x86: make RegMem an opcode modifier
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
2c703856 3007pi (const char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
21df382b 3034 || x->types[j].bitfield.sreg
09137c09
SP
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
252b5132
RH
3043 }
3044}
3045
3046static void
d3ce72d0 3047pte (insn_template *t)
252b5132 3048{
09137c09 3049 unsigned int j;
252b5132 3050 fprintf (stdout, " %d operands ", t->operands);
47926f60 3051 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3054 if (t->opcode_modifier.d)
252b5132 3055 fprintf (stdout, "D");
40fb9820 3056 if (t->opcode_modifier.w)
252b5132
RH
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
09137c09 3059 for (j = 0; j < t->operands; j++)
252b5132 3060 {
09137c09
SP
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
252b5132
RH
3063 fprintf (stdout, "\n");
3064 }
3065}
3066
3067static void
e3bb37b5 3068pe (expressionS *e)
252b5132 3069{
24eab124 3070 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085}
3086
3087static void
e3bb37b5 3088ps (symbolS *s)
252b5132
RH
3089{
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094}
3095
7b81dfbb 3096static struct type_name
252b5132 3097 {
40fb9820
L
3098 i386_operand_type mask;
3099 const char *name;
252b5132 3100 }
7b81dfbb 3101const type_names[] =
252b5132 3102{
40fb9820
L
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3131 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3135 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3138 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3139};
3140
3141static void
40fb9820 3142pt (i386_operand_type t)
252b5132 3143{
40fb9820 3144 unsigned int j;
c6fb90c8 3145 i386_operand_type a;
252b5132 3146
40fb9820 3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
2c703856 3150 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
252b5132
RH
3153 fflush (stdout);
3154}
3155
3156#endif /* DEBUG386 */
3157\f
252b5132 3158static bfd_reloc_code_real_type
3956db08 3159reloc (unsigned int size,
64e74474
AM
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
252b5132 3163{
47926f60 3164 if (other != NO_RELOC)
3956db08 3165 {
91d6fa6a 3166 reloc_howto_type *rel;
3956db08
JB
3167
3168 if (size == 8)
3169 switch (other)
3170 {
64e74474
AM
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
553d1284
L
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
64e74474
AM
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3956db08 3194 }
e05278af 3195
8ce3d284 3196#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
1ab668bf 3200 other = BFD_RELOC_SIZE64;
8fd4256d 3201 if (pcrel)
1ab668bf
AM
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
8fd4256d 3206 }
8ce3d284 3207#endif
8fd4256d 3208
e05278af 3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3211 sign = -1;
3212
91d6fa6a
NC
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3956db08 3215 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3216 else if (size != bfd_get_reloc_size (rel))
3956db08 3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3218 bfd_get_reloc_size (rel),
3956db08 3219 size);
91d6fa6a 3220 else if (pcrel && !rel->pc_relative)
3956db08 3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3223 && !sign)
91d6fa6a 3224 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3225 && sign > 0))
3956db08
JB
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
252b5132
RH
3231
3232 if (pcrel)
3233 {
3e73aa7c 3234 if (!sign)
3956db08 3235 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
d258b828 3240 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3241 case 8: return BFD_RELOC_64_PCREL;
252b5132 3242 }
3956db08 3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3244 }
3245 else
3246 {
3956db08 3247 if (sign > 0)
e5cb08ac 3248 switch (size)
3e73aa7c
JH
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3956db08
JB
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3262 }
3263
0cc9e1d3 3264 return NO_RELOC;
252b5132
RH
3265}
3266
47926f60
KH
3267/* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
252b5132 3272int
e3bb37b5 3273tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3274{
6d249963 3275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3276 if (!IS_ELF)
31312f95
AM
3277 return 1;
3278
a161fe53
AM
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
252b5132 3284 return 0;
31312f95 3285
8d01d9a9
AJ
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
8fd4256d
L
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
31312f95 3328#endif
252b5132
RH
3329 return 1;
3330}
252b5132 3331
b4cac588 3332static int
e3bb37b5 3333intel_float_operand (const char *mnemonic)
252b5132 3334{
9306ca4a
JB
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
252b5132 3381
9306ca4a 3382 return 1;
252b5132
RH
3383}
3384
c0f3af97
L
3385/* Build the VEX prefix. */
3386
3387static void
d3ce72d0 3388build_vex_prefix (const insn_template *t)
c0f3af97
L
3389{
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
03751133 3393 unsigned int w;
c0f3af97
L
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
43234a1e
L
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
c0f3af97
L
3402 else
3403 register_specifier = 0xf;
3404
79f0fa25
L
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
86fa6981 3409 && i.dir_encoding == dir_encoding_default
fa99fab2 3410 && i.operands == i.reg_operands
dbbc8b7e 3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3412 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
9c2799c2 3427 gas_assert (i.rm.mode == 3);
fa99fab2
L
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
dbbc8b7e
JB
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
fa99fab2
L
3439 }
3440
79dec6b7
JB
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
539f890d
L
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
10c17abd
JB
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
539f890d 3482 else
10c17abd 3483 {
56522fc5 3484 unsigned int op;
10c17abd 3485
c7213af9
L
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
10c17abd 3488 vector_length = 0;
56522fc5 3489 for (op = t->operands; op--;)
10c17abd
JB
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
c0f3af97
L
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
03751133
L
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
931d03b7 3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3524
c0f3af97 3525 /* Use 2-byte VEX prefix if possible. */
03751133
L
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
86fa6981 3528 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
03751133 3547 unsigned int m;
c0f3af97 3548
f88c9eb0 3549 i.vex.length = 3;
f88c9eb0 3550
7f399153 3551 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3552 {
7f399153
L
3553 case VEX0F:
3554 m = 0x1;
80de6e00 3555 i.vex.bytes[0] = 0xc4;
7f399153
L
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
80de6e00 3559 i.vex.bytes[0] = 0xc4;
7f399153
L
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
80de6e00 3563 i.vex.bytes[0] = 0xc4;
7f399153
L
3564 break;
3565 case XOP08:
5dd85c99
SP
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
7f399153
L
3568 break;
3569 case XOP09:
f88c9eb0
SP
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
7f399153
L
3572 break;
3573 case XOP0A:
f88c9eb0
SP
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
7f399153
L
3576 break;
3577 default:
3578 abort ();
f88c9eb0 3579 }
c0f3af97 3580
c0f3af97
L
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
c0f3af97
L
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590}
3591
e771e7c9
JB
3592static INLINE bfd_boolean
3593is_evex_encoding (const insn_template *t)
3594{
7091c612 3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3597 || t->opcode_modifier.sae;
e771e7c9
JB
3598}
3599
7a8655d2
JB
3600static INLINE bfd_boolean
3601is_any_vex_encoding (const insn_template *t)
3602{
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605}
3606
43234a1e
L
3607/* Build the EVEX prefix. */
3608
3609static void
3610build_evex_prefix (void)
3611{
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
6865c043
L
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
931d03b7 3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
e771e7c9
JB
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
56522fc5 3738 unsigned int op;
e771e7c9 3739
c7213af9
L
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
e771e7c9 3742 vec_length = 0;
56522fc5 3743 for (op = i.operands; op--;)
e771e7c9
JB
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
c7213af9
L
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
e771e7c9 3753 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
e771e7c9 3758 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
625cbd7a
JB
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
4a1b91ea 3765 switch (i.broadcast->bytes)
625cbd7a
JB
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
c7213af9 3777 abort ();
625cbd7a 3778 }
c7213af9 3779 break;
625cbd7a 3780 }
e771e7c9 3781 }
c7213af9 3782
56522fc5 3783 if (op >= MAX_OPERANDS)
c7213af9 3784 abort ();
e771e7c9
JB
3785 }
3786
43234a1e
L
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
d3d3c6db 3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820}
3821
65da13b5
L
3822static void
3823process_immext (void)
3824{
3825 expressionS *exp;
3826
4c692bc7
JB
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
65da13b5 3829 {
4c692bc7
JB
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
65da13b5
L
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
4c692bc7 3837 if (register_number (i.op[x].regs) != x)
65da13b5 3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
65da13b5
L
3843 }
3844
9916071f
AP
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
c0f3af97 3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
c1e679ec 3878 AVX instructions also use this encoding, for some of
c0f3af97 3879 3 argument instructions. */
65da13b5 3880
43234a1e 3881 gas_assert (i.imm_operands <= 1
7ab9ffdd 3882 && (i.operands <= 2
7a8655d2 3883 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3884 && i.operands <= 4)));
65da13b5
L
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893}
3894
42164a71
L
3895
3896static int
3897check_hle (void)
3898{
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
82c2def5 3903 case HLEPrefixNone:
165de32a
L
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
42164a71 3906 return 0;
82c2def5 3907 case HLEPrefixLock:
42164a71
L
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
165de32a 3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3911 return 0;
82c2def5 3912 case HLEPrefixAny:
42164a71 3913 return 1;
82c2def5 3914 case HLEPrefixRelease:
42164a71
L
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
3921 if (i.mem_operands == 0
3922 || !operand_type_check (i.types[i.operands - 1], anymem))
3923 {
3924 as_bad (_("memory destination needed for instruction `%s'"
3925 " after `xrelease'"), i.tm.name);
3926 return 0;
3927 }
3928 return 1;
3929 }
3930}
3931
b6f8c7c4
L
3932/* Try the shortest encoding by shortening operand size. */
3933
3934static void
3935optimize_encoding (void)
3936{
a0a1771e 3937 unsigned int j;
b6f8c7c4
L
3938
3939 if (optimize_for_space
3940 && i.reg_operands == 1
3941 && i.imm_operands == 1
3942 && !i.types[1].bitfield.byte
3943 && i.op[0].imms->X_op == O_constant
3944 && fits_in_imm7 (i.op[0].imms->X_add_number)
3945 && ((i.tm.base_opcode == 0xa8
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0xf6
3948 && i.tm.extension_opcode == 0x0)))
3949 {
3950 /* Optimize: -Os:
3951 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3952 */
3953 unsigned int base_regnum = i.op[1].regs->reg_num;
3954 if (flag_code == CODE_64BIT || base_regnum < 4)
3955 {
3956 i.types[1].bitfield.byte = 1;
3957 /* Ignore the suffix. */
3958 i.suffix = 0;
3959 if (base_regnum >= 4
3960 && !(i.op[1].regs->reg_flags & RegRex))
3961 {
3962 /* Handle SP, BP, SI and DI registers. */
3963 if (i.types[1].bitfield.word)
3964 j = 16;
3965 else if (i.types[1].bitfield.dword)
3966 j = 32;
3967 else
3968 j = 48;
3969 i.op[1].regs -= j;
3970 }
3971 }
3972 }
3973 else if (flag_code == CODE_64BIT
d3d50934
L
3974 && ((i.types[1].bitfield.qword
3975 && i.reg_operands == 1
b6f8c7c4
L
3976 && i.imm_operands == 1
3977 && i.op[0].imms->X_op == O_constant
3978 && ((i.tm.base_opcode == 0xb0
3979 && i.tm.extension_opcode == None
3980 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3981 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3982 && (((i.tm.base_opcode == 0x24
3983 || i.tm.base_opcode == 0xa8)
3984 && i.tm.extension_opcode == None)
3985 || (i.tm.base_opcode == 0x80
3986 && i.tm.extension_opcode == 0x4)
3987 || ((i.tm.base_opcode == 0xf6
3988 || i.tm.base_opcode == 0xc6)
b8364fa7
JB
3989 && i.tm.extension_opcode == 0x0)))
3990 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3991 && i.tm.base_opcode == 0x83
3992 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3993 || (i.types[0].bitfield.qword
3994 && ((i.reg_operands == 2
3995 && i.op[0].regs == i.op[1].regs
3996 && ((i.tm.base_opcode == 0x30
3997 || i.tm.base_opcode == 0x28)
3998 && i.tm.extension_opcode == None))
3999 || (i.reg_operands == 1
4000 && i.operands == 1
4001 && i.tm.base_opcode == 0x30
4002 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4003 {
4004 /* Optimize: -O:
4005 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4006 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4007 testq $imm31, %r64 -> testl $imm31, %r32
4008 xorq %r64, %r64 -> xorl %r32, %r32
4009 subq %r64, %r64 -> subl %r32, %r32
4010 movq $imm31, %r64 -> movl $imm31, %r32
4011 movq $imm32, %r64 -> movl $imm32, %r32
4012 */
4013 i.tm.opcode_modifier.norex64 = 1;
4014 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4015 {
4016 /* Handle
4017 movq $imm31, %r64 -> movl $imm31, %r32
4018 movq $imm32, %r64 -> movl $imm32, %r32
4019 */
4020 i.tm.operand_types[0].bitfield.imm32 = 1;
4021 i.tm.operand_types[0].bitfield.imm32s = 0;
4022 i.tm.operand_types[0].bitfield.imm64 = 0;
4023 i.types[0].bitfield.imm32 = 1;
4024 i.types[0].bitfield.imm32s = 0;
4025 i.types[0].bitfield.imm64 = 0;
4026 i.types[1].bitfield.dword = 1;
4027 i.types[1].bitfield.qword = 0;
4028 if (i.tm.base_opcode == 0xc6)
4029 {
4030 /* Handle
4031 movq $imm31, %r64 -> movl $imm31, %r32
4032 */
4033 i.tm.base_opcode = 0xb0;
4034 i.tm.extension_opcode = None;
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
5641ec01
JB
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
99112332 4063 else if (i.reg_operands == 3
b6f8c7c4
L
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
7a69eac3 4067 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4068 && !i.rounding
e771e7c9 4069 && is_evex_encoding (&i.tm)
80c34c38 4070 && (i.vec_encoding != vex_encoding_evex
dd22218c 4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4073 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4074 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
8305403a
L
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4089 && i.tm.extension_opcode == None))
4090 {
99112332 4091 /* Optimize: -O1:
8305403a
L
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
b6f8c7c4
L
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4125 */
e771e7c9 4126 if (is_evex_encoding (&i.tm))
b6f8c7c4 4127 {
7b1d7ca1 4128 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
7b1d7ca1 4134 else if (optimize > 1)
dd22218c
L
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
b6f8c7c4 4138 }
1424ad86
JB
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
b6f8c7c4
L
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
392a5972 4154 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4155 && !i.types[0].bitfield.zmmword
392a5972 4156 && !i.types[1].bitfield.zmmword
97ed31ae 4157 && !i.mask
a0a1771e 4158 && !i.broadcast
97ed31ae 4159 && is_evex_encoding (&i.tm)
392a5972
L
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4191 */
a0a1771e 4192 for (j = 0; j < i.operands; j++)
392a5972
L
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
a0a1771e 4225 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
a0a1771e
JB
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4231 }
b6f8c7c4
L
4232}
4233
252b5132
RH
4234/* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238void
65da13b5 4239md_assemble (char *line)
252b5132 4240{
40fb9820 4241 unsigned int j;
83b16ac6 4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4243 const insn_template *t;
252b5132 4244
47926f60 4245 /* Initialize globals. */
252b5132
RH
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4248 i.reloc[j] = NO_RELOC;
252b5132
RH
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4251 save_stack_p = save_stack;
252b5132
RH
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4255 start of a (possibly prefixed) mnemonic. */
252b5132 4256
29b0f896
AM
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
83b16ac6 4260 mnem_suffix = i.suffix;
252b5132 4261
29b0f896 4262 line = parse_operands (line, mnemonic);
ee86248c 4263 this_operand = -1;
8325cc63
JB
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
29b0f896
AM
4266 if (line == NULL)
4267 return;
252b5132 4268
29b0f896
AM
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
050dfa73 4275 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4276 if (intel_syntax
4277 && i.operands > 1
29b0f896 4278 && (strcmp (mnemonic, "bound") != 0)
30123838 4279 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4282 swap_operands ();
4283
ec56d5c0
JB
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
29b0f896
AM
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
b300c311
L
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
a501d77e 4297 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
29b0f896
AM
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
252b5132 4305
83b16ac6 4306 if (!(t = match_template (mnem_suffix)))
29b0f896 4307 return;
252b5132 4308
7bab8ab5 4309 if (sse_check != check_none
81f8a913 4310 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4311 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4321 {
7bab8ab5 4322 (sse_check == check_warning
daf50ae7
L
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
321fd21e
L
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4332 {
321fd21e
L
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
7ab9ffdd 4337 && intel_syntax)
321fd21e
L
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
cd61ebfe 4341 }
24eab124 4342
40fb9820 4343 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
252b5132 4346
d5de92cf
L
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
c1ba0266
L
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
c32fa91d
L
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
4361 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
7a8655d2
JB
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
42164a71 4374 /* Check if HLE prefix is OK. */
165de32a 4375 if (i.hle_prefix && !check_hle ())
42164a71
L
4376 return;
4377
7e8b059b
L
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
04ef582a 4382 /* Check NOTRACK prefix. */
9fef80d6
L
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4385
327e8c42
JB
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
7e8b059b
L
4395
4396 /* Insert BND prefix. */
76d3a78a
JB
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
7e8b059b 4407
29b0f896 4408 /* Check string instruction segment overrides. */
40fb9820 4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4410 {
4411 if (!check_string ())
5dd0794d 4412 return;
fc0763e6 4413 i.disp_operands = 0;
29b0f896 4414 }
5dd0794d 4415
b6f8c7c4
L
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
29b0f896
AM
4419 if (!process_suffix ())
4420 return;
e413e4e9 4421
bc0844ae
L
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
29b0f896
AM
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
252b5132 4430
40fb9820 4431 if (i.types[0].bitfield.imm1)
29b0f896 4432 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4433
9afe6eb8
L
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
1b54b8d7 4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4441 i.reg_operands--;
40fb9820 4442
c0f3af97
L
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
65da13b5 4446 process_immext ();
252b5132 4447
29b0f896
AM
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
40fb9820 4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
252b5132 4459
7a8655d2 4460 if (is_any_vex_encoding (&i.tm))
9e5e5283 4461 {
c1dc7af5 4462 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4463 {
c1dc7af5 4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4465 i.tm.name);
4466 return;
4467 }
c0f3af97 4468
9e5e5283
L
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
43234a1e 4474
5dd85c99
SP
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
252b5132 4485
40fb9820
L
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
252b5132 4497
40fb9820 4498 if (i.tm.opcode_modifier.rex64)
161a04f6 4499 i.rex |= REX_W;
252b5132 4500
29b0f896
AM
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
773f551c 4504
dc821c5f 4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4511 && i.rex != 0))
4512 {
4513 int x;
726c5dcd 4514
29b0f896
AM
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4521 {
29b0f896
AM
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
a540244d 4524 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4525 "instruction requiring REX prefix."),
a540244d 4526 register_prefix, i.op[x].regs->reg_name);
773f551c 4527
29b0f896
AM
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
773f551c 4533 }
29b0f896
AM
4534 }
4535 }
773f551c 4536
6b6b6807
L
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
7ab9ffdd 4557 if (i.rex != 0)
29b0f896
AM
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562}
4563
4564static char *
e3bb37b5 4565parse_insn (char *line, char *mnemonic)
29b0f896
AM
4566{
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
5c6af06e 4570 int supported;
d3ce72d0 4571 const insn_template *t;
b6169b20 4572 char *dot_p = NULL;
29b0f896 4573
29b0f896
AM
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
b6169b20
L
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
29b0f896
AM
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4583 {
29b0f896
AM
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
e44823cf
JB
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
29b0f896
AM
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
e44823cf 4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
45288df1 4607
29b0f896 4608 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4610
29b0f896
AM
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
40fb9820 4614 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4615 {
c6fb90c8 4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
29b0f896
AM
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4628 && flag_code != CODE_64BIT
673fe0f0 4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
45288df1 4635 }
86fa6981 4636 if (current_templates->start->opcode_length == 0)
29b0f896 4637 {
86fa6981
L
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
6b6b6807
L
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
b6f8c7c4
L
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
86fa6981
L
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4684 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4685 {
4e9ac44a
L
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
d777820b 4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
86fa6981 4702 }
29b0f896
AM
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
45288df1 4710
30a55f88 4711 if (!current_templates)
b6169b20 4712 {
07d5e953
JB
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
f8a5c266 4715 encoding. */
30a55f88 4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4717 i.dir_encoding = dir_encoding_swap;
8d63c93e 4718 else if (mnem_p - 3 == dot_p
a501d77e
L
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4722 else if (mnem_p - 4 == dot_p
f8a5c266
L
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
a501d77e 4726 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
d3ce72d0 4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4732 }
4733
29b0f896
AM
4734 if (!current_templates)
4735 {
b6169b20 4736check_suffix:
1c529385 4737 if (mnem_p > mnemonic)
29b0f896 4738 {
1c529385
LH
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
29b0f896 4741 {
1c529385
LH
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
1c529385
LH
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
29b0f896 4750 mnem_p[-1] = '\0';
d3ce72d0 4751 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
29b0f896 4778 }
29b0f896 4779 }
1c529385 4780
29b0f896
AM
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
252b5132 4787
40fb9820
L
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
252b5132 4820
29b0f896 4821 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
c0f3af97
L
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4830
548d0ee6
JB
4831 return l;
4832 }
29b0f896 4833 }
3629bb00 4834
548d0ee6
JB
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4845
548d0ee6 4846 return NULL;
29b0f896 4847}
252b5132 4848
29b0f896 4849static char *
e3bb37b5 4850parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4851{
4852 char *token_start;
3138f287 4853
29b0f896
AM
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
252b5132 4856
29b0f896
AM
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
d02603dc 4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
d02603dc 4872 token_start = l; /* After white space. */
29b0f896
AM
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
d02603dc 4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
9d46ce34 4924 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
1286ab78
L
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
29b0f896
AM
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
a7619375 4940 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
7f3f1ea2 4960
29b0f896
AM
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973}
7f3f1ea2 4974
050dfa73 4975static void
4d456e3d 4976swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4977{
4978 union i386_op temp_op;
40fb9820 4979 i386_operand_type temp_type;
c48dadc9 4980 unsigned int temp_flags;
050dfa73 4981 enum bfd_reloc_code_real temp_reloc;
4eed87de 4982
050dfa73
MM
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
c48dadc9
JB
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
050dfa73
MM
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
c48dadc9 4994
050dfa73
MM
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
050dfa73
MM
5020}
5021
29b0f896 5022static void
e3bb37b5 5023swap_operands (void)
29b0f896 5024{
b7c61d9a 5025 switch (i.operands)
050dfa73 5026 {
c0f3af97 5027 case 5:
b7c61d9a 5028 case 4:
4d456e3d 5029 swap_2_operands (1, i.operands - 2);
1a0670f3 5030 /* Fall through. */
b7c61d9a
L
5031 case 3:
5032 case 2:
4d456e3d 5033 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5034 break;
5035 default:
5036 abort ();
29b0f896 5037 }
29b0f896
AM
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046}
252b5132 5047
29b0f896
AM
5048/* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050static void
e3bb37b5 5051optimize_imm (void)
29b0f896
AM
5052{
5053 char guess_suffix = 0;
5054 int op;
252b5132 5055
29b0f896
AM
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
dc821c5f 5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5066 {
40fb9820
L
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
dc821c5f 5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5071 {
40fb9820
L
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
dc821c5f 5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
dc821c5f 5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5083 break;
252b5132 5084 }
29b0f896
AM
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
40fb9820 5090 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5091 {
5092 switch (i.op[op].imms->X_op)
252b5132 5093 {
29b0f896
AM
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
252b5132 5097 {
29b0f896 5098 case LONG_MNEM_SUFFIX:
40fb9820
L
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5101 break;
5102 case WORD_MNEM_SUFFIX:
40fb9820
L
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5107 break;
5108 case BYTE_MNEM_SUFFIX:
40fb9820
L
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
29b0f896 5115 break;
252b5132 5116 }
252b5132 5117
29b0f896
AM
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
40fb9820 5123 if ((i.types[op].bitfield.imm16)
29b0f896 5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5125 {
29b0f896
AM
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5131 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
a28def75 5139#endif
40fb9820 5140 i.types[op]
c6fb90c8
L
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5143
29b0f896
AM
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5147 i.types[op].bitfield.imm32 = 0;
29b0f896 5148 break;
252b5132 5149
29b0f896
AM
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
9cd96992
JB
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
40fb9820 5160 i386_operand_type mask, allowed;
d3ce72d0 5161 const insn_template *t;
9cd96992 5162
0dfbf9d7
L
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
40fb9820 5165
4eed87de
AM
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
c6fb90c8
L
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
9cd96992
JB
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
40fb9820
L
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
9cd96992
JB
5176 break;
5177 case LONG_MNEM_SUFFIX:
40fb9820 5178 mask.bitfield.imm32 = 1;
9cd96992
JB
5179 break;
5180 case WORD_MNEM_SUFFIX:
40fb9820 5181 mask.bitfield.imm16 = 1;
9cd96992
JB
5182 break;
5183 case BYTE_MNEM_SUFFIX:
40fb9820 5184 mask.bitfield.imm8 = 1;
9cd96992
JB
5185 break;
5186 default:
9cd96992
JB
5187 break;
5188 }
c6fb90c8 5189 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5190 if (!operand_type_all_zero (&allowed))
c6fb90c8 5191 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5192 }
29b0f896 5193 break;
252b5132 5194 }
29b0f896
AM
5195 }
5196}
47926f60 5197
29b0f896
AM
5198/* Try to use the smallest displacement type too. */
5199static void
e3bb37b5 5200optimize_disp (void)
29b0f896
AM
5201{
5202 int op;
3e73aa7c 5203
29b0f896 5204 for (op = i.operands; --op >= 0;)
40fb9820 5205 if (operand_type_check (i.types[op], disp))
252b5132 5206 {
b300c311 5207 if (i.op[op].disps->X_op == O_constant)
252b5132 5208 {
91d6fa6a 5209 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5210
40fb9820 5211 if (i.types[op].bitfield.disp16
91d6fa6a 5212 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
91d6fa6a 5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5218 i.types[op].bitfield.disp64 = 0;
b300c311 5219 }
a28def75
L
5220#ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5222 if (i.types[op].bitfield.disp32
91d6fa6a 5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
91d6fa6a
NC
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5230 i.types[op].bitfield.disp64 = 0;
b300c311 5231 }
a28def75 5232#endif
91d6fa6a 5233 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5234 {
40fb9820
L
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
b300c311
L
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
91d6fa6a 5245 if (fits_in_signed_long (op_disp))
28a9d8f5 5246 {
40fb9820
L
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5249 }
0e1147d9 5250 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5251 && fits_in_unsigned_long (op_disp))
40fb9820 5252 i.types[op].bitfield.disp32 = 1;
b300c311 5253 }
40fb9820
L
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
b5014f7a 5257 && fits_in_disp8 (op_disp))
40fb9820 5258 i.types[op].bitfield.disp8 = 1;
252b5132 5259 }
67a4f2b7
AO
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5270 }
5271 else
b300c311 5272 /* We only support 64bit displacement on constants. */
40fb9820 5273 i.types[op].bitfield.disp64 = 0;
252b5132 5274 }
29b0f896
AM
5275}
5276
4a1b91ea
L
5277/* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280static INLINE int
5281match_broadcast_size (const insn_template *t, unsigned int given)
5282{
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291}
5292
6c30d220
L
5293/* Check if operands are valid for the instruction. */
5294
5295static int
5296check_VecOperands (const insn_template *t)
5297{
43234a1e 5298 unsigned int op;
e2195274
JB
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
43234a1e 5323
6c30d220
L
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
1b54b8d7
JB
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
ad8ecc81
MZ
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
7bab8ab5
JB
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
6c30d220 5348 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5349 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5350 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5351 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5352 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5353 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
43234a1e
L
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
1b54b8d7
JB
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
43234a1e
L
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
8444f82a
MZ
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
1b54b8d7
JB
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
43234a1e 5402 }
7bab8ab5 5403
43234a1e
L
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
8e6e0792 5408 i386_operand_type type, overlap;
43234a1e
L
5409
5410 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5411 and its broadcast bytes match the memory operand. */
32546502 5412 op = i.broadcast->operand;
8e6e0792 5413 if (!t->opcode_modifier.broadcast
c48dadc9 5414 || !(i.flags[op] & Operand_Mem)
c39e5b26 5415 || (!i.types[op].bitfield.unspecified
4a1b91ea 5416 && !match_broadcast_size (t, op)))
43234a1e
L
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
8e6e0792 5422
4a1b91ea
L
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
8e6e0792 5425 operand_type_set (&type, 0);
4a1b91ea 5426 switch (i.broadcast->bytes)
8e6e0792 5427 {
4a1b91ea
L
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
8e6e0792
JB
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
e2195274 5458 type.bitfield.baseindex = 1;
8e6e0792
JB
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
43234a1e
L
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
5476 if (operand_type_check (i.types[op], anymem))
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
4a1b91ea 5480 if (match_broadcast_size (t, op))
43234a1e
L
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
c39e5b26
JB
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5488
5489 /* Check if requested masking is supported. */
ae2387fe 5490 if (i.mask)
43234a1e 5491 {
ae2387fe
JB
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
c48dadc9 5510 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
43234a1e
L
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
43234a1e
L
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
a80195f1
JB
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5546 {
43234a1e 5547 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5548 return 1;
5549 }
6c30d220
L
5550 }
5551
43234a1e 5552 /* Check vector Disp8 operand. */
b5014f7a
JB
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5555 {
5556 if (i.broadcast)
4a1b91ea 5557 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5559 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
5566 if (operand_type_check (i.types[op], anymem))
5567 {
4174bfff
JB
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
4174bfff
JB
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
43234a1e
L
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
b5014f7a 5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5608 {
b5014f7a
JB
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
43234a1e 5611 }
b5014f7a 5612 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5613 }
5614 }
b5014f7a
JB
5615
5616 i.memshift = 0;
43234a1e 5617
6c30d220
L
5618 return 0;
5619}
5620
43f3e2ee 5621/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5622 operand types. */
5623
5624static int
5625VEX_check_operands (const insn_template *t)
5626{
86fa6981 5627 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5628 {
86fa6981 5629 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5630 if (!is_evex_encoding (t))
86fa6981
L
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
43234a1e
L
5636 }
5637
a683cc34 5638 if (!t->opcode_modifier.vex)
86fa6981
L
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
a683cc34 5648
9d3bf266
JB
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5654 {
a65babc9 5655 i.error = bad_imm4;
891edac4
L
5656 return 1;
5657 }
a683cc34 5658
9d3bf266
JB
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
a683cc34
SP
5661 }
5662
5663 return 0;
5664}
5665
d3ce72d0 5666static const insn_template *
83b16ac6 5667match_template (char mnem_suffix)
29b0f896
AM
5668{
5669 /* Points to template once we've found it. */
d3ce72d0 5670 const insn_template *t;
40fb9820 5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5672 i386_operand_type overlap4;
29b0f896 5673 unsigned int found_reverse_match;
83b16ac6 5674 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5675 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5676 int addr_prefix_disp;
a5c311ca 5677 unsigned int j;
3ac21baa 5678 unsigned int found_cpu_match, size_match;
45664ddb 5679 unsigned int check_register;
5614d22c 5680 enum i386_error specific_error = 0;
29b0f896 5681
c0f3af97
L
5682#if MAX_OPERANDS != 5
5683# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5684#endif
5685
29b0f896 5686 found_reverse_match = 0;
539e75ad 5687 addr_prefix_disp = -1;
40fb9820
L
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5703 suffix_check.no_ldsuf = 1;
29b0f896 5704
83b16ac6
JB
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
01559ecc
L
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
45aa61fe 5721 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5722 {
539e75ad 5723 addr_prefix_disp = -1;
dbbc8b7e 5724 found_reverse_match = 0;
539e75ad 5725
29b0f896
AM
5726 if (i.operands != t->operands)
5727 continue;
5728
50aecf8c 5729 /* Check processor support. */
a65babc9 5730 i.error = unsupported;
c0f3af97
L
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5733 if (!found_cpu_match)
5734 continue;
5735
e1d4d893 5736 /* Check AT&T mnemonic. */
a65babc9 5737 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5739 continue;
5740
e92bae62 5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5742 i.error = unsupported_syntax;
5c07affc 5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5747 continue;
5748
20592a94 5749 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5750 i.error = invalid_instruction_suffix;
567e4e96
L
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5758 continue;
83b16ac6
JB
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
29b0f896 5767
3ac21baa
JB
5768 size_match = operand_size_match (t);
5769 if (!size_match)
7d5e4556 5770 continue;
539e75ad 5771
5c07affc
L
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
45aa61fe
AM
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
40fb9820 5779 ? (!t->opcode_modifier.ignoresize
625cbd7a 5780 && !t->opcode_modifier.broadcast
45aa61fe
AM
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
40fb9820 5783 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5784 && !operand_types[0].bitfield.regsimd)
40fb9820 5785 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5786 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
192dc9c6
JB
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5799 && !operand_types[0].bitfield.regsimd)
192dc9c6 5800 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5802 continue;
5803
29b0f896 5804 /* Do not verify operands when there are none. */
50aecf8c 5805 else
29b0f896 5806 {
c6fb90c8 5807 if (!t->operands)
2dbab7d5
L
5808 /* We've found a match; break out of loop. */
5809 break;
29b0f896 5810 }
252b5132 5811
539e75ad
L
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
40fb9820 5816 /* There should be only one Disp operand. */
539e75ad
L
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
40fb9820
L
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
539e75ad
L
5830 break;
5831 case CODE_32BIT:
40fb9820
L
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
539e75ad
L
5842 break;
5843 case CODE_64BIT:
40fb9820
L
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
539e75ad
L
5854 break;
5855 }
539e75ad
L
5856 }
5857
02a86693
L
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
56ffb741 5862 /* We check register size if needed. */
e2195274
JB
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
c6fb90c8 5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5873 switch (t->operands)
5874 {
5875 case 1:
40fb9820 5876 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5877 continue;
5878 break;
5879 case 2:
33eaf5de 5880 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
2c703856
JB
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5888 continue;
1212781b
JB
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
5895 && operand_type_check (i.types[1], anymem))
5896 continue;
f5eb1d70
JB
5897 /* Fall through. */
5898
5899 case 3:
3ac21baa
JB
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
64c49ab3
JB
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5914 || t->opcode_modifier.regmem)
64c49ab3
JB
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5920 && !t->opcode_modifier.regmem)
64c49ab3
JB
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
86fa6981 5930 /* If we want store form, we skip the current load. */
64c49ab3
JB
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
fa99fab2 5935 continue;
1a0670f3 5936 /* Fall through. */
f48ff2ae 5937 case 4:
c0f3af97 5938 case 5:
c6fb90c8 5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
e2195274 5942 || ((check_register & 3) == 3
dc821c5f 5943 && !operand_type_register_match (i.types[0],
40fb9820 5944 operand_types[0],
dc821c5f 5945 i.types[1],
40fb9820 5946 operand_types[1])))
29b0f896
AM
5947 {
5948 /* Check if other direction is valid ... */
38e314eb 5949 if (!t->opcode_modifier.d)
29b0f896
AM
5950 continue;
5951
b6169b20 5952check_reverse:
3ac21baa
JB
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
29b0f896 5955 /* Try reversing direction of operands. */
f5eb1d70
JB
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5958 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5960 || (check_register
dc821c5f 5961 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
45664ddb 5964 operand_types[0])))
29b0f896
AM
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
38e314eb 5969 /* found_reverse_match holds which of D or FloatR
29b0f896 5970 we've found. */
38e314eb
JB
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5974 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5975 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5976 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5977 || operand_types[0].bitfield.regmmx
f5eb1d70 5978 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5982 else
38e314eb 5983 found_reverse_match = Opcode_D;
40fb9820 5984 if (t->opcode_modifier.floatr)
8a2ed489 5985 found_reverse_match |= Opcode_FloatR;
29b0f896 5986 }
f48ff2ae 5987 else
29b0f896 5988 {
f48ff2ae 5989 /* Found a forward 2 operand match here. */
d1cbb4db
L
5990 switch (t->operands)
5991 {
c0f3af97
L
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
1a0670f3 5995 /* Fall through. */
d1cbb4db 5996 case 4:
c6fb90c8
L
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
1a0670f3 5999 /* Fall through. */
d1cbb4db 6000 case 3:
c6fb90c8
L
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
d1cbb4db
L
6003 break;
6004 }
29b0f896 6005
f48ff2ae
L
6006 switch (t->operands)
6007 {
c0f3af97
L
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6010 || !operand_type_register_match (i.types[3],
c0f3af97 6011 operand_types[3],
c0f3af97
L
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
1a0670f3 6015 /* Fall through. */
f48ff2ae 6016 case 4:
40fb9820 6017 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
f7768225
JB
6020 operand_types[1],
6021 i.types[3],
e2195274
JB
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
f48ff2ae 6028 continue;
1a0670f3 6029 /* Fall through. */
f48ff2ae
L
6030 case 3:
6031 /* Here we make use of the fact that there are no
23e42951 6032 reverse match 3 operand instructions. */
40fb9820 6033 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
23e42951
JB
6036 operand_types[0],
6037 i.types[2],
e2195274
JB
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
f48ff2ae
L
6044 continue;
6045 break;
6046 }
29b0f896 6047 }
f48ff2ae 6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6049 slip through to break. */
6050 }
3629bb00 6051 if (!found_cpu_match)
dbbc8b7e 6052 continue;
c0f3af97 6053
5614d22c
JB
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
a683cc34 6060
29b0f896
AM
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
a65babc9 6068 const char *err_msg;
5614d22c 6069 switch (specific_error ? specific_error : i.error)
a65babc9
L
6070 {
6071 default:
6072 abort ();
86e026a4 6073 case operand_size_mismatch:
a65babc9
L
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
4a2608e3 6089 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6090 break;
a65babc9
L
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
35262a23 6098 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6099 current_templates->start->name);
6100 return NULL;
6c30d220
L
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
7bab8ab5
JB
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6c30d220
L
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
43234a1e
L
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
43234a1e
L
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
a65babc9
L
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
891edac4 6139 current_templates->start->name);
fa99fab2 6140 return NULL;
29b0f896 6141 }
252b5132 6142
29b0f896
AM
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
40fb9820
L
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
40fb9820
L
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
29b0f896
AM
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
539e75ad
L
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
29b0f896
AM
6168 if (found_reverse_match)
6169 {
dfd69174
JB
6170 /* If we found a reverse match we must alter the opcode direction
6171 bit and clear/flip the regmem modifier one. found_reverse_match
6172 holds bits to change (different for int & float insns). */
29b0f896
AM
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
f5eb1d70
JB
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6178
6179 /* Certain SIMD insns have their load forms specified in the opcode
6180 table, and hence we need to _set_ RegMem instead of clearing it.
