* aout-arm.c, aout-target.h, aoutx.h, archive.c, armnetbsd.c,
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0f10071e 3 2000, 2001, 2002, 2003, 2004
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896
AM
326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327symbolS *GOT_symbol;
328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132
RH
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025#endif
a4447b93
RH
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
252b5132
RH
1037}
1038
1039void
1040i386_print_statistics (file)
1041 FILE *file;
1042{
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045}
1046\f
252b5132
RH
1047#ifdef DEBUG386
1048
ce8a8b2f 1049/* Debugging routines for md_assemble. */
252b5132
RH
1050static void pi PARAMS ((char *, i386_insn *));
1051static void pte PARAMS ((template *));
1052static void pt PARAMS ((unsigned int));
1053static void pe PARAMS ((expressionS *));
1054static void ps PARAMS ((symbolS *));
1055
1056static void
1057pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060{
09f131f2 1061 unsigned int i;
252b5132
RH
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
09f131f2
JH
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1070 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
3f4438ab 1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1086 if (x->types[i] & Imm)
520dc8e8 1087 pe (x->op[i].imms);
252b5132 1088 if (x->types[i] & Disp)
520dc8e8 1089 pe (x->op[i].disps);
252b5132
RH
1090 }
1091}
1092
1093static void
1094pte (t)
1095 template *t;
1096{
09f131f2 1097 unsigned int i;
252b5132 1098 fprintf (stdout, " %d operands ", t->operands);
47926f60 1099 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113}
1114
1115static void
1116pe (e)
1117 expressionS *e;
1118{
24eab124 1119 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134}
1135
1136static void
1137ps (s)
1138 symbolS *s;
1139{
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144}
1145
1146struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
29b0f896 1152static const type_names[] =
252b5132
RH
1153{
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
09f131f2 1157 { Reg64, "r64" },
252b5132
RH
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
09f131f2
JH
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
252b5132
RH
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
09f131f2
JH
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
252b5132
RH
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
3f4438ab 1183 { RegXMM, "rXMM" },
252b5132
RH
1184 { EsSeg, "es" },
1185 { 0, "" }
1186};
1187
1188static void
1189pt (t)
1190 unsigned int t;
1191{
29b0f896 1192 const struct type_name *ty;
252b5132 1193
09f131f2
JH
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1197 fflush (stdout);
1198}
1199
1200#endif /* DEBUG386 */
1201\f
29b0f896
AM
1202static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1204
1205static bfd_reloc_code_real_type
3e73aa7c 1206reloc (size, pcrel, sign, other)
252b5132
RH
1207 int size;
1208 int pcrel;
3e73aa7c 1209 int sign;
252b5132
RH
1210 bfd_reloc_code_real_type other;
1211{
47926f60
KH
1212 if (other != NO_RELOC)
1213 return other;
252b5132
RH
1214
1215 if (pcrel)
1216 {
3e73aa7c 1217 if (!sign)
e5cb08ac 1218 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
d0b47220 1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1226 }
1227 else
1228 {
3e73aa7c 1229 if (sign)
e5cb08ac 1230 switch (size)
3e73aa7c
JH
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
252b5132
RH
1244 }
1245
bfb32b52 1246 abort ();
252b5132
RH
1247 return BFD_RELOC_NONE;
1248}
1249
47926f60
KH
1250/* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
252b5132 1255int
c0c949c7 1256tc_i386_fix_adjustable (fixP)
31312f95 1257 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1258{
6d249963 1259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
a161fe53
AM
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
252b5132 1268 return 0;
31312f95 1269
8d01d9a9
AJ
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
ce8a8b2f 1276 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
31312f95 1299#endif
252b5132
RH
1300 return 1;
1301}
252b5132 1302
29b0f896 1303static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1304
1305static int
252b5132 1306intel_float_operand (mnemonic)
29b0f896 1307 const char *mnemonic;
252b5132 1308{
9306ca4a
JB
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
252b5132 1355
9306ca4a 1356 return 1;
252b5132
RH
1357}
1358
1359/* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363void
1364md_assemble (line)
1365 char *line;
1366{
252b5132 1367 int j;
252b5132
RH
1368 char mnemonic[MAX_MNEM_SIZE];
1369
47926f60 1370 /* Initialize globals. */
252b5132
RH
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1373 i.reloc[j] = NO_RELOC;
252b5132
RH
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1376 save_stack_p = save_stack;
252b5132
RH
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1380 start of a (possibly prefixed) mnemonic. */
252b5132 1381
29b0f896
AM
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
252b5132 1385
29b0f896
AM
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
252b5132 1413
29b0f896
AM
1414 if (!match_template ())
1415 return;
252b5132 1416
cd61ebfe
AM
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
cd61ebfe 1442 }
24eab124 1443
29b0f896
AM
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
252b5132 1447
29b0f896
AM
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
5dd0794d 1452 return;
29b0f896 1453 }
5dd0794d 1454
29b0f896
AM
1455 if (!process_suffix ())
1456 return;
e413e4e9 1457
29b0f896
AM
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
252b5132 1462
29b0f896
AM
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
252b5132 1471
29b0f896
AM
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
02fc3089
L
1474 expressionS *exp;
1475
ca164297
L
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
67c1ffbe 1478 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
a4622f40 1484 for (x = 0; x < i.operands; x++)
ca164297
L
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
29b0f896
AM
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1495
29b0f896 1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1497
29b0f896
AM
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
252b5132 1505
29b0f896
AM
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
252b5132 1517
29b0f896
AM
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
252b5132 1524
29b0f896
AM
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
252b5132 1534
29b0f896
AM
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
252b5132 1537
29b0f896
AM
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
773f551c 1541
29b0f896
AM
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
726c5dcd 1550
29b0f896
AM
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1557 {
29b0f896
AM
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
0477af35 1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1561 i.op[x].regs->reg_name);
773f551c 1562
29b0f896
AM
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
773f551c 1568 }
29b0f896
AM
1569 }
1570 }
773f551c 1571
29b0f896
AM
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577}
1578
1579static char *
1580parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583{
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
5c6af06e
JB
1587 int supported;
1588 const template *t;
29b0f896
AM
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
45288df1 1592
29b0f896
AM
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1600 {
29b0f896
AM
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
45288df1 1623
29b0f896
AM
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
47926f60 1626
29b0f896
AM
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
45288df1 1642 }
29b0f896
AM
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
45288df1 1658
29b0f896
AM
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
29b0f896
AM
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
252b5132 1683
29b0f896
AM
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
9306ca4a 1688 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
252b5132 1703
29b0f896
AM
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
252b5132 1735
29b0f896 1736 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
29b0f896 1755 {
5c6af06e
JB
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
252b5132 1765
29b0f896
AM
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
252b5132 1774
29b0f896
AM
1775 return l;
1776}
252b5132 1777
29b0f896
AM
1778static char *
1779parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782{
1783 char *token_start;
3138f287 1784
29b0f896
AM
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
252b5132 1787
29b0f896
AM
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
7f3f1ea2 1883
29b0f896
AM
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896}
7f3f1ea2 1897
29b0f896
AM
1898static void
1899swap_operands ()
1900{
1901 union i386_op temp_op;
1902 unsigned int temp_type;
f86103b7 1903 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1904 int xchg1 = 0;
1905 int xchg2 = 0;
252b5132 1906
29b0f896
AM
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934}
252b5132 1935
29b0f896
AM
1936/* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938static void
1939optimize_imm ()
1940{
1941 char guess_suffix = 0;
1942 int op;
252b5132 1943
29b0f896
AM
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
252b5132 1954 {
29b0f896
AM
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
252b5132 1964 }
29b0f896
AM
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
252b5132 1973 {
29b0f896
AM
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
252b5132 1977 {
29b0f896
AM
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
252b5132 1987 }
252b5132 1988
29b0f896
AM
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1996 {
29b0f896
AM
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2009
29b0f896
AM
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
252b5132 2015
29b0f896
AM
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
20f0a1fc 2029 i.types[op] = Imm32;
29b0f896
AM
2030 break;
2031 case WORD_MNEM_SUFFIX:
20f0a1fc 2032 i.types[op] = Imm16;
29b0f896
AM
2033 break;
2034 case BYTE_MNEM_SUFFIX:
20f0a1fc 2035 i.types[op] = Imm8 | Imm8S;
29b0f896 2036 break;
252b5132 2037 }
29b0f896 2038 break;
252b5132 2039 }
29b0f896
AM
2040 }
2041}
47926f60 2042
29b0f896
AM
2043/* Try to use the smallest displacement type too. */
2044static void
2045optimize_disp ()
2046{
2047 int op;
3e73aa7c 2048
29b0f896
AM
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2051 {
29b0f896
AM
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
252b5132 2055 {
29b0f896
AM
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2062 }
29b0f896 2063 else if (i.types[op] & Disp32)
252b5132 2064 {
29b0f896
AM
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2070 }
29b0f896 2071 if (flag_code == CODE_64BIT)
252b5132 2072 {
29b0f896
AM
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
252b5132 2077 }
29b0f896
AM
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
252b5132 2081 }
29b0f896
AM
2082}
2083
2084static int
2085match_template ()
2086{
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093#define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
20f0a1fc
NC
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
9306ca4a
JB
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
29b0f896
AM
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
9306ca4a 2144 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
252b5132 2155
29b0f896
AM
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
252b5132 2229
29b0f896
AM
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263}
2264
2265static int
2266check_string ()
2267{
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295}
2296
2297static int
543613e9 2298process_suffix (void)
29b0f896
AM
2299{
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
543613e9 2321
29b0f896
AM
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
9306ca4a
JB
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2363 {
2364 i.suffix = stackop_size;
2365 }
9306ca4a
JB
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
252b5132 2391
9306ca4a 2392 if (!i.suffix)
29b0f896 2393 {
9306ca4a
JB
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
29b0f896 2420 }
252b5132 2421
9306ca4a
JB
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
29b0f896
AM
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
0f3f3d8b 2435
29b0f896
AM
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2447
29b0f896
AM
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
252b5132 2450
29b0f896
AM
2451 if (!add_prefix (prefix))
2452 return 0;
24eab124 2453 }
252b5132 2454
29b0f896
AM
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2457 && flag_code == CODE_64BIT
29b0f896 2458 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2459 i.rex |= REX_MODE64;
3e73aa7c 2460
29b0f896
AM
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
29b0f896 2465 }
7ecd2f8b 2466
29b0f896
AM
2467 return 1;
2468}
3e73aa7c 2469
29b0f896 2470static int
543613e9 2471check_byte_reg (void)
29b0f896
AM
2472{
2473 int op;
543613e9 2474
29b0f896
AM
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2493#if 0
2494 /* Check that the template allows eight bit regs. This
2495 kills insns such as `orb $1,%edx', which maybe should be
2496 allowed. */
2497 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2498#endif
2499 )
2500 {
2501 /* Prohibit these changes in the 64bit mode, since the
2502 lowering is more complicated. */
2503 if (flag_code == CODE_64BIT
2504 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2505 {
0f3f3d8b 2506 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2507 i.op[op].regs->reg_name,
2508 i.suffix);
2509 return 0;
2510 }
2511#if REGISTER_WARNINGS
2512 if (!quiet_warnings
2513 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2514 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2515 (i.op[op].regs + (i.types[op] & Reg16
2516 ? REGNAM_AL - REGNAM_AX
2517 : REGNAM_AL - REGNAM_EAX))->reg_name,
2518 i.op[op].regs->reg_name,
2519 i.suffix);
2520#endif
2521 continue;
2522 }
2523 /* Any other register is bad. */
2524 if (i.types[op] & (Reg | RegMMX | RegXMM
2525 | SReg2 | SReg3
2526 | Control | Debug | Test
2527 | FloatReg | FloatAcc))
2528 {
2529 as_bad (_("`%%%s' not allowed with `%s%c'"),
2530 i.op[op].regs->reg_name,
2531 i.tm.name,
2532 i.suffix);
2533 return 0;
2534 }
2535 }
2536 return 1;
2537}
2538
2539static int
2540check_long_reg ()
2541{
2542 int op;
2543
2544 for (op = i.operands; --op >= 0;)
2545 /* Reject eight bit registers, except where the template requires
2546 them. (eg. movzb) */
2547 if ((i.types[op] & Reg8) != 0
2548 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2549 {
2550 as_bad (_("`%%%s' not allowed with `%s%c'"),
2551 i.op[op].regs->reg_name,
2552 i.tm.name,
2553 i.suffix);
2554 return 0;
2555 }
2556 /* Warn if the e prefix on a general reg is missing. */
2557 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2558 && (i.types[op] & Reg16) != 0
2559 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2560 {
2561 /* Prohibit these changes in the 64bit mode, since the
2562 lowering is more complicated. */
2563 if (flag_code == CODE_64BIT)
252b5132 2564 {
0f3f3d8b 2565 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2566 i.op[op].regs->reg_name,
2567 i.suffix);
2568 return 0;
252b5132 2569 }
29b0f896
AM
2570#if REGISTER_WARNINGS
2571 else
2572 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2573 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2574 i.op[op].regs->reg_name,
2575 i.suffix);
2576#endif
252b5132 2577 }
29b0f896
AM
2578 /* Warn if the r prefix on a general reg is missing. */
2579 else if ((i.types[op] & Reg64) != 0
2580 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2581 {
0f3f3d8b 2582 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2583 i.op[op].regs->reg_name,
2584 i.suffix);
2585 return 0;
2586 }
2587 return 1;
2588}
252b5132 2589
29b0f896
AM
2590static int
2591check_qword_reg ()
2592{
2593 int op;
252b5132 2594
29b0f896
AM
2595 for (op = i.operands; --op >= 0; )
2596 /* Reject eight bit registers, except where the template requires
2597 them. (eg. movzb) */
2598 if ((i.types[op] & Reg8) != 0
2599 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2600 {
2601 as_bad (_("`%%%s' not allowed with `%s%c'"),
2602 i.op[op].regs->reg_name,
2603 i.tm.name,
2604 i.suffix);
2605 return 0;
2606 }
2607 /* Warn if the e prefix on a general reg is missing. */
2608 else if (((i.types[op] & Reg16) != 0
2609 || (i.types[op] & Reg32) != 0)
2610 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2611 {
2612 /* Prohibit these changes in the 64bit mode, since the
2613 lowering is more complicated. */
0f3f3d8b 2614 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2615 i.op[op].regs->reg_name,
2616 i.suffix);
2617 return 0;
252b5132 2618 }
29b0f896
AM
2619 return 1;
2620}
252b5132 2621
29b0f896
AM
2622static int
2623check_word_reg ()
2624{
2625 int op;
2626 for (op = i.operands; --op >= 0;)
2627 /* Reject eight bit registers, except where the template requires
2628 them. (eg. movzb) */
2629 if ((i.types[op] & Reg8) != 0
2630 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2631 {
2632 as_bad (_("`%%%s' not allowed with `%s%c'"),
2633 i.op[op].regs->reg_name,
2634 i.tm.name,
2635 i.suffix);
2636 return 0;
2637 }
2638 /* Warn if the e prefix on a general reg is present. */
2639 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2640 && (i.types[op] & Reg32) != 0
2641 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2642 {
29b0f896
AM
2643 /* Prohibit these changes in the 64bit mode, since the
2644 lowering is more complicated. */
2645 if (flag_code == CODE_64BIT)
252b5132 2646 {
0f3f3d8b 2647 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2648 i.op[op].regs->reg_name,
2649 i.suffix);
2650 return 0;
252b5132 2651 }
29b0f896
AM
2652 else
2653#if REGISTER_WARNINGS
2654 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2655 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2656 i.op[op].regs->reg_name,
2657 i.suffix);
2658#endif
2659 }
2660 return 1;
2661}
252b5132 2662
29b0f896
AM
2663static int
2664finalize_imm ()
2665{
2666 unsigned int overlap0, overlap1, overlap2;
2667
2668 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2669 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2670 && overlap0 != Imm8 && overlap0 != Imm8S
2671 && overlap0 != Imm16 && overlap0 != Imm32S
2672 && overlap0 != Imm32 && overlap0 != Imm64)
2673 {
2674 if (i.suffix)
2675 {
2676 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2677 ? Imm8 | Imm8S
2678 : (i.suffix == WORD_MNEM_SUFFIX
2679 ? Imm16
2680 : (i.suffix == QWORD_MNEM_SUFFIX
2681 ? Imm64 | Imm32S
2682 : Imm32)));
2683 }
2684 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2685 || overlap0 == (Imm16 | Imm32)
2686 || overlap0 == (Imm16 | Imm32S))
2687 {
2688 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2689 ? Imm16 : Imm32S);
2690 }
2691 if (overlap0 != Imm8 && overlap0 != Imm8S
2692 && overlap0 != Imm16 && overlap0 != Imm32S
2693 && overlap0 != Imm32 && overlap0 != Imm64)
2694 {
2695 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2696 return 0;
2697 }
2698 }
2699 i.types[0] = overlap0;
2700
2701 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2702 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2703 && overlap1 != Imm8 && overlap1 != Imm8S
2704 && overlap1 != Imm16 && overlap1 != Imm32S
2705 && overlap1 != Imm32 && overlap1 != Imm64)
2706 {
2707 if (i.suffix)
2708 {
2709 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2710 ? Imm8 | Imm8S
2711 : (i.suffix == WORD_MNEM_SUFFIX
2712 ? Imm16
2713 : (i.suffix == QWORD_MNEM_SUFFIX
2714 ? Imm64 | Imm32S
2715 : Imm32)));
2716 }
2717 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2718 || overlap1 == (Imm16 | Imm32)
2719 || overlap1 == (Imm16 | Imm32S))
2720 {
2721 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2722 ? Imm16 : Imm32S);
2723 }
2724 if (overlap1 != Imm8 && overlap1 != Imm8S
2725 && overlap1 != Imm16 && overlap1 != Imm32S
2726 && overlap1 != Imm32 && overlap1 != Imm64)
2727 {
2728 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2729 return 0;
2730 }
2731 }
2732 i.types[1] = overlap1;
2733
2734 overlap2 = i.types[2] & i.tm.operand_types[2];
2735 assert ((overlap2 & Imm) == 0);
2736 i.types[2] = overlap2;
2737
2738 return 1;
2739}
2740
2741static int
2742process_operands ()
2743{
2744 /* Default segment register this instruction will use for memory
2745 accesses. 0 means unknown. This is only for optimizing out
2746 unnecessary segment overrides. */
2747 const seg_entry *default_seg = 0;
2748
2749 /* The imul $imm, %reg instruction is converted into
2750 imul $imm, %reg, %reg, and the clr %reg instruction
2751 is converted into xor %reg, %reg. */
2752 if (i.tm.opcode_modifier & regKludge)
2753 {
2754 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2755 /* Pretend we saw the extra register operand. */
2756 assert (i.op[first_reg_op + 1].regs == 0);
2757 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2758 i.types[first_reg_op + 1] = i.types[first_reg_op];
2759 i.reg_operands = 2;
2760 }
2761
2762 if (i.tm.opcode_modifier & ShortForm)
2763 {
2764 /* The register or float register operand is in operand 0 or 1. */
2765 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2766 /* Register goes in low 3 bits of opcode. */
2767 i.tm.base_opcode |= i.op[op].regs->reg_num;
2768 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2769 i.rex |= REX_EXTZ;
2770 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2771 {
2772 /* Warn about some common errors, but press on regardless.
