* config/tc-ppc.c (ppc_elf_suffix): Don't remove symbols other than
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
ae6063d4 3 2000, 2001, 2002, 2003
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132 28
252b5132 29#include "as.h"
3882b010 30#include "safe-ctype.h"
252b5132 31#include "subsegs.h"
316e2c05 32#include "dwarf2dbg.h"
54cfded0 33#include "dw2gencfi.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
29b0f896
AM
52#ifdef BFD_ASSEMBLER
53#define RELOC_ENUM enum bfd_reloc_code_real
54#else
55#define RELOC_ENUM int
246fcdee 56#endif
29b0f896
AM
57
58#ifndef DEFAULT_ARCH
59#define DEFAULT_ARCH "i386"
246fcdee 60#endif
252b5132 61
edde18a5
AM
62#ifndef INLINE
63#if __GNUC__ >= 2
64#define INLINE __inline__
65#else
66#define INLINE
67#endif
68#endif
69
29b0f896
AM
70static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74static INLINE int fits_in_signed_word PARAMS ((offsetT));
75static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
77static int smallest_imm_type PARAMS ((offsetT));
78static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 79static int add_prefix PARAMS ((unsigned int));
3e73aa7c 80static void set_code_flag PARAMS ((int));
47926f60 81static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 82static void set_intel_syntax PARAMS ((int));
e413e4e9 83static void set_cpu_arch PARAMS ((int));
29b0f896
AM
84static char *output_invalid PARAMS ((int c));
85static int i386_operand PARAMS ((char *operand_string));
86static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89static char *parse_insn PARAMS ((char *, char *));
90static char *parse_operands PARAMS ((char *, const char *));
91static void swap_operands PARAMS ((void));
92static void optimize_imm PARAMS ((void));
93static void optimize_disp PARAMS ((void));
94static int match_template PARAMS ((void));
95static int check_string PARAMS ((void));
96static int process_suffix PARAMS ((void));
97static int check_byte_reg PARAMS ((void));
98static int check_long_reg PARAMS ((void));
99static int check_qword_reg PARAMS ((void));
100static int check_word_reg PARAMS ((void));
101static int finalize_imm PARAMS ((void));
102static int process_operands PARAMS ((void));
103static const seg_entry *build_modrm_byte PARAMS ((void));
104static void output_insn PARAMS ((void));
105static void output_branch PARAMS ((void));
106static void output_jump PARAMS ((void));
107static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
108static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
29b0f896
AM
112#ifndef I386COFF
113static void s_bss PARAMS ((int));
252b5132
RH
114#endif
115
a847613f 116static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 117
252b5132 118/* 'md_assemble ()' gathers together information and puts it into a
47926f60 119 i386_insn. */
252b5132 120
520dc8e8
AM
121union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
252b5132
RH
128struct _i386_insn
129 {
47926f60 130 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
47926f60 137 /* OPERANDS gives the number of given operands. */
252b5132
RH
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
47926f60 142 operands. */
252b5132
RH
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 146 use OP[i] for the corresponding operand. */
252b5132
RH
147 unsigned int types[MAX_OPERANDS];
148
520dc8e8
AM
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
252b5132 152
3e73aa7c
JH
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155#define Operand_PCrel 1
156
252b5132 157 /* Relocation type for operand */
f3c180ae 158 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 159
252b5132
RH
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 167 explicit segment overrides are given. */
ce8a8b2f 168 const seg_entry *seg[2];
252b5132
RH
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
3e73aa7c 179 rex_byte rex;
252b5132
RH
180 sib_byte sib;
181 };
182
183typedef struct _i386_insn i386_insn;
184
185/* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187#ifdef LEX_AT
200dbde8 188const char extra_symbol_chars[] = "*%-(@[";
252b5132 189#else
200dbde8 190const char extra_symbol_chars[] = "*%-([";
252b5132
RH
191#endif
192
29b0f896
AM
193#if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
252b5132 198/* This array holds the chars that always start a comment. If the
ce8a8b2f 199 pre-processor is disabled, these aren't very useful. */
252b5132
RH
200const char comment_chars[] = "#/";
201#define PREFIX_SEPARATOR '\\'
252b5132
RH
202
203/* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 207 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
252b5132 210 '/' isn't otherwise defined. */
0d9f6d04 211const char line_comment_chars[] = "#";
29b0f896 212
252b5132 213#else
29b0f896
AM
214/* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216const char comment_chars[] = "#";
217#define PREFIX_SEPARATOR '/'
218
0d9f6d04 219const char line_comment_chars[] = "/#";
252b5132
RH
220#endif
221
63a0b638 222const char line_separator_chars[] = ";";
252b5132 223
ce8a8b2f
AM
224/* Chars that can be used to separate mant from exp in floating point
225 nums. */
252b5132
RH
226const char EXP_CHARS[] = "eE";
227
ce8a8b2f
AM
228/* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
252b5132
RH
231const char FLT_CHARS[] = "fFdDxX";
232
ce8a8b2f 233/* Tables for lexical analysis. */
252b5132
RH
234static char mnemonic_chars[256];
235static char register_chars[256];
236static char operand_chars[256];
237static char identifier_chars[256];
238static char digit_chars[256];
239
ce8a8b2f 240/* Lexical macros. */
252b5132
RH
241#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242#define is_operand_char(x) (operand_chars[(unsigned char) x])
243#define is_register_char(x) (register_chars[(unsigned char) x])
244#define is_space_char(x) ((x) == ' ')
245#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246#define is_digit_char(x) (digit_chars[(unsigned char) x])
247
ce8a8b2f 248/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
249static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251/* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
47926f60 254 assembler instruction). */
252b5132 255static char save_stack[32];
ce8a8b2f 256static char *save_stack_p;
252b5132
RH
257#define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259#define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
47926f60 262/* The instruction we're assembling. */
252b5132
RH
263static i386_insn i;
264
265/* Possible templates for current insn. */
266static const templates *current_templates;
267
47926f60 268/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
269static expressionS disp_expressions[2], im_expressions[2];
270
47926f60
KH
271/* Current operand we are working on. */
272static int this_operand;
252b5132 273
3e73aa7c
JH
274/* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
f3c180ae 281#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
282
283static enum flag_code flag_code;
284static int use_rela_relocations = 0;
285
286/* The names used to print error messages. */
b77a7acd 287static const char *flag_code_names[] =
3e73aa7c
JH
288 {
289 "32",
290 "16",
291 "64"
292 };
252b5132 293
47926f60
KH
294/* 1 for intel syntax,
295 0 if att syntax. */
296static int intel_syntax = 0;
252b5132 297
47926f60
KH
298/* 1 if register prefix % not required. */
299static int allow_naked_reg = 0;
252b5132 300
47926f60
KH
301/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304static char stackop_size = '\0';
eecb386c 305
12b55ccc
L
306/* Non-zero to optimize code alignment. */
307int optimize_align_code = 1;
308
47926f60
KH
309/* Non-zero to quieten some warnings. */
310static int quiet_warnings = 0;
a38cf1db 311
47926f60
KH
312/* CPU name. */
313static const char *cpu_arch_name = NULL;
a38cf1db 314
47926f60 315/* CPU feature flags. */
29b0f896 316static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 317
fddf5b5b
AM
318/* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320static unsigned int no_cond_jump_promotion = 0;
321
29b0f896
AM
322/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
323symbolS *GOT_symbol;
324
a4447b93
RH
325/* The dwarf2 return column, adjusted for 32 or 64 bit. */
326unsigned int x86_dwarf2_return_column;
327
328/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329int x86_cie_data_alignment;
330
252b5132 331/* Interface to relax_segment.
fddf5b5b
AM
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
252b5132 335
47926f60 336/* Types. */
93c2a809
AM
337#define UNCOND_JUMP 0
338#define COND_JUMP 1
339#define COND_JUMP86 2
fddf5b5b 340
47926f60 341/* Sizes. */
252b5132
RH
342#define CODE16 1
343#define SMALL 0
29b0f896 344#define SMALL16 (SMALL | CODE16)
252b5132 345#define BIG 2
29b0f896 346#define BIG16 (BIG | CODE16)
252b5132
RH
347
348#ifndef INLINE
349#ifdef __GNUC__
350#define INLINE __inline__
351#else
352#define INLINE
353#endif
354#endif
355
fddf5b5b
AM
356#define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358#define TYPE_FROM_RELAX_STATE(s) \
359 ((s) >> 2)
360#define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
362
363/* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
370
371const relax_typeS md_relax_table[] =
372{
24eab124
AM
373 /* The fields are:
374 1) most positive reach of this state,
375 2) most negative reach of this state,
93c2a809 376 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 377 4) which index into the table to try if we can't fit into this one. */
252b5132 378
fddf5b5b 379 /* UNCOND_JUMP states. */
93c2a809
AM
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
252b5132 384 {0, 0, 4, 0},
93c2a809
AM
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
387 {0, 0, 2, 0},
388
93c2a809
AM
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
394 {0, 0, 5, 0},
fddf5b5b 395 /* word conditionals add 3 bytes to frag:
93c2a809
AM
396 1 extra opcode byte, 2 displacement bytes. */
397 {0, 0, 3, 0},
398
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
404 {0, 0, 5, 0},
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
407 {0, 0, 4, 0}
252b5132
RH
408};
409
e413e4e9
AM
410static const arch_entry cpu_arch[] = {
411 {"i8086", Cpu086 },
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
424 {NULL, 0 }
425};
426
29b0f896
AM
427const pseudo_typeS md_pseudo_table[] =
428{
429#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
431#else
432 {"align", s_align_ptwo, 0},
433#endif
434 {"arch", set_cpu_arch, 0},
435#ifndef I386COFF
436 {"bss", s_bss, 0},
437#endif
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
441 {"value", cons, 2},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
c6682705 450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896
AM
451 {"loc", dwarf2_directive_loc, 0},
452 {0, 0, 0}
453};
454
455/* For interface with expression (). */
456extern char *input_line_pointer;
457
458/* Hash table for instruction mnemonic lookup. */
459static struct hash_control *op_hash;
460
461/* Hash table for register lookup. */
462static struct hash_control *reg_hash;
463\f
252b5132
RH
464void
465i386_align_code (fragP, count)
466 fragS *fragP;
467 int count;
468{
ce8a8b2f
AM
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
252b5132
RH
472 static const char f32_1[] =
473 {0x90}; /* nop */
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
481 {0x90, /* nop */
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
488 {0x90, /* nop */
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
516 {0x90, /* nop */
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
530 };
531 static const char *const f16_patt[] = {
c3332e24 532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
534 };
535
33fef721
JH
536 if (count <= 0 || count > 15)
537 return;
3e73aa7c 538
33fef721
JH
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
252b5132 542 {
33fef721
JH
543 int i;
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
547 int pos = 0;
548
549 for (i = 0; i < remains; i++)
252b5132 550 {
33fef721
JH
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
553 pos += len + 1;
554 }
555 for (; i < nnops; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
559 pos += len;
252b5132 560 }
252b5132 561 }
33fef721
JH
562 else
563 if (flag_code == CODE_16BIT)
564 {
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
567 if (count > 8)
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
570 }
571 else
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
252b5132
RH
575}
576
252b5132
RH
577static INLINE unsigned int
578mode_from_disp_size (t)
579 unsigned int t;
580{
3e73aa7c 581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
582}
583
584static INLINE int
585fits_in_signed_byte (num)
847f7ad4 586 offsetT num;
252b5132
RH
587{
588 return (num >= -128) && (num <= 127);
47926f60 589}
252b5132
RH
590
591static INLINE int
592fits_in_unsigned_byte (num)
847f7ad4 593 offsetT num;
252b5132
RH
594{
595 return (num & 0xff) == num;
47926f60 596}
252b5132
RH
597
598static INLINE int
599fits_in_unsigned_word (num)
847f7ad4 600 offsetT num;
252b5132
RH
601{
602 return (num & 0xffff) == num;
47926f60 603}
252b5132
RH
604
605static INLINE int
606fits_in_signed_word (num)
847f7ad4 607 offsetT num;
252b5132
RH
608{
609 return (-32768 <= num) && (num <= 32767);
47926f60 610}
3e73aa7c
JH
611static INLINE int
612fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
614{
615#ifndef BFD64
616 return 1;
617#else
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
620#endif
621} /* fits_in_signed_long() */
622static INLINE int
623fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
625{
626#ifndef BFD64
627 return 1;
628#else
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
630#endif
631} /* fits_in_unsigned_long() */
252b5132
RH
632
633static int
634smallest_imm_type (num)
847f7ad4 635 offsetT num;
252b5132 636{
a847613f 637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
638 {
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
643 use that form. */
644 if (num == 1)
3e73aa7c 645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 646 }
252b5132 647 return (fits_in_signed_byte (num)
3e73aa7c 648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 649 : fits_in_unsigned_byte (num)
3e73aa7c 650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
656 ? (Imm32 | Imm64)
657 : Imm64);
47926f60 658}
252b5132 659
847f7ad4
AM
660static offsetT
661offset_in_range (val, size)
662 offsetT val;
663 int size;
664{
508866be 665 addressT mask;
ba2adb93 666
847f7ad4
AM
667 switch (size)
668 {
508866be
L
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 671 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
672#ifdef BFD64
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
674#endif
47926f60 675 default: abort ();
847f7ad4
AM
676 }
677
ba2adb93 678 /* If BFD64, sign extend val. */
3e73aa7c
JH
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 682
47926f60 683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
684 {
685 char buf1[40], buf2[40];
686
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
690 }
691 return val & mask;
692}
693
252b5132
RH
694/* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
696 added. */
697static int
698add_prefix (prefix)
699 unsigned int prefix;
700{
701 int ret = 1;
702 int q;
703
29b0f896
AM
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
3e73aa7c
JH
706 q = REX_PREFIX;
707 else
708 switch (prefix)
709 {
710 default:
711 abort ();
712
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
719 q = SEG_PREFIX;
720 break;
252b5132 721
3e73aa7c
JH
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
724 ret = 2;
725 /* fall thru */
726 case LOCK_PREFIX_OPCODE:
727 q = LOCKREP_PREFIX;
728 break;
252b5132 729
3e73aa7c
JH
730 case FWAIT_OPCODE:
731 q = WAIT_PREFIX;
732 break;
252b5132 733
3e73aa7c
JH
734 case ADDR_PREFIX_OPCODE:
735 q = ADDR_PREFIX;
736 break;
252b5132 737
3e73aa7c
JH
738 case DATA_PREFIX_OPCODE:
739 q = DATA_PREFIX;
740 break;
741 }
252b5132 742
29b0f896 743 if (i.prefix[q] != 0)
252b5132
RH
744 {
745 as_bad (_("same type of prefix used twice"));
746 return 0;
747 }
748
749 i.prefixes += 1;
750 i.prefix[q] = prefix;
751 return ret;
752}
753
754static void
3e73aa7c 755set_code_flag (value)
e5cb08ac 756 int value;
eecb386c 757{
3e73aa7c
JH
758 flag_code = value;
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
762 {
763 as_bad (_("64bit mode not supported on this CPU."));
764 }
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
766 {
767 as_bad (_("32bit mode not supported on this CPU."));
768 }
eecb386c
AM
769 stackop_size = '\0';
770}
771
772static void
3e73aa7c
JH
773set_16bit_gcc_code_flag (new_code_flag)
774 int new_code_flag;
252b5132 775{
3e73aa7c
JH
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
779 stackop_size = 'l';
252b5132
RH
780}
781
782static void
783set_intel_syntax (syntax_flag)
eecb386c 784 int syntax_flag;
252b5132
RH
785{
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
788
789 SKIP_WHITESPACE ();
29b0f896 790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
791 {
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
794
47926f60 795 if (strcmp (string, "prefix") == 0)
252b5132 796 ask_naked_reg = 1;
47926f60 797 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
798 ask_naked_reg = -1;
799 else
d0b47220 800 as_bad (_("bad argument to syntax directive."));
252b5132
RH
801 *input_line_pointer = e;
802 }
803 demand_empty_rest_of_line ();
c3332e24 804
252b5132
RH
805 intel_syntax = syntax_flag;
806
807 if (ask_naked_reg == 0)
808 {
809#ifdef BFD_ASSEMBLER
810 allow_naked_reg = (intel_syntax
24eab124 811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 812#else
47926f60
KH
813 /* Conservative default. */
814 allow_naked_reg = 0;
252b5132
RH
815#endif
816 }
817 else
818 allow_naked_reg = (ask_naked_reg < 0);
819}
820
e413e4e9
AM
821static void
822set_cpu_arch (dummy)
47926f60 823 int dummy ATTRIBUTE_UNUSED;
e413e4e9 824{
47926f60 825 SKIP_WHITESPACE ();
e413e4e9 826
29b0f896 827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
828 {
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
831 int i;
832
833 for (i = 0; cpu_arch[i].name; i++)
834 {
835 if (strcmp (string, cpu_arch[i].name) == 0)
836 {
837 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
840 break;
841 }
842 }
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
845
846 *input_line_pointer = e;
847 }
848 else
849 as_bad (_("missing cpu architecture"));
850
fddf5b5b
AM
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
29b0f896 853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
854 {
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
857
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
861 ;
862 else
863 as_bad (_("no such architecture modifier: `%s'"), string);
864
865 *input_line_pointer = e;
866 }
867
e413e4e9
AM
868 demand_empty_rest_of_line ();
869}
870
b9d79e03
JH
871#ifdef BFD_ASSEMBLER
872unsigned long
873i386_mach ()
874{
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
879 else
880 as_fatal (_("Unknown architecture"));
881}
882#endif
883\f
252b5132
RH
884void
885md_begin ()
886{
887 const char *hash_err;
888
47926f60 889 /* Initialize op_hash hash table. */
252b5132
RH
890 op_hash = hash_new ();
891
892 {
29b0f896
AM
893 const template *optab;
894 templates *core_optab;
252b5132 895
47926f60
KH
896 /* Setup for loop. */
897 optab = i386_optab;
252b5132
RH
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
47926f60 908 add to hash table; & begin anew. */
252b5132
RH
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
252b5132
RH
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
47926f60 927 /* Initialize reg_hash hash table. */
252b5132
RH
928 reg_hash = hash_new ();
929 {
29b0f896 930 const reg_entry *regtab;
252b5132
RH
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
3e73aa7c
JH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
252b5132
RH
941 }
942 }
943
47926f60 944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 945 {
29b0f896
AM
946 int c;
947 char *p;
252b5132
RH
948
949 for (c = 0; c < 256; c++)
950 {
3882b010 951 if (ISDIGIT (c))
252b5132
RH
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
3882b010 958 else if (ISLOWER (c))
252b5132
RH
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
3882b010 964 else if (ISUPPER (c))
252b5132 965 {
3882b010 966 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
3882b010 971 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980#ifdef LEX_AT
981 identifier_chars['@'] = '@';
982#endif
252b5132
RH
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
986
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
989 }
990
991#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
993 {
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
997 }
998#endif
a4447b93
RH
999
1000 if (flag_code == CODE_64BIT)
1001 {
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1004 }
1005 else
1006 {
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1009 }
252b5132
RH
1010}
1011
1012void
1013i386_print_statistics (file)
1014 FILE *file;
1015{
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1018}
1019\f
252b5132
RH
1020#ifdef DEBUG386
1021
ce8a8b2f 1022/* Debugging routines for md_assemble. */
252b5132
RH
1023static void pi PARAMS ((char *, i386_insn *));
1024static void pte PARAMS ((template *));
1025static void pt PARAMS ((unsigned int));
1026static void pe PARAMS ((expressionS *));
1027static void ps PARAMS ((symbolS *));
1028
1029static void
1030pi (line, x)
1031 char *line;
1032 i386_insn *x;
1033{
09f131f2 1034 unsigned int i;
252b5132
RH
1035
1036 fprintf (stdout, "%s: template ", line);
1037 pte (&x->tm);
09f131f2
JH
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1043 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1051 for (i = 0; i < x->operands; i++)
1052 {
1053 fprintf (stdout, " #%d: ", i + 1);
1054 pt (x->types[i]);
1055 fprintf (stdout, "\n");
1056 if (x->types[i]
3f4438ab 1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1059 if (x->types[i] & Imm)
520dc8e8 1060 pe (x->op[i].imms);
252b5132 1061 if (x->types[i] & Disp)
520dc8e8 1062 pe (x->op[i].disps);
252b5132
RH
1063 }
1064}
1065
1066static void
1067pte (t)
1068 template *t;
1069{
09f131f2 1070 unsigned int i;
252b5132 1071 fprintf (stdout, " %d operands ", t->operands);
47926f60 1072 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1081 {
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1085 }
1086}
1087
1088static void
1089pe (e)
1090 expressionS *e;
1091{
24eab124 1092 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1095 if (e->X_add_symbol)
1096 {
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1100 }
1101 if (e->X_op_symbol)
1102 {
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1106 }
1107}
1108
1109static void
1110ps (s)
1111 symbolS *s;
1112{
1113 fprintf (stdout, "%s type %s%s",
1114 S_GET_NAME (s),
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1117}
1118
