x86: consolidate Disp<NN> handling a little
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex2,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
3993 && i.reg_operands == 1
3994 && i.imm_operands == 1
3995 && !i.types[1].bitfield.byte
3996 && i.op[0].imms->X_op == O_constant
3997 && fits_in_imm7 (i.op[0].imms->X_add_number)
3998 && ((i.tm.base_opcode == 0xa8
3999 && i.tm.extension_opcode == None)
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
ac0ab184 4012 if (base_regnum >= 4)
b6f8c7c4 4013 {
ac0ab184 4014 /* Handle SP, BP, SI, DI and R12-R15 registers. */
b6f8c7c4
L
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 }
4025 else if (flag_code == CODE_64BIT
d3d50934
L
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
b6f8c7c4
L
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
507916b8 4030 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && (((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 && i.tm.extension_opcode == None)
4037 || (i.tm.base_opcode == 0x80
4038 && i.tm.extension_opcode == 0x4)
4039 || ((i.tm.base_opcode == 0xf6
507916b8 4040 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4041 && i.tm.extension_opcode == 0x0)))
4042 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4043 && i.tm.base_opcode == 0x83
4044 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4045 || (i.types[0].bitfield.qword
4046 && ((i.reg_operands == 2
4047 && i.op[0].regs == i.op[1].regs
4048 && ((i.tm.base_opcode == 0x30
4049 || i.tm.base_opcode == 0x28)
4050 && i.tm.extension_opcode == None))
4051 || (i.reg_operands == 1
4052 && i.operands == 1
4053 && i.tm.base_opcode == 0x30
4054 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4055 {
4056 /* Optimize: -O:
4057 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4058 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4059 testq $imm31, %r64 -> testl $imm31, %r32
4060 xorq %r64, %r64 -> xorl %r32, %r32
4061 subq %r64, %r64 -> subl %r32, %r32
4062 movq $imm31, %r64 -> movl $imm31, %r32
4063 movq $imm32, %r64 -> movl $imm32, %r32
4064 */
4065 i.tm.opcode_modifier.norex64 = 1;
507916b8 4066 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4067 {
4068 /* Handle
4069 movq $imm31, %r64 -> movl $imm31, %r32
4070 movq $imm32, %r64 -> movl $imm32, %r32
4071 */
4072 i.tm.operand_types[0].bitfield.imm32 = 1;
4073 i.tm.operand_types[0].bitfield.imm32s = 0;
4074 i.tm.operand_types[0].bitfield.imm64 = 0;
4075 i.types[0].bitfield.imm32 = 1;
4076 i.types[0].bitfield.imm32s = 0;
4077 i.types[0].bitfield.imm64 = 0;
4078 i.types[1].bitfield.dword = 1;
4079 i.types[1].bitfield.qword = 0;
507916b8 4080 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4081 {
4082 /* Handle
4083 movq $imm31, %r64 -> movl $imm31, %r32
4084 */
507916b8 4085 i.tm.base_opcode = 0xb8;
b6f8c7c4 4086 i.tm.extension_opcode = None;
507916b8 4087 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4088 i.tm.opcode_modifier.shortform = 1;
4089 i.tm.opcode_modifier.modrm = 0;
4090 }
4091 }
4092 }
5641ec01
JB
4093 else if (optimize > 1
4094 && !optimize_for_space
4095 && i.reg_operands == 2
4096 && i.op[0].regs == i.op[1].regs
4097 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4098 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4099 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4100 {
4101 /* Optimize: -O2:
4102 andb %rN, %rN -> testb %rN, %rN
4103 andw %rN, %rN -> testw %rN, %rN
4104 andq %rN, %rN -> testq %rN, %rN
4105 orb %rN, %rN -> testb %rN, %rN
4106 orw %rN, %rN -> testw %rN, %rN
4107 orq %rN, %rN -> testq %rN, %rN
4108
4109 and outside of 64-bit mode
4110
4111 andl %rN, %rN -> testl %rN, %rN
4112 orl %rN, %rN -> testl %rN, %rN
4113 */
4114 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4115 }
99112332 4116 else if (i.reg_operands == 3
b6f8c7c4
L
4117 && i.op[0].regs == i.op[1].regs
4118 && !i.types[2].bitfield.xmmword
4119 && (i.tm.opcode_modifier.vex
7a69eac3 4120 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4121 && !i.rounding
e771e7c9 4122 && is_evex_encoding (&i.tm)
80c34c38 4123 && (i.vec_encoding != vex_encoding_evex
dd22218c 4124 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4125 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4126 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4127 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4128 && ((i.tm.base_opcode == 0x55
4129 || i.tm.base_opcode == 0x6655
4130 || i.tm.base_opcode == 0x66df
4131 || i.tm.base_opcode == 0x57
4132 || i.tm.base_opcode == 0x6657
8305403a
L
4133 || i.tm.base_opcode == 0x66ef
4134 || i.tm.base_opcode == 0x66f8
4135 || i.tm.base_opcode == 0x66f9
4136 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4137 || i.tm.base_opcode == 0x66fb
4138 || i.tm.base_opcode == 0x42
4139 || i.tm.base_opcode == 0x6642
4140 || i.tm.base_opcode == 0x47
4141 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4142 && i.tm.extension_opcode == None))
4143 {
99112332 4144 /* Optimize: -O1:
8305403a
L
4145 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4146 vpsubq and vpsubw:
b6f8c7c4
L
4147 EVEX VOP %zmmM, %zmmM, %zmmN
4148 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4149 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4150 EVEX VOP %ymmM, %ymmM, %ymmN
4151 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4152 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4153 VEX VOP %ymmM, %ymmM, %ymmN
4154 -> VEX VOP %xmmM, %xmmM, %xmmN
4155 VOP, one of vpandn and vpxor:
4156 VEX VOP %ymmM, %ymmM, %ymmN
4157 -> VEX VOP %xmmM, %xmmM, %xmmN
4158 VOP, one of vpandnd and vpandnq:
4159 EVEX VOP %zmmM, %zmmM, %zmmN
4160 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4161 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4162 EVEX VOP %ymmM, %ymmM, %ymmN
4163 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4164 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4165 VOP, one of vpxord and vpxorq:
4166 EVEX VOP %zmmM, %zmmM, %zmmN
4167 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4168 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4169 EVEX VOP %ymmM, %ymmM, %ymmN
4170 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4171 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4172 VOP, one of kxord and kxorq:
4173 VEX VOP %kM, %kM, %kN
4174 -> VEX kxorw %kM, %kM, %kN
4175 VOP, one of kandnd and kandnq:
4176 VEX VOP %kM, %kM, %kN
4177 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4178 */
e771e7c9 4179 if (is_evex_encoding (&i.tm))
b6f8c7c4 4180 {
7b1d7ca1 4181 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4182 {
4183 i.tm.opcode_modifier.vex = VEX128;
4184 i.tm.opcode_modifier.vexw = VEXW0;
4185 i.tm.opcode_modifier.evex = 0;
4186 }
7b1d7ca1 4187 else if (optimize > 1)
dd22218c
L
4188 i.tm.opcode_modifier.evex = EVEX128;
4189 else
4190 return;
b6f8c7c4 4191 }
f74a6307 4192 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4193 {
4194 i.tm.base_opcode &= 0xff;
4195 i.tm.opcode_modifier.vexw = VEXW0;
4196 }
b6f8c7c4
L
4197 else
4198 i.tm.opcode_modifier.vex = VEX128;
4199
4200 if (i.tm.opcode_modifier.vex)
4201 for (j = 0; j < 3; j++)
4202 {
4203 i.types[j].bitfield.xmmword = 1;
4204 i.types[j].bitfield.ymmword = 0;
4205 }
4206 }
392a5972 4207 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4208 && !i.types[0].bitfield.zmmword
392a5972 4209 && !i.types[1].bitfield.zmmword
97ed31ae 4210 && !i.mask
a0a1771e 4211 && !i.broadcast
97ed31ae 4212 && is_evex_encoding (&i.tm)
392a5972
L
4213 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4215 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4216 || (i.tm.base_opcode & ~4) == 0x66db
4217 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4218 && i.tm.extension_opcode == None)
4219 {
4220 /* Optimize: -O1:
4221 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4222 vmovdqu32 and vmovdqu64:
4223 EVEX VOP %xmmM, %xmmN
4224 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4225 EVEX VOP %ymmM, %ymmN
4226 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4227 EVEX VOP %xmmM, mem
4228 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4229 EVEX VOP %ymmM, mem
4230 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4231 EVEX VOP mem, %xmmN
4232 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4233 EVEX VOP mem, %ymmN
4234 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4235 VOP, one of vpand, vpandn, vpor, vpxor:
4236 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4237 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4238 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4239 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4240 EVEX VOP{d,q} mem, %xmmM, %xmmN
4241 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4242 EVEX VOP{d,q} mem, %ymmM, %ymmN
4243 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4244 */
a0a1771e 4245 for (j = 0; j < i.operands; j++)
392a5972
L
4246 if (operand_type_check (i.types[j], disp)
4247 && i.op[j].disps->X_op == O_constant)
4248 {
4249 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4250 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4251 bytes, we choose EVEX Disp8 over VEX Disp32. */
4252 int evex_disp8, vex_disp8;
4253 unsigned int memshift = i.memshift;
4254 offsetT n = i.op[j].disps->X_add_number;
4255
4256 evex_disp8 = fits_in_disp8 (n);
4257 i.memshift = 0;
4258 vex_disp8 = fits_in_disp8 (n);
4259 if (evex_disp8 != vex_disp8)
4260 {
4261 i.memshift = memshift;
4262 return;
4263 }
4264
4265 i.types[j].bitfield.disp8 = vex_disp8;
4266 break;
4267 }
4268 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4269 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4270 i.tm.opcode_modifier.vex
4271 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4272 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4273 /* VPAND, VPOR, and VPXOR are commutative. */
4274 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4275 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4276 i.tm.opcode_modifier.evex = 0;
4277 i.tm.opcode_modifier.masking = 0;
a0a1771e 4278 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4279 i.tm.opcode_modifier.disp8memshift = 0;
4280 i.memshift = 0;
a0a1771e
JB
4281 if (j < i.operands)
4282 i.types[j].bitfield.disp8
4283 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4284 }
b6f8c7c4
L
4285}
4286
252b5132
RH
4287/* This is the guts of the machine-dependent assembler. LINE points to a
4288 machine dependent instruction. This function is supposed to emit
4289 the frags/bytes it assembles to. */
4290
4291void
65da13b5 4292md_assemble (char *line)
252b5132 4293{
40fb9820 4294 unsigned int j;
83b16ac6 4295 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4296 const insn_template *t;
252b5132 4297
47926f60 4298 /* Initialize globals. */
252b5132
RH
4299 memset (&i, '\0', sizeof (i));
4300 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4301 i.reloc[j] = NO_RELOC;
252b5132
RH
4302 memset (disp_expressions, '\0', sizeof (disp_expressions));
4303 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4304 save_stack_p = save_stack;
252b5132
RH
4305
4306 /* First parse an instruction mnemonic & call i386_operand for the operands.
4307 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4308 start of a (possibly prefixed) mnemonic. */
252b5132 4309
29b0f896
AM
4310 line = parse_insn (line, mnemonic);
4311 if (line == NULL)
4312 return;
83b16ac6 4313 mnem_suffix = i.suffix;
252b5132 4314
29b0f896 4315 line = parse_operands (line, mnemonic);
ee86248c 4316 this_operand = -1;
8325cc63
JB
4317 xfree (i.memop1_string);
4318 i.memop1_string = NULL;
29b0f896
AM
4319 if (line == NULL)
4320 return;
252b5132 4321
29b0f896
AM
4322 /* Now we've parsed the mnemonic into a set of templates, and have the
4323 operands at hand. */
4324
4325 /* All intel opcodes have reversed operands except for "bound" and
4326 "enter". We also don't reverse intersegment "jmp" and "call"
4327 instructions with 2 immediate operands so that the immediate segment
050dfa73 4328 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4329 if (intel_syntax
4330 && i.operands > 1
29b0f896 4331 && (strcmp (mnemonic, "bound") != 0)
30123838 4332 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4333 && !(operand_type_check (i.types[0], imm)
4334 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4335 swap_operands ();
4336
ec56d5c0
JB
4337 /* The order of the immediates should be reversed
4338 for 2 immediates extrq and insertq instructions */
4339 if (i.imm_operands == 2
4340 && (strcmp (mnemonic, "extrq") == 0
4341 || strcmp (mnemonic, "insertq") == 0))
4342 swap_2_operands (0, 1);
4343
29b0f896
AM
4344 if (i.imm_operands)
4345 optimize_imm ();
4346
b300c311
L
4347 /* Don't optimize displacement for movabs since it only takes 64bit
4348 displacement. */
4349 if (i.disp_operands
a501d77e 4350 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4351 && (flag_code != CODE_64BIT
4352 || strcmp (mnemonic, "movabs") != 0))
4353 optimize_disp ();
29b0f896
AM
4354
4355 /* Next, we find a template that matches the given insn,
4356 making sure the overlap of the given operands types is consistent
4357 with the template operand types. */
252b5132 4358
83b16ac6 4359 if (!(t = match_template (mnem_suffix)))
29b0f896 4360 return;
252b5132 4361
7bab8ab5 4362 if (sse_check != check_none
81f8a913 4363 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4364 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4365 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4366 && (i.tm.cpu_flags.bitfield.cpusse
4367 || i.tm.cpu_flags.bitfield.cpusse2
4368 || i.tm.cpu_flags.bitfield.cpusse3
4369 || i.tm.cpu_flags.bitfield.cpussse3
4370 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4371 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4372 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4373 || i.tm.cpu_flags.bitfield.cpupclmul
4374 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4375 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4376 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4377 {
7bab8ab5 4378 (sse_check == check_warning
daf50ae7
L
4379 ? as_warn
4380 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4381 }
4382
321fd21e
L
4383 /* Zap movzx and movsx suffix. The suffix has been set from
4384 "word ptr" or "byte ptr" on the source operand in Intel syntax
4385 or extracted from mnemonic in AT&T syntax. But we'll use
4386 the destination register to choose the suffix for encoding. */
4387 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4388 {
321fd21e
L
4389 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4390 there is no suffix, the default will be byte extension. */
4391 if (i.reg_operands != 2
4392 && !i.suffix
7ab9ffdd 4393 && intel_syntax)
321fd21e
L
4394 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4395
4396 i.suffix = 0;
cd61ebfe 4397 }
24eab124 4398
40fb9820 4399 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4400 if (!add_prefix (FWAIT_OPCODE))
4401 return;
252b5132 4402
d5de92cf
L
4403 /* Check if REP prefix is OK. */
4404 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4405 {
4406 as_bad (_("invalid instruction `%s' after `%s'"),
4407 i.tm.name, i.rep_prefix);
4408 return;
4409 }
4410
c1ba0266
L
4411 /* Check for lock without a lockable instruction. Destination operand
4412 must be memory unless it is xchg (0x86). */
c32fa91d
L
4413 if (i.prefix[LOCK_PREFIX]
4414 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4415 || i.mem_operands == 0
4416 || (i.tm.base_opcode != 0x86
8dc0818e 4417 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4418 {
4419 as_bad (_("expecting lockable instruction after `lock'"));
4420 return;
4421 }
4422
7a8655d2
JB
4423 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4424 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4425 {
4426 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4427 return;
4428 }
4429
42164a71 4430 /* Check if HLE prefix is OK. */
165de32a 4431 if (i.hle_prefix && !check_hle ())
42164a71
L
4432 return;
4433
7e8b059b
L
4434 /* Check BND prefix. */
4435 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4436 as_bad (_("expecting valid branch instruction after `bnd'"));
4437
04ef582a 4438 /* Check NOTRACK prefix. */
9fef80d6
L
4439 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4440 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4441
327e8c42
JB
4442 if (i.tm.cpu_flags.bitfield.cpumpx)
4443 {
4444 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4445 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4446 else if (flag_code != CODE_16BIT
4447 ? i.prefix[ADDR_PREFIX]
4448 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4449 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4450 }
7e8b059b
L
4451
4452 /* Insert BND prefix. */
76d3a78a
JB
4453 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4454 {
4455 if (!i.prefix[BND_PREFIX])
4456 add_prefix (BND_PREFIX_OPCODE);
4457 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4458 {
4459 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4460 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4461 }
4462 }
7e8b059b 4463
29b0f896 4464 /* Check string instruction segment overrides. */
51c8edf6 4465 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4466 {
51c8edf6 4467 gas_assert (i.mem_operands);
29b0f896 4468 if (!check_string ())
5dd0794d 4469 return;
fc0763e6 4470 i.disp_operands = 0;
29b0f896 4471 }
5dd0794d 4472
b6f8c7c4
L
4473 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4474 optimize_encoding ();
4475
29b0f896
AM
4476 if (!process_suffix ())
4477 return;
e413e4e9 4478
bc0844ae
L
4479 /* Update operand types. */
4480 for (j = 0; j < i.operands; j++)
4481 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4482
29b0f896
AM
4483 /* Make still unresolved immediate matches conform to size of immediate
4484 given in i.suffix. */
4485 if (!finalize_imm ())
4486 return;
252b5132 4487
40fb9820 4488 if (i.types[0].bitfield.imm1)
29b0f896 4489 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4490
9afe6eb8
L
4491 /* We only need to check those implicit registers for instructions
4492 with 3 operands or less. */
4493 if (i.operands <= 3)
4494 for (j = 0; j < i.operands; j++)
75e5731b
JB
4495 if (i.types[j].bitfield.instance != InstanceNone
4496 && !i.types[j].bitfield.xmmword)
9afe6eb8 4497 i.reg_operands--;
40fb9820 4498
c0f3af97
L
4499 /* ImmExt should be processed after SSE2AVX. */
4500 if (!i.tm.opcode_modifier.sse2avx
4501 && i.tm.opcode_modifier.immext)
65da13b5 4502 process_immext ();
252b5132 4503
29b0f896
AM
4504 /* For insns with operands there are more diddles to do to the opcode. */
4505 if (i.operands)
4506 {
4507 if (!process_operands ())
4508 return;
4509 }
40fb9820 4510 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4511 {
4512 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4513 as_warn (_("translating to `%sp'"), i.tm.name);
4514 }
252b5132 4515
7a8655d2 4516 if (is_any_vex_encoding (&i.tm))
9e5e5283 4517 {
c1dc7af5 4518 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4519 {
c1dc7af5 4520 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4521 i.tm.name);
4522 return;
4523 }
c0f3af97 4524
9e5e5283
L
4525 if (i.tm.opcode_modifier.vex)
4526 build_vex_prefix (t);
4527 else
4528 build_evex_prefix ();
4529 }
43234a1e 4530
5dd85c99
SP
4531 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4532 instructions may define INT_OPCODE as well, so avoid this corner
4533 case for those instructions that use MODRM. */
4534 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4535 && !i.tm.opcode_modifier.modrm
4536 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4537 {
4538 i.tm.base_opcode = INT3_OPCODE;
4539 i.imm_operands = 0;
4540 }
252b5132 4541
0cfa3eb3
JB
4542 if ((i.tm.opcode_modifier.jump == JUMP
4543 || i.tm.opcode_modifier.jump == JUMP_BYTE
4544 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4545 && i.op[0].disps->X_op == O_constant)
4546 {
4547 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4548 the absolute address given by the constant. Since ix86 jumps and
4549 calls are pc relative, we need to generate a reloc. */
4550 i.op[0].disps->X_add_symbol = &abs_symbol;
4551 i.op[0].disps->X_op = O_symbol;
4552 }
252b5132 4553
40fb9820 4554 if (i.tm.opcode_modifier.rex64)
161a04f6 4555 i.rex |= REX_W;
252b5132 4556
29b0f896
AM
4557 /* For 8 bit registers we need an empty rex prefix. Also if the
4558 instruction already has a prefix, we need to convert old
4559 registers to new ones. */
773f551c 4560
bab6aec1 4561 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4562 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4563 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4564 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4565 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4566 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4567 && i.rex != 0))
4568 {
4569 int x;
726c5dcd 4570
29b0f896
AM
4571 i.rex |= REX_OPCODE;
4572 for (x = 0; x < 2; x++)
4573 {
4574 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4575 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4576 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4577 {
29b0f896
AM
4578 /* In case it is "hi" register, give up. */
4579 if (i.op[x].regs->reg_num > 3)
a540244d 4580 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4581 "instruction requiring REX prefix."),
a540244d 4582 register_prefix, i.op[x].regs->reg_name);
773f551c 4583
29b0f896
AM
4584 /* Otherwise it is equivalent to the extended register.
4585 Since the encoding doesn't change this is merely
4586 cosmetic cleanup for debug output. */
4587
4588 i.op[x].regs = i.op[x].regs + 8;
773f551c 4589 }
29b0f896
AM
4590 }
4591 }
773f551c 4592
6b6b6807
L
4593 if (i.rex == 0 && i.rex_encoding)
4594 {
4595 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4596 that uses legacy register. If it is "hi" register, don't add
4597 the REX_OPCODE byte. */
4598 int x;
4599 for (x = 0; x < 2; x++)
bab6aec1 4600 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4601 && i.types[x].bitfield.byte
4602 && (i.op[x].regs->reg_flags & RegRex64) == 0
4603 && i.op[x].regs->reg_num > 3)
4604 {
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
7ab9ffdd 4613 if (i.rex != 0)
29b0f896
AM
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
e379e5f3
L
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
29b0f896
AM
4629}
4630
4631static char *
e3bb37b5 4632parse_insn (char *line, char *mnemonic)
29b0f896
AM
4633{
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
5c6af06e 4637 int supported;
d3ce72d0 4638 const insn_template *t;
b6169b20 4639 char *dot_p = NULL;
29b0f896 4640
29b0f896
AM
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
b6169b20
L
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
29b0f896
AM
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4650 {
29b0f896
AM
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
e44823cf
JB
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
29b0f896
AM
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
e44823cf 4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
45288df1 4674
29b0f896 4675 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4677
29b0f896
AM
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
40fb9820 4681 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4682 {
c6fb90c8 4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
29b0f896
AM
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4695 && flag_code != CODE_64BIT
673fe0f0 4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
45288df1 4702 }
86fa6981 4703 if (current_templates->start->opcode_length == 0)
29b0f896 4704 {
86fa6981
L
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex2} */
4726 i.vec_encoding = vex_encoding_vex2;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
6b6b6807
L
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
b6f8c7c4
L
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
86fa6981
L
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4751 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4752 {
4e9ac44a
L
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
d777820b 4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
86fa6981 4769 }
29b0f896
AM
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
45288df1 4777
30a55f88 4778 if (!current_templates)
b6169b20 4779 {
07d5e953
JB
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
f8a5c266 4782 encoding. */
30a55f88 4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4784 i.dir_encoding = dir_encoding_swap;
8d63c93e 4785 else if (mnem_p - 3 == dot_p
a501d77e
L
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4789 else if (mnem_p - 4 == dot_p
f8a5c266
L
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
a501d77e 4793 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
d3ce72d0 4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4799 }
4800
29b0f896
AM
4801 if (!current_templates)
4802 {
b6169b20 4803check_suffix:
1c529385 4804 if (mnem_p > mnemonic)
29b0f896 4805 {
1c529385
LH
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
29b0f896 4808 {
1c529385
LH
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
1c529385
LH
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
29b0f896 4817 mnem_p[-1] = '\0';
d3ce72d0 4818 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
29b0f896 4845 }
29b0f896 4846 }
1c529385 4847
29b0f896
AM
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
252b5132 4854
0cfa3eb3
JB
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
252b5132 4887
29b0f896 4888 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
c0f3af97
L
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4897
548d0ee6
JB
4898 return l;
4899 }
29b0f896 4900 }
3629bb00 4901
548d0ee6
JB
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4912
548d0ee6 4913 return NULL;
29b0f896 4914}
252b5132 4915
29b0f896 4916static char *
e3bb37b5 4917parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4918{
4919 char *token_start;
3138f287 4920
29b0f896
AM
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
252b5132 4923
29b0f896
AM
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
d02603dc 4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
d02603dc 4939 token_start = l; /* After white space. */
29b0f896
AM
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
d02603dc 4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
9d46ce34 4991 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
1286ab78
L
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
29b0f896
AM
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
a7619375 5007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
7f3f1ea2 5027
29b0f896
AM
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040}
7f3f1ea2 5041
050dfa73 5042static void
4d456e3d 5043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5044{
5045 union i386_op temp_op;
40fb9820 5046 i386_operand_type temp_type;
c48dadc9 5047 unsigned int temp_flags;
050dfa73 5048 enum bfd_reloc_code_real temp_reloc;
4eed87de 5049
050dfa73
MM
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
c48dadc9
JB
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
050dfa73
MM
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
c48dadc9 5061
050dfa73
MM
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
050dfa73
MM
5087}
5088
29b0f896 5089static void
e3bb37b5 5090swap_operands (void)
29b0f896 5091{
b7c61d9a 5092 switch (i.operands)
050dfa73 5093 {
c0f3af97 5094 case 5:
b7c61d9a 5095 case 4:
4d456e3d 5096 swap_2_operands (1, i.operands - 2);
1a0670f3 5097 /* Fall through. */
b7c61d9a
L
5098 case 3:
5099 case 2:
4d456e3d 5100 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5101 break;
5102 default:
5103 abort ();
29b0f896 5104 }
29b0f896
AM
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113}
252b5132 5114
29b0f896
AM
5115/* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117static void
e3bb37b5 5118optimize_imm (void)
29b0f896
AM
5119{
5120 char guess_suffix = 0;
5121 int op;
252b5132 5122
29b0f896
AM
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5131 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
7ab9ffdd 5135 {
40fb9820
L
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
bab6aec1 5139 else if (i.types[op].bitfield.word)
252b5132 5140 {
40fb9820
L
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
bab6aec1 5144 else if (i.types[op].bitfield.dword)
40fb9820
L
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
bab6aec1 5149 else if (i.types[op].bitfield.qword)
40fb9820
L
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5152 break;
252b5132 5153 }
29b0f896
AM
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
40fb9820 5159 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5160 {
5161 switch (i.op[op].imms->X_op)
252b5132 5162 {
29b0f896
AM
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
252b5132 5166 {
29b0f896 5167 case LONG_MNEM_SUFFIX:
40fb9820
L
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5170 break;
5171 case WORD_MNEM_SUFFIX:
40fb9820
L
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5176 break;
5177 case BYTE_MNEM_SUFFIX:
40fb9820
L
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
29b0f896 5184 break;
252b5132 5185 }
252b5132 5186
29b0f896
AM
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
40fb9820 5192 if ((i.types[op].bitfield.imm16)
29b0f896 5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5194 {
29b0f896
AM
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
a28def75
L
5198#ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5200 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
a28def75 5208#endif
40fb9820 5209 i.types[op]
c6fb90c8
L
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5212
29b0f896
AM
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5216 i.types[op].bitfield.imm32 = 0;
29b0f896 5217 break;
252b5132 5218
29b0f896
AM
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
9cd96992
JB
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
40fb9820 5229 i386_operand_type mask, allowed;
d3ce72d0 5230 const insn_template *t;
9cd96992 5231
0dfbf9d7
L
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
40fb9820 5234
4eed87de
AM
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
bab6aec1
JB
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
9cd96992
JB
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
40fb9820
L
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
9cd96992
JB
5247 break;
5248 case LONG_MNEM_SUFFIX:
40fb9820 5249 mask.bitfield.imm32 = 1;
9cd96992
JB
5250 break;
5251 case WORD_MNEM_SUFFIX:
40fb9820 5252 mask.bitfield.imm16 = 1;
9cd96992
JB
5253 break;
5254 case BYTE_MNEM_SUFFIX:
40fb9820 5255 mask.bitfield.imm8 = 1;
9cd96992
JB
5256 break;
5257 default:
9cd96992
JB
5258 break;
5259 }
c6fb90c8 5260 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5261 if (!operand_type_all_zero (&allowed))
c6fb90c8 5262 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5263 }
29b0f896 5264 break;
252b5132 5265 }
29b0f896
AM
5266 }
5267}
47926f60 5268
29b0f896
AM
5269/* Try to use the smallest displacement type too. */
5270static void
e3bb37b5 5271optimize_disp (void)
29b0f896
AM
5272{
5273 int op;
3e73aa7c 5274
29b0f896 5275 for (op = i.operands; --op >= 0;)
40fb9820 5276 if (operand_type_check (i.types[op], disp))
252b5132 5277 {
b300c311 5278 if (i.op[op].disps->X_op == O_constant)
252b5132 5279 {
91d6fa6a 5280 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5281
40fb9820 5282 if (i.types[op].bitfield.disp16
91d6fa6a 5283 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
91d6fa6a 5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5289 i.types[op].bitfield.disp64 = 0;
b300c311 5290 }
a28def75
L
5291#ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5293 if (i.types[op].bitfield.disp32
91d6fa6a 5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
91d6fa6a
NC
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5301 i.types[op].bitfield.disp64 = 0;
b300c311 5302 }
a28def75 5303#endif
91d6fa6a 5304 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5305 {
40fb9820
L
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
b300c311
L
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
91d6fa6a 5316 if (fits_in_signed_long (op_disp))
28a9d8f5 5317 {
40fb9820
L
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5320 }
0e1147d9 5321 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5322 && fits_in_unsigned_long (op_disp))
40fb9820 5323 i.types[op].bitfield.disp32 = 1;
b300c311 5324 }
40fb9820
L
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
b5014f7a 5328 && fits_in_disp8 (op_disp))
40fb9820 5329 i.types[op].bitfield.disp8 = 1;
252b5132 5330 }
67a4f2b7
AO
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5341 }
5342 else
b300c311 5343 /* We only support 64bit displacement on constants. */
40fb9820 5344 i.types[op].bitfield.disp64 = 0;
252b5132 5345 }
29b0f896
AM
5346}
5347
4a1b91ea
L
5348/* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351static INLINE int
5352match_broadcast_size (const insn_template *t, unsigned int given)
5353{
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362}
5363
6c30d220
L
5364/* Check if operands are valid for the instruction. */
5365
5366static int
5367check_VecOperands (const insn_template *t)
5368{
43234a1e 5369 unsigned int op;
e2195274
JB
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
a5c311ca 5748 unsigned int j;
3ac21baa 5749 unsigned int found_cpu_match, size_match;
45664ddb 5750 unsigned int check_register;
5614d22c 5751 enum i386_error specific_error = 0;
29b0f896 5752
c0f3af97
L
5753#if MAX_OPERANDS != 5
5754# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5755#endif
5756
29b0f896 5757 found_reverse_match = 0;
539e75ad 5758 addr_prefix_disp = -1;
40fb9820 5759
dc2be329 5760 /* Prepare for mnemonic suffix check. */
40fb9820 5761 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5762 switch (mnem_suffix)
5763 {
5764 case BYTE_MNEM_SUFFIX:
5765 suffix_check.no_bsuf = 1;
5766 break;
5767 case WORD_MNEM_SUFFIX:
5768 suffix_check.no_wsuf = 1;
5769 break;
5770 case SHORT_MNEM_SUFFIX:
5771 suffix_check.no_ssuf = 1;
5772 break;
5773 case LONG_MNEM_SUFFIX:
5774 suffix_check.no_lsuf = 1;
5775 break;
5776 case QWORD_MNEM_SUFFIX:
5777 suffix_check.no_qsuf = 1;
5778 break;
5779 default:
5780 /* NB: In Intel syntax, normally we can check for memory operand
5781 size when there is no mnemonic suffix. But jmp and call have
5782 2 different encodings with Dword memory operand size, one with
5783 No_ldSuf and the other without. i.suffix is set to
5784 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5785 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5786 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5787 }
5788
01559ecc
L
5789 /* Must have right number of operands. */
5790 i.error = number_of_operands_mismatch;
5791
45aa61fe 5792 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5793 {
539e75ad 5794 addr_prefix_disp = -1;
dbbc8b7e 5795 found_reverse_match = 0;
539e75ad 5796
29b0f896
AM
5797 if (i.operands != t->operands)
5798 continue;
5799
50aecf8c 5800 /* Check processor support. */
a65babc9 5801 i.error = unsupported;
c0f3af97
L
5802 found_cpu_match = (cpu_flags_match (t)
5803 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5804 if (!found_cpu_match)
5805 continue;
5806
e1d4d893 5807 /* Check AT&T mnemonic. */
a65babc9 5808 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5809 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5810 continue;
5811
e92bae62 5812 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5813 i.error = unsupported_syntax;
5c07affc 5814 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5815 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5816 || (intel64 && t->opcode_modifier.amd64)
5817 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5818 continue;
5819
dc2be329 5820 /* Check the suffix. */
a65babc9 5821 i.error = invalid_instruction_suffix;
dc2be329
L
5822 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5823 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5824 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5825 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5826 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5827 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5828 continue;
29b0f896 5829
3ac21baa
JB
5830 size_match = operand_size_match (t);
5831 if (!size_match)
7d5e4556 5832 continue;
539e75ad 5833
6f2f06be
JB
5834 /* This is intentionally not
5835
0cfa3eb3 5836 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5837
5838 as the case of a missing * on the operand is accepted (perhaps with
5839 a warning, issued further down). */
0cfa3eb3 5840 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5841 {
5842 i.error = operand_type_mismatch;
5843 continue;
5844 }
5845
5c07affc
L
5846 for (j = 0; j < MAX_OPERANDS; j++)
5847 operand_types[j] = t->operand_types[j];
5848
45aa61fe
AM
5849 /* In general, don't allow 64-bit operands in 32-bit mode. */
5850 if (i.suffix == QWORD_MNEM_SUFFIX
5851 && flag_code != CODE_64BIT
5852 && (intel_syntax
40fb9820 5853 ? (!t->opcode_modifier.ignoresize
625cbd7a 5854 && !t->opcode_modifier.broadcast
45aa61fe
AM
5855 && !intel_float_operand (t->name))
5856 : intel_float_operand (t->name) != 2)
3528c362
JB
5857 && ((operand_types[0].bitfield.class != RegMMX
5858 && operand_types[0].bitfield.class != RegSIMD)
5859 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5860 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5861 && (t->base_opcode != 0x0fc7
5862 || t->extension_opcode != 1 /* cmpxchg8b */))
5863 continue;
5864
192dc9c6
JB
5865 /* In general, don't allow 32-bit operands on pre-386. */
5866 else if (i.suffix == LONG_MNEM_SUFFIX
5867 && !cpu_arch_flags.bitfield.cpui386
5868 && (intel_syntax
5869 ? (!t->opcode_modifier.ignoresize
5870 && !intel_float_operand (t->name))
5871 : intel_float_operand (t->name) != 2)
3528c362
JB
5872 && ((operand_types[0].bitfield.class != RegMMX
5873 && operand_types[0].bitfield.class != RegSIMD)
5874 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5875 && operand_types[t->operands > 1].bitfield.class
5876 != RegSIMD)))
192dc9c6
JB
5877 continue;
5878
29b0f896 5879 /* Do not verify operands when there are none. */
50aecf8c 5880 else
29b0f896 5881 {
c6fb90c8 5882 if (!t->operands)
2dbab7d5
L
5883 /* We've found a match; break out of loop. */
5884 break;
29b0f896 5885 }
252b5132 5886
48bcea9f
JB
5887 if (!t->opcode_modifier.jump
5888 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5889 {
5890 /* There should be only one Disp operand. */
5891 for (j = 0; j < MAX_OPERANDS; j++)
5892 if (operand_type_check (operand_types[j], disp))
539e75ad 5893 break;
48bcea9f
JB
5894 if (j < MAX_OPERANDS)
5895 {
5896 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5897
5898 addr_prefix_disp = j;
5899
5900 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5901 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5902 switch (flag_code)
40fb9820 5903 {
48bcea9f
JB
5904 case CODE_16BIT:
5905 override = !override;
5906 /* Fall through. */
5907 case CODE_32BIT:
5908 if (operand_types[j].bitfield.disp32
5909 && operand_types[j].bitfield.disp16)
40fb9820 5910 {
48bcea9f
JB
5911 operand_types[j].bitfield.disp16 = override;
5912 operand_types[j].bitfield.disp32 = !override;
40fb9820 5913 }
48bcea9f
JB
5914 operand_types[j].bitfield.disp32s = 0;
5915 operand_types[j].bitfield.disp64 = 0;
5916 break;
5917
5918 case CODE_64BIT:
5919 if (operand_types[j].bitfield.disp32s
5920 || operand_types[j].bitfield.disp64)
40fb9820 5921 {
48bcea9f
JB
5922 operand_types[j].bitfield.disp64 &= !override;
5923 operand_types[j].bitfield.disp32s &= !override;
5924 operand_types[j].bitfield.disp32 = override;
40fb9820 5925 }
48bcea9f
JB
5926 operand_types[j].bitfield.disp16 = 0;
5927 break;
40fb9820 5928 }
539e75ad 5929 }
48bcea9f 5930 }
539e75ad 5931
02a86693
L
5932 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5933 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5934 continue;
5935
56ffb741 5936 /* We check register size if needed. */
e2195274
JB
5937 if (t->opcode_modifier.checkregsize)
5938 {
5939 check_register = (1 << t->operands) - 1;
5940 if (i.broadcast)
5941 check_register &= ~(1 << i.broadcast->operand);
5942 }
5943 else
5944 check_register = 0;
5945
c6fb90c8 5946 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5947 switch (t->operands)