2773 The first case can be generated by gcc (<= 2.8.1). */
2774 if (i.operands == 2)
2775 {
2776 /* Reversed arguments on faddp, fsubp, etc. */
2777 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2778 i.op[1].regs->reg_name,
2779 i.op[0].regs->reg_name);
2780 }
2781 else
2782 {
2783 /* Extraneous `l' suffix on fp insn. */
2784 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2785 i.op[0].regs->reg_name);
2786 }
2787 }
2788 }
2789 else if (i.tm.opcode_modifier & Modrm)
2790 {
2791 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2792 must be put into the modrm byte). Now, we make the modrm and
2793 index base bytes based on all the info we've collected. */
29b0f896
AM
2794
2795 default_seg = build_modrm_byte ();
2796 }
2797 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2798 {
2799 if (i.tm.base_opcode == POP_SEG_SHORT
2800 && i.op[0].regs->reg_num == 1)
2801 {
2802 as_bad (_("you can't `pop %%cs'"));
2803 return 0;
2804 }
2805 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2806 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2807 i.rex |= REX_EXTZ;
2808 }
2809 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2810 {
2811 default_seg = &ds;
2812 }
2813 else if ((i.tm.opcode_modifier & IsString) != 0)
2814 {
2815 /* For the string instructions that allow a segment override
2816 on one of their operands, the default segment is ds. */
2817 default_seg = &ds;
2818 }
2819
52271982
AM
2820 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2821 as_warn (_("segment override on `lea' is ineffectual"));
2822
2823 /* If a segment was explicitly specified, and the specified segment
2824 is not the default, use an opcode prefix to select it. If we
2825 never figured out what the default segment is, then default_seg
2826 will be zero at this point, and the specified segment prefix will
2827 always be used. */
29b0f896
AM
2828 if ((i.seg[0]) && (i.seg[0] != default_seg))
2829 {
2830 if (!add_prefix (i.seg[0]->seg_prefix))
2831 return 0;
2832 }
2833 return 1;
2834}
2835
2836static const seg_entry *
2837build_modrm_byte ()
2838{
2839 const seg_entry *default_seg = 0;
2840
2841 /* i.reg_operands MUST be the number of real register operands;
2842 implicit registers do not count. */
2843 if (i.reg_operands == 2)
2844 {
2845 unsigned int source, dest;
2846 source = ((i.types[0]
2847 & (Reg | RegMMX | RegXMM
2848 | SReg2 | SReg3
2849 | Control | Debug | Test))
2850 ? 0 : 1);
2851 dest = source + 1;
2852
2853 i.rm.mode = 3;
2854 /* One of the register operands will be encoded in the i.tm.reg
2855 field, the other in the combined i.tm.mode and i.tm.regmem
2856 fields. If no form of this instruction supports a memory
2857 destination operand, then we assume the source operand may
2858 sometimes be a memory operand and so we need to store the
2859 destination in the i.rm.reg field. */
2860 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2861 {
2862 i.rm.reg = i.op[dest].regs->reg_num;
2863 i.rm.regmem = i.op[source].regs->reg_num;
2864 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2865 i.rex |= REX_EXTX;
2866 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 }
2869 else
2870 {
2871 i.rm.reg = i.op[source].regs->reg_num;
2872 i.rm.regmem = i.op[dest].regs->reg_num;
2873 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2874 i.rex |= REX_EXTZ;
2875 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2876 i.rex |= REX_EXTX;
2877 }
2878 }
2879 else
2880 { /* If it's not 2 reg operands... */
2881 if (i.mem_operands)
2882 {
2883 unsigned int fake_zero_displacement = 0;
2884 unsigned int op = ((i.types[0] & AnyMem)
2885 ? 0
2886 : (i.types[1] & AnyMem) ? 1 : 2);
2887
2888 default_seg = &ds;
2889
2890 if (i.base_reg == 0)
2891 {
2892 i.rm.mode = 0;
2893 if (!i.disp_operands)
2894 fake_zero_displacement = 1;
2895 if (i.index_reg == 0)
2896 {
2897 /* Operand is just <disp> */
20f0a1fc 2898 if (flag_code == CODE_64BIT)
29b0f896
AM
2899 {
2900 /* 64bit mode overwrites the 32bit absolute
2901 addressing by RIP relative addressing and
2902 absolute addressing is encoded by one of the
2903 redundant SIB forms. */
2904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2905 i.sib.base = NO_BASE_REGISTER;
2906 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2907 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2908 }
2909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2910 {
2911 i.rm.regmem = NO_BASE_REGISTER_16;
2912 i.types[op] = Disp16;
2913 }
2914 else
2915 {
2916 i.rm.regmem = NO_BASE_REGISTER;
2917 i.types[op] = Disp32;
29b0f896
AM
2918 }
2919 }
2920 else /* !i.base_reg && i.index_reg */
2921 {
2922 i.sib.index = i.index_reg->reg_num;
2923 i.sib.base = NO_BASE_REGISTER;
2924 i.sib.scale = i.log2_scale_factor;
2925 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2926 i.types[op] &= ~Disp;
2927 if (flag_code != CODE_64BIT)
2928 i.types[op] |= Disp32; /* Must be 32 bit */
2929 else
2930 i.types[op] |= Disp32S;
2931 if ((i.index_reg->reg_flags & RegRex) != 0)
2932 i.rex |= REX_EXTY;
2933 }
2934 }
2935 /* RIP addressing for 64bit mode. */
2936 else if (i.base_reg->reg_type == BaseIndex)
2937 {
2938 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2939 i.types[op] &= ~ Disp;
29b0f896
AM
2940 i.types[op] |= Disp32S;
2941 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2942 if (! i.disp_operands)
2943 fake_zero_displacement = 1;
29b0f896
AM
2944 }
2945 else if (i.base_reg->reg_type & Reg16)
2946 {
2947 switch (i.base_reg->reg_num)
2948 {
2949 case 3: /* (%bx) */
2950 if (i.index_reg == 0)
2951 i.rm.regmem = 7;
2952 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2953 i.rm.regmem = i.index_reg->reg_num - 6;
2954 break;
2955 case 5: /* (%bp) */
2956 default_seg = &ss;
2957 if (i.index_reg == 0)
2958 {
2959 i.rm.regmem = 6;
2960 if ((i.types[op] & Disp) == 0)
2961 {
2962 /* fake (%bp) into 0(%bp) */
2963 i.types[op] |= Disp8;
252b5132 2964 fake_zero_displacement = 1;
29b0f896
AM
2965 }
2966 }
2967 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2968 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2969 break;
2970 default: /* (%si) -> 4 or (%di) -> 5 */
2971 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2972 }
2973 i.rm.mode = mode_from_disp_size (i.types[op]);
2974 }
2975 else /* i.base_reg and 32/64 bit mode */
2976 {
2977 if (flag_code == CODE_64BIT
2978 && (i.types[op] & Disp))
20f0a1fc
NC
2979 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2980
29b0f896
AM
2981 i.rm.regmem = i.base_reg->reg_num;
2982 if ((i.base_reg->reg_flags & RegRex) != 0)
2983 i.rex |= REX_EXTZ;
2984 i.sib.base = i.base_reg->reg_num;
2985 /* x86-64 ignores REX prefix bit here to avoid decoder
2986 complications. */
2987 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2988 {
2989 default_seg = &ss;
2990 if (i.disp_operands == 0)
2991 {
2992 fake_zero_displacement = 1;
2993 i.types[op] |= Disp8;
2994 }
2995 }
2996 else if (i.base_reg->reg_num == ESP_REG_NUM)
2997 {
2998 default_seg = &ss;
2999 }
3000 i.sib.scale = i.log2_scale_factor;
3001 if (i.index_reg == 0)
3002 {
3003 /* <disp>(%esp) becomes two byte modrm with no index
3004 register. We've already stored the code for esp
3005 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3006 Any base register besides %esp will not use the
3007 extra modrm byte. */
3008 i.sib.index = NO_INDEX_REGISTER;
3009#if !SCALE1_WHEN_NO_INDEX
3010 /* Another case where we force the second modrm byte. */
3011 if (i.log2_scale_factor)
3012 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3013#endif
29b0f896
AM
3014 }
3015 else
3016 {
3017 i.sib.index = i.index_reg->reg_num;
3018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3019 if ((i.index_reg->reg_flags & RegRex) != 0)
3020 i.rex |= REX_EXTY;
3021 }
3022 i.rm.mode = mode_from_disp_size (i.types[op]);
3023 }
252b5132 3024
29b0f896
AM
3025 if (fake_zero_displacement)
3026 {
3027 /* Fakes a zero displacement assuming that i.types[op]
3028 holds the correct displacement size. */
3029 expressionS *exp;
3030
3031 assert (i.op[op].disps == 0);
3032 exp = &disp_expressions[i.disp_operands++];
3033 i.op[op].disps = exp;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = 0;
3036 exp->X_add_symbol = (symbolS *) 0;
3037 exp->X_op_symbol = (symbolS *) 0;
3038 }
3039 }
252b5132 3040
29b0f896
AM
3041 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3042 (if any) based on i.tm.extension_opcode. Again, we must be
3043 careful to make sure that segment/control/debug/test/MMX
3044 registers are coded into the i.rm.reg field. */
3045 if (i.reg_operands)
3046 {
3047 unsigned int op =
3048 ((i.types[0]
3049 & (Reg | RegMMX | RegXMM
3050 | SReg2 | SReg3
3051 | Control | Debug | Test))
3052 ? 0
3053 : ((i.types[1]
3054 & (Reg | RegMMX | RegXMM
3055 | SReg2 | SReg3
3056 | Control | Debug | Test))
3057 ? 1
3058 : 2));
3059 /* If there is an extension opcode to put here, the register
3060 number must be put into the regmem field. */
3061 if (i.tm.extension_opcode != None)
3062 {
3063 i.rm.regmem = i.op[op].regs->reg_num;
3064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3065 i.rex |= REX_EXTZ;
3066 }
3067 else
3068 {
3069 i.rm.reg = i.op[op].regs->reg_num;
3070 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3071 i.rex |= REX_EXTX;
3072 }
252b5132 3073
29b0f896
AM
3074 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3075 must set it to 3 to indicate this is a register operand
3076 in the regmem field. */
3077 if (!i.mem_operands)
3078 i.rm.mode = 3;
3079 }
252b5132 3080
29b0f896
AM
3081 /* Fill in i.rm.reg field with extension opcode (if any). */
3082 if (i.tm.extension_opcode != None)
3083 i.rm.reg = i.tm.extension_opcode;
3084 }
3085 return default_seg;
3086}
252b5132 3087
29b0f896
AM
3088static void
3089output_branch ()
3090{
3091 char *p;
3092 int code16;
3093 int prefix;
3094 relax_substateT subtype;
3095 symbolS *sym;
3096 offsetT off;
3097
3098 code16 = 0;
3099 if (flag_code == CODE_16BIT)
3100 code16 = CODE16;
3101
3102 prefix = 0;
3103 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3104 {
29b0f896
AM
3105 prefix = 1;
3106 i.prefixes -= 1;
3107 code16 ^= CODE16;
252b5132 3108 }
29b0f896
AM
3109 /* Pentium4 branch hints. */
3110 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3111 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3112 {
29b0f896
AM
3113 prefix++;
3114 i.prefixes--;
3115 }
3116 if (i.prefix[REX_PREFIX] != 0)
3117 {
3118 prefix++;
3119 i.prefixes--;
2f66722d
AM
3120 }
3121
29b0f896
AM
3122 if (i.prefixes != 0 && !intel_syntax)
3123 as_warn (_("skipping prefixes on this instruction"));
3124
3125 /* It's always a symbol; End frag & setup for relax.
3126 Make sure there is enough room in this frag for the largest
3127 instruction we may generate in md_convert_frag. This is 2
3128 bytes for the opcode and room for the prefix and largest
3129 displacement. */
3130 frag_grow (prefix + 2 + 4);
3131 /* Prefix and 1 opcode byte go in fr_fix. */
3132 p = frag_more (prefix + 1);
3133 if (i.prefix[DATA_PREFIX] != 0)
3134 *p++ = DATA_PREFIX_OPCODE;
3135 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3136 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3137 *p++ = i.prefix[SEG_PREFIX];
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140 *p = i.tm.base_opcode;
3141
3142 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3143 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3144 else if ((cpu_arch_flags & Cpu386) != 0)
3145 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3146 else
3147 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3148 subtype |= code16;
3e73aa7c 3149
29b0f896
AM
3150 sym = i.op[0].disps->X_add_symbol;
3151 off = i.op[0].disps->X_add_number;
3e73aa7c 3152
29b0f896
AM
3153 if (i.op[0].disps->X_op != O_constant
3154 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3155 {
29b0f896
AM
3156 /* Handle complex expressions. */
3157 sym = make_expr_symbol (i.op[0].disps);
3158 off = 0;
3159 }
3e73aa7c 3160
29b0f896
AM
3161 /* 1 possible extra opcode + 4 byte displacement go in var part.
3162 Pass reloc in fr_var. */
3163 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3164}
3e73aa7c 3165
29b0f896
AM
3166static void
3167output_jump ()
3168{
3169 char *p;
3170 int size;
3e02c1cc 3171 fixS *fixP;
29b0f896
AM
3172
3173 if (i.tm.opcode_modifier & JumpByte)
3174 {
3175 /* This is a loop or jecxz type instruction. */
3176 size = 1;
3177 if (i.prefix[ADDR_PREFIX] != 0)
3178 {
3179 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3180 i.prefixes -= 1;
3181 }
3182 /* Pentium4 branch hints. */
3183 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3184 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3185 {
3186 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3187 i.prefixes--;
3e73aa7c
JH
3188 }
3189 }
29b0f896
AM
3190 else
3191 {
3192 int code16;
3e73aa7c 3193
29b0f896
AM
3194 code16 = 0;
3195 if (flag_code == CODE_16BIT)
3196 code16 = CODE16;
3e73aa7c 3197
29b0f896
AM
3198 if (i.prefix[DATA_PREFIX] != 0)
3199 {
3200 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3201 i.prefixes -= 1;
3202 code16 ^= CODE16;
3203 }
252b5132 3204
29b0f896
AM
3205 size = 4;
3206 if (code16)
3207 size = 2;
3208 }
9fcc94b6 3209
29b0f896
AM
3210 if (i.prefix[REX_PREFIX] != 0)
3211 {
3212 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3213 i.prefixes -= 1;
3214 }
252b5132 3215
29b0f896
AM
3216 if (i.prefixes != 0 && !intel_syntax)
3217 as_warn (_("skipping prefixes on this instruction"));
e0890092 3218
29b0f896
AM
3219 p = frag_more (1 + size);
3220 *p++ = i.tm.base_opcode;
e0890092 3221
3e02c1cc
AM
3222 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3223 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3224
3225 /* All jumps handled here are signed, but don't use a signed limit
3226 check for 32 and 16 bit jumps as we want to allow wrap around at
3227 4G and 64k respectively. */
3228 if (size == 1)
3229 fixP->fx_signed = 1;
29b0f896 3230}
e0890092 3231
29b0f896
AM
3232static void
3233output_interseg_jump ()
3234{
3235 char *p;
3236 int size;
3237 int prefix;
3238 int code16;
252b5132 3239
29b0f896
AM
3240 code16 = 0;
3241 if (flag_code == CODE_16BIT)
3242 code16 = CODE16;
a217f122 3243
29b0f896
AM
3244 prefix = 0;
3245 if (i.prefix[DATA_PREFIX] != 0)
3246 {
3247 prefix = 1;
3248 i.prefixes -= 1;
3249 code16 ^= CODE16;
3250 }
3251 if (i.prefix[REX_PREFIX] != 0)
3252 {
3253 prefix++;
3254 i.prefixes -= 1;
3255 }
252b5132 3256
29b0f896
AM
3257 size = 4;
3258 if (code16)
3259 size = 2;
252b5132 3260
29b0f896
AM
3261 if (i.prefixes != 0 && !intel_syntax)
3262 as_warn (_("skipping prefixes on this instruction"));
252b5132 3263
29b0f896
AM
3264 /* 1 opcode; 2 segment; offset */
3265 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3266
29b0f896
AM
3267 if (i.prefix[DATA_PREFIX] != 0)
3268 *p++ = DATA_PREFIX_OPCODE;
252b5132 3269
29b0f896
AM
3270 if (i.prefix[REX_PREFIX] != 0)
3271 *p++ = i.prefix[REX_PREFIX];
252b5132 3272
29b0f896
AM
3273 *p++ = i.tm.base_opcode;
3274 if (i.op[1].imms->X_op == O_constant)
3275 {
3276 offsetT n = i.op[1].imms->X_add_number;
252b5132 3277
29b0f896
AM
3278 if (size == 2
3279 && !fits_in_unsigned_word (n)
3280 && !fits_in_signed_word (n))
3281 {
3282 as_bad (_("16-bit jump out of range"));
3283 return;
3284 }
3285 md_number_to_chars (p, n, size);
3286 }
3287 else
3288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3289 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3290 if (i.op[0].imms->X_op != O_constant)
3291 as_bad (_("can't handle non absolute segment in `%s'"),
3292 i.tm.name);
3293 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3294}
a217f122 3295
29b0f896
AM
3296static void
3297output_insn ()
3298{
2bbd9c25
JJ
3299 fragS *insn_start_frag;
3300 offsetT insn_start_off;
3301
29b0f896
AM
3302 /* Tie dwarf2 debug info to the address at the start of the insn.