1119struct type_name
1120 {
1121 unsigned int mask;
1122 char *tname;
1123 }
1124
29b0f896 1125static const type_names[] =
252b5132
RH
1126{
1127 { Reg8, "r8" },
1128 { Reg16, "r16" },
1129 { Reg32, "r32" },
09f131f2 1130 { Reg64, "r64" },
252b5132
RH
1131 { Imm8, "i8" },
1132 { Imm8S, "i8s" },
1133 { Imm16, "i16" },
1134 { Imm32, "i32" },
09f131f2
JH
1135 { Imm32S, "i32s" },
1136 { Imm64, "i64" },
252b5132
RH
1137 { Imm1, "i1" },
1138 { BaseIndex, "BaseIndex" },
1139 { Disp8, "d8" },
1140 { Disp16, "d16" },
1141 { Disp32, "d32" },
09f131f2
JH
1142 { Disp32S, "d32s" },
1143 { Disp64, "d64" },
252b5132
RH
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1151 { SReg2, "SReg2" },
1152 { SReg3, "SReg3" },
1153 { Acc, "Acc" },
1154 { JumpAbsolute, "Jump Absolute" },
1155 { RegMMX, "rMMX" },
3f4438ab 1156 { RegXMM, "rXMM" },
252b5132
RH
1157 { EsSeg, "es" },
1158 { 0, "" }
1159};
1160
1161static void
1162pt (t)
1163 unsigned int t;
1164{
29b0f896 1165 const struct type_name *ty;
252b5132 1166
09f131f2
JH
1167 for (ty = type_names; ty->mask; ty++)
1168 if (t & ty->mask)
1169 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1170 fflush (stdout);
1171}
1172
1173#endif /* DEBUG386 */
1174\f
252b5132 1175#ifdef BFD_ASSEMBLER
29b0f896
AM
1176static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1178
1179static bfd_reloc_code_real_type
3e73aa7c 1180reloc (size, pcrel, sign, other)
252b5132
RH
1181 int size;
1182 int pcrel;
3e73aa7c 1183 int sign;
252b5132
RH
1184 bfd_reloc_code_real_type other;
1185{
47926f60
KH
1186 if (other != NO_RELOC)
1187 return other;
252b5132
RH
1188
1189 if (pcrel)
1190 {
3e73aa7c 1191 if (!sign)
e5cb08ac 1192 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
d0b47220 1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1200 }
1201 else
1202 {
3e73aa7c 1203 if (sign)
e5cb08ac 1204 switch (size)
3e73aa7c
JH
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
252b5132
RH
1218 }
1219
bfb32b52 1220 abort ();
252b5132
RH
1221 return BFD_RELOC_NONE;
1222}
1223
47926f60
KH
1224/* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
252b5132 1229int
c0c949c7 1230tc_i386_fix_adjustable (fixP)
31312f95 1231 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1232{
6d249963 1233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
a161fe53
AM
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
252b5132 1242 return 0;
31312f95 1243
ce8a8b2f 1244 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1266 return 0;
31312f95 1267#endif
252b5132
RH
1268 return 1;
1269}
1270#else
ec56dfb4 1271#define reloc(SIZE,PCREL,SIGN,OTHER) 0
c6682705 1272#define BFD_RELOC_8 0
ec56dfb4
L
1273#define BFD_RELOC_16 0
1274#define BFD_RELOC_32 0
c6682705 1275#define BFD_RELOC_8_PCREL 0
ec56dfb4
L
1276#define BFD_RELOC_16_PCREL 0
1277#define BFD_RELOC_32_PCREL 0
1278#define BFD_RELOC_386_PLT32 0
1279#define BFD_RELOC_386_GOT32 0
1280#define BFD_RELOC_386_GOTOFF 0
13ae64f3
JJ
1281#define BFD_RELOC_386_TLS_GD 0
1282#define BFD_RELOC_386_TLS_LDM 0
1283#define BFD_RELOC_386_TLS_LDO_32 0
1284#define BFD_RELOC_386_TLS_IE_32 0
37e55690
JJ
1285#define BFD_RELOC_386_TLS_IE 0
1286#define BFD_RELOC_386_TLS_GOTIE 0
13ae64f3
JJ
1287#define BFD_RELOC_386_TLS_LE_32 0
1288#define BFD_RELOC_386_TLS_LE 0
ec56dfb4
L
1289#define BFD_RELOC_X86_64_PLT32 0
1290#define BFD_RELOC_X86_64_GOT32 0
1291#define BFD_RELOC_X86_64_GOTPCREL 0
bffbf940
JJ
1292#define BFD_RELOC_X86_64_TLSGD 0
1293#define BFD_RELOC_X86_64_TLSLD 0
1294#define BFD_RELOC_X86_64_DTPOFF32 0
1295#define BFD_RELOC_X86_64_GOTTPOFF 0
1296#define BFD_RELOC_X86_64_TPOFF32 0
252b5132
RH
1297#endif
1298
29b0f896 1299static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1300
1301static int
252b5132 1302intel_float_operand (mnemonic)
29b0f896 1303 const char *mnemonic;
252b5132 1304{
47926f60 1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1306 return 2;
252b5132
RH
1307
1308 if (mnemonic[0] == 'f')
1309 return 1;
1310
1311 return 0;
1312}
1313
1314/* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1317
1318void
1319md_assemble (line)
1320 char *line;
1321{
252b5132 1322 int j;
252b5132
RH
1323 char mnemonic[MAX_MNEM_SIZE];
1324
47926f60 1325 /* Initialize globals. */
252b5132
RH
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1328 i.reloc[j] = NO_RELOC;
252b5132
RH
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1331 save_stack_p = save_stack;
252b5132
RH
1332
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1335 start of a (possibly prefixed) mnemonic. */
252b5132 1336
29b0f896
AM
1337 line = parse_insn (line, mnemonic);
1338 if (line == NULL)
1339 return;
252b5132 1340
29b0f896
AM
1341 line = parse_operands (line, mnemonic);
1342 if (line == NULL)
1343 return;
252b5132 1344
29b0f896
AM
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1347
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1357 swap_operands ();
1358
1359 if (i.imm_operands)
1360 optimize_imm ();
1361
1362 if (i.disp_operands)
1363 optimize_disp ();
1364
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
252b5132 1368
29b0f896
AM
1369 if (!match_template ())
1370 return;
252b5132 1371
cd61ebfe
AM
1372 if (intel_syntax)
1373 {
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1375 if (SYSV386_COMPAT
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1378
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1383 i.suffix = 0;
1384 }
24eab124 1385
29b0f896
AM
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1392 {
1393 if (!check_string ())
5dd0794d 1394 return;
29b0f896 1395 }
5dd0794d 1396
29b0f896
AM
1397 if (!process_suffix ())
1398 return;
e413e4e9 1399
29b0f896
AM
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1403 return;
252b5132 1404
29b0f896
AM
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1408 i.reg_operands--;
1409 if (i.types[1] & ImplicitRegister)
1410 i.reg_operands--;
1411 if (i.types[2] & ImplicitRegister)
1412 i.reg_operands--;
252b5132 1413
29b0f896
AM
1414 if (i.tm.opcode_modifier & ImmExt)
1415 {
1416 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1417 opcode suffix which is coded in the same place as an 8-bit
1418 immediate field would be. Here we fake an 8-bit immediate
1419 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1420
29b0f896 1421 expressionS *exp;
252b5132 1422
29b0f896 1423 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1424
29b0f896
AM
1425 exp = &im_expressions[i.imm_operands++];
1426 i.op[i.operands].imms = exp;
1427 i.types[i.operands++] = Imm8;
1428 exp->X_op = O_constant;
1429 exp->X_add_number = i.tm.extension_opcode;
1430 i.tm.extension_opcode = None;
1431 }
252b5132 1432
29b0f896
AM
1433 /* For insns with operands there are more diddles to do to the opcode. */
1434 if (i.operands)
1435 {
1436 if (!process_operands ())
1437 return;
1438 }
1439 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1440 {
1441 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1442 as_warn (_("translating to `%sp'"), i.tm.name);
1443 }
252b5132 1444
29b0f896
AM
1445 /* Handle conversion of 'int $3' --> special int3 insn. */
1446 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1447 {
1448 i.tm.base_opcode = INT3_OPCODE;
1449 i.imm_operands = 0;
1450 }
252b5132 1451
29b0f896
AM
1452 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1453 && i.op[0].disps->X_op == O_constant)
1454 {
1455 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1456 the absolute address given by the constant. Since ix86 jumps and
1457 calls are pc relative, we need to generate a reloc. */
1458 i.op[0].disps->X_add_symbol = &abs_symbol;
1459 i.op[0].disps->X_op = O_symbol;
1460 }
252b5132 1461
29b0f896
AM
1462 if ((i.tm.opcode_modifier & Rex64) != 0)
1463 i.rex |= REX_MODE64;
252b5132 1464
29b0f896
AM
1465 /* For 8 bit registers we need an empty rex prefix. Also if the
1466 instruction already has a prefix, we need to convert old
1467 registers to new ones. */
773f551c 1468
29b0f896
AM
1469 if (((i.types[0] & Reg8) != 0
1470 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1471 || ((i.types[1] & Reg8) != 0
1472 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1473 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1474 && i.rex != 0))
1475 {
1476 int x;
726c5dcd 1477
29b0f896
AM
1478 i.rex |= REX_OPCODE;
1479 for (x = 0; x < 2; x++)
1480 {
1481 /* Look for 8 bit operand that uses old registers. */
1482 if ((i.types[x] & Reg8) != 0
1483 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1484 {
29b0f896
AM
1485 /* In case it is "hi" register, give up. */
1486 if (i.op[x].regs->reg_num > 3)
1487 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1488 i.op[x].regs->reg_name);
773f551c 1489
29b0f896
AM
1490 /* Otherwise it is equivalent to the extended register.
1491 Since the encoding doesn't change this is merely
1492 cosmetic cleanup for debug output. */
1493
1494 i.op[x].regs = i.op[x].regs + 8;
773f551c 1495 }
29b0f896
AM
1496 }
1497 }
773f551c 1498
29b0f896
AM
1499 if (i.rex != 0)
1500 add_prefix (REX_OPCODE | i.rex);
1501
1502 /* We are ready to output the insn. */
1503 output_insn ();
1504}
1505
1506static char *
1507parse_insn (line, mnemonic)
1508 char *line;
1509 char *mnemonic;
1510{
1511 char *l = line;
1512 char *token_start = l;
1513 char *mnem_p;
1514
1515 /* Non-zero if we found a prefix only acceptable with string insns. */
1516 const char *expecting_string_instruction = NULL;
45288df1 1517
29b0f896
AM
1518 while (1)
1519 {
1520 mnem_p = mnemonic;
1521 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1522 {
1523 mnem_p++;
1524 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1525 {
29b0f896
AM
1526 as_bad (_("no such instruction: `%s'"), token_start);
1527 return NULL;
1528 }
1529 l++;
1530 }
1531 if (!is_space_char (*l)
1532 && *l != END_OF_INSN
1533 && *l != PREFIX_SEPARATOR
1534 && *l != ',')
1535 {
1536 as_bad (_("invalid character %s in mnemonic"),
1537 output_invalid (*l));
1538 return NULL;
1539 }
1540 if (token_start == l)
1541 {
1542 if (*l == PREFIX_SEPARATOR)
1543 as_bad (_("expecting prefix; got nothing"));
1544 else
1545 as_bad (_("expecting mnemonic; got nothing"));
1546 return NULL;
1547 }
45288df1 1548
29b0f896
AM
1549 /* Look up instruction (or prefix) via hash table. */
1550 current_templates = hash_find (op_hash, mnemonic);
47926f60 1551
29b0f896
AM
1552 if (*l != END_OF_INSN
1553 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1554 && current_templates
1555 && (current_templates->start->opcode_modifier & IsPrefix))
1556 {
1557 /* If we are in 16-bit mode, do not allow addr16 or data16.
1558 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1559 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1560 && flag_code != CODE_64BIT
1561 && (((current_templates->start->opcode_modifier & Size32) != 0)
1562 ^ (flag_code == CODE_16BIT)))
1563 {
1564 as_bad (_("redundant %s prefix"),
1565 current_templates->start->name);
1566 return NULL;
45288df1 1567 }
29b0f896
AM
1568 /* Add prefix, checking for repeated prefixes. */
1569 switch (add_prefix (current_templates->start->base_opcode))
1570 {
1571 case 0:
1572 return NULL;
1573 case 2:
1574 expecting_string_instruction = current_templates->start->name;
1575 break;
1576 }
1577 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1578 token_start = ++l;
1579 }
1580 else
1581 break;
1582 }
45288df1 1583
29b0f896
AM
1584 if (!current_templates)
1585 {
1586 /* See if we can get a match by trimming off a suffix. */
1587 switch (mnem_p[-1])
1588 {
1589 case WORD_MNEM_SUFFIX:
1590 case BYTE_MNEM_SUFFIX:
1591 case QWORD_MNEM_SUFFIX:
1592 i.suffix = mnem_p[-1];
1593 mnem_p[-1] = '\0';
1594 current_templates = hash_find (op_hash, mnemonic);
1595 break;
1596 case SHORT_MNEM_SUFFIX:
1597 case LONG_MNEM_SUFFIX:
1598 if (!intel_syntax)
1599 {
1600 i.suffix = mnem_p[-1];
1601 mnem_p[-1] = '\0';
1602 current_templates = hash_find (op_hash, mnemonic);
1603 }
1604 break;
252b5132 1605
29b0f896
AM
1606 /* Intel Syntax. */
1607 case 'd':
1608 if (intel_syntax)
1609 {
1610 if (intel_float_operand (mnemonic))
1611 i.suffix = SHORT_MNEM_SUFFIX;
1612 else
1613 i.suffix = LONG_MNEM_SUFFIX;
1614 mnem_p[-1] = '\0';
1615 current_templates = hash_find (op_hash, mnemonic);
1616 }
1617 break;
1618 }
1619 if (!current_templates)
1620 {
1621 as_bad (_("no such instruction: `%s'"), token_start);
1622 return NULL;
1623 }
1624 }
252b5132 1625
29b0f896
AM
1626 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1627 {
1628 /* Check for a branch hint. We allow ",pt" and ",pn" for
1629 predict taken and predict not taken respectively.
1630 I'm not sure that branch hints actually do anything on loop
1631 and jcxz insns (JumpByte) for current Pentium4 chips. They
1632 may work in the future and it doesn't hurt to accept them
1633 now. */
1634 if (l[0] == ',' && l[1] == 'p')
1635 {
1636 if (l[2] == 't')
1637 {
1638 if (!add_prefix (DS_PREFIX_OPCODE))
1639 return NULL;
1640 l += 3;
1641 }
1642 else if (l[2] == 'n')
1643 {
1644 if (!add_prefix (CS_PREFIX_OPCODE))
1645 return NULL;
1646 l += 3;
1647 }
1648 }
1649 }
1650 /* Any other comma loses. */
1651 if (*l == ',')
1652 {
1653 as_bad (_("invalid character %s in mnemonic"),
1654 output_invalid (*l));
1655 return NULL;
1656 }
252b5132 1657
29b0f896
AM
1658 /* Check if instruction is supported on specified architecture. */
1659 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1660 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1661 {
1662 as_warn (_("`%s' is not supported on `%s'"),
1663 current_templates->start->name, cpu_arch_name);
1664 }
1665 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1666 {
1667 as_warn (_("use .code16 to ensure correct addressing mode"));
1668 }
252b5132 1669
29b0f896
AM
1670 /* Check for rep/repne without a string instruction. */
1671 if (expecting_string_instruction
1672 && !(current_templates->start->opcode_modifier & IsString))
1673 {
1674 as_bad (_("expecting string instruction after `%s'"),
1675 expecting_string_instruction);
1676 return NULL;
1677 }
252b5132 1678
29b0f896
AM
1679 return l;
1680}
252b5132 1681
29b0f896
AM
1682static char *
1683parse_operands (l, mnemonic)
1684 char *l;
1685 const char *mnemonic;
1686{
1687 char *token_start;
3138f287 1688
29b0f896
AM
1689 /* 1 if operand is pending after ','. */
1690 unsigned int expecting_operand = 0;
252b5132 1691
29b0f896
AM
1692 /* Non-zero if operand parens not balanced. */
1693 unsigned int paren_not_balanced;
1694
1695 while (*l != END_OF_INSN)
1696 {
1697 /* Skip optional white space before operand. */
1698 if (is_space_char (*l))
1699 ++l;
1700 if (!is_operand_char (*l) && *l != END_OF_INSN)
1701 {
1702 as_bad (_("invalid character %s before operand %d"),
1703 output_invalid (*l),
1704 i.operands + 1);
1705 return NULL;
1706 }
1707 token_start = l; /* after white space */
1708 paren_not_balanced = 0;
1709 while (paren_not_balanced || *l != ',')
1710 {
1711 if (*l == END_OF_INSN)
1712 {
1713 if (paren_not_balanced)
1714 {
1715 if (!intel_syntax)
1716 as_bad (_("unbalanced parenthesis in operand %d."),
1717 i.operands + 1);
1718 else
1719 as_bad (_("unbalanced brackets in operand %d."),
1720 i.operands + 1);
1721 return NULL;
1722 }
1723 else
1724 break; /* we are done */
1725 }
1726 else if (!is_operand_char (*l) && !is_space_char (*l))
1727 {
1728 as_bad (_("invalid character %s in operand %d"),
1729 output_invalid (*l),
1730 i.operands + 1);
1731 return NULL;
1732 }
1733 if (!intel_syntax)
1734 {
1735 if (*l == '(')
1736 ++paren_not_balanced;
1737 if (*l == ')')
1738 --paren_not_balanced;
1739 }
1740 else
1741 {
1742 if (*l == '[')
1743 ++paren_not_balanced;
1744 if (*l == ']')
1745 --paren_not_balanced;
1746 }
1747 l++;
1748 }
1749 if (l != token_start)
1750 { /* Yes, we've read in another operand. */
1751 unsigned int operand_ok;
1752 this_operand = i.operands++;
1753 if (i.operands > MAX_OPERANDS)
1754 {
1755 as_bad (_("spurious operands; (%d operands/instruction max)"),
1756 MAX_OPERANDS);
1757 return NULL;
1758 }
1759 /* Now parse operand adding info to 'i' as we go along. */
1760 END_STRING_AND_SAVE (l);
1761
1762 if (intel_syntax)
1763 operand_ok =
1764 i386_intel_operand (token_start,
1765 intel_float_operand (mnemonic));
1766 else
1767 operand_ok = i386_operand (token_start);
1768
1769 RESTORE_END_STRING (l);
1770 if (!operand_ok)
1771 return NULL;
1772 }
1773 else
1774 {
1775 if (expecting_operand)
1776 {
1777 expecting_operand_after_comma:
1778 as_bad (_("expecting operand after ','; got nothing"));
1779 return NULL;
1780 }
1781 if (*l == ',')
1782 {
1783 as_bad (_("expecting operand before ','; got nothing"));
1784 return NULL;
1785 }
1786 }
7f3f1ea2 1787
29b0f896
AM
1788 /* Now *l must be either ',' or END_OF_INSN. */
1789 if (*l == ',')
1790 {
1791 if (*++l == END_OF_INSN)
1792 {
1793 /* Just skip it, if it's \n complain. */
1794 goto expecting_operand_after_comma;
1795 }
1796 expecting_operand = 1;
1797 }
1798 }
1799 return l;
1800}
7f3f1ea2 1801
29b0f896
AM
1802static void
1803swap_operands ()
1804{
1805 union i386_op temp_op;
1806 unsigned int temp_type;
1807 RELOC_ENUM temp_reloc;
1808 int xchg1 = 0;
1809 int xchg2 = 0;
252b5132 1810
29b0f896
AM
1811 if (i.operands == 2)
1812 {
1813 xchg1 = 0;
1814 xchg2 = 1;
1815 }
1816 else if (i.operands == 3)
1817 {
1818 xchg1 = 0;
1819 xchg2 = 2;
1820 }
1821 temp_type = i.types[xchg2];
1822 i.types[xchg2] = i.types[xchg1];
1823 i.types[xchg1] = temp_type;
1824 temp_op = i.op[xchg2];
1825 i.op[xchg2] = i.op[xchg1];
1826 i.op[xchg1] = temp_op;
1827 temp_reloc = i.reloc[xchg2];
1828 i.reloc[xchg2] = i.reloc[xchg1];
1829 i.reloc[xchg1] = temp_reloc;
1830
1831 if (i.mem_operands == 2)
1832 {
1833 const seg_entry *temp_seg;
1834 temp_seg = i.seg[0];
1835 i.seg[0] = i.seg[1];
1836 i.seg[1] = temp_seg;
1837 }
1838}
252b5132 1839
29b0f896
AM
1840/* Try to ensure constant immediates are represented in the smallest
1841 opcode possible. */
1842static void
1843optimize_imm ()
1844{
1845 char guess_suffix = 0;
1846 int op;
252b5132 1847
29b0f896
AM
1848 if (i.suffix)
1849 guess_suffix = i.suffix;
1850 else if (i.reg_operands)
1851 {
1852 /* Figure out a suffix from the last register operand specified.
1853 We can't do this properly yet, ie. excluding InOutPortReg,
1854 but the following works for instructions with immediates.
1855 In any case, we can't set i.suffix yet. */
1856 for (op = i.operands; --op >= 0;)
1857 if (i.types[op] & Reg)
252b5132 1858 {
29b0f896
AM
1859 if (i.types[op] & Reg8)
1860 guess_suffix = BYTE_MNEM_SUFFIX;
1861 else if (i.types[op] & Reg16)
1862 guess_suffix = WORD_MNEM_SUFFIX;
1863 else if (i.types[op] & Reg32)
1864 guess_suffix = LONG_MNEM_SUFFIX;
1865 else if (i.types[op] & Reg64)
1866 guess_suffix = QWORD_MNEM_SUFFIX;
1867 break;
252b5132 1868 }
29b0f896
AM
1869 }
1870 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1871 guess_suffix = WORD_MNEM_SUFFIX;
1872
1873 for (op = i.operands; --op >= 0;)
1874 if (i.types[op] & Imm)
1875 {
1876 switch (i.op[op].imms->X_op)
252b5132 1877 {
29b0f896
AM
1878 case O_constant:
1879 /* If a suffix is given, this operand may be shortened. */
1880 switch (guess_suffix)
252b5132 1881 {
29b0f896
AM
1882 case LONG_MNEM_SUFFIX:
1883 i.types[op] |= Imm32 | Imm64;
1884 break;
1885 case WORD_MNEM_SUFFIX:
1886 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1887 break;
1888 case BYTE_MNEM_SUFFIX:
1889 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1890 break;
252b5132 1891 }
252b5132 1892
29b0f896
AM
1893 /* If this operand is at most 16 bits, convert it
1894 to a signed 16 bit number before trying to see
1895 whether it will fit in an even smaller size.
1896 This allows a 16-bit operand such as $0xffe0 to
1897 be recognised as within Imm8S range. */
1898 if ((i.types[op] & Imm16)
1899 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1900 {
29b0f896
AM
1901 i.op[op].imms->X_add_number =
1902 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1903 }
1904 if ((i.types[op] & Imm32)
1905 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1906 == 0))
1907 {
1908 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1909 ^ ((offsetT) 1 << 31))
1910 - ((offsetT) 1 << 31));
1911 }
1912 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 1913
29b0f896
AM
1914 /* We must avoid matching of Imm32 templates when 64bit
1915 only immediate is available. */
1916 if (guess_suffix == QWORD_MNEM_SUFFIX)
1917 i.types[op] &= ~Imm32;
1918 break;
252b5132 1919
29b0f896
AM
1920 case O_absent:
1921 case O_register:
1922 abort ();
1923
1924 /* Symbols and expressions. */
1925 default:
1926 /* Convert symbolic operand to proper sizes for matching. */
1927 switch (guess_suffix)
1928 {
1929 case QWORD_MNEM_SUFFIX:
1930 i.types[op] = Imm64 | Imm32S;
1931 break;
1932 case LONG_MNEM_SUFFIX:
1933 i.types[op] = Imm32 | Imm64;
1934 break;
1935 case WORD_MNEM_SUFFIX:
1936 i.types[op] = Imm16 | Imm32 | Imm64;
1937 break;
1938 break;
1939 case BYTE_MNEM_SUFFIX:
1940 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1941 break;
1942 break;
252b5132 1943 }
29b0f896 1944 break;
252b5132 1945 }
29b0f896
AM
1946 }
1947}
47926f60 1948
29b0f896
AM
1949/* Try to use the smallest displacement type too. */
1950static void
1951optimize_disp ()
1952{
1953 int op;
3e73aa7c 1954
29b0f896
AM
1955 for (op = i.operands; --op >= 0;)
1956 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 1957 {
29b0f896
AM
1958 offsetT disp = i.op[op].disps->X_add_number;
1959
1960 if (i.types[op] & Disp16)
252b5132 1961 {
29b0f896
AM
1962 /* We know this operand is at most 16 bits, so
1963 convert to a signed 16 bit number before trying
1964 to see whether it will fit in an even smaller
1965 size. */
1966
1967 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 1968 }
29b0f896 1969 else if (i.types[op] & Disp32)
252b5132 1970 {
29b0f896
AM
1971 /* We know this operand is at most 32 bits, so convert to a
1972 signed 32 bit number before trying to see whether it will
1973 fit in an even smaller size. */
1974 disp &= (((offsetT) 2 << 31) - 1);
1975 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 1976 }
29b0f896 1977 if (flag_code == CODE_64BIT)
252b5132 1978 {
29b0f896
AM
1979 if (fits_in_signed_long (disp))
1980 i.types[op] |= Disp32S;
1981 if (fits_in_unsigned_long (disp))
1982 i.types[op] |= Disp32;
252b5132 1983 }
29b0f896
AM
1984 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1985 && fits_in_signed_byte (disp))
1986 i.types[op] |= Disp8;
252b5132 1987 }
29b0f896
AM
1988}
1989
1990static int
1991match_template ()
1992{
1993 /* Points to template once we've found it. */
1994 const template *t;
1995 unsigned int overlap0, overlap1, overlap2;
1996 unsigned int found_reverse_match;
1997 int suffix_check;
1998
1999#define MATCH(overlap, given, template) \
2000 ((overlap & ~JumpAbsolute) \
2001 && (((given) & (BaseIndex | JumpAbsolute)) \
2002 == ((overlap) & (BaseIndex | JumpAbsolute))))
2003
2004 /* If given types r0 and r1 are registers they must be of the same type
2005 unless the expected operand type register overlap is null.