5948 {
5949 case 1:
40fb9820 5950 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5951 continue;
5952 break;
5953 case 2:
33eaf5de 5954 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5955 only in 32bit mode and we can use opcode 0x90. In 64bit
5956 mode, we can't use 0x90 for xchg %eax, %eax since it should
5957 zero-extend %eax to %rax. */
5958 if (flag_code == CODE_64BIT
5959 && t->base_opcode == 0x90
75e5731b
JB
5960 && i.types[0].bitfield.instance == Accum
5961 && i.types[0].bitfield.dword
5962 && i.types[1].bitfield.instance == Accum
5963 && i.types[1].bitfield.dword)
8b38ad71 5964 continue;
1212781b
JB
5965 /* xrelease mov %eax, <disp> is another special case. It must not
5966 match the accumulator-only encoding of mov. */
5967 if (flag_code != CODE_64BIT
5968 && i.hle_prefix
5969 && t->base_opcode == 0xa0
75e5731b 5970 && i.types[0].bitfield.instance == Accum
8dc0818e 5971 && (i.flags[1] & Operand_Mem))
1212781b 5972 continue;
f5eb1d70
JB
5973 /* Fall through. */
5974
5975 case 3:
3ac21baa
JB
5976 if (!(size_match & MATCH_STRAIGHT))
5977 goto check_reverse;
64c49ab3
JB
5978 /* Reverse direction of operands if swapping is possible in the first
5979 place (operands need to be symmetric) and
5980 - the load form is requested, and the template is a store form,
5981 - the store form is requested, and the template is a load form,
5982 - the non-default (swapped) form is requested. */
5983 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5984 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5985 && !operand_type_all_zero (&overlap1))
5986 switch (i.dir_encoding)
5987 {
5988 case dir_encoding_load:
5989 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5990 || t->opcode_modifier.regmem)
64c49ab3
JB
5991 goto check_reverse;
5992 break;
5993
5994 case dir_encoding_store:
5995 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5996 && !t->opcode_modifier.regmem)
64c49ab3
JB
5997 goto check_reverse;
5998 break;
5999
6000 case dir_encoding_swap:
6001 goto check_reverse;
6002
6003 case dir_encoding_default:
6004 break;
6005 }
86fa6981 6006 /* If we want store form, we skip the current load. */
64c49ab3
JB
6007 if ((i.dir_encoding == dir_encoding_store
6008 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6009 && i.mem_operands == 0
6010 && t->opcode_modifier.load)
fa99fab2 6011 continue;
1a0670f3 6012 /* Fall through. */
f48ff2ae 6013 case 4:
c0f3af97 6014 case 5:
c6fb90c8 6015 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6016 if (!operand_type_match (overlap0, i.types[0])
6017 || !operand_type_match (overlap1, i.types[1])
e2195274 6018 || ((check_register & 3) == 3
dc821c5f 6019 && !operand_type_register_match (i.types[0],
40fb9820 6020 operand_types[0],
dc821c5f 6021 i.types[1],
40fb9820 6022 operand_types[1])))
29b0f896
AM
6023 {
6024 /* Check if other direction is valid ... */
38e314eb 6025 if (!t->opcode_modifier.d)
29b0f896
AM
6026 continue;
6027
b6169b20 6028check_reverse:
3ac21baa
JB
6029 if (!(size_match & MATCH_REVERSE))
6030 continue;
29b0f896 6031 /* Try reversing direction of operands. */
f5eb1d70
JB
6032 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6033 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6034 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6035 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6036 || (check_register
dc821c5f 6037 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6038 operand_types[i.operands - 1],
6039 i.types[i.operands - 1],
45664ddb 6040 operand_types[0])))
29b0f896
AM
6041 {
6042 /* Does not match either direction. */
6043 continue;
6044 }
38e314eb 6045 /* found_reverse_match holds which of D or FloatR
29b0f896 6046 we've found. */
38e314eb
JB
6047 if (!t->opcode_modifier.d)
6048 found_reverse_match = 0;
6049 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6050 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6051 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6052 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6053 || operand_types[0].bitfield.class == RegMMX
6054 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6055 || is_any_vex_encoding(t))
6056 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6057 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6058 else
38e314eb 6059 found_reverse_match = Opcode_D;
40fb9820 6060 if (t->opcode_modifier.floatr)
8a2ed489 6061 found_reverse_match |= Opcode_FloatR;
29b0f896 6062 }
f48ff2ae 6063 else
29b0f896 6064 {
f48ff2ae 6065 /* Found a forward 2 operand match here. */
d1cbb4db
L
6066 switch (t->operands)
6067 {
c0f3af97
L
6068 case 5:
6069 overlap4 = operand_type_and (i.types[4],
6070 operand_types[4]);
1a0670f3 6071 /* Fall through. */
d1cbb4db 6072 case 4:
c6fb90c8
L
6073 overlap3 = operand_type_and (i.types[3],
6074 operand_types[3]);
1a0670f3 6075 /* Fall through. */
d1cbb4db 6076 case 3:
c6fb90c8
L
6077 overlap2 = operand_type_and (i.types[2],
6078 operand_types[2]);
d1cbb4db
L
6079 break;
6080 }
29b0f896 6081
f48ff2ae
L
6082 switch (t->operands)
6083 {
c0f3af97
L
6084 case 5:
6085 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6086 || !operand_type_register_match (i.types[3],
c0f3af97 6087 operand_types[3],
c0f3af97
L
6088 i.types[4],
6089 operand_types[4]))
6090 continue;
1a0670f3 6091 /* Fall through. */
f48ff2ae 6092 case 4:
40fb9820 6093 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6094 || ((check_register & 0xa) == 0xa
6095 && !operand_type_register_match (i.types[1],
f7768225
JB
6096 operand_types[1],
6097 i.types[3],
e2195274
JB
6098 operand_types[3]))
6099 || ((check_register & 0xc) == 0xc
6100 && !operand_type_register_match (i.types[2],
6101 operand_types[2],
6102 i.types[3],
6103 operand_types[3])))
f48ff2ae 6104 continue;
1a0670f3 6105 /* Fall through. */
f48ff2ae
L
6106 case 3:
6107 /* Here we make use of the fact that there are no
23e42951 6108 reverse match 3 operand instructions. */
40fb9820 6109 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6110 || ((check_register & 5) == 5
6111 && !operand_type_register_match (i.types[0],
23e42951
JB
6112 operand_types[0],
6113 i.types[2],
e2195274
JB
6114 operand_types[2]))
6115 || ((check_register & 6) == 6
6116 && !operand_type_register_match (i.types[1],
6117 operand_types[1],
6118 i.types[2],
6119 operand_types[2])))
f48ff2ae
L
6120 continue;
6121 break;
6122 }
29b0f896 6123 }
f48ff2ae 6124 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6125 slip through to break. */
6126 }
3629bb00 6127 if (!found_cpu_match)
dbbc8b7e 6128 continue;
c0f3af97 6129
5614d22c
JB
6130 /* Check if vector and VEX operands are valid. */
6131 if (check_VecOperands (t) || VEX_check_operands (t))
6132 {
6133 specific_error = i.error;
6134 continue;
6135 }
a683cc34 6136
29b0f896
AM
6137 /* We've found a match; break out of loop. */
6138 break;
6139 }
6140
6141 if (t == current_templates->end)
6142 {
6143 /* We found no match. */
a65babc9 6144 const char *err_msg;
5614d22c 6145 switch (specific_error ? specific_error : i.error)
a65babc9
L
6146 {
6147 default:
6148 abort ();
86e026a4 6149 case operand_size_mismatch:
a65babc9
L
6150 err_msg = _("operand size mismatch");
6151 break;
6152 case operand_type_mismatch:
6153 err_msg = _("operand type mismatch");
6154 break;
6155 case register_type_mismatch:
6156 err_msg = _("register type mismatch");
6157 break;
6158 case number_of_operands_mismatch:
6159 err_msg = _("number of operands mismatch");
6160 break;
6161 case invalid_instruction_suffix:
6162 err_msg = _("invalid instruction suffix");
6163 break;
6164 case bad_imm4:
4a2608e3 6165 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6166 break;
a65babc9
L
6167 case unsupported_with_intel_mnemonic:
6168 err_msg = _("unsupported with Intel mnemonic");
6169 break;
6170 case unsupported_syntax:
6171 err_msg = _("unsupported syntax");
6172 break;
6173 case unsupported:
35262a23 6174 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6175 current_templates->start->name);
6176 return NULL;
6c30d220
L
6177 case invalid_vsib_address:
6178 err_msg = _("invalid VSIB address");
6179 break;
7bab8ab5
JB
6180 case invalid_vector_register_set:
6181 err_msg = _("mask, index, and destination registers must be distinct");
6182 break;
6c30d220
L
6183 case unsupported_vector_index_register:
6184 err_msg = _("unsupported vector index register");
6185 break;
43234a1e
L
6186 case unsupported_broadcast:
6187 err_msg = _("unsupported broadcast");
6188 break;
43234a1e
L
6189 case broadcast_needed:
6190 err_msg = _("broadcast is needed for operand of such type");
6191 break;
6192 case unsupported_masking:
6193 err_msg = _("unsupported masking");
6194 break;
6195 case mask_not_on_destination:
6196 err_msg = _("mask not on destination operand");
6197 break;
6198 case no_default_mask:
6199 err_msg = _("default mask isn't allowed");
6200 break;
6201 case unsupported_rc_sae:
6202 err_msg = _("unsupported static rounding/sae");
6203 break;
6204 case rc_sae_operand_not_last_imm:
6205 if (intel_syntax)
6206 err_msg = _("RC/SAE operand must precede immediate operands");
6207 else
6208 err_msg = _("RC/SAE operand must follow immediate operands");
6209 break;
6210 case invalid_register_operand:
6211 err_msg = _("invalid register operand");
6212 break;
a65babc9
L
6213 }
6214 as_bad (_("%s for `%s'"), err_msg,
891edac4 6215 current_templates->start->name);
fa99fab2 6216 return NULL;
29b0f896 6217 }
252b5132 6218
29b0f896
AM
6219 if (!quiet_warnings)
6220 {
6221 if (!intel_syntax
0cfa3eb3 6222 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6223 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6224
40fb9820
L
6225 if (t->opcode_modifier.isprefix
6226 && t->opcode_modifier.ignoresize)
29b0f896
AM
6227 {
6228 /* Warn them that a data or address size prefix doesn't
6229 affect assembly of the next line of code. */
6230 as_warn (_("stand-alone `%s' prefix"), t->name);
6231 }
6232 }
6233
6234 /* Copy the template we found. */
6235 i.tm = *t;
539e75ad
L
6236
6237 if (addr_prefix_disp != -1)
6238 i.tm.operand_types[addr_prefix_disp]
6239 = operand_types[addr_prefix_disp];
6240
29b0f896
AM
6241 if (found_reverse_match)
6242 {
dfd69174
JB
6243 /* If we found a reverse match we must alter the opcode direction
6244 bit and clear/flip the regmem modifier one. found_reverse_match
6245 holds bits to change (different for int & float insns). */
29b0f896
AM
6246
6247 i.tm.base_opcode ^= found_reverse_match;
6248
f5eb1d70
JB
6249 i.tm.operand_types[0] = operand_types[i.operands - 1];
6250 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6251
6252 /* Certain SIMD insns have their load forms specified in the opcode
6253 table, and hence we need to _set_ RegMem instead of clearing it.
6254 We need to avoid setting the bit though on insns like KMOVW. */
6255 i.tm.opcode_modifier.regmem
6256 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6257 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6258 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6259 }
6260
fa99fab2 6261 return t;
29b0f896
AM
6262}
6263
6264static int
e3bb37b5 6265check_string (void)
29b0f896 6266{
51c8edf6
JB
6267 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6268 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6269
51c8edf6 6270 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6271 {
51c8edf6
JB
6272 as_bad (_("`%s' operand %u must use `%ses' segment"),
6273 i.tm.name,
6274 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6275 register_prefix);
6276 return 0;
29b0f896 6277 }
51c8edf6
JB
6278
6279 /* There's only ever one segment override allowed per instruction.
6280 This instruction possibly has a legal segment override on the
6281 second operand, so copy the segment to where non-string
6282 instructions store it, allowing common code. */
6283 i.seg[op] = i.seg[1];
6284
29b0f896
AM
6285 return 1;
6286}
6287
6288static int
543613e9 6289process_suffix (void)
29b0f896
AM
6290{
6291 /* If matched instruction specifies an explicit instruction mnemonic
6292 suffix, use it. */
673fe0f0 6293 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6294 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6295 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6296 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6297 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6298 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6299 else if (i.reg_operands
6300 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6301 {
6302 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6303 based on GPR operands. */
29b0f896
AM
6304 if (!i.suffix)
6305 {
6306 /* We take i.suffix from the last register operand specified,
6307 Destination register type is more significant than source
381d071f
L
6308 register type. crc32 in SSE4.2 prefers source register
6309 type. */
bab6aec1
JB
6310 if (i.tm.base_opcode == 0xf20f38f0
6311 && i.types[0].bitfield.class == Reg)
381d071f 6312 {
556059dd
JB
6313 if (i.types[0].bitfield.byte)
6314 i.suffix = BYTE_MNEM_SUFFIX;
6315 else if (i.types[0].bitfield.word)
40fb9820 6316 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6317 else if (i.types[0].bitfield.dword)
40fb9820 6318 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6319 else if (i.types[0].bitfield.qword)
40fb9820 6320 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6321 }
6322
6323 if (!i.suffix)
6324 {
6325 int op;
6326
556059dd 6327 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6328 {
6329 /* We have to know the operand size for crc32. */
6330 as_bad (_("ambiguous memory operand size for `%s`"),
6331 i.tm.name);
6332 return 0;
6333 }
6334
381d071f 6335 for (op = i.operands; --op >= 0;)
75e5731b
JB
6336 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6337 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6338 {
bab6aec1 6339 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6340 continue;
6341 if (i.types[op].bitfield.byte)
6342 i.suffix = BYTE_MNEM_SUFFIX;
6343 else if (i.types[op].bitfield.word)
6344 i.suffix = WORD_MNEM_SUFFIX;
6345 else if (i.types[op].bitfield.dword)
6346 i.suffix = LONG_MNEM_SUFFIX;
6347 else if (i.types[op].bitfield.qword)
6348 i.suffix = QWORD_MNEM_SUFFIX;
6349 else
6350 continue;
6351 break;
381d071f
L
6352 }
6353 }
29b0f896
AM
6354 }
6355 else if (i.suffix == BYTE_MNEM_SUFFIX)
6356 {
2eb952a4
L
6357 if (intel_syntax
6358 && i.tm.opcode_modifier.ignoresize
6359 && i.tm.opcode_modifier.no_bsuf)
6360 i.suffix = 0;
6361 else if (!check_byte_reg ())
29b0f896
AM
6362 return 0;
6363 }
6364 else if (i.suffix == LONG_MNEM_SUFFIX)
6365 {
2eb952a4
L
6366 if (intel_syntax
6367 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6368 && i.tm.opcode_modifier.no_lsuf
6369 && !i.tm.opcode_modifier.todword
6370 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6371 i.suffix = 0;
6372 else if (!check_long_reg ())
29b0f896
AM
6373 return 0;
6374 }
6375 else if (i.suffix == QWORD_MNEM_SUFFIX)
6376 {
955e1e6a
L
6377 if (intel_syntax
6378 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6379 && i.tm.opcode_modifier.no_qsuf
6380 && !i.tm.opcode_modifier.todword
6381 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6382 i.suffix = 0;
6383 else if (!check_qword_reg ())
29b0f896
AM
6384 return 0;
6385 }
6386 else if (i.suffix == WORD_MNEM_SUFFIX)
6387 {
2eb952a4
L
6388 if (intel_syntax
6389 && i.tm.opcode_modifier.ignoresize
6390 && i.tm.opcode_modifier.no_wsuf)
6391 i.suffix = 0;
6392 else if (!check_word_reg ())
29b0f896
AM
6393 return 0;
6394 }
40fb9820 6395 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6396 /* Do nothing if the instruction is going to ignore the prefix. */
6397 ;
6398 else
6399 abort ();
6400 }
40fb9820 6401 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6402 && !i.suffix
6403 /* exclude fldenv/frstor/fsave/fstenv */
3036c899
JB
6404 && i.tm.opcode_modifier.no_ssuf
6405 /* exclude sysret */
6406 && i.tm.base_opcode != 0x0f07)
29b0f896 6407 {
13e600d0
JB
6408 i.suffix = stackop_size;
6409 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6410 {
6411 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6412 .code16gcc directive to support 16-bit mode with
6413 32-bit address. For IRET without a suffix, generate
6414 16-bit IRET (opcode 0xcf) to return from an interrupt
6415 handler. */
13e600d0
JB
6416 if (i.tm.base_opcode == 0xcf)
6417 {
6418 i.suffix = WORD_MNEM_SUFFIX;
6419 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6420 }
6421 /* Warn about changed behavior for segment register push/pop. */
6422 else if ((i.tm.base_opcode | 1) == 0x07)
6423 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6424 i.tm.name);
06f74c5c 6425 }
29b0f896 6426 }
9306ca4a
JB
6427 else if (intel_syntax
6428 && !i.suffix
0cfa3eb3
JB
6429 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6430 || i.tm.opcode_modifier.jump == JUMP_BYTE
6431 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6432 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6433 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6434 {
6435 switch (flag_code)
6436 {
6437 case CODE_64BIT:
40fb9820 6438 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6439 {
6440 i.suffix = QWORD_MNEM_SUFFIX;
6441 break;
6442 }
1a0670f3 6443 /* Fall through. */
9306ca4a 6444 case CODE_32BIT:
40fb9820 6445 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6446 i.suffix = LONG_MNEM_SUFFIX;
6447 break;
6448 case CODE_16BIT:
40fb9820 6449 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6450 i.suffix = WORD_MNEM_SUFFIX;
6451 break;
6452 }
6453 }
252b5132 6454
9306ca4a 6455 if (!i.suffix)
29b0f896 6456 {
9306ca4a
JB
6457 if (!intel_syntax)
6458 {
40fb9820 6459 if (i.tm.opcode_modifier.w)
9306ca4a 6460 {
4eed87de
AM
6461 as_bad (_("no instruction mnemonic suffix given and "
6462 "no register operands; can't size instruction"));
9306ca4a
JB
6463 return 0;
6464 }
6465 }
6466 else
6467 {
40fb9820 6468 unsigned int suffixes;
7ab9ffdd 6469
40fb9820
L
6470 suffixes = !i.tm.opcode_modifier.no_bsuf;
6471 if (!i.tm.opcode_modifier.no_wsuf)
6472 suffixes |= 1 << 1;
6473 if (!i.tm.opcode_modifier.no_lsuf)
6474 suffixes |= 1 << 2;
fc4adea1 6475 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6476 suffixes |= 1 << 3;
6477 if (!i.tm.opcode_modifier.no_ssuf)
6478 suffixes |= 1 << 4;
c2b9da16 6479 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6480 suffixes |= 1 << 5;
6481
6482 /* There are more than suffix matches. */
6483 if (i.tm.opcode_modifier.w
9306ca4a 6484 || ((suffixes & (suffixes - 1))
40fb9820
L
6485 && !i.tm.opcode_modifier.defaultsize
6486 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6487 {
6488 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6489 return 0;
6490 }
6491 }
29b0f896 6492 }
252b5132 6493
d2224064
JB
6494 /* Change the opcode based on the operand size given by i.suffix. */
6495 switch (i.suffix)
29b0f896 6496 {
d2224064
JB
6497 /* Size floating point instruction. */
6498 case LONG_MNEM_SUFFIX:
6499 if (i.tm.opcode_modifier.floatmf)
6500 {
6501 i.tm.base_opcode ^= 4;
6502 break;
6503 }
6504 /* fall through */
6505 case WORD_MNEM_SUFFIX:
6506 case QWORD_MNEM_SUFFIX:
29b0f896 6507 /* It's not a byte, select word/dword operation. */
40fb9820 6508 if (i.tm.opcode_modifier.w)
29b0f896 6509 {
40fb9820 6510 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6511 i.tm.base_opcode |= 8;
6512 else
6513 i.tm.base_opcode |= 1;
6514 }
d2224064
JB
6515 /* fall through */
6516 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6517 /* Now select between word & dword operations via the operand
6518 size prefix, except for instructions that will ignore this
6519 prefix anyway. */
75c0a438 6520 if (i.reg_operands > 0
bab6aec1 6521 && i.types[0].bitfield.class == Reg
75c0a438 6522 && i.tm.opcode_modifier.addrprefixopreg
474da251 6523 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6524 || i.operands == 1))
cb712a9e 6525 {
ca61edf2
L
6526 /* The address size override prefix changes the size of the
6527 first operand. */
40fb9820 6528 if ((flag_code == CODE_32BIT
75c0a438 6529 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6530 || (flag_code != CODE_32BIT
75c0a438 6531 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6532 if (!add_prefix (ADDR_PREFIX_OPCODE))
6533 return 0;
6534 }
6535 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6536 && !i.tm.opcode_modifier.ignoresize
6537 && !i.tm.opcode_modifier.floatmf
a38d7118 6538 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6539 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6540 || (flag_code == CODE_64BIT
0cfa3eb3 6541 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6542 {
6543 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6544
0cfa3eb3 6545 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6546 prefix = ADDR_PREFIX_OPCODE;
252b5132 6547
29b0f896
AM
6548 if (!add_prefix (prefix))
6549 return 0;
24eab124 6550 }
252b5132 6551
29b0f896
AM
6552 /* Set mode64 for an operand. */
6553 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6554 && flag_code == CODE_64BIT
d2224064 6555 && !i.tm.opcode_modifier.norex64
46e883c5 6556 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6557 need rex64. */
6558 && ! (i.operands == 2
6559 && i.tm.base_opcode == 0x90
6560 && i.tm.extension_opcode == None
75e5731b
JB
6561 && i.types[0].bitfield.instance == Accum
6562 && i.types[0].bitfield.qword
6563 && i.types[1].bitfield.instance == Accum
6564 && i.types[1].bitfield.qword))
d2224064 6565 i.rex |= REX_W;
3e73aa7c 6566
d2224064 6567 break;
29b0f896 6568 }
7ecd2f8b 6569
c0a30a9f
L
6570 if (i.reg_operands != 0
6571 && i.operands > 1
6572 && i.tm.opcode_modifier.addrprefixopreg
474da251 6573 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6574 {
6575 /* Check invalid register operand when the address size override
6576 prefix changes the size of register operands. */
6577 unsigned int op;
6578 enum { need_word, need_dword, need_qword } need;
6579
6580 if (flag_code == CODE_32BIT)
6581 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6582 else
6583 {
6584 if (i.prefix[ADDR_PREFIX])
6585 need = need_dword;
6586 else
6587 need = flag_code == CODE_64BIT ? need_qword : need_word;
6588 }
6589
6590 for (op = 0; op < i.operands; op++)
bab6aec1 6591 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6592 && ((need == need_word
6593 && !i.op[op].regs->reg_type.bitfield.word)
6594 || (need == need_dword
6595 && !i.op[op].regs->reg_type.bitfield.dword)
6596 || (need == need_qword
6597 && !i.op[op].regs->reg_type.bitfield.qword)))
6598 {
6599 as_bad (_("invalid register operand size for `%s'"),
6600 i.tm.name);
6601 return 0;
6602 }
6603 }
6604
29b0f896
AM
6605 return 1;
6606}
3e73aa7c 6607
29b0f896 6608static int
543613e9 6609check_byte_reg (void)
29b0f896
AM
6610{
6611 int op;
543613e9 6612
29b0f896
AM
6613 for (op = i.operands; --op >= 0;)
6614 {
dc821c5f 6615 /* Skip non-register operands. */
bab6aec1 6616 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6617 continue;
6618
29b0f896
AM
6619 /* If this is an eight bit register, it's OK. If it's the 16 or
6620 32 bit version of an eight bit register, we will just use the
6621 low portion, and that's OK too. */
dc821c5f 6622 if (i.types[op].bitfield.byte)
29b0f896
AM
6623 continue;
6624
5a819eb9 6625 /* I/O port address operands are OK too. */
75e5731b
JB
6626 if (i.tm.operand_types[op].bitfield.instance == RegD
6627 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6628 continue;
6629
9344ff29
L
6630 /* crc32 doesn't generate this warning. */
6631 if (i.tm.base_opcode == 0xf20f38f0)
6632 continue;
6633
dc821c5f
JB
6634 if ((i.types[op].bitfield.word
6635 || i.types[op].bitfield.dword
6636 || i.types[op].bitfield.qword)
5a819eb9
JB
6637 && i.op[op].regs->reg_num < 4
6638 /* Prohibit these changes in 64bit mode, since the lowering
6639 would be more complicated. */
6640 && flag_code != CODE_64BIT)
29b0f896 6641 {
29b0f896 6642#if REGISTER_WARNINGS
5a819eb9 6643 if (!quiet_warnings)
a540244d
L
6644 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6645 register_prefix,
dc821c5f 6646 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6647 ? REGNAM_AL - REGNAM_AX
6648 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6649 register_prefix,
29b0f896
AM
6650 i.op[op].regs->reg_name,
6651 i.suffix);
6652#endif
6653 continue;
6654 }
6655 /* Any other register is bad. */
bab6aec1 6656 if (i.types[op].bitfield.class == Reg
3528c362
JB
6657 || i.types[op].bitfield.class == RegMMX
6658 || i.types[op].bitfield.class == RegSIMD
00cee14f 6659 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6660 || i.types[op].bitfield.class == RegCR
6661 || i.types[op].bitfield.class == RegDR
6662 || i.types[op].bitfield.class == RegTR)
29b0f896 6663 {
a540244d
L
6664 as_bad (_("`%s%s' not allowed with `%s%c'"),
6665 register_prefix,
29b0f896
AM
6666 i.op[op].regs->reg_name,
6667 i.tm.name,
6668 i.suffix);
6669 return 0;
6670 }
6671 }
6672 return 1;
6673}
6674
6675static int
e3bb37b5 6676check_long_reg (void)
29b0f896
AM
6677{
6678 int op;
6679
6680 for (op = i.operands; --op >= 0;)
dc821c5f 6681 /* Skip non-register operands. */
bab6aec1 6682 if (i.types[op].bitfield.class != Reg)
dc821c5f 6683 continue;
29b0f896
AM
6684 /* Reject eight bit registers, except where the template requires
6685 them. (eg. movzb) */
dc821c5f 6686 else if (i.types[op].bitfield.byte
bab6aec1 6687 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6688 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6689 && (i.tm.operand_types[op].bitfield.word
6690 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6691 {
a540244d
L
6692 as_bad (_("`%s%s' not allowed with `%s%c'"),
6693 register_prefix,
29b0f896
AM
6694 i.op[op].regs->reg_name,
6695 i.tm.name,
6696 i.suffix);
6697 return 0;
6698 }
e4630f71 6699 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6700 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6701 && i.types[op].bitfield.word
bab6aec1 6702 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6703 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6704 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6705 {
6706 /* Prohibit these changes in the 64bit mode, since the
6707 lowering is more complicated. */
6708 if (flag_code == CODE_64BIT)
252b5132 6709 {
2b5d6a91 6710 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6711 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6712 i.suffix);
6713 return 0;
252b5132 6714 }
29b0f896 6715#if REGISTER_WARNINGS
cecf1424
JB
6716 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6717 register_prefix,
6718 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6719 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6720#endif
252b5132 6721 }
e4630f71 6722 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6723 else if (i.types[op].bitfield.qword
bab6aec1 6724 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6725 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6726 && i.tm.operand_types[op].bitfield.dword)
252b5132 6727 {
34828aad 6728 if (intel_syntax
ca61edf2 6729 && i.tm.opcode_modifier.toqword
3528c362 6730 && i.types[0].bitfield.class != RegSIMD)
34828aad 6731 {
ca61edf2 6732 /* Convert to QWORD. We want REX byte. */
34828aad
L
6733 i.suffix = QWORD_MNEM_SUFFIX;
6734 }
6735 else
6736 {
2b5d6a91 6737 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6738 register_prefix, i.op[op].regs->reg_name,
6739 i.suffix);
6740 return 0;
6741 }
29b0f896
AM
6742 }
6743 return 1;
6744}
252b5132 6745
29b0f896 6746static int
e3bb37b5 6747check_qword_reg (void)
29b0f896
AM
6748{
6749 int op;
252b5132 6750
29b0f896 6751 for (op = i.operands; --op >= 0; )
dc821c5f 6752 /* Skip non-register operands. */
bab6aec1 6753 if (i.types[op].bitfield.class != Reg)
dc821c5f 6754 continue;
29b0f896
AM
6755 /* Reject eight bit registers, except where the template requires
6756 them. (eg. movzb) */
dc821c5f 6757 else if (i.types[op].bitfield.byte
bab6aec1 6758 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6759 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6760 && (i.tm.operand_types[op].bitfield.word
6761 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6762 {
a540244d
L
6763 as_bad (_("`%s%s' not allowed with `%s%c'"),
6764 register_prefix,
29b0f896
AM
6765 i.op[op].regs->reg_name,
6766 i.tm.name,
6767 i.suffix);
6768 return 0;
6769 }
e4630f71 6770 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6771 else if ((i.types[op].bitfield.word
6772 || i.types[op].bitfield.dword)
bab6aec1 6773 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6774 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6775 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6776 {
6777 /* Prohibit these changes in the 64bit mode, since the
6778 lowering is more complicated. */
34828aad 6779 if (intel_syntax
ca61edf2 6780 && i.tm.opcode_modifier.todword
3528c362 6781 && i.types[0].bitfield.class != RegSIMD)
34828aad 6782 {
ca61edf2 6783 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6784 i.suffix = LONG_MNEM_SUFFIX;
6785 }
6786 else
6787 {
2b5d6a91 6788 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6789 register_prefix, i.op[op].regs->reg_name,
6790 i.suffix);
6791 return 0;
6792 }
252b5132 6793 }
29b0f896
AM
6794 return 1;
6795}
252b5132 6796
29b0f896 6797static int
e3bb37b5 6798check_word_reg (void)
29b0f896
AM
6799{
6800 int op;
6801 for (op = i.operands; --op >= 0;)
dc821c5f 6802 /* Skip non-register operands. */
bab6aec1 6803 if (i.types[op].bitfield.class != Reg)
dc821c5f 6804 continue;
29b0f896
AM
6805 /* Reject eight bit registers, except where the template requires
6806 them. (eg. movzb) */
dc821c5f 6807 else if (i.types[op].bitfield.byte
bab6aec1 6808 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6809 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6810 && (i.tm.operand_types[op].bitfield.word
6811 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6812 {
a540244d
L
6813 as_bad (_("`%s%s' not allowed with `%s%c'"),
6814 register_prefix,
29b0f896
AM
6815 i.op[op].regs->reg_name,
6816 i.tm.name,
6817 i.suffix);
6818 return 0;
6819 }
e4630f71 6820 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6821 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6822 && (i.types[op].bitfield.dword
6823 || i.types[op].bitfield.qword)
bab6aec1 6824 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6825 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6826 && i.tm.operand_types[op].bitfield.word)
252b5132 6827 {
29b0f896
AM
6828 /* Prohibit these changes in the 64bit mode, since the
6829 lowering is more complicated. */
6830 if (flag_code == CODE_64BIT)
252b5132 6831 {
2b5d6a91 6832 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6833 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6834 i.suffix);
6835 return 0;
252b5132 6836 }
29b0f896 6837#if REGISTER_WARNINGS
cecf1424
JB
6838 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6839 register_prefix,
6840 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6841 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6842#endif
6843 }
6844 return 1;
6845}
252b5132 6846
29b0f896 6847static int
40fb9820 6848update_imm (unsigned int j)
29b0f896 6849{
bc0844ae 6850 i386_operand_type overlap = i.types[j];
40fb9820
L
6851 if ((overlap.bitfield.imm8
6852 || overlap.bitfield.imm8s
6853 || overlap.bitfield.imm16
6854 || overlap.bitfield.imm32
6855 || overlap.bitfield.imm32s
6856 || overlap.bitfield.imm64)
0dfbf9d7
L
6857 && !operand_type_equal (&overlap, &imm8)
6858 && !operand_type_equal (&overlap, &imm8s)
6859 && !operand_type_equal (&overlap, &imm16)
6860 && !operand_type_equal (&overlap, &imm32)
6861 && !operand_type_equal (&overlap, &imm32s)
6862 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6863 {
6864 if (i.suffix)
6865 {
40fb9820
L
6866 i386_operand_type temp;
6867
0dfbf9d7 6868 operand_type_set (&temp, 0);
7ab9ffdd 6869 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6870 {
6871 temp.bitfield.imm8 = overlap.bitfield.imm8;
6872 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6873 }
6874 else if (i.suffix == WORD_MNEM_SUFFIX)
6875 temp.bitfield.imm16 = overlap.bitfield.imm16;
6876 else if (i.suffix == QWORD_MNEM_SUFFIX)
6877 {
6878 temp.bitfield.imm64 = overlap.bitfield.imm64;
6879 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6880 }
6881 else
6882 temp.bitfield.imm32 = overlap.bitfield.imm32;
6883 overlap = temp;
29b0f896 6884 }
0dfbf9d7
L
6885 else if (operand_type_equal (&overlap, &imm16_32_32s)
6886 || operand_type_equal (&overlap, &imm16_32)
6887 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6888 {
40fb9820 6889 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6890 overlap = imm16;
40fb9820 6891 else
65da13b5 6892 overlap = imm32s;
29b0f896 6893 }
0dfbf9d7
L
6894 if (!operand_type_equal (&overlap, &imm8)
6895 && !operand_type_equal (&overlap, &imm8s)
6896 && !operand_type_equal (&overlap, &imm16)
6897 && !operand_type_equal (&overlap, &imm32)
6898 && !operand_type_equal (&overlap, &imm32s)
6899 && !operand_type_equal (&overlap, &imm64))
29b0f896 6900 {
4eed87de
AM
6901 as_bad (_("no instruction mnemonic suffix given; "
6902 "can't determine immediate size"));
29b0f896
AM
6903 return 0;
6904 }
6905 }
40fb9820 6906 i.types[j] = overlap;
29b0f896 6907
40fb9820
L
6908 return 1;
6909}
6910
6911static int
6912finalize_imm (void)
6913{
bc0844ae 6914 unsigned int j, n;
29b0f896 6915
bc0844ae
L
6916 /* Update the first 2 immediate operands. */
6917 n = i.operands > 2 ? 2 : i.operands;
6918 if (n)
6919 {
6920 for (j = 0; j < n; j++)
6921 if (update_imm (j) == 0)
6922 return 0;
40fb9820 6923
bc0844ae
L
6924 /* The 3rd operand can't be immediate operand. */
6925 gas_assert (operand_type_check (i.types[2], imm) == 0);
6926 }
29b0f896
AM
6927
6928 return 1;
6929}
6930
6931static int
e3bb37b5 6932process_operands (void)
29b0f896
AM
6933{
6934 /* Default segment register this instruction will use for memory
6935 accesses. 0 means unknown. This is only for optimizing out
6936 unnecessary segment overrides. */
6937 const seg_entry *default_seg = 0;
6938
2426c15f 6939 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6940 {
91d6fa6a
NC
6941 unsigned int dupl = i.operands;
6942 unsigned int dest = dupl - 1;
9fcfb3d7
L
6943 unsigned int j;
6944
c0f3af97 6945 /* The destination must be an xmm register. */
9c2799c2 6946 gas_assert (i.reg_operands
91d6fa6a 6947 && MAX_OPERANDS > dupl
7ab9ffdd 6948 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6949
75e5731b 6950 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6951 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6952 {
8cd7925b 6953 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6954 {
6955 /* Keep xmm0 for instructions with VEX prefix and 3
6956 sources. */
75e5731b 6957 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6958 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6959 goto duplicate;
6960 }
e2ec9d29 6961 else
c0f3af97
L
6962 {
6963 /* We remove the first xmm0 and keep the number of
6964 operands unchanged, which in fact duplicates the
6965 destination. */
6966 for (j = 1; j < i.operands; j++)
6967 {
6968 i.op[j - 1] = i.op[j];
6969 i.types[j - 1] = i.types[j];
6970 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6971 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6972 }
6973 }
6974 }
6975 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6976 {
91d6fa6a 6977 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6978 && (i.tm.opcode_modifier.vexsources
6979 == VEX3SOURCES));
c0f3af97
L
6980
6981 /* Add the implicit xmm0 for instructions with VEX prefix
6982 and 3 sources. */
6983 for (j = i.operands; j > 0; j--)
6984 {
6985 i.op[j] = i.op[j - 1];
6986 i.types[j] = i.types[j - 1];
6987 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6988 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6989 }
6990 i.op[0].regs
6991 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6992 i.types[0] = regxmm;
c0f3af97
L
6993 i.tm.operand_types[0] = regxmm;
6994
6995 i.operands += 2;
6996 i.reg_operands += 2;
6997 i.tm.operands += 2;
6998
91d6fa6a 6999 dupl++;
c0f3af97 7000 dest++;
91d6fa6a
NC
7001 i.op[dupl] = i.op[dest];
7002 i.types[dupl] = i.types[dest];
7003 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7004 i.flags[dupl] = i.flags[dest];
e2ec9d29 7005 }
c0f3af97
L
7006 else
7007 {
7008duplicate:
7009 i.operands++;
7010 i.reg_operands++;
7011 i.tm.operands++;
7012
91d6fa6a
NC
7013 i.op[dupl] = i.op[dest];
7014 i.types[dupl] = i.types[dest];
7015 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7016 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7017 }
7018
7019 if (i.tm.opcode_modifier.immext)
7020 process_immext ();
7021 }
75e5731b 7022 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7023 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7024 {
7025 unsigned int j;
7026
9fcfb3d7
L
7027 for (j = 1; j < i.operands; j++)
7028 {
7029 i.op[j - 1] = i.op[j];
7030 i.types[j - 1] = i.types[j];
7031
7032 /* We need to adjust fields in i.tm since they are used by
7033 build_modrm_byte. */
7034 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7035
7036 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7037 }
7038
e2ec9d29
L
7039 i.operands--;
7040 i.reg_operands--;
e2ec9d29
L
7041 i.tm.operands--;
7042 }
920d2ddc
IT
7043 else if (i.tm.opcode_modifier.implicitquadgroup)
7044 {
a477a8c4
JB
7045 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7046
920d2ddc 7047 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7048 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7049 regnum = register_number (i.op[1].regs);
7050 first_reg_in_group = regnum & ~3;
7051 last_reg_in_group = first_reg_in_group + 3;
7052 if (regnum != first_reg_in_group)
7053 as_warn (_("source register `%s%s' implicitly denotes"
7054 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7055 register_prefix, i.op[1].regs->reg_name,
7056 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7057 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7058 i.tm.name);
7059 }
e2ec9d29
L
7060 else if (i.tm.opcode_modifier.regkludge)
7061 {
7062 /* The imul $imm, %reg instruction is converted into
7063 imul $imm, %reg, %reg, and the clr %reg instruction
7064 is converted into xor %reg, %reg. */
7065
7066 unsigned int first_reg_op;
7067
7068 if (operand_type_check (i.types[0], reg))
7069 first_reg_op = 0;
7070 else
7071 first_reg_op = 1;
7072 /* Pretend we saw the extra register operand. */
9c2799c2 7073 gas_assert (i.reg_operands == 1
7ab9ffdd 7074 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7075 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7076 i.types[first_reg_op + 1] = i.types[first_reg_op];
7077 i.operands++;
7078 i.reg_operands++;
29b0f896
AM
7079 }
7080
85b80b0f 7081 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7082 {
7083 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7084 must be put into the modrm byte). Now, we make the modrm and
7085 index base bytes based on all the info we've collected. */
29b0f896
AM
7086
7087 default_seg = build_modrm_byte ();
7088 }
00cee14f 7089 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7090 {
7091 if (flag_code != CODE_64BIT
7092 ? i.tm.base_opcode == POP_SEG_SHORT
7093 && i.op[0].regs->reg_num == 1
7094 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7095 && i.op[0].regs->reg_num < 4)
7096 {
7097 as_bad (_("you can't `%s %s%s'"),
7098 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7099 return 0;
7100 }
7101 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7102 {
7103 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7104 i.tm.opcode_length = 2;
7105 }
7106 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7107 }
8a2ed489 7108 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7109 {
7110 default_seg = &ds;
7111 }
40fb9820 7112 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7113 {
7114 /* For the string instructions that allow a segment override
7115 on one of their operands, the default segment is ds. */
7116 default_seg = &ds;
7117 }
85b80b0f
JB
7118 else if (i.tm.opcode_modifier.shortform)
7119 {
7120 /* The register or float register operand is in operand
7121 0 or 1. */
bab6aec1 7122 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7123
7124 /* Register goes in low 3 bits of opcode. */
7125 i.tm.base_opcode |= i.op[op].regs->reg_num;
7126 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7127 i.rex |= REX_B;
7128 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7129 {
7130 /* Warn about some common errors, but press on regardless.