6181 We need to avoid setting the bit though on insns like KMOVW. */
6182 i.tm.opcode_modifier.regmem
6183 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6184 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6185 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6186 }
6187
fa99fab2 6188 return t;
29b0f896
AM
6189}
6190
6191static int
e3bb37b5 6192check_string (void)
29b0f896 6193{
40fb9820
L
6194 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6195 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6196 {
6197 if (i.seg[0] != NULL && i.seg[0] != &es)
6198 {
a87af027 6199 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6200 i.tm.name,
a87af027
JB
6201 mem_op + 1,
6202 register_prefix);
29b0f896
AM
6203 return 0;
6204 }
6205 /* There's only ever one segment override allowed per instruction.
6206 This instruction possibly has a legal segment override on the
6207 second operand, so copy the segment to where non-string
6208 instructions store it, allowing common code. */
6209 i.seg[0] = i.seg[1];
6210 }
40fb9820 6211 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6212 {
6213 if (i.seg[1] != NULL && i.seg[1] != &es)
6214 {
a87af027 6215 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6216 i.tm.name,
a87af027
JB
6217 mem_op + 2,
6218 register_prefix);
29b0f896
AM
6219 return 0;
6220 }
6221 }
6222 return 1;
6223}
6224
6225static int
543613e9 6226process_suffix (void)
29b0f896
AM
6227{
6228 /* If matched instruction specifies an explicit instruction mnemonic
6229 suffix, use it. */
673fe0f0 6230 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6231 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6232 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6233 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6234 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6235 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6236 else if (i.reg_operands)
6237 {
6238 /* If there's no instruction mnemonic suffix we try to invent one
6239 based on register operands. */
6240 if (!i.suffix)
6241 {
6242 /* We take i.suffix from the last register operand specified,
6243 Destination register type is more significant than source
381d071f
L
6244 register type. crc32 in SSE4.2 prefers source register
6245 type. */
556059dd 6246 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6247 {
556059dd
JB
6248 if (i.types[0].bitfield.byte)
6249 i.suffix = BYTE_MNEM_SUFFIX;
6250 else if (i.types[0].bitfield.word)
40fb9820 6251 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6252 else if (i.types[0].bitfield.dword)
40fb9820 6253 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6254 else if (i.types[0].bitfield.qword)
40fb9820 6255 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6256 }
6257
6258 if (!i.suffix)
6259 {
6260 int op;
6261
556059dd 6262 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6263 {
6264 /* We have to know the operand size for crc32. */
6265 as_bad (_("ambiguous memory operand size for `%s`"),
6266 i.tm.name);
6267 return 0;
6268 }
6269
381d071f 6270 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6271 if (!i.tm.operand_types[op].bitfield.inoutportreg
6272 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6273 {
8819ada6
JB
6274 if (!i.types[op].bitfield.reg)
6275 continue;
6276 if (i.types[op].bitfield.byte)
6277 i.suffix = BYTE_MNEM_SUFFIX;
6278 else if (i.types[op].bitfield.word)
6279 i.suffix = WORD_MNEM_SUFFIX;
6280 else if (i.types[op].bitfield.dword)
6281 i.suffix = LONG_MNEM_SUFFIX;
6282 else if (i.types[op].bitfield.qword)
6283 i.suffix = QWORD_MNEM_SUFFIX;
6284 else
6285 continue;
6286 break;
381d071f
L
6287 }
6288 }
29b0f896
AM
6289 }
6290 else if (i.suffix == BYTE_MNEM_SUFFIX)
6291 {
2eb952a4
L
6292 if (intel_syntax
6293 && i.tm.opcode_modifier.ignoresize
6294 && i.tm.opcode_modifier.no_bsuf)
6295 i.suffix = 0;
6296 else if (!check_byte_reg ())
29b0f896
AM
6297 return 0;
6298 }
6299 else if (i.suffix == LONG_MNEM_SUFFIX)
6300 {
2eb952a4
L
6301 if (intel_syntax
6302 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6303 && i.tm.opcode_modifier.no_lsuf
6304 && !i.tm.opcode_modifier.todword
6305 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6306 i.suffix = 0;
6307 else if (!check_long_reg ())
29b0f896
AM
6308 return 0;
6309 }
6310 else if (i.suffix == QWORD_MNEM_SUFFIX)
6311 {
955e1e6a
L
6312 if (intel_syntax
6313 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6314 && i.tm.opcode_modifier.no_qsuf
6315 && !i.tm.opcode_modifier.todword
6316 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6317 i.suffix = 0;
6318 else if (!check_qword_reg ())
29b0f896
AM
6319 return 0;
6320 }
6321 else if (i.suffix == WORD_MNEM_SUFFIX)
6322 {
2eb952a4
L
6323 if (intel_syntax
6324 && i.tm.opcode_modifier.ignoresize
6325 && i.tm.opcode_modifier.no_wsuf)
6326 i.suffix = 0;
6327 else if (!check_word_reg ())
29b0f896
AM
6328 return 0;
6329 }
40fb9820 6330 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6331 /* Do nothing if the instruction is going to ignore the prefix. */
6332 ;
6333 else
6334 abort ();
6335 }
40fb9820 6336 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6337 && !i.suffix
6338 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6339 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6340 {
06f74c5c
L
6341 if (stackop_size == LONG_MNEM_SUFFIX
6342 && i.tm.base_opcode == 0xcf)
6343 {
6344 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6345 .code16gcc directive to support 16-bit mode with
6346 32-bit address. For IRET without a suffix, generate
6347 16-bit IRET (opcode 0xcf) to return from an interrupt
6348 handler. */
6349 i.suffix = WORD_MNEM_SUFFIX;
6350 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6351 }
6352 else
6353 i.suffix = stackop_size;
29b0f896 6354 }
9306ca4a
JB
6355 else if (intel_syntax
6356 && !i.suffix
40fb9820
L
6357 && (i.tm.operand_types[0].bitfield.jumpabsolute
6358 || i.tm.opcode_modifier.jumpbyte
6359 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6360 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6361 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6362 {
6363 switch (flag_code)
6364 {
6365 case CODE_64BIT:
40fb9820 6366 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6367 {
6368 i.suffix = QWORD_MNEM_SUFFIX;
6369 break;
6370 }
1a0670f3 6371 /* Fall through. */
9306ca4a 6372 case CODE_32BIT:
40fb9820 6373 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6374 i.suffix = LONG_MNEM_SUFFIX;
6375 break;
6376 case CODE_16BIT:
40fb9820 6377 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6378 i.suffix = WORD_MNEM_SUFFIX;
6379 break;
6380 }
6381 }
252b5132 6382
9306ca4a 6383 if (!i.suffix)
29b0f896 6384 {
9306ca4a
JB
6385 if (!intel_syntax)
6386 {
40fb9820 6387 if (i.tm.opcode_modifier.w)
9306ca4a 6388 {
4eed87de
AM
6389 as_bad (_("no instruction mnemonic suffix given and "
6390 "no register operands; can't size instruction"));
9306ca4a
JB
6391 return 0;
6392 }
6393 }
6394 else
6395 {
40fb9820 6396 unsigned int suffixes;
7ab9ffdd 6397
40fb9820
L
6398 suffixes = !i.tm.opcode_modifier.no_bsuf;
6399 if (!i.tm.opcode_modifier.no_wsuf)
6400 suffixes |= 1 << 1;
6401 if (!i.tm.opcode_modifier.no_lsuf)
6402 suffixes |= 1 << 2;
fc4adea1 6403 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6404 suffixes |= 1 << 3;
6405 if (!i.tm.opcode_modifier.no_ssuf)
6406 suffixes |= 1 << 4;
c2b9da16 6407 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6408 suffixes |= 1 << 5;
6409
6410 /* There are more than suffix matches. */
6411 if (i.tm.opcode_modifier.w
9306ca4a 6412 || ((suffixes & (suffixes - 1))
40fb9820
L
6413 && !i.tm.opcode_modifier.defaultsize
6414 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6415 {
6416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6417 return 0;
6418 }
6419 }
29b0f896 6420 }
252b5132 6421
d2224064
JB
6422 /* Change the opcode based on the operand size given by i.suffix. */
6423 switch (i.suffix)
29b0f896 6424 {
d2224064
JB
6425 /* Size floating point instruction. */
6426 case LONG_MNEM_SUFFIX:
6427 if (i.tm.opcode_modifier.floatmf)
6428 {
6429 i.tm.base_opcode ^= 4;
6430 break;
6431 }
6432 /* fall through */
6433 case WORD_MNEM_SUFFIX:
6434 case QWORD_MNEM_SUFFIX:
29b0f896 6435 /* It's not a byte, select word/dword operation. */
40fb9820 6436 if (i.tm.opcode_modifier.w)
29b0f896 6437 {
40fb9820 6438 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6439 i.tm.base_opcode |= 8;
6440 else
6441 i.tm.base_opcode |= 1;
6442 }
d2224064
JB
6443 /* fall through */
6444 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6445 /* Now select between word & dword operations via the operand
6446 size prefix, except for instructions that will ignore this
6447 prefix anyway. */
75c0a438
L
6448 if (i.reg_operands > 0
6449 && i.types[0].bitfield.reg
6450 && i.tm.opcode_modifier.addrprefixopreg
6451 && (i.tm.opcode_modifier.immext
6452 || i.operands == 1))
cb712a9e 6453 {
ca61edf2
L
6454 /* The address size override prefix changes the size of the
6455 first operand. */
40fb9820 6456 if ((flag_code == CODE_32BIT
75c0a438 6457 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6458 || (flag_code != CODE_32BIT
75c0a438 6459 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6460 if (!add_prefix (ADDR_PREFIX_OPCODE))
6461 return 0;
6462 }
6463 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6464 && !i.tm.opcode_modifier.ignoresize
6465 && !i.tm.opcode_modifier.floatmf
a38d7118 6466 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6467 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6468 || (flag_code == CODE_64BIT
40fb9820 6469 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6470 {
6471 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6472
40fb9820 6473 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6474 prefix = ADDR_PREFIX_OPCODE;
252b5132 6475
29b0f896
AM
6476 if (!add_prefix (prefix))
6477 return 0;
24eab124 6478 }
252b5132 6479
29b0f896
AM
6480 /* Set mode64 for an operand. */
6481 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6482 && flag_code == CODE_64BIT
d2224064 6483 && !i.tm.opcode_modifier.norex64
46e883c5 6484 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6485 need rex64. */
6486 && ! (i.operands == 2
6487 && i.tm.base_opcode == 0x90
6488 && i.tm.extension_opcode == None
2c703856
JB
6489 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6490 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6491 i.rex |= REX_W;
3e73aa7c 6492
d2224064 6493 break;
29b0f896 6494 }
7ecd2f8b 6495
c0a30a9f
L
6496 if (i.reg_operands != 0
6497 && i.operands > 1
6498 && i.tm.opcode_modifier.addrprefixopreg
6499 && !i.tm.opcode_modifier.immext)
6500 {
6501 /* Check invalid register operand when the address size override
6502 prefix changes the size of register operands. */
6503 unsigned int op;
6504 enum { need_word, need_dword, need_qword } need;
6505
6506 if (flag_code == CODE_32BIT)
6507 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6508 else
6509 {
6510 if (i.prefix[ADDR_PREFIX])
6511 need = need_dword;
6512 else
6513 need = flag_code == CODE_64BIT ? need_qword : need_word;
6514 }
6515
6516 for (op = 0; op < i.operands; op++)
6517 if (i.types[op].bitfield.reg
6518 && ((need == need_word
6519 && !i.op[op].regs->reg_type.bitfield.word)
6520 || (need == need_dword
6521 && !i.op[op].regs->reg_type.bitfield.dword)
6522 || (need == need_qword
6523 && !i.op[op].regs->reg_type.bitfield.qword)))
6524 {
6525 as_bad (_("invalid register operand size for `%s'"),
6526 i.tm.name);
6527 return 0;
6528 }
6529 }
6530
29b0f896
AM
6531 return 1;
6532}
3e73aa7c 6533
29b0f896 6534static int
543613e9 6535check_byte_reg (void)
29b0f896
AM
6536{
6537 int op;
543613e9 6538
29b0f896
AM
6539 for (op = i.operands; --op >= 0;)
6540 {
dc821c5f
JB
6541 /* Skip non-register operands. */
6542 if (!i.types[op].bitfield.reg)
6543 continue;
6544
29b0f896
AM
6545 /* If this is an eight bit register, it's OK. If it's the 16 or
6546 32 bit version of an eight bit register, we will just use the
6547 low portion, and that's OK too. */
dc821c5f 6548 if (i.types[op].bitfield.byte)
29b0f896
AM
6549 continue;
6550
5a819eb9
JB
6551 /* I/O port address operands are OK too. */
6552 if (i.tm.operand_types[op].bitfield.inoutportreg)
6553 continue;
6554
9344ff29
L
6555 /* crc32 doesn't generate this warning. */
6556 if (i.tm.base_opcode == 0xf20f38f0)
6557 continue;
6558
dc821c5f
JB
6559 if ((i.types[op].bitfield.word
6560 || i.types[op].bitfield.dword
6561 || i.types[op].bitfield.qword)
5a819eb9
JB
6562 && i.op[op].regs->reg_num < 4
6563 /* Prohibit these changes in 64bit mode, since the lowering
6564 would be more complicated. */
6565 && flag_code != CODE_64BIT)
29b0f896 6566 {
29b0f896 6567#if REGISTER_WARNINGS
5a819eb9 6568 if (!quiet_warnings)
a540244d
L
6569 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6570 register_prefix,
dc821c5f 6571 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6572 ? REGNAM_AL - REGNAM_AX
6573 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6574 register_prefix,
29b0f896
AM
6575 i.op[op].regs->reg_name,
6576 i.suffix);
6577#endif
6578 continue;
6579 }
6580 /* Any other register is bad. */
dc821c5f 6581 if (i.types[op].bitfield.reg
40fb9820 6582 || i.types[op].bitfield.regmmx
1b54b8d7 6583 || i.types[op].bitfield.regsimd
21df382b 6584 || i.types[op].bitfield.sreg
40fb9820
L
6585 || i.types[op].bitfield.control
6586 || i.types[op].bitfield.debug
ca0d63fe 6587 || i.types[op].bitfield.test)
29b0f896 6588 {
a540244d
L
6589 as_bad (_("`%s%s' not allowed with `%s%c'"),
6590 register_prefix,
29b0f896
AM
6591 i.op[op].regs->reg_name,
6592 i.tm.name,
6593 i.suffix);
6594 return 0;
6595 }
6596 }
6597 return 1;
6598}
6599
6600static int
e3bb37b5 6601check_long_reg (void)
29b0f896
AM
6602{
6603 int op;
6604
6605 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6606 /* Skip non-register operands. */
6607 if (!i.types[op].bitfield.reg)
6608 continue;
29b0f896
AM
6609 /* Reject eight bit registers, except where the template requires
6610 them. (eg. movzb) */
dc821c5f
JB
6611 else if (i.types[op].bitfield.byte
6612 && (i.tm.operand_types[op].bitfield.reg
6613 || i.tm.operand_types[op].bitfield.acc)
6614 && (i.tm.operand_types[op].bitfield.word
6615 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6616 {
a540244d
L
6617 as_bad (_("`%s%s' not allowed with `%s%c'"),
6618 register_prefix,
29b0f896
AM
6619 i.op[op].regs->reg_name,
6620 i.tm.name,
6621 i.suffix);
6622 return 0;
6623 }
e4630f71 6624 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6625 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6626 && i.types[op].bitfield.word
6627 && (i.tm.operand_types[op].bitfield.reg
6628 || i.tm.operand_types[op].bitfield.acc)
6629 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6630 {
6631 /* Prohibit these changes in the 64bit mode, since the
6632 lowering is more complicated. */
6633 if (flag_code == CODE_64BIT)
252b5132 6634 {
2b5d6a91 6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6636 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6637 i.suffix);
6638 return 0;
252b5132 6639 }
29b0f896 6640#if REGISTER_WARNINGS
cecf1424
JB
6641 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6642 register_prefix,
6643 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6644 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6645#endif
252b5132 6646 }
e4630f71 6647 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6648 else if (i.types[op].bitfield.qword
6649 && (i.tm.operand_types[op].bitfield.reg
6650 || i.tm.operand_types[op].bitfield.acc)
6651 && i.tm.operand_types[op].bitfield.dword)
252b5132 6652 {
34828aad 6653 if (intel_syntax
ca61edf2 6654 && i.tm.opcode_modifier.toqword
1b54b8d7 6655 && !i.types[0].bitfield.regsimd)
34828aad 6656 {
ca61edf2 6657 /* Convert to QWORD. We want REX byte. */
34828aad
L
6658 i.suffix = QWORD_MNEM_SUFFIX;
6659 }
6660 else
6661 {
2b5d6a91 6662 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6663 register_prefix, i.op[op].regs->reg_name,
6664 i.suffix);
6665 return 0;
6666 }
29b0f896
AM
6667 }
6668 return 1;
6669}
252b5132 6670
29b0f896 6671static int
e3bb37b5 6672check_qword_reg (void)
29b0f896
AM
6673{
6674 int op;
252b5132 6675
29b0f896 6676 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6677 /* Skip non-register operands. */
6678 if (!i.types[op].bitfield.reg)
6679 continue;
29b0f896
AM
6680 /* Reject eight bit registers, except where the template requires
6681 them. (eg. movzb) */
dc821c5f
JB
6682 else if (i.types[op].bitfield.byte
6683 && (i.tm.operand_types[op].bitfield.reg
6684 || i.tm.operand_types[op].bitfield.acc)
6685 && (i.tm.operand_types[op].bitfield.word
6686 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6687 {
a540244d
L
6688 as_bad (_("`%s%s' not allowed with `%s%c'"),
6689 register_prefix,
29b0f896
AM
6690 i.op[op].regs->reg_name,
6691 i.tm.name,
6692 i.suffix);
6693 return 0;
6694 }
e4630f71 6695 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6696 else if ((i.types[op].bitfield.word
6697 || i.types[op].bitfield.dword)
6698 && (i.tm.operand_types[op].bitfield.reg
6699 || i.tm.operand_types[op].bitfield.acc)
6700 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6701 {
6702 /* Prohibit these changes in the 64bit mode, since the
6703 lowering is more complicated. */
34828aad 6704 if (intel_syntax
ca61edf2 6705 && i.tm.opcode_modifier.todword
1b54b8d7 6706 && !i.types[0].bitfield.regsimd)
34828aad 6707 {
ca61edf2 6708 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6709 i.suffix = LONG_MNEM_SUFFIX;
6710 }
6711 else
6712 {
2b5d6a91 6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
252b5132 6718 }
29b0f896
AM
6719 return 1;
6720}
252b5132 6721
29b0f896 6722static int
e3bb37b5 6723check_word_reg (void)
29b0f896
AM
6724{
6725 int op;
6726 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6727 /* Skip non-register operands. */
6728 if (!i.types[op].bitfield.reg)
6729 continue;
29b0f896
AM
6730 /* Reject eight bit registers, except where the template requires
6731 them. (eg. movzb) */
dc821c5f
JB
6732 else if (i.types[op].bitfield.byte
6733 && (i.tm.operand_types[op].bitfield.reg
6734 || i.tm.operand_types[op].bitfield.acc)
6735 && (i.tm.operand_types[op].bitfield.word
6736 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6737 {
a540244d
L
6738 as_bad (_("`%s%s' not allowed with `%s%c'"),
6739 register_prefix,
29b0f896
AM
6740 i.op[op].regs->reg_name,
6741 i.tm.name,
6742 i.suffix);
6743 return 0;
6744 }
e4630f71 6745 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6746 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6747 && (i.types[op].bitfield.dword
6748 || i.types[op].bitfield.qword)
6749 && (i.tm.operand_types[op].bitfield.reg
6750 || i.tm.operand_types[op].bitfield.acc)
6751 && i.tm.operand_types[op].bitfield.word)
252b5132 6752 {
29b0f896
AM
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
6755 if (flag_code == CODE_64BIT)
252b5132 6756 {
2b5d6a91 6757 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6758 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6759 i.suffix);
6760 return 0;
252b5132 6761 }
29b0f896 6762#if REGISTER_WARNINGS
cecf1424
JB
6763 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6764 register_prefix,
6765 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6766 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6767#endif
6768 }
6769 return 1;
6770}
252b5132 6771
29b0f896 6772static int
40fb9820 6773update_imm (unsigned int j)
29b0f896 6774{
bc0844ae 6775 i386_operand_type overlap = i.types[j];
40fb9820
L
6776 if ((overlap.bitfield.imm8
6777 || overlap.bitfield.imm8s
6778 || overlap.bitfield.imm16
6779 || overlap.bitfield.imm32
6780 || overlap.bitfield.imm32s
6781 || overlap.bitfield.imm64)
0dfbf9d7
L
6782 && !operand_type_equal (&overlap, &imm8)
6783 && !operand_type_equal (&overlap, &imm8s)
6784 && !operand_type_equal (&overlap, &imm16)
6785 && !operand_type_equal (&overlap, &imm32)
6786 && !operand_type_equal (&overlap, &imm32s)
6787 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6788 {
6789 if (i.suffix)
6790 {
40fb9820
L
6791 i386_operand_type temp;
6792
0dfbf9d7 6793 operand_type_set (&temp, 0);
7ab9ffdd 6794 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6795 {
6796 temp.bitfield.imm8 = overlap.bitfield.imm8;
6797 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6798 }
6799 else if (i.suffix == WORD_MNEM_SUFFIX)
6800 temp.bitfield.imm16 = overlap.bitfield.imm16;
6801 else if (i.suffix == QWORD_MNEM_SUFFIX)
6802 {
6803 temp.bitfield.imm64 = overlap.bitfield.imm64;
6804 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6805 }
6806 else
6807 temp.bitfield.imm32 = overlap.bitfield.imm32;
6808 overlap = temp;
29b0f896 6809 }
0dfbf9d7
L
6810 else if (operand_type_equal (&overlap, &imm16_32_32s)
6811 || operand_type_equal (&overlap, &imm16_32)
6812 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6813 {
40fb9820 6814 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6815 overlap = imm16;
40fb9820 6816 else
65da13b5 6817 overlap = imm32s;
29b0f896 6818 }
0dfbf9d7
L
6819 if (!operand_type_equal (&overlap, &imm8)
6820 && !operand_type_equal (&overlap, &imm8s)
6821 && !operand_type_equal (&overlap, &imm16)
6822 && !operand_type_equal (&overlap, &imm32)
6823 && !operand_type_equal (&overlap, &imm32s)
6824 && !operand_type_equal (&overlap, &imm64))
29b0f896 6825 {
4eed87de
AM
6826 as_bad (_("no instruction mnemonic suffix given; "
6827 "can't determine immediate size"));
29b0f896
AM
6828 return 0;
6829 }
6830 }
40fb9820 6831 i.types[j] = overlap;
29b0f896 6832
40fb9820
L
6833 return 1;
6834}
6835
6836static int
6837finalize_imm (void)
6838{
bc0844ae 6839 unsigned int j, n;
29b0f896 6840
bc0844ae
L
6841 /* Update the first 2 immediate operands. */
6842 n = i.operands > 2 ? 2 : i.operands;
6843 if (n)
6844 {
6845 for (j = 0; j < n; j++)
6846 if (update_imm (j) == 0)
6847 return 0;
40fb9820 6848
bc0844ae
L
6849 /* The 3rd operand can't be immediate operand. */
6850 gas_assert (operand_type_check (i.types[2], imm) == 0);
6851 }
29b0f896
AM
6852
6853 return 1;
6854}
6855
6856static int
e3bb37b5 6857process_operands (void)
29b0f896
AM
6858{
6859 /* Default segment register this instruction will use for memory
6860 accesses. 0 means unknown. This is only for optimizing out
6861 unnecessary segment overrides. */
6862 const seg_entry *default_seg = 0;
6863
2426c15f 6864 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6865 {
91d6fa6a
NC
6866 unsigned int dupl = i.operands;
6867 unsigned int dest = dupl - 1;
9fcfb3d7
L
6868 unsigned int j;
6869
c0f3af97 6870 /* The destination must be an xmm register. */
9c2799c2 6871 gas_assert (i.reg_operands
91d6fa6a 6872 && MAX_OPERANDS > dupl
7ab9ffdd 6873 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6874
1b54b8d7
JB
6875 if (i.tm.operand_types[0].bitfield.acc
6876 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6877 {
8cd7925b 6878 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6879 {
6880 /* Keep xmm0 for instructions with VEX prefix and 3
6881 sources. */
1b54b8d7
JB
6882 i.tm.operand_types[0].bitfield.acc = 0;
6883 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6884 goto duplicate;
6885 }
e2ec9d29 6886 else
c0f3af97
L
6887 {
6888 /* We remove the first xmm0 and keep the number of
6889 operands unchanged, which in fact duplicates the
6890 destination. */
6891 for (j = 1; j < i.operands; j++)
6892 {
6893 i.op[j - 1] = i.op[j];
6894 i.types[j - 1] = i.types[j];
6895 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6896 }
6897 }
6898 }
6899 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6900 {
91d6fa6a 6901 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6902 && (i.tm.opcode_modifier.vexsources
6903 == VEX3SOURCES));
c0f3af97
L
6904
6905 /* Add the implicit xmm0 for instructions with VEX prefix
6906 and 3 sources. */
6907 for (j = i.operands; j > 0; j--)
6908 {
6909 i.op[j] = i.op[j - 1];
6910 i.types[j] = i.types[j - 1];
6911 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6912 }
6913 i.op[0].regs
6914 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6915 i.types[0] = regxmm;
c0f3af97
L
6916 i.tm.operand_types[0] = regxmm;
6917
6918 i.operands += 2;
6919 i.reg_operands += 2;
6920 i.tm.operands += 2;
6921
91d6fa6a 6922 dupl++;
c0f3af97 6923 dest++;
91d6fa6a
NC
6924 i.op[dupl] = i.op[dest];
6925 i.types[dupl] = i.types[dest];
6926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6927 }
c0f3af97
L
6928 else
6929 {
6930duplicate:
6931 i.operands++;
6932 i.reg_operands++;
6933 i.tm.operands++;
6934
91d6fa6a
NC
6935 i.op[dupl] = i.op[dest];
6936 i.types[dupl] = i.types[dest];
6937 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6938 }
6939
6940 if (i.tm.opcode_modifier.immext)
6941 process_immext ();
6942 }
1b54b8d7
JB
6943 else if (i.tm.operand_types[0].bitfield.acc
6944 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6945 {
6946 unsigned int j;
6947
9fcfb3d7
L
6948 for (j = 1; j < i.operands; j++)
6949 {
6950 i.op[j - 1] = i.op[j];
6951 i.types[j - 1] = i.types[j];
6952
6953 /* We need to adjust fields in i.tm since they are used by
6954 build_modrm_byte. */
6955 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6956 }
6957
e2ec9d29
L
6958 i.operands--;
6959 i.reg_operands--;
e2ec9d29
L
6960 i.tm.operands--;
6961 }
920d2ddc
IT
6962 else if (i.tm.opcode_modifier.implicitquadgroup)
6963 {
a477a8c4
JB
6964 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6965
920d2ddc 6966 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6967 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6968 regnum = register_number (i.op[1].regs);
6969 first_reg_in_group = regnum & ~3;
6970 last_reg_in_group = first_reg_in_group + 3;
6971 if (regnum != first_reg_in_group)
6972 as_warn (_("source register `%s%s' implicitly denotes"
6973 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6974 register_prefix, i.op[1].regs->reg_name,
6975 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6976 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6977 i.tm.name);
6978 }
e2ec9d29
L
6979 else if (i.tm.opcode_modifier.regkludge)
6980 {
6981 /* The imul $imm, %reg instruction is converted into
6982 imul $imm, %reg, %reg, and the clr %reg instruction
6983 is converted into xor %reg, %reg. */
6984
6985 unsigned int first_reg_op;
6986
6987 if (operand_type_check (i.types[0], reg))
6988 first_reg_op = 0;
6989 else
6990 first_reg_op = 1;
6991 /* Pretend we saw the extra register operand. */
9c2799c2 6992 gas_assert (i.reg_operands == 1
7ab9ffdd 6993 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6994 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6995 i.types[first_reg_op + 1] = i.types[first_reg_op];
6996 i.operands++;
6997 i.reg_operands++;
29b0f896
AM
6998 }
6999
40fb9820 7000 if (i.tm.opcode_modifier.shortform)
29b0f896 7001 {
21df382b 7002 if (i.types[0].bitfield.sreg)
29b0f896 7003 {
21df382b
JB
7004 if (flag_code != CODE_64BIT
7005 ? i.tm.base_opcode == POP_SEG_SHORT
7006 && i.op[0].regs->reg_num == 1
7007 : (i.tm.base_opcode | 1) == POP_SEG_SHORT
7008 && i.op[0].regs->reg_num < 4)
29b0f896 7009 {
21df382b
JB
7010 as_bad (_("you can't `%s %s%s'"),
7011 i.tm.name, register_prefix, i.op[0].regs->reg_name);
4eed87de 7012 return 0;
29b0f896 7013 }
21df382b
JB
7014 if ( i.op[0].regs->reg_num > 3 )
7015 {
7016 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7017 i.tm.opcode_length = 2;
7018 }
4eed87de 7019 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4eed87de
AM
7020 }
7021 else
7022 {
7ab9ffdd 7023 /* The register or float register operand is in operand
85f10a01 7024 0 or 1. */
40fb9820 7025 unsigned int op;
7ab9ffdd 7026
ca0d63fe 7027 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
7028 || operand_type_check (i.types[0], reg))
7029 op = 0;
7030 else
7031 op = 1;
4eed87de
AM
7032 /* Register goes in low 3 bits of opcode. */
7033 i.tm.base_opcode |= i.op[op].regs->reg_num;
7034 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 7035 i.rex |= REX_B;
40fb9820 7036 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 7037 {
4eed87de
AM
7038 /* Warn about some common errors, but press on regardless.