2006 Note that Acc in a template matches every size of reg. */
2007#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2008 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2009 || ((g0) & Reg) == ((g1) & Reg) \
2010 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2011
2012 overlap0 = 0;
2013 overlap1 = 0;
2014 overlap2 = 0;
2015 found_reverse_match = 0;
2016 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2017 ? No_bSuf
2018 : (i.suffix == WORD_MNEM_SUFFIX
2019 ? No_wSuf
2020 : (i.suffix == SHORT_MNEM_SUFFIX
2021 ? No_sSuf
2022 : (i.suffix == LONG_MNEM_SUFFIX
2023 ? No_lSuf
2024 : (i.suffix == QWORD_MNEM_SUFFIX
2025 ? No_qSuf
2026 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2027 ? No_xSuf : 0))))));
2028
2029 for (t = current_templates->start;
2030 t < current_templates->end;
2031 t++)
2032 {
2033 /* Must have right number of operands. */
2034 if (i.operands != t->operands)
2035 continue;
2036
2037 /* Check the suffix, except for some instructions in intel mode. */
2038 if ((t->opcode_modifier & suffix_check)
2039 && !(intel_syntax
2040 && (t->opcode_modifier & IgnoreSize))
2041 && !(intel_syntax
2042 && t->base_opcode == 0xd9
2043 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2044 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2045 continue;
2046
2047 /* Do not verify operands when there are none. */
2048 else if (!t->operands)
2049 {
2050 if (t->cpu_flags & ~cpu_arch_flags)
2051 continue;
2052 /* We've found a match; break out of loop. */
2053 break;
2054 }
252b5132 2055
29b0f896
AM
2056 overlap0 = i.types[0] & t->operand_types[0];
2057 switch (t->operands)
2058 {
2059 case 1:
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2061 continue;
2062 break;
2063 case 2:
2064 case 3:
2065 overlap1 = i.types[1] & t->operand_types[1];
2066 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2067 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2068 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2069 t->operand_types[0],
2070 overlap1, i.types[1],
2071 t->operand_types[1]))
2072 {
2073 /* Check if other direction is valid ... */
2074 if ((t->opcode_modifier & (D | FloatD)) == 0)
2075 continue;
2076
2077 /* Try reversing direction of operands. */
2078 overlap0 = i.types[0] & t->operand_types[1];
2079 overlap1 = i.types[1] & t->operand_types[0];
2080 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2081 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2082 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2083 t->operand_types[1],
2084 overlap1, i.types[1],
2085 t->operand_types[0]))
2086 {
2087 /* Does not match either direction. */
2088 continue;
2089 }
2090 /* found_reverse_match holds which of D or FloatDR
2091 we've found. */
2092 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2093 }
2094 /* Found a forward 2 operand match here. */
2095 else if (t->operands == 3)
2096 {
2097 /* Here we make use of the fact that there are no
2098 reverse match 3 operand instructions, and all 3
2099 operand instructions only need to be checked for
2100 register consistency between operands 2 and 3. */
2101 overlap2 = i.types[2] & t->operand_types[2];
2102 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2103 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2104 t->operand_types[1],
2105 overlap2, i.types[2],
2106 t->operand_types[2]))
2107
2108 continue;
2109 }
2110 /* Found either forward/reverse 2 or 3 operand match here:
2111 slip through to break. */
2112 }
2113 if (t->cpu_flags & ~cpu_arch_flags)
2114 {
2115 found_reverse_match = 0;
2116 continue;
2117 }
2118 /* We've found a match; break out of loop. */
2119 break;
2120 }
2121
2122 if (t == current_templates->end)
2123 {
2124 /* We found no match. */
2125 as_bad (_("suffix or operands invalid for `%s'"),
2126 current_templates->start->name);
2127 return 0;
2128 }
252b5132 2129
29b0f896
AM
2130 if (!quiet_warnings)
2131 {
2132 if (!intel_syntax
2133 && ((i.types[0] & JumpAbsolute)
2134 != (t->operand_types[0] & JumpAbsolute)))
2135 {
2136 as_warn (_("indirect %s without `*'"), t->name);
2137 }
2138
2139 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2140 == (IsPrefix | IgnoreSize))
2141 {
2142 /* Warn them that a data or address size prefix doesn't
2143 affect assembly of the next line of code. */
2144 as_warn (_("stand-alone `%s' prefix"), t->name);
2145 }
2146 }
2147
2148 /* Copy the template we found. */
2149 i.tm = *t;
2150 if (found_reverse_match)
2151 {
2152 /* If we found a reverse match we must alter the opcode
2153 direction bit. found_reverse_match holds bits to change
2154 (different for int & float insns). */
2155
2156 i.tm.base_opcode ^= found_reverse_match;
2157
2158 i.tm.operand_types[0] = t->operand_types[1];
2159 i.tm.operand_types[1] = t->operand_types[0];
2160 }
2161
2162 return 1;
2163}
2164
2165static int
2166check_string ()
2167{
2168 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2169 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2170 {
2171 if (i.seg[0] != NULL && i.seg[0] != &es)
2172 {
2173 as_bad (_("`%s' operand %d must use `%%es' segment"),
2174 i.tm.name,
2175 mem_op + 1);
2176 return 0;
2177 }
2178 /* There's only ever one segment override allowed per instruction.
2179 This instruction possibly has a legal segment override on the
2180 second operand, so copy the segment to where non-string
2181 instructions store it, allowing common code. */
2182 i.seg[0] = i.seg[1];
2183 }
2184 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2185 {
2186 if (i.seg[1] != NULL && i.seg[1] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 2);
2191 return 0;
2192 }
2193 }
2194 return 1;
2195}
2196
2197static int
2198process_suffix ()
2199{
2200 /* If matched instruction specifies an explicit instruction mnemonic
2201 suffix, use it. */
2202 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2203 {
2204 if (i.tm.opcode_modifier & Size16)
2205 i.suffix = WORD_MNEM_SUFFIX;
2206 else if (i.tm.opcode_modifier & Size64)
2207 i.suffix = QWORD_MNEM_SUFFIX;
2208 else
2209 i.suffix = LONG_MNEM_SUFFIX;
2210 }
2211 else if (i.reg_operands)
2212 {
2213 /* If there's no instruction mnemonic suffix we try to invent one
2214 based on register operands. */
2215 if (!i.suffix)
2216 {
2217 /* We take i.suffix from the last register operand specified,
2218 Destination register type is more significant than source
2219 register type. */
2220 int op;
2221 for (op = i.operands; --op >= 0;)
2222 if ((i.types[op] & Reg)
2223 && !(i.tm.operand_types[op] & InOutPortReg))
2224 {
2225 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2226 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2227 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2228 LONG_MNEM_SUFFIX);
2229 break;
2230 }
2231 }
2232 else if (i.suffix == BYTE_MNEM_SUFFIX)
2233 {
2234 if (!check_byte_reg ())
2235 return 0;
2236 }
2237 else if (i.suffix == LONG_MNEM_SUFFIX)
2238 {
2239 if (!check_long_reg ())
2240 return 0;
2241 }
2242 else if (i.suffix == QWORD_MNEM_SUFFIX)
2243 {
2244 if (!check_qword_reg ())
2245 return 0;
2246 }
2247 else if (i.suffix == WORD_MNEM_SUFFIX)
2248 {
2249 if (!check_word_reg ())
2250 return 0;
2251 }
2252 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2253 /* Do nothing if the instruction is going to ignore the prefix. */
2254 ;
2255 else
2256 abort ();
2257 }
2258 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2259 {
2260 i.suffix = stackop_size;
2261 }
252b5132 2262
29b0f896
AM
2263 /* Change the opcode based on the operand size given by i.suffix;
2264 We need not change things for byte insns. */
252b5132 2265
29b0f896
AM
2266 if (!i.suffix && (i.tm.opcode_modifier & W))
2267 {
2268 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2269 return 0;
2270 }
252b5132 2271
29b0f896
AM
2272 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2273 {
2274 /* It's not a byte, select word/dword operation. */
2275 if (i.tm.opcode_modifier & W)
2276 {
2277 if (i.tm.opcode_modifier & ShortForm)
2278 i.tm.base_opcode |= 8;
2279 else
2280 i.tm.base_opcode |= 1;
2281 }
0f3f3d8b 2282
29b0f896
AM
2283 /* Now select between word & dword operations via the operand
2284 size prefix, except for instructions that will ignore this
2285 prefix anyway. */
2286 if (i.suffix != QWORD_MNEM_SUFFIX
9146926a
AM
2287 && !(i.tm.opcode_modifier & IgnoreSize)
2288 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2289 || (flag_code == CODE_64BIT
2290 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2291 {
2292 unsigned int prefix = DATA_PREFIX_OPCODE;
29b0f896
AM
2293 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2294 prefix = ADDR_PREFIX_OPCODE;
252b5132 2295
29b0f896
AM
2296 if (!add_prefix (prefix))
2297 return 0;
24eab124 2298 }
252b5132 2299
29b0f896
AM
2300 /* Set mode64 for an operand. */
2301 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2302 && flag_code == CODE_64BIT
29b0f896 2303 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2304 i.rex |= REX_MODE64;
3e73aa7c 2305
29b0f896
AM
2306 /* Size floating point instruction. */
2307 if (i.suffix == LONG_MNEM_SUFFIX)
2308 {
2309 if (i.tm.opcode_modifier & FloatMF)
2310 i.tm.base_opcode ^= 4;
2311 }
2312 }
7ecd2f8b 2313
29b0f896
AM
2314 return 1;
2315}
3e73aa7c 2316
29b0f896
AM
2317static int
2318check_byte_reg ()
2319{
2320 int op;
2321 for (op = i.operands; --op >= 0;)
2322 {
2323 /* If this is an eight bit register, it's OK. If it's the 16 or
2324 32 bit version of an eight bit register, we will just use the
2325 low portion, and that's OK too. */
2326 if (i.types[op] & Reg8)
2327 continue;
2328
2329 /* movzx and movsx should not generate this warning. */
2330 if (intel_syntax
2331 && (i.tm.base_opcode == 0xfb7
2332 || i.tm.base_opcode == 0xfb6
2333 || i.tm.base_opcode == 0x63
2334 || i.tm.base_opcode == 0xfbe
2335 || i.tm.base_opcode == 0xfbf))
2336 continue;
2337
2338 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2339#if 0
2340 /* Check that the template allows eight bit regs. This
2341 kills insns such as `orb $1,%edx', which maybe should be
2342 allowed. */
2343 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2344#endif
2345 )
2346 {
2347 /* Prohibit these changes in the 64bit mode, since the
2348 lowering is more complicated. */
2349 if (flag_code == CODE_64BIT
2350 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2351 {
0f3f3d8b 2352 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2353 i.op[op].regs->reg_name,
2354 i.suffix);
2355 return 0;
2356 }
2357#if REGISTER_WARNINGS
2358 if (!quiet_warnings
2359 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2360 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2361 (i.op[op].regs + (i.types[op] & Reg16
2362 ? REGNAM_AL - REGNAM_AX
2363 : REGNAM_AL - REGNAM_EAX))->reg_name,
2364 i.op[op].regs->reg_name,
2365 i.suffix);
2366#endif
2367 continue;
2368 }
2369 /* Any other register is bad. */
2370 if (i.types[op] & (Reg | RegMMX | RegXMM
2371 | SReg2 | SReg3
2372 | Control | Debug | Test
2373 | FloatReg | FloatAcc))
2374 {
2375 as_bad (_("`%%%s' not allowed with `%s%c'"),
2376 i.op[op].regs->reg_name,
2377 i.tm.name,
2378 i.suffix);
2379 return 0;
2380 }
2381 }
2382 return 1;
2383}
2384
2385static int
2386check_long_reg ()
2387{
2388 int op;
2389
2390 for (op = i.operands; --op >= 0;)
2391 /* Reject eight bit registers, except where the template requires
2392 them. (eg. movzb) */
2393 if ((i.types[op] & Reg8) != 0
2394 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2395 {
2396 as_bad (_("`%%%s' not allowed with `%s%c'"),
2397 i.op[op].regs->reg_name,
2398 i.tm.name,
2399 i.suffix);
2400 return 0;
2401 }
2402 /* Warn if the e prefix on a general reg is missing. */
2403 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2404 && (i.types[op] & Reg16) != 0
2405 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2406 {
2407 /* Prohibit these changes in the 64bit mode, since the
2408 lowering is more complicated. */
2409 if (flag_code == CODE_64BIT)
252b5132 2410 {
0f3f3d8b 2411 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2412 i.op[op].regs->reg_name,
2413 i.suffix);
2414 return 0;
252b5132 2415 }
29b0f896
AM
2416#if REGISTER_WARNINGS
2417 else
2418 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2419 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2420 i.op[op].regs->reg_name,
2421 i.suffix);
2422#endif
252b5132 2423 }
29b0f896
AM
2424 /* Warn if the r prefix on a general reg is missing. */
2425 else if ((i.types[op] & Reg64) != 0
2426 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2427 {
0f3f3d8b 2428 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2429 i.op[op].regs->reg_name,
2430 i.suffix);
2431 return 0;
2432 }
2433 return 1;
2434}
252b5132 2435
29b0f896
AM
2436static int
2437check_qword_reg ()
2438{
2439 int op;
252b5132 2440
29b0f896
AM
2441 for (op = i.operands; --op >= 0; )
2442 /* Reject eight bit registers, except where the template requires
2443 them. (eg. movzb) */
2444 if ((i.types[op] & Reg8) != 0
2445 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2446 {
2447 as_bad (_("`%%%s' not allowed with `%s%c'"),
2448 i.op[op].regs->reg_name,
2449 i.tm.name,
2450 i.suffix);
2451 return 0;
2452 }
2453 /* Warn if the e prefix on a general reg is missing. */
2454 else if (((i.types[op] & Reg16) != 0
2455 || (i.types[op] & Reg32) != 0)
2456 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2457 {
2458 /* Prohibit these changes in the 64bit mode, since the
2459 lowering is more complicated. */
0f3f3d8b 2460 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2461 i.op[op].regs->reg_name,
2462 i.suffix);
2463 return 0;
252b5132 2464 }
29b0f896
AM
2465 return 1;
2466}
252b5132 2467
29b0f896
AM
2468static int
2469check_word_reg ()
2470{
2471 int op;
2472 for (op = i.operands; --op >= 0;)
2473 /* Reject eight bit registers, except where the template requires
2474 them. (eg. movzb) */
2475 if ((i.types[op] & Reg8) != 0
2476 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2477 {
2478 as_bad (_("`%%%s' not allowed with `%s%c'"),
2479 i.op[op].regs->reg_name,
2480 i.tm.name,
2481 i.suffix);
2482 return 0;
2483 }
2484 /* Warn if the e prefix on a general reg is present. */
2485 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2486 && (i.types[op] & Reg32) != 0
2487 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2488 {
29b0f896
AM
2489 /* Prohibit these changes in the 64bit mode, since the
2490 lowering is more complicated. */
2491 if (flag_code == CODE_64BIT)
252b5132 2492 {
0f3f3d8b 2493 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2494 i.op[op].regs->reg_name,
2495 i.suffix);
2496 return 0;
252b5132 2497 }
29b0f896
AM
2498 else
2499#if REGISTER_WARNINGS
2500 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2501 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2502 i.op[op].regs->reg_name,
2503 i.suffix);
2504#endif
2505 }
2506 return 1;
2507}
252b5132 2508
29b0f896
AM
2509static int
2510finalize_imm ()
2511{
2512 unsigned int overlap0, overlap1, overlap2;
2513
2514 overlap0 = i.types[0] & i.tm.operand_types[0];
2515 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2516 && overlap0 != Imm8 && overlap0 != Imm8S
2517 && overlap0 != Imm16 && overlap0 != Imm32S
2518 && overlap0 != Imm32 && overlap0 != Imm64)
2519 {
2520 if (i.suffix)
2521 {
2522 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2523 ? Imm8 | Imm8S
2524 : (i.suffix == WORD_MNEM_SUFFIX
2525 ? Imm16
2526 : (i.suffix == QWORD_MNEM_SUFFIX
2527 ? Imm64 | Imm32S
2528 : Imm32)));
2529 }
2530 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2531 || overlap0 == (Imm16 | Imm32)
2532 || overlap0 == (Imm16 | Imm32S))
2533 {
2534 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2535 ? Imm16 : Imm32S);
2536 }
2537 if (overlap0 != Imm8 && overlap0 != Imm8S
2538 && overlap0 != Imm16 && overlap0 != Imm32S
2539 && overlap0 != Imm32 && overlap0 != Imm64)
2540 {
2541 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2542 return 0;
2543 }
2544 }
2545 i.types[0] = overlap0;
2546
2547 overlap1 = i.types[1] & i.tm.operand_types[1];
2548 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2549 && overlap1 != Imm8 && overlap1 != Imm8S
2550 && overlap1 != Imm16 && overlap1 != Imm32S
2551 && overlap1 != Imm32 && overlap1 != Imm64)
2552 {
2553 if (i.suffix)
2554 {
2555 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2556 ? Imm8 | Imm8S
2557 : (i.suffix == WORD_MNEM_SUFFIX
2558 ? Imm16
2559 : (i.suffix == QWORD_MNEM_SUFFIX
2560 ? Imm64 | Imm32S
2561 : Imm32)));
2562 }
2563 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2564 || overlap1 == (Imm16 | Imm32)
2565 || overlap1 == (Imm16 | Imm32S))
2566 {
2567 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2568 ? Imm16 : Imm32S);
2569 }
2570 if (overlap1 != Imm8 && overlap1 != Imm8S
2571 && overlap1 != Imm16 && overlap1 != Imm32S
2572 && overlap1 != Imm32 && overlap1 != Imm64)
2573 {
2574 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2575 return 0;
2576 }
2577 }
2578 i.types[1] = overlap1;
2579
2580 overlap2 = i.types[2] & i.tm.operand_types[2];
2581 assert ((overlap2 & Imm) == 0);
2582 i.types[2] = overlap2;
2583
2584 return 1;
2585}
2586
2587static int
2588process_operands ()
2589{
2590 /* Default segment register this instruction will use for memory
2591 accesses. 0 means unknown. This is only for optimizing out
2592 unnecessary segment overrides. */
2593 const seg_entry *default_seg = 0;
2594
2595 /* The imul $imm, %reg instruction is converted into
2596 imul $imm, %reg, %reg, and the clr %reg instruction
2597 is converted into xor %reg, %reg. */
2598 if (i.tm.opcode_modifier & regKludge)
2599 {
2600 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2601 /* Pretend we saw the extra register operand. */
2602 assert (i.op[first_reg_op + 1].regs == 0);
2603 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2604 i.types[first_reg_op + 1] = i.types[first_reg_op];
2605 i.reg_operands = 2;
2606 }
2607
2608 if (i.tm.opcode_modifier & ShortForm)
2609 {
2610 /* The register or float register operand is in operand 0 or 1. */
2611 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2612 /* Register goes in low 3 bits of opcode. */
2613 i.tm.base_opcode |= i.op[op].regs->reg_num;
2614 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2615 i.rex |= REX_EXTZ;
2616 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2617 {
2618 /* Warn about some common errors, but press on regardless.
