Fix a potential illegal memory access whilt parsing an x86 insn.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
43234a1e
L
202/* This struct describes rounding control and SAE in the instruction. */
203struct RC_Operation
204{
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214};
215
216static struct RC_Operation rc_op;
217
218/* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221struct Mask_Operation
222{
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227};
228
229static struct Mask_Operation mask_op;
230
231/* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233struct Broadcast_Operation
234{
8e6e0792 235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
4a1b91ea
L
240
241 /* Number of bytes to broadcast. */
242 int bytes;
43234a1e
L
243};
244
245static struct Broadcast_Operation broadcast_op;
246
c0f3af97
L
247/* VEX prefix. */
248typedef struct
249{
43234a1e
L
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
c0f3af97
L
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255} vex_prefix;
256
252b5132 257/* 'md_assemble ()' gathers together information and puts it into a
47926f60 258 i386_insn. */
252b5132 259
520dc8e8
AM
260union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
a65babc9
L
267enum i386_error
268 {
86e026a4 269 operand_size_mismatch,
a65babc9
L
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
a65babc9
L
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
6c30d220
L
277 unsupported,
278 invalid_vsib_address,
7bab8ab5 279 invalid_vector_register_set,
43234a1e
L
280 unsupported_vector_index_register,
281 unsupported_broadcast,
43234a1e
L
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
a65babc9
L
289 };
290
252b5132
RH
291struct _i386_insn
292 {
47926f60 293 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 294 insn_template tm;
252b5132 295
7d5e4556
L
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
252b5132
RH
298 char suffix;
299
47926f60 300 /* OPERANDS gives the number of given operands. */
252b5132
RH
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
47926f60 305 operands. */
252b5132
RH
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 309 use OP[i] for the corresponding operand. */
40fb9820 310 i386_operand_type types[MAX_OPERANDS];
252b5132 311
520dc8e8
AM
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
252b5132 315
3e73aa7c
JH
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318#define Operand_PCrel 1
c48dadc9 319#define Operand_Mem 2
3e73aa7c 320
252b5132 321 /* Relocation type for operand */
f86103b7 322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 323
252b5132
RH
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 331 explicit segment overrides are given. */
ce8a8b2f 332 const seg_entry *seg[2];
252b5132 333
8325cc63
JB
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
252b5132
RH
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
b4a3a7b4
L
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
252b5132 354 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 355 addressing modes of this insn are encoded. */
252b5132 356 modrm_byte rm;
3e73aa7c 357 rex_byte rex;
43234a1e 358 rex_byte vrex;
252b5132 359 sib_byte sib;
c0f3af97 360 vex_prefix vex;
b6169b20 361
43234a1e
L
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
86fa6981
L
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
64c49ab3
JB
379 dir_encoding_store,
380 dir_encoding_swap
86fa6981 381 } dir_encoding;
891edac4 382
a501d77e
L
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
f8a5c266 390
6b6b6807
L
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
b6f8c7c4
L
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
86fa6981
L
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
d5de92cf
L
406 /* REP prefix. */
407 const char *rep_prefix;
408
165de32a
L
409 /* HLE prefix. */
410 const char *hle_prefix;
42164a71 411
7e8b059b
L
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
04ef582a
L
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
891edac4 418 /* Error message. */
a65babc9 419 enum i386_error error;
252b5132
RH
420 };
421
422typedef struct _i386_insn i386_insn;
423
43234a1e
L
424/* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426struct RC_name
427{
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431};
432
433static const struct RC_name RC_NamesTable[] =
434{
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440};
441
252b5132
RH
442/* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 444const char extra_symbol_chars[] = "*%-([{}"
252b5132 445#ifdef LEX_AT
32137342
NC
446 "@"
447#endif
448#ifdef LEX_QM
449 "?"
252b5132 450#endif
32137342 451 ;
252b5132 452
29b0f896
AM
453#if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 455 && !defined (TE_GNU) \
29b0f896 456 && !defined (TE_LINUX) \
8d63c93e 457 && !defined (TE_NACL) \
29b0f896 458 && !defined (TE_FreeBSD) \
5b806d27 459 && !defined (TE_DragonFly) \
29b0f896 460 && !defined (TE_NetBSD)))
252b5132 461/* This array holds the chars that always start a comment. If the
b3b91714
AM
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464const char *i386_comment_chars = "#/";
465#define SVR4_COMMENT_CHARS 1
252b5132 466#define PREFIX_SEPARATOR '\\'
252b5132 467
b3b91714
AM
468#else
469const char *i386_comment_chars = "#";
470#define PREFIX_SEPARATOR '/'
471#endif
472
252b5132
RH
473/* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 477 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
252b5132 480 '/' isn't otherwise defined. */
b3b91714 481const char line_comment_chars[] = "#/";
252b5132 482
63a0b638 483const char line_separator_chars[] = ";";
252b5132 484
ce8a8b2f
AM
485/* Chars that can be used to separate mant from exp in floating point
486 nums. */
252b5132
RH
487const char EXP_CHARS[] = "eE";
488
ce8a8b2f
AM
489/* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
252b5132
RH
492const char FLT_CHARS[] = "fFdDxX";
493
ce8a8b2f 494/* Tables for lexical analysis. */
252b5132
RH
495static char mnemonic_chars[256];
496static char register_chars[256];
497static char operand_chars[256];
498static char identifier_chars[256];
499static char digit_chars[256];
500
ce8a8b2f 501/* Lexical macros. */
252b5132
RH
502#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503#define is_operand_char(x) (operand_chars[(unsigned char) x])
504#define is_register_char(x) (register_chars[(unsigned char) x])
505#define is_space_char(x) ((x) == ' ')
506#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507#define is_digit_char(x) (digit_chars[(unsigned char) x])
508
0234cb7c 509/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
510static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512/* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
47926f60 515 assembler instruction). */
252b5132 516static char save_stack[32];
ce8a8b2f 517static char *save_stack_p;
252b5132
RH
518#define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520#define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
47926f60 523/* The instruction we're assembling. */
252b5132
RH
524static i386_insn i;
525
526/* Possible templates for current insn. */
527static const templates *current_templates;
528
31b2323c
L
529/* Per instruction expressionS buffers: max displacements & immediates. */
530static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 532
47926f60 533/* Current operand we are working on. */
ee86248c 534static int this_operand = -1;
252b5132 535
3e73aa7c
JH
536/* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544static enum flag_code flag_code;
4fa24527 545static unsigned int object_64bit;
862be3fb 546static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
547static int use_rela_relocations = 0;
548
7af8ed2d
NC
549#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
351f65ca
L
553/* The ELF ABI to use. */
554enum x86_elf_abi
555{
556 I386_ABI,
7f56bc95
L
557 X86_64_ABI,
558 X86_64_X32_ABI
351f65ca
L
559};
560
561static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 562#endif
351f65ca 563
167ad85b
TG
564#if defined (TE_PE) || defined (TE_PEP)
565/* Use big object file format. */
566static int use_big_obj = 0;
567#endif
568
8dcea932
L
569#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570/* 1 if generating code for a shared library. */
571static int shared = 0;
572#endif
573
47926f60
KH
574/* 1 for intel syntax,
575 0 if att syntax. */
576static int intel_syntax = 0;
252b5132 577
e89c5eaa
L
578/* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580static int intel64;
581
1efbbeb4
L
582/* 1 for intel mnemonic,
583 0 if att mnemonic. */
584static int intel_mnemonic = !SYSV386_COMPAT;
585
a60de03c
JB
586/* 1 if pseudo registers are permitted. */
587static int allow_pseudo_reg = 0;
588
47926f60
KH
589/* 1 if register prefix % not required. */
590static int allow_naked_reg = 0;
252b5132 591
33eaf5de 592/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595static int add_bnd_prefix = 0;
596
ba104c83 597/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
598static int allow_index_reg = 0;
599
d022bddd
IT
600/* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602static int omit_lock_prefix = 0;
603
e4e00185
AS
604/* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606static int avoid_fence = 0;
607
0cb4071e
L
608/* 1 if the assembler should generate relax relocations. */
609
610static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
7bab8ab5 613static enum check_kind
daf50ae7 614 {
7bab8ab5
JB
615 check_none = 0,
616 check_warning,
617 check_error
daf50ae7 618 }
7bab8ab5 619sse_check, operand_check = check_warning;
daf50ae7 620
b6f8c7c4
L
621/* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626static int optimize = 0;
627
628/* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635static int optimize_for_space = 0;
636
2ca3ace5
L
637/* Register prefix used for error message. */
638static const char *register_prefix = "%";
639
47926f60
KH
640/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643static char stackop_size = '\0';
eecb386c 644
12b55ccc
L
645/* Non-zero to optimize code alignment. */
646int optimize_align_code = 1;
647
47926f60
KH
648/* Non-zero to quieten some warnings. */
649static int quiet_warnings = 0;
a38cf1db 650
47926f60
KH
651/* CPU name. */
652static const char *cpu_arch_name = NULL;
6305a203 653static char *cpu_sub_arch_name = NULL;
a38cf1db 654
47926f60 655/* CPU feature flags. */
40fb9820
L
656static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
ccc9c027
L
658/* If we have selected a cpu we are generating instructions for. */
659static int cpu_arch_tune_set = 0;
660
9103f4f4 661/* Cpu we are generating instructions for. */
fbf3f584 662enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
663
664/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 665static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 666
ccc9c027 667/* CPU instruction set architecture used. */
fbf3f584 668enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 669
9103f4f4 670/* CPU feature flags of instruction set architecture used. */
fbf3f584 671i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 672
fddf5b5b
AM
673/* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675static unsigned int no_cond_jump_promotion = 0;
676
c0f3af97
L
677/* Encode SSE instructions with VEX prefix. */
678static unsigned int sse2avx;
679
539f890d
L
680/* Encode scalar AVX instructions with specific vector length. */
681static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
03751133
L
687/* Encode VEX WIG instructions with specific vex.w. */
688static enum
689 {
690 vexw0 = 0,
691 vexw1
692 } vexwig;
693
43234a1e
L
694/* Encode scalar EVEX LIG instructions with specific vector length. */
695static enum
696 {
697 evexl128 = 0,
698 evexl256,
699 evexl512
700 } evexlig;
701
702/* Encode EVEX WIG instructions with specific evex.w. */
703static enum
704 {
705 evexw0 = 0,
706 evexw1
707 } evexwig;
708
d3d3c6db
IT
709/* Value to encode in EVEX RC bits, for SAE-only instructions. */
710static enum rc_type evexrcig = rne;
711
29b0f896 712/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 713static symbolS *GOT_symbol;
29b0f896 714
a4447b93
RH
715/* The dwarf2 return column, adjusted for 32 or 64 bit. */
716unsigned int x86_dwarf2_return_column;
717
718/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
719int x86_cie_data_alignment;
720
252b5132 721/* Interface to relax_segment.
fddf5b5b
AM
722 There are 3 major relax states for 386 jump insns because the
723 different types of jumps add different sizes to frags when we're
724 figuring out what sort of jump to choose to reach a given label. */
252b5132 725
47926f60 726/* Types. */
93c2a809
AM
727#define UNCOND_JUMP 0
728#define COND_JUMP 1
729#define COND_JUMP86 2
fddf5b5b 730
47926f60 731/* Sizes. */
252b5132
RH
732#define CODE16 1
733#define SMALL 0
29b0f896 734#define SMALL16 (SMALL | CODE16)
252b5132 735#define BIG 2
29b0f896 736#define BIG16 (BIG | CODE16)
252b5132
RH
737
738#ifndef INLINE
739#ifdef __GNUC__
740#define INLINE __inline__
741#else
742#define INLINE
743#endif
744#endif
745
fddf5b5b
AM
746#define ENCODE_RELAX_STATE(type, size) \
747 ((relax_substateT) (((type) << 2) | (size)))
748#define TYPE_FROM_RELAX_STATE(s) \
749 ((s) >> 2)
750#define DISP_SIZE_FROM_RELAX_STATE(s) \
751 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
752
753/* This table is used by relax_frag to promote short jumps to long
754 ones where necessary. SMALL (short) jumps may be promoted to BIG
755 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
756 don't allow a short jump in a 32 bit code segment to be promoted to
757 a 16 bit offset jump because it's slower (requires data size
758 prefix), and doesn't work, unless the destination is in the bottom
759 64k of the code segment (The top 16 bits of eip are zeroed). */
760
761const relax_typeS md_relax_table[] =
762{
24eab124
AM
763 /* The fields are:
764 1) most positive reach of this state,
765 2) most negative reach of this state,
93c2a809 766 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 767 4) which index into the table to try if we can't fit into this one. */
252b5132 768
fddf5b5b 769 /* UNCOND_JUMP states. */
93c2a809
AM
770 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
771 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
772 /* dword jmp adds 4 bytes to frag:
773 0 extra opcode bytes, 4 displacement bytes. */
252b5132 774 {0, 0, 4, 0},
93c2a809
AM
775 /* word jmp adds 2 byte2 to frag:
776 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
777 {0, 0, 2, 0},
778
93c2a809
AM
779 /* COND_JUMP states. */
780 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
782 /* dword conditionals adds 5 bytes to frag:
783 1 extra opcode byte, 4 displacement bytes. */
784 {0, 0, 5, 0},
fddf5b5b 785 /* word conditionals add 3 bytes to frag:
93c2a809
AM
786 1 extra opcode byte, 2 displacement bytes. */
787 {0, 0, 3, 0},
788
789 /* COND_JUMP86 states. */
790 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
792 /* dword conditionals adds 5 bytes to frag:
793 1 extra opcode byte, 4 displacement bytes. */
794 {0, 0, 5, 0},
795 /* word conditionals add 4 bytes to frag:
796 1 displacement byte and a 3 byte long branch insn. */
797 {0, 0, 4, 0}
252b5132
RH
798};
799
9103f4f4
L
800static const arch_entry cpu_arch[] =
801{
89507696
JB
802 /* Do not replace the first two entries - i386_target_format()
803 relies on them being there in this order. */
8a2c8fef 804 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 805 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 807 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 809 CPU_NONE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 811 CPU_I186_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 813 CPU_I286_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 815 CPU_I386_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 817 CPU_I486_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 819 CPU_I586_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 821 CPU_I686_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 823 CPU_I586_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 825 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 827 CPU_P2_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 829 CPU_P3_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 831 CPU_P4_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 833 CPU_CORE_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 835 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 837 CPU_CORE_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 839 CPU_CORE_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 841 CPU_CORE2_FLAGS, 1 },
8a2c8fef 842 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 843 CPU_CORE2_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 845 CPU_COREI7_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 847 CPU_L1OM_FLAGS, 0 },
7a9068fe 848 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 849 CPU_K1OM_FLAGS, 0 },
81486035 850 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 851 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 853 CPU_K6_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 855 CPU_K6_2_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 857 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 859 CPU_K8_FLAGS, 1 },
8a2c8fef 860 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 861 CPU_K8_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 863 CPU_K8_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 865 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 866 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 867 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 868 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 869 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 870 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 871 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 872 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 873 CPU_BDVER4_FLAGS, 0 },
029f3522 874 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 875 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
876 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
877 CPU_ZNVER2_FLAGS, 0 },
7b458c12 878 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 879 CPU_BTVER1_FLAGS, 0 },
7b458c12 880 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 881 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_8087_FLAGS, 0 },
8a2c8fef 884 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_287_FLAGS, 0 },
8a2c8fef 886 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_387_FLAGS, 0 },
1848e567
L
888 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
889 CPU_687_FLAGS, 0 },
d871f3f4
L
890 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
891 CPU_CMOV_FLAGS, 0 },
892 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
893 CPU_FXSR_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_MMX_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_SSE_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_SSE2_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_SSE3_FLAGS, 0 },
8a2c8fef 902 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_AVX_FLAGS, 0 },
6c30d220 912 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_AVX2_FLAGS, 0 },
43234a1e 914 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AVX512F_FLAGS, 0 },
43234a1e 916 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_AVX512CD_FLAGS, 0 },
43234a1e 918 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_AVX512ER_FLAGS, 0 },
43234a1e 920 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 922 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 924 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 926 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_VMX_FLAGS, 0 },
8729a6f6 930 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_SMX_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 936 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_AES_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 948 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 952 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_F16C_FLAGS, 0 },
6c30d220 954 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_BMI2_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_FMA_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_FMA4_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_XOP_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_LWP_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_MOVBE_FLAGS, 0 },
60aa667e 966 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_CX16_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_EPT_FLAGS, 0 },
6c30d220 970 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_LZCNT_FLAGS, 0 },
42164a71 972 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_HLE_FLAGS, 0 },
42164a71 974 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_RTM_FLAGS, 0 },
6c30d220 976 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_CLFLUSH_FLAGS, 0 },
22109423 980 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_NOP_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 984 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 986 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 988 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 990 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SVME_FLAGS, 1 },
8a2c8fef 994 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_SVME_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_ABM_FLAGS, 0 },
87973e9f 1000 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_BMI_FLAGS, 0 },
2a2a0f38 1002 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_TBM_FLAGS, 0 },
e2e1fcde 1004 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_ADX_FLAGS, 0 },
e2e1fcde 1006 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1008 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1010 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SMAP_FLAGS, 0 },
7e8b059b 1012 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_MPX_FLAGS, 0 },
a0046408 1014 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_SHA_FLAGS, 0 },
963f3586 1016 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1018 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1020 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_SE1_FLAGS, 0 },
c5e7287a 1022 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1024 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1026 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1028 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1029 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1030 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1031 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1032 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1033 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1034 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1035 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1036 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1037 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1038 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1040 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_CLZERO_FLAGS, 0 },
9916071f 1042 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1043 CPU_MWAITX_FLAGS, 0 },
8eab4136 1044 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1045 CPU_OSPKE_FLAGS, 0 },
8bc52696 1046 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1047 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1048 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1049 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1050 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1051 CPU_IBT_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1053 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1054 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1055 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1056 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1057 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1058 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1059 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1060 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1061 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1062 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1063 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1064 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1065 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1066 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1067 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1068 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1069 CPU_MOVDIRI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1071 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1072};
1073
1074static const noarch_entry cpu_noarch[] =
1075{
1076 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1077 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1078 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1079 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1080 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1081 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1082 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1083 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1084 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1085 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1086 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1087 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1088 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1089 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1090 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1091 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1092 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1100 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1101 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1102 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1103 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1104 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1105 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1106 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1107 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1108 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1109 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1110 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1111};
1112
704209c0 1113#ifdef I386COFF
a6c24e68
NC
1114/* Like s_lcomm_internal in gas/read.c but the alignment string
1115 is allowed to be optional. */
1116
1117static symbolS *
1118pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1119{
1120 addressT align = 0;
1121
1122 SKIP_WHITESPACE ();
1123
7ab9ffdd 1124 if (needs_align
a6c24e68
NC
1125 && *input_line_pointer == ',')
1126 {
1127 align = parse_align (needs_align - 1);
7ab9ffdd 1128
a6c24e68
NC
1129 if (align == (addressT) -1)
1130 return NULL;
1131 }
1132 else
1133 {
1134 if (size >= 8)
1135 align = 3;
1136 else if (size >= 4)
1137 align = 2;
1138 else if (size >= 2)
1139 align = 1;
1140 else
1141 align = 0;
1142 }
1143
1144 bss_alloc (symbolP, size, align);
1145 return symbolP;
1146}
1147
704209c0 1148static void
a6c24e68
NC
1149pe_lcomm (int needs_align)
1150{
1151 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1152}
704209c0 1153#endif
a6c24e68 1154
29b0f896
AM
1155const pseudo_typeS md_pseudo_table[] =
1156{
1157#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1158 {"align", s_align_bytes, 0},
1159#else
1160 {"align", s_align_ptwo, 0},
1161#endif
1162 {"arch", set_cpu_arch, 0},
1163#ifndef I386COFF
1164 {"bss", s_bss, 0},
a6c24e68
NC
1165#else
1166 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1167#endif
1168 {"ffloat", float_cons, 'f'},
1169 {"dfloat", float_cons, 'd'},
1170 {"tfloat", float_cons, 'x'},
1171 {"value", cons, 2},
d182319b 1172 {"slong", signed_cons, 4},
29b0f896
AM
1173 {"noopt", s_ignore, 0},
1174 {"optim", s_ignore, 0},
1175 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1176 {"code16", set_code_flag, CODE_16BIT},
1177 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1178#ifdef BFD64
29b0f896 1179 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1180#endif
29b0f896
AM
1181 {"intel_syntax", set_intel_syntax, 1},
1182 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1183 {"intel_mnemonic", set_intel_mnemonic, 1},
1184 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1185 {"allow_index_reg", set_allow_index_reg, 1},
1186 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1187 {"sse_check", set_check, 0},
1188 {"operand_check", set_check, 1},
3b22753a
L
1189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1190 {"largecomm", handle_large_common, 0},
07a53e5c 1191#else
68d20676 1192 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1193 {"loc", dwarf2_directive_loc, 0},
1194 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1195#endif
6482c264
NC
1196#ifdef TE_PE
1197 {"secrel32", pe_directive_secrel, 0},
1198#endif
29b0f896
AM
1199 {0, 0, 0}
1200};
1201
1202/* For interface with expression (). */
1203extern char *input_line_pointer;
1204
1205/* Hash table for instruction mnemonic lookup. */
1206static struct hash_control *op_hash;
1207
1208/* Hash table for register lookup. */
1209static struct hash_control *reg_hash;
1210\f
ce8a8b2f
AM
1211 /* Various efficient no-op patterns for aligning code labels.
1212 Note: Don't try to assemble the instructions in the comments.
1213 0L and 0w are not legal. */
62a02d25
L
1214static const unsigned char f32_1[] =
1215 {0x90}; /* nop */
1216static const unsigned char f32_2[] =
1217 {0x66,0x90}; /* xchg %ax,%ax */
1218static const unsigned char f32_3[] =
1219 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1220static const unsigned char f32_4[] =
1221 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1222static const unsigned char f32_6[] =
1223 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1224static const unsigned char f32_7[] =
1225 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1226static const unsigned char f16_3[] =
3ae729d5 1227 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1228static const unsigned char f16_4[] =
3ae729d5
L
1229 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1230static const unsigned char jump_disp8[] =
1231 {0xeb}; /* jmp disp8 */
1232static const unsigned char jump32_disp32[] =
1233 {0xe9}; /* jmp disp32 */
1234static const unsigned char jump16_disp32[] =
1235 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1236/* 32-bit NOPs patterns. */
1237static const unsigned char *const f32_patt[] = {
3ae729d5 1238 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1239};
1240/* 16-bit NOPs patterns. */
1241static const unsigned char *const f16_patt[] = {
3ae729d5 1242 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1243};
1244/* nopl (%[re]ax) */
1245static const unsigned char alt_3[] =
1246 {0x0f,0x1f,0x00};
1247/* nopl 0(%[re]ax) */
1248static const unsigned char alt_4[] =
1249 {0x0f,0x1f,0x40,0x00};
1250/* nopl 0(%[re]ax,%[re]ax,1) */
1251static const unsigned char alt_5[] =
1252 {0x0f,0x1f,0x44,0x00,0x00};
1253/* nopw 0(%[re]ax,%[re]ax,1) */
1254static const unsigned char alt_6[] =
1255 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1256/* nopl 0L(%[re]ax) */
1257static const unsigned char alt_7[] =
1258 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1259/* nopl 0L(%[re]ax,%[re]ax,1) */
1260static const unsigned char alt_8[] =
1261 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1262/* nopw 0L(%[re]ax,%[re]ax,1) */
1263static const unsigned char alt_9[] =
1264 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1265/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1266static const unsigned char alt_10[] =
1267 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1268/* data16 nopw %cs:0L(%eax,%eax,1) */
1269static const unsigned char alt_11[] =
1270 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1271/* 32-bit and 64-bit NOPs patterns. */
1272static const unsigned char *const alt_patt[] = {
1273 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1274 alt_9, alt_10, alt_11
62a02d25
L
1275};
1276
1277/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1278 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1279
1280static void
1281i386_output_nops (char *where, const unsigned char *const *patt,
1282 int count, int max_single_nop_size)
1283
1284{
3ae729d5
L
1285 /* Place the longer NOP first. */
1286 int last;
1287 int offset;
1288 const unsigned char *nops = patt[max_single_nop_size - 1];
1289
1290 /* Use the smaller one if the requsted one isn't available. */
1291 if (nops == NULL)
62a02d25 1292 {
3ae729d5
L
1293 max_single_nop_size--;
1294 nops = patt[max_single_nop_size - 1];
62a02d25
L
1295 }
1296
3ae729d5
L
1297 last = count % max_single_nop_size;
1298
1299 count -= last;
1300 for (offset = 0; offset < count; offset += max_single_nop_size)
1301 memcpy (where + offset, nops, max_single_nop_size);
1302
1303 if (last)
1304 {
1305 nops = patt[last - 1];
1306 if (nops == NULL)
1307 {
1308 /* Use the smaller one plus one-byte NOP if the needed one
1309 isn't available. */
1310 last--;
1311 nops = patt[last - 1];
1312 memcpy (where + offset, nops, last);
1313 where[offset + last] = *patt[0];
1314 }
1315 else
1316 memcpy (where + offset, nops, last);
1317 }
62a02d25
L
1318}
1319
3ae729d5
L
1320static INLINE int
1321fits_in_imm7 (offsetT num)
1322{
1323 return (num & 0x7f) == num;
1324}
1325
1326static INLINE int
1327fits_in_imm31 (offsetT num)
1328{
1329 return (num & 0x7fffffff) == num;
1330}
62a02d25
L
1331
1332/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1333 single NOP instruction LIMIT. */
1334
1335void
3ae729d5 1336i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1337{
3ae729d5 1338 const unsigned char *const *patt = NULL;
62a02d25 1339 int max_single_nop_size;
3ae729d5
L
1340 /* Maximum number of NOPs before switching to jump over NOPs. */
1341 int max_number_of_nops;
62a02d25 1342
3ae729d5 1343 switch (fragP->fr_type)
62a02d25 1344 {
3ae729d5
L
1345 case rs_fill_nop:
1346 case rs_align_code:
1347 break;
1348 default:
62a02d25
L
1349 return;
1350 }
1351
ccc9c027
L
1352 /* We need to decide which NOP sequence to use for 32bit and
1353 64bit. When -mtune= is used:
4eed87de 1354
76bc74dc
L
1355 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1356 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1357 2. For the rest, alt_patt will be used.
1358
1359 When -mtune= isn't used, alt_patt will be used if
22109423 1360 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1361 be used.
