALL for
26498 unconditional bls. */
26499 {
26500 newval = md_chars_to_number (buf, INSN_SIZE);
26501 newval = newval | 0x10000000;
26502 md_number_to_chars (buf, newval, INSN_SIZE);
26503 temp = 1;
26504 fixP->fx_done = 1;
26505 }
39b41c9c
PB
26506 else
26507 temp = 3;
26508 goto arm_branch_common;
26509
26510 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26511 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26512 && fixP->fx_addsy
34e77a92 26513 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26514 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26515 && THUMB_IS_FUNC (fixP->fx_addsy))
26516 {
26517 /* This would map to a bl<cond>, b<cond>,
26518 b<always> to a Thumb function. We
26519 need to force a relocation for this particular
26520 case. */
26521 newval = md_chars_to_number (buf, INSN_SIZE);
26522 fixP->fx_done = 0;
26523 }
1a0670f3 26524 /* Fall through. */
267bf995 26525
2fc8bdac 26526 case BFD_RELOC_ARM_PLT32:
c19d1205 26527#endif
39b41c9c
PB
26528 case BFD_RELOC_ARM_PCREL_BRANCH:
26529 temp = 3;
26530 goto arm_branch_common;
a737bd4d 26531
39b41c9c 26532 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26533
39b41c9c 26534 temp = 1;
267bf995
RR
26535 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26536 && fixP->fx_addsy
34e77a92 26537 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26538 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26539 && ARM_IS_FUNC (fixP->fx_addsy))
26540 {
26541 /* Flip the blx to a bl and warn. */
26542 const char *name = S_GET_NAME (fixP->fx_addsy);
26543 newval = 0xeb000000;
26544 as_warn_where (fixP->fx_file, fixP->fx_line,
26545 _("blx to '%s' an ARM ISA state function changed to bl"),
26546 name);
26547 md_number_to_chars (buf, newval, INSN_SIZE);
26548 temp = 3;
26549 fixP->fx_done = 1;
26550 }
26551
26552#ifdef OBJ_ELF
26553 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 26554 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
26555#endif
26556
39b41c9c 26557 arm_branch_common:
c19d1205 26558 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
26559 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26560 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 26561 also be clear. */
39b41c9c 26562 if (value & temp)
c19d1205 26563 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
26564 _("misaligned branch destination"));
26565 if ((value & (offsetT)0xfe000000) != (offsetT)0
26566 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 26567 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26568
2fc8bdac 26569 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26570 {
2fc8bdac
ZW
26571 newval = md_chars_to_number (buf, INSN_SIZE);
26572 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
26573 /* Set the H bit on BLX instructions. */
26574 if (temp == 1)
26575 {
26576 if (value & 2)
26577 newval |= 0x01000000;
26578 else
26579 newval &= ~0x01000000;
26580 }
2fc8bdac 26581 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 26582 }
c19d1205 26583 break;
a737bd4d 26584
25fe350b
MS
26585 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26586 /* CBZ can only branch forward. */
a737bd4d 26587
738755b0 26588 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
26589 (which, strictly speaking, are prohibited) will be turned into
26590 no-ops.
738755b0
MS
26591
26592 FIXME: It may be better to remove the instruction completely and
26593 perform relaxation. */
26594 if (value == -2)
2fc8bdac
ZW
26595 {
26596 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 26597 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
26598 md_number_to_chars (buf, newval, THUMB_SIZE);
26599 }
738755b0
MS
26600 else
26601 {
26602 if (value & ~0x7e)
08f10d51 26603 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 26604
477330fc 26605 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
26606 {
26607 newval = md_chars_to_number (buf, THUMB_SIZE);
26608 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26609 md_number_to_chars (buf, newval, THUMB_SIZE);
26610 }
26611 }
c19d1205 26612 break;
a737bd4d 26613
c19d1205 26614 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 26615 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 26616 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26617
2fc8bdac
ZW
26618 if (fixP->fx_done || !seg->use_rela_p)
26619 {
26620 newval = md_chars_to_number (buf, THUMB_SIZE);
26621 newval |= (value & 0x1ff) >> 1;
26622 md_number_to_chars (buf, newval, THUMB_SIZE);
26623 }
c19d1205 26624 break;
a737bd4d 26625
c19d1205 26626 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 26627 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 26628 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26629
2fc8bdac
ZW
26630 if (fixP->fx_done || !seg->use_rela_p)
26631 {
26632 newval = md_chars_to_number (buf, THUMB_SIZE);
26633 newval |= (value & 0xfff) >> 1;
26634 md_number_to_chars (buf, newval, THUMB_SIZE);
26635 }
c19d1205 26636 break;
a737bd4d 26637
c19d1205 26638 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
26639 if (fixP->fx_addsy
26640 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26641 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26642 && ARM_IS_FUNC (fixP->fx_addsy)
26643 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26644 {
26645 /* Force a relocation for a branch 20 bits wide. */
26646 fixP->fx_done = 0;
26647 }
08f10d51 26648 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
26649 as_bad_where (fixP->fx_file, fixP->fx_line,
26650 _("conditional branch out of range"));
404ff6b5 26651
2fc8bdac
ZW
26652 if (fixP->fx_done || !seg->use_rela_p)
26653 {
26654 offsetT newval2;
26655 addressT S, J1, J2, lo, hi;
404ff6b5 26656
2fc8bdac
ZW
26657 S = (value & 0x00100000) >> 20;
26658 J2 = (value & 0x00080000) >> 19;
26659 J1 = (value & 0x00040000) >> 18;
26660 hi = (value & 0x0003f000) >> 12;
26661 lo = (value & 0x00000ffe) >> 1;
6c43fab6 26662
2fc8bdac
ZW
26663 newval = md_chars_to_number (buf, THUMB_SIZE);
26664 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26665 newval |= (S << 10) | hi;
26666 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26667 md_number_to_chars (buf, newval, THUMB_SIZE);
26668 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26669 }
c19d1205 26670 break;
6c43fab6 26671
c19d1205 26672 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
26673 /* If there is a blx from a thumb state function to
26674 another thumb function flip this to a bl and warn
26675 about it. */
26676
26677 if (fixP->fx_addsy
34e77a92 26678 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26679 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26680 && THUMB_IS_FUNC (fixP->fx_addsy))
26681 {
26682 const char *name = S_GET_NAME (fixP->fx_addsy);
26683 as_warn_where (fixP->fx_file, fixP->fx_line,
26684 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26685 name);
26686 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26687 newval = newval | 0x1000;
26688 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26689 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26690 fixP->fx_done = 1;
26691 }
26692
26693
26694 goto thumb_bl_common;
26695
c19d1205 26696 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
26697 /* A bl from Thumb state ISA to an internal ARM state function
26698 is converted to a blx. */
26699 if (fixP->fx_addsy
26700 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26701 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26702 && ARM_IS_FUNC (fixP->fx_addsy)
26703 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26704 {
26705 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26706 newval = newval & ~0x1000;
26707 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26708 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26709 fixP->fx_done = 1;
26710 }
26711
26712 thumb_bl_common:
26713
2fc8bdac
ZW
26714 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26715 /* For a BLX instruction, make sure that the relocation is rounded up
26716 to a word boundary. This follows the semantics of the instruction
26717 which specifies that bit 1 of the target address will come from bit
26718 1 of the base address. */
d406f3e4
JB
26719 value = (value + 3) & ~ 3;
26720
26721#ifdef OBJ_ELF
26722 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26723 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26724 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26725#endif
404ff6b5 26726
2b2f5df9
NC
26727 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26728 {
fc289b0a 26729 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
26730 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26731 else if ((value & ~0x1ffffff)
26732 && ((value & ~0x1ffffff) != ~0x1ffffff))
26733 as_bad_where (fixP->fx_file, fixP->fx_line,
26734 _("Thumb2 branch out of range"));
26735 }
4a42ebbc
RR
26736
26737 if (fixP->fx_done || !seg->use_rela_p)
26738 encode_thumb2_b_bl_offset (buf, value);
26739
c19d1205 26740 break;
404ff6b5 26741
c19d1205 26742 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
26743 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26744 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 26745
2fc8bdac 26746 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 26747 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 26748
2fc8bdac 26749 break;
a737bd4d 26750
2fc8bdac
ZW
26751 case BFD_RELOC_8:
26752 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 26753 *buf = value;
c19d1205 26754 break;
a737bd4d 26755
c19d1205 26756 case BFD_RELOC_16:
2fc8bdac 26757 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26758 md_number_to_chars (buf, value, 2);
c19d1205 26759 break;
a737bd4d 26760
c19d1205 26761#ifdef OBJ_ELF
0855e32b
NS
26762 case BFD_RELOC_ARM_TLS_CALL:
26763 case BFD_RELOC_ARM_THM_TLS_CALL:
26764 case BFD_RELOC_ARM_TLS_DESCSEQ:
26765 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 26766 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
26767 case BFD_RELOC_ARM_TLS_GD32:
26768 case BFD_RELOC_ARM_TLS_LE32:
26769 case BFD_RELOC_ARM_TLS_IE32:
26770 case BFD_RELOC_ARM_TLS_LDM32:
26771 case BFD_RELOC_ARM_TLS_LDO32:
26772 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 26773 break;
6c43fab6 26774
5c5a4843
CL
26775 /* Same handling as above, but with the arm_fdpic guard. */
26776 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26777 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26778 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26779 if (arm_fdpic)
26780 {
26781 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26782 }
26783 else
26784 {
26785 as_bad_where (fixP->fx_file, fixP->fx_line,
26786 _("Relocation supported only in FDPIC mode"));
26787 }
26788 break;
26789
c19d1205
ZW
26790 case BFD_RELOC_ARM_GOT32:
26791 case BFD_RELOC_ARM_GOTOFF:
c19d1205 26792 break;
b43420e6
NC
26793
26794 case BFD_RELOC_ARM_GOT_PREL:
26795 if (fixP->fx_done || !seg->use_rela_p)
477330fc 26796 md_number_to_chars (buf, value, 4);
b43420e6
NC
26797 break;
26798
9a6f4e97
NS
26799 case BFD_RELOC_ARM_TARGET2:
26800 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
26801 addend here for REL targets, because it won't be written out
26802 during reloc processing later. */
9a6f4e97
NS
26803 if (fixP->fx_done || !seg->use_rela_p)
26804 md_number_to_chars (buf, fixP->fx_offset, 4);
26805 break;
188fd7ae
CL
26806
26807 /* Relocations for FDPIC. */
26808 case BFD_RELOC_ARM_GOTFUNCDESC:
26809 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26810 case BFD_RELOC_ARM_FUNCDESC:
26811 if (arm_fdpic)
26812 {
26813 if (fixP->fx_done || !seg->use_rela_p)
26814 md_number_to_chars (buf, 0, 4);
26815 }
26816 else
26817 {
26818 as_bad_where (fixP->fx_file, fixP->fx_line,
26819 _("Relocation supported only in FDPIC mode"));
26820 }
26821 break;
c19d1205 26822#endif
6c43fab6 26823
c19d1205
ZW
26824 case BFD_RELOC_RVA:
26825 case BFD_RELOC_32:
26826 case BFD_RELOC_ARM_TARGET1:
26827 case BFD_RELOC_ARM_ROSEGREL32:
26828 case BFD_RELOC_ARM_SBREL32:
26829 case BFD_RELOC_32_PCREL:
f0927246
NC
26830#ifdef TE_PE
26831 case BFD_RELOC_32_SECREL:
26832#endif
2fc8bdac 26833 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
26834#ifdef TE_WINCE
26835 /* For WinCE we only do this for pcrel fixups. */
26836 if (fixP->fx_done || fixP->fx_pcrel)
26837#endif
26838 md_number_to_chars (buf, value, 4);
c19d1205 26839 break;
6c43fab6 26840
c19d1205
ZW
26841#ifdef OBJ_ELF
26842 case BFD_RELOC_ARM_PREL31:
2fc8bdac 26843 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
26844 {
26845 newval = md_chars_to_number (buf, 4) & 0x80000000;
26846 if ((value ^ (value >> 1)) & 0x40000000)
26847 {
26848 as_bad_where (fixP->fx_file, fixP->fx_line,
26849 _("rel31 relocation overflow"));
26850 }
26851 newval |= value & 0x7fffffff;
26852 md_number_to_chars (buf, newval, 4);
26853 }
26854 break;
c19d1205 26855#endif
a737bd4d 26856
c19d1205 26857 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 26858 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 26859 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
26860 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26861 newval = md_chars_to_number (buf, INSN_SIZE);
26862 else
26863 newval = get_thumb32_insn (buf);
26864 if ((newval & 0x0f200f00) == 0x0d000900)
26865 {
26866 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26867 has permitted values that are multiples of 2, in the range 0
26868 to 510. */
26869 if (value < -510 || value > 510 || (value & 1))
26870 as_bad_where (fixP->fx_file, fixP->fx_line,
26871 _("co-processor offset out of range"));
26872 }
32c36c3c
AV
26873 else if ((newval & 0xfe001f80) == 0xec000f80)
26874 {
26875 if (value < -511 || value > 512 || (value & 3))
26876 as_bad_where (fixP->fx_file, fixP->fx_line,
26877 _("co-processor offset out of range"));
26878 }
9db2f6b4 26879 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
26880 as_bad_where (fixP->fx_file, fixP->fx_line,
26881 _("co-processor offset out of range"));
26882 cp_off_common:
26d97720 26883 sign = value > 0;
c19d1205
ZW
26884 if (value < 0)
26885 value = -value;
8f06b2d8
PB
26886 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26887 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26888 newval = md_chars_to_number (buf, INSN_SIZE);
26889 else
26890 newval = get_thumb32_insn (buf);
26d97720 26891 if (value == 0)
32c36c3c
AV
26892 {
26893 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26894 newval &= 0xffffff80;
26895 else
26896 newval &= 0xffffff00;
26897 }
26d97720
NS
26898 else
26899 {
32c36c3c
AV
26900 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26901 newval &= 0xff7fff80;
26902 else
26903 newval &= 0xff7fff00;
9db2f6b4
RL
26904 if ((newval & 0x0f200f00) == 0x0d000900)
26905 {
26906 /* This is a fp16 vstr/vldr.
26907
26908 It requires the immediate offset in the instruction is shifted
26909 left by 1 to be a half-word offset.