7039 The first case can be generated by gcc (<= 2.8.1). */
7040 if (i.operands == 2)
7041 {
7042 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 7043 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
7044 register_prefix, i.op[!intel_syntax].regs->reg_name,
7045 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
7046 }
7047 else
7048 {
7049 /* Extraneous `l' suffix on fp insn. */
a540244d
L
7050 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7051 register_prefix, i.op[0].regs->reg_name);
4eed87de 7052 }
29b0f896
AM
7053 }
7054 }
7055 }
40fb9820 7056 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7057 {
7058 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7059 must be put into the modrm byte). Now, we make the modrm and
7060 index base bytes based on all the info we've collected. */
29b0f896
AM
7061
7062 default_seg = build_modrm_byte ();
7063 }
8a2ed489 7064 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7065 {
7066 default_seg = &ds;
7067 }
40fb9820 7068 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7069 {
7070 /* For the string instructions that allow a segment override
7071 on one of their operands, the default segment is ds. */
7072 default_seg = &ds;
7073 }
7074
75178d9d
L
7075 if (i.tm.base_opcode == 0x8d /* lea */
7076 && i.seg[0]
7077 && !quiet_warnings)
30123838 7078 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7079
7080 /* If a segment was explicitly specified, and the specified segment
7081 is not the default, use an opcode prefix to select it. If we
7082 never figured out what the default segment is, then default_seg
7083 will be zero at this point, and the specified segment prefix will
7084 always be used. */
29b0f896
AM
7085 if ((i.seg[0]) && (i.seg[0] != default_seg))
7086 {
7087 if (!add_prefix (i.seg[0]->seg_prefix))
7088 return 0;
7089 }
7090 return 1;
7091}
7092
7093static const seg_entry *
e3bb37b5 7094build_modrm_byte (void)
29b0f896
AM
7095{
7096 const seg_entry *default_seg = 0;
c0f3af97 7097 unsigned int source, dest;
8cd7925b 7098 int vex_3_sources;
c0f3af97 7099
8cd7925b 7100 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7101 if (vex_3_sources)
7102 {
91d6fa6a 7103 unsigned int nds, reg_slot;
4c2c6516 7104 expressionS *exp;
c0f3af97 7105
6b8d3588 7106 dest = i.operands - 1;
c0f3af97 7107 nds = dest - 1;
922d8de8 7108
a683cc34 7109 /* There are 2 kinds of instructions:
bed3d976 7110 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7111 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7112 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7113 ZMM register.
bed3d976 7114 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7115 plus 1 memory operand, with VexXDS. */
922d8de8 7116 gas_assert ((i.reg_operands == 4
bed3d976
JB
7117 || (i.reg_operands == 3 && i.mem_operands == 1))
7118 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7119 && i.tm.opcode_modifier.vexw
7120 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7121
48db9223
JB
7122 /* If VexW1 is set, the first non-immediate operand is the source and
7123 the second non-immediate one is encoded in the immediate operand. */
7124 if (i.tm.opcode_modifier.vexw == VEXW1)
7125 {
7126 source = i.imm_operands;
7127 reg_slot = i.imm_operands + 1;
7128 }
7129 else
7130 {
7131 source = i.imm_operands + 1;
7132 reg_slot = i.imm_operands;
7133 }
7134
a683cc34 7135 if (i.imm_operands == 0)
bed3d976
JB
7136 {
7137 /* When there is no immediate operand, generate an 8bit
7138 immediate operand to encode the first operand. */
7139 exp = &im_expressions[i.imm_operands++];
7140 i.op[i.operands].imms = exp;
7141 i.types[i.operands] = imm8;
7142 i.operands++;
7143
7144 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7145 exp->X_op = O_constant;
7146 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7147 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7148 }
922d8de8 7149 else
bed3d976 7150 {
9d3bf266
JB
7151 gas_assert (i.imm_operands == 1);
7152 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7153 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7154
9d3bf266
JB
7155 /* Turn on Imm8 again so that output_imm will generate it. */
7156 i.types[0].bitfield.imm8 = 1;
bed3d976
JB
7157
7158 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
9d3bf266 7159 i.op[0].imms->X_add_number
bed3d976 7160 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7161 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7162 }
a683cc34 7163
10c17abd 7164 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7165 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7166 }
7167 else
7168 source = dest = 0;
29b0f896
AM
7169
7170 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7171 implicit registers do not count. If there are 3 register
7172 operands, it must be a instruction with VexNDS. For a
7173 instruction with VexNDD, the destination register is encoded
7174 in VEX prefix. If there are 4 register operands, it must be
7175 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7176 if (i.mem_operands == 0
7177 && ((i.reg_operands == 2
2426c15f 7178 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7179 || (i.reg_operands == 3
2426c15f 7180 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7181 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7182 {
cab737b9
L
7183 switch (i.operands)
7184 {
7185 case 2:
7186 source = 0;
7187 break;
7188 case 3:
c81128dc
L
7189 /* When there are 3 operands, one of them may be immediate,
7190 which may be the first or the last operand. Otherwise,
c0f3af97
L
7191 the first operand must be shift count register (cl) or it
7192 is an instruction with VexNDS. */
9c2799c2 7193 gas_assert (i.imm_operands == 1
7ab9ffdd 7194 || (i.imm_operands == 0
2426c15f 7195 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7196 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7197 if (operand_type_check (i.types[0], imm)
7198 || i.types[0].bitfield.shiftcount)
7199 source = 1;
7200 else
7201 source = 0;
cab737b9
L
7202 break;
7203 case 4:
368d64cc
L
7204 /* When there are 4 operands, the first two must be 8bit
7205 immediate operands. The source operand will be the 3rd
c0f3af97
L
7206 one.
7207
7208 For instructions with VexNDS, if the first operand
7209 an imm8, the source operand is the 2nd one. If the last
7210 operand is imm8, the source operand is the first one. */
9c2799c2 7211 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7212 && i.types[0].bitfield.imm8
7213 && i.types[1].bitfield.imm8)
2426c15f 7214 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7215 && i.imm_operands == 1
7216 && (i.types[0].bitfield.imm8
43234a1e
L
7217 || i.types[i.operands - 1].bitfield.imm8
7218 || i.rounding)));
9f2670f2
L
7219 if (i.imm_operands == 2)
7220 source = 2;
7221 else
c0f3af97
L
7222 {
7223 if (i.types[0].bitfield.imm8)
7224 source = 1;
7225 else
7226 source = 0;
7227 }
c0f3af97
L
7228 break;
7229 case 5:
e771e7c9 7230 if (is_evex_encoding (&i.tm))
43234a1e
L
7231 {
7232 /* For EVEX instructions, when there are 5 operands, the
7233 first one must be immediate operand. If the second one
7234 is immediate operand, the source operand is the 3th
7235 one. If the last one is immediate operand, the source
7236 operand is the 2nd one. */
7237 gas_assert (i.imm_operands == 2
7238 && i.tm.opcode_modifier.sae
7239 && operand_type_check (i.types[0], imm));
7240 if (operand_type_check (i.types[1], imm))
7241 source = 2;
7242 else if (operand_type_check (i.types[4], imm))
7243 source = 1;
7244 else
7245 abort ();
7246 }
cab737b9
L
7247 break;
7248 default:
7249 abort ();
7250 }
7251
c0f3af97
L
7252 if (!vex_3_sources)
7253 {
7254 dest = source + 1;
7255
43234a1e
L
7256 /* RC/SAE operand could be between DEST and SRC. That happens
7257 when one operand is GPR and the other one is XMM/YMM/ZMM
7258 register. */
7259 if (i.rounding && i.rounding->operand == (int) dest)
7260 dest++;
7261
2426c15f 7262 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7263 {
43234a1e 7264 /* For instructions with VexNDS, the register-only source
c5d0745b 7265 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7266 register. It is encoded in VEX prefix. */
f12dc422
L
7267
7268 i386_operand_type op;
7269 unsigned int vvvv;
7270
7271 /* Check register-only source operand when two source
7272 operands are swapped. */
7273 if (!i.tm.operand_types[source].bitfield.baseindex
7274 && i.tm.operand_types[dest].bitfield.baseindex)
7275 {
7276 vvvv = source;
7277 source = dest;
7278 }
7279 else
7280 vvvv = dest;
7281
7282 op = i.tm.operand_types[vvvv];
c0f3af97 7283 if ((dest + 1) >= i.operands
dc821c5f
JB
7284 || ((!op.bitfield.reg
7285 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7286 && !op.bitfield.regsimd
43234a1e 7287 && !operand_type_equal (&op, &regmask)))
c0f3af97 7288 abort ();
f12dc422 7289 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7290 dest++;
7291 }
7292 }
29b0f896
AM
7293
7294 i.rm.mode = 3;
dfd69174
JB
7295 /* One of the register operands will be encoded in the i.rm.reg
7296 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7297 fields. If no form of this instruction supports a memory
7298 destination operand, then we assume the source operand may
7299 sometimes be a memory operand and so we need to store the
7300 destination in the i.rm.reg field. */
dfd69174 7301 if (!i.tm.opcode_modifier.regmem
40fb9820 7302 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7303 {
7304 i.rm.reg = i.op[dest].regs->reg_num;
7305 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7306 if (i.op[dest].regs->reg_type.bitfield.regmmx
7307 || i.op[source].regs->reg_type.bitfield.regmmx)
7308 i.has_regmmx = TRUE;
7309 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7310 || i.op[source].regs->reg_type.bitfield.regsimd)
7311 {
7312 if (i.types[dest].bitfield.zmmword
7313 || i.types[source].bitfield.zmmword)
7314 i.has_regzmm = TRUE;
7315 else if (i.types[dest].bitfield.ymmword
7316 || i.types[source].bitfield.ymmword)
7317 i.has_regymm = TRUE;
7318 else
7319 i.has_regxmm = TRUE;
7320 }
29b0f896 7321 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7322 i.rex |= REX_R;
43234a1e
L
7323 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7324 i.vrex |= REX_R;
29b0f896 7325 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7326 i.rex |= REX_B;
43234a1e
L
7327 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7328 i.vrex |= REX_B;
29b0f896
AM
7329 }
7330 else
7331 {
7332 i.rm.reg = i.op[source].regs->reg_num;
7333 i.rm.regmem = i.op[dest].regs->reg_num;
7334 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7335 i.rex |= REX_B;
43234a1e
L
7336 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7337 i.vrex |= REX_B;
29b0f896 7338 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7339 i.rex |= REX_R;
43234a1e
L
7340 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7341 i.vrex |= REX_R;
29b0f896 7342 }
e0c7f900 7343 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7344 {
dfd69174 7345 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
c4a530c5 7346 abort ();
e0c7f900 7347 i.rex &= ~REX_R;
c4a530c5
JB
7348 add_prefix (LOCK_PREFIX_OPCODE);
7349 }
29b0f896
AM
7350 }
7351 else
7352 { /* If it's not 2 reg operands... */
c0f3af97
L
7353 unsigned int mem;
7354
29b0f896
AM
7355 if (i.mem_operands)
7356 {
7357 unsigned int fake_zero_displacement = 0;
99018f42 7358 unsigned int op;
4eed87de 7359
7ab9ffdd
L
7360 for (op = 0; op < i.operands; op++)
7361 if (operand_type_check (i.types[op], anymem))
7362 break;
7ab9ffdd 7363 gas_assert (op < i.operands);
29b0f896 7364
6c30d220
L
7365 if (i.tm.opcode_modifier.vecsib)
7366 {
e968fc9b 7367 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7368 abort ();
7369
7370 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7371 if (!i.base_reg)
7372 {
7373 i.sib.base = NO_BASE_REGISTER;
7374 i.sib.scale = i.log2_scale_factor;
7375 i.types[op].bitfield.disp8 = 0;
7376 i.types[op].bitfield.disp16 = 0;
7377 i.types[op].bitfield.disp64 = 0;
43083a50 7378 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7379 {
7380 /* Must be 32 bit */
7381 i.types[op].bitfield.disp32 = 1;
7382 i.types[op].bitfield.disp32s = 0;
7383 }
7384 else
7385 {
7386 i.types[op].bitfield.disp32 = 0;
7387 i.types[op].bitfield.disp32s = 1;
7388 }
7389 }
7390 i.sib.index = i.index_reg->reg_num;
7391 if ((i.index_reg->reg_flags & RegRex) != 0)
7392 i.rex |= REX_X;
43234a1e
L
7393 if ((i.index_reg->reg_flags & RegVRex) != 0)
7394 i.vrex |= REX_X;
6c30d220
L
7395 }
7396
29b0f896
AM
7397 default_seg = &ds;
7398
7399 if (i.base_reg == 0)
7400 {
7401 i.rm.mode = 0;
7402 if (!i.disp_operands)
9bb129e8 7403 fake_zero_displacement = 1;
29b0f896
AM
7404 if (i.index_reg == 0)
7405 {
73053c1f
JB
7406 i386_operand_type newdisp;
7407
6c30d220 7408 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7409 /* Operand is just <disp> */
20f0a1fc 7410 if (flag_code == CODE_64BIT)
29b0f896
AM
7411 {
7412 /* 64bit mode overwrites the 32bit absolute
7413 addressing by RIP relative addressing and
7414 absolute addressing is encoded by one of the
7415 redundant SIB forms. */
7416 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7417 i.sib.base = NO_BASE_REGISTER;
7418 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7419 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7420 }
fc225355
L
7421 else if ((flag_code == CODE_16BIT)
7422 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7423 {
7424 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7425 newdisp = disp16;
20f0a1fc
NC
7426 }
7427 else
7428 {
7429 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7430 newdisp = disp32;
29b0f896 7431 }
73053c1f
JB
7432 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7433 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7434 }
6c30d220 7435 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7436 {
6c30d220 7437 /* !i.base_reg && i.index_reg */
e968fc9b 7438 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7439 i.sib.index = NO_INDEX_REGISTER;
7440 else
7441 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7442 i.sib.base = NO_BASE_REGISTER;
7443 i.sib.scale = i.log2_scale_factor;
7444 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7445 i.types[op].bitfield.disp8 = 0;
7446 i.types[op].bitfield.disp16 = 0;
7447 i.types[op].bitfield.disp64 = 0;
43083a50 7448 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7449 {
7450 /* Must be 32 bit */
7451 i.types[op].bitfield.disp32 = 1;
7452 i.types[op].bitfield.disp32s = 0;
7453 }
29b0f896 7454 else
40fb9820
L
7455 {
7456 i.types[op].bitfield.disp32 = 0;
7457 i.types[op].bitfield.disp32s = 1;
7458 }
29b0f896 7459 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7460 i.rex |= REX_X;
29b0f896
AM
7461 }
7462 }
7463 /* RIP addressing for 64bit mode. */
e968fc9b 7464 else if (i.base_reg->reg_num == RegIP)
29b0f896 7465 {
6c30d220 7466 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7467 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7468 i.types[op].bitfield.disp8 = 0;
7469 i.types[op].bitfield.disp16 = 0;
7470 i.types[op].bitfield.disp32 = 0;
7471 i.types[op].bitfield.disp32s = 1;
7472 i.types[op].bitfield.disp64 = 0;
71903a11 7473 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7474 if (! i.disp_operands)
7475 fake_zero_displacement = 1;
29b0f896 7476 }
dc821c5f 7477 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7478 {
6c30d220 7479 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7480 switch (i.base_reg->reg_num)
7481 {
7482 case 3: /* (%bx) */
7483 if (i.index_reg == 0)
7484 i.rm.regmem = 7;
7485 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7486 i.rm.regmem = i.index_reg->reg_num - 6;
7487 break;
7488 case 5: /* (%bp) */
7489 default_seg = &ss;
7490 if (i.index_reg == 0)
7491 {
7492 i.rm.regmem = 6;
40fb9820 7493 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7494 {
7495 /* fake (%bp) into 0(%bp) */
b5014f7a 7496 i.types[op].bitfield.disp8 = 1;
252b5132 7497 fake_zero_displacement = 1;
29b0f896
AM
7498 }
7499 }
7500 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7501 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7502 break;
7503 default: /* (%si) -> 4 or (%di) -> 5 */
7504 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7505 }
7506 i.rm.mode = mode_from_disp_size (i.types[op]);
7507 }
7508 else /* i.base_reg and 32/64 bit mode */
7509 {
7510 if (flag_code == CODE_64BIT
40fb9820
L
7511 && operand_type_check (i.types[op], disp))
7512 {
73053c1f
JB
7513 i.types[op].bitfield.disp16 = 0;
7514 i.types[op].bitfield.disp64 = 0;
40fb9820 7515 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7516 {
7517 i.types[op].bitfield.disp32 = 0;
7518 i.types[op].bitfield.disp32s = 1;
7519 }
40fb9820 7520 else
73053c1f
JB
7521 {
7522 i.types[op].bitfield.disp32 = 1;
7523 i.types[op].bitfield.disp32s = 0;
7524 }
40fb9820 7525 }
20f0a1fc 7526
6c30d220
L
7527 if (!i.tm.opcode_modifier.vecsib)
7528 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7529 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7530 i.rex |= REX_B;
29b0f896
AM
7531 i.sib.base = i.base_reg->reg_num;
7532 /* x86-64 ignores REX prefix bit here to avoid decoder
7533 complications. */
848930b2
JB
7534 if (!(i.base_reg->reg_flags & RegRex)
7535 && (i.base_reg->reg_num == EBP_REG_NUM
7536 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7537 default_seg = &ss;
848930b2 7538 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7539 {
848930b2 7540 fake_zero_displacement = 1;
b5014f7a 7541 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7542 }
7543 i.sib.scale = i.log2_scale_factor;
7544 if (i.index_reg == 0)
7545 {
6c30d220 7546 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7547 /* <disp>(%esp) becomes two byte modrm with no index
7548 register. We've already stored the code for esp
7549 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7550 Any base register besides %esp will not use the
7551 extra modrm byte. */
7552 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7553 }
6c30d220 7554 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7555 {
e968fc9b 7556 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7557 i.sib.index = NO_INDEX_REGISTER;
7558 else
7559 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7560 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7561 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7562 i.rex |= REX_X;
29b0f896 7563 }
67a4f2b7
AO
7564
7565 if (i.disp_operands
7566 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7567 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7568 i.rm.mode = 0;
7569 else
a501d77e
L
7570 {
7571 if (!fake_zero_displacement
7572 && !i.disp_operands
7573 && i.disp_encoding)
7574 {
7575 fake_zero_displacement = 1;
7576 if (i.disp_encoding == disp_encoding_8bit)
7577 i.types[op].bitfield.disp8 = 1;
7578 else
7579 i.types[op].bitfield.disp32 = 1;
7580 }
7581 i.rm.mode = mode_from_disp_size (i.types[op]);
7582 }
29b0f896 7583 }
252b5132 7584
29b0f896
AM
7585 if (fake_zero_displacement)
7586 {
7587 /* Fakes a zero displacement assuming that i.types[op]
7588 holds the correct displacement size. */
7589 expressionS *exp;
7590
9c2799c2 7591 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7592 exp = &disp_expressions[i.disp_operands++];
7593 i.op[op].disps = exp;
7594 exp->X_op = O_constant;
7595 exp->X_add_number = 0;
7596 exp->X_add_symbol = (symbolS *) 0;
7597 exp->X_op_symbol = (symbolS *) 0;
7598 }
c0f3af97
L
7599
7600 mem = op;
29b0f896 7601 }
c0f3af97
L
7602 else
7603 mem = ~0;
252b5132 7604
8c43a48b 7605 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7606 {
7607 if (operand_type_check (i.types[0], imm))
7608 i.vex.register_specifier = NULL;
7609 else
7610 {
7611 /* VEX.vvvv encodes one of the sources when the first
7612 operand is not an immediate. */
1ef99a7b 7613 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7614 i.vex.register_specifier = i.op[0].regs;
7615 else
7616 i.vex.register_specifier = i.op[1].regs;
7617 }
7618
7619 /* Destination is a XMM register encoded in the ModRM.reg
7620 and VEX.R bit. */
7621 i.rm.reg = i.op[2].regs->reg_num;
7622 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7623 i.rex |= REX_R;
7624
7625 /* ModRM.rm and VEX.B encodes the other source. */
7626 if (!i.mem_operands)
7627 {
7628 i.rm.mode = 3;
7629
1ef99a7b 7630 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7631 i.rm.regmem = i.op[1].regs->reg_num;
7632 else
7633 i.rm.regmem = i.op[0].regs->reg_num;
7634
7635 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7636 i.rex |= REX_B;
7637 }
7638 }
2426c15f 7639 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7640 {
7641 i.vex.register_specifier = i.op[2].regs;
7642 if (!i.mem_operands)
7643 {
7644 i.rm.mode = 3;
7645 i.rm.regmem = i.op[1].regs->reg_num;
7646 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7647 i.rex |= REX_B;
7648 }
7649 }
29b0f896
AM
7650 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7651 (if any) based on i.tm.extension_opcode. Again, we must be
7652 careful to make sure that segment/control/debug/test/MMX
7653 registers are coded into the i.rm.reg field. */
f88c9eb0 7654 else if (i.reg_operands)
29b0f896 7655 {
99018f42 7656 unsigned int op;
7ab9ffdd
L
7657 unsigned int vex_reg = ~0;
7658
7659 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7660 {
7661 if (i.types[op].bitfield.reg
7662 || i.types[op].bitfield.regbnd
7663 || i.types[op].bitfield.regmask
21df382b 7664 || i.types[op].bitfield.sreg
b4a3a7b4
L
7665 || i.types[op].bitfield.control
7666 || i.types[op].bitfield.debug
7667 || i.types[op].bitfield.test)
7668 break;
7669 if (i.types[op].bitfield.regsimd)
7670 {
7671 if (i.types[op].bitfield.zmmword)
7672 i.has_regzmm = TRUE;
7673 else if (i.types[op].bitfield.ymmword)
7674 i.has_regymm = TRUE;
7675 else
7676 i.has_regxmm = TRUE;
7677 break;
7678 }
7679 if (i.types[op].bitfield.regmmx)
7680 {
7681 i.has_regmmx = TRUE;
7682 break;
7683 }
7684 }
c0209578 7685
7ab9ffdd
L
7686 if (vex_3_sources)
7687 op = dest;
2426c15f 7688 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7689 {
7690 /* For instructions with VexNDS, the register-only
7691 source operand is encoded in VEX prefix. */
7692 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7693
7ab9ffdd 7694 if (op > mem)
c0f3af97 7695 {
7ab9ffdd
L
7696 vex_reg = op++;
7697 gas_assert (op < i.operands);
c0f3af97
L
7698 }
7699 else
c0f3af97 7700 {
f12dc422
L
7701 /* Check register-only source operand when two source
7702 operands are swapped. */
7703 if (!i.tm.operand_types[op].bitfield.baseindex
7704 && i.tm.operand_types[op + 1].bitfield.baseindex)
7705 {
7706 vex_reg = op;
7707 op += 2;
7708 gas_assert (mem == (vex_reg + 1)
7709 && op < i.operands);
7710 }
7711 else
7712 {
7713 vex_reg = op + 1;
7714 gas_assert (vex_reg < i.operands);
7715 }
c0f3af97 7716 }
7ab9ffdd 7717 }
2426c15f 7718 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7719 {
f12dc422 7720 /* For instructions with VexNDD, the register destination
7ab9ffdd 7721 is encoded in VEX prefix. */
f12dc422
L
7722 if (i.mem_operands == 0)
7723 {
7724 /* There is no memory operand. */
7725 gas_assert ((op + 2) == i.operands);
7726 vex_reg = op + 1;
7727 }
7728 else
8d63c93e 7729 {
ed438a93
JB
7730 /* There are only 2 non-immediate operands. */
7731 gas_assert (op < i.imm_operands + 2
7732 && i.operands == i.imm_operands + 2);
7733 vex_reg = i.imm_operands + 1;
f12dc422 7734 }
7ab9ffdd
L
7735 }
7736 else
7737 gas_assert (op < i.operands);
99018f42 7738
7ab9ffdd
L
7739 if (vex_reg != (unsigned int) ~0)
7740 {
f12dc422 7741 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7742
dc821c5f
JB
7743 if ((!type->bitfield.reg
7744 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7745 && !type->bitfield.regsimd
43234a1e 7746 && !operand_type_equal (type, &regmask))
7ab9ffdd 7747 abort ();
f88c9eb0 7748
7ab9ffdd
L
7749 i.vex.register_specifier = i.op[vex_reg].regs;
7750 }
7751
1b9f0c97
L
7752 /* Don't set OP operand twice. */
7753 if (vex_reg != op)
7ab9ffdd 7754 {
1b9f0c97
L
7755 /* If there is an extension opcode to put here, the
7756 register number must be put into the regmem field. */
7757 if (i.tm.extension_opcode != None)
7758 {
7759 i.rm.regmem = i.op[op].regs->reg_num;
7760 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7761 i.rex |= REX_B;
43234a1e
L
7762 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7763 i.vrex |= REX_B;
1b9f0c97
L
7764 }
7765 else
7766 {
7767 i.rm.reg = i.op[op].regs->reg_num;
7768 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7769 i.rex |= REX_R;
43234a1e
L
7770 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7771 i.vrex |= REX_R;
1b9f0c97 7772 }
7ab9ffdd 7773 }
252b5132 7774
29b0f896
AM
7775 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7776 must set it to 3 to indicate this is a register operand
7777 in the regmem field. */
7778 if (!i.mem_operands)
7779 i.rm.mode = 3;
7780 }
252b5132 7781
29b0f896 7782 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7783 if (i.tm.extension_opcode != None)
29b0f896
AM
7784 i.rm.reg = i.tm.extension_opcode;
7785 }
7786 return default_seg;
7787}
252b5132 7788
29b0f896 7789static void
e3bb37b5 7790output_branch (void)
29b0f896
AM
7791{
7792 char *p;
f8a5c266 7793 int size;
29b0f896
AM
7794 int code16;
7795 int prefix;
7796 relax_substateT subtype;
7797 symbolS *sym;
7798 offsetT off;
7799
f8a5c266 7800 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7801 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7802
7803 prefix = 0;
7804 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7805 {
29b0f896
AM
7806 prefix = 1;
7807 i.prefixes -= 1;
7808 code16 ^= CODE16;
252b5132 7809 }
29b0f896
AM
7810 /* Pentium4 branch hints. */
7811 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7812 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7813 {
29b0f896
AM
7814 prefix++;
7815 i.prefixes--;
7816 }
7817 if (i.prefix[REX_PREFIX] != 0)
7818 {
7819 prefix++;
7820 i.prefixes--;
2f66722d
AM
7821 }
7822
7e8b059b
L
7823 /* BND prefixed jump. */
7824 if (i.prefix[BND_PREFIX] != 0)
7825 {
7826 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7827 i.prefixes -= 1;
7828 }
7829
29b0f896
AM
7830 if (i.prefixes != 0 && !intel_syntax)
7831 as_warn (_("skipping prefixes on this instruction"));
7832
7833 /* It's always a symbol; End frag & setup for relax.