ccc9c027
L
1362
1363 When -march= or .arch is used, we can't use anything beyond
1364 cpu_arch_isa_flags. */
1365
1366 if (flag_code == CODE_16BIT)
1367 {
3ae729d5
L
1368 patt = f16_patt;
1369 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1370 /* Limit number of NOPs to 2 in 16-bit mode. */
1371 max_number_of_nops = 2;
252b5132 1372 }
33fef721 1373 else
ccc9c027 1374 {
fbf3f584 1375 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1376 {
1377 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1378 switch (cpu_arch_tune)
1379 {
1380 case PROCESSOR_UNKNOWN:
1381 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1382 optimize with nops. */
1383 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1384 patt = alt_patt;
ccc9c027
L
1385 else
1386 patt = f32_patt;
1387 break;
ccc9c027
L
1388 case PROCESSOR_PENTIUM4:
1389 case PROCESSOR_NOCONA:
ef05d495 1390 case PROCESSOR_CORE:
76bc74dc 1391 case PROCESSOR_CORE2:
bd5295b2 1392 case PROCESSOR_COREI7:
3632d14b 1393 case PROCESSOR_L1OM:
7a9068fe 1394 case PROCESSOR_K1OM:
76bc74dc 1395 case PROCESSOR_GENERIC64:
ccc9c027
L
1396 case PROCESSOR_K6:
1397 case PROCESSOR_ATHLON:
1398 case PROCESSOR_K8:
4eed87de 1399 case PROCESSOR_AMDFAM10:
8aedb9fe 1400 case PROCESSOR_BD:
029f3522 1401 case PROCESSOR_ZNVER:
7b458c12 1402 case PROCESSOR_BT:
80b8656c 1403 patt = alt_patt;
ccc9c027 1404 break;
76bc74dc 1405 case PROCESSOR_I386:
ccc9c027
L
1406 case PROCESSOR_I486:
1407 case PROCESSOR_PENTIUM:
2dde1948 1408 case PROCESSOR_PENTIUMPRO:
81486035 1409 case PROCESSOR_IAMCU:
ccc9c027
L
1410 case PROCESSOR_GENERIC32:
1411 patt = f32_patt;
1412 break;
4eed87de 1413 }
ccc9c027
L
1414 }
1415 else
1416 {
fbf3f584 1417 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1418 {
1419 case PROCESSOR_UNKNOWN:
e6a14101 1420 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1421 PROCESSOR_UNKNOWN. */
1422 abort ();
1423 break;
1424
76bc74dc 1425 case PROCESSOR_I386:
ccc9c027
L
1426 case PROCESSOR_I486:
1427 case PROCESSOR_PENTIUM:
81486035 1428 case PROCESSOR_IAMCU:
ccc9c027
L
1429 case PROCESSOR_K6:
1430 case PROCESSOR_ATHLON:
1431 case PROCESSOR_K8:
4eed87de 1432 case PROCESSOR_AMDFAM10:
8aedb9fe 1433 case PROCESSOR_BD:
029f3522 1434 case PROCESSOR_ZNVER:
7b458c12 1435 case PROCESSOR_BT:
ccc9c027
L
1436 case PROCESSOR_GENERIC32:
1437 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1438 with nops. */
1439 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1440 patt = alt_patt;
ccc9c027
L
1441 else
1442 patt = f32_patt;
1443 break;
76bc74dc
L
1444 case PROCESSOR_PENTIUMPRO:
1445 case PROCESSOR_PENTIUM4:
1446 case PROCESSOR_NOCONA:
1447 case PROCESSOR_CORE:
ef05d495 1448 case PROCESSOR_CORE2:
bd5295b2 1449 case PROCESSOR_COREI7:
3632d14b 1450 case PROCESSOR_L1OM:
7a9068fe 1451 case PROCESSOR_K1OM:
22109423 1452 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1453 patt = alt_patt;
ccc9c027
L
1454 else
1455 patt = f32_patt;
1456 break;
1457 case PROCESSOR_GENERIC64:
80b8656c 1458 patt = alt_patt;
ccc9c027 1459 break;
4eed87de 1460 }
ccc9c027
L
1461 }
1462
76bc74dc
L
1463 if (patt == f32_patt)
1464 {
3ae729d5
L
1465 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1466 /* Limit number of NOPs to 2 for older processors. */
1467 max_number_of_nops = 2;
76bc74dc
L
1468 }
1469 else
1470 {
3ae729d5
L
1471 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1472 /* Limit number of NOPs to 7 for newer processors. */
1473 max_number_of_nops = 7;
1474 }
1475 }
1476
1477 if (limit == 0)
1478 limit = max_single_nop_size;
1479
1480 if (fragP->fr_type == rs_fill_nop)
1481 {
1482 /* Output NOPs for .nop directive. */
1483 if (limit > max_single_nop_size)
1484 {
1485 as_bad_where (fragP->fr_file, fragP->fr_line,
1486 _("invalid single nop size: %d "
1487 "(expect within [0, %d])"),
1488 limit, max_single_nop_size);
1489 return;
1490 }
1491 }
1492 else
1493 fragP->fr_var = count;
1494
1495 if ((count / max_single_nop_size) > max_number_of_nops)
1496 {
1497 /* Generate jump over NOPs. */
1498 offsetT disp = count - 2;
1499 if (fits_in_imm7 (disp))
1500 {
1501 /* Use "jmp disp8" if possible. */
1502 count = disp;
1503 where[0] = jump_disp8[0];
1504 where[1] = count;
1505 where += 2;
1506 }
1507 else
1508 {
1509 unsigned int size_of_jump;
1510
1511 if (flag_code == CODE_16BIT)
1512 {
1513 where[0] = jump16_disp32[0];
1514 where[1] = jump16_disp32[1];
1515 size_of_jump = 2;
1516 }
1517 else
1518 {
1519 where[0] = jump32_disp32[0];
1520 size_of_jump = 1;
1521 }
1522
1523 count -= size_of_jump + 4;
1524 if (!fits_in_imm31 (count))
1525 {
1526 as_bad_where (fragP->fr_file, fragP->fr_line,
1527 _("jump over nop padding out of range"));
1528 return;
1529 }
1530
1531 md_number_to_chars (where + size_of_jump, count, 4);
1532 where += size_of_jump + 4;
76bc74dc 1533 }
ccc9c027 1534 }
3ae729d5
L
1535
1536 /* Generate multiple NOPs. */
1537 i386_output_nops (where, patt, count, limit);
252b5132
RH
1538}
1539
c6fb90c8 1540static INLINE int
0dfbf9d7 1541operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1542{
0dfbf9d7 1543 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1544 {
1545 case 3:
0dfbf9d7 1546 if (x->array[2])
c6fb90c8 1547 return 0;
1a0670f3 1548 /* Fall through. */
c6fb90c8 1549 case 2:
0dfbf9d7 1550 if (x->array[1])
c6fb90c8 1551 return 0;
1a0670f3 1552 /* Fall through. */
c6fb90c8 1553 case 1:
0dfbf9d7 1554 return !x->array[0];
c6fb90c8
L
1555 default:
1556 abort ();
1557 }
40fb9820
L
1558}
1559
c6fb90c8 1560static INLINE void
0dfbf9d7 1561operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1562{
0dfbf9d7 1563 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1564 {
1565 case 3:
0dfbf9d7 1566 x->array[2] = v;
1a0670f3 1567 /* Fall through. */
c6fb90c8 1568 case 2:
0dfbf9d7 1569 x->array[1] = v;
1a0670f3 1570 /* Fall through. */
c6fb90c8 1571 case 1:
0dfbf9d7 1572 x->array[0] = v;
1a0670f3 1573 /* Fall through. */
c6fb90c8
L
1574 break;
1575 default:
1576 abort ();
1577 }
1578}
40fb9820 1579
c6fb90c8 1580static INLINE int
0dfbf9d7
L
1581operand_type_equal (const union i386_operand_type *x,
1582 const union i386_operand_type *y)
c6fb90c8 1583{
0dfbf9d7 1584 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1585 {
1586 case 3:
0dfbf9d7 1587 if (x->array[2] != y->array[2])
c6fb90c8 1588 return 0;
1a0670f3 1589 /* Fall through. */
c6fb90c8 1590 case 2:
0dfbf9d7 1591 if (x->array[1] != y->array[1])
c6fb90c8 1592 return 0;
1a0670f3 1593 /* Fall through. */
c6fb90c8 1594 case 1:
0dfbf9d7 1595 return x->array[0] == y->array[0];
c6fb90c8
L
1596 break;
1597 default:
1598 abort ();
1599 }
1600}
40fb9820 1601
0dfbf9d7
L
1602static INLINE int
1603cpu_flags_all_zero (const union i386_cpu_flags *x)
1604{
1605 switch (ARRAY_SIZE(x->array))
1606 {
53467f57
IT
1607 case 4:
1608 if (x->array[3])
1609 return 0;
1610 /* Fall through. */
0dfbf9d7
L
1611 case 3:
1612 if (x->array[2])
1613 return 0;
1a0670f3 1614 /* Fall through. */
0dfbf9d7
L
1615 case 2:
1616 if (x->array[1])
1617 return 0;
1a0670f3 1618 /* Fall through. */
0dfbf9d7
L
1619 case 1:
1620 return !x->array[0];
1621 default:
1622 abort ();
1623 }
1624}
1625
0dfbf9d7
L
1626static INLINE int
1627cpu_flags_equal (const union i386_cpu_flags *x,
1628 const union i386_cpu_flags *y)
1629{
1630 switch (ARRAY_SIZE(x->array))
1631 {
53467f57
IT
1632 case 4:
1633 if (x->array[3] != y->array[3])
1634 return 0;
1635 /* Fall through. */
0dfbf9d7
L
1636 case 3:
1637 if (x->array[2] != y->array[2])
1638 return 0;
1a0670f3 1639 /* Fall through. */
0dfbf9d7
L
1640 case 2:
1641 if (x->array[1] != y->array[1])
1642 return 0;
1a0670f3 1643 /* Fall through. */
0dfbf9d7
L
1644 case 1:
1645 return x->array[0] == y->array[0];
1646 break;
1647 default:
1648 abort ();
1649 }
1650}
c6fb90c8
L
1651
1652static INLINE int
1653cpu_flags_check_cpu64 (i386_cpu_flags f)
1654{
1655 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1656 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1657}
1658
c6fb90c8
L
1659static INLINE i386_cpu_flags
1660cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1661{
c6fb90c8
L
1662 switch (ARRAY_SIZE (x.array))
1663 {
53467f57
IT
1664 case 4:
1665 x.array [3] &= y.array [3];
1666 /* Fall through. */
c6fb90c8
L
1667 case 3:
1668 x.array [2] &= y.array [2];
1a0670f3 1669 /* Fall through. */
c6fb90c8
L
1670 case 2:
1671 x.array [1] &= y.array [1];
1a0670f3 1672 /* Fall through. */
c6fb90c8
L
1673 case 1:
1674 x.array [0] &= y.array [0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 return x;
1680}
40fb9820 1681
c6fb90c8
L
1682static INLINE i386_cpu_flags
1683cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1684{
c6fb90c8 1685 switch (ARRAY_SIZE (x.array))
40fb9820 1686 {
53467f57
IT
1687 case 4:
1688 x.array [3] |= y.array [3];
1689 /* Fall through. */
c6fb90c8
L
1690 case 3:
1691 x.array [2] |= y.array [2];
1a0670f3 1692 /* Fall through. */
c6fb90c8
L
1693 case 2:
1694 x.array [1] |= y.array [1];
1a0670f3 1695 /* Fall through. */
c6fb90c8
L
1696 case 1:
1697 x.array [0] |= y.array [0];
40fb9820
L
1698 break;
1699 default:
1700 abort ();
1701 }
40fb9820
L
1702 return x;
1703}
1704
309d3373
JB
1705static INLINE i386_cpu_flags
1706cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1707{
1708 switch (ARRAY_SIZE (x.array))
1709 {
53467f57
IT
1710 case 4:
1711 x.array [3] &= ~y.array [3];
1712 /* Fall through. */
309d3373
JB
1713 case 3:
1714 x.array [2] &= ~y.array [2];
1a0670f3 1715 /* Fall through. */
309d3373
JB
1716 case 2:
1717 x.array [1] &= ~y.array [1];
1a0670f3 1718 /* Fall through. */
309d3373
JB
1719 case 1:
1720 x.array [0] &= ~y.array [0];
1721 break;
1722 default:
1723 abort ();
1724 }
1725 return x;
1726}
1727
c0f3af97
L
1728#define CPU_FLAGS_ARCH_MATCH 0x1
1729#define CPU_FLAGS_64BIT_MATCH 0x2
1730
c0f3af97 1731#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1732 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1733
1734/* Return CPU flags match bits. */
3629bb00 1735
40fb9820 1736static int
d3ce72d0 1737cpu_flags_match (const insn_template *t)
40fb9820 1738{
c0f3af97
L
1739 i386_cpu_flags x = t->cpu_flags;
1740 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1741
1742 x.bitfield.cpu64 = 0;
1743 x.bitfield.cpuno64 = 0;
1744
0dfbf9d7 1745 if (cpu_flags_all_zero (&x))
c0f3af97
L
1746 {
1747 /* This instruction is available on all archs. */
db12e14e 1748 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1749 }
3629bb00
L
1750 else
1751 {
c0f3af97 1752 /* This instruction is available only on some archs. */
3629bb00
L
1753 i386_cpu_flags cpu = cpu_arch_flags;
1754
ab592e75
JB
1755 /* AVX512VL is no standalone feature - match it and then strip it. */
1756 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1757 return match;
1758 x.bitfield.cpuavx512vl = 0;
1759
3629bb00 1760 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1761 if (!cpu_flags_all_zero (&cpu))
1762 {
a5ff0eb2
L
1763 if (x.bitfield.cpuavx)
1764 {
929f69fa 1765 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1766 if (cpu.bitfield.cpuavx
1767 && (!t->opcode_modifier.sse2avx || sse2avx)
1768 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1769 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1770 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1771 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1772 }
929f69fa
JB
1773 else if (x.bitfield.cpuavx512f)
1774 {
1775 /* We need to check a few extra flags with AVX512F. */
1776 if (cpu.bitfield.cpuavx512f
1777 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1778 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1779 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
a5ff0eb2 1782 else
db12e14e 1783 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1784 }
3629bb00 1785 }
c0f3af97 1786 return match;
40fb9820
L
1787}
1788
c6fb90c8
L
1789static INLINE i386_operand_type
1790operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1791{
c6fb90c8
L
1792 switch (ARRAY_SIZE (x.array))
1793 {
1794 case 3:
1795 x.array [2] &= y.array [2];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 2:
1798 x.array [1] &= y.array [1];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 1:
1801 x.array [0] &= y.array [0];
1802 break;
1803 default:
1804 abort ();
1805 }
1806 return x;
40fb9820
L
1807}
1808
73053c1f
JB
1809static INLINE i386_operand_type
1810operand_type_and_not (i386_operand_type x, i386_operand_type y)
1811{
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] &= ~y.array [2];
1816 /* Fall through. */
1817 case 2:
1818 x.array [1] &= ~y.array [1];
1819 /* Fall through. */
1820 case 1:
1821 x.array [0] &= ~y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
1826 return x;
1827}
1828
c6fb90c8
L
1829static INLINE i386_operand_type
1830operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1831{
c6fb90c8 1832 switch (ARRAY_SIZE (x.array))
40fb9820 1833 {
c6fb90c8
L
1834 case 3:
1835 x.array [2] |= y.array [2];
1a0670f3 1836 /* Fall through. */
c6fb90c8
L
1837 case 2:
1838 x.array [1] |= y.array [1];
1a0670f3 1839 /* Fall through. */
c6fb90c8
L
1840 case 1:
1841 x.array [0] |= y.array [0];
40fb9820
L
1842 break;
1843 default:
1844 abort ();
1845 }
c6fb90c8
L
1846 return x;
1847}
40fb9820 1848
c6fb90c8
L
1849static INLINE i386_operand_type
1850operand_type_xor (i386_operand_type x, i386_operand_type y)
1851{
1852 switch (ARRAY_SIZE (x.array))
1853 {
1854 case 3:
1855 x.array [2] ^= y.array [2];
1a0670f3 1856 /* Fall through. */
c6fb90c8
L
1857 case 2:
1858 x.array [1] ^= y.array [1];
1a0670f3 1859 /* Fall through. */
c6fb90c8
L
1860 case 1:
1861 x.array [0] ^= y.array [0];
1862 break;
1863 default:
1864 abort ();
1865 }
40fb9820
L
1866 return x;
1867}
1868
1869static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1870static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1871static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1872static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1873static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1874static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1875static const i386_operand_type anydisp
1876 = OPERAND_TYPE_ANYDISP;
40fb9820 1877static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1878static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1879static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1880static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1881static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1882static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1883static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1884static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1885static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1886static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1887static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1888static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1889
1890enum operand_type
1891{
1892 reg,
40fb9820
L
1893 imm,
1894 disp,
1895 anymem
1896};
1897
c6fb90c8 1898static INLINE int
40fb9820
L
1899operand_type_check (i386_operand_type t, enum operand_type c)
1900{
1901 switch (c)
1902 {
1903 case reg:
dc821c5f 1904 return t.bitfield.reg;
40fb9820 1905
40fb9820
L
1906 case imm:
1907 return (t.bitfield.imm8
1908 || t.bitfield.imm8s
1909 || t.bitfield.imm16
1910 || t.bitfield.imm32
1911 || t.bitfield.imm32s
1912 || t.bitfield.imm64);
1913
1914 case disp:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64);
1920
1921 case anymem:
1922 return (t.bitfield.disp8
1923 || t.bitfield.disp16
1924 || t.bitfield.disp32
1925 || t.bitfield.disp32s
1926 || t.bitfield.disp64
1927 || t.bitfield.baseindex);
1928
1929 default:
1930 abort ();
1931 }
2cfe26b6
AM
1932
1933 return 0;
40fb9820
L
1934}
1935
7a54636a
L
1936/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1937 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1938
1939static INLINE int
7a54636a
L
1940match_operand_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
5c07affc 1942{
3ac21baa
JB
1943 return !((i.types[given].bitfield.byte
1944 && !t->operand_types[wanted].bitfield.byte)
1945 || (i.types[given].bitfield.word
1946 && !t->operand_types[wanted].bitfield.word)
1947 || (i.types[given].bitfield.dword
1948 && !t->operand_types[wanted].bitfield.dword)
1949 || (i.types[given].bitfield.qword
1950 && !t->operand_types[wanted].bitfield.qword)
1951 || (i.types[given].bitfield.tbyte
1952 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1953}
1954
dd40ce22
L
1955/* Return 1 if there is no conflict in SIMD register between operand
1956 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1957
1958static INLINE int
dd40ce22
L
1959match_simd_size (const insn_template *t, unsigned int wanted,
1960 unsigned int given)
1b54b8d7 1961{
3ac21baa
JB
1962 return !((i.types[given].bitfield.xmmword
1963 && !t->operand_types[wanted].bitfield.xmmword)
1964 || (i.types[given].bitfield.ymmword
1965 && !t->operand_types[wanted].bitfield.ymmword)
1966 || (i.types[given].bitfield.zmmword
1967 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1968}
1969
7a54636a
L
1970/* Return 1 if there is no conflict in any size between operand GIVEN
1971 and opeand WANTED for instruction template T. */
5c07affc
L
1972
1973static INLINE int
dd40ce22
L
1974match_mem_size (const insn_template *t, unsigned int wanted,
1975 unsigned int given)
5c07affc 1976{
7a54636a 1977 return (match_operand_size (t, wanted, given)
3ac21baa 1978 && !((i.types[given].bitfield.unspecified
af508cb9 1979 && !i.broadcast
3ac21baa
JB
1980 && !t->operand_types[wanted].bitfield.unspecified)
1981 || (i.types[given].bitfield.fword
1982 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1983 /* For scalar opcode templates to allow register and memory
1984 operands at the same time, some special casing is needed
d6793fa1
JB
1985 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1986 down-conversion vpmov*. */
3ac21baa 1987 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1988 && !t->opcode_modifier.broadcast
3ac21baa
JB
1989 && (t->operand_types[wanted].bitfield.byte
1990 || t->operand_types[wanted].bitfield.word
1991 || t->operand_types[wanted].bitfield.dword
1992 || t->operand_types[wanted].bitfield.qword))
1993 ? (i.types[given].bitfield.xmmword
1994 || i.types[given].bitfield.ymmword
1995 || i.types[given].bitfield.zmmword)
1996 : !match_simd_size(t, wanted, given))));
5c07affc
L
1997}
1998
3ac21baa
JB
1999/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2000 operands for instruction template T, and it has MATCH_REVERSE set if there
2001 is no size conflict on any operands for the template with operands reversed
2002 (and the template allows for reversing in the first place). */
5c07affc 2003
3ac21baa
JB
2004#define MATCH_STRAIGHT 1
2005#define MATCH_REVERSE 2
2006
2007static INLINE unsigned int
d3ce72d0 2008operand_size_match (const insn_template *t)
5c07affc 2009{
3ac21baa 2010 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2011
2012 /* Don't check jump instructions. */
2013 if (t->opcode_modifier.jump
2014 || t->opcode_modifier.jumpbyte
2015 || t->opcode_modifier.jumpdword
2016 || t->opcode_modifier.jumpintersegment)
2017 return match;
2018
2019 /* Check memory and accumulator operand size. */
2020 for (j = 0; j < i.operands; j++)
2021 {
1b54b8d7
JB
2022 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2023 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2024 continue;
2025
1b54b8d7 2026 if (t->operand_types[j].bitfield.reg
7a54636a 2027 && !match_operand_size (t, j, j))
5c07affc
L
2028 {
2029 match = 0;
2030 break;
2031 }
2032
1b54b8d7 2033 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2034 && !match_simd_size (t, j, j))
1b54b8d7
JB
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if (t->operand_types[j].bitfield.acc
7a54636a 2041 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2042 {
2043 match = 0;
2044 break;
2045 }
2046
c48dadc9 2047 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2048 {
2049 match = 0;
2050 break;
2051 }
2052 }
2053
3ac21baa 2054 if (!t->opcode_modifier.d)
891edac4
L
2055 {
2056mismatch:
3ac21baa
JB
2057 if (!match)
2058 i.error = operand_size_mismatch;
2059 return match;
891edac4 2060 }
5c07affc
L
2061
2062 /* Check reverse. */
f5eb1d70 2063 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2064
f5eb1d70 2065 for (j = 0; j < i.operands; j++)
5c07affc 2066 {
f5eb1d70
JB
2067 unsigned int given = i.operands - j - 1;
2068
dbbc8b7e 2069 if (t->operand_types[j].bitfield.reg
f5eb1d70 2070 && !match_operand_size (t, j, given))
891edac4 2071 goto mismatch;
5c07affc 2072
dbbc8b7e 2073 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2074 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2075 goto mismatch;
2076
2077 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2078 && (!match_operand_size (t, j, given)
2079 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2080 goto mismatch;
2081
f5eb1d70 2082 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2083 goto mismatch;
5c07affc
L
2084 }
2085
3ac21baa 2086 return match | MATCH_REVERSE;
5c07affc
L
2087}
2088
c6fb90c8 2089static INLINE int
40fb9820
L
2090operand_type_match (i386_operand_type overlap,
2091 i386_operand_type given)
2092{
2093 i386_operand_type temp = overlap;
2094
2095 temp.bitfield.jumpabsolute = 0;
7d5e4556 2096 temp.bitfield.unspecified = 0;
5c07affc
L
2097 temp.bitfield.byte = 0;
2098 temp.bitfield.word = 0;
2099 temp.bitfield.dword = 0;
2100 temp.bitfield.fword = 0;
2101 temp.bitfield.qword = 0;
2102 temp.bitfield.tbyte = 0;
2103 temp.bitfield.xmmword = 0;
c0f3af97 2104 temp.bitfield.ymmword = 0;
43234a1e 2105 temp.bitfield.zmmword = 0;
0dfbf9d7 2106 if (operand_type_all_zero (&temp))
891edac4 2107 goto mismatch;
40fb9820 2108
891edac4
L
2109 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2110 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2111 return 1;
2112
2113mismatch:
a65babc9 2114 i.error = operand_type_mismatch;
891edac4 2115 return 0;
40fb9820
L
2116}
2117
7d5e4556 2118/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2119 unless the expected operand type register overlap is null.
2120 Memory operand size of certain SIMD instructions is also being checked
2121 here. */
40fb9820 2122
c6fb90c8 2123static INLINE int
dc821c5f 2124operand_type_register_match (i386_operand_type g0,
40fb9820 2125 i386_operand_type t0,
40fb9820
L
2126 i386_operand_type g1,
2127 i386_operand_type t1)
2128{
10c17abd
JB
2129 if (!g0.bitfield.reg
2130 && !g0.bitfield.regsimd
2131 && (!operand_type_check (g0, anymem)
2132 || g0.bitfield.unspecified
2133 || !t0.bitfield.regsimd))
40fb9820
L
2134 return 1;
2135
10c17abd
JB
2136 if (!g1.bitfield.reg
2137 && !g1.bitfield.regsimd
2138 && (!operand_type_check (g1, anymem)
2139 || g1.bitfield.unspecified
2140 || !t1.bitfield.regsimd))
40fb9820
L
2141 return 1;
2142
dc821c5f
JB
2143 if (g0.bitfield.byte == g1.bitfield.byte
2144 && g0.bitfield.word == g1.bitfield.word
2145 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2146 && g0.bitfield.qword == g1.bitfield.qword
2147 && g0.bitfield.xmmword == g1.bitfield.xmmword
2148 && g0.bitfield.ymmword == g1.bitfield.ymmword
2149 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2150 return 1;
2151
dc821c5f
JB
2152 if (!(t0.bitfield.byte & t1.bitfield.byte)
2153 && !(t0.bitfield.word & t1.bitfield.word)
2154 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2155 && !(t0.bitfield.qword & t1.bitfield.qword)
2156 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2157 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2158 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2159 return 1;
2160
a65babc9 2161 i.error = register_type_mismatch;
891edac4
L
2162
2163 return 0;
40fb9820
L
2164}
2165
4c692bc7
JB
2166static INLINE unsigned int
2167register_number (const reg_entry *r)
2168{
2169 unsigned int nr = r->reg_num;
2170
2171 if (r->reg_flags & RegRex)
2172 nr += 8;
2173
200cbe0f
L
2174 if (r->reg_flags & RegVRex)
2175 nr += 16;
2176
4c692bc7
JB
2177 return nr;
2178}
2179
252b5132 2180static INLINE unsigned int
40fb9820 2181mode_from_disp_size (i386_operand_type t)
252b5132 2182{
b5014f7a 2183 if (t.bitfield.disp8)
40fb9820
L
2184 return 1;
2185 else if (t.bitfield.disp16
2186 || t.bitfield.disp32
2187 || t.bitfield.disp32s)
2188 return 2;
2189 else
2190 return 0;
252b5132
RH
2191}
2192
2193static INLINE int
65879393 2194fits_in_signed_byte (addressT num)
252b5132 2195{
65879393 2196 return num + 0x80 <= 0xff;
47926f60 2197}
252b5132
RH
2198
2199static INLINE int
65879393 2200fits_in_unsigned_byte (addressT num)
252b5132 2201{
65879393 2202 return num <= 0xff;
47926f60 2203}
252b5132
RH
2204
2205static INLINE int
65879393 2206fits_in_unsigned_word (addressT num)
252b5132 2207{
65879393 2208 return num <= 0xffff;
47926f60 2209}
252b5132
RH
2210
2211static INLINE int
65879393 2212fits_in_signed_word (addressT num)
252b5132 2213{
65879393 2214 return num + 0x8000 <= 0xffff;
47926f60 2215}
2a962e6d 2216
3e73aa7c 2217static INLINE int
65879393 2218fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2219{
2220#ifndef BFD64
2221 return 1;
2222#else
65879393 2223 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2224#endif
2225} /* fits_in_signed_long() */
2a962e6d 2226
3e73aa7c 2227static INLINE int
65879393 2228fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2229{
2230#ifndef BFD64
2231 return 1;
2232#else
65879393 2233 return num <= 0xffffffff;
3e73aa7c
JH
2234#endif
2235} /* fits_in_unsigned_long() */
252b5132 2236
43234a1e 2237static INLINE int
b5014f7a 2238fits_in_disp8 (offsetT num)
43234a1e
L
2239{
2240 int shift = i.memshift;
2241 unsigned int mask;
2242
2243 if (shift == -1)
2244 abort ();
2245
2246 mask = (1 << shift) - 1;
2247
2248 /* Return 0 if NUM isn't properly aligned. */
2249 if ((num & mask))
2250 return 0;
2251
2252 /* Check if NUM will fit in 8bit after shift. */
2253 return fits_in_signed_byte (num >> shift);
2254}
2255
a683cc34
SP
2256static INLINE int
2257fits_in_imm4 (offsetT num)
2258{
2259 return (num & 0xf) == num;
2260}
2261
40fb9820 2262static i386_operand_type
e3bb37b5 2263smallest_imm_type (offsetT num)
252b5132 2264{
40fb9820 2265 i386_operand_type t;
7ab9ffdd 2266
0dfbf9d7 2267 operand_type_set (&t, 0);
40fb9820
L
2268 t.bitfield.imm64 = 1;
2269
2270 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2271 {
2272 /* This code is disabled on the 486 because all the Imm1 forms
2273 in the opcode table are slower on the i486. They're the
2274 versions with the implicitly specified single-position
2275 displacement, which has another syntax if you really want to
2276 use that form. */
40fb9820
L
2277 t.bitfield.imm1 = 1;
2278 t.bitfield.imm8 = 1;
2279 t.bitfield.imm8s = 1;
2280 t.bitfield.imm16 = 1;
2281 t.bitfield.imm32 = 1;
2282 t.bitfield.imm32s = 1;
2283 }
2284 else if (fits_in_signed_byte (num))
2285 {
2286 t.bitfield.imm8 = 1;
2287 t.bitfield.imm8s = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_unsigned_byte (num))
2293 {
2294 t.bitfield.imm8 = 1;
2295 t.bitfield.imm16 = 1;
2296 t.bitfield.imm32 = 1;
2297 t.bitfield.imm32s = 1;
2298 }
2299 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2300 {
2301 t.bitfield.imm16 = 1;
2302 t.bitfield.imm32 = 1;
2303 t.bitfield.imm32s = 1;
2304 }
2305 else if (fits_in_signed_long (num))
2306 {
2307 t.bitfield.imm32 = 1;
2308 t.bitfield.imm32s = 1;
2309 }
2310 else if (fits_in_unsigned_long (num))
2311 t.bitfield.imm32 = 1;
2312
2313 return t;
47926f60 2314}
252b5132 2315
847f7ad4 2316static offsetT
e3bb37b5 2317offset_in_range (offsetT val, int size)
847f7ad4 2318{
508866be 2319 addressT mask;
ba2adb93 2320
847f7ad4
AM
2321 switch (size)
2322 {
508866be
L
2323 case 1: mask = ((addressT) 1 << 8) - 1; break;
2324 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2325 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2326#ifdef BFD64
2327 case 8: mask = ((addressT) 2 << 63) - 1; break;
2328#endif
47926f60 2329 default: abort ();
847f7ad4
AM
2330 }
2331
9de868bf
L
2332#ifdef BFD64
2333 /* If BFD64, sign extend val for 32bit address mode. */
2334 if (flag_code != CODE_64BIT
2335 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2336 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2337 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2338#endif
ba2adb93 2339
47926f60 2340 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2341 {
2342 char buf1[40], buf2[40];
2343
2344 sprint_value (buf1, val);
2345 sprint_value (buf2, val & mask);
2346 as_warn (_("%s shortened to %s"), buf1, buf2);
2347 }
2348 return val & mask;
2349}
2350
c32fa91d
L
2351enum PREFIX_GROUP
2352{
2353 PREFIX_EXIST = 0,
2354 PREFIX_LOCK,
2355 PREFIX_REP,
04ef582a 2356 PREFIX_DS,
c32fa91d
L
2357 PREFIX_OTHER
2358};
2359
2360/* Returns
2361 a. PREFIX_EXIST if attempting to add a prefix where one from the
2362 same class already exists.
2363 b. PREFIX_LOCK if lock prefix is added.
2364 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2365 d. PREFIX_DS if ds prefix is added.
2366 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2367 */
2368
2369static enum PREFIX_GROUP
e3bb37b5 2370add_prefix (unsigned int prefix)
252b5132 2371{
c32fa91d 2372 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2373 unsigned int q;
252b5132 2374
29b0f896
AM
2375 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2376 && flag_code == CODE_64BIT)
b1905489 2377 {
161a04f6 2378 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2379 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2380 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2381 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2382 ret = PREFIX_EXIST;
b1905489
JB
2383 q = REX_PREFIX;
2384 }
3e73aa7c 2385 else
b1905489
JB
2386 {
2387 switch (prefix)
2388 {
2389 default:
2390 abort ();
2391
b1905489 2392 case DS_PREFIX_OPCODE:
04ef582a
L
2393 ret = PREFIX_DS;
2394 /* Fall through. */
2395 case CS_PREFIX_OPCODE:
b1905489
JB
2396 case ES_PREFIX_OPCODE:
2397 case FS_PREFIX_OPCODE:
2398 case GS_PREFIX_OPCODE:
2399 case SS_PREFIX_OPCODE:
2400 q = SEG_PREFIX;
2401 break;
2402
2403 case REPNE_PREFIX_OPCODE:
2404 case REPE_PREFIX_OPCODE:
c32fa91d
L
2405 q = REP_PREFIX;
2406 ret = PREFIX_REP;
2407 break;
2408
b1905489 2409 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2410 q = LOCK_PREFIX;
2411 ret = PREFIX_LOCK;
b1905489
JB
2412 break;
2413
2414 case FWAIT_OPCODE:
2415 q = WAIT_PREFIX;
2416 break;
2417
2418 case ADDR_PREFIX_OPCODE:
2419 q = ADDR_PREFIX;
2420 break;
2421
2422 case DATA_PREFIX_OPCODE:
2423 q = DATA_PREFIX;
2424 break;
2425 }
2426 if (i.prefix[q] != 0)
c32fa91d 2427 ret = PREFIX_EXIST;
b1905489 2428 }
252b5132 2429
b1905489 2430 if (ret)
252b5132 2431 {
b1905489
JB
2432 if (!i.prefix[q])
2433 ++i.prefixes;
2434 i.prefix[q] |= prefix;
252b5132 2435 }
b1905489
JB
2436 else
2437 as_bad (_("same type of prefix used twice"));
252b5132 2438
252b5132
RH
2439 return ret;
2440}
2441
2442static void
78f12dd3 2443update_code_flag (int value, int check)
eecb386c 2444{
78f12dd3
L
2445 PRINTF_LIKE ((*as_error));
2446
1e9cc1c2 2447 flag_code = (enum flag_code) value;
40fb9820
L
2448 if (flag_code == CODE_64BIT)
2449 {
2450 cpu_arch_flags.bitfield.cpu64 = 1;
2451 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2452 }
2453 else
2454 {
2455 cpu_arch_flags.bitfield.cpu64 = 0;
2456 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2457 }
2458 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2459 {
78f12dd3
L
2460 if (check)
2461 as_error = as_fatal;
2462 else
2463 as_error = as_bad;
2464 (*as_error) (_("64bit mode not supported on `%s'."),
2465 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2466 }
40fb9820 2467 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2468 {
78f12dd3
L
2469 if (check)
2470 as_error = as_fatal;
2471 else
2472 as_error = as_bad;
2473 (*as_error) (_("32bit mode not supported on `%s'."),
2474 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2475 }
eecb386c
AM
2476 stackop_size = '\0';
2477}
2478
78f12dd3
L
2479static void
2480set_code_flag (int value)
2481{
2482 update_code_flag (value, 0);
2483}
2484
eecb386c 2485static void
e3bb37b5 2486set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2487{
1e9cc1c2 2488 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2489 if (flag_code != CODE_16BIT)
2490 abort ();
2491 cpu_arch_flags.bitfield.cpu64 = 0;
2492 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2493 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2494}
2495
2496static void
e3bb37b5 2497set_intel_syntax (int syntax_flag)
252b5132
RH
2498{
2499 /* Find out if register prefixing is specified. */
2500 int ask_naked_reg = 0;
2501
2502 SKIP_WHITESPACE ();
29b0f896 2503 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2504 {
d02603dc
NC
2505 char *string;
2506 int e = get_symbol_name (&string);
252b5132 2507
47926f60 2508 if (strcmp (string, "prefix") == 0)
252b5132 2509 ask_naked_reg = 1;
47926f60 2510 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2511 ask_naked_reg = -1;
2512 else
d0b47220 2513 as_bad (_("bad argument to syntax directive."));
d02603dc 2514 (void) restore_line_pointer (e);
252b5132
RH
2515 }
2516 demand_empty_rest_of_line ();
c3332e24 2517
252b5132
RH
2518 intel_syntax = syntax_flag;
2519
2520 if (ask_naked_reg == 0)
f86103b7
AM
2521 allow_naked_reg = (intel_syntax
2522 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2523 else
2524 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2525
ee86248c 2526 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2527
e4a3b5a4 2528 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2529 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2530 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2531}
2532
1efbbeb4
L
2533static void
2534set_intel_mnemonic (int mnemonic_flag)
2535{
e1d4d893 2536 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2537}
2538
db51cc60
L
2539static void
2540set_allow_index_reg (int flag)
2541{
2542 allow_index_reg = flag;
2543}
2544
cb19c032 2545static void
7bab8ab5 2546set_check (int what)
cb19c032 2547{
7bab8ab5
JB
2548 enum check_kind *kind;
2549 const char *str;
2550
2551 if (what)
2552 {
2553 kind = &operand_check;
2554 str = "operand";
2555 }
2556 else
2557 {
2558 kind = &sse_check;
2559 str = "sse";
2560 }
2561
cb19c032
L
2562 SKIP_WHITESPACE ();
2563
2564 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2565 {
d02603dc
NC
2566 char *string;
2567 int e = get_symbol_name (&string);
cb19c032
L
2568
2569 if (strcmp (string, "none") == 0)
7bab8ab5 2570 *kind = check_none;
cb19c032 2571 else if (strcmp (string, "warning") == 0)
7bab8ab5 2572 *kind = check_warning;
cb19c032 2573 else if (strcmp (string, "error") == 0)
7bab8ab5 2574 *kind = check_error;
cb19c032 2575 else
7bab8ab5 2576 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2577 (void) restore_line_pointer (e);
cb19c032
L
2578 }
2579 else
7bab8ab5 2580 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2581
2582 demand_empty_rest_of_line ();
2583}
2584
8a9036a4
L
2585static void
2586check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2587 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2588{
2589#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2590 static const char *arch;
2591
2592 /* Intel LIOM is only supported on ELF. */
2593 if (!IS_ELF)
2594 return;
2595
2596 if (!arch)
2597 {
2598 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2599 use default_arch. */
2600 arch = cpu_arch_name;
2601 if (!arch)
2602 arch = default_arch;
2603 }
2604
81486035
L
2605 /* If we are targeting Intel MCU, we must enable it. */
2606 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2607 || new_flag.bitfield.cpuiamcu)
2608 return;
2609
3632d14b 2610 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2611 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2612 || new_flag.bitfield.cpul1om)
8a9036a4 2613 return;
76ba9986 2614
7a9068fe
L
2615 /* If we are targeting Intel K1OM, we must enable it. */
2616 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2617 || new_flag.bitfield.cpuk1om)
2618 return;
2619
8a9036a4
L
2620 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2621#endif
2622}
2623
e413e4e9 2624static void
e3bb37b5 2625set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2626{
47926f60 2627 SKIP_WHITESPACE ();
e413e4e9 2628
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
91d6fa6a 2633 unsigned int j;
40fb9820 2634 i386_cpu_flags flags;
e413e4e9 2635
91d6fa6a 2636 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2637 {
91d6fa6a 2638 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2639 {
91d6fa6a 2640 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2641
5c6af06e
JB
2642 if (*string != '.')