26910
26911 Here, left shift by 1 first, and later right shift by 2
26912 should get the right offset. */
26913 value <<= 1;
26914 }
26d97720
NS
26915 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26916 }
8f06b2d8
PB
26917 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26918 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26919 md_number_to_chars (buf, newval, INSN_SIZE);
26920 else
26921 put_thumb32_insn (buf, newval);
c19d1205 26922 break;
a737bd4d 26923
c19d1205 26924 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 26925 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
26926 if (value < -255 || value > 255)
26927 as_bad_where (fixP->fx_file, fixP->fx_line,
26928 _("co-processor offset out of range"));
df7849c5 26929 value *= 4;
c19d1205 26930 goto cp_off_common;
6c43fab6 26931
c19d1205
ZW
26932 case BFD_RELOC_ARM_THUMB_OFFSET:
26933 newval = md_chars_to_number (buf, THUMB_SIZE);
26934 /* Exactly what ranges, and where the offset is inserted depends
26935 on the type of instruction, we can establish this from the
26936 top 4 bits. */
26937 switch (newval >> 12)
26938 {
26939 case 4: /* PC load. */
26940 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26941 forced to zero for these loads; md_pcrel_from has already
26942 compensated for this. */
26943 if (value & 3)
26944 as_bad_where (fixP->fx_file, fixP->fx_line,
26945 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
26946 (((unsigned long) fixP->fx_frag->fr_address
26947 + (unsigned long) fixP->fx_where) & ~3)
26948 + (unsigned long) value);
a737bd4d 26949
c19d1205
ZW
26950 if (value & ~0x3fc)
26951 as_bad_where (fixP->fx_file, fixP->fx_line,
26952 _("invalid offset, value too big (0x%08lX)"),
26953 (long) value);
a737bd4d 26954
c19d1205
ZW
26955 newval |= value >> 2;
26956 break;
a737bd4d 26957
c19d1205
ZW
26958 case 9: /* SP load/store. */
26959 if (value & ~0x3fc)
26960 as_bad_where (fixP->fx_file, fixP->fx_line,
26961 _("invalid offset, value too big (0x%08lX)"),
26962 (long) value);
26963 newval |= value >> 2;
26964 break;
6c43fab6 26965
c19d1205
ZW
26966 case 6: /* Word load/store. */
26967 if (value & ~0x7c)
26968 as_bad_where (fixP->fx_file, fixP->fx_line,
26969 _("invalid offset, value too big (0x%08lX)"),
26970 (long) value);
26971 newval |= value << 4; /* 6 - 2. */
26972 break;
a737bd4d 26973
c19d1205
ZW
26974 case 7: /* Byte load/store. */
26975 if (value & ~0x1f)
26976 as_bad_where (fixP->fx_file, fixP->fx_line,
26977 _("invalid offset, value too big (0x%08lX)"),
26978 (long) value);
26979 newval |= value << 6;
26980 break;
a737bd4d 26981
c19d1205
ZW
26982 case 8: /* Halfword load/store. */
26983 if (value & ~0x3e)
26984 as_bad_where (fixP->fx_file, fixP->fx_line,
26985 _("invalid offset, value too big (0x%08lX)"),
26986 (long) value);
26987 newval |= value << 5; /* 6 - 1. */
26988 break;
a737bd4d 26989
c19d1205
ZW
26990 default:
26991 as_bad_where (fixP->fx_file, fixP->fx_line,
26992 "Unable to process relocation for thumb opcode: %lx",
26993 (unsigned long) newval);
26994 break;
26995 }
26996 md_number_to_chars (buf, newval, THUMB_SIZE);
26997 break;
a737bd4d 26998
c19d1205
ZW
26999 case BFD_RELOC_ARM_THUMB_ADD:
27000 /* This is a complicated relocation, since we use it for all of
27001 the following immediate relocations:
a737bd4d 27002
c19d1205
ZW
27003 3bit ADD/SUB
27004 8bit ADD/SUB
27005 9bit ADD/SUB SP word-aligned
27006 10bit ADD PC/SP word-aligned
a737bd4d 27007
c19d1205
ZW
27008 The type of instruction being processed is encoded in the
27009 instruction field:
a737bd4d 27010
c19d1205
ZW
27011 0x8000 SUB
27012 0x00F0 Rd
27013 0x000F Rs
27014 */
27015 newval = md_chars_to_number (buf, THUMB_SIZE);
27016 {
27017 int rd = (newval >> 4) & 0xf;
27018 int rs = newval & 0xf;
27019 int subtract = !!(newval & 0x8000);
a737bd4d 27020
c19d1205
ZW
27021 /* Check for HI regs, only very restricted cases allowed:
27022 Adjusting SP, and using PC or SP to get an address. */
27023 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27024 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27025 as_bad_where (fixP->fx_file, fixP->fx_line,
27026 _("invalid Hi register with immediate"));
a737bd4d 27027
c19d1205
ZW
27028 /* If value is negative, choose the opposite instruction. */
27029 if (value < 0)
27030 {
27031 value = -value;
27032 subtract = !subtract;
27033 if (value < 0)
27034 as_bad_where (fixP->fx_file, fixP->fx_line,
27035 _("immediate value out of range"));
27036 }
a737bd4d 27037
c19d1205
ZW
27038 if (rd == REG_SP)
27039 {
75c11999 27040 if (value & ~0x1fc)
c19d1205
ZW
27041 as_bad_where (fixP->fx_file, fixP->fx_line,
27042 _("invalid immediate for stack address calculation"));
27043 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27044 newval |= value >> 2;
27045 }
27046 else if (rs == REG_PC || rs == REG_SP)
27047 {
c12d2c9d
NC
27048 /* PR gas/18541. If the addition is for a defined symbol
27049 within range of an ADR instruction then accept it. */
27050 if (subtract
27051 && value == 4
27052 && fixP->fx_addsy != NULL)
27053 {
27054 subtract = 0;
27055
27056 if (! S_IS_DEFINED (fixP->fx_addsy)
27057 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27058 || S_IS_WEAK (fixP->fx_addsy))
27059 {
27060 as_bad_where (fixP->fx_file, fixP->fx_line,
27061 _("address calculation needs a strongly defined nearby symbol"));
27062 }
27063 else
27064 {
27065 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27066
27067 /* Round up to the next 4-byte boundary. */
27068 if (v & 3)
27069 v = (v + 3) & ~ 3;
27070 else
27071 v += 4;
27072 v = S_GET_VALUE (fixP->fx_addsy) - v;
27073
27074 if (v & ~0x3fc)
27075 {
27076 as_bad_where (fixP->fx_file, fixP->fx_line,
27077 _("symbol too far away"));
27078 }
27079 else
27080 {
27081 fixP->fx_done = 1;
27082 value = v;
27083 }
27084 }
27085 }
27086
c19d1205
ZW
27087 if (subtract || value & ~0x3fc)
27088 as_bad_where (fixP->fx_file, fixP->fx_line,
27089 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27090 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27091 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27092 newval |= rd << 8;
27093 newval |= value >> 2;
27094 }
27095 else if (rs == rd)
27096 {
27097 if (value & ~0xff)
27098 as_bad_where (fixP->fx_file, fixP->fx_line,
27099 _("immediate value out of range"));
27100 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27101 newval |= (rd << 8) | value;
27102 }
27103 else
27104 {
27105 if (value & ~0x7)
27106 as_bad_where (fixP->fx_file, fixP->fx_line,
27107 _("immediate value out of range"));
27108 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27109 newval |= rd | (rs << 3) | (value << 6);
27110 }
27111 }
27112 md_number_to_chars (buf, newval, THUMB_SIZE);
27113 break;
a737bd4d 27114
c19d1205
ZW
27115 case BFD_RELOC_ARM_THUMB_IMM:
27116 newval = md_chars_to_number (buf, THUMB_SIZE);
27117 if (value < 0 || value > 255)
27118 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27119 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27120 (long) value);
27121 newval |= value;
27122 md_number_to_chars (buf, newval, THUMB_SIZE);
27123 break;
a737bd4d 27124
c19d1205
ZW
27125 case BFD_RELOC_ARM_THUMB_SHIFT:
27126 /* 5bit shift value (0..32). LSL cannot take 32. */
27127 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27128 temp = newval & 0xf800;
27129 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27130 as_bad_where (fixP->fx_file, fixP->fx_line,
27131 _("invalid shift value: %ld"), (long) value);
27132 /* Shifts of zero must be encoded as LSL. */
27133 if (value == 0)
27134 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27135 /* Shifts of 32 are encoded as zero. */
27136 else if (value == 32)
27137 value = 0;
27138 newval |= value << 6;
27139 md_number_to_chars (buf, newval, THUMB_SIZE);
27140 break;
a737bd4d 27141
c19d1205
ZW
27142 case BFD_RELOC_VTABLE_INHERIT:
27143 case BFD_RELOC_VTABLE_ENTRY:
27144 fixP->fx_done = 0;
27145 return;
6c43fab6 27146
b6895b4f
PB
27147 case BFD_RELOC_ARM_MOVW:
27148 case BFD_RELOC_ARM_MOVT:
27149 case BFD_RELOC_ARM_THUMB_MOVW:
27150 case BFD_RELOC_ARM_THUMB_MOVT:
27151 if (fixP->fx_done || !seg->use_rela_p)
27152 {
27153 /* REL format relocations are limited to a 16-bit addend. */
27154 if (!fixP->fx_done)
27155 {
39623e12 27156 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27157 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27158 _("offset out of range"));
b6895b4f
PB
27159 }
27160 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27161 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27162 {
27163 value >>= 16;
27164 }
27165
27166 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27167 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27168 {
27169 newval = get_thumb32_insn (buf);
27170 newval &= 0xfbf08f00;
27171 newval |= (value & 0xf000) << 4;
27172 newval |= (value & 0x0800) << 15;
27173 newval |= (value & 0x0700) << 4;
27174 newval |= (value & 0x00ff);
27175 put_thumb32_insn (buf, newval);
27176 }
27177 else
27178 {
27179 newval = md_chars_to_number (buf, 4);
27180 newval &= 0xfff0f000;
27181 newval |= value & 0x0fff;
27182 newval |= (value & 0xf000) << 4;
27183 md_number_to_chars (buf, newval, 4);
27184 }
27185 }
27186 return;
27187
72d98d16
MG
27188 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27189 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27190 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27191 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27192 gas_assert (!fixP->fx_done);
27193 {
27194 bfd_vma insn;
27195 bfd_boolean is_mov;
27196 bfd_vma encoded_addend = value;
27197
27198 /* Check that addend can be encoded in instruction. */
27199 if (!seg->use_rela_p && (value < 0 || value > 255))
27200 as_bad_where (fixP->fx_file, fixP->fx_line,
27201 _("the offset 0x%08lX is not representable"),
27202 (unsigned long) encoded_addend);
27203
27204 /* Extract the instruction. */
27205 insn = md_chars_to_number (buf, THUMB_SIZE);
27206 is_mov = (insn & 0xf800) == 0x2000;
27207
27208 /* Encode insn. */
27209 if (is_mov)
27210 {
27211 if (!seg->use_rela_p)
27212 insn |= encoded_addend;
27213 }
27214 else
27215 {
27216 int rd, rs;
27217
27218 /* Extract the instruction. */
27219 /* Encoding is the following
27220 0x8000 SUB
27221 0x00F0 Rd
27222 0x000F Rs
27223 */
27224 /* The following conditions must be true :
27225 - ADD
27226 - Rd == Rs
27227 - Rd <= 7
27228 */
27229 rd = (insn >> 4) & 0xf;
27230 rs = insn & 0xf;
27231 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27232 as_bad_where (fixP->fx_file, fixP->fx_line,
27233 _("Unable to process relocation for thumb opcode: %lx"),
27234 (unsigned long) insn);
27235
27236 /* Encode as ADD immediate8 thumb 1 code. */
27237 insn = 0x3000 | (rd << 8);
27238
27239 /* Place the encoded addend into the first 8 bits of the
27240 instruction. */
27241 if (!seg->use_rela_p)
27242 insn |= encoded_addend;
27243 }
27244
27245 /* Update the instruction. */
27246 md_number_to_chars (buf, insn, THUMB_SIZE);
27247 }
27248 break;
27249
4962c51a
MS
27250 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27251 case BFD_RELOC_ARM_ALU_PC_G0:
27252 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27253 case BFD_RELOC_ARM_ALU_PC_G1:
27254 case BFD_RELOC_ARM_ALU_PC_G2:
27255 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27256 case BFD_RELOC_ARM_ALU_SB_G0:
27257 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27258 case BFD_RELOC_ARM_ALU_SB_G1:
27259 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27260 gas_assert (!fixP->fx_done);
4962c51a
MS
27261 if (!seg->use_rela_p)
27262 {
477330fc
RM
27263 bfd_vma insn;
27264 bfd_vma encoded_addend;
3ca4a8ec 27265 bfd_vma addend_abs = llabs (value);
477330fc
RM
27266
27267 /* Check that the absolute value of the addend can be
27268 expressed as an 8-bit constant plus a rotation. */
27269 encoded_addend = encode_arm_immediate (addend_abs);
27270 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27271 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27272 _("the offset 0x%08lX is not representable"),
27273 (unsigned long) addend_abs);
27274
27275 /* Extract the instruction. */
27276 insn = md_chars_to_number (buf, INSN_SIZE);
27277
27278 /* If the addend is positive, use an ADD instruction.
27279 Otherwise use a SUB. Take care not to destroy the S bit. */
27280 insn &= 0xff1fffff;
27281 if (value < 0)
27282 insn |= 1 << 22;
27283 else
27284 insn |= 1 << 23;
27285
27286 /* Place the encoded addend into the first 12 bits of the
27287 instruction. */
27288 insn &= 0xfffff000;
27289 insn |= encoded_addend;
27290
27291 /* Update the instruction. */
27292 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27293 }
27294 break;
27295
27296 case BFD_RELOC_ARM_LDR_PC_G0:
27297 case BFD_RELOC_ARM_LDR_PC_G1:
27298 case BFD_RELOC_ARM_LDR_PC_G2:
27299 case BFD_RELOC_ARM_LDR_SB_G0:
27300 case BFD_RELOC_ARM_LDR_SB_G1:
27301 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27302 gas_assert (!fixP->fx_done);
4962c51a 27303 if (!seg->use_rela_p)
477330fc
RM
27304 {
27305 bfd_vma insn;
3ca4a8ec 27306 bfd_vma addend_abs = llabs (value);
4962c51a 27307
477330fc
RM
27308 /* Check that the absolute value of the addend can be
27309 encoded in 12 bits. */
27310 if (addend_abs >= 0x1000)
4962c51a 27311 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27312 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27313 (unsigned long) addend_abs);
27314
27315 /* Extract the instruction. */
27316 insn = md_chars_to_number (buf, INSN_SIZE);
27317
27318 /* If the addend is negative, clear bit 23 of the instruction.
27319 Otherwise set it. */
27320 if (value < 0)
27321 insn &= ~(1 << 23);
27322 else
27323 insn |= 1 << 23;
27324
27325 /* Place the absolute value of the addend into the first 12 bits
27326 of the instruction. */
27327 insn &= 0xfffff000;
27328 insn |= addend_abs;
27329
27330 /* Update the instruction. */
27331 md_number_to_chars (buf, insn, INSN_SIZE);
27332 }
4962c51a
MS
27333 break;
27334
27335 case BFD_RELOC_ARM_LDRS_PC_G0:
27336 case BFD_RELOC_ARM_LDRS_PC_G1:
27337 case BFD_RELOC_ARM_LDRS_PC_G2:
27338 case BFD_RELOC_ARM_LDRS_SB_G0:
27339 case BFD_RELOC_ARM_LDRS_SB_G1:
27340 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27341 gas_assert (!fixP->fx_done);
4962c51a 27342 if (!seg->use_rela_p)
477330fc
RM
27343 {
27344 bfd_vma insn;
3ca4a8ec 27345 bfd_vma addend_abs = llabs (value);
4962c51a 27346
477330fc
RM
27347 /* Check that the absolute value of the addend can be
27348 encoded in 8 bits. */
27349 if (addend_abs >= 0x100)
4962c51a 27350 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27351 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27352 (unsigned long) addend_abs);
27353
27354 /* Extract the instruction. */
27355 insn = md_chars_to_number (buf, INSN_SIZE);
27356
27357 /* If the addend is negative, clear bit 23 of the instruction.
27358 Otherwise set it. */
27359 if (value < 0)
27360 insn &= ~(1 << 23);
27361 else
27362 insn |= 1 << 23;
27363
27364 /* Place the first four bits of the absolute value of the addend
27365 into the first 4 bits of the instruction, and the remaining
27366 four into bits 8 .. 11. */
27367 insn &= 0xfffff0f0;
27368 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27369
27370 /* Update the instruction. */
27371 md_number_to_chars (buf, insn, INSN_SIZE);
27372 }
4962c51a
MS
27373 break;
27374
27375 case BFD_RELOC_ARM_LDC_PC_G0:
27376 case BFD_RELOC_ARM_LDC_PC_G1:
27377 case BFD_RELOC_ARM_LDC_PC_G2:
27378 case BFD_RELOC_ARM_LDC_SB_G0:
27379 case BFD_RELOC_ARM_LDC_SB_G1:
27380 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27381 gas_assert (!fixP->fx_done);
4962c51a 27382 if (!seg->use_rela_p)
477330fc
RM
27383 {
27384 bfd_vma insn;
3ca4a8ec 27385 bfd_vma addend_abs = llabs (value);
4962c51a 27386
477330fc
RM
27387 /* Check that the absolute value of the addend is a multiple of
27388 four and, when divided by four, fits in 8 bits. */
27389 if (addend_abs & 0x3)
4962c51a 27390 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27391 _("bad offset 0x%08lX (must be word-aligned)"),
27392 (unsigned long) addend_abs);
4962c51a 27393
477330fc 27394 if ((addend_abs >> 2) > 0xff)
4962c51a 27395 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27396 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27397 (unsigned long) addend_abs);
27398
27399 /* Extract the instruction. */
27400 insn = md_chars_to_number (buf, INSN_SIZE);
27401
27402 /* If the addend is negative, clear bit 23 of the instruction.