3303 We can't do this after the insn has been output as the current
3304 frag may have been closed off. eg. by frag_var. */
3305 dwarf2_emit_insn (0);
3306
2bbd9c25
JJ
3307 insn_start_frag = frag_now;
3308 insn_start_off = frag_now_fix ();
3309
29b0f896
AM
3310 /* Output jumps. */
3311 if (i.tm.opcode_modifier & Jump)
3312 output_branch ();
3313 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3314 output_jump ();
3315 else if (i.tm.opcode_modifier & JumpInterSegment)
3316 output_interseg_jump ();
3317 else
3318 {
3319 /* Output normal instructions here. */
3320 char *p;
3321 unsigned char *q;
252b5132 3322
0f10071e
ML
3323 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3324 have 3 bytes. We may use one more higher byte to specify a prefix
3325 the instruction requires. */
3326 if ((i.tm.cpu_flags & CpuPadLock) != 0
3327 && (i.tm.base_opcode & 0xff000000) != 0)
3328 {
3329 unsigned int prefix;
3330 prefix = (i.tm.base_opcode >> 24) & 0xff;
3331
3332 if (prefix != REPE_PREFIX_OPCODE
3333 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3334 add_prefix (prefix);
3335 }
3336 else
3337 if ((i.tm.cpu_flags & CpuPadLock) == 0
3338 && (i.tm.base_opcode & 0xff0000) != 0)
3339 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3340
29b0f896
AM
3341 /* The prefix bytes. */
3342 for (q = i.prefix;
3343 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3344 q++)
3345 {
3346 if (*q)
3347 {
3348 p = frag_more (1);
3349 md_number_to_chars (p, (valueT) *q, 1);
3350 }
3351 }
252b5132 3352
29b0f896
AM
3353 /* Now the opcode; be careful about word order here! */
3354 if (fits_in_unsigned_byte (i.tm.base_opcode))
3355 {
3356 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3357 }
3358 else
3359 {
0f10071e
ML
3360 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3361 {
3362 p = frag_more (3);
3363 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3364 }
3365 else
3366 p = frag_more (2);
3367
29b0f896
AM
3368 /* Put out high byte first: can't use md_number_to_chars! */
3369 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3370 *p = i.tm.base_opcode & 0xff;
3371 }
3e73aa7c 3372
29b0f896
AM
3373 /* Now the modrm byte and sib byte (if present). */
3374 if (i.tm.opcode_modifier & Modrm)
3375 {
3376 p = frag_more (1);
3377 md_number_to_chars (p,
3378 (valueT) (i.rm.regmem << 0
3379 | i.rm.reg << 3
3380 | i.rm.mode << 6),
3381 1);
3382 /* If i.rm.regmem == ESP (4)
3383 && i.rm.mode != (Register mode)
3384 && not 16 bit
3385 ==> need second modrm byte. */
3386 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3387 && i.rm.mode != 3
3388 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3389 {
3390 p = frag_more (1);
3391 md_number_to_chars (p,
3392 (valueT) (i.sib.base << 0
3393 | i.sib.index << 3
3394 | i.sib.scale << 6),
3395 1);
3396 }
3397 }
3e73aa7c 3398
29b0f896 3399 if (i.disp_operands)
2bbd9c25 3400 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3401
29b0f896 3402 if (i.imm_operands)
2bbd9c25 3403 output_imm (insn_start_frag, insn_start_off);
29b0f896 3404 }
252b5132 3405
29b0f896
AM
3406#ifdef DEBUG386
3407 if (flag_debug)
3408 {
3409 pi (line, &i);
3410 }
3411#endif /* DEBUG386 */
3412}
252b5132 3413
29b0f896 3414static void
2bbd9c25
JJ
3415output_disp (insn_start_frag, insn_start_off)
3416 fragS *insn_start_frag;
3417 offsetT insn_start_off;
29b0f896
AM
3418{
3419 char *p;
3420 unsigned int n;
252b5132 3421
29b0f896
AM
3422 for (n = 0; n < i.operands; n++)
3423 {
3424 if (i.types[n] & Disp)
3425 {
3426 if (i.op[n].disps->X_op == O_constant)
3427 {
3428 int size;
3429 offsetT val;
252b5132 3430
29b0f896
AM
3431 size = 4;
3432 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3433 {
3434 size = 2;
3435 if (i.types[n] & Disp8)
3436 size = 1;
3437 if (i.types[n] & Disp64)
3438 size = 8;
3439 }
3440 val = offset_in_range (i.op[n].disps->X_add_number,
3441 size);
3442 p = frag_more (size);
3443 md_number_to_chars (p, val, size);
3444 }
3445 else
3446 {
f86103b7 3447 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3448 int size = 4;
3449 int sign = 0;
3450 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3451
3452 /* The PC relative address is computed relative
3453 to the instruction boundary, so in case immediate
3454 fields follows, we need to adjust the value. */
3455 if (pcrel && i.imm_operands)
3456 {
3457 int imm_size = 4;
3458 unsigned int n1;
252b5132 3459
29b0f896
AM
3460 for (n1 = 0; n1 < i.operands; n1++)
3461 if (i.types[n1] & Imm)
252b5132 3462 {
29b0f896 3463 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3464 {
29b0f896
AM
3465 imm_size = 2;
3466 if (i.types[n1] & (Imm8 | Imm8S))
3467 imm_size = 1;
3468 if (i.types[n1] & Imm64)
3469 imm_size = 8;
252b5132 3470 }
29b0f896 3471 break;
252b5132 3472 }
29b0f896
AM
3473 /* We should find the immediate. */
3474 if (n1 == i.operands)
3475 abort ();
3476 i.op[n].disps->X_add_number -= imm_size;
3477 }
520dc8e8 3478
29b0f896
AM
3479 if (i.types[n] & Disp32S)
3480 sign = 1;
3e73aa7c 3481
29b0f896
AM
3482 if (i.types[n] & (Disp16 | Disp64))
3483 {
3484 size = 2;
3485 if (i.types[n] & Disp64)
3486 size = 8;
3487 }
520dc8e8 3488
29b0f896 3489 p = frag_more (size);
2bbd9c25 3490 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3491 if (reloc_type == BFD_RELOC_32
3492 && GOT_symbol
3493 && GOT_symbol == i.op[n].disps->X_add_symbol
3494 && (i.op[n].disps->X_op == O_symbol
3495 || (i.op[n].disps->X_op == O_add
3496 && ((symbol_get_value_expression
3497 (i.op[n].disps->X_op_symbol)->X_op)
3498 == O_subtract))))
3499 {
3500 offsetT add;
3501
3502 if (insn_start_frag == frag_now)
3503 add = (p - frag_now->fr_literal) - insn_start_off;
3504 else
3505 {
3506 fragS *fr;
3507
3508 add = insn_start_frag->fr_fix - insn_start_off;
3509 for (fr = insn_start_frag->fr_next;
3510 fr && fr != frag_now; fr = fr->fr_next)
3511 add += fr->fr_fix;
3512 add += p - frag_now->fr_literal;
3513 }
3514
3515 /* We don't support dynamic linking on x86-64 yet. */
3516 if (flag_code == CODE_64BIT)
3517 abort ();
3518 reloc_type = BFD_RELOC_386_GOTPC;
3519 i.op[n].disps->X_add_number += add;
3520 }
062cd5e7 3521 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3522 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3523 }
3524 }
3525 }
3526}
252b5132 3527
29b0f896 3528static void
2bbd9c25
JJ
3529output_imm (insn_start_frag, insn_start_off)
3530 fragS *insn_start_frag;
3531 offsetT insn_start_off;
29b0f896
AM
3532{
3533 char *p;
3534 unsigned int n;
252b5132 3535
29b0f896
AM
3536 for (n = 0; n < i.operands; n++)
3537 {
3538 if (i.types[n] & Imm)
3539 {
3540 if (i.op[n].imms->X_op == O_constant)
3541 {
3542 int size;
3543 offsetT val;
b4cac588 3544
29b0f896
AM
3545 size = 4;
3546 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3547 {
3548 size = 2;
3549 if (i.types[n] & (Imm8 | Imm8S))
3550 size = 1;
3551 else if (i.types[n] & Imm64)
3552 size = 8;
3553 }
3554 val = offset_in_range (i.op[n].imms->X_add_number,
3555 size);
3556 p = frag_more (size);
3557 md_number_to_chars (p, val, size);
3558 }
3559 else
3560 {
3561 /* Not absolute_section.
3562 Need a 32-bit fixup (don't support 8bit
3563 non-absolute imms). Try to support other
3564 sizes ... */
f86103b7 3565 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3566 int size = 4;
3567 int sign = 0;
3568
3569 if ((i.types[n] & (Imm32S))
3570 && i.suffix == QWORD_MNEM_SUFFIX)
3571 sign = 1;
3572 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3573 {
3574 size = 2;
3575 if (i.types[n] & (Imm8 | Imm8S))
3576 size = 1;
3577 if (i.types[n] & Imm64)
3578 size = 8;
3579 }
520dc8e8 3580
29b0f896
AM
3581 p = frag_more (size);
3582 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3583
2bbd9c25
JJ
3584 /* This is tough to explain. We end up with this one if we
3585 * have operands that look like
3586 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3587 * obtain the absolute address of the GOT, and it is strongly
3588 * preferable from a performance point of view to avoid using
3589 * a runtime relocation for this. The actual sequence of
3590 * instructions often look something like:
3591 *
3592 * call .L66
3593 * .L66:
3594 * popl %ebx
3595 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3596 *
3597 * The call and pop essentially return the absolute address
3598 * of the label .L66 and store it in %ebx. The linker itself
3599 * will ultimately change the first operand of the addl so
3600 * that %ebx points to the GOT, but to keep things simple, the
3601 * .o file must have this operand set so that it generates not
3602 * the absolute address of .L66, but the absolute address of
3603 * itself. This allows the linker itself simply treat a GOTPC
3604 * relocation as asking for a pcrel offset to the GOT to be
3605 * added in, and the addend of the relocation is stored in the
3606 * operand field for the instruction itself.
3607 *
3608 * Our job here is to fix the operand so that it would add
3609 * the correct offset so that %ebx would point to itself. The
3610 * thing that is tricky is that .-.L66 will point to the
3611 * beginning of the instruction, so we need to further modify
3612 * the operand so that it will point to itself. There are
3613 * other cases where you have something like:
3614 *
3615 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3616 *
3617 * and here no correction would be required. Internally in
3618 * the assembler we treat operands of this form as not being
3619 * pcrel since the '.' is explicitly mentioned, and I wonder
3620 * whether it would simplify matters to do it this way. Who
3621 * knows. In earlier versions of the PIC patches, the
3622 * pcrel_adjust field was used to store the correction, but
3623 * since the expression is not pcrel, I felt it would be
3624 * confusing to do it this way. */
3625
29b0f896
AM
3626 if (reloc_type == BFD_RELOC_32
3627 && GOT_symbol
3628 && GOT_symbol == i.op[n].imms->X_add_symbol
3629 && (i.op[n].imms->X_op == O_symbol
3630 || (i.op[n].imms->X_op == O_add
3631 && ((symbol_get_value_expression
3632 (i.op[n].imms->X_op_symbol)->X_op)
3633 == O_subtract))))
3634 {
2bbd9c25
JJ
3635 offsetT add;
3636
3637 if (insn_start_frag == frag_now)
3638 add = (p - frag_now->fr_literal) - insn_start_off;
3639 else
3640 {
3641 fragS *fr;
3642
3643 add = insn_start_frag->fr_fix - insn_start_off;
3644 for (fr = insn_start_frag->fr_next;
3645 fr && fr != frag_now; fr = fr->fr_next)
3646 add += fr->fr_fix;
3647 add += p - frag_now->fr_literal;
3648 }
3649
29b0f896
AM
3650 /* We don't support dynamic linking on x86-64 yet. */
3651 if (flag_code == CODE_64BIT)
3652 abort ();
3653 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3654 i.op[n].imms->X_add_number += add;
29b0f896 3655 }
29b0f896
AM
3656 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3657 i.op[n].imms, 0, reloc_type);
3658 }
3659 }
3660 }
252b5132
RH
3661}
3662\f
f3c180ae 3663#ifndef LEX_AT
f86103b7 3664static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3665
3666/* Parse operands of the form
3667 <symbol>@GOTOFF+<nnn>
3668 and similar .plt or .got references.