2643 {
91d6fa6a 2644 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2645 cpu_sub_arch_name = NULL;
91d6fa6a 2646 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2647 if (flag_code == CODE_64BIT)
2648 {
2649 cpu_arch_flags.bitfield.cpu64 = 1;
2650 cpu_arch_flags.bitfield.cpuno64 = 0;
2651 }
2652 else
2653 {
2654 cpu_arch_flags.bitfield.cpu64 = 0;
2655 cpu_arch_flags.bitfield.cpuno64 = 1;
2656 }
91d6fa6a
NC
2657 cpu_arch_isa = cpu_arch[j].type;
2658 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2659 if (!cpu_arch_tune_set)
2660 {
2661 cpu_arch_tune = cpu_arch_isa;
2662 cpu_arch_tune_flags = cpu_arch_isa_flags;
2663 }
5c6af06e
JB
2664 break;
2665 }
40fb9820 2666
293f5f65
L
2667 flags = cpu_flags_or (cpu_arch_flags,
2668 cpu_arch[j].flags);
81486035 2669
5b64d091 2670 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2671 {
6305a203
L
2672 if (cpu_sub_arch_name)
2673 {
2674 char *name = cpu_sub_arch_name;
2675 cpu_sub_arch_name = concat (name,
91d6fa6a 2676 cpu_arch[j].name,
1bf57e9f 2677 (const char *) NULL);
6305a203
L
2678 free (name);
2679 }
2680 else
91d6fa6a 2681 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2682 cpu_arch_flags = flags;
a586129e 2683 cpu_arch_isa_flags = flags;
5c6af06e 2684 }
0089dace
L
2685 else
2686 cpu_arch_isa_flags
2687 = cpu_flags_or (cpu_arch_isa_flags,
2688 cpu_arch[j].flags);
d02603dc 2689 (void) restore_line_pointer (e);
5c6af06e
JB
2690 demand_empty_rest_of_line ();
2691 return;
e413e4e9
AM
2692 }
2693 }
293f5f65
L
2694
2695 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2696 {
33eaf5de 2697 /* Disable an ISA extension. */
293f5f65
L
2698 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2699 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2700 {
2701 flags = cpu_flags_and_not (cpu_arch_flags,
2702 cpu_noarch[j].flags);
2703 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2704 {
2705 if (cpu_sub_arch_name)
2706 {
2707 char *name = cpu_sub_arch_name;
2708 cpu_sub_arch_name = concat (name, string,
2709 (const char *) NULL);
2710 free (name);
2711 }
2712 else
2713 cpu_sub_arch_name = xstrdup (string);
2714 cpu_arch_flags = flags;
2715 cpu_arch_isa_flags = flags;
2716 }
2717 (void) restore_line_pointer (e);
2718 demand_empty_rest_of_line ();
2719 return;
2720 }
2721
2722 j = ARRAY_SIZE (cpu_arch);
2723 }
2724
91d6fa6a 2725 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2726 as_bad (_("no such architecture: `%s'"), string);
2727
2728 *input_line_pointer = e;
2729 }
2730 else
2731 as_bad (_("missing cpu architecture"));
2732
fddf5b5b
AM
2733 no_cond_jump_promotion = 0;
2734 if (*input_line_pointer == ','
29b0f896 2735 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2736 {
d02603dc
NC
2737 char *string;
2738 char e;
2739
2740 ++input_line_pointer;
2741 e = get_symbol_name (&string);
fddf5b5b
AM
2742
2743 if (strcmp (string, "nojumps") == 0)
2744 no_cond_jump_promotion = 1;
2745 else if (strcmp (string, "jumps") == 0)
2746 ;
2747 else
2748 as_bad (_("no such architecture modifier: `%s'"), string);
2749
d02603dc 2750 (void) restore_line_pointer (e);
fddf5b5b
AM
2751 }
2752
e413e4e9
AM
2753 demand_empty_rest_of_line ();
2754}
2755
8a9036a4
L
2756enum bfd_architecture
2757i386_arch (void)
2758{
3632d14b 2759 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel L1OM is 64bit ELF only"));
2764 return bfd_arch_l1om;
2765 }
7a9068fe
L
2766 else if (cpu_arch_isa == PROCESSOR_K1OM)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code != CODE_64BIT)
2770 as_fatal (_("Intel K1OM is 64bit ELF only"));
2771 return bfd_arch_k1om;
2772 }
81486035
L
2773 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code == CODE_64BIT)
2777 as_fatal (_("Intel MCU is 32bit ELF only"));
2778 return bfd_arch_iamcu;
2779 }
8a9036a4
L
2780 else
2781 return bfd_arch_i386;
2782}
2783
b9d79e03 2784unsigned long
7016a5d5 2785i386_mach (void)
b9d79e03 2786{
351f65ca 2787 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2788 {
3632d14b 2789 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2790 {
351f65ca
L
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
8a9036a4
L
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_mach_l1om;
2795 }
7a9068fe
L
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || default_arch[6] != '\0')
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_mach_k1om;
2802 }
351f65ca 2803 else if (default_arch[6] == '\0')
8a9036a4 2804 return bfd_mach_x86_64;
351f65ca
L
2805 else
2806 return bfd_mach_x64_32;
8a9036a4 2807 }
5197d474
L
2808 else if (!strcmp (default_arch, "i386")
2809 || !strcmp (default_arch, "iamcu"))
81486035
L
2810 {
2811 if (cpu_arch_isa == PROCESSOR_IAMCU)
2812 {
2813 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2814 as_fatal (_("Intel MCU is 32bit ELF only"));
2815 return bfd_mach_i386_iamcu;
2816 }
2817 else
2818 return bfd_mach_i386_i386;
2819 }
b9d79e03 2820 else
2b5d6a91 2821 as_fatal (_("unknown architecture"));
b9d79e03 2822}
b9d79e03 2823\f
252b5132 2824void
7016a5d5 2825md_begin (void)
252b5132
RH
2826{
2827 const char *hash_err;
2828
86fa6981
L
2829 /* Support pseudo prefixes like {disp32}. */
2830 lex_type ['{'] = LEX_BEGIN_NAME;
2831
47926f60 2832 /* Initialize op_hash hash table. */
252b5132
RH
2833 op_hash = hash_new ();
2834
2835 {
d3ce72d0 2836 const insn_template *optab;
29b0f896 2837 templates *core_optab;
252b5132 2838
47926f60
KH
2839 /* Setup for loop. */
2840 optab = i386_optab;
add39d23 2841 core_optab = XNEW (templates);
252b5132
RH
2842 core_optab->start = optab;
2843
2844 while (1)
2845 {
2846 ++optab;
2847 if (optab->name == NULL
2848 || strcmp (optab->name, (optab - 1)->name) != 0)
2849 {
2850 /* different name --> ship out current template list;
47926f60 2851 add to hash table; & begin anew. */
252b5132
RH
2852 core_optab->end = optab;
2853 hash_err = hash_insert (op_hash,
2854 (optab - 1)->name,
5a49b8ac 2855 (void *) core_optab);
252b5132
RH
2856 if (hash_err)
2857 {
b37df7c4 2858 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2859 (optab - 1)->name,
2860 hash_err);
2861 }
2862 if (optab->name == NULL)
2863 break;
add39d23 2864 core_optab = XNEW (templates);
252b5132
RH
2865 core_optab->start = optab;
2866 }
2867 }
2868 }
2869
47926f60 2870 /* Initialize reg_hash hash table. */
252b5132
RH
2871 reg_hash = hash_new ();
2872 {
29b0f896 2873 const reg_entry *regtab;
c3fe08fa 2874 unsigned int regtab_size = i386_regtab_size;
252b5132 2875
c3fe08fa 2876 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2877 {
5a49b8ac 2878 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2879 if (hash_err)
b37df7c4 2880 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2881 regtab->reg_name,
2882 hash_err);
252b5132
RH
2883 }
2884 }
2885
47926f60 2886 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2887 {
29b0f896
AM
2888 int c;
2889 char *p;
252b5132
RH
2890
2891 for (c = 0; c < 256; c++)
2892 {
3882b010 2893 if (ISDIGIT (c))
252b5132
RH
2894 {
2895 digit_chars[c] = c;
2896 mnemonic_chars[c] = c;
2897 register_chars[c] = c;
2898 operand_chars[c] = c;
2899 }
3882b010 2900 else if (ISLOWER (c))
252b5132
RH
2901 {
2902 mnemonic_chars[c] = c;
2903 register_chars[c] = c;
2904 operand_chars[c] = c;
2905 }
3882b010 2906 else if (ISUPPER (c))
252b5132 2907 {
3882b010 2908 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2909 register_chars[c] = mnemonic_chars[c];
2910 operand_chars[c] = c;
2911 }
43234a1e 2912 else if (c == '{' || c == '}')
86fa6981
L
2913 {
2914 mnemonic_chars[c] = c;
2915 operand_chars[c] = c;
2916 }
252b5132 2917
3882b010 2918 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2919 identifier_chars[c] = c;
2920 else if (c >= 128)
2921 {
2922 identifier_chars[c] = c;
2923 operand_chars[c] = c;
2924 }
2925 }
2926
2927#ifdef LEX_AT
2928 identifier_chars['@'] = '@';
32137342
NC
2929#endif
2930#ifdef LEX_QM
2931 identifier_chars['?'] = '?';
2932 operand_chars['?'] = '?';
252b5132 2933#endif
252b5132 2934 digit_chars['-'] = '-';
c0f3af97 2935 mnemonic_chars['_'] = '_';
791fe849 2936 mnemonic_chars['-'] = '-';
0003779b 2937 mnemonic_chars['.'] = '.';
252b5132
RH
2938 identifier_chars['_'] = '_';
2939 identifier_chars['.'] = '.';
2940
2941 for (p = operand_special_chars; *p != '\0'; p++)
2942 operand_chars[(unsigned char) *p] = *p;
2943 }
2944
a4447b93
RH
2945 if (flag_code == CODE_64BIT)
2946 {
ca19b261
KT
2947#if defined (OBJ_COFF) && defined (TE_PE)
2948 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2949 ? 32 : 16);
2950#else
a4447b93 2951 x86_dwarf2_return_column = 16;
ca19b261 2952#endif
61ff971f 2953 x86_cie_data_alignment = -8;
a4447b93
RH
2954 }
2955 else
2956 {
2957 x86_dwarf2_return_column = 8;
2958 x86_cie_data_alignment = -4;
2959 }
252b5132
RH
2960}
2961
2962void
e3bb37b5 2963i386_print_statistics (FILE *file)
252b5132
RH
2964{
2965 hash_print_statistics (file, "i386 opcode", op_hash);
2966 hash_print_statistics (file, "i386 register", reg_hash);
2967}
2968\f
252b5132
RH
2969#ifdef DEBUG386
2970
ce8a8b2f 2971/* Debugging routines for md_assemble. */
d3ce72d0 2972static void pte (insn_template *);
40fb9820 2973static void pt (i386_operand_type);
e3bb37b5
L
2974static void pe (expressionS *);
2975static void ps (symbolS *);
252b5132
RH
2976
2977static void
e3bb37b5 2978pi (char *line, i386_insn *x)
252b5132 2979{
09137c09 2980 unsigned int j;
252b5132
RH
2981
2982 fprintf (stdout, "%s: template ", line);
2983 pte (&x->tm);
09f131f2
JH
2984 fprintf (stdout, " address: base %s index %s scale %x\n",
2985 x->base_reg ? x->base_reg->reg_name : "none",
2986 x->index_reg ? x->index_reg->reg_name : "none",
2987 x->log2_scale_factor);
2988 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2989 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2990 fprintf (stdout, " sib: base %x index %x scale %x\n",
2991 x->sib.base, x->sib.index, x->sib.scale);
2992 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2993 (x->rex & REX_W) != 0,
2994 (x->rex & REX_R) != 0,
2995 (x->rex & REX_X) != 0,
2996 (x->rex & REX_B) != 0);
09137c09 2997 for (j = 0; j < x->operands; j++)
252b5132 2998 {
09137c09
SP
2999 fprintf (stdout, " #%d: ", j + 1);
3000 pt (x->types[j]);
252b5132 3001 fprintf (stdout, "\n");
dc821c5f 3002 if (x->types[j].bitfield.reg
09137c09 3003 || x->types[j].bitfield.regmmx
1b54b8d7 3004 || x->types[j].bitfield.regsimd
09137c09
SP
3005 || x->types[j].bitfield.sreg2
3006 || x->types[j].bitfield.sreg3
3007 || x->types[j].bitfield.control
3008 || x->types[j].bitfield.debug
3009 || x->types[j].bitfield.test)
3010 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3011 if (operand_type_check (x->types[j], imm))
3012 pe (x->op[j].imms);
3013 if (operand_type_check (x->types[j], disp))
3014 pe (x->op[j].disps);
252b5132
RH
3015 }
3016}
3017
3018static void
d3ce72d0 3019pte (insn_template *t)
252b5132 3020{
09137c09 3021 unsigned int j;
252b5132 3022 fprintf (stdout, " %d operands ", t->operands);
47926f60 3023 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3024 if (t->extension_opcode != None)
3025 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3026 if (t->opcode_modifier.d)
252b5132 3027 fprintf (stdout, "D");
40fb9820 3028 if (t->opcode_modifier.w)
252b5132
RH
3029 fprintf (stdout, "W");
3030 fprintf (stdout, "\n");
09137c09 3031 for (j = 0; j < t->operands; j++)
252b5132 3032 {
09137c09
SP
3033 fprintf (stdout, " #%d type ", j + 1);
3034 pt (t->operand_types[j]);
252b5132
RH
3035 fprintf (stdout, "\n");
3036 }
3037}
3038
3039static void
e3bb37b5 3040pe (expressionS *e)
252b5132 3041{
24eab124 3042 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3043 fprintf (stdout, " add_number %ld (%lx)\n",
3044 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3045 if (e->X_add_symbol)
3046 {
3047 fprintf (stdout, " add_symbol ");
3048 ps (e->X_add_symbol);
3049 fprintf (stdout, "\n");
3050 }
3051 if (e->X_op_symbol)
3052 {
3053 fprintf (stdout, " op_symbol ");
3054 ps (e->X_op_symbol);
3055 fprintf (stdout, "\n");
3056 }
3057}
3058
3059static void
e3bb37b5 3060ps (symbolS *s)
252b5132
RH
3061{
3062 fprintf (stdout, "%s type %s%s",
3063 S_GET_NAME (s),
3064 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3065 segment_name (S_GET_SEGMENT (s)));
3066}
3067
7b81dfbb 3068static struct type_name
252b5132 3069 {
40fb9820
L
3070 i386_operand_type mask;
3071 const char *name;
252b5132 3072 }
7b81dfbb 3073const type_names[] =
252b5132 3074{
40fb9820
L
3075 { OPERAND_TYPE_REG8, "r8" },
3076 { OPERAND_TYPE_REG16, "r16" },
3077 { OPERAND_TYPE_REG32, "r32" },
3078 { OPERAND_TYPE_REG64, "r64" },
3079 { OPERAND_TYPE_IMM8, "i8" },
3080 { OPERAND_TYPE_IMM8, "i8s" },
3081 { OPERAND_TYPE_IMM16, "i16" },
3082 { OPERAND_TYPE_IMM32, "i32" },
3083 { OPERAND_TYPE_IMM32S, "i32s" },
3084 { OPERAND_TYPE_IMM64, "i64" },
3085 { OPERAND_TYPE_IMM1, "i1" },
3086 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3087 { OPERAND_TYPE_DISP8, "d8" },
3088 { OPERAND_TYPE_DISP16, "d16" },
3089 { OPERAND_TYPE_DISP32, "d32" },
3090 { OPERAND_TYPE_DISP32S, "d32s" },
3091 { OPERAND_TYPE_DISP64, "d64" },
3092 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3093 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3094 { OPERAND_TYPE_CONTROL, "control reg" },
3095 { OPERAND_TYPE_TEST, "test reg" },
3096 { OPERAND_TYPE_DEBUG, "debug reg" },
3097 { OPERAND_TYPE_FLOATREG, "FReg" },
3098 { OPERAND_TYPE_FLOATACC, "FAcc" },
3099 { OPERAND_TYPE_SREG2, "SReg2" },
3100 { OPERAND_TYPE_SREG3, "SReg3" },
3101 { OPERAND_TYPE_ACC, "Acc" },
3102 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3103 { OPERAND_TYPE_REGMMX, "rMMX" },
3104 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3105 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3106 { OPERAND_TYPE_REGZMM, "rZMM" },
3107 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3108 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3109};
3110
3111static void
40fb9820 3112pt (i386_operand_type t)
252b5132 3113{
40fb9820 3114 unsigned int j;
c6fb90c8 3115 i386_operand_type a;
252b5132 3116
40fb9820 3117 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3118 {
3119 a = operand_type_and (t, type_names[j].mask);
0349dc08 3120 if (!operand_type_all_zero (&a))
c6fb90c8
L
3121 fprintf (stdout, "%s, ", type_names[j].name);
3122 }
252b5132
RH
3123 fflush (stdout);
3124}
3125
3126#endif /* DEBUG386 */
3127\f
252b5132 3128static bfd_reloc_code_real_type
3956db08 3129reloc (unsigned int size,
64e74474
AM
3130 int pcrel,
3131 int sign,
3132 bfd_reloc_code_real_type other)
252b5132 3133{
47926f60 3134 if (other != NO_RELOC)
3956db08 3135 {
91d6fa6a 3136 reloc_howto_type *rel;
3956db08
JB
3137
3138 if (size == 8)
3139 switch (other)
3140 {
64e74474
AM
3141 case BFD_RELOC_X86_64_GOT32:
3142 return BFD_RELOC_X86_64_GOT64;
3143 break;
553d1284
L
3144 case BFD_RELOC_X86_64_GOTPLT64:
3145 return BFD_RELOC_X86_64_GOTPLT64;
3146 break;
64e74474
AM
3147 case BFD_RELOC_X86_64_PLTOFF64:
3148 return BFD_RELOC_X86_64_PLTOFF64;
3149 break;
3150 case BFD_RELOC_X86_64_GOTPC32:
3151 other = BFD_RELOC_X86_64_GOTPC64;
3152 break;
3153 case BFD_RELOC_X86_64_GOTPCREL:
3154 other = BFD_RELOC_X86_64_GOTPCREL64;
3155 break;
3156 case BFD_RELOC_X86_64_TPOFF32:
3157 other = BFD_RELOC_X86_64_TPOFF64;
3158 break;
3159 case BFD_RELOC_X86_64_DTPOFF32:
3160 other = BFD_RELOC_X86_64_DTPOFF64;
3161 break;
3162 default:
3163 break;
3956db08 3164 }
e05278af 3165
8ce3d284 3166#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3167 if (other == BFD_RELOC_SIZE32)
3168 {
3169 if (size == 8)
1ab668bf 3170 other = BFD_RELOC_SIZE64;
8fd4256d 3171 if (pcrel)
1ab668bf
AM
3172 {
3173 as_bad (_("there are no pc-relative size relocations"));
3174 return NO_RELOC;
3175 }
8fd4256d 3176 }
8ce3d284 3177#endif
8fd4256d 3178
e05278af 3179 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3180 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3181 sign = -1;
3182
91d6fa6a
NC
3183 rel = bfd_reloc_type_lookup (stdoutput, other);
3184 if (!rel)
3956db08 3185 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3186 else if (size != bfd_get_reloc_size (rel))
3956db08 3187 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3188 bfd_get_reloc_size (rel),
3956db08 3189 size);
91d6fa6a 3190 else if (pcrel && !rel->pc_relative)
3956db08 3191 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3192 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3193 && !sign)
91d6fa6a 3194 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3195 && sign > 0))
3956db08
JB
3196 as_bad (_("relocated field and relocation type differ in signedness"));
3197 else
3198 return other;
3199 return NO_RELOC;
3200 }
252b5132
RH
3201
3202 if (pcrel)
3203 {
3e73aa7c 3204 if (!sign)
3956db08 3205 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3206 switch (size)
3207 {
3208 case 1: return BFD_RELOC_8_PCREL;
3209 case 2: return BFD_RELOC_16_PCREL;
d258b828 3210 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3211 case 8: return BFD_RELOC_64_PCREL;
252b5132 3212 }
3956db08 3213 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3214 }
3215 else
3216 {
3956db08 3217 if (sign > 0)
e5cb08ac 3218 switch (size)
3e73aa7c
JH
3219 {
3220 case 4: return BFD_RELOC_X86_64_32S;
3221 }
3222 else
3223 switch (size)
3224 {
3225 case 1: return BFD_RELOC_8;
3226 case 2: return BFD_RELOC_16;
3227 case 4: return BFD_RELOC_32;
3228 case 8: return BFD_RELOC_64;
3229 }
3956db08
JB
3230 as_bad (_("cannot do %s %u byte relocation"),
3231 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3232 }
3233
0cc9e1d3 3234 return NO_RELOC;
252b5132
RH
3235}
3236
47926f60
KH
3237/* Here we decide which fixups can be adjusted to make them relative to
3238 the beginning of the section instead of the symbol. Basically we need
3239 to make sure that the dynamic relocations are done correctly, so in
3240 some cases we force the original symbol to be used. */
3241
252b5132 3242int
e3bb37b5 3243tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3244{
6d249963 3245#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3246 if (!IS_ELF)
31312f95
AM
3247 return 1;
3248
a161fe53
AM
3249 /* Don't adjust pc-relative references to merge sections in 64-bit
3250 mode. */
3251 if (use_rela_relocations
3252 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3253 && fixP->fx_pcrel)
252b5132 3254 return 0;
31312f95 3255
8d01d9a9
AJ
3256 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3257 and changed later by validate_fix. */
3258 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3259 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3260 return 0;
3261
8fd4256d
L
3262 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3263 for size relocations. */
3264 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3265 || fixP->fx_r_type == BFD_RELOC_SIZE64
3266 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3267 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3268 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3269 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3273 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3274 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3275 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3276 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3277 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3278 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3279 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3288 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3290 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3291 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3292 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3293 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3295 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3296 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3297 return 0;
31312f95 3298#endif
252b5132
RH
3299 return 1;
3300}
252b5132 3301
b4cac588 3302static int
e3bb37b5 3303intel_float_operand (const char *mnemonic)
252b5132 3304{
9306ca4a
JB
3305 /* Note that the value returned is meaningful only for opcodes with (memory)
3306 operands, hence the code here is free to improperly handle opcodes that
3307 have no operands (for better performance and smaller code). */
3308
3309 if (mnemonic[0] != 'f')
3310 return 0; /* non-math */
3311
3312 switch (mnemonic[1])
3313 {
3314 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3315 the fs segment override prefix not currently handled because no
3316 call path can make opcodes without operands get here */
3317 case 'i':
3318 return 2 /* integer op */;
3319 case 'l':
3320 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3321 return 3; /* fldcw/fldenv */
3322 break;
3323 case 'n':
3324 if (mnemonic[2] != 'o' /* fnop */)
3325 return 3; /* non-waiting control op */
3326 break;
3327 case 'r':
3328 if (mnemonic[2] == 's')
3329 return 3; /* frstor/frstpm */
3330 break;
3331 case 's':
3332 if (mnemonic[2] == 'a')
3333 return 3; /* fsave */
3334 if (mnemonic[2] == 't')
3335 {
3336 switch (mnemonic[3])
3337 {
3338 case 'c': /* fstcw */
3339 case 'd': /* fstdw */
3340 case 'e': /* fstenv */
3341 case 's': /* fsts[gw] */
3342 return 3;
3343 }
3344 }
3345 break;
3346 case 'x':
3347 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3348 return 0; /* fxsave/fxrstor are not really math ops */
3349 break;
3350 }
252b5132 3351
9306ca4a 3352 return 1;
252b5132
RH
3353}
3354
c0f3af97
L
3355/* Build the VEX prefix. */
3356
3357static void
d3ce72d0 3358build_vex_prefix (const insn_template *t)
c0f3af97
L
3359{
3360 unsigned int register_specifier;
3361 unsigned int implied_prefix;
3362 unsigned int vector_length;
03751133 3363 unsigned int w;
c0f3af97
L
3364
3365 /* Check register specifier. */
3366 if (i.vex.register_specifier)
43234a1e
L
3367 {
3368 register_specifier =
3369 ~register_number (i.vex.register_specifier) & 0xf;
3370 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3371 }
c0f3af97
L
3372 else
3373 register_specifier = 0xf;
3374
79f0fa25
L
3375 /* Use 2-byte VEX prefix by swapping destination and source operand
3376 if there are more than 1 register operand. */
3377 if (i.reg_operands > 1
3378 && i.vec_encoding != vex_encoding_vex3
86fa6981 3379 && i.dir_encoding == dir_encoding_default
fa99fab2 3380 && i.operands == i.reg_operands
dbbc8b7e 3381 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3382 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3383 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3384 && i.rex == REX_B)
3385 {
3386 unsigned int xchg = i.operands - 1;
3387 union i386_op temp_op;
3388 i386_operand_type temp_type;
3389
3390 temp_type = i.types[xchg];
3391 i.types[xchg] = i.types[0];
3392 i.types[0] = temp_type;
3393 temp_op = i.op[xchg];
3394 i.op[xchg] = i.op[0];
3395 i.op[0] = temp_op;
3396
9c2799c2 3397 gas_assert (i.rm.mode == 3);
fa99fab2
L
3398
3399 i.rex = REX_R;
3400 xchg = i.rm.regmem;
3401 i.rm.regmem = i.rm.reg;
3402 i.rm.reg = xchg;
3403
dbbc8b7e
JB
3404 if (i.tm.opcode_modifier.d)
3405 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3406 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3407 else /* Use the next insn. */
3408 i.tm = t[1];
fa99fab2
L
3409 }
3410
539f890d
L
3411 if (i.tm.opcode_modifier.vex == VEXScalar)
3412 vector_length = avxscalar;
10c17abd
JB
3413 else if (i.tm.opcode_modifier.vex == VEX256)
3414 vector_length = 1;
539f890d 3415 else
10c17abd 3416 {
56522fc5 3417 unsigned int op;
10c17abd 3418
c7213af9
L
3419 /* Determine vector length from the last multi-length vector
3420 operand. */
10c17abd 3421 vector_length = 0;
56522fc5 3422 for (op = t->operands; op--;)
10c17abd
JB
3423 if (t->operand_types[op].bitfield.xmmword
3424 && t->operand_types[op].bitfield.ymmword
3425 && i.types[op].bitfield.ymmword)
3426 {
3427 vector_length = 1;
3428 break;
3429 }
3430 }
c0f3af97
L
3431
3432 switch ((i.tm.base_opcode >> 8) & 0xff)
3433 {
3434 case 0:
3435 implied_prefix = 0;
3436 break;
3437 case DATA_PREFIX_OPCODE:
3438 implied_prefix = 1;
3439 break;
3440 case REPE_PREFIX_OPCODE:
3441 implied_prefix = 2;
3442 break;
3443 case REPNE_PREFIX_OPCODE:
3444 implied_prefix = 3;
3445 break;
3446 default:
3447 abort ();
3448 }
3449
03751133
L
3450 /* Check the REX.W bit and VEXW. */
3451 if (i.tm.opcode_modifier.vexw == VEXWIG)
3452 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3453 else if (i.tm.opcode_modifier.vexw)
3454 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3455 else
931d03b7 3456 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3457
c0f3af97 3458 /* Use 2-byte VEX prefix if possible. */
03751133
L
3459 if (w == 0
3460 && i.vec_encoding != vex_encoding_vex3
86fa6981 3461 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3462 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3463 {
3464 /* 2-byte VEX prefix. */
3465 unsigned int r;
3466
3467 i.vex.length = 2;
3468 i.vex.bytes[0] = 0xc5;
3469
3470 /* Check the REX.R bit. */
3471 r = (i.rex & REX_R) ? 0 : 1;
3472 i.vex.bytes[1] = (r << 7
3473 | register_specifier << 3
3474 | vector_length << 2
3475 | implied_prefix);
3476 }
3477 else
3478 {
3479 /* 3-byte VEX prefix. */
03751133 3480 unsigned int m;
c0f3af97 3481
f88c9eb0 3482 i.vex.length = 3;
f88c9eb0 3483
7f399153 3484 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3485 {
7f399153
L
3486 case VEX0F:
3487 m = 0x1;
80de6e00 3488 i.vex.bytes[0] = 0xc4;
7f399153
L
3489 break;
3490 case VEX0F38:
3491 m = 0x2;
80de6e00 3492 i.vex.bytes[0] = 0xc4;
7f399153
L
3493 break;
3494 case VEX0F3A:
3495 m = 0x3;
80de6e00 3496 i.vex.bytes[0] = 0xc4;
7f399153
L
3497 break;
3498 case XOP08:
5dd85c99
SP
3499 m = 0x8;
3500 i.vex.bytes[0] = 0x8f;
7f399153
L
3501 break;
3502 case XOP09:
f88c9eb0
SP
3503 m = 0x9;
3504 i.vex.bytes[0] = 0x8f;
7f399153
L
3505 break;
3506 case XOP0A:
f88c9eb0
SP
3507 m = 0xa;
3508 i.vex.bytes[0] = 0x8f;
7f399153
L
3509 break;
3510 default:
3511 abort ();
f88c9eb0 3512 }
c0f3af97 3513
c0f3af97
L
3514 /* The high 3 bits of the second VEX byte are 1's compliment
3515 of RXB bits from REX. */
3516 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3517
c0f3af97
L
3518 i.vex.bytes[2] = (w << 7
3519 | register_specifier << 3
3520 | vector_length << 2
3521 | implied_prefix);
3522 }
3523}
3524
e771e7c9
JB
3525static INLINE bfd_boolean
3526is_evex_encoding (const insn_template *t)
3527{
7091c612 3528 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3529 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3530 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3531}
3532
7a8655d2
JB
3533static INLINE bfd_boolean
3534is_any_vex_encoding (const insn_template *t)
3535{
3536 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3537 || is_evex_encoding (t);
3538}
3539
43234a1e
L
3540/* Build the EVEX prefix. */
3541
3542static void
3543build_evex_prefix (void)
3544{
3545 unsigned int register_specifier;
3546 unsigned int implied_prefix;
3547 unsigned int m, w;
3548 rex_byte vrex_used = 0;
3549
3550 /* Check register specifier. */
3551 if (i.vex.register_specifier)
3552 {
3553 gas_assert ((i.vrex & REX_X) == 0);
3554
3555 register_specifier = i.vex.register_specifier->reg_num;
3556 if ((i.vex.register_specifier->reg_flags & RegRex))
3557 register_specifier += 8;
3558 /* The upper 16 registers are encoded in the fourth byte of the
3559 EVEX prefix. */
3560 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3561 i.vex.bytes[3] = 0x8;
3562 register_specifier = ~register_specifier & 0xf;
3563 }
3564 else
3565 {
3566 register_specifier = 0xf;
3567
3568 /* Encode upper 16 vector index register in the fourth byte of
3569 the EVEX prefix. */
3570 if (!(i.vrex & REX_X))
3571 i.vex.bytes[3] = 0x8;
3572 else
3573 vrex_used |= REX_X;
3574 }
3575
3576 switch ((i.tm.base_opcode >> 8) & 0xff)
3577 {
3578 case 0:
3579 implied_prefix = 0;
3580 break;
3581 case DATA_PREFIX_OPCODE:
3582 implied_prefix = 1;
3583 break;
3584 case REPE_PREFIX_OPCODE:
3585 implied_prefix = 2;
3586 break;
3587 case REPNE_PREFIX_OPCODE:
3588 implied_prefix = 3;
3589 break;
3590 default:
3591 abort ();
3592 }
3593
3594 /* 4 byte EVEX prefix. */
3595 i.vex.length = 4;
3596 i.vex.bytes[0] = 0x62;
3597
3598 /* mmmm bits. */
3599 switch (i.tm.opcode_modifier.vexopcode)
3600 {
3601 case VEX0F:
3602 m = 1;
3603 break;
3604 case VEX0F38:
3605 m = 2;
3606 break;
3607 case VEX0F3A:
3608 m = 3;
3609 break;
3610 default:
3611 abort ();
3612 break;
3613 }
3614
3615 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3616 bits from REX. */
3617 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3618
3619 /* The fifth bit of the second EVEX byte is 1's compliment of the
3620 REX_R bit in VREX. */
3621 if (!(i.vrex & REX_R))
3622 i.vex.bytes[1] |= 0x10;
3623 else
3624 vrex_used |= REX_R;
3625
3626 if ((i.reg_operands + i.imm_operands) == i.operands)
3627 {
3628 /* When all operands are registers, the REX_X bit in REX is not
3629 used. We reuse it to encode the upper 16 registers, which is
3630 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3631 as 1's compliment. */
3632 if ((i.vrex & REX_B))
3633 {
3634 vrex_used |= REX_B;
3635 i.vex.bytes[1] &= ~0x40;
3636 }
3637 }
3638
3639 /* EVEX instructions shouldn't need the REX prefix. */
3640 i.vrex &= ~vrex_used;
3641 gas_assert (i.vrex == 0);
3642
6865c043
L
3643 /* Check the REX.W bit and VEXW. */
3644 if (i.tm.opcode_modifier.vexw == VEXWIG)
3645 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3646 else if (i.tm.opcode_modifier.vexw)
3647 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3648 else
931d03b7 3649 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3650
3651 /* Encode the U bit. */
3652 implied_prefix |= 0x4;
3653
3654 /* The third byte of the EVEX prefix. */
3655 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3656
3657 /* The fourth byte of the EVEX prefix. */
3658 /* The zeroing-masking bit. */
3659 if (i.mask && i.mask->zeroing)
3660 i.vex.bytes[3] |= 0x80;
3661
3662 /* Don't always set the broadcast bit if there is no RC. */
3663 if (!i.rounding)
3664 {
3665 /* Encode the vector length. */
3666 unsigned int vec_length;
3667
e771e7c9
JB
3668 if (!i.tm.opcode_modifier.evex
3669 || i.tm.opcode_modifier.evex == EVEXDYN)
3670 {
56522fc5 3671 unsigned int op;
e771e7c9 3672
c7213af9
L
3673 /* Determine vector length from the last multi-length vector
3674 operand. */
e771e7c9 3675 vec_length = 0;
56522fc5 3676 for (op = i.operands; op--;)
e771e7c9
JB
3677 if (i.tm.operand_types[op].bitfield.xmmword
3678 + i.tm.operand_types[op].bitfield.ymmword
3679 + i.tm.operand_types[op].bitfield.zmmword > 1)
3680 {
3681 if (i.types[op].bitfield.zmmword)
c7213af9
L
3682 {
3683 i.tm.opcode_modifier.evex = EVEX512;
3684 break;
3685 }
e771e7c9 3686 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3687 {
3688 i.tm.opcode_modifier.evex = EVEX256;
3689 break;
3690 }
e771e7c9 3691 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3692 {
3693 i.tm.opcode_modifier.evex = EVEX128;
3694 break;
3695 }
625cbd7a
JB
3696 else if (i.broadcast && (int) op == i.broadcast->operand)
3697 {
4a1b91ea 3698 switch (i.broadcast->bytes)
625cbd7a
JB
3699 {
3700 case 64:
3701 i.tm.opcode_modifier.evex = EVEX512;
3702 break;
3703 case 32:
3704 i.tm.opcode_modifier.evex = EVEX256;
3705 break;
3706 case 16:
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 default:
c7213af9 3710 abort ();
625cbd7a 3711 }
c7213af9 3712 break;
625cbd7a 3713 }
e771e7c9 3714 }
c7213af9 3715
56522fc5 3716 if (op >= MAX_OPERANDS)
c7213af9 3717 abort ();
e771e7c9
JB
3718 }
3719
43234a1e
L
3720 switch (i.tm.opcode_modifier.evex)
3721 {
3722 case EVEXLIG: /* LL' is ignored */
3723 vec_length = evexlig << 5;
3724 break;
3725 case EVEX128:
3726 vec_length = 0 << 5;
3727 break;
3728 case EVEX256:
3729 vec_length = 1 << 5;
3730 break;
3731 case EVEX512:
3732 vec_length = 2 << 5;
3733 break;
3734 default:
3735 abort ();
3736 break;
3737 }
3738 i.vex.bytes[3] |= vec_length;
3739 /* Encode the broadcast bit. */
3740 if (i.broadcast)
3741 i.vex.bytes[3] |= 0x10;
3742 }
3743 else
3744 {
3745 if (i.rounding->type != saeonly)
3746 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3747 else
d3d3c6db 3748 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3749 }
3750
3751 if (i.mask && i.mask->mask)
3752 i.vex.bytes[3] |= i.mask->mask->reg_num;
3753}
3754
65da13b5
L
3755static void
3756process_immext (void)
3757{
3758 expressionS *exp;
3759
4c692bc7
JB
3760 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3761 && i.operands > 0)
65da13b5 3762 {
4c692bc7
JB
3763 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3764 with an opcode suffix which is coded in the same place as an
3765 8-bit immediate field would be.
3766 Here we check those operands and remove them afterwards. */
65da13b5
L
3767 unsigned int x;
3768
3769 for (x = 0; x < i.operands; x++)
4c692bc7 3770 if (register_number (i.op[x].regs) != x)
65da13b5 3771 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3772 register_prefix, i.op[x].regs->reg_name, x + 1,
3773 i.tm.name);
3774
3775 i.operands = 0;
65da13b5
L
3776 }
3777
9916071f
AP
3778 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3779 {
3780 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3781 suffix which is coded in the same place as an 8-bit immediate
3782 field would be.
3783 Here we check those operands and remove them afterwards. */
3784 unsigned int x;
3785
3786 if (i.operands != 3)
3787 abort();
3788
3789 for (x = 0; x < 2; x++)
3790 if (register_number (i.op[x].regs) != x)
3791 goto bad_register_operand;
3792
3793 /* Check for third operand for mwaitx/monitorx insn. */
3794 if (register_number (i.op[x].regs)
3795 != (x + (i.tm.extension_opcode == 0xfb)))
3796 {
3797bad_register_operand:
3798 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3799 register_prefix, i.op[x].regs->reg_name, x+1,
3800 i.tm.name);
3801 }
3802
3803 i.operands = 0;
3804 }
3805
c0f3af97 3806 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3807 which is coded in the same place as an 8-bit immediate field
3808 would be. Here we fake an 8-bit immediate operand from the
3809 opcode suffix stored in tm.extension_opcode.