27403 Otherwise set it. */
27404 if (value < 0)
27405 insn &= ~(1 << 23);
27406 else
27407 insn |= 1 << 23;
27408
27409 /* Place the addend (divided by four) into the first eight
27410 bits of the instruction. */
27411 insn &= 0xfffffff0;
27412 insn |= addend_abs >> 2;
27413
27414 /* Update the instruction. */
27415 md_number_to_chars (buf, insn, INSN_SIZE);
27416 }
4962c51a
MS
27417 break;
27418
e12437dc
AV
27419 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27420 if (fixP->fx_addsy
27421 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27422 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27423 && ARM_IS_FUNC (fixP->fx_addsy)
27424 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27425 {
27426 /* Force a relocation for a branch 5 bits wide. */
27427 fixP->fx_done = 0;
27428 }
27429 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27430 as_bad_where (fixP->fx_file, fixP->fx_line,
27431 BAD_BRANCH_OFF);
27432
27433 if (fixP->fx_done || !seg->use_rela_p)
27434 {
27435 addressT boff = value >> 1;
27436
27437 newval = md_chars_to_number (buf, THUMB_SIZE);
27438 newval |= (boff << 7);
27439 md_number_to_chars (buf, newval, THUMB_SIZE);
27440 }
27441 break;
27442
f6b2b12d
AV
27443 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27444 if (fixP->fx_addsy
27445 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27446 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27447 && ARM_IS_FUNC (fixP->fx_addsy)
27448 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27449 {
27450 fixP->fx_done = 0;
27451 }
27452 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27453 as_bad_where (fixP->fx_file, fixP->fx_line,
27454 _("branch out of range"));
27455
27456 if (fixP->fx_done || !seg->use_rela_p)
27457 {
27458 newval = md_chars_to_number (buf, THUMB_SIZE);
27459
27460 addressT boff = ((newval & 0x0780) >> 7) << 1;
27461 addressT diff = value - boff;
27462
27463 if (diff == 4)
27464 {
27465 newval |= 1 << 1; /* T bit. */
27466 }
27467 else if (diff != 2)
27468 {
27469 as_bad_where (fixP->fx_file, fixP->fx_line,
27470 _("out of range label-relative fixup value"));
27471 }
27472 md_number_to_chars (buf, newval, THUMB_SIZE);
27473 }
27474 break;
27475
e5d6e09e
AV
27476 case BFD_RELOC_ARM_THUMB_BF17:
27477 if (fixP->fx_addsy
27478 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27479 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27480 && ARM_IS_FUNC (fixP->fx_addsy)
27481 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27482 {
27483 /* Force a relocation for a branch 17 bits wide. */
27484 fixP->fx_done = 0;
27485 }
27486
27487 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27488 as_bad_where (fixP->fx_file, fixP->fx_line,
27489 BAD_BRANCH_OFF);
27490
27491 if (fixP->fx_done || !seg->use_rela_p)
27492 {
27493 offsetT newval2;
27494 addressT immA, immB, immC;
27495
27496 immA = (value & 0x0001f000) >> 12;
27497 immB = (value & 0x00000ffc) >> 2;
27498 immC = (value & 0x00000002) >> 1;
27499
27500 newval = md_chars_to_number (buf, THUMB_SIZE);
27501 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27502 newval |= immA;
27503 newval2 |= (immC << 11) | (immB << 1);
27504 md_number_to_chars (buf, newval, THUMB_SIZE);
27505 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27506 }
27507 break;
27508
1caf72a5
AV
27509 case BFD_RELOC_ARM_THUMB_BF19:
27510 if (fixP->fx_addsy
27511 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27512 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27513 && ARM_IS_FUNC (fixP->fx_addsy)
27514 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27515 {
27516 /* Force a relocation for a branch 19 bits wide. */
27517 fixP->fx_done = 0;
27518 }
27519
27520 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27521 as_bad_where (fixP->fx_file, fixP->fx_line,
27522 BAD_BRANCH_OFF);
27523
27524 if (fixP->fx_done || !seg->use_rela_p)
27525 {
27526 offsetT newval2;
27527 addressT immA, immB, immC;
27528
27529 immA = (value & 0x0007f000) >> 12;
27530 immB = (value & 0x00000ffc) >> 2;
27531 immC = (value & 0x00000002) >> 1;
27532
27533 newval = md_chars_to_number (buf, THUMB_SIZE);
27534 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27535 newval |= immA;
27536 newval2 |= (immC << 11) | (immB << 1);
27537 md_number_to_chars (buf, newval, THUMB_SIZE);
27538 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27539 }
27540 break;
27541
1889da70
AV
27542 case BFD_RELOC_ARM_THUMB_BF13:
27543 if (fixP->fx_addsy
27544 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27545 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27546 && ARM_IS_FUNC (fixP->fx_addsy)
27547 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27548 {
27549 /* Force a relocation for a branch 13 bits wide. */
27550 fixP->fx_done = 0;
27551 }
27552
27553 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27554 as_bad_where (fixP->fx_file, fixP->fx_line,
27555 BAD_BRANCH_OFF);
27556
27557 if (fixP->fx_done || !seg->use_rela_p)
27558 {
27559 offsetT newval2;
27560 addressT immA, immB, immC;
27561
27562 immA = (value & 0x00001000) >> 12;
27563 immB = (value & 0x00000ffc) >> 2;
27564 immC = (value & 0x00000002) >> 1;
27565
27566 newval = md_chars_to_number (buf, THUMB_SIZE);
27567 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27568 newval |= immA;
27569 newval2 |= (immC << 11) | (immB << 1);
27570 md_number_to_chars (buf, newval, THUMB_SIZE);
27571 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27572 }
27573 break;
27574
60f993ce
AV
27575 case BFD_RELOC_ARM_THUMB_LOOP12:
27576 if (fixP->fx_addsy
27577 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27578 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27579 && ARM_IS_FUNC (fixP->fx_addsy)
27580 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27581 {
27582 /* Force a relocation for a branch 12 bits wide. */
27583 fixP->fx_done = 0;
27584 }
27585
27586 bfd_vma insn = get_thumb32_insn (buf);
27587 /* le lr, <label> or le <label> */
27588 if (((insn & 0xffffffff) == 0xf00fc001)
27589 || ((insn & 0xffffffff) == 0xf02fc001))
27590 value = -value;
27591
27592 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27593 as_bad_where (fixP->fx_file, fixP->fx_line,
27594 BAD_BRANCH_OFF);
27595 if (fixP->fx_done || !seg->use_rela_p)
27596 {
27597 addressT imml, immh;
27598
27599 immh = (value & 0x00000ffc) >> 2;
27600 imml = (value & 0x00000002) >> 1;
27601
27602 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27603 newval |= (imml << 11) | (immh << 1);
27604 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27605 }
27606 break;
27607
845b51d6
PB
27608 case BFD_RELOC_ARM_V4BX:
27609 /* This will need to go in the object file. */
27610 fixP->fx_done = 0;
27611 break;
27612
c19d1205
ZW
27613 case BFD_RELOC_UNUSED:
27614 default:
27615 as_bad_where (fixP->fx_file, fixP->fx_line,
27616 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27617 }
6c43fab6
RE
27618}
27619
c19d1205
ZW
27620/* Translate internal representation of relocation info to BFD target
27621 format. */
a737bd4d 27622
c19d1205 27623arelent *
00a97672 27624tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 27625{
c19d1205
ZW
27626 arelent * reloc;
27627 bfd_reloc_code_real_type code;
a737bd4d 27628
325801bd 27629 reloc = XNEW (arelent);
a737bd4d 27630
325801bd 27631 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
27632 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27633 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 27634
2fc8bdac 27635 if (fixp->fx_pcrel)
00a97672
RS
27636 {
27637 if (section->use_rela_p)
27638 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27639 else
27640 fixp->fx_offset = reloc->address;
27641 }
c19d1205 27642 reloc->addend = fixp->fx_offset;
a737bd4d 27643
c19d1205 27644 switch (fixp->fx_r_type)
a737bd4d 27645 {
c19d1205
ZW
27646 case BFD_RELOC_8:
27647 if (fixp->fx_pcrel)
27648 {
27649 code = BFD_RELOC_8_PCREL;
27650 break;
27651 }
1a0670f3 27652 /* Fall through. */
a737bd4d 27653
c19d1205
ZW
27654 case BFD_RELOC_16:
27655 if (fixp->fx_pcrel)
27656 {
27657 code = BFD_RELOC_16_PCREL;
27658 break;
27659 }
1a0670f3 27660 /* Fall through. */
6c43fab6 27661
c19d1205
ZW
27662 case BFD_RELOC_32:
27663 if (fixp->fx_pcrel)
27664 {
27665 code = BFD_RELOC_32_PCREL;
27666 break;
27667 }
1a0670f3 27668 /* Fall through. */
a737bd4d 27669
b6895b4f
PB
27670 case BFD_RELOC_ARM_MOVW:
27671 if (fixp->fx_pcrel)
27672 {
27673 code = BFD_RELOC_ARM_MOVW_PCREL;
27674 break;
27675 }
1a0670f3 27676 /* Fall through. */
b6895b4f
PB
27677
27678 case BFD_RELOC_ARM_MOVT:
27679 if (fixp->fx_pcrel)
27680 {
27681 code = BFD_RELOC_ARM_MOVT_PCREL;
27682 break;
27683 }
1a0670f3 27684 /* Fall through. */
b6895b4f
PB
27685
27686 case BFD_RELOC_ARM_THUMB_MOVW:
27687 if (fixp->fx_pcrel)
27688 {
27689 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27690 break;
27691 }
1a0670f3 27692 /* Fall through. */
b6895b4f
PB
27693
27694 case BFD_RELOC_ARM_THUMB_MOVT:
27695 if (fixp->fx_pcrel)
27696 {
27697 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27698 break;
27699 }
1a0670f3 27700 /* Fall through. */
b6895b4f 27701
c19d1205
ZW
27702 case BFD_RELOC_NONE:
27703 case BFD_RELOC_ARM_PCREL_BRANCH:
27704 case BFD_RELOC_ARM_PCREL_BLX:
27705 case BFD_RELOC_RVA:
27706 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27707 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27708 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27709 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27710 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27711 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
27712 case BFD_RELOC_VTABLE_ENTRY:
27713 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
27714#ifdef TE_PE
27715 case BFD_RELOC_32_SECREL:
27716#endif
c19d1205
ZW
27717 code = fixp->fx_r_type;
27718 break;
a737bd4d 27719
00adf2d4
JB
27720 case BFD_RELOC_THUMB_PCREL_BLX:
27721#ifdef OBJ_ELF
27722 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27723 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27724 else
27725#endif
27726 code = BFD_RELOC_THUMB_PCREL_BLX;
27727 break;
27728
c19d1205
ZW
27729 case BFD_RELOC_ARM_LITERAL:
27730 case BFD_RELOC_ARM_HWLITERAL:
27731 /* If this is called then the a literal has
27732 been referenced across a section boundary. */
27733 as_bad_where (fixp->fx_file, fixp->fx_line,
27734 _("literal referenced across section boundary"));
27735 return NULL;
a737bd4d 27736
c19d1205 27737#ifdef OBJ_ELF
0855e32b
NS
27738 case BFD_RELOC_ARM_TLS_CALL:
27739 case BFD_RELOC_ARM_THM_TLS_CALL:
27740 case BFD_RELOC_ARM_TLS_DESCSEQ:
27741 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
27742 case BFD_RELOC_ARM_GOT32:
27743 case BFD_RELOC_ARM_GOTOFF:
b43420e6 27744 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
27745 case BFD_RELOC_ARM_PLT32:
27746 case BFD_RELOC_ARM_TARGET1:
27747 case BFD_RELOC_ARM_ROSEGREL32:
27748 case BFD_RELOC_ARM_SBREL32:
27749 case BFD_RELOC_ARM_PREL31:
27750 case BFD_RELOC_ARM_TARGET2:
c19d1205 27751 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
27752 case BFD_RELOC_ARM_PCREL_CALL:
27753 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
27754 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27755 case BFD_RELOC_ARM_ALU_PC_G0:
27756 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27757 case BFD_RELOC_ARM_ALU_PC_G1:
27758 case BFD_RELOC_ARM_ALU_PC_G2:
27759 case BFD_RELOC_ARM_LDR_PC_G0:
27760 case BFD_RELOC_ARM_LDR_PC_G1:
27761 case BFD_RELOC_ARM_LDR_PC_G2:
27762 case BFD_RELOC_ARM_LDRS_PC_G0:
27763 case BFD_RELOC_ARM_LDRS_PC_G1:
27764 case BFD_RELOC_ARM_LDRS_PC_G2:
27765 case BFD_RELOC_ARM_LDC_PC_G0:
27766 case BFD_RELOC_ARM_LDC_PC_G1:
27767 case BFD_RELOC_ARM_LDC_PC_G2:
27768 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27769 case BFD_RELOC_ARM_ALU_SB_G0:
27770 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27771 case BFD_RELOC_ARM_ALU_SB_G1:
27772 case BFD_RELOC_ARM_ALU_SB_G2:
27773 case BFD_RELOC_ARM_LDR_SB_G0:
27774 case BFD_RELOC_ARM_LDR_SB_G1:
27775 case BFD_RELOC_ARM_LDR_SB_G2:
27776 case BFD_RELOC_ARM_LDRS_SB_G0:
27777 case BFD_RELOC_ARM_LDRS_SB_G1:
27778 case BFD_RELOC_ARM_LDRS_SB_G2:
27779 case BFD_RELOC_ARM_LDC_SB_G0:
27780 case BFD_RELOC_ARM_LDC_SB_G1:
27781 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 27782 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
27783 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27784 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27785 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27786 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
27787 case BFD_RELOC_ARM_GOTFUNCDESC:
27788 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27789 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 27790 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 27791 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 27792 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
27793 code = fixp->fx_r_type;
27794 break;
a737bd4d 27795
0855e32b 27796 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 27797 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 27798 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 27799 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 27800 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 27801 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 27802 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 27803 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
27804 /* BFD will include the symbol's address in the addend.
27805 But we don't want that, so subtract it out again here. */
27806 if (!S_IS_COMMON (fixp->fx_addsy))
27807 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27808 code = fixp->fx_r_type;
27809 break;
27810#endif
a737bd4d 27811
c19d1205
ZW
27812 case BFD_RELOC_ARM_IMMEDIATE:
27813 as_bad_where (fixp->fx_file, fixp->fx_line,
27814 _("internal relocation (type: IMMEDIATE) not fixed up"));
27815 return NULL;
a737bd4d 27816
c19d1205
ZW
27817 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27818 as_bad_where (fixp->fx_file, fixp->fx_line,
27819 _("ADRL used for a symbol not defined in the same file"));
27820 return NULL;
a737bd4d 27821
e12437dc 27822 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 27823 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 27824 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
27825 as_bad_where (fixp->fx_file, fixp->fx_line,
27826 _("%s used for a symbol not defined in the same file"),
27827 bfd_get_reloc_code_name (fixp->fx_r_type));
27828 return NULL;
27829
c19d1205 27830 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27831 if (section->use_rela_p)
27832 {
27833 code = fixp->fx_r_type;
27834 break;
27835 }
27836
c19d1205
ZW
27837 if (fixp->fx_addsy != NULL
27838 && !S_IS_DEFINED (fixp->fx_addsy)
27839 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 27840 {
c19d1205
ZW
27841 as_bad_where (fixp->fx_file, fixp->fx_line,
27842 _("undefined local label `%s'"),
27843 S_GET_NAME (fixp->fx_addsy));
27844 return NULL;
a737bd4d
NC
27845 }
27846
c19d1205
ZW
27847 as_bad_where (fixp->fx_file, fixp->fx_line,
27848 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27849 return NULL;
a737bd4d 27850
c19d1205
ZW
27851 default:
27852 {
e0471c16 27853 const char * type;
6c43fab6 27854
c19d1205
ZW
27855 switch (fixp->fx_r_type)
27856 {
27857 case BFD_RELOC_NONE: type = "NONE"; break;
27858 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27859 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 27860 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
27861 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27862 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27863 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 27864 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 27865 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
27866 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27867 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27868 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27869 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27870 default: type = _("<unknown>"); break;
27871 }
27872 as_bad_where (fixp->fx_file, fixp->fx_line,
27873 _("cannot represent %s relocation in this object file format"),
27874 type);
27875 return NULL;
27876 }
a737bd4d 27877 }
6c43fab6 27878
c19d1205
ZW
27879#ifdef OBJ_ELF
27880 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27881 && GOT_symbol
27882 && fixp->fx_addsy == GOT_symbol)
27883 {
27884 code = BFD_RELOC_ARM_GOTPC;
27885 reloc->addend = fixp->fx_offset = reloc->address;
27886 }
27887#endif
6c43fab6 27888
c19d1205 27889 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 27890
c19d1205
ZW
27891 if (reloc->howto == NULL)
27892 {
27893 as_bad_where (fixp->fx_file, fixp->fx_line,
27894 _("cannot represent %s relocation in this object file format"),
27895 bfd_get_reloc_code_name (code));
27896 return NULL;
27897 }
6c43fab6 27898
c19d1205
ZW
27899 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27900 vtable entry to be used in the relocation's section offset. */
27901 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27902 reloc->address = fixp->fx_offset;
6c43fab6 27903
c19d1205 27904 return reloc;
6c43fab6
RE
27905}
27906
c19d1205 27907/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 27908
c19d1205
ZW
27909void
27910cons_fix_new_arm (fragS * frag,
27911 int where,
27912 int size,
62ebcb5c
AM
27913 expressionS * exp,
27914 bfd_reloc_code_real_type reloc)
6c43fab6 27915{
c19d1205 27916 int pcrel = 0;
6c43fab6 27917
c19d1205
ZW
27918 /* Pick a reloc.
27919 FIXME: @@ Should look at CPU word size. */
27920 switch (size)
27921 {
27922 case 1:
62ebcb5c 27923 reloc = BFD_RELOC_8;
c19d1205
ZW
27924 break;
27925 case 2:
62ebcb5c 27926 reloc = BFD_RELOC_16;
c19d1205
ZW
27927 break;
27928 case 4:
27929 default:
62ebcb5c 27930 reloc = BFD_RELOC_32;
c19d1205
ZW
27931 break;
27932 case 8:
62ebcb5c 27933 reloc = BFD_RELOC_64;
c19d1205
ZW
27934 break;
27935 }
6c43fab6 27936
f0927246
NC
27937#ifdef TE_PE
27938 if (exp->X_op == O_secrel)
27939 {
27940 exp->X_op = O_symbol;
62ebcb5c 27941 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
27942 }
27943#endif
27944
62ebcb5c 27945 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 27946}
6c43fab6 27947
4343666d 27948#if defined (OBJ_COFF)
c19d1205
ZW
27949void
27950arm_validate_fix (fixS * fixP)
6c43fab6 27951{
c19d1205
ZW
27952 /* If the destination of the branch is a defined symbol which does not have
27953 the THUMB_FUNC attribute, then we must be calling a function which has
27954 the (interfacearm) attribute. We look for the Thumb entry point to that
27955 function and change the branch to refer to that function instead. */
27956 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27957 && fixP->fx_addsy != NULL
27958 && S_IS_DEFINED (fixP->fx_addsy)
27959 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 27960 {
c19d1205 27961 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 27962 }
c19d1205
ZW
27963}
27964#endif
6c43fab6 27965
267bf995 27966
c19d1205
ZW
27967int
27968arm_force_relocation (struct fix * fixp)
27969{
27970#if defined (OBJ_COFF) && defined (TE_PE)
27971 if (fixp->fx_r_type == BFD_RELOC_RVA)
27972 return 1;
27973#endif
6c43fab6 27974
267bf995
RR
27975 /* In case we have a call or a branch to a function in ARM ISA mode from
27976 a thumb function or vice-versa force the relocation. These relocations
27977 are cleared off for some cores that might have blx and simple transformations
27978 are possible. */
27979
27980#ifdef OBJ_ELF
27981 switch (fixp->fx_r_type)
27982 {
27983 case BFD_RELOC_ARM_PCREL_JUMP:
27984 case BFD_RELOC_ARM_PCREL_CALL:
27985 case BFD_RELOC_THUMB_PCREL_BLX:
27986 if (THUMB_IS_FUNC (fixp->fx_addsy))
27987 return 1;
27988 break;
27989
27990 case BFD_RELOC_ARM_PCREL_BLX:
27991 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27992 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27993 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27994 if (ARM_IS_FUNC (fixp->fx_addsy))
27995 return 1;
27996 break;
27997
27998 default:
27999 break;
28000 }
28001#endif
28002
b5884301
PB
28003 /* Resolve these relocations even if the symbol is extern or weak.