3669
3670 If we find one, set up the correct relocation in RELOC and copy the
3671 input string, minus the `@GOTOFF' into a malloc'd buffer for
3672 parsing by the calling routine. Return this buffer, and if ADJUST
3673 is non-null set it to the length of the string we removed from the
3674 input line. Otherwise return NULL. */
3675static char *
3676lex_got (reloc, adjust)
f86103b7 3677 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3678 int *adjust;
3679{
3680 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3681 static const struct {
3682 const char *str;
f86103b7 3683 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3684 } gotrel[] = {
13ae64f3
JJ
3685 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3686 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3687 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3688 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3689 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3690 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3691 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3692 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3693 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3694 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3695 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3696 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3697 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3698 };
3699 char *cp;
3700 unsigned int j;
3701
3702 for (cp = input_line_pointer; *cp != '@'; cp++)
3703 if (is_end_of_line[(unsigned char) *cp])
3704 return NULL;
3705
3706 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3707 {
3708 int len;
3709
3710 len = strlen (gotrel[j].str);
28f81592 3711 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3712 {
3713 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3714 {
28f81592
AM
3715 int first, second;
3716 char *tmpbuf, *past_reloc;
f3c180ae
AM
3717
3718 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3719 if (adjust)
3720 *adjust = len;
f3c180ae
AM
3721
3722 if (GOT_symbol == NULL)
3723 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3724
3725 /* Replace the relocation token with ' ', so that
3726 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3727
3728 /* The length of the first part of our input line. */
f3c180ae 3729 first = cp - input_line_pointer;
28f81592
AM
3730
3731 /* The second part goes from after the reloc token until
3732 (and including) an end_of_line char. Don't use strlen
3733 here as the end_of_line char may not be a NUL. */
3734 past_reloc = cp + 1 + len;
3735 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3736 ;
3737 second = cp - past_reloc;
3738
3739 /* Allocate and copy string. The trailing NUL shouldn't
3740 be necessary, but be safe. */
3741 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3742 memcpy (tmpbuf, input_line_pointer, first);
3743 tmpbuf[first] = ' ';
28f81592
AM
3744 memcpy (tmpbuf + first + 1, past_reloc, second);
3745 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3746 return tmpbuf;
3747 }
3748
3749 as_bad (_("@%s reloc is not supported in %s bit mode"),
3750 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3751 return NULL;
3752 }
3753 }
3754
3755 /* Might be a symbol version string. Don't as_bad here. */
3756 return NULL;
3757}
3758
3759/* x86_cons_fix_new is called via the expression parsing code when a
3760 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3761static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3762
3763void
3764x86_cons_fix_new (frag, off, len, exp)
3765 fragS *frag;
3766 unsigned int off;
3767 unsigned int len;
3768 expressionS *exp;
3769{
f86103b7 3770 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3771 got_reloc = NO_RELOC;
3772 fix_new_exp (frag, off, len, exp, 0, r);
3773}
3774
3775void
3776x86_cons (exp, size)
3777 expressionS *exp;
3778 int size;
3779{
3780 if (size == 4)
3781 {
3782 /* Handle @GOTOFF and the like in an expression. */
3783 char *save;
3784 char *gotfree_input_line;
3785 int adjust;
3786
3787 save = input_line_pointer;
3788 gotfree_input_line = lex_got (&got_reloc, &adjust);
3789 if (gotfree_input_line)
3790 input_line_pointer = gotfree_input_line;
3791
3792 expression (exp);
3793
3794 if (gotfree_input_line)
3795 {
3796 /* expression () has merrily parsed up to the end of line,
3797 or a comma - in the wrong buffer. Transfer how far
3798 input_line_pointer has moved to the right buffer. */
3799 input_line_pointer = (save
3800 + (input_line_pointer - gotfree_input_line)
3801 + adjust);
3802 free (gotfree_input_line);
3803 }
3804 }
3805 else
3806 expression (exp);
3807}
3808#endif
3809
6482c264
NC
3810#ifdef TE_PE
3811
6482c264
NC
3812void
3813x86_pe_cons_fix_new (frag, off, len, exp)
3814 fragS *frag;
3815 unsigned int off;
3816 unsigned int len;
3817 expressionS *exp;
3818{
3819 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3820
3821 if (exp->X_op == O_secrel)
3822 {
3823 exp->X_op = O_symbol;
3824 r = BFD_RELOC_32_SECREL;
3825 }
3826
3827 fix_new_exp (frag, off, len, exp, 0, r);
3828}
3829
3830static void
3831pe_directive_secrel (dummy)
3832 int dummy ATTRIBUTE_UNUSED;
3833{
3834 expressionS exp;
3835
3836 do
3837 {
3838 expression (&exp);
3839 if (exp.X_op == O_symbol)
3840 exp.X_op = O_secrel;
3841
3842 emit_expr (&exp, 4);
3843 }
3844 while (*input_line_pointer++ == ',');
3845
3846 input_line_pointer--;
3847 demand_empty_rest_of_line ();
3848}
3849
3850#endif
3851
252b5132
RH
3852static int i386_immediate PARAMS ((char *));
3853
3854static int
3855i386_immediate (imm_start)
3856 char *imm_start;
3857{
3858 char *save_input_line_pointer;
f3c180ae
AM
3859#ifndef LEX_AT
3860 char *gotfree_input_line;
3861#endif
252b5132 3862 segT exp_seg = 0;
47926f60 3863 expressionS *exp;
252b5132
RH
3864
3865 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3866 {
d0b47220 3867 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3868 return 0;
3869 }
3870
3871 exp = &im_expressions[i.imm_operands++];
520dc8e8 3872 i.op[this_operand].imms = exp;
252b5132
RH
3873
3874 if (is_space_char (*imm_start))
3875 ++imm_start;
3876
3877 save_input_line_pointer = input_line_pointer;
3878 input_line_pointer = imm_start;
3879
3880#ifndef LEX_AT
f3c180ae
AM
3881 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3882 if (gotfree_input_line)
3883 input_line_pointer = gotfree_input_line;
252b5132
RH
3884#endif
3885
3886 exp_seg = expression (exp);
3887
83183c0c 3888 SKIP_WHITESPACE ();
252b5132 3889 if (*input_line_pointer)
f3c180ae 3890 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3891
3892 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3893#ifndef LEX_AT
3894 if (gotfree_input_line)
3895 free (gotfree_input_line);
3896#endif
252b5132 3897
2daf4fd8 3898 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3899 {
47926f60 3900 /* Missing or bad expr becomes absolute 0. */
d0b47220 3901 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3902 imm_start);
252b5132
RH
3903 exp->X_op = O_constant;
3904 exp->X_add_number = 0;
3905 exp->X_add_symbol = (symbolS *) 0;
3906 exp->X_op_symbol = (symbolS *) 0;
252b5132 3907 }
3e73aa7c 3908 else if (exp->X_op == O_constant)
252b5132 3909 {
47926f60 3910 /* Size it properly later. */
3e73aa7c
JH
3911 i.types[this_operand] |= Imm64;
3912 /* If BFD64, sign extend val. */
3913 if (!use_rela_relocations)
3914 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3915 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3916 }
4c63da97 3917#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3918 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3919 && exp_seg != absolute_section
47926f60 3920 && exp_seg != text_section
24eab124
AM
3921 && exp_seg != data_section
3922 && exp_seg != bss_section
3923 && exp_seg != undefined_section
f86103b7 3924 && !bfd_is_com_section (exp_seg))
252b5132 3925 {
d0b47220 3926 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3927 return 0;
3928 }
3929#endif
3930 else
3931 {
3932 /* This is an address. The size of the address will be
24eab124 3933 determined later, depending on destination register,
3e73aa7c
JH
3934 suffix, or the default for the section. */
3935 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3936 }
3937
3938 return 1;
3939}
3940
551c1ca1 3941static char *i386_scale PARAMS ((char *));
252b5132 3942
551c1ca1 3943static char *
252b5132
RH
3944i386_scale (scale)
3945 char *scale;
3946{
551c1ca1
AM
3947 offsetT val;
3948 char *save = input_line_pointer;
252b5132 3949
551c1ca1
AM
3950 input_line_pointer = scale;
3951 val = get_absolute_expression ();
3952
3953 switch (val)
252b5132 3954 {
551c1ca1 3955 case 1:
252b5132
RH
3956 i.log2_scale_factor = 0;
3957 break;
551c1ca1 3958 case 2:
252b5132
RH
3959 i.log2_scale_factor = 1;
3960 break;
551c1ca1 3961 case 4:
252b5132
RH
3962 i.log2_scale_factor = 2;
3963 break;
551c1ca1 3964 case 8:
252b5132
RH
3965 i.log2_scale_factor = 3;
3966 break;
3967 default:
252b5132 3968 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3969 scale);
551c1ca1
AM
3970 input_line_pointer = save;
3971 return NULL;
252b5132 3972 }
29b0f896 3973 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3974 {
3975 as_warn (_("scale factor of %d without an index register"),
24eab124 3976 1 << i.log2_scale_factor);
252b5132
RH
3977#if SCALE1_WHEN_NO_INDEX
3978 i.log2_scale_factor = 0;
3979#endif
3980 }
551c1ca1
AM
3981 scale = input_line_pointer;
3982 input_line_pointer = save;
3983 return scale;
252b5132
RH
3984}
3985
3986static int i386_displacement PARAMS ((char *, char *));
3987
3988static int
3989i386_displacement (disp_start, disp_end)
3990 char *disp_start;
3991 char *disp_end;
3992{
29b0f896 3993 expressionS *exp;
252b5132
RH
3994 segT exp_seg = 0;
3995 char *save_input_line_pointer;
f3c180ae
AM
3996#ifndef LEX_AT
3997 char *gotfree_input_line;
3998#endif
252b5132
RH
3999 int bigdisp = Disp32;
4000
3e73aa7c 4001 if (flag_code == CODE_64BIT)
7ecd2f8b 4002 {
29b0f896
AM
4003 if (i.prefix[ADDR_PREFIX] == 0)
4004 bigdisp = Disp64;
7ecd2f8b
JH
4005 }
4006 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4007 bigdisp = Disp16;
252b5132
RH
4008 i.types[this_operand] |= bigdisp;
4009
4010 exp = &disp_expressions[i.disp_operands];
520dc8e8 4011 i.op[this_operand].disps = exp;
252b5132
RH
4012 i.disp_operands++;
4013 save_input_line_pointer = input_line_pointer;
4014 input_line_pointer = disp_start;
4015 END_STRING_AND_SAVE (disp_end);
4016
4017#ifndef GCC_ASM_O_HACK
4018#define GCC_ASM_O_HACK 0
4019#endif
4020#if GCC_ASM_O_HACK
4021 END_STRING_AND_SAVE (disp_end + 1);
4022 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4023 && displacement_string_end[-1] == '+')
252b5132
RH
4024 {
4025 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4026 constraint within gcc asm statements.
4027 For instance:
4028
4029 #define _set_tssldt_desc(n,addr,limit,type) \
4030 __asm__ __volatile__ ( \
4031 "movw %w2,%0\n\t" \
4032 "movw %w1,2+%0\n\t" \
4033 "rorl $16,%1\n\t" \
4034 "movb %b1,4+%0\n\t" \
4035 "movb %4,5+%0\n\t" \
4036 "movb $0,6+%0\n\t" \
4037 "movb %h1,7+%0\n\t" \
4038 "rorl $16,%1" \
4039 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4040
4041 This works great except that the output assembler ends
4042 up looking a bit weird if it turns out that there is
4043 no offset. You end up producing code that looks like:
4044
4045 #APP
4046 movw $235,(%eax)
4047 movw %dx,2+(%eax)
4048 rorl $16,%edx
4049 movb %dl,4+(%eax)
4050 movb $137,5+(%eax)
4051 movb $0,6+(%eax)
4052 movb %dh,7+(%eax)
4053 rorl $16,%edx
4054 #NO_APP
4055
47926f60 4056 So here we provide the missing zero. */
24eab124
AM
4057
4058 *displacement_string_end = '0';
252b5132
RH
4059 }
4060#endif
4061#ifndef LEX_AT
f3c180ae
AM
4062 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4063 if (gotfree_input_line)
4064 input_line_pointer = gotfree_input_line;
252b5132
RH
4065#endif
4066
24eab124 4067 exp_seg = expression (exp);
252b5132 4068
636c26b0
AM
4069 SKIP_WHITESPACE ();
4070 if (*input_line_pointer)
4071 as_bad (_("junk `%s' after expression"), input_line_pointer);
4072#if GCC_ASM_O_HACK
4073 RESTORE_END_STRING (disp_end + 1);
4074#endif
4075 RESTORE_END_STRING (disp_end);
4076 input_line_pointer = save_input_line_pointer;
4077#ifndef LEX_AT
4078 if (gotfree_input_line)
4079 free (gotfree_input_line);
4080#endif
4081
24eab124
AM
4082 /* We do this to make sure that the section symbol is in
4083 the symbol table. We will ultimately change the relocation
47926f60 4084 to be relative to the beginning of the section. */
1ae12ab7
AM
4085 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4086 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4087 {
636c26b0
AM
4088 if (exp->X_op != O_symbol)
4089 {
4090 as_bad (_("bad expression used with @%s"),
4091 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4092 ? "GOTPCREL"
4093 : "GOTOFF"));
4094 return 0;
4095 }
4096
e5cb08ac 4097 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4098 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4099 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4100 exp->X_op = O_subtract;
4101 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4102 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4103 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4104 else
29b0f896 4105 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4106 }
252b5132 4107
2daf4fd8
AM
4108 if (exp->X_op == O_absent || exp->X_op == O_big)
4109 {
47926f60 4110 /* Missing or bad expr becomes absolute 0. */
d0b47220 4111 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4112 disp_start);
4113 exp->X_op = O_constant;
4114 exp->X_add_number = 0;
4115 exp->X_add_symbol = (symbolS *) 0;
4116 exp->X_op_symbol = (symbolS *) 0;
4117 }
4118
4c63da97 4119#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4120 if (exp->X_op != O_constant
45288df1 4121 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4122 && exp_seg != absolute_section
45288df1
AM
4123 && exp_seg != text_section
4124 && exp_seg != data_section
4125 && exp_seg != bss_section
31312f95 4126 && exp_seg != undefined_section
f86103b7 4127 && !bfd_is_com_section (exp_seg))
24eab124 4128 {
d0b47220 4129 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4130 return 0;
4131 }
252b5132 4132#endif
3e73aa7c
JH
4133 else if (flag_code == CODE_64BIT)
4134 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4135 return 1;
4136}
4137
e5cb08ac 4138static int i386_index_check PARAMS ((const char *));
252b5132 4139
eecb386c 4140/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4141 Return 1 on success, 0 on a failure. */
4142
252b5132 4143static int
eecb386c
AM
4144i386_index_check (operand_string)
4145 const char *operand_string;
252b5132 4146{
3e73aa7c 4147 int ok;
24eab124 4148#if INFER_ADDR_PREFIX
eecb386c
AM
4149 int fudged = 0;
4150
24eab124
AM
4151 tryprefix:
4152#endif
3e73aa7c 4153 ok = 1;
20f0a1fc
NC
4154 if (flag_code == CODE_64BIT)
4155 {
4156 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4157
4158 if ((i.base_reg
4159 && ((i.base_reg->reg_type & RegXX) == 0)
4160 && (i.base_reg->reg_type != BaseIndex
4161 || i.index_reg))
4162 || (i.index_reg
4163 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4164 != (RegXX | BaseIndex))))
4165 ok = 0;
3e73aa7c
JH
4166 }
4167 else
4168 {
4169 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4170 {
4171 /* 16bit checks. */
4172 if ((i.base_reg
29b0f896
AM
4173 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4174 != (Reg16 | BaseIndex)))
3e73aa7c 4175 || (i.index_reg
29b0f896
AM
4176 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4177 != (Reg16 | BaseIndex))
4178 || !(i.base_reg
4179 && i.base_reg->reg_num < 6
4180 && i.index_reg->reg_num >= 6
4181 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4182 ok = 0;
4183 }
4184 else
e5cb08ac 4185 {
3e73aa7c
JH
4186 /* 32bit checks. */
4187 if ((i.base_reg
4188 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4189 || (i.index_reg
29b0f896
AM
4190 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4191 != (Reg32 | BaseIndex))))
e5cb08ac 4192 ok = 0;
3e73aa7c
JH
4193 }
4194 }
4195 if (!ok)
24eab124
AM
4196 {
4197#if INFER_ADDR_PREFIX
20f0a1fc 4198 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4199 {
4200 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4201 i.prefixes += 1;
b23bac36
AM
4202 /* Change the size of any displacement too. At most one of
4203 Disp16 or Disp32 is set.
4204 FIXME. There doesn't seem to be any real need for separate
4205 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4206 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4207 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4208 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4209 fudged = 1;
24eab124
AM
4210 goto tryprefix;
4211 }
eecb386c
AM
4212 if (fudged)
4213 as_bad (_("`%s' is not a valid base/index expression"),
4214 operand_string);
4215 else
c388dee8 4216#endif
eecb386c
AM
4217 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4218 operand_string,
3e73aa7c 4219 flag_code_names[flag_code]);
24eab124 4220 }
20f0a1fc 4221 return ok;
24eab124 4222}
252b5132 4223
252b5132 4224/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4225 on error. */
252b5132 4226
252b5132
RH
4227static int
4228i386_operand (operand_string)
4229 char *operand_string;
4230{
af6bdddf
AM
4231 const reg_entry *r;
4232 char *end_op;
24eab124 4233 char *op_string = operand_string;
252b5132 4234
24eab124 4235 if (is_space_char (*op_string))
252b5132
RH
4236 ++op_string;
4237
24eab124 4238 /* We check for an absolute prefix (differentiating,
47926f60 4239 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4240 if (*op_string == ABSOLUTE_PREFIX)
4241 {
4242 ++op_string;
4243 if (is_space_char (*op_string))
4244 ++op_string;
4245 i.types[this_operand] |= JumpAbsolute;
4246 }
252b5132 4247
47926f60 4248 /* Check if operand is a register. */
af6bdddf
AM
4249 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4250 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4251 {
24eab124
AM
4252 /* Check for a segment override by searching for ':' after a
4253 segment register. */
4254 op_string = end_op;
4255 if (is_space_char (*op_string))
4256 ++op_string;
4257 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4258 {
4259 switch (r->reg_num)
4260 {
4261 case 0:
4262 i.seg[i.mem_operands] = &es;
4263 break;
4264 case 1:
4265 i.seg[i.mem_operands] = &cs;
4266 break;
4267 case 2:
4268 i.seg[i.mem_operands] = &ss;
4269 break;
4270 case 3:
4271 i.seg[i.mem_operands] = &ds;
4272 break;
4273 case 4:
4274 i.seg[i.mem_operands] = &fs;
4275 break;
4276 case 5:
4277 i.seg[i.mem_operands] = &gs;
4278 break;
4279 }
252b5132 4280
24eab124 4281 /* Skip the ':' and whitespace. */
252b5132
RH
4282 ++op_string;
4283 if (is_space_char (*op_string))
24eab124 4284 ++op_string;
252b5132 4285
24eab124
AM
4286 if (!is_digit_char (*op_string)
4287 && !is_identifier_char (*op_string)
4288 && *op_string != '('
4289 && *op_string != ABSOLUTE_PREFIX)
4290 {
4291 as_bad (_("bad memory operand `%s'"), op_string);
4292 return 0;
4293 }
47926f60 4294 /* Handle case of %es:*foo. */
24eab124
AM
4295 if (*op_string == ABSOLUTE_PREFIX)
4296 {
4297 ++op_string;
4298 if (is_space_char (*op_string))
4299 ++op_string;
4300 i.types[this_operand] |= JumpAbsolute;
4301 }
4302 goto do_memory_reference;
4303 }
4304 if (*op_string)
4305 {
d0b47220 4306 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4307 return 0;
4308 }
4309 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4310 i.op[this_operand].regs = r;
24eab124
AM
4311 i.reg_operands++;
4312 }
af6bdddf
AM
4313 else if (*op_string == REGISTER_PREFIX)
4314 {
4315 as_bad (_("bad register name `%s'"), op_string);
4316 return 0;
4317 }
24eab124 4318 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4319 {
24eab124
AM
4320 ++op_string;
4321 if (i.types[this_operand] & JumpAbsolute)
4322 {
d0b47220 4323 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4324 return 0;
4325 }
4326 if (!i386_immediate (op_string))
4327 return 0;
4328 }
4329 else if (is_digit_char (*op_string)
4330 || is_identifier_char (*op_string)
e5cb08ac 4331 || *op_string == '(')
24eab124 4332 {
47926f60 4333 /* This is a memory reference of some sort. */
af6bdddf 4334 char *base_string;
252b5132 4335
47926f60 4336 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4337 char *displacement_string_start;
4338 char *displacement_string_end;
252b5132 4339
24eab124 4340 do_memory_reference:
24eab124
AM
4341 if ((i.mem_operands == 1
4342 && (current_templates->start->opcode_modifier & IsString) == 0)
4343 || i.mem_operands == 2)
4344 {
4345 as_bad (_("too many memory references for `%s'"),
4346 current_templates->start->name);
4347 return 0;
4348 }
252b5132 4349
24eab124
AM
4350 /* Check for base index form. We detect the base index form by
4351 looking for an ')' at the end of the operand, searching
4352 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4353 after the '('. */
af6bdddf 4354 base_string = op_string + strlen (op_string);
c3332e24 4355
af6bdddf
AM
4356 --base_string;
4357 if (is_space_char (*base_string))
4358 --base_string;
252b5132 4359
47926f60 4360 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4361 displacement_string_start = op_string;
4362 displacement_string_end = base_string + 1;
252b5132 4363
24eab124
AM
4364 if (*base_string == ')')
4365 {
af6bdddf 4366 char *temp_string;
24eab124
AM
4367 unsigned int parens_balanced = 1;
4368 /* We've already checked that the number of left & right ()'s are
47926f60 4369 equal, so this loop will not be infinite. */
24eab124
AM
4370 do
4371 {
4372 base_string--;
4373 if (*base_string == ')')
4374 parens_balanced++;
4375 if (*base_string == '(')
4376 parens_balanced--;
4377 }
4378 while (parens_balanced);
c3332e24 4379
af6bdddf 4380 temp_string = base_string;
c3332e24 4381
24eab124 4382 /* Skip past '(' and whitespace. */
252b5132
RH
4383 ++base_string;
4384 if (is_space_char (*base_string))
24eab124 4385 ++base_string;
252b5132 4386
af6bdddf
AM
4387 if (*base_string == ','
4388 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4389 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4390 {
af6bdddf 4391 displacement_string_end = temp_string;
252b5132 4392
af6bdddf 4393 i.types[this_operand] |= BaseIndex;
252b5132 4394
af6bdddf 4395 if (i.base_reg)
24eab124 4396 {
24eab124
AM
4397 base_string = end_op;
4398 if (is_space_char (*base_string))
4399 ++base_string;
af6bdddf
AM
4400 }
4401
4402 /* There may be an index reg or scale factor here. */
4403 if (*base_string == ',')
4404 {
4405 ++base_string;
4406 if (is_space_char (*base_string))
4407 ++base_string;
4408
4409 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4410 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4411 {
af6bdddf 4412 base_string = end_op;
24eab124
AM
4413 if (is_space_char (*base_string))
4414 ++base_string;
af6bdddf
AM
4415 if (*base_string == ',')
4416 {
4417 ++base_string;
4418 if (is_space_char (*base_string))
4419 ++base_string;
4420 }
e5cb08ac 4421 else if (*base_string != ')')
af6bdddf
AM
4422 {
4423 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4424 operand_string);
4425 return 0;
4426 }
24eab124 4427 }
af6bdddf 4428 else if (*base_string == REGISTER_PREFIX)
24eab124 4429 {
af6bdddf 4430 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4431 return 0;
4432 }
252b5132 4433
47926f60 4434 /* Check for scale factor. */
551c1ca1 4435 if (*base_string != ')')
af6bdddf 4436 {
551c1ca1
AM
4437 char *end_scale = i386_scale (base_string);
4438
4439 if (!end_scale)
af6bdddf 4440 return 0;
24eab124 4441
551c1ca1 4442 base_string = end_scale;
af6bdddf
AM
4443 if (is_space_char (*base_string))
4444 ++base_string;
4445 if (*base_string != ')')
4446 {
4447 as_bad (_("expecting `)' after scale factor in `%s'"),
4448 operand_string);
4449 return 0;
4450 }
4451 }
4452 else if (!i.index_reg)
24eab124 4453 {
af6bdddf
AM
4454 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4455 *base_string);
24eab124
AM
4456 return 0;
4457 }
4458 }
af6bdddf 4459 else if (*base_string != ')')
24eab124 4460 {
af6bdddf
AM
4461 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4462 operand_string);
24eab124
AM
4463 return 0;
4464 }
c3332e24 4465 }
af6bdddf 4466 else if (*base_string == REGISTER_PREFIX)
c3332e24 4467 {
af6bdddf 4468 as_bad (_("bad register name `%s'"), base_string);
24eab124 4469 return 0;
c3332e24 4470 }
24eab124
AM
4471 }
4472
4473 /* If there's an expression beginning the operand, parse it,
4474 assuming displacement_string_start and
4475 displacement_string_end are meaningful. */
4476 if (displacement_string_start != displacement_string_end)
4477 {
4478 if (!i386_displacement (displacement_string_start,
4479 displacement_string_end))
4480 return 0;
4481 }
4482
4483 /* Special case for (%dx) while doing input/output op. */
4484 if (i.base_reg
4485 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4486 && i.index_reg == 0
4487 && i.log2_scale_factor == 0
4488 && i.seg[i.mem_operands] == 0
4489 && (i.types[this_operand] & Disp) == 0)
4490 {
4491 i.types[this_operand] = InOutPortReg;
4492 return 1;
4493 }
4494
eecb386c
AM
4495 if (i386_index_check (operand_string) == 0)
4496 return 0;
24eab124
AM
4497 i.mem_operands++;
4498 }
4499 else
ce8a8b2f
AM
4500 {
4501 /* It's not a memory operand; argh! */
24eab124
AM
4502 as_bad (_("invalid char %s beginning operand %d `%s'"),
4503 output_invalid (*op_string),
4504 this_operand + 1,
4505 op_string);
4506 return 0;
4507 }
47926f60 4508 return 1; /* Normal return. */
252b5132
RH
4509}
4510\f
ee7fcc42
AM
4511/* md_estimate_size_before_relax()
4512
4513 Called just before relax() for rs_machine_dependent frags. The x86
4514 assembler uses these frags to handle variable size jump
4515 instructions.