3810
c1e679ec 3811 AVX instructions also use this encoding, for some of
c0f3af97 3812 3 argument instructions. */
65da13b5 3813
43234a1e 3814 gas_assert (i.imm_operands <= 1
7ab9ffdd 3815 && (i.operands <= 2
7a8655d2 3816 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3817 && i.operands <= 4)));
65da13b5
L
3818
3819 exp = &im_expressions[i.imm_operands++];
3820 i.op[i.operands].imms = exp;
3821 i.types[i.operands] = imm8;
3822 i.operands++;
3823 exp->X_op = O_constant;
3824 exp->X_add_number = i.tm.extension_opcode;
3825 i.tm.extension_opcode = None;
3826}
3827
42164a71
L
3828
3829static int
3830check_hle (void)
3831{
3832 switch (i.tm.opcode_modifier.hleprefixok)
3833 {
3834 default:
3835 abort ();
82c2def5 3836 case HLEPrefixNone:
165de32a
L
3837 as_bad (_("invalid instruction `%s' after `%s'"),
3838 i.tm.name, i.hle_prefix);
42164a71 3839 return 0;
82c2def5 3840 case HLEPrefixLock:
42164a71
L
3841 if (i.prefix[LOCK_PREFIX])
3842 return 1;
165de32a 3843 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3844 return 0;
82c2def5 3845 case HLEPrefixAny:
42164a71 3846 return 1;
82c2def5 3847 case HLEPrefixRelease:
42164a71
L
3848 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3849 {
3850 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3851 i.tm.name);
3852 return 0;
3853 }
3854 if (i.mem_operands == 0
3855 || !operand_type_check (i.types[i.operands - 1], anymem))
3856 {
3857 as_bad (_("memory destination needed for instruction `%s'"
3858 " after `xrelease'"), i.tm.name);
3859 return 0;
3860 }
3861 return 1;
3862 }
3863}
3864
b6f8c7c4
L
3865/* Try the shortest encoding by shortening operand size. */
3866
3867static void
3868optimize_encoding (void)
3869{
3870 int j;
3871
3872 if (optimize_for_space
3873 && i.reg_operands == 1
3874 && i.imm_operands == 1
3875 && !i.types[1].bitfield.byte
3876 && i.op[0].imms->X_op == O_constant
3877 && fits_in_imm7 (i.op[0].imms->X_add_number)
3878 && ((i.tm.base_opcode == 0xa8
3879 && i.tm.extension_opcode == None)
3880 || (i.tm.base_opcode == 0xf6
3881 && i.tm.extension_opcode == 0x0)))
3882 {
3883 /* Optimize: -Os:
3884 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3885 */
3886 unsigned int base_regnum = i.op[1].regs->reg_num;
3887 if (flag_code == CODE_64BIT || base_regnum < 4)
3888 {
3889 i.types[1].bitfield.byte = 1;
3890 /* Ignore the suffix. */
3891 i.suffix = 0;
3892 if (base_regnum >= 4
3893 && !(i.op[1].regs->reg_flags & RegRex))
3894 {
3895 /* Handle SP, BP, SI and DI registers. */
3896 if (i.types[1].bitfield.word)
3897 j = 16;
3898 else if (i.types[1].bitfield.dword)
3899 j = 32;
3900 else
3901 j = 48;
3902 i.op[1].regs -= j;
3903 }
3904 }
3905 }
3906 else if (flag_code == CODE_64BIT
d3d50934
L
3907 && ((i.types[1].bitfield.qword
3908 && i.reg_operands == 1
b6f8c7c4
L
3909 && i.imm_operands == 1
3910 && i.op[0].imms->X_op == O_constant
3911 && ((i.tm.base_opcode == 0xb0
3912 && i.tm.extension_opcode == None
3913 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3914 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3915 && (((i.tm.base_opcode == 0x24
3916 || i.tm.base_opcode == 0xa8)
3917 && i.tm.extension_opcode == None)
3918 || (i.tm.base_opcode == 0x80
3919 && i.tm.extension_opcode == 0x4)
3920 || ((i.tm.base_opcode == 0xf6
3921 || i.tm.base_opcode == 0xc6)
3922 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3923 || (i.types[0].bitfield.qword
3924 && ((i.reg_operands == 2
3925 && i.op[0].regs == i.op[1].regs
3926 && ((i.tm.base_opcode == 0x30
3927 || i.tm.base_opcode == 0x28)
3928 && i.tm.extension_opcode == None))
3929 || (i.reg_operands == 1
3930 && i.operands == 1
3931 && i.tm.base_opcode == 0x30
3932 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3933 {
3934 /* Optimize: -O:
3935 andq $imm31, %r64 -> andl $imm31, %r32
3936 testq $imm31, %r64 -> testl $imm31, %r32
3937 xorq %r64, %r64 -> xorl %r32, %r32
3938 subq %r64, %r64 -> subl %r32, %r32
3939 movq $imm31, %r64 -> movl $imm31, %r32
3940 movq $imm32, %r64 -> movl $imm32, %r32
3941 */
3942 i.tm.opcode_modifier.norex64 = 1;
3943 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3944 {
3945 /* Handle
3946 movq $imm31, %r64 -> movl $imm31, %r32
3947 movq $imm32, %r64 -> movl $imm32, %r32
3948 */
3949 i.tm.operand_types[0].bitfield.imm32 = 1;
3950 i.tm.operand_types[0].bitfield.imm32s = 0;
3951 i.tm.operand_types[0].bitfield.imm64 = 0;
3952 i.types[0].bitfield.imm32 = 1;
3953 i.types[0].bitfield.imm32s = 0;
3954 i.types[0].bitfield.imm64 = 0;
3955 i.types[1].bitfield.dword = 1;
3956 i.types[1].bitfield.qword = 0;
3957 if (i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 */
3962 i.tm.base_opcode = 0xb0;
3963 i.tm.extension_opcode = None;
3964 i.tm.opcode_modifier.shortform = 1;
3965 i.tm.opcode_modifier.modrm = 0;
3966 }
3967 }
3968 }
3969 else if (optimize > 1
3970 && i.reg_operands == 3
3971 && i.op[0].regs == i.op[1].regs
3972 && !i.types[2].bitfield.xmmword
3973 && (i.tm.opcode_modifier.vex
7a69eac3 3974 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3975 && !i.rounding
e771e7c9 3976 && is_evex_encoding (&i.tm)
80c34c38
L
3977 && (i.vec_encoding != vex_encoding_evex
3978 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3979 || (i.tm.operand_types[2].bitfield.zmmword
3980 && i.types[2].bitfield.ymmword)
0089dace 3981 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3982 && ((i.tm.base_opcode == 0x55
3983 || i.tm.base_opcode == 0x6655
3984 || i.tm.base_opcode == 0x66df
3985 || i.tm.base_opcode == 0x57
3986 || i.tm.base_opcode == 0x6657
8305403a
L
3987 || i.tm.base_opcode == 0x66ef
3988 || i.tm.base_opcode == 0x66f8
3989 || i.tm.base_opcode == 0x66f9
3990 || i.tm.base_opcode == 0x66fa
1424ad86
JB
3991 || i.tm.base_opcode == 0x66fb
3992 || i.tm.base_opcode == 0x42
3993 || i.tm.base_opcode == 0x6642
3994 || i.tm.base_opcode == 0x47
3995 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
3996 && i.tm.extension_opcode == None))
3997 {
3998 /* Optimize: -O2:
8305403a
L
3999 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4000 vpsubq and vpsubw:
b6f8c7c4
L
4001 EVEX VOP %zmmM, %zmmM, %zmmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4003 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4004 EVEX VOP %ymmM, %ymmM, %ymmN
4005 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4006 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4007 VEX VOP %ymmM, %ymmM, %ymmN
4008 -> VEX VOP %xmmM, %xmmM, %xmmN
4009 VOP, one of vpandn and vpxor:
4010 VEX VOP %ymmM, %ymmM, %ymmN
4011 -> VEX VOP %xmmM, %xmmM, %xmmN
4012 VOP, one of vpandnd and vpandnq:
4013 EVEX VOP %zmmM, %zmmM, %zmmN
4014 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4015 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4016 EVEX VOP %ymmM, %ymmM, %ymmN
4017 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4018 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4019 VOP, one of vpxord and vpxorq:
4020 EVEX VOP %zmmM, %zmmM, %zmmN
4021 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4022 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4023 EVEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4025 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
1424ad86
JB
4026 VOP, one of kxord and kxorq:
4027 VEX VOP %kM, %kM, %kN
4028 -> VEX kxorw %kM, %kM, %kN
4029 VOP, one of kandnd and kandnq:
4030 VEX VOP %kM, %kM, %kN
4031 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4032 */
e771e7c9 4033 if (is_evex_encoding (&i.tm))
b6f8c7c4 4034 {
0089dace 4035 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
4036 i.tm.opcode_modifier.evex = EVEX128;
4037 else
4038 {
4039 i.tm.opcode_modifier.vex = VEX128;
4040 i.tm.opcode_modifier.vexw = VEXW0;
4041 i.tm.opcode_modifier.evex = 0;
4042 }
4043 }
1424ad86
JB
4044 else if (i.tm.operand_types[0].bitfield.regmask)
4045 {
4046 i.tm.base_opcode &= 0xff;
4047 i.tm.opcode_modifier.vexw = VEXW0;
4048 }
b6f8c7c4
L
4049 else
4050 i.tm.opcode_modifier.vex = VEX128;
4051
4052 if (i.tm.opcode_modifier.vex)
4053 for (j = 0; j < 3; j++)
4054 {
4055 i.types[j].bitfield.xmmword = 1;
4056 i.types[j].bitfield.ymmword = 0;
4057 }
4058 }
4059}
4060
252b5132
RH
4061/* This is the guts of the machine-dependent assembler. LINE points to a
4062 machine dependent instruction. This function is supposed to emit
4063 the frags/bytes it assembles to. */
4064
4065void
65da13b5 4066md_assemble (char *line)
252b5132 4067{
40fb9820 4068 unsigned int j;
83b16ac6 4069 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4070 const insn_template *t;
252b5132 4071
47926f60 4072 /* Initialize globals. */
252b5132
RH
4073 memset (&i, '\0', sizeof (i));
4074 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4075 i.reloc[j] = NO_RELOC;
252b5132
RH
4076 memset (disp_expressions, '\0', sizeof (disp_expressions));
4077 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4078 save_stack_p = save_stack;
252b5132
RH
4079
4080 /* First parse an instruction mnemonic & call i386_operand for the operands.
4081 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4082 start of a (possibly prefixed) mnemonic. */
252b5132 4083
29b0f896
AM
4084 line = parse_insn (line, mnemonic);
4085 if (line == NULL)
4086 return;
83b16ac6 4087 mnem_suffix = i.suffix;
252b5132 4088
29b0f896 4089 line = parse_operands (line, mnemonic);
ee86248c 4090 this_operand = -1;
8325cc63
JB
4091 xfree (i.memop1_string);
4092 i.memop1_string = NULL;
29b0f896
AM
4093 if (line == NULL)
4094 return;
252b5132 4095
29b0f896
AM
4096 /* Now we've parsed the mnemonic into a set of templates, and have the
4097 operands at hand. */
4098
4099 /* All intel opcodes have reversed operands except for "bound" and
4100 "enter". We also don't reverse intersegment "jmp" and "call"
4101 instructions with 2 immediate operands so that the immediate segment
050dfa73 4102 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4103 if (intel_syntax
4104 && i.operands > 1
29b0f896 4105 && (strcmp (mnemonic, "bound") != 0)
30123838 4106 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4107 && !(operand_type_check (i.types[0], imm)
4108 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4109 swap_operands ();
4110
ec56d5c0
JB
4111 /* The order of the immediates should be reversed
4112 for 2 immediates extrq and insertq instructions */
4113 if (i.imm_operands == 2
4114 && (strcmp (mnemonic, "extrq") == 0
4115 || strcmp (mnemonic, "insertq") == 0))
4116 swap_2_operands (0, 1);
4117
29b0f896
AM
4118 if (i.imm_operands)
4119 optimize_imm ();
4120
b300c311
L
4121 /* Don't optimize displacement for movabs since it only takes 64bit
4122 displacement. */
4123 if (i.disp_operands
a501d77e 4124 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4125 && (flag_code != CODE_64BIT
4126 || strcmp (mnemonic, "movabs") != 0))
4127 optimize_disp ();
29b0f896
AM
4128
4129 /* Next, we find a template that matches the given insn,
4130 making sure the overlap of the given operands types is consistent
4131 with the template operand types. */
252b5132 4132
83b16ac6 4133 if (!(t = match_template (mnem_suffix)))
29b0f896 4134 return;
252b5132 4135
7bab8ab5 4136 if (sse_check != check_none
81f8a913 4137 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4138 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4139 && (i.tm.cpu_flags.bitfield.cpusse
4140 || i.tm.cpu_flags.bitfield.cpusse2
4141 || i.tm.cpu_flags.bitfield.cpusse3
4142 || i.tm.cpu_flags.bitfield.cpussse3
4143 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4144 || i.tm.cpu_flags.bitfield.cpusse4_2
4145 || i.tm.cpu_flags.bitfield.cpupclmul
4146 || i.tm.cpu_flags.bitfield.cpuaes
4147 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4148 {
7bab8ab5 4149 (sse_check == check_warning
daf50ae7
L
4150 ? as_warn
4151 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4152 }
4153
321fd21e
L
4154 /* Zap movzx and movsx suffix. The suffix has been set from
4155 "word ptr" or "byte ptr" on the source operand in Intel syntax
4156 or extracted from mnemonic in AT&T syntax. But we'll use
4157 the destination register to choose the suffix for encoding. */
4158 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4159 {
321fd21e
L
4160 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4161 there is no suffix, the default will be byte extension. */
4162 if (i.reg_operands != 2
4163 && !i.suffix
7ab9ffdd 4164 && intel_syntax)
321fd21e
L
4165 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4166
4167 i.suffix = 0;
cd61ebfe 4168 }
24eab124 4169
40fb9820 4170 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4171 if (!add_prefix (FWAIT_OPCODE))
4172 return;
252b5132 4173
d5de92cf
L
4174 /* Check if REP prefix is OK. */
4175 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4176 {
4177 as_bad (_("invalid instruction `%s' after `%s'"),
4178 i.tm.name, i.rep_prefix);
4179 return;
4180 }
4181
c1ba0266
L
4182 /* Check for lock without a lockable instruction. Destination operand
4183 must be memory unless it is xchg (0x86). */
c32fa91d
L
4184 if (i.prefix[LOCK_PREFIX]
4185 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4186 || i.mem_operands == 0
4187 || (i.tm.base_opcode != 0x86
4188 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4189 {
4190 as_bad (_("expecting lockable instruction after `lock'"));
4191 return;
4192 }
4193
7a8655d2
JB
4194 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4195 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4196 {
4197 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4198 return;
4199 }
4200
42164a71 4201 /* Check if HLE prefix is OK. */
165de32a 4202 if (i.hle_prefix && !check_hle ())
42164a71
L
4203 return;
4204
7e8b059b
L
4205 /* Check BND prefix. */
4206 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4207 as_bad (_("expecting valid branch instruction after `bnd'"));
4208
04ef582a 4209 /* Check NOTRACK prefix. */
9fef80d6
L
4210 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4211 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4212
327e8c42
JB
4213 if (i.tm.cpu_flags.bitfield.cpumpx)
4214 {
4215 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4216 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4217 else if (flag_code != CODE_16BIT
4218 ? i.prefix[ADDR_PREFIX]
4219 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4220 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4221 }
7e8b059b
L
4222
4223 /* Insert BND prefix. */
76d3a78a
JB
4224 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4225 {
4226 if (!i.prefix[BND_PREFIX])
4227 add_prefix (BND_PREFIX_OPCODE);
4228 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4229 {
4230 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4231 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4232 }
4233 }
7e8b059b 4234
29b0f896 4235 /* Check string instruction segment overrides. */
40fb9820 4236 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4237 {
4238 if (!check_string ())
5dd0794d 4239 return;
fc0763e6 4240 i.disp_operands = 0;
29b0f896 4241 }
5dd0794d 4242
b6f8c7c4
L
4243 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4244 optimize_encoding ();
4245
29b0f896
AM
4246 if (!process_suffix ())
4247 return;
e413e4e9 4248
bc0844ae
L
4249 /* Update operand types. */
4250 for (j = 0; j < i.operands; j++)
4251 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4252
29b0f896
AM
4253 /* Make still unresolved immediate matches conform to size of immediate
4254 given in i.suffix. */
4255 if (!finalize_imm ())
4256 return;
252b5132 4257
40fb9820 4258 if (i.types[0].bitfield.imm1)
29b0f896 4259 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4260
9afe6eb8
L
4261 /* We only need to check those implicit registers for instructions
4262 with 3 operands or less. */
4263 if (i.operands <= 3)
4264 for (j = 0; j < i.operands; j++)
4265 if (i.types[j].bitfield.inoutportreg
4266 || i.types[j].bitfield.shiftcount
1b54b8d7 4267 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4268 i.reg_operands--;
40fb9820 4269
c0f3af97
L
4270 /* ImmExt should be processed after SSE2AVX. */
4271 if (!i.tm.opcode_modifier.sse2avx
4272 && i.tm.opcode_modifier.immext)
65da13b5 4273 process_immext ();
252b5132 4274
29b0f896
AM
4275 /* For insns with operands there are more diddles to do to the opcode. */
4276 if (i.operands)
4277 {
4278 if (!process_operands ())
4279 return;
4280 }
40fb9820 4281 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4282 {
4283 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4284 as_warn (_("translating to `%sp'"), i.tm.name);
4285 }
252b5132 4286
7a8655d2 4287 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4288 {
4289 if (flag_code == CODE_16BIT)
4290 {
4291 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4292 i.tm.name);
4293 return;
4294 }
c0f3af97 4295
9e5e5283
L
4296 if (i.tm.opcode_modifier.vex)
4297 build_vex_prefix (t);
4298 else
4299 build_evex_prefix ();
4300 }
43234a1e 4301
5dd85c99
SP
4302 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4303 instructions may define INT_OPCODE as well, so avoid this corner
4304 case for those instructions that use MODRM. */
4305 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4306 && !i.tm.opcode_modifier.modrm
4307 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4308 {
4309 i.tm.base_opcode = INT3_OPCODE;
4310 i.imm_operands = 0;
4311 }
252b5132 4312
40fb9820
L
4313 if ((i.tm.opcode_modifier.jump
4314 || i.tm.opcode_modifier.jumpbyte
4315 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4316 && i.op[0].disps->X_op == O_constant)
4317 {
4318 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4319 the absolute address given by the constant. Since ix86 jumps and
4320 calls are pc relative, we need to generate a reloc. */
4321 i.op[0].disps->X_add_symbol = &abs_symbol;
4322 i.op[0].disps->X_op = O_symbol;
4323 }
252b5132 4324
40fb9820 4325 if (i.tm.opcode_modifier.rex64)
161a04f6 4326 i.rex |= REX_W;
252b5132 4327
29b0f896
AM
4328 /* For 8 bit registers we need an empty rex prefix. Also if the
4329 instruction already has a prefix, we need to convert old
4330 registers to new ones. */
773f551c 4331
dc821c5f 4332 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4333 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4334 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4335 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4336 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4337 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4338 && i.rex != 0))
4339 {
4340 int x;
726c5dcd 4341
29b0f896
AM
4342 i.rex |= REX_OPCODE;
4343 for (x = 0; x < 2; x++)
4344 {
4345 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4346 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4347 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4348 {
29b0f896
AM
4349 /* In case it is "hi" register, give up. */
4350 if (i.op[x].regs->reg_num > 3)
a540244d 4351 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4352 "instruction requiring REX prefix."),
a540244d 4353 register_prefix, i.op[x].regs->reg_name);
773f551c 4354
29b0f896
AM
4355 /* Otherwise it is equivalent to the extended register.
4356 Since the encoding doesn't change this is merely
4357 cosmetic cleanup for debug output. */
4358
4359 i.op[x].regs = i.op[x].regs + 8;
773f551c 4360 }
29b0f896
AM
4361 }
4362 }
773f551c 4363
6b6b6807
L
4364 if (i.rex == 0 && i.rex_encoding)
4365 {
4366 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4367 that uses legacy register. If it is "hi" register, don't add
4368 the REX_OPCODE byte. */
4369 int x;
4370 for (x = 0; x < 2; x++)
4371 if (i.types[x].bitfield.reg
4372 && i.types[x].bitfield.byte
4373 && (i.op[x].regs->reg_flags & RegRex64) == 0
4374 && i.op[x].regs->reg_num > 3)
4375 {
4376 i.rex_encoding = FALSE;
4377 break;
4378 }
4379
4380 if (i.rex_encoding)
4381 i.rex = REX_OPCODE;
4382 }
4383
7ab9ffdd 4384 if (i.rex != 0)
29b0f896
AM
4385 add_prefix (REX_OPCODE | i.rex);
4386
4387 /* We are ready to output the insn. */
4388 output_insn ();
4389}
4390
4391static char *
e3bb37b5 4392parse_insn (char *line, char *mnemonic)
29b0f896
AM
4393{
4394 char *l = line;
4395 char *token_start = l;
4396 char *mnem_p;
5c6af06e 4397 int supported;
d3ce72d0 4398 const insn_template *t;
b6169b20 4399 char *dot_p = NULL;
29b0f896 4400
29b0f896
AM
4401 while (1)
4402 {
4403 mnem_p = mnemonic;
4404 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4405 {
b6169b20
L
4406 if (*mnem_p == '.')
4407 dot_p = mnem_p;
29b0f896
AM
4408 mnem_p++;
4409 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4410 {
29b0f896
AM
4411 as_bad (_("no such instruction: `%s'"), token_start);
4412 return NULL;
4413 }
4414 l++;
4415 }
4416 if (!is_space_char (*l)
4417 && *l != END_OF_INSN
e44823cf
JB
4418 && (intel_syntax
4419 || (*l != PREFIX_SEPARATOR
4420 && *l != ',')))
29b0f896
AM
4421 {
4422 as_bad (_("invalid character %s in mnemonic"),
4423 output_invalid (*l));
4424 return NULL;
4425 }
4426 if (token_start == l)
4427 {
e44823cf 4428 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4429 as_bad (_("expecting prefix; got nothing"));
4430 else
4431 as_bad (_("expecting mnemonic; got nothing"));
4432 return NULL;
4433 }
45288df1 4434
29b0f896 4435 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4436 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4437
29b0f896
AM
4438 if (*l != END_OF_INSN
4439 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4440 && current_templates
40fb9820 4441 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4442 {
c6fb90c8 4443 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4444 {
4445 as_bad ((flag_code != CODE_64BIT
4446 ? _("`%s' is only supported in 64-bit mode")
4447 : _("`%s' is not supported in 64-bit mode")),
4448 current_templates->start->name);
4449 return NULL;
4450 }
29b0f896
AM
4451 /* If we are in 16-bit mode, do not allow addr16 or data16.
4452 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4453 if ((current_templates->start->opcode_modifier.size == SIZE16
4454 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4455 && flag_code != CODE_64BIT
673fe0f0 4456 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4457 ^ (flag_code == CODE_16BIT)))
4458 {
4459 as_bad (_("redundant %s prefix"),
4460 current_templates->start->name);
4461 return NULL;
45288df1 4462 }
86fa6981 4463 if (current_templates->start->opcode_length == 0)
29b0f896 4464 {
86fa6981
L
4465 /* Handle pseudo prefixes. */
4466 switch (current_templates->start->base_opcode)
4467 {
4468 case 0x0:
4469 /* {disp8} */
4470 i.disp_encoding = disp_encoding_8bit;
4471 break;
4472 case 0x1:
4473 /* {disp32} */
4474 i.disp_encoding = disp_encoding_32bit;
4475 break;
4476 case 0x2:
4477 /* {load} */
4478 i.dir_encoding = dir_encoding_load;
4479 break;
4480 case 0x3:
4481 /* {store} */
4482 i.dir_encoding = dir_encoding_store;
4483 break;
4484 case 0x4:
4485 /* {vex2} */
4486 i.vec_encoding = vex_encoding_vex2;
4487 break;
4488 case 0x5:
4489 /* {vex3} */
4490 i.vec_encoding = vex_encoding_vex3;
4491 break;
4492 case 0x6:
4493 /* {evex} */
4494 i.vec_encoding = vex_encoding_evex;
4495 break;
6b6b6807
L
4496 case 0x7:
4497 /* {rex} */
4498 i.rex_encoding = TRUE;
4499 break;
b6f8c7c4
L
4500 case 0x8:
4501 /* {nooptimize} */
4502 i.no_optimize = TRUE;
4503 break;
86fa6981
L
4504 default:
4505 abort ();
4506 }
4507 }
4508 else
4509 {
4510 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4511 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4512 {
4e9ac44a
L
4513 case PREFIX_EXIST:
4514 return NULL;
4515 case PREFIX_DS:
d777820b 4516 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4517 i.notrack_prefix = current_templates->start->name;
4518 break;
4519 case PREFIX_REP:
4520 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4521 i.hle_prefix = current_templates->start->name;
4522 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4523 i.bnd_prefix = current_templates->start->name;
4524 else
4525 i.rep_prefix = current_templates->start->name;
4526 break;
4527 default:
4528 break;
86fa6981 4529 }
29b0f896
AM
4530 }
4531 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4532 token_start = ++l;
4533 }
4534 else
4535 break;
4536 }
45288df1 4537
30a55f88 4538 if (!current_templates)
b6169b20 4539 {
07d5e953
JB
4540 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4541 Check if we should swap operand or force 32bit displacement in
f8a5c266 4542 encoding. */
30a55f88 4543 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4544 i.dir_encoding = dir_encoding_swap;
8d63c93e 4545 else if (mnem_p - 3 == dot_p
a501d77e
L
4546 && dot_p[1] == 'd'
4547 && dot_p[2] == '8')
4548 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4549 else if (mnem_p - 4 == dot_p
f8a5c266
L
4550 && dot_p[1] == 'd'
4551 && dot_p[2] == '3'
4552 && dot_p[3] == '2')
a501d77e 4553 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4554 else
4555 goto check_suffix;
4556 mnem_p = dot_p;
4557 *dot_p = '\0';
d3ce72d0 4558 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4559 }
4560
29b0f896
AM
4561 if (!current_templates)
4562 {
b6169b20 4563check_suffix:
1c529385 4564 if (mnem_p > mnemonic)
29b0f896 4565 {
1c529385
LH
4566 /* See if we can get a match by trimming off a suffix. */
4567 switch (mnem_p[-1])
29b0f896 4568 {
1c529385
LH
4569 case WORD_MNEM_SUFFIX:
4570 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4571 i.suffix = SHORT_MNEM_SUFFIX;
4572 else
1c529385
LH
4573 /* Fall through. */
4574 case BYTE_MNEM_SUFFIX:
4575 case QWORD_MNEM_SUFFIX:
4576 i.suffix = mnem_p[-1];
29b0f896 4577 mnem_p[-1] = '\0';
d3ce72d0 4578 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4579 mnemonic);
4580 break;
4581 case SHORT_MNEM_SUFFIX:
4582 case LONG_MNEM_SUFFIX:
4583 if (!intel_syntax)
4584 {
4585 i.suffix = mnem_p[-1];
4586 mnem_p[-1] = '\0';
4587 current_templates = (const templates *) hash_find (op_hash,
4588 mnemonic);
4589 }
4590 break;
4591
4592 /* Intel Syntax. */
4593 case 'd':
4594 if (intel_syntax)
4595 {
4596 if (intel_float_operand (mnemonic) == 1)
4597 i.suffix = SHORT_MNEM_SUFFIX;
4598 else
4599 i.suffix = LONG_MNEM_SUFFIX;
4600 mnem_p[-1] = '\0';
4601 current_templates = (const templates *) hash_find (op_hash,
4602 mnemonic);
4603 }
4604 break;
29b0f896 4605 }
29b0f896 4606 }
1c529385 4607
29b0f896
AM
4608 if (!current_templates)
4609 {
4610 as_bad (_("no such instruction: `%s'"), token_start);
4611 return NULL;
4612 }
4613 }
252b5132 4614
40fb9820
L
4615 if (current_templates->start->opcode_modifier.jump
4616 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4617 {
4618 /* Check for a branch hint. We allow ",pt" and ",pn" for
4619 predict taken and predict not taken respectively.
4620 I'm not sure that branch hints actually do anything on loop
4621 and jcxz insns (JumpByte) for current Pentium4 chips. They
4622 may work in the future and it doesn't hurt to accept them
4623 now. */
4624 if (l[0] == ',' && l[1] == 'p')
4625 {
4626 if (l[2] == 't')
4627 {
4628 if (!add_prefix (DS_PREFIX_OPCODE))
4629 return NULL;
4630 l += 3;
4631 }
4632 else if (l[2] == 'n')
4633 {
4634 if (!add_prefix (CS_PREFIX_OPCODE))
4635 return NULL;
4636 l += 3;
4637 }
4638 }
4639 }
4640 /* Any other comma loses. */
4641 if (*l == ',')
4642 {
4643 as_bad (_("invalid character %s in mnemonic"),
4644 output_invalid (*l));
4645 return NULL;
4646 }
252b5132 4647
29b0f896 4648 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4649 supported = 0;
4650 for (t = current_templates->start; t < current_templates->end; ++t)
4651 {
c0f3af97
L
4652 supported |= cpu_flags_match (t);
4653 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4654 {
4655 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4656 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4657
548d0ee6
JB
4658 return l;
4659 }
29b0f896 4660 }
3629bb00 4661
548d0ee6
JB
4662 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4663 as_bad (flag_code == CODE_64BIT
4664 ? _("`%s' is not supported in 64-bit mode")
4665 : _("`%s' is only supported in 64-bit mode"),
4666 current_templates->start->name);
4667 else
4668 as_bad (_("`%s' is not supported on `%s%s'"),
4669 current_templates->start->name,
4670 cpu_arch_name ? cpu_arch_name : default_arch,
4671 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4672
548d0ee6 4673 return NULL;
29b0f896 4674}
252b5132 4675
29b0f896 4676static char *
e3bb37b5 4677parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4678{
4679 char *token_start;
3138f287 4680
29b0f896
AM
4681 /* 1 if operand is pending after ','. */
4682 unsigned int expecting_operand = 0;
252b5132 4683
29b0f896
AM
4684 /* Non-zero if operand parens not balanced. */
4685 unsigned int paren_not_balanced;
4686
4687 while (*l != END_OF_INSN)
4688 {
4689 /* Skip optional white space before operand. */
4690 if (is_space_char (*l))
4691 ++l;
d02603dc 4692 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4693 {
4694 as_bad (_("invalid character %s before operand %d"),
4695 output_invalid (*l),
4696 i.operands + 1);
4697 return NULL;
4698 }
d02603dc 4699 token_start = l; /* After white space. */
29b0f896
AM
4700 paren_not_balanced = 0;
4701 while (paren_not_balanced || *l != ',')
4702 {
4703 if (*l == END_OF_INSN)
4704 {
4705 if (paren_not_balanced)
4706 {
4707 if (!intel_syntax)
4708 as_bad (_("unbalanced parenthesis in operand %d."),
4709 i.operands + 1);
4710 else
4711 as_bad (_("unbalanced brackets in operand %d."),
4712 i.operands + 1);
4713 return NULL;
4714 }
4715 else
4716 break; /* we are done */
4717 }
d02603dc 4718 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4719 {
4720 as_bad (_("invalid character %s in operand %d"),
4721 output_invalid (*l),
4722 i.operands + 1);
4723 return NULL;
4724 }
4725 if (!intel_syntax)
4726 {
4727 if (*l == '(')
4728 ++paren_not_balanced;
4729 if (*l == ')')
4730 --paren_not_balanced;
4731 }
4732 else
4733 {
4734 if (*l == '[')
4735 ++paren_not_balanced;
4736 if (*l == ']')
4737 --paren_not_balanced;
4738 }
4739 l++;
4740 }
4741 if (l != token_start)
4742 { /* Yes, we've read in another operand. */
4743 unsigned int operand_ok;
4744 this_operand = i.operands++;
4745 if (i.operands > MAX_OPERANDS)
4746 {
4747 as_bad (_("spurious operands; (%d operands/instruction max)"),
4748 MAX_OPERANDS);
4749 return NULL;
4750 }
9d46ce34 4751 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4752 /* Now parse operand adding info to 'i' as we go along. */
4753 END_STRING_AND_SAVE (l);
4754
1286ab78
L
4755 if (i.mem_operands > 1)
4756 {
4757 as_bad (_("too many memory references for `%s'"),
4758 mnemonic);
4759 return 0;
4760 }
4761
29b0f896
AM
4762 if (intel_syntax)
4763 operand_ok =
4764 i386_intel_operand (token_start,
4765 intel_float_operand (mnemonic));
4766 else
a7619375 4767 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4768
4769 RESTORE_END_STRING (l);
4770 if (!operand_ok)
4771 return NULL;
4772 }
4773 else
4774 {
4775 if (expecting_operand)
4776 {
4777 expecting_operand_after_comma:
4778 as_bad (_("expecting operand after ','; got nothing"));
4779 return NULL;
4780 }
4781 if (*l == ',')
4782 {
4783 as_bad (_("expecting operand before ','; got nothing"));
4784 return NULL;
4785 }
4786 }
7f3f1ea2 4787
29b0f896
AM
4788 /* Now *l must be either ',' or END_OF_INSN. */
4789 if (*l == ',')
4790 {
4791 if (*++l == END_OF_INSN)
4792 {
4793 /* Just skip it, if it's \n complain. */
4794 goto expecting_operand_after_comma;
4795 }
4796 expecting_operand = 1;
4797 }
4798 }
4799 return l;
4800}
7f3f1ea2 4801
050dfa73 4802static void
4d456e3d 4803swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4804{
4805 union i386_op temp_op;
40fb9820 4806 i386_operand_type temp_type;
c48dadc9 4807 unsigned int temp_flags;
050dfa73 4808 enum bfd_reloc_code_real temp_reloc;
4eed87de 4809
050dfa73
MM
4810 temp_type = i.types[xchg2];
4811 i.types[xchg2] = i.types[xchg1];
4812 i.types[xchg1] = temp_type;
c48dadc9
JB
4813
4814 temp_flags = i.flags[xchg2];
4815 i.flags[xchg2] = i.flags[xchg1];
4816 i.flags[xchg1] = temp_flags;
4817
050dfa73
MM
4818 temp_op = i.op[xchg2];
4819 i.op[xchg2] = i.op[xchg1];
4820 i.op[xchg1] = temp_op;
c48dadc9 4821
050dfa73
MM
4822 temp_reloc = i.reloc[xchg2];
4823 i.reloc[xchg2] = i.reloc[xchg1];
4824 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4825
4826 if (i.mask)
4827 {
4828 if (i.mask->operand == xchg1)
4829 i.mask->operand = xchg2;
4830 else if (i.mask->operand == xchg2)
4831 i.mask->operand = xchg1;
4832 }
4833 if (i.broadcast)
4834 {
4835 if (i.broadcast->operand == xchg1)
4836 i.broadcast->operand = xchg2;
4837 else if (i.broadcast->operand == xchg2)
4838 i.broadcast->operand = xchg1;
4839 }
4840 if (i.rounding)
4841 {
4842 if (i.rounding->operand == xchg1)
4843 i.rounding->operand = xchg2;
4844 else if (i.rounding->operand == xchg2)
4845 i.rounding->operand = xchg1;
4846 }
050dfa73
MM
4847}
4848
29b0f896 4849static void
e3bb37b5 4850swap_operands (void)
29b0f896 4851{
b7c61d9a 4852 switch (i.operands)
050dfa73 4853 {
c0f3af97 4854 case 5:
b7c61d9a 4855 case 4:
4d456e3d 4856 swap_2_operands (1, i.operands - 2);
1a0670f3 4857 /* Fall through. */
b7c61d9a
L
4858 case 3:
4859 case 2:
4d456e3d 4860 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4861 break;
4862 default:
4863 abort ();
29b0f896 4864 }
29b0f896
AM
4865
4866 if (i.mem_operands == 2)
4867 {
4868 const seg_entry *temp_seg;
4869 temp_seg = i.seg[0];
4870 i.seg[0] = i.seg[1];
4871 i.seg[1] = temp_seg;
4872 }
4873}
252b5132 4874
29b0f896
AM
4875/* Try to ensure constant immediates are represented in the smallest
4876 opcode possible. */
4877static void
e3bb37b5 4878optimize_imm (void)
29b0f896
AM
4879{
4880 char guess_suffix = 0;
4881 int op;
252b5132 4882
29b0f896
AM
4883 if (i.suffix)
4884 guess_suffix = i.suffix;
4885 else if (i.reg_operands)
4886 {
4887 /* Figure out a suffix from the last register operand specified.
4888 We can't do this properly yet, ie. excluding InOutPortReg,
4889 but the following works for instructions with immediates.