28004 Technically this is probably wrong due to symbol preemption.
28005 In practice these relocations do not have enough range to be useful
28006 at dynamic link time, and some code (e.g. in the Linux kernel)
28007 expects these references to be resolved. */
c19d1205
ZW
28008 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28009 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28010 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28011 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28012 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28013 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28014 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28015 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28016 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28017 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28018 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28019 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28020 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28021 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28022 return 0;
a737bd4d 28023
4962c51a
MS
28024 /* Always leave these relocations for the linker. */
28025 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28026 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28027 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28028 return 1;
28029
f0291e4c
PB
28030 /* Always generate relocations against function symbols. */
28031 if (fixp->fx_r_type == BFD_RELOC_32
28032 && fixp->fx_addsy
28033 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28034 return 1;
28035
c19d1205 28036 return generic_force_reloc (fixp);
404ff6b5
AH
28037}
28038
0ffdc86c 28039#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28040/* Relocations against function names must be left unadjusted,
28041 so that the linker can use this information to generate interworking
28042 stubs. The MIPS version of this function
c19d1205
ZW
28043 also prevents relocations that are mips-16 specific, but I do not
28044 know why it does this.
404ff6b5 28045
c19d1205
ZW
28046 FIXME:
28047 There is one other problem that ought to be addressed here, but
28048 which currently is not: Taking the address of a label (rather
28049 than a function) and then later jumping to that address. Such
28050 addresses also ought to have their bottom bit set (assuming that
28051 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28052
c19d1205
ZW
28053bfd_boolean
28054arm_fix_adjustable (fixS * fixP)
404ff6b5 28055{
c19d1205
ZW
28056 if (fixP->fx_addsy == NULL)
28057 return 1;
404ff6b5 28058
e28387c3
PB
28059 /* Preserve relocations against symbols with function type. */
28060 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28061 return FALSE;
e28387c3 28062
c19d1205
ZW
28063 if (THUMB_IS_FUNC (fixP->fx_addsy)
28064 && fixP->fx_subsy == NULL)
c921be7d 28065 return FALSE;
a737bd4d 28066
c19d1205
ZW
28067 /* We need the symbol name for the VTABLE entries. */
28068 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28069 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28070 return FALSE;
404ff6b5 28071
c19d1205
ZW
28072 /* Don't allow symbols to be discarded on GOT related relocs. */
28073 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28074 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28075 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28076 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28077 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28078 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28079 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28080 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28081 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28082 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28083 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28084 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28085 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28086 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28087 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28088 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28089 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28090 return FALSE;
a737bd4d 28091
4962c51a
MS
28092 /* Similarly for group relocations. */
28093 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28094 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28095 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28096 return FALSE;
4962c51a 28097
79947c54
CD
28098 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28099 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28100 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28101 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28102 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28103 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28104 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28105 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28106 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28107 return FALSE;
79947c54 28108
72d98d16
MG
28109 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28110 offsets, so keep these symbols. */
28111 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28112 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28113 return FALSE;
28114
c921be7d 28115 return TRUE;
a737bd4d 28116}
0ffdc86c
NC
28117#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28118
28119#ifdef OBJ_ELF
c19d1205
ZW
28120const char *
28121elf32_arm_target_format (void)
404ff6b5 28122{
c19d1205
ZW
28123#ifdef TE_SYMBIAN
28124 return (target_big_endian
28125 ? "elf32-bigarm-symbian"
28126 : "elf32-littlearm-symbian");
28127#elif defined (TE_VXWORKS)
28128 return (target_big_endian
28129 ? "elf32-bigarm-vxworks"
28130 : "elf32-littlearm-vxworks");
b38cadfb
NC
28131#elif defined (TE_NACL)
28132 return (target_big_endian
28133 ? "elf32-bigarm-nacl"
28134 : "elf32-littlearm-nacl");
c19d1205 28135#else
18a20338
CL
28136 if (arm_fdpic)
28137 {
28138 if (target_big_endian)
28139 return "elf32-bigarm-fdpic";
28140 else
28141 return "elf32-littlearm-fdpic";
28142 }
c19d1205 28143 else
18a20338
CL
28144 {
28145 if (target_big_endian)
28146 return "elf32-bigarm";
28147 else
28148 return "elf32-littlearm";
28149 }
c19d1205 28150#endif
404ff6b5
AH
28151}
28152
c19d1205
ZW
28153void
28154armelf_frob_symbol (symbolS * symp,
28155 int * puntp)
404ff6b5 28156{
c19d1205
ZW
28157 elf_frob_symbol (symp, puntp);
28158}
28159#endif
404ff6b5 28160
c19d1205 28161/* MD interface: Finalization. */
a737bd4d 28162
c19d1205
ZW
28163void
28164arm_cleanup (void)
28165{
28166 literal_pool * pool;
a737bd4d 28167
5ee91343
AV
28168 /* Ensure that all the predication blocks are properly closed. */
28169 check_pred_blocks_finished ();
e07e6e58 28170
c19d1205
ZW
28171 for (pool = list_of_pools; pool; pool = pool->next)
28172 {
5f4273c7 28173 /* Put it at the end of the relevant section. */
c19d1205
ZW
28174 subseg_set (pool->section, pool->sub_section);
28175#ifdef OBJ_ELF
28176 arm_elf_change_section ();
28177#endif
28178 s_ltorg (0);
28179 }
404ff6b5
AH
28180}
28181
cd000bff
DJ
28182#ifdef OBJ_ELF
28183/* Remove any excess mapping symbols generated for alignment frags in
28184 SEC. We may have created a mapping symbol before a zero byte
28185 alignment; remove it if there's a mapping symbol after the
28186 alignment. */
28187static void
28188check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28189 void *dummy ATTRIBUTE_UNUSED)
28190{
28191 segment_info_type *seginfo = seg_info (sec);
28192 fragS *fragp;
28193
28194 if (seginfo == NULL || seginfo->frchainP == NULL)
28195 return;
28196
28197 for (fragp = seginfo->frchainP->frch_root;
28198 fragp != NULL;
28199 fragp = fragp->fr_next)
28200 {
28201 symbolS *sym = fragp->tc_frag_data.last_map;
28202 fragS *next = fragp->fr_next;
28203
28204 /* Variable-sized frags have been converted to fixed size by
28205 this point. But if this was variable-sized to start with,
28206 there will be a fixed-size frag after it. So don't handle
28207 next == NULL. */
28208 if (sym == NULL || next == NULL)
28209 continue;
28210
28211 if (S_GET_VALUE (sym) < next->fr_address)
28212 /* Not at the end of this frag. */
28213 continue;
28214 know (S_GET_VALUE (sym) == next->fr_address);
28215
28216 do
28217 {
28218 if (next->tc_frag_data.first_map != NULL)
28219 {
28220 /* Next frag starts with a mapping symbol. Discard this
28221 one. */
28222 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28223 break;
28224 }
28225
28226 if (next->fr_next == NULL)
28227 {
28228 /* This mapping symbol is at the end of the section. Discard
28229 it. */
28230 know (next->fr_fix == 0 && next->fr_var == 0);
28231 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28232 break;
28233 }
28234
28235 /* As long as we have empty frags without any mapping symbols,
28236 keep looking. */
28237 /* If the next frag is non-empty and does not start with a
28238 mapping symbol, then this mapping symbol is required. */
28239 if (next->fr_address != next->fr_next->fr_address)
28240 break;
28241
28242 next = next->fr_next;
28243 }
28244 while (next != NULL);
28245 }
28246}
28247#endif
28248
c19d1205
ZW
28249/* Adjust the symbol table. This marks Thumb symbols as distinct from
28250 ARM ones. */
404ff6b5 28251
c19d1205
ZW
28252void
28253arm_adjust_symtab (void)
404ff6b5 28254{
c19d1205
ZW
28255#ifdef OBJ_COFF
28256 symbolS * sym;
404ff6b5 28257
c19d1205
ZW
28258 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28259 {
28260 if (ARM_IS_THUMB (sym))
28261 {
28262 if (THUMB_IS_FUNC (sym))
28263 {
28264 /* Mark the symbol as a Thumb function. */
28265 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28266 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28267 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28268
c19d1205
ZW
28269 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28270 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28271 else
28272 as_bad (_("%s: unexpected function type: %d"),
28273 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28274 }
28275 else switch (S_GET_STORAGE_CLASS (sym))
28276 {
28277 case C_EXT:
28278 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28279 break;
28280 case C_STAT:
28281 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28282 break;
28283 case C_LABEL:
28284 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28285 break;
28286 default:
28287 /* Do nothing. */
28288 break;
28289 }
28290 }
a737bd4d 28291
c19d1205
ZW
28292 if (ARM_IS_INTERWORK (sym))
28293 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28294 }
c19d1205
ZW
28295#endif
28296#ifdef OBJ_ELF
28297 symbolS * sym;
28298 char bind;
404ff6b5 28299
c19d1205 28300 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28301 {
c19d1205
ZW
28302 if (ARM_IS_THUMB (sym))
28303 {
28304 elf_symbol_type * elf_sym;
404ff6b5 28305
c19d1205
ZW
28306 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28307 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28308
b0796911
PB
28309 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28310 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28311 {
28312 /* If it's a .thumb_func, declare it as so,
28313 otherwise tag label as .code 16. */
28314 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28315 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28316 ST_BRANCH_TO_THUMB);
3ba67470 28317 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28318 elf_sym->internal_elf_sym.st_info =
28319 ELF_ST_INFO (bind, STT_ARM_16BIT);
28320 }
28321 }
28322 }
cd000bff
DJ
28323
28324 /* Remove any overlapping mapping symbols generated by alignment frags. */
28325 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28326 /* Now do generic ELF adjustments. */
28327 elf_adjust_symtab ();
c19d1205 28328#endif
404ff6b5
AH
28329}
28330
c19d1205 28331/* MD interface: Initialization. */
404ff6b5 28332
a737bd4d 28333static void
c19d1205 28334set_constant_flonums (void)
a737bd4d 28335{
c19d1205 28336 int i;
404ff6b5 28337
c19d1205
ZW
28338 for (i = 0; i < NUM_FLOAT_VALS; i++)
28339 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28340 abort ();
a737bd4d 28341}
404ff6b5 28342
3e9e4fcf
JB
28343/* Auto-select Thumb mode if it's the only available instruction set for the
28344 given architecture. */
28345
28346static void
28347autoselect_thumb_from_cpu_variant (void)
28348{
28349 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28350 opcode_select (16);
28351}
28352
c19d1205
ZW
28353void
28354md_begin (void)
a737bd4d 28355{
c19d1205
ZW
28356 unsigned mach;
28357 unsigned int i;
404ff6b5 28358
c19d1205
ZW
28359 if ( (arm_ops_hsh = hash_new ()) == NULL
28360 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28361 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28362 || (arm_shift_hsh = hash_new ()) == NULL
28363 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28364 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28365 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28366 || (arm_reloc_hsh = hash_new ()) == NULL
28367 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28368 as_fatal (_("virtual memory exhausted"));
28369
28370 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28371 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28372 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28373 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28374 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28375 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28376 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28377 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28378 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28379 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28380 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28381 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28382 (void *) (v7m_psrs + i));
c19d1205 28383 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28384 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28385 for (i = 0;
28386 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28387 i++)
d3ce72d0 28388 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28389 (void *) (barrier_opt_names + i));
c19d1205 28390#ifdef OBJ_ELF
3da1d841
NC
28391 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28392 {
28393 struct reloc_entry * entry = reloc_names + i;
28394
28395 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28396 /* This makes encode_branch() use the EABI versions of this relocation. */
28397 entry->reloc = BFD_RELOC_UNUSED;
28398
28399 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28400 }
c19d1205
ZW
28401#endif
28402
28403 set_constant_flonums ();
404ff6b5 28404
c19d1205
ZW
28405 /* Set the cpu variant based on the command-line options. We prefer
28406 -mcpu= over -march= if both are set (as for GCC); and we prefer
28407 -mfpu= over any other way of setting the floating point unit.
28408 Use of legacy options with new options are faulted. */
e74cfd16 28409 if (legacy_cpu)
404ff6b5 28410 {
e74cfd16 28411 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28412 as_bad (_("use of old and new-style options to set CPU type"));
28413
4d354d8b 28414 selected_arch = *legacy_cpu;
404ff6b5 28415 }
4d354d8b
TP
28416 else if (mcpu_cpu_opt)
28417 {
28418 selected_arch = *mcpu_cpu_opt;
28419 selected_ext = *mcpu_ext_opt;
28420 }
28421 else if (march_cpu_opt)
c168ce07 28422 {
4d354d8b
TP
28423 selected_arch = *march_cpu_opt;
28424 selected_ext = *march_ext_opt;
c168ce07 28425 }
4d354d8b 28426 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28427
e74cfd16 28428 if (legacy_fpu)
c19d1205 28429 {
e74cfd16 28430 if (mfpu_opt)
c19d1205 28431 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28432
4d354d8b 28433 selected_fpu = *legacy_fpu;
03b1477f 28434 }
4d354d8b
TP
28435 else if (mfpu_opt)
28436 selected_fpu = *mfpu_opt;
28437 else
03b1477f 28438 {
45eb4c1b
NS
28439#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28440 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28441 /* Some environments specify a default FPU. If they don't, infer it
28442 from the processor. */
e74cfd16 28443 if (mcpu_fpu_opt)
4d354d8b 28444 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28445 else if (march_fpu_opt)
4d354d8b 28446 selected_fpu = *march_fpu_opt;
39c2da32 28447#else
4d354d8b 28448 selected_fpu = fpu_default;
39c2da32 28449#endif
03b1477f
RE
28450 }
28451
4d354d8b 28452 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28453 {
4d354d8b
TP
28454 if (!no_cpu_selected ())
28455 selected_fpu = fpu_default;
03b1477f 28456 else
4d354d8b 28457 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28458 }
28459
ee065d83 28460#ifdef CPU_DEFAULT
4d354d8b 28461 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28462 {
4d354d8b
TP
28463 selected_arch = cpu_default;
28464 selected_cpu = selected_arch;
ee065d83 28465 }
4d354d8b 28466 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28467#else
4d354d8b
TP
28468 /* Autodection of feature mode: allow all features in cpu_variant but leave
28469 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28470 after all instruction have been processed and we can decide what CPU
28471 should be selected. */
28472 if (ARM_FEATURE_ZERO (selected_arch))
28473 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28474 else
4d354d8b 28475 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28476#endif
03b1477f 28477
3e9e4fcf
JB
28478 autoselect_thumb_from_cpu_variant ();
28479
e74cfd16 28480 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28481
f17c130b 28482#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28483 {
7cc69913
NC
28484 unsigned int flags = 0;
28485
28486#if defined OBJ_ELF
28487 flags = meabi_flags;
d507cf36
PB
28488
28489 switch (meabi_flags)
33a392fb 28490 {
d507cf36 28491 case EF_ARM_EABI_UNKNOWN:
7cc69913 28492#endif
d507cf36
PB
28493 /* Set the flags in the private structure. */
28494 if (uses_apcs_26) flags |= F_APCS26;
28495 if (support_interwork) flags |= F_INTERWORK;
28496 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28497 if (pic_code) flags |= F_PIC;
e74cfd16 28498 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28499 flags |= F_SOFT_FLOAT;
28500
d507cf36
PB
28501 switch (mfloat_abi_opt)
28502 {
28503 case ARM_FLOAT_ABI_SOFT:
28504 case ARM_FLOAT_ABI_SOFTFP:
28505 flags |= F_SOFT_FLOAT;
28506 break;
33a392fb 28507
d507cf36
PB
28508 case ARM_FLOAT_ABI_HARD:
28509 if (flags & F_SOFT_FLOAT)
28510 as_bad (_("hard-float conflicts with specified fpu"));
28511 break;
28512 }
03b1477f 28513
e74cfd16
PB
28514 /* Using pure-endian doubles (even if soft-float). */
28515 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28516 flags |= F_VFP_FLOAT;
f17c130b 28517
fde78edd 28518#if defined OBJ_ELF
e74cfd16 28519 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28520 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28521 break;
28522
8cb51566 28523 case EF_ARM_EABI_VER4:
3a4a14e9 28524 case EF_ARM_EABI_VER5:
c19d1205 28525 /* No additional flags to set. */
d507cf36
PB
28526 break;
28527
28528 default:
28529 abort ();
28530 }
7cc69913 28531#endif
b99bd4ef
NC
28532 bfd_set_private_flags (stdoutput, flags);
28533
28534 /* We have run out flags in the COFF header to encode the
28535 status of ATPCS support, so instead we create a dummy,
c19d1205 28536 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28537 if (atpcs)
28538 {
28539 asection * sec;
28540
28541 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28542
28543 if (sec != NULL)
28544 {
28545 bfd_set_section_flags
28546 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28547 bfd_set_section_size (stdoutput, sec, 0);
28548 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28549 }
28550 }
7cc69913 28551 }
f17c130b 28552#endif
b99bd4ef
NC
28553
28554 /* Record the CPU type as well. */
2d447fca
JM
28555 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28556 mach = bfd_mach_arm_iWMMXt2;
28557 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 28558 mach = bfd_mach_arm_iWMMXt;
e74cfd16 28559 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 28560 mach = bfd_mach_arm_XScale;
e74cfd16 28561 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 28562 mach = bfd_mach_arm_ep9312;
e74cfd16 28563 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 28564 mach = bfd_mach_arm_5TE;
e74cfd16 28565 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 28566 {
e74cfd16 28567 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28568 mach = bfd_mach_arm_5T;
28569 else
28570 mach = bfd_mach_arm_5;
28571 }
e74cfd16 28572 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 28573 {
e74cfd16 28574 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28575 mach = bfd_mach_arm_4T;
28576 else
28577 mach = bfd_mach_arm_4;
28578 }
e74cfd16 28579 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 28580 mach = bfd_mach_arm_3M;
e74cfd16
PB
28581 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28582 mach = bfd_mach_arm_3;
28583 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28584 mach = bfd_mach_arm_2a;
28585 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28586 mach = bfd_mach_arm_2;
28587 else
28588 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
28589
28590 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28591}
28592
c19d1205 28593/* Command line processing. */
b99bd4ef 28594
c19d1205
ZW
28595/* md_parse_option
28596 Invocation line includes a switch not recognized by the base assembler.
28597 See if it's a processor-specific option.
b99bd4ef 28598
c19d1205
ZW
28599 This routine is somewhat complicated by the need for backwards
28600 compatibility (since older releases of gcc can't be changed).