2619 The first case can be generated by gcc (<= 2.8.1). */
2620 if (i.operands == 2)
2621 {
2622 /* Reversed arguments on faddp, fsubp, etc. */
2623 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2624 i.op[1].regs->reg_name,
2625 i.op[0].regs->reg_name);
2626 }
2627 else
2628 {
2629 /* Extraneous `l' suffix on fp insn. */
2630 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2631 i.op[0].regs->reg_name);
2632 }
2633 }
2634 }
2635 else if (i.tm.opcode_modifier & Modrm)
2636 {
2637 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2638 must be put into the modrm byte). Now, we make the modrm and
2639 index base bytes based on all the info we've collected. */
29b0f896
AM
2640
2641 default_seg = build_modrm_byte ();
2642 }
2643 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2644 {
2645 if (i.tm.base_opcode == POP_SEG_SHORT
2646 && i.op[0].regs->reg_num == 1)
2647 {
2648 as_bad (_("you can't `pop %%cs'"));
2649 return 0;
2650 }
2651 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2652 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2653 i.rex |= REX_EXTZ;
2654 }
2655 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2656 {
2657 default_seg = &ds;
2658 }
2659 else if ((i.tm.opcode_modifier & IsString) != 0)
2660 {
2661 /* For the string instructions that allow a segment override
2662 on one of their operands, the default segment is ds. */
2663 default_seg = &ds;
2664 }
2665
52271982
AM
2666 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2667 as_warn (_("segment override on `lea' is ineffectual"));
2668
2669 /* If a segment was explicitly specified, and the specified segment
2670 is not the default, use an opcode prefix to select it. If we
2671 never figured out what the default segment is, then default_seg
2672 will be zero at this point, and the specified segment prefix will
2673 always be used. */
29b0f896
AM
2674 if ((i.seg[0]) && (i.seg[0] != default_seg))
2675 {
2676 if (!add_prefix (i.seg[0]->seg_prefix))
2677 return 0;
2678 }
2679 return 1;
2680}
2681
2682static const seg_entry *
2683build_modrm_byte ()
2684{
2685 const seg_entry *default_seg = 0;
2686
2687 /* i.reg_operands MUST be the number of real register operands;
2688 implicit registers do not count. */
2689 if (i.reg_operands == 2)
2690 {
2691 unsigned int source, dest;
2692 source = ((i.types[0]
2693 & (Reg | RegMMX | RegXMM
2694 | SReg2 | SReg3
2695 | Control | Debug | Test))
2696 ? 0 : 1);
2697 dest = source + 1;
2698
2699 i.rm.mode = 3;
2700 /* One of the register operands will be encoded in the i.tm.reg
2701 field, the other in the combined i.tm.mode and i.tm.regmem
2702 fields. If no form of this instruction supports a memory
2703 destination operand, then we assume the source operand may
2704 sometimes be a memory operand and so we need to store the
2705 destination in the i.rm.reg field. */
2706 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2707 {
2708 i.rm.reg = i.op[dest].regs->reg_num;
2709 i.rm.regmem = i.op[source].regs->reg_num;
2710 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2711 i.rex |= REX_EXTX;
2712 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2713 i.rex |= REX_EXTZ;
2714 }
2715 else
2716 {
2717 i.rm.reg = i.op[source].regs->reg_num;
2718 i.rm.regmem = i.op[dest].regs->reg_num;
2719 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2720 i.rex |= REX_EXTZ;
2721 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2722 i.rex |= REX_EXTX;
2723 }
2724 }
2725 else
2726 { /* If it's not 2 reg operands... */
2727 if (i.mem_operands)
2728 {
2729 unsigned int fake_zero_displacement = 0;
2730 unsigned int op = ((i.types[0] & AnyMem)
2731 ? 0
2732 : (i.types[1] & AnyMem) ? 1 : 2);
2733
2734 default_seg = &ds;
2735
2736 if (i.base_reg == 0)
2737 {
2738 i.rm.mode = 0;
2739 if (!i.disp_operands)
2740 fake_zero_displacement = 1;
2741 if (i.index_reg == 0)
2742 {
2743 /* Operand is just <disp> */
2744 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2745 && (flag_code != CODE_64BIT))
2746 {
2747 i.rm.regmem = NO_BASE_REGISTER_16;
2748 i.types[op] &= ~Disp;
2749 i.types[op] |= Disp16;
2750 }
2751 else if (flag_code != CODE_64BIT
2752 || (i.prefix[ADDR_PREFIX] != 0))
2753 {
2754 i.rm.regmem = NO_BASE_REGISTER;
2755 i.types[op] &= ~Disp;
2756 i.types[op] |= Disp32;
2757 }
2758 else
2759 {
2760 /* 64bit mode overwrites the 32bit absolute
2761 addressing by RIP relative addressing and
2762 absolute addressing is encoded by one of the
2763 redundant SIB forms. */
2764 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2765 i.sib.base = NO_BASE_REGISTER;
2766 i.sib.index = NO_INDEX_REGISTER;
2767 i.types[op] &= ~Disp;
2768 i.types[op] |= Disp32S;
2769 }
2770 }
2771 else /* !i.base_reg && i.index_reg */
2772 {
2773 i.sib.index = i.index_reg->reg_num;
2774 i.sib.base = NO_BASE_REGISTER;
2775 i.sib.scale = i.log2_scale_factor;
2776 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2777 i.types[op] &= ~Disp;
2778 if (flag_code != CODE_64BIT)
2779 i.types[op] |= Disp32; /* Must be 32 bit */
2780 else
2781 i.types[op] |= Disp32S;
2782 if ((i.index_reg->reg_flags & RegRex) != 0)
2783 i.rex |= REX_EXTY;
2784 }
2785 }
2786 /* RIP addressing for 64bit mode. */
2787 else if (i.base_reg->reg_type == BaseIndex)
2788 {
2789 i.rm.regmem = NO_BASE_REGISTER;
2790 i.types[op] &= ~Disp;
2791 i.types[op] |= Disp32S;
2792 i.flags[op] = Operand_PCrel;
2793 }
2794 else if (i.base_reg->reg_type & Reg16)
2795 {
2796 switch (i.base_reg->reg_num)
2797 {
2798 case 3: /* (%bx) */
2799 if (i.index_reg == 0)
2800 i.rm.regmem = 7;
2801 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2802 i.rm.regmem = i.index_reg->reg_num - 6;
2803 break;
2804 case 5: /* (%bp) */
2805 default_seg = &ss;
2806 if (i.index_reg == 0)
2807 {
2808 i.rm.regmem = 6;
2809 if ((i.types[op] & Disp) == 0)
2810 {
2811 /* fake (%bp) into 0(%bp) */
2812 i.types[op] |= Disp8;
252b5132 2813 fake_zero_displacement = 1;
29b0f896
AM
2814 }
2815 }
2816 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2817 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2818 break;
2819 default: /* (%si) -> 4 or (%di) -> 5 */
2820 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2821 }
2822 i.rm.mode = mode_from_disp_size (i.types[op]);
2823 }
2824 else /* i.base_reg and 32/64 bit mode */
2825 {
2826 if (flag_code == CODE_64BIT
2827 && (i.types[op] & Disp))
2828 {
2829 if (i.types[op] & Disp8)
2830 i.types[op] = Disp8 | Disp32S;
2831 else
2832 i.types[op] = Disp32S;
2833 }
2834 i.rm.regmem = i.base_reg->reg_num;
2835 if ((i.base_reg->reg_flags & RegRex) != 0)
2836 i.rex |= REX_EXTZ;
2837 i.sib.base = i.base_reg->reg_num;
2838 /* x86-64 ignores REX prefix bit here to avoid decoder
2839 complications. */
2840 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2841 {
2842 default_seg = &ss;
2843 if (i.disp_operands == 0)
2844 {
2845 fake_zero_displacement = 1;
2846 i.types[op] |= Disp8;
2847 }
2848 }
2849 else if (i.base_reg->reg_num == ESP_REG_NUM)
2850 {
2851 default_seg = &ss;
2852 }
2853 i.sib.scale = i.log2_scale_factor;
2854 if (i.index_reg == 0)
2855 {
2856 /* <disp>(%esp) becomes two byte modrm with no index
2857 register. We've already stored the code for esp
2858 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2859 Any base register besides %esp will not use the
2860 extra modrm byte. */
2861 i.sib.index = NO_INDEX_REGISTER;
2862#if !SCALE1_WHEN_NO_INDEX
2863 /* Another case where we force the second modrm byte. */
2864 if (i.log2_scale_factor)
2865 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 2866#endif
29b0f896
AM
2867 }
2868 else
2869 {
2870 i.sib.index = i.index_reg->reg_num;
2871 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2872 if ((i.index_reg->reg_flags & RegRex) != 0)
2873 i.rex |= REX_EXTY;
2874 }
2875 i.rm.mode = mode_from_disp_size (i.types[op]);
2876 }
252b5132 2877
29b0f896
AM
2878 if (fake_zero_displacement)
2879 {
2880 /* Fakes a zero displacement assuming that i.types[op]
2881 holds the correct displacement size. */
2882 expressionS *exp;
2883
2884 assert (i.op[op].disps == 0);
2885 exp = &disp_expressions[i.disp_operands++];
2886 i.op[op].disps = exp;
2887 exp->X_op = O_constant;
2888 exp->X_add_number = 0;
2889 exp->X_add_symbol = (symbolS *) 0;
2890 exp->X_op_symbol = (symbolS *) 0;
2891 }
2892 }
252b5132 2893
29b0f896
AM
2894 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2895 (if any) based on i.tm.extension_opcode. Again, we must be
2896 careful to make sure that segment/control/debug/test/MMX
2897 registers are coded into the i.rm.reg field. */
2898 if (i.reg_operands)
2899 {
2900 unsigned int op =
2901 ((i.types[0]
2902 & (Reg | RegMMX | RegXMM
2903 | SReg2 | SReg3
2904 | Control | Debug | Test))
2905 ? 0
2906 : ((i.types[1]
2907 & (Reg | RegMMX | RegXMM
2908 | SReg2 | SReg3
2909 | Control | Debug | Test))
2910 ? 1
2911 : 2));
2912 /* If there is an extension opcode to put here, the register
2913 number must be put into the regmem field. */
2914 if (i.tm.extension_opcode != None)
2915 {
2916 i.rm.regmem = i.op[op].regs->reg_num;
2917 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2918 i.rex |= REX_EXTZ;
2919 }
2920 else
2921 {
2922 i.rm.reg = i.op[op].regs->reg_num;
2923 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2924 i.rex |= REX_EXTX;
2925 }
252b5132 2926
29b0f896
AM
2927 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2928 must set it to 3 to indicate this is a register operand
2929 in the regmem field. */
2930 if (!i.mem_operands)
2931 i.rm.mode = 3;
2932 }
252b5132 2933
29b0f896
AM
2934 /* Fill in i.rm.reg field with extension opcode (if any). */
2935 if (i.tm.extension_opcode != None)
2936 i.rm.reg = i.tm.extension_opcode;
2937 }
2938 return default_seg;
2939}
252b5132 2940
29b0f896
AM
2941static void
2942output_branch ()
2943{
2944 char *p;
2945 int code16;
2946 int prefix;
2947 relax_substateT subtype;
2948 symbolS *sym;
2949 offsetT off;
2950
2951 code16 = 0;
2952 if (flag_code == CODE_16BIT)
2953 code16 = CODE16;
2954
2955 prefix = 0;
2956 if (i.prefix[DATA_PREFIX] != 0)
252b5132 2957 {
29b0f896
AM
2958 prefix = 1;
2959 i.prefixes -= 1;
2960 code16 ^= CODE16;
252b5132 2961 }
29b0f896
AM
2962 /* Pentium4 branch hints. */
2963 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2964 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 2965 {
29b0f896
AM
2966 prefix++;
2967 i.prefixes--;
2968 }
2969 if (i.prefix[REX_PREFIX] != 0)
2970 {
2971 prefix++;
2972 i.prefixes--;
2f66722d
AM
2973 }
2974
29b0f896
AM
2975 if (i.prefixes != 0 && !intel_syntax)
2976 as_warn (_("skipping prefixes on this instruction"));
2977
2978 /* It's always a symbol; End frag & setup for relax.
2979 Make sure there is enough room in this frag for the largest
2980 instruction we may generate in md_convert_frag. This is 2
2981 bytes for the opcode and room for the prefix and largest
2982 displacement. */
2983 frag_grow (prefix + 2 + 4);
2984 /* Prefix and 1 opcode byte go in fr_fix. */
2985 p = frag_more (prefix + 1);
2986 if (i.prefix[DATA_PREFIX] != 0)
2987 *p++ = DATA_PREFIX_OPCODE;
2988 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2989 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2990 *p++ = i.prefix[SEG_PREFIX];
2991 if (i.prefix[REX_PREFIX] != 0)
2992 *p++ = i.prefix[REX_PREFIX];
2993 *p = i.tm.base_opcode;
2994
2995 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2996 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2997 else if ((cpu_arch_flags & Cpu386) != 0)
2998 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2999 else
3000 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3001 subtype |= code16;
3e73aa7c 3002
29b0f896
AM
3003 sym = i.op[0].disps->X_add_symbol;
3004 off = i.op[0].disps->X_add_number;
3e73aa7c 3005
29b0f896
AM
3006 if (i.op[0].disps->X_op != O_constant
3007 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3008 {
29b0f896
AM
3009 /* Handle complex expressions. */
3010 sym = make_expr_symbol (i.op[0].disps);
3011 off = 0;
3012 }
3e73aa7c 3013
29b0f896
AM
3014 /* 1 possible extra opcode + 4 byte displacement go in var part.
3015 Pass reloc in fr_var. */
3016 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3017}
3e73aa7c 3018
29b0f896
AM
3019static void
3020output_jump ()
3021{
3022 char *p;
3023 int size;
3e02c1cc 3024 fixS *fixP;
29b0f896
AM
3025
3026 if (i.tm.opcode_modifier & JumpByte)
3027 {
3028 /* This is a loop or jecxz type instruction. */
3029 size = 1;
3030 if (i.prefix[ADDR_PREFIX] != 0)
3031 {
3032 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3033 i.prefixes -= 1;
3034 }
3035 /* Pentium4 branch hints. */
3036 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3037 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3038 {
3039 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3040 i.prefixes--;
3e73aa7c
JH
3041 }
3042 }
29b0f896
AM
3043 else
3044 {
3045 int code16;
3e73aa7c 3046
29b0f896
AM
3047 code16 = 0;
3048 if (flag_code == CODE_16BIT)
3049 code16 = CODE16;
3e73aa7c 3050
29b0f896
AM
3051 if (i.prefix[DATA_PREFIX] != 0)
3052 {
3053 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3054 i.prefixes -= 1;
3055 code16 ^= CODE16;
3056 }
252b5132 3057
29b0f896
AM
3058 size = 4;
3059 if (code16)
3060 size = 2;
3061 }
9fcc94b6 3062
29b0f896
AM
3063 if (i.prefix[REX_PREFIX] != 0)
3064 {
3065 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3066 i.prefixes -= 1;
3067 }
252b5132 3068
29b0f896
AM
3069 if (i.prefixes != 0 && !intel_syntax)
3070 as_warn (_("skipping prefixes on this instruction"));
e0890092 3071
29b0f896
AM
3072 p = frag_more (1 + size);
3073 *p++ = i.tm.base_opcode;
e0890092 3074
3e02c1cc
AM
3075 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3076 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3077
3078 /* All jumps handled here are signed, but don't use a signed limit
3079 check for 32 and 16 bit jumps as we want to allow wrap around at
3080 4G and 64k respectively. */
3081 if (size == 1)
3082 fixP->fx_signed = 1;
29b0f896 3083}
e0890092 3084
29b0f896
AM
3085static void
3086output_interseg_jump ()
3087{
3088 char *p;
3089 int size;
3090 int prefix;
3091 int code16;
252b5132 3092
29b0f896
AM
3093 code16 = 0;
3094 if (flag_code == CODE_16BIT)
3095 code16 = CODE16;
a217f122 3096
29b0f896
AM
3097 prefix = 0;
3098 if (i.prefix[DATA_PREFIX] != 0)
3099 {
3100 prefix = 1;
3101 i.prefixes -= 1;
3102 code16 ^= CODE16;
3103 }
3104 if (i.prefix[REX_PREFIX] != 0)
3105 {
3106 prefix++;
3107 i.prefixes -= 1;
3108 }
252b5132 3109
29b0f896
AM
3110 size = 4;
3111 if (code16)
3112 size = 2;
252b5132 3113
29b0f896
AM
3114 if (i.prefixes != 0 && !intel_syntax)
3115 as_warn (_("skipping prefixes on this instruction"));
252b5132 3116
29b0f896
AM
3117 /* 1 opcode; 2 segment; offset */
3118 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3119
29b0f896
AM
3120 if (i.prefix[DATA_PREFIX] != 0)
3121 *p++ = DATA_PREFIX_OPCODE;
252b5132 3122
29b0f896
AM
3123 if (i.prefix[REX_PREFIX] != 0)
3124 *p++ = i.prefix[REX_PREFIX];
252b5132 3125
29b0f896
AM
3126 *p++ = i.tm.base_opcode;
3127 if (i.op[1].imms->X_op == O_constant)
3128 {
3129 offsetT n = i.op[1].imms->X_add_number;
252b5132 3130
29b0f896
AM
3131 if (size == 2
3132 && !fits_in_unsigned_word (n)
3133 && !fits_in_signed_word (n))
3134 {
3135 as_bad (_("16-bit jump out of range"));
3136 return;
3137 }
3138 md_number_to_chars (p, n, size);
3139 }
3140 else
3141 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3142 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3143 if (i.op[0].imms->X_op != O_constant)
3144 as_bad (_("can't handle non absolute segment in `%s'"),
3145 i.tm.name);
3146 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3147}
a217f122 3148
2bbd9c25 3149
29b0f896
AM
3150static void
3151output_insn ()
3152{
2bbd9c25
JJ
3153 fragS *insn_start_frag;
3154 offsetT insn_start_off;
3155
29b0f896
AM
3156 /* Tie dwarf2 debug info to the address at the start of the insn.
3157 We can't do this after the insn has been output as the current
3158 frag may have been closed off. eg. by frag_var. */
3159 dwarf2_emit_insn (0);
3160
2bbd9c25
JJ
3161 insn_start_frag = frag_now;
3162 insn_start_off = frag_now_fix ();
3163
29b0f896
AM
3164 /* Output jumps. */
3165 if (i.tm.opcode_modifier & Jump)
3166 output_branch ();
3167 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3168 output_jump ();
3169 else if (i.tm.opcode_modifier & JumpInterSegment)
3170 output_interseg_jump ();
3171 else
3172 {
3173 /* Output normal instructions here. */
3174 char *p;
3175 unsigned char *q;
252b5132 3176
29b0f896
AM
3177 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3178 byte for the SSE instructions to specify a prefix they require. */
3179 if (i.tm.base_opcode & 0xff0000)
3180 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3181
29b0f896
AM
3182 /* The prefix bytes. */
3183 for (q = i.prefix;
3184 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3185 q++)
3186 {
3187 if (*q)
3188 {
3189 p = frag_more (1);
3190 md_number_to_chars (p, (valueT) *q, 1);
3191 }
3192 }
252b5132 3193
29b0f896
AM
3194 /* Now the opcode; be careful about word order here! */
3195 if (fits_in_unsigned_byte (i.tm.base_opcode))
3196 {
3197 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3198 }
3199 else
3200 {
3201 p = frag_more (2);
3202 /* Put out high byte first: can't use md_number_to_chars! */
3203 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3204 *p = i.tm.base_opcode & 0xff;
3205 }
3e73aa7c 3206
29b0f896
AM
3207 /* Now the modrm byte and sib byte (if present). */
3208 if (i.tm.opcode_modifier & Modrm)
3209 {
3210 p = frag_more (1);
3211 md_number_to_chars (p,
3212 (valueT) (i.rm.regmem << 0
3213 | i.rm.reg << 3
3214 | i.rm.mode << 6),
3215 1);
3216 /* If i.rm.regmem == ESP (4)
3217 && i.rm.mode != (Register mode)
3218 && not 16 bit
3219 ==> need second modrm byte. */
3220 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3221 && i.rm.mode != 3
3222 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3223 {
3224 p = frag_more (1);
3225 md_number_to_chars (p,
3226 (valueT) (i.sib.base << 0
3227 | i.sib.index << 3
3228 | i.sib.scale << 6),
3229 1);
3230 }
3231 }
3e73aa7c 3232
29b0f896 3233 if (i.disp_operands)
2bbd9c25 3234 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3235
29b0f896 3236 if (i.imm_operands)
2bbd9c25 3237 output_imm (insn_start_frag, insn_start_off);
29b0f896 3238 }
252b5132 3239
29b0f896
AM
3240#ifdef DEBUG386
3241 if (flag_debug)
3242 {
3243 pi (line, &i);
3244 }
3245#endif /* DEBUG386 */
3246}
252b5132 3247
29b0f896 3248static void
2bbd9c25
JJ
3249output_disp (insn_start_frag, insn_start_off)
3250 fragS *insn_start_frag;
3251 offsetT insn_start_off;
29b0f896
AM
3252{
3253 char *p;
3254 unsigned int n;
252b5132 3255
29b0f896
AM
3256 for (n = 0; n < i.operands; n++)
3257 {
3258 if (i.types[n] & Disp)
3259 {
3260 if (i.op[n].disps->X_op == O_constant)
3261 {
3262 int size;
3263 offsetT val;
252b5132 3264
29b0f896
AM
3265 size = 4;
3266 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3267 {
3268 size = 2;
3269 if (i.types[n] & Disp8)
3270 size = 1;
3271 if (i.types[n] & Disp64)
3272 size = 8;
3273 }
3274 val = offset_in_range (i.op[n].disps->X_add_number,
3275 size);
3276 p = frag_more (size);
3277 md_number_to_chars (p, val, size);
3278 }
3279 else
3280 {
2bbd9c25 3281 RELOC_ENUM reloc_type;
29b0f896
AM
3282 int size = 4;
3283 int sign = 0;
3284 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3285
3286 /* The PC relative address is computed relative
3287 to the instruction boundary, so in case immediate
3288 fields follows, we need to adjust the value. */
3289 if (pcrel && i.imm_operands)
3290 {
3291 int imm_size = 4;
3292 unsigned int n1;
252b5132 3293
29b0f896
AM
3294 for (n1 = 0; n1 < i.operands; n1++)
3295 if (i.types[n1] & Imm)
252b5132 3296 {
29b0f896 3297 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3298 {
29b0f896
AM
3299 imm_size = 2;
3300 if (i.types[n1] & (Imm8 | Imm8S))
3301 imm_size = 1;
3302 if (i.types[n1] & Imm64)
3303 imm_size = 8;
252b5132 3304 }
29b0f896 3305 break;
252b5132 3306 }
29b0f896
AM
3307 /* We should find the immediate. */
3308 if (n1 == i.operands)
3309 abort ();
3310 i.op[n].disps->X_add_number -= imm_size;
3311 }
520dc8e8 3312
29b0f896
AM
3313 if (i.types[n] & Disp32S)
3314 sign = 1;
3e73aa7c 3315
29b0f896
AM
3316 if (i.types[n] & (Disp16 | Disp64))
3317 {
3318 size = 2;
3319 if (i.types[n] & Disp64)
3320 size = 8;
3321 }
520dc8e8 3322
29b0f896 3323 p = frag_more (size);
2bbd9c25
JJ
3324 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3325#ifdef BFD_ASSEMBLER
3326 if (reloc_type == BFD_RELOC_32
3327 && GOT_symbol
3328 && GOT_symbol == i.op[n].disps->X_add_symbol
3329 && (i.op[n].disps->X_op == O_symbol
3330 || (i.op[n].disps->X_op == O_add
3331 && ((symbol_get_value_expression
3332 (i.op[n].disps->X_op_symbol)->X_op)
3333 == O_subtract))))
3334 {
3335 offsetT add;
3336
3337 if (insn_start_frag == frag_now)
3338 add = (p - frag_now->fr_literal) - insn_start_off;
3339 else
3340 {
3341 fragS *fr;
3342
3343 add = insn_start_frag->fr_fix - insn_start_off;
3344 for (fr = insn_start_frag->fr_next;
3345 fr && fr != frag_now; fr = fr->fr_next)
3346 add += fr->fr_fix;
3347 add += p - frag_now->fr_literal;
3348 }
3349
3350 /* We don't support dynamic linking on x86-64 yet. */
3351 if (flag_code == CODE_64BIT)
3352 abort ();
3353 reloc_type = BFD_RELOC_386_GOTPC;
3354 i.op[n].disps->X_add_number += add;
3355 }
3356#endif
062cd5e7 3357 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3358 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3359 }
3360 }
3361 }
3362}
252b5132 3363
29b0f896 3364static void
2bbd9c25
JJ
3365output_imm (insn_start_frag, insn_start_off)
3366 fragS *insn_start_frag;
3367 offsetT insn_start_off;
29b0f896
AM
3368{
3369 char *p;
3370 unsigned int n;
252b5132 3371
29b0f896
AM
3372 for (n = 0; n < i.operands; n++)
3373 {
3374 if (i.types[n] & Imm)
3375 {
3376 if (i.op[n].imms->X_op == O_constant)
3377 {
3378 int size;
3379 offsetT val;
b4cac588 3380
29b0f896
AM
3381 size = 4;
3382 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3383 {
3384 size = 2;
3385 if (i.types[n] & (Imm8 | Imm8S))
3386 size = 1;
3387 else if (i.types[n] & Imm64)
3388 size = 8;
3389 }
3390 val = offset_in_range (i.op[n].imms->X_add_number,
3391 size);
3392 p = frag_more (size);
3393 md_number_to_chars (p, val, size);
3394 }
3395 else
3396 {
3397 /* Not absolute_section.