4890 In any case, we can't set i.suffix yet. */
4891 for (op = i.operands; --op >= 0;)
dc821c5f 4892 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4893 {
40fb9820
L
4894 guess_suffix = BYTE_MNEM_SUFFIX;
4895 break;
4896 }
dc821c5f 4897 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4898 {
40fb9820
L
4899 guess_suffix = WORD_MNEM_SUFFIX;
4900 break;
4901 }
dc821c5f 4902 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4903 {
4904 guess_suffix = LONG_MNEM_SUFFIX;
4905 break;
4906 }
dc821c5f 4907 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4908 {
4909 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4910 break;
252b5132 4911 }
29b0f896
AM
4912 }
4913 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4914 guess_suffix = WORD_MNEM_SUFFIX;
4915
4916 for (op = i.operands; --op >= 0;)
40fb9820 4917 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4918 {
4919 switch (i.op[op].imms->X_op)
252b5132 4920 {
29b0f896
AM
4921 case O_constant:
4922 /* If a suffix is given, this operand may be shortened. */
4923 switch (guess_suffix)
252b5132 4924 {
29b0f896 4925 case LONG_MNEM_SUFFIX:
40fb9820
L
4926 i.types[op].bitfield.imm32 = 1;
4927 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4928 break;
4929 case WORD_MNEM_SUFFIX:
40fb9820
L
4930 i.types[op].bitfield.imm16 = 1;
4931 i.types[op].bitfield.imm32 = 1;
4932 i.types[op].bitfield.imm32s = 1;
4933 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4934 break;
4935 case BYTE_MNEM_SUFFIX:
40fb9820
L
4936 i.types[op].bitfield.imm8 = 1;
4937 i.types[op].bitfield.imm8s = 1;
4938 i.types[op].bitfield.imm16 = 1;
4939 i.types[op].bitfield.imm32 = 1;
4940 i.types[op].bitfield.imm32s = 1;
4941 i.types[op].bitfield.imm64 = 1;
29b0f896 4942 break;
252b5132 4943 }
252b5132 4944
29b0f896
AM
4945 /* If this operand is at most 16 bits, convert it
4946 to a signed 16 bit number before trying to see
4947 whether it will fit in an even smaller size.
4948 This allows a 16-bit operand such as $0xffe0 to
4949 be recognised as within Imm8S range. */
40fb9820 4950 if ((i.types[op].bitfield.imm16)
29b0f896 4951 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4952 {
29b0f896
AM
4953 i.op[op].imms->X_add_number =
4954 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4955 }
a28def75
L
4956#ifdef BFD64
4957 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4958 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4959 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4960 == 0))
4961 {
4962 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4963 ^ ((offsetT) 1 << 31))
4964 - ((offsetT) 1 << 31));
4965 }
a28def75 4966#endif
40fb9820 4967 i.types[op]
c6fb90c8
L
4968 = operand_type_or (i.types[op],
4969 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4970
29b0f896
AM
4971 /* We must avoid matching of Imm32 templates when 64bit
4972 only immediate is available. */
4973 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4974 i.types[op].bitfield.imm32 = 0;
29b0f896 4975 break;
252b5132 4976
29b0f896
AM
4977 case O_absent:
4978 case O_register:
4979 abort ();
4980
4981 /* Symbols and expressions. */
4982 default:
9cd96992
JB
4983 /* Convert symbolic operand to proper sizes for matching, but don't
4984 prevent matching a set of insns that only supports sizes other
4985 than those matching the insn suffix. */
4986 {
40fb9820 4987 i386_operand_type mask, allowed;
d3ce72d0 4988 const insn_template *t;
9cd96992 4989
0dfbf9d7
L
4990 operand_type_set (&mask, 0);
4991 operand_type_set (&allowed, 0);
40fb9820 4992
4eed87de
AM
4993 for (t = current_templates->start;
4994 t < current_templates->end;
4995 ++t)
c6fb90c8
L
4996 allowed = operand_type_or (allowed,
4997 t->operand_types[op]);
9cd96992
JB
4998 switch (guess_suffix)
4999 {
5000 case QWORD_MNEM_SUFFIX:
40fb9820
L
5001 mask.bitfield.imm64 = 1;
5002 mask.bitfield.imm32s = 1;
9cd96992
JB
5003 break;
5004 case LONG_MNEM_SUFFIX:
40fb9820 5005 mask.bitfield.imm32 = 1;
9cd96992
JB
5006 break;
5007 case WORD_MNEM_SUFFIX:
40fb9820 5008 mask.bitfield.imm16 = 1;
9cd96992
JB
5009 break;
5010 case BYTE_MNEM_SUFFIX:
40fb9820 5011 mask.bitfield.imm8 = 1;
9cd96992
JB
5012 break;
5013 default:
9cd96992
JB
5014 break;
5015 }
c6fb90c8 5016 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5017 if (!operand_type_all_zero (&allowed))
c6fb90c8 5018 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5019 }
29b0f896 5020 break;
252b5132 5021 }
29b0f896
AM
5022 }
5023}
47926f60 5024
29b0f896
AM
5025/* Try to use the smallest displacement type too. */
5026static void
e3bb37b5 5027optimize_disp (void)
29b0f896
AM
5028{
5029 int op;
3e73aa7c 5030
29b0f896 5031 for (op = i.operands; --op >= 0;)
40fb9820 5032 if (operand_type_check (i.types[op], disp))
252b5132 5033 {
b300c311 5034 if (i.op[op].disps->X_op == O_constant)
252b5132 5035 {
91d6fa6a 5036 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5037
40fb9820 5038 if (i.types[op].bitfield.disp16
91d6fa6a 5039 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5040 {
5041 /* If this operand is at most 16 bits, convert
5042 to a signed 16 bit number and don't use 64bit
5043 displacement. */
91d6fa6a 5044 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5045 i.types[op].bitfield.disp64 = 0;
b300c311 5046 }
a28def75
L
5047#ifdef BFD64
5048 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5049 if (i.types[op].bitfield.disp32
91d6fa6a 5050 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5051 {
5052 /* If this operand is at most 32 bits, convert
5053 to a signed 32 bit number and don't use 64bit
5054 displacement. */
91d6fa6a
NC
5055 op_disp &= (((offsetT) 2 << 31) - 1);
5056 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5057 i.types[op].bitfield.disp64 = 0;
b300c311 5058 }
a28def75 5059#endif
91d6fa6a 5060 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5061 {
40fb9820
L
5062 i.types[op].bitfield.disp8 = 0;
5063 i.types[op].bitfield.disp16 = 0;
5064 i.types[op].bitfield.disp32 = 0;
5065 i.types[op].bitfield.disp32s = 0;
5066 i.types[op].bitfield.disp64 = 0;
b300c311
L
5067 i.op[op].disps = 0;
5068 i.disp_operands--;
5069 }
5070 else if (flag_code == CODE_64BIT)
5071 {
91d6fa6a 5072 if (fits_in_signed_long (op_disp))
28a9d8f5 5073 {
40fb9820
L
5074 i.types[op].bitfield.disp64 = 0;
5075 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5076 }
0e1147d9 5077 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5078 && fits_in_unsigned_long (op_disp))
40fb9820 5079 i.types[op].bitfield.disp32 = 1;
b300c311 5080 }
40fb9820
L
5081 if ((i.types[op].bitfield.disp32
5082 || i.types[op].bitfield.disp32s
5083 || i.types[op].bitfield.disp16)
b5014f7a 5084 && fits_in_disp8 (op_disp))
40fb9820 5085 i.types[op].bitfield.disp8 = 1;
252b5132 5086 }
67a4f2b7
AO
5087 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5088 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5089 {
5090 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5091 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5092 i.types[op].bitfield.disp8 = 0;
5093 i.types[op].bitfield.disp16 = 0;
5094 i.types[op].bitfield.disp32 = 0;
5095 i.types[op].bitfield.disp32s = 0;
5096 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5097 }
5098 else
b300c311 5099 /* We only support 64bit displacement on constants. */
40fb9820 5100 i.types[op].bitfield.disp64 = 0;
252b5132 5101 }
29b0f896
AM
5102}
5103
4a1b91ea
L
5104/* Return 1 if there is a match in broadcast bytes between operand
5105 GIVEN and instruction template T. */
5106
5107static INLINE int
5108match_broadcast_size (const insn_template *t, unsigned int given)
5109{
5110 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5111 && i.types[given].bitfield.byte)
5112 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5113 && i.types[given].bitfield.word)
5114 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5115 && i.types[given].bitfield.dword)
5116 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5117 && i.types[given].bitfield.qword));
5118}
5119
6c30d220
L
5120/* Check if operands are valid for the instruction. */
5121
5122static int
5123check_VecOperands (const insn_template *t)
5124{
43234a1e 5125 unsigned int op;
e2195274
JB
5126 i386_cpu_flags cpu;
5127 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5128
5129 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5130 any one operand are implicity requiring AVX512VL support if the actual
5131 operand size is YMMword or XMMword. Since this function runs after
5132 template matching, there's no need to check for YMMword/XMMword in
5133 the template. */
5134 cpu = cpu_flags_and (t->cpu_flags, avx512);
5135 if (!cpu_flags_all_zero (&cpu)
5136 && !t->cpu_flags.bitfield.cpuavx512vl
5137 && !cpu_arch_flags.bitfield.cpuavx512vl)
5138 {
5139 for (op = 0; op < t->operands; ++op)
5140 {
5141 if (t->operand_types[op].bitfield.zmmword
5142 && (i.types[op].bitfield.ymmword
5143 || i.types[op].bitfield.xmmword))
5144 {
5145 i.error = unsupported;
5146 return 1;
5147 }
5148 }
5149 }
43234a1e 5150
6c30d220
L
5151 /* Without VSIB byte, we can't have a vector register for index. */
5152 if (!t->opcode_modifier.vecsib
5153 && i.index_reg
1b54b8d7
JB
5154 && (i.index_reg->reg_type.bitfield.xmmword
5155 || i.index_reg->reg_type.bitfield.ymmword
5156 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5157 {
5158 i.error = unsupported_vector_index_register;
5159 return 1;
5160 }
5161
ad8ecc81
MZ
5162 /* Check if default mask is allowed. */
5163 if (t->opcode_modifier.nodefmask
5164 && (!i.mask || i.mask->mask->reg_num == 0))
5165 {
5166 i.error = no_default_mask;
5167 return 1;
5168 }
5169
7bab8ab5
JB
5170 /* For VSIB byte, we need a vector register for index, and all vector
5171 registers must be distinct. */
5172 if (t->opcode_modifier.vecsib)
5173 {
5174 if (!i.index_reg
6c30d220 5175 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5176 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5177 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5178 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5179 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5180 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5181 {
5182 i.error = invalid_vsib_address;
5183 return 1;
5184 }
5185
43234a1e
L
5186 gas_assert (i.reg_operands == 2 || i.mask);
5187 if (i.reg_operands == 2 && !i.mask)
5188 {
1b54b8d7
JB
5189 gas_assert (i.types[0].bitfield.regsimd);
5190 gas_assert (i.types[0].bitfield.xmmword
5191 || i.types[0].bitfield.ymmword);
5192 gas_assert (i.types[2].bitfield.regsimd);
5193 gas_assert (i.types[2].bitfield.xmmword
5194 || i.types[2].bitfield.ymmword);
43234a1e
L
5195 if (operand_check == check_none)
5196 return 0;
5197 if (register_number (i.op[0].regs)
5198 != register_number (i.index_reg)
5199 && register_number (i.op[2].regs)
5200 != register_number (i.index_reg)
5201 && register_number (i.op[0].regs)
5202 != register_number (i.op[2].regs))
5203 return 0;
5204 if (operand_check == check_error)
5205 {
5206 i.error = invalid_vector_register_set;
5207 return 1;
5208 }
5209 as_warn (_("mask, index, and destination registers should be distinct"));
5210 }
8444f82a
MZ
5211 else if (i.reg_operands == 1 && i.mask)
5212 {
1b54b8d7
JB
5213 if (i.types[1].bitfield.regsimd
5214 && (i.types[1].bitfield.xmmword
5215 || i.types[1].bitfield.ymmword
5216 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5217 && (register_number (i.op[1].regs)
5218 == register_number (i.index_reg)))
5219 {
5220 if (operand_check == check_error)
5221 {
5222 i.error = invalid_vector_register_set;
5223 return 1;
5224 }
5225 if (operand_check != check_none)
5226 as_warn (_("index and destination registers should be distinct"));
5227 }
5228 }
43234a1e 5229 }
7bab8ab5 5230
43234a1e
L
5231 /* Check if broadcast is supported by the instruction and is applied
5232 to the memory operand. */
5233 if (i.broadcast)
5234 {
8e6e0792 5235 i386_operand_type type, overlap;
43234a1e
L
5236
5237 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5238 and its broadcast bytes match the memory operand. */
32546502 5239 op = i.broadcast->operand;
8e6e0792 5240 if (!t->opcode_modifier.broadcast
c48dadc9 5241 || !(i.flags[op] & Operand_Mem)
c39e5b26 5242 || (!i.types[op].bitfield.unspecified
4a1b91ea 5243 && !match_broadcast_size (t, op)))
43234a1e
L
5244 {
5245 bad_broadcast:
5246 i.error = unsupported_broadcast;
5247 return 1;
5248 }
8e6e0792 5249
4a1b91ea
L
5250 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5251 * i.broadcast->type);
8e6e0792 5252 operand_type_set (&type, 0);
4a1b91ea 5253 switch (i.broadcast->bytes)
8e6e0792 5254 {
4a1b91ea
L
5255 case 2:
5256 type.bitfield.word = 1;
5257 break;
5258 case 4:
5259 type.bitfield.dword = 1;
5260 break;
8e6e0792
JB
5261 case 8:
5262 type.bitfield.qword = 1;
5263 break;
5264 case 16:
5265 type.bitfield.xmmword = 1;
5266 break;
5267 case 32:
5268 type.bitfield.ymmword = 1;
5269 break;
5270 case 64:
5271 type.bitfield.zmmword = 1;
5272 break;
5273 default:
5274 goto bad_broadcast;
5275 }
5276
5277 overlap = operand_type_and (type, t->operand_types[op]);
5278 if (operand_type_all_zero (&overlap))
5279 goto bad_broadcast;
5280
5281 if (t->opcode_modifier.checkregsize)
5282 {
5283 unsigned int j;
5284
e2195274 5285 type.bitfield.baseindex = 1;
8e6e0792
JB
5286 for (j = 0; j < i.operands; ++j)
5287 {
5288 if (j != op
5289 && !operand_type_register_match(i.types[j],
5290 t->operand_types[j],
5291 type,
5292 t->operand_types[op]))
5293 goto bad_broadcast;
5294 }
5295 }
43234a1e
L
5296 }
5297 /* If broadcast is supported in this instruction, we need to check if
5298 operand of one-element size isn't specified without broadcast. */
5299 else if (t->opcode_modifier.broadcast && i.mem_operands)
5300 {
5301 /* Find memory operand. */
5302 for (op = 0; op < i.operands; op++)
5303 if (operand_type_check (i.types[op], anymem))
5304 break;
5305 gas_assert (op < i.operands);
5306 /* Check size of the memory operand. */
4a1b91ea 5307 if (match_broadcast_size (t, op))
43234a1e
L
5308 {
5309 i.error = broadcast_needed;
5310 return 1;
5311 }
5312 }
c39e5b26
JB
5313 else
5314 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5315
5316 /* Check if requested masking is supported. */
ae2387fe 5317 if (i.mask)
43234a1e 5318 {
ae2387fe
JB
5319 switch (t->opcode_modifier.masking)
5320 {
5321 case BOTH_MASKING:
5322 break;
5323 case MERGING_MASKING:
5324 if (i.mask->zeroing)
5325 {
5326 case 0:
5327 i.error = unsupported_masking;
5328 return 1;
5329 }
5330 break;
5331 case DYNAMIC_MASKING:
5332 /* Memory destinations allow only merging masking. */
5333 if (i.mask->zeroing && i.mem_operands)
5334 {
5335 /* Find memory operand. */
5336 for (op = 0; op < i.operands; op++)
c48dadc9 5337 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5338 break;
5339 gas_assert (op < i.operands);
5340 if (op == i.operands - 1)
5341 {
5342 i.error = unsupported_masking;
5343 return 1;
5344 }
5345 }
5346 break;
5347 default:
5348 abort ();
5349 }
43234a1e
L
5350 }
5351
5352 /* Check if masking is applied to dest operand. */
5353 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5354 {
5355 i.error = mask_not_on_destination;
5356 return 1;
5357 }
5358
43234a1e
L
5359 /* Check RC/SAE. */
5360 if (i.rounding)
5361 {
5362 if ((i.rounding->type != saeonly
5363 && !t->opcode_modifier.staticrounding)
5364 || (i.rounding->type == saeonly
5365 && (t->opcode_modifier.staticrounding
5366 || !t->opcode_modifier.sae)))
5367 {
5368 i.error = unsupported_rc_sae;
5369 return 1;
5370 }
5371 /* If the instruction has several immediate operands and one of
5372 them is rounding, the rounding operand should be the last
5373 immediate operand. */
5374 if (i.imm_operands > 1
5375 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5376 {
43234a1e 5377 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5378 return 1;
5379 }
6c30d220
L
5380 }
5381
43234a1e 5382 /* Check vector Disp8 operand. */
b5014f7a
JB
5383 if (t->opcode_modifier.disp8memshift
5384 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5385 {
5386 if (i.broadcast)
4a1b91ea 5387 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5388 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5389 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5390 else
5391 {
5392 const i386_operand_type *type = NULL;
5393
5394 i.memshift = 0;
5395 for (op = 0; op < i.operands; op++)
5396 if (operand_type_check (i.types[op], anymem))
5397 {
4174bfff
JB
5398 if (t->opcode_modifier.evex == EVEXLIG)
5399 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5400 else if (t->operand_types[op].bitfield.xmmword
5401 + t->operand_types[op].bitfield.ymmword
5402 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5403 type = &t->operand_types[op];
5404 else if (!i.types[op].bitfield.unspecified)
5405 type = &i.types[op];
5406 }
4174bfff
JB
5407 else if (i.types[op].bitfield.regsimd
5408 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5409 {
5410 if (i.types[op].bitfield.zmmword)
5411 i.memshift = 6;
5412 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5413 i.memshift = 5;
5414 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5415 i.memshift = 4;
5416 }
5417
5418 if (type)
5419 {
5420 if (type->bitfield.zmmword)
5421 i.memshift = 6;
5422 else if (type->bitfield.ymmword)
5423 i.memshift = 5;
5424 else if (type->bitfield.xmmword)
5425 i.memshift = 4;
5426 }
5427
5428 /* For the check in fits_in_disp8(). */
5429 if (i.memshift == 0)
5430 i.memshift = -1;
5431 }
43234a1e
L
5432
5433 for (op = 0; op < i.operands; op++)
5434 if (operand_type_check (i.types[op], disp)
5435 && i.op[op].disps->X_op == O_constant)
5436 {
b5014f7a 5437 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5438 {
b5014f7a
JB
5439 i.types[op].bitfield.disp8 = 1;
5440 return 0;
43234a1e 5441 }
b5014f7a 5442 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5443 }
5444 }
b5014f7a
JB
5445
5446 i.memshift = 0;
43234a1e 5447
6c30d220
L
5448 return 0;
5449}
5450
43f3e2ee 5451/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5452 operand types. */
5453
5454static int
5455VEX_check_operands (const insn_template *t)
5456{
86fa6981 5457 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5458 {
86fa6981 5459 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5460 if (!is_evex_encoding (t))
86fa6981
L
5461 {
5462 i.error = unsupported;
5463 return 1;
5464 }
5465 return 0;
43234a1e
L
5466 }
5467
a683cc34 5468 if (!t->opcode_modifier.vex)
86fa6981
L
5469 {
5470 /* This instruction template doesn't have VEX prefix. */
5471 if (i.vec_encoding != vex_encoding_default)
5472 {
5473 i.error = unsupported;
5474 return 1;
5475 }
5476 return 0;
5477 }
a683cc34
SP
5478
5479 /* Only check VEX_Imm4, which must be the first operand. */
5480 if (t->operand_types[0].bitfield.vec_imm4)
5481 {
5482 if (i.op[0].imms->X_op != O_constant
5483 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5484 {
a65babc9 5485 i.error = bad_imm4;
891edac4
L
5486 return 1;
5487 }
a683cc34
SP
5488
5489 /* Turn off Imm8 so that update_imm won't complain. */
5490 i.types[0] = vec_imm4;
5491 }
5492
5493 return 0;
5494}
5495
d3ce72d0 5496static const insn_template *
83b16ac6 5497match_template (char mnem_suffix)
29b0f896
AM
5498{
5499 /* Points to template once we've found it. */
d3ce72d0 5500 const insn_template *t;
40fb9820 5501 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5502 i386_operand_type overlap4;
29b0f896 5503 unsigned int found_reverse_match;
83b16ac6 5504 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5505 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5506 int addr_prefix_disp;
a5c311ca 5507 unsigned int j;
3ac21baa 5508 unsigned int found_cpu_match, size_match;
45664ddb 5509 unsigned int check_register;
5614d22c 5510 enum i386_error specific_error = 0;
29b0f896 5511
c0f3af97
L
5512#if MAX_OPERANDS != 5
5513# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5514#endif
5515
29b0f896 5516 found_reverse_match = 0;
539e75ad 5517 addr_prefix_disp = -1;
40fb9820
L
5518
5519 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5520 if (intel_syntax && i.broadcast)
5521 /* nothing */;
5522 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5523 suffix_check.no_bsuf = 1;
5524 else if (i.suffix == WORD_MNEM_SUFFIX)
5525 suffix_check.no_wsuf = 1;
5526 else if (i.suffix == SHORT_MNEM_SUFFIX)
5527 suffix_check.no_ssuf = 1;
5528 else if (i.suffix == LONG_MNEM_SUFFIX)
5529 suffix_check.no_lsuf = 1;
5530 else if (i.suffix == QWORD_MNEM_SUFFIX)
5531 suffix_check.no_qsuf = 1;
5532 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5533 suffix_check.no_ldsuf = 1;
29b0f896 5534
83b16ac6
JB
5535 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5536 if (intel_syntax)
5537 {
5538 switch (mnem_suffix)
5539 {
5540 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5541 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5542 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5543 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5544 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5545 }
5546 }
5547
01559ecc
L
5548 /* Must have right number of operands. */
5549 i.error = number_of_operands_mismatch;
5550
45aa61fe 5551 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5552 {
539e75ad 5553 addr_prefix_disp = -1;
dbbc8b7e 5554 found_reverse_match = 0;
539e75ad 5555
29b0f896
AM
5556 if (i.operands != t->operands)
5557 continue;
5558
50aecf8c 5559 /* Check processor support. */
a65babc9 5560 i.error = unsupported;
c0f3af97
L
5561 found_cpu_match = (cpu_flags_match (t)
5562 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5563 if (!found_cpu_match)
5564 continue;
5565
e1d4d893 5566 /* Check AT&T mnemonic. */
a65babc9 5567 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5568 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5569 continue;
5570
e92bae62 5571 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5572 i.error = unsupported_syntax;
5c07affc 5573 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5574 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5575 || (intel64 && t->opcode_modifier.amd64)
5576 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5577 continue;
5578
20592a94 5579 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5580 i.error = invalid_instruction_suffix;
567e4e96
L
5581 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5582 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5583 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5584 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5585 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5586 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5587 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5588 continue;
83b16ac6
JB
5589 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5590 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5591 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5592 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5593 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5594 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5595 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5596 continue;
29b0f896 5597
3ac21baa
JB
5598 size_match = operand_size_match (t);
5599 if (!size_match)
7d5e4556 5600 continue;
539e75ad 5601
5c07affc
L
5602 for (j = 0; j < MAX_OPERANDS; j++)
5603 operand_types[j] = t->operand_types[j];
5604
45aa61fe
AM
5605 /* In general, don't allow 64-bit operands in 32-bit mode. */
5606 if (i.suffix == QWORD_MNEM_SUFFIX
5607 && flag_code != CODE_64BIT
5608 && (intel_syntax
40fb9820 5609 ? (!t->opcode_modifier.ignoresize
625cbd7a 5610 && !t->opcode_modifier.broadcast
45aa61fe
AM
5611 && !intel_float_operand (t->name))
5612 : intel_float_operand (t->name) != 2)
40fb9820 5613 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5614 && !operand_types[0].bitfield.regsimd)
40fb9820 5615 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5616 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5617 && (t->base_opcode != 0x0fc7
5618 || t->extension_opcode != 1 /* cmpxchg8b */))
5619 continue;
5620
192dc9c6
JB
5621 /* In general, don't allow 32-bit operands on pre-386. */
5622 else if (i.suffix == LONG_MNEM_SUFFIX
5623 && !cpu_arch_flags.bitfield.cpui386
5624 && (intel_syntax
5625 ? (!t->opcode_modifier.ignoresize
5626 && !intel_float_operand (t->name))
5627 : intel_float_operand (t->name) != 2)
5628 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5629 && !operand_types[0].bitfield.regsimd)
192dc9c6 5630 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5631 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5632 continue;
5633
29b0f896 5634 /* Do not verify operands when there are none. */
50aecf8c 5635 else
29b0f896 5636 {
c6fb90c8 5637 if (!t->operands)
2dbab7d5
L
5638 /* We've found a match; break out of loop. */
5639 break;
29b0f896 5640 }
252b5132 5641
539e75ad
L
5642 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5643 into Disp32/Disp16/Disp32 operand. */
5644 if (i.prefix[ADDR_PREFIX] != 0)
5645 {
40fb9820 5646 /* There should be only one Disp operand. */
539e75ad
L
5647 switch (flag_code)
5648 {
5649 case CODE_16BIT:
40fb9820
L
5650 for (j = 0; j < MAX_OPERANDS; j++)
5651 {
5652 if (operand_types[j].bitfield.disp16)
5653 {
5654 addr_prefix_disp = j;
5655 operand_types[j].bitfield.disp32 = 1;
5656 operand_types[j].bitfield.disp16 = 0;
5657 break;
5658 }
5659 }
539e75ad
L
5660 break;
5661 case CODE_32BIT:
40fb9820
L
5662 for (j = 0; j < MAX_OPERANDS; j++)
5663 {
5664 if (operand_types[j].bitfield.disp32)
5665 {
5666 addr_prefix_disp = j;
5667 operand_types[j].bitfield.disp32 = 0;
5668 operand_types[j].bitfield.disp16 = 1;
5669 break;
5670 }
5671 }
539e75ad
L
5672 break;
5673 case CODE_64BIT:
40fb9820
L
5674 for (j = 0; j < MAX_OPERANDS; j++)
5675 {
5676 if (operand_types[j].bitfield.disp64)
5677 {
5678 addr_prefix_disp = j;
5679 operand_types[j].bitfield.disp64 = 0;
5680 operand_types[j].bitfield.disp32 = 1;
5681 break;
5682 }
5683 }
539e75ad
L
5684 break;
5685 }
539e75ad
L
5686 }
5687
02a86693
L
5688 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5689 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5690 continue;
5691
56ffb741 5692 /* We check register size if needed. */
e2195274
JB
5693 if (t->opcode_modifier.checkregsize)
5694 {
5695 check_register = (1 << t->operands) - 1;
5696 if (i.broadcast)
5697 check_register &= ~(1 << i.broadcast->operand);
5698 }
5699 else
5700 check_register = 0;
5701
c6fb90c8 5702 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5703 switch (t->operands)
5704 {
5705 case 1:
40fb9820 5706 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5707 continue;
5708 break;
5709 case 2:
33eaf5de 5710 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5711 only in 32bit mode and we can use opcode 0x90. In 64bit
5712 mode, we can't use 0x90 for xchg %eax, %eax since it should
5713 zero-extend %eax to %rax. */
5714 if (flag_code == CODE_64BIT
5715 && t->base_opcode == 0x90
0dfbf9d7
L
5716 && operand_type_equal (&i.types [0], &acc32)
5717 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5718 continue;
1212781b
JB
5719 /* xrelease mov %eax, <disp> is another special case. It must not
5720 match the accumulator-only encoding of mov. */
5721 if (flag_code != CODE_64BIT
5722 && i.hle_prefix
5723 && t->base_opcode == 0xa0
5724 && i.types[0].bitfield.acc
5725 && operand_type_check (i.types[1], anymem))
5726 continue;
f5eb1d70
JB
5727 /* Fall through. */
5728
5729 case 3:
3ac21baa
JB
5730 if (!(size_match & MATCH_STRAIGHT))
5731 goto check_reverse;
64c49ab3
JB
5732 /* Reverse direction of operands if swapping is possible in the first
5733 place (operands need to be symmetric) and
5734 - the load form is requested, and the template is a store form,
5735 - the store form is requested, and the template is a load form,
5736 - the non-default (swapped) form is requested. */
5737 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5738 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5739 && !operand_type_all_zero (&overlap1))
5740 switch (i.dir_encoding)
5741 {
5742 case dir_encoding_load:
5743 if (operand_type_check (operand_types[i.operands - 1], anymem)
5744 || operand_types[i.operands - 1].bitfield.regmem)
5745 goto check_reverse;
5746 break;
5747
5748 case dir_encoding_store:
5749 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5750 && !operand_types[i.operands - 1].bitfield.regmem)
5751 goto check_reverse;
5752 break;
5753
5754 case dir_encoding_swap:
5755 goto check_reverse;
5756
5757 case dir_encoding_default:
5758 break;
5759 }
86fa6981 5760 /* If we want store form, we skip the current load. */
64c49ab3
JB
5761 if ((i.dir_encoding == dir_encoding_store
5762 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5763 && i.mem_operands == 0
5764 && t->opcode_modifier.load)
fa99fab2 5765 continue;
1a0670f3 5766 /* Fall through. */
f48ff2ae 5767 case 4:
c0f3af97 5768 case 5:
c6fb90c8 5769 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5770 if (!operand_type_match (overlap0, i.types[0])
5771 || !operand_type_match (overlap1, i.types[1])
e2195274 5772 || ((check_register & 3) == 3
dc821c5f 5773 && !operand_type_register_match (i.types[0],
40fb9820 5774 operand_types[0],
dc821c5f 5775 i.types[1],
40fb9820 5776 operand_types[1])))
29b0f896
AM
5777 {
5778 /* Check if other direction is valid ... */
38e314eb 5779 if (!t->opcode_modifier.d)
29b0f896
AM
5780 continue;
5781
b6169b20 5782check_reverse:
3ac21baa
JB
5783 if (!(size_match & MATCH_REVERSE))
5784 continue;
29b0f896 5785 /* Try reversing direction of operands. */
f5eb1d70
JB
5786 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5787 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5788 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5789 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5790 || (check_register
dc821c5f 5791 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5792 operand_types[i.operands - 1],
5793 i.types[i.operands - 1],
45664ddb 5794 operand_types[0])))
29b0f896
AM
5795 {
5796 /* Does not match either direction. */
5797 continue;
5798 }
38e314eb 5799 /* found_reverse_match holds which of D or FloatR
29b0f896 5800 we've found. */
38e314eb
JB
5801 if (!t->opcode_modifier.d)
5802 found_reverse_match = 0;
5803 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5804 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5805 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5806 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5807 || operand_types[0].bitfield.regmmx
f5eb1d70 5808 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5809 || is_any_vex_encoding(t))
5810 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5811 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5812 else
38e314eb 5813 found_reverse_match = Opcode_D;
40fb9820 5814 if (t->opcode_modifier.floatr)
8a2ed489 5815 found_reverse_match |= Opcode_FloatR;
29b0f896 5816 }
f48ff2ae 5817 else
29b0f896 5818 {
f48ff2ae 5819 /* Found a forward 2 operand match here. */
d1cbb4db
L
5820 switch (t->operands)
5821 {
c0f3af97
L
5822 case 5:
5823 overlap4 = operand_type_and (i.types[4],
5824 operand_types[4]);
1a0670f3 5825 /* Fall through. */
d1cbb4db 5826 case 4:
c6fb90c8
L
5827 overlap3 = operand_type_and (i.types[3],
5828 operand_types[3]);
1a0670f3 5829 /* Fall through. */
d1cbb4db 5830 case 3:
c6fb90c8
L
5831 overlap2 = operand_type_and (i.types[2],
5832 operand_types[2]);
d1cbb4db
L
5833 break;
5834 }
29b0f896 5835
f48ff2ae
L
5836 switch (t->operands)
5837 {
c0f3af97
L
5838 case 5:
5839 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5840 || !operand_type_register_match (i.types[3],
c0f3af97 5841 operand_types[3],
c0f3af97
L
5842 i.types[4],
5843 operand_types[4]))
5844 continue;
1a0670f3 5845 /* Fall through. */
f48ff2ae 5846 case 4:
40fb9820 5847 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5848 || ((check_register & 0xa) == 0xa
5849 && !operand_type_register_match (i.types[1],
f7768225
JB
5850 operand_types[1],
5851 i.types[3],
e2195274
JB
5852 operand_types[3]))
5853 || ((check_register & 0xc) == 0xc
5854 && !operand_type_register_match (i.types[2],
5855 operand_types[2],
5856 i.types[3],
5857 operand_types[3])))
f48ff2ae 5858 continue;
1a0670f3 5859 /* Fall through. */
f48ff2ae
L
5860 case 3:
5861 /* Here we make use of the fact that there are no
23e42951 5862 reverse match 3 operand instructions. */
40fb9820 5863 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5864 || ((check_register & 5) == 5
5865 && !operand_type_register_match (i.types[0],
23e42951
JB
5866 operand_types[0],
5867 i.types[2],
e2195274
JB
5868 operand_types[2]))
5869 || ((check_register & 6) == 6
5870 && !operand_type_register_match (i.types[1],
5871 operand_types[1],
5872 i.types[2],
5873 operand_types[2])))
f48ff2ae
L
5874 continue;
5875 break;
5876 }
29b0f896 5877 }
f48ff2ae 5878 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5879 slip through to break. */
5880 }
3629bb00 5881 if (!found_cpu_match)
dbbc8b7e 5882 continue;
c0f3af97 5883
5614d22c
JB
5884 /* Check if vector and VEX operands are valid. */
5885 if (check_VecOperands (t) || VEX_check_operands (t))
5886 {
5887 specific_error = i.error;
5888 continue;
5889 }
a683cc34 5890
29b0f896
AM
5891 /* We've found a match; break out of loop. */
5892 break;
5893 }
5894
5895 if (t == current_templates->end)
5896 {
5897 /* We found no match. */
a65babc9 5898 const char *err_msg;
5614d22c 5899 switch (specific_error ? specific_error : i.error)
a65babc9
L
5900 {
5901 default:
5902 abort ();
86e026a4 5903 case operand_size_mismatch:
a65babc9
L
5904 err_msg = _("operand size mismatch");
5905 break;
5906 case operand_type_mismatch:
5907 err_msg = _("operand type mismatch");
5908 break;
5909 case register_type_mismatch:
5910 err_msg = _("register type mismatch");
5911 break;
5912 case number_of_operands_mismatch:
5913 err_msg = _("number of operands mismatch");
5914 break;
5915 case invalid_instruction_suffix:
5916 err_msg = _("invalid instruction suffix");
5917 break;
5918 case bad_imm4:
4a2608e3 5919 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5920 break;
a65babc9
L
5921 case unsupported_with_intel_mnemonic:
5922 err_msg = _("unsupported with Intel mnemonic");
5923 break;
5924 case unsupported_syntax:
5925 err_msg = _("unsupported syntax");
5926 break;
5927 case unsupported:
35262a23 5928 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5929 current_templates->start->name);
5930 return NULL;
6c30d220
L
5931 case invalid_vsib_address:
5932 err_msg = _("invalid VSIB address");
5933 break;
7bab8ab5
JB
5934 case invalid_vector_register_set:
5935 err_msg = _("mask, index, and destination registers must be distinct");
5936 break;
6c30d220
L
5937 case unsupported_vector_index_register:
5938 err_msg = _("unsupported vector index register");
5939 break;
43234a1e
L
5940 case unsupported_broadcast:
5941 err_msg = _("unsupported broadcast");
5942 break;
43234a1e
L
5943 case broadcast_needed:
5944 err_msg = _("broadcast is needed for operand of such type");
5945 break;
5946 case unsupported_masking:
5947 err_msg = _("unsupported masking");
5948 break;
5949 case mask_not_on_destination:
5950 err_msg = _("mask not on destination operand");
5951 break;
5952 case no_default_mask:
5953 err_msg = _("default mask isn't allowed");
5954 break;
5955 case unsupported_rc_sae:
5956 err_msg = _("unsupported static rounding/sae");
5957 break;
5958 case rc_sae_operand_not_last_imm:
5959 if (intel_syntax)
5960 err_msg = _("RC/SAE operand must precede immediate operands");
5961 else
5962 err_msg = _("RC/SAE operand must follow immediate operands");
5963 break;
5964 case invalid_register_operand:
5965 err_msg = _("invalid register operand");
5966 break;
a65babc9
L
5967 }
5968 as_bad (_("%s for `%s'"), err_msg,
891edac4 5969 current_templates->start->name);
fa99fab2 5970 return NULL;
29b0f896 5971 }
252b5132 5972
29b0f896
AM
5973 if (!quiet_warnings)
5974 {
5975 if (!intel_syntax
40fb9820
L
5976 && (i.types[0].bitfield.jumpabsolute
5977 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5978 {
5979 as_warn (_("indirect %s without `*'"), t->name);
5980 }
5981
40fb9820
L
5982 if (t->opcode_modifier.isprefix
5983 && t->opcode_modifier.ignoresize)
29b0f896
AM
5984 {
5985 /* Warn them that a data or address size prefix doesn't
5986 affect assembly of the next line of code. */
5987 as_warn (_("stand-alone `%s' prefix"), t->name);
5988 }
5989 }
5990
5991 /* Copy the template we found. */
5992 i.tm = *t;
539e75ad
L
5993
5994 if (addr_prefix_disp != -1)
5995 i.tm.operand_types[addr_prefix_disp]
5996 = operand_types[addr_prefix_disp];
5997
29b0f896
AM
5998 if (found_reverse_match)
5999 {
6000 /* If we found a reverse match we must alter the opcode
6001 direction bit. found_reverse_match holds bits to change
6002 (different for int & float insns). */
6003
6004 i.tm.base_opcode ^= found_reverse_match;
6005
f5eb1d70
JB
6006 i.tm.operand_types[0] = operand_types[i.operands - 1];
6007 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6008 }
6009
fa99fab2 6010 return t;
29b0f896
AM
6011}
6012
6013static int
e3bb37b5 6014check_string (void)
29b0f896 6015{
40fb9820
L
6016 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6017 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6018 {
6019 if (i.seg[0] != NULL && i.seg[0] != &es)
6020 {
a87af027 6021 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6022 i.tm.name,
a87af027
JB
6023 mem_op + 1,
6024 register_prefix);
29b0f896
AM
6025 return 0;
6026 }
6027 /* There's only ever one segment override allowed per instruction.