4516
4517 Any symbol that is now undefined will not become defined.
4518 Return the correct fr_subtype in the frag.
4519 Return the initial "guess for variable size of frag" to caller.
4520 The guess is actually the growth beyond the fixed part. Whatever
4521 we do to grow the fixed or variable part contributes to our
4522 returned value. */
4523
252b5132
RH
4524int
4525md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4526 fragS *fragP;
4527 segT segment;
252b5132 4528{
252b5132 4529 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4530 check for un-relaxable symbols. On an ELF system, we can't relax
4531 an externally visible symbol, because it may be overridden by a
4532 shared library. */
4533 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4534#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4535 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4536 && (S_IS_EXTERNAL (fragP->fr_symbol)
4537 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4538#endif
4539 )
252b5132 4540 {
b98ef147
AM
4541 /* Symbol is undefined in this segment, or we need to keep a
4542 reloc so that weak symbols can be overridden. */
4543 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4544 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4545 unsigned char *opcode;
4546 int old_fr_fix;
f6af82bd 4547
ee7fcc42
AM
4548 if (fragP->fr_var != NO_RELOC)
4549 reloc_type = fragP->fr_var;
b98ef147 4550 else if (size == 2)
f6af82bd
AM
4551 reloc_type = BFD_RELOC_16_PCREL;
4552 else
4553 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4554
ee7fcc42
AM
4555 old_fr_fix = fragP->fr_fix;
4556 opcode = (unsigned char *) fragP->fr_opcode;
4557
fddf5b5b 4558 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4559 {
fddf5b5b
AM
4560 case UNCOND_JUMP:
4561 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4562 opcode[0] = 0xe9;
252b5132 4563 fragP->fr_fix += size;
062cd5e7
AS
4564 fix_new (fragP, old_fr_fix, size,
4565 fragP->fr_symbol,
4566 fragP->fr_offset, 1,
4567 reloc_type);
252b5132
RH
4568 break;
4569
fddf5b5b 4570 case COND_JUMP86:
412167cb
AM
4571 if (size == 2
4572 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4573 {
4574 /* Negate the condition, and branch past an
4575 unconditional jump. */
4576 opcode[0] ^= 1;
4577 opcode[1] = 3;
4578 /* Insert an unconditional jump. */
4579 opcode[2] = 0xe9;
4580 /* We added two extra opcode bytes, and have a two byte
4581 offset. */
4582 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4583 fix_new (fragP, old_fr_fix + 2, 2,
4584 fragP->fr_symbol,
4585 fragP->fr_offset, 1,
4586 reloc_type);
fddf5b5b
AM
4587 break;
4588 }
4589 /* Fall through. */
4590
4591 case COND_JUMP:
412167cb
AM
4592 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4593 {
3e02c1cc
AM
4594 fixS *fixP;
4595
412167cb 4596 fragP->fr_fix += 1;
3e02c1cc
AM
4597 fixP = fix_new (fragP, old_fr_fix, 1,
4598 fragP->fr_symbol,
4599 fragP->fr_offset, 1,
4600 BFD_RELOC_8_PCREL);
4601 fixP->fx_signed = 1;
412167cb
AM
4602 break;
4603 }
93c2a809 4604
24eab124 4605 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4606 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4607 opcode[1] = opcode[0] + 0x10;
f6af82bd 4608 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4609 /* We've added an opcode byte. */
4610 fragP->fr_fix += 1 + size;
062cd5e7
AS
4611 fix_new (fragP, old_fr_fix + 1, size,
4612 fragP->fr_symbol,
4613 fragP->fr_offset, 1,
4614 reloc_type);
252b5132 4615 break;
fddf5b5b
AM
4616
4617 default:
4618 BAD_CASE (fragP->fr_subtype);
4619 break;
252b5132
RH
4620 }
4621 frag_wane (fragP);
ee7fcc42 4622 return fragP->fr_fix - old_fr_fix;
252b5132 4623 }
93c2a809 4624
93c2a809
AM
4625 /* Guess size depending on current relax state. Initially the relax
4626 state will correspond to a short jump and we return 1, because
4627 the variable part of the frag (the branch offset) is one byte
4628 long. However, we can relax a section more than once and in that
4629 case we must either set fr_subtype back to the unrelaxed state,
4630 or return the value for the appropriate branch. */
4631 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4632}
4633
47926f60
KH
4634/* Called after relax() is finished.
4635
4636 In: Address of frag.
4637 fr_type == rs_machine_dependent.
4638 fr_subtype is what the address relaxed to.
4639
4640 Out: Any fixSs and constants are set up.
4641 Caller will turn frag into a ".space 0". */
4642
252b5132
RH
4643void
4644md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4645 bfd *abfd ATTRIBUTE_UNUSED;
4646 segT sec ATTRIBUTE_UNUSED;
29b0f896 4647 fragS *fragP;
252b5132 4648{
29b0f896 4649 unsigned char *opcode;
252b5132 4650 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4651 offsetT target_address;
4652 offsetT opcode_address;
252b5132 4653 unsigned int extension = 0;
847f7ad4 4654 offsetT displacement_from_opcode_start;
252b5132
RH
4655
4656 opcode = (unsigned char *) fragP->fr_opcode;
4657
47926f60 4658 /* Address we want to reach in file space. */
252b5132 4659 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4660
47926f60 4661 /* Address opcode resides at in file space. */
252b5132
RH
4662 opcode_address = fragP->fr_address + fragP->fr_fix;
4663
47926f60 4664 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4665 displacement_from_opcode_start = target_address - opcode_address;
4666
fddf5b5b 4667 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4668 {
47926f60
KH
4669 /* Don't have to change opcode. */
4670 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4671 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4672 }
4673 else
4674 {
4675 if (no_cond_jump_promotion
4676 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4677 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4678
fddf5b5b
AM
4679 switch (fragP->fr_subtype)
4680 {
4681 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4682 extension = 4; /* 1 opcode + 4 displacement */
4683 opcode[0] = 0xe9;
4684 where_to_put_displacement = &opcode[1];
4685 break;
252b5132 4686
fddf5b5b
AM
4687 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4688 extension = 2; /* 1 opcode + 2 displacement */
4689 opcode[0] = 0xe9;
4690 where_to_put_displacement = &opcode[1];
4691 break;
252b5132 4692
fddf5b5b
AM
4693 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4694 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4695 extension = 5; /* 2 opcode + 4 displacement */
4696 opcode[1] = opcode[0] + 0x10;
4697 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4698 where_to_put_displacement = &opcode[2];
4699 break;
252b5132 4700
fddf5b5b
AM
4701 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4702 extension = 3; /* 2 opcode + 2 displacement */
4703 opcode[1] = opcode[0] + 0x10;
4704 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4705 where_to_put_displacement = &opcode[2];
4706 break;
252b5132 4707
fddf5b5b
AM
4708 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4709 extension = 4;
4710 opcode[0] ^= 1;
4711 opcode[1] = 3;
4712 opcode[2] = 0xe9;
4713 where_to_put_displacement = &opcode[3];
4714 break;
4715
4716 default:
4717 BAD_CASE (fragP->fr_subtype);
4718 break;
4719 }
252b5132 4720 }
fddf5b5b 4721
47926f60 4722 /* Now put displacement after opcode. */
252b5132
RH
4723 md_number_to_chars ((char *) where_to_put_displacement,
4724 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4725 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4726 fragP->fr_fix += extension;
4727}
4728\f
47926f60
KH
4729/* Size of byte displacement jmp. */
4730int md_short_jump_size = 2;
4731
4732/* Size of dword displacement jmp. */
4733int md_long_jump_size = 5;
252b5132 4734
47926f60
KH
4735/* Size of relocation record. */
4736const int md_reloc_size = 8;
252b5132
RH
4737
4738void
4739md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4740 char *ptr;
4741 addressT from_addr, to_addr;
ab9da554
ILT
4742 fragS *frag ATTRIBUTE_UNUSED;
4743 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4744{
847f7ad4 4745 offsetT offset;
252b5132
RH
4746
4747 offset = to_addr - (from_addr + 2);
47926f60
KH
4748 /* Opcode for byte-disp jump. */
4749 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4750 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4751}
4752
4753void
4754md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4755 char *ptr;
4756 addressT from_addr, to_addr;
a38cf1db
AM
4757 fragS *frag ATTRIBUTE_UNUSED;
4758 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4759{
847f7ad4 4760 offsetT offset;
252b5132 4761
a38cf1db
AM
4762 offset = to_addr - (from_addr + 5);
4763 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4764 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4765}
4766\f
4767/* Apply a fixup (fixS) to segment data, once it has been determined
4768 by our caller that we have all the info we need to fix it up.
4769
4770 On the 386, immediates, displacements, and data pointers are all in
4771 the same (little-endian) format, so we don't need to care about which
4772 we are handling. */
4773
94f592af
NC
4774void
4775md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4776 /* The fix we're to put in. */
4777 fixS *fixP;
47926f60 4778 /* Pointer to the value of the bits. */
c6682705 4779 valueT *valP;
47926f60
KH
4780 /* Segment fix is from. */
4781 segT seg ATTRIBUTE_UNUSED;
252b5132 4782{
94f592af 4783 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4784 valueT value = *valP;
252b5132 4785
f86103b7 4786#if !defined (TE_Mach)
93382f6d
AM
4787 if (fixP->fx_pcrel)
4788 {
4789 switch (fixP->fx_r_type)
4790 {
5865bb77
ILT
4791 default:
4792 break;
4793
93382f6d
AM
4794 case BFD_RELOC_32:
4795 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4796 break;
4797 case BFD_RELOC_16:
4798 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4799 break;
4800 case BFD_RELOC_8:
4801 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4802 break;
4803 }
4804 }
252b5132 4805
a161fe53 4806 if (fixP->fx_addsy != NULL
31312f95
AM
4807 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4808 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4809 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4810 && !use_rela_relocations)
252b5132 4811 {
31312f95
AM
4812 /* This is a hack. There should be a better way to handle this.
4813 This covers for the fact that bfd_install_relocation will
4814 subtract the current location (for partial_inplace, PC relative
4815 relocations); see more below. */
252b5132
RH
4816#ifndef OBJ_AOUT
4817 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4818#ifdef TE_PE
4819 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4820#endif
4821 )
4822 value += fixP->fx_where + fixP->fx_frag->fr_address;
4823#endif
4824#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4825 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4826 {
6539b54b 4827 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4828
6539b54b 4829 if ((sym_seg == seg
2f66722d 4830 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4831 && sym_seg != absolute_section))
ae6063d4 4832 && !generic_force_reloc (fixP))
2f66722d
AM
4833 {
4834 /* Yes, we add the values in twice. This is because
6539b54b
AM
4835 bfd_install_relocation subtracts them out again. I think
4836 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4837 it. FIXME. */
4838 value += fixP->fx_where + fixP->fx_frag->fr_address;
4839 }
252b5132
RH
4840 }
4841#endif
4842#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4843 /* For some reason, the PE format does not store a
4844 section address offset for a PC relative symbol. */
4845 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4846#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4847 || S_IS_WEAK (fixP->fx_addsy)
4848#endif
4849 )
252b5132
RH
4850 value += md_pcrel_from (fixP);
4851#endif
4852 }
4853
4854 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4855 and we must not disappoint it. */
252b5132
RH
4856#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4857 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4858 && fixP->fx_addsy)
47926f60
KH
4859 switch (fixP->fx_r_type)
4860 {
4861 case BFD_RELOC_386_PLT32:
3e73aa7c 4862 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4863 /* Make the jump instruction point to the address of the operand. At
4864 runtime we merely add the offset to the actual PLT entry. */
4865 value = -4;
4866 break;
31312f95 4867
13ae64f3
JJ
4868 case BFD_RELOC_386_TLS_GD:
4869 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4870 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4871 case BFD_RELOC_386_TLS_IE:
4872 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4873 case BFD_RELOC_X86_64_TLSGD:
4874 case BFD_RELOC_X86_64_TLSLD:
4875 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4876 value = 0; /* Fully resolved at runtime. No addend. */
4877 /* Fallthrough */
4878 case BFD_RELOC_386_TLS_LE:
4879 case BFD_RELOC_386_TLS_LDO_32:
4880 case BFD_RELOC_386_TLS_LE_32:
4881 case BFD_RELOC_X86_64_DTPOFF32:
4882 case BFD_RELOC_X86_64_TPOFF32:
4883 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4884 break;
4885
4886 case BFD_RELOC_386_GOT32:
4887 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4888 value = 0; /* Fully resolved at runtime. No addend. */
4889 break;
47926f60
KH
4890
4891 case BFD_RELOC_VTABLE_INHERIT:
4892 case BFD_RELOC_VTABLE_ENTRY:
4893 fixP->fx_done = 0;
94f592af 4894 return;
47926f60
KH
4895
4896 default:
4897 break;
4898 }
4899#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4900 *valP = value;
f86103b7 4901#endif /* !defined (TE_Mach) */
3e73aa7c 4902
3e73aa7c 4903 /* Are we finished with this relocation now? */
c6682705 4904 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4905 fixP->fx_done = 1;
4906 else if (use_rela_relocations)
4907 {
4908 fixP->fx_no_overflow = 1;
062cd5e7
AS
4909 /* Remember value for tc_gen_reloc. */
4910 fixP->fx_addnumber = value;
3e73aa7c
JH
4911 value = 0;
4912 }
f86103b7 4913
94f592af 4914 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4915}
252b5132 4916\f
252b5132
RH
4917#define MAX_LITTLENUMS 6
4918
47926f60
KH
4919/* Turn the string pointed to by litP into a floating point constant
4920 of type TYPE, and emit the appropriate bytes. The number of
4921 LITTLENUMS emitted is stored in *SIZEP. An error message is
4922 returned, or NULL on OK. */
4923
252b5132
RH
4924char *
4925md_atof (type, litP, sizeP)
2ab9b79e 4926 int type;
252b5132
RH
4927 char *litP;
4928 int *sizeP;
4929{
4930 int prec;
4931 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4932 LITTLENUM_TYPE *wordP;
4933 char *t;
4934
4935 switch (type)
4936 {
4937 case 'f':
4938 case 'F':
4939 prec = 2;
4940 break;
4941
4942 case 'd':
4943 case 'D':
4944 prec = 4;
4945 break;
4946
4947 case 'x':
4948 case 'X':
4949 prec = 5;
4950 break;
4951
4952 default:
4953 *sizeP = 0;
4954 return _("Bad call to md_atof ()");
4955 }
4956 t = atof_ieee (input_line_pointer, type, words);
4957 if (t)
4958 input_line_pointer = t;
4959
4960 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4961 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4962 the bigendian 386. */
4963 for (wordP = words + prec - 1; prec--;)
4964 {
4965 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4966 litP += sizeof (LITTLENUM_TYPE);
4967 }
4968 return 0;
4969}
4970\f
4971char output_invalid_buf[8];
4972
252b5132
RH
4973static char *
4974output_invalid (c)
4975 int c;
4976{
3882b010 4977 if (ISPRINT (c))
252b5132
RH
4978 sprintf (output_invalid_buf, "'%c'", c);
4979 else
4980 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4981 return output_invalid_buf;
4982}
4983
af6bdddf 4984/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4985
4986static const reg_entry *
4987parse_register (reg_string, end_op)
4988 char *reg_string;
4989 char **end_op;
4990{
af6bdddf
AM
4991 char *s = reg_string;
4992 char *p;
252b5132
RH
4993 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4994 const reg_entry *r;
4995
4996 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4997 if (*s == REGISTER_PREFIX)
4998 ++s;
4999
5000 if (is_space_char (*s))
5001 ++s;
5002
5003 p = reg_name_given;
af6bdddf 5004 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5005 {
5006 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5007 return (const reg_entry *) NULL;
5008 s++;
252b5132
RH
5009 }
5010
6588847e
DN
5011 /* For naked regs, make sure that we are not dealing with an identifier.