3398 Need a 32-bit fixup (don't support 8bit
3399 non-absolute imms). Try to support other
3400 sizes ... */
3401 RELOC_ENUM reloc_type;
3402 int size = 4;
3403 int sign = 0;
3404
3405 if ((i.types[n] & (Imm32S))
3406 && i.suffix == QWORD_MNEM_SUFFIX)
3407 sign = 1;
3408 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3409 {
3410 size = 2;
3411 if (i.types[n] & (Imm8 | Imm8S))
3412 size = 1;
3413 if (i.types[n] & Imm64)
3414 size = 8;
3415 }
520dc8e8 3416
29b0f896
AM
3417 p = frag_more (size);
3418 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3419#ifdef BFD_ASSEMBLER
2bbd9c25
JJ
3420 /* This is tough to explain. We end up with this one if we
3421 * have operands that look like
3422 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3423 * obtain the absolute address of the GOT, and it is strongly
3424 * preferable from a performance point of view to avoid using
3425 * a runtime relocation for this. The actual sequence of
3426 * instructions often look something like:
3427 *
3428 * call .L66
3429 * .L66:
3430 * popl %ebx
3431 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3432 *
3433 * The call and pop essentially return the absolute address
3434 * of the label .L66 and store it in %ebx. The linker itself
3435 * will ultimately change the first operand of the addl so
3436 * that %ebx points to the GOT, but to keep things simple, the
3437 * .o file must have this operand set so that it generates not
3438 * the absolute address of .L66, but the absolute address of
3439 * itself. This allows the linker itself simply treat a GOTPC
3440 * relocation as asking for a pcrel offset to the GOT to be
3441 * added in, and the addend of the relocation is stored in the
3442 * operand field for the instruction itself.
3443 *
3444 * Our job here is to fix the operand so that it would add
3445 * the correct offset so that %ebx would point to itself. The
3446 * thing that is tricky is that .-.L66 will point to the
3447 * beginning of the instruction, so we need to further modify
3448 * the operand so that it will point to itself. There are
3449 * other cases where you have something like:
3450 *
3451 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3452 *
3453 * and here no correction would be required. Internally in
3454 * the assembler we treat operands of this form as not being
3455 * pcrel since the '.' is explicitly mentioned, and I wonder
3456 * whether it would simplify matters to do it this way. Who
3457 * knows. In earlier versions of the PIC patches, the
3458 * pcrel_adjust field was used to store the correction, but
3459 * since the expression is not pcrel, I felt it would be
3460 * confusing to do it this way. */
3461
29b0f896
AM
3462 if (reloc_type == BFD_RELOC_32
3463 && GOT_symbol
3464 && GOT_symbol == i.op[n].imms->X_add_symbol
3465 && (i.op[n].imms->X_op == O_symbol
3466 || (i.op[n].imms->X_op == O_add
3467 && ((symbol_get_value_expression
3468 (i.op[n].imms->X_op_symbol)->X_op)
3469 == O_subtract))))
3470 {
2bbd9c25
JJ
3471 offsetT add;
3472
3473 if (insn_start_frag == frag_now)
3474 add = (p - frag_now->fr_literal) - insn_start_off;
3475 else
3476 {
3477 fragS *fr;
3478
3479 add = insn_start_frag->fr_fix - insn_start_off;
3480 for (fr = insn_start_frag->fr_next;
3481 fr && fr != frag_now; fr = fr->fr_next)
3482 add += fr->fr_fix;
3483 add += p - frag_now->fr_literal;
3484 }
3485
29b0f896
AM
3486 /* We don't support dynamic linking on x86-64 yet. */
3487 if (flag_code == CODE_64BIT)
3488 abort ();
3489 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3490 i.op[n].imms->X_add_number += add;
29b0f896 3491 }
252b5132 3492#endif
29b0f896
AM
3493 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3494 i.op[n].imms, 0, reloc_type);
3495 }
3496 }
3497 }
252b5132
RH
3498}
3499\f
f3c180ae
AM
3500#ifndef LEX_AT
3501static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3502
3503/* Parse operands of the form
3504 <symbol>@GOTOFF+<nnn>
3505 and similar .plt or .got references.
3506
3507 If we find one, set up the correct relocation in RELOC and copy the
3508 input string, minus the `@GOTOFF' into a malloc'd buffer for
3509 parsing by the calling routine. Return this buffer, and if ADJUST
3510 is non-null set it to the length of the string we removed from the
3511 input line. Otherwise return NULL. */
3512static char *
3513lex_got (reloc, adjust)
3514 RELOC_ENUM *reloc;
3515 int *adjust;
3516{
3517 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3518 static const struct {
3519 const char *str;
3520 const RELOC_ENUM rel[NUM_FLAG_CODE];
3521 } gotrel[] = {
13ae64f3
JJ
3522 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3523 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3524 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3525 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3526 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3527 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3528 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3529 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3530 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3531 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3532 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3533 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3534 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3535 };
3536 char *cp;
3537 unsigned int j;
3538
3539 for (cp = input_line_pointer; *cp != '@'; cp++)
3540 if (is_end_of_line[(unsigned char) *cp])
3541 return NULL;
3542
3543 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3544 {
3545 int len;
3546
3547 len = strlen (gotrel[j].str);
28f81592 3548 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3549 {
3550 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3551 {
28f81592
AM
3552 int first, second;
3553 char *tmpbuf, *past_reloc;
f3c180ae
AM
3554
3555 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3556 if (adjust)
3557 *adjust = len;
f3c180ae
AM
3558
3559 if (GOT_symbol == NULL)
3560 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3561
3562 /* Replace the relocation token with ' ', so that
3563 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3564
3565 /* The length of the first part of our input line. */
f3c180ae 3566 first = cp - input_line_pointer;
28f81592
AM
3567
3568 /* The second part goes from after the reloc token until
3569 (and including) an end_of_line char. Don't use strlen
3570 here as the end_of_line char may not be a NUL. */
3571 past_reloc = cp + 1 + len;
3572 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3573 ;
3574 second = cp - past_reloc;
3575
3576 /* Allocate and copy string. The trailing NUL shouldn't
3577 be necessary, but be safe. */
3578 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3579 memcpy (tmpbuf, input_line_pointer, first);
3580 tmpbuf[first] = ' ';
28f81592
AM
3581 memcpy (tmpbuf + first + 1, past_reloc, second);
3582 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3583 return tmpbuf;
3584 }
3585
3586 as_bad (_("@%s reloc is not supported in %s bit mode"),
3587 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3588 return NULL;
3589 }
3590 }
3591
3592 /* Might be a symbol version string. Don't as_bad here. */
3593 return NULL;
3594}
3595
3596/* x86_cons_fix_new is called via the expression parsing code when a
3597 reloc is needed. We use this hook to get the correct .got reloc. */
3598static RELOC_ENUM got_reloc = NO_RELOC;
3599
3600void
3601x86_cons_fix_new (frag, off, len, exp)
3602 fragS *frag;
3603 unsigned int off;
3604 unsigned int len;
3605 expressionS *exp;
3606{
3607 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3608 got_reloc = NO_RELOC;
3609 fix_new_exp (frag, off, len, exp, 0, r);
3610}
3611
3612void
3613x86_cons (exp, size)
3614 expressionS *exp;
3615 int size;
3616{
3617 if (size == 4)
3618 {
3619 /* Handle @GOTOFF and the like in an expression. */
3620 char *save;
3621 char *gotfree_input_line;
3622 int adjust;
3623
3624 save = input_line_pointer;
3625 gotfree_input_line = lex_got (&got_reloc, &adjust);
3626 if (gotfree_input_line)
3627 input_line_pointer = gotfree_input_line;
3628
3629 expression (exp);
3630
3631 if (gotfree_input_line)
3632 {
3633 /* expression () has merrily parsed up to the end of line,
3634 or a comma - in the wrong buffer. Transfer how far
3635 input_line_pointer has moved to the right buffer. */
3636 input_line_pointer = (save
3637 + (input_line_pointer - gotfree_input_line)
3638 + adjust);
3639 free (gotfree_input_line);
3640 }
3641 }
3642 else
3643 expression (exp);
3644}
3645#endif
3646
252b5132
RH
3647static int i386_immediate PARAMS ((char *));
3648
3649static int
3650i386_immediate (imm_start)
3651 char *imm_start;
3652{
3653 char *save_input_line_pointer;
f3c180ae
AM
3654#ifndef LEX_AT
3655 char *gotfree_input_line;
3656#endif
252b5132 3657 segT exp_seg = 0;
47926f60 3658 expressionS *exp;
252b5132
RH
3659
3660 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3661 {
d0b47220 3662 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3663 return 0;
3664 }
3665
3666 exp = &im_expressions[i.imm_operands++];
520dc8e8 3667 i.op[this_operand].imms = exp;
252b5132
RH
3668
3669 if (is_space_char (*imm_start))
3670 ++imm_start;
3671
3672 save_input_line_pointer = input_line_pointer;
3673 input_line_pointer = imm_start;
3674
3675#ifndef LEX_AT
f3c180ae
AM
3676 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3677 if (gotfree_input_line)
3678 input_line_pointer = gotfree_input_line;
252b5132
RH
3679#endif
3680
3681 exp_seg = expression (exp);
3682
83183c0c 3683 SKIP_WHITESPACE ();
252b5132 3684 if (*input_line_pointer)
f3c180ae 3685 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3686
3687 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3688#ifndef LEX_AT
3689 if (gotfree_input_line)
3690 free (gotfree_input_line);
3691#endif
252b5132 3692
2daf4fd8 3693 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3694 {
47926f60 3695 /* Missing or bad expr becomes absolute 0. */
d0b47220 3696 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3697 imm_start);
252b5132
RH
3698 exp->X_op = O_constant;
3699 exp->X_add_number = 0;
3700 exp->X_add_symbol = (symbolS *) 0;
3701 exp->X_op_symbol = (symbolS *) 0;
252b5132 3702 }
3e73aa7c 3703 else if (exp->X_op == O_constant)
252b5132 3704 {
47926f60 3705 /* Size it properly later. */
3e73aa7c
JH
3706 i.types[this_operand] |= Imm64;
3707 /* If BFD64, sign extend val. */
3708 if (!use_rela_relocations)
3709 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3710 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3711 }
4c63da97 3712#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3713 else if (1
4c63da97 3714#ifdef BFD_ASSEMBLER
47926f60 3715 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3716#endif
31312f95 3717 && exp_seg != absolute_section
47926f60 3718 && exp_seg != text_section
24eab124
AM
3719 && exp_seg != data_section
3720 && exp_seg != bss_section
3721 && exp_seg != undefined_section
252b5132 3722#ifdef BFD_ASSEMBLER
24eab124 3723 && !bfd_is_com_section (exp_seg)
252b5132 3724#endif
24eab124 3725 )
252b5132 3726 {
4c63da97 3727#ifdef BFD_ASSEMBLER
d0b47220 3728 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3729#else
d0b47220 3730 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3731#endif
252b5132
RH
3732 return 0;
3733 }
3734#endif
3735 else
3736 {
3737 /* This is an address. The size of the address will be
24eab124 3738 determined later, depending on destination register,
3e73aa7c
JH
3739 suffix, or the default for the section. */
3740 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3741 }
3742
3743 return 1;
3744}
3745
551c1ca1 3746static char *i386_scale PARAMS ((char *));
252b5132 3747
551c1ca1 3748static char *
252b5132
RH
3749i386_scale (scale)
3750 char *scale;
3751{
551c1ca1
AM
3752 offsetT val;
3753 char *save = input_line_pointer;
252b5132 3754
551c1ca1
AM
3755 input_line_pointer = scale;
3756 val = get_absolute_expression ();
3757
3758 switch (val)
252b5132 3759 {
551c1ca1
AM
3760 case 0:
3761 case 1:
252b5132
RH
3762 i.log2_scale_factor = 0;
3763 break;
551c1ca1 3764 case 2:
252b5132
RH
3765 i.log2_scale_factor = 1;
3766 break;
551c1ca1 3767 case 4:
252b5132
RH
3768 i.log2_scale_factor = 2;
3769 break;
551c1ca1 3770 case 8:
252b5132
RH
3771 i.log2_scale_factor = 3;
3772 break;
3773 default:
252b5132 3774 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3775 scale);
551c1ca1
AM
3776 input_line_pointer = save;
3777 return NULL;
252b5132 3778 }
29b0f896 3779 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3780 {
3781 as_warn (_("scale factor of %d without an index register"),
24eab124 3782 1 << i.log2_scale_factor);
252b5132
RH
3783#if SCALE1_WHEN_NO_INDEX
3784 i.log2_scale_factor = 0;
3785#endif
3786 }
551c1ca1
AM
3787 scale = input_line_pointer;
3788 input_line_pointer = save;
3789 return scale;
252b5132
RH
3790}
3791
3792static int i386_displacement PARAMS ((char *, char *));
3793
3794static int
3795i386_displacement (disp_start, disp_end)
3796 char *disp_start;
3797 char *disp_end;
3798{
29b0f896 3799 expressionS *exp;
252b5132
RH
3800 segT exp_seg = 0;
3801 char *save_input_line_pointer;
f3c180ae
AM
3802#ifndef LEX_AT
3803 char *gotfree_input_line;
3804#endif
252b5132
RH
3805 int bigdisp = Disp32;
3806
3e73aa7c 3807 if (flag_code == CODE_64BIT)
7ecd2f8b 3808 {
29b0f896
AM
3809 if (i.prefix[ADDR_PREFIX] == 0)
3810 bigdisp = Disp64;
7ecd2f8b
JH
3811 }
3812 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3813 bigdisp = Disp16;
252b5132
RH
3814 i.types[this_operand] |= bigdisp;
3815
3816 exp = &disp_expressions[i.disp_operands];
520dc8e8 3817 i.op[this_operand].disps = exp;
252b5132
RH
3818 i.disp_operands++;
3819 save_input_line_pointer = input_line_pointer;
3820 input_line_pointer = disp_start;
3821 END_STRING_AND_SAVE (disp_end);
3822
3823#ifndef GCC_ASM_O_HACK
3824#define GCC_ASM_O_HACK 0
3825#endif
3826#if GCC_ASM_O_HACK
3827 END_STRING_AND_SAVE (disp_end + 1);
3828 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3829 && displacement_string_end[-1] == '+')
252b5132
RH
3830 {
3831 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3832 constraint within gcc asm statements.
3833 For instance:
3834
3835 #define _set_tssldt_desc(n,addr,limit,type) \
3836 __asm__ __volatile__ ( \
3837 "movw %w2,%0\n\t" \
3838 "movw %w1,2+%0\n\t" \
3839 "rorl $16,%1\n\t" \
3840 "movb %b1,4+%0\n\t" \
3841 "movb %4,5+%0\n\t" \
3842 "movb $0,6+%0\n\t" \
3843 "movb %h1,7+%0\n\t" \
3844 "rorl $16,%1" \
3845 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3846
3847 This works great except that the output assembler ends
3848 up looking a bit weird if it turns out that there is
3849 no offset. You end up producing code that looks like:
3850
3851 #APP
3852 movw $235,(%eax)
3853 movw %dx,2+(%eax)
3854 rorl $16,%edx
3855 movb %dl,4+(%eax)
3856 movb $137,5+(%eax)
3857 movb $0,6+(%eax)
3858 movb %dh,7+(%eax)
3859 rorl $16,%edx
3860 #NO_APP
3861
47926f60 3862 So here we provide the missing zero. */
24eab124
AM
3863
3864 *displacement_string_end = '0';
252b5132
RH
3865 }
3866#endif
3867#ifndef LEX_AT
f3c180ae
AM
3868 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3869 if (gotfree_input_line)
3870 input_line_pointer = gotfree_input_line;
252b5132
RH
3871#endif
3872
24eab124 3873 exp_seg = expression (exp);
252b5132 3874
636c26b0
AM
3875 SKIP_WHITESPACE ();
3876 if (*input_line_pointer)
3877 as_bad (_("junk `%s' after expression"), input_line_pointer);
3878#if GCC_ASM_O_HACK
3879 RESTORE_END_STRING (disp_end + 1);
3880#endif
3881 RESTORE_END_STRING (disp_end);
3882 input_line_pointer = save_input_line_pointer;
3883#ifndef LEX_AT
3884 if (gotfree_input_line)
3885 free (gotfree_input_line);
3886#endif
3887
252b5132 3888#ifdef BFD_ASSEMBLER
24eab124
AM
3889 /* We do this to make sure that the section symbol is in
3890 the symbol table. We will ultimately change the relocation
47926f60 3891 to be relative to the beginning of the section. */
1ae12ab7
AM
3892 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3893 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3894 {
636c26b0
AM
3895 if (exp->X_op != O_symbol)
3896 {
3897 as_bad (_("bad expression used with @%s"),
3898 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3899 ? "GOTPCREL"
3900 : "GOTOFF"));
3901 return 0;
3902 }
3903
e5cb08ac 3904 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3905 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3906 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3907 exp->X_op = O_subtract;
3908 exp->X_op_symbol = GOT_symbol;
1ae12ab7 3909 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 3910 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3911 else
29b0f896 3912 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3913 }
252b5132
RH
3914#endif
3915
2daf4fd8
AM
3916 if (exp->X_op == O_absent || exp->X_op == O_big)
3917 {
47926f60 3918 /* Missing or bad expr becomes absolute 0. */
d0b47220 3919 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3920 disp_start);
3921 exp->X_op = O_constant;
3922 exp->X_add_number = 0;
3923 exp->X_add_symbol = (symbolS *) 0;
3924 exp->X_op_symbol = (symbolS *) 0;
3925 }
3926
4c63da97 3927#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3928 if (exp->X_op != O_constant
4c63da97 3929#ifdef BFD_ASSEMBLER
45288df1 3930 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3931#endif
31312f95 3932 && exp_seg != absolute_section
45288df1
AM
3933 && exp_seg != text_section
3934 && exp_seg != data_section
3935 && exp_seg != bss_section
31312f95
AM
3936 && exp_seg != undefined_section
3937#ifdef BFD_ASSEMBLER
3938 && !bfd_is_com_section (exp_seg)
3939#endif
3940 )
24eab124 3941 {
4c63da97 3942#ifdef BFD_ASSEMBLER
d0b47220 3943 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3944#else
d0b47220 3945 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3946#endif
24eab124
AM
3947 return 0;
3948 }
252b5132 3949#endif
3e73aa7c
JH
3950 else if (flag_code == CODE_64BIT)
3951 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3952 return 1;
3953}
3954
e5cb08ac 3955static int i386_index_check PARAMS ((const char *));
252b5132 3956
eecb386c 3957/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3958 Return 1 on success, 0 on a failure. */
3959
252b5132 3960static int
eecb386c
AM
3961i386_index_check (operand_string)
3962 const char *operand_string;
252b5132 3963{
3e73aa7c 3964 int ok;
24eab124 3965#if INFER_ADDR_PREFIX
eecb386c
AM
3966 int fudged = 0;
3967
24eab124
AM
3968 tryprefix:
3969#endif
3e73aa7c
JH
3970 ok = 1;
3971 if (flag_code == CODE_64BIT)
3972 {
7ecd2f8b
JH
3973 if (i.prefix[ADDR_PREFIX] == 0)
3974 {
3975 /* 64bit checks. */
3976 if ((i.base_reg
3977 && ((i.base_reg->reg_type & Reg64) == 0)
3978 && (i.base_reg->reg_type != BaseIndex
3979 || i.index_reg))
3980 || (i.index_reg
29b0f896
AM
3981 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3982 != (Reg64 | BaseIndex))))
7ecd2f8b
JH
3983 ok = 0;
3984 }
3985 else
3986 {
3987 /* 32bit checks. */
3988 if ((i.base_reg
3989 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3990 || (i.index_reg
29b0f896
AM
3991 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3992 != (Reg32 | BaseIndex))))
7ecd2f8b
JH
3993 ok = 0;
3994 }
3e73aa7c
JH
3995 }
3996 else
3997 {
3998 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3999 {
4000 /* 16bit checks. */
4001 if ((i.base_reg
29b0f896
AM
4002 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4003 != (Reg16 | BaseIndex)))
3e73aa7c 4004 || (i.index_reg
29b0f896
AM
4005 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4006 != (Reg16 | BaseIndex))
4007 || !(i.base_reg
4008 && i.base_reg->reg_num < 6
4009 && i.index_reg->reg_num >= 6
4010 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4011 ok = 0;
4012 }
4013 else
e5cb08ac 4014 {
3e73aa7c
JH
4015 /* 32bit checks. */
4016 if ((i.base_reg
4017 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4018 || (i.index_reg
29b0f896
AM
4019 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4020 != (Reg32 | BaseIndex))))
e5cb08ac 4021 ok = 0;
3e73aa7c
JH
4022 }
4023 }
4024 if (!ok)
24eab124
AM
4025 {
4026#if INFER_ADDR_PREFIX
3e73aa7c
JH
4027 if (flag_code != CODE_64BIT
4028 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
4029 {
4030 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4031 i.prefixes += 1;