6028 This instruction possibly has a legal segment override on the
6029 second operand, so copy the segment to where non-string
6030 instructions store it, allowing common code. */
6031 i.seg[0] = i.seg[1];
6032 }
40fb9820 6033 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6034 {
6035 if (i.seg[1] != NULL && i.seg[1] != &es)
6036 {
a87af027 6037 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6038 i.tm.name,
a87af027
JB
6039 mem_op + 2,
6040 register_prefix);
29b0f896
AM
6041 return 0;
6042 }
6043 }
6044 return 1;
6045}
6046
6047static int
543613e9 6048process_suffix (void)
29b0f896
AM
6049{
6050 /* If matched instruction specifies an explicit instruction mnemonic
6051 suffix, use it. */
673fe0f0 6052 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6053 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6054 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6055 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6056 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6057 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6058 else if (i.reg_operands)
6059 {
6060 /* If there's no instruction mnemonic suffix we try to invent one
6061 based on register operands. */
6062 if (!i.suffix)
6063 {
6064 /* We take i.suffix from the last register operand specified,
6065 Destination register type is more significant than source
381d071f
L
6066 register type. crc32 in SSE4.2 prefers source register
6067 type. */
556059dd 6068 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6069 {
556059dd
JB
6070 if (i.types[0].bitfield.byte)
6071 i.suffix = BYTE_MNEM_SUFFIX;
6072 else if (i.types[0].bitfield.word)
40fb9820 6073 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6074 else if (i.types[0].bitfield.dword)
40fb9820 6075 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6076 else if (i.types[0].bitfield.qword)
40fb9820 6077 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6078 }
6079
6080 if (!i.suffix)
6081 {
6082 int op;
6083
556059dd 6084 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6085 {
6086 /* We have to know the operand size for crc32. */
6087 as_bad (_("ambiguous memory operand size for `%s`"),
6088 i.tm.name);
6089 return 0;
6090 }
6091
381d071f 6092 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6093 if (!i.tm.operand_types[op].bitfield.inoutportreg
6094 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6095 {
8819ada6
JB
6096 if (!i.types[op].bitfield.reg)
6097 continue;
6098 if (i.types[op].bitfield.byte)
6099 i.suffix = BYTE_MNEM_SUFFIX;
6100 else if (i.types[op].bitfield.word)
6101 i.suffix = WORD_MNEM_SUFFIX;
6102 else if (i.types[op].bitfield.dword)
6103 i.suffix = LONG_MNEM_SUFFIX;
6104 else if (i.types[op].bitfield.qword)
6105 i.suffix = QWORD_MNEM_SUFFIX;
6106 else
6107 continue;
6108 break;
381d071f
L
6109 }
6110 }
29b0f896
AM
6111 }
6112 else if (i.suffix == BYTE_MNEM_SUFFIX)
6113 {
2eb952a4
L
6114 if (intel_syntax
6115 && i.tm.opcode_modifier.ignoresize
6116 && i.tm.opcode_modifier.no_bsuf)
6117 i.suffix = 0;
6118 else if (!check_byte_reg ())
29b0f896
AM
6119 return 0;
6120 }
6121 else if (i.suffix == LONG_MNEM_SUFFIX)
6122 {
2eb952a4
L
6123 if (intel_syntax
6124 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6125 && i.tm.opcode_modifier.no_lsuf
6126 && !i.tm.opcode_modifier.todword
6127 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6128 i.suffix = 0;
6129 else if (!check_long_reg ())
29b0f896
AM
6130 return 0;
6131 }
6132 else if (i.suffix == QWORD_MNEM_SUFFIX)
6133 {
955e1e6a
L
6134 if (intel_syntax
6135 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6136 && i.tm.opcode_modifier.no_qsuf
6137 && !i.tm.opcode_modifier.todword
6138 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6139 i.suffix = 0;
6140 else if (!check_qword_reg ())
29b0f896
AM
6141 return 0;
6142 }
6143 else if (i.suffix == WORD_MNEM_SUFFIX)
6144 {
2eb952a4
L
6145 if (intel_syntax
6146 && i.tm.opcode_modifier.ignoresize
6147 && i.tm.opcode_modifier.no_wsuf)
6148 i.suffix = 0;
6149 else if (!check_word_reg ())
29b0f896
AM
6150 return 0;
6151 }
40fb9820 6152 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6153 /* Do nothing if the instruction is going to ignore the prefix. */
6154 ;
6155 else
6156 abort ();
6157 }
40fb9820 6158 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6159 && !i.suffix
6160 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6161 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6162 {
6163 i.suffix = stackop_size;
6164 }
9306ca4a
JB
6165 else if (intel_syntax
6166 && !i.suffix
40fb9820
L
6167 && (i.tm.operand_types[0].bitfield.jumpabsolute
6168 || i.tm.opcode_modifier.jumpbyte
6169 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6170 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6171 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6172 {
6173 switch (flag_code)
6174 {
6175 case CODE_64BIT:
40fb9820 6176 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6177 {
6178 i.suffix = QWORD_MNEM_SUFFIX;
6179 break;
6180 }
1a0670f3 6181 /* Fall through. */
9306ca4a 6182 case CODE_32BIT:
40fb9820 6183 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6184 i.suffix = LONG_MNEM_SUFFIX;
6185 break;
6186 case CODE_16BIT:
40fb9820 6187 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6188 i.suffix = WORD_MNEM_SUFFIX;
6189 break;
6190 }
6191 }
252b5132 6192
9306ca4a 6193 if (!i.suffix)
29b0f896 6194 {
9306ca4a
JB
6195 if (!intel_syntax)
6196 {
40fb9820 6197 if (i.tm.opcode_modifier.w)
9306ca4a 6198 {
4eed87de
AM
6199 as_bad (_("no instruction mnemonic suffix given and "
6200 "no register operands; can't size instruction"));
9306ca4a
JB
6201 return 0;
6202 }
6203 }
6204 else
6205 {
40fb9820 6206 unsigned int suffixes;
7ab9ffdd 6207
40fb9820
L
6208 suffixes = !i.tm.opcode_modifier.no_bsuf;
6209 if (!i.tm.opcode_modifier.no_wsuf)
6210 suffixes |= 1 << 1;
6211 if (!i.tm.opcode_modifier.no_lsuf)
6212 suffixes |= 1 << 2;
fc4adea1 6213 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6214 suffixes |= 1 << 3;
6215 if (!i.tm.opcode_modifier.no_ssuf)
6216 suffixes |= 1 << 4;
c2b9da16 6217 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6218 suffixes |= 1 << 5;
6219
6220 /* There are more than suffix matches. */
6221 if (i.tm.opcode_modifier.w
9306ca4a 6222 || ((suffixes & (suffixes - 1))
40fb9820
L
6223 && !i.tm.opcode_modifier.defaultsize
6224 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6225 {
6226 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6227 return 0;
6228 }
6229 }
29b0f896 6230 }
252b5132 6231
d2224064
JB
6232 /* Change the opcode based on the operand size given by i.suffix. */
6233 switch (i.suffix)
29b0f896 6234 {
d2224064
JB
6235 /* Size floating point instruction. */
6236 case LONG_MNEM_SUFFIX:
6237 if (i.tm.opcode_modifier.floatmf)
6238 {
6239 i.tm.base_opcode ^= 4;
6240 break;
6241 }
6242 /* fall through */
6243 case WORD_MNEM_SUFFIX:
6244 case QWORD_MNEM_SUFFIX:
29b0f896 6245 /* It's not a byte, select word/dword operation. */
40fb9820 6246 if (i.tm.opcode_modifier.w)
29b0f896 6247 {
40fb9820 6248 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6249 i.tm.base_opcode |= 8;
6250 else
6251 i.tm.base_opcode |= 1;
6252 }
d2224064
JB
6253 /* fall through */
6254 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6255 /* Now select between word & dword operations via the operand
6256 size prefix, except for instructions that will ignore this
6257 prefix anyway. */
75c0a438
L
6258 if (i.reg_operands > 0
6259 && i.types[0].bitfield.reg
6260 && i.tm.opcode_modifier.addrprefixopreg
6261 && (i.tm.opcode_modifier.immext
6262 || i.operands == 1))
cb712a9e 6263 {
ca61edf2
L
6264 /* The address size override prefix changes the size of the
6265 first operand. */
40fb9820 6266 if ((flag_code == CODE_32BIT
75c0a438 6267 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6268 || (flag_code != CODE_32BIT
75c0a438 6269 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6270 if (!add_prefix (ADDR_PREFIX_OPCODE))
6271 return 0;
6272 }
6273 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6274 && !i.tm.opcode_modifier.ignoresize
6275 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6276 && !i.tm.opcode_modifier.vex
6277 && !i.tm.opcode_modifier.vexopcode
6278 && !is_evex_encoding (&i.tm)
cb712a9e
L
6279 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6280 || (flag_code == CODE_64BIT
40fb9820 6281 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6282 {
6283 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6284
40fb9820 6285 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6286 prefix = ADDR_PREFIX_OPCODE;
252b5132 6287
29b0f896
AM
6288 if (!add_prefix (prefix))
6289 return 0;
24eab124 6290 }
252b5132 6291
29b0f896
AM
6292 /* Set mode64 for an operand. */
6293 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6294 && flag_code == CODE_64BIT
d2224064 6295 && !i.tm.opcode_modifier.norex64
46e883c5 6296 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6297 need rex64. */
6298 && ! (i.operands == 2
6299 && i.tm.base_opcode == 0x90
6300 && i.tm.extension_opcode == None
6301 && operand_type_equal (&i.types [0], &acc64)
6302 && operand_type_equal (&i.types [1], &acc64)))
6303 i.rex |= REX_W;
3e73aa7c 6304
d2224064 6305 break;
29b0f896 6306 }
7ecd2f8b 6307
c0a30a9f
L
6308 if (i.reg_operands != 0
6309 && i.operands > 1
6310 && i.tm.opcode_modifier.addrprefixopreg
6311 && !i.tm.opcode_modifier.immext)
6312 {
6313 /* Check invalid register operand when the address size override
6314 prefix changes the size of register operands. */
6315 unsigned int op;
6316 enum { need_word, need_dword, need_qword } need;
6317
6318 if (flag_code == CODE_32BIT)
6319 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6320 else
6321 {
6322 if (i.prefix[ADDR_PREFIX])
6323 need = need_dword;
6324 else
6325 need = flag_code == CODE_64BIT ? need_qword : need_word;
6326 }
6327
6328 for (op = 0; op < i.operands; op++)
6329 if (i.types[op].bitfield.reg
6330 && ((need == need_word
6331 && !i.op[op].regs->reg_type.bitfield.word)
6332 || (need == need_dword
6333 && !i.op[op].regs->reg_type.bitfield.dword)
6334 || (need == need_qword
6335 && !i.op[op].regs->reg_type.bitfield.qword)))
6336 {
6337 as_bad (_("invalid register operand size for `%s'"),
6338 i.tm.name);
6339 return 0;
6340 }
6341 }
6342
29b0f896
AM
6343 return 1;
6344}
3e73aa7c 6345
29b0f896 6346static int
543613e9 6347check_byte_reg (void)
29b0f896
AM
6348{
6349 int op;
543613e9 6350
29b0f896
AM
6351 for (op = i.operands; --op >= 0;)
6352 {
dc821c5f
JB
6353 /* Skip non-register operands. */
6354 if (!i.types[op].bitfield.reg)
6355 continue;
6356
29b0f896
AM
6357 /* If this is an eight bit register, it's OK. If it's the 16 or
6358 32 bit version of an eight bit register, we will just use the
6359 low portion, and that's OK too. */
dc821c5f 6360 if (i.types[op].bitfield.byte)
29b0f896
AM
6361 continue;
6362
5a819eb9
JB
6363 /* I/O port address operands are OK too. */
6364 if (i.tm.operand_types[op].bitfield.inoutportreg)
6365 continue;
6366
9344ff29
L
6367 /* crc32 doesn't generate this warning. */
6368 if (i.tm.base_opcode == 0xf20f38f0)
6369 continue;
6370
dc821c5f
JB
6371 if ((i.types[op].bitfield.word
6372 || i.types[op].bitfield.dword
6373 || i.types[op].bitfield.qword)
5a819eb9
JB
6374 && i.op[op].regs->reg_num < 4
6375 /* Prohibit these changes in 64bit mode, since the lowering
6376 would be more complicated. */
6377 && flag_code != CODE_64BIT)
29b0f896 6378 {
29b0f896 6379#if REGISTER_WARNINGS
5a819eb9 6380 if (!quiet_warnings)
a540244d
L
6381 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6382 register_prefix,
dc821c5f 6383 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6384 ? REGNAM_AL - REGNAM_AX
6385 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6386 register_prefix,
29b0f896
AM
6387 i.op[op].regs->reg_name,
6388 i.suffix);
6389#endif
6390 continue;
6391 }
6392 /* Any other register is bad. */
dc821c5f 6393 if (i.types[op].bitfield.reg
40fb9820 6394 || i.types[op].bitfield.regmmx
1b54b8d7 6395 || i.types[op].bitfield.regsimd
40fb9820
L
6396 || i.types[op].bitfield.sreg2
6397 || i.types[op].bitfield.sreg3
6398 || i.types[op].bitfield.control
6399 || i.types[op].bitfield.debug
ca0d63fe 6400 || i.types[op].bitfield.test)
29b0f896 6401 {
a540244d
L
6402 as_bad (_("`%s%s' not allowed with `%s%c'"),
6403 register_prefix,
29b0f896
AM
6404 i.op[op].regs->reg_name,
6405 i.tm.name,
6406 i.suffix);
6407 return 0;
6408 }
6409 }
6410 return 1;
6411}
6412
6413static int
e3bb37b5 6414check_long_reg (void)
29b0f896
AM
6415{
6416 int op;
6417
6418 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6419 /* Skip non-register operands. */
6420 if (!i.types[op].bitfield.reg)
6421 continue;
29b0f896
AM
6422 /* Reject eight bit registers, except where the template requires
6423 them. (eg. movzb) */
dc821c5f
JB
6424 else if (i.types[op].bitfield.byte
6425 && (i.tm.operand_types[op].bitfield.reg
6426 || i.tm.operand_types[op].bitfield.acc)
6427 && (i.tm.operand_types[op].bitfield.word
6428 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6429 {
a540244d
L
6430 as_bad (_("`%s%s' not allowed with `%s%c'"),
6431 register_prefix,
29b0f896
AM
6432 i.op[op].regs->reg_name,
6433 i.tm.name,
6434 i.suffix);
6435 return 0;
6436 }
e4630f71 6437 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6438 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6439 && i.types[op].bitfield.word
6440 && (i.tm.operand_types[op].bitfield.reg
6441 || i.tm.operand_types[op].bitfield.acc)
6442 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6443 {
6444 /* Prohibit these changes in the 64bit mode, since the
6445 lowering is more complicated. */
6446 if (flag_code == CODE_64BIT)
252b5132 6447 {
2b5d6a91 6448 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6449 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6450 i.suffix);
6451 return 0;
252b5132 6452 }
29b0f896 6453#if REGISTER_WARNINGS
cecf1424
JB
6454 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6455 register_prefix,
6456 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6457 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6458#endif
252b5132 6459 }
e4630f71 6460 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6461 else if (i.types[op].bitfield.qword
6462 && (i.tm.operand_types[op].bitfield.reg
6463 || i.tm.operand_types[op].bitfield.acc)
6464 && i.tm.operand_types[op].bitfield.dword)
252b5132 6465 {
34828aad 6466 if (intel_syntax
ca61edf2 6467 && i.tm.opcode_modifier.toqword
1b54b8d7 6468 && !i.types[0].bitfield.regsimd)
34828aad 6469 {
ca61edf2 6470 /* Convert to QWORD. We want REX byte. */
34828aad
L
6471 i.suffix = QWORD_MNEM_SUFFIX;
6472 }
6473 else
6474 {
2b5d6a91 6475 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6476 register_prefix, i.op[op].regs->reg_name,
6477 i.suffix);
6478 return 0;
6479 }
29b0f896
AM
6480 }
6481 return 1;
6482}
252b5132 6483
29b0f896 6484static int
e3bb37b5 6485check_qword_reg (void)
29b0f896
AM
6486{
6487 int op;
252b5132 6488
29b0f896 6489 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6490 /* Skip non-register operands. */
6491 if (!i.types[op].bitfield.reg)
6492 continue;
29b0f896
AM
6493 /* Reject eight bit registers, except where the template requires
6494 them. (eg. movzb) */
dc821c5f
JB
6495 else if (i.types[op].bitfield.byte
6496 && (i.tm.operand_types[op].bitfield.reg
6497 || i.tm.operand_types[op].bitfield.acc)
6498 && (i.tm.operand_types[op].bitfield.word
6499 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6500 {
a540244d
L
6501 as_bad (_("`%s%s' not allowed with `%s%c'"),
6502 register_prefix,
29b0f896
AM
6503 i.op[op].regs->reg_name,
6504 i.tm.name,
6505 i.suffix);
6506 return 0;
6507 }
e4630f71 6508 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6509 else if ((i.types[op].bitfield.word
6510 || i.types[op].bitfield.dword)
6511 && (i.tm.operand_types[op].bitfield.reg
6512 || i.tm.operand_types[op].bitfield.acc)
6513 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6514 {
6515 /* Prohibit these changes in the 64bit mode, since the
6516 lowering is more complicated. */
34828aad 6517 if (intel_syntax
ca61edf2 6518 && i.tm.opcode_modifier.todword
1b54b8d7 6519 && !i.types[0].bitfield.regsimd)
34828aad 6520 {
ca61edf2 6521 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6522 i.suffix = LONG_MNEM_SUFFIX;
6523 }
6524 else
6525 {
2b5d6a91 6526 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6527 register_prefix, i.op[op].regs->reg_name,
6528 i.suffix);
6529 return 0;
6530 }
252b5132 6531 }
29b0f896
AM
6532 return 1;
6533}
252b5132 6534
29b0f896 6535static int
e3bb37b5 6536check_word_reg (void)
29b0f896
AM
6537{
6538 int op;
6539 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6540 /* Skip non-register operands. */
6541 if (!i.types[op].bitfield.reg)
6542 continue;
29b0f896
AM
6543 /* Reject eight bit registers, except where the template requires
6544 them. (eg. movzb) */
dc821c5f
JB
6545 else if (i.types[op].bitfield.byte
6546 && (i.tm.operand_types[op].bitfield.reg
6547 || i.tm.operand_types[op].bitfield.acc)
6548 && (i.tm.operand_types[op].bitfield.word
6549 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6550 {
a540244d
L
6551 as_bad (_("`%s%s' not allowed with `%s%c'"),
6552 register_prefix,
29b0f896
AM
6553 i.op[op].regs->reg_name,
6554 i.tm.name,
6555 i.suffix);
6556 return 0;
6557 }
e4630f71 6558 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6559 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6560 && (i.types[op].bitfield.dword
6561 || i.types[op].bitfield.qword)
6562 && (i.tm.operand_types[op].bitfield.reg
6563 || i.tm.operand_types[op].bitfield.acc)
6564 && i.tm.operand_types[op].bitfield.word)
252b5132 6565 {
29b0f896
AM
6566 /* Prohibit these changes in the 64bit mode, since the
6567 lowering is more complicated. */
6568 if (flag_code == CODE_64BIT)
252b5132 6569 {
2b5d6a91 6570 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6571 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6572 i.suffix);
6573 return 0;
252b5132 6574 }
29b0f896 6575#if REGISTER_WARNINGS
cecf1424
JB
6576 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6577 register_prefix,
6578 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6579 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6580#endif
6581 }
6582 return 1;
6583}
252b5132 6584
29b0f896 6585static int
40fb9820 6586update_imm (unsigned int j)
29b0f896 6587{
bc0844ae 6588 i386_operand_type overlap = i.types[j];
40fb9820
L
6589 if ((overlap.bitfield.imm8
6590 || overlap.bitfield.imm8s
6591 || overlap.bitfield.imm16
6592 || overlap.bitfield.imm32
6593 || overlap.bitfield.imm32s
6594 || overlap.bitfield.imm64)
0dfbf9d7
L
6595 && !operand_type_equal (&overlap, &imm8)
6596 && !operand_type_equal (&overlap, &imm8s)
6597 && !operand_type_equal (&overlap, &imm16)
6598 && !operand_type_equal (&overlap, &imm32)
6599 && !operand_type_equal (&overlap, &imm32s)
6600 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6601 {
6602 if (i.suffix)
6603 {
40fb9820
L
6604 i386_operand_type temp;
6605
0dfbf9d7 6606 operand_type_set (&temp, 0);
7ab9ffdd 6607 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6608 {
6609 temp.bitfield.imm8 = overlap.bitfield.imm8;
6610 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6611 }
6612 else if (i.suffix == WORD_MNEM_SUFFIX)
6613 temp.bitfield.imm16 = overlap.bitfield.imm16;
6614 else if (i.suffix == QWORD_MNEM_SUFFIX)
6615 {
6616 temp.bitfield.imm64 = overlap.bitfield.imm64;
6617 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6618 }
6619 else
6620 temp.bitfield.imm32 = overlap.bitfield.imm32;
6621 overlap = temp;
29b0f896 6622 }
0dfbf9d7
L
6623 else if (operand_type_equal (&overlap, &imm16_32_32s)
6624 || operand_type_equal (&overlap, &imm16_32)
6625 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6626 {
40fb9820 6627 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6628 overlap = imm16;
40fb9820 6629 else
65da13b5 6630 overlap = imm32s;
29b0f896 6631 }
0dfbf9d7
L
6632 if (!operand_type_equal (&overlap, &imm8)
6633 && !operand_type_equal (&overlap, &imm8s)
6634 && !operand_type_equal (&overlap, &imm16)
6635 && !operand_type_equal (&overlap, &imm32)
6636 && !operand_type_equal (&overlap, &imm32s)
6637 && !operand_type_equal (&overlap, &imm64))
29b0f896 6638 {
4eed87de
AM
6639 as_bad (_("no instruction mnemonic suffix given; "
6640 "can't determine immediate size"));
29b0f896
AM
6641 return 0;
6642 }
6643 }
40fb9820 6644 i.types[j] = overlap;
29b0f896 6645
40fb9820
L
6646 return 1;
6647}
6648
6649static int
6650finalize_imm (void)
6651{
bc0844ae 6652 unsigned int j, n;
29b0f896 6653
bc0844ae
L
6654 /* Update the first 2 immediate operands. */
6655 n = i.operands > 2 ? 2 : i.operands;
6656 if (n)
6657 {
6658 for (j = 0; j < n; j++)
6659 if (update_imm (j) == 0)
6660 return 0;
40fb9820 6661
bc0844ae
L
6662 /* The 3rd operand can't be immediate operand. */
6663 gas_assert (operand_type_check (i.types[2], imm) == 0);
6664 }
29b0f896
AM
6665
6666 return 1;
6667}
6668
6669static int
e3bb37b5 6670process_operands (void)
29b0f896
AM
6671{
6672 /* Default segment register this instruction will use for memory
6673 accesses. 0 means unknown. This is only for optimizing out
6674 unnecessary segment overrides. */
6675 const seg_entry *default_seg = 0;
6676
2426c15f 6677 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6678 {
91d6fa6a
NC
6679 unsigned int dupl = i.operands;
6680 unsigned int dest = dupl - 1;
9fcfb3d7
L
6681 unsigned int j;
6682
c0f3af97 6683 /* The destination must be an xmm register. */
9c2799c2 6684 gas_assert (i.reg_operands
91d6fa6a 6685 && MAX_OPERANDS > dupl
7ab9ffdd 6686 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6687
1b54b8d7
JB
6688 if (i.tm.operand_types[0].bitfield.acc
6689 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6690 {
8cd7925b 6691 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6692 {
6693 /* Keep xmm0 for instructions with VEX prefix and 3
6694 sources. */
1b54b8d7
JB
6695 i.tm.operand_types[0].bitfield.acc = 0;
6696 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6697 goto duplicate;
6698 }
e2ec9d29 6699 else
c0f3af97
L
6700 {
6701 /* We remove the first xmm0 and keep the number of
6702 operands unchanged, which in fact duplicates the
6703 destination. */
6704 for (j = 1; j < i.operands; j++)
6705 {
6706 i.op[j - 1] = i.op[j];
6707 i.types[j - 1] = i.types[j];
6708 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6709 }
6710 }
6711 }
6712 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6713 {
91d6fa6a 6714 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6715 && (i.tm.opcode_modifier.vexsources
6716 == VEX3SOURCES));
c0f3af97
L
6717
6718 /* Add the implicit xmm0 for instructions with VEX prefix
6719 and 3 sources. */
6720 for (j = i.operands; j > 0; j--)
6721 {
6722 i.op[j] = i.op[j - 1];
6723 i.types[j] = i.types[j - 1];
6724 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6725 }
6726 i.op[0].regs
6727 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6728 i.types[0] = regxmm;
c0f3af97
L
6729 i.tm.operand_types[0] = regxmm;
6730
6731 i.operands += 2;
6732 i.reg_operands += 2;
6733 i.tm.operands += 2;
6734
91d6fa6a 6735 dupl++;
c0f3af97 6736 dest++;
91d6fa6a
NC
6737 i.op[dupl] = i.op[dest];
6738 i.types[dupl] = i.types[dest];
6739 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6740 }
c0f3af97
L
6741 else
6742 {
6743duplicate:
6744 i.operands++;
6745 i.reg_operands++;
6746 i.tm.operands++;
6747
91d6fa6a
NC
6748 i.op[dupl] = i.op[dest];
6749 i.types[dupl] = i.types[dest];
6750 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6751 }
6752
6753 if (i.tm.opcode_modifier.immext)
6754 process_immext ();
6755 }
1b54b8d7
JB
6756 else if (i.tm.operand_types[0].bitfield.acc
6757 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6758 {
6759 unsigned int j;
6760
9fcfb3d7
L
6761 for (j = 1; j < i.operands; j++)
6762 {
6763 i.op[j - 1] = i.op[j];
6764 i.types[j - 1] = i.types[j];
6765
6766 /* We need to adjust fields in i.tm since they are used by
6767 build_modrm_byte. */
6768 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6769 }
6770
e2ec9d29
L
6771 i.operands--;
6772 i.reg_operands--;
e2ec9d29
L
6773 i.tm.operands--;
6774 }
920d2ddc
IT
6775 else if (i.tm.opcode_modifier.implicitquadgroup)
6776 {
a477a8c4
JB
6777 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6778
920d2ddc 6779 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6780 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6781 regnum = register_number (i.op[1].regs);
6782 first_reg_in_group = regnum & ~3;
6783 last_reg_in_group = first_reg_in_group + 3;
6784 if (regnum != first_reg_in_group)
6785 as_warn (_("source register `%s%s' implicitly denotes"
6786 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6787 register_prefix, i.op[1].regs->reg_name,
6788 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6789 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6790 i.tm.name);
6791 }
e2ec9d29
L
6792 else if (i.tm.opcode_modifier.regkludge)
6793 {
6794 /* The imul $imm, %reg instruction is converted into
6795 imul $imm, %reg, %reg, and the clr %reg instruction
6796 is converted into xor %reg, %reg. */
6797
6798 unsigned int first_reg_op;
6799
6800 if (operand_type_check (i.types[0], reg))
6801 first_reg_op = 0;
6802 else
6803 first_reg_op = 1;
6804 /* Pretend we saw the extra register operand. */
9c2799c2 6805 gas_assert (i.reg_operands == 1
7ab9ffdd 6806 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6807 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6808 i.types[first_reg_op + 1] = i.types[first_reg_op];
6809 i.operands++;
6810 i.reg_operands++;
29b0f896
AM
6811 }
6812
40fb9820 6813 if (i.tm.opcode_modifier.shortform)
29b0f896 6814 {
40fb9820
L
6815 if (i.types[0].bitfield.sreg2
6816 || i.types[0].bitfield.sreg3)
29b0f896 6817 {
4eed87de
AM
6818 if (i.tm.base_opcode == POP_SEG_SHORT
6819 && i.op[0].regs->reg_num == 1)
29b0f896 6820 {
a87af027 6821 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6822 return 0;
29b0f896 6823 }
4eed87de
AM
6824 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6825 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6826 i.rex |= REX_B;
4eed87de
AM
6827 }
6828 else
6829 {
7ab9ffdd 6830 /* The register or float register operand is in operand
85f10a01 6831 0 or 1. */
40fb9820 6832 unsigned int op;
7ab9ffdd 6833
ca0d63fe 6834 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6835 || operand_type_check (i.types[0], reg))
6836 op = 0;
6837 else
6838 op = 1;
4eed87de
AM
6839 /* Register goes in low 3 bits of opcode. */
6840 i.tm.base_opcode |= i.op[op].regs->reg_num;
6841 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6842 i.rex |= REX_B;
40fb9820 6843 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6844 {
4eed87de
AM
6845 /* Warn about some common errors, but press on regardless.
6846 The first case can be generated by gcc (<= 2.8.1). */
6847 if (i.operands == 2)
6848 {
6849 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6850 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6851 register_prefix, i.op[!intel_syntax].regs->reg_name,
6852 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6853 }
6854 else
6855 {
6856 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6857 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6858 register_prefix, i.op[0].regs->reg_name);
4eed87de 6859 }
29b0f896
AM
6860 }
6861 }
6862 }
40fb9820 6863 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6864 {
6865 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6866 must be put into the modrm byte). Now, we make the modrm and
6867 index base bytes based on all the info we've collected. */
29b0f896
AM
6868
6869 default_seg = build_modrm_byte ();
6870 }
8a2ed489 6871 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6872 {
6873 default_seg = &ds;
6874 }
40fb9820 6875 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6876 {
6877 /* For the string instructions that allow a segment override
6878 on one of their operands, the default segment is ds. */
6879 default_seg = &ds;
6880 }
6881
75178d9d
L
6882 if (i.tm.base_opcode == 0x8d /* lea */
6883 && i.seg[0]
6884 && !quiet_warnings)
30123838 6885 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6886
6887 /* If a segment was explicitly specified, and the specified segment
6888 is not the default, use an opcode prefix to select it. If we
6889 never figured out what the default segment is, then default_seg
6890 will be zero at this point, and the specified segment prefix will
6891 always be used. */
29b0f896
AM
6892 if ((i.seg[0]) && (i.seg[0] != default_seg))
6893 {
6894 if (!add_prefix (i.seg[0]->seg_prefix))
6895 return 0;
6896 }
6897 return 1;
6898}
6899
6900static const seg_entry *
e3bb37b5 6901build_modrm_byte (void)
29b0f896
AM
6902{
6903 const seg_entry *default_seg = 0;
c0f3af97 6904 unsigned int source, dest;
8cd7925b 6905 int vex_3_sources;
c0f3af97 6906
8cd7925b 6907 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6908 if (vex_3_sources)
6909 {
91d6fa6a 6910 unsigned int nds, reg_slot;
4c2c6516 6911 expressionS *exp;
c0f3af97 6912
6b8d3588 6913 dest = i.operands - 1;
c0f3af97 6914 nds = dest - 1;
922d8de8 6915
a683cc34 6916 /* There are 2 kinds of instructions:
bed3d976
JB
6917 1. 5 operands: 4 register operands or 3 register operands
6918 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6919 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6920 ZMM register.
bed3d976 6921 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6922 plus 1 memory operand, with VexXDS. */
922d8de8 6923 gas_assert ((i.reg_operands == 4
bed3d976
JB
6924 || (i.reg_operands == 3 && i.mem_operands == 1))
6925 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6926 && i.tm.opcode_modifier.vexw
6927 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6928
48db9223
JB
6929 /* If VexW1 is set, the first non-immediate operand is the source and
6930 the second non-immediate one is encoded in the immediate operand. */
6931 if (i.tm.opcode_modifier.vexw == VEXW1)
6932 {
6933 source = i.imm_operands;
6934 reg_slot = i.imm_operands + 1;
6935 }
6936 else
6937 {
6938 source = i.imm_operands + 1;
6939 reg_slot = i.imm_operands;
6940 }
6941
a683cc34 6942 if (i.imm_operands == 0)
bed3d976
JB
6943 {
6944 /* When there is no immediate operand, generate an 8bit
6945 immediate operand to encode the first operand. */
6946 exp = &im_expressions[i.imm_operands++];
6947 i.op[i.operands].imms = exp;
6948 i.types[i.operands] = imm8;
6949 i.operands++;
6950
6951 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6952 exp->X_op = O_constant;
6953 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6954 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6955 }
922d8de8 6956 else
bed3d976
JB
6957 {
6958 unsigned int imm_slot;
a683cc34 6959
2f1bada2
JB
6960 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6961
bed3d976
JB
6962 if (i.tm.opcode_modifier.immext)
6963 {
6964 /* When ImmExt is set, the immediate byte is the last
6965 operand. */
6966 imm_slot = i.operands - 1;
6967 source--;
6968 reg_slot--;
6969 }
6970 else
6971 {
6972 imm_slot = 0;
6973
6974 /* Turn on Imm8 so that output_imm will generate it. */
6975 i.types[imm_slot].bitfield.imm8 = 1;
6976 }
6977
6978 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6979 i.op[imm_slot].imms->X_add_number
6980 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6981 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6982 }
a683cc34 6983
10c17abd 6984 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6985 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6986 }
6987 else
6988 source = dest = 0;
29b0f896
AM
6989
6990 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6991 implicit registers do not count. If there are 3 register
6992 operands, it must be a instruction with VexNDS. For a
6993 instruction with VexNDD, the destination register is encoded
6994 in VEX prefix. If there are 4 register operands, it must be
6995 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6996 if (i.mem_operands == 0
6997 && ((i.reg_operands == 2
2426c15f 6998 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6999 || (i.reg_operands == 3
2426c15f 7000 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7001 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7002 {
cab737b9
L
7003 switch (i.operands)
7004 {
7005 case 2:
7006 source = 0;
7007 break;
7008 case 3:
c81128dc
L
7009 /* When there are 3 operands, one of them may be immediate,
7010 which may be the first or the last operand. Otherwise,
c0f3af97
L
7011 the first operand must be shift count register (cl) or it
7012 is an instruction with VexNDS. */
9c2799c2 7013 gas_assert (i.imm_operands == 1
7ab9ffdd 7014 || (i.imm_operands == 0
2426c15f 7015 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7016 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7017 if (operand_type_check (i.types[0], imm)
7018 || i.types[0].bitfield.shiftcount)
7019 source = 1;
7020 else
7021 source = 0;
cab737b9
L
7022 break;
7023 case 4:
368d64cc
L
7024 /* When there are 4 operands, the first two must be 8bit
7025 immediate operands. The source operand will be the 3rd
c0f3af97
L
7026 one.