7834 Make sure there is enough room in this frag for the largest
7835 instruction we may generate in md_convert_frag. This is 2
7836 bytes for the opcode and room for the prefix and largest
7837 displacement. */
7838 frag_grow (prefix + 2 + 4);
7839 /* Prefix and 1 opcode byte go in fr_fix. */
7840 p = frag_more (prefix + 1);
7841 if (i.prefix[DATA_PREFIX] != 0)
7842 *p++ = DATA_PREFIX_OPCODE;
7843 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7844 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7845 *p++ = i.prefix[SEG_PREFIX];
7846 if (i.prefix[REX_PREFIX] != 0)
7847 *p++ = i.prefix[REX_PREFIX];
7848 *p = i.tm.base_opcode;
7849
7850 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7851 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7852 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7853 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7854 else
f8a5c266 7855 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7856 subtype |= code16;
3e73aa7c 7857
29b0f896
AM
7858 sym = i.op[0].disps->X_add_symbol;
7859 off = i.op[0].disps->X_add_number;
3e73aa7c 7860
29b0f896
AM
7861 if (i.op[0].disps->X_op != O_constant
7862 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7863 {
29b0f896
AM
7864 /* Handle complex expressions. */
7865 sym = make_expr_symbol (i.op[0].disps);
7866 off = 0;
7867 }
3e73aa7c 7868
29b0f896
AM
7869 /* 1 possible extra opcode + 4 byte displacement go in var part.
7870 Pass reloc in fr_var. */
d258b828 7871 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7872}
3e73aa7c 7873
bd7ab16b
L
7874#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7875/* Return TRUE iff PLT32 relocation should be used for branching to
7876 symbol S. */
7877
7878static bfd_boolean
7879need_plt32_p (symbolS *s)
7880{
7881 /* PLT32 relocation is ELF only. */
7882 if (!IS_ELF)
7883 return FALSE;
7884
a5def729
RO
7885#ifdef TE_SOLARIS
7886 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7887 krtld support it. */
7888 return FALSE;
7889#endif
7890
bd7ab16b
L
7891 /* Since there is no need to prepare for PLT branch on x86-64, we
7892 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7893 be used as a marker for 32-bit PC-relative branches. */
7894 if (!object_64bit)
7895 return FALSE;
7896
7897 /* Weak or undefined symbol need PLT32 relocation. */
7898 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7899 return TRUE;
7900
7901 /* Non-global symbol doesn't need PLT32 relocation. */
7902 if (! S_IS_EXTERNAL (s))
7903 return FALSE;
7904
7905 /* Other global symbols need PLT32 relocation. NB: Symbol with
7906 non-default visibilities are treated as normal global symbol
7907 so that PLT32 relocation can be used as a marker for 32-bit
7908 PC-relative branches. It is useful for linker relaxation. */
7909 return TRUE;
7910}
7911#endif
7912
29b0f896 7913static void
e3bb37b5 7914output_jump (void)
29b0f896
AM
7915{
7916 char *p;
7917 int size;
3e02c1cc 7918 fixS *fixP;
bd7ab16b 7919 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7920
40fb9820 7921 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7922 {
7923 /* This is a loop or jecxz type instruction. */
7924 size = 1;
7925 if (i.prefix[ADDR_PREFIX] != 0)
7926 {
7927 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7928 i.prefixes -= 1;
7929 }
7930 /* Pentium4 branch hints. */
7931 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7932 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7933 {
7934 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7935 i.prefixes--;
3e73aa7c
JH
7936 }
7937 }
29b0f896
AM
7938 else
7939 {
7940 int code16;
3e73aa7c 7941
29b0f896
AM
7942 code16 = 0;
7943 if (flag_code == CODE_16BIT)
7944 code16 = CODE16;
3e73aa7c 7945
29b0f896
AM
7946 if (i.prefix[DATA_PREFIX] != 0)
7947 {
7948 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7949 i.prefixes -= 1;
7950 code16 ^= CODE16;
7951 }
252b5132 7952
29b0f896
AM
7953 size = 4;
7954 if (code16)
7955 size = 2;
7956 }
9fcc94b6 7957
29b0f896
AM
7958 if (i.prefix[REX_PREFIX] != 0)
7959 {
7960 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7961 i.prefixes -= 1;
7962 }
252b5132 7963
7e8b059b
L
7964 /* BND prefixed jump. */
7965 if (i.prefix[BND_PREFIX] != 0)
7966 {
7967 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7968 i.prefixes -= 1;
7969 }
7970
29b0f896
AM
7971 if (i.prefixes != 0 && !intel_syntax)
7972 as_warn (_("skipping prefixes on this instruction"));
e0890092 7973
42164a71
L
7974 p = frag_more (i.tm.opcode_length + size);
7975 switch (i.tm.opcode_length)
7976 {
7977 case 2:
7978 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7979 /* Fall through. */
42164a71
L
7980 case 1:
7981 *p++ = i.tm.base_opcode;
7982 break;
7983 default:
7984 abort ();
7985 }
e0890092 7986
bd7ab16b
L
7987#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7988 if (size == 4
7989 && jump_reloc == NO_RELOC
7990 && need_plt32_p (i.op[0].disps->X_add_symbol))
7991 jump_reloc = BFD_RELOC_X86_64_PLT32;
7992#endif
7993
7994 jump_reloc = reloc (size, 1, 1, jump_reloc);
7995
3e02c1cc 7996 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7997 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7998
7999 /* All jumps handled here are signed, but don't use a signed limit
8000 check for 32 and 16 bit jumps as we want to allow wrap around at
8001 4G and 64k respectively. */
8002 if (size == 1)
8003 fixP->fx_signed = 1;
29b0f896 8004}
e0890092 8005
29b0f896 8006static void
e3bb37b5 8007output_interseg_jump (void)
29b0f896
AM
8008{
8009 char *p;
8010 int size;
8011 int prefix;
8012 int code16;
252b5132 8013
29b0f896
AM
8014 code16 = 0;
8015 if (flag_code == CODE_16BIT)
8016 code16 = CODE16;
a217f122 8017
29b0f896
AM
8018 prefix = 0;
8019 if (i.prefix[DATA_PREFIX] != 0)
8020 {
8021 prefix = 1;
8022 i.prefixes -= 1;
8023 code16 ^= CODE16;
8024 }
8025 if (i.prefix[REX_PREFIX] != 0)
8026 {
8027 prefix++;
8028 i.prefixes -= 1;
8029 }
252b5132 8030
29b0f896
AM
8031 size = 4;
8032 if (code16)
8033 size = 2;
252b5132 8034
29b0f896
AM
8035 if (i.prefixes != 0 && !intel_syntax)
8036 as_warn (_("skipping prefixes on this instruction"));
252b5132 8037
29b0f896
AM
8038 /* 1 opcode; 2 segment; offset */
8039 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8040
29b0f896
AM
8041 if (i.prefix[DATA_PREFIX] != 0)
8042 *p++ = DATA_PREFIX_OPCODE;
252b5132 8043
29b0f896
AM
8044 if (i.prefix[REX_PREFIX] != 0)
8045 *p++ = i.prefix[REX_PREFIX];
252b5132 8046
29b0f896
AM
8047 *p++ = i.tm.base_opcode;
8048 if (i.op[1].imms->X_op == O_constant)
8049 {
8050 offsetT n = i.op[1].imms->X_add_number;
252b5132 8051
29b0f896
AM
8052 if (size == 2
8053 && !fits_in_unsigned_word (n)
8054 && !fits_in_signed_word (n))
8055 {
8056 as_bad (_("16-bit jump out of range"));
8057 return;
8058 }
8059 md_number_to_chars (p, n, size);
8060 }
8061 else
8062 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8063 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8064 if (i.op[0].imms->X_op != O_constant)
8065 as_bad (_("can't handle non absolute segment in `%s'"),
8066 i.tm.name);
8067 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8068}
a217f122 8069
b4a3a7b4
L
8070#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8071void
8072x86_cleanup (void)
8073{
8074 char *p;
8075 asection *seg = now_seg;
8076 subsegT subseg = now_subseg;
8077 asection *sec;
8078 unsigned int alignment, align_size_1;
8079 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8080 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8081 unsigned int padding;
8082
8083 if (!IS_ELF || !x86_used_note)
8084 return;
8085
b4a3a7b4
L
8086 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8087
8088 /* The .note.gnu.property section layout:
8089
8090 Field Length Contents
8091 ---- ---- ----
8092 n_namsz 4 4
8093 n_descsz 4 The note descriptor size
8094 n_type 4 NT_GNU_PROPERTY_TYPE_0
8095 n_name 4 "GNU"
8096 n_desc n_descsz The program property array
8097 .... .... ....
8098 */
8099
8100 /* Create the .note.gnu.property section. */
8101 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8102 bfd_set_section_flags (stdoutput, sec,
8103 (SEC_ALLOC
8104 | SEC_LOAD
8105 | SEC_DATA
8106 | SEC_HAS_CONTENTS
8107 | SEC_READONLY));
8108
8109 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8110 {
8111 align_size_1 = 7;
8112 alignment = 3;
8113 }
8114 else
8115 {
8116 align_size_1 = 3;
8117 alignment = 2;
8118 }
8119
8120 bfd_set_section_alignment (stdoutput, sec, alignment);
8121 elf_section_type (sec) = SHT_NOTE;
8122
8123 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8124 + 4-byte data */
8125 isa_1_descsz_raw = 4 + 4 + 4;
8126 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8127 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8128
8129 feature_2_descsz_raw = isa_1_descsz;
8130 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8131 + 4-byte data */
8132 feature_2_descsz_raw += 4 + 4 + 4;
8133 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8134 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8135 & ~align_size_1);
8136
8137 descsz = feature_2_descsz;
8138 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8139 p = frag_more (4 + 4 + 4 + 4 + descsz);
8140
8141 /* Write n_namsz. */
8142 md_number_to_chars (p, (valueT) 4, 4);
8143
8144 /* Write n_descsz. */
8145 md_number_to_chars (p + 4, (valueT) descsz, 4);
8146
8147 /* Write n_type. */
8148 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8149
8150 /* Write n_name. */
8151 memcpy (p + 4 * 3, "GNU", 4);
8152
8153 /* Write 4-byte type. */
8154 md_number_to_chars (p + 4 * 4,
8155 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8156
8157 /* Write 4-byte data size. */
8158 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8159
8160 /* Write 4-byte data. */
8161 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8162
8163 /* Zero out paddings. */
8164 padding = isa_1_descsz - isa_1_descsz_raw;
8165 if (padding)
8166 memset (p + 4 * 7, 0, padding);
8167
8168 /* Write 4-byte type. */
8169 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8170 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8171
8172 /* Write 4-byte data size. */
8173 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8174
8175 /* Write 4-byte data. */
8176 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8177 (valueT) x86_feature_2_used, 4);
8178
8179 /* Zero out paddings. */
8180 padding = feature_2_descsz - feature_2_descsz_raw;
8181 if (padding)
8182 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8183
8184 /* We probably can't restore the current segment, for there likely
8185 isn't one yet... */
8186 if (seg && subseg)
8187 subseg_set (seg, subseg);
8188}
8189#endif
8190
9c33702b
JB
8191static unsigned int
8192encoding_length (const fragS *start_frag, offsetT start_off,
8193 const char *frag_now_ptr)
8194{
8195 unsigned int len = 0;
8196
8197 if (start_frag != frag_now)
8198 {
8199 const fragS *fr = start_frag;
8200
8201 do {
8202 len += fr->fr_fix;
8203 fr = fr->fr_next;
8204 } while (fr && fr != frag_now);
8205 }
8206
8207 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8208}
8209
29b0f896 8210static void
e3bb37b5 8211output_insn (void)
29b0f896 8212{
2bbd9c25
JJ
8213 fragS *insn_start_frag;
8214 offsetT insn_start_off;
8215
b4a3a7b4
L
8216#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8217 if (IS_ELF && x86_used_note)
8218 {
8219 if (i.tm.cpu_flags.bitfield.cpucmov)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8221 if (i.tm.cpu_flags.bitfield.cpusse)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8223 if (i.tm.cpu_flags.bitfield.cpusse2)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8225 if (i.tm.cpu_flags.bitfield.cpusse3)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8227 if (i.tm.cpu_flags.bitfield.cpussse3)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8229 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8231 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8233 if (i.tm.cpu_flags.bitfield.cpuavx)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8235 if (i.tm.cpu_flags.bitfield.cpuavx2)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8237 if (i.tm.cpu_flags.bitfield.cpufma)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8263 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8264 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8265 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8266 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8267 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8269
8270 if (i.tm.cpu_flags.bitfield.cpu8087
8271 || i.tm.cpu_flags.bitfield.cpu287
8272 || i.tm.cpu_flags.bitfield.cpu387
8273 || i.tm.cpu_flags.bitfield.cpu687
8274 || i.tm.cpu_flags.bitfield.cpufisttp)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8276 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8277 Xfence instructions. */
8278 if (i.tm.base_opcode != 0xf18
8279 && i.tm.base_opcode != 0xf0d
c3949f43 8280 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8281 && (i.has_regmmx
8282 || i.tm.cpu_flags.bitfield.cpummx
8283 || i.tm.cpu_flags.bitfield.cpua3dnow
8284 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8286 if (i.has_regxmm)
8287 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8288 if (i.has_regymm)
8289 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8290 if (i.has_regzmm)
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8292 if (i.tm.cpu_flags.bitfield.cpufxsr)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8294 if (i.tm.cpu_flags.bitfield.cpuxsave)
8295 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8296 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8297 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8298 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8299 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8300 }
8301#endif
8302
29b0f896
AM
8303 /* Tie dwarf2 debug info to the address at the start of the insn.
8304 We can't do this after the insn has been output as the current
8305 frag may have been closed off. eg. by frag_var. */
8306 dwarf2_emit_insn (0);
8307
2bbd9c25
JJ
8308 insn_start_frag = frag_now;
8309 insn_start_off = frag_now_fix ();
8310
29b0f896 8311 /* Output jumps. */
40fb9820 8312 if (i.tm.opcode_modifier.jump)
29b0f896 8313 output_branch ();
40fb9820
L
8314 else if (i.tm.opcode_modifier.jumpbyte
8315 || i.tm.opcode_modifier.jumpdword)
29b0f896 8316 output_jump ();
40fb9820 8317 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8318 output_interseg_jump ();
8319 else
8320 {
8321 /* Output normal instructions here. */
8322 char *p;
8323 unsigned char *q;
47465058 8324 unsigned int j;
331d2d0d 8325 unsigned int prefix;
4dffcebc 8326
e4e00185 8327 if (avoid_fence
c3949f43
JB
8328 && (i.tm.base_opcode == 0xfaee8
8329 || i.tm.base_opcode == 0xfaef0
8330 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8331 {
8332 /* Encode lfence, mfence, and sfence as
8333 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8334 offsetT val = 0x240483f0ULL;
8335 p = frag_more (5);
8336 md_number_to_chars (p, val, 5);
8337 return;
8338 }
8339
d022bddd
IT
8340 /* Some processors fail on LOCK prefix. This options makes
8341 assembler ignore LOCK prefix and serves as a workaround. */
8342 if (omit_lock_prefix)
8343 {
8344 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8345 return;
8346 i.prefix[LOCK_PREFIX] = 0;
8347 }
8348
43234a1e
L
8349 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8350 don't need the explicit prefix. */
8351 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8352 {
c0f3af97 8353 switch (i.tm.opcode_length)
bc4bd9ab 8354 {
c0f3af97
L
8355 case 3:
8356 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8357 {
c0f3af97 8358 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8359 if (!i.tm.cpu_flags.bitfield.cpupadlock
8360 || prefix != REPE_PREFIX_OPCODE
8361 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8362 add_prefix (prefix);
c0f3af97
L
8363 }
8364 break;
8365 case 2:
8366 if ((i.tm.base_opcode & 0xff0000) != 0)
8367 {
8368 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8369 add_prefix (prefix);
4dffcebc 8370 }
c0f3af97
L
8371 break;
8372 case 1:
8373 break;
390c91cf
L
8374 case 0:
8375 /* Check for pseudo prefixes. */
8376 as_bad_where (insn_start_frag->fr_file,
8377 insn_start_frag->fr_line,
8378 _("pseudo prefix without instruction"));
8379 return;
c0f3af97
L
8380 default:
8381 abort ();
bc4bd9ab 8382 }
c0f3af97 8383
6d19a37a 8384#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8385 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8386 R_X86_64_GOTTPOFF relocation so that linker can safely
8387 perform IE->LE optimization. */
8388 if (x86_elf_abi == X86_64_X32_ABI
8389 && i.operands == 2
8390 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8391 && i.prefix[REX_PREFIX] == 0)
8392 add_prefix (REX_OPCODE);
6d19a37a 8393#endif
cf61b747 8394
c0f3af97
L
8395 /* The prefix bytes. */
8396 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8397 if (*q)
8398 FRAG_APPEND_1_CHAR (*q);
0f10071e 8399 }
ae5c1c7b 8400 else
c0f3af97
L
8401 {
8402 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8403 if (*q)
8404 switch (j)
8405 {
8406 case REX_PREFIX:
8407 /* REX byte is encoded in VEX prefix. */
8408 break;
8409 case SEG_PREFIX:
8410 case ADDR_PREFIX:
8411 FRAG_APPEND_1_CHAR (*q);
8412 break;
8413 default:
8414 /* There should be no other prefixes for instructions
8415 with VEX prefix. */
8416 abort ();
8417 }
8418
43234a1e
L
8419 /* For EVEX instructions i.vrex should become 0 after
8420 build_evex_prefix. For VEX instructions upper 16 registers
8421 aren't available, so VREX should be 0. */
8422 if (i.vrex)
8423 abort ();
c0f3af97
L
8424 /* Now the VEX prefix. */
8425 p = frag_more (i.vex.length);
8426 for (j = 0; j < i.vex.length; j++)
8427 p[j] = i.vex.bytes[j];
8428 }
252b5132 8429
29b0f896 8430 /* Now the opcode; be careful about word order here! */
4dffcebc 8431 if (i.tm.opcode_length == 1)
29b0f896
AM
8432 {
8433 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8434 }
8435 else
8436 {
4dffcebc 8437 switch (i.tm.opcode_length)
331d2d0d 8438 {
43234a1e
L
8439 case 4:
8440 p = frag_more (4);
8441 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8442 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8443 break;
4dffcebc 8444 case 3:
331d2d0d
L
8445 p = frag_more (3);
8446 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8447 break;
8448 case 2:
8449 p = frag_more (2);
8450 break;
8451 default:
8452 abort ();
8453 break;
331d2d0d 8454 }
0f10071e 8455
29b0f896
AM
8456 /* Put out high byte first: can't use md_number_to_chars! */
8457 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8458 *p = i.tm.base_opcode & 0xff;
8459 }
3e73aa7c 8460
29b0f896 8461 /* Now the modrm byte and sib byte (if present). */
40fb9820 8462 if (i.tm.opcode_modifier.modrm)
29b0f896 8463 {
4a3523fa
L
8464 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8465 | i.rm.reg << 3
8466 | i.rm.mode << 6));
29b0f896
AM
8467 /* If i.rm.regmem == ESP (4)
8468 && i.rm.mode != (Register mode)
8469 && not 16 bit
8470 ==> need second modrm byte. */
8471 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8472 && i.rm.mode != 3
dc821c5f 8473 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8474 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8475 | i.sib.index << 3
8476 | i.sib.scale << 6));
29b0f896 8477 }
3e73aa7c 8478
29b0f896 8479 if (i.disp_operands)
2bbd9c25 8480 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8481
29b0f896 8482 if (i.imm_operands)
2bbd9c25 8483 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8484
8485 /*
8486 * frag_now_fix () returning plain abs_section_offset when we're in the
8487 * absolute section, and abs_section_offset not getting updated as data
8488 * gets added to the frag breaks the logic below.
8489 */
8490 if (now_seg != absolute_section)
8491 {
8492 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8493 if (j > 15)
8494 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8495 j);
8496 }
29b0f896 8497 }
252b5132 8498
29b0f896
AM
8499#ifdef DEBUG386
8500 if (flag_debug)
8501 {
7b81dfbb 8502 pi ("" /*line*/, &i);
29b0f896
AM
8503 }
8504#endif /* DEBUG386 */
8505}
252b5132 8506
e205caa7
L
8507/* Return the size of the displacement operand N. */
8508
8509static int
8510disp_size (unsigned int n)
8511{
8512 int size = 4;
43234a1e 8513
b5014f7a 8514 if (i.types[n].bitfield.disp64)
40fb9820
L
8515 size = 8;
8516 else if (i.types[n].bitfield.disp8)
8517 size = 1;
8518 else if (i.types[n].bitfield.disp16)
8519 size = 2;
e205caa7
L
8520 return size;
8521}
8522
8523/* Return the size of the immediate operand N. */
8524
8525static int
8526imm_size (unsigned int n)
8527{
8528 int size = 4;
40fb9820
L
8529 if (i.types[n].bitfield.imm64)
8530 size = 8;
8531 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8532 size = 1;
8533 else if (i.types[n].bitfield.imm16)
8534 size = 2;
e205caa7
L
8535 return size;
8536}
8537
29b0f896 8538static void
64e74474 8539output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8540{
8541 char *p;
8542 unsigned int n;
252b5132 8543
29b0f896
AM
8544 for (n = 0; n < i.operands; n++)
8545 {
b5014f7a 8546 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8547 {
8548 if (i.op[n].disps->X_op == O_constant)
8549 {
e205caa7 8550 int size = disp_size (n);
43234a1e 8551 offsetT val = i.op[n].disps->X_add_number;
252b5132 8552
629cfaf1
JB
8553 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8554 size);
29b0f896
AM
8555 p = frag_more (size);
8556 md_number_to_chars (p, val, size);
8557 }
8558 else
8559 {
f86103b7 8560 enum bfd_reloc_code_real reloc_type;
e205caa7 8561 int size = disp_size (n);
40fb9820 8562 int sign = i.types[n].bitfield.disp32s;
29b0f896 8563 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8564 fixS *fixP;
29b0f896 8565
e205caa7 8566 /* We can't have 8 bit displacement here. */
9c2799c2 8567 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8568
29b0f896
AM
8569 /* The PC relative address is computed relative
8570 to the instruction boundary, so in case immediate
8571 fields follows, we need to adjust the value. */
8572 if (pcrel && i.imm_operands)
8573 {
29b0f896 8574 unsigned int n1;
e205caa7 8575 int sz = 0;
252b5132 8576
29b0f896 8577 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8578 if (operand_type_check (i.types[n1], imm))
252b5132 8579 {
e205caa7
L
8580 /* Only one immediate is allowed for PC
8581 relative address. */
9c2799c2 8582 gas_assert (sz == 0);
e205caa7
L
8583 sz = imm_size (n1);
8584 i.op[n].disps->X_add_number -= sz;
252b5132 8585 }
29b0f896 8586 /* We should find the immediate. */
9c2799c2 8587 gas_assert (sz != 0);
29b0f896 8588 }
520dc8e8 8589
29b0f896 8590 p = frag_more (size);
d258b828 8591 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8592 if (GOT_symbol
2bbd9c25 8593 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8594 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8595 || reloc_type == BFD_RELOC_X86_64_32S
8596 || (reloc_type == BFD_RELOC_64
8597 && object_64bit))
d6ab8113
JB
8598 && (i.op[n].disps->X_op == O_symbol
8599 || (i.op[n].disps->X_op == O_add
8600 && ((symbol_get_value_expression
8601 (i.op[n].disps->X_op_symbol)->X_op)
8602 == O_subtract))))
8603 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8604 {
4fa24527 8605 if (!object_64bit)
7b81dfbb
AJ
8606 {
8607 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8608 i.op[n].imms->X_add_number +=
8609 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8610 }
8611 else if (reloc_type == BFD_RELOC_64)
8612 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8613 else
7b81dfbb
AJ
8614 /* Don't do the adjustment for x86-64, as there
8615 the pcrel addressing is relative to the _next_
8616 insn, and that is taken care of in other code. */
d6ab8113 8617 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8618 }
02a86693
L
8619 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8620 size, i.op[n].disps, pcrel,
8621 reloc_type);
8622 /* Check for "call/jmp *mem", "mov mem, %reg",
8623 "test %reg, mem" and "binop mem, %reg" where binop
8624 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8625 instructions without data prefix. Always generate
8626 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8627 if (i.prefix[DATA_PREFIX] == 0
8628 && (generate_relax_relocations
8629 || (!object_64bit
8630 && i.rm.mode == 0
8631 && i.rm.regmem == 5))
0cb4071e
L
8632 && (i.rm.mode == 2
8633 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8634 && ((i.operands == 1
8635 && i.tm.base_opcode == 0xff
8636 && (i.rm.reg == 2 || i.rm.reg == 4))
8637 || (i.operands == 2
8638 && (i.tm.base_opcode == 0x8b
8639 || i.tm.base_opcode == 0x85
8640 || (i.tm.base_opcode & 0xc7) == 0x03))))
8641 {
8642 if (object_64bit)
8643 {
8644 fixP->fx_tcbit = i.rex != 0;
8645 if (i.base_reg
e968fc9b 8646 && (i.base_reg->reg_num == RegIP))
02a86693
L
8647 fixP->fx_tcbit2 = 1;
8648 }
8649 else
8650 fixP->fx_tcbit2 = 1;
8651 }
29b0f896
AM
8652 }
8653 }
8654 }
8655}
252b5132 8656
29b0f896 8657static void
64e74474 8658output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8659{
8660 char *p;
8661 unsigned int n;
252b5132 8662
29b0f896
AM
8663 for (n = 0; n < i.operands; n++)
8664 {
43234a1e
L
8665 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8666 if (i.rounding && (int) n == i.rounding->operand)
8667 continue;
8668
40fb9820 8669 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8670 {
8671 if (i.op[n].imms->X_op == O_constant)
8672 {
e205caa7 8673 int size = imm_size (n);
29b0f896 8674 offsetT val;
b4cac588 8675
29b0f896
AM
8676 val = offset_in_range (i.op[n].imms->X_add_number,
8677 size);
8678 p = frag_more (size);
8679 md_number_to_chars (p, val, size);
8680 }
8681 else
8682 {
8683 /* Not absolute_section.