5012 This prevents confusing an identifier like `eax_var' with register
5013 `eax'. */
5014 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5015 return (const reg_entry *) NULL;
5016
af6bdddf 5017 *end_op = s;
252b5132
RH
5018
5019 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5020
5f47d35b 5021 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5022 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5023 {
5f47d35b
AM
5024 if (is_space_char (*s))
5025 ++s;
5026 if (*s == '(')
5027 {
af6bdddf 5028 ++s;
5f47d35b
AM
5029 if (is_space_char (*s))
5030 ++s;
5031 if (*s >= '0' && *s <= '7')
5032 {
5033 r = &i386_float_regtab[*s - '0'];
af6bdddf 5034 ++s;
5f47d35b
AM
5035 if (is_space_char (*s))
5036 ++s;
5037 if (*s == ')')
5038 {
5039 *end_op = s + 1;
5040 return r;
5041 }
5f47d35b 5042 }
47926f60 5043 /* We have "%st(" then garbage. */
5f47d35b
AM
5044 return (const reg_entry *) NULL;
5045 }
5046 }
5047
1ae00879 5048 if (r != NULL
20f0a1fc 5049 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
1ae00879 5050 && flag_code != CODE_64BIT)
20f0a1fc 5051 return (const reg_entry *) NULL;
1ae00879 5052
252b5132
RH
5053 return r;
5054}
5055\f
4cc782b5 5056#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5057const char *md_shortopts = "kVQ:sqn";
252b5132 5058#else
12b55ccc 5059const char *md_shortopts = "qn";
252b5132 5060#endif
6e0b89ee 5061
252b5132 5062struct option md_longopts[] = {
3e73aa7c
JH
5063#define OPTION_32 (OPTION_MD_BASE + 0)
5064 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5065#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5066#define OPTION_64 (OPTION_MD_BASE + 1)
5067 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5068#endif
252b5132
RH
5069 {NULL, no_argument, NULL, 0}
5070};
5071size_t md_longopts_size = sizeof (md_longopts);
5072
5073int
5074md_parse_option (c, arg)
5075 int c;
ab9da554 5076 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5077{
5078 switch (c)
5079 {
12b55ccc
L
5080 case 'n':
5081 optimize_align_code = 0;
5082 break;
5083
a38cf1db
AM
5084 case 'q':
5085 quiet_warnings = 1;
252b5132
RH
5086 break;
5087
5088#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5089 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5090 should be emitted or not. FIXME: Not implemented. */
5091 case 'Q':
252b5132
RH
5092 break;
5093
5094 /* -V: SVR4 argument to print version ID. */
5095 case 'V':
5096 print_version_id ();
5097 break;
5098
a38cf1db
AM
5099 /* -k: Ignore for FreeBSD compatibility. */
5100 case 'k':
252b5132 5101 break;
4cc782b5
ILT
5102
5103 case 's':
5104 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5105 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5106 break;
6e0b89ee 5107
3e73aa7c
JH
5108 case OPTION_64:
5109 {
5110 const char **list, **l;
5111
3e73aa7c
JH
5112 list = bfd_target_list ();
5113 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5114 if (strcmp (*l, "elf64-x86-64") == 0)
5115 {
5116 default_arch = "x86_64";
5117 break;
5118 }
3e73aa7c 5119 if (*l == NULL)
6e0b89ee 5120 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5121 free (list);
5122 }
5123 break;
5124#endif
252b5132 5125
6e0b89ee
AM
5126 case OPTION_32:
5127 default_arch = "i386";
5128 break;
5129
252b5132
RH
5130 default:
5131 return 0;
5132 }
5133 return 1;
5134}
5135
5136void
5137md_show_usage (stream)
5138 FILE *stream;
5139{
4cc782b5
ILT
5140#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5141 fprintf (stream, _("\
a38cf1db
AM
5142 -Q ignored\n\
5143 -V print assembler version number\n\
5144 -k ignored\n\
12b55ccc 5145 -n Do not optimize code alignment\n\
a38cf1db
AM
5146 -q quieten some warnings\n\
5147 -s ignored\n"));
5148#else
5149 fprintf (stream, _("\
12b55ccc 5150 -n Do not optimize code alignment\n\
a38cf1db 5151 -q quieten some warnings\n"));
4cc782b5 5152#endif
252b5132
RH
5153}
5154
3e73aa7c
JH
5155#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5156 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5157
5158/* Pick the target format to use. */
5159
47926f60 5160const char *
252b5132
RH
5161i386_target_format ()
5162{
3e73aa7c
JH
5163 if (!strcmp (default_arch, "x86_64"))
5164 set_code_flag (CODE_64BIT);
5165 else if (!strcmp (default_arch, "i386"))
5166 set_code_flag (CODE_32BIT);
5167 else
5168 as_fatal (_("Unknown architecture"));
252b5132
RH
5169 switch (OUTPUT_FLAVOR)
5170 {
4c63da97
AM
5171#ifdef OBJ_MAYBE_AOUT
5172 case bfd_target_aout_flavour:
47926f60 5173 return AOUT_TARGET_FORMAT;
4c63da97
AM
5174#endif
5175#ifdef OBJ_MAYBE_COFF
252b5132
RH
5176 case bfd_target_coff_flavour:
5177 return "coff-i386";
4c63da97 5178#endif
3e73aa7c 5179#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5180 case bfd_target_elf_flavour:
3e73aa7c 5181 {
e5cb08ac
KH
5182 if (flag_code == CODE_64BIT)
5183 use_rela_relocations = 1;
4ada7262 5184 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5185 }
4c63da97 5186#endif
252b5132
RH
5187 default:
5188 abort ();
5189 return NULL;
5190 }
5191}
5192
47926f60 5193#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5194
5195#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5196void i386_elf_emit_arch_note ()
5197{
5198 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5199 && cpu_arch_name != NULL)
5200 {
5201 char *p;
5202 asection *seg = now_seg;
5203 subsegT subseg = now_subseg;
5204 Elf_Internal_Note i_note;
5205 Elf_External_Note e_note;
5206 asection *note_secp;
5207 int len;
5208
5209 /* Create the .note section. */
5210 note_secp = subseg_new (".note", 0);
5211 bfd_set_section_flags (stdoutput,
5212 note_secp,
5213 SEC_HAS_CONTENTS | SEC_READONLY);
5214
5215 /* Process the arch string. */
5216 len = strlen (cpu_arch_name);
5217
5218 i_note.namesz = len + 1;
5219 i_note.descsz = 0;
5220 i_note.type = NT_ARCH;
5221 p = frag_more (sizeof (e_note.namesz));
5222 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5223 p = frag_more (sizeof (e_note.descsz));
5224 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5225 p = frag_more (sizeof (e_note.type));
5226 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5227 p = frag_more (len + 1);
5228 strcpy (p, cpu_arch_name);
5229
5230 frag_align (2, 0, 0);
5231
5232 subseg_set (seg, subseg);
5233 }
5234}
5235#endif
252b5132 5236\f
252b5132
RH
5237symbolS *
5238md_undefined_symbol (name)
5239 char *name;
5240{
18dc2407
ILT
5241 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5242 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5243 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5244 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5245 {
5246 if (!GOT_symbol)
5247 {
5248 if (symbol_find (name))
5249 as_bad (_("GOT already in symbol table"));
5250 GOT_symbol = symbol_new (name, undefined_section,
5251 (valueT) 0, &zero_address_frag);
5252 };
5253 return GOT_symbol;
5254 }
252b5132
RH
5255 return 0;
5256}
5257
5258/* Round up a section size to the appropriate boundary. */
47926f60 5259
252b5132
RH
5260valueT
5261md_section_align (segment, size)
ab9da554 5262 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5263 valueT size;
5264{
4c63da97
AM
5265#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5266 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5267 {
5268 /* For a.out, force the section size to be aligned. If we don't do
5269 this, BFD will align it for us, but it will not write out the
5270 final bytes of the section. This may be a bug in BFD, but it is
5271 easier to fix it here since that is how the other a.out targets
5272 work. */
5273 int align;
5274
5275 align = bfd_get_section_alignment (stdoutput, segment);
5276 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5277 }
252b5132
RH
5278#endif
5279
5280 return size;
5281}
5282
5283/* On the i386, PC-relative offsets are relative to the start of the
5284 next instruction. That is, the address of the offset, plus its
5285 size, since the offset is always the last part of the insn. */
5286
5287long
5288md_pcrel_from (fixP)
5289 fixS *fixP;
5290{
5291 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5292}
5293
5294#ifndef I386COFF
5295
5296static void
5297s_bss (ignore)
ab9da554 5298 int ignore ATTRIBUTE_UNUSED;
252b5132 5299{
29b0f896 5300 int temp;
252b5132
RH
5301
5302 temp = get_absolute_expression ();
5303 subseg_set (bss_section, (subsegT) temp);
5304 demand_empty_rest_of_line ();
5305}
5306
5307#endif
5308
252b5132
RH
5309void
5310i386_validate_fix (fixp)
5311 fixS *fixp;
5312{
5313 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5314 {
3e73aa7c 5315 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5316 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5317 {
5318 if (flag_code != CODE_64BIT)
5319 abort ();
5320 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5321 }
5322 else
5323 {
5324 if (flag_code == CODE_64BIT)
5325 abort ();
5326 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5327 }
252b5132
RH
5328 fixp->fx_subsy = 0;
5329 }
5330}
5331
252b5132
RH
5332arelent *
5333tc_gen_reloc (section, fixp)
ab9da554 5334 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5335 fixS *fixp;
5336{
5337 arelent *rel;
5338 bfd_reloc_code_real_type code;
5339
5340 switch (fixp->fx_r_type)
5341 {
3e73aa7c
JH
5342 case BFD_RELOC_X86_64_PLT32:
5343 case BFD_RELOC_X86_64_GOT32:
5344 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5345 case BFD_RELOC_386_PLT32:
5346 case BFD_RELOC_386_GOT32:
5347 case BFD_RELOC_386_GOTOFF:
5348 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5349 case BFD_RELOC_386_TLS_GD:
5350 case BFD_RELOC_386_TLS_LDM:
5351 case BFD_RELOC_386_TLS_LDO_32:
5352 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5353 case BFD_RELOC_386_TLS_IE:
5354 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5355 case BFD_RELOC_386_TLS_LE_32:
5356 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5357 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5358 case BFD_RELOC_X86_64_TLSGD:
5359 case BFD_RELOC_X86_64_TLSLD:
5360 case BFD_RELOC_X86_64_DTPOFF32:
5361 case BFD_RELOC_X86_64_GOTTPOFF:
5362 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5363 case BFD_RELOC_RVA:
5364 case BFD_RELOC_VTABLE_ENTRY:
5365 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5366#ifdef TE_PE
5367 case BFD_RELOC_32_SECREL:
5368#endif
252b5132
RH
5369 code = fixp->fx_r_type;
5370 break;
5371 default:
93382f6d 5372 if (fixp->fx_pcrel)
252b5132 5373 {
93382f6d
AM
5374 switch (fixp->fx_size)
5375 {
5376 default:
b091f402
AM
5377 as_bad_where (fixp->fx_file, fixp->fx_line,
5378 _("can not do %d byte pc-relative relocation"),
5379 fixp->fx_size);
93382f6d
AM
5380 code = BFD_RELOC_32_PCREL;
5381 break;
5382 case 1: code = BFD_RELOC_8_PCREL; break;
5383 case 2: code = BFD_RELOC_16_PCREL; break;
5384 case 4: code = BFD_RELOC_32_PCREL; break;
5385 }
5386 }
5387 else
5388 {
5389 switch (fixp->fx_size)
5390 {
5391 default:
b091f402
AM
5392 as_bad_where (fixp->fx_file, fixp->fx_line,
5393 _("can not do %d byte relocation"),
5394 fixp->fx_size);
93382f6d
AM
5395 code = BFD_RELOC_32;
5396 break;
5397 case 1: code = BFD_RELOC_8; break;
5398 case 2: code = BFD_RELOC_16; break;
5399 case 4: code = BFD_RELOC_32; break;
937149dd 5400#ifdef BFD64
3e73aa7c 5401 case 8: code = BFD_RELOC_64; break;
937149dd 5402#endif
93382f6d 5403 }
252b5132
RH
5404 }
5405 break;
5406 }
252b5132
RH
5407
5408 if (code == BFD_RELOC_32
5409 && GOT_symbol
5410 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5411 {
5412 /* We don't support GOTPC on 64bit targets. */
5413 if (flag_code == CODE_64BIT)
bfb32b52 5414 abort ();
3e73aa7c
JH
5415 code = BFD_RELOC_386_GOTPC;
5416 }
252b5132
RH
5417
5418 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5419 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5420 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5421
5422 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5423
3e73aa7c
JH
5424 if (!use_rela_relocations)
5425 {
5426 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5427 vtable entry to be used in the relocation's section offset. */
5428 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5429 rel->address = fixp->fx_offset;
252b5132 5430
c6682705 5431 rel->addend = 0;
3e73aa7c
JH
5432 }
5433 /* Use the rela in 64bit mode. */
252b5132 5434 else
3e73aa7c 5435 {
062cd5e7
AS
5436 if (!fixp->fx_pcrel)
5437 rel->addend = fixp->fx_offset;
5438 else
5439 switch (code)
5440 {
5441 case BFD_RELOC_X86_64_PLT32:
5442 case BFD_RELOC_X86_64_GOT32:
5443 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5444 case BFD_RELOC_X86_64_TLSGD:
5445 case BFD_RELOC_X86_64_TLSLD:
5446 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5447 rel->addend = fixp->fx_offset - fixp->fx_size;
5448 break;
5449 default:
5450 rel->addend = (section->vma
5451 - fixp->fx_size
5452 + fixp->fx_addnumber
5453 + md_pcrel_from (fixp));
5454 break;
5455 }
3e73aa7c
JH
5456 }
5457
252b5132
RH
5458 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5459 if (rel->howto == NULL)
5460 {
5461 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5462 _("cannot represent relocation type %s"),
252b5132
RH
5463 bfd_get_reloc_code_name (code));
5464 /* Set howto to a garbage value so that we can keep going. */
5465 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5466 assert (rel->howto != NULL);
5467 }
5468
5469 return rel;
5470}
5471
64a0c779
DN
5472\f
5473/* Parse operands using Intel syntax. This implements a recursive descent
5474 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5475 Programmer's Guide.
5476
5477 FIXME: We do not recognize the full operand grammar defined in the MASM
5478 documentation. In particular, all the structure/union and
5479 high-level macro operands are missing.
5480
5481 Uppercase words are terminals, lower case words are non-terminals.
5482 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5483 bars '|' denote choices. Most grammar productions are implemented in
5484 functions called 'intel_<production>'.
5485
5486 Initial production is 'expr'.
5487
9306ca4a 5488 addOp + | -
64a0c779
DN
5489
5490 alpha [a-zA-Z]
5491
9306ca4a
JB
5492 binOp & | AND | \| | OR | ^ | XOR
5493
64a0c779
DN
5494 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5495
5496 constant digits [[ radixOverride ]]
5497
9306ca4a 5498 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5499
5500 digits decdigit
b77a7acd
AJ
5501 | digits decdigit
5502 | digits hexdigit
64a0c779
DN
5503
5504 decdigit [0-9]
5505
9306ca4a
JB
5506 e04 e04 addOp e05
5507 | e05
5508
5509 e05 e05 binOp e06
b77a7acd 5510 | e06
64a0c779
DN
5511
5512 e06 e06 mulOp e09
b77a7acd 5513 | e09
64a0c779
DN
5514
5515 e09 OFFSET e10
9306ca4a
JB
5516 | ~ e10
5517 | NOT e10
64a0c779
DN
5518 | e09 PTR e10
5519 | e09 : e10
5520 | e10
5521
5522 e10 e10 [ expr ]
b77a7acd 5523 | e11
64a0c779
DN
5524
5525 e11 ( expr )
b77a7acd 5526 | [ expr ]
64a0c779
DN
5527 | constant
5528 | dataType
5529 | id
5530 | $
5531 | register
5532
9306ca4a
JB
5533 => expr SHORT e04
5534 | e04
64a0c779
DN
5535
5536 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5537 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5538
5539 hexdigit a | b | c | d | e | f
b77a7acd 5540 | A | B | C | D | E | F
64a0c779
DN
5541
5542 id alpha
b77a7acd 5543 | id alpha
64a0c779
DN
5544 | id decdigit
5545
9306ca4a 5546 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5547
5548 quote " | '
5549
5550 register specialRegister
b77a7acd 5551 | gpRegister
64a0c779
DN
5552 | byteRegister
5553
5554 segmentRegister CS | DS | ES | FS | GS | SS
5555
9306ca4a 5556 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5557 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5558 | TR3 | TR4 | TR5 | TR6 | TR7
5559
64a0c779
DN
5560 We simplify the grammar in obvious places (e.g., register parsing is
5561 done by calling parse_register) and eliminate immediate left recursion
5562 to implement a recursive-descent parser.