7027
7028 For instructions with VexNDS, if the first operand
7029 an imm8, the source operand is the 2nd one. If the last
7030 operand is imm8, the source operand is the first one. */
9c2799c2 7031 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7032 && i.types[0].bitfield.imm8
7033 && i.types[1].bitfield.imm8)
2426c15f 7034 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7035 && i.imm_operands == 1
7036 && (i.types[0].bitfield.imm8
43234a1e
L
7037 || i.types[i.operands - 1].bitfield.imm8
7038 || i.rounding)));
9f2670f2
L
7039 if (i.imm_operands == 2)
7040 source = 2;
7041 else
c0f3af97
L
7042 {
7043 if (i.types[0].bitfield.imm8)
7044 source = 1;
7045 else
7046 source = 0;
7047 }
c0f3af97
L
7048 break;
7049 case 5:
e771e7c9 7050 if (is_evex_encoding (&i.tm))
43234a1e
L
7051 {
7052 /* For EVEX instructions, when there are 5 operands, the
7053 first one must be immediate operand. If the second one
7054 is immediate operand, the source operand is the 3th
7055 one. If the last one is immediate operand, the source
7056 operand is the 2nd one. */
7057 gas_assert (i.imm_operands == 2
7058 && i.tm.opcode_modifier.sae
7059 && operand_type_check (i.types[0], imm));
7060 if (operand_type_check (i.types[1], imm))
7061 source = 2;
7062 else if (operand_type_check (i.types[4], imm))
7063 source = 1;
7064 else
7065 abort ();
7066 }
cab737b9
L
7067 break;
7068 default:
7069 abort ();
7070 }
7071
c0f3af97
L
7072 if (!vex_3_sources)
7073 {
7074 dest = source + 1;
7075
43234a1e
L
7076 /* RC/SAE operand could be between DEST and SRC. That happens
7077 when one operand is GPR and the other one is XMM/YMM/ZMM
7078 register. */
7079 if (i.rounding && i.rounding->operand == (int) dest)
7080 dest++;
7081
2426c15f 7082 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7083 {
43234a1e 7084 /* For instructions with VexNDS, the register-only source
c5d0745b 7085 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7086 register. It is encoded in VEX prefix. We need to
7087 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7088
7089 i386_operand_type op;
7090 unsigned int vvvv;
7091
7092 /* Check register-only source operand when two source
7093 operands are swapped. */
7094 if (!i.tm.operand_types[source].bitfield.baseindex
7095 && i.tm.operand_types[dest].bitfield.baseindex)
7096 {
7097 vvvv = source;
7098 source = dest;
7099 }
7100 else
7101 vvvv = dest;
7102
7103 op = i.tm.operand_types[vvvv];
fa99fab2 7104 op.bitfield.regmem = 0;
c0f3af97 7105 if ((dest + 1) >= i.operands
dc821c5f
JB
7106 || ((!op.bitfield.reg
7107 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7108 && !op.bitfield.regsimd
43234a1e 7109 && !operand_type_equal (&op, &regmask)))
c0f3af97 7110 abort ();
f12dc422 7111 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7112 dest++;
7113 }
7114 }
29b0f896
AM
7115
7116 i.rm.mode = 3;
7117 /* One of the register operands will be encoded in the i.tm.reg
7118 field, the other in the combined i.tm.mode and i.tm.regmem
7119 fields. If no form of this instruction supports a memory
7120 destination operand, then we assume the source operand may
7121 sometimes be a memory operand and so we need to store the
7122 destination in the i.rm.reg field. */
40fb9820
L
7123 if (!i.tm.operand_types[dest].bitfield.regmem
7124 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7125 {
7126 i.rm.reg = i.op[dest].regs->reg_num;
7127 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7128 if (i.op[dest].regs->reg_type.bitfield.regmmx
7129 || i.op[source].regs->reg_type.bitfield.regmmx)
7130 i.has_regmmx = TRUE;
7131 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7132 || i.op[source].regs->reg_type.bitfield.regsimd)
7133 {
7134 if (i.types[dest].bitfield.zmmword
7135 || i.types[source].bitfield.zmmword)
7136 i.has_regzmm = TRUE;
7137 else if (i.types[dest].bitfield.ymmword
7138 || i.types[source].bitfield.ymmword)
7139 i.has_regymm = TRUE;
7140 else
7141 i.has_regxmm = TRUE;
7142 }
29b0f896 7143 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7144 i.rex |= REX_R;
43234a1e
L
7145 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7146 i.vrex |= REX_R;
29b0f896 7147 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7148 i.rex |= REX_B;
43234a1e
L
7149 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7150 i.vrex |= REX_B;
29b0f896
AM
7151 }
7152 else
7153 {
7154 i.rm.reg = i.op[source].regs->reg_num;
7155 i.rm.regmem = i.op[dest].regs->reg_num;
7156 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7157 i.rex |= REX_B;
43234a1e
L
7158 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7159 i.vrex |= REX_B;
29b0f896 7160 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7161 i.rex |= REX_R;
43234a1e
L
7162 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7163 i.vrex |= REX_R;
29b0f896 7164 }
e0c7f900 7165 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7166 {
e0c7f900 7167 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7168 abort ();
e0c7f900 7169 i.rex &= ~REX_R;
c4a530c5
JB
7170 add_prefix (LOCK_PREFIX_OPCODE);
7171 }
29b0f896
AM
7172 }
7173 else
7174 { /* If it's not 2 reg operands... */
c0f3af97
L
7175 unsigned int mem;
7176
29b0f896
AM
7177 if (i.mem_operands)
7178 {
7179 unsigned int fake_zero_displacement = 0;
99018f42 7180 unsigned int op;
4eed87de 7181
7ab9ffdd
L
7182 for (op = 0; op < i.operands; op++)
7183 if (operand_type_check (i.types[op], anymem))
7184 break;
7ab9ffdd 7185 gas_assert (op < i.operands);
29b0f896 7186
6c30d220
L
7187 if (i.tm.opcode_modifier.vecsib)
7188 {
e968fc9b 7189 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7190 abort ();
7191
7192 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7193 if (!i.base_reg)
7194 {
7195 i.sib.base = NO_BASE_REGISTER;
7196 i.sib.scale = i.log2_scale_factor;
7197 i.types[op].bitfield.disp8 = 0;
7198 i.types[op].bitfield.disp16 = 0;
7199 i.types[op].bitfield.disp64 = 0;
43083a50 7200 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7201 {
7202 /* Must be 32 bit */
7203 i.types[op].bitfield.disp32 = 1;
7204 i.types[op].bitfield.disp32s = 0;
7205 }
7206 else
7207 {
7208 i.types[op].bitfield.disp32 = 0;
7209 i.types[op].bitfield.disp32s = 1;
7210 }
7211 }
7212 i.sib.index = i.index_reg->reg_num;
7213 if ((i.index_reg->reg_flags & RegRex) != 0)
7214 i.rex |= REX_X;
43234a1e
L
7215 if ((i.index_reg->reg_flags & RegVRex) != 0)
7216 i.vrex |= REX_X;
6c30d220
L
7217 }
7218
29b0f896
AM
7219 default_seg = &ds;
7220
7221 if (i.base_reg == 0)
7222 {
7223 i.rm.mode = 0;
7224 if (!i.disp_operands)
9bb129e8 7225 fake_zero_displacement = 1;
29b0f896
AM
7226 if (i.index_reg == 0)
7227 {
73053c1f
JB
7228 i386_operand_type newdisp;
7229
6c30d220 7230 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7231 /* Operand is just <disp> */
20f0a1fc 7232 if (flag_code == CODE_64BIT)
29b0f896
AM
7233 {
7234 /* 64bit mode overwrites the 32bit absolute
7235 addressing by RIP relative addressing and
7236 absolute addressing is encoded by one of the
7237 redundant SIB forms. */
7238 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7239 i.sib.base = NO_BASE_REGISTER;
7240 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7241 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7242 }
fc225355
L
7243 else if ((flag_code == CODE_16BIT)
7244 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7245 {
7246 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7247 newdisp = disp16;
20f0a1fc
NC
7248 }
7249 else
7250 {
7251 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7252 newdisp = disp32;
29b0f896 7253 }
73053c1f
JB
7254 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7255 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7256 }
6c30d220 7257 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7258 {
6c30d220 7259 /* !i.base_reg && i.index_reg */
e968fc9b 7260 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7261 i.sib.index = NO_INDEX_REGISTER;
7262 else
7263 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7264 i.sib.base = NO_BASE_REGISTER;
7265 i.sib.scale = i.log2_scale_factor;
7266 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7267 i.types[op].bitfield.disp8 = 0;
7268 i.types[op].bitfield.disp16 = 0;
7269 i.types[op].bitfield.disp64 = 0;
43083a50 7270 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7271 {
7272 /* Must be 32 bit */
7273 i.types[op].bitfield.disp32 = 1;
7274 i.types[op].bitfield.disp32s = 0;
7275 }
29b0f896 7276 else
40fb9820
L
7277 {
7278 i.types[op].bitfield.disp32 = 0;
7279 i.types[op].bitfield.disp32s = 1;
7280 }
29b0f896 7281 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7282 i.rex |= REX_X;
29b0f896
AM
7283 }
7284 }
7285 /* RIP addressing for 64bit mode. */
e968fc9b 7286 else if (i.base_reg->reg_num == RegIP)
29b0f896 7287 {
6c30d220 7288 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7289 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7290 i.types[op].bitfield.disp8 = 0;
7291 i.types[op].bitfield.disp16 = 0;
7292 i.types[op].bitfield.disp32 = 0;
7293 i.types[op].bitfield.disp32s = 1;
7294 i.types[op].bitfield.disp64 = 0;
71903a11 7295 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7296 if (! i.disp_operands)
7297 fake_zero_displacement = 1;
29b0f896 7298 }
dc821c5f 7299 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7300 {
6c30d220 7301 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7302 switch (i.base_reg->reg_num)
7303 {
7304 case 3: /* (%bx) */
7305 if (i.index_reg == 0)
7306 i.rm.regmem = 7;
7307 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7308 i.rm.regmem = i.index_reg->reg_num - 6;
7309 break;
7310 case 5: /* (%bp) */
7311 default_seg = &ss;
7312 if (i.index_reg == 0)
7313 {
7314 i.rm.regmem = 6;
40fb9820 7315 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7316 {
7317 /* fake (%bp) into 0(%bp) */
b5014f7a 7318 i.types[op].bitfield.disp8 = 1;
252b5132 7319 fake_zero_displacement = 1;
29b0f896
AM
7320 }
7321 }
7322 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7323 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7324 break;
7325 default: /* (%si) -> 4 or (%di) -> 5 */
7326 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7327 }
7328 i.rm.mode = mode_from_disp_size (i.types[op]);
7329 }
7330 else /* i.base_reg and 32/64 bit mode */
7331 {
7332 if (flag_code == CODE_64BIT
40fb9820
L
7333 && operand_type_check (i.types[op], disp))
7334 {
73053c1f
JB
7335 i.types[op].bitfield.disp16 = 0;
7336 i.types[op].bitfield.disp64 = 0;
40fb9820 7337 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7338 {
7339 i.types[op].bitfield.disp32 = 0;
7340 i.types[op].bitfield.disp32s = 1;
7341 }
40fb9820 7342 else
73053c1f
JB
7343 {
7344 i.types[op].bitfield.disp32 = 1;
7345 i.types[op].bitfield.disp32s = 0;
7346 }
40fb9820 7347 }
20f0a1fc 7348
6c30d220
L
7349 if (!i.tm.opcode_modifier.vecsib)
7350 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7351 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7352 i.rex |= REX_B;
29b0f896
AM
7353 i.sib.base = i.base_reg->reg_num;
7354 /* x86-64 ignores REX prefix bit here to avoid decoder
7355 complications. */
848930b2
JB
7356 if (!(i.base_reg->reg_flags & RegRex)
7357 && (i.base_reg->reg_num == EBP_REG_NUM
7358 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7359 default_seg = &ss;
848930b2 7360 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7361 {
848930b2 7362 fake_zero_displacement = 1;
b5014f7a 7363 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7364 }
7365 i.sib.scale = i.log2_scale_factor;
7366 if (i.index_reg == 0)
7367 {
6c30d220 7368 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7369 /* <disp>(%esp) becomes two byte modrm with no index
7370 register. We've already stored the code for esp
7371 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7372 Any base register besides %esp will not use the
7373 extra modrm byte. */
7374 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7375 }
6c30d220 7376 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7377 {
e968fc9b 7378 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7379 i.sib.index = NO_INDEX_REGISTER;
7380 else
7381 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7382 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7383 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7384 i.rex |= REX_X;
29b0f896 7385 }
67a4f2b7
AO
7386
7387 if (i.disp_operands
7388 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7389 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7390 i.rm.mode = 0;
7391 else
a501d77e
L
7392 {
7393 if (!fake_zero_displacement
7394 && !i.disp_operands
7395 && i.disp_encoding)
7396 {
7397 fake_zero_displacement = 1;
7398 if (i.disp_encoding == disp_encoding_8bit)
7399 i.types[op].bitfield.disp8 = 1;
7400 else
7401 i.types[op].bitfield.disp32 = 1;
7402 }
7403 i.rm.mode = mode_from_disp_size (i.types[op]);
7404 }
29b0f896 7405 }
252b5132 7406
29b0f896
AM
7407 if (fake_zero_displacement)
7408 {
7409 /* Fakes a zero displacement assuming that i.types[op]
7410 holds the correct displacement size. */
7411 expressionS *exp;
7412
9c2799c2 7413 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7414 exp = &disp_expressions[i.disp_operands++];
7415 i.op[op].disps = exp;
7416 exp->X_op = O_constant;
7417 exp->X_add_number = 0;
7418 exp->X_add_symbol = (symbolS *) 0;
7419 exp->X_op_symbol = (symbolS *) 0;
7420 }
c0f3af97
L
7421
7422 mem = op;
29b0f896 7423 }
c0f3af97
L
7424 else
7425 mem = ~0;
252b5132 7426
8c43a48b 7427 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7428 {
7429 if (operand_type_check (i.types[0], imm))
7430 i.vex.register_specifier = NULL;
7431 else
7432 {
7433 /* VEX.vvvv encodes one of the sources when the first
7434 operand is not an immediate. */
1ef99a7b 7435 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7436 i.vex.register_specifier = i.op[0].regs;
7437 else
7438 i.vex.register_specifier = i.op[1].regs;
7439 }
7440
7441 /* Destination is a XMM register encoded in the ModRM.reg
7442 and VEX.R bit. */
7443 i.rm.reg = i.op[2].regs->reg_num;
7444 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7445 i.rex |= REX_R;
7446
7447 /* ModRM.rm and VEX.B encodes the other source. */
7448 if (!i.mem_operands)
7449 {
7450 i.rm.mode = 3;
7451
1ef99a7b 7452 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7453 i.rm.regmem = i.op[1].regs->reg_num;
7454 else
7455 i.rm.regmem = i.op[0].regs->reg_num;
7456
7457 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7458 i.rex |= REX_B;
7459 }
7460 }
2426c15f 7461 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7462 {
7463 i.vex.register_specifier = i.op[2].regs;
7464 if (!i.mem_operands)
7465 {
7466 i.rm.mode = 3;
7467 i.rm.regmem = i.op[1].regs->reg_num;
7468 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7469 i.rex |= REX_B;
7470 }
7471 }
29b0f896
AM
7472 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7473 (if any) based on i.tm.extension_opcode. Again, we must be
7474 careful to make sure that segment/control/debug/test/MMX
7475 registers are coded into the i.rm.reg field. */
f88c9eb0 7476 else if (i.reg_operands)
29b0f896 7477 {
99018f42 7478 unsigned int op;
7ab9ffdd
L
7479 unsigned int vex_reg = ~0;
7480
7481 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7482 {
7483 if (i.types[op].bitfield.reg
7484 || i.types[op].bitfield.regbnd
7485 || i.types[op].bitfield.regmask
7486 || i.types[op].bitfield.sreg2
7487 || i.types[op].bitfield.sreg3
7488 || i.types[op].bitfield.control
7489 || i.types[op].bitfield.debug
7490 || i.types[op].bitfield.test)
7491 break;
7492 if (i.types[op].bitfield.regsimd)
7493 {
7494 if (i.types[op].bitfield.zmmword)
7495 i.has_regzmm = TRUE;
7496 else if (i.types[op].bitfield.ymmword)
7497 i.has_regymm = TRUE;
7498 else
7499 i.has_regxmm = TRUE;
7500 break;
7501 }
7502 if (i.types[op].bitfield.regmmx)
7503 {
7504 i.has_regmmx = TRUE;
7505 break;
7506 }
7507 }
c0209578 7508
7ab9ffdd
L
7509 if (vex_3_sources)
7510 op = dest;
2426c15f 7511 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7512 {
7513 /* For instructions with VexNDS, the register-only
7514 source operand is encoded in VEX prefix. */
7515 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7516
7ab9ffdd 7517 if (op > mem)
c0f3af97 7518 {
7ab9ffdd
L
7519 vex_reg = op++;
7520 gas_assert (op < i.operands);
c0f3af97
L
7521 }
7522 else
c0f3af97 7523 {
f12dc422
L
7524 /* Check register-only source operand when two source
7525 operands are swapped. */
7526 if (!i.tm.operand_types[op].bitfield.baseindex
7527 && i.tm.operand_types[op + 1].bitfield.baseindex)
7528 {
7529 vex_reg = op;
7530 op += 2;
7531 gas_assert (mem == (vex_reg + 1)
7532 && op < i.operands);
7533 }
7534 else
7535 {
7536 vex_reg = op + 1;
7537 gas_assert (vex_reg < i.operands);
7538 }
c0f3af97 7539 }
7ab9ffdd 7540 }
2426c15f 7541 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7542 {
f12dc422 7543 /* For instructions with VexNDD, the register destination
7ab9ffdd 7544 is encoded in VEX prefix. */
f12dc422
L
7545 if (i.mem_operands == 0)
7546 {
7547 /* There is no memory operand. */
7548 gas_assert ((op + 2) == i.operands);
7549 vex_reg = op + 1;
7550 }
7551 else
8d63c93e 7552 {
ed438a93
JB
7553 /* There are only 2 non-immediate operands. */
7554 gas_assert (op < i.imm_operands + 2
7555 && i.operands == i.imm_operands + 2);
7556 vex_reg = i.imm_operands + 1;
f12dc422 7557 }
7ab9ffdd
L
7558 }
7559 else
7560 gas_assert (op < i.operands);
99018f42 7561
7ab9ffdd
L
7562 if (vex_reg != (unsigned int) ~0)
7563 {
f12dc422 7564 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7565
dc821c5f
JB
7566 if ((!type->bitfield.reg
7567 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7568 && !type->bitfield.regsimd
43234a1e 7569 && !operand_type_equal (type, &regmask))
7ab9ffdd 7570 abort ();
f88c9eb0 7571
7ab9ffdd
L
7572 i.vex.register_specifier = i.op[vex_reg].regs;
7573 }
7574
1b9f0c97
L
7575 /* Don't set OP operand twice. */
7576 if (vex_reg != op)
7ab9ffdd 7577 {
1b9f0c97
L
7578 /* If there is an extension opcode to put here, the
7579 register number must be put into the regmem field. */
7580 if (i.tm.extension_opcode != None)
7581 {
7582 i.rm.regmem = i.op[op].regs->reg_num;
7583 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7584 i.rex |= REX_B;
43234a1e
L
7585 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7586 i.vrex |= REX_B;
1b9f0c97
L
7587 }
7588 else
7589 {
7590 i.rm.reg = i.op[op].regs->reg_num;
7591 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7592 i.rex |= REX_R;
43234a1e
L
7593 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7594 i.vrex |= REX_R;
1b9f0c97 7595 }
7ab9ffdd 7596 }
252b5132 7597
29b0f896
AM
7598 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7599 must set it to 3 to indicate this is a register operand
7600 in the regmem field. */
7601 if (!i.mem_operands)
7602 i.rm.mode = 3;
7603 }
252b5132 7604
29b0f896 7605 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7606 if (i.tm.extension_opcode != None)
29b0f896
AM
7607 i.rm.reg = i.tm.extension_opcode;
7608 }
7609 return default_seg;
7610}
252b5132 7611
29b0f896 7612static void
e3bb37b5 7613output_branch (void)
29b0f896
AM
7614{
7615 char *p;
f8a5c266 7616 int size;
29b0f896
AM
7617 int code16;
7618 int prefix;
7619 relax_substateT subtype;
7620 symbolS *sym;
7621 offsetT off;
7622
f8a5c266 7623 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7624 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7625
7626 prefix = 0;
7627 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7628 {
29b0f896
AM
7629 prefix = 1;
7630 i.prefixes -= 1;
7631 code16 ^= CODE16;
252b5132 7632 }
29b0f896
AM
7633 /* Pentium4 branch hints. */
7634 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7635 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7636 {
29b0f896
AM
7637 prefix++;
7638 i.prefixes--;
7639 }
7640 if (i.prefix[REX_PREFIX] != 0)
7641 {
7642 prefix++;
7643 i.prefixes--;
2f66722d
AM
7644 }
7645
7e8b059b
L
7646 /* BND prefixed jump. */
7647 if (i.prefix[BND_PREFIX] != 0)
7648 {
7649 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7650 i.prefixes -= 1;
7651 }
7652
29b0f896
AM
7653 if (i.prefixes != 0 && !intel_syntax)
7654 as_warn (_("skipping prefixes on this instruction"));
7655
7656 /* It's always a symbol; End frag & setup for relax.
7657 Make sure there is enough room in this frag for the largest
7658 instruction we may generate in md_convert_frag. This is 2
7659 bytes for the opcode and room for the prefix and largest
7660 displacement. */
7661 frag_grow (prefix + 2 + 4);
7662 /* Prefix and 1 opcode byte go in fr_fix. */
7663 p = frag_more (prefix + 1);
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 *p++ = DATA_PREFIX_OPCODE;
7666 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7667 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7668 *p++ = i.prefix[SEG_PREFIX];
7669 if (i.prefix[REX_PREFIX] != 0)
7670 *p++ = i.prefix[REX_PREFIX];
7671 *p = i.tm.base_opcode;
7672
7673 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7674 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7675 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7676 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7677 else
f8a5c266 7678 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7679 subtype |= code16;
3e73aa7c 7680
29b0f896
AM
7681 sym = i.op[0].disps->X_add_symbol;
7682 off = i.op[0].disps->X_add_number;
3e73aa7c 7683
29b0f896
AM
7684 if (i.op[0].disps->X_op != O_constant
7685 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7686 {
29b0f896
AM
7687 /* Handle complex expressions. */
7688 sym = make_expr_symbol (i.op[0].disps);
7689 off = 0;
7690 }
3e73aa7c 7691
29b0f896
AM
7692 /* 1 possible extra opcode + 4 byte displacement go in var part.
7693 Pass reloc in fr_var. */
d258b828 7694 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7695}
3e73aa7c 7696
bd7ab16b
L
7697#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7698/* Return TRUE iff PLT32 relocation should be used for branching to
7699 symbol S. */
7700
7701static bfd_boolean
7702need_plt32_p (symbolS *s)
7703{
7704 /* PLT32 relocation is ELF only. */
7705 if (!IS_ELF)
7706 return FALSE;
7707
7708 /* Since there is no need to prepare for PLT branch on x86-64, we
7709 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7710 be used as a marker for 32-bit PC-relative branches. */
7711 if (!object_64bit)
7712 return FALSE;
7713
7714 /* Weak or undefined symbol need PLT32 relocation. */
7715 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7716 return TRUE;
7717
7718 /* Non-global symbol doesn't need PLT32 relocation. */
7719 if (! S_IS_EXTERNAL (s))
7720 return FALSE;
7721
7722 /* Other global symbols need PLT32 relocation. NB: Symbol with
7723 non-default visibilities are treated as normal global symbol
7724 so that PLT32 relocation can be used as a marker for 32-bit
7725 PC-relative branches. It is useful for linker relaxation. */
7726 return TRUE;
7727}
7728#endif
7729
29b0f896 7730static void
e3bb37b5 7731output_jump (void)
29b0f896
AM
7732{
7733 char *p;
7734 int size;
3e02c1cc 7735 fixS *fixP;
bd7ab16b 7736 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7737
40fb9820 7738 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7739 {
7740 /* This is a loop or jecxz type instruction. */
7741 size = 1;
7742 if (i.prefix[ADDR_PREFIX] != 0)
7743 {
7744 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7745 i.prefixes -= 1;
7746 }
7747 /* Pentium4 branch hints. */
7748 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7749 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7750 {
7751 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7752 i.prefixes--;
3e73aa7c
JH
7753 }
7754 }
29b0f896
AM
7755 else
7756 {
7757 int code16;
3e73aa7c 7758
29b0f896
AM
7759 code16 = 0;
7760 if (flag_code == CODE_16BIT)
7761 code16 = CODE16;
3e73aa7c 7762
29b0f896
AM
7763 if (i.prefix[DATA_PREFIX] != 0)
7764 {
7765 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7766 i.prefixes -= 1;
7767 code16 ^= CODE16;
7768 }
252b5132 7769
29b0f896
AM
7770 size = 4;
7771 if (code16)
7772 size = 2;
7773 }
9fcc94b6 7774
29b0f896
AM
7775 if (i.prefix[REX_PREFIX] != 0)
7776 {
7777 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7778 i.prefixes -= 1;
7779 }
252b5132 7780
7e8b059b
L
7781 /* BND prefixed jump. */
7782 if (i.prefix[BND_PREFIX] != 0)
7783 {
7784 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7785 i.prefixes -= 1;
7786 }
7787
29b0f896
AM
7788 if (i.prefixes != 0 && !intel_syntax)
7789 as_warn (_("skipping prefixes on this instruction"));
e0890092 7790
42164a71
L
7791 p = frag_more (i.tm.opcode_length + size);
7792 switch (i.tm.opcode_length)
7793 {
7794 case 2:
7795 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7796 /* Fall through. */
42164a71
L
7797 case 1:
7798 *p++ = i.tm.base_opcode;
7799 break;
7800 default:
7801 abort ();
7802 }
e0890092 7803
bd7ab16b
L
7804#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7805 if (size == 4
7806 && jump_reloc == NO_RELOC
7807 && need_plt32_p (i.op[0].disps->X_add_symbol))
7808 jump_reloc = BFD_RELOC_X86_64_PLT32;
7809#endif
7810
7811 jump_reloc = reloc (size, 1, 1, jump_reloc);
7812
3e02c1cc 7813 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7814 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7815
7816 /* All jumps handled here are signed, but don't use a signed limit
7817 check for 32 and 16 bit jumps as we want to allow wrap around at
7818 4G and 64k respectively. */
7819 if (size == 1)
7820 fixP->fx_signed = 1;
29b0f896 7821}
e0890092 7822
29b0f896 7823static void
e3bb37b5 7824output_interseg_jump (void)
29b0f896
AM
7825{
7826 char *p;
7827 int size;
7828 int prefix;
7829 int code16;
252b5132 7830
29b0f896
AM
7831 code16 = 0;
7832 if (flag_code == CODE_16BIT)
7833 code16 = CODE16;
a217f122 7834
29b0f896
AM
7835 prefix = 0;
7836 if (i.prefix[DATA_PREFIX] != 0)
7837 {
7838 prefix = 1;
7839 i.prefixes -= 1;
7840 code16 ^= CODE16;
7841 }
7842 if (i.prefix[REX_PREFIX] != 0)
7843 {
7844 prefix++;
7845 i.prefixes -= 1;
7846 }
252b5132 7847
29b0f896
AM
7848 size = 4;
7849 if (code16)
7850 size = 2;
252b5132 7851
29b0f896
AM
7852 if (i.prefixes != 0 && !intel_syntax)
7853 as_warn (_("skipping prefixes on this instruction"));
252b5132 7854
29b0f896
AM
7855 /* 1 opcode; 2 segment; offset */
7856 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7857
29b0f896
AM
7858 if (i.prefix[DATA_PREFIX] != 0)
7859 *p++ = DATA_PREFIX_OPCODE;
252b5132 7860
29b0f896
AM
7861 if (i.prefix[REX_PREFIX] != 0)
7862 *p++ = i.prefix[REX_PREFIX];
252b5132 7863
29b0f896
AM
7864 *p++ = i.tm.base_opcode;
7865 if (i.op[1].imms->X_op == O_constant)
7866 {
7867 offsetT n = i.op[1].imms->X_add_number;
252b5132 7868
29b0f896
AM
7869 if (size == 2
7870 && !fits_in_unsigned_word (n)
7871 && !fits_in_signed_word (n))
7872 {
7873 as_bad (_("16-bit jump out of range"));
7874 return;
7875 }
7876 md_number_to_chars (p, n, size);
7877 }
7878 else
7879 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7880 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7881 if (i.op[0].imms->X_op != O_constant)
7882 as_bad (_("can't handle non absolute segment in `%s'"),
7883 i.tm.name);
7884 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7885}
a217f122 7886
b4a3a7b4
L
7887#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7888void
7889x86_cleanup (void)
7890{
7891 char *p;
7892 asection *seg = now_seg;
7893 subsegT subseg = now_subseg;
7894 asection *sec;
7895 unsigned int alignment, align_size_1;
7896 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7897 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7898 unsigned int padding;
7899
7900 if (!IS_ELF || !x86_used_note)
7901 return;
7902
b4a3a7b4
L
7903 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7904
7905 /* The .note.gnu.property section layout:
7906
7907 Field Length Contents
7908 ---- ---- ----
7909 n_namsz 4 4
7910 n_descsz 4 The note descriptor size
7911 n_type 4 NT_GNU_PROPERTY_TYPE_0
7912 n_name 4 "GNU"
7913 n_desc n_descsz The program property array
7914 .... .... ....
7915 */
7916
7917 /* Create the .note.gnu.property section. */
7918 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7919 bfd_set_section_flags (stdoutput, sec,
7920 (SEC_ALLOC
7921 | SEC_LOAD
7922 | SEC_DATA
7923 | SEC_HAS_CONTENTS
7924 | SEC_READONLY));
7925
7926 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7927 {
7928 align_size_1 = 7;
7929 alignment = 3;
7930 }
7931 else
7932 {
7933 align_size_1 = 3;
7934 alignment = 2;
7935 }
7936
7937 bfd_set_section_alignment (stdoutput, sec, alignment);
7938 elf_section_type (sec) = SHT_NOTE;
7939
7940 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7941 + 4-byte data */
7942 isa_1_descsz_raw = 4 + 4 + 4;
7943 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7944 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7945
7946 feature_2_descsz_raw = isa_1_descsz;
7947 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7948 + 4-byte data */
7949 feature_2_descsz_raw += 4 + 4 + 4;
7950 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7951 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7952 & ~align_size_1);
7953
7954 descsz = feature_2_descsz;
7955 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7956 p = frag_more (4 + 4 + 4 + 4 + descsz);
7957
7958 /* Write n_namsz. */
7959 md_number_to_chars (p, (valueT) 4, 4);
7960
7961 /* Write n_descsz. */
7962 md_number_to_chars (p + 4, (valueT) descsz, 4);
7963
7964 /* Write n_type. */
7965 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7966
7967 /* Write n_name. */
7968 memcpy (p + 4 * 3, "GNU", 4);
7969
7970 /* Write 4-byte type. */
7971 md_number_to_chars (p + 4 * 4,
7972 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7973
7974 /* Write 4-byte data size. */
7975 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7976
7977 /* Write 4-byte data. */
7978 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7979
7980 /* Zero out paddings. */
7981 padding = isa_1_descsz - isa_1_descsz_raw;
7982 if (padding)
7983 memset (p + 4 * 7, 0, padding);
7984
7985 /* Write 4-byte type. */
7986 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7987 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7988
7989 /* Write 4-byte data size. */
7990 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7991
7992 /* Write 4-byte data. */
7993 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7994 (valueT) x86_feature_2_used, 4);
7995
7996 /* Zero out paddings. */
7997 padding = feature_2_descsz - feature_2_descsz_raw;
7998 if (padding)
7999 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8000
8001 /* We probably can't restore the current segment, for there likely
8002 isn't one yet... */
8003 if (seg && subseg)
8004 subseg_set (seg, subseg);
8005}
8006#endif
8007
29b0f896 8008static void
e3bb37b5 8009output_insn (void)
29b0f896 8010{
2bbd9c25
JJ
8011 fragS *insn_start_frag;
8012 offsetT insn_start_off;
8013
b4a3a7b4
L
8014#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8015 if (IS_ELF && x86_used_note)
8016 {
8017 if (i.tm.cpu_flags.bitfield.cpucmov)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8019 if (i.tm.cpu_flags.bitfield.cpusse)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8021 if (i.tm.cpu_flags.bitfield.cpusse2)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8023 if (i.tm.cpu_flags.bitfield.cpusse3)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8025 if (i.tm.cpu_flags.bitfield.cpussse3)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8027 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8029 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8031 if (i.tm.cpu_flags.bitfield.cpuavx)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8033 if (i.tm.cpu_flags.bitfield.cpuavx2)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8035 if (i.tm.cpu_flags.bitfield.cpufma)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8057 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8059 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8061 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8062 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8063 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8064 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8065
8066 if (i.tm.cpu_flags.bitfield.cpu8087
8067 || i.tm.cpu_flags.bitfield.cpu287
8068 || i.tm.cpu_flags.bitfield.cpu387
8069 || i.tm.cpu_flags.bitfield.cpu687
8070 || i.tm.cpu_flags.bitfield.cpufisttp)
8071 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8072 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8073 Xfence instructions. */
8074 if (i.tm.base_opcode != 0xf18
8075 && i.tm.base_opcode != 0xf0d
8076 && i.tm.base_opcode != 0xfae
8077 && (i.has_regmmx
8078 || i.tm.cpu_flags.bitfield.cpummx
8079 || i.tm.cpu_flags.bitfield.cpua3dnow
8080 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8082 if (i.has_regxmm)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8084 if (i.has_regymm)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8086 if (i.has_regzmm)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8088 if (i.tm.cpu_flags.bitfield.cpufxsr)
8089 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8090 if (i.tm.cpu_flags.bitfield.cpuxsave)
8091 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8092 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8093 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8094 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8095 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8096 }
8097#endif
8098
29b0f896
AM
8099 /* Tie dwarf2 debug info to the address at the start of the insn.