8684 Need a 32-bit fixup (don't support 8bit
8685 non-absolute imms). Try to support other
8686 sizes ... */
f86103b7 8687 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8688 int size = imm_size (n);
8689 int sign;
29b0f896 8690
40fb9820 8691 if (i.types[n].bitfield.imm32s
a7d61044 8692 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8693 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8694 sign = 1;
e205caa7
L
8695 else
8696 sign = 0;
520dc8e8 8697
29b0f896 8698 p = frag_more (size);
d258b828 8699 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8700
2bbd9c25
JJ
8701 /* This is tough to explain. We end up with this one if we
8702 * have operands that look like
8703 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8704 * obtain the absolute address of the GOT, and it is strongly
8705 * preferable from a performance point of view to avoid using
8706 * a runtime relocation for this. The actual sequence of
8707 * instructions often look something like:
8708 *
8709 * call .L66
8710 * .L66:
8711 * popl %ebx
8712 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8713 *
8714 * The call and pop essentially return the absolute address
8715 * of the label .L66 and store it in %ebx. The linker itself
8716 * will ultimately change the first operand of the addl so
8717 * that %ebx points to the GOT, but to keep things simple, the
8718 * .o file must have this operand set so that it generates not
8719 * the absolute address of .L66, but the absolute address of
8720 * itself. This allows the linker itself simply treat a GOTPC
8721 * relocation as asking for a pcrel offset to the GOT to be
8722 * added in, and the addend of the relocation is stored in the
8723 * operand field for the instruction itself.
8724 *
8725 * Our job here is to fix the operand so that it would add
8726 * the correct offset so that %ebx would point to itself. The
8727 * thing that is tricky is that .-.L66 will point to the
8728 * beginning of the instruction, so we need to further modify
8729 * the operand so that it will point to itself. There are
8730 * other cases where you have something like:
8731 *
8732 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8733 *
8734 * and here no correction would be required. Internally in
8735 * the assembler we treat operands of this form as not being
8736 * pcrel since the '.' is explicitly mentioned, and I wonder
8737 * whether it would simplify matters to do it this way. Who
8738 * knows. In earlier versions of the PIC patches, the
8739 * pcrel_adjust field was used to store the correction, but
8740 * since the expression is not pcrel, I felt it would be
8741 * confusing to do it this way. */
8742
d6ab8113 8743 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8744 || reloc_type == BFD_RELOC_X86_64_32S
8745 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8746 && GOT_symbol
8747 && GOT_symbol == i.op[n].imms->X_add_symbol
8748 && (i.op[n].imms->X_op == O_symbol
8749 || (i.op[n].imms->X_op == O_add
8750 && ((symbol_get_value_expression
8751 (i.op[n].imms->X_op_symbol)->X_op)
8752 == O_subtract))))
8753 {
4fa24527 8754 if (!object_64bit)
d6ab8113 8755 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8756 else if (size == 4)
d6ab8113 8757 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8758 else if (size == 8)
8759 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8760 i.op[n].imms->X_add_number +=
8761 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8762 }
29b0f896
AM
8763 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8764 i.op[n].imms, 0, reloc_type);
8765 }
8766 }
8767 }
252b5132
RH
8768}
8769\f
d182319b
JB
8770/* x86_cons_fix_new is called via the expression parsing code when a
8771 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8772static int cons_sign = -1;
8773
8774void
e3bb37b5 8775x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8776 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8777{
d258b828 8778 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8779
8780#ifdef TE_PE
8781 if (exp->X_op == O_secrel)
8782 {
8783 exp->X_op = O_symbol;
8784 r = BFD_RELOC_32_SECREL;
8785 }
8786#endif
8787
8788 fix_new_exp (frag, off, len, exp, 0, r);
8789}
8790
357d1bd8
L
8791/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8792 purpose of the `.dc.a' internal pseudo-op. */
8793
8794int
8795x86_address_bytes (void)
8796{
8797 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8798 return 4;
8799 return stdoutput->arch_info->bits_per_address / 8;
8800}
8801
d382c579
TG
8802#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8803 || defined (LEX_AT)
d258b828 8804# define lex_got(reloc, adjust, types) NULL
718ddfc0 8805#else
f3c180ae
AM
8806/* Parse operands of the form
8807 <symbol>@GOTOFF+<nnn>
8808 and similar .plt or .got references.
8809
8810 If we find one, set up the correct relocation in RELOC and copy the
8811 input string, minus the `@GOTOFF' into a malloc'd buffer for
8812 parsing by the calling routine. Return this buffer, and if ADJUST
8813 is non-null set it to the length of the string we removed from the
8814 input line. Otherwise return NULL. */
8815static char *
91d6fa6a 8816lex_got (enum bfd_reloc_code_real *rel,
64e74474 8817 int *adjust,
d258b828 8818 i386_operand_type *types)
f3c180ae 8819{
7b81dfbb
AJ
8820 /* Some of the relocations depend on the size of what field is to
8821 be relocated. But in our callers i386_immediate and i386_displacement
8822 we don't yet know the operand size (this will be set by insn
8823 matching). Hence we record the word32 relocation here,
8824 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8825 static const struct {
8826 const char *str;
cff8d58a 8827 int len;
4fa24527 8828 const enum bfd_reloc_code_real rel[2];
40fb9820 8829 const i386_operand_type types64;
f3c180ae 8830 } gotrel[] = {
8ce3d284 8831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8832 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8833 BFD_RELOC_SIZE32 },
8834 OPERAND_TYPE_IMM32_64 },
8ce3d284 8835#endif
cff8d58a
L
8836 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8837 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8838 OPERAND_TYPE_IMM64 },
cff8d58a
L
8839 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8840 BFD_RELOC_X86_64_PLT32 },
40fb9820 8841 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8842 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8843 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8844 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8845 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8846 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8847 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8848 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8849 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8850 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8851 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8852 BFD_RELOC_X86_64_TLSGD },
40fb9820 8853 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8854 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8855 _dummy_first_bfd_reloc_code_real },
40fb9820 8856 OPERAND_TYPE_NONE },
cff8d58a
L
8857 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8858 BFD_RELOC_X86_64_TLSLD },
40fb9820 8859 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8860 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8861 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8862 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8863 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8864 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8865 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8866 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8867 _dummy_first_bfd_reloc_code_real },
40fb9820 8868 OPERAND_TYPE_NONE },
cff8d58a
L
8869 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8870 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8871 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8872 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8873 _dummy_first_bfd_reloc_code_real },
40fb9820 8874 OPERAND_TYPE_NONE },
cff8d58a
L
8875 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8876 _dummy_first_bfd_reloc_code_real },
40fb9820 8877 OPERAND_TYPE_NONE },
cff8d58a
L
8878 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8879 BFD_RELOC_X86_64_GOT32 },
40fb9820 8880 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8881 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8882 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8883 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8884 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8885 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8886 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8887 };
8888 char *cp;
8889 unsigned int j;
8890
d382c579 8891#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8892 if (!IS_ELF)
8893 return NULL;
d382c579 8894#endif
718ddfc0 8895
f3c180ae 8896 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8897 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8898 return NULL;
8899
47465058 8900 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8901 {
cff8d58a 8902 int len = gotrel[j].len;
28f81592 8903 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8904 {
4fa24527 8905 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8906 {
28f81592
AM
8907 int first, second;
8908 char *tmpbuf, *past_reloc;
f3c180ae 8909
91d6fa6a 8910 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8911
3956db08
JB
8912 if (types)
8913 {
8914 if (flag_code != CODE_64BIT)
40fb9820
L
8915 {
8916 types->bitfield.imm32 = 1;
8917 types->bitfield.disp32 = 1;
8918 }
3956db08
JB
8919 else
8920 *types = gotrel[j].types64;
8921 }
8922
8fd4256d 8923 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8924 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8925
28f81592 8926 /* The length of the first part of our input line. */
f3c180ae 8927 first = cp - input_line_pointer;
28f81592
AM
8928
8929 /* The second part goes from after the reloc token until
67c11a9b 8930 (and including) an end_of_line char or comma. */
28f81592 8931 past_reloc = cp + 1 + len;
67c11a9b
AM
8932 cp = past_reloc;
8933 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8934 ++cp;
8935 second = cp + 1 - past_reloc;
28f81592
AM
8936
8937 /* Allocate and copy string. The trailing NUL shouldn't
8938 be necessary, but be safe. */
add39d23 8939 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8940 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8941 if (second != 0 && *past_reloc != ' ')
8942 /* Replace the relocation token with ' ', so that
8943 errors like foo@GOTOFF1 will be detected. */
8944 tmpbuf[first++] = ' ';
af89796a
L
8945 else
8946 /* Increment length by 1 if the relocation token is
8947 removed. */
8948 len++;
8949 if (adjust)
8950 *adjust = len;
0787a12d
AM
8951 memcpy (tmpbuf + first, past_reloc, second);
8952 tmpbuf[first + second] = '\0';
f3c180ae
AM
8953 return tmpbuf;
8954 }
8955
4fa24527
JB
8956 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8957 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8958 return NULL;
8959 }
8960 }
8961
8962 /* Might be a symbol version string. Don't as_bad here. */
8963 return NULL;
8964}
4e4f7c87 8965#endif
f3c180ae 8966
a988325c
NC
8967#ifdef TE_PE
8968#ifdef lex_got
8969#undef lex_got
8970#endif
8971/* Parse operands of the form
8972 <symbol>@SECREL32+<nnn>
8973
8974 If we find one, set up the correct relocation in RELOC and copy the
8975 input string, minus the `@SECREL32' into a malloc'd buffer for
8976 parsing by the calling routine. Return this buffer, and if ADJUST
8977 is non-null set it to the length of the string we removed from the
34bca508
L
8978 input line. Otherwise return NULL.
8979
a988325c
NC
8980 This function is copied from the ELF version above adjusted for PE targets. */
8981
8982static char *
8983lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8984 int *adjust ATTRIBUTE_UNUSED,
d258b828 8985 i386_operand_type *types)
a988325c
NC
8986{
8987 static const struct
8988 {
8989 const char *str;
8990 int len;
8991 const enum bfd_reloc_code_real rel[2];
8992 const i386_operand_type types64;
8993 }
8994 gotrel[] =
8995 {
8996 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8997 BFD_RELOC_32_SECREL },
8998 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8999 };
9000
9001 char *cp;
9002 unsigned j;
9003
9004 for (cp = input_line_pointer; *cp != '@'; cp++)
9005 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9006 return NULL;
9007
9008 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9009 {
9010 int len = gotrel[j].len;
9011
9012 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9013 {
9014 if (gotrel[j].rel[object_64bit] != 0)
9015 {
9016 int first, second;
9017 char *tmpbuf, *past_reloc;
9018
9019 *rel = gotrel[j].rel[object_64bit];
9020 if (adjust)
9021 *adjust = len;
9022
9023 if (types)
9024 {
9025 if (flag_code != CODE_64BIT)
9026 {
9027 types->bitfield.imm32 = 1;
9028 types->bitfield.disp32 = 1;
9029 }
9030 else
9031 *types = gotrel[j].types64;
9032 }
9033
9034 /* The length of the first part of our input line. */
9035 first = cp - input_line_pointer;
9036
9037 /* The second part goes from after the reloc token until
9038 (and including) an end_of_line char or comma. */
9039 past_reloc = cp + 1 + len;
9040 cp = past_reloc;
9041 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9042 ++cp;
9043 second = cp + 1 - past_reloc;
9044
9045 /* Allocate and copy string. The trailing NUL shouldn't
9046 be necessary, but be safe. */
add39d23 9047 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9048 memcpy (tmpbuf, input_line_pointer, first);
9049 if (second != 0 && *past_reloc != ' ')
9050 /* Replace the relocation token with ' ', so that
9051 errors like foo@SECLREL321 will be detected. */
9052 tmpbuf[first++] = ' ';
9053 memcpy (tmpbuf + first, past_reloc, second);
9054 tmpbuf[first + second] = '\0';
9055 return tmpbuf;
9056 }
9057
9058 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9059 gotrel[j].str, 1 << (5 + object_64bit));
9060 return NULL;
9061 }
9062 }
9063
9064 /* Might be a symbol version string. Don't as_bad here. */
9065 return NULL;
9066}
9067
9068#endif /* TE_PE */
9069
62ebcb5c 9070bfd_reloc_code_real_type
e3bb37b5 9071x86_cons (expressionS *exp, int size)
f3c180ae 9072{
62ebcb5c
AM
9073 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9074
ee86248c
JB
9075 intel_syntax = -intel_syntax;
9076
3c7b9c2c 9077 exp->X_md = 0;
4fa24527 9078 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9079 {
9080 /* Handle @GOTOFF and the like in an expression. */
9081 char *save;
9082 char *gotfree_input_line;
4a57f2cf 9083 int adjust = 0;
f3c180ae
AM
9084
9085 save = input_line_pointer;
d258b828 9086 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9087 if (gotfree_input_line)
9088 input_line_pointer = gotfree_input_line;
9089
9090 expression (exp);
9091
9092 if (gotfree_input_line)
9093 {
9094 /* expression () has merrily parsed up to the end of line,
9095 or a comma - in the wrong buffer. Transfer how far
9096 input_line_pointer has moved to the right buffer. */
9097 input_line_pointer = (save
9098 + (input_line_pointer - gotfree_input_line)
9099 + adjust);
9100 free (gotfree_input_line);
3992d3b7
AM
9101 if (exp->X_op == O_constant
9102 || exp->X_op == O_absent
9103 || exp->X_op == O_illegal
0398aac5 9104 || exp->X_op == O_register
3992d3b7
AM
9105 || exp->X_op == O_big)
9106 {
9107 char c = *input_line_pointer;
9108 *input_line_pointer = 0;
9109 as_bad (_("missing or invalid expression `%s'"), save);
9110 *input_line_pointer = c;
9111 }
b9519cfe
L
9112 else if ((got_reloc == BFD_RELOC_386_PLT32
9113 || got_reloc == BFD_RELOC_X86_64_PLT32)
9114 && exp->X_op != O_symbol)
9115 {
9116 char c = *input_line_pointer;
9117 *input_line_pointer = 0;
9118 as_bad (_("invalid PLT expression `%s'"), save);
9119 *input_line_pointer = c;
9120 }
f3c180ae
AM
9121 }
9122 }
9123 else
9124 expression (exp);
ee86248c
JB
9125
9126 intel_syntax = -intel_syntax;
9127
9128 if (intel_syntax)
9129 i386_intel_simplify (exp);
62ebcb5c
AM
9130
9131 return got_reloc;
f3c180ae 9132}
f3c180ae 9133
9f32dd5b
L
9134static void
9135signed_cons (int size)
6482c264 9136{
d182319b
JB
9137 if (flag_code == CODE_64BIT)
9138 cons_sign = 1;
9139 cons (size);
9140 cons_sign = -1;
6482c264
NC
9141}
9142
d182319b 9143#ifdef TE_PE
6482c264 9144static void
7016a5d5 9145pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9146{
9147 expressionS exp;
9148
9149 do
9150 {
9151 expression (&exp);
9152 if (exp.X_op == O_symbol)
9153 exp.X_op = O_secrel;
9154
9155 emit_expr (&exp, 4);
9156 }
9157 while (*input_line_pointer++ == ',');
9158
9159 input_line_pointer--;
9160 demand_empty_rest_of_line ();
9161}
6482c264
NC
9162#endif
9163
43234a1e
L
9164/* Handle Vector operations. */
9165
9166static char *
9167check_VecOperations (char *op_string, char *op_end)
9168{
9169 const reg_entry *mask;
9170 const char *saved;
9171 char *end_op;
9172
9173 while (*op_string
9174 && (op_end == NULL || op_string < op_end))
9175 {
9176 saved = op_string;
9177 if (*op_string == '{')
9178 {
9179 op_string++;
9180
9181 /* Check broadcasts. */
9182 if (strncmp (op_string, "1to", 3) == 0)
9183 {
9184 int bcst_type;
9185
9186 if (i.broadcast)
9187 goto duplicated_vec_op;
9188
9189 op_string += 3;
9190 if (*op_string == '8')
8e6e0792 9191 bcst_type = 8;
b28d1bda 9192 else if (*op_string == '4')
8e6e0792 9193 bcst_type = 4;
b28d1bda 9194 else if (*op_string == '2')
8e6e0792 9195 bcst_type = 2;
43234a1e
L
9196 else if (*op_string == '1'
9197 && *(op_string+1) == '6')
9198 {
8e6e0792 9199 bcst_type = 16;
43234a1e
L
9200 op_string++;
9201 }
9202 else
9203 {
9204 as_bad (_("Unsupported broadcast: `%s'"), saved);
9205 return NULL;
9206 }
9207 op_string++;
9208
9209 broadcast_op.type = bcst_type;
9210 broadcast_op.operand = this_operand;
1f75763a 9211 broadcast_op.bytes = 0;
43234a1e
L
9212 i.broadcast = &broadcast_op;
9213 }
9214 /* Check masking operation. */
9215 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9216 {
9217 /* k0 can't be used for write mask. */
6d2cd6b2 9218 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9219 {
6d2cd6b2
JB
9220 as_bad (_("`%s%s' can't be used for write mask"),
9221 register_prefix, mask->reg_name);
43234a1e
L
9222 return NULL;
9223 }
9224
9225 if (!i.mask)
9226 {
9227 mask_op.mask = mask;
9228 mask_op.zeroing = 0;
9229 mask_op.operand = this_operand;
9230 i.mask = &mask_op;
9231 }
9232 else
9233 {
9234 if (i.mask->mask)
9235 goto duplicated_vec_op;
9236
9237 i.mask->mask = mask;
9238
9239 /* Only "{z}" is allowed here. No need to check
9240 zeroing mask explicitly. */
9241 if (i.mask->operand != this_operand)
9242 {
9243 as_bad (_("invalid write mask `%s'"), saved);
9244 return NULL;
9245 }
9246 }
9247
9248 op_string = end_op;
9249 }
9250 /* Check zeroing-flag for masking operation. */
9251 else if (*op_string == 'z')
9252 {
9253 if (!i.mask)
9254 {
9255 mask_op.mask = NULL;
9256 mask_op.zeroing = 1;
9257 mask_op.operand = this_operand;
9258 i.mask = &mask_op;
9259 }
9260 else
9261 {
9262 if (i.mask->zeroing)
9263 {
9264 duplicated_vec_op:
9265 as_bad (_("duplicated `%s'"), saved);
9266 return NULL;
9267 }
9268
9269 i.mask->zeroing = 1;
9270
9271 /* Only "{%k}" is allowed here. No need to check mask
9272 register explicitly. */
9273 if (i.mask->operand != this_operand)
9274 {
9275 as_bad (_("invalid zeroing-masking `%s'"),
9276 saved);
9277 return NULL;
9278 }
9279 }
9280
9281 op_string++;
9282 }
9283 else
9284 goto unknown_vec_op;
9285
9286 if (*op_string != '}')
9287 {
9288 as_bad (_("missing `}' in `%s'"), saved);
9289 return NULL;
9290 }
9291 op_string++;
0ba3a731
L
9292
9293 /* Strip whitespace since the addition of pseudo prefixes
9294 changed how the scrubber treats '{'. */
9295 if (is_space_char (*op_string))
9296 ++op_string;
9297
43234a1e
L
9298 continue;
9299 }
9300 unknown_vec_op:
9301 /* We don't know this one. */
9302 as_bad (_("unknown vector operation: `%s'"), saved);
9303 return NULL;
9304 }
9305
6d2cd6b2
JB
9306 if (i.mask && i.mask->zeroing && !i.mask->mask)
9307 {
9308 as_bad (_("zeroing-masking only allowed with write mask"));
9309 return NULL;
9310 }
9311
43234a1e
L
9312 return op_string;
9313}
9314
252b5132 9315static int
70e41ade 9316i386_immediate (char *imm_start)
252b5132
RH
9317{
9318 char *save_input_line_pointer;
f3c180ae 9319 char *gotfree_input_line;
252b5132 9320 segT exp_seg = 0;
47926f60 9321 expressionS *exp;
40fb9820
L
9322 i386_operand_type types;
9323
0dfbf9d7 9324 operand_type_set (&types, ~0);
252b5132
RH
9325
9326 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9327 {
31b2323c
L
9328 as_bad (_("at most %d immediate operands are allowed"),
9329 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9330 return 0;
9331 }
9332
9333 exp = &im_expressions[i.imm_operands++];
520dc8e8 9334 i.op[this_operand].imms = exp;
252b5132
RH
9335
9336 if (is_space_char (*imm_start))
9337 ++imm_start;
9338
9339 save_input_line_pointer = input_line_pointer;
9340 input_line_pointer = imm_start;
9341
d258b828 9342 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9343 if (gotfree_input_line)
9344 input_line_pointer = gotfree_input_line;
252b5132
RH
9345
9346 exp_seg = expression (exp);
9347
83183c0c 9348 SKIP_WHITESPACE ();
43234a1e
L
9349
9350 /* Handle vector operations. */
9351 if (*input_line_pointer == '{')
9352 {
9353 input_line_pointer = check_VecOperations (input_line_pointer,
9354 NULL);
9355 if (input_line_pointer == NULL)
9356 return 0;
9357 }
9358
252b5132 9359 if (*input_line_pointer)
f3c180ae 9360 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9361
9362 input_line_pointer = save_input_line_pointer;
f3c180ae 9363 if (gotfree_input_line)
ee86248c
JB
9364 {
9365 free (gotfree_input_line);
9366
9367 if (exp->X_op == O_constant || exp->X_op == O_register)
9368 exp->X_op = O_illegal;
9369 }
9370
9371 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9372}
252b5132 9373
ee86248c
JB
9374static int
9375i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9376 i386_operand_type types, const char *imm_start)
9377{
9378 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9379 {
313c53d1
L
9380 if (imm_start)
9381 as_bad (_("missing or invalid immediate expression `%s'"),
9382 imm_start);
3992d3b7 9383 return 0;
252b5132 9384 }
3e73aa7c 9385 else if (exp->X_op == O_constant)
252b5132 9386 {
47926f60 9387 /* Size it properly later. */
40fb9820 9388 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9389 /* If not 64bit, sign extend val. */
9390 if (flag_code != CODE_64BIT
4eed87de
AM
9391 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9392 exp->X_add_number
9393 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9394 }
4c63da97 9395#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9396 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9397 && exp_seg != absolute_section
47926f60 9398 && exp_seg != text_section
24eab124
AM
9399 && exp_seg != data_section
9400 && exp_seg != bss_section
9401 && exp_seg != undefined_section
f86103b7 9402 && !bfd_is_com_section (exp_seg))
252b5132 9403 {
d0b47220 9404 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9405 return 0;
9406 }
9407#endif
a841bdf5 9408 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9409 {
313c53d1
L
9410 if (imm_start)
9411 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9412 return 0;
9413 }
252b5132
RH
9414 else
9415 {
9416 /* This is an address. The size of the address will be
24eab124 9417 determined later, depending on destination register,
3e73aa7c 9418 suffix, or the default for the section. */
40fb9820
L
9419 i.types[this_operand].bitfield.imm8 = 1;
9420 i.types[this_operand].bitfield.imm16 = 1;
9421 i.types[this_operand].bitfield.imm32 = 1;
9422 i.types[this_operand].bitfield.imm32s = 1;
9423 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9424 i.types[this_operand] = operand_type_and (i.types[this_operand],
9425 types);
252b5132
RH
9426 }
9427
9428 return 1;
9429}
9430
551c1ca1 9431static char *
e3bb37b5 9432i386_scale (char *scale)
252b5132 9433{
551c1ca1
AM
9434 offsetT val;
9435 char *save = input_line_pointer;
252b5132 9436
551c1ca1
AM
9437 input_line_pointer = scale;
9438 val = get_absolute_expression ();
9439
9440 switch (val)
252b5132 9441 {
551c1ca1 9442 case 1:
252b5132
RH
9443 i.log2_scale_factor = 0;
9444 break;
551c1ca1 9445 case 2:
252b5132
RH
9446 i.log2_scale_factor = 1;
9447 break;
551c1ca1 9448 case 4:
252b5132
RH
9449 i.log2_scale_factor = 2;
9450 break;
551c1ca1 9451 case 8:
252b5132
RH
9452 i.log2_scale_factor = 3;
9453 break;
9454 default:
a724f0f4
JB
9455 {
9456 char sep = *input_line_pointer;
9457
9458 *input_line_pointer = '\0';
9459 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9460 scale);
9461 *input_line_pointer = sep;
9462 input_line_pointer = save;
9463 return NULL;
9464 }
252b5132 9465 }
29b0f896 9466 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9467 {
9468 as_warn (_("scale factor of %d without an index register"),
24eab124 9469 1 << i.log2_scale_factor);
252b5132 9470 i.log2_scale_factor = 0;
252b5132 9471 }
551c1ca1
AM
9472 scale = input_line_pointer;
9473 input_line_pointer = save;
9474 return scale;
252b5132
RH
9475}
9476
252b5132 9477static int
e3bb37b5 9478i386_displacement (char *disp_start, char *disp_end)
252b5132 9479{
29b0f896 9480 expressionS *exp;
252b5132
RH
9481 segT exp_seg = 0;
9482 char *save_input_line_pointer;
f3c180ae 9483 char *gotfree_input_line;
40fb9820
L
9484 int override;
9485 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9486 int ret;
252b5132 9487
31b2323c
L
9488 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9489 {
9490 as_bad (_("at most %d displacement operands are allowed"),
9491 MAX_MEMORY_OPERANDS);
9492 return 0;
9493 }
9494
0dfbf9d7 9495 operand_type_set (&bigdisp, 0);
40fb9820
L
9496 if ((i.types[this_operand].bitfield.jumpabsolute)
9497 || (!current_templates->start->opcode_modifier.jump
9498 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9499 {
40fb9820 9500 bigdisp.bitfield.disp32 = 1;
e05278af 9501 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9502 if (flag_code == CODE_64BIT)
9503 {
9504 if (!override)
9505 {
9506 bigdisp.bitfield.disp32s = 1;
9507 bigdisp.bitfield.disp64 = 1;
9508 }
9509 }
9510 else if ((flag_code == CODE_16BIT) ^ override)
9511 {
9512 bigdisp.bitfield.disp32 = 0;
9513 bigdisp.bitfield.disp16 = 1;
9514 }
e05278af
JB
9515 }
9516 else
9517 {
9518 /* For PC-relative branches, the width of the displacement
9519 is dependent upon data size, not address size. */
e05278af 9520 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9521 if (flag_code == CODE_64BIT)
9522 {
9523 if (override || i.suffix == WORD_MNEM_SUFFIX)
9524 bigdisp.bitfield.disp16 = 1;
9525 else
9526 {
9527 bigdisp.bitfield.disp32 = 1;
9528 bigdisp.bitfield.disp32s = 1;
9529 }
9530 }
9531 else
e05278af
JB
9532 {
9533 if (!override)
9534 override = (i.suffix == (flag_code != CODE_16BIT
9535 ? WORD_MNEM_SUFFIX
9536 : LONG_MNEM_SUFFIX));
40fb9820
L
9537 bigdisp.bitfield.disp32 = 1;
9538 if ((flag_code == CODE_16BIT) ^ override)
9539 {
9540 bigdisp.bitfield.disp32 = 0;
9541 bigdisp.bitfield.disp16 = 1;
9542 }
e05278af 9543 }
e05278af 9544 }
c6fb90c8
L
9545 i.types[this_operand] = operand_type_or (i.types[this_operand],
9546 bigdisp);
252b5132
RH
9547
9548 exp = &disp_expressions[i.disp_operands];
520dc8e8 9549 i.op[this_operand].disps = exp;
252b5132
RH
9550 i.disp_operands++;
9551 save_input_line_pointer = input_line_pointer;
9552 input_line_pointer = disp_start;
9553 END_STRING_AND_SAVE (disp_end);
9554
9555#ifndef GCC_ASM_O_HACK
9556#define GCC_ASM_O_HACK 0
9557#endif
9558#if GCC_ASM_O_HACK
9559 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9560 if (i.types[this_operand].bitfield.baseIndex
24eab124 9561 && displacement_string_end[-1] == '+')
252b5132
RH
9562 {
9563 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9564 constraint within gcc asm statements.