28601 The new options try to make the interface as compatible as
28602 possible with GCC.
b99bd4ef 28603
c19d1205 28604 New options (supported) are:
b99bd4ef 28605
c19d1205
ZW
28606 -mcpu=<cpu name> Assemble for selected processor
28607 -march=<architecture name> Assemble for selected architecture
28608 -mfpu=<fpu architecture> Assemble for selected FPU.
28609 -EB/-mbig-endian Big-endian
28610 -EL/-mlittle-endian Little-endian
28611 -k Generate PIC code
28612 -mthumb Start in Thumb mode
28613 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 28614
278df34e 28615 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 28616 -m[no-]warn-syms Warn when symbols match instructions
267bf995 28617
c19d1205 28618 For now we will also provide support for:
b99bd4ef 28619
c19d1205
ZW
28620 -mapcs-32 32-bit Program counter
28621 -mapcs-26 26-bit Program counter
28622 -macps-float Floats passed in FP registers
28623 -mapcs-reentrant Reentrant code
28624 -matpcs
28625 (sometime these will probably be replaced with -mapcs=<list of options>
28626 and -matpcs=<list of options>)
b99bd4ef 28627
c19d1205
ZW
28628 The remaining options are only supported for back-wards compatibility.
28629 Cpu variants, the arm part is optional:
28630 -m[arm]1 Currently not supported.
28631 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28632 -m[arm]3 Arm 3 processor
28633 -m[arm]6[xx], Arm 6 processors
28634 -m[arm]7[xx][t][[d]m] Arm 7 processors
28635 -m[arm]8[10] Arm 8 processors
28636 -m[arm]9[20][tdmi] Arm 9 processors
28637 -mstrongarm[110[0]] StrongARM processors
28638 -mxscale XScale processors
28639 -m[arm]v[2345[t[e]]] Arm architectures
28640 -mall All (except the ARM1)
28641 FP variants:
28642 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28643 -mfpe-old (No float load/store multiples)
28644 -mvfpxd VFP Single precision
28645 -mvfp All VFP
28646 -mno-fpu Disable all floating point instructions
b99bd4ef 28647
c19d1205
ZW
28648 The following CPU names are recognized:
28649 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28650 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28651 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28652 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28653 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28654 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28655 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 28656
c19d1205 28657 */
b99bd4ef 28658
c19d1205 28659const char * md_shortopts = "m:k";
b99bd4ef 28660
c19d1205
ZW
28661#ifdef ARM_BI_ENDIAN
28662#define OPTION_EB (OPTION_MD_BASE + 0)
28663#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 28664#else
c19d1205
ZW
28665#if TARGET_BYTES_BIG_ENDIAN
28666#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 28667#else
c19d1205
ZW
28668#define OPTION_EL (OPTION_MD_BASE + 1)
28669#endif
b99bd4ef 28670#endif
845b51d6 28671#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 28672#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 28673
c19d1205 28674struct option md_longopts[] =
b99bd4ef 28675{
c19d1205
ZW
28676#ifdef OPTION_EB
28677 {"EB", no_argument, NULL, OPTION_EB},
28678#endif
28679#ifdef OPTION_EL
28680 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 28681#endif
845b51d6 28682 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
28683#ifdef OBJ_ELF
28684 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28685#endif
c19d1205
ZW
28686 {NULL, no_argument, NULL, 0}
28687};
b99bd4ef 28688
c19d1205 28689size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 28690
c19d1205 28691struct arm_option_table
b99bd4ef 28692{
0198d5e6
TC
28693 const char * option; /* Option name to match. */
28694 const char * help; /* Help information. */
28695 int * var; /* Variable to change. */
28696 int value; /* What to change it to. */
28697 const char * deprecated; /* If non-null, print this message. */
c19d1205 28698};
b99bd4ef 28699
c19d1205
ZW
28700struct arm_option_table arm_opts[] =
28701{
28702 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28703 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28704 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28705 &support_interwork, 1, NULL},
28706 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28707 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28708 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28709 1, NULL},
28710 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28711 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28712 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28713 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28714 NULL},
b99bd4ef 28715
c19d1205
ZW
28716 /* These are recognized by the assembler, but have no affect on code. */
28717 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28718 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
28719
28720 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28721 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28722 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
28723 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28724 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
28725 {NULL, NULL, NULL, 0, NULL}
28726};
28727
28728struct arm_legacy_option_table
28729{
0198d5e6
TC
28730 const char * option; /* Option name to match. */
28731 const arm_feature_set ** var; /* Variable to change. */
28732 const arm_feature_set value; /* What to change it to. */
28733 const char * deprecated; /* If non-null, print this message. */
e74cfd16 28734};
b99bd4ef 28735
e74cfd16
PB
28736const struct arm_legacy_option_table arm_legacy_opts[] =
28737{
c19d1205
ZW
28738 /* DON'T add any new processors to this list -- we want the whole list
28739 to go away... Add them to the processors table instead. */
e74cfd16
PB
28740 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28741 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28742 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28743 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28744 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28745 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28746 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28747 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28748 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28749 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28750 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28751 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28752 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28753 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28754 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28755 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28756 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28757 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28758 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28759 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28760 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28761 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28762 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28763 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28764 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28765 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28766 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28767 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28768 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28769 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28770 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28771 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28772 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28773 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28774 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28775 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28776 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28777 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28778 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28779 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28780 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28781 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28782 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28783 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28784 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28785 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28786 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28787 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28788 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28789 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28790 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28791 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28792 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28793 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28794 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28795 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28796 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28797 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28798 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28799 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28800 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28801 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28802 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28803 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28804 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28805 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28806 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28807 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28808 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28809 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28810 N_("use -mcpu=strongarm110")},
e74cfd16 28811 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28812 N_("use -mcpu=strongarm1100")},
e74cfd16 28813 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28814 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
28815 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28816 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28817 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 28818
c19d1205 28819 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
28820 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28821 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28822 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28823 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28824 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28825 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28826 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28827 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28828 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28829 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28830 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28831 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28832 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28833 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28834 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28835 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28836 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28837 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 28838
c19d1205 28839 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
28840 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28841 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28842 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28843 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 28844 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 28845
e74cfd16 28846 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 28847};
7ed4c4c5 28848
c19d1205 28849struct arm_cpu_option_table
7ed4c4c5 28850{
0198d5e6
TC
28851 const char * name;
28852 size_t name_len;
28853 const arm_feature_set value;
28854 const arm_feature_set ext;
c19d1205
ZW
28855 /* For some CPUs we assume an FPU unless the user explicitly sets
28856 -mfpu=... */
0198d5e6 28857 const arm_feature_set default_fpu;
ee065d83
PB
28858 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28859 case. */
0198d5e6 28860 const char * canonical_name;
c19d1205 28861};
7ed4c4c5 28862
c19d1205
ZW
28863/* This list should, at a minimum, contain all the cpu names
28864 recognized by GCC. */
996b5569 28865#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 28866
e74cfd16 28867static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 28868{
996b5569
TP
28869 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28870 ARM_ARCH_NONE,
28871 FPU_ARCH_FPA),
28872 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28873 ARM_ARCH_NONE,
28874 FPU_ARCH_FPA),
28875 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28876 ARM_ARCH_NONE,
28877 FPU_ARCH_FPA),
28878 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28879 ARM_ARCH_NONE,
28880 FPU_ARCH_FPA),
28881 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28882 ARM_ARCH_NONE,
28883 FPU_ARCH_FPA),
28884 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28885 ARM_ARCH_NONE,
28886 FPU_ARCH_FPA),
28887 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28888 ARM_ARCH_NONE,
28889 FPU_ARCH_FPA),
28890 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28891 ARM_ARCH_NONE,
28892 FPU_ARCH_FPA),
28893 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28894 ARM_ARCH_NONE,
28895 FPU_ARCH_FPA),
28896 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28897 ARM_ARCH_NONE,
28898 FPU_ARCH_FPA),
28899 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28900 ARM_ARCH_NONE,
28901 FPU_ARCH_FPA),
28902 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28903 ARM_ARCH_NONE,
28904 FPU_ARCH_FPA),
28905 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28906 ARM_ARCH_NONE,
28907 FPU_ARCH_FPA),
28908 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28909 ARM_ARCH_NONE,
28910 FPU_ARCH_FPA),
28911 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28912 ARM_ARCH_NONE,
28913 FPU_ARCH_FPA),
28914 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28915 ARM_ARCH_NONE,
28916 FPU_ARCH_FPA),
28917 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28918 ARM_ARCH_NONE,
28919 FPU_ARCH_FPA),
28920 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28921 ARM_ARCH_NONE,
28922 FPU_ARCH_FPA),
28923 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28924 ARM_ARCH_NONE,
28925 FPU_ARCH_FPA),
28926 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28927 ARM_ARCH_NONE,
28928 FPU_ARCH_FPA),
28929 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28930 ARM_ARCH_NONE,
28931 FPU_ARCH_FPA),
28932 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28933 ARM_ARCH_NONE,
28934 FPU_ARCH_FPA),
28935 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28936 ARM_ARCH_NONE,
28937 FPU_ARCH_FPA),
28938 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28939 ARM_ARCH_NONE,
28940 FPU_ARCH_FPA),
28941 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28942 ARM_ARCH_NONE,
28943 FPU_ARCH_FPA),
28944 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28945 ARM_ARCH_NONE,
28946 FPU_ARCH_FPA),
28947 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28948 ARM_ARCH_NONE,
28949 FPU_ARCH_FPA),
28950 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28951 ARM_ARCH_NONE,
28952 FPU_ARCH_FPA),
28953 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28954 ARM_ARCH_NONE,
28955 FPU_ARCH_FPA),
28956 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28957 ARM_ARCH_NONE,
28958 FPU_ARCH_FPA),
28959 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28960 ARM_ARCH_NONE,
28961 FPU_ARCH_FPA),
28962 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28963 ARM_ARCH_NONE,
28964 FPU_ARCH_FPA),
28965 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28966 ARM_ARCH_NONE,
28967 FPU_ARCH_FPA),
28968 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28969 ARM_ARCH_NONE,
28970 FPU_ARCH_FPA),
28971 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28972 ARM_ARCH_NONE,
28973 FPU_ARCH_FPA),
28974 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28975 ARM_ARCH_NONE,
28976 FPU_ARCH_FPA),
28977 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28978 ARM_ARCH_NONE,
28979 FPU_ARCH_FPA),
28980 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28981 ARM_ARCH_NONE,
28982 FPU_ARCH_FPA),
28983 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28984 ARM_ARCH_NONE,
28985 FPU_ARCH_FPA),
28986 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28987 ARM_ARCH_NONE,
28988 FPU_ARCH_FPA),
28989 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28990 ARM_ARCH_NONE,
28991 FPU_ARCH_FPA),
28992 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28993 ARM_ARCH_NONE,
28994 FPU_ARCH_FPA),
28995 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28996 ARM_ARCH_NONE,
28997 FPU_ARCH_FPA),
28998 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28999 ARM_ARCH_NONE,
29000 FPU_ARCH_FPA),
29001 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29002 ARM_ARCH_NONE,
29003 FPU_ARCH_FPA),
29004 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29005 ARM_ARCH_NONE,
29006 FPU_ARCH_FPA),
29007
c19d1205
ZW
29008 /* For V5 or later processors we default to using VFP; but the user
29009 should really set the FPU type explicitly. */
996b5569
TP
29010 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29011 ARM_ARCH_NONE,
29012 FPU_ARCH_VFP_V2),
29013 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29014 ARM_ARCH_NONE,
29015 FPU_ARCH_VFP_V2),
29016 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29017 ARM_ARCH_NONE,
29018 FPU_ARCH_VFP_V2),
29019 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29020 ARM_ARCH_NONE,
29021 FPU_ARCH_VFP_V2),
29022 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29023 ARM_ARCH_NONE,
29024 FPU_ARCH_VFP_V2),
29025 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29026 ARM_ARCH_NONE,
29027 FPU_ARCH_VFP_V2),
29028 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29029 ARM_ARCH_NONE,
29030 FPU_ARCH_VFP_V2),
29031 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29032 ARM_ARCH_NONE,
29033 FPU_ARCH_VFP_V2),
29034 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29035 ARM_ARCH_NONE,
29036 FPU_ARCH_VFP_V2),
29037 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29038 ARM_ARCH_NONE,
29039 FPU_ARCH_VFP_V2),
29040 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29041 ARM_ARCH_NONE,
29042 FPU_ARCH_VFP_V2),
29043 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29044 ARM_ARCH_NONE,
29045 FPU_ARCH_VFP_V2),
29046 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29047 ARM_ARCH_NONE,
29048 FPU_ARCH_VFP_V1),
29049 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29050 ARM_ARCH_NONE,
29051 FPU_ARCH_VFP_V1),
29052 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29053 ARM_ARCH_NONE,
29054 FPU_ARCH_VFP_V2),
29055 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29056 ARM_ARCH_NONE,
29057 FPU_ARCH_VFP_V2),
29058 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29059 ARM_ARCH_NONE,
29060 FPU_ARCH_VFP_V1),
29061 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29062 ARM_ARCH_NONE,
29063 FPU_ARCH_VFP_V2),
29064 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29065 ARM_ARCH_NONE,
29066 FPU_ARCH_VFP_V2),
29067 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29068 ARM_ARCH_NONE,
29069 FPU_ARCH_VFP_V2),
29070 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29071 ARM_ARCH_NONE,
29072 FPU_ARCH_VFP_V2),
29073 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29074 ARM_ARCH_NONE,
29075 FPU_ARCH_VFP_V2),
29076 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29077 ARM_ARCH_NONE,
29078 FPU_ARCH_VFP_V2),
29079 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29080 ARM_ARCH_NONE,
29081 FPU_ARCH_VFP_V2),
29082 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29083 ARM_ARCH_NONE,
29084 FPU_ARCH_VFP_V2),
29085 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29086 ARM_ARCH_NONE,
29087 FPU_ARCH_VFP_V2),
29088 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29089 ARM_ARCH_NONE,
29090 FPU_NONE),
29091 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29092 ARM_ARCH_NONE,
29093 FPU_NONE),
29094 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29095 ARM_ARCH_NONE,
29096 FPU_ARCH_VFP_V2),
29097 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29098 ARM_ARCH_NONE,
29099 FPU_ARCH_VFP_V2),
29100 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29101 ARM_ARCH_NONE,
29102 FPU_ARCH_VFP_V2),
29103 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29104 ARM_ARCH_NONE,
29105 FPU_NONE),
29106 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29107 ARM_ARCH_NONE,
29108 FPU_NONE),
29109 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29110 ARM_ARCH_NONE,
29111 FPU_ARCH_VFP_V2),
29112 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29113 ARM_ARCH_NONE,
29114 FPU_NONE),
29115 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29116 ARM_ARCH_NONE,
29117 FPU_ARCH_VFP_V2),
29118 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29119 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29120 FPU_NONE),
29121 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29122 ARM_ARCH_NONE,
29123 FPU_ARCH_NEON_VFP_V4),
29124 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29125 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29126 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29127 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29128 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29129 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29130 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29131 ARM_ARCH_NONE,
29132 FPU_ARCH_NEON_VFP_V4),
29133 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29134 ARM_ARCH_NONE,
29135 FPU_ARCH_NEON_VFP_V4),
29136 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29137 ARM_ARCH_NONE,
29138 FPU_ARCH_NEON_VFP_V4),
29139 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29140 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29141 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29142 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29143 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29144 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29145 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29146 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29147 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29148 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29149 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29150 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29151 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29152 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29153 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29154 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29155 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29156 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29157 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29158 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29159 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29160 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29161 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29162 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29163 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29164 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29165 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29166 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29167 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29168 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29169 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29170 ARM_ARCH_NONE,