7131 The first case can be generated by gcc (<= 2.8.1). */
7132 if (i.operands == 2)
7133 {
7134 /* Reversed arguments on faddp, fsubp, etc. */
7135 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7136 register_prefix, i.op[!intel_syntax].regs->reg_name,
7137 register_prefix, i.op[intel_syntax].regs->reg_name);
7138 }
7139 else
7140 {
7141 /* Extraneous `l' suffix on fp insn. */
7142 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7143 register_prefix, i.op[0].regs->reg_name);
7144 }
7145 }
7146 }
29b0f896 7147
75178d9d
L
7148 if (i.tm.base_opcode == 0x8d /* lea */
7149 && i.seg[0]
7150 && !quiet_warnings)
30123838 7151 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7152
7153 /* If a segment was explicitly specified, and the specified segment
7154 is not the default, use an opcode prefix to select it. If we
7155 never figured out what the default segment is, then default_seg
7156 will be zero at this point, and the specified segment prefix will
7157 always be used. */
29b0f896
AM
7158 if ((i.seg[0]) && (i.seg[0] != default_seg))
7159 {
7160 if (!add_prefix (i.seg[0]->seg_prefix))
7161 return 0;
7162 }
7163 return 1;
7164}
7165
7166static const seg_entry *
e3bb37b5 7167build_modrm_byte (void)
29b0f896
AM
7168{
7169 const seg_entry *default_seg = 0;
c0f3af97 7170 unsigned int source, dest;
8cd7925b 7171 int vex_3_sources;
c0f3af97 7172
8cd7925b 7173 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7174 if (vex_3_sources)
7175 {
91d6fa6a 7176 unsigned int nds, reg_slot;
4c2c6516 7177 expressionS *exp;
c0f3af97 7178
6b8d3588 7179 dest = i.operands - 1;
c0f3af97 7180 nds = dest - 1;
922d8de8 7181
a683cc34 7182 /* There are 2 kinds of instructions:
bed3d976 7183 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7184 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7185 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7186 ZMM register.
bed3d976 7187 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7188 plus 1 memory operand, with VexXDS. */
922d8de8 7189 gas_assert ((i.reg_operands == 4
bed3d976
JB
7190 || (i.reg_operands == 3 && i.mem_operands == 1))
7191 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7192 && i.tm.opcode_modifier.vexw
3528c362 7193 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7194
48db9223
JB
7195 /* If VexW1 is set, the first non-immediate operand is the source and
7196 the second non-immediate one is encoded in the immediate operand. */
7197 if (i.tm.opcode_modifier.vexw == VEXW1)
7198 {
7199 source = i.imm_operands;
7200 reg_slot = i.imm_operands + 1;
7201 }
7202 else
7203 {
7204 source = i.imm_operands + 1;
7205 reg_slot = i.imm_operands;
7206 }
7207
a683cc34 7208 if (i.imm_operands == 0)
bed3d976
JB
7209 {
7210 /* When there is no immediate operand, generate an 8bit
7211 immediate operand to encode the first operand. */
7212 exp = &im_expressions[i.imm_operands++];
7213 i.op[i.operands].imms = exp;
7214 i.types[i.operands] = imm8;
7215 i.operands++;
7216
3528c362 7217 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7218 exp->X_op = O_constant;
7219 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7220 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7221 }
922d8de8 7222 else
bed3d976 7223 {
9d3bf266
JB
7224 gas_assert (i.imm_operands == 1);
7225 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7226 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7227
9d3bf266
JB
7228 /* Turn on Imm8 again so that output_imm will generate it. */
7229 i.types[0].bitfield.imm8 = 1;
bed3d976 7230
3528c362 7231 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7232 i.op[0].imms->X_add_number
bed3d976 7233 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7234 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7235 }
a683cc34 7236
3528c362 7237 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7238 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7239 }
7240 else
7241 source = dest = 0;
29b0f896
AM
7242
7243 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7244 implicit registers do not count. If there are 3 register
7245 operands, it must be a instruction with VexNDS. For a
7246 instruction with VexNDD, the destination register is encoded
7247 in VEX prefix. If there are 4 register operands, it must be
7248 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7249 if (i.mem_operands == 0
7250 && ((i.reg_operands == 2
2426c15f 7251 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7252 || (i.reg_operands == 3
2426c15f 7253 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7254 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7255 {
cab737b9
L
7256 switch (i.operands)
7257 {
7258 case 2:
7259 source = 0;
7260 break;
7261 case 3:
c81128dc
L
7262 /* When there are 3 operands, one of them may be immediate,
7263 which may be the first or the last operand. Otherwise,
c0f3af97
L
7264 the first operand must be shift count register (cl) or it
7265 is an instruction with VexNDS. */
9c2799c2 7266 gas_assert (i.imm_operands == 1
7ab9ffdd 7267 || (i.imm_operands == 0
2426c15f 7268 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7269 || (i.types[0].bitfield.instance == RegC
7270 && i.types[0].bitfield.byte))));
40fb9820 7271 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7272 || (i.types[0].bitfield.instance == RegC
7273 && i.types[0].bitfield.byte))
40fb9820
L
7274 source = 1;
7275 else
7276 source = 0;
cab737b9
L
7277 break;
7278 case 4:
368d64cc
L
7279 /* When there are 4 operands, the first two must be 8bit
7280 immediate operands. The source operand will be the 3rd
c0f3af97
L
7281 one.
7282
7283 For instructions with VexNDS, if the first operand
7284 an imm8, the source operand is the 2nd one. If the last
7285 operand is imm8, the source operand is the first one. */
9c2799c2 7286 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7287 && i.types[0].bitfield.imm8
7288 && i.types[1].bitfield.imm8)
2426c15f 7289 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7290 && i.imm_operands == 1
7291 && (i.types[0].bitfield.imm8
43234a1e
L
7292 || i.types[i.operands - 1].bitfield.imm8
7293 || i.rounding)));
9f2670f2
L
7294 if (i.imm_operands == 2)
7295 source = 2;
7296 else
c0f3af97
L
7297 {
7298 if (i.types[0].bitfield.imm8)
7299 source = 1;
7300 else
7301 source = 0;
7302 }
c0f3af97
L
7303 break;
7304 case 5:
e771e7c9 7305 if (is_evex_encoding (&i.tm))
43234a1e
L
7306 {
7307 /* For EVEX instructions, when there are 5 operands, the
7308 first one must be immediate operand. If the second one
7309 is immediate operand, the source operand is the 3th
7310 one. If the last one is immediate operand, the source
7311 operand is the 2nd one. */
7312 gas_assert (i.imm_operands == 2
7313 && i.tm.opcode_modifier.sae
7314 && operand_type_check (i.types[0], imm));
7315 if (operand_type_check (i.types[1], imm))
7316 source = 2;
7317 else if (operand_type_check (i.types[4], imm))
7318 source = 1;
7319 else
7320 abort ();
7321 }
cab737b9
L
7322 break;
7323 default:
7324 abort ();
7325 }
7326
c0f3af97
L
7327 if (!vex_3_sources)
7328 {
7329 dest = source + 1;
7330
43234a1e
L
7331 /* RC/SAE operand could be between DEST and SRC. That happens
7332 when one operand is GPR and the other one is XMM/YMM/ZMM
7333 register. */
7334 if (i.rounding && i.rounding->operand == (int) dest)
7335 dest++;
7336
2426c15f 7337 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7338 {
43234a1e 7339 /* For instructions with VexNDS, the register-only source
c5d0745b 7340 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7341 register. It is encoded in VEX prefix. */
f12dc422
L
7342
7343 i386_operand_type op;
7344 unsigned int vvvv;
7345
7346 /* Check register-only source operand when two source
7347 operands are swapped. */
7348 if (!i.tm.operand_types[source].bitfield.baseindex
7349 && i.tm.operand_types[dest].bitfield.baseindex)
7350 {
7351 vvvv = source;
7352 source = dest;
7353 }
7354 else
7355 vvvv = dest;
7356
7357 op = i.tm.operand_types[vvvv];
c0f3af97 7358 if ((dest + 1) >= i.operands
bab6aec1 7359 || ((op.bitfield.class != Reg
dc821c5f 7360 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7361 && op.bitfield.class != RegSIMD
43234a1e 7362 && !operand_type_equal (&op, &regmask)))
c0f3af97 7363 abort ();
f12dc422 7364 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7365 dest++;
7366 }
7367 }
29b0f896
AM
7368
7369 i.rm.mode = 3;
dfd69174
JB
7370 /* One of the register operands will be encoded in the i.rm.reg
7371 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7372 fields. If no form of this instruction supports a memory
7373 destination operand, then we assume the source operand may
7374 sometimes be a memory operand and so we need to store the
7375 destination in the i.rm.reg field. */
dfd69174 7376 if (!i.tm.opcode_modifier.regmem
40fb9820 7377 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7378 {
7379 i.rm.reg = i.op[dest].regs->reg_num;
7380 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7381 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7382 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7383 i.has_regmmx = TRUE;
3528c362
JB
7384 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7385 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7386 {
7387 if (i.types[dest].bitfield.zmmword
7388 || i.types[source].bitfield.zmmword)
7389 i.has_regzmm = TRUE;
7390 else if (i.types[dest].bitfield.ymmword
7391 || i.types[source].bitfield.ymmword)
7392 i.has_regymm = TRUE;
7393 else
7394 i.has_regxmm = TRUE;
7395 }
29b0f896 7396 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7397 i.rex |= REX_R;
43234a1e
L
7398 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7399 i.vrex |= REX_R;
29b0f896 7400 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7401 i.rex |= REX_B;
43234a1e
L
7402 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7403 i.vrex |= REX_B;
29b0f896
AM
7404 }
7405 else
7406 {
7407 i.rm.reg = i.op[source].regs->reg_num;
7408 i.rm.regmem = i.op[dest].regs->reg_num;
7409 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7410 i.rex |= REX_B;
43234a1e
L
7411 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7412 i.vrex |= REX_B;
29b0f896 7413 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7414 i.rex |= REX_R;
43234a1e
L
7415 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7416 i.vrex |= REX_R;
29b0f896 7417 }
e0c7f900 7418 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7419 {
4a5c67ed 7420 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7421 abort ();
e0c7f900 7422 i.rex &= ~REX_R;
c4a530c5
JB
7423 add_prefix (LOCK_PREFIX_OPCODE);
7424 }
29b0f896
AM
7425 }
7426 else
7427 { /* If it's not 2 reg operands... */
c0f3af97
L
7428 unsigned int mem;
7429
29b0f896
AM
7430 if (i.mem_operands)
7431 {
7432 unsigned int fake_zero_displacement = 0;
99018f42 7433 unsigned int op;
4eed87de 7434
7ab9ffdd 7435 for (op = 0; op < i.operands; op++)
8dc0818e 7436 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7437 break;
7ab9ffdd 7438 gas_assert (op < i.operands);
29b0f896 7439
6c30d220
L
7440 if (i.tm.opcode_modifier.vecsib)
7441 {
e968fc9b 7442 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7443 abort ();
7444
7445 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7446 if (!i.base_reg)
7447 {
7448 i.sib.base = NO_BASE_REGISTER;
7449 i.sib.scale = i.log2_scale_factor;
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp64 = 0;
43083a50 7453 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7454 {
7455 /* Must be 32 bit */
7456 i.types[op].bitfield.disp32 = 1;
7457 i.types[op].bitfield.disp32s = 0;
7458 }
7459 else
7460 {
7461 i.types[op].bitfield.disp32 = 0;
7462 i.types[op].bitfield.disp32s = 1;
7463 }
7464 }
7465 i.sib.index = i.index_reg->reg_num;
7466 if ((i.index_reg->reg_flags & RegRex) != 0)
7467 i.rex |= REX_X;
43234a1e
L
7468 if ((i.index_reg->reg_flags & RegVRex) != 0)
7469 i.vrex |= REX_X;
6c30d220
L
7470 }
7471
29b0f896
AM
7472 default_seg = &ds;
7473
7474 if (i.base_reg == 0)
7475 {
7476 i.rm.mode = 0;
7477 if (!i.disp_operands)
9bb129e8 7478 fake_zero_displacement = 1;
29b0f896
AM
7479 if (i.index_reg == 0)
7480 {
73053c1f
JB
7481 i386_operand_type newdisp;
7482
6c30d220 7483 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7484 /* Operand is just <disp> */
20f0a1fc 7485 if (flag_code == CODE_64BIT)
29b0f896
AM
7486 {
7487 /* 64bit mode overwrites the 32bit absolute
7488 addressing by RIP relative addressing and
7489 absolute addressing is encoded by one of the
7490 redundant SIB forms. */
7491 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7492 i.sib.base = NO_BASE_REGISTER;
7493 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7494 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7495 }
fc225355
L
7496 else if ((flag_code == CODE_16BIT)
7497 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7498 {
7499 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7500 newdisp = disp16;
20f0a1fc
NC
7501 }
7502 else
7503 {
7504 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7505 newdisp = disp32;
29b0f896 7506 }
73053c1f
JB
7507 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7508 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7509 }
6c30d220 7510 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7511 {
6c30d220 7512 /* !i.base_reg && i.index_reg */
e968fc9b 7513 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7514 i.sib.index = NO_INDEX_REGISTER;
7515 else
7516 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7517 i.sib.base = NO_BASE_REGISTER;
7518 i.sib.scale = i.log2_scale_factor;
7519 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7520 i.types[op].bitfield.disp8 = 0;
7521 i.types[op].bitfield.disp16 = 0;
7522 i.types[op].bitfield.disp64 = 0;
43083a50 7523 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7524 {
7525 /* Must be 32 bit */
7526 i.types[op].bitfield.disp32 = 1;
7527 i.types[op].bitfield.disp32s = 0;
7528 }
29b0f896 7529 else
40fb9820
L
7530 {
7531 i.types[op].bitfield.disp32 = 0;
7532 i.types[op].bitfield.disp32s = 1;
7533 }
29b0f896 7534 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7535 i.rex |= REX_X;
29b0f896
AM
7536 }
7537 }
7538 /* RIP addressing for 64bit mode. */
e968fc9b 7539 else if (i.base_reg->reg_num == RegIP)
29b0f896 7540 {
6c30d220 7541 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7542 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7543 i.types[op].bitfield.disp8 = 0;
7544 i.types[op].bitfield.disp16 = 0;
7545 i.types[op].bitfield.disp32 = 0;
7546 i.types[op].bitfield.disp32s = 1;
7547 i.types[op].bitfield.disp64 = 0;
71903a11 7548 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7549 if (! i.disp_operands)
7550 fake_zero_displacement = 1;
29b0f896 7551 }
dc821c5f 7552 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7553 {
6c30d220 7554 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7555 switch (i.base_reg->reg_num)
7556 {
7557 case 3: /* (%bx) */
7558 if (i.index_reg == 0)
7559 i.rm.regmem = 7;
7560 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7561 i.rm.regmem = i.index_reg->reg_num - 6;
7562 break;
7563 case 5: /* (%bp) */
7564 default_seg = &ss;
7565 if (i.index_reg == 0)
7566 {
7567 i.rm.regmem = 6;
40fb9820 7568 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7569 {
7570 /* fake (%bp) into 0(%bp) */
b5014f7a 7571 i.types[op].bitfield.disp8 = 1;
252b5132 7572 fake_zero_displacement = 1;
29b0f896
AM
7573 }
7574 }
7575 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7576 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7577 break;
7578 default: /* (%si) -> 4 or (%di) -> 5 */
7579 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7580 }
7581 i.rm.mode = mode_from_disp_size (i.types[op]);
7582 }
7583 else /* i.base_reg and 32/64 bit mode */
7584 {
7585 if (flag_code == CODE_64BIT
40fb9820
L
7586 && operand_type_check (i.types[op], disp))
7587 {
73053c1f
JB
7588 i.types[op].bitfield.disp16 = 0;
7589 i.types[op].bitfield.disp64 = 0;
40fb9820 7590 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7591 {
7592 i.types[op].bitfield.disp32 = 0;
7593 i.types[op].bitfield.disp32s = 1;
7594 }
40fb9820 7595 else
73053c1f
JB
7596 {
7597 i.types[op].bitfield.disp32 = 1;
7598 i.types[op].bitfield.disp32s = 0;
7599 }
40fb9820 7600 }
20f0a1fc 7601
6c30d220
L
7602 if (!i.tm.opcode_modifier.vecsib)
7603 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7604 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7605 i.rex |= REX_B;
29b0f896
AM
7606 i.sib.base = i.base_reg->reg_num;
7607 /* x86-64 ignores REX prefix bit here to avoid decoder
7608 complications. */
848930b2
JB
7609 if (!(i.base_reg->reg_flags & RegRex)
7610 && (i.base_reg->reg_num == EBP_REG_NUM
7611 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7612 default_seg = &ss;
848930b2 7613 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7614 {
848930b2 7615 fake_zero_displacement = 1;
b5014f7a 7616 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7617 }
7618 i.sib.scale = i.log2_scale_factor;
7619 if (i.index_reg == 0)
7620 {
6c30d220 7621 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7622 /* <disp>(%esp) becomes two byte modrm with no index
7623 register. We've already stored the code for esp
7624 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7625 Any base register besides %esp will not use the
7626 extra modrm byte. */
7627 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7628 }
6c30d220 7629 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7630 {
e968fc9b 7631 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7632 i.sib.index = NO_INDEX_REGISTER;
7633 else
7634 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7635 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7636 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7637 i.rex |= REX_X;
29b0f896 7638 }
67a4f2b7
AO
7639
7640 if (i.disp_operands
7641 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7642 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7643 i.rm.mode = 0;
7644 else
a501d77e
L
7645 {
7646 if (!fake_zero_displacement
7647 && !i.disp_operands
7648 && i.disp_encoding)
7649 {
7650 fake_zero_displacement = 1;
7651 if (i.disp_encoding == disp_encoding_8bit)
7652 i.types[op].bitfield.disp8 = 1;
7653 else
7654 i.types[op].bitfield.disp32 = 1;
7655 }
7656 i.rm.mode = mode_from_disp_size (i.types[op]);
7657 }
29b0f896 7658 }
252b5132 7659
29b0f896
AM
7660 if (fake_zero_displacement)
7661 {
7662 /* Fakes a zero displacement assuming that i.types[op]
7663 holds the correct displacement size. */
7664 expressionS *exp;
7665
9c2799c2 7666 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7667 exp = &disp_expressions[i.disp_operands++];
7668 i.op[op].disps = exp;
7669 exp->X_op = O_constant;
7670 exp->X_add_number = 0;
7671 exp->X_add_symbol = (symbolS *) 0;
7672 exp->X_op_symbol = (symbolS *) 0;
7673 }
c0f3af97
L
7674
7675 mem = op;
29b0f896 7676 }
c0f3af97
L
7677 else
7678 mem = ~0;
252b5132 7679
8c43a48b 7680 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7681 {
7682 if (operand_type_check (i.types[0], imm))
7683 i.vex.register_specifier = NULL;
7684 else
7685 {
7686 /* VEX.vvvv encodes one of the sources when the first
7687 operand is not an immediate. */
1ef99a7b 7688 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7689 i.vex.register_specifier = i.op[0].regs;
7690 else
7691 i.vex.register_specifier = i.op[1].regs;
7692 }
7693
7694 /* Destination is a XMM register encoded in the ModRM.reg
7695 and VEX.R bit. */
7696 i.rm.reg = i.op[2].regs->reg_num;
7697 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7698 i.rex |= REX_R;
7699
7700 /* ModRM.rm and VEX.B encodes the other source. */
7701 if (!i.mem_operands)
7702 {
7703 i.rm.mode = 3;
7704
1ef99a7b 7705 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7706 i.rm.regmem = i.op[1].regs->reg_num;
7707 else
7708 i.rm.regmem = i.op[0].regs->reg_num;
7709
7710 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7711 i.rex |= REX_B;
7712 }
7713 }
2426c15f 7714 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7715 {
7716 i.vex.register_specifier = i.op[2].regs;
7717 if (!i.mem_operands)
7718 {
7719 i.rm.mode = 3;
7720 i.rm.regmem = i.op[1].regs->reg_num;
7721 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7722 i.rex |= REX_B;
7723 }
7724 }
29b0f896
AM
7725 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7726 (if any) based on i.tm.extension_opcode. Again, we must be
7727 careful to make sure that segment/control/debug/test/MMX
7728 registers are coded into the i.rm.reg field. */
f88c9eb0 7729 else if (i.reg_operands)
29b0f896 7730 {
99018f42 7731 unsigned int op;
7ab9ffdd
L
7732 unsigned int vex_reg = ~0;
7733
7734 for (op = 0; op < i.operands; op++)
b4a3a7b4 7735 {
bab6aec1 7736 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7737 || i.types[op].bitfield.class == RegBND
7738 || i.types[op].bitfield.class == RegMask
00cee14f 7739 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7740 || i.types[op].bitfield.class == RegCR
7741 || i.types[op].bitfield.class == RegDR
7742 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7743 break;
3528c362 7744 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7745 {
7746 if (i.types[op].bitfield.zmmword)
7747 i.has_regzmm = TRUE;
7748 else if (i.types[op].bitfield.ymmword)
7749 i.has_regymm = TRUE;
7750 else
7751 i.has_regxmm = TRUE;
7752 break;
7753 }
3528c362 7754 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7755 {
7756 i.has_regmmx = TRUE;
7757 break;
7758 }
7759 }
c0209578 7760
7ab9ffdd
L
7761 if (vex_3_sources)
7762 op = dest;
2426c15f 7763 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7764 {
7765 /* For instructions with VexNDS, the register-only
7766 source operand is encoded in VEX prefix. */
7767 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7768
7ab9ffdd 7769 if (op > mem)
c0f3af97 7770 {
7ab9ffdd
L
7771 vex_reg = op++;
7772 gas_assert (op < i.operands);
c0f3af97
L
7773 }
7774 else
c0f3af97 7775 {
f12dc422
L
7776 /* Check register-only source operand when two source
7777 operands are swapped. */
7778 if (!i.tm.operand_types[op].bitfield.baseindex
7779 && i.tm.operand_types[op + 1].bitfield.baseindex)
7780 {
7781 vex_reg = op;
7782 op += 2;
7783 gas_assert (mem == (vex_reg + 1)
7784 && op < i.operands);
7785 }
7786 else
7787 {
7788 vex_reg = op + 1;
7789 gas_assert (vex_reg < i.operands);
7790 }
c0f3af97 7791 }
7ab9ffdd 7792 }
2426c15f 7793 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7794 {
f12dc422 7795 /* For instructions with VexNDD, the register destination
7ab9ffdd 7796 is encoded in VEX prefix. */
f12dc422
L
7797 if (i.mem_operands == 0)
7798 {
7799 /* There is no memory operand. */
7800 gas_assert ((op + 2) == i.operands);
7801 vex_reg = op + 1;
7802 }
7803 else
8d63c93e 7804 {
ed438a93
JB
7805 /* There are only 2 non-immediate operands. */
7806 gas_assert (op < i.imm_operands + 2
7807 && i.operands == i.imm_operands + 2);
7808 vex_reg = i.imm_operands + 1;
f12dc422 7809 }
7ab9ffdd
L
7810 }
7811 else
7812 gas_assert (op < i.operands);
99018f42 7813
7ab9ffdd
L
7814 if (vex_reg != (unsigned int) ~0)
7815 {
f12dc422 7816 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7817
bab6aec1 7818 if ((type->bitfield.class != Reg
dc821c5f 7819 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7820 && type->bitfield.class != RegSIMD
43234a1e 7821 && !operand_type_equal (type, &regmask))
7ab9ffdd 7822 abort ();
f88c9eb0 7823
7ab9ffdd
L
7824 i.vex.register_specifier = i.op[vex_reg].regs;
7825 }
7826
1b9f0c97
L
7827 /* Don't set OP operand twice. */
7828 if (vex_reg != op)
7ab9ffdd 7829 {
1b9f0c97
L
7830 /* If there is an extension opcode to put here, the
7831 register number must be put into the regmem field. */
7832 if (i.tm.extension_opcode != None)
7833 {
7834 i.rm.regmem = i.op[op].regs->reg_num;
7835 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7836 i.rex |= REX_B;
43234a1e
L
7837 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7838 i.vrex |= REX_B;
1b9f0c97
L
7839 }
7840 else
7841 {
7842 i.rm.reg = i.op[op].regs->reg_num;
7843 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7844 i.rex |= REX_R;
43234a1e
L
7845 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7846 i.vrex |= REX_R;
1b9f0c97 7847 }
7ab9ffdd 7848 }
252b5132 7849
29b0f896
AM
7850 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7851 must set it to 3 to indicate this is a register operand
7852 in the regmem field. */
7853 if (!i.mem_operands)
7854 i.rm.mode = 3;
7855 }
252b5132 7856
29b0f896 7857 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7858 if (i.tm.extension_opcode != None)
29b0f896
AM
7859 i.rm.reg = i.tm.extension_opcode;
7860 }
7861 return default_seg;
7862}
252b5132 7863
29b0f896 7864static void
e3bb37b5 7865output_branch (void)
29b0f896
AM
7866{
7867 char *p;
f8a5c266 7868 int size;
29b0f896
AM
7869 int code16;
7870 int prefix;
7871 relax_substateT subtype;
7872 symbolS *sym;
7873 offsetT off;
7874
f8a5c266 7875 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7876 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7877
7878 prefix = 0;
7879 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7880 {
29b0f896
AM
7881 prefix = 1;
7882 i.prefixes -= 1;
7883 code16 ^= CODE16;
252b5132 7884 }
29b0f896
AM
7885 /* Pentium4 branch hints. */
7886 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7887 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7888 {
29b0f896
AM
7889 prefix++;
7890 i.prefixes--;
7891 }
7892 if (i.prefix[REX_PREFIX] != 0)
7893 {
7894 prefix++;
7895 i.prefixes--;
2f66722d
AM
7896 }
7897
7e8b059b
L
7898 /* BND prefixed jump. */
7899 if (i.prefix[BND_PREFIX] != 0)
7900 {
7901 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7902 i.prefixes -= 1;
7903 }
7904
29b0f896
AM
7905 if (i.prefixes != 0 && !intel_syntax)
7906 as_warn (_("skipping prefixes on this instruction"));
7907
7908 /* It's always a symbol; End frag & setup for relax.