9565 For instance:
9566
9567 #define _set_tssldt_desc(n,addr,limit,type) \
9568 __asm__ __volatile__ ( \
9569 "movw %w2,%0\n\t" \
9570 "movw %w1,2+%0\n\t" \
9571 "rorl $16,%1\n\t" \
9572 "movb %b1,4+%0\n\t" \
9573 "movb %4,5+%0\n\t" \
9574 "movb $0,6+%0\n\t" \
9575 "movb %h1,7+%0\n\t" \
9576 "rorl $16,%1" \
9577 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9578
9579 This works great except that the output assembler ends
9580 up looking a bit weird if it turns out that there is
9581 no offset. You end up producing code that looks like:
9582
9583 #APP
9584 movw $235,(%eax)
9585 movw %dx,2+(%eax)
9586 rorl $16,%edx
9587 movb %dl,4+(%eax)
9588 movb $137,5+(%eax)
9589 movb $0,6+(%eax)
9590 movb %dh,7+(%eax)
9591 rorl $16,%edx
9592 #NO_APP
9593
47926f60 9594 So here we provide the missing zero. */
24eab124
AM
9595
9596 *displacement_string_end = '0';
252b5132
RH
9597 }
9598#endif
d258b828 9599 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9600 if (gotfree_input_line)
9601 input_line_pointer = gotfree_input_line;
252b5132 9602
24eab124 9603 exp_seg = expression (exp);
252b5132 9604
636c26b0
AM
9605 SKIP_WHITESPACE ();
9606 if (*input_line_pointer)
9607 as_bad (_("junk `%s' after expression"), input_line_pointer);
9608#if GCC_ASM_O_HACK
9609 RESTORE_END_STRING (disp_end + 1);
9610#endif
636c26b0 9611 input_line_pointer = save_input_line_pointer;
636c26b0 9612 if (gotfree_input_line)
ee86248c
JB
9613 {
9614 free (gotfree_input_line);
9615
9616 if (exp->X_op == O_constant || exp->X_op == O_register)
9617 exp->X_op = O_illegal;
9618 }
9619
9620 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9621
9622 RESTORE_END_STRING (disp_end);
9623
9624 return ret;
9625}
9626
9627static int
9628i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9629 i386_operand_type types, const char *disp_start)
9630{
9631 i386_operand_type bigdisp;
9632 int ret = 1;
636c26b0 9633
24eab124
AM
9634 /* We do this to make sure that the section symbol is in
9635 the symbol table. We will ultimately change the relocation
47926f60 9636 to be relative to the beginning of the section. */
1ae12ab7 9637 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9638 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9639 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9640 {
636c26b0 9641 if (exp->X_op != O_symbol)
3992d3b7 9642 goto inv_disp;
636c26b0 9643
e5cb08ac 9644 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9645 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9646 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9647 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9648 exp->X_op = O_subtract;
9649 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9650 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9651 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9652 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9653 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9654 else
29b0f896 9655 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9656 }
252b5132 9657
3992d3b7
AM
9658 else if (exp->X_op == O_absent
9659 || exp->X_op == O_illegal
ee86248c 9660 || exp->X_op == O_big)
2daf4fd8 9661 {
3992d3b7
AM
9662 inv_disp:
9663 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9664 disp_start);
3992d3b7 9665 ret = 0;
2daf4fd8
AM
9666 }
9667
0e1147d9
L
9668 else if (flag_code == CODE_64BIT
9669 && !i.prefix[ADDR_PREFIX]
9670 && exp->X_op == O_constant)
9671 {
9672 /* Since displacement is signed extended to 64bit, don't allow
9673 disp32 and turn off disp32s if they are out of range. */
9674 i.types[this_operand].bitfield.disp32 = 0;
9675 if (!fits_in_signed_long (exp->X_add_number))
9676 {
9677 i.types[this_operand].bitfield.disp32s = 0;
9678 if (i.types[this_operand].bitfield.baseindex)
9679 {
9680 as_bad (_("0x%lx out range of signed 32bit displacement"),
9681 (long) exp->X_add_number);
9682 ret = 0;
9683 }
9684 }
9685 }
9686
4c63da97 9687#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9688 else if (exp->X_op != O_constant
9689 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9690 && exp_seg != absolute_section
9691 && exp_seg != text_section
9692 && exp_seg != data_section
9693 && exp_seg != bss_section
9694 && exp_seg != undefined_section
9695 && !bfd_is_com_section (exp_seg))
24eab124 9696 {
d0b47220 9697 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9698 ret = 0;
24eab124 9699 }
252b5132 9700#endif
3956db08 9701
40fb9820
L
9702 /* Check if this is a displacement only operand. */
9703 bigdisp = i.types[this_operand];
9704 bigdisp.bitfield.disp8 = 0;
9705 bigdisp.bitfield.disp16 = 0;
9706 bigdisp.bitfield.disp32 = 0;
9707 bigdisp.bitfield.disp32s = 0;
9708 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9709 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9710 i.types[this_operand] = operand_type_and (i.types[this_operand],
9711 types);
3956db08 9712
3992d3b7 9713 return ret;
252b5132
RH
9714}
9715
2abc2bec
JB
9716/* Return the active addressing mode, taking address override and
9717 registers forming the address into consideration. Update the
9718 address override prefix if necessary. */
47926f60 9719
2abc2bec
JB
9720static enum flag_code
9721i386_addressing_mode (void)
252b5132 9722{
be05d201
L
9723 enum flag_code addr_mode;
9724
9725 if (i.prefix[ADDR_PREFIX])
9726 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9727 else
9728 {
9729 addr_mode = flag_code;
9730
24eab124 9731#if INFER_ADDR_PREFIX
be05d201
L
9732 if (i.mem_operands == 0)
9733 {
9734 /* Infer address prefix from the first memory operand. */
9735 const reg_entry *addr_reg = i.base_reg;
9736
9737 if (addr_reg == NULL)
9738 addr_reg = i.index_reg;
eecb386c 9739
be05d201
L
9740 if (addr_reg)
9741 {
e968fc9b 9742 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9743 addr_mode = CODE_32BIT;
9744 else if (flag_code != CODE_64BIT
dc821c5f 9745 && addr_reg->reg_type.bitfield.word)
be05d201
L
9746 addr_mode = CODE_16BIT;
9747
9748 if (addr_mode != flag_code)
9749 {
9750 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9751 i.prefixes += 1;
9752 /* Change the size of any displacement too. At most one
9753 of Disp16 or Disp32 is set.
9754 FIXME. There doesn't seem to be any real need for
9755 separate Disp16 and Disp32 flags. The same goes for
9756 Imm16 and Imm32. Removing them would probably clean
9757 up the code quite a lot. */
9758 if (flag_code != CODE_64BIT
9759 && (i.types[this_operand].bitfield.disp16
9760 || i.types[this_operand].bitfield.disp32))
9761 i.types[this_operand]
9762 = operand_type_xor (i.types[this_operand], disp16_32);
9763 }
9764 }
9765 }
24eab124 9766#endif
be05d201
L
9767 }
9768
2abc2bec
JB
9769 return addr_mode;
9770}
9771
9772/* Make sure the memory operand we've been dealt is valid.
9773 Return 1 on success, 0 on a failure. */
9774
9775static int
9776i386_index_check (const char *operand_string)
9777{
9778 const char *kind = "base/index";
9779 enum flag_code addr_mode = i386_addressing_mode ();
9780
fc0763e6 9781 if (current_templates->start->opcode_modifier.isstring
c3949f43 9782 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9783 && (current_templates->end[-1].opcode_modifier.isstring
9784 || i.mem_operands))
9785 {
9786 /* Memory operands of string insns are special in that they only allow
9787 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9788 const reg_entry *expected_reg;
9789 static const char *di_si[][2] =
9790 {
9791 { "esi", "edi" },
9792 { "si", "di" },
9793 { "rsi", "rdi" }
9794 };
9795 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9796
9797 kind = "string address";
9798
8325cc63 9799 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9800 {
9801 i386_operand_type type = current_templates->end[-1].operand_types[0];
9802
9803 if (!type.bitfield.baseindex
9804 || ((!i.mem_operands != !intel_syntax)
9805 && current_templates->end[-1].operand_types[1]
9806 .bitfield.baseindex))
9807 type = current_templates->end[-1].operand_types[1];
be05d201
L
9808 expected_reg = hash_find (reg_hash,
9809 di_si[addr_mode][type.bitfield.esseg]);
9810
fc0763e6
JB
9811 }
9812 else
be05d201 9813 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9814
be05d201
L
9815 if (i.base_reg != expected_reg
9816 || i.index_reg
fc0763e6 9817 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9818 {
be05d201
L
9819 /* The second memory operand must have the same size as
9820 the first one. */
9821 if (i.mem_operands
9822 && i.base_reg
9823 && !((addr_mode == CODE_64BIT
dc821c5f 9824 && i.base_reg->reg_type.bitfield.qword)
be05d201 9825 || (addr_mode == CODE_32BIT
dc821c5f
JB
9826 ? i.base_reg->reg_type.bitfield.dword
9827 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9828 goto bad_address;
9829
fc0763e6
JB
9830 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9831 operand_string,
9832 intel_syntax ? '[' : '(',
9833 register_prefix,
be05d201 9834 expected_reg->reg_name,
fc0763e6 9835 intel_syntax ? ']' : ')');
be05d201 9836 return 1;
fc0763e6 9837 }
be05d201
L
9838 else
9839 return 1;
9840
9841bad_address:
9842 as_bad (_("`%s' is not a valid %s expression"),
9843 operand_string, kind);
9844 return 0;
3e73aa7c
JH
9845 }
9846 else
9847 {
be05d201
L
9848 if (addr_mode != CODE_16BIT)
9849 {
9850 /* 32-bit/64-bit checks. */
9851 if ((i.base_reg
e968fc9b
JB
9852 && ((addr_mode == CODE_64BIT
9853 ? !i.base_reg->reg_type.bitfield.qword
9854 : !i.base_reg->reg_type.bitfield.dword)
9855 || (i.index_reg && i.base_reg->reg_num == RegIP)
9856 || i.base_reg->reg_num == RegIZ))
be05d201 9857 || (i.index_reg
1b54b8d7
JB
9858 && !i.index_reg->reg_type.bitfield.xmmword
9859 && !i.index_reg->reg_type.bitfield.ymmword
9860 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9861 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9862 ? !i.index_reg->reg_type.bitfield.qword
9863 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9864 || !i.index_reg->reg_type.bitfield.baseindex)))
9865 goto bad_address;
8178be5b
JB
9866
9867 /* bndmk, bndldx, and bndstx have special restrictions. */
9868 if (current_templates->start->base_opcode == 0xf30f1b
9869 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9870 {
9871 /* They cannot use RIP-relative addressing. */
e968fc9b 9872 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9873 {
9874 as_bad (_("`%s' cannot be used here"), operand_string);
9875 return 0;
9876 }
9877
9878 /* bndldx and bndstx ignore their scale factor. */
9879 if (current_templates->start->base_opcode != 0xf30f1b
9880 && i.log2_scale_factor)
9881 as_warn (_("register scaling is being ignored here"));
9882 }
be05d201
L
9883 }
9884 else
3e73aa7c 9885 {
be05d201 9886 /* 16-bit checks. */
3e73aa7c 9887 if ((i.base_reg
dc821c5f 9888 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9889 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9890 || (i.index_reg
dc821c5f 9891 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9892 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9893 || !(i.base_reg
9894 && i.base_reg->reg_num < 6
9895 && i.index_reg->reg_num >= 6
9896 && i.log2_scale_factor == 0))))
be05d201 9897 goto bad_address;
3e73aa7c
JH
9898 }
9899 }
be05d201 9900 return 1;
24eab124 9901}
252b5132 9902
43234a1e
L
9903/* Handle vector immediates. */
9904
9905static int
9906RC_SAE_immediate (const char *imm_start)
9907{
9908 unsigned int match_found, j;
9909 const char *pstr = imm_start;
9910 expressionS *exp;
9911
9912 if (*pstr != '{')
9913 return 0;
9914
9915 pstr++;
9916 match_found = 0;
9917 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9918 {
9919 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9920 {
9921 if (!i.rounding)
9922 {
9923 rc_op.type = RC_NamesTable[j].type;
9924 rc_op.operand = this_operand;
9925 i.rounding = &rc_op;
9926 }
9927 else
9928 {
9929 as_bad (_("duplicated `%s'"), imm_start);
9930 return 0;
9931 }
9932 pstr += RC_NamesTable[j].len;
9933 match_found = 1;
9934 break;
9935 }
9936 }
9937 if (!match_found)
9938 return 0;
9939
9940 if (*pstr++ != '}')
9941 {
9942 as_bad (_("Missing '}': '%s'"), imm_start);
9943 return 0;
9944 }
9945 /* RC/SAE immediate string should contain nothing more. */;
9946 if (*pstr != 0)
9947 {
9948 as_bad (_("Junk after '}': '%s'"), imm_start);
9949 return 0;
9950 }
9951
9952 exp = &im_expressions[i.imm_operands++];
9953 i.op[this_operand].imms = exp;
9954
9955 exp->X_op = O_constant;
9956 exp->X_add_number = 0;
9957 exp->X_add_symbol = (symbolS *) 0;
9958 exp->X_op_symbol = (symbolS *) 0;
9959
9960 i.types[this_operand].bitfield.imm8 = 1;
9961 return 1;
9962}
9963
8325cc63
JB
9964/* Only string instructions can have a second memory operand, so
9965 reduce current_templates to just those if it contains any. */
9966static int
9967maybe_adjust_templates (void)
9968{
9969 const insn_template *t;
9970
9971 gas_assert (i.mem_operands == 1);
9972
9973 for (t = current_templates->start; t < current_templates->end; ++t)
9974 if (t->opcode_modifier.isstring)
9975 break;
9976
9977 if (t < current_templates->end)
9978 {
9979 static templates aux_templates;
9980 bfd_boolean recheck;
9981
9982 aux_templates.start = t;
9983 for (; t < current_templates->end; ++t)
9984 if (!t->opcode_modifier.isstring)
9985 break;
9986 aux_templates.end = t;
9987
9988 /* Determine whether to re-check the first memory operand. */
9989 recheck = (aux_templates.start != current_templates->start
9990 || t != current_templates->end);
9991
9992 current_templates = &aux_templates;
9993
9994 if (recheck)
9995 {
9996 i.mem_operands = 0;
9997 if (i.memop1_string != NULL
9998 && i386_index_check (i.memop1_string) == 0)
9999 return 0;
10000 i.mem_operands = 1;
10001 }
10002 }
10003
10004 return 1;
10005}
10006
fc0763e6 10007/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10008 on error. */
252b5132 10009
252b5132 10010static int
a7619375 10011i386_att_operand (char *operand_string)
252b5132 10012{
af6bdddf
AM
10013 const reg_entry *r;
10014 char *end_op;
24eab124 10015 char *op_string = operand_string;
252b5132 10016
24eab124 10017 if (is_space_char (*op_string))
252b5132
RH
10018 ++op_string;
10019
24eab124 10020 /* We check for an absolute prefix (differentiating,
47926f60 10021 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10022 if (*op_string == ABSOLUTE_PREFIX)
10023 {
10024 ++op_string;
10025 if (is_space_char (*op_string))
10026 ++op_string;
40fb9820 10027 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10028 }
252b5132 10029
47926f60 10030 /* Check if operand is a register. */
4d1bb795 10031 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10032 {
40fb9820
L
10033 i386_operand_type temp;
10034
24eab124
AM
10035 /* Check for a segment override by searching for ':' after a
10036 segment register. */
10037 op_string = end_op;
10038 if (is_space_char (*op_string))
10039 ++op_string;
21df382b 10040 if (*op_string == ':' && r->reg_type.bitfield.sreg)
24eab124
AM
10041 {
10042 switch (r->reg_num)
10043 {
10044 case 0:
10045 i.seg[i.mem_operands] = &es;
10046 break;
10047 case 1:
10048 i.seg[i.mem_operands] = &cs;
10049 break;
10050 case 2:
10051 i.seg[i.mem_operands] = &ss;
10052 break;
10053 case 3:
10054 i.seg[i.mem_operands] = &ds;
10055 break;
10056 case 4:
10057 i.seg[i.mem_operands] = &fs;
10058 break;
10059 case 5:
10060 i.seg[i.mem_operands] = &gs;
10061 break;
10062 }
252b5132 10063
24eab124 10064 /* Skip the ':' and whitespace. */
252b5132
RH
10065 ++op_string;
10066 if (is_space_char (*op_string))
24eab124 10067 ++op_string;
252b5132 10068
24eab124
AM
10069 if (!is_digit_char (*op_string)
10070 && !is_identifier_char (*op_string)
10071 && *op_string != '('
10072 && *op_string != ABSOLUTE_PREFIX)
10073 {
10074 as_bad (_("bad memory operand `%s'"), op_string);
10075 return 0;
10076 }
47926f60 10077 /* Handle case of %es:*foo. */
24eab124
AM
10078 if (*op_string == ABSOLUTE_PREFIX)
10079 {
10080 ++op_string;
10081 if (is_space_char (*op_string))
10082 ++op_string;
40fb9820 10083 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10084 }
10085 goto do_memory_reference;
10086 }
43234a1e
L
10087
10088 /* Handle vector operations. */
10089 if (*op_string == '{')
10090 {
10091 op_string = check_VecOperations (op_string, NULL);
10092 if (op_string == NULL)
10093 return 0;
10094 }
10095
24eab124
AM
10096 if (*op_string)
10097 {
d0b47220 10098 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10099 return 0;
10100 }
40fb9820
L
10101 temp = r->reg_type;
10102 temp.bitfield.baseindex = 0;
c6fb90c8
L
10103 i.types[this_operand] = operand_type_or (i.types[this_operand],
10104 temp);
7d5e4556 10105 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10106 i.op[this_operand].regs = r;
24eab124
AM
10107 i.reg_operands++;
10108 }
af6bdddf
AM
10109 else if (*op_string == REGISTER_PREFIX)
10110 {
10111 as_bad (_("bad register name `%s'"), op_string);
10112 return 0;
10113 }
24eab124 10114 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10115 {
24eab124 10116 ++op_string;
40fb9820 10117 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10118 {
d0b47220 10119 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10120 return 0;
10121 }
10122 if (!i386_immediate (op_string))
10123 return 0;
10124 }
43234a1e
L
10125 else if (RC_SAE_immediate (operand_string))
10126 {
10127 /* If it is a RC or SAE immediate, do nothing. */
10128 ;
10129 }
24eab124
AM
10130 else if (is_digit_char (*op_string)
10131 || is_identifier_char (*op_string)
d02603dc 10132 || *op_string == '"'
e5cb08ac 10133 || *op_string == '(')
24eab124 10134 {
47926f60 10135 /* This is a memory reference of some sort. */
af6bdddf 10136 char *base_string;
252b5132 10137
47926f60 10138 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10139 char *displacement_string_start;
10140 char *displacement_string_end;
43234a1e 10141 char *vop_start;
252b5132 10142
24eab124 10143 do_memory_reference:
8325cc63
JB
10144 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10145 return 0;
24eab124 10146 if ((i.mem_operands == 1
40fb9820 10147 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10148 || i.mem_operands == 2)
10149 {
10150 as_bad (_("too many memory references for `%s'"),
10151 current_templates->start->name);
10152 return 0;
10153 }
252b5132 10154
24eab124
AM
10155 /* Check for base index form. We detect the base index form by
10156 looking for an ')' at the end of the operand, searching
10157 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10158 after the '('. */
af6bdddf 10159 base_string = op_string + strlen (op_string);
c3332e24 10160
43234a1e
L
10161 /* Handle vector operations. */
10162 vop_start = strchr (op_string, '{');
10163 if (vop_start && vop_start < base_string)
10164 {
10165 if (check_VecOperations (vop_start, base_string) == NULL)
10166 return 0;
10167 base_string = vop_start;
10168 }
10169
af6bdddf
AM
10170 --base_string;
10171 if (is_space_char (*base_string))
10172 --base_string;
252b5132 10173
47926f60 10174 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10175 displacement_string_start = op_string;
10176 displacement_string_end = base_string + 1;
252b5132 10177
24eab124
AM
10178 if (*base_string == ')')
10179 {
af6bdddf 10180 char *temp_string;
24eab124
AM
10181 unsigned int parens_balanced = 1;
10182 /* We've already checked that the number of left & right ()'s are
47926f60 10183 equal, so this loop will not be infinite. */
24eab124
AM
10184 do
10185 {
10186 base_string--;
10187 if (*base_string == ')')
10188 parens_balanced++;
10189 if (*base_string == '(')
10190 parens_balanced--;
10191 }
10192 while (parens_balanced);
c3332e24 10193
af6bdddf 10194 temp_string = base_string;
c3332e24 10195
24eab124 10196 /* Skip past '(' and whitespace. */
252b5132
RH
10197 ++base_string;
10198 if (is_space_char (*base_string))
24eab124 10199 ++base_string;
252b5132 10200
af6bdddf 10201 if (*base_string == ','
4eed87de
AM
10202 || ((i.base_reg = parse_register (base_string, &end_op))
10203 != NULL))
252b5132 10204 {
af6bdddf 10205 displacement_string_end = temp_string;
252b5132 10206
40fb9820 10207 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10208
af6bdddf 10209 if (i.base_reg)
24eab124 10210 {
24eab124
AM
10211 base_string = end_op;
10212 if (is_space_char (*base_string))
10213 ++base_string;
af6bdddf
AM
10214 }
10215
10216 /* There may be an index reg or scale factor here. */
10217 if (*base_string == ',')
10218 {
10219 ++base_string;
10220 if (is_space_char (*base_string))
10221 ++base_string;
10222
4eed87de
AM
10223 if ((i.index_reg = parse_register (base_string, &end_op))
10224 != NULL)
24eab124 10225 {
af6bdddf 10226 base_string = end_op;
24eab124
AM
10227 if (is_space_char (*base_string))
10228 ++base_string;
af6bdddf
AM
10229 if (*base_string == ',')
10230 {
10231 ++base_string;
10232 if (is_space_char (*base_string))
10233 ++base_string;
10234 }
e5cb08ac 10235 else if (*base_string != ')')
af6bdddf 10236 {
4eed87de
AM
10237 as_bad (_("expecting `,' or `)' "
10238 "after index register in `%s'"),
af6bdddf
AM
10239 operand_string);
10240 return 0;
10241 }
24eab124 10242 }
af6bdddf 10243 else if (*base_string == REGISTER_PREFIX)
24eab124 10244 {
f76bf5e0
L
10245 end_op = strchr (base_string, ',');
10246 if (end_op)
10247 *end_op = '\0';
af6bdddf 10248 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10249 return 0;
10250 }
252b5132 10251
47926f60 10252 /* Check for scale factor. */
551c1ca1 10253 if (*base_string != ')')
af6bdddf 10254 {
551c1ca1
AM
10255 char *end_scale = i386_scale (base_string);
10256
10257 if (!end_scale)
af6bdddf 10258 return 0;
24eab124 10259
551c1ca1 10260 base_string = end_scale;
af6bdddf
AM
10261 if (is_space_char (*base_string))
10262 ++base_string;
10263 if (*base_string != ')')
10264 {
4eed87de
AM
10265 as_bad (_("expecting `)' "
10266 "after scale factor in `%s'"),
af6bdddf
AM
10267 operand_string);
10268 return 0;
10269 }
10270 }
10271 else if (!i.index_reg)
24eab124 10272 {
4eed87de
AM
10273 as_bad (_("expecting index register or scale factor "
10274 "after `,'; got '%c'"),
af6bdddf 10275 *base_string);
24eab124
AM
10276 return 0;
10277 }
10278 }
af6bdddf 10279 else if (*base_string != ')')
24eab124 10280 {
4eed87de
AM
10281 as_bad (_("expecting `,' or `)' "
10282 "after base register in `%s'"),
af6bdddf 10283 operand_string);
24eab124
AM
10284 return 0;
10285 }
c3332e24 10286 }
af6bdddf 10287 else if (*base_string == REGISTER_PREFIX)
c3332e24 10288 {
f76bf5e0
L
10289 end_op = strchr (base_string, ',');
10290 if (end_op)
10291 *end_op = '\0';
af6bdddf 10292 as_bad (_("bad register name `%s'"), base_string);
24eab124 10293 return 0;
c3332e24 10294 }
24eab124
AM
10295 }
10296
10297 /* If there's an expression beginning the operand, parse it,
10298 assuming displacement_string_start and
10299 displacement_string_end are meaningful. */
10300 if (displacement_string_start != displacement_string_end)
10301 {
10302 if (!i386_displacement (displacement_string_start,
10303 displacement_string_end))
10304 return 0;
10305 }
10306
10307 /* Special case for (%dx) while doing input/output op. */
10308 if (i.base_reg
2fb5be8d 10309 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10310 && i.index_reg == 0
10311 && i.log2_scale_factor == 0
10312 && i.seg[i.mem_operands] == 0
40fb9820 10313 && !operand_type_check (i.types[this_operand], disp))
24eab124 10314 {
2fb5be8d 10315 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10316 return 1;
10317 }
10318
eecb386c
AM
10319 if (i386_index_check (operand_string) == 0)
10320 return 0;
c48dadc9 10321 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10322 if (i.mem_operands == 0)
10323 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10324 i.mem_operands++;
10325 }
10326 else
ce8a8b2f
AM
10327 {
10328 /* It's not a memory operand; argh! */
24eab124
AM
10329 as_bad (_("invalid char %s beginning operand %d `%s'"),
10330 output_invalid (*op_string),
10331 this_operand + 1,
10332 op_string);
10333 return 0;
10334 }
47926f60 10335 return 1; /* Normal return. */
252b5132
RH
10336}
10337\f
fa94de6b
RM
10338/* Calculate the maximum variable size (i.e., excluding fr_fix)
10339 that an rs_machine_dependent frag may reach. */
10340
10341unsigned int
10342i386_frag_max_var (fragS *frag)
10343{
10344 /* The only relaxable frags are for jumps.
10345 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10346 gas_assert (frag->fr_type == rs_machine_dependent);
10347 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10348}
10349
b084df0b
L
10350#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10351static int
8dcea932 10352elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10353{
10354 /* STT_GNU_IFUNC symbol must go through PLT. */
10355 if ((symbol_get_bfdsym (fr_symbol)->flags
10356 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10357 return 0;
10358
10359 if (!S_IS_EXTERNAL (fr_symbol))
10360 /* Symbol may be weak or local. */
10361 return !S_IS_WEAK (fr_symbol);
10362
8dcea932
L
10363 /* Global symbols with non-default visibility can't be preempted. */
10364 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10365 return 1;
10366
10367 if (fr_var != NO_RELOC)
10368 switch ((enum bfd_reloc_code_real) fr_var)
10369 {
10370 case BFD_RELOC_386_PLT32:
10371 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10372 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10373 return 0;
10374 default:
10375 abort ();
10376 }
10377
b084df0b
L
10378 /* Global symbols with default visibility in a shared library may be
10379 preempted by another definition. */
8dcea932 10380 return !shared;
b084df0b
L
10381}
10382#endif
10383
ee7fcc42
AM
10384/* md_estimate_size_before_relax()
10385
10386 Called just before relax() for rs_machine_dependent frags. The x86
10387 assembler uses these frags to handle variable size jump
10388 instructions.
10389
10390 Any symbol that is now undefined will not become defined.
10391 Return the correct fr_subtype in the frag.
10392 Return the initial "guess for variable size of frag" to caller.
10393 The guess is actually the growth beyond the fixed part. Whatever
10394 we do to grow the fixed or variable part contributes to our
10395 returned value. */
10396
252b5132 10397int
7016a5d5 10398md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10399{
252b5132 10400 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10401 check for un-relaxable symbols. On an ELF system, we can't relax
10402 an externally visible symbol, because it may be overridden by a
10403 shared library. */
10404 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10405#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10406 || (IS_ELF
8dcea932
L
10407 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10408 fragP->fr_var))
fbeb56a4
DK
10409#endif
10410#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10411 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10412 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10413#endif
10414 )
252b5132 10415 {
b98ef147
AM
10416 /* Symbol is undefined in this segment, or we need to keep a
10417 reloc so that weak symbols can be overridden. */
10418 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10419 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10420 unsigned char *opcode;
10421 int old_fr_fix;
f6af82bd 10422
ee7fcc42 10423 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10424 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10425 else if (size == 2)
f6af82bd 10426 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10427#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10428 else if (need_plt32_p (fragP->fr_symbol))
10429 reloc_type = BFD_RELOC_X86_64_PLT32;
10430#endif
f6af82bd
AM
10431 else
10432 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10433
ee7fcc42
AM
10434 old_fr_fix = fragP->fr_fix;
10435 opcode = (unsigned char *) fragP->fr_opcode;
10436
fddf5b5b 10437 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10438 {
fddf5b5b
AM
10439 case UNCOND_JUMP:
10440 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10441 opcode[0] = 0xe9;
252b5132 10442 fragP->fr_fix += size;
062cd5e7
AS
10443 fix_new (fragP, old_fr_fix, size,
10444 fragP->fr_symbol,
10445 fragP->fr_offset, 1,
10446 reloc_type);
252b5132
RH
10447 break;
10448
fddf5b5b 10449 case COND_JUMP86:
412167cb
AM
10450 if (size == 2
10451 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10452 {
10453 /* Negate the condition, and branch past an
10454 unconditional jump. */
10455 opcode[0] ^= 1;
10456 opcode[1] = 3;
10457 /* Insert an unconditional jump. */
10458 opcode[2] = 0xe9;
10459 /* We added two extra opcode bytes, and have a two byte
10460 offset. */
10461 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10462 fix_new (fragP, old_fr_fix + 2, 2,
10463 fragP->fr_symbol,
10464 fragP->fr_offset, 1,
10465 reloc_type);
fddf5b5b
AM
10466 break;
10467 }
10468 /* Fall through. */
10469
10470 case COND_JUMP:
412167cb
AM
10471 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10472 {
3e02c1cc
AM
10473 fixS *fixP;
10474
412167cb 10475 fragP->fr_fix += 1;
3e02c1cc
AM
10476 fixP = fix_new (fragP, old_fr_fix, 1,
10477 fragP->fr_symbol,
10478 fragP->fr_offset, 1,
10479 BFD_RELOC_8_PCREL);
10480 fixP->fx_signed = 1;
412167cb
AM
10481 break;
10482 }
93c2a809 10483
24eab124 10484 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10485 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10486 opcode[1] = opcode[0] + 0x10;
f6af82bd 10487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10488 /* We've added an opcode byte. */
10489 fragP->fr_fix += 1 + size;
062cd5e7
AS
10490 fix_new (fragP, old_fr_fix + 1, size,
10491 fragP->fr_symbol,
10492 fragP->fr_offset, 1,
10493 reloc_type);
252b5132 10494 break;
fddf5b5b
AM
10495
10496 default:
10497 BAD_CASE (fragP->fr_subtype);
10498 break;
252b5132
RH
10499 }
10500 frag_wane (fragP);
ee7fcc42 10501 return fragP->fr_fix - old_fr_fix;
252b5132 10502 }
93c2a809 10503
93c2a809
AM
10504 /* Guess size depending on current relax state. Initially the relax
10505 state will correspond to a short jump and we return 1, because
10506 the variable part of the frag (the branch offset) is one byte
10507 long. However, we can relax a section more than once and in that
10508 case we must either set fr_subtype back to the unrelaxed state,
10509 or return the value for the appropriate branch. */
10510 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10511}
10512
47926f60
KH
10513/* Called after relax() is finished.