b23bac36
AM
4032 /* Change the size of any displacement too. At most one of
4033 Disp16 or Disp32 is set.
4034 FIXME. There doesn't seem to be any real need for separate
4035 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4036 Removing them would probably clean up the code quite a lot. */
29b0f896
AM
4037 if (i.types[this_operand] & (Disp16 | Disp32))
4038 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4039 fudged = 1;
24eab124
AM
4040 goto tryprefix;
4041 }
eecb386c
AM
4042 if (fudged)
4043 as_bad (_("`%s' is not a valid base/index expression"),
4044 operand_string);
4045 else
c388dee8 4046#endif
eecb386c
AM
4047 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4048 operand_string,
3e73aa7c 4049 flag_code_names[flag_code]);
eecb386c 4050 return 0;
24eab124
AM
4051 }
4052 return 1;
4053}
252b5132 4054
252b5132 4055/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4056 on error. */
252b5132 4057
252b5132
RH
4058static int
4059i386_operand (operand_string)
4060 char *operand_string;
4061{
af6bdddf
AM
4062 const reg_entry *r;
4063 char *end_op;
24eab124 4064 char *op_string = operand_string;
252b5132 4065
24eab124 4066 if (is_space_char (*op_string))
252b5132
RH
4067 ++op_string;
4068
24eab124 4069 /* We check for an absolute prefix (differentiating,
47926f60 4070 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4071 if (*op_string == ABSOLUTE_PREFIX)
4072 {
4073 ++op_string;
4074 if (is_space_char (*op_string))
4075 ++op_string;
4076 i.types[this_operand] |= JumpAbsolute;
4077 }
252b5132 4078
47926f60 4079 /* Check if operand is a register. */
af6bdddf
AM
4080 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4081 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4082 {
24eab124
AM
4083 /* Check for a segment override by searching for ':' after a
4084 segment register. */
4085 op_string = end_op;
4086 if (is_space_char (*op_string))
4087 ++op_string;
4088 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4089 {
4090 switch (r->reg_num)
4091 {
4092 case 0:
4093 i.seg[i.mem_operands] = &es;
4094 break;
4095 case 1:
4096 i.seg[i.mem_operands] = &cs;
4097 break;
4098 case 2:
4099 i.seg[i.mem_operands] = &ss;
4100 break;
4101 case 3:
4102 i.seg[i.mem_operands] = &ds;
4103 break;
4104 case 4:
4105 i.seg[i.mem_operands] = &fs;
4106 break;
4107 case 5:
4108 i.seg[i.mem_operands] = &gs;
4109 break;
4110 }
252b5132 4111
24eab124 4112 /* Skip the ':' and whitespace. */
252b5132
RH
4113 ++op_string;
4114 if (is_space_char (*op_string))
24eab124 4115 ++op_string;
252b5132 4116
24eab124
AM
4117 if (!is_digit_char (*op_string)
4118 && !is_identifier_char (*op_string)
4119 && *op_string != '('
4120 && *op_string != ABSOLUTE_PREFIX)
4121 {
4122 as_bad (_("bad memory operand `%s'"), op_string);
4123 return 0;
4124 }
47926f60 4125 /* Handle case of %es:*foo. */
24eab124
AM
4126 if (*op_string == ABSOLUTE_PREFIX)
4127 {
4128 ++op_string;
4129 if (is_space_char (*op_string))
4130 ++op_string;
4131 i.types[this_operand] |= JumpAbsolute;
4132 }
4133 goto do_memory_reference;
4134 }
4135 if (*op_string)
4136 {
d0b47220 4137 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4138 return 0;
4139 }
4140 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4141 i.op[this_operand].regs = r;
24eab124
AM
4142 i.reg_operands++;
4143 }
af6bdddf
AM
4144 else if (*op_string == REGISTER_PREFIX)
4145 {
4146 as_bad (_("bad register name `%s'"), op_string);
4147 return 0;
4148 }
24eab124 4149 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4150 {
24eab124
AM
4151 ++op_string;
4152 if (i.types[this_operand] & JumpAbsolute)
4153 {
d0b47220 4154 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4155 return 0;
4156 }
4157 if (!i386_immediate (op_string))
4158 return 0;
4159 }
4160 else if (is_digit_char (*op_string)
4161 || is_identifier_char (*op_string)
e5cb08ac 4162 || *op_string == '(')
24eab124 4163 {
47926f60 4164 /* This is a memory reference of some sort. */
af6bdddf 4165 char *base_string;
252b5132 4166
47926f60 4167 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4168 char *displacement_string_start;
4169 char *displacement_string_end;
252b5132 4170
24eab124 4171 do_memory_reference:
24eab124
AM
4172 if ((i.mem_operands == 1
4173 && (current_templates->start->opcode_modifier & IsString) == 0)
4174 || i.mem_operands == 2)
4175 {
4176 as_bad (_("too many memory references for `%s'"),
4177 current_templates->start->name);
4178 return 0;
4179 }
252b5132 4180
24eab124
AM
4181 /* Check for base index form. We detect the base index form by
4182 looking for an ')' at the end of the operand, searching
4183 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4184 after the '('. */
af6bdddf 4185 base_string = op_string + strlen (op_string);
c3332e24 4186
af6bdddf
AM
4187 --base_string;
4188 if (is_space_char (*base_string))
4189 --base_string;
252b5132 4190
47926f60 4191 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4192 displacement_string_start = op_string;
4193 displacement_string_end = base_string + 1;
252b5132 4194
24eab124
AM
4195 if (*base_string == ')')
4196 {
af6bdddf 4197 char *temp_string;
24eab124
AM
4198 unsigned int parens_balanced = 1;
4199 /* We've already checked that the number of left & right ()'s are
47926f60 4200 equal, so this loop will not be infinite. */
24eab124
AM
4201 do
4202 {
4203 base_string--;
4204 if (*base_string == ')')
4205 parens_balanced++;
4206 if (*base_string == '(')
4207 parens_balanced--;
4208 }
4209 while (parens_balanced);
c3332e24 4210
af6bdddf 4211 temp_string = base_string;
c3332e24 4212
24eab124 4213 /* Skip past '(' and whitespace. */
252b5132
RH
4214 ++base_string;
4215 if (is_space_char (*base_string))
24eab124 4216 ++base_string;
252b5132 4217
af6bdddf
AM
4218 if (*base_string == ','
4219 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4220 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4221 {
af6bdddf 4222 displacement_string_end = temp_string;
252b5132 4223
af6bdddf 4224 i.types[this_operand] |= BaseIndex;
252b5132 4225
af6bdddf 4226 if (i.base_reg)
24eab124 4227 {
24eab124
AM
4228 base_string = end_op;
4229 if (is_space_char (*base_string))
4230 ++base_string;
af6bdddf
AM
4231 }
4232
4233 /* There may be an index reg or scale factor here. */
4234 if (*base_string == ',')
4235 {
4236 ++base_string;
4237 if (is_space_char (*base_string))
4238 ++base_string;
4239
4240 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4241 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4242 {
af6bdddf 4243 base_string = end_op;
24eab124
AM
4244 if (is_space_char (*base_string))
4245 ++base_string;
af6bdddf
AM
4246 if (*base_string == ',')
4247 {
4248 ++base_string;
4249 if (is_space_char (*base_string))
4250 ++base_string;
4251 }
e5cb08ac 4252 else if (*base_string != ')')
af6bdddf
AM
4253 {
4254 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4255 operand_string);
4256 return 0;
4257 }
24eab124 4258 }
af6bdddf 4259 else if (*base_string == REGISTER_PREFIX)
24eab124 4260 {
af6bdddf 4261 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4262 return 0;
4263 }
252b5132 4264
47926f60 4265 /* Check for scale factor. */
551c1ca1 4266 if (*base_string != ')')
af6bdddf 4267 {
551c1ca1
AM
4268 char *end_scale = i386_scale (base_string);
4269
4270 if (!end_scale)
af6bdddf 4271 return 0;
24eab124 4272
551c1ca1 4273 base_string = end_scale;
af6bdddf
AM
4274 if (is_space_char (*base_string))
4275 ++base_string;
4276 if (*base_string != ')')
4277 {
4278 as_bad (_("expecting `)' after scale factor in `%s'"),
4279 operand_string);
4280 return 0;
4281 }
4282 }
4283 else if (!i.index_reg)
24eab124 4284 {
af6bdddf
AM
4285 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4286 *base_string);
24eab124
AM
4287 return 0;
4288 }
4289 }
af6bdddf 4290 else if (*base_string != ')')
24eab124 4291 {
af6bdddf
AM
4292 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4293 operand_string);
24eab124
AM
4294 return 0;
4295 }
c3332e24 4296 }
af6bdddf 4297 else if (*base_string == REGISTER_PREFIX)
c3332e24 4298 {
af6bdddf 4299 as_bad (_("bad register name `%s'"), base_string);
24eab124 4300 return 0;
c3332e24 4301 }
24eab124
AM
4302 }
4303
4304 /* If there's an expression beginning the operand, parse it,
4305 assuming displacement_string_start and
4306 displacement_string_end are meaningful. */
4307 if (displacement_string_start != displacement_string_end)
4308 {
4309 if (!i386_displacement (displacement_string_start,
4310 displacement_string_end))
4311 return 0;
4312 }
4313
4314 /* Special case for (%dx) while doing input/output op. */
4315 if (i.base_reg
4316 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4317 && i.index_reg == 0
4318 && i.log2_scale_factor == 0
4319 && i.seg[i.mem_operands] == 0
4320 && (i.types[this_operand] & Disp) == 0)
4321 {
4322 i.types[this_operand] = InOutPortReg;
4323 return 1;
4324 }
4325
eecb386c
AM
4326 if (i386_index_check (operand_string) == 0)
4327 return 0;
24eab124
AM
4328 i.mem_operands++;
4329 }
4330 else
ce8a8b2f
AM
4331 {
4332 /* It's not a memory operand; argh! */
24eab124
AM
4333 as_bad (_("invalid char %s beginning operand %d `%s'"),
4334 output_invalid (*op_string),
4335 this_operand + 1,
4336 op_string);
4337 return 0;
4338 }
47926f60 4339 return 1; /* Normal return. */
252b5132
RH
4340}
4341\f
ee7fcc42
AM
4342/* md_estimate_size_before_relax()
4343
4344 Called just before relax() for rs_machine_dependent frags. The x86
4345 assembler uses these frags to handle variable size jump
4346 instructions.
4347
4348 Any symbol that is now undefined will not become defined.
4349 Return the correct fr_subtype in the frag.
4350 Return the initial "guess for variable size of frag" to caller.
4351 The guess is actually the growth beyond the fixed part. Whatever
4352 we do to grow the fixed or variable part contributes to our
4353 returned value. */
4354
252b5132
RH
4355int
4356md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4357 fragS *fragP;
4358 segT segment;
252b5132 4359{
252b5132 4360 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4361 check for un-relaxable symbols. On an ELF system, we can't relax
4362 an externally visible symbol, because it may be overridden by a
4363 shared library. */
4364 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4365#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4366 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4367 && (S_IS_EXTERNAL (fragP->fr_symbol)
4368 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4369#endif
4370 )
252b5132 4371 {
b98ef147
AM
4372 /* Symbol is undefined in this segment, or we need to keep a
4373 reloc so that weak symbols can be overridden. */
4374 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 4375 RELOC_ENUM reloc_type;
ee7fcc42
AM
4376 unsigned char *opcode;
4377 int old_fr_fix;
f6af82bd 4378
ee7fcc42
AM
4379 if (fragP->fr_var != NO_RELOC)
4380 reloc_type = fragP->fr_var;
b98ef147 4381 else if (size == 2)
f6af82bd
AM
4382 reloc_type = BFD_RELOC_16_PCREL;
4383 else
4384 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4385
ee7fcc42
AM
4386 old_fr_fix = fragP->fr_fix;
4387 opcode = (unsigned char *) fragP->fr_opcode;
4388
fddf5b5b 4389 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4390 {
fddf5b5b
AM
4391 case UNCOND_JUMP:
4392 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4393 opcode[0] = 0xe9;
252b5132 4394 fragP->fr_fix += size;
062cd5e7
AS
4395 fix_new (fragP, old_fr_fix, size,
4396 fragP->fr_symbol,
4397 fragP->fr_offset, 1,
4398 reloc_type);
252b5132
RH
4399 break;
4400
fddf5b5b 4401 case COND_JUMP86:
412167cb
AM
4402 if (size == 2
4403 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4404 {
4405 /* Negate the condition, and branch past an
4406 unconditional jump. */
4407 opcode[0] ^= 1;
4408 opcode[1] = 3;
4409 /* Insert an unconditional jump. */
4410 opcode[2] = 0xe9;
4411 /* We added two extra opcode bytes, and have a two byte
4412 offset. */
4413 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4414 fix_new (fragP, old_fr_fix + 2, 2,
4415 fragP->fr_symbol,
4416 fragP->fr_offset, 1,
4417 reloc_type);
fddf5b5b
AM
4418 break;
4419 }
4420 /* Fall through. */
4421
4422 case COND_JUMP:
412167cb
AM
4423 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4424 {
3e02c1cc
AM
4425 fixS *fixP;
4426
412167cb 4427 fragP->fr_fix += 1;
3e02c1cc
AM
4428 fixP = fix_new (fragP, old_fr_fix, 1,
4429 fragP->fr_symbol,
4430 fragP->fr_offset, 1,
4431 BFD_RELOC_8_PCREL);
4432 fixP->fx_signed = 1;
412167cb
AM
4433 break;
4434 }
93c2a809 4435
24eab124 4436 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4437 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4438 opcode[1] = opcode[0] + 0x10;
f6af82bd 4439 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4440 /* We've added an opcode byte. */
4441 fragP->fr_fix += 1 + size;
062cd5e7
AS
4442 fix_new (fragP, old_fr_fix + 1, size,
4443 fragP->fr_symbol,
4444 fragP->fr_offset, 1,
4445 reloc_type);
252b5132 4446 break;
fddf5b5b
AM
4447
4448 default:
4449 BAD_CASE (fragP->fr_subtype);
4450 break;
252b5132
RH
4451 }
4452 frag_wane (fragP);
ee7fcc42 4453 return fragP->fr_fix - old_fr_fix;
252b5132 4454 }
93c2a809 4455
93c2a809
AM
4456 /* Guess size depending on current relax state. Initially the relax
4457 state will correspond to a short jump and we return 1, because
4458 the variable part of the frag (the branch offset) is one byte
4459 long. However, we can relax a section more than once and in that
4460 case we must either set fr_subtype back to the unrelaxed state,
4461 or return the value for the appropriate branch. */
4462 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4463}
4464
47926f60
KH
4465/* Called after relax() is finished.
4466
4467 In: Address of frag.
4468 fr_type == rs_machine_dependent.
4469 fr_subtype is what the address relaxed to.
4470
4471 Out: Any fixSs and constants are set up.
4472 Caller will turn frag into a ".space 0". */
4473
252b5132
RH
4474#ifndef BFD_ASSEMBLER
4475void
4476md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4477 object_headers *headers ATTRIBUTE_UNUSED;
4478 segT sec ATTRIBUTE_UNUSED;
29b0f896 4479 fragS *fragP;
252b5132
RH
4480#else
4481void
4482md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4483 bfd *abfd ATTRIBUTE_UNUSED;
4484 segT sec ATTRIBUTE_UNUSED;
29b0f896 4485 fragS *fragP;
252b5132
RH
4486#endif
4487{
29b0f896 4488 unsigned char *opcode;
252b5132 4489 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4490 offsetT target_address;
4491 offsetT opcode_address;
252b5132 4492 unsigned int extension = 0;
847f7ad4 4493 offsetT displacement_from_opcode_start;
252b5132
RH
4494
4495 opcode = (unsigned char *) fragP->fr_opcode;
4496
47926f60 4497 /* Address we want to reach in file space. */
252b5132 4498 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4499
47926f60 4500 /* Address opcode resides at in file space. */
252b5132
RH
4501 opcode_address = fragP->fr_address + fragP->fr_fix;
4502
47926f60 4503 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4504 displacement_from_opcode_start = target_address - opcode_address;
4505
fddf5b5b 4506 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4507 {
47926f60
KH
4508 /* Don't have to change opcode. */
4509 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4510 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4511 }
4512 else
4513 {
4514 if (no_cond_jump_promotion
4515 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4516 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4517
fddf5b5b
AM
4518 switch (fragP->fr_subtype)
4519 {
4520 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4521 extension = 4; /* 1 opcode + 4 displacement */
4522 opcode[0] = 0xe9;
4523 where_to_put_displacement = &opcode[1];
4524 break;
252b5132 4525
fddf5b5b
AM
4526 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4527 extension = 2; /* 1 opcode + 2 displacement */
4528 opcode[0] = 0xe9;
4529 where_to_put_displacement = &opcode[1];
4530 break;
252b5132 4531
fddf5b5b
AM
4532 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4533 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4534 extension = 5; /* 2 opcode + 4 displacement */
4535 opcode[1] = opcode[0] + 0x10;
4536 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4537 where_to_put_displacement = &opcode[2];
4538 break;
252b5132 4539
fddf5b5b
AM
4540 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4541 extension = 3; /* 2 opcode + 2 displacement */
4542 opcode[1] = opcode[0] + 0x10;
4543 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4544 where_to_put_displacement = &opcode[2];
4545 break;
252b5132 4546
fddf5b5b
AM
4547 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4548 extension = 4;
4549 opcode[0] ^= 1;
4550 opcode[1] = 3;
4551 opcode[2] = 0xe9;
4552 where_to_put_displacement = &opcode[3];
4553 break;
4554
4555 default:
4556 BAD_CASE (fragP->fr_subtype);
4557 break;
4558 }
252b5132 4559 }
fddf5b5b 4560
47926f60 4561 /* Now put displacement after opcode. */
252b5132
RH
4562 md_number_to_chars ((char *) where_to_put_displacement,
4563 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4564 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4565 fragP->fr_fix += extension;
4566}
4567\f
47926f60
KH
4568/* Size of byte displacement jmp. */
4569int md_short_jump_size = 2;
4570
4571/* Size of dword displacement jmp. */
4572int md_long_jump_size = 5;
252b5132 4573
47926f60
KH
4574/* Size of relocation record. */
4575const int md_reloc_size = 8;
252b5132
RH
4576
4577void
4578md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4579 char *ptr;
4580 addressT from_addr, to_addr;
ab9da554
ILT
4581 fragS *frag ATTRIBUTE_UNUSED;
4582 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4583{
847f7ad4 4584 offsetT offset;
252b5132
RH
4585
4586 offset = to_addr - (from_addr + 2);
47926f60
KH
4587 /* Opcode for byte-disp jump. */
4588 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4589 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4590}
4591
4592void
4593md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4594 char *ptr;
4595 addressT from_addr, to_addr;
a38cf1db
AM
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4598{
847f7ad4 4599 offsetT offset;
252b5132 4600
a38cf1db
AM
4601 offset = to_addr - (from_addr + 5);
4602 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4603 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4604}
4605\f
4606/* Apply a fixup (fixS) to segment data, once it has been determined
4607 by our caller that we have all the info we need to fix it up.
4608
4609 On the 386, immediates, displacements, and data pointers are all in
4610 the same (little-endian) format, so we don't need to care about which
4611 we are handling. */
4612
94f592af
NC
4613void
4614md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4615 /* The fix we're to put in. */
4616 fixS *fixP;
47926f60 4617 /* Pointer to the value of the bits. */
c6682705 4618 valueT *valP;
47926f60
KH
4619 /* Segment fix is from. */
4620 segT seg ATTRIBUTE_UNUSED;
252b5132 4621{
94f592af 4622 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4623 valueT value = *valP;
252b5132 4624
e1b283bb 4625#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4626 if (fixP->fx_pcrel)
4627 {
4628 switch (fixP->fx_r_type)
4629 {
5865bb77
ILT
4630 default:
4631 break;
4632
93382f6d
AM
4633 case BFD_RELOC_32:
4634 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4635 break;
4636 case BFD_RELOC_16:
4637 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4638 break;
4639 case BFD_RELOC_8:
4640 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4641 break;
4642 }
4643 }
252b5132 4644
a161fe53 4645 if (fixP->fx_addsy != NULL
31312f95
AM
4646 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4647 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4648 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4649 && !use_rela_relocations)
252b5132 4650 {
31312f95
AM
4651 /* This is a hack. There should be a better way to handle this.
4652 This covers for the fact that bfd_install_relocation will
4653 subtract the current location (for partial_inplace, PC relative
4654 relocations); see more below. */
252b5132
RH
4655#ifndef OBJ_AOUT
4656 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4657#ifdef TE_PE
4658 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4659#endif
4660 )
4661 value += fixP->fx_where + fixP->fx_frag->fr_address;
4662#endif
4663#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4664 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4665 {
6539b54b 4666 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4667
6539b54b 4668 if ((sym_seg == seg
2f66722d 4669 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4670 && sym_seg != absolute_section))
ae6063d4 4671 && !generic_force_reloc (fixP))
2f66722d
AM
4672 {
4673 /* Yes, we add the values in twice. This is because
6539b54b
AM
4674 bfd_install_relocation subtracts them out again. I think
4675 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4676 it. FIXME. */
4677 value += fixP->fx_where + fixP->fx_frag->fr_address;
4678 }
252b5132
RH
4679 }
4680#endif
4681#if defined (OBJ_COFF) && defined (TE_PE)
4682 /* For some reason, the PE format does not store a section
24eab124 4683 address offset for a PC relative symbol. */
252b5132
RH
4684 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4685 value += md_pcrel_from (fixP);
4686#endif
4687 }
4688
4689 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4690 and we must not dissappoint it. */
252b5132
RH
4691#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4692 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4693 && fixP->fx_addsy)
47926f60
KH
4694 switch (fixP->fx_r_type)
4695 {
4696 case BFD_RELOC_386_PLT32:
3e73aa7c 4697 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4698 /* Make the jump instruction point to the address of the operand. At
4699 runtime we merely add the offset to the actual PLT entry. */
4700 value = -4;
4701 break;
31312f95 4702
13ae64f3
JJ
4703 case BFD_RELOC_386_TLS_GD:
4704 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4705 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4706 case BFD_RELOC_386_TLS_IE:
4707 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4708 case BFD_RELOC_X86_64_TLSGD:
4709 case BFD_RELOC_X86_64_TLSLD:
4710 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4711 value = 0; /* Fully resolved at runtime. No addend. */
4712 /* Fallthrough */
4713 case BFD_RELOC_386_TLS_LE:
4714 case BFD_RELOC_386_TLS_LDO_32:
4715 case BFD_RELOC_386_TLS_LE_32:
4716 case BFD_RELOC_X86_64_DTPOFF32:
4717 case BFD_RELOC_X86_64_TPOFF32:
4718 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4719 break;
4720
4721 case BFD_RELOC_386_GOT32:
4722 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4723 value = 0; /* Fully resolved at runtime. No addend. */
4724 break;
47926f60
KH
4725
4726 case BFD_RELOC_VTABLE_INHERIT:
4727 case BFD_RELOC_VTABLE_ENTRY:
4728 fixP->fx_done = 0;
94f592af 4729 return;
47926f60
KH
4730
4731 default:
4732 break;
4733 }
4734#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4735 *valP = value;
47926f60 4736#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c 4737
3e73aa7c 4738 /* Are we finished with this relocation now? */
c6682705 4739 if (fixP->fx_addsy == NULL)
3e73aa7c 4740 fixP->fx_done = 1;
94f592af 4741#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4742 else if (use_rela_relocations)
4743 {
4744 fixP->fx_no_overflow = 1;
062cd5e7
AS
4745 /* Remember value for tc_gen_reloc. */
4746 fixP->fx_addnumber = value;
3e73aa7c
JH
4747 value = 0;
4748 }
3e73aa7c 4749#endif
94f592af 4750 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4751}
252b5132 4752\f
252b5132
RH
4753#define MAX_LITTLENUMS 6
4754
47926f60
KH
4755/* Turn the string pointed to by litP into a floating point constant
4756 of type TYPE, and emit the appropriate bytes. The number of
4757 LITTLENUMS emitted is stored in *SIZEP. An error message is
4758 returned, or NULL on OK. */
4759
252b5132
RH
4760char *
4761md_atof (type, litP, sizeP)
2ab9b79e 4762 int type;
252b5132
RH
4763 char *litP;
4764 int *sizeP;
4765{
4766 int prec;
4767 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4768 LITTLENUM_TYPE *wordP;
4769 char *t;
4770
4771 switch (type)
4772 {
4773 case 'f':
4774 case 'F':
4775 prec = 2;
4776 break;
4777
4778 case 'd':
4779 case 'D':
4780 prec = 4;
4781 break;
4782
4783 case 'x':
4784 case 'X':
4785 prec = 5;
4786 break;
4787
4788 default:
4789 *sizeP = 0;
4790 return _("Bad call to md_atof ()");
4791 }
4792 t = atof_ieee (input_line_pointer, type, words);
4793 if (t)
4794 input_line_pointer = t;
4795
4796 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4797 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4798 the bigendian 386. */
4799 for (wordP = words + prec - 1; prec--;)
4800 {
4801 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4802 litP += sizeof (LITTLENUM_TYPE);
4803 }
4804 return 0;
4805}
4806\f
4807char output_invalid_buf[8];
4808
252b5132
RH
4809static char *
4810output_invalid (c)
4811 int c;
4812{
3882b010 4813 if (ISPRINT (c))
252b5132
RH
4814 sprintf (output_invalid_buf, "'%c'", c);
4815 else
4816 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4817 return output_invalid_buf;
4818}
4819
af6bdddf 4820/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4821
4822static const reg_entry *
4823parse_register (reg_string, end_op)
4824 char *reg_string;
4825 char **end_op;
4826{
af6bdddf
AM
4827 char *s = reg_string;
4828 char *p;
252b5132
RH
4829 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4830 const reg_entry *r;
4831
4832 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4833 if (*s == REGISTER_PREFIX)
4834 ++s;
4835
4836 if (is_space_char (*s))
4837 ++s;
4838
4839 p = reg_name_given;
af6bdddf 4840 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4841 {
4842 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4843 return (const reg_entry *) NULL;
4844 s++;
252b5132
RH
4845 }
4846
6588847e
DN
4847 /* For naked regs, make sure that we are not dealing with an identifier.