7909 Make sure there is enough room in this frag for the largest
7910 instruction we may generate in md_convert_frag. This is 2
7911 bytes for the opcode and room for the prefix and largest
7912 displacement. */
7913 frag_grow (prefix + 2 + 4);
7914 /* Prefix and 1 opcode byte go in fr_fix. */
7915 p = frag_more (prefix + 1);
7916 if (i.prefix[DATA_PREFIX] != 0)
7917 *p++ = DATA_PREFIX_OPCODE;
7918 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7919 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7920 *p++ = i.prefix[SEG_PREFIX];
7921 if (i.prefix[REX_PREFIX] != 0)
7922 *p++ = i.prefix[REX_PREFIX];
7923 *p = i.tm.base_opcode;
7924
7925 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7926 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7927 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7928 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7929 else
f8a5c266 7930 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7931 subtype |= code16;
3e73aa7c 7932
29b0f896
AM
7933 sym = i.op[0].disps->X_add_symbol;
7934 off = i.op[0].disps->X_add_number;
3e73aa7c 7935
29b0f896
AM
7936 if (i.op[0].disps->X_op != O_constant
7937 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7938 {
29b0f896
AM
7939 /* Handle complex expressions. */
7940 sym = make_expr_symbol (i.op[0].disps);
7941 off = 0;
7942 }
3e73aa7c 7943
29b0f896
AM
7944 /* 1 possible extra opcode + 4 byte displacement go in var part.
7945 Pass reloc in fr_var. */
d258b828 7946 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7947}
3e73aa7c 7948
bd7ab16b
L
7949#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7950/* Return TRUE iff PLT32 relocation should be used for branching to
7951 symbol S. */
7952
7953static bfd_boolean
7954need_plt32_p (symbolS *s)
7955{
7956 /* PLT32 relocation is ELF only. */
7957 if (!IS_ELF)
7958 return FALSE;
7959
a5def729
RO
7960#ifdef TE_SOLARIS
7961 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7962 krtld support it. */
7963 return FALSE;
7964#endif
7965
bd7ab16b
L
7966 /* Since there is no need to prepare for PLT branch on x86-64, we
7967 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7968 be used as a marker for 32-bit PC-relative branches. */
7969 if (!object_64bit)
7970 return FALSE;
7971
7972 /* Weak or undefined symbol need PLT32 relocation. */
7973 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7974 return TRUE;
7975
7976 /* Non-global symbol doesn't need PLT32 relocation. */
7977 if (! S_IS_EXTERNAL (s))
7978 return FALSE;
7979
7980 /* Other global symbols need PLT32 relocation. NB: Symbol with
7981 non-default visibilities are treated as normal global symbol
7982 so that PLT32 relocation can be used as a marker for 32-bit
7983 PC-relative branches. It is useful for linker relaxation. */
7984 return TRUE;
7985}
7986#endif
7987
29b0f896 7988static void
e3bb37b5 7989output_jump (void)
29b0f896
AM
7990{
7991 char *p;
7992 int size;
3e02c1cc 7993 fixS *fixP;
bd7ab16b 7994 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7995
0cfa3eb3 7996 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7997 {
7998 /* This is a loop or jecxz type instruction. */
7999 size = 1;
8000 if (i.prefix[ADDR_PREFIX] != 0)
8001 {
8002 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8003 i.prefixes -= 1;
8004 }
8005 /* Pentium4 branch hints. */
8006 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8007 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8008 {
8009 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8010 i.prefixes--;
3e73aa7c
JH
8011 }
8012 }
29b0f896
AM
8013 else
8014 {
8015 int code16;
3e73aa7c 8016
29b0f896
AM
8017 code16 = 0;
8018 if (flag_code == CODE_16BIT)
8019 code16 = CODE16;
3e73aa7c 8020
29b0f896
AM
8021 if (i.prefix[DATA_PREFIX] != 0)
8022 {
8023 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8024 i.prefixes -= 1;
8025 code16 ^= CODE16;
8026 }
252b5132 8027
29b0f896
AM
8028 size = 4;
8029 if (code16)
8030 size = 2;
8031 }
9fcc94b6 8032
29b0f896
AM
8033 if (i.prefix[REX_PREFIX] != 0)
8034 {
8035 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8036 i.prefixes -= 1;
8037 }
252b5132 8038
7e8b059b
L
8039 /* BND prefixed jump. */
8040 if (i.prefix[BND_PREFIX] != 0)
8041 {
8042 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8043 i.prefixes -= 1;
8044 }
8045
29b0f896
AM
8046 if (i.prefixes != 0 && !intel_syntax)
8047 as_warn (_("skipping prefixes on this instruction"));
e0890092 8048
42164a71
L
8049 p = frag_more (i.tm.opcode_length + size);
8050 switch (i.tm.opcode_length)
8051 {
8052 case 2:
8053 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8054 /* Fall through. */
42164a71
L
8055 case 1:
8056 *p++ = i.tm.base_opcode;
8057 break;
8058 default:
8059 abort ();
8060 }
e0890092 8061
bd7ab16b
L
8062#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8063 if (size == 4
8064 && jump_reloc == NO_RELOC
8065 && need_plt32_p (i.op[0].disps->X_add_symbol))
8066 jump_reloc = BFD_RELOC_X86_64_PLT32;
8067#endif
8068
8069 jump_reloc = reloc (size, 1, 1, jump_reloc);
8070
3e02c1cc 8071 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8072 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8073
8074 /* All jumps handled here are signed, but don't use a signed limit
8075 check for 32 and 16 bit jumps as we want to allow wrap around at
8076 4G and 64k respectively. */
8077 if (size == 1)
8078 fixP->fx_signed = 1;
29b0f896 8079}
e0890092 8080
29b0f896 8081static void
e3bb37b5 8082output_interseg_jump (void)
29b0f896
AM
8083{
8084 char *p;
8085 int size;
8086 int prefix;
8087 int code16;
252b5132 8088
29b0f896
AM
8089 code16 = 0;
8090 if (flag_code == CODE_16BIT)
8091 code16 = CODE16;
a217f122 8092
29b0f896
AM
8093 prefix = 0;
8094 if (i.prefix[DATA_PREFIX] != 0)
8095 {
8096 prefix = 1;
8097 i.prefixes -= 1;
8098 code16 ^= CODE16;
8099 }
8100 if (i.prefix[REX_PREFIX] != 0)
8101 {
8102 prefix++;
8103 i.prefixes -= 1;
8104 }
252b5132 8105
29b0f896
AM
8106 size = 4;
8107 if (code16)
8108 size = 2;
252b5132 8109
29b0f896
AM
8110 if (i.prefixes != 0 && !intel_syntax)
8111 as_warn (_("skipping prefixes on this instruction"));
252b5132 8112
29b0f896
AM
8113 /* 1 opcode; 2 segment; offset */
8114 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8115
29b0f896
AM
8116 if (i.prefix[DATA_PREFIX] != 0)
8117 *p++ = DATA_PREFIX_OPCODE;
252b5132 8118
29b0f896
AM
8119 if (i.prefix[REX_PREFIX] != 0)
8120 *p++ = i.prefix[REX_PREFIX];
252b5132 8121
29b0f896
AM
8122 *p++ = i.tm.base_opcode;
8123 if (i.op[1].imms->X_op == O_constant)
8124 {
8125 offsetT n = i.op[1].imms->X_add_number;
252b5132 8126
29b0f896
AM
8127 if (size == 2
8128 && !fits_in_unsigned_word (n)
8129 && !fits_in_signed_word (n))
8130 {
8131 as_bad (_("16-bit jump out of range"));
8132 return;
8133 }
8134 md_number_to_chars (p, n, size);
8135 }
8136 else
8137 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8138 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8139 if (i.op[0].imms->X_op != O_constant)
8140 as_bad (_("can't handle non absolute segment in `%s'"),
8141 i.tm.name);
8142 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8143}
a217f122 8144
b4a3a7b4
L
8145#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8146void
8147x86_cleanup (void)
8148{
8149 char *p;
8150 asection *seg = now_seg;
8151 subsegT subseg = now_subseg;
8152 asection *sec;
8153 unsigned int alignment, align_size_1;
8154 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8155 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8156 unsigned int padding;
8157
8158 if (!IS_ELF || !x86_used_note)
8159 return;
8160
b4a3a7b4
L
8161 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8162
8163 /* The .note.gnu.property section layout:
8164
8165 Field Length Contents
8166 ---- ---- ----
8167 n_namsz 4 4
8168 n_descsz 4 The note descriptor size
8169 n_type 4 NT_GNU_PROPERTY_TYPE_0
8170 n_name 4 "GNU"
8171 n_desc n_descsz The program property array
8172 .... .... ....
8173 */
8174
8175 /* Create the .note.gnu.property section. */
8176 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8177 bfd_set_section_flags (sec,
b4a3a7b4
L
8178 (SEC_ALLOC
8179 | SEC_LOAD
8180 | SEC_DATA
8181 | SEC_HAS_CONTENTS
8182 | SEC_READONLY));
8183
8184 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8185 {
8186 align_size_1 = 7;
8187 alignment = 3;
8188 }
8189 else
8190 {
8191 align_size_1 = 3;
8192 alignment = 2;
8193 }
8194
fd361982 8195 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8196 elf_section_type (sec) = SHT_NOTE;
8197
8198 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8199 + 4-byte data */
8200 isa_1_descsz_raw = 4 + 4 + 4;
8201 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8202 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8203
8204 feature_2_descsz_raw = isa_1_descsz;
8205 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8206 + 4-byte data */
8207 feature_2_descsz_raw += 4 + 4 + 4;
8208 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8209 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8210 & ~align_size_1);
8211
8212 descsz = feature_2_descsz;
8213 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8214 p = frag_more (4 + 4 + 4 + 4 + descsz);
8215
8216 /* Write n_namsz. */
8217 md_number_to_chars (p, (valueT) 4, 4);
8218
8219 /* Write n_descsz. */
8220 md_number_to_chars (p + 4, (valueT) descsz, 4);
8221
8222 /* Write n_type. */
8223 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8224
8225 /* Write n_name. */
8226 memcpy (p + 4 * 3, "GNU", 4);
8227
8228 /* Write 4-byte type. */
8229 md_number_to_chars (p + 4 * 4,
8230 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8231
8232 /* Write 4-byte data size. */
8233 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8234
8235 /* Write 4-byte data. */
8236 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8237
8238 /* Zero out paddings. */
8239 padding = isa_1_descsz - isa_1_descsz_raw;
8240 if (padding)
8241 memset (p + 4 * 7, 0, padding);
8242
8243 /* Write 4-byte type. */
8244 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8245 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8246
8247 /* Write 4-byte data size. */
8248 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8249
8250 /* Write 4-byte data. */
8251 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8252 (valueT) x86_feature_2_used, 4);
8253
8254 /* Zero out paddings. */
8255 padding = feature_2_descsz - feature_2_descsz_raw;
8256 if (padding)
8257 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8258
8259 /* We probably can't restore the current segment, for there likely
8260 isn't one yet... */
8261 if (seg && subseg)
8262 subseg_set (seg, subseg);
8263}
8264#endif
8265
9c33702b
JB
8266static unsigned int
8267encoding_length (const fragS *start_frag, offsetT start_off,
8268 const char *frag_now_ptr)
8269{
8270 unsigned int len = 0;
8271
8272 if (start_frag != frag_now)
8273 {
8274 const fragS *fr = start_frag;
8275
8276 do {
8277 len += fr->fr_fix;
8278 fr = fr->fr_next;
8279 } while (fr && fr != frag_now);
8280 }
8281
8282 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8283}
8284
e379e5f3
L
8285/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8286 be macro-fused with conditional jumps. */
8287
8288static int
8289maybe_fused_with_jcc_p (void)
8290{
8291 /* No RIP address. */
8292 if (i.base_reg && i.base_reg->reg_num == RegIP)
8293 return 0;
8294
8295 /* No VEX/EVEX encoding. */
8296 if (is_any_vex_encoding (&i.tm))
8297 return 0;
8298
8299 /* and, add, sub with destination register. */
8300 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8301 || i.tm.base_opcode <= 5
8302 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8303 || ((i.tm.base_opcode | 3) == 0x83
8304 && ((i.tm.extension_opcode | 1) == 0x5
8305 || i.tm.extension_opcode == 0x0)))
8306 return (i.types[1].bitfield.class == Reg
8307 || i.types[1].bitfield.instance == Accum);
8308
8309 /* test, cmp with any register. */
8310 if ((i.tm.base_opcode | 1) == 0x85
8311 || (i.tm.base_opcode | 1) == 0xa9
8312 || ((i.tm.base_opcode | 1) == 0xf7
8313 && i.tm.extension_opcode == 0)
8314 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8315 || ((i.tm.base_opcode | 3) == 0x83
8316 && (i.tm.extension_opcode == 0x7)))
8317 return (i.types[0].bitfield.class == Reg
8318 || i.types[0].bitfield.instance == Accum
8319 || i.types[1].bitfield.class == Reg
8320 || i.types[1].bitfield.instance == Accum);
8321
8322 /* inc, dec with any register. */
8323 if ((i.tm.cpu_flags.bitfield.cpuno64
8324 && (i.tm.base_opcode | 0xf) == 0x4f)
8325 || ((i.tm.base_opcode | 1) == 0xff
8326 && i.tm.extension_opcode <= 0x1))
8327 return (i.types[0].bitfield.class == Reg
8328 || i.types[0].bitfield.instance == Accum);
8329
8330 return 0;
8331}
8332
8333/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8334
8335static int
8336add_fused_jcc_padding_frag_p (void)
8337{
8338 /* NB: Don't work with COND_JUMP86 without i386. */
8339 if (!align_branch_power
8340 || now_seg == absolute_section
8341 || !cpu_arch_flags.bitfield.cpui386
8342 || !(align_branch & align_branch_fused_bit))
8343 return 0;
8344
8345 if (maybe_fused_with_jcc_p ())
8346 {
8347 if (last_insn.kind == last_insn_other
8348 || last_insn.seg != now_seg)
8349 return 1;
8350 if (flag_debug)
8351 as_warn_where (last_insn.file, last_insn.line,
8352 _("`%s` skips -malign-branch-boundary on `%s`"),
8353 last_insn.name, i.tm.name);
8354 }
8355
8356 return 0;
8357}
8358
8359/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8360
8361static int
8362add_branch_prefix_frag_p (void)
8363{
8364 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8365 to PadLock instructions since they include prefixes in opcode. */
8366 if (!align_branch_power
8367 || !align_branch_prefix_size
8368 || now_seg == absolute_section
8369 || i.tm.cpu_flags.bitfield.cpupadlock
8370 || !cpu_arch_flags.bitfield.cpui386)
8371 return 0;
8372
8373 /* Don't add prefix if it is a prefix or there is no operand in case
8374 that segment prefix is special. */
8375 if (!i.operands || i.tm.opcode_modifier.isprefix)
8376 return 0;
8377
8378 if (last_insn.kind == last_insn_other
8379 || last_insn.seg != now_seg)
8380 return 1;
8381
8382 if (flag_debug)
8383 as_warn_where (last_insn.file, last_insn.line,
8384 _("`%s` skips -malign-branch-boundary on `%s`"),
8385 last_insn.name, i.tm.name);
8386
8387 return 0;
8388}
8389
8390/* Return 1 if a BRANCH_PADDING frag should be generated. */
8391
8392static int
8393add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8394{
8395 int add_padding;
8396
8397 /* NB: Don't work with COND_JUMP86 without i386. */
8398 if (!align_branch_power
8399 || now_seg == absolute_section
8400 || !cpu_arch_flags.bitfield.cpui386)
8401 return 0;
8402
8403 add_padding = 0;
8404
8405 /* Check for jcc and direct jmp. */
8406 if (i.tm.opcode_modifier.jump == JUMP)
8407 {
8408 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8409 {
8410 *branch_p = align_branch_jmp;
8411 add_padding = align_branch & align_branch_jmp_bit;
8412 }
8413 else
8414 {
8415 *branch_p = align_branch_jcc;
8416 if ((align_branch & align_branch_jcc_bit))
8417 add_padding = 1;
8418 }
8419 }
8420 else if (is_any_vex_encoding (&i.tm))
8421 return 0;
8422 else if ((i.tm.base_opcode | 1) == 0xc3)
8423 {
8424 /* Near ret. */
8425 *branch_p = align_branch_ret;
8426 if ((align_branch & align_branch_ret_bit))
8427 add_padding = 1;
8428 }
8429 else
8430 {
8431 /* Check for indirect jmp, direct and indirect calls. */
8432 if (i.tm.base_opcode == 0xe8)
8433 {
8434 /* Direct call. */
8435 *branch_p = align_branch_call;
8436 if ((align_branch & align_branch_call_bit))
8437 add_padding = 1;
8438 }
8439 else if (i.tm.base_opcode == 0xff
8440 && (i.tm.extension_opcode == 2
8441 || i.tm.extension_opcode == 4))
8442 {
8443 /* Indirect call and jmp. */
8444 *branch_p = align_branch_indirect;
8445 if ((align_branch & align_branch_indirect_bit))
8446 add_padding = 1;
8447 }
8448
8449 if (add_padding
8450 && i.disp_operands
8451 && tls_get_addr
8452 && (i.op[0].disps->X_op == O_symbol
8453 || (i.op[0].disps->X_op == O_subtract
8454 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8455 {
8456 symbolS *s = i.op[0].disps->X_add_symbol;
8457 /* No padding to call to global or undefined tls_get_addr. */
8458 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8459 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8460 return 0;
8461 }
8462 }
8463
8464 if (add_padding
8465 && last_insn.kind != last_insn_other
8466 && last_insn.seg == now_seg)
8467 {
8468 if (flag_debug)
8469 as_warn_where (last_insn.file, last_insn.line,
8470 _("`%s` skips -malign-branch-boundary on `%s`"),
8471 last_insn.name, i.tm.name);
8472 return 0;
8473 }
8474
8475 return add_padding;
8476}
8477
29b0f896 8478static void
e3bb37b5 8479output_insn (void)
29b0f896 8480{
2bbd9c25
JJ
8481 fragS *insn_start_frag;
8482 offsetT insn_start_off;
e379e5f3
L
8483 fragS *fragP = NULL;
8484 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8485
b4a3a7b4
L
8486#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8487 if (IS_ELF && x86_used_note)
8488 {
8489 if (i.tm.cpu_flags.bitfield.cpucmov)
8490 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8491 if (i.tm.cpu_flags.bitfield.cpusse)
8492 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8493 if (i.tm.cpu_flags.bitfield.cpusse2)
8494 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8495 if (i.tm.cpu_flags.bitfield.cpusse3)
8496 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8497 if (i.tm.cpu_flags.bitfield.cpussse3)
8498 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8499 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8500 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8501 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8502 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8503 if (i.tm.cpu_flags.bitfield.cpuavx)
8504 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8505 if (i.tm.cpu_flags.bitfield.cpuavx2)
8506 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8507 if (i.tm.cpu_flags.bitfield.cpufma)
8508 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8509 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8510 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8511 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8512 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8513 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8514 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8515 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8516 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8517 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8518 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8519 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8520 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8521 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8522 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8523 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8524 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8525 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8526 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8527 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8528 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8529 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8530 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8531 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8532 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8533 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8534 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8535 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8536 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8537 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8538 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8539
8540 if (i.tm.cpu_flags.bitfield.cpu8087
8541 || i.tm.cpu_flags.bitfield.cpu287
8542 || i.tm.cpu_flags.bitfield.cpu387
8543 || i.tm.cpu_flags.bitfield.cpu687
8544 || i.tm.cpu_flags.bitfield.cpufisttp)
8545 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8546 if (i.has_regmmx
8547 || i.tm.base_opcode == 0xf77 /* emms */
8548 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8549 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8550 if (i.has_regxmm)
8551 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8552 if (i.has_regymm)
8553 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8554 if (i.has_regzmm)
8555 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8556 if (i.tm.cpu_flags.bitfield.cpufxsr)
8557 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8558 if (i.tm.cpu_flags.bitfield.cpuxsave)
8559 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8560 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8561 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8562 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8563 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8564 }
8565#endif
8566
29b0f896
AM
8567 /* Tie dwarf2 debug info to the address at the start of the insn.
8568 We can't do this after the insn has been output as the current
8569 frag may have been closed off. eg. by frag_var. */
8570 dwarf2_emit_insn (0);
8571
2bbd9c25
JJ
8572 insn_start_frag = frag_now;
8573 insn_start_off = frag_now_fix ();
8574
e379e5f3
L
8575 if (add_branch_padding_frag_p (&branch))
8576 {
8577 char *p;
8578 /* Branch can be 8 bytes. Leave some room for prefixes. */
8579 unsigned int max_branch_padding_size = 14;
8580
8581 /* Align section to boundary. */
8582 record_alignment (now_seg, align_branch_power);
8583
8584 /* Make room for padding. */
8585 frag_grow (max_branch_padding_size);
8586
8587 /* Start of the padding. */
8588 p = frag_more (0);
8589
8590 fragP = frag_now;
8591
8592 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8593 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8594 NULL, 0, p);
8595
8596 fragP->tc_frag_data.branch_type = branch;
8597 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8598 }
8599
29b0f896 8600 /* Output jumps. */
0cfa3eb3 8601 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8602 output_branch ();
0cfa3eb3
JB
8603 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8604 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8605 output_jump ();
0cfa3eb3 8606 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8607 output_interseg_jump ();
8608 else
8609 {
8610 /* Output normal instructions here. */
8611 char *p;
8612 unsigned char *q;
47465058 8613 unsigned int j;
331d2d0d 8614 unsigned int prefix;
4dffcebc 8615
e4e00185 8616 if (avoid_fence
c3949f43
JB
8617 && (i.tm.base_opcode == 0xfaee8
8618 || i.tm.base_opcode == 0xfaef0
8619 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8620 {
8621 /* Encode lfence, mfence, and sfence as
8622 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8623 offsetT val = 0x240483f0ULL;
8624 p = frag_more (5);
8625 md_number_to_chars (p, val, 5);
8626 return;
8627 }
8628
d022bddd
IT
8629 /* Some processors fail on LOCK prefix. This options makes
8630 assembler ignore LOCK prefix and serves as a workaround. */
8631 if (omit_lock_prefix)
8632 {
8633 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8634 return;
8635 i.prefix[LOCK_PREFIX] = 0;
8636 }
8637
e379e5f3
L
8638 if (branch)
8639 /* Skip if this is a branch. */
8640 ;
8641 else if (add_fused_jcc_padding_frag_p ())
8642 {
8643 /* Make room for padding. */
8644 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8645 p = frag_more (0);
8646
8647 fragP = frag_now;
8648
8649 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8650 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8651 NULL, 0, p);
8652
8653 fragP->tc_frag_data.branch_type = align_branch_fused;
8654 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8655 }
8656 else if (add_branch_prefix_frag_p ())
8657 {
8658 unsigned int max_prefix_size = align_branch_prefix_size;
8659
8660 /* Make room for padding. */
8661 frag_grow (max_prefix_size);
8662 p = frag_more (0);
8663
8664 fragP = frag_now;
8665
8666 frag_var (rs_machine_dependent, max_prefix_size, 0,
8667 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8668 NULL, 0, p);
8669
8670 fragP->tc_frag_data.max_bytes = max_prefix_size;
8671 }
8672
43234a1e
L
8673 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8674 don't need the explicit prefix. */
8675 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8676 {
c0f3af97 8677 switch (i.tm.opcode_length)
bc4bd9ab 8678 {
c0f3af97
L
8679 case 3:
8680 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8681 {
c0f3af97 8682 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8683 if (!i.tm.cpu_flags.bitfield.cpupadlock
8684 || prefix != REPE_PREFIX_OPCODE
8685 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8686 add_prefix (prefix);
c0f3af97
L
8687 }
8688 break;
8689 case 2:
8690 if ((i.tm.base_opcode & 0xff0000) != 0)
8691 {
8692 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8693 add_prefix (prefix);
4dffcebc 8694 }
c0f3af97
L
8695 break;
8696 case 1:
8697 break;
390c91cf
L
8698 case 0:
8699 /* Check for pseudo prefixes. */
8700 as_bad_where (insn_start_frag->fr_file,
8701 insn_start_frag->fr_line,
8702 _("pseudo prefix without instruction"));
8703 return;
c0f3af97
L
8704 default:
8705 abort ();
bc4bd9ab 8706 }
c0f3af97 8707
6d19a37a 8708#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8709 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8710 R_X86_64_GOTTPOFF relocation so that linker can safely
8711 perform IE->LE optimization. */
8712 if (x86_elf_abi == X86_64_X32_ABI
8713 && i.operands == 2
8714 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8715 && i.prefix[REX_PREFIX] == 0)
8716 add_prefix (REX_OPCODE);
6d19a37a 8717#endif
cf61b747 8718
c0f3af97
L
8719 /* The prefix bytes. */
8720 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8721 if (*q)
8722 FRAG_APPEND_1_CHAR (*q);
0f10071e 8723 }
ae5c1c7b 8724 else
c0f3af97
L
8725 {
8726 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8727 if (*q)
8728 switch (j)
8729 {
8730 case REX_PREFIX:
8731 /* REX byte is encoded in VEX prefix. */
8732 break;
8733 case SEG_PREFIX:
8734 case ADDR_PREFIX:
8735 FRAG_APPEND_1_CHAR (*q);
8736 break;
8737 default:
8738 /* There should be no other prefixes for instructions
8739 with VEX prefix. */
8740 abort ();
8741 }
8742
43234a1e
L
8743 /* For EVEX instructions i.vrex should become 0 after
8744 build_evex_prefix. For VEX instructions upper 16 registers
8745 aren't available, so VREX should be 0. */
8746 if (i.vrex)
8747 abort ();
c0f3af97
L
8748 /* Now the VEX prefix. */
8749 p = frag_more (i.vex.length);
8750 for (j = 0; j < i.vex.length; j++)
8751 p[j] = i.vex.bytes[j];
8752 }
252b5132 8753
29b0f896 8754 /* Now the opcode; be careful about word order here! */
4dffcebc 8755 if (i.tm.opcode_length == 1)
29b0f896
AM
8756 {
8757 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8758 }
8759 else
8760 {
4dffcebc 8761 switch (i.tm.opcode_length)
331d2d0d 8762 {
43234a1e
L
8763 case 4:
8764 p = frag_more (4);
8765 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8766 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8767 break;
4dffcebc 8768 case 3:
331d2d0d
L
8769 p = frag_more (3);
8770 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8771 break;
8772 case 2:
8773 p = frag_more (2);
8774 break;
8775 default:
8776 abort ();
8777 break;
331d2d0d 8778 }
0f10071e 8779
29b0f896
AM
8780 /* Put out high byte first: can't use md_number_to_chars! */
8781 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8782 *p = i.tm.base_opcode & 0xff;
8783 }
3e73aa7c 8784
29b0f896 8785 /* Now the modrm byte and sib byte (if present). */
40fb9820 8786 if (i.tm.opcode_modifier.modrm)
29b0f896 8787 {
4a3523fa
L
8788 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8789 | i.rm.reg << 3
8790 | i.rm.mode << 6));
29b0f896
AM
8791 /* If i.rm.regmem == ESP (4)
8792 && i.rm.mode != (Register mode)
8793 && not 16 bit
8794 ==> need second modrm byte. */
8795 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8796 && i.rm.mode != 3
dc821c5f 8797 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8798 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8799 | i.sib.index << 3
8800 | i.sib.scale << 6));
29b0f896 8801 }
3e73aa7c 8802
29b0f896 8803 if (i.disp_operands)
2bbd9c25 8804 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8805
29b0f896 8806 if (i.imm_operands)
2bbd9c25 8807 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8808
8809 /*
8810 * frag_now_fix () returning plain abs_section_offset when we're in the
8811 * absolute section, and abs_section_offset not getting updated as data
8812 * gets added to the frag breaks the logic below.
8813 */
8814 if (now_seg != absolute_section)
8815 {
8816 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8817 if (j > 15)
8818 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8819 j);
e379e5f3
L
8820 else if (fragP)
8821 {
8822 /* NB: Don't add prefix with GOTPC relocation since
8823 output_disp() above depends on the fixed encoding
8824 length. Can't add prefix with TLS relocation since
8825 it breaks TLS linker optimization. */
8826 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8827 /* Prefix count on the current instruction. */
8828 unsigned int count = i.vex.length;
8829 unsigned int k;
8830 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8831 /* REX byte is encoded in VEX/EVEX prefix. */
8832 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8833 count++;
8834
8835 /* Count prefixes for extended opcode maps. */
8836 if (!i.vex.length)
8837 switch (i.tm.opcode_length)
8838 {
8839 case 3:
8840 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8841 {
8842 count++;
8843 switch ((i.tm.base_opcode >> 8) & 0xff)
8844 {
8845 case 0x38:
8846 case 0x3a:
8847 count++;
8848 break;
8849 default:
8850 break;
8851 }
8852 }
8853 break;
8854 case 2:
8855 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8856 count++;
8857 break;
8858 case 1:
8859 break;
8860 default:
8861 abort ();
8862 }
8863
8864 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8865 == BRANCH_PREFIX)
8866 {
8867 /* Set the maximum prefix size in BRANCH_PREFIX
8868 frag. */
8869 if (fragP->tc_frag_data.max_bytes > max)
8870 fragP->tc_frag_data.max_bytes = max;
8871 if (fragP->tc_frag_data.max_bytes > count)
8872 fragP->tc_frag_data.max_bytes -= count;
8873 else
8874 fragP->tc_frag_data.max_bytes = 0;
8875 }
8876 else
8877 {
8878 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8879 frag. */
8880 unsigned int max_prefix_size;
8881 if (align_branch_prefix_size > max)
8882 max_prefix_size = max;
8883 else
8884 max_prefix_size = align_branch_prefix_size;
8885 if (max_prefix_size > count)
8886 fragP->tc_frag_data.max_prefix_length
8887 = max_prefix_size - count;
8888 }
8889
8890 /* Use existing segment prefix if possible. Use CS
8891 segment prefix in 64-bit mode. In 32-bit mode, use SS
8892 segment prefix with ESP/EBP base register and use DS
8893 segment prefix without ESP/EBP base register. */
8894 if (i.prefix[SEG_PREFIX])
8895 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8896 else if (flag_code == CODE_64BIT)
8897 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8898 else if (i.base_reg
8899 && (i.base_reg->reg_num == 4
8900 || i.base_reg->reg_num == 5))
8901 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8902 else
8903 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8904 }
9c33702b 8905 }
29b0f896 8906 }
252b5132 8907
e379e5f3
L
8908 /* NB: Don't work with COND_JUMP86 without i386. */
8909 if (align_branch_power
8910 && now_seg != absolute_section
8911 && cpu_arch_flags.bitfield.cpui386)
8912 {
8913 /* Terminate each frag so that we can add prefix and check for
8914 fused jcc. */
8915 frag_wane (frag_now);
8916 frag_new (0);
8917 }
8918
29b0f896
AM
8919#ifdef DEBUG386
8920 if (flag_debug)
8921 {
7b81dfbb 8922 pi ("" /*line*/, &i);
29b0f896
AM
8923 }
8924#endif /* DEBUG386 */
8925}
252b5132 8926
e205caa7
L
8927/* Return the size of the displacement operand N. */
8928
8929static int
8930disp_size (unsigned int n)
8931{
8932 int size = 4;
43234a1e 8933
b5014f7a 8934 if (i.types[n].bitfield.disp64)
40fb9820
L
8935 size = 8;
8936 else if (i.types[n].bitfield.disp8)
8937 size = 1;
8938 else if (i.types[n].bitfield.disp16)
8939 size = 2;
e205caa7
L
8940 return size;
8941}
8942
8943/* Return the size of the immediate operand N. */
8944
8945static int
8946imm_size (unsigned int n)
8947{
8948 int size = 4;
40fb9820
L
8949 if (i.types[n].bitfield.imm64)
8950 size = 8;
8951 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8952 size = 1;
8953 else if (i.types[n].bitfield.imm16)
8954 size = 2;
e205caa7
L
8955 return size;
8956}
8957
29b0f896 8958static void
64e74474 8959output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8960{
8961 char *p;
8962 unsigned int n;
252b5132 8963
29b0f896
AM
8964 for (n = 0; n < i.operands; n++)
8965 {
b5014f7a 8966 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8967 {
8968 if (i.op[n].disps->X_op == O_constant)
8969 {
e205caa7 8970 int size = disp_size (n);
43234a1e 8971 offsetT val = i.op[n].disps->X_add_number;
252b5132 8972
629cfaf1
JB
8973 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8974 size);
29b0f896
AM
8975 p = frag_more (size);
8976 md_number_to_chars (p, val, size);
8977 }
8978 else
8979 {
f86103b7 8980 enum bfd_reloc_code_real reloc_type;
e205caa7 8981 int size = disp_size (n);
40fb9820 8982 int sign = i.types[n].bitfield.disp32s;
29b0f896 8983 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8984 fixS *fixP;
29b0f896 8985
e205caa7 8986 /* We can't have 8 bit displacement here. */
9c2799c2 8987 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8988
29b0f896
AM
8989 /* The PC relative address is computed relative
8990 to the instruction boundary, so in case immediate
8991 fields follows, we need to adjust the value. */
8992 if (pcrel && i.imm_operands)
8993 {
29b0f896 8994 unsigned int n1;
e205caa7 8995 int sz = 0;
252b5132 8996
29b0f896 8997 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8998 if (operand_type_check (i.types[n1], imm))
252b5132 8999 {
e205caa7
L
9000 /* Only one immediate is allowed for PC
9001 relative address. */
9c2799c2 9002 gas_assert (sz == 0);
e205caa7
L
9003 sz = imm_size (n1);
9004 i.op[n].disps->X_add_number -= sz;
252b5132 9005 }
29b0f896 9006 /* We should find the immediate. */
9c2799c2 9007 gas_assert (sz != 0);
29b0f896 9008 }
520dc8e8 9009
29b0f896 9010 p = frag_more (size);
d258b828 9011 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9012 if (GOT_symbol
2bbd9c25 9013 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9014 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9015 || reloc_type == BFD_RELOC_X86_64_32S
9016 || (reloc_type == BFD_RELOC_64
9017 && object_64bit))
d6ab8113
JB
9018 && (i.op[n].disps->X_op == O_symbol
9019 || (i.op[n].disps->X_op == O_add
9020 && ((symbol_get_value_expression
9021 (i.op[n].disps->X_op_symbol)->X_op)
9022 == O_subtract))))
9023 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9024 {
4fa24527 9025 if (!object_64bit)
7b81dfbb
AJ
9026 {
9027 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9028 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9029 i.op[n].imms->X_add_number +=
9030 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9031 }
9032 else if (reloc_type == BFD_RELOC_64)
9033 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9034 else
7b81dfbb
AJ
9035 /* Don't do the adjustment for x86-64, as there
9036 the pcrel addressing is relative to the _next_
9037 insn, and that is taken care of in other code. */
d6ab8113 9038 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9039 }
e379e5f3
L
9040 else if (align_branch_power)
9041 {
9042 switch (reloc_type)
9043 {
9044 case BFD_RELOC_386_TLS_GD:
9045 case BFD_RELOC_386_TLS_LDM:
9046 case BFD_RELOC_386_TLS_IE:
9047 case BFD_RELOC_386_TLS_IE_32:
9048 case BFD_RELOC_386_TLS_GOTIE:
9049 case BFD_RELOC_386_TLS_GOTDESC:
9050 case BFD_RELOC_386_TLS_DESC_CALL:
9051 case BFD_RELOC_X86_64_TLSGD:
9052 case BFD_RELOC_X86_64_TLSLD:
9053 case BFD_RELOC_X86_64_GOTTPOFF:
9054 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9055 case BFD_RELOC_X86_64_TLSDESC_CALL:
9056 i.has_gotpc_tls_reloc = TRUE;
9057 default:
9058 break;
9059 }
9060 }
02a86693
L
9061 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9062 size, i.op[n].disps, pcrel,
9063 reloc_type);
9064 /* Check for "call/jmp *mem", "mov mem, %reg",
9065 "test %reg, mem" and "binop mem, %reg" where binop
9066 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9067 instructions without data prefix. Always generate
9068 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9069 if (i.prefix[DATA_PREFIX] == 0
9070 && (generate_relax_relocations
9071 || (!object_64bit
9072 && i.rm.mode == 0
9073 && i.rm.regmem == 5))
0cb4071e
L
9074 && (i.rm.mode == 2
9075 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
9076 && ((i.operands == 1
9077 && i.tm.base_opcode == 0xff
9078 && (i.rm.reg == 2 || i.rm.reg == 4))
9079 || (i.operands == 2
9080 && (i.tm.base_opcode == 0x8b
9081 || i.tm.base_opcode == 0x85
9082 || (i.tm.base_opcode & 0xc7) == 0x03))))
9083 {
9084 if (object_64bit)
9085 {
9086 fixP->fx_tcbit = i.rex != 0;
9087 if (i.base_reg
e968fc9b 9088 && (i.base_reg->reg_num == RegIP))
02a86693
L
9089 fixP->fx_tcbit2 = 1;
9090 }
9091 else
9092 fixP->fx_tcbit2 = 1;
9093 }
29b0f896
AM
9094 }
9095 }
9096 }
9097}
252b5132 9098
29b0f896 9099static void
64e74474 9100output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9101{
9102 char *p;
9103 unsigned int n;
252b5132 9104
29b0f896
AM
9105 for (n = 0; n < i.operands; n++)
9106 {
43234a1e
L
9107 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9108 if (i.rounding && (int) n == i.rounding->operand)
9109 continue;
9110
40fb9820 9111 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9112 {
9113 if (i.op[n].imms->X_op == O_constant)
9114 {
e205caa7 9115 int size = imm_size (n);
29b0f896 9116 offsetT val;
b4cac588 9117
29b0f896
AM
9118 val = offset_in_range (i.op[n].imms->X_add_number,
9119 size);
9120 p = frag_more (size);
9121 md_number_to_chars (p, val, size);
9122 }
9123 else
9124 {
9125 /* Not absolute_section.