5563
9306ca4a
JB
5564 expr SHORT e04
5565 | e04
5566
5567 e04 e05 e04'
5568
5569 e04' addOp e05 e04'
5570 | Empty
64a0c779
DN
5571
5572 e05 e06 e05'
5573
9306ca4a 5574 e05' binOp e06 e05'
b77a7acd 5575 | Empty
64a0c779
DN
5576
5577 e06 e09 e06'
5578
5579 e06' mulOp e09 e06'
b77a7acd 5580 | Empty
64a0c779
DN
5581
5582 e09 OFFSET e10 e09'
9306ca4a
JB
5583 | ~ e10
5584 | NOT e10
b77a7acd 5585 | e10 e09'
64a0c779
DN
5586
5587 e09' PTR e10 e09'
b77a7acd 5588 | : e10 e09'
64a0c779
DN
5589 | Empty
5590
5591 e10 e11 e10'
5592
5593 e10' [ expr ] e10'
b77a7acd 5594 | Empty
64a0c779
DN
5595
5596 e11 ( expr )
b77a7acd 5597 | [ expr ]
64a0c779
DN
5598 | BYTE
5599 | WORD
5600 | DWORD
9306ca4a 5601 | FWORD
64a0c779 5602 | QWORD
9306ca4a
JB
5603 | TBYTE
5604 | OWORD
5605 | XMMWORD
64a0c779
DN
5606 | .
5607 | $
5608 | register
5609 | id
5610 | constant */
5611
5612/* Parsing structure for the intel syntax parser. Used to implement the
5613 semantic actions for the operand grammar. */
5614struct intel_parser_s
5615 {
5616 char *op_string; /* The string being parsed. */
5617 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5618 int op_modifier; /* Operand modifier. */
64a0c779
DN
5619 int is_mem; /* 1 if operand is memory reference. */
5620 const reg_entry *reg; /* Last register reference found. */
5621 char *disp; /* Displacement string being built. */
5622 };
5623
5624static struct intel_parser_s intel_parser;
5625
5626/* Token structure for parsing intel syntax. */
5627struct intel_token
5628 {
5629 int code; /* Token code. */
5630 const reg_entry *reg; /* Register entry for register tokens. */
5631 char *str; /* String representation. */
5632 };
5633
5634static struct intel_token cur_token, prev_token;
5635
50705ef4
AM
5636/* Token codes for the intel parser. Since T_SHORT is already used
5637 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5638#define T_NIL -1
5639#define T_CONST 1
5640#define T_REG 2
5641#define T_BYTE 3
5642#define T_WORD 4
9306ca4a
JB
5643#define T_DWORD 5
5644#define T_FWORD 6
5645#define T_QWORD 7
5646#define T_TBYTE 8
5647#define T_XMMWORD 9
50705ef4 5648#undef T_SHORT
9306ca4a
JB
5649#define T_SHORT 10
5650#define T_OFFSET 11
5651#define T_PTR 12
5652#define T_ID 13
5653#define T_SHL 14
5654#define T_SHR 15
64a0c779
DN
5655
5656/* Prototypes for intel parser functions. */
5657static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5658static void intel_get_token PARAMS ((void));
5659static void intel_putback_token PARAMS ((void));
5660static int intel_expr PARAMS ((void));
9306ca4a
JB
5661static int intel_e04 PARAMS ((void));
5662static int intel_e04_1 PARAMS ((void));
cce0cbdc
DN
5663static int intel_e05 PARAMS ((void));
5664static int intel_e05_1 PARAMS ((void));
5665static int intel_e06 PARAMS ((void));
5666static int intel_e06_1 PARAMS ((void));
5667static int intel_e09 PARAMS ((void));
5668static int intel_e09_1 PARAMS ((void));
5669static int intel_e10 PARAMS ((void));
5670static int intel_e10_1 PARAMS ((void));
5671static int intel_e11 PARAMS ((void));
64a0c779 5672
64a0c779
DN
5673static int
5674i386_intel_operand (operand_string, got_a_float)
5675 char *operand_string;
5676 int got_a_float;
5677{
5678 int ret;
5679 char *p;
5680
5681 /* Initialize token holders. */
5682 cur_token.code = prev_token.code = T_NIL;
5683 cur_token.reg = prev_token.reg = NULL;
5684 cur_token.str = prev_token.str = NULL;
5685
5686 /* Initialize parser structure. */
e5cb08ac 5687 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5688 if (p == NULL)
5689 abort ();
5690 strcpy (intel_parser.op_string, operand_string);
5691 intel_parser.got_a_float = got_a_float;
5692 intel_parser.op_modifier = -1;
5693 intel_parser.is_mem = 0;
5694 intel_parser.reg = NULL;
e5cb08ac 5695 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5696 if (intel_parser.disp == NULL)
5697 abort ();
5698 intel_parser.disp[0] = '\0';
5699
5700 /* Read the first token and start the parser. */
5701 intel_get_token ();
5702 ret = intel_expr ();
5703
5704 if (ret)
5705 {
9306ca4a
JB
5706 if (cur_token.code != T_NIL)
5707 {
5708 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5709 current_templates->start->name, cur_token.str);
5710 ret = 0;
5711 }
64a0c779
DN
5712 /* If we found a memory reference, hand it over to i386_displacement
5713 to fill in the rest of the operand fields. */
9306ca4a 5714 else if (intel_parser.is_mem)
64a0c779
DN
5715 {
5716 if ((i.mem_operands == 1
5717 && (current_templates->start->opcode_modifier & IsString) == 0)
5718 || i.mem_operands == 2)
5719 {
5720 as_bad (_("too many memory references for '%s'"),
5721 current_templates->start->name);
5722 ret = 0;
5723 }
5724 else
5725 {
5726 char *s = intel_parser.disp;
5727 i.mem_operands++;
5728
5729 /* Add the displacement expression. */
5730 if (*s != '\0')
a4622f40
AM
5731 ret = i386_displacement (s, s + strlen (s));
5732 if (ret)
5733 ret = i386_index_check (operand_string);
64a0c779
DN
5734 }
5735 }
5736
5737 /* Constant and OFFSET expressions are handled by i386_immediate. */
9306ca4a 5738 else if (intel_parser.op_modifier == T_OFFSET
64a0c779
DN
5739 || intel_parser.reg == NULL)
5740 ret = i386_immediate (intel_parser.disp);
5741 }
5742
5743 free (p);
5744 free (intel_parser.disp);
5745
5746 return ret;
5747}
5748
9306ca4a
JB
5749/* expr SHORT e04
5750 | e04 */
64a0c779
DN
5751static int
5752intel_expr ()
5753{
9306ca4a 5754 /* expr SHORT e04 */
64a0c779
DN
5755 if (cur_token.code == T_SHORT)
5756 {
9306ca4a 5757 intel_parser.op_modifier = T_SHORT;
64a0c779
DN
5758 intel_match_token (T_SHORT);
5759
9306ca4a
JB
5760 return (intel_e04 ());
5761 }
5762
5763 /* expr e04 */
5764 else
5765 return intel_e04 ();
5766}
5767
5768/* e04 e06 e04'
5769
5770 e04' addOp e06 e04'
5771 | Empty */
5772static int
5773intel_e04 ()
5774{
5775 return (intel_e05 () && intel_e04_1 ());
5776}
5777
5778static int
5779intel_e04_1 ()
5780{
5781 /* e04' addOp e05 e04' */
5782 if (cur_token.code == '+' || cur_token.code == '-')
5783 {
5784 char str[2];
5785
5786 str[0] = cur_token.code;
5787 str[1] = 0;
5788 strcat (intel_parser.disp, str);
5789 intel_match_token (cur_token.code);
5790
5791 return (intel_e05 () && intel_e04_1 ());
64a0c779
DN
5792 }
5793
9306ca4a 5794 /* e04' Empty */
64a0c779 5795 else
9306ca4a 5796 return 1;
64a0c779
DN
5797}
5798
64a0c779
DN
5799/* e05 e06 e05'
5800
9306ca4a 5801 e05' binOp e06 e05'
64a0c779
DN
5802 | Empty */
5803static int
5804intel_e05 ()
5805{
5806 return (intel_e06 () && intel_e05_1 ());
5807}
5808
5809static int
5810intel_e05_1 ()
5811{
9306ca4a
JB
5812 /* e05' binOp e06 e05' */
5813 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
64a0c779 5814 {
9306ca4a
JB
5815 char str[2];
5816
5817 str[0] = cur_token.code;
5818 str[1] = 0;
5819 strcat (intel_parser.disp, str);
64a0c779
DN
5820 intel_match_token (cur_token.code);
5821
5822 return (intel_e06 () && intel_e05_1 ());
5823 }
5824
5825 /* e05' Empty */
5826 else
5827 return 1;
4a1805b1 5828}
64a0c779
DN
5829
5830/* e06 e09 e06'
5831
5832 e06' mulOp e09 e06'
b77a7acd 5833 | Empty */
64a0c779
DN
5834static int
5835intel_e06 ()
5836{
5837 return (intel_e09 () && intel_e06_1 ());
5838}
5839
5840static int
5841intel_e06_1 ()
5842{
5843 /* e06' mulOp e09 e06' */
9306ca4a 5844 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
64a0c779 5845 {
9306ca4a
JB
5846 char str[2];
5847
5848 str[0] = cur_token.code;
5849 str[1] = 0;
5850 strcat (intel_parser.disp, str);
5851 intel_match_token (cur_token.code);
5852
5853 return (intel_e09 () && intel_e06_1 ());
5854 }
5855 else if (cur_token.code == T_SHL)
5856 {
5857 strcat (intel_parser.disp, "<<");
5858 intel_match_token (cur_token.code);
5859
5860 return (intel_e09 () && intel_e06_1 ());
5861 }
5862 else if (cur_token.code == T_SHR)
5863 {
5864 strcat (intel_parser.disp, ">>");
64a0c779
DN
5865 intel_match_token (cur_token.code);
5866
5867 return (intel_e09 () && intel_e06_1 ());
5868 }
4a1805b1 5869
64a0c779 5870 /* e06' Empty */
4a1805b1 5871 else
64a0c779
DN
5872 return 1;
5873}
5874
64a0c779 5875/* e09 OFFSET e10 e09'
b77a7acd 5876 | e10 e09'
64a0c779 5877
9306ca4a
JB
5878 e09 ~ e10 e09'
5879 | NOT e10 e09'
5880 | e10 e09'
5881
64a0c779 5882 e09' PTR e10 e09'
b77a7acd 5883 | : e10 e09'
64a0c779
DN
5884 | Empty */
5885static int
5886intel_e09 ()
5887{
5888 /* e09 OFFSET e10 e09' */
5889 if (cur_token.code == T_OFFSET)
5890 {
5891 intel_parser.is_mem = 0;
9306ca4a 5892 intel_parser.op_modifier = T_OFFSET;
64a0c779
DN
5893 intel_match_token (T_OFFSET);
5894
5895 return (intel_e10 () && intel_e09_1 ());
5896 }
5897
9306ca4a
JB
5898 /* e09 NOT e10 e09' */
5899 else if (cur_token.code == '~')
5900 {
5901 char str[2];
5902
5903 str[0] = cur_token.code;
5904 str[1] = 0;
5905 strcat (intel_parser.disp, str);
5906 intel_match_token (cur_token.code);
5907
5908 return (intel_e10 () && intel_e09_1 ());
5909 }
5910
64a0c779
DN
5911 /* e09 e10 e09' */
5912 else
5913 return (intel_e10 () && intel_e09_1 ());
5914}
5915
5916static int
5917intel_e09_1 ()
5918{
5919 /* e09' PTR e10 e09' */
5920 if (cur_token.code == T_PTR)
5921 {
9306ca4a
JB
5922 char suffix;
5923
64a0c779 5924 if (prev_token.code == T_BYTE)
9306ca4a 5925 suffix = BYTE_MNEM_SUFFIX;
64a0c779
DN
5926
5927 else if (prev_token.code == T_WORD)
5928 {
9306ca4a
JB
5929 if (current_templates->start->name[0] == 'l'
5930 && current_templates->start->name[2] == 's'
5931 && current_templates->start->name[3] == 0)
5932 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5933 else if (intel_parser.got_a_float == 2) /* "fi..." */
5934 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5935 else
9306ca4a 5936 suffix = WORD_MNEM_SUFFIX;
64a0c779
DN
5937 }
5938
5939 else if (prev_token.code == T_DWORD)
5940 {
9306ca4a
JB
5941 if (current_templates->start->name[0] == 'l'
5942 && current_templates->start->name[2] == 's'
5943 && current_templates->start->name[3] == 0)
5944 suffix = WORD_MNEM_SUFFIX;
5945 else if (flag_code == CODE_16BIT
5946 && (current_templates->start->opcode_modifier
5947 & (Jump|JumpDword|JumpInterSegment)))
5948 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5949 else if (intel_parser.got_a_float == 1) /* "f..." */
5950 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5951 else
9306ca4a
JB
5952 suffix = LONG_MNEM_SUFFIX;
5953 }
5954
5955 else if (prev_token.code == T_FWORD)
5956 {
5957 if (current_templates->start->name[0] == 'l'
5958 && current_templates->start->name[2] == 's'
5959 && current_templates->start->name[3] == 0)
5960 suffix = LONG_MNEM_SUFFIX;
5961 else if (!intel_parser.got_a_float)
5962 {
5963 if (flag_code == CODE_16BIT)
5964 add_prefix (DATA_PREFIX_OPCODE);
5965 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5966 }
5967 else
5968 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
64a0c779
DN
5969 }
5970
5971 else if (prev_token.code == T_QWORD)
f16b83df
JH
5972 {
5973 if (intel_parser.got_a_float == 1) /* "f..." */
9306ca4a 5974 suffix = LONG_MNEM_SUFFIX;
f16b83df 5975 else
9306ca4a 5976 suffix = QWORD_MNEM_SUFFIX;
f16b83df 5977 }
64a0c779 5978
9306ca4a
JB
5979 else if (prev_token.code == T_TBYTE)
5980 {
5981 if (intel_parser.got_a_float == 1)
5982 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5983 else
5984 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5985 }
5986
5987 else if (prev_token.code == T_XMMWORD)
5988 {
5989 /* XXX ignored for now, but accepted since gcc uses it */
5990 suffix = 0;
5991 }
64a0c779
DN
5992
5993 else
5994 {
0477af35 5995 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
64a0c779
DN
5996 return 0;
5997 }
5998
9306ca4a
JB
5999 if (current_templates->start->base_opcode == 0x8d /* lea */)
6000 ;
6001 else if (!i.suffix)
6002 i.suffix = suffix;
6003 else if (i.suffix != suffix)
6004 {
6005 as_bad (_("Conflicting operand modifiers"));
6006 return 0;
6007 }
6008
64a0c779
DN
6009 intel_match_token (T_PTR);
6010
6011 return (intel_e10 () && intel_e09_1 ());
6012 }
6013
6014 /* e09 : e10 e09' */
6015 else if (cur_token.code == ':')
6016 {
21d6c4af
DN
6017 /* Mark as a memory operand only if it's not already known to be an
6018 offset expression. */
9306ca4a 6019 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 6020 intel_parser.is_mem = 1;
64a0c779
DN
6021
6022 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
6023 }
6024
6025 /* e09' Empty */
6026 else
6027 return 1;
6028}
6029
6030/* e10 e11 e10'
6031
6032 e10' [ expr ] e10'
b77a7acd 6033 | Empty */
64a0c779
DN
6034static int
6035intel_e10 ()
6036{
6037 return (intel_e11 () && intel_e10_1 ());
6038}
6039
6040static int
6041intel_e10_1 ()
6042{
6043 /* e10' [ expr ] e10' */
6044 if (cur_token.code == '[')
6045 {
6046 intel_match_token ('[');
21d6c4af
DN
6047
6048 /* Mark as a memory operand only if it's not already known to be an
6049 offset expression. If it's an offset expression, we need to keep
6050 the brace in. */
9306ca4a 6051 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6052 intel_parser.is_mem = 1;
6053 else
6054 strcat (intel_parser.disp, "[");
4a1805b1 6055
64a0c779 6056 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6057 if (*intel_parser.disp != '\0'
6058 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6059 strcat (intel_parser.disp, "+");
6060
21d6c4af
DN
6061 if (intel_expr () && intel_match_token (']'))
6062 {
6063 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6064 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6065 strcat (intel_parser.disp, "]");
6066
6067 return intel_e10_1 ();
6068 }
6069 else
6070 return 0;
64a0c779
DN
6071 }
6072
6073 /* e10' Empty */
6074 else
6075 return 1;
6076}
6077
64a0c779 6078/* e11 ( expr )
b77a7acd 6079 | [ expr ]
64a0c779
DN
6080 | BYTE
6081 | WORD
6082 | DWORD
9306ca4a 6083 | FWORD
64a0c779 6084 | QWORD
9306ca4a
JB
6085 | TBYTE
6086 | OWORD
6087 | XMMWORD
4a1805b1 6088 | $
64a0c779
DN
6089 | .