4848 This prevents confusing an identifier like `eax_var' with register
4849 `eax'. */
4850 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4851 return (const reg_entry *) NULL;
4852
af6bdddf 4853 *end_op = s;
252b5132
RH
4854
4855 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4856
5f47d35b 4857 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4858 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4859 {
5f47d35b
AM
4860 if (is_space_char (*s))
4861 ++s;
4862 if (*s == '(')
4863 {
af6bdddf 4864 ++s;
5f47d35b
AM
4865 if (is_space_char (*s))
4866 ++s;
4867 if (*s >= '0' && *s <= '7')
4868 {
4869 r = &i386_float_regtab[*s - '0'];
af6bdddf 4870 ++s;
5f47d35b
AM
4871 if (is_space_char (*s))
4872 ++s;
4873 if (*s == ')')
4874 {
4875 *end_op = s + 1;
4876 return r;
4877 }
5f47d35b 4878 }
47926f60 4879 /* We have "%st(" then garbage. */
5f47d35b
AM
4880 return (const reg_entry *) NULL;
4881 }
4882 }
4883
1ae00879 4884 if (r != NULL
29b0f896 4885 && (r->reg_flags & (RegRex64 | RegRex)) != 0
1ae00879
AM
4886 && flag_code != CODE_64BIT)
4887 {
4888 return (const reg_entry *) NULL;
4889 }
4890
252b5132
RH
4891 return r;
4892}
4893\f
4cc782b5 4894#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 4895const char *md_shortopts = "kVQ:sqn";
252b5132 4896#else
12b55ccc 4897const char *md_shortopts = "qn";
252b5132 4898#endif
6e0b89ee 4899
252b5132 4900struct option md_longopts[] = {
3e73aa7c
JH
4901#define OPTION_32 (OPTION_MD_BASE + 0)
4902 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4903#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4904#define OPTION_64 (OPTION_MD_BASE + 1)
4905 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4906#endif
252b5132
RH
4907 {NULL, no_argument, NULL, 0}
4908};
4909size_t md_longopts_size = sizeof (md_longopts);
4910
4911int
4912md_parse_option (c, arg)
4913 int c;
ab9da554 4914 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4915{
4916 switch (c)
4917 {
12b55ccc
L
4918 case 'n':
4919 optimize_align_code = 0;
4920 break;
4921
a38cf1db
AM
4922 case 'q':
4923 quiet_warnings = 1;
252b5132
RH
4924 break;
4925
4926#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4927 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4928 should be emitted or not. FIXME: Not implemented. */
4929 case 'Q':
252b5132
RH
4930 break;
4931
4932 /* -V: SVR4 argument to print version ID. */
4933 case 'V':
4934 print_version_id ();
4935 break;
4936
a38cf1db
AM
4937 /* -k: Ignore for FreeBSD compatibility. */
4938 case 'k':
252b5132 4939 break;
4cc782b5
ILT
4940
4941 case 's':
4942 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 4943 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 4944 break;
6e0b89ee 4945
3e73aa7c
JH
4946 case OPTION_64:
4947 {
4948 const char **list, **l;
4949
3e73aa7c
JH
4950 list = bfd_target_list ();
4951 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4952 if (strcmp (*l, "elf64-x86-64") == 0)
4953 {
4954 default_arch = "x86_64";
4955 break;
4956 }
3e73aa7c 4957 if (*l == NULL)
6e0b89ee 4958 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4959 free (list);
4960 }
4961 break;
4962#endif
252b5132 4963
6e0b89ee
AM
4964 case OPTION_32:
4965 default_arch = "i386";
4966 break;
4967
252b5132
RH
4968 default:
4969 return 0;
4970 }
4971 return 1;
4972}
4973
4974void
4975md_show_usage (stream)
4976 FILE *stream;
4977{
4cc782b5
ILT
4978#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4979 fprintf (stream, _("\
a38cf1db
AM
4980 -Q ignored\n\
4981 -V print assembler version number\n\
4982 -k ignored\n\
12b55ccc 4983 -n Do not optimize code alignment\n\
a38cf1db
AM
4984 -q quieten some warnings\n\
4985 -s ignored\n"));
4986#else
4987 fprintf (stream, _("\
12b55ccc 4988 -n Do not optimize code alignment\n\
a38cf1db 4989 -q quieten some warnings\n"));
4cc782b5 4990#endif
252b5132
RH
4991}
4992
4993#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4994#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4995 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4996
4997/* Pick the target format to use. */
4998
47926f60 4999const char *
252b5132
RH
5000i386_target_format ()
5001{
3e73aa7c
JH
5002 if (!strcmp (default_arch, "x86_64"))
5003 set_code_flag (CODE_64BIT);
5004 else if (!strcmp (default_arch, "i386"))
5005 set_code_flag (CODE_32BIT);
5006 else
5007 as_fatal (_("Unknown architecture"));
252b5132
RH
5008 switch (OUTPUT_FLAVOR)
5009 {
4c63da97
AM
5010#ifdef OBJ_MAYBE_AOUT
5011 case bfd_target_aout_flavour:
47926f60 5012 return AOUT_TARGET_FORMAT;
4c63da97
AM
5013#endif
5014#ifdef OBJ_MAYBE_COFF
252b5132
RH
5015 case bfd_target_coff_flavour:
5016 return "coff-i386";
4c63da97 5017#endif
3e73aa7c 5018#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5019 case bfd_target_elf_flavour:
3e73aa7c 5020 {
e5cb08ac
KH
5021 if (flag_code == CODE_64BIT)
5022 use_rela_relocations = 1;
4ada7262 5023 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5024 }
4c63da97 5025#endif
252b5132
RH
5026 default:
5027 abort ();
5028 return NULL;
5029 }
5030}
5031
47926f60 5032#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5033
5034#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5035void i386_elf_emit_arch_note ()
5036{
5037 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5038 && cpu_arch_name != NULL)
5039 {
5040 char *p;
5041 asection *seg = now_seg;
5042 subsegT subseg = now_subseg;
5043 Elf_Internal_Note i_note;
5044 Elf_External_Note e_note;
5045 asection *note_secp;
5046 int len;
5047
5048 /* Create the .note section. */
5049 note_secp = subseg_new (".note", 0);
5050 bfd_set_section_flags (stdoutput,
5051 note_secp,
5052 SEC_HAS_CONTENTS | SEC_READONLY);
5053
5054 /* Process the arch string. */
5055 len = strlen (cpu_arch_name);
5056
5057 i_note.namesz = len + 1;
5058 i_note.descsz = 0;
5059 i_note.type = NT_ARCH;
5060 p = frag_more (sizeof (e_note.namesz));
5061 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5062 p = frag_more (sizeof (e_note.descsz));
5063 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5064 p = frag_more (sizeof (e_note.type));
5065 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5066 p = frag_more (len + 1);
5067 strcpy (p, cpu_arch_name);
5068
5069 frag_align (2, 0, 0);
5070
5071 subseg_set (seg, subseg);
5072 }
5073}
5074#endif
47926f60 5075#endif /* BFD_ASSEMBLER */
252b5132 5076\f
252b5132
RH
5077symbolS *
5078md_undefined_symbol (name)
5079 char *name;
5080{
18dc2407
ILT
5081 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5082 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5083 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5084 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5085 {
5086 if (!GOT_symbol)
5087 {
5088 if (symbol_find (name))
5089 as_bad (_("GOT already in symbol table"));
5090 GOT_symbol = symbol_new (name, undefined_section,
5091 (valueT) 0, &zero_address_frag);
5092 };
5093 return GOT_symbol;
5094 }
252b5132
RH
5095 return 0;
5096}
5097
5098/* Round up a section size to the appropriate boundary. */
47926f60 5099
252b5132
RH
5100valueT
5101md_section_align (segment, size)
ab9da554 5102 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5103 valueT size;
5104{
252b5132 5105#ifdef BFD_ASSEMBLER
4c63da97
AM
5106#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5107 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5108 {
5109 /* For a.out, force the section size to be aligned. If we don't do
5110 this, BFD will align it for us, but it will not write out the
5111 final bytes of the section. This may be a bug in BFD, but it is
5112 easier to fix it here since that is how the other a.out targets
5113 work. */
5114 int align;
5115
5116 align = bfd_get_section_alignment (stdoutput, segment);
5117 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5118 }
252b5132
RH
5119#endif
5120#endif
5121
5122 return size;
5123}
5124
5125/* On the i386, PC-relative offsets are relative to the start of the
5126 next instruction. That is, the address of the offset, plus its
5127 size, since the offset is always the last part of the insn. */
5128
5129long
5130md_pcrel_from (fixP)
5131 fixS *fixP;
5132{
5133 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5134}
5135
5136#ifndef I386COFF
5137
5138static void
5139s_bss (ignore)
ab9da554 5140 int ignore ATTRIBUTE_UNUSED;
252b5132 5141{
29b0f896 5142 int temp;
252b5132
RH
5143
5144 temp = get_absolute_expression ();
5145 subseg_set (bss_section, (subsegT) temp);
5146 demand_empty_rest_of_line ();
5147}
5148
5149#endif
5150
252b5132
RH
5151#ifdef BFD_ASSEMBLER
5152
5153void
5154i386_validate_fix (fixp)
5155 fixS *fixp;
5156{
5157 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5158 {
3e73aa7c 5159 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5160 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5161 {
5162 if (flag_code != CODE_64BIT)
5163 abort ();
5164 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5165 }
5166 else
5167 {
5168 if (flag_code == CODE_64BIT)
5169 abort ();
5170 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5171 }
252b5132
RH
5172 fixp->fx_subsy = 0;
5173 }
5174}
5175
252b5132
RH
5176arelent *
5177tc_gen_reloc (section, fixp)
ab9da554 5178 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5179 fixS *fixp;
5180{
5181 arelent *rel;
5182 bfd_reloc_code_real_type code;
5183
5184 switch (fixp->fx_r_type)
5185 {
3e73aa7c
JH
5186 case BFD_RELOC_X86_64_PLT32:
5187 case BFD_RELOC_X86_64_GOT32:
5188 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5189 case BFD_RELOC_386_PLT32:
5190 case BFD_RELOC_386_GOT32:
5191 case BFD_RELOC_386_GOTOFF:
5192 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5193 case BFD_RELOC_386_TLS_GD:
5194 case BFD_RELOC_386_TLS_LDM:
5195 case BFD_RELOC_386_TLS_LDO_32:
5196 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5197 case BFD_RELOC_386_TLS_IE:
5198 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5199 case BFD_RELOC_386_TLS_LE_32:
5200 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5201 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5202 case BFD_RELOC_X86_64_TLSGD:
5203 case BFD_RELOC_X86_64_TLSLD:
5204 case BFD_RELOC_X86_64_DTPOFF32:
5205 case BFD_RELOC_X86_64_GOTTPOFF:
5206 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5207 case BFD_RELOC_RVA:
5208 case BFD_RELOC_VTABLE_ENTRY:
5209 case BFD_RELOC_VTABLE_INHERIT:
5210 code = fixp->fx_r_type;
5211 break;
5212 default:
93382f6d 5213 if (fixp->fx_pcrel)
252b5132 5214 {
93382f6d
AM
5215 switch (fixp->fx_size)
5216 {
5217 default:
b091f402
AM
5218 as_bad_where (fixp->fx_file, fixp->fx_line,
5219 _("can not do %d byte pc-relative relocation"),
5220 fixp->fx_size);
93382f6d
AM
5221 code = BFD_RELOC_32_PCREL;
5222 break;
5223 case 1: code = BFD_RELOC_8_PCREL; break;
5224 case 2: code = BFD_RELOC_16_PCREL; break;
5225 case 4: code = BFD_RELOC_32_PCREL; break;
5226 }
5227 }
5228 else
5229 {
5230 switch (fixp->fx_size)
5231 {
5232 default:
b091f402
AM
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte relocation"),
5235 fixp->fx_size);
93382f6d
AM
5236 code = BFD_RELOC_32;
5237 break;
5238 case 1: code = BFD_RELOC_8; break;
5239 case 2: code = BFD_RELOC_16; break;
5240 case 4: code = BFD_RELOC_32; break;
937149dd 5241#ifdef BFD64
3e73aa7c 5242 case 8: code = BFD_RELOC_64; break;
937149dd 5243#endif
93382f6d 5244 }
252b5132
RH
5245 }
5246 break;
5247 }
252b5132
RH
5248
5249 if (code == BFD_RELOC_32
5250 && GOT_symbol
5251 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5252 {
5253 /* We don't support GOTPC on 64bit targets. */
5254 if (flag_code == CODE_64BIT)
bfb32b52 5255 abort ();
3e73aa7c
JH
5256 code = BFD_RELOC_386_GOTPC;
5257 }
252b5132
RH
5258
5259 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5260 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5261 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5262
5263 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
5264 if (!use_rela_relocations)
5265 {
5266 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5267 vtable entry to be used in the relocation's section offset. */
5268 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5269 rel->address = fixp->fx_offset;
252b5132 5270
c6682705 5271 rel->addend = 0;
3e73aa7c
JH
5272 }
5273 /* Use the rela in 64bit mode. */
252b5132 5274 else
3e73aa7c 5275 {
062cd5e7
AS
5276 if (!fixp->fx_pcrel)
5277 rel->addend = fixp->fx_offset;
5278 else
5279 switch (code)
5280 {
5281 case BFD_RELOC_X86_64_PLT32:
5282 case BFD_RELOC_X86_64_GOT32:
5283 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5284 case BFD_RELOC_X86_64_TLSGD:
5285 case BFD_RELOC_X86_64_TLSLD:
5286 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5287 rel->addend = fixp->fx_offset - fixp->fx_size;
5288 break;
5289 default:
5290 rel->addend = (section->vma
5291 - fixp->fx_size
5292 + fixp->fx_addnumber
5293 + md_pcrel_from (fixp));
5294 break;
5295 }
3e73aa7c
JH
5296 }
5297
252b5132
RH
5298 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5299 if (rel->howto == NULL)
5300 {
5301 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5302 _("cannot represent relocation type %s"),
252b5132
RH
5303 bfd_get_reloc_code_name (code));
5304 /* Set howto to a garbage value so that we can keep going. */
5305 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5306 assert (rel->howto != NULL);
5307 }
5308
5309 return rel;
5310}
5311
29b0f896 5312#else /* !BFD_ASSEMBLER */
252b5132
RH
5313
5314#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5315void
5316tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5317 char *where;
5318 fixS *fixP;
5319 relax_addressT segment_address_in_file;
5320{
47926f60
KH
5321 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5322 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 5323
47926f60 5324 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
5325 long r_symbolnum;
5326
5327 know (fixP->fx_addsy != NULL);
5328
5329 md_number_to_chars (where,
5330 (valueT) (fixP->fx_frag->fr_address
5331 + fixP->fx_where - segment_address_in_file),
5332 4);
5333
5334 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5335 ? S_GET_TYPE (fixP->fx_addsy)
5336 : fixP->fx_addsy->sy_number);
5337
5338 where[6] = (r_symbolnum >> 16) & 0x0ff;
5339 where[5] = (r_symbolnum >> 8) & 0x0ff;
5340 where[4] = r_symbolnum & 0x0ff;
5341 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5342 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5343 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5344}
5345
47926f60 5346#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
5347
5348#if defined (I386COFF)
5349
5350short
5351tc_coff_fix2rtype (fixP)
5352 fixS *fixP;
5353{
5354 if (fixP->fx_r_type == R_IMAGEBASE)
5355 return R_IMAGEBASE;
5356
5357 return (fixP->fx_pcrel ?
5358 (fixP->fx_size == 1 ? R_PCRBYTE :
5359 fixP->fx_size == 2 ? R_PCRWORD :
5360 R_PCRLONG) :
5361 (fixP->fx_size == 1 ? R_RELBYTE :
5362 fixP->fx_size == 2 ? R_RELWORD :
5363 R_DIR32));
5364}
5365
5366int
5367tc_coff_sizemachdep (frag)
5368 fragS *frag;
5369{
5370 if (frag->fr_next)
5371 return (frag->fr_next->fr_address - frag->fr_address);
5372 else
5373 return 0;
5374}
5375
47926f60 5376#endif /* I386COFF */
252b5132 5377
29b0f896 5378#endif /* !BFD_ASSEMBLER */
64a0c779
DN
5379\f
5380/* Parse operands using Intel syntax. This implements a recursive descent
5381 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5382 Programmer's Guide.
5383
5384 FIXME: We do not recognize the full operand grammar defined in the MASM
5385 documentation. In particular, all the structure/union and
5386 high-level macro operands are missing.
5387
5388 Uppercase words are terminals, lower case words are non-terminals.
5389 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5390 bars '|' denote choices. Most grammar productions are implemented in
5391 functions called 'intel_<production>'.
5392
5393 Initial production is 'expr'.
5394
64a0c779
DN
5395 addOp + | -
5396
5397 alpha [a-zA-Z]
5398
5399 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5400
5401 constant digits [[ radixOverride ]]
5402
5403 dataType BYTE | WORD | DWORD | QWORD | XWORD
5404
5405 digits decdigit
b77a7acd
AJ
5406 | digits decdigit
5407 | digits hexdigit
64a0c779
DN
5408
5409 decdigit [0-9]
5410
5411 e05 e05 addOp e06
b77a7acd 5412 | e06
64a0c779
DN
5413
5414 e06 e06 mulOp e09
b77a7acd 5415 | e09
64a0c779
DN
5416
5417 e09 OFFSET e10
5418 | e09 PTR e10
5419 | e09 : e10
5420 | e10
5421
5422 e10 e10 [ expr ]
b77a7acd 5423 | e11
64a0c779
DN
5424
5425 e11 ( expr )
b77a7acd 5426 | [ expr ]
64a0c779
DN
5427 | constant
5428 | dataType
5429 | id
5430 | $
5431 | register
5432
5433 => expr SHORT e05
b77a7acd 5434 | e05
64a0c779
DN
5435
5436 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5437 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5438
5439 hexdigit a | b | c | d | e | f
b77a7acd 5440 | A | B | C | D | E | F
64a0c779
DN
5441
5442 id alpha
b77a7acd 5443 | id alpha
64a0c779
DN
5444 | id decdigit
5445
5446 mulOp * | / | MOD
5447
5448 quote " | '
5449
5450 register specialRegister
b77a7acd 5451 | gpRegister
64a0c779
DN
5452 | byteRegister
5453
5454 segmentRegister CS | DS | ES | FS | GS | SS
5455
5456 specialRegister CR0 | CR2 | CR3
b77a7acd 5457 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5458 | TR3 | TR4 | TR5 | TR6 | TR7
5459
64a0c779
DN
5460 We simplify the grammar in obvious places (e.g., register parsing is
5461 done by calling parse_register) and eliminate immediate left recursion
5462 to implement a recursive-descent parser.
5463
5464 expr SHORT e05
b77a7acd 5465 | e05
64a0c779
DN
5466
5467 e05 e06 e05'
5468
5469 e05' addOp e06 e05'
b77a7acd 5470 | Empty
64a0c779
DN
5471
5472 e06 e09 e06'
5473
5474 e06' mulOp e09 e06'
b77a7acd 5475 | Empty
64a0c779
DN
5476
5477 e09 OFFSET e10 e09'
b77a7acd 5478 | e10 e09'
64a0c779
DN
5479
5480 e09' PTR e10 e09'
b77a7acd 5481 | : e10 e09'
64a0c779
DN
5482 | Empty
5483
5484 e10 e11 e10'
5485
5486 e10' [ expr ] e10'
b77a7acd 5487 | Empty
64a0c779
DN
5488
5489 e11 ( expr )
b77a7acd 5490 | [ expr ]
64a0c779
DN
5491 | BYTE
5492 | WORD
5493 | DWORD
5494 | QWORD
5495 | XWORD
5496 | .