9126 Need a 32-bit fixup (don't support 8bit
9127 non-absolute imms). Try to support other
9128 sizes ... */
f86103b7 9129 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9130 int size = imm_size (n);
9131 int sign;
29b0f896 9132
40fb9820 9133 if (i.types[n].bitfield.imm32s
a7d61044 9134 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9135 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9136 sign = 1;
e205caa7
L
9137 else
9138 sign = 0;
520dc8e8 9139
29b0f896 9140 p = frag_more (size);
d258b828 9141 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9142
2bbd9c25
JJ
9143 /* This is tough to explain. We end up with this one if we
9144 * have operands that look like
9145 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9146 * obtain the absolute address of the GOT, and it is strongly
9147 * preferable from a performance point of view to avoid using
9148 * a runtime relocation for this. The actual sequence of
9149 * instructions often look something like:
9150 *
9151 * call .L66
9152 * .L66:
9153 * popl %ebx
9154 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9155 *
9156 * The call and pop essentially return the absolute address
9157 * of the label .L66 and store it in %ebx. The linker itself
9158 * will ultimately change the first operand of the addl so
9159 * that %ebx points to the GOT, but to keep things simple, the
9160 * .o file must have this operand set so that it generates not
9161 * the absolute address of .L66, but the absolute address of
9162 * itself. This allows the linker itself simply treat a GOTPC
9163 * relocation as asking for a pcrel offset to the GOT to be
9164 * added in, and the addend of the relocation is stored in the
9165 * operand field for the instruction itself.
9166 *
9167 * Our job here is to fix the operand so that it would add
9168 * the correct offset so that %ebx would point to itself. The
9169 * thing that is tricky is that .-.L66 will point to the
9170 * beginning of the instruction, so we need to further modify
9171 * the operand so that it will point to itself. There are
9172 * other cases where you have something like:
9173 *
9174 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9175 *
9176 * and here no correction would be required. Internally in
9177 * the assembler we treat operands of this form as not being
9178 * pcrel since the '.' is explicitly mentioned, and I wonder
9179 * whether it would simplify matters to do it this way. Who
9180 * knows. In earlier versions of the PIC patches, the
9181 * pcrel_adjust field was used to store the correction, but
9182 * since the expression is not pcrel, I felt it would be
9183 * confusing to do it this way. */
9184
d6ab8113 9185 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9186 || reloc_type == BFD_RELOC_X86_64_32S
9187 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9188 && GOT_symbol
9189 && GOT_symbol == i.op[n].imms->X_add_symbol
9190 && (i.op[n].imms->X_op == O_symbol
9191 || (i.op[n].imms->X_op == O_add
9192 && ((symbol_get_value_expression
9193 (i.op[n].imms->X_op_symbol)->X_op)
9194 == O_subtract))))
9195 {
4fa24527 9196 if (!object_64bit)
d6ab8113 9197 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9198 else if (size == 4)
d6ab8113 9199 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9200 else if (size == 8)
9201 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9202 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9203 i.op[n].imms->X_add_number +=
9204 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9205 }
29b0f896
AM
9206 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9207 i.op[n].imms, 0, reloc_type);
9208 }
9209 }
9210 }
252b5132
RH
9211}
9212\f
d182319b
JB
9213/* x86_cons_fix_new is called via the expression parsing code when a
9214 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9215static int cons_sign = -1;
9216
9217void
e3bb37b5 9218x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9219 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9220{
d258b828 9221 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9222
9223#ifdef TE_PE
9224 if (exp->X_op == O_secrel)
9225 {
9226 exp->X_op = O_symbol;
9227 r = BFD_RELOC_32_SECREL;
9228 }
9229#endif
9230
9231 fix_new_exp (frag, off, len, exp, 0, r);
9232}
9233
357d1bd8
L
9234/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9235 purpose of the `.dc.a' internal pseudo-op. */
9236
9237int
9238x86_address_bytes (void)
9239{
9240 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9241 return 4;
9242 return stdoutput->arch_info->bits_per_address / 8;
9243}
9244
d382c579
TG
9245#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9246 || defined (LEX_AT)
d258b828 9247# define lex_got(reloc, adjust, types) NULL
718ddfc0 9248#else
f3c180ae
AM
9249/* Parse operands of the form
9250 <symbol>@GOTOFF+<nnn>
9251 and similar .plt or .got references.
9252
9253 If we find one, set up the correct relocation in RELOC and copy the
9254 input string, minus the `@GOTOFF' into a malloc'd buffer for
9255 parsing by the calling routine. Return this buffer, and if ADJUST
9256 is non-null set it to the length of the string we removed from the
9257 input line. Otherwise return NULL. */
9258static char *
91d6fa6a 9259lex_got (enum bfd_reloc_code_real *rel,
64e74474 9260 int *adjust,
d258b828 9261 i386_operand_type *types)
f3c180ae 9262{
7b81dfbb
AJ
9263 /* Some of the relocations depend on the size of what field is to
9264 be relocated. But in our callers i386_immediate and i386_displacement
9265 we don't yet know the operand size (this will be set by insn
9266 matching). Hence we record the word32 relocation here,
9267 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9268 static const struct {
9269 const char *str;
cff8d58a 9270 int len;
4fa24527 9271 const enum bfd_reloc_code_real rel[2];
40fb9820 9272 const i386_operand_type types64;
f3c180ae 9273 } gotrel[] = {
8ce3d284 9274#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9275 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9276 BFD_RELOC_SIZE32 },
9277 OPERAND_TYPE_IMM32_64 },
8ce3d284 9278#endif
cff8d58a
L
9279 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9280 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9281 OPERAND_TYPE_IMM64 },
cff8d58a
L
9282 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9283 BFD_RELOC_X86_64_PLT32 },
40fb9820 9284 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9285 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9286 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9287 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9288 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9289 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9290 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9291 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9292 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9293 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9294 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9295 BFD_RELOC_X86_64_TLSGD },
40fb9820 9296 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9297 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9298 _dummy_first_bfd_reloc_code_real },
40fb9820 9299 OPERAND_TYPE_NONE },
cff8d58a
L
9300 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9301 BFD_RELOC_X86_64_TLSLD },
40fb9820 9302 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9303 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9304 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9305 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9306 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9307 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9308 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9309 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9310 _dummy_first_bfd_reloc_code_real },
40fb9820 9311 OPERAND_TYPE_NONE },
cff8d58a
L
9312 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9313 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9314 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9315 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9316 _dummy_first_bfd_reloc_code_real },
40fb9820 9317 OPERAND_TYPE_NONE },
cff8d58a
L
9318 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9319 _dummy_first_bfd_reloc_code_real },
40fb9820 9320 OPERAND_TYPE_NONE },
cff8d58a
L
9321 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9322 BFD_RELOC_X86_64_GOT32 },
40fb9820 9323 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9324 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9325 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9326 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9327 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9328 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9329 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9330 };
9331 char *cp;
9332 unsigned int j;
9333
d382c579 9334#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9335 if (!IS_ELF)
9336 return NULL;
d382c579 9337#endif
718ddfc0 9338
f3c180ae 9339 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9340 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9341 return NULL;
9342
47465058 9343 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9344 {
cff8d58a 9345 int len = gotrel[j].len;
28f81592 9346 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9347 {
4fa24527 9348 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9349 {
28f81592
AM
9350 int first, second;
9351 char *tmpbuf, *past_reloc;
f3c180ae 9352
91d6fa6a 9353 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9354
3956db08
JB
9355 if (types)
9356 {
9357 if (flag_code != CODE_64BIT)
40fb9820
L
9358 {
9359 types->bitfield.imm32 = 1;
9360 types->bitfield.disp32 = 1;
9361 }
3956db08
JB
9362 else
9363 *types = gotrel[j].types64;
9364 }
9365
8fd4256d 9366 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9367 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9368
28f81592 9369 /* The length of the first part of our input line. */
f3c180ae 9370 first = cp - input_line_pointer;
28f81592
AM
9371
9372 /* The second part goes from after the reloc token until
67c11a9b 9373 (and including) an end_of_line char or comma. */
28f81592 9374 past_reloc = cp + 1 + len;
67c11a9b
AM
9375 cp = past_reloc;
9376 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9377 ++cp;
9378 second = cp + 1 - past_reloc;
28f81592
AM
9379
9380 /* Allocate and copy string. The trailing NUL shouldn't
9381 be necessary, but be safe. */
add39d23 9382 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9383 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9384 if (second != 0 && *past_reloc != ' ')
9385 /* Replace the relocation token with ' ', so that
9386 errors like foo@GOTOFF1 will be detected. */
9387 tmpbuf[first++] = ' ';
af89796a
L
9388 else
9389 /* Increment length by 1 if the relocation token is
9390 removed. */
9391 len++;
9392 if (adjust)
9393 *adjust = len;
0787a12d
AM
9394 memcpy (tmpbuf + first, past_reloc, second);
9395 tmpbuf[first + second] = '\0';
f3c180ae
AM
9396 return tmpbuf;
9397 }
9398
4fa24527
JB
9399 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9400 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9401 return NULL;
9402 }
9403 }
9404
9405 /* Might be a symbol version string. Don't as_bad here. */
9406 return NULL;
9407}
4e4f7c87 9408#endif
f3c180ae 9409
a988325c
NC
9410#ifdef TE_PE
9411#ifdef lex_got
9412#undef lex_got
9413#endif
9414/* Parse operands of the form
9415 <symbol>@SECREL32+<nnn>
9416
9417 If we find one, set up the correct relocation in RELOC and copy the
9418 input string, minus the `@SECREL32' into a malloc'd buffer for
9419 parsing by the calling routine. Return this buffer, and if ADJUST
9420 is non-null set it to the length of the string we removed from the
34bca508
L
9421 input line. Otherwise return NULL.
9422
a988325c
NC
9423 This function is copied from the ELF version above adjusted for PE targets. */
9424
9425static char *
9426lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9427 int *adjust ATTRIBUTE_UNUSED,
d258b828 9428 i386_operand_type *types)
a988325c
NC
9429{
9430 static const struct
9431 {
9432 const char *str;
9433 int len;
9434 const enum bfd_reloc_code_real rel[2];
9435 const i386_operand_type types64;
9436 }
9437 gotrel[] =
9438 {
9439 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9440 BFD_RELOC_32_SECREL },
9441 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9442 };
9443
9444 char *cp;
9445 unsigned j;
9446
9447 for (cp = input_line_pointer; *cp != '@'; cp++)
9448 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9449 return NULL;
9450
9451 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9452 {
9453 int len = gotrel[j].len;
9454
9455 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9456 {
9457 if (gotrel[j].rel[object_64bit] != 0)
9458 {
9459 int first, second;
9460 char *tmpbuf, *past_reloc;
9461
9462 *rel = gotrel[j].rel[object_64bit];
9463 if (adjust)
9464 *adjust = len;
9465
9466 if (types)
9467 {
9468 if (flag_code != CODE_64BIT)
9469 {
9470 types->bitfield.imm32 = 1;
9471 types->bitfield.disp32 = 1;
9472 }
9473 else
9474 *types = gotrel[j].types64;
9475 }
9476
9477 /* The length of the first part of our input line. */
9478 first = cp - input_line_pointer;
9479
9480 /* The second part goes from after the reloc token until
9481 (and including) an end_of_line char or comma. */
9482 past_reloc = cp + 1 + len;
9483 cp = past_reloc;
9484 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9485 ++cp;
9486 second = cp + 1 - past_reloc;
9487
9488 /* Allocate and copy string. The trailing NUL shouldn't
9489 be necessary, but be safe. */
add39d23 9490 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9491 memcpy (tmpbuf, input_line_pointer, first);
9492 if (second != 0 && *past_reloc != ' ')
9493 /* Replace the relocation token with ' ', so that
9494 errors like foo@SECLREL321 will be detected. */
9495 tmpbuf[first++] = ' ';
9496 memcpy (tmpbuf + first, past_reloc, second);
9497 tmpbuf[first + second] = '\0';
9498 return tmpbuf;
9499 }
9500
9501 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9502 gotrel[j].str, 1 << (5 + object_64bit));
9503 return NULL;
9504 }
9505 }
9506
9507 /* Might be a symbol version string. Don't as_bad here. */
9508 return NULL;
9509}
9510
9511#endif /* TE_PE */
9512
62ebcb5c 9513bfd_reloc_code_real_type
e3bb37b5 9514x86_cons (expressionS *exp, int size)
f3c180ae 9515{
62ebcb5c
AM
9516 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9517
ee86248c
JB
9518 intel_syntax = -intel_syntax;
9519
3c7b9c2c 9520 exp->X_md = 0;
4fa24527 9521 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9522 {
9523 /* Handle @GOTOFF and the like in an expression. */
9524 char *save;
9525 char *gotfree_input_line;
4a57f2cf 9526 int adjust = 0;
f3c180ae
AM
9527
9528 save = input_line_pointer;
d258b828 9529 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9530 if (gotfree_input_line)
9531 input_line_pointer = gotfree_input_line;
9532
9533 expression (exp);
9534
9535 if (gotfree_input_line)
9536 {
9537 /* expression () has merrily parsed up to the end of line,
9538 or a comma - in the wrong buffer. Transfer how far
9539 input_line_pointer has moved to the right buffer. */
9540 input_line_pointer = (save
9541 + (input_line_pointer - gotfree_input_line)
9542 + adjust);
9543 free (gotfree_input_line);
3992d3b7
AM
9544 if (exp->X_op == O_constant
9545 || exp->X_op == O_absent
9546 || exp->X_op == O_illegal
0398aac5 9547 || exp->X_op == O_register
3992d3b7
AM
9548 || exp->X_op == O_big)
9549 {
9550 char c = *input_line_pointer;
9551 *input_line_pointer = 0;
9552 as_bad (_("missing or invalid expression `%s'"), save);
9553 *input_line_pointer = c;
9554 }
b9519cfe
L
9555 else if ((got_reloc == BFD_RELOC_386_PLT32
9556 || got_reloc == BFD_RELOC_X86_64_PLT32)
9557 && exp->X_op != O_symbol)
9558 {
9559 char c = *input_line_pointer;
9560 *input_line_pointer = 0;
9561 as_bad (_("invalid PLT expression `%s'"), save);
9562 *input_line_pointer = c;
9563 }
f3c180ae
AM
9564 }
9565 }
9566 else
9567 expression (exp);
ee86248c
JB
9568
9569 intel_syntax = -intel_syntax;
9570
9571 if (intel_syntax)
9572 i386_intel_simplify (exp);
62ebcb5c
AM
9573
9574 return got_reloc;
f3c180ae 9575}
f3c180ae 9576
9f32dd5b
L
9577static void
9578signed_cons (int size)
6482c264 9579{
d182319b
JB
9580 if (flag_code == CODE_64BIT)
9581 cons_sign = 1;
9582 cons (size);
9583 cons_sign = -1;
6482c264
NC
9584}
9585
d182319b 9586#ifdef TE_PE
6482c264 9587static void
7016a5d5 9588pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9589{
9590 expressionS exp;
9591
9592 do
9593 {
9594 expression (&exp);
9595 if (exp.X_op == O_symbol)
9596 exp.X_op = O_secrel;
9597
9598 emit_expr (&exp, 4);
9599 }
9600 while (*input_line_pointer++ == ',');
9601
9602 input_line_pointer--;
9603 demand_empty_rest_of_line ();
9604}
6482c264
NC
9605#endif
9606
43234a1e
L
9607/* Handle Vector operations. */
9608
9609static char *
9610check_VecOperations (char *op_string, char *op_end)
9611{
9612 const reg_entry *mask;
9613 const char *saved;
9614 char *end_op;
9615
9616 while (*op_string
9617 && (op_end == NULL || op_string < op_end))
9618 {
9619 saved = op_string;
9620 if (*op_string == '{')
9621 {
9622 op_string++;
9623
9624 /* Check broadcasts. */
9625 if (strncmp (op_string, "1to", 3) == 0)
9626 {
9627 int bcst_type;
9628
9629 if (i.broadcast)
9630 goto duplicated_vec_op;
9631
9632 op_string += 3;
9633 if (*op_string == '8')
8e6e0792 9634 bcst_type = 8;
b28d1bda 9635 else if (*op_string == '4')
8e6e0792 9636 bcst_type = 4;
b28d1bda 9637 else if (*op_string == '2')
8e6e0792 9638 bcst_type = 2;
43234a1e
L
9639 else if (*op_string == '1'
9640 && *(op_string+1) == '6')
9641 {
8e6e0792 9642 bcst_type = 16;
43234a1e
L
9643 op_string++;
9644 }
9645 else
9646 {
9647 as_bad (_("Unsupported broadcast: `%s'"), saved);
9648 return NULL;
9649 }
9650 op_string++;
9651
9652 broadcast_op.type = bcst_type;
9653 broadcast_op.operand = this_operand;
1f75763a 9654 broadcast_op.bytes = 0;
43234a1e
L
9655 i.broadcast = &broadcast_op;
9656 }
9657 /* Check masking operation. */
9658 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9659 {
9660 /* k0 can't be used for write mask. */
f74a6307 9661 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9662 {
6d2cd6b2
JB
9663 as_bad (_("`%s%s' can't be used for write mask"),
9664 register_prefix, mask->reg_name);
43234a1e
L
9665 return NULL;
9666 }
9667
9668 if (!i.mask)
9669 {
9670 mask_op.mask = mask;
9671 mask_op.zeroing = 0;
9672 mask_op.operand = this_operand;
9673 i.mask = &mask_op;
9674 }
9675 else
9676 {
9677 if (i.mask->mask)
9678 goto duplicated_vec_op;
9679
9680 i.mask->mask = mask;
9681
9682 /* Only "{z}" is allowed here. No need to check
9683 zeroing mask explicitly. */
9684 if (i.mask->operand != this_operand)
9685 {
9686 as_bad (_("invalid write mask `%s'"), saved);
9687 return NULL;
9688 }
9689 }
9690
9691 op_string = end_op;
9692 }
9693 /* Check zeroing-flag for masking operation. */
9694 else if (*op_string == 'z')
9695 {
9696 if (!i.mask)
9697 {
9698 mask_op.mask = NULL;
9699 mask_op.zeroing = 1;
9700 mask_op.operand = this_operand;
9701 i.mask = &mask_op;
9702 }
9703 else
9704 {
9705 if (i.mask->zeroing)
9706 {
9707 duplicated_vec_op:
9708 as_bad (_("duplicated `%s'"), saved);
9709 return NULL;
9710 }
9711
9712 i.mask->zeroing = 1;
9713
9714 /* Only "{%k}" is allowed here. No need to check mask
9715 register explicitly. */
9716 if (i.mask->operand != this_operand)
9717 {
9718 as_bad (_("invalid zeroing-masking `%s'"),
9719 saved);
9720 return NULL;
9721 }
9722 }
9723
9724 op_string++;
9725 }
9726 else
9727 goto unknown_vec_op;
9728
9729 if (*op_string != '}')
9730 {
9731 as_bad (_("missing `}' in `%s'"), saved);
9732 return NULL;
9733 }
9734 op_string++;
0ba3a731
L
9735
9736 /* Strip whitespace since the addition of pseudo prefixes
9737 changed how the scrubber treats '{'. */
9738 if (is_space_char (*op_string))
9739 ++op_string;
9740
43234a1e
L
9741 continue;
9742 }
9743 unknown_vec_op:
9744 /* We don't know this one. */
9745 as_bad (_("unknown vector operation: `%s'"), saved);
9746 return NULL;
9747 }
9748
6d2cd6b2
JB
9749 if (i.mask && i.mask->zeroing && !i.mask->mask)
9750 {
9751 as_bad (_("zeroing-masking only allowed with write mask"));
9752 return NULL;
9753 }
9754
43234a1e
L
9755 return op_string;
9756}
9757
252b5132 9758static int
70e41ade 9759i386_immediate (char *imm_start)
252b5132
RH
9760{
9761 char *save_input_line_pointer;
f3c180ae 9762 char *gotfree_input_line;
252b5132 9763 segT exp_seg = 0;
47926f60 9764 expressionS *exp;
40fb9820
L
9765 i386_operand_type types;
9766
0dfbf9d7 9767 operand_type_set (&types, ~0);
252b5132
RH
9768
9769 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9770 {
31b2323c
L
9771 as_bad (_("at most %d immediate operands are allowed"),
9772 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9773 return 0;
9774 }
9775
9776 exp = &im_expressions[i.imm_operands++];
520dc8e8 9777 i.op[this_operand].imms = exp;
252b5132
RH
9778
9779 if (is_space_char (*imm_start))
9780 ++imm_start;
9781
9782 save_input_line_pointer = input_line_pointer;
9783 input_line_pointer = imm_start;
9784
d258b828 9785 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9786 if (gotfree_input_line)
9787 input_line_pointer = gotfree_input_line;
252b5132
RH
9788
9789 exp_seg = expression (exp);
9790
83183c0c 9791 SKIP_WHITESPACE ();
43234a1e
L
9792
9793 /* Handle vector operations. */
9794 if (*input_line_pointer == '{')
9795 {
9796 input_line_pointer = check_VecOperations (input_line_pointer,
9797 NULL);
9798 if (input_line_pointer == NULL)
9799 return 0;
9800 }
9801
252b5132 9802 if (*input_line_pointer)
f3c180ae 9803 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9804
9805 input_line_pointer = save_input_line_pointer;
f3c180ae 9806 if (gotfree_input_line)
ee86248c
JB
9807 {
9808 free (gotfree_input_line);
9809
9810 if (exp->X_op == O_constant || exp->X_op == O_register)
9811 exp->X_op = O_illegal;
9812 }
9813
9814 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9815}
252b5132 9816
ee86248c
JB
9817static int
9818i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9819 i386_operand_type types, const char *imm_start)
9820{
9821 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9822 {
313c53d1
L
9823 if (imm_start)
9824 as_bad (_("missing or invalid immediate expression `%s'"),
9825 imm_start);
3992d3b7 9826 return 0;
252b5132 9827 }
3e73aa7c 9828 else if (exp->X_op == O_constant)
252b5132 9829 {
47926f60 9830 /* Size it properly later. */
40fb9820 9831 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9832 /* If not 64bit, sign extend val. */
9833 if (flag_code != CODE_64BIT
4eed87de
AM
9834 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9835 exp->X_add_number
9836 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9837 }
4c63da97 9838#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9839 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9840 && exp_seg != absolute_section
47926f60 9841 && exp_seg != text_section
24eab124
AM
9842 && exp_seg != data_section
9843 && exp_seg != bss_section
9844 && exp_seg != undefined_section
f86103b7 9845 && !bfd_is_com_section (exp_seg))
252b5132 9846 {
d0b47220 9847 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9848 return 0;
9849 }
9850#endif
a841bdf5 9851 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9852 {
313c53d1
L
9853 if (imm_start)
9854 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9855 return 0;
9856 }
252b5132
RH
9857 else
9858 {
9859 /* This is an address. The size of the address will be
24eab124 9860 determined later, depending on destination register,
3e73aa7c 9861 suffix, or the default for the section. */
40fb9820
L
9862 i.types[this_operand].bitfield.imm8 = 1;
9863 i.types[this_operand].bitfield.imm16 = 1;
9864 i.types[this_operand].bitfield.imm32 = 1;
9865 i.types[this_operand].bitfield.imm32s = 1;
9866 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9867 i.types[this_operand] = operand_type_and (i.types[this_operand],
9868 types);
252b5132
RH
9869 }
9870
9871 return 1;
9872}
9873
551c1ca1 9874static char *
e3bb37b5 9875i386_scale (char *scale)
252b5132 9876{
551c1ca1
AM
9877 offsetT val;
9878 char *save = input_line_pointer;
252b5132 9879
551c1ca1
AM
9880 input_line_pointer = scale;
9881 val = get_absolute_expression ();
9882
9883 switch (val)
252b5132 9884 {
551c1ca1 9885 case 1:
252b5132
RH
9886 i.log2_scale_factor = 0;
9887 break;
551c1ca1 9888 case 2:
252b5132
RH
9889 i.log2_scale_factor = 1;
9890 break;
551c1ca1 9891 case 4:
252b5132
RH
9892 i.log2_scale_factor = 2;
9893 break;
551c1ca1 9894 case 8:
252b5132
RH
9895 i.log2_scale_factor = 3;
9896 break;
9897 default:
a724f0f4
JB
9898 {
9899 char sep = *input_line_pointer;
9900
9901 *input_line_pointer = '\0';
9902 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9903 scale);
9904 *input_line_pointer = sep;
9905 input_line_pointer = save;
9906 return NULL;
9907 }
252b5132 9908 }
29b0f896 9909 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9910 {
9911 as_warn (_("scale factor of %d without an index register"),
24eab124 9912 1 << i.log2_scale_factor);
252b5132 9913 i.log2_scale_factor = 0;
252b5132 9914 }
551c1ca1
AM
9915 scale = input_line_pointer;
9916 input_line_pointer = save;
9917 return scale;
252b5132
RH
9918}
9919
252b5132 9920static int
e3bb37b5 9921i386_displacement (char *disp_start, char *disp_end)
252b5132 9922{
29b0f896 9923 expressionS *exp;
252b5132
RH
9924 segT exp_seg = 0;
9925 char *save_input_line_pointer;
f3c180ae 9926 char *gotfree_input_line;
40fb9820
L
9927 int override;
9928 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9929 int ret;
252b5132 9930
31b2323c
L
9931 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9932 {
9933 as_bad (_("at most %d displacement operands are allowed"),
9934 MAX_MEMORY_OPERANDS);
9935 return 0;
9936 }
9937
0dfbf9d7 9938 operand_type_set (&bigdisp, 0);
6f2f06be 9939 if (i.jumpabsolute
48bcea9f 9940 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9941 || (current_templates->start->opcode_modifier.jump != JUMP
9942 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9943 {
48bcea9f 9944 i386_addressing_mode ();
e05278af 9945 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9946 if (flag_code == CODE_64BIT)
9947 {
9948 if (!override)
9949 {
9950 bigdisp.bitfield.disp32s = 1;
9951 bigdisp.bitfield.disp64 = 1;
9952 }
48bcea9f
JB
9953 else
9954 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9955 }
9956 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9957 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9958 else
9959 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9960 }
9961 else
9962 {
9963 /* For PC-relative branches, the width of the displacement
9964 is dependent upon data size, not address size. */
e05278af 9965 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9966 if (flag_code == CODE_64BIT)
9967 {
9968 if (override || i.suffix == WORD_MNEM_SUFFIX)
9969 bigdisp.bitfield.disp16 = 1;
9970 else
48bcea9f 9971 bigdisp.bitfield.disp32s = 1;
40fb9820
L
9972 }
9973 else
e05278af
JB
9974 {
9975 if (!override)
9976 override = (i.suffix == (flag_code != CODE_16BIT
9977 ? WORD_MNEM_SUFFIX
9978 : LONG_MNEM_SUFFIX));
40fb9820
L
9979 bigdisp.bitfield.disp32 = 1;
9980 if ((flag_code == CODE_16BIT) ^ override)
9981 {
9982 bigdisp.bitfield.disp32 = 0;
9983 bigdisp.bitfield.disp16 = 1;
9984 }
e05278af 9985 }
e05278af 9986 }
c6fb90c8
L
9987 i.types[this_operand] = operand_type_or (i.types[this_operand],
9988 bigdisp);
252b5132
RH
9989
9990 exp = &disp_expressions[i.disp_operands];
520dc8e8 9991 i.op[this_operand].disps = exp;
252b5132
RH
9992 i.disp_operands++;
9993 save_input_line_pointer = input_line_pointer;
9994 input_line_pointer = disp_start;
9995 END_STRING_AND_SAVE (disp_end);
9996
9997#ifndef GCC_ASM_O_HACK
9998#define GCC_ASM_O_HACK 0
9999#endif
10000#if GCC_ASM_O_HACK
10001 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10002 if (i.types[this_operand].bitfield.baseIndex
24eab124 10003 && displacement_string_end[-1] == '+')
252b5132
RH
10004 {
10005 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10006 constraint within gcc asm statements.
10007 For instance:
10008
10009 #define _set_tssldt_desc(n,addr,limit,type) \
10010 __asm__ __volatile__ ( \
10011 "movw %w2,%0\n\t" \
10012 "movw %w1,2+%0\n\t" \
10013 "rorl $16,%1\n\t" \
10014 "movb %b1,4+%0\n\t" \
10015 "movb %4,5+%0\n\t" \
10016 "movb $0,6+%0\n\t" \
10017 "movb %h1,7+%0\n\t" \
10018 "rorl $16,%1" \
10019 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10020
10021 This works great except that the output assembler ends
10022 up looking a bit weird if it turns out that there is
10023 no offset. You end up producing code that looks like:
10024
10025 #APP
10026 movw $235,(%eax)
10027 movw %dx,2+(%eax)
10028 rorl $16,%edx
10029 movb %dl,4+(%eax)
10030 movb $137,5+(%eax)
10031 movb $0,6+(%eax)
10032 movb %dh,7+(%eax)
10033 rorl $16,%edx
10034 #NO_APP
10035
47926f60 10036 So here we provide the missing zero. */
24eab124
AM
10037
10038 *displacement_string_end = '0';
252b5132
RH
10039 }
10040#endif
d258b828 10041 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10042 if (gotfree_input_line)
10043 input_line_pointer = gotfree_input_line;
252b5132 10044
24eab124 10045 exp_seg = expression (exp);
252b5132 10046
636c26b0
AM
10047 SKIP_WHITESPACE ();
10048 if (*input_line_pointer)
10049 as_bad (_("junk `%s' after expression"), input_line_pointer);
10050#if GCC_ASM_O_HACK
10051 RESTORE_END_STRING (disp_end + 1);
10052#endif
636c26b0 10053 input_line_pointer = save_input_line_pointer;
636c26b0 10054 if (gotfree_input_line)
ee86248c
JB
10055 {
10056 free (gotfree_input_line);
10057
10058 if (exp->X_op == O_constant || exp->X_op == O_register)
10059 exp->X_op = O_illegal;
10060 }
10061
10062 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10063
10064 RESTORE_END_STRING (disp_end);
10065
10066 return ret;
10067}
10068
10069static int
10070i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10071 i386_operand_type types, const char *disp_start)
10072{
10073 i386_operand_type bigdisp;
10074 int ret = 1;
636c26b0 10075
24eab124
AM
10076 /* We do this to make sure that the section symbol is in
10077 the symbol table. We will ultimately change the relocation
47926f60 10078 to be relative to the beginning of the section. */
1ae12ab7 10079 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10080 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10081 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10082 {
636c26b0 10083 if (exp->X_op != O_symbol)
3992d3b7 10084 goto inv_disp;
636c26b0 10085
e5cb08ac 10086 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10087 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10088 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10089 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10090 exp->X_op = O_subtract;
10091 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10092 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10093 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10094 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10095 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10096 else
29b0f896 10097 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10098 }
252b5132 10099
3992d3b7
AM
10100 else if (exp->X_op == O_absent
10101 || exp->X_op == O_illegal
ee86248c 10102 || exp->X_op == O_big)
2daf4fd8 10103 {
3992d3b7
AM
10104 inv_disp:
10105 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10106 disp_start);
3992d3b7 10107 ret = 0;
2daf4fd8
AM
10108 }
10109
0e1147d9
L
10110 else if (flag_code == CODE_64BIT
10111 && !i.prefix[ADDR_PREFIX]
10112 && exp->X_op == O_constant)
10113 {
10114 /* Since displacement is signed extended to 64bit, don't allow
10115 disp32 and turn off disp32s if they are out of range. */
10116 i.types[this_operand].bitfield.disp32 = 0;
10117 if (!fits_in_signed_long (exp->X_add_number))
10118 {
10119 i.types[this_operand].bitfield.disp32s = 0;
10120 if (i.types[this_operand].bitfield.baseindex)
10121 {
10122 as_bad (_("0x%lx out range of signed 32bit displacement"),
10123 (long) exp->X_add_number);
10124 ret = 0;
10125 }
10126 }
10127 }
10128
4c63da97 10129#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10130 else if (exp->X_op != O_constant
10131 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10132 && exp_seg != absolute_section
10133 && exp_seg != text_section
10134 && exp_seg != data_section
10135 && exp_seg != bss_section
10136 && exp_seg != undefined_section
10137 && !bfd_is_com_section (exp_seg))
24eab124 10138 {
d0b47220 10139 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10140 ret = 0;
24eab124 10141 }
252b5132 10142#endif
3956db08 10143
48bcea9f
JB
10144 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10145 /* Constants get taken care of by optimize_disp(). */
10146 && exp->X_op != O_constant)
10147 i.types[this_operand].bitfield.disp8 = 1;
10148
40fb9820
L
10149 /* Check if this is a displacement only operand. */
10150 bigdisp = i.types[this_operand];
10151 bigdisp.bitfield.disp8 = 0;
10152 bigdisp.bitfield.disp16 = 0;
10153 bigdisp.bitfield.disp32 = 0;
10154 bigdisp.bitfield.disp32s = 0;
10155 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10156 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10157 i.types[this_operand] = operand_type_and (i.types[this_operand],
10158 types);
3956db08 10159
3992d3b7 10160 return ret;
252b5132
RH
10161}
10162
2abc2bec
JB
10163/* Return the active addressing mode, taking address override and
10164 registers forming the address into consideration. Update the
10165 address override prefix if necessary. */
47926f60 10166
2abc2bec
JB
10167static enum flag_code
10168i386_addressing_mode (void)
252b5132 10169{
be05d201
L
10170 enum flag_code addr_mode;
10171
10172 if (i.prefix[ADDR_PREFIX])
10173 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10174 else
10175 {
10176 addr_mode = flag_code;
10177
24eab124 10178#if INFER_ADDR_PREFIX
be05d201
L
10179 if (i.mem_operands == 0)
10180 {
10181 /* Infer address prefix from the first memory operand. */
10182 const reg_entry *addr_reg = i.base_reg;
10183
10184 if (addr_reg == NULL)
10185 addr_reg = i.index_reg;
eecb386c 10186
be05d201
L
10187 if (addr_reg)
10188 {
e968fc9b 10189 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10190 addr_mode = CODE_32BIT;
10191 else if (flag_code != CODE_64BIT
dc821c5f 10192 && addr_reg->reg_type.bitfield.word)
be05d201
L
10193 addr_mode = CODE_16BIT;
10194
10195 if (addr_mode != flag_code)
10196 {
10197 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10198 i.prefixes += 1;
10199 /* Change the size of any displacement too. At most one
10200 of Disp16 or Disp32 is set.