29171 FPU_NONE),
29172 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29173 ARM_ARCH_NONE,
29174 FPU_ARCH_VFP_V3D16),
29175 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29176 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29177 FPU_NONE),
29178 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29179 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29180 FPU_ARCH_VFP_V3D16),
29181 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29182 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29183 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29184 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29185 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29186 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29187 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29188 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29189 FPU_NONE),
29190 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29191 ARM_ARCH_NONE,
29192 FPU_NONE),
29193 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29194 ARM_ARCH_NONE,
29195 FPU_NONE),
29196 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29197 ARM_ARCH_NONE,
29198 FPU_NONE),
29199 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29200 ARM_ARCH_NONE,
29201 FPU_NONE),
29202 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29203 ARM_ARCH_NONE,
29204 FPU_NONE),
29205 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29206 ARM_ARCH_NONE,
29207 FPU_NONE),
29208 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29209 ARM_ARCH_NONE,
29210 FPU_NONE),
29211 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29212 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29213 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29214 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29215 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29216 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29217 /* ??? XSCALE is really an architecture. */
996b5569
TP
29218 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29219 ARM_ARCH_NONE,
29220 FPU_ARCH_VFP_V2),
29221
c19d1205 29222 /* ??? iwmmxt is not a processor. */
996b5569
TP
29223 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29224 ARM_ARCH_NONE,
29225 FPU_ARCH_VFP_V2),
29226 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29227 ARM_ARCH_NONE,
29228 FPU_ARCH_VFP_V2),
29229 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29230 ARM_ARCH_NONE,
29231 FPU_ARCH_VFP_V2),
29232
0198d5e6 29233 /* Maverick. */
996b5569
TP
29234 ARM_CPU_OPT ("ep9312", "ARM920T",
29235 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29236 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29237
da4339ed 29238 /* Marvell processors. */
996b5569
TP
29239 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29240 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29241 FPU_ARCH_VFP_V3D16),
29242 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29243 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29244 FPU_ARCH_NEON_VFP_V4),
da4339ed 29245
996b5569
TP
29246 /* APM X-Gene family. */
29247 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29248 ARM_ARCH_NONE,
29249 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29250 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29251 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29252 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29253
29254 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29255};
f3bad469 29256#undef ARM_CPU_OPT
7ed4c4c5 29257
34ef62f4
AV
29258struct arm_ext_table
29259{
29260 const char * name;
29261 size_t name_len;
29262 const arm_feature_set merge;
29263 const arm_feature_set clear;
29264};
29265
c19d1205 29266struct arm_arch_option_table
7ed4c4c5 29267{
34ef62f4
AV
29268 const char * name;
29269 size_t name_len;
29270 const arm_feature_set value;
29271 const arm_feature_set default_fpu;
29272 const struct arm_ext_table * ext_table;
29273};
29274
29275/* Used to add support for +E and +noE extension. */
29276#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29277/* Used to add support for a +E extension. */
29278#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29279/* Used to add support for a +noE extension. */
29280#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29281
29282#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29283 ~0 & ~FPU_ENDIAN_PURE)
29284
29285static const struct arm_ext_table armv5te_ext_table[] =
29286{
29287 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29288 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29289};
29290
29291static const struct arm_ext_table armv7_ext_table[] =
29292{
29293 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29294 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29295};
29296
29297static const struct arm_ext_table armv7ve_ext_table[] =
29298{
29299 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29300 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29301 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29302 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29303 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29304 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29305 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29306
29307 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29308 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29309
29310 /* Aliases for +simd. */
29311 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29312
29313 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29314 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29315 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29316
29317 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29318};
29319
29320static const struct arm_ext_table armv7a_ext_table[] =
29321{
29322 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29323 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29324 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29325 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29326 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29327 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29328 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29329
29330 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29331 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29332
29333 /* Aliases for +simd. */
29334 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29335 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29336
29337 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29338 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29339
29340 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29341 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29342 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29343};
29344
29345static const struct arm_ext_table armv7r_ext_table[] =
29346{
29347 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29348 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29349 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29350 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29351 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29352 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29353 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29354 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29355 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29356};
29357
29358static const struct arm_ext_table armv7em_ext_table[] =
29359{
29360 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29361 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29362 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29363 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29364 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29365 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29366 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29367};
29368
29369static const struct arm_ext_table armv8a_ext_table[] =
29370{
29371 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29372 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29373 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29374 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29375
29376 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29377 should use the +simd option to turn on FP. */
29378 ARM_REMOVE ("fp", ALL_FP),
29379 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29380 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29381 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29382};
29383
29384
29385static const struct arm_ext_table armv81a_ext_table[] =
29386{
29387 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29388 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29389 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29390
29391 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29392 should use the +simd option to turn on FP. */
29393 ARM_REMOVE ("fp", ALL_FP),
29394 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29395 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29396 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29397};
29398
29399static const struct arm_ext_table armv82a_ext_table[] =
29400{
29401 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29402 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29403 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29404 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29405 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29406 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29407
29408 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29409 should use the +simd option to turn on FP. */
29410 ARM_REMOVE ("fp", ALL_FP),
29411 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29412 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29413 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29414};
29415
29416static const struct arm_ext_table armv84a_ext_table[] =
29417{
29418 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29419 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29420 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29421 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29422
29423 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29424 should use the +simd option to turn on FP. */
29425 ARM_REMOVE ("fp", ALL_FP),
29426 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29427 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29428 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29429};
29430
29431static const struct arm_ext_table armv85a_ext_table[] =
29432{
29433 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29434 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29435 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29436 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29437
29438 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29439 should use the +simd option to turn on FP. */
29440 ARM_REMOVE ("fp", ALL_FP),
29441 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29442};
29443
29444static const struct arm_ext_table armv8m_main_ext_table[] =
29445{
29446 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29447 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29448 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29449 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29450 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29451};
29452
e0991585
AV
29453static const struct arm_ext_table armv8_1m_main_ext_table[] =
29454{
29455 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29456 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29457 ARM_EXT ("fp",
29458 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29459 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29460 ALL_FP),
29461 ARM_ADD ("fp.dp",
29462 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29463 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29464 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29465 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29466 ARM_ADD ("mve.fp",
29467 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29468 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29469 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29470 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29471};
29472
34ef62f4
AV
29473static const struct arm_ext_table armv8r_ext_table[] =
29474{
29475 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29476 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29477 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29478 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29479 ARM_REMOVE ("fp", ALL_FP),
29480 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29481 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29482};
7ed4c4c5 29483
c19d1205
ZW
29484/* This list should, at a minimum, contain all the architecture names
29485 recognized by GCC. */
34ef62f4
AV
29486#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29487#define ARM_ARCH_OPT2(N, V, DF, ext) \
29488 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29489
e74cfd16 29490static const struct arm_arch_option_table arm_archs[] =
c19d1205 29491{
497d849d
TP
29492 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29493 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29494 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29495 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29496 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29497 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29498 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29499 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29500 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29501 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29502 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29503 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29504 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29505 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29506 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29507 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29508 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29509 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29510 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29511 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29512 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29513 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29514 kept to preserve existing behaviour. */
34ef62f4
AV
29515 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29516 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29517 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29518 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29519 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29520 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29521 kept to preserve existing behaviour. */
34ef62f4
AV
29522 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29523 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29524 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29525 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29526 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29527 /* The official spelling of the ARMv7 profile variants is the dashed form.
29528 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29529 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29530 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29531 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29532 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29533 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29534 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29535 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29536 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29537 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29538 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29539 armv8m_main),
e0991585
AV
29540 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29541 armv8_1m_main),
34ef62f4
AV
29542 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29543 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29544 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29545 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29546 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29547 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29548 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29549 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29550 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29551 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 29552 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29553};
f3bad469 29554#undef ARM_ARCH_OPT
7ed4c4c5 29555
69133863 29556/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 29557
69133863 29558struct arm_option_extension_value_table
c19d1205 29559{
0198d5e6
TC
29560 const char * name;
29561 size_t name_len;
29562 const arm_feature_set merge_value;
29563 const arm_feature_set clear_value;
d942732e
TP
29564 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29565 indicates that an extension is available for all architectures while
29566 ARM_ANY marks an empty entry. */
0198d5e6 29567 const arm_feature_set allowed_archs[2];
c19d1205 29568};
7ed4c4c5 29569
0198d5e6
TC
29570/* The following table must be in alphabetical order with a NULL last entry. */
29571
d942732e
TP
29572#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29573#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 29574
34ef62f4
AV
29575/* DEPRECATED: Refrain from using this table to add any new extensions, instead
29576 use the context sensitive approach using arm_ext_table's. */
69133863 29577static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 29578{
823d2571
TG
29579 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29580 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 29581 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
29582 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29583 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
29584 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29585 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29586 ARM_ARCH_V8_2A),
15afaa63
TP
29587 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29588 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29589 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
29590 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29591 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
29592 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29593 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29594 ARM_ARCH_V8_2A),
01f48020
TC
29595 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29596 | ARM_EXT2_FP16_FML),
29597 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29598 | ARM_EXT2_FP16_FML),
29599 ARM_ARCH_V8_2A),
d942732e 29600 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 29601 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
29602 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29603 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
29604 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29605 Thumb divide instruction. Due to this having the same name as the
29606 previous entry, this will be ignored when doing command-line parsing and
29607 only considered by build attribute selection code. */
29608 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29609 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29610 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 29611 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 29612 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 29613 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 29614 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 29615 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
29616 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29617 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 29618 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
29619 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29620 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
29621 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29622 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29623 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
29624 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29625 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 29626 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
29627 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29628 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29629 ARM_ARCH_V8A),
4d1464f2
MW
29630 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29631 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 29632 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
29633 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29634 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 29635 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
29636 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29637 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29638 ARM_ARCH_V8A),
d942732e 29639 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 29640 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
29641 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29642 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
29643 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29644 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29645 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
29646 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29647 | ARM_EXT_DIV),
29648 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29649 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29650 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
29651 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29652 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 29653};
f3bad469 29654#undef ARM_EXT_OPT
69133863
MGD
29655
29656/* ISA floating-point and Advanced SIMD extensions. */
29657struct arm_option_fpu_value_table
29658{
0198d5e6
TC
29659 const char * name;
29660 const arm_feature_set value;
c19d1205 29661};
7ed4c4c5 29662
c19d1205
ZW
29663/* This list should, at a minimum, contain all the fpu names
29664 recognized by GCC. */
69133863 29665static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
29666{
29667 {"softfpa", FPU_NONE},
29668 {"fpe", FPU_ARCH_FPE},
29669 {"fpe2", FPU_ARCH_FPE},
29670 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29671 {"fpa", FPU_ARCH_FPA},
29672 {"fpa10", FPU_ARCH_FPA},
29673 {"fpa11", FPU_ARCH_FPA},
29674 {"arm7500fe", FPU_ARCH_FPA},
29675 {"softvfp", FPU_ARCH_VFP},
29676 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29677 {"vfp", FPU_ARCH_VFP_V2},
29678 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 29679 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
29680 {"vfp10", FPU_ARCH_VFP_V2},
29681 {"vfp10-r0", FPU_ARCH_VFP_V1},
29682 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
29683 {"vfpv2", FPU_ARCH_VFP_V2},
29684 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 29685 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 29686 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