6090 | register
6091 | id
6092 | constant */
6093static int
6094intel_e11 ()
6095{
6096 /* e11 ( expr ) */
6097 if (cur_token.code == '(')
6098 {
6099 intel_match_token ('(');
6100 strcat (intel_parser.disp, "(");
6101
6102 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6103 {
6104 strcat (intel_parser.disp, ")");
6105 return 1;
6106 }
64a0c779
DN
6107 else
6108 return 0;
6109 }
6110
6111 /* e11 [ expr ] */
6112 else if (cur_token.code == '[')
6113 {
6114 intel_match_token ('[');
21d6c4af
DN
6115
6116 /* Mark as a memory operand only if it's not already known to be an
6117 offset expression. If it's an offset expression, we need to keep
6118 the brace in. */
9306ca4a 6119 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6120 intel_parser.is_mem = 1;
6121 else
6122 strcat (intel_parser.disp, "[");
4a1805b1 6123
64a0c779 6124 /* Operands for jump/call inside brackets denote absolute addresses. */
9306ca4a
JB
6125 if (current_templates->start->opcode_modifier
6126 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6127 i.types[this_operand] |= JumpAbsolute;
6128
6129 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6130 if (*intel_parser.disp != '\0'
6131 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6132 strcat (intel_parser.disp, "+");
6133
21d6c4af
DN
6134 if (intel_expr () && intel_match_token (']'))
6135 {
6136 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6137 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6138 strcat (intel_parser.disp, "]");
6139
6140 return 1;
6141 }
6142 else
6143 return 0;
64a0c779
DN
6144 }
6145
4a1805b1 6146 /* e11 BYTE
64a0c779
DN
6147 | WORD
6148 | DWORD
9306ca4a 6149 | FWORD
64a0c779 6150 | QWORD
9306ca4a
JB
6151 | TBYTE
6152 | OWORD
6153 | XMMWORD */
64a0c779
DN
6154 else if (cur_token.code == T_BYTE
6155 || cur_token.code == T_WORD
6156 || cur_token.code == T_DWORD
9306ca4a 6157 || cur_token.code == T_FWORD
64a0c779 6158 || cur_token.code == T_QWORD
9306ca4a
JB
6159 || cur_token.code == T_TBYTE
6160 || cur_token.code == T_XMMWORD)
64a0c779
DN
6161 {
6162 intel_match_token (cur_token.code);
6163
6164 return 1;
6165 }
6166
6167 /* e11 $
6168 | . */
9306ca4a 6169 else if (cur_token.code == '.')
64a0c779
DN
6170 {
6171 strcat (intel_parser.disp, cur_token.str);
6172 intel_match_token (cur_token.code);
21d6c4af
DN
6173
6174 /* Mark as a memory operand only if it's not already known to be an
6175 offset expression. */
9306ca4a 6176 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 6177 intel_parser.is_mem = 1;
64a0c779
DN
6178
6179 return 1;
6180 }
6181
6182 /* e11 register */
6183 else if (cur_token.code == T_REG)
6184 {
6185 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6186
6187 intel_match_token (T_REG);
6188
6189 /* Check for segment change. */
6190 if (cur_token.code == ':')
6191 {
6192 if (reg->reg_type & (SReg2 | SReg3))
6193 {
6194 switch (reg->reg_num)
6195 {
6196 case 0:
6197 i.seg[i.mem_operands] = &es;
6198 break;
6199 case 1:
6200 i.seg[i.mem_operands] = &cs;
6201 break;
6202 case 2:
6203 i.seg[i.mem_operands] = &ss;
6204 break;
6205 case 3:
6206 i.seg[i.mem_operands] = &ds;
6207 break;
6208 case 4:
6209 i.seg[i.mem_operands] = &fs;
6210 break;
6211 case 5:
6212 i.seg[i.mem_operands] = &gs;
6213 break;
6214 }
6215 }
6216 else
6217 {
6218 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6219 return 0;
6220 }
6221 }
6222
6223 /* Not a segment register. Check for register scaling. */
6224 else if (cur_token.code == '*')
6225 {
6226 if (!intel_parser.is_mem)
6227 {
6228 as_bad (_("Register scaling only allowed in memory operands."));
6229 return 0;
6230 }
6231
4a1805b1 6232 /* What follows must be a valid scale. */
64a0c779
DN
6233 if (intel_match_token ('*')
6234 && strchr ("01248", *cur_token.str))
6235 {
6236 i.index_reg = reg;
6237 i.types[this_operand] |= BaseIndex;
6238
6239 /* Set the scale after setting the register (otherwise,
6240 i386_scale will complain) */
6241 i386_scale (cur_token.str);
6242 intel_match_token (T_CONST);
6243 }
6244 else
6245 {
6246 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6247 cur_token.str);
6248 return 0;
6249 }
6250 }
6251
6252 /* No scaling. If this is a memory operand, the register is either a
6253 base register (first occurrence) or an index register (second
6254 occurrence). */
6255 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6256 {
6257 if (i.base_reg && i.index_reg)
6258 {
0477af35 6259 as_bad (_("Too many register references in memory operand."));
64a0c779
DN
6260 return 0;
6261 }
6262
6263 if (i.base_reg == NULL)
6264 i.base_reg = reg;
6265 else
6266 i.index_reg = reg;
6267
6268 i.types[this_operand] |= BaseIndex;
6269 }
6270
6271 /* Offset modifier. Add the register to the displacement string to be
6272 parsed as an immediate expression after we're done. */
9306ca4a 6273 else if (intel_parser.op_modifier == T_OFFSET)
64a0c779 6274 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 6275
64a0c779
DN
6276 /* It's neither base nor index nor offset. */
6277 else
6278 {
6279 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6280 i.op[this_operand].regs = reg;
6281 i.reg_operands++;
6282 }
6283
6284 /* Since registers are not part of the displacement string (except
6285 when we're parsing offset operands), we may need to remove any
6286 preceding '+' from the displacement string. */
6287 if (*intel_parser.disp != '\0'
9306ca4a 6288 && intel_parser.op_modifier != T_OFFSET)
64a0c779
DN
6289 {
6290 char *s = intel_parser.disp;
6291 s += strlen (s) - 1;
6292 if (*s == '+')
6293 *s = '\0';
6294 }
6295
6296 return 1;
6297 }
4a1805b1 6298
64a0c779
DN
6299 /* e11 id */
6300 else if (cur_token.code == T_ID)
6301 {
6302 /* Add the identifier to the displacement string. */
6303 strcat (intel_parser.disp, cur_token.str);
64a0c779
DN
6304
6305 /* The identifier represents a memory reference only if it's not
9306ca4a
JB
6306 preceded by an offset modifier and if it's not an equate. */
6307 if (intel_parser.op_modifier != T_OFFSET)
6308 {
6309 symbolS *symbolP;
6310
6311 symbolP = symbol_find(cur_token.str);
6312 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6313 intel_parser.is_mem = 1;
6314 }
64a0c779 6315
9306ca4a 6316 intel_match_token (T_ID);
64a0c779
DN
6317 return 1;
6318 }
6319
6320 /* e11 constant */
6321 else if (cur_token.code == T_CONST
e5cb08ac 6322 || cur_token.code == '-'
64a0c779
DN
6323 || cur_token.code == '+')
6324 {
6325 char *save_str;
6326
6327 /* Allow constants that start with `+' or `-'. */
6328 if (cur_token.code == '-' || cur_token.code == '+')
6329 {
6330 strcat (intel_parser.disp, cur_token.str);
6331 intel_match_token (cur_token.code);
6332 if (cur_token.code != T_CONST)
6333 {
0477af35 6334 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
64a0c779
DN
6335 cur_token.str);
6336 return 0;
6337 }
6338 }
6339
e5cb08ac 6340 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6341 if (save_str == NULL)
bc805888 6342 abort ();
64a0c779
DN
6343 strcpy (save_str, cur_token.str);
6344
6345 /* Get the next token to check for register scaling. */
6346 intel_match_token (cur_token.code);
6347
6348 /* Check if this constant is a scaling factor for an index register. */
6349 if (cur_token.code == '*')
6350 {
6351 if (intel_match_token ('*') && cur_token.code == T_REG)
6352 {
6353 if (!intel_parser.is_mem)
6354 {
6355 as_bad (_("Register scaling only allowed in memory operands."));
6356 return 0;
6357 }
6358
4a1805b1 6359 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6360 a valid scale. */
6361 if (strchr ("01248", *save_str))
6362 {
6363 i.index_reg = cur_token.reg;
6364 i.types[this_operand] |= BaseIndex;
6365
6366 /* Set the scale after setting the register (otherwise,
6367 i386_scale will complain) */
6368 i386_scale (save_str);
6369 intel_match_token (T_REG);
6370
6371 /* Since registers are not part of the displacement
6372 string, we may need to remove any preceding '+' from
6373 the displacement string. */
6374 if (*intel_parser.disp != '\0')
6375 {
6376 char *s = intel_parser.disp;
6377 s += strlen (s) - 1;
6378 if (*s == '+')
6379 *s = '\0';
6380 }
6381
6382 free (save_str);
6383
6384 return 1;
6385 }
6386 else
6387 return 0;
6388 }
6389
6390 /* The constant was not used for register scaling. Since we have
6391 already consumed the token following `*' we now need to put it
6392 back in the stream. */
6393 else
6394 intel_putback_token ();
6395 }
6396
6397 /* Add the constant to the displacement string. */
6398 strcat (intel_parser.disp, save_str);
6399 free (save_str);
6400
6401 return 1;
6402 }
6403
64a0c779
DN
6404 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6405 return 0;
6406}
6407
64a0c779
DN
6408/* Match the given token against cur_token. If they match, read the next
6409 token from the operand string. */
6410static int
6411intel_match_token (code)
e5cb08ac 6412 int code;
64a0c779
DN
6413{
6414 if (cur_token.code == code)
6415 {
6416 intel_get_token ();
6417 return 1;
6418 }
6419 else
6420 {
0477af35 6421 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6422 return 0;
6423 }
6424}
6425
64a0c779
DN
6426/* Read a new token from intel_parser.op_string and store it in cur_token. */
6427static void
6428intel_get_token ()
6429{
6430 char *end_op;
6431 const reg_entry *reg;
6432 struct intel_token new_token;
6433
6434 new_token.code = T_NIL;
6435 new_token.reg = NULL;
6436 new_token.str = NULL;
6437
4a1805b1 6438 /* Free the memory allocated to the previous token and move
64a0c779
DN
6439 cur_token to prev_token. */
6440 if (prev_token.str)
6441 free (prev_token.str);
6442
6443 prev_token = cur_token;
6444
6445 /* Skip whitespace. */
6446 while (is_space_char (*intel_parser.op_string))
6447 intel_parser.op_string++;
6448
6449 /* Return an empty token if we find nothing else on the line. */
6450 if (*intel_parser.op_string == '\0')
6451 {
6452 cur_token = new_token;
6453 return;
6454 }
6455
6456 /* The new token cannot be larger than the remainder of the operand
6457 string. */
e5cb08ac 6458 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6459 if (new_token.str == NULL)
bc805888 6460 abort ();
64a0c779
DN
6461 new_token.str[0] = '\0';
6462
6463 if (strchr ("0123456789", *intel_parser.op_string))
6464 {
6465 char *p = new_token.str;
6466 char *q = intel_parser.op_string;
6467 new_token.code = T_CONST;
6468
6469 /* Allow any kind of identifier char to encompass floating point and
6470 hexadecimal numbers. */
6471 while (is_identifier_char (*q))
6472 *p++ = *q++;
6473 *p = '\0';
6474
6475 /* Recognize special symbol names [0-9][bf]. */
6476 if (strlen (intel_parser.op_string) == 2
4a1805b1 6477 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6478 || intel_parser.op_string[1] == 'f'))
6479 new_token.code = T_ID;
6480 }
6481
64a0c779
DN
6482 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6483 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6484 {
6485 new_token.code = T_REG;
6486 new_token.reg = reg;
6487
6488 if (*intel_parser.op_string == REGISTER_PREFIX)
6489 {
6490 new_token.str[0] = REGISTER_PREFIX;
6491 new_token.str[1] = '\0';
6492 }
6493
6494 strcat (new_token.str, reg->reg_name);
6495 }
6496
6497 else if (is_identifier_char (*intel_parser.op_string))
6498 {
6499 char *p = new_token.str;
6500 char *q = intel_parser.op_string;
6501
6502 /* A '.' or '$' followed by an identifier char is an identifier.
6503 Otherwise, it's operator '.' followed by an expression. */
6504 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6505 {
9306ca4a
JB
6506 new_token.code = '.';
6507 new_token.str[0] = '.';
64a0c779
DN
6508 new_token.str[1] = '\0';
6509 }
6510 else
6511 {
6512 while (is_identifier_char (*q) || *q == '@')
6513 *p++ = *q++;
6514 *p = '\0';
6515
9306ca4a
JB
6516 if (strcasecmp (new_token.str, "NOT") == 0)
6517 new_token.code = '~';
6518
6519 else if (strcasecmp (new_token.str, "MOD") == 0)
6520 new_token.code = '%';
6521
6522 else if (strcasecmp (new_token.str, "AND") == 0)
6523 new_token.code = '&';
6524
6525 else if (strcasecmp (new_token.str, "OR") == 0)
6526 new_token.code = '|';
6527
6528 else if (strcasecmp (new_token.str, "XOR") == 0)
6529 new_token.code = '^';
6530
6531 else if (strcasecmp (new_token.str, "SHL") == 0)
6532 new_token.code = T_SHL;
6533
6534 else if (strcasecmp (new_token.str, "SHR") == 0)
6535 new_token.code = T_SHR;
6536
6537 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6538 new_token.code = T_BYTE;
6539
6540 else if (strcasecmp (new_token.str, "WORD") == 0)
6541 new_token.code = T_WORD;
6542
6543 else if (strcasecmp (new_token.str, "DWORD") == 0)
6544 new_token.code = T_DWORD;
6545
9306ca4a
JB
6546 else if (strcasecmp (new_token.str, "FWORD") == 0)
6547 new_token.code = T_FWORD;
6548
64a0c779
DN
6549 else if (strcasecmp (new_token.str, "QWORD") == 0)
6550 new_token.code = T_QWORD;
6551
9306ca4a
JB
6552 else if (strcasecmp (new_token.str, "TBYTE") == 0
6553 /* XXX remove (gcc still uses it) */
6554 || strcasecmp (new_token.str, "XWORD") == 0)
6555 new_token.code = T_TBYTE;
6556
6557 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6558 || strcasecmp (new_token.str, "OWORD") == 0)
6559 new_token.code = T_XMMWORD;
64a0c779
DN
6560
6561 else if (strcasecmp (new_token.str, "PTR") == 0)
6562 new_token.code = T_PTR;
6563
6564 else if (strcasecmp (new_token.str, "SHORT") == 0)
6565 new_token.code = T_SHORT;
6566
6567 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6568 {
6569 new_token.code = T_OFFSET;
6570
6571 /* ??? This is not mentioned in the MASM grammar but gcc
6572 makes use of it with -mintel-syntax. OFFSET may be
6573 followed by FLAT: */
6574 if (strncasecmp (q, " FLAT:", 6) == 0)
6575 strcat (new_token.str, " FLAT:");
6576 }
6577
6578 /* ??? This is not mentioned in the MASM grammar. */
6579 else if (strcasecmp (new_token.str, "FLAT") == 0)
6580 new_token.code = T_OFFSET;
6581
6582 else
6583 new_token.code = T_ID;
6584 }
6585 }
6586
9306ca4a
JB
6587 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6588 {
6589 new_token.code = *intel_parser.op_string;
6590 new_token.str[0] = *intel_parser.op_string;
6591 new_token.str[1] = '\0';
6592 }
6593
6594 else if (strchr ("<>", *intel_parser.op_string)
6595 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6596 {
6597 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6598 new_token.str[0] = *intel_parser.op_string;
6599 new_token.str[1] = *intel_parser.op_string;
6600 new_token.str[2] = '\0';
6601 }
6602
64a0c779 6603 else
0477af35 6604 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6605
6606 intel_parser.op_string += strlen (new_token.str);
6607 cur_token = new_token;
6608}
6609
64a0c779
DN
6610/* Put cur_token back into the token stream and make cur_token point to
6611 prev_token. */
6612static void
6613intel_putback_token ()
6614{
6615 intel_parser.op_string -= strlen (cur_token.str);
6616 free (cur_token.str);
6617 cur_token = prev_token;
4a1805b1 6618
64a0c779
DN
6619 /* Forget prev_token. */
6620 prev_token.code = T_NIL;
6621 prev_token.reg = NULL;
6622 prev_token.str = NULL;
6623}
54cfded0 6624
a4447b93 6625int
54cfded0
AM
6626tc_x86_regname_to_dw2regnum (const char *regname)
6627{
6628 unsigned int regnum;
6629 unsigned int regnames_count;
6630 char *regnames_32[] =
6631 {
a4447b93
RH
6632 "eax", "ecx", "edx", "ebx",
6633 "esp", "ebp", "esi", "edi",
54cfded0
AM
6634 "eip"
6635 };
6636 char *regnames_64[] =
6637 {
6638 "rax", "rbx", "rcx", "rdx",
6639 "rdi", "rsi", "rbp", "rsp",
6640 "r8", "r9", "r10", "r11",
6641 "r12", "r13", "r14", "r15",
6642 "rip"
6643 };
6644 char **regnames;
6645
6646 if (flag_code == CODE_64BIT)
6647 {
6648 regnames = regnames_64;
0cea6190 6649 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6650 }
6651 else
6652 {
6653 regnames = regnames_32;
0cea6190 6654 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6655 }
6656
6657 for (regnum = 0; regnum < regnames_count; regnum++)
6658 if (strcmp (regname, regnames[regnum]) == 0)
6659 return regnum;
6660
54cfded0
AM
6661 return -1;
6662}
6663
6664void
6665tc_x86_frame_initial_instructions (void)
6666{
a4447b93
RH
6667 static unsigned int sp_regno;
6668
6669 if (!sp_regno)
6670 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6671 ? "rsp" : "esp");
6672
6673 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6674 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6675}
d2b2c203
DJ
6676
6677int
6678i386_elf_section_type (const char *str, size_t len)
6679{
6680 if (flag_code == CODE_64BIT
6681 && len == sizeof ("unwind") - 1
6682 && strncmp (str, "unwind", 6) == 0)
6683 return SHT_X86_64_UNWIND;
6684
6685 return -1;
6686}
bb41ade5
AM
6687
6688#ifdef TE_PE
6689void
6690tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6691{
6692 expressionS expr;
6693
6694 expr.X_op = O_secrel;
6695 expr.X_add_symbol = symbol;
6696 expr.X_add_number = 0;
6697 emit_expr (&expr, size);
6698}
6699#endif
This page took 0.641552 seconds and 4 git commands to generate.