10201 FIXME. There doesn't seem to be any real need for
10202 separate Disp16 and Disp32 flags. The same goes for
10203 Imm16 and Imm32. Removing them would probably clean
10204 up the code quite a lot. */
10205 if (flag_code != CODE_64BIT
10206 && (i.types[this_operand].bitfield.disp16
10207 || i.types[this_operand].bitfield.disp32))
10208 i.types[this_operand]
10209 = operand_type_xor (i.types[this_operand], disp16_32);
10210 }
10211 }
10212 }
24eab124 10213#endif
be05d201
L
10214 }
10215
2abc2bec
JB
10216 return addr_mode;
10217}
10218
10219/* Make sure the memory operand we've been dealt is valid.
10220 Return 1 on success, 0 on a failure. */
10221
10222static int
10223i386_index_check (const char *operand_string)
10224{
10225 const char *kind = "base/index";
10226 enum flag_code addr_mode = i386_addressing_mode ();
10227
fc0763e6 10228 if (current_templates->start->opcode_modifier.isstring
c3949f43 10229 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10230 && (current_templates->end[-1].opcode_modifier.isstring
10231 || i.mem_operands))
10232 {
10233 /* Memory operands of string insns are special in that they only allow
10234 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10235 const reg_entry *expected_reg;
10236 static const char *di_si[][2] =
10237 {
10238 { "esi", "edi" },
10239 { "si", "di" },
10240 { "rsi", "rdi" }
10241 };
10242 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10243
10244 kind = "string address";
10245
8325cc63 10246 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10247 {
51c8edf6
JB
10248 int es_op = current_templates->end[-1].opcode_modifier.isstring
10249 - IS_STRING_ES_OP0;
10250 int op = 0;
fc0763e6 10251
51c8edf6 10252 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10253 || ((!i.mem_operands != !intel_syntax)
10254 && current_templates->end[-1].operand_types[1]
10255 .bitfield.baseindex))
51c8edf6
JB
10256 op = 1;
10257 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10258 }
10259 else
be05d201 10260 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10261
be05d201
L
10262 if (i.base_reg != expected_reg
10263 || i.index_reg
fc0763e6 10264 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10265 {
be05d201
L
10266 /* The second memory operand must have the same size as
10267 the first one. */
10268 if (i.mem_operands
10269 && i.base_reg
10270 && !((addr_mode == CODE_64BIT
dc821c5f 10271 && i.base_reg->reg_type.bitfield.qword)
be05d201 10272 || (addr_mode == CODE_32BIT
dc821c5f
JB
10273 ? i.base_reg->reg_type.bitfield.dword
10274 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10275 goto bad_address;
10276
fc0763e6
JB
10277 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10278 operand_string,
10279 intel_syntax ? '[' : '(',
10280 register_prefix,
be05d201 10281 expected_reg->reg_name,
fc0763e6 10282 intel_syntax ? ']' : ')');
be05d201 10283 return 1;
fc0763e6 10284 }
be05d201
L
10285 else
10286 return 1;
10287
10288bad_address:
10289 as_bad (_("`%s' is not a valid %s expression"),
10290 operand_string, kind);
10291 return 0;
3e73aa7c
JH
10292 }
10293 else
10294 {
be05d201
L
10295 if (addr_mode != CODE_16BIT)
10296 {
10297 /* 32-bit/64-bit checks. */
10298 if ((i.base_reg
e968fc9b
JB
10299 && ((addr_mode == CODE_64BIT
10300 ? !i.base_reg->reg_type.bitfield.qword
10301 : !i.base_reg->reg_type.bitfield.dword)
10302 || (i.index_reg && i.base_reg->reg_num == RegIP)
10303 || i.base_reg->reg_num == RegIZ))
be05d201 10304 || (i.index_reg
1b54b8d7
JB
10305 && !i.index_reg->reg_type.bitfield.xmmword
10306 && !i.index_reg->reg_type.bitfield.ymmword
10307 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10308 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10309 ? !i.index_reg->reg_type.bitfield.qword
10310 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10311 || !i.index_reg->reg_type.bitfield.baseindex)))
10312 goto bad_address;
8178be5b
JB
10313
10314 /* bndmk, bndldx, and bndstx have special restrictions. */
10315 if (current_templates->start->base_opcode == 0xf30f1b
10316 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10317 {
10318 /* They cannot use RIP-relative addressing. */
e968fc9b 10319 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10320 {
10321 as_bad (_("`%s' cannot be used here"), operand_string);
10322 return 0;
10323 }
10324
10325 /* bndldx and bndstx ignore their scale factor. */
10326 if (current_templates->start->base_opcode != 0xf30f1b
10327 && i.log2_scale_factor)
10328 as_warn (_("register scaling is being ignored here"));
10329 }
be05d201
L
10330 }
10331 else
3e73aa7c 10332 {
be05d201 10333 /* 16-bit checks. */
3e73aa7c 10334 if ((i.base_reg
dc821c5f 10335 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10336 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10337 || (i.index_reg
dc821c5f 10338 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10339 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10340 || !(i.base_reg
10341 && i.base_reg->reg_num < 6
10342 && i.index_reg->reg_num >= 6
10343 && i.log2_scale_factor == 0))))
be05d201 10344 goto bad_address;
3e73aa7c
JH
10345 }
10346 }
be05d201 10347 return 1;
24eab124 10348}
252b5132 10349
43234a1e
L
10350/* Handle vector immediates. */
10351
10352static int
10353RC_SAE_immediate (const char *imm_start)
10354{
10355 unsigned int match_found, j;
10356 const char *pstr = imm_start;
10357 expressionS *exp;
10358
10359 if (*pstr != '{')
10360 return 0;
10361
10362 pstr++;
10363 match_found = 0;
10364 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10365 {
10366 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10367 {
10368 if (!i.rounding)
10369 {
10370 rc_op.type = RC_NamesTable[j].type;
10371 rc_op.operand = this_operand;
10372 i.rounding = &rc_op;
10373 }
10374 else
10375 {
10376 as_bad (_("duplicated `%s'"), imm_start);
10377 return 0;
10378 }
10379 pstr += RC_NamesTable[j].len;
10380 match_found = 1;
10381 break;
10382 }
10383 }
10384 if (!match_found)
10385 return 0;
10386
10387 if (*pstr++ != '}')
10388 {
10389 as_bad (_("Missing '}': '%s'"), imm_start);
10390 return 0;
10391 }
10392 /* RC/SAE immediate string should contain nothing more. */;
10393 if (*pstr != 0)
10394 {
10395 as_bad (_("Junk after '}': '%s'"), imm_start);
10396 return 0;
10397 }
10398
10399 exp = &im_expressions[i.imm_operands++];
10400 i.op[this_operand].imms = exp;
10401
10402 exp->X_op = O_constant;
10403 exp->X_add_number = 0;
10404 exp->X_add_symbol = (symbolS *) 0;
10405 exp->X_op_symbol = (symbolS *) 0;
10406
10407 i.types[this_operand].bitfield.imm8 = 1;
10408 return 1;
10409}
10410
8325cc63
JB
10411/* Only string instructions can have a second memory operand, so
10412 reduce current_templates to just those if it contains any. */
10413static int
10414maybe_adjust_templates (void)
10415{
10416 const insn_template *t;
10417
10418 gas_assert (i.mem_operands == 1);
10419
10420 for (t = current_templates->start; t < current_templates->end; ++t)
10421 if (t->opcode_modifier.isstring)
10422 break;
10423
10424 if (t < current_templates->end)
10425 {
10426 static templates aux_templates;
10427 bfd_boolean recheck;
10428
10429 aux_templates.start = t;
10430 for (; t < current_templates->end; ++t)
10431 if (!t->opcode_modifier.isstring)
10432 break;
10433 aux_templates.end = t;
10434
10435 /* Determine whether to re-check the first memory operand. */
10436 recheck = (aux_templates.start != current_templates->start
10437 || t != current_templates->end);
10438
10439 current_templates = &aux_templates;
10440
10441 if (recheck)
10442 {
10443 i.mem_operands = 0;
10444 if (i.memop1_string != NULL
10445 && i386_index_check (i.memop1_string) == 0)
10446 return 0;
10447 i.mem_operands = 1;
10448 }
10449 }
10450
10451 return 1;
10452}
10453
fc0763e6 10454/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10455 on error. */
252b5132 10456
252b5132 10457static int
a7619375 10458i386_att_operand (char *operand_string)
252b5132 10459{
af6bdddf
AM
10460 const reg_entry *r;
10461 char *end_op;
24eab124 10462 char *op_string = operand_string;
252b5132 10463
24eab124 10464 if (is_space_char (*op_string))
252b5132
RH
10465 ++op_string;
10466
24eab124 10467 /* We check for an absolute prefix (differentiating,
47926f60 10468 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10469 if (*op_string == ABSOLUTE_PREFIX)
10470 {
10471 ++op_string;
10472 if (is_space_char (*op_string))
10473 ++op_string;
6f2f06be 10474 i.jumpabsolute = TRUE;
24eab124 10475 }
252b5132 10476
47926f60 10477 /* Check if operand is a register. */
4d1bb795 10478 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10479 {
40fb9820
L
10480 i386_operand_type temp;
10481
24eab124
AM
10482 /* Check for a segment override by searching for ':' after a
10483 segment register. */
10484 op_string = end_op;
10485 if (is_space_char (*op_string))
10486 ++op_string;
00cee14f 10487 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10488 {
10489 switch (r->reg_num)
10490 {
10491 case 0:
10492 i.seg[i.mem_operands] = &es;
10493 break;
10494 case 1:
10495 i.seg[i.mem_operands] = &cs;
10496 break;
10497 case 2:
10498 i.seg[i.mem_operands] = &ss;
10499 break;
10500 case 3:
10501 i.seg[i.mem_operands] = &ds;
10502 break;
10503 case 4:
10504 i.seg[i.mem_operands] = &fs;
10505 break;
10506 case 5:
10507 i.seg[i.mem_operands] = &gs;
10508 break;
10509 }
252b5132 10510
24eab124 10511 /* Skip the ':' and whitespace. */
252b5132
RH
10512 ++op_string;
10513 if (is_space_char (*op_string))
24eab124 10514 ++op_string;
252b5132 10515
24eab124
AM
10516 if (!is_digit_char (*op_string)
10517 && !is_identifier_char (*op_string)
10518 && *op_string != '('
10519 && *op_string != ABSOLUTE_PREFIX)
10520 {
10521 as_bad (_("bad memory operand `%s'"), op_string);
10522 return 0;
10523 }
47926f60 10524 /* Handle case of %es:*foo. */
24eab124
AM
10525 if (*op_string == ABSOLUTE_PREFIX)
10526 {
10527 ++op_string;
10528 if (is_space_char (*op_string))
10529 ++op_string;
6f2f06be 10530 i.jumpabsolute = TRUE;
24eab124
AM
10531 }
10532 goto do_memory_reference;
10533 }
43234a1e
L
10534
10535 /* Handle vector operations. */
10536 if (*op_string == '{')
10537 {
10538 op_string = check_VecOperations (op_string, NULL);
10539 if (op_string == NULL)
10540 return 0;
10541 }
10542
24eab124
AM
10543 if (*op_string)
10544 {
d0b47220 10545 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10546 return 0;
10547 }
40fb9820
L
10548 temp = r->reg_type;
10549 temp.bitfield.baseindex = 0;
c6fb90c8
L
10550 i.types[this_operand] = operand_type_or (i.types[this_operand],
10551 temp);
7d5e4556 10552 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10553 i.op[this_operand].regs = r;
24eab124
AM
10554 i.reg_operands++;
10555 }
af6bdddf
AM
10556 else if (*op_string == REGISTER_PREFIX)
10557 {
10558 as_bad (_("bad register name `%s'"), op_string);
10559 return 0;
10560 }
24eab124 10561 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10562 {
24eab124 10563 ++op_string;
6f2f06be 10564 if (i.jumpabsolute)
24eab124 10565 {
d0b47220 10566 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10567 return 0;
10568 }
10569 if (!i386_immediate (op_string))
10570 return 0;
10571 }
43234a1e
L
10572 else if (RC_SAE_immediate (operand_string))
10573 {
10574 /* If it is a RC or SAE immediate, do nothing. */
10575 ;
10576 }
24eab124
AM
10577 else if (is_digit_char (*op_string)
10578 || is_identifier_char (*op_string)
d02603dc 10579 || *op_string == '"'
e5cb08ac 10580 || *op_string == '(')
24eab124 10581 {
47926f60 10582 /* This is a memory reference of some sort. */
af6bdddf 10583 char *base_string;
252b5132 10584
47926f60 10585 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10586 char *displacement_string_start;
10587 char *displacement_string_end;
43234a1e 10588 char *vop_start;
252b5132 10589
24eab124 10590 do_memory_reference:
8325cc63
JB
10591 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10592 return 0;
24eab124 10593 if ((i.mem_operands == 1
40fb9820 10594 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10595 || i.mem_operands == 2)
10596 {
10597 as_bad (_("too many memory references for `%s'"),
10598 current_templates->start->name);
10599 return 0;
10600 }
252b5132 10601
24eab124
AM
10602 /* Check for base index form. We detect the base index form by
10603 looking for an ')' at the end of the operand, searching
10604 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10605 after the '('. */
af6bdddf 10606 base_string = op_string + strlen (op_string);
c3332e24 10607
43234a1e
L
10608 /* Handle vector operations. */
10609 vop_start = strchr (op_string, '{');
10610 if (vop_start && vop_start < base_string)
10611 {
10612 if (check_VecOperations (vop_start, base_string) == NULL)
10613 return 0;
10614 base_string = vop_start;
10615 }
10616
af6bdddf
AM
10617 --base_string;
10618 if (is_space_char (*base_string))
10619 --base_string;
252b5132 10620
47926f60 10621 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10622 displacement_string_start = op_string;
10623 displacement_string_end = base_string + 1;
252b5132 10624
24eab124
AM
10625 if (*base_string == ')')
10626 {
af6bdddf 10627 char *temp_string;
24eab124
AM
10628 unsigned int parens_balanced = 1;
10629 /* We've already checked that the number of left & right ()'s are
47926f60 10630 equal, so this loop will not be infinite. */
24eab124
AM
10631 do
10632 {
10633 base_string--;
10634 if (*base_string == ')')
10635 parens_balanced++;
10636 if (*base_string == '(')
10637 parens_balanced--;
10638 }
10639 while (parens_balanced);
c3332e24 10640
af6bdddf 10641 temp_string = base_string;
c3332e24 10642
24eab124 10643 /* Skip past '(' and whitespace. */
252b5132
RH
10644 ++base_string;
10645 if (is_space_char (*base_string))
24eab124 10646 ++base_string;
252b5132 10647
af6bdddf 10648 if (*base_string == ','
4eed87de
AM
10649 || ((i.base_reg = parse_register (base_string, &end_op))
10650 != NULL))
252b5132 10651 {
af6bdddf 10652 displacement_string_end = temp_string;
252b5132 10653
40fb9820 10654 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10655
af6bdddf 10656 if (i.base_reg)
24eab124 10657 {
24eab124
AM
10658 base_string = end_op;
10659 if (is_space_char (*base_string))
10660 ++base_string;
af6bdddf
AM
10661 }
10662
10663 /* There may be an index reg or scale factor here. */
10664 if (*base_string == ',')
10665 {
10666 ++base_string;
10667 if (is_space_char (*base_string))
10668 ++base_string;
10669
4eed87de
AM
10670 if ((i.index_reg = parse_register (base_string, &end_op))
10671 != NULL)
24eab124 10672 {
af6bdddf 10673 base_string = end_op;
24eab124
AM
10674 if (is_space_char (*base_string))
10675 ++base_string;
af6bdddf
AM
10676 if (*base_string == ',')
10677 {
10678 ++base_string;
10679 if (is_space_char (*base_string))
10680 ++base_string;
10681 }
e5cb08ac 10682 else if (*base_string != ')')
af6bdddf 10683 {
4eed87de
AM
10684 as_bad (_("expecting `,' or `)' "
10685 "after index register in `%s'"),
af6bdddf
AM
10686 operand_string);
10687 return 0;
10688 }
24eab124 10689 }
af6bdddf 10690 else if (*base_string == REGISTER_PREFIX)
24eab124 10691 {
f76bf5e0
L
10692 end_op = strchr (base_string, ',');
10693 if (end_op)
10694 *end_op = '\0';
af6bdddf 10695 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10696 return 0;
10697 }
252b5132 10698
47926f60 10699 /* Check for scale factor. */
551c1ca1 10700 if (*base_string != ')')
af6bdddf 10701 {
551c1ca1
AM
10702 char *end_scale = i386_scale (base_string);
10703
10704 if (!end_scale)
af6bdddf 10705 return 0;
24eab124 10706
551c1ca1 10707 base_string = end_scale;
af6bdddf
AM
10708 if (is_space_char (*base_string))
10709 ++base_string;
10710 if (*base_string != ')')
10711 {
4eed87de
AM
10712 as_bad (_("expecting `)' "
10713 "after scale factor in `%s'"),
af6bdddf
AM
10714 operand_string);
10715 return 0;
10716 }
10717 }
10718 else if (!i.index_reg)
24eab124 10719 {
4eed87de
AM
10720 as_bad (_("expecting index register or scale factor "
10721 "after `,'; got '%c'"),
af6bdddf 10722 *base_string);
24eab124
AM
10723 return 0;
10724 }
10725 }
af6bdddf 10726 else if (*base_string != ')')
24eab124 10727 {
4eed87de
AM
10728 as_bad (_("expecting `,' or `)' "
10729 "after base register in `%s'"),
af6bdddf 10730 operand_string);
24eab124
AM
10731 return 0;
10732 }
c3332e24 10733 }
af6bdddf 10734 else if (*base_string == REGISTER_PREFIX)
c3332e24 10735 {
f76bf5e0
L
10736 end_op = strchr (base_string, ',');
10737 if (end_op)
10738 *end_op = '\0';
af6bdddf 10739 as_bad (_("bad register name `%s'"), base_string);
24eab124 10740 return 0;
c3332e24 10741 }
24eab124
AM
10742 }
10743
10744 /* If there's an expression beginning the operand, parse it,
10745 assuming displacement_string_start and
10746 displacement_string_end are meaningful. */
10747 if (displacement_string_start != displacement_string_end)
10748 {
10749 if (!i386_displacement (displacement_string_start,
10750 displacement_string_end))
10751 return 0;
10752 }
10753
10754 /* Special case for (%dx) while doing input/output op. */
10755 if (i.base_reg
75e5731b
JB
10756 && i.base_reg->reg_type.bitfield.instance == RegD
10757 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10758 && i.index_reg == 0
10759 && i.log2_scale_factor == 0
10760 && i.seg[i.mem_operands] == 0
40fb9820 10761 && !operand_type_check (i.types[this_operand], disp))
24eab124 10762 {
2fb5be8d 10763 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10764 return 1;
10765 }
10766
eecb386c
AM
10767 if (i386_index_check (operand_string) == 0)
10768 return 0;
c48dadc9 10769 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10770 if (i.mem_operands == 0)
10771 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10772 i.mem_operands++;
10773 }
10774 else
ce8a8b2f
AM
10775 {
10776 /* It's not a memory operand; argh! */
24eab124
AM
10777 as_bad (_("invalid char %s beginning operand %d `%s'"),
10778 output_invalid (*op_string),
10779 this_operand + 1,
10780 op_string);
10781 return 0;
10782 }
47926f60 10783 return 1; /* Normal return. */
252b5132
RH
10784}
10785\f
fa94de6b
RM
10786/* Calculate the maximum variable size (i.e., excluding fr_fix)
10787 that an rs_machine_dependent frag may reach. */
10788
10789unsigned int
10790i386_frag_max_var (fragS *frag)
10791{
10792 /* The only relaxable frags are for jumps.
10793 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10794 gas_assert (frag->fr_type == rs_machine_dependent);
10795 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10796}
10797
b084df0b
L
10798#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10799static int
8dcea932 10800elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10801{
10802 /* STT_GNU_IFUNC symbol must go through PLT. */
10803 if ((symbol_get_bfdsym (fr_symbol)->flags
10804 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10805 return 0;
10806
10807 if (!S_IS_EXTERNAL (fr_symbol))
10808 /* Symbol may be weak or local. */
10809 return !S_IS_WEAK (fr_symbol);
10810
8dcea932
L
10811 /* Global symbols with non-default visibility can't be preempted. */
10812 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10813 return 1;
10814
10815 if (fr_var != NO_RELOC)
10816 switch ((enum bfd_reloc_code_real) fr_var)
10817 {
10818 case BFD_RELOC_386_PLT32:
10819 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10820 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10821 return 0;
10822 default:
10823 abort ();
10824 }
10825
b084df0b
L
10826 /* Global symbols with default visibility in a shared library may be
10827 preempted by another definition. */
8dcea932 10828 return !shared;
b084df0b
L
10829}
10830#endif
10831
e379e5f3
L
10832/* Return the next non-empty frag. */
10833
10834static fragS *
10835i386_next_non_empty_frag (fragS *fragP)
10836{
10837 /* There may be a frag with a ".fill 0" when there is no room in
10838 the current frag for frag_grow in output_insn. */
10839 for (fragP = fragP->fr_next;
10840 (fragP != NULL
10841 && fragP->fr_type == rs_fill
10842 && fragP->fr_fix == 0);
10843 fragP = fragP->fr_next)
10844 ;
10845 return fragP;
10846}
10847
10848/* Return the next jcc frag after BRANCH_PADDING. */
10849
10850static fragS *
10851i386_next_jcc_frag (fragS *fragP)
10852{
10853 if (!fragP)
10854 return NULL;
10855
10856 if (fragP->fr_type == rs_machine_dependent
10857 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10858 == BRANCH_PADDING))
10859 {
10860 fragP = i386_next_non_empty_frag (fragP);
10861 if (fragP->fr_type != rs_machine_dependent)
10862 return NULL;
10863 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10864 return fragP;
10865 }
10866
10867 return NULL;
10868}
10869
10870/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10871
10872static void
10873i386_classify_machine_dependent_frag (fragS *fragP)
10874{
10875 fragS *cmp_fragP;
10876 fragS *pad_fragP;
10877 fragS *branch_fragP;
10878 fragS *next_fragP;
10879 unsigned int max_prefix_length;
10880
10881 if (fragP->tc_frag_data.classified)
10882 return;
10883
10884 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10885 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10886 for (next_fragP = fragP;
10887 next_fragP != NULL;
10888 next_fragP = next_fragP->fr_next)
10889 {
10890 next_fragP->tc_frag_data.classified = 1;
10891 if (next_fragP->fr_type == rs_machine_dependent)
10892 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10893 {
10894 case BRANCH_PADDING:
10895 /* The BRANCH_PADDING frag must be followed by a branch
10896 frag. */
10897 branch_fragP = i386_next_non_empty_frag (next_fragP);
10898 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10899 break;
10900 case FUSED_JCC_PADDING:
10901 /* Check if this is a fused jcc:
10902 FUSED_JCC_PADDING
10903 CMP like instruction
10904 BRANCH_PADDING
10905 COND_JUMP
10906 */
10907 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10908 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10909 branch_fragP = i386_next_jcc_frag (pad_fragP);
10910 if (branch_fragP)
10911 {
10912 /* The BRANCH_PADDING frag is merged with the
10913 FUSED_JCC_PADDING frag. */
10914 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10915 /* CMP like instruction size. */
10916 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10917 frag_wane (pad_fragP);
10918 /* Skip to branch_fragP. */
10919 next_fragP = branch_fragP;
10920 }
10921 else if (next_fragP->tc_frag_data.max_prefix_length)
10922 {
10923 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10924 a fused jcc. */
10925 next_fragP->fr_subtype
10926 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10927 next_fragP->tc_frag_data.max_bytes
10928 = next_fragP->tc_frag_data.max_prefix_length;
10929 /* This will be updated in the BRANCH_PREFIX scan. */
10930 next_fragP->tc_frag_data.max_prefix_length = 0;
10931 }
10932 else
10933 frag_wane (next_fragP);
10934 break;
10935 }
10936 }
10937
10938 /* Stop if there is no BRANCH_PREFIX. */
10939 if (!align_branch_prefix_size)
10940 return;
10941
10942 /* Scan for BRANCH_PREFIX. */
10943 for (; fragP != NULL; fragP = fragP->fr_next)
10944 {
10945 if (fragP->fr_type != rs_machine_dependent
10946 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10947 != BRANCH_PREFIX))
10948 continue;
10949
10950 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10951 COND_JUMP_PREFIX. */
10952 max_prefix_length = 0;
10953 for (next_fragP = fragP;
10954 next_fragP != NULL;
10955 next_fragP = next_fragP->fr_next)
10956 {
10957 if (next_fragP->fr_type == rs_fill)
10958 /* Skip rs_fill frags. */
10959 continue;
10960 else if (next_fragP->fr_type != rs_machine_dependent)
10961 /* Stop for all other frags. */
10962 break;
10963
10964 /* rs_machine_dependent frags. */
10965 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10966 == BRANCH_PREFIX)
10967 {
10968 /* Count BRANCH_PREFIX frags. */
10969 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10970 {
10971 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10972 frag_wane (next_fragP);
10973 }
10974 else
10975 max_prefix_length
10976 += next_fragP->tc_frag_data.max_bytes;
10977 }
10978 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10979 == BRANCH_PADDING)
10980 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10981 == FUSED_JCC_PADDING))
10982 {
10983 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10984 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10985 break;
10986 }
10987 else
10988 /* Stop for other rs_machine_dependent frags. */
10989 break;
10990 }
10991
10992 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
10993
10994 /* Skip to the next frag. */
10995 fragP = next_fragP;
10996 }
10997}
10998
10999/* Compute padding size for
11000
11001 FUSED_JCC_PADDING
11002 CMP like instruction
11003 BRANCH_PADDING
11004 COND_JUMP/UNCOND_JUMP
11005
11006 or
11007
11008 BRANCH_PADDING
11009 COND_JUMP/UNCOND_JUMP
11010 */
11011
11012static int
11013i386_branch_padding_size (fragS *fragP, offsetT address)
11014{
11015 unsigned int offset, size, padding_size;
11016 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11017
11018 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11019 if (!address)
11020 address = fragP->fr_address;
11021 address += fragP->fr_fix;
11022
11023 /* CMP like instrunction size. */
11024 size = fragP->tc_frag_data.cmp_size;
11025
11026 /* The base size of the branch frag. */
11027 size += branch_fragP->fr_fix;
11028
11029 /* Add opcode and displacement bytes for the rs_machine_dependent
11030 branch frag. */
11031 if (branch_fragP->fr_type == rs_machine_dependent)
11032 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11033
11034 /* Check if branch is within boundary and doesn't end at the last
11035 byte. */
11036 offset = address & ((1U << align_branch_power) - 1);
11037 if ((offset + size) >= (1U << align_branch_power))
11038 /* Padding needed to avoid crossing boundary. */
11039 padding_size = (1U << align_branch_power) - offset;
11040 else
11041 /* No padding needed. */
11042 padding_size = 0;
11043
11044 /* The return value may be saved in tc_frag_data.length which is
11045 unsigned byte. */
11046 if (!fits_in_unsigned_byte (padding_size))
11047 abort ();
11048
11049 return padding_size;
11050}
11051
11052/* i386_generic_table_relax_frag()
11053
11054 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11055 grow/shrink padding to align branch frags. Hand others to
11056 relax_frag(). */
11057
11058long
11059i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11060{
11061 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11062 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11063 {
11064 long padding_size = i386_branch_padding_size (fragP, 0);
11065 long grow = padding_size - fragP->tc_frag_data.length;
11066
11067 /* When the BRANCH_PREFIX frag is used, the computed address
11068 must match the actual address and there should be no padding. */
11069 if (fragP->tc_frag_data.padding_address
11070 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11071 || padding_size))
11072 abort ();
11073
11074 /* Update the padding size. */
11075 if (grow)
11076 fragP->tc_frag_data.length = padding_size;
11077
11078 return grow;
11079 }
11080 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11081 {
11082 fragS *padding_fragP, *next_fragP;
11083 long padding_size, left_size, last_size;
11084
11085 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11086 if (!padding_fragP)
11087 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11088 return (fragP->tc_frag_data.length
11089 - fragP->tc_frag_data.last_length);
11090
11091 /* Compute the relative address of the padding frag in the very
11092 first time where the BRANCH_PREFIX frag sizes are zero. */
11093 if (!fragP->tc_frag_data.padding_address)
11094 fragP->tc_frag_data.padding_address
11095 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11096
11097 /* First update the last length from the previous interation. */
11098 left_size = fragP->tc_frag_data.prefix_length;
11099 for (next_fragP = fragP;
11100 next_fragP != padding_fragP;
11101 next_fragP = next_fragP->fr_next)
11102 if (next_fragP->fr_type == rs_machine_dependent
11103 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11104 == BRANCH_PREFIX))
11105 {
11106 if (left_size)
11107 {
11108 int max = next_fragP->tc_frag_data.max_bytes;
11109 if (max)
11110 {
11111 int size;
11112 if (max > left_size)
11113 size = left_size;
11114 else
11115 size = max;
11116 left_size -= size;
11117 next_fragP->tc_frag_data.last_length = size;
11118 }
11119 }
11120 else
11121 next_fragP->tc_frag_data.last_length = 0;
11122 }
11123
11124 /* Check the padding size for the padding frag. */
11125 padding_size = i386_branch_padding_size
11126 (padding_fragP, (fragP->fr_address
11127 + fragP->tc_frag_data.padding_address));
11128
11129 last_size = fragP->tc_frag_data.prefix_length;
11130 /* Check if there is change from the last interation. */
11131 if (padding_size == last_size)
11132 {
11133 /* Update the expected address of the padding frag. */
11134 padding_fragP->tc_frag_data.padding_address
11135 = (fragP->fr_address + padding_size
11136 + fragP->tc_frag_data.padding_address);
11137 return 0;
11138 }
11139
11140 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11141 {
11142 /* No padding if there is no sufficient room. Clear the
11143 expected address of the padding frag. */
11144 padding_fragP->tc_frag_data.padding_address = 0;
11145 padding_size = 0;
11146 }
11147 else
11148 /* Store the expected address of the padding frag. */
11149 padding_fragP->tc_frag_data.padding_address
11150 = (fragP->fr_address + padding_size
11151 + fragP->tc_frag_data.padding_address);
11152
11153 fragP->tc_frag_data.prefix_length = padding_size;
11154
11155 /* Update the length for the current interation. */
11156 left_size = padding_size;
11157 for (next_fragP = fragP;
11158 next_fragP != padding_fragP;
11159 next_fragP = next_fragP->fr_next)
11160 if (next_fragP->fr_type == rs_machine_dependent
11161 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11162 == BRANCH_PREFIX))
11163 {
11164 if (left_size)
11165 {
11166 int max = next_fragP->tc_frag_data.max_bytes;
11167 if (max)
11168 {
11169 int size;
11170 if (max > left_size)
11171 size = left_size;
11172 else
11173 size = max;
11174 left_size -= size;
11175 next_fragP->tc_frag_data.length = size;
11176 }
11177 }
11178 else
11179 next_fragP->tc_frag_data.length = 0;
11180 }
11181
11182 return (fragP->tc_frag_data.length
11183 - fragP->tc_frag_data.last_length);
11184 }
11185 return relax_frag (segment, fragP, stretch);
11186}
11187
ee7fcc42
AM
11188/* md_estimate_size_before_relax()
11189
11190 Called just before relax() for rs_machine_dependent frags. The x86
11191 assembler uses these frags to handle variable size jump
11192 instructions.