29687 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29688 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29689 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
29690 {"arm1020t", FPU_ARCH_VFP_V1},
29691 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 29692 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
29693 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29694 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 29695 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 29696 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 29697 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
29698 {"vfpv4", FPU_ARCH_VFP_V4},
29699 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 29700 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
29701 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29702 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 29703 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
29704 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29705 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29706 {"crypto-neon-fp-armv8",
29707 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 29708 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
29709 {"crypto-neon-fp-armv8.1",
29710 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
29711 {NULL, ARM_ARCH_NONE}
29712};
29713
29714struct arm_option_value_table
29715{
e0471c16 29716 const char *name;
e74cfd16 29717 long value;
c19d1205 29718};
7ed4c4c5 29719
e74cfd16 29720static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
29721{
29722 {"hard", ARM_FLOAT_ABI_HARD},
29723 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29724 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 29725 {NULL, 0}
c19d1205 29726};
7ed4c4c5 29727
c19d1205 29728#ifdef OBJ_ELF
3a4a14e9 29729/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 29730static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
29731{
29732 {"gnu", EF_ARM_EABI_UNKNOWN},
29733 {"4", EF_ARM_EABI_VER4},
3a4a14e9 29734 {"5", EF_ARM_EABI_VER5},
e74cfd16 29735 {NULL, 0}
c19d1205
ZW
29736};
29737#endif
7ed4c4c5 29738
c19d1205
ZW
29739struct arm_long_option_table
29740{
0198d5e6 29741 const char * option; /* Substring to match. */
e0471c16 29742 const char * help; /* Help information. */
17b9d67d 29743 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 29744 const char * deprecated; /* If non-null, print this message. */
c19d1205 29745};
7ed4c4c5 29746
c921be7d 29747static bfd_boolean
c168ce07 29748arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
29749 arm_feature_set *ext_set,
29750 const struct arm_ext_table *ext_table)
7ed4c4c5 29751{
69133863 29752 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
29753 extensions being added before being removed. We achieve this by having
29754 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 29755 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 29756 or removing it (0) and only allowing it to change in the order
69133863
MGD
29757 -1 -> 1 -> 0. */
29758 const struct arm_option_extension_value_table * opt = NULL;
d942732e 29759 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
29760 int adding_value = -1;
29761
c19d1205 29762 while (str != NULL && *str != 0)
7ed4c4c5 29763 {
82b8a785 29764 const char *ext;
f3bad469 29765 size_t len;
7ed4c4c5 29766
c19d1205
ZW
29767 if (*str != '+')
29768 {
29769 as_bad (_("invalid architectural extension"));
c921be7d 29770 return FALSE;
c19d1205 29771 }
7ed4c4c5 29772
c19d1205
ZW
29773 str++;
29774 ext = strchr (str, '+');
7ed4c4c5 29775
c19d1205 29776 if (ext != NULL)
f3bad469 29777 len = ext - str;
c19d1205 29778 else
f3bad469 29779 len = strlen (str);
7ed4c4c5 29780
f3bad469 29781 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
29782 {
29783 if (adding_value != 0)
29784 {
29785 adding_value = 0;
29786 opt = arm_extensions;
29787 }
29788
f3bad469 29789 len -= 2;
69133863
MGD
29790 str += 2;
29791 }
f3bad469 29792 else if (len > 0)
69133863
MGD
29793 {
29794 if (adding_value == -1)
29795 {
29796 adding_value = 1;
29797 opt = arm_extensions;
29798 }
29799 else if (adding_value != 1)
29800 {
29801 as_bad (_("must specify extensions to add before specifying "
29802 "those to remove"));
29803 return FALSE;
29804 }
29805 }
29806
f3bad469 29807 if (len == 0)
c19d1205
ZW
29808 {
29809 as_bad (_("missing architectural extension"));
c921be7d 29810 return FALSE;
c19d1205 29811 }
7ed4c4c5 29812
69133863
MGD
29813 gas_assert (adding_value != -1);
29814 gas_assert (opt != NULL);
29815
34ef62f4
AV
29816 if (ext_table != NULL)
29817 {
29818 const struct arm_ext_table * ext_opt = ext_table;
29819 bfd_boolean found = FALSE;
29820 for (; ext_opt->name != NULL; ext_opt++)
29821 if (ext_opt->name_len == len
29822 && strncmp (ext_opt->name, str, len) == 0)
29823 {
29824 if (adding_value)
29825 {
29826 if (ARM_FEATURE_ZERO (ext_opt->merge))
29827 /* TODO: Option not supported. When we remove the
29828 legacy table this case should error out. */
29829 continue;
29830
29831 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29832 }
29833 else
29834 {
29835 if (ARM_FEATURE_ZERO (ext_opt->clear))
29836 /* TODO: Option not supported. When we remove the
29837 legacy table this case should error out. */
29838 continue;
29839 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29840 }
29841 found = TRUE;
29842 break;
29843 }
29844 if (found)
29845 {
29846 str = ext;
29847 continue;
29848 }
29849 }
29850
69133863
MGD
29851 /* Scan over the options table trying to find an exact match. */
29852 for (; opt->name != NULL; opt++)
f3bad469 29853 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29854 {
d942732e
TP
29855 int i, nb_allowed_archs =
29856 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 29857 /* Check we can apply the extension to this architecture. */
d942732e
TP
29858 for (i = 0; i < nb_allowed_archs; i++)
29859 {
29860 /* Empty entry. */
29861 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29862 continue;
c168ce07 29863 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
29864 break;
29865 }
29866 if (i == nb_allowed_archs)
69133863
MGD
29867 {
29868 as_bad (_("extension does not apply to the base architecture"));
29869 return FALSE;
29870 }
29871
29872 /* Add or remove the extension. */
29873 if (adding_value)
4d354d8b 29874 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 29875 else
4d354d8b 29876 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 29877
3d030cdb
TP
29878 /* Allowing Thumb division instructions for ARMv7 in autodetection
29879 rely on this break so that duplicate extensions (extensions
29880 with the same name as a previous extension in the list) are not
29881 considered for command-line parsing. */
c19d1205
ZW
29882 break;
29883 }
7ed4c4c5 29884
c19d1205
ZW
29885 if (opt->name == NULL)
29886 {
69133863
MGD
29887 /* Did we fail to find an extension because it wasn't specified in
29888 alphabetical order, or because it does not exist? */
29889
29890 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 29891 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
29892 break;
29893
29894 if (opt->name == NULL)
29895 as_bad (_("unknown architectural extension `%s'"), str);
29896 else
29897 as_bad (_("architectural extensions must be specified in "
29898 "alphabetical order"));
29899
c921be7d 29900 return FALSE;
c19d1205 29901 }
69133863
MGD
29902 else
29903 {
29904 /* We should skip the extension we've just matched the next time
29905 round. */
29906 opt++;
29907 }
7ed4c4c5 29908
c19d1205
ZW
29909 str = ext;
29910 };
7ed4c4c5 29911
c921be7d 29912 return TRUE;
c19d1205 29913}
7ed4c4c5 29914
c921be7d 29915static bfd_boolean
17b9d67d 29916arm_parse_cpu (const char *str)
7ed4c4c5 29917{
f3bad469 29918 const struct arm_cpu_option_table *opt;
82b8a785 29919 const char *ext = strchr (str, '+');
f3bad469 29920 size_t len;
7ed4c4c5 29921
c19d1205 29922 if (ext != NULL)
f3bad469 29923 len = ext - str;
7ed4c4c5 29924 else
f3bad469 29925 len = strlen (str);
7ed4c4c5 29926
f3bad469 29927 if (len == 0)
7ed4c4c5 29928 {
c19d1205 29929 as_bad (_("missing cpu name `%s'"), str);
c921be7d 29930 return FALSE;
7ed4c4c5
NC
29931 }
29932
c19d1205 29933 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 29934 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29935 {
c168ce07 29936 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
29937 if (mcpu_ext_opt == NULL)
29938 mcpu_ext_opt = XNEW (arm_feature_set);
29939 *mcpu_ext_opt = opt->ext;
e74cfd16 29940 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 29941 if (opt->canonical_name)
ef8e6722
JW
29942 {
29943 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29944 strcpy (selected_cpu_name, opt->canonical_name);
29945 }
ee065d83
PB
29946 else
29947 {
f3bad469 29948 size_t i;
c921be7d 29949
ef8e6722
JW
29950 if (len >= sizeof selected_cpu_name)
29951 len = (sizeof selected_cpu_name) - 1;
29952
f3bad469 29953 for (i = 0; i < len; i++)
ee065d83
PB
29954 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29955 selected_cpu_name[i] = 0;
29956 }
7ed4c4c5 29957
c19d1205 29958 if (ext != NULL)
34ef62f4 29959 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 29960
c921be7d 29961 return TRUE;
c19d1205 29962 }
7ed4c4c5 29963
c19d1205 29964 as_bad (_("unknown cpu `%s'"), str);
c921be7d 29965 return FALSE;
7ed4c4c5
NC
29966}
29967
c921be7d 29968static bfd_boolean
17b9d67d 29969arm_parse_arch (const char *str)
7ed4c4c5 29970{
e74cfd16 29971 const struct arm_arch_option_table *opt;
82b8a785 29972 const char *ext = strchr (str, '+');
f3bad469 29973 size_t len;
7ed4c4c5 29974
c19d1205 29975 if (ext != NULL)
f3bad469 29976 len = ext - str;
7ed4c4c5 29977 else
f3bad469 29978 len = strlen (str);
7ed4c4c5 29979
f3bad469 29980 if (len == 0)
7ed4c4c5 29981 {
c19d1205 29982 as_bad (_("missing architecture name `%s'"), str);
c921be7d 29983 return FALSE;
7ed4c4c5
NC
29984 }
29985
c19d1205 29986 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 29987 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29988 {
e74cfd16 29989 march_cpu_opt = &opt->value;
4d354d8b
TP
29990 if (march_ext_opt == NULL)
29991 march_ext_opt = XNEW (arm_feature_set);
29992 *march_ext_opt = arm_arch_none;
e74cfd16 29993 march_fpu_opt = &opt->default_fpu;
5f4273c7 29994 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 29995
c19d1205 29996 if (ext != NULL)
34ef62f4
AV
29997 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29998 opt->ext_table);
7ed4c4c5 29999
c921be7d 30000 return TRUE;
c19d1205
ZW
30001 }
30002
30003 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30004 return FALSE;
7ed4c4c5 30005}
eb043451 30006
c921be7d 30007static bfd_boolean
17b9d67d 30008arm_parse_fpu (const char * str)
c19d1205 30009{
69133863 30010 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30011
c19d1205
ZW
30012 for (opt = arm_fpus; opt->name != NULL; opt++)
30013 if (streq (opt->name, str))
30014 {
e74cfd16 30015 mfpu_opt = &opt->value;
c921be7d 30016 return TRUE;
c19d1205 30017 }
b99bd4ef 30018
c19d1205 30019 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30020 return FALSE;
c19d1205
ZW
30021}
30022
c921be7d 30023static bfd_boolean
17b9d67d 30024arm_parse_float_abi (const char * str)
b99bd4ef 30025{
e74cfd16 30026 const struct arm_option_value_table * opt;
b99bd4ef 30027
c19d1205
ZW
30028 for (opt = arm_float_abis; opt->name != NULL; opt++)
30029 if (streq (opt->name, str))
30030 {
30031 mfloat_abi_opt = opt->value;
c921be7d 30032 return TRUE;
c19d1205 30033 }
cc8a6dd0 30034
c19d1205 30035 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30036 return FALSE;
c19d1205 30037}
b99bd4ef 30038
c19d1205 30039#ifdef OBJ_ELF
c921be7d 30040static bfd_boolean
17b9d67d 30041arm_parse_eabi (const char * str)
c19d1205 30042{
e74cfd16 30043 const struct arm_option_value_table *opt;
cc8a6dd0 30044
c19d1205
ZW
30045 for (opt = arm_eabis; opt->name != NULL; opt++)
30046 if (streq (opt->name, str))
30047 {
30048 meabi_flags = opt->value;
c921be7d 30049 return TRUE;
c19d1205
ZW
30050 }
30051 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30052 return FALSE;
c19d1205
ZW
30053}
30054#endif
cc8a6dd0 30055
c921be7d 30056static bfd_boolean
17b9d67d 30057arm_parse_it_mode (const char * str)
e07e6e58 30058{
c921be7d 30059 bfd_boolean ret = TRUE;
e07e6e58
NC
30060
30061 if (streq ("arm", str))
30062 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30063 else if (streq ("thumb", str))
30064 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30065 else if (streq ("always", str))
30066 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30067 else if (streq ("never", str))
30068 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30069 else
30070 {
30071 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30072 "arm, thumb, always, or never."), str);
c921be7d 30073 ret = FALSE;
e07e6e58
NC
30074 }
30075
30076 return ret;
30077}
30078
2e6976a8 30079static bfd_boolean
17b9d67d 30080arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30081{
30082 codecomposer_syntax = TRUE;
30083 arm_comment_chars[0] = ';';
30084 arm_line_separator_chars[0] = 0;
30085 return TRUE;
30086}
30087
c19d1205
ZW
30088struct arm_long_option_table arm_long_opts[] =
30089{
30090 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30091 arm_parse_cpu, NULL},
30092 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30093 arm_parse_arch, NULL},
30094 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30095 arm_parse_fpu, NULL},
30096 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30097 arm_parse_float_abi, NULL},
30098#ifdef OBJ_ELF
7fac0536 30099 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30100 arm_parse_eabi, NULL},
30101#endif
e07e6e58
NC
30102 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30103 arm_parse_it_mode, NULL},
2e6976a8
DG
30104 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30105 arm_ccs_mode, NULL},
c19d1205
ZW
30106 {NULL, NULL, 0, NULL}
30107};
cc8a6dd0 30108
c19d1205 30109int
17b9d67d 30110md_parse_option (int c, const char * arg)
c19d1205
ZW
30111{
30112 struct arm_option_table *opt;
e74cfd16 30113 const struct arm_legacy_option_table *fopt;
c19d1205 30114 struct arm_long_option_table *lopt;
b99bd4ef 30115
c19d1205 30116 switch (c)
b99bd4ef 30117 {
c19d1205
ZW
30118#ifdef OPTION_EB
30119 case OPTION_EB:
30120 target_big_endian = 1;
30121 break;
30122#endif
cc8a6dd0 30123
c19d1205
ZW
30124#ifdef OPTION_EL
30125 case OPTION_EL:
30126 target_big_endian = 0;
30127 break;
30128#endif
b99bd4ef 30129
845b51d6
PB
30130 case OPTION_FIX_V4BX:
30131 fix_v4bx = TRUE;
30132 break;
30133
18a20338
CL
30134#ifdef OBJ_ELF
30135 case OPTION_FDPIC:
30136 arm_fdpic = TRUE;
30137 break;
30138#endif /* OBJ_ELF */
30139
c19d1205
ZW
30140 case 'a':
30141 /* Listing option. Just ignore these, we don't support additional
30142 ones. */
30143 return 0;
b99bd4ef 30144
c19d1205
ZW
30145 default:
30146 for (opt = arm_opts; opt->option != NULL; opt++)
30147 {
30148 if (c == opt->option[0]
30149 && ((arg == NULL && opt->option[1] == 0)
30150 || streq (arg, opt->option + 1)))
30151 {
c19d1205 30152 /* If the option is deprecated, tell the user. */
278df34e 30153 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30154 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30155 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30156
c19d1205
ZW
30157 if (opt->var != NULL)
30158 *opt->var = opt->value;
cc8a6dd0 30159
c19d1205
ZW
30160 return 1;
30161 }
30162 }
b99bd4ef 30163
e74cfd16
PB
30164 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30165 {
30166 if (c == fopt->option[0]
30167 && ((arg == NULL && fopt->option[1] == 0)
30168 || streq (arg, fopt->option + 1)))
30169 {
e74cfd16 30170 /* If the option is deprecated, tell the user. */
278df34e 30171 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30172 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30173 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30174
30175 if (fopt->var != NULL)
30176 *fopt->var = &fopt->value;
30177
30178 return 1;
30179 }
30180 }
30181
c19d1205
ZW
30182 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30183 {
30184 /* These options are expected to have an argument. */
30185 if (c == lopt->option[0]
30186 && arg != NULL
30187 && strncmp (arg, lopt->option + 1,
30188 strlen (lopt->option + 1)) == 0)
30189 {
c19d1205 30190 /* If the option is deprecated, tell the user. */
278df34e 30191 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30192 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30193 _(lopt->deprecated));
b99bd4ef 30194
c19d1205
ZW
30195 /* Call the sup-option parser. */
30196 return lopt->func (arg + strlen (lopt->option) - 1);
30197 }
30198 }
a737bd4d 30199
c19d1205
ZW
30200 return 0;
30201 }
a394c00f 30202
c19d1205
ZW
30203 return 1;
30204}
a394c00f 30205
c19d1205
ZW
30206void
30207md_show_usage (FILE * fp)
a394c00f 30208{
c19d1205
ZW
30209 struct arm_option_table *opt;
30210 struct arm_long_option_table *lopt;
a394c00f 30211
c19d1205 30212 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30213
c19d1205
ZW
30214 for (opt = arm_opts; opt->option != NULL; opt++)
30215 if (opt->help != NULL)
30216 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30217
c19d1205
ZW
30218 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30219 if (lopt->help != NULL)
30220 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30221
c19d1205
ZW
30222#ifdef OPTION_EB
30223 fprintf (fp, _("\
30224 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30225#endif
30226
c19d1205
ZW
30227#ifdef OPTION_EL
30228 fprintf (fp, _("\
30229 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30230#endif
845b51d6
PB
30231
30232 fprintf (fp, _("\
30233 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30234
30235#ifdef OBJ_ELF
30236 fprintf (fp, _("\
30237 --fdpic generate an FDPIC object file\n"));
30238#endif /* OBJ_ELF */
c19d1205 30239}
ee065d83 30240
ee065d83 30241#ifdef OBJ_ELF
0198d5e6 30242
62b3e311
PB
30243typedef struct
30244{
30245 int val;
30246 arm_feature_set flags;
30247} cpu_arch_ver_table;
30248
2c6b98ea
TP
30249/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30250 chronologically for architectures, with an exception for ARMv6-M and
30251 ARMv6S-M due to legacy reasons. No new architecture should have a
30252 special case. This allows for build attribute selection results to be
30253 stable when new architectures are added. */
62b3e311
PB
30254static const cpu_arch_ver_table cpu_arch_ver[] =
30255{
031254f2
AV
30256 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30257 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30258 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30259 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30260 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30261 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30262 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30263 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30264 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30265 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30266 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30267 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30268 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30269 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30270 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30271 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30272 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30273 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30274 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30275 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30276 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30277 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30278 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30279 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30280
30281 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30282 always selected build attributes to match those of ARMv6-M
30283 (resp. ARMv6S-M). However, due to these architectures being a strict
30284 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30285 would be selected when fully respecting chronology of architectures.
30286 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30287 move them before ARMv7 architectures. */
031254f2
AV
30288 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30289 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30290
30291 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30292 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30293 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30294 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30295 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30296 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30297 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30298 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30299 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30300 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30301 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30302 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30303 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30304 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30305 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30306 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30307 {-1, ARM_ARCH_NONE}
62b3e311
PB
30308};
30309
ee3c0378 30310/* Set an attribute if it has not already been set by the user. */
0198d5e6 30311
ee3c0378
AS
30312static void
30313aeabi_set_attribute_int (int tag, int value)
30314{
30315 if (tag < 1
30316 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30317 || !attributes_set_explicitly[tag])
30318 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30319}
30320
30321static void
30322aeabi_set_attribute_string (int tag, const char *value)
30323{
30324 if (tag < 1
30325 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30326 || !attributes_set_explicitly[tag])
30327 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30328}
30329
2c6b98ea
TP
30330/* Return whether features in the *NEEDED feature set are available via
30331 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30332
2c6b98ea
TP
30333static bfd_boolean
30334have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30335 const arm_feature_set *needed)
30336{
30337 int i, nb_allowed_archs;
30338 arm_feature_set ext_fset;
30339 const struct arm_option_extension_value_table *opt;
30340
30341 ext_fset = arm_arch_none;
30342 for (opt = arm_extensions; opt->name != NULL; opt++)
30343 {
30344 /* Extension does not provide any feature we need. */
30345 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30346 continue;
30347
30348 nb_allowed_archs =
30349 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30350 for (i = 0; i < nb_allowed_archs; i++)
30351 {
30352 /* Empty entry. */
30353 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30354 break;
30355
30356 /* Extension is available, add it. */
30357 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30358 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30359 }
30360 }
30361
30362 /* Can we enable all features in *needed? */
30363 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30364}
30365
30366/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30367 a given architecture feature set *ARCH_EXT_FSET including extension feature
30368 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30369 - if true, check for an exact match of the architecture modulo extensions;
30370 - otherwise, select build attribute value of the first superset
30371 architecture released so that results remains stable when new architectures
30372 are added.