8100 We can't do this after the insn has been output as the current
8101 frag may have been closed off. eg. by frag_var. */
8102 dwarf2_emit_insn (0);
8103
2bbd9c25
JJ
8104 insn_start_frag = frag_now;
8105 insn_start_off = frag_now_fix ();
8106
29b0f896 8107 /* Output jumps. */
40fb9820 8108 if (i.tm.opcode_modifier.jump)
29b0f896 8109 output_branch ();
40fb9820
L
8110 else if (i.tm.opcode_modifier.jumpbyte
8111 || i.tm.opcode_modifier.jumpdword)
29b0f896 8112 output_jump ();
40fb9820 8113 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8114 output_interseg_jump ();
8115 else
8116 {
8117 /* Output normal instructions here. */
8118 char *p;
8119 unsigned char *q;
47465058 8120 unsigned int j;
331d2d0d 8121 unsigned int prefix;
4dffcebc 8122
e4e00185
AS
8123 if (avoid_fence
8124 && i.tm.base_opcode == 0xfae
8125 && i.operands == 1
8126 && i.imm_operands == 1
8127 && (i.op[0].imms->X_add_number == 0xe8
8128 || i.op[0].imms->X_add_number == 0xf0
8129 || i.op[0].imms->X_add_number == 0xf8))
8130 {
8131 /* Encode lfence, mfence, and sfence as
8132 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8133 offsetT val = 0x240483f0ULL;
8134 p = frag_more (5);
8135 md_number_to_chars (p, val, 5);
8136 return;
8137 }
8138
d022bddd
IT
8139 /* Some processors fail on LOCK prefix. This options makes
8140 assembler ignore LOCK prefix and serves as a workaround. */
8141 if (omit_lock_prefix)
8142 {
8143 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8144 return;
8145 i.prefix[LOCK_PREFIX] = 0;
8146 }
8147
43234a1e
L
8148 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8149 don't need the explicit prefix. */
8150 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8151 {
c0f3af97 8152 switch (i.tm.opcode_length)
bc4bd9ab 8153 {
c0f3af97
L
8154 case 3:
8155 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8156 {
c0f3af97 8157 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8158 add_prefix (prefix);
c0f3af97
L
8159 }
8160 break;
8161 case 2:
8162 if ((i.tm.base_opcode & 0xff0000) != 0)
8163 {
8164 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8165 if (!i.tm.cpu_flags.bitfield.cpupadlock
8166 || prefix != REPE_PREFIX_OPCODE
8167 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8168 add_prefix (prefix);
8169 }
c0f3af97
L
8170 break;
8171 case 1:
8172 break;
390c91cf
L
8173 case 0:
8174 /* Check for pseudo prefixes. */
8175 as_bad_where (insn_start_frag->fr_file,
8176 insn_start_frag->fr_line,
8177 _("pseudo prefix without instruction"));
8178 return;
c0f3af97
L
8179 default:
8180 abort ();
bc4bd9ab 8181 }
c0f3af97 8182
6d19a37a 8183#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8184 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8185 R_X86_64_GOTTPOFF relocation so that linker can safely
8186 perform IE->LE optimization. */
8187 if (x86_elf_abi == X86_64_X32_ABI
8188 && i.operands == 2
8189 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8190 && i.prefix[REX_PREFIX] == 0)
8191 add_prefix (REX_OPCODE);
6d19a37a 8192#endif
cf61b747 8193
c0f3af97
L
8194 /* The prefix bytes. */
8195 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8196 if (*q)
8197 FRAG_APPEND_1_CHAR (*q);
0f10071e 8198 }
ae5c1c7b 8199 else
c0f3af97
L
8200 {
8201 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8202 if (*q)
8203 switch (j)
8204 {
8205 case REX_PREFIX:
8206 /* REX byte is encoded in VEX prefix. */
8207 break;
8208 case SEG_PREFIX:
8209 case ADDR_PREFIX:
8210 FRAG_APPEND_1_CHAR (*q);
8211 break;
8212 default:
8213 /* There should be no other prefixes for instructions
8214 with VEX prefix. */
8215 abort ();
8216 }
8217
43234a1e
L
8218 /* For EVEX instructions i.vrex should become 0 after
8219 build_evex_prefix. For VEX instructions upper 16 registers
8220 aren't available, so VREX should be 0. */
8221 if (i.vrex)
8222 abort ();
c0f3af97
L
8223 /* Now the VEX prefix. */
8224 p = frag_more (i.vex.length);
8225 for (j = 0; j < i.vex.length; j++)
8226 p[j] = i.vex.bytes[j];
8227 }
252b5132 8228
29b0f896 8229 /* Now the opcode; be careful about word order here! */
4dffcebc 8230 if (i.tm.opcode_length == 1)
29b0f896
AM
8231 {
8232 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8233 }
8234 else
8235 {
4dffcebc 8236 switch (i.tm.opcode_length)
331d2d0d 8237 {
43234a1e
L
8238 case 4:
8239 p = frag_more (4);
8240 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8241 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8242 break;
4dffcebc 8243 case 3:
331d2d0d
L
8244 p = frag_more (3);
8245 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8246 break;
8247 case 2:
8248 p = frag_more (2);
8249 break;
8250 default:
8251 abort ();
8252 break;
331d2d0d 8253 }
0f10071e 8254
29b0f896
AM
8255 /* Put out high byte first: can't use md_number_to_chars! */
8256 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8257 *p = i.tm.base_opcode & 0xff;
8258 }
3e73aa7c 8259
29b0f896 8260 /* Now the modrm byte and sib byte (if present). */
40fb9820 8261 if (i.tm.opcode_modifier.modrm)
29b0f896 8262 {
4a3523fa
L
8263 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8264 | i.rm.reg << 3
8265 | i.rm.mode << 6));
29b0f896
AM
8266 /* If i.rm.regmem == ESP (4)
8267 && i.rm.mode != (Register mode)
8268 && not 16 bit
8269 ==> need second modrm byte. */
8270 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8271 && i.rm.mode != 3
dc821c5f 8272 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8273 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8274 | i.sib.index << 3
8275 | i.sib.scale << 6));
29b0f896 8276 }
3e73aa7c 8277
29b0f896 8278 if (i.disp_operands)
2bbd9c25 8279 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8280
29b0f896 8281 if (i.imm_operands)
2bbd9c25 8282 output_imm (insn_start_frag, insn_start_off);
29b0f896 8283 }
252b5132 8284
29b0f896
AM
8285#ifdef DEBUG386
8286 if (flag_debug)
8287 {
7b81dfbb 8288 pi ("" /*line*/, &i);
29b0f896
AM
8289 }
8290#endif /* DEBUG386 */
8291}
252b5132 8292
e205caa7
L
8293/* Return the size of the displacement operand N. */
8294
8295static int
8296disp_size (unsigned int n)
8297{
8298 int size = 4;
43234a1e 8299
b5014f7a 8300 if (i.types[n].bitfield.disp64)
40fb9820
L
8301 size = 8;
8302 else if (i.types[n].bitfield.disp8)
8303 size = 1;
8304 else if (i.types[n].bitfield.disp16)
8305 size = 2;
e205caa7
L
8306 return size;
8307}
8308
8309/* Return the size of the immediate operand N. */
8310
8311static int
8312imm_size (unsigned int n)
8313{
8314 int size = 4;
40fb9820
L
8315 if (i.types[n].bitfield.imm64)
8316 size = 8;
8317 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8318 size = 1;
8319 else if (i.types[n].bitfield.imm16)
8320 size = 2;
e205caa7
L
8321 return size;
8322}
8323
29b0f896 8324static void
64e74474 8325output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8326{
8327 char *p;
8328 unsigned int n;
252b5132 8329
29b0f896
AM
8330 for (n = 0; n < i.operands; n++)
8331 {
b5014f7a 8332 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8333 {
8334 if (i.op[n].disps->X_op == O_constant)
8335 {
e205caa7 8336 int size = disp_size (n);
43234a1e 8337 offsetT val = i.op[n].disps->X_add_number;
252b5132 8338
629cfaf1
JB
8339 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8340 size);
29b0f896
AM
8341 p = frag_more (size);
8342 md_number_to_chars (p, val, size);
8343 }
8344 else
8345 {
f86103b7 8346 enum bfd_reloc_code_real reloc_type;
e205caa7 8347 int size = disp_size (n);
40fb9820 8348 int sign = i.types[n].bitfield.disp32s;
29b0f896 8349 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8350 fixS *fixP;
29b0f896 8351
e205caa7 8352 /* We can't have 8 bit displacement here. */
9c2799c2 8353 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8354
29b0f896
AM
8355 /* The PC relative address is computed relative
8356 to the instruction boundary, so in case immediate
8357 fields follows, we need to adjust the value. */
8358 if (pcrel && i.imm_operands)
8359 {
29b0f896 8360 unsigned int n1;
e205caa7 8361 int sz = 0;
252b5132 8362
29b0f896 8363 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8364 if (operand_type_check (i.types[n1], imm))
252b5132 8365 {
e205caa7
L
8366 /* Only one immediate is allowed for PC
8367 relative address. */
9c2799c2 8368 gas_assert (sz == 0);
e205caa7
L
8369 sz = imm_size (n1);
8370 i.op[n].disps->X_add_number -= sz;
252b5132 8371 }
29b0f896 8372 /* We should find the immediate. */
9c2799c2 8373 gas_assert (sz != 0);
29b0f896 8374 }
520dc8e8 8375
29b0f896 8376 p = frag_more (size);
d258b828 8377 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8378 if (GOT_symbol
2bbd9c25 8379 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8380 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8381 || reloc_type == BFD_RELOC_X86_64_32S
8382 || (reloc_type == BFD_RELOC_64
8383 && object_64bit))
d6ab8113
JB
8384 && (i.op[n].disps->X_op == O_symbol
8385 || (i.op[n].disps->X_op == O_add
8386 && ((symbol_get_value_expression
8387 (i.op[n].disps->X_op_symbol)->X_op)
8388 == O_subtract))))
8389 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8390 {
8391 offsetT add;
8392
8393 if (insn_start_frag == frag_now)
8394 add = (p - frag_now->fr_literal) - insn_start_off;
8395 else
8396 {
8397 fragS *fr;
8398
8399 add = insn_start_frag->fr_fix - insn_start_off;
8400 for (fr = insn_start_frag->fr_next;
8401 fr && fr != frag_now; fr = fr->fr_next)
8402 add += fr->fr_fix;
8403 add += p - frag_now->fr_literal;
8404 }
8405
4fa24527 8406 if (!object_64bit)
7b81dfbb
AJ
8407 {
8408 reloc_type = BFD_RELOC_386_GOTPC;
8409 i.op[n].imms->X_add_number += add;
8410 }
8411 else if (reloc_type == BFD_RELOC_64)
8412 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8413 else
7b81dfbb
AJ
8414 /* Don't do the adjustment for x86-64, as there
8415 the pcrel addressing is relative to the _next_
8416 insn, and that is taken care of in other code. */
d6ab8113 8417 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8418 }
02a86693
L
8419 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8420 size, i.op[n].disps, pcrel,
8421 reloc_type);
8422 /* Check for "call/jmp *mem", "mov mem, %reg",
8423 "test %reg, mem" and "binop mem, %reg" where binop
8424 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8425 instructions without data prefix. Always generate
8426 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8427 if (i.prefix[DATA_PREFIX] == 0
8428 && (generate_relax_relocations
8429 || (!object_64bit
8430 && i.rm.mode == 0
8431 && i.rm.regmem == 5))
0cb4071e
L
8432 && (i.rm.mode == 2
8433 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8434 && ((i.operands == 1
8435 && i.tm.base_opcode == 0xff
8436 && (i.rm.reg == 2 || i.rm.reg == 4))
8437 || (i.operands == 2
8438 && (i.tm.base_opcode == 0x8b
8439 || i.tm.base_opcode == 0x85
8440 || (i.tm.base_opcode & 0xc7) == 0x03))))
8441 {
8442 if (object_64bit)
8443 {
8444 fixP->fx_tcbit = i.rex != 0;
8445 if (i.base_reg
e968fc9b 8446 && (i.base_reg->reg_num == RegIP))
02a86693
L
8447 fixP->fx_tcbit2 = 1;
8448 }
8449 else
8450 fixP->fx_tcbit2 = 1;
8451 }
29b0f896
AM
8452 }
8453 }
8454 }
8455}
252b5132 8456
29b0f896 8457static void
64e74474 8458output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8459{
8460 char *p;
8461 unsigned int n;
252b5132 8462
29b0f896
AM
8463 for (n = 0; n < i.operands; n++)
8464 {
43234a1e
L
8465 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8466 if (i.rounding && (int) n == i.rounding->operand)
8467 continue;
8468
40fb9820 8469 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8470 {
8471 if (i.op[n].imms->X_op == O_constant)
8472 {
e205caa7 8473 int size = imm_size (n);
29b0f896 8474 offsetT val;
b4cac588 8475
29b0f896
AM
8476 val = offset_in_range (i.op[n].imms->X_add_number,
8477 size);
8478 p = frag_more (size);
8479 md_number_to_chars (p, val, size);
8480 }
8481 else
8482 {
8483 /* Not absolute_section.
8484 Need a 32-bit fixup (don't support 8bit
8485 non-absolute imms). Try to support other
8486 sizes ... */
f86103b7 8487 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8488 int size = imm_size (n);
8489 int sign;
29b0f896 8490
40fb9820 8491 if (i.types[n].bitfield.imm32s
a7d61044 8492 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8493 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8494 sign = 1;
e205caa7
L
8495 else
8496 sign = 0;
520dc8e8 8497
29b0f896 8498 p = frag_more (size);
d258b828 8499 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8500
2bbd9c25
JJ
8501 /* This is tough to explain. We end up with this one if we
8502 * have operands that look like
8503 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8504 * obtain the absolute address of the GOT, and it is strongly
8505 * preferable from a performance point of view to avoid using
8506 * a runtime relocation for this. The actual sequence of
8507 * instructions often look something like:
8508 *
8509 * call .L66
8510 * .L66:
8511 * popl %ebx
8512 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8513 *
8514 * The call and pop essentially return the absolute address
8515 * of the label .L66 and store it in %ebx. The linker itself
8516 * will ultimately change the first operand of the addl so
8517 * that %ebx points to the GOT, but to keep things simple, the
8518 * .o file must have this operand set so that it generates not
8519 * the absolute address of .L66, but the absolute address of
8520 * itself. This allows the linker itself simply treat a GOTPC
8521 * relocation as asking for a pcrel offset to the GOT to be
8522 * added in, and the addend of the relocation is stored in the
8523 * operand field for the instruction itself.
8524 *
8525 * Our job here is to fix the operand so that it would add
8526 * the correct offset so that %ebx would point to itself. The
8527 * thing that is tricky is that .-.L66 will point to the
8528 * beginning of the instruction, so we need to further modify
8529 * the operand so that it will point to itself. There are
8530 * other cases where you have something like:
8531 *
8532 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8533 *
8534 * and here no correction would be required. Internally in
8535 * the assembler we treat operands of this form as not being
8536 * pcrel since the '.' is explicitly mentioned, and I wonder
8537 * whether it would simplify matters to do it this way. Who
8538 * knows. In earlier versions of the PIC patches, the
8539 * pcrel_adjust field was used to store the correction, but
8540 * since the expression is not pcrel, I felt it would be
8541 * confusing to do it this way. */
8542
d6ab8113 8543 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8544 || reloc_type == BFD_RELOC_X86_64_32S
8545 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8546 && GOT_symbol
8547 && GOT_symbol == i.op[n].imms->X_add_symbol
8548 && (i.op[n].imms->X_op == O_symbol
8549 || (i.op[n].imms->X_op == O_add
8550 && ((symbol_get_value_expression
8551 (i.op[n].imms->X_op_symbol)->X_op)
8552 == O_subtract))))
8553 {
2bbd9c25
JJ
8554 offsetT add;
8555
8556 if (insn_start_frag == frag_now)
8557 add = (p - frag_now->fr_literal) - insn_start_off;
8558 else
8559 {
8560 fragS *fr;
8561
8562 add = insn_start_frag->fr_fix - insn_start_off;
8563 for (fr = insn_start_frag->fr_next;
8564 fr && fr != frag_now; fr = fr->fr_next)
8565 add += fr->fr_fix;
8566 add += p - frag_now->fr_literal;
8567 }
8568
4fa24527 8569 if (!object_64bit)
d6ab8113 8570 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8571 else if (size == 4)
d6ab8113 8572 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8573 else if (size == 8)
8574 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8575 i.op[n].imms->X_add_number += add;
29b0f896 8576 }
29b0f896
AM
8577 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8578 i.op[n].imms, 0, reloc_type);
8579 }
8580 }
8581 }
252b5132
RH
8582}
8583\f
d182319b
JB
8584/* x86_cons_fix_new is called via the expression parsing code when a
8585 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8586static int cons_sign = -1;
8587
8588void
e3bb37b5 8589x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8590 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8591{
d258b828 8592 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8593
8594#ifdef TE_PE
8595 if (exp->X_op == O_secrel)
8596 {
8597 exp->X_op = O_symbol;
8598 r = BFD_RELOC_32_SECREL;
8599 }
8600#endif
8601
8602 fix_new_exp (frag, off, len, exp, 0, r);
8603}
8604
357d1bd8
L
8605/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8606 purpose of the `.dc.a' internal pseudo-op. */
8607
8608int
8609x86_address_bytes (void)
8610{
8611 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8612 return 4;
8613 return stdoutput->arch_info->bits_per_address / 8;
8614}
8615
d382c579
TG
8616#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8617 || defined (LEX_AT)
d258b828 8618# define lex_got(reloc, adjust, types) NULL
718ddfc0 8619#else
f3c180ae
AM
8620/* Parse operands of the form
8621 <symbol>@GOTOFF+<nnn>
8622 and similar .plt or .got references.
8623
8624 If we find one, set up the correct relocation in RELOC and copy the
8625 input string, minus the `@GOTOFF' into a malloc'd buffer for
8626 parsing by the calling routine. Return this buffer, and if ADJUST
8627 is non-null set it to the length of the string we removed from the
8628 input line. Otherwise return NULL. */
8629static char *
91d6fa6a 8630lex_got (enum bfd_reloc_code_real *rel,
64e74474 8631 int *adjust,
d258b828 8632 i386_operand_type *types)
f3c180ae 8633{
7b81dfbb
AJ
8634 /* Some of the relocations depend on the size of what field is to
8635 be relocated. But in our callers i386_immediate and i386_displacement
8636 we don't yet know the operand size (this will be set by insn
8637 matching). Hence we record the word32 relocation here,
8638 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8639 static const struct {
8640 const char *str;
cff8d58a 8641 int len;
4fa24527 8642 const enum bfd_reloc_code_real rel[2];
40fb9820 8643 const i386_operand_type types64;
f3c180ae 8644 } gotrel[] = {
8ce3d284 8645#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8646 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8647 BFD_RELOC_SIZE32 },
8648 OPERAND_TYPE_IMM32_64 },
8ce3d284 8649#endif
cff8d58a
L
8650 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8651 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8652 OPERAND_TYPE_IMM64 },
cff8d58a
L
8653 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8654 BFD_RELOC_X86_64_PLT32 },
40fb9820 8655 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8656 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8657 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8658 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8659 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8660 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8661 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8662 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8663 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8664 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8665 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8666 BFD_RELOC_X86_64_TLSGD },
40fb9820 8667 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8668 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8669 _dummy_first_bfd_reloc_code_real },
40fb9820 8670 OPERAND_TYPE_NONE },
cff8d58a
L
8671 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8672 BFD_RELOC_X86_64_TLSLD },
40fb9820 8673 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8674 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8675 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8676 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8677 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8678 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8679 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8680 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8681 _dummy_first_bfd_reloc_code_real },
40fb9820 8682 OPERAND_TYPE_NONE },
cff8d58a
L
8683 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8684 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8685 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8686 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8687 _dummy_first_bfd_reloc_code_real },
40fb9820 8688 OPERAND_TYPE_NONE },
cff8d58a
L
8689 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8690 _dummy_first_bfd_reloc_code_real },
40fb9820 8691 OPERAND_TYPE_NONE },
cff8d58a
L
8692 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8693 BFD_RELOC_X86_64_GOT32 },
40fb9820 8694 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8695 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8696 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8697 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8698 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8699 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8700 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8701 };
8702 char *cp;
8703 unsigned int j;
8704
d382c579 8705#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8706 if (!IS_ELF)
8707 return NULL;
d382c579 8708#endif
718ddfc0 8709
f3c180ae 8710 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8711 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8712 return NULL;
8713
47465058 8714 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8715 {
cff8d58a 8716 int len = gotrel[j].len;
28f81592 8717 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8718 {
4fa24527 8719 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8720 {
28f81592
AM
8721 int first, second;
8722 char *tmpbuf, *past_reloc;
f3c180ae 8723
91d6fa6a 8724 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8725
3956db08
JB
8726 if (types)
8727 {
8728 if (flag_code != CODE_64BIT)
40fb9820
L
8729 {
8730 types->bitfield.imm32 = 1;
8731 types->bitfield.disp32 = 1;
8732 }
3956db08
JB
8733 else
8734 *types = gotrel[j].types64;
8735 }
8736
8fd4256d 8737 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8738 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8739
28f81592 8740 /* The length of the first part of our input line. */
f3c180ae 8741 first = cp - input_line_pointer;
28f81592
AM
8742
8743 /* The second part goes from after the reloc token until
67c11a9b 8744 (and including) an end_of_line char or comma. */
28f81592 8745 past_reloc = cp + 1 + len;
67c11a9b
AM
8746 cp = past_reloc;
8747 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8748 ++cp;
8749 second = cp + 1 - past_reloc;
28f81592
AM
8750
8751 /* Allocate and copy string. The trailing NUL shouldn't
8752 be necessary, but be safe. */
add39d23 8753 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8754 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8755 if (second != 0 && *past_reloc != ' ')
8756 /* Replace the relocation token with ' ', so that
8757 errors like foo@GOTOFF1 will be detected. */
8758 tmpbuf[first++] = ' ';
af89796a
L
8759 else
8760 /* Increment length by 1 if the relocation token is
8761 removed. */
8762 len++;
8763 if (adjust)
8764 *adjust = len;
0787a12d
AM
8765 memcpy (tmpbuf + first, past_reloc, second);
8766 tmpbuf[first + second] = '\0';
f3c180ae
AM
8767 return tmpbuf;
8768 }
8769
4fa24527
JB
8770 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8771 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8772 return NULL;
8773 }
8774 }
8775
8776 /* Might be a symbol version string. Don't as_bad here. */
8777 return NULL;
8778}
4e4f7c87 8779#endif
f3c180ae 8780
a988325c
NC
8781#ifdef TE_PE
8782#ifdef lex_got
8783#undef lex_got
8784#endif
8785/* Parse operands of the form
8786 <symbol>@SECREL32+<nnn>
8787
8788 If we find one, set up the correct relocation in RELOC and copy the
8789 input string, minus the `@SECREL32' into a malloc'd buffer for
8790 parsing by the calling routine. Return this buffer, and if ADJUST
8791 is non-null set it to the length of the string we removed from the
34bca508
L
8792 input line. Otherwise return NULL.
8793
a988325c
NC
8794 This function is copied from the ELF version above adjusted for PE targets. */
8795
8796static char *
8797lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8798 int *adjust ATTRIBUTE_UNUSED,
d258b828 8799 i386_operand_type *types)
a988325c
NC
8800{
8801 static const struct
8802 {
8803 const char *str;
8804 int len;
8805 const enum bfd_reloc_code_real rel[2];
8806 const i386_operand_type types64;
8807 }
8808 gotrel[] =
8809 {
8810 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8811 BFD_RELOC_32_SECREL },
8812 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8813 };
8814
8815 char *cp;
8816 unsigned j;
8817
8818 for (cp = input_line_pointer; *cp != '@'; cp++)
8819 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8820 return NULL;
8821
8822 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8823 {
8824 int len = gotrel[j].len;
8825
8826 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8827 {
8828 if (gotrel[j].rel[object_64bit] != 0)
8829 {
8830 int first, second;
8831 char *tmpbuf, *past_reloc;
8832
8833 *rel = gotrel[j].rel[object_64bit];
8834 if (adjust)
8835 *adjust = len;
8836
8837 if (types)
8838 {
8839 if (flag_code != CODE_64BIT)
8840 {
8841 types->bitfield.imm32 = 1;
8842 types->bitfield.disp32 = 1;
8843 }
8844 else
8845 *types = gotrel[j].types64;
8846 }
8847
8848 /* The length of the first part of our input line. */
8849 first = cp - input_line_pointer;
8850
8851 /* The second part goes from after the reloc token until
8852 (and including) an end_of_line char or comma. */
8853 past_reloc = cp + 1 + len;
8854 cp = past_reloc;
8855 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8856 ++cp;
8857 second = cp + 1 - past_reloc;
8858
8859 /* Allocate and copy string. The trailing NUL shouldn't
8860 be necessary, but be safe. */
add39d23 8861 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8862 memcpy (tmpbuf, input_line_pointer, first);
8863 if (second != 0 && *past_reloc != ' ')
8864 /* Replace the relocation token with ' ', so that
8865 errors like foo@SECLREL321 will be detected. */
8866 tmpbuf[first++] = ' ';
8867 memcpy (tmpbuf + first, past_reloc, second);
8868 tmpbuf[first + second] = '\0';
8869 return tmpbuf;
8870 }
8871
8872 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8873 gotrel[j].str, 1 << (5 + object_64bit));
8874 return NULL;
8875 }
8876 }
8877
8878 /* Might be a symbol version string. Don't as_bad here. */
8879 return NULL;
8880}
8881
8882#endif /* TE_PE */
8883
62ebcb5c 8884bfd_reloc_code_real_type
e3bb37b5 8885x86_cons (expressionS *exp, int size)
f3c180ae 8886{
62ebcb5c
AM
8887 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8888
ee86248c
JB
8889 intel_syntax = -intel_syntax;
8890
3c7b9c2c 8891 exp->X_md = 0;
4fa24527 8892 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8893 {
8894 /* Handle @GOTOFF and the like in an expression. */
8895 char *save;
8896 char *gotfree_input_line;
4a57f2cf 8897 int adjust = 0;
f3c180ae
AM
8898
8899 save = input_line_pointer;
d258b828 8900 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8901 if (gotfree_input_line)
8902 input_line_pointer = gotfree_input_line;
8903
8904 expression (exp);
8905
8906 if (gotfree_input_line)
8907 {
8908 /* expression () has merrily parsed up to the end of line,
8909 or a comma - in the wrong buffer. Transfer how far
8910 input_line_pointer has moved to the right buffer. */
8911 input_line_pointer = (save
8912 + (input_line_pointer - gotfree_input_line)
8913 + adjust);
8914 free (gotfree_input_line);
3992d3b7
AM
8915 if (exp->X_op == O_constant
8916 || exp->X_op == O_absent
8917 || exp->X_op == O_illegal
0398aac5 8918 || exp->X_op == O_register
3992d3b7
AM
8919 || exp->X_op == O_big)
8920 {
8921 char c = *input_line_pointer;
8922 *input_line_pointer = 0;
8923 as_bad (_("missing or invalid expression `%s'"), save);
8924 *input_line_pointer = c;
8925 }
b9519cfe
L
8926 else if ((got_reloc == BFD_RELOC_386_PLT32
8927 || got_reloc == BFD_RELOC_X86_64_PLT32)
8928 && exp->X_op != O_symbol)
8929 {
8930 char c = *input_line_pointer;
8931 *input_line_pointer = 0;
8932 as_bad (_("invalid PLT expression `%s'"), save);
8933 *input_line_pointer = c;
8934 }
f3c180ae
AM
8935 }
8936 }
8937 else
8938 expression (exp);
ee86248c
JB
8939
8940 intel_syntax = -intel_syntax;
8941
8942 if (intel_syntax)
8943 i386_intel_simplify (exp);
62ebcb5c
AM
8944
8945 return got_reloc;
f3c180ae 8946}
f3c180ae 8947
9f32dd5b
L
8948static void
8949signed_cons (int size)
6482c264 8950{
d182319b
JB
8951 if (flag_code == CODE_64BIT)
8952 cons_sign = 1;
8953 cons (size);
8954 cons_sign = -1;
6482c264
NC
8955}
8956
d182319b 8957#ifdef TE_PE
6482c264 8958static void
7016a5d5 8959pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8960{
8961 expressionS exp;
8962
8963 do
8964 {
8965 expression (&exp);
8966 if (exp.X_op == O_symbol)
8967 exp.X_op = O_secrel;
8968
8969 emit_expr (&exp, 4);
8970 }
8971 while (*input_line_pointer++ == ',');
8972
8973 input_line_pointer--;
8974 demand_empty_rest_of_line ();
8975}
6482c264
NC
8976#endif
8977
43234a1e
L
8978/* Handle Vector operations. */
8979
8980static char *
8981check_VecOperations (char *op_string, char *op_end)
8982{
8983 const reg_entry *mask;
8984 const char *saved;
8985 char *end_op;
8986
8987 while (*op_string
8988 && (op_end == NULL || op_string < op_end))
8989 {
8990 saved = op_string;
8991 if (*op_string == '{')
8992 {
8993 op_string++;
8994
8995 /* Check broadcasts. */
8996 if (strncmp (op_string, "1to", 3) == 0)
8997 {
8998 int bcst_type;
8999
9000 if (i.broadcast)
9001 goto duplicated_vec_op;
9002
9003 op_string += 3;
9004 if (*op_string == '8')
8e6e0792 9005 bcst_type = 8;
b28d1bda 9006 else if (*op_string == '4')
8e6e0792 9007 bcst_type = 4;
b28d1bda 9008 else if (*op_string == '2')
8e6e0792 9009 bcst_type = 2;
43234a1e
L
9010 else if (*op_string == '1'
9011 && *(op_string+1) == '6')
9012 {
8e6e0792 9013 bcst_type = 16;
43234a1e
L
9014 op_string++;
9015 }
9016 else
9017 {
9018 as_bad (_("Unsupported broadcast: `%s'"), saved);
9019 return NULL;
9020 }
9021 op_string++;
9022
9023 broadcast_op.type = bcst_type;
9024 broadcast_op.operand = this_operand;
1f75763a 9025 broadcast_op.bytes = 0;
43234a1e
L
9026 i.broadcast = &broadcast_op;
9027 }
9028 /* Check masking operation. */
9029 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9030 {
9031 /* k0 can't be used for write mask. */
6d2cd6b2 9032 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9033 {
6d2cd6b2
JB
9034 as_bad (_("`%s%s' can't be used for write mask"),
9035 register_prefix, mask->reg_name);
43234a1e
L
9036 return NULL;
9037 }
9038
9039 if (!i.mask)
9040 {
9041 mask_op.mask = mask;
9042 mask_op.zeroing = 0;
9043 mask_op.operand = this_operand;
9044 i.mask = &mask_op;
9045 }
9046 else
9047 {
9048 if (i.mask->mask)
9049 goto duplicated_vec_op;
9050
9051 i.mask->mask = mask;
9052
9053 /* Only "{z}" is allowed here. No need to check
9054 zeroing mask explicitly. */
9055 if (i.mask->operand != this_operand)
9056 {
9057 as_bad (_("invalid write mask `%s'"), saved);
9058 return NULL;
9059 }
9060 }
9061
9062 op_string = end_op;
9063 }
9064 /* Check zeroing-flag for masking operation. */
9065 else if (*op_string == 'z')
9066 {
9067 if (!i.mask)
9068 {
9069 mask_op.mask = NULL;
9070 mask_op.zeroing = 1;
9071 mask_op.operand = this_operand;
9072 i.mask = &mask_op;
9073 }
9074 else
9075 {
9076 if (i.mask->zeroing)
9077 {
9078 duplicated_vec_op:
9079 as_bad (_("duplicated `%s'"), saved);
9080 return NULL;
9081 }
9082
9083 i.mask->zeroing = 1;
9084
9085 /* Only "{%k}" is allowed here. No need to check mask
9086 register explicitly. */
9087 if (i.mask->operand != this_operand)
9088 {
9089 as_bad (_("invalid zeroing-masking `%s'"),
9090 saved);
9091 return NULL;
9092 }
9093 }
9094
9095 op_string++;
9096 }
9097 else
9098 goto unknown_vec_op;
9099
9100 if (*op_string != '}')
9101 {
9102 as_bad (_("missing `}' in `%s'"), saved);
9103 return NULL;
9104 }
9105 op_string++;
0ba3a731
L
9106
9107 /* Strip whitespace since the addition of pseudo prefixes
9108 changed how the scrubber treats '{'. */
9109 if (is_space_char (*op_string))
9110 ++op_string;
9111
43234a1e
L
9112 continue;
9113 }
9114 unknown_vec_op:
9115 /* We don't know this one. */
9116 as_bad (_("unknown vector operation: `%s'"), saved);
9117 return NULL;
9118 }
9119
6d2cd6b2
JB
9120 if (i.mask && i.mask->zeroing && !i.mask->mask)
9121 {
9122 as_bad (_("zeroing-masking only allowed with write mask"));
9123 return NULL;
9124 }
9125
43234a1e
L
9126 return op_string;
9127}
9128
252b5132 9129static int
70e41ade 9130i386_immediate (char *imm_start)
252b5132
RH
9131{
9132 char *save_input_line_pointer;
f3c180ae 9133 char *gotfree_input_line;
252b5132 9134 segT exp_seg = 0;
47926f60 9135 expressionS *exp;
40fb9820
L
9136 i386_operand_type types;
9137
0dfbf9d7 9138 operand_type_set (&types, ~0);
252b5132
RH
9139
9140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9141 {
31b2323c
L
9142 as_bad (_("at most %d immediate operands are allowed"),
9143 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9144 return 0;
9145 }
9146
9147 exp = &im_expressions[i.imm_operands++];
520dc8e8 9148 i.op[this_operand].imms = exp;
252b5132
RH
9149
9150 if (is_space_char (*imm_start))
9151 ++imm_start;