11193
11194 Any symbol that is now undefined will not become defined.
11195 Return the correct fr_subtype in the frag.
11196 Return the initial "guess for variable size of frag" to caller.
11197 The guess is actually the growth beyond the fixed part. Whatever
11198 we do to grow the fixed or variable part contributes to our
11199 returned value. */
11200
252b5132 11201int
7016a5d5 11202md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11203{
e379e5f3
L
11204 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11205 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11206 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11207 {
11208 i386_classify_machine_dependent_frag (fragP);
11209 return fragP->tc_frag_data.length;
11210 }
11211
252b5132 11212 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11213 check for un-relaxable symbols. On an ELF system, we can't relax
11214 an externally visible symbol, because it may be overridden by a
11215 shared library. */
11216 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11217#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11218 || (IS_ELF
8dcea932
L
11219 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11220 fragP->fr_var))
fbeb56a4
DK
11221#endif
11222#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11223 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11224 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11225#endif
11226 )
252b5132 11227 {
b98ef147
AM
11228 /* Symbol is undefined in this segment, or we need to keep a
11229 reloc so that weak symbols can be overridden. */
11230 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11231 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11232 unsigned char *opcode;
11233 int old_fr_fix;
f6af82bd 11234
ee7fcc42 11235 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11236 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11237 else if (size == 2)
f6af82bd 11238 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11240 else if (need_plt32_p (fragP->fr_symbol))
11241 reloc_type = BFD_RELOC_X86_64_PLT32;
11242#endif
f6af82bd
AM
11243 else
11244 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11245
ee7fcc42
AM
11246 old_fr_fix = fragP->fr_fix;
11247 opcode = (unsigned char *) fragP->fr_opcode;
11248
fddf5b5b 11249 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11250 {
fddf5b5b
AM
11251 case UNCOND_JUMP:
11252 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11253 opcode[0] = 0xe9;
252b5132 11254 fragP->fr_fix += size;
062cd5e7
AS
11255 fix_new (fragP, old_fr_fix, size,
11256 fragP->fr_symbol,
11257 fragP->fr_offset, 1,
11258 reloc_type);
252b5132
RH
11259 break;
11260
fddf5b5b 11261 case COND_JUMP86:
412167cb
AM
11262 if (size == 2
11263 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11264 {
11265 /* Negate the condition, and branch past an
11266 unconditional jump. */
11267 opcode[0] ^= 1;
11268 opcode[1] = 3;
11269 /* Insert an unconditional jump. */
11270 opcode[2] = 0xe9;
11271 /* We added two extra opcode bytes, and have a two byte
11272 offset. */
11273 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11274 fix_new (fragP, old_fr_fix + 2, 2,
11275 fragP->fr_symbol,
11276 fragP->fr_offset, 1,
11277 reloc_type);
fddf5b5b
AM
11278 break;
11279 }
11280 /* Fall through. */
11281
11282 case COND_JUMP:
412167cb
AM
11283 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11284 {
3e02c1cc
AM
11285 fixS *fixP;
11286
412167cb 11287 fragP->fr_fix += 1;
3e02c1cc
AM
11288 fixP = fix_new (fragP, old_fr_fix, 1,
11289 fragP->fr_symbol,
11290 fragP->fr_offset, 1,
11291 BFD_RELOC_8_PCREL);
11292 fixP->fx_signed = 1;
412167cb
AM
11293 break;
11294 }
93c2a809 11295
24eab124 11296 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11297 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11298 opcode[1] = opcode[0] + 0x10;
f6af82bd 11299 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11300 /* We've added an opcode byte. */
11301 fragP->fr_fix += 1 + size;
062cd5e7
AS
11302 fix_new (fragP, old_fr_fix + 1, size,
11303 fragP->fr_symbol,
11304 fragP->fr_offset, 1,
11305 reloc_type);
252b5132 11306 break;
fddf5b5b
AM
11307
11308 default:
11309 BAD_CASE (fragP->fr_subtype);
11310 break;
252b5132
RH
11311 }
11312 frag_wane (fragP);
ee7fcc42 11313 return fragP->fr_fix - old_fr_fix;
252b5132 11314 }
93c2a809 11315
93c2a809
AM
11316 /* Guess size depending on current relax state. Initially the relax
11317 state will correspond to a short jump and we return 1, because
11318 the variable part of the frag (the branch offset) is one byte
11319 long. However, we can relax a section more than once and in that
11320 case we must either set fr_subtype back to the unrelaxed state,
11321 or return the value for the appropriate branch. */
11322 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11323}
11324
47926f60
KH
11325/* Called after relax() is finished.
11326
11327 In: Address of frag.
11328 fr_type == rs_machine_dependent.
11329 fr_subtype is what the address relaxed to.
11330
11331 Out: Any fixSs and constants are set up.
11332 Caller will turn frag into a ".space 0". */
11333
252b5132 11334void
7016a5d5
TG
11335md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11336 fragS *fragP)
252b5132 11337{
29b0f896 11338 unsigned char *opcode;
252b5132 11339 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11340 offsetT target_address;
11341 offsetT opcode_address;
252b5132 11342 unsigned int extension = 0;
847f7ad4 11343 offsetT displacement_from_opcode_start;
252b5132 11344
e379e5f3
L
11345 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11346 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11347 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11348 {
11349 /* Generate nop padding. */
11350 unsigned int size = fragP->tc_frag_data.length;
11351 if (size)
11352 {
11353 if (size > fragP->tc_frag_data.max_bytes)
11354 abort ();
11355
11356 if (flag_debug)
11357 {
11358 const char *msg;
11359 const char *branch = "branch";
11360 const char *prefix = "";
11361 fragS *padding_fragP;
11362 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11363 == BRANCH_PREFIX)
11364 {
11365 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11366 switch (fragP->tc_frag_data.default_prefix)
11367 {
11368 default:
11369 abort ();
11370 break;
11371 case CS_PREFIX_OPCODE:
11372 prefix = " cs";
11373 break;
11374 case DS_PREFIX_OPCODE:
11375 prefix = " ds";
11376 break;
11377 case ES_PREFIX_OPCODE:
11378 prefix = " es";
11379 break;
11380 case FS_PREFIX_OPCODE:
11381 prefix = " fs";
11382 break;
11383 case GS_PREFIX_OPCODE:
11384 prefix = " gs";
11385 break;
11386 case SS_PREFIX_OPCODE:
11387 prefix = " ss";
11388 break;
11389 }
11390 if (padding_fragP)
11391 msg = _("%s:%u: add %d%s at 0x%llx to align "
11392 "%s within %d-byte boundary\n");
11393 else
11394 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11395 "align %s within %d-byte boundary\n");
11396 }
11397 else
11398 {
11399 padding_fragP = fragP;
11400 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11401 "%s within %d-byte boundary\n");
11402 }
11403
11404 if (padding_fragP)
11405 switch (padding_fragP->tc_frag_data.branch_type)
11406 {
11407 case align_branch_jcc:
11408 branch = "jcc";
11409 break;
11410 case align_branch_fused:
11411 branch = "fused jcc";
11412 break;
11413 case align_branch_jmp:
11414 branch = "jmp";
11415 break;
11416 case align_branch_call:
11417 branch = "call";
11418 break;
11419 case align_branch_indirect:
11420 branch = "indiret branch";
11421 break;
11422 case align_branch_ret:
11423 branch = "ret";
11424 break;
11425 default:
11426 break;
11427 }
11428
11429 fprintf (stdout, msg,
11430 fragP->fr_file, fragP->fr_line, size, prefix,
11431 (long long) fragP->fr_address, branch,
11432 1 << align_branch_power);
11433 }
11434 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11435 memset (fragP->fr_opcode,
11436 fragP->tc_frag_data.default_prefix, size);
11437 else
11438 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11439 size, 0);
11440 fragP->fr_fix += size;
11441 }
11442 return;
11443 }
11444
252b5132
RH
11445 opcode = (unsigned char *) fragP->fr_opcode;
11446
47926f60 11447 /* Address we want to reach in file space. */
252b5132 11448 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11449
47926f60 11450 /* Address opcode resides at in file space. */
252b5132
RH
11451 opcode_address = fragP->fr_address + fragP->fr_fix;
11452
47926f60 11453 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11454 displacement_from_opcode_start = target_address - opcode_address;
11455
fddf5b5b 11456 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11457 {
47926f60
KH
11458 /* Don't have to change opcode. */
11459 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11460 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11461 }
11462 else
11463 {
11464 if (no_cond_jump_promotion
11465 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11466 as_warn_where (fragP->fr_file, fragP->fr_line,
11467 _("long jump required"));
252b5132 11468
fddf5b5b
AM
11469 switch (fragP->fr_subtype)
11470 {
11471 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11472 extension = 4; /* 1 opcode + 4 displacement */
11473 opcode[0] = 0xe9;
11474 where_to_put_displacement = &opcode[1];
11475 break;
252b5132 11476
fddf5b5b
AM
11477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11478 extension = 2; /* 1 opcode + 2 displacement */
11479 opcode[0] = 0xe9;
11480 where_to_put_displacement = &opcode[1];
11481 break;
252b5132 11482
fddf5b5b
AM
11483 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11485 extension = 5; /* 2 opcode + 4 displacement */
11486 opcode[1] = opcode[0] + 0x10;
11487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11488 where_to_put_displacement = &opcode[2];
11489 break;
252b5132 11490
fddf5b5b
AM
11491 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11492 extension = 3; /* 2 opcode + 2 displacement */
11493 opcode[1] = opcode[0] + 0x10;
11494 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11495 where_to_put_displacement = &opcode[2];
11496 break;
252b5132 11497
fddf5b5b
AM
11498 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11499 extension = 4;
11500 opcode[0] ^= 1;
11501 opcode[1] = 3;
11502 opcode[2] = 0xe9;
11503 where_to_put_displacement = &opcode[3];
11504 break;
11505
11506 default:
11507 BAD_CASE (fragP->fr_subtype);
11508 break;
11509 }
252b5132 11510 }
fddf5b5b 11511
7b81dfbb
AJ
11512 /* If size if less then four we are sure that the operand fits,
11513 but if it's 4, then it could be that the displacement is larger
11514 then -/+ 2GB. */
11515 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11516 && object_64bit
11517 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11518 + ((addressT) 1 << 31))
11519 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11520 {
11521 as_bad_where (fragP->fr_file, fragP->fr_line,
11522 _("jump target out of range"));
11523 /* Make us emit 0. */
11524 displacement_from_opcode_start = extension;
11525 }
47926f60 11526 /* Now put displacement after opcode. */
252b5132
RH
11527 md_number_to_chars ((char *) where_to_put_displacement,
11528 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11529 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11530 fragP->fr_fix += extension;
11531}
11532\f
7016a5d5 11533/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11534 by our caller that we have all the info we need to fix it up.
11535
7016a5d5
TG
11536 Parameter valP is the pointer to the value of the bits.
11537
252b5132
RH
11538 On the 386, immediates, displacements, and data pointers are all in
11539 the same (little-endian) format, so we don't need to care about which
11540 we are handling. */
11541
94f592af 11542void
7016a5d5 11543md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11544{
94f592af 11545 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11546 valueT value = *valP;
252b5132 11547
f86103b7 11548#if !defined (TE_Mach)
93382f6d
AM
11549 if (fixP->fx_pcrel)
11550 {
11551 switch (fixP->fx_r_type)
11552 {
5865bb77
ILT
11553 default:
11554 break;
11555
d6ab8113
JB
11556 case BFD_RELOC_64:
11557 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11558 break;
93382f6d 11559 case BFD_RELOC_32:
ae8887b5 11560 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11561 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11562 break;
11563 case BFD_RELOC_16:
11564 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11565 break;
11566 case BFD_RELOC_8:
11567 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11568 break;
11569 }
11570 }
252b5132 11571
a161fe53 11572 if (fixP->fx_addsy != NULL
31312f95 11573 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11574 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11575 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11576 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11577 && !use_rela_relocations)
252b5132 11578 {
31312f95
AM
11579 /* This is a hack. There should be a better way to handle this.
11580 This covers for the fact that bfd_install_relocation will
11581 subtract the current location (for partial_inplace, PC relative
11582 relocations); see more below. */
252b5132 11583#ifndef OBJ_AOUT
718ddfc0 11584 if (IS_ELF
252b5132
RH
11585#ifdef TE_PE
11586 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11587#endif
11588 )
11589 value += fixP->fx_where + fixP->fx_frag->fr_address;
11590#endif
11591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11592 if (IS_ELF)
252b5132 11593 {
6539b54b 11594 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11595
6539b54b 11596 if ((sym_seg == seg
2f66722d 11597 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11598 && sym_seg != absolute_section))
af65af87 11599 && !generic_force_reloc (fixP))
2f66722d
AM
11600 {
11601 /* Yes, we add the values in twice. This is because
6539b54b
AM
11602 bfd_install_relocation subtracts them out again. I think
11603 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11604 it. FIXME. */
11605 value += fixP->fx_where + fixP->fx_frag->fr_address;
11606 }
252b5132
RH
11607 }
11608#endif
11609#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11610 /* For some reason, the PE format does not store a
11611 section address offset for a PC relative symbol. */
11612 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11613 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11614 value += md_pcrel_from (fixP);
11615#endif
11616 }
fbeb56a4 11617#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11618 if (fixP->fx_addsy != NULL
11619 && S_IS_WEAK (fixP->fx_addsy)
11620 /* PR 16858: Do not modify weak function references. */
11621 && ! fixP->fx_pcrel)
fbeb56a4 11622 {
296a8689
NC
11623#if !defined (TE_PEP)
11624 /* For x86 PE weak function symbols are neither PC-relative
11625 nor do they set S_IS_FUNCTION. So the only reliable way
11626 to detect them is to check the flags of their containing
11627 section. */
11628 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11629 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11630 ;
11631 else
11632#endif
fbeb56a4
DK
11633 value -= S_GET_VALUE (fixP->fx_addsy);
11634 }
11635#endif
252b5132
RH
11636
11637 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11638 and we must not disappoint it. */
252b5132 11639#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11640 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11641 switch (fixP->fx_r_type)
11642 {
11643 case BFD_RELOC_386_PLT32:
3e73aa7c 11644 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11645 /* Make the jump instruction point to the address of the operand.
11646 At runtime we merely add the offset to the actual PLT entry.
11647 NB: Subtract the offset size only for jump instructions. */
11648 if (fixP->fx_pcrel)
11649 value = -4;
47926f60 11650 break;
31312f95 11651
13ae64f3
JJ
11652 case BFD_RELOC_386_TLS_GD:
11653 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11654 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11655 case BFD_RELOC_386_TLS_IE:
11656 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11657 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11658 case BFD_RELOC_X86_64_TLSGD:
11659 case BFD_RELOC_X86_64_TLSLD:
11660 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11661 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11662 value = 0; /* Fully resolved at runtime. No addend. */
11663 /* Fallthrough */
11664 case BFD_RELOC_386_TLS_LE:
11665 case BFD_RELOC_386_TLS_LDO_32:
11666 case BFD_RELOC_386_TLS_LE_32:
11667 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11668 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11669 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11670 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11671 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11672 break;
11673
67a4f2b7
AO
11674 case BFD_RELOC_386_TLS_DESC_CALL:
11675 case BFD_RELOC_X86_64_TLSDESC_CALL:
11676 value = 0; /* Fully resolved at runtime. No addend. */
11677 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11678 fixP->fx_done = 0;
11679 return;
11680
47926f60
KH
11681 case BFD_RELOC_VTABLE_INHERIT:
11682 case BFD_RELOC_VTABLE_ENTRY:
11683 fixP->fx_done = 0;
94f592af 11684 return;
47926f60
KH
11685
11686 default:
11687 break;
11688 }
11689#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11690 *valP = value;
f86103b7 11691#endif /* !defined (TE_Mach) */
3e73aa7c 11692
3e73aa7c 11693 /* Are we finished with this relocation now? */
c6682705 11694 if (fixP->fx_addsy == NULL)
3e73aa7c 11695 fixP->fx_done = 1;
fbeb56a4
DK
11696#if defined (OBJ_COFF) && defined (TE_PE)
11697 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11698 {
11699 fixP->fx_done = 0;
11700 /* Remember value for tc_gen_reloc. */
11701 fixP->fx_addnumber = value;
11702 /* Clear out the frag for now. */
11703 value = 0;
11704 }
11705#endif
3e73aa7c
JH
11706 else if (use_rela_relocations)
11707 {
11708 fixP->fx_no_overflow = 1;
062cd5e7
AS
11709 /* Remember value for tc_gen_reloc. */
11710 fixP->fx_addnumber = value;
3e73aa7c
JH
11711 value = 0;
11712 }
f86103b7 11713
94f592af 11714 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11715}
252b5132 11716\f
6d4af3c2 11717const char *
499ac353 11718md_atof (int type, char *litP, int *sizeP)
252b5132 11719{
499ac353
NC
11720 /* This outputs the LITTLENUMs in REVERSE order;
11721 in accord with the bigendian 386. */
11722 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11723}
11724\f
2d545b82 11725static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11726
252b5132 11727static char *
e3bb37b5 11728output_invalid (int c)
252b5132 11729{
3882b010 11730 if (ISPRINT (c))
f9f21a03
L
11731 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11732 "'%c'", c);
252b5132 11733 else
f9f21a03 11734 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11735 "(0x%x)", (unsigned char) c);
252b5132
RH
11736 return output_invalid_buf;
11737}
11738
af6bdddf 11739/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11740
11741static const reg_entry *
4d1bb795 11742parse_real_register (char *reg_string, char **end_op)
252b5132 11743{
af6bdddf
AM
11744 char *s = reg_string;
11745 char *p;
252b5132
RH
11746 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11747 const reg_entry *r;
11748
11749 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11750 if (*s == REGISTER_PREFIX)
11751 ++s;
11752
11753 if (is_space_char (*s))
11754 ++s;
11755
11756 p = reg_name_given;
af6bdddf 11757 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11758 {
11759 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11760 return (const reg_entry *) NULL;
11761 s++;
252b5132
RH
11762 }
11763
6588847e
DN
11764 /* For naked regs, make sure that we are not dealing with an identifier.
11765 This prevents confusing an identifier like `eax_var' with register
11766 `eax'. */
11767 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11768 return (const reg_entry *) NULL;
11769
af6bdddf 11770 *end_op = s;
252b5132
RH
11771
11772 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11773
5f47d35b 11774 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11775 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11776 {
0e0eea78
JB
11777 if (!cpu_arch_flags.bitfield.cpu8087
11778 && !cpu_arch_flags.bitfield.cpu287
11779 && !cpu_arch_flags.bitfield.cpu387)
11780 return (const reg_entry *) NULL;
11781
5f47d35b
AM
11782 if (is_space_char (*s))
11783 ++s;
11784 if (*s == '(')
11785 {
af6bdddf 11786 ++s;
5f47d35b
AM
11787 if (is_space_char (*s))
11788 ++s;
11789 if (*s >= '0' && *s <= '7')
11790 {
db557034 11791 int fpr = *s - '0';
af6bdddf 11792 ++s;
5f47d35b
AM
11793 if (is_space_char (*s))
11794 ++s;
11795 if (*s == ')')
11796 {
11797 *end_op = s + 1;
1e9cc1c2 11798 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11799 know (r);
11800 return r + fpr;
5f47d35b 11801 }
5f47d35b 11802 }
47926f60 11803 /* We have "%st(" then garbage. */
5f47d35b
AM
11804 return (const reg_entry *) NULL;
11805 }
11806 }
11807
a60de03c
JB
11808 if (r == NULL || allow_pseudo_reg)
11809 return r;
11810
0dfbf9d7 11811 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11812 return (const reg_entry *) NULL;
11813
dc821c5f 11814 if ((r->reg_type.bitfield.dword
00cee14f 11815 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11816 || r->reg_type.bitfield.class == RegCR
11817 || r->reg_type.bitfield.class == RegDR
11818 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11819 && !cpu_arch_flags.bitfield.cpui386)
11820 return (const reg_entry *) NULL;
11821
3528c362 11822 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11823 return (const reg_entry *) NULL;
11824
6e041cf4
JB
11825 if (!cpu_arch_flags.bitfield.cpuavx512f)
11826 {
f74a6307
JB
11827 if (r->reg_type.bitfield.zmmword
11828 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11829 return (const reg_entry *) NULL;
40f12533 11830
6e041cf4
JB
11831 if (!cpu_arch_flags.bitfield.cpuavx)
11832 {
11833 if (r->reg_type.bitfield.ymmword)
11834 return (const reg_entry *) NULL;
1848e567 11835
6e041cf4
JB
11836 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11837 return (const reg_entry *) NULL;
11838 }
11839 }
43234a1e 11840
f74a6307 11841 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11842 return (const reg_entry *) NULL;
11843
db51cc60 11844 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11845 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11846 return (const reg_entry *) NULL;
11847
1d3f8286
JB
11848 /* Upper 16 vector registers are only available with VREX in 64bit
11849 mode, and require EVEX encoding. */
11850 if (r->reg_flags & RegVRex)
43234a1e 11851 {
e951d5ca 11852 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11853 || flag_code != CODE_64BIT)
11854 return (const reg_entry *) NULL;
1d3f8286
JB
11855
11856 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11857 }
11858
4787f4a5 11859 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11860 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11861 && flag_code != CODE_64BIT)
20f0a1fc 11862 return (const reg_entry *) NULL;
1ae00879 11863
00cee14f
JB
11864 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11865 && !intel_syntax)
b7240065
JB
11866 return (const reg_entry *) NULL;
11867
252b5132
RH
11868 return r;
11869}
4d1bb795
JB
11870
11871/* REG_STRING starts *before* REGISTER_PREFIX. */
11872
11873static const reg_entry *
11874parse_register (char *reg_string, char **end_op)
11875{
11876 const reg_entry *r;
11877
11878 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11879 r = parse_real_register (reg_string, end_op);
11880 else
11881 r = NULL;
11882 if (!r)
11883 {
11884 char *save = input_line_pointer;
11885 char c;
11886 symbolS *symbolP;
11887
11888 input_line_pointer = reg_string;
d02603dc 11889 c = get_symbol_name (&reg_string);
4d1bb795
JB
11890 symbolP = symbol_find (reg_string);
11891 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11892 {
11893 const expressionS *e = symbol_get_value_expression (symbolP);
11894
0398aac5 11895 know (e->X_op == O_register);
4eed87de 11896 know (e->X_add_number >= 0
c3fe08fa 11897 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11898 r = i386_regtab + e->X_add_number;
d3bb6b49 11899 if ((r->reg_flags & RegVRex))
86fa6981 11900 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11901 *end_op = input_line_pointer;
11902 }
11903 *input_line_pointer = c;
11904 input_line_pointer = save;
11905 }
11906 return r;
11907}
11908
11909int
11910i386_parse_name (char *name, expressionS *e, char *nextcharP)
11911{
11912 const reg_entry *r;
11913 char *end = input_line_pointer;
11914
11915 *end = *nextcharP;
11916 r = parse_register (name, &input_line_pointer);
11917 if (r && end <= input_line_pointer)
11918 {
11919 *nextcharP = *input_line_pointer;
11920 *input_line_pointer = 0;
11921 e->X_op = O_register;
11922 e->X_add_number = r - i386_regtab;
11923 return 1;
11924 }
11925 input_line_pointer = end;
11926 *end = 0;
ee86248c 11927 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11928}
11929
11930void
11931md_operand (expressionS *e)
11932{
ee86248c
JB
11933 char *end;
11934 const reg_entry *r;
4d1bb795 11935
ee86248c
JB
11936 switch (*input_line_pointer)
11937 {
11938 case REGISTER_PREFIX:
11939 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11940 if (r)
11941 {
11942 e->X_op = O_register;
11943 e->X_add_number = r - i386_regtab;
11944 input_line_pointer = end;
11945 }
ee86248c
JB
11946 break;
11947
11948 case '[':
9c2799c2 11949 gas_assert (intel_syntax);
ee86248c
JB
11950 end = input_line_pointer++;
11951 expression (e);
11952 if (*input_line_pointer == ']')
11953 {
11954 ++input_line_pointer;
11955 e->X_op_symbol = make_expr_symbol (e);
11956 e->X_add_symbol = NULL;
11957 e->X_add_number = 0;
11958 e->X_op = O_index;
11959 }
11960 else
11961 {
11962 e->X_op = O_absent;
11963 input_line_pointer = end;
11964 }
11965 break;
4d1bb795
JB
11966 }
11967}
11968
252b5132 11969\f
4cc782b5 11970#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11971const char *md_shortopts = "kVQ:sqnO::";
252b5132 11972#else
b6f8c7c4 11973const char *md_shortopts = "qnO::";
252b5132 11974#endif
6e0b89ee 11975
3e73aa7c 11976#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11977#define OPTION_64 (OPTION_MD_BASE + 1)
11978#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11979#define OPTION_MARCH (OPTION_MD_BASE + 3)
11980#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11981#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11982#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11983#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11984#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11985#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11986#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11987#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11988#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11989#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11990#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11991#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11992#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11993#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11994#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11995#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11996#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11997#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11998#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11999#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12000#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12001#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12002#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12003#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12004#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12005#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12006#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12007
99ad8390
NC
12008struct option md_longopts[] =
12009{
3e73aa7c 12010 {"32", no_argument, NULL, OPTION_32},
321098a5 12011#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12012 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12013 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12014#endif
12015#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12016 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12017 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12018 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12019#endif
b3b91714 12020 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12021 {"march", required_argument, NULL, OPTION_MARCH},
12022 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12023 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12024 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12025 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12026 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12027 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12028 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12029 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12030 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12031 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12032 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12033 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12034 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12035# if defined (TE_PE) || defined (TE_PEP)
12036 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12037#endif
d1982f93 12038 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12039 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12040 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12041 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12042 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12043 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12044 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12045 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12046 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12047 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12048 {NULL, no_argument, NULL, 0}
12049};
12050size_t md_longopts_size = sizeof (md_longopts);
12051
12052int
17b9d67d 12053md_parse_option (int c, const char *arg)
252b5132 12054{
91d6fa6a 12055 unsigned int j;
e379e5f3 12056 char *arch, *next, *saved, *type;
9103f4f4 12057
252b5132
RH
12058 switch (c)
12059 {
12b55ccc
L
12060 case 'n':
12061 optimize_align_code = 0;
12062 break;
12063
a38cf1db
AM
12064 case 'q':
12065 quiet_warnings = 1;
252b5132
RH
12066 break;
12067
12068#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12069 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12070 should be emitted or not. FIXME: Not implemented. */
12071 case 'Q':
d4693039
JB
12072 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12073 return 0;
252b5132
RH
12074 break;
12075
12076 /* -V: SVR4 argument to print version ID. */
12077 case 'V':
12078 print_version_id ();
12079 break;
12080
a38cf1db
AM
12081 /* -k: Ignore for FreeBSD compatibility. */
12082 case 'k':
252b5132 12083 break;
4cc782b5
ILT
12084
12085 case 's':
12086 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12087 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12088 break;
8dcea932
L
12089
12090 case OPTION_MSHARED:
12091 shared = 1;
12092 break;
b4a3a7b4
L
12093
12094 case OPTION_X86_USED_NOTE:
12095 if (strcasecmp (arg, "yes") == 0)
12096 x86_used_note = 1;
12097 else if (strcasecmp (arg, "no") == 0)
12098 x86_used_note = 0;
12099 else
12100 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12101 break;
12102
12103
99ad8390 12104#endif
321098a5 12105#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12106 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12107 case OPTION_64:
12108 {
12109 const char **list, **l;
12110
3e73aa7c
JH
12111 list = bfd_target_list ();
12112 for (l = list; *l != NULL; l++)
8620418b 12113 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12114 || strcmp (*l, "coff-x86-64") == 0
12115 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12116 || strcmp (*l, "pei-x86-64") == 0
12117 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12118 {
12119 default_arch = "x86_64";
12120 break;
12121 }
3e73aa7c 12122 if (*l == NULL)
2b5d6a91 12123 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12124 free (list);
12125 }
12126 break;
12127#endif
252b5132 12128
351f65ca 12129#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12130 case OPTION_X32:
351f65ca
L
12131 if (IS_ELF)
12132 {
12133 const char **list, **l;
12134
12135 list = bfd_target_list ();
12136 for (l = list; *l != NULL; l++)
12137 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12138 {
12139 default_arch = "x86_64:32";
12140 break;
12141 }
12142 if (*l == NULL)
2b5d6a91 12143 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12144 free (list);
12145 }
12146 else
12147 as_fatal (_("32bit x86_64 is only supported for ELF"));
12148 break;
12149#endif
12150
6e0b89ee
AM
12151 case OPTION_32:
12152 default_arch = "i386";
12153 break;
12154
b3b91714
AM
12155 case OPTION_DIVIDE:
12156#ifdef SVR4_COMMENT_CHARS
12157 {
12158 char *n, *t;
12159 const char *s;
12160
add39d23 12161 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12162 t = n;
12163 for (s = i386_comment_chars; *s != '\0'; s++)
12164 if (*s != '/')
12165 *t++ = *s;
12166 *t = '\0';
12167 i386_comment_chars = n;
12168 }
12169#endif
12170 break;
12171
9103f4f4 12172 case OPTION_MARCH:
293f5f65
L
12173 saved = xstrdup (arg);
12174 arch = saved;
12175 /* Allow -march=+nosse. */
12176 if (*arch == '+')
12177 arch++;
6305a203 12178 do
9103f4f4 12179 {
6305a203 12180 if (*arch == '.')
2b5d6a91 12181 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12182 next = strchr (arch, '+');
12183 if (next)
12184 *next++ = '\0';
91d6fa6a 12185 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12186 {
91d6fa6a 12187 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12188 {
6305a203 12189 /* Processor. */
1ded5609
JB
12190 if (! cpu_arch[j].flags.bitfield.cpui386)
12191 continue;
12192
91d6fa6a 12193 cpu_arch_name = cpu_arch[j].name;
6305a203 12194 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12195 cpu_arch_flags = cpu_arch[j].flags;
12196 cpu_arch_isa = cpu_arch[j].type;
12197 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12198 if (!cpu_arch_tune_set)
12199 {
12200 cpu_arch_tune = cpu_arch_isa;
12201 cpu_arch_tune_flags = cpu_arch_isa_flags;
12202 }
12203 break;
12204 }
91d6fa6a
NC
12205 else if (*cpu_arch [j].name == '.'
12206 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12207 {
33eaf5de 12208 /* ISA extension. */
6305a203 12209 i386_cpu_flags flags;
309d3373 12210
293f5f65
L
12211 flags = cpu_flags_or (cpu_arch_flags,
12212 cpu_arch[j].flags);
81486035 12213
5b64d091 12214 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12215 {
12216 if (cpu_sub_arch_name)
12217 {
12218 char *name = cpu_sub_arch_name;
12219 cpu_sub_arch_name = concat (name,
91d6fa6a 12220 cpu_arch[j].name,
1bf57e9f 12221 (const char *) NULL);
6305a203
L
12222 free (name);
12223 }
12224 else
91d6fa6a 12225 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12226 cpu_arch_flags = flags;
a586129e 12227 cpu_arch_isa_flags = flags;
6305a203 12228 }
0089dace
L
12229 else
12230 cpu_arch_isa_flags
12231 = cpu_flags_or (cpu_arch_isa_flags,
12232 cpu_arch[j].flags);
6305a203 12233 break;
ccc9c027 12234 }
9103f4f4 12235 }
6305a203 12236
293f5f65
L
12237 if (j >= ARRAY_SIZE (cpu_arch))
12238 {
33eaf5de 12239 /* Disable an ISA extension. */
293f5f65
L
12240 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12241 if (strcmp (arch, cpu_noarch [j].name) == 0)
12242 {
12243 i386_cpu_flags flags;
12244
12245 flags = cpu_flags_and_not (cpu_arch_flags,
12246 cpu_noarch[j].flags);
12247 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12248 {
12249 if (cpu_sub_arch_name)
12250 {
12251 char *name = cpu_sub_arch_name;
12252 cpu_sub_arch_name = concat (arch,
12253 (const char *) NULL);
12254 free (name);
12255 }
12256 else
12257 cpu_sub_arch_name = xstrdup (arch);
12258 cpu_arch_flags = flags;
12259 cpu_arch_isa_flags = flags;
12260 }
12261 break;
12262 }
12263
12264 if (j >= ARRAY_SIZE (cpu_noarch))
12265 j = ARRAY_SIZE (cpu_arch);
12266 }
12267
91d6fa6a 12268 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12269 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12270
12271 arch = next;
9103f4f4 12272 }
293f5f65
L
12273 while (next != NULL);
12274 free (saved);
9103f4f4
L
12275 break;
12276
12277 case OPTION_MTUNE:
12278 if (*arg == '.')