30373 For -march/-mcpu=all the build attribute value of the most featureful
30374 architecture is returned. Tag_CPU_arch_profile result is returned in
30375 PROFILE. */
0198d5e6 30376
2c6b98ea
TP
30377static int
30378get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30379 const arm_feature_set *ext_fset,
30380 char *profile, int exact_match)
30381{
30382 arm_feature_set arch_fset;
30383 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30384
30385 /* Select most featureful architecture with all its extensions if building
30386 for -march=all as the feature sets used to set build attributes. */
30387 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30388 {
30389 /* Force revisiting of decision for each new architecture. */
031254f2 30390 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30391 *profile = 'A';
30392 return TAG_CPU_ARCH_V8;
30393 }
30394
30395 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30396
30397 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30398 {
30399 arm_feature_set known_arch_fset;
30400
30401 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30402 if (exact_match)
30403 {
30404 /* Base architecture match user-specified architecture and
30405 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30406 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30407 {
30408 p_ver_ret = p_ver;
30409 goto found;
30410 }
30411 /* Base architecture match user-specified architecture only
30412 (eg. ARMv6-M in the same case as above). Record it in case we
30413 find a match with above condition. */
30414 else if (p_ver_ret == NULL
30415 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30416 p_ver_ret = p_ver;
30417 }
30418 else
30419 {
30420
30421 /* Architecture has all features wanted. */
30422 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30423 {
30424 arm_feature_set added_fset;
30425
30426 /* Compute features added by this architecture over the one
30427 recorded in p_ver_ret. */
30428 if (p_ver_ret != NULL)
30429 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30430 p_ver_ret->flags);
30431 /* First architecture that match incl. with extensions, or the
30432 only difference in features over the recorded match is
30433 features that were optional and are now mandatory. */
30434 if (p_ver_ret == NULL
30435 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30436 {
30437 p_ver_ret = p_ver;
30438 goto found;
30439 }
30440 }
30441 else if (p_ver_ret == NULL)
30442 {
30443 arm_feature_set needed_ext_fset;
30444
30445 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30446
30447 /* Architecture has all features needed when using some
30448 extensions. Record it and continue searching in case there
30449 exist an architecture providing all needed features without
30450 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30451 OS extension). */
30452 if (have_ext_for_needed_feat_p (&known_arch_fset,
30453 &needed_ext_fset))
30454 p_ver_ret = p_ver;
30455 }
30456 }
30457 }
30458
30459 if (p_ver_ret == NULL)
30460 return -1;
30461
30462found:
30463 /* Tag_CPU_arch_profile. */
30464 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30465 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30466 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30467 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30468 *profile = 'A';
30469 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30470 *profile = 'R';
30471 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30472 *profile = 'M';
30473 else
30474 *profile = '\0';
30475 return p_ver_ret->val;
30476}
30477
ee065d83 30478/* Set the public EABI object attributes. */
0198d5e6 30479
c168ce07 30480static void
ee065d83
PB
30481aeabi_set_public_attributes (void)
30482{
b90d5ba0 30483 char profile = '\0';
2c6b98ea 30484 int arch = -1;
90ec0d68 30485 int virt_sec = 0;
bca38921 30486 int fp16_optional = 0;
2c6b98ea
TP
30487 int skip_exact_match = 0;
30488 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30489
54bab281
TP
30490 /* Autodetection mode, choose the architecture based the instructions
30491 actually used. */
30492 if (no_cpu_selected ())
30493 {
30494 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30495
54bab281
TP
30496 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30497 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30498
54bab281
TP
30499 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30500 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30501
54bab281 30502 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30503 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30504 flags_ext = arm_arch_none;
30505 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30506 selected_ext = flags_ext;
54bab281
TP
30507 selected_cpu = flags;
30508 }
30509 /* Otherwise, choose the architecture based on the capabilities of the
30510 requested cpu. */
30511 else
4d354d8b
TP
30512 {
30513 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30514 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30515 flags_ext = selected_ext;
30516 flags = selected_cpu;
30517 }
30518 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30519
ddd7f988 30520 /* Allow the user to override the reported architecture. */
4d354d8b 30521 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30522 {
4d354d8b 30523 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30524 flags_ext = arm_arch_none;
7a1d4c38 30525 }
2c6b98ea 30526 else
4d354d8b 30527 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30528
30529 /* When this function is run again after relaxation has happened there is no
30530 way to determine whether an architecture or CPU was specified by the user:
30531 - selected_cpu is set above for relaxation to work;
30532 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30533 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30534 Therefore, if not in -march=all case we first try an exact match and fall
30535 back to autodetection. */
30536 if (!skip_exact_match)
30537 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30538 if (arch == -1)
30539 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30540 if (arch == -1)
30541 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30542
ee065d83
PB
30543 /* Tag_CPU_name. */
30544 if (selected_cpu_name[0])
30545 {
91d6fa6a 30546 char *q;
ee065d83 30547
91d6fa6a
NC
30548 q = selected_cpu_name;
30549 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30550 {
30551 int i;
5f4273c7 30552
91d6fa6a
NC
30553 q += 4;
30554 for (i = 0; q[i]; i++)
30555 q[i] = TOUPPER (q[i]);
ee065d83 30556 }
91d6fa6a 30557 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 30558 }
62f3b8c8 30559
ee065d83 30560 /* Tag_CPU_arch. */
ee3c0378 30561 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 30562
62b3e311 30563 /* Tag_CPU_arch_profile. */
69239280
MGD
30564 if (profile != '\0')
30565 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 30566
15afaa63 30567 /* Tag_DSP_extension. */
4d354d8b 30568 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 30569 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 30570
2c6b98ea 30571 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 30572 /* Tag_ARM_ISA_use. */
ee3c0378 30573 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 30574 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 30575 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 30576
ee065d83 30577 /* Tag_THUMB_ISA_use. */
ee3c0378 30578 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 30579 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
30580 {
30581 int thumb_isa_use;
30582
30583 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 30584 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
30585 thumb_isa_use = 3;
30586 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30587 thumb_isa_use = 2;
30588 else
30589 thumb_isa_use = 1;
30590 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30591 }
62f3b8c8 30592
ee065d83 30593 /* Tag_VFP_arch. */
a715796b
TG
30594 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30595 aeabi_set_attribute_int (Tag_VFP_arch,
30596 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30597 ? 7 : 8);
bca38921 30598 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
30599 aeabi_set_attribute_int (Tag_VFP_arch,
30600 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30601 ? 5 : 6);
30602 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
30603 {
30604 fp16_optional = 1;
30605 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30606 }
ada65aa3 30607 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
30608 {
30609 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30610 fp16_optional = 1;
30611 }
ee3c0378
AS
30612 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30613 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30614 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 30615 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 30616 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 30617
4547cb56
NC
30618 /* Tag_ABI_HardFP_use. */
30619 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30620 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30621 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30622
ee065d83 30623 /* Tag_WMMX_arch. */
ee3c0378
AS
30624 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30625 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30626 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30627 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 30628
ee3c0378 30629 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
30630 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30631 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30632 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
30633 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30634 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30635 {
30636 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30637 {
30638 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30639 }
30640 else
30641 {
30642 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30643 fp16_optional = 1;
30644 }
30645 }
fa94de6b 30646
a7ad558c
AV
30647 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30648 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30649 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30650 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30651
ee3c0378 30652 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 30653 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 30654 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 30655
69239280
MGD
30656 /* Tag_DIV_use.
30657
30658 We set Tag_DIV_use to two when integer divide instructions have been used
30659 in ARM state, or when Thumb integer divide instructions have been used,
30660 but we have no architecture profile set, nor have we any ARM instructions.
30661
4ed7ed8d
TP
30662 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30663 by the base architecture.
bca38921 30664
69239280 30665 For new architectures we will have to check these tests. */
031254f2 30666 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
30667 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30668 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
30669 aeabi_set_attribute_int (Tag_DIV_use, 0);
30670 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30671 || (profile == '\0'
30672 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30673 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 30674 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
30675
30676 /* Tag_MP_extension_use. */
30677 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30678 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
30679
30680 /* Tag Virtualization_use. */
30681 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
30682 virt_sec |= 1;
30683 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30684 virt_sec |= 2;
30685 if (virt_sec != 0)
30686 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
30687}
30688
c168ce07
TP
30689/* Post relaxation hook. Recompute ARM attributes now that relaxation is
30690 finished and free extension feature bits which will not be used anymore. */
0198d5e6 30691
c168ce07
TP
30692void
30693arm_md_post_relax (void)
30694{
30695 aeabi_set_public_attributes ();
4d354d8b
TP
30696 XDELETE (mcpu_ext_opt);
30697 mcpu_ext_opt = NULL;
30698 XDELETE (march_ext_opt);
30699 march_ext_opt = NULL;
c168ce07
TP
30700}
30701
104d59d1 30702/* Add the default contents for the .ARM.attributes section. */
0198d5e6 30703
ee065d83
PB
30704void
30705arm_md_end (void)
30706{
ee065d83
PB
30707 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30708 return;
30709
30710 aeabi_set_public_attributes ();
ee065d83 30711}
8463be01 30712#endif /* OBJ_ELF */
ee065d83 30713
ee065d83
PB
30714/* Parse a .cpu directive. */
30715
30716static void
30717s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30718{
e74cfd16 30719 const struct arm_cpu_option_table *opt;
ee065d83
PB
30720 char *name;
30721 char saved_char;
30722
30723 name = input_line_pointer;
5f4273c7 30724 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30725 input_line_pointer++;
30726 saved_char = *input_line_pointer;
30727 *input_line_pointer = 0;
30728
30729 /* Skip the first "all" entry. */
30730 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30731 if (streq (opt->name, name))
30732 {
4d354d8b
TP
30733 selected_arch = opt->value;
30734 selected_ext = opt->ext;
30735 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 30736 if (opt->canonical_name)
5f4273c7 30737 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
30738 else
30739 {
30740 int i;
30741 for (i = 0; opt->name[i]; i++)
30742 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 30743
ee065d83
PB
30744 selected_cpu_name[i] = 0;
30745 }
4d354d8b
TP
30746 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30747
ee065d83
PB
30748 *input_line_pointer = saved_char;
30749 demand_empty_rest_of_line ();
30750 return;
30751 }
30752 as_bad (_("unknown cpu `%s'"), name);
30753 *input_line_pointer = saved_char;
30754 ignore_rest_of_line ();
30755}
30756
ee065d83
PB
30757/* Parse a .arch directive. */
30758
30759static void
30760s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30761{
e74cfd16 30762 const struct arm_arch_option_table *opt;
ee065d83
PB
30763 char saved_char;
30764 char *name;
30765
30766 name = input_line_pointer;
5f4273c7 30767 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30768 input_line_pointer++;
30769 saved_char = *input_line_pointer;
30770 *input_line_pointer = 0;
30771
30772 /* Skip the first "all" entry. */
30773 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30774 if (streq (opt->name, name))
30775 {
4d354d8b
TP
30776 selected_arch = opt->value;
30777 selected_ext = arm_arch_none;
30778 selected_cpu = selected_arch;
5f4273c7 30779 strcpy (selected_cpu_name, opt->name);
4d354d8b 30780 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30781 *input_line_pointer = saved_char;
30782 demand_empty_rest_of_line ();
30783 return;
30784 }
30785
30786 as_bad (_("unknown architecture `%s'\n"), name);
30787 *input_line_pointer = saved_char;
30788 ignore_rest_of_line ();
30789}
30790
7a1d4c38
PB
30791/* Parse a .object_arch directive. */
30792
30793static void
30794s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30795{
30796 const struct arm_arch_option_table *opt;
30797 char saved_char;
30798 char *name;
30799
30800 name = input_line_pointer;
5f4273c7 30801 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
30802 input_line_pointer++;
30803 saved_char = *input_line_pointer;
30804 *input_line_pointer = 0;
30805
30806 /* Skip the first "all" entry. */
30807 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30808 if (streq (opt->name, name))
30809 {
4d354d8b 30810 selected_object_arch = opt->value;
7a1d4c38
PB
30811 *input_line_pointer = saved_char;
30812 demand_empty_rest_of_line ();
30813 return;
30814 }
30815
30816 as_bad (_("unknown architecture `%s'\n"), name);
30817 *input_line_pointer = saved_char;
30818 ignore_rest_of_line ();
30819}
30820
69133863
MGD
30821/* Parse a .arch_extension directive. */
30822
30823static void
30824s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30825{
30826 const struct arm_option_extension_value_table *opt;
30827 char saved_char;
30828 char *name;
30829 int adding_value = 1;
30830
30831 name = input_line_pointer;
30832 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30833 input_line_pointer++;
30834 saved_char = *input_line_pointer;
30835 *input_line_pointer = 0;
30836
30837 if (strlen (name) >= 2
30838 && strncmp (name, "no", 2) == 0)
30839 {
30840 adding_value = 0;
30841 name += 2;
30842 }
30843
30844 for (opt = arm_extensions; opt->name != NULL; opt++)
30845 if (streq (opt->name, name))
30846 {
d942732e
TP
30847 int i, nb_allowed_archs =
30848 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30849 for (i = 0; i < nb_allowed_archs; i++)
30850 {
30851 /* Empty entry. */
4d354d8b 30852 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 30853 continue;
4d354d8b 30854 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
30855 break;
30856 }
30857
30858 if (i == nb_allowed_archs)
69133863
MGD
30859 {
30860 as_bad (_("architectural extension `%s' is not allowed for the "
30861 "current base architecture"), name);
30862 break;
30863 }
30864
30865 if (adding_value)
4d354d8b 30866 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 30867 opt->merge_value);
69133863 30868 else
4d354d8b 30869 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 30870
4d354d8b
TP
30871 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30872 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
30873 *input_line_pointer = saved_char;
30874 demand_empty_rest_of_line ();
3d030cdb
TP
30875 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30876 on this return so that duplicate extensions (extensions with the
30877 same name as a previous extension in the list) are not considered
30878 for command-line parsing. */
69133863
MGD
30879 return;
30880 }
30881
30882 if (opt->name == NULL)
e673710a 30883 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
30884
30885 *input_line_pointer = saved_char;
30886 ignore_rest_of_line ();
30887}
30888
ee065d83
PB
30889/* Parse a .fpu directive. */
30890
30891static void
30892s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30893{
69133863 30894 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
30895 char saved_char;
30896 char *name;
30897
30898 name = input_line_pointer;
5f4273c7 30899 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30900 input_line_pointer++;
30901 saved_char = *input_line_pointer;
30902 *input_line_pointer = 0;
5f4273c7 30903
ee065d83
PB
30904 for (opt = arm_fpus; opt->name != NULL; opt++)
30905 if (streq (opt->name, name))
30906 {
4d354d8b
TP
30907 selected_fpu = opt->value;
30908#ifndef CPU_DEFAULT
30909 if (no_cpu_selected ())
30910 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30911 else
30912#endif
30913 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30914 *input_line_pointer = saved_char;
30915 demand_empty_rest_of_line ();
30916 return;
30917 }
30918
30919 as_bad (_("unknown floating point format `%s'\n"), name);
30920 *input_line_pointer = saved_char;
30921 ignore_rest_of_line ();
30922}
ee065d83 30923
794ba86a 30924/* Copy symbol information. */
f31fef98 30925
794ba86a
DJ
30926void
30927arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30928{
30929 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30930}
e04befd0 30931
f31fef98 30932#ifdef OBJ_ELF
e04befd0
AS
30933/* Given a symbolic attribute NAME, return the proper integer value.
30934 Returns -1 if the attribute is not known. */
f31fef98 30935
e04befd0
AS
30936int
30937arm_convert_symbolic_attribute (const char *name)
30938{
f31fef98
NC
30939 static const struct
30940 {
30941 const char * name;
30942 const int tag;
30943 }
30944 attribute_table[] =
30945 {
30946 /* When you modify this table you should
30947 also modify the list in doc/c-arm.texi. */
e04befd0 30948#define T(tag) {#tag, tag}
f31fef98
NC
30949 T (Tag_CPU_raw_name),
30950 T (Tag_CPU_name),
30951 T (Tag_CPU_arch),
30952 T (Tag_CPU_arch_profile),
30953 T (Tag_ARM_ISA_use),
30954 T (Tag_THUMB_ISA_use),
75375b3e 30955 T (Tag_FP_arch),
f31fef98
NC
30956 T (Tag_VFP_arch),
30957 T (Tag_WMMX_arch),
30958 T (Tag_Advanced_SIMD_arch),
30959 T (Tag_PCS_config),
30960 T (Tag_ABI_PCS_R9_use),
30961 T (Tag_ABI_PCS_RW_data),
30962 T (Tag_ABI_PCS_RO_data),
30963 T (Tag_ABI_PCS_GOT_use),
30964 T (Tag_ABI_PCS_wchar_t),
30965 T (Tag_ABI_FP_rounding),
30966 T (Tag_ABI_FP_denormal),
30967 T (Tag_ABI_FP_exceptions),
30968 T (Tag_ABI_FP_user_exceptions),
30969 T (Tag_ABI_FP_number_model),
75375b3e 30970 T (Tag_ABI_align_needed),
f31fef98 30971 T (Tag_ABI_align8_needed),
75375b3e 30972 T (Tag_ABI_align_preserved),
f31fef98
NC
30973 T (Tag_ABI_align8_preserved),
30974 T (Tag_ABI_enum_size),
30975 T (Tag_ABI_HardFP_use),
30976 T (Tag_ABI_VFP_args),
30977 T (Tag_ABI_WMMX_args),
30978 T (Tag_ABI_optimization_goals),
30979 T (Tag_ABI_FP_optimization_goals),
30980 T (Tag_compatibility),
30981 T (Tag_CPU_unaligned_access),
75375b3e 30982 T (Tag_FP_HP_extension),
f31fef98
NC
30983 T (Tag_VFP_HP_extension),
30984 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
30985 T (Tag_MPextension_use),
30986 T (Tag_DIV_use),
f31fef98
NC
30987 T (Tag_nodefaults),
30988 T (Tag_also_compatible_with),
30989 T (Tag_conformance),
30990 T (Tag_T2EE_use),
30991 T (Tag_Virtualization_use),
15afaa63 30992 T (Tag_DSP_extension),
a7ad558c 30993 T (Tag_MVE_arch),
cd21e546 30994 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 30995#undef T
f31fef98 30996 };
e04befd0
AS
30997 unsigned int i;
30998
30999 if (name == NULL)
31000 return -1;
31001
f31fef98 31002 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31003 if (streq (name, attribute_table[i].name))
e04befd0
AS
31004 return attribute_table[i].tag;
31005
31006 return -1;
31007}
267bf995 31008
93ef582d
NC
31009/* Apply sym value for relocations only in the case that they are for
31010 local symbols in the same segment as the fixup and you have the
31011 respective architectural feature for blx and simple switches. */
0198d5e6 31012
267bf995 31013int
93ef582d 31014arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31015{
31016 if (fixP->fx_addsy
31017 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31018 /* PR 17444: If the local symbol is in a different section then a reloc
31019 will always be generated for it, so applying the symbol value now
31020 will result in a double offset being stored in the relocation. */
31021 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31022 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31023 {
31024 switch (fixP->fx_r_type)
31025 {
31026 case BFD_RELOC_ARM_PCREL_BLX:
31027 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31028 if (ARM_IS_FUNC (fixP->fx_addsy))
31029 return 1;
31030 break;
31031
31032 case BFD_RELOC_ARM_PCREL_CALL:
31033 case BFD_RELOC_THUMB_PCREL_BLX:
31034 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31035 return 1;
267bf995
RR
31036 break;
31037
31038 default:
31039 break;
31040 }
31041
31042 }
31043 return 0;
31044}
f31fef98 31045#endif /* OBJ_ELF */
This page took 4.059734 seconds and 4 git commands to generate.