10514
10515 In: Address of frag.
10516 fr_type == rs_machine_dependent.
10517 fr_subtype is what the address relaxed to.
10518
10519 Out: Any fixSs and constants are set up.
10520 Caller will turn frag into a ".space 0". */
10521
252b5132 10522void
7016a5d5
TG
10523md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10524 fragS *fragP)
252b5132 10525{
29b0f896 10526 unsigned char *opcode;
252b5132 10527 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10528 offsetT target_address;
10529 offsetT opcode_address;
252b5132 10530 unsigned int extension = 0;
847f7ad4 10531 offsetT displacement_from_opcode_start;
252b5132
RH
10532
10533 opcode = (unsigned char *) fragP->fr_opcode;
10534
47926f60 10535 /* Address we want to reach in file space. */
252b5132 10536 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10537
47926f60 10538 /* Address opcode resides at in file space. */
252b5132
RH
10539 opcode_address = fragP->fr_address + fragP->fr_fix;
10540
47926f60 10541 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10542 displacement_from_opcode_start = target_address - opcode_address;
10543
fddf5b5b 10544 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10545 {
47926f60
KH
10546 /* Don't have to change opcode. */
10547 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10548 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10549 }
10550 else
10551 {
10552 if (no_cond_jump_promotion
10553 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10554 as_warn_where (fragP->fr_file, fragP->fr_line,
10555 _("long jump required"));
252b5132 10556
fddf5b5b
AM
10557 switch (fragP->fr_subtype)
10558 {
10559 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10560 extension = 4; /* 1 opcode + 4 displacement */
10561 opcode[0] = 0xe9;
10562 where_to_put_displacement = &opcode[1];
10563 break;
252b5132 10564
fddf5b5b
AM
10565 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10566 extension = 2; /* 1 opcode + 2 displacement */
10567 opcode[0] = 0xe9;
10568 where_to_put_displacement = &opcode[1];
10569 break;
252b5132 10570
fddf5b5b
AM
10571 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10572 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10573 extension = 5; /* 2 opcode + 4 displacement */
10574 opcode[1] = opcode[0] + 0x10;
10575 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10576 where_to_put_displacement = &opcode[2];
10577 break;
252b5132 10578
fddf5b5b
AM
10579 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10580 extension = 3; /* 2 opcode + 2 displacement */
10581 opcode[1] = opcode[0] + 0x10;
10582 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10583 where_to_put_displacement = &opcode[2];
10584 break;
252b5132 10585
fddf5b5b
AM
10586 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10587 extension = 4;
10588 opcode[0] ^= 1;
10589 opcode[1] = 3;
10590 opcode[2] = 0xe9;
10591 where_to_put_displacement = &opcode[3];
10592 break;
10593
10594 default:
10595 BAD_CASE (fragP->fr_subtype);
10596 break;
10597 }
252b5132 10598 }
fddf5b5b 10599
7b81dfbb
AJ
10600 /* If size if less then four we are sure that the operand fits,
10601 but if it's 4, then it could be that the displacement is larger
10602 then -/+ 2GB. */
10603 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10604 && object_64bit
10605 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10606 + ((addressT) 1 << 31))
10607 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10608 {
10609 as_bad_where (fragP->fr_file, fragP->fr_line,
10610 _("jump target out of range"));
10611 /* Make us emit 0. */
10612 displacement_from_opcode_start = extension;
10613 }
47926f60 10614 /* Now put displacement after opcode. */
252b5132
RH
10615 md_number_to_chars ((char *) where_to_put_displacement,
10616 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10617 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10618 fragP->fr_fix += extension;
10619}
10620\f
7016a5d5 10621/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10622 by our caller that we have all the info we need to fix it up.
10623
7016a5d5
TG
10624 Parameter valP is the pointer to the value of the bits.
10625
252b5132
RH
10626 On the 386, immediates, displacements, and data pointers are all in
10627 the same (little-endian) format, so we don't need to care about which
10628 we are handling. */
10629
94f592af 10630void
7016a5d5 10631md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10632{
94f592af 10633 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10634 valueT value = *valP;
252b5132 10635
f86103b7 10636#if !defined (TE_Mach)
93382f6d
AM
10637 if (fixP->fx_pcrel)
10638 {
10639 switch (fixP->fx_r_type)
10640 {
5865bb77
ILT
10641 default:
10642 break;
10643
d6ab8113
JB
10644 case BFD_RELOC_64:
10645 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10646 break;
93382f6d 10647 case BFD_RELOC_32:
ae8887b5 10648 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10649 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10650 break;
10651 case BFD_RELOC_16:
10652 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10653 break;
10654 case BFD_RELOC_8:
10655 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10656 break;
10657 }
10658 }
252b5132 10659
a161fe53 10660 if (fixP->fx_addsy != NULL
31312f95 10661 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10662 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10663 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10664 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10665 && !use_rela_relocations)
252b5132 10666 {
31312f95
AM
10667 /* This is a hack. There should be a better way to handle this.
10668 This covers for the fact that bfd_install_relocation will
10669 subtract the current location (for partial_inplace, PC relative
10670 relocations); see more below. */
252b5132 10671#ifndef OBJ_AOUT
718ddfc0 10672 if (IS_ELF
252b5132
RH
10673#ifdef TE_PE
10674 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10675#endif
10676 )
10677 value += fixP->fx_where + fixP->fx_frag->fr_address;
10678#endif
10679#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10680 if (IS_ELF)
252b5132 10681 {
6539b54b 10682 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10683
6539b54b 10684 if ((sym_seg == seg
2f66722d 10685 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10686 && sym_seg != absolute_section))
af65af87 10687 && !generic_force_reloc (fixP))
2f66722d
AM
10688 {
10689 /* Yes, we add the values in twice. This is because
6539b54b
AM
10690 bfd_install_relocation subtracts them out again. I think
10691 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10692 it. FIXME. */
10693 value += fixP->fx_where + fixP->fx_frag->fr_address;
10694 }
252b5132
RH
10695 }
10696#endif
10697#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10698 /* For some reason, the PE format does not store a
10699 section address offset for a PC relative symbol. */
10700 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10701 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10702 value += md_pcrel_from (fixP);
10703#endif
10704 }
fbeb56a4 10705#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10706 if (fixP->fx_addsy != NULL
10707 && S_IS_WEAK (fixP->fx_addsy)
10708 /* PR 16858: Do not modify weak function references. */
10709 && ! fixP->fx_pcrel)
fbeb56a4 10710 {
296a8689
NC
10711#if !defined (TE_PEP)
10712 /* For x86 PE weak function symbols are neither PC-relative
10713 nor do they set S_IS_FUNCTION. So the only reliable way
10714 to detect them is to check the flags of their containing
10715 section. */
10716 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10717 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10718 ;
10719 else
10720#endif
fbeb56a4
DK
10721 value -= S_GET_VALUE (fixP->fx_addsy);
10722 }
10723#endif
252b5132
RH
10724
10725 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10726 and we must not disappoint it. */
252b5132 10727#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10728 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10729 switch (fixP->fx_r_type)
10730 {
10731 case BFD_RELOC_386_PLT32:
3e73aa7c 10732 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10733 /* Make the jump instruction point to the address of the operand.
10734 At runtime we merely add the offset to the actual PLT entry.
10735 NB: Subtract the offset size only for jump instructions. */
10736 if (fixP->fx_pcrel)
10737 value = -4;
47926f60 10738 break;
31312f95 10739
13ae64f3
JJ
10740 case BFD_RELOC_386_TLS_GD:
10741 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10742 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10743 case BFD_RELOC_386_TLS_IE:
10744 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10745 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10746 case BFD_RELOC_X86_64_TLSGD:
10747 case BFD_RELOC_X86_64_TLSLD:
10748 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10749 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10750 value = 0; /* Fully resolved at runtime. No addend. */
10751 /* Fallthrough */
10752 case BFD_RELOC_386_TLS_LE:
10753 case BFD_RELOC_386_TLS_LDO_32:
10754 case BFD_RELOC_386_TLS_LE_32:
10755 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10756 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10757 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10758 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10759 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10760 break;
10761
67a4f2b7
AO
10762 case BFD_RELOC_386_TLS_DESC_CALL:
10763 case BFD_RELOC_X86_64_TLSDESC_CALL:
10764 value = 0; /* Fully resolved at runtime. No addend. */
10765 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10766 fixP->fx_done = 0;
10767 return;
10768
47926f60
KH
10769 case BFD_RELOC_VTABLE_INHERIT:
10770 case BFD_RELOC_VTABLE_ENTRY:
10771 fixP->fx_done = 0;
94f592af 10772 return;
47926f60
KH
10773
10774 default:
10775 break;
10776 }
10777#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10778 *valP = value;
f86103b7 10779#endif /* !defined (TE_Mach) */
3e73aa7c 10780
3e73aa7c 10781 /* Are we finished with this relocation now? */
c6682705 10782 if (fixP->fx_addsy == NULL)
3e73aa7c 10783 fixP->fx_done = 1;
fbeb56a4
DK
10784#if defined (OBJ_COFF) && defined (TE_PE)
10785 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10786 {
10787 fixP->fx_done = 0;
10788 /* Remember value for tc_gen_reloc. */
10789 fixP->fx_addnumber = value;
10790 /* Clear out the frag for now. */
10791 value = 0;
10792 }
10793#endif
3e73aa7c
JH
10794 else if (use_rela_relocations)
10795 {
10796 fixP->fx_no_overflow = 1;
062cd5e7
AS
10797 /* Remember value for tc_gen_reloc. */
10798 fixP->fx_addnumber = value;
3e73aa7c
JH
10799 value = 0;
10800 }
f86103b7 10801
94f592af 10802 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10803}
252b5132 10804\f
6d4af3c2 10805const char *
499ac353 10806md_atof (int type, char *litP, int *sizeP)
252b5132 10807{
499ac353
NC
10808 /* This outputs the LITTLENUMs in REVERSE order;
10809 in accord with the bigendian 386. */
10810 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10811}
10812\f
2d545b82 10813static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10814
252b5132 10815static char *
e3bb37b5 10816output_invalid (int c)
252b5132 10817{
3882b010 10818 if (ISPRINT (c))
f9f21a03
L
10819 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10820 "'%c'", c);
252b5132 10821 else
f9f21a03 10822 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10823 "(0x%x)", (unsigned char) c);
252b5132
RH
10824 return output_invalid_buf;
10825}
10826
af6bdddf 10827/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10828
10829static const reg_entry *
4d1bb795 10830parse_real_register (char *reg_string, char **end_op)
252b5132 10831{
af6bdddf
AM
10832 char *s = reg_string;
10833 char *p;
252b5132
RH
10834 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10835 const reg_entry *r;
10836
10837 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10838 if (*s == REGISTER_PREFIX)
10839 ++s;
10840
10841 if (is_space_char (*s))
10842 ++s;
10843
10844 p = reg_name_given;
af6bdddf 10845 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10846 {
10847 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10848 return (const reg_entry *) NULL;
10849 s++;
252b5132
RH
10850 }
10851
6588847e
DN
10852 /* For naked regs, make sure that we are not dealing with an identifier.
10853 This prevents confusing an identifier like `eax_var' with register
10854 `eax'. */
10855 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10856 return (const reg_entry *) NULL;
10857
af6bdddf 10858 *end_op = s;
252b5132
RH
10859
10860 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10861
5f47d35b 10862 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10863 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10864 {
0e0eea78
JB
10865 if (!cpu_arch_flags.bitfield.cpu8087
10866 && !cpu_arch_flags.bitfield.cpu287
10867 && !cpu_arch_flags.bitfield.cpu387)
10868 return (const reg_entry *) NULL;
10869
5f47d35b
AM
10870 if (is_space_char (*s))
10871 ++s;
10872 if (*s == '(')
10873 {
af6bdddf 10874 ++s;
5f47d35b
AM
10875 if (is_space_char (*s))
10876 ++s;
10877 if (*s >= '0' && *s <= '7')
10878 {
db557034 10879 int fpr = *s - '0';
af6bdddf 10880 ++s;
5f47d35b
AM
10881 if (is_space_char (*s))
10882 ++s;
10883 if (*s == ')')
10884 {
10885 *end_op = s + 1;
1e9cc1c2 10886 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10887 know (r);
10888 return r + fpr;
5f47d35b 10889 }
5f47d35b 10890 }
47926f60 10891 /* We have "%st(" then garbage. */
5f47d35b
AM
10892 return (const reg_entry *) NULL;
10893 }
10894 }
10895
a60de03c
JB
10896 if (r == NULL || allow_pseudo_reg)
10897 return r;
10898
0dfbf9d7 10899 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10900 return (const reg_entry *) NULL;
10901
dc821c5f 10902 if ((r->reg_type.bitfield.dword
21df382b 10903 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
192dc9c6
JB
10904 || r->reg_type.bitfield.control
10905 || r->reg_type.bitfield.debug
10906 || r->reg_type.bitfield.test)
10907 && !cpu_arch_flags.bitfield.cpui386)
10908 return (const reg_entry *) NULL;
10909
6e041cf4 10910 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10911 return (const reg_entry *) NULL;
10912
6e041cf4
JB
10913 if (!cpu_arch_flags.bitfield.cpuavx512f)
10914 {
10915 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10916 return (const reg_entry *) NULL;
40f12533 10917
6e041cf4
JB
10918 if (!cpu_arch_flags.bitfield.cpuavx)
10919 {
10920 if (r->reg_type.bitfield.ymmword)
10921 return (const reg_entry *) NULL;
1848e567 10922
6e041cf4
JB
10923 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10924 return (const reg_entry *) NULL;
10925 }
10926 }
43234a1e 10927
1adf7f56
JB
10928 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10929 return (const reg_entry *) NULL;
10930
db51cc60 10931 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10932 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10933 return (const reg_entry *) NULL;
10934
1d3f8286
JB
10935 /* Upper 16 vector registers are only available with VREX in 64bit
10936 mode, and require EVEX encoding. */
10937 if (r->reg_flags & RegVRex)
43234a1e 10938 {
e951d5ca 10939 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10940 || flag_code != CODE_64BIT)
10941 return (const reg_entry *) NULL;
1d3f8286
JB
10942
10943 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10944 }
10945
4787f4a5
JB
10946 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10947 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10948 && flag_code != CODE_64BIT)
20f0a1fc 10949 return (const reg_entry *) NULL;
1ae00879 10950
21df382b 10951 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
b7240065
JB
10952 return (const reg_entry *) NULL;
10953
252b5132
RH
10954 return r;
10955}
4d1bb795
JB
10956
10957/* REG_STRING starts *before* REGISTER_PREFIX. */
10958
10959static const reg_entry *
10960parse_register (char *reg_string, char **end_op)
10961{
10962 const reg_entry *r;
10963
10964 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10965 r = parse_real_register (reg_string, end_op);
10966 else
10967 r = NULL;
10968 if (!r)
10969 {
10970 char *save = input_line_pointer;
10971 char c;
10972 symbolS *symbolP;
10973
10974 input_line_pointer = reg_string;
d02603dc 10975 c = get_symbol_name (&reg_string);
4d1bb795
JB
10976 symbolP = symbol_find (reg_string);
10977 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10978 {
10979 const expressionS *e = symbol_get_value_expression (symbolP);
10980
0398aac5 10981 know (e->X_op == O_register);
4eed87de 10982 know (e->X_add_number >= 0
c3fe08fa 10983 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10984 r = i386_regtab + e->X_add_number;
d3bb6b49 10985 if ((r->reg_flags & RegVRex))
86fa6981 10986 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10987 *end_op = input_line_pointer;
10988 }
10989 *input_line_pointer = c;
10990 input_line_pointer = save;
10991 }
10992 return r;
10993}
10994
10995int
10996i386_parse_name (char *name, expressionS *e, char *nextcharP)
10997{
10998 const reg_entry *r;
10999 char *end = input_line_pointer;
11000
11001 *end = *nextcharP;
11002 r = parse_register (name, &input_line_pointer);
11003 if (r && end <= input_line_pointer)
11004 {
11005 *nextcharP = *input_line_pointer;
11006 *input_line_pointer = 0;
11007 e->X_op = O_register;
11008 e->X_add_number = r - i386_regtab;
11009 return 1;
11010 }
11011 input_line_pointer = end;
11012 *end = 0;
ee86248c 11013 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11014}
11015
11016void
11017md_operand (expressionS *e)
11018{
ee86248c
JB
11019 char *end;
11020 const reg_entry *r;
4d1bb795 11021
ee86248c
JB
11022 switch (*input_line_pointer)
11023 {
11024 case REGISTER_PREFIX:
11025 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11026 if (r)
11027 {
11028 e->X_op = O_register;
11029 e->X_add_number = r - i386_regtab;
11030 input_line_pointer = end;
11031 }
ee86248c
JB
11032 break;
11033
11034 case '[':
9c2799c2 11035 gas_assert (intel_syntax);
ee86248c
JB
11036 end = input_line_pointer++;
11037 expression (e);
11038 if (*input_line_pointer == ']')
11039 {
11040 ++input_line_pointer;
11041 e->X_op_symbol = make_expr_symbol (e);
11042 e->X_add_symbol = NULL;
11043 e->X_add_number = 0;
11044 e->X_op = O_index;
11045 }
11046 else
11047 {
11048 e->X_op = O_absent;
11049 input_line_pointer = end;
11050 }
11051 break;
4d1bb795
JB
11052 }
11053}
11054
252b5132 11055\f
4cc782b5 11056#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11057const char *md_shortopts = "kVQ:sqnO::";
252b5132 11058#else
b6f8c7c4 11059const char *md_shortopts = "qnO::";
252b5132 11060#endif
6e0b89ee 11061
3e73aa7c 11062#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11063#define OPTION_64 (OPTION_MD_BASE + 1)
11064#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11065#define OPTION_MARCH (OPTION_MD_BASE + 3)
11066#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11067#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11068#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11069#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11070#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11071#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11072#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11073#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11074#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11075#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11076#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11077#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11078#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11079#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11080#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11081#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11082#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11083#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11084#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11085#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11086#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11087#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11088#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11089
99ad8390
NC
11090struct option md_longopts[] =
11091{
3e73aa7c 11092 {"32", no_argument, NULL, OPTION_32},
321098a5 11093#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11094 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11095 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11096#endif
11097#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11098 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11099 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11100 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11101#endif
b3b91714 11102 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11103 {"march", required_argument, NULL, OPTION_MARCH},
11104 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11105 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11106 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11107 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11108 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11109 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11110 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11111 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11112 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11113 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11114 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11115 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11116 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11117# if defined (TE_PE) || defined (TE_PEP)
11118 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11119#endif
d1982f93 11120 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11121 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11122 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11123 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11124 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11125 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11126 {NULL, no_argument, NULL, 0}
11127};
11128size_t md_longopts_size = sizeof (md_longopts);
11129
11130int
17b9d67d 11131md_parse_option (int c, const char *arg)
252b5132 11132{
91d6fa6a 11133 unsigned int j;
293f5f65 11134 char *arch, *next, *saved;
9103f4f4 11135
252b5132
RH
11136 switch (c)
11137 {
12b55ccc
L
11138 case 'n':
11139 optimize_align_code = 0;
11140 break;
11141
a38cf1db
AM
11142 case 'q':
11143 quiet_warnings = 1;
252b5132
RH
11144 break;
11145
11146#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11147 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11148 should be emitted or not. FIXME: Not implemented. */
11149 case 'Q':
d4693039
JB
11150 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11151 return 0;
252b5132
RH
11152 break;
11153
11154 /* -V: SVR4 argument to print version ID. */
11155 case 'V':
11156 print_version_id ();
11157 break;
11158
a38cf1db
AM
11159 /* -k: Ignore for FreeBSD compatibility. */
11160 case 'k':
252b5132 11161 break;
4cc782b5
ILT
11162
11163 case 's':
11164 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11165 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11166 break;
8dcea932
L
11167
11168 case OPTION_MSHARED:
11169 shared = 1;
11170 break;
b4a3a7b4
L
11171
11172 case OPTION_X86_USED_NOTE:
11173 if (strcasecmp (arg, "yes") == 0)
11174 x86_used_note = 1;
11175 else if (strcasecmp (arg, "no") == 0)
11176 x86_used_note = 0;
11177 else
11178 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11179 break;
11180
11181
99ad8390 11182#endif
321098a5 11183#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11184 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11185 case OPTION_64:
11186 {
11187 const char **list, **l;
11188
3e73aa7c
JH
11189 list = bfd_target_list ();
11190 for (l = list; *l != NULL; l++)
8620418b 11191 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11192 || strcmp (*l, "coff-x86-64") == 0
11193 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11194 || strcmp (*l, "pei-x86-64") == 0
11195 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11196 {
11197 default_arch = "x86_64";
11198 break;
11199 }
3e73aa7c 11200 if (*l == NULL)
2b5d6a91 11201 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11202 free (list);
11203 }
11204 break;
11205#endif
252b5132 11206
351f65ca 11207#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11208 case OPTION_X32:
351f65ca
L
11209 if (IS_ELF)
11210 {
11211 const char **list, **l;
11212
11213 list = bfd_target_list ();
11214 for (l = list; *l != NULL; l++)
11215 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11216 {
11217 default_arch = "x86_64:32";
11218 break;
11219 }
11220 if (*l == NULL)
2b5d6a91 11221 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11222 free (list);
11223 }
11224 else
11225 as_fatal (_("32bit x86_64 is only supported for ELF"));
11226 break;
11227#endif
11228
6e0b89ee
AM
11229 case OPTION_32:
11230 default_arch = "i386";
11231 break;
11232
b3b91714
AM
11233 case OPTION_DIVIDE:
11234#ifdef SVR4_COMMENT_CHARS
11235 {
11236 char *n, *t;
11237 const char *s;
11238
add39d23 11239 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11240 t = n;
11241 for (s = i386_comment_chars; *s != '\0'; s++)
11242 if (*s != '/')
11243 *t++ = *s;
11244 *t = '\0';
11245 i386_comment_chars = n;
11246 }
11247#endif
11248 break;
11249
9103f4f4 11250 case OPTION_MARCH:
293f5f65
L
11251 saved = xstrdup (arg);
11252 arch = saved;
11253 /* Allow -march=+nosse. */
11254 if (*arch == '+')
11255 arch++;
6305a203 11256 do
9103f4f4 11257 {
6305a203 11258 if (*arch == '.')
2b5d6a91 11259 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11260 next = strchr (arch, '+');
11261 if (next)
11262 *next++ = '\0';
91d6fa6a 11263 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11264 {
91d6fa6a 11265 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11266 {
6305a203 11267 /* Processor. */
1ded5609
JB
11268 if (! cpu_arch[j].flags.bitfield.cpui386)
11269 continue;
11270
91d6fa6a 11271 cpu_arch_name = cpu_arch[j].name;
6305a203 11272 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11273 cpu_arch_flags = cpu_arch[j].flags;
11274 cpu_arch_isa = cpu_arch[j].type;
11275 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11276 if (!cpu_arch_tune_set)
11277 {
11278 cpu_arch_tune = cpu_arch_isa;
11279 cpu_arch_tune_flags = cpu_arch_isa_flags;
11280 }
11281 break;
11282 }
91d6fa6a
NC
11283 else if (*cpu_arch [j].name == '.'
11284 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11285 {
33eaf5de 11286 /* ISA extension. */
6305a203 11287 i386_cpu_flags flags;
309d3373 11288
293f5f65
L
11289 flags = cpu_flags_or (cpu_arch_flags,
11290 cpu_arch[j].flags);
81486035 11291
5b64d091 11292 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11293 {
11294 if (cpu_sub_arch_name)
11295 {
11296 char *name = cpu_sub_arch_name;
11297 cpu_sub_arch_name = concat (name,
91d6fa6a 11298 cpu_arch[j].name,
1bf57e9f 11299 (const char *) NULL);
6305a203
L
11300 free (name);
11301 }
11302 else
91d6fa6a 11303 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11304 cpu_arch_flags = flags;
a586129e 11305 cpu_arch_isa_flags = flags;
6305a203 11306 }
0089dace
L
11307 else
11308 cpu_arch_isa_flags
11309 = cpu_flags_or (cpu_arch_isa_flags,
11310 cpu_arch[j].flags);
6305a203 11311 break;
ccc9c027 11312 }
9103f4f4 11313 }
6305a203 11314
293f5f65
L
11315 if (j >= ARRAY_SIZE (cpu_arch))
11316 {
33eaf5de 11317 /* Disable an ISA extension. */
293f5f65
L
11318 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11319 if (strcmp (arch, cpu_noarch [j].name) == 0)
11320 {
11321 i386_cpu_flags flags;
11322
11323 flags = cpu_flags_and_not (cpu_arch_flags,
11324 cpu_noarch[j].flags);
11325 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11326 {
11327 if (cpu_sub_arch_name)
11328 {
11329 char *name = cpu_sub_arch_name;
11330 cpu_sub_arch_name = concat (arch,
11331 (const char *) NULL);
11332 free (name);
11333 }
11334 else
11335 cpu_sub_arch_name = xstrdup (arch);
11336 cpu_arch_flags = flags;
11337 cpu_arch_isa_flags = flags;
11338 }
11339 break;
11340 }
11341
11342 if (j >= ARRAY_SIZE (cpu_noarch))
11343 j = ARRAY_SIZE (cpu_arch);
11344 }
11345
91d6fa6a 11346 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11347 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11348
11349 arch = next;
9103f4f4 11350 }
293f5f65
L
11351 while (next != NULL);
11352 free (saved);
9103f4f4
L
11353 break;
11354
11355 case OPTION_MTUNE:
11356 if (*arg == '.')
2b5d6a91 11357 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11358 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11359 {
91d6fa6a 11360 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11361 {
ccc9c027 11362 cpu_arch_tune_set = 1;
91d6fa6a
NC
11363 cpu_arch_tune = cpu_arch [j].type;
11364 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11365 break;
11366 }
11367 }
91d6fa6a 11368 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11369 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11370 break;
11371
1efbbeb4
L
11372 case OPTION_MMNEMONIC:
11373 if (strcasecmp (arg, "att") == 0)
11374 intel_mnemonic = 0;
11375 else if (strcasecmp (arg, "intel") == 0)
11376 intel_mnemonic = 1;
11377 else
2b5d6a91 11378 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11379 break;
11380
11381 case OPTION_MSYNTAX:
11382 if (strcasecmp (arg, "att") == 0)
11383 intel_syntax = 0;
11384 else if (strcasecmp (arg, "intel") == 0)
11385 intel_syntax = 1;
11386 else
2b5d6a91 11387 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11388 break;
11389
11390 case OPTION_MINDEX_REG:
11391 allow_index_reg = 1;
11392 break;
11393
11394 case OPTION_MNAKED_REG:
11395 allow_naked_reg = 1;
11396 break;
11397
c0f3af97
L
11398 case OPTION_MSSE2AVX:
11399 sse2avx = 1;
11400 break;
11401
daf50ae7
L
11402 case OPTION_MSSE_CHECK:
11403 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11404 sse_check = check_error;
daf50ae7 11405 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11406 sse_check = check_warning;
daf50ae7 11407 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11408 sse_check = check_none;
daf50ae7 11409 else
2b5d6a91 11410 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11411 break;
11412
7bab8ab5
JB
11413 case OPTION_MOPERAND_CHECK:
11414 if (strcasecmp (arg, "error") == 0)
11415 operand_check = check_error;
11416 else if (strcasecmp (arg, "warning") == 0)
11417 operand_check = check_warning;
11418 else if (strcasecmp (arg, "none") == 0)
11419 operand_check = check_none;
11420 else
11421 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11422 break;
11423
539f890d
L
11424 case OPTION_MAVXSCALAR:
11425 if (strcasecmp (arg, "128") == 0)
11426 avxscalar = vex128;
11427 else if (strcasecmp (arg, "256") == 0)
11428 avxscalar = vex256;
11429 else
2b5d6a91 11430 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11431 break;
11432
03751133
L
11433 case OPTION_MVEXWIG:
11434 if (strcmp (arg, "0") == 0)
11435 vexwig = evexw0;
11436 else if (strcmp (arg, "1") == 0)
11437 vexwig = evexw1;
11438 else
11439 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11440 break;
11441
7e8b059b
L
11442 case OPTION_MADD_BND_PREFIX:
11443 add_bnd_prefix = 1;
11444 break;
11445
43234a1e
L
11446 case OPTION_MEVEXLIG:
11447 if (strcmp (arg, "128") == 0)
11448 evexlig = evexl128;
11449 else if (strcmp (arg, "256") == 0)
11450 evexlig = evexl256;
11451 else if (strcmp (arg, "512") == 0)
11452 evexlig = evexl512;
11453 else
11454 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11455 break;
11456
d3d3c6db
IT
11457 case OPTION_MEVEXRCIG:
11458 if (strcmp (arg, "rne") == 0)
11459 evexrcig = rne;
11460 else if (strcmp (arg, "rd") == 0)
11461 evexrcig = rd;
11462 else if (strcmp (arg, "ru") == 0)
11463 evexrcig = ru;
11464 else if (strcmp (arg, "rz") == 0)
11465 evexrcig = rz;
11466 else
11467 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11468 break;
11469
43234a1e
L
11470 case OPTION_MEVEXWIG:
11471 if (strcmp (arg, "0") == 0)
11472 evexwig = evexw0;
11473 else if (strcmp (arg, "1") == 0)
11474 evexwig = evexw1;
11475 else
11476 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11477 break;
11478
167ad85b
TG
11479# if defined (TE_PE) || defined (TE_PEP)
11480 case OPTION_MBIG_OBJ:
11481 use_big_obj = 1;
11482 break;
11483#endif
11484
d1982f93 11485 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11486 if (strcasecmp (arg, "yes") == 0)
11487 omit_lock_prefix = 1;
11488 else if (strcasecmp (arg, "no") == 0)
11489 omit_lock_prefix = 0;
11490 else
11491 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11492 break;
11493
e4e00185
AS
11494 case OPTION_MFENCE_AS_LOCK_ADD:
11495 if (strcasecmp (arg, "yes") == 0)
11496 avoid_fence = 1;
11497 else if (strcasecmp (arg, "no") == 0)
11498 avoid_fence = 0;
11499 else
11500 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11501 break;
11502
0cb4071e
L
11503 case OPTION_MRELAX_RELOCATIONS:
11504 if (strcasecmp (arg, "yes") == 0)
11505 generate_relax_relocations = 1;
11506 else if (strcasecmp (arg, "no") == 0)
11507 generate_relax_relocations = 0;
11508 else
11509 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11510 break;
11511
5db04b09 11512 case OPTION_MAMD64:
e89c5eaa 11513 intel64 = 0;
5db04b09
L
11514 break;
11515
11516 case OPTION_MINTEL64:
e89c5eaa 11517 intel64 = 1;
5db04b09
L
11518 break;
11519
b6f8c7c4
L
11520 case 'O':
11521 if (arg == NULL)
11522 {
11523 optimize = 1;
11524 /* Turn off -Os. */
11525 optimize_for_space = 0;
11526 }
11527 else if (*arg == 's')
11528 {
11529 optimize_for_space = 1;
11530 /* Turn on all encoding optimizations. */
41fd2579 11531 optimize = INT_MAX;
b6f8c7c4
L
11532 }
11533 else
11534 {
11535 optimize = atoi (arg);
11536 /* Turn off -Os. */
11537 optimize_for_space = 0;
11538 }
11539 break;
11540
252b5132
RH
11541 default:
11542 return 0;
11543 }
11544 return 1;
11545}
11546
8a2c8fef
L
11547#define MESSAGE_TEMPLATE \
11548" "
11549
293f5f65
L
11550static char *
11551output_message (FILE *stream, char *p, char *message, char *start,
11552 int *left_p, const char *name, int len)
11553{
11554 int size = sizeof (MESSAGE_TEMPLATE);
11555 int left = *left_p;
11556
11557 /* Reserve 2 spaces for ", " or ",\0" */
11558 left -= len + 2;
11559
11560 /* Check if there is any room. */
11561 if (left >= 0)
11562 {
11563 if (p != start)
11564 {
11565 *p++ = ',';
11566 *p++ = ' ';
11567 }
11568 p = mempcpy (p, name, len);
11569 }
11570 else
11571 {
11572 /* Output the current message now and start a new one. */
11573 *p++ = ',';
11574 *p = '\0';
11575 fprintf (stream, "%s\n", message);
11576 p = start;
11577 left = size - (start - message) - len - 2;
11578
11579 gas_assert (left >= 0);
11580
11581 p = mempcpy (p, name, len);
11582 }
11583
11584 *left_p = left;
11585 return p;
11586}
11587
8a2c8fef 11588static void
1ded5609 11589show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11590{
11591 static char message[] = MESSAGE_TEMPLATE;
11592 char *start = message + 27;
11593 char *p;
11594 int size = sizeof (MESSAGE_TEMPLATE);
11595 int left;
11596 const char *name;
11597 int len;
11598 unsigned int j;
11599
11600 p = start;
11601 left = size - (start - message);
11602 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11603 {
11604 /* Should it be skipped? */
11605 if (cpu_arch [j].skip)
11606 continue;
11607
11608 name = cpu_arch [j].name;
11609 len = cpu_arch [j].len;
11610 if (*name == '.')