2b5d6a91 12279 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12280 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12281 {
91d6fa6a 12282 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12283 {
ccc9c027 12284 cpu_arch_tune_set = 1;
91d6fa6a
NC
12285 cpu_arch_tune = cpu_arch [j].type;
12286 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12287 break;
12288 }
12289 }
91d6fa6a 12290 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12291 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12292 break;
12293
1efbbeb4
L
12294 case OPTION_MMNEMONIC:
12295 if (strcasecmp (arg, "att") == 0)
12296 intel_mnemonic = 0;
12297 else if (strcasecmp (arg, "intel") == 0)
12298 intel_mnemonic = 1;
12299 else
2b5d6a91 12300 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12301 break;
12302
12303 case OPTION_MSYNTAX:
12304 if (strcasecmp (arg, "att") == 0)
12305 intel_syntax = 0;
12306 else if (strcasecmp (arg, "intel") == 0)
12307 intel_syntax = 1;
12308 else
2b5d6a91 12309 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12310 break;
12311
12312 case OPTION_MINDEX_REG:
12313 allow_index_reg = 1;
12314 break;
12315
12316 case OPTION_MNAKED_REG:
12317 allow_naked_reg = 1;
12318 break;
12319
c0f3af97
L
12320 case OPTION_MSSE2AVX:
12321 sse2avx = 1;
12322 break;
12323
daf50ae7
L
12324 case OPTION_MSSE_CHECK:
12325 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12326 sse_check = check_error;
daf50ae7 12327 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12328 sse_check = check_warning;
daf50ae7 12329 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12330 sse_check = check_none;
daf50ae7 12331 else
2b5d6a91 12332 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12333 break;
12334
7bab8ab5
JB
12335 case OPTION_MOPERAND_CHECK:
12336 if (strcasecmp (arg, "error") == 0)
12337 operand_check = check_error;
12338 else if (strcasecmp (arg, "warning") == 0)
12339 operand_check = check_warning;
12340 else if (strcasecmp (arg, "none") == 0)
12341 operand_check = check_none;
12342 else
12343 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12344 break;
12345
539f890d
L
12346 case OPTION_MAVXSCALAR:
12347 if (strcasecmp (arg, "128") == 0)
12348 avxscalar = vex128;
12349 else if (strcasecmp (arg, "256") == 0)
12350 avxscalar = vex256;
12351 else
2b5d6a91 12352 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12353 break;
12354
03751133
L
12355 case OPTION_MVEXWIG:
12356 if (strcmp (arg, "0") == 0)
40c9c8de 12357 vexwig = vexw0;
03751133 12358 else if (strcmp (arg, "1") == 0)
40c9c8de 12359 vexwig = vexw1;
03751133
L
12360 else
12361 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12362 break;
12363
7e8b059b
L
12364 case OPTION_MADD_BND_PREFIX:
12365 add_bnd_prefix = 1;
12366 break;
12367
43234a1e
L
12368 case OPTION_MEVEXLIG:
12369 if (strcmp (arg, "128") == 0)
12370 evexlig = evexl128;
12371 else if (strcmp (arg, "256") == 0)
12372 evexlig = evexl256;
12373 else if (strcmp (arg, "512") == 0)
12374 evexlig = evexl512;
12375 else
12376 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12377 break;
12378
d3d3c6db
IT
12379 case OPTION_MEVEXRCIG:
12380 if (strcmp (arg, "rne") == 0)
12381 evexrcig = rne;
12382 else if (strcmp (arg, "rd") == 0)
12383 evexrcig = rd;
12384 else if (strcmp (arg, "ru") == 0)
12385 evexrcig = ru;
12386 else if (strcmp (arg, "rz") == 0)
12387 evexrcig = rz;
12388 else
12389 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12390 break;
12391
43234a1e
L
12392 case OPTION_MEVEXWIG:
12393 if (strcmp (arg, "0") == 0)
12394 evexwig = evexw0;
12395 else if (strcmp (arg, "1") == 0)
12396 evexwig = evexw1;
12397 else
12398 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12399 break;
12400
167ad85b
TG
12401# if defined (TE_PE) || defined (TE_PEP)
12402 case OPTION_MBIG_OBJ:
12403 use_big_obj = 1;
12404 break;
12405#endif
12406
d1982f93 12407 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12408 if (strcasecmp (arg, "yes") == 0)
12409 omit_lock_prefix = 1;
12410 else if (strcasecmp (arg, "no") == 0)
12411 omit_lock_prefix = 0;
12412 else
12413 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12414 break;
12415
e4e00185
AS
12416 case OPTION_MFENCE_AS_LOCK_ADD:
12417 if (strcasecmp (arg, "yes") == 0)
12418 avoid_fence = 1;
12419 else if (strcasecmp (arg, "no") == 0)
12420 avoid_fence = 0;
12421 else
12422 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12423 break;
12424
0cb4071e
L
12425 case OPTION_MRELAX_RELOCATIONS:
12426 if (strcasecmp (arg, "yes") == 0)
12427 generate_relax_relocations = 1;
12428 else if (strcasecmp (arg, "no") == 0)
12429 generate_relax_relocations = 0;
12430 else
12431 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12432 break;
12433
e379e5f3
L
12434 case OPTION_MALIGN_BRANCH_BOUNDARY:
12435 {
12436 char *end;
12437 long int align = strtoul (arg, &end, 0);
12438 if (*end == '\0')
12439 {
12440 if (align == 0)
12441 {
12442 align_branch_power = 0;
12443 break;
12444 }
12445 else if (align >= 16)
12446 {
12447 int align_power;
12448 for (align_power = 0;
12449 (align & 1) == 0;
12450 align >>= 1, align_power++)
12451 continue;
12452 /* Limit alignment power to 31. */
12453 if (align == 1 && align_power < 32)
12454 {
12455 align_branch_power = align_power;
12456 break;
12457 }
12458 }
12459 }
12460 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12461 }
12462 break;
12463
12464 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12465 {
12466 char *end;
12467 int align = strtoul (arg, &end, 0);
12468 /* Some processors only support 5 prefixes. */
12469 if (*end == '\0' && align >= 0 && align < 6)
12470 {
12471 align_branch_prefix_size = align;
12472 break;
12473 }
12474 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12475 arg);
12476 }
12477 break;
12478
12479 case OPTION_MALIGN_BRANCH:
12480 align_branch = 0;
12481 saved = xstrdup (arg);
12482 type = saved;
12483 do
12484 {
12485 next = strchr (type, '+');
12486 if (next)
12487 *next++ = '\0';
12488 if (strcasecmp (type, "jcc") == 0)
12489 align_branch |= align_branch_jcc_bit;
12490 else if (strcasecmp (type, "fused") == 0)
12491 align_branch |= align_branch_fused_bit;
12492 else if (strcasecmp (type, "jmp") == 0)
12493 align_branch |= align_branch_jmp_bit;
12494 else if (strcasecmp (type, "call") == 0)
12495 align_branch |= align_branch_call_bit;
12496 else if (strcasecmp (type, "ret") == 0)
12497 align_branch |= align_branch_ret_bit;
12498 else if (strcasecmp (type, "indirect") == 0)
12499 align_branch |= align_branch_indirect_bit;
12500 else
12501 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12502 type = next;
12503 }
12504 while (next != NULL);
12505 free (saved);
12506 break;
12507
76cf450b
L
12508 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12509 align_branch_power = 5;
12510 align_branch_prefix_size = 5;
12511 align_branch = (align_branch_jcc_bit
12512 | align_branch_fused_bit
12513 | align_branch_jmp_bit);
12514 break;
12515
5db04b09 12516 case OPTION_MAMD64:
e89c5eaa 12517 intel64 = 0;
5db04b09
L
12518 break;
12519
12520 case OPTION_MINTEL64:
e89c5eaa 12521 intel64 = 1;
5db04b09
L
12522 break;
12523
b6f8c7c4
L
12524 case 'O':
12525 if (arg == NULL)
12526 {
12527 optimize = 1;
12528 /* Turn off -Os. */
12529 optimize_for_space = 0;
12530 }
12531 else if (*arg == 's')
12532 {
12533 optimize_for_space = 1;
12534 /* Turn on all encoding optimizations. */
41fd2579 12535 optimize = INT_MAX;
b6f8c7c4
L
12536 }
12537 else
12538 {
12539 optimize = atoi (arg);
12540 /* Turn off -Os. */
12541 optimize_for_space = 0;
12542 }
12543 break;
12544
252b5132
RH
12545 default:
12546 return 0;
12547 }
12548 return 1;
12549}
12550
8a2c8fef
L
12551#define MESSAGE_TEMPLATE \
12552" "
12553
293f5f65
L
12554static char *
12555output_message (FILE *stream, char *p, char *message, char *start,
12556 int *left_p, const char *name, int len)
12557{
12558 int size = sizeof (MESSAGE_TEMPLATE);
12559 int left = *left_p;
12560
12561 /* Reserve 2 spaces for ", " or ",\0" */
12562 left -= len + 2;
12563
12564 /* Check if there is any room. */
12565 if (left >= 0)
12566 {
12567 if (p != start)
12568 {
12569 *p++ = ',';
12570 *p++ = ' ';
12571 }
12572 p = mempcpy (p, name, len);
12573 }
12574 else
12575 {
12576 /* Output the current message now and start a new one. */
12577 *p++ = ',';
12578 *p = '\0';
12579 fprintf (stream, "%s\n", message);
12580 p = start;
12581 left = size - (start - message) - len - 2;
12582
12583 gas_assert (left >= 0);
12584
12585 p = mempcpy (p, name, len);
12586 }
12587
12588 *left_p = left;
12589 return p;
12590}
12591
8a2c8fef 12592static void
1ded5609 12593show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12594{
12595 static char message[] = MESSAGE_TEMPLATE;
12596 char *start = message + 27;
12597 char *p;
12598 int size = sizeof (MESSAGE_TEMPLATE);
12599 int left;
12600 const char *name;
12601 int len;
12602 unsigned int j;
12603
12604 p = start;
12605 left = size - (start - message);
12606 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12607 {
12608 /* Should it be skipped? */
12609 if (cpu_arch [j].skip)
12610 continue;
12611
12612 name = cpu_arch [j].name;
12613 len = cpu_arch [j].len;
12614 if (*name == '.')
12615 {
12616 /* It is an extension. Skip if we aren't asked to show it. */
12617 if (ext)
12618 {
12619 name++;
12620 len--;
12621 }
12622 else
12623 continue;
12624 }
12625 else if (ext)
12626 {
12627 /* It is an processor. Skip if we show only extension. */
12628 continue;
12629 }
1ded5609
JB
12630 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12631 {
12632 /* It is an impossible processor - skip. */
12633 continue;
12634 }
8a2c8fef 12635
293f5f65 12636 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12637 }
12638
293f5f65
L
12639 /* Display disabled extensions. */
12640 if (ext)
12641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12642 {
12643 name = cpu_noarch [j].name;
12644 len = cpu_noarch [j].len;
12645 p = output_message (stream, p, message, start, &left, name,
12646 len);
12647 }
12648
8a2c8fef
L
12649 *p = '\0';
12650 fprintf (stream, "%s\n", message);
12651}
12652
252b5132 12653void
8a2c8fef 12654md_show_usage (FILE *stream)
252b5132 12655{
4cc782b5
ILT
12656#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12657 fprintf (stream, _("\
d4693039 12658 -Qy, -Qn ignored\n\
a38cf1db 12659 -V print assembler version number\n\
b3b91714
AM
12660 -k ignored\n"));
12661#endif
12662 fprintf (stream, _("\
12b55ccc 12663 -n Do not optimize code alignment\n\
b3b91714
AM
12664 -q quieten some warnings\n"));
12665#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12666 fprintf (stream, _("\
a38cf1db 12667 -s ignored\n"));
b3b91714 12668#endif
d7f449c0
L
12669#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12670 || defined (TE_PE) || defined (TE_PEP))
751d281c 12671 fprintf (stream, _("\
570561f7 12672 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12673#endif
b3b91714
AM
12674#ifdef SVR4_COMMENT_CHARS
12675 fprintf (stream, _("\
12676 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12677#else
12678 fprintf (stream, _("\
b3b91714 12679 --divide ignored\n"));
4cc782b5 12680#endif
9103f4f4 12681 fprintf (stream, _("\
6305a203 12682 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12683 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12684 show_arch (stream, 0, 1);
8a2c8fef
L
12685 fprintf (stream, _("\
12686 EXTENSION is combination of:\n"));
1ded5609 12687 show_arch (stream, 1, 0);
6305a203 12688 fprintf (stream, _("\
8a2c8fef 12689 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12690 show_arch (stream, 0, 0);
ba104c83 12691 fprintf (stream, _("\
c0f3af97
L
12692 -msse2avx encode SSE instructions with VEX prefix\n"));
12693 fprintf (stream, _("\
7c5c05ef 12694 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12695 check SSE instructions\n"));
12696 fprintf (stream, _("\
7c5c05ef 12697 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12698 check operand combinations for validity\n"));
12699 fprintf (stream, _("\
7c5c05ef
L
12700 -mavxscalar=[128|256] (default: 128)\n\
12701 encode scalar AVX instructions with specific vector\n\
539f890d
L
12702 length\n"));
12703 fprintf (stream, _("\
03751133
L
12704 -mvexwig=[0|1] (default: 0)\n\
12705 encode VEX instructions with specific VEX.W value\n\
12706 for VEX.W bit ignored instructions\n"));
12707 fprintf (stream, _("\
7c5c05ef
L
12708 -mevexlig=[128|256|512] (default: 128)\n\
12709 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12710 length\n"));
12711 fprintf (stream, _("\
7c5c05ef
L
12712 -mevexwig=[0|1] (default: 0)\n\
12713 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12714 for EVEX.W bit ignored instructions\n"));
12715 fprintf (stream, _("\
7c5c05ef 12716 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12717 encode EVEX instructions with specific EVEX.RC value\n\
12718 for SAE-only ignored instructions\n"));
12719 fprintf (stream, _("\
7c5c05ef
L
12720 -mmnemonic=[att|intel] "));
12721 if (SYSV386_COMPAT)
12722 fprintf (stream, _("(default: att)\n"));
12723 else
12724 fprintf (stream, _("(default: intel)\n"));
12725 fprintf (stream, _("\
12726 use AT&T/Intel mnemonic\n"));
ba104c83 12727 fprintf (stream, _("\
7c5c05ef
L
12728 -msyntax=[att|intel] (default: att)\n\
12729 use AT&T/Intel syntax\n"));
ba104c83
L
12730 fprintf (stream, _("\
12731 -mindex-reg support pseudo index registers\n"));
12732 fprintf (stream, _("\
12733 -mnaked-reg don't require `%%' prefix for registers\n"));
12734 fprintf (stream, _("\
7e8b059b 12735 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12736#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12737 fprintf (stream, _("\
12738 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12739 fprintf (stream, _("\
12740 -mx86-used-note=[no|yes] "));
12741 if (DEFAULT_X86_USED_NOTE)
12742 fprintf (stream, _("(default: yes)\n"));
12743 else
12744 fprintf (stream, _("(default: no)\n"));
12745 fprintf (stream, _("\
12746 generate x86 used ISA and feature properties\n"));
12747#endif
12748#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12749 fprintf (stream, _("\
12750 -mbig-obj generate big object files\n"));
12751#endif
d022bddd 12752 fprintf (stream, _("\
7c5c05ef 12753 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12754 strip all lock prefixes\n"));
5db04b09 12755 fprintf (stream, _("\
7c5c05ef 12756 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12757 encode lfence, mfence and sfence as\n\
12758 lock addl $0x0, (%%{re}sp)\n"));
12759 fprintf (stream, _("\
7c5c05ef
L
12760 -mrelax-relocations=[no|yes] "));
12761 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12762 fprintf (stream, _("(default: yes)\n"));
12763 else
12764 fprintf (stream, _("(default: no)\n"));
12765 fprintf (stream, _("\
0cb4071e
L
12766 generate relax relocations\n"));
12767 fprintf (stream, _("\
e379e5f3
L
12768 -malign-branch-boundary=NUM (default: 0)\n\
12769 align branches within NUM byte boundary\n"));
12770 fprintf (stream, _("\
12771 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12772 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12773 indirect\n\
12774 specify types of branches to align\n"));
12775 fprintf (stream, _("\
12776 -malign-branch-prefix-size=NUM (default: 5)\n\
12777 align branches with NUM prefixes per instruction\n"));
12778 fprintf (stream, _("\
76cf450b
L
12779 -mbranches-within-32B-boundaries\n\
12780 align branches within 32 byte boundary\n"));
12781 fprintf (stream, _("\
7c5c05ef 12782 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12783 fprintf (stream, _("\
12784 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12785}
12786
3e73aa7c 12787#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12788 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12789 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12790
12791/* Pick the target format to use. */
12792
47926f60 12793const char *
e3bb37b5 12794i386_target_format (void)
252b5132 12795{
351f65ca
L
12796 if (!strncmp (default_arch, "x86_64", 6))
12797 {
12798 update_code_flag (CODE_64BIT, 1);
12799 if (default_arch[6] == '\0')
7f56bc95 12800 x86_elf_abi = X86_64_ABI;
351f65ca 12801 else
7f56bc95 12802 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12803 }
3e73aa7c 12804 else if (!strcmp (default_arch, "i386"))
78f12dd3 12805 update_code_flag (CODE_32BIT, 1);
5197d474
L
12806 else if (!strcmp (default_arch, "iamcu"))
12807 {
12808 update_code_flag (CODE_32BIT, 1);
12809 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12810 {
12811 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12812 cpu_arch_name = "iamcu";
12813 cpu_sub_arch_name = NULL;
12814 cpu_arch_flags = iamcu_flags;
12815 cpu_arch_isa = PROCESSOR_IAMCU;
12816 cpu_arch_isa_flags = iamcu_flags;
12817 if (!cpu_arch_tune_set)
12818 {
12819 cpu_arch_tune = cpu_arch_isa;
12820 cpu_arch_tune_flags = cpu_arch_isa_flags;
12821 }
12822 }
8d471ec1 12823 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12824 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12825 cpu_arch_name);
12826 }
3e73aa7c 12827 else
2b5d6a91 12828 as_fatal (_("unknown architecture"));
89507696
JB
12829
12830 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12831 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12832 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12833 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12834
252b5132
RH
12835 switch (OUTPUT_FLAVOR)
12836 {
9384f2ff 12837#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12838 case bfd_target_aout_flavour:
47926f60 12839 return AOUT_TARGET_FORMAT;
4c63da97 12840#endif
9384f2ff
AM
12841#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12842# if defined (TE_PE) || defined (TE_PEP)
12843 case bfd_target_coff_flavour:
167ad85b
TG
12844 if (flag_code == CODE_64BIT)
12845 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12846 else
12847 return "pe-i386";
9384f2ff 12848# elif defined (TE_GO32)
0561d57c
JK
12849 case bfd_target_coff_flavour:
12850 return "coff-go32";
9384f2ff 12851# else
252b5132
RH
12852 case bfd_target_coff_flavour:
12853 return "coff-i386";
9384f2ff 12854# endif
4c63da97 12855#endif
3e73aa7c 12856#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12857 case bfd_target_elf_flavour:
3e73aa7c 12858 {
351f65ca
L
12859 const char *format;
12860
12861 switch (x86_elf_abi)
4fa24527 12862 {
351f65ca
L
12863 default:
12864 format = ELF_TARGET_FORMAT;
e379e5f3
L
12865#ifndef TE_SOLARIS
12866 tls_get_addr = "___tls_get_addr";
12867#endif
351f65ca 12868 break;
7f56bc95 12869 case X86_64_ABI:
351f65ca 12870 use_rela_relocations = 1;
4fa24527 12871 object_64bit = 1;
e379e5f3
L
12872#ifndef TE_SOLARIS
12873 tls_get_addr = "__tls_get_addr";
12874#endif
351f65ca
L
12875 format = ELF_TARGET_FORMAT64;
12876 break;
7f56bc95 12877 case X86_64_X32_ABI:
4fa24527 12878 use_rela_relocations = 1;
351f65ca 12879 object_64bit = 1;
e379e5f3
L
12880#ifndef TE_SOLARIS
12881 tls_get_addr = "__tls_get_addr";
12882#endif
862be3fb 12883 disallow_64bit_reloc = 1;
351f65ca
L
12884 format = ELF_TARGET_FORMAT32;
12885 break;
4fa24527 12886 }
3632d14b 12887 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12888 {
7f56bc95 12889 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12890 as_fatal (_("Intel L1OM is 64bit only"));
12891 return ELF_TARGET_L1OM_FORMAT;
12892 }
b49f93f6 12893 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12894 {
12895 if (x86_elf_abi != X86_64_ABI)
12896 as_fatal (_("Intel K1OM is 64bit only"));
12897 return ELF_TARGET_K1OM_FORMAT;
12898 }
81486035
L
12899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12900 {
12901 if (x86_elf_abi != I386_ABI)
12902 as_fatal (_("Intel MCU is 32bit only"));
12903 return ELF_TARGET_IAMCU_FORMAT;
12904 }
8a9036a4 12905 else
351f65ca 12906 return format;
3e73aa7c 12907 }
e57f8c65
TG
12908#endif
12909#if defined (OBJ_MACH_O)
12910 case bfd_target_mach_o_flavour:
d382c579
TG
12911 if (flag_code == CODE_64BIT)
12912 {
12913 use_rela_relocations = 1;
12914 object_64bit = 1;
12915 return "mach-o-x86-64";
12916 }
12917 else
12918 return "mach-o-i386";
4c63da97 12919#endif
252b5132
RH
12920 default:
12921 abort ();
12922 return NULL;
12923 }
12924}
12925
47926f60 12926#endif /* OBJ_MAYBE_ more than one */
252b5132 12927\f
252b5132 12928symbolS *
7016a5d5 12929md_undefined_symbol (char *name)
252b5132 12930{
18dc2407
ILT
12931 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12932 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12933 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12934 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12935 {
12936 if (!GOT_symbol)
12937 {
12938 if (symbol_find (name))
12939 as_bad (_("GOT already in symbol table"));
12940 GOT_symbol = symbol_new (name, undefined_section,
12941 (valueT) 0, &zero_address_frag);
12942 };
12943 return GOT_symbol;
12944 }
252b5132
RH
12945 return 0;
12946}
12947
12948/* Round up a section size to the appropriate boundary. */
47926f60 12949
252b5132 12950valueT
7016a5d5 12951md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12952{
4c63da97
AM
12953#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12954 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12955 {
12956 /* For a.out, force the section size to be aligned. If we don't do
12957 this, BFD will align it for us, but it will not write out the
12958 final bytes of the section. This may be a bug in BFD, but it is
12959 easier to fix it here since that is how the other a.out targets
12960 work. */
12961 int align;
12962
fd361982 12963 align = bfd_section_alignment (segment);
8d3842cd 12964 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12965 }
252b5132
RH
12966#endif
12967
12968 return size;
12969}
12970
12971/* On the i386, PC-relative offsets are relative to the start of the
12972 next instruction. That is, the address of the offset, plus its
12973 size, since the offset is always the last part of the insn. */
12974
12975long
e3bb37b5 12976md_pcrel_from (fixS *fixP)
252b5132
RH
12977{
12978 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12979}
12980
12981#ifndef I386COFF
12982
12983static void
e3bb37b5 12984s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 12985{
29b0f896 12986 int temp;
252b5132 12987
8a75718c
JB
12988#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12989 if (IS_ELF)
12990 obj_elf_section_change_hook ();
12991#endif
252b5132
RH
12992 temp = get_absolute_expression ();
12993 subseg_set (bss_section, (subsegT) temp);
12994 demand_empty_rest_of_line ();
12995}
12996
12997#endif
12998
e379e5f3
L
12999/* Remember constant directive. */
13000
13001void
13002i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13003{
13004 if (last_insn.kind != last_insn_directive
13005 && (bfd_section_flags (now_seg) & SEC_CODE))
13006 {
13007 last_insn.seg = now_seg;
13008 last_insn.kind = last_insn_directive;
13009 last_insn.name = "constant directive";
13010 last_insn.file = as_where (&last_insn.line);
13011 }
13012}
13013
252b5132 13014void
e3bb37b5 13015i386_validate_fix (fixS *fixp)
252b5132 13016{
02a86693 13017 if (fixp->fx_subsy)
252b5132 13018 {
02a86693 13019 if (fixp->fx_subsy == GOT_symbol)
23df1078 13020 {
02a86693
L
13021 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13022 {
13023 if (!object_64bit)
13024 abort ();
13025#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13026 if (fixp->fx_tcbit2)
56ceb5b5
L
13027 fixp->fx_r_type = (fixp->fx_tcbit
13028 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13029 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13030 else
13031#endif
13032 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13033 }
d6ab8113 13034 else
02a86693
L
13035 {
13036 if (!object_64bit)
13037 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13038 else
13039 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13040 }
13041 fixp->fx_subsy = 0;
23df1078 13042 }
252b5132 13043 }
02a86693
L
13044#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13045 else if (!object_64bit)
13046 {
13047 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13048 && fixp->fx_tcbit2)
13049 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13050 }
13051#endif
252b5132
RH
13052}
13053
252b5132 13054arelent *
7016a5d5 13055tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13056{
13057 arelent *rel;
13058 bfd_reloc_code_real_type code;
13059
13060 switch (fixp->fx_r_type)
13061 {
8ce3d284 13062#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13063 case BFD_RELOC_SIZE32:
13064 case BFD_RELOC_SIZE64:
13065 if (S_IS_DEFINED (fixp->fx_addsy)
13066 && !S_IS_EXTERNAL (fixp->fx_addsy))
13067 {
13068 /* Resolve size relocation against local symbol to size of
13069 the symbol plus addend. */
13070 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13071 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13072 && !fits_in_unsigned_long (value))
13073 as_bad_where (fixp->fx_file, fixp->fx_line,
13074 _("symbol size computation overflow"));
13075 fixp->fx_addsy = NULL;
13076 fixp->fx_subsy = NULL;
13077 md_apply_fix (fixp, (valueT *) &value, NULL);
13078 return NULL;
13079 }
8ce3d284 13080#endif
1a0670f3 13081 /* Fall through. */
8fd4256d 13082
3e73aa7c
JH
13083 case BFD_RELOC_X86_64_PLT32:
13084 case BFD_RELOC_X86_64_GOT32:
13085 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13086 case BFD_RELOC_X86_64_GOTPCRELX:
13087 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13088 case BFD_RELOC_386_PLT32:
13089 case BFD_RELOC_386_GOT32:
02a86693 13090 case BFD_RELOC_386_GOT32X:
252b5132
RH
13091 case BFD_RELOC_386_GOTOFF:
13092 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13093 case BFD_RELOC_386_TLS_GD:
13094 case BFD_RELOC_386_TLS_LDM:
13095 case BFD_RELOC_386_TLS_LDO_32:
13096 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13097 case BFD_RELOC_386_TLS_IE:
13098 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13099 case BFD_RELOC_386_TLS_LE_32:
13100 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13101 case BFD_RELOC_386_TLS_GOTDESC:
13102 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13103 case BFD_RELOC_X86_64_TLSGD:
13104 case BFD_RELOC_X86_64_TLSLD:
13105 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13106 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13107 case BFD_RELOC_X86_64_GOTTPOFF:
13108 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13109 case BFD_RELOC_X86_64_TPOFF64:
13110 case BFD_RELOC_X86_64_GOTOFF64:
13111 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13112 case BFD_RELOC_X86_64_GOT64:
13113 case BFD_RELOC_X86_64_GOTPCREL64:
13114 case BFD_RELOC_X86_64_GOTPC64:
13115 case BFD_RELOC_X86_64_GOTPLT64:
13116 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13117 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13118 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13119 case BFD_RELOC_RVA:
13120 case BFD_RELOC_VTABLE_ENTRY:
13121 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13122#ifdef TE_PE
13123 case BFD_RELOC_32_SECREL:
13124#endif
252b5132
RH
13125 code = fixp->fx_r_type;
13126 break;
dbbaec26
L
13127 case BFD_RELOC_X86_64_32S:
13128 if (!fixp->fx_pcrel)
13129 {
13130 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13131 code = fixp->fx_r_type;
13132 break;
13133 }
1a0670f3 13134 /* Fall through. */
252b5132 13135 default:
93382f6d 13136 if (fixp->fx_pcrel)
252b5132 13137 {
93382f6d
AM
13138 switch (fixp->fx_size)
13139 {
13140 default:
b091f402
AM
13141 as_bad_where (fixp->fx_file, fixp->fx_line,
13142 _("can not do %d byte pc-relative relocation"),
13143 fixp->fx_size);
93382f6d
AM
13144 code = BFD_RELOC_32_PCREL;
13145 break;
13146 case 1: code = BFD_RELOC_8_PCREL; break;
13147 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13148 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13149#ifdef BFD64
13150 case 8: code = BFD_RELOC_64_PCREL; break;
13151#endif
93382f6d
AM
13152 }
13153 }
13154 else
13155 {
13156 switch (fixp->fx_size)
13157 {
13158 default:
b091f402
AM
13159 as_bad_where (fixp->fx_file, fixp->fx_line,
13160 _("can not do %d byte relocation"),
13161 fixp->fx_size);
93382f6d
AM
13162 code = BFD_RELOC_32;
13163 break;
13164 case 1: code = BFD_RELOC_8; break;
13165 case 2: code = BFD_RELOC_16; break;
13166 case 4: code = BFD_RELOC_32; break;
937149dd 13167#ifdef BFD64
3e73aa7c 13168 case 8: code = BFD_RELOC_64; break;
937149dd 13169#endif
93382f6d 13170 }
252b5132
RH
13171 }
13172 break;
13173 }
252b5132 13174
d182319b
JB
13175 if ((code == BFD_RELOC_32
13176 || code == BFD_RELOC_32_PCREL
13177 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13178 && GOT_symbol
13179 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13180 {
4fa24527 13181 if (!object_64bit)
d6ab8113
JB
13182 code = BFD_RELOC_386_GOTPC;
13183 else
13184 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13185 }
7b81dfbb
AJ
13186 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13187 && GOT_symbol
13188 && fixp->fx_addsy == GOT_symbol)
13189 {
13190 code = BFD_RELOC_X86_64_GOTPC64;
13191 }
252b5132 13192
add39d23
TS
13193 rel = XNEW (arelent);
13194 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13195 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13196
13197 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13198
3e73aa7c
JH
13199 if (!use_rela_relocations)
13200 {
13201 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13202 vtable entry to be used in the relocation's section offset. */
13203 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13204 rel->address = fixp->fx_offset;
fbeb56a4
DK
13205#if defined (OBJ_COFF) && defined (TE_PE)
13206 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13207 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13208 else
13209#endif
c6682705 13210 rel->addend = 0;
3e73aa7c
JH
13211 }
13212 /* Use the rela in 64bit mode. */
252b5132 13213 else
3e73aa7c 13214 {
862be3fb
L
13215 if (disallow_64bit_reloc)
13216 switch (code)
13217 {
862be3fb
L
13218 case BFD_RELOC_X86_64_DTPOFF64:
13219 case BFD_RELOC_X86_64_TPOFF64:
13220 case BFD_RELOC_64_PCREL:
13221 case BFD_RELOC_X86_64_GOTOFF64:
13222 case BFD_RELOC_X86_64_GOT64:
13223 case BFD_RELOC_X86_64_GOTPCREL64:
13224 case BFD_RELOC_X86_64_GOTPC64:
13225 case BFD_RELOC_X86_64_GOTPLT64:
13226 case BFD_RELOC_X86_64_PLTOFF64:
13227 as_bad_where (fixp->fx_file, fixp->fx_line,
13228 _("cannot represent relocation type %s in x32 mode"),
13229 bfd_get_reloc_code_name (code));
13230 break;
13231 default:
13232 break;
13233 }
13234
062cd5e7
AS
13235 if (!fixp->fx_pcrel)
13236 rel->addend = fixp->fx_offset;
13237 else
13238 switch (code)
13239 {
13240 case BFD_RELOC_X86_64_PLT32:
13241 case BFD_RELOC_X86_64_GOT32:
13242 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13243 case BFD_RELOC_X86_64_GOTPCRELX:
13244 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13245 case BFD_RELOC_X86_64_TLSGD:
13246 case BFD_RELOC_X86_64_TLSLD:
13247 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13248 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13249 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13250 rel->addend = fixp->fx_offset - fixp->fx_size;
13251 break;
13252 default:
13253 rel->addend = (section->vma
13254 - fixp->fx_size
13255 + fixp->fx_addnumber
13256 + md_pcrel_from (fixp));
13257 break;
13258 }
3e73aa7c
JH
13259 }
13260
252b5132
RH
13261 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13262 if (rel->howto == NULL)
13263 {
13264 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13265 _("cannot represent relocation type %s"),
252b5132
RH
13266 bfd_get_reloc_code_name (code));
13267 /* Set howto to a garbage value so that we can keep going. */
13268 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13269 gas_assert (rel->howto != NULL);
252b5132
RH
13270 }
13271
13272 return rel;
13273}
13274
ee86248c 13275#include "tc-i386-intel.c"
54cfded0 13276
a60de03c
JB
13277void
13278tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13279{
a60de03c
JB
13280 int saved_naked_reg;
13281 char saved_register_dot;
54cfded0 13282
a60de03c
JB
13283 saved_naked_reg = allow_naked_reg;
13284 allow_naked_reg = 1;
13285 saved_register_dot = register_chars['.'];
13286 register_chars['.'] = '.';
13287 allow_pseudo_reg = 1;
13288 expression_and_evaluate (exp);
13289 allow_pseudo_reg = 0;
13290 register_chars['.'] = saved_register_dot;
13291 allow_naked_reg = saved_naked_reg;
13292
e96d56a1 13293 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13294 {
a60de03c
JB
13295 if ((addressT) exp->X_add_number < i386_regtab_size)
13296 {
13297 exp->X_op = O_constant;
13298 exp->X_add_number = i386_regtab[exp->X_add_number]
13299 .dw2_regnum[flag_code >> 1];
13300 }
13301 else
13302 exp->X_op = O_illegal;
54cfded0 13303 }
54cfded0
AM
13304}
13305
13306void
13307tc_x86_frame_initial_instructions (void)
13308{
a60de03c
JB
13309 static unsigned int sp_regno[2];
13310
13311 if (!sp_regno[flag_code >> 1])
13312 {
13313 char *saved_input = input_line_pointer;
13314 char sp[][4] = {"esp", "rsp"};
13315 expressionS exp;
a4447b93 13316
a60de03c
JB
13317 input_line_pointer = sp[flag_code >> 1];
13318 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13319 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13320 sp_regno[flag_code >> 1] = exp.X_add_number;
13321 input_line_pointer = saved_input;
13322 }
a4447b93 13323
61ff971f
L
13324 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13325 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13326}
d2b2c203 13327
d7921315
L
13328int
13329x86_dwarf2_addr_size (void)
13330{
13331#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13332 if (x86_elf_abi == X86_64_X32_ABI)
13333 return 4;
13334#endif
13335 return bfd_arch_bits_per_address (stdoutput) / 8;
13336}
13337
d2b2c203
DJ
13338int
13339i386_elf_section_type (const char *str, size_t len)
13340{
13341 if (flag_code == CODE_64BIT
13342 && len == sizeof ("unwind") - 1
13343 && strncmp (str, "unwind", 6) == 0)
13344 return SHT_X86_64_UNWIND;
13345
13346 return -1;
13347}
bb41ade5 13348
ad5fec3b
EB
13349#ifdef TE_SOLARIS
13350void
13351i386_solaris_fix_up_eh_frame (segT sec)
13352{
13353 if (flag_code == CODE_64BIT)
13354 elf_section_type (sec) = SHT_X86_64_UNWIND;
13355}
13356#endif
13357
bb41ade5
AM
13358#ifdef TE_PE
13359void
13360tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13361{
91d6fa6a 13362 expressionS exp;
bb41ade5 13363
91d6fa6a
NC
13364 exp.X_op = O_secrel;
13365 exp.X_add_symbol = symbol;
13366 exp.X_add_number = 0;
13367 emit_expr (&exp, size);
bb41ade5
AM
13368}
13369#endif
3b22753a
L
13370
13371#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13372/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13373
01e1a5bc 13374bfd_vma
6d4af3c2 13375x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13376{
13377 if (flag_code == CODE_64BIT)
13378 {
13379 if (letter == 'l')
13380 return SHF_X86_64_LARGE;
13381
8f3bae45 13382 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13383 }
3b22753a 13384 else
8f3bae45 13385 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13386 return -1;
13387}
13388
01e1a5bc 13389bfd_vma
3b22753a
L
13390x86_64_section_word (char *str, size_t len)
13391{
8620418b 13392 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13393 return SHF_X86_64_LARGE;
13394
13395 return -1;
13396}
13397
13398static void
13399handle_large_common (int small ATTRIBUTE_UNUSED)
13400{
13401 if (flag_code != CODE_64BIT)
13402 {
13403 s_comm_internal (0, elf_common_parse);
13404 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13405 }
13406 else
13407 {
13408 static segT lbss_section;
13409 asection *saved_com_section_ptr = elf_com_section_ptr;
13410 asection *saved_bss_section = bss_section;
13411
13412 if (lbss_section == NULL)
13413 {
13414 flagword applicable;
13415 segT seg = now_seg;
13416 subsegT subseg = now_subseg;
13417
13418 /* The .lbss section is for local .largecomm symbols. */
13419 lbss_section = subseg_new (".lbss", 0);
13420 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13421 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13422 seg_info (lbss_section)->bss = 1;
13423
13424 subseg_set (seg, subseg);
13425 }
13426
13427 elf_com_section_ptr = &_bfd_elf_large_com_section;
13428 bss_section = lbss_section;
13429
13430 s_comm_internal (0, elf_common_parse);
13431
13432 elf_com_section_ptr = saved_com_section_ptr;
13433 bss_section = saved_bss_section;
13434 }
13435}
13436#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.559384 seconds and 4 git commands to generate.