5497 | $
5498 | register
5499 | id
5500 | constant */
5501
5502/* Parsing structure for the intel syntax parser. Used to implement the
5503 semantic actions for the operand grammar. */
5504struct intel_parser_s
5505 {
5506 char *op_string; /* The string being parsed. */
5507 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5508 int op_modifier; /* Operand modifier. */
64a0c779
DN
5509 int is_mem; /* 1 if operand is memory reference. */
5510 const reg_entry *reg; /* Last register reference found. */
5511 char *disp; /* Displacement string being built. */
5512 };
5513
5514static struct intel_parser_s intel_parser;
5515
5516/* Token structure for parsing intel syntax. */
5517struct intel_token
5518 {
5519 int code; /* Token code. */
5520 const reg_entry *reg; /* Register entry for register tokens. */
5521 char *str; /* String representation. */
5522 };
5523
5524static struct intel_token cur_token, prev_token;
5525
50705ef4
AM
5526/* Token codes for the intel parser. Since T_SHORT is already used
5527 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5528#define T_NIL -1
5529#define T_CONST 1
5530#define T_REG 2
5531#define T_BYTE 3
5532#define T_WORD 4
5533#define T_DWORD 5
5534#define T_QWORD 6
5535#define T_XWORD 7
50705ef4 5536#undef T_SHORT
64a0c779
DN
5537#define T_SHORT 8
5538#define T_OFFSET 9
5539#define T_PTR 10
5540#define T_ID 11
5541
5542/* Prototypes for intel parser functions. */
5543static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5544static void intel_get_token PARAMS ((void));
5545static void intel_putback_token PARAMS ((void));
5546static int intel_expr PARAMS ((void));
5547static int intel_e05 PARAMS ((void));
5548static int intel_e05_1 PARAMS ((void));
5549static int intel_e06 PARAMS ((void));
5550static int intel_e06_1 PARAMS ((void));
5551static int intel_e09 PARAMS ((void));
5552static int intel_e09_1 PARAMS ((void));
5553static int intel_e10 PARAMS ((void));
5554static int intel_e10_1 PARAMS ((void));
5555static int intel_e11 PARAMS ((void));
64a0c779 5556
64a0c779
DN
5557static int
5558i386_intel_operand (operand_string, got_a_float)
5559 char *operand_string;
5560 int got_a_float;
5561{
5562 int ret;
5563 char *p;
5564
5565 /* Initialize token holders. */
5566 cur_token.code = prev_token.code = T_NIL;
5567 cur_token.reg = prev_token.reg = NULL;
5568 cur_token.str = prev_token.str = NULL;
5569
5570 /* Initialize parser structure. */
e5cb08ac 5571 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5572 if (p == NULL)
5573 abort ();
5574 strcpy (intel_parser.op_string, operand_string);
5575 intel_parser.got_a_float = got_a_float;
5576 intel_parser.op_modifier = -1;
5577 intel_parser.is_mem = 0;
5578 intel_parser.reg = NULL;
e5cb08ac 5579 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5580 if (intel_parser.disp == NULL)
5581 abort ();
5582 intel_parser.disp[0] = '\0';
5583
5584 /* Read the first token and start the parser. */
5585 intel_get_token ();
5586 ret = intel_expr ();
5587
5588 if (ret)
5589 {
5590 /* If we found a memory reference, hand it over to i386_displacement
5591 to fill in the rest of the operand fields. */
5592 if (intel_parser.is_mem)
5593 {
5594 if ((i.mem_operands == 1
5595 && (current_templates->start->opcode_modifier & IsString) == 0)
5596 || i.mem_operands == 2)
5597 {
5598 as_bad (_("too many memory references for '%s'"),
5599 current_templates->start->name);
5600 ret = 0;
5601 }
5602 else
5603 {
5604 char *s = intel_parser.disp;
5605 i.mem_operands++;
5606
5607 /* Add the displacement expression. */
5608 if (*s != '\0')
5609 ret = i386_displacement (s, s + strlen (s))
5610 && i386_index_check (s);
5611 }
5612 }
5613
5614 /* Constant and OFFSET expressions are handled by i386_immediate. */
5615 else if (intel_parser.op_modifier == OFFSET_FLAT
5616 || intel_parser.reg == NULL)
5617 ret = i386_immediate (intel_parser.disp);
5618 }
5619
5620 free (p);
5621 free (intel_parser.disp);
5622
5623 return ret;
5624}
5625
64a0c779 5626/* expr SHORT e05
b77a7acd 5627 | e05 */
64a0c779
DN
5628static int
5629intel_expr ()
5630{
5631 /* expr SHORT e05 */
5632 if (cur_token.code == T_SHORT)
5633 {
5634 intel_parser.op_modifier = SHORT;
5635 intel_match_token (T_SHORT);
5636
5637 return (intel_e05 ());
5638 }
5639
5640 /* expr e05 */
5641 else
5642 return intel_e05 ();
5643}
5644
64a0c779
DN
5645/* e05 e06 e05'
5646
4a1805b1 5647 e05' addOp e06 e05'
64a0c779
DN
5648 | Empty */
5649static int
5650intel_e05 ()
5651{
5652 return (intel_e06 () && intel_e05_1 ());
5653}
5654
5655static int
5656intel_e05_1 ()
5657{
5658 /* e05' addOp e06 e05' */
5659 if (cur_token.code == '+' || cur_token.code == '-')
5660 {
5661 strcat (intel_parser.disp, cur_token.str);
5662 intel_match_token (cur_token.code);
5663
5664 return (intel_e06 () && intel_e05_1 ());
5665 }
5666
5667 /* e05' Empty */
5668 else
5669 return 1;
4a1805b1 5670}
64a0c779
DN
5671
5672/* e06 e09 e06'
5673
5674 e06' mulOp e09 e06'
b77a7acd 5675 | Empty */
64a0c779
DN
5676static int
5677intel_e06 ()
5678{
5679 return (intel_e09 () && intel_e06_1 ());
5680}
5681
5682static int
5683intel_e06_1 ()
5684{
5685 /* e06' mulOp e09 e06' */
5686 if (cur_token.code == '*' || cur_token.code == '/')
5687 {
5688 strcat (intel_parser.disp, cur_token.str);
5689 intel_match_token (cur_token.code);
5690
5691 return (intel_e09 () && intel_e06_1 ());
5692 }
4a1805b1 5693
64a0c779 5694 /* e06' Empty */
4a1805b1 5695 else
64a0c779
DN
5696 return 1;
5697}
5698
64a0c779 5699/* e09 OFFSET e10 e09'
b77a7acd 5700 | e10 e09'
64a0c779
DN
5701
5702 e09' PTR e10 e09'
b77a7acd 5703 | : e10 e09'
64a0c779
DN
5704 | Empty */
5705static int
5706intel_e09 ()
5707{
5708 /* e09 OFFSET e10 e09' */
5709 if (cur_token.code == T_OFFSET)
5710 {
5711 intel_parser.is_mem = 0;
5712 intel_parser.op_modifier = OFFSET_FLAT;
5713 intel_match_token (T_OFFSET);
5714
5715 return (intel_e10 () && intel_e09_1 ());
5716 }
5717
5718 /* e09 e10 e09' */
5719 else
5720 return (intel_e10 () && intel_e09_1 ());
5721}
5722
5723static int
5724intel_e09_1 ()
5725{
5726 /* e09' PTR e10 e09' */
5727 if (cur_token.code == T_PTR)
5728 {
5729 if (prev_token.code == T_BYTE)
5730 i.suffix = BYTE_MNEM_SUFFIX;
5731
5732 else if (prev_token.code == T_WORD)
5733 {
5734 if (intel_parser.got_a_float == 2) /* "fi..." */
5735 i.suffix = SHORT_MNEM_SUFFIX;
5736 else
5737 i.suffix = WORD_MNEM_SUFFIX;
5738 }
5739
5740 else if (prev_token.code == T_DWORD)
5741 {
5742 if (intel_parser.got_a_float == 1) /* "f..." */
5743 i.suffix = SHORT_MNEM_SUFFIX;
5744 else
5745 i.suffix = LONG_MNEM_SUFFIX;
5746 }
5747
5748 else if (prev_token.code == T_QWORD)
f16b83df
JH
5749 {
5750 if (intel_parser.got_a_float == 1) /* "f..." */
5751 i.suffix = LONG_MNEM_SUFFIX;
5752 else
3e73aa7c 5753 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5754 }
64a0c779
DN
5755
5756 else if (prev_token.code == T_XWORD)
5757 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5758
5759 else
5760 {
5761 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5762 return 0;
5763 }
5764
5765 intel_match_token (T_PTR);
5766
5767 return (intel_e10 () && intel_e09_1 ());
5768 }
5769
5770 /* e09 : e10 e09' */
5771 else if (cur_token.code == ':')
5772 {
21d6c4af
DN
5773 /* Mark as a memory operand only if it's not already known to be an
5774 offset expression. */
5775 if (intel_parser.op_modifier != OFFSET_FLAT)
5776 intel_parser.is_mem = 1;
64a0c779
DN
5777
5778 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5779 }
5780
5781 /* e09' Empty */
5782 else
5783 return 1;
5784}
5785
5786/* e10 e11 e10'
5787
5788 e10' [ expr ] e10'
b77a7acd 5789 | Empty */
64a0c779
DN
5790static int
5791intel_e10 ()
5792{
5793 return (intel_e11 () && intel_e10_1 ());
5794}
5795
5796static int
5797intel_e10_1 ()
5798{
5799 /* e10' [ expr ] e10' */
5800 if (cur_token.code == '[')
5801 {
5802 intel_match_token ('[');
21d6c4af
DN
5803
5804 /* Mark as a memory operand only if it's not already known to be an
5805 offset expression. If it's an offset expression, we need to keep
5806 the brace in. */
5807 if (intel_parser.op_modifier != OFFSET_FLAT)
5808 intel_parser.is_mem = 1;
5809 else
5810 strcat (intel_parser.disp, "[");
4a1805b1 5811
64a0c779 5812 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5813 if (*intel_parser.disp != '\0'
5814 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5815 strcat (intel_parser.disp, "+");
5816
21d6c4af
DN
5817 if (intel_expr () && intel_match_token (']'))
5818 {
5819 /* Preserve brackets when the operand is an offset expression. */
5820 if (intel_parser.op_modifier == OFFSET_FLAT)
5821 strcat (intel_parser.disp, "]");
5822
5823 return intel_e10_1 ();
5824 }
5825 else
5826 return 0;
64a0c779
DN
5827 }
5828
5829 /* e10' Empty */
5830 else
5831 return 1;
5832}
5833
64a0c779 5834/* e11 ( expr )
b77a7acd 5835 | [ expr ]
64a0c779
DN
5836 | BYTE
5837 | WORD
5838 | DWORD
5839 | QWORD
5840 | XWORD
4a1805b1 5841 | $
64a0c779
DN
5842 | .
5843 | register
5844 | id
5845 | constant */
5846static int
5847intel_e11 ()
5848{
5849 /* e11 ( expr ) */
5850 if (cur_token.code == '(')
5851 {
5852 intel_match_token ('(');
5853 strcat (intel_parser.disp, "(");
5854
5855 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5856 {
5857 strcat (intel_parser.disp, ")");
5858 return 1;
5859 }
64a0c779
DN
5860 else
5861 return 0;
5862 }
5863
5864 /* e11 [ expr ] */
5865 else if (cur_token.code == '[')
5866 {
5867 intel_match_token ('[');
21d6c4af
DN
5868
5869 /* Mark as a memory operand only if it's not already known to be an
5870 offset expression. If it's an offset expression, we need to keep
5871 the brace in. */
5872 if (intel_parser.op_modifier != OFFSET_FLAT)
5873 intel_parser.is_mem = 1;
5874 else
5875 strcat (intel_parser.disp, "[");
4a1805b1 5876
64a0c779
DN
5877 /* Operands for jump/call inside brackets denote absolute addresses. */
5878 if (current_templates->start->opcode_modifier & Jump
5879 || current_templates->start->opcode_modifier & JumpDword
5880 || current_templates->start->opcode_modifier & JumpByte
5881 || current_templates->start->opcode_modifier & JumpInterSegment)
5882 i.types[this_operand] |= JumpAbsolute;
5883
5884 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5885 if (*intel_parser.disp != '\0'
5886 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5887 strcat (intel_parser.disp, "+");
5888
21d6c4af
DN
5889 if (intel_expr () && intel_match_token (']'))
5890 {
5891 /* Preserve brackets when the operand is an offset expression. */
5892 if (intel_parser.op_modifier == OFFSET_FLAT)
5893 strcat (intel_parser.disp, "]");
5894
5895 return 1;
5896 }
5897 else
5898 return 0;
64a0c779
DN
5899 }
5900
4a1805b1 5901 /* e11 BYTE
64a0c779
DN
5902 | WORD
5903 | DWORD
5904 | QWORD
5905 | XWORD */
5906 else if (cur_token.code == T_BYTE
5907 || cur_token.code == T_WORD
5908 || cur_token.code == T_DWORD
5909 || cur_token.code == T_QWORD
5910 || cur_token.code == T_XWORD)
5911 {
5912 intel_match_token (cur_token.code);
5913
5914 return 1;
5915 }
5916
5917 /* e11 $
5918 | . */
5919 else if (cur_token.code == '$' || cur_token.code == '.')
5920 {
5921 strcat (intel_parser.disp, cur_token.str);
5922 intel_match_token (cur_token.code);
21d6c4af
DN
5923
5924 /* Mark as a memory operand only if it's not already known to be an
5925 offset expression. */
5926 if (intel_parser.op_modifier != OFFSET_FLAT)
5927 intel_parser.is_mem = 1;
64a0c779
DN
5928
5929 return 1;
5930 }
5931
5932 /* e11 register */
5933 else if (cur_token.code == T_REG)
5934 {
5935 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5936
5937 intel_match_token (T_REG);
5938
5939 /* Check for segment change. */
5940 if (cur_token.code == ':')
5941 {
5942 if (reg->reg_type & (SReg2 | SReg3))
5943 {
5944 switch (reg->reg_num)
5945 {
5946 case 0:
5947 i.seg[i.mem_operands] = &es;
5948 break;
5949 case 1:
5950 i.seg[i.mem_operands] = &cs;
5951 break;
5952 case 2:
5953 i.seg[i.mem_operands] = &ss;
5954 break;
5955 case 3:
5956 i.seg[i.mem_operands] = &ds;
5957 break;
5958 case 4:
5959 i.seg[i.mem_operands] = &fs;
5960 break;
5961 case 5:
5962 i.seg[i.mem_operands] = &gs;
5963 break;
5964 }
5965 }
5966 else
5967 {
5968 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5969 return 0;
5970 }
5971 }
5972
5973 /* Not a segment register. Check for register scaling. */
5974 else if (cur_token.code == '*')
5975 {
5976 if (!intel_parser.is_mem)
5977 {
5978 as_bad (_("Register scaling only allowed in memory operands."));
5979 return 0;
5980 }
5981
4a1805b1 5982 /* What follows must be a valid scale. */
64a0c779
DN
5983 if (intel_match_token ('*')
5984 && strchr ("01248", *cur_token.str))
5985 {
5986 i.index_reg = reg;
5987 i.types[this_operand] |= BaseIndex;
5988
5989 /* Set the scale after setting the register (otherwise,
5990 i386_scale will complain) */
5991 i386_scale (cur_token.str);
5992 intel_match_token (T_CONST);
5993 }
5994 else
5995 {
5996 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5997 cur_token.str);
5998 return 0;
5999 }
6000 }
6001
6002 /* No scaling. If this is a memory operand, the register is either a
6003 base register (first occurrence) or an index register (second
6004 occurrence). */
6005 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6006 {
6007 if (i.base_reg && i.index_reg)
6008 {
6009 as_bad (_("Too many register references in memory operand.\n"));
6010 return 0;
6011 }
6012
6013 if (i.base_reg == NULL)
6014 i.base_reg = reg;
6015 else
6016 i.index_reg = reg;
6017
6018 i.types[this_operand] |= BaseIndex;
6019 }
6020
6021 /* Offset modifier. Add the register to the displacement string to be
6022 parsed as an immediate expression after we're done. */
6023 else if (intel_parser.op_modifier == OFFSET_FLAT)
6024 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 6025
64a0c779
DN
6026 /* It's neither base nor index nor offset. */
6027 else
6028 {
6029 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6030 i.op[this_operand].regs = reg;
6031 i.reg_operands++;
6032 }
6033
6034 /* Since registers are not part of the displacement string (except
6035 when we're parsing offset operands), we may need to remove any
6036 preceding '+' from the displacement string. */
6037 if (*intel_parser.disp != '\0'
6038 && intel_parser.op_modifier != OFFSET_FLAT)
6039 {
6040 char *s = intel_parser.disp;
6041 s += strlen (s) - 1;
6042 if (*s == '+')
6043 *s = '\0';
6044 }
6045
6046 return 1;
6047 }
4a1805b1 6048
64a0c779
DN
6049 /* e11 id */
6050 else if (cur_token.code == T_ID)
6051 {
6052 /* Add the identifier to the displacement string. */
6053 strcat (intel_parser.disp, cur_token.str);
6054 intel_match_token (T_ID);
6055
6056 /* The identifier represents a memory reference only if it's not
6057 preceded by an offset modifier. */
21d6c4af 6058 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
6059 intel_parser.is_mem = 1;
6060
6061 return 1;
6062 }
6063
6064 /* e11 constant */
6065 else if (cur_token.code == T_CONST
e5cb08ac 6066 || cur_token.code == '-'
64a0c779
DN
6067 || cur_token.code == '+')
6068 {
6069 char *save_str;
6070
6071 /* Allow constants that start with `+' or `-'. */
6072 if (cur_token.code == '-' || cur_token.code == '+')
6073 {
6074 strcat (intel_parser.disp, cur_token.str);
6075 intel_match_token (cur_token.code);
6076 if (cur_token.code != T_CONST)
6077 {
6078 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6079 cur_token.str);
6080 return 0;
6081 }
6082 }
6083
e5cb08ac 6084 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6085 if (save_str == NULL)
bc805888 6086 abort ();
64a0c779
DN
6087 strcpy (save_str, cur_token.str);
6088
6089 /* Get the next token to check for register scaling. */
6090 intel_match_token (cur_token.code);
6091
6092 /* Check if this constant is a scaling factor for an index register. */
6093 if (cur_token.code == '*')
6094 {
6095 if (intel_match_token ('*') && cur_token.code == T_REG)
6096 {
6097 if (!intel_parser.is_mem)
6098 {
6099 as_bad (_("Register scaling only allowed in memory operands."));
6100 return 0;
6101 }
6102
4a1805b1 6103 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6104 a valid scale. */
6105 if (strchr ("01248", *save_str))
6106 {
6107 i.index_reg = cur_token.reg;
6108 i.types[this_operand] |= BaseIndex;
6109
6110 /* Set the scale after setting the register (otherwise,
6111 i386_scale will complain) */
6112 i386_scale (save_str);
6113 intel_match_token (T_REG);
6114
6115 /* Since registers are not part of the displacement
6116 string, we may need to remove any preceding '+' from
6117 the displacement string. */
6118 if (*intel_parser.disp != '\0')
6119 {
6120 char *s = intel_parser.disp;
6121 s += strlen (s) - 1;
6122 if (*s == '+')
6123 *s = '\0';
6124 }
6125
6126 free (save_str);
6127
6128 return 1;
6129 }
6130 else
6131 return 0;
6132 }
6133
6134 /* The constant was not used for register scaling. Since we have
6135 already consumed the token following `*' we now need to put it
6136 back in the stream. */
6137 else
6138 intel_putback_token ();
6139 }
6140
6141 /* Add the constant to the displacement string. */
6142 strcat (intel_parser.disp, save_str);
6143 free (save_str);
6144
6145 return 1;
6146 }
6147
64a0c779
DN
6148 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6149 return 0;
6150}
6151
64a0c779
DN
6152/* Match the given token against cur_token. If they match, read the next
6153 token from the operand string. */
6154static int
6155intel_match_token (code)
e5cb08ac 6156 int code;
64a0c779
DN
6157{
6158 if (cur_token.code == code)
6159 {
6160 intel_get_token ();
6161 return 1;
6162 }
6163 else
6164 {
6165 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6166 return 0;
6167 }
6168}
6169
64a0c779
DN
6170/* Read a new token from intel_parser.op_string and store it in cur_token. */
6171static void
6172intel_get_token ()
6173{
6174 char *end_op;
6175 const reg_entry *reg;
6176 struct intel_token new_token;
6177
6178 new_token.code = T_NIL;
6179 new_token.reg = NULL;
6180 new_token.str = NULL;
6181
4a1805b1 6182 /* Free the memory allocated to the previous token and move
64a0c779
DN
6183 cur_token to prev_token. */
6184 if (prev_token.str)
6185 free (prev_token.str);
6186
6187 prev_token = cur_token;
6188
6189 /* Skip whitespace. */
6190 while (is_space_char (*intel_parser.op_string))
6191 intel_parser.op_string++;
6192
6193 /* Return an empty token if we find nothing else on the line. */
6194 if (*intel_parser.op_string == '\0')
6195 {
6196 cur_token = new_token;
6197 return;
6198 }
6199
6200 /* The new token cannot be larger than the remainder of the operand
6201 string. */
e5cb08ac 6202 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6203 if (new_token.str == NULL)
bc805888 6204 abort ();
64a0c779
DN
6205 new_token.str[0] = '\0';
6206
6207 if (strchr ("0123456789", *intel_parser.op_string))
6208 {
6209 char *p = new_token.str;
6210 char *q = intel_parser.op_string;
6211 new_token.code = T_CONST;
6212
6213 /* Allow any kind of identifier char to encompass floating point and
6214 hexadecimal numbers. */
6215 while (is_identifier_char (*q))
6216 *p++ = *q++;
6217 *p = '\0';
6218
6219 /* Recognize special symbol names [0-9][bf]. */
6220 if (strlen (intel_parser.op_string) == 2
4a1805b1 6221 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6222 || intel_parser.op_string[1] == 'f'))
6223 new_token.code = T_ID;
6224 }
6225
6226 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6227 {
6228 new_token.code = *intel_parser.op_string;
6229 new_token.str[0] = *intel_parser.op_string;
6230 new_token.str[1] = '\0';
6231 }
6232
6233 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6234 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6235 {
6236 new_token.code = T_REG;
6237 new_token.reg = reg;
6238
6239 if (*intel_parser.op_string == REGISTER_PREFIX)
6240 {
6241 new_token.str[0] = REGISTER_PREFIX;
6242 new_token.str[1] = '\0';
6243 }
6244
6245 strcat (new_token.str, reg->reg_name);
6246 }
6247
6248 else if (is_identifier_char (*intel_parser.op_string))
6249 {
6250 char *p = new_token.str;
6251 char *q = intel_parser.op_string;
6252
6253 /* A '.' or '$' followed by an identifier char is an identifier.
6254 Otherwise, it's operator '.' followed by an expression. */
6255 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6256 {
6257 new_token.code = *q;
6258 new_token.str[0] = *q;
6259 new_token.str[1] = '\0';
6260 }
6261 else
6262 {
6263 while (is_identifier_char (*q) || *q == '@')
6264 *p++ = *q++;
6265 *p = '\0';
6266
6267 if (strcasecmp (new_token.str, "BYTE") == 0)
6268 new_token.code = T_BYTE;
6269
6270 else if (strcasecmp (new_token.str, "WORD") == 0)
6271 new_token.code = T_WORD;
6272
6273 else if (strcasecmp (new_token.str, "DWORD") == 0)
6274 new_token.code = T_DWORD;
6275
6276 else if (strcasecmp (new_token.str, "QWORD") == 0)
6277 new_token.code = T_QWORD;
6278
6279 else if (strcasecmp (new_token.str, "XWORD") == 0)
6280 new_token.code = T_XWORD;
6281
6282 else if (strcasecmp (new_token.str, "PTR") == 0)
6283 new_token.code = T_PTR;
6284
6285 else if (strcasecmp (new_token.str, "SHORT") == 0)
6286 new_token.code = T_SHORT;
6287
6288 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6289 {
6290 new_token.code = T_OFFSET;
6291
6292 /* ??? This is not mentioned in the MASM grammar but gcc
6293 makes use of it with -mintel-syntax. OFFSET may be
6294 followed by FLAT: */
6295 if (strncasecmp (q, " FLAT:", 6) == 0)
6296 strcat (new_token.str, " FLAT:");
6297 }
6298
6299 /* ??? This is not mentioned in the MASM grammar. */
6300 else if (strcasecmp (new_token.str, "FLAT") == 0)
6301 new_token.code = T_OFFSET;
6302
6303 else
6304 new_token.code = T_ID;
6305 }
6306 }
6307
6308 else
6309 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6310
6311 intel_parser.op_string += strlen (new_token.str);
6312 cur_token = new_token;
6313}
6314
64a0c779
DN
6315/* Put cur_token back into the token stream and make cur_token point to
6316 prev_token. */
6317static void
6318intel_putback_token ()
6319{
6320 intel_parser.op_string -= strlen (cur_token.str);
6321 free (cur_token.str);
6322 cur_token = prev_token;
4a1805b1 6323
64a0c779
DN
6324 /* Forget prev_token. */
6325 prev_token.code = T_NIL;
6326 prev_token.reg = NULL;
6327 prev_token.str = NULL;
6328}
54cfded0 6329
a4447b93 6330int
54cfded0
AM
6331tc_x86_regname_to_dw2regnum (const char *regname)
6332{
6333 unsigned int regnum;
6334 unsigned int regnames_count;
6335 char *regnames_32[] =
6336 {
a4447b93
RH
6337 "eax", "ecx", "edx", "ebx",
6338 "esp", "ebp", "esi", "edi",
54cfded0
AM
6339 "eip"
6340 };
6341 char *regnames_64[] =
6342 {
6343 "rax", "rbx", "rcx", "rdx",
6344 "rdi", "rsi", "rbp", "rsp",
6345 "r8", "r9", "r10", "r11",
6346 "r12", "r13", "r14", "r15",
6347 "rip"
6348 };
6349 char **regnames;
6350
6351 if (flag_code == CODE_64BIT)
6352 {
6353 regnames = regnames_64;
6354 regnames_count = sizeof (regnames_64);
6355 }
6356 else
6357 {
6358 regnames = regnames_32;
6359 regnames_count = sizeof (regnames_32);
6360 }
6361
6362 for (regnum = 0; regnum < regnames_count; regnum++)
6363 if (strcmp (regname, regnames[regnum]) == 0)
6364 return regnum;
6365
54cfded0
AM
6366 return -1;
6367}
6368
6369void
6370tc_x86_frame_initial_instructions (void)
6371{
a4447b93
RH
6372 static unsigned int sp_regno;
6373
6374 if (!sp_regno)
6375 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6376 ? "rsp" : "esp");
6377
6378 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6379 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6380}
This page took 0.526889 seconds and 4 git commands to generate.