11611 {
11612 /* It is an extension. Skip if we aren't asked to show it. */
11613 if (ext)
11614 {
11615 name++;
11616 len--;
11617 }
11618 else
11619 continue;
11620 }
11621 else if (ext)
11622 {
11623 /* It is an processor. Skip if we show only extension. */
11624 continue;
11625 }
1ded5609
JB
11626 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11627 {
11628 /* It is an impossible processor - skip. */
11629 continue;
11630 }
8a2c8fef 11631
293f5f65 11632 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11633 }
11634
293f5f65
L
11635 /* Display disabled extensions. */
11636 if (ext)
11637 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11638 {
11639 name = cpu_noarch [j].name;
11640 len = cpu_noarch [j].len;
11641 p = output_message (stream, p, message, start, &left, name,
11642 len);
11643 }
11644
8a2c8fef
L
11645 *p = '\0';
11646 fprintf (stream, "%s\n", message);
11647}
11648
252b5132 11649void
8a2c8fef 11650md_show_usage (FILE *stream)
252b5132 11651{
4cc782b5
ILT
11652#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11653 fprintf (stream, _("\
d4693039 11654 -Qy, -Qn ignored\n\
a38cf1db 11655 -V print assembler version number\n\
b3b91714
AM
11656 -k ignored\n"));
11657#endif
11658 fprintf (stream, _("\
12b55ccc 11659 -n Do not optimize code alignment\n\
b3b91714
AM
11660 -q quieten some warnings\n"));
11661#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11662 fprintf (stream, _("\
a38cf1db 11663 -s ignored\n"));
b3b91714 11664#endif
d7f449c0
L
11665#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11666 || defined (TE_PE) || defined (TE_PEP))
751d281c 11667 fprintf (stream, _("\
570561f7 11668 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11669#endif
b3b91714
AM
11670#ifdef SVR4_COMMENT_CHARS
11671 fprintf (stream, _("\
11672 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11673#else
11674 fprintf (stream, _("\
b3b91714 11675 --divide ignored\n"));
4cc782b5 11676#endif
9103f4f4 11677 fprintf (stream, _("\
6305a203 11678 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11679 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11680 show_arch (stream, 0, 1);
8a2c8fef
L
11681 fprintf (stream, _("\
11682 EXTENSION is combination of:\n"));
1ded5609 11683 show_arch (stream, 1, 0);
6305a203 11684 fprintf (stream, _("\
8a2c8fef 11685 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11686 show_arch (stream, 0, 0);
ba104c83 11687 fprintf (stream, _("\
c0f3af97
L
11688 -msse2avx encode SSE instructions with VEX prefix\n"));
11689 fprintf (stream, _("\
7c5c05ef 11690 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11691 check SSE instructions\n"));
11692 fprintf (stream, _("\
7c5c05ef 11693 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11694 check operand combinations for validity\n"));
11695 fprintf (stream, _("\
7c5c05ef
L
11696 -mavxscalar=[128|256] (default: 128)\n\
11697 encode scalar AVX instructions with specific vector\n\
539f890d
L
11698 length\n"));
11699 fprintf (stream, _("\
03751133
L
11700 -mvexwig=[0|1] (default: 0)\n\
11701 encode VEX instructions with specific VEX.W value\n\
11702 for VEX.W bit ignored instructions\n"));
11703 fprintf (stream, _("\
7c5c05ef
L
11704 -mevexlig=[128|256|512] (default: 128)\n\
11705 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11706 length\n"));
11707 fprintf (stream, _("\
7c5c05ef
L
11708 -mevexwig=[0|1] (default: 0)\n\
11709 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11710 for EVEX.W bit ignored instructions\n"));
11711 fprintf (stream, _("\
7c5c05ef 11712 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11713 encode EVEX instructions with specific EVEX.RC value\n\
11714 for SAE-only ignored instructions\n"));
11715 fprintf (stream, _("\
7c5c05ef
L
11716 -mmnemonic=[att|intel] "));
11717 if (SYSV386_COMPAT)
11718 fprintf (stream, _("(default: att)\n"));
11719 else
11720 fprintf (stream, _("(default: intel)\n"));
11721 fprintf (stream, _("\
11722 use AT&T/Intel mnemonic\n"));
ba104c83 11723 fprintf (stream, _("\
7c5c05ef
L
11724 -msyntax=[att|intel] (default: att)\n\
11725 use AT&T/Intel syntax\n"));
ba104c83
L
11726 fprintf (stream, _("\
11727 -mindex-reg support pseudo index registers\n"));
11728 fprintf (stream, _("\
11729 -mnaked-reg don't require `%%' prefix for registers\n"));
11730 fprintf (stream, _("\
7e8b059b 11731 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11732#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11733 fprintf (stream, _("\
11734 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11735 fprintf (stream, _("\
11736 -mx86-used-note=[no|yes] "));
11737 if (DEFAULT_X86_USED_NOTE)
11738 fprintf (stream, _("(default: yes)\n"));
11739 else
11740 fprintf (stream, _("(default: no)\n"));
11741 fprintf (stream, _("\
11742 generate x86 used ISA and feature properties\n"));
11743#endif
11744#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11745 fprintf (stream, _("\
11746 -mbig-obj generate big object files\n"));
11747#endif
d022bddd 11748 fprintf (stream, _("\
7c5c05ef 11749 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11750 strip all lock prefixes\n"));
5db04b09 11751 fprintf (stream, _("\
7c5c05ef 11752 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11753 encode lfence, mfence and sfence as\n\
11754 lock addl $0x0, (%%{re}sp)\n"));
11755 fprintf (stream, _("\
7c5c05ef
L
11756 -mrelax-relocations=[no|yes] "));
11757 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11758 fprintf (stream, _("(default: yes)\n"));
11759 else
11760 fprintf (stream, _("(default: no)\n"));
11761 fprintf (stream, _("\
0cb4071e
L
11762 generate relax relocations\n"));
11763 fprintf (stream, _("\
7c5c05ef 11764 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11765 fprintf (stream, _("\
11766 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11767}
11768
3e73aa7c 11769#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11770 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11771 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11772
11773/* Pick the target format to use. */
11774
47926f60 11775const char *
e3bb37b5 11776i386_target_format (void)
252b5132 11777{
351f65ca
L
11778 if (!strncmp (default_arch, "x86_64", 6))
11779 {
11780 update_code_flag (CODE_64BIT, 1);
11781 if (default_arch[6] == '\0')
7f56bc95 11782 x86_elf_abi = X86_64_ABI;
351f65ca 11783 else
7f56bc95 11784 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11785 }
3e73aa7c 11786 else if (!strcmp (default_arch, "i386"))
78f12dd3 11787 update_code_flag (CODE_32BIT, 1);
5197d474
L
11788 else if (!strcmp (default_arch, "iamcu"))
11789 {
11790 update_code_flag (CODE_32BIT, 1);
11791 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11792 {
11793 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11794 cpu_arch_name = "iamcu";
11795 cpu_sub_arch_name = NULL;
11796 cpu_arch_flags = iamcu_flags;
11797 cpu_arch_isa = PROCESSOR_IAMCU;
11798 cpu_arch_isa_flags = iamcu_flags;
11799 if (!cpu_arch_tune_set)
11800 {
11801 cpu_arch_tune = cpu_arch_isa;
11802 cpu_arch_tune_flags = cpu_arch_isa_flags;
11803 }
11804 }
8d471ec1 11805 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11806 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11807 cpu_arch_name);
11808 }
3e73aa7c 11809 else
2b5d6a91 11810 as_fatal (_("unknown architecture"));
89507696
JB
11811
11812 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11813 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11814 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11815 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11816
252b5132
RH
11817 switch (OUTPUT_FLAVOR)
11818 {
9384f2ff 11819#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11820 case bfd_target_aout_flavour:
47926f60 11821 return AOUT_TARGET_FORMAT;
4c63da97 11822#endif
9384f2ff
AM
11823#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11824# if defined (TE_PE) || defined (TE_PEP)
11825 case bfd_target_coff_flavour:
167ad85b
TG
11826 if (flag_code == CODE_64BIT)
11827 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11828 else
11829 return "pe-i386";
9384f2ff 11830# elif defined (TE_GO32)
0561d57c
JK
11831 case bfd_target_coff_flavour:
11832 return "coff-go32";
9384f2ff 11833# else
252b5132
RH
11834 case bfd_target_coff_flavour:
11835 return "coff-i386";
9384f2ff 11836# endif
4c63da97 11837#endif
3e73aa7c 11838#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11839 case bfd_target_elf_flavour:
3e73aa7c 11840 {
351f65ca
L
11841 const char *format;
11842
11843 switch (x86_elf_abi)
4fa24527 11844 {
351f65ca
L
11845 default:
11846 format = ELF_TARGET_FORMAT;
11847 break;
7f56bc95 11848 case X86_64_ABI:
351f65ca 11849 use_rela_relocations = 1;
4fa24527 11850 object_64bit = 1;
351f65ca
L
11851 format = ELF_TARGET_FORMAT64;
11852 break;
7f56bc95 11853 case X86_64_X32_ABI:
4fa24527 11854 use_rela_relocations = 1;
351f65ca 11855 object_64bit = 1;
862be3fb 11856 disallow_64bit_reloc = 1;
351f65ca
L
11857 format = ELF_TARGET_FORMAT32;
11858 break;
4fa24527 11859 }
3632d14b 11860 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11861 {
7f56bc95 11862 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11863 as_fatal (_("Intel L1OM is 64bit only"));
11864 return ELF_TARGET_L1OM_FORMAT;
11865 }
b49f93f6 11866 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11867 {
11868 if (x86_elf_abi != X86_64_ABI)
11869 as_fatal (_("Intel K1OM is 64bit only"));
11870 return ELF_TARGET_K1OM_FORMAT;
11871 }
81486035
L
11872 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11873 {
11874 if (x86_elf_abi != I386_ABI)
11875 as_fatal (_("Intel MCU is 32bit only"));
11876 return ELF_TARGET_IAMCU_FORMAT;
11877 }
8a9036a4 11878 else
351f65ca 11879 return format;
3e73aa7c 11880 }
e57f8c65
TG
11881#endif
11882#if defined (OBJ_MACH_O)
11883 case bfd_target_mach_o_flavour:
d382c579
TG
11884 if (flag_code == CODE_64BIT)
11885 {
11886 use_rela_relocations = 1;
11887 object_64bit = 1;
11888 return "mach-o-x86-64";
11889 }
11890 else
11891 return "mach-o-i386";
4c63da97 11892#endif
252b5132
RH
11893 default:
11894 abort ();
11895 return NULL;
11896 }
11897}
11898
47926f60 11899#endif /* OBJ_MAYBE_ more than one */
252b5132 11900\f
252b5132 11901symbolS *
7016a5d5 11902md_undefined_symbol (char *name)
252b5132 11903{
18dc2407
ILT
11904 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11905 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11906 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11907 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11908 {
11909 if (!GOT_symbol)
11910 {
11911 if (symbol_find (name))
11912 as_bad (_("GOT already in symbol table"));
11913 GOT_symbol = symbol_new (name, undefined_section,
11914 (valueT) 0, &zero_address_frag);
11915 };
11916 return GOT_symbol;
11917 }
252b5132
RH
11918 return 0;
11919}
11920
11921/* Round up a section size to the appropriate boundary. */
47926f60 11922
252b5132 11923valueT
7016a5d5 11924md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11925{
4c63da97
AM
11926#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11927 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11928 {
11929 /* For a.out, force the section size to be aligned. If we don't do
11930 this, BFD will align it for us, but it will not write out the
11931 final bytes of the section. This may be a bug in BFD, but it is
11932 easier to fix it here since that is how the other a.out targets
11933 work. */
11934 int align;
11935
11936 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11937 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11938 }
252b5132
RH
11939#endif
11940
11941 return size;
11942}
11943
11944/* On the i386, PC-relative offsets are relative to the start of the
11945 next instruction. That is, the address of the offset, plus its
11946 size, since the offset is always the last part of the insn. */
11947
11948long
e3bb37b5 11949md_pcrel_from (fixS *fixP)
252b5132
RH
11950{
11951 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11952}
11953
11954#ifndef I386COFF
11955
11956static void
e3bb37b5 11957s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11958{
29b0f896 11959 int temp;
252b5132 11960
8a75718c
JB
11961#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11962 if (IS_ELF)
11963 obj_elf_section_change_hook ();
11964#endif
252b5132
RH
11965 temp = get_absolute_expression ();
11966 subseg_set (bss_section, (subsegT) temp);
11967 demand_empty_rest_of_line ();
11968}
11969
11970#endif
11971
252b5132 11972void
e3bb37b5 11973i386_validate_fix (fixS *fixp)
252b5132 11974{
02a86693 11975 if (fixp->fx_subsy)
252b5132 11976 {
02a86693 11977 if (fixp->fx_subsy == GOT_symbol)
23df1078 11978 {
02a86693
L
11979 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11980 {
11981 if (!object_64bit)
11982 abort ();
11983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11984 if (fixp->fx_tcbit2)
56ceb5b5
L
11985 fixp->fx_r_type = (fixp->fx_tcbit
11986 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11987 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11988 else
11989#endif
11990 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11991 }
d6ab8113 11992 else
02a86693
L
11993 {
11994 if (!object_64bit)
11995 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11996 else
11997 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11998 }
11999 fixp->fx_subsy = 0;
23df1078 12000 }
252b5132 12001 }
02a86693
L
12002#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12003 else if (!object_64bit)
12004 {
12005 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12006 && fixp->fx_tcbit2)
12007 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12008 }
12009#endif
252b5132
RH
12010}
12011
252b5132 12012arelent *
7016a5d5 12013tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12014{
12015 arelent *rel;
12016 bfd_reloc_code_real_type code;
12017
12018 switch (fixp->fx_r_type)
12019 {
8ce3d284 12020#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12021 case BFD_RELOC_SIZE32:
12022 case BFD_RELOC_SIZE64:
12023 if (S_IS_DEFINED (fixp->fx_addsy)
12024 && !S_IS_EXTERNAL (fixp->fx_addsy))
12025 {
12026 /* Resolve size relocation against local symbol to size of
12027 the symbol plus addend. */
12028 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12029 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12030 && !fits_in_unsigned_long (value))
12031 as_bad_where (fixp->fx_file, fixp->fx_line,
12032 _("symbol size computation overflow"));
12033 fixp->fx_addsy = NULL;
12034 fixp->fx_subsy = NULL;
12035 md_apply_fix (fixp, (valueT *) &value, NULL);
12036 return NULL;
12037 }
8ce3d284 12038#endif
1a0670f3 12039 /* Fall through. */
8fd4256d 12040
3e73aa7c
JH
12041 case BFD_RELOC_X86_64_PLT32:
12042 case BFD_RELOC_X86_64_GOT32:
12043 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12044 case BFD_RELOC_X86_64_GOTPCRELX:
12045 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12046 case BFD_RELOC_386_PLT32:
12047 case BFD_RELOC_386_GOT32:
02a86693 12048 case BFD_RELOC_386_GOT32X:
252b5132
RH
12049 case BFD_RELOC_386_GOTOFF:
12050 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12051 case BFD_RELOC_386_TLS_GD:
12052 case BFD_RELOC_386_TLS_LDM:
12053 case BFD_RELOC_386_TLS_LDO_32:
12054 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12055 case BFD_RELOC_386_TLS_IE:
12056 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12057 case BFD_RELOC_386_TLS_LE_32:
12058 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12059 case BFD_RELOC_386_TLS_GOTDESC:
12060 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12061 case BFD_RELOC_X86_64_TLSGD:
12062 case BFD_RELOC_X86_64_TLSLD:
12063 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12064 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12065 case BFD_RELOC_X86_64_GOTTPOFF:
12066 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12067 case BFD_RELOC_X86_64_TPOFF64:
12068 case BFD_RELOC_X86_64_GOTOFF64:
12069 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12070 case BFD_RELOC_X86_64_GOT64:
12071 case BFD_RELOC_X86_64_GOTPCREL64:
12072 case BFD_RELOC_X86_64_GOTPC64:
12073 case BFD_RELOC_X86_64_GOTPLT64:
12074 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12075 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12076 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12077 case BFD_RELOC_RVA:
12078 case BFD_RELOC_VTABLE_ENTRY:
12079 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12080#ifdef TE_PE
12081 case BFD_RELOC_32_SECREL:
12082#endif
252b5132
RH
12083 code = fixp->fx_r_type;
12084 break;
dbbaec26
L
12085 case BFD_RELOC_X86_64_32S:
12086 if (!fixp->fx_pcrel)
12087 {
12088 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12089 code = fixp->fx_r_type;
12090 break;
12091 }
1a0670f3 12092 /* Fall through. */
252b5132 12093 default:
93382f6d 12094 if (fixp->fx_pcrel)
252b5132 12095 {
93382f6d
AM
12096 switch (fixp->fx_size)
12097 {
12098 default:
b091f402
AM
12099 as_bad_where (fixp->fx_file, fixp->fx_line,
12100 _("can not do %d byte pc-relative relocation"),
12101 fixp->fx_size);
93382f6d
AM
12102 code = BFD_RELOC_32_PCREL;
12103 break;
12104 case 1: code = BFD_RELOC_8_PCREL; break;
12105 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12106 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12107#ifdef BFD64
12108 case 8: code = BFD_RELOC_64_PCREL; break;
12109#endif
93382f6d
AM
12110 }
12111 }
12112 else
12113 {
12114 switch (fixp->fx_size)
12115 {
12116 default:
b091f402
AM
12117 as_bad_where (fixp->fx_file, fixp->fx_line,
12118 _("can not do %d byte relocation"),
12119 fixp->fx_size);
93382f6d
AM
12120 code = BFD_RELOC_32;
12121 break;
12122 case 1: code = BFD_RELOC_8; break;
12123 case 2: code = BFD_RELOC_16; break;
12124 case 4: code = BFD_RELOC_32; break;
937149dd 12125#ifdef BFD64
3e73aa7c 12126 case 8: code = BFD_RELOC_64; break;
937149dd 12127#endif
93382f6d 12128 }
252b5132
RH
12129 }
12130 break;
12131 }
252b5132 12132
d182319b
JB
12133 if ((code == BFD_RELOC_32
12134 || code == BFD_RELOC_32_PCREL
12135 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12136 && GOT_symbol
12137 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12138 {
4fa24527 12139 if (!object_64bit)
d6ab8113
JB
12140 code = BFD_RELOC_386_GOTPC;
12141 else
12142 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12143 }
7b81dfbb
AJ
12144 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12145 && GOT_symbol
12146 && fixp->fx_addsy == GOT_symbol)
12147 {
12148 code = BFD_RELOC_X86_64_GOTPC64;
12149 }
252b5132 12150
add39d23
TS
12151 rel = XNEW (arelent);
12152 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12153 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12154
12155 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12156
3e73aa7c
JH
12157 if (!use_rela_relocations)
12158 {
12159 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12160 vtable entry to be used in the relocation's section offset. */
12161 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12162 rel->address = fixp->fx_offset;
fbeb56a4
DK
12163#if defined (OBJ_COFF) && defined (TE_PE)
12164 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12165 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12166 else
12167#endif
c6682705 12168 rel->addend = 0;
3e73aa7c
JH
12169 }
12170 /* Use the rela in 64bit mode. */
252b5132 12171 else
3e73aa7c 12172 {
862be3fb
L
12173 if (disallow_64bit_reloc)
12174 switch (code)
12175 {
862be3fb
L
12176 case BFD_RELOC_X86_64_DTPOFF64:
12177 case BFD_RELOC_X86_64_TPOFF64:
12178 case BFD_RELOC_64_PCREL:
12179 case BFD_RELOC_X86_64_GOTOFF64:
12180 case BFD_RELOC_X86_64_GOT64:
12181 case BFD_RELOC_X86_64_GOTPCREL64:
12182 case BFD_RELOC_X86_64_GOTPC64:
12183 case BFD_RELOC_X86_64_GOTPLT64:
12184 case BFD_RELOC_X86_64_PLTOFF64:
12185 as_bad_where (fixp->fx_file, fixp->fx_line,
12186 _("cannot represent relocation type %s in x32 mode"),
12187 bfd_get_reloc_code_name (code));
12188 break;
12189 default:
12190 break;
12191 }
12192
062cd5e7
AS
12193 if (!fixp->fx_pcrel)
12194 rel->addend = fixp->fx_offset;
12195 else
12196 switch (code)
12197 {
12198 case BFD_RELOC_X86_64_PLT32:
12199 case BFD_RELOC_X86_64_GOT32:
12200 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12201 case BFD_RELOC_X86_64_GOTPCRELX:
12202 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12203 case BFD_RELOC_X86_64_TLSGD:
12204 case BFD_RELOC_X86_64_TLSLD:
12205 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12206 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12207 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12208 rel->addend = fixp->fx_offset - fixp->fx_size;
12209 break;
12210 default:
12211 rel->addend = (section->vma
12212 - fixp->fx_size
12213 + fixp->fx_addnumber
12214 + md_pcrel_from (fixp));
12215 break;
12216 }
3e73aa7c
JH
12217 }
12218
252b5132
RH
12219 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12220 if (rel->howto == NULL)
12221 {
12222 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12223 _("cannot represent relocation type %s"),
252b5132
RH
12224 bfd_get_reloc_code_name (code));
12225 /* Set howto to a garbage value so that we can keep going. */
12226 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12227 gas_assert (rel->howto != NULL);
252b5132
RH
12228 }
12229
12230 return rel;
12231}
12232
ee86248c 12233#include "tc-i386-intel.c"
54cfded0 12234
a60de03c
JB
12235void
12236tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12237{
a60de03c
JB
12238 int saved_naked_reg;
12239 char saved_register_dot;
54cfded0 12240
a60de03c
JB
12241 saved_naked_reg = allow_naked_reg;
12242 allow_naked_reg = 1;
12243 saved_register_dot = register_chars['.'];
12244 register_chars['.'] = '.';
12245 allow_pseudo_reg = 1;
12246 expression_and_evaluate (exp);
12247 allow_pseudo_reg = 0;
12248 register_chars['.'] = saved_register_dot;
12249 allow_naked_reg = saved_naked_reg;
12250
e96d56a1 12251 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12252 {
a60de03c
JB
12253 if ((addressT) exp->X_add_number < i386_regtab_size)
12254 {
12255 exp->X_op = O_constant;
12256 exp->X_add_number = i386_regtab[exp->X_add_number]
12257 .dw2_regnum[flag_code >> 1];
12258 }
12259 else
12260 exp->X_op = O_illegal;
54cfded0 12261 }
54cfded0
AM
12262}
12263
12264void
12265tc_x86_frame_initial_instructions (void)
12266{
a60de03c
JB
12267 static unsigned int sp_regno[2];
12268
12269 if (!sp_regno[flag_code >> 1])
12270 {
12271 char *saved_input = input_line_pointer;
12272 char sp[][4] = {"esp", "rsp"};
12273 expressionS exp;
a4447b93 12274
a60de03c
JB
12275 input_line_pointer = sp[flag_code >> 1];
12276 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12277 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12278 sp_regno[flag_code >> 1] = exp.X_add_number;
12279 input_line_pointer = saved_input;
12280 }
a4447b93 12281
61ff971f
L
12282 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12283 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12284}
d2b2c203 12285
d7921315
L
12286int
12287x86_dwarf2_addr_size (void)
12288{
12289#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12290 if (x86_elf_abi == X86_64_X32_ABI)
12291 return 4;
12292#endif
12293 return bfd_arch_bits_per_address (stdoutput) / 8;
12294}
12295
d2b2c203
DJ
12296int
12297i386_elf_section_type (const char *str, size_t len)
12298{
12299 if (flag_code == CODE_64BIT
12300 && len == sizeof ("unwind") - 1
12301 && strncmp (str, "unwind", 6) == 0)
12302 return SHT_X86_64_UNWIND;
12303
12304 return -1;
12305}
bb41ade5 12306
ad5fec3b
EB
12307#ifdef TE_SOLARIS
12308void
12309i386_solaris_fix_up_eh_frame (segT sec)
12310{
12311 if (flag_code == CODE_64BIT)
12312 elf_section_type (sec) = SHT_X86_64_UNWIND;
12313}
12314#endif
12315
bb41ade5
AM
12316#ifdef TE_PE
12317void
12318tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12319{
91d6fa6a 12320 expressionS exp;
bb41ade5 12321
91d6fa6a
NC
12322 exp.X_op = O_secrel;
12323 exp.X_add_symbol = symbol;
12324 exp.X_add_number = 0;
12325 emit_expr (&exp, size);
bb41ade5
AM
12326}
12327#endif
3b22753a
L
12328
12329#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12330/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12331
01e1a5bc 12332bfd_vma
6d4af3c2 12333x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12334{
12335 if (flag_code == CODE_64BIT)
12336 {
12337 if (letter == 'l')
12338 return SHF_X86_64_LARGE;
12339
8f3bae45 12340 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12341 }
3b22753a 12342 else
8f3bae45 12343 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12344 return -1;
12345}
12346
01e1a5bc 12347bfd_vma
3b22753a
L
12348x86_64_section_word (char *str, size_t len)
12349{
8620418b 12350 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12351 return SHF_X86_64_LARGE;
12352
12353 return -1;
12354}
12355
12356static void
12357handle_large_common (int small ATTRIBUTE_UNUSED)
12358{
12359 if (flag_code != CODE_64BIT)
12360 {
12361 s_comm_internal (0, elf_common_parse);
12362 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12363 }
12364 else
12365 {
12366 static segT lbss_section;
12367 asection *saved_com_section_ptr = elf_com_section_ptr;
12368 asection *saved_bss_section = bss_section;
12369
12370 if (lbss_section == NULL)
12371 {
12372 flagword applicable;
12373 segT seg = now_seg;
12374 subsegT subseg = now_subseg;
12375
12376 /* The .lbss section is for local .largecomm symbols. */
12377 lbss_section = subseg_new (".lbss", 0);
12378 applicable = bfd_applicable_section_flags (stdoutput);
12379 bfd_set_section_flags (stdoutput, lbss_section,
12380 applicable & SEC_ALLOC);
12381 seg_info (lbss_section)->bss = 1;
12382
12383 subseg_set (seg, subseg);
12384 }
12385
12386 elf_com_section_ptr = &_bfd_elf_large_com_section;
12387 bss_section = lbss_section;
12388
12389 s_comm_internal (0, elf_common_parse);
12390
12391 elf_com_section_ptr = saved_com_section_ptr;
12392 bss_section = saved_bss_section;
12393 }
12394}
12395#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 3.045363 seconds and 4 git commands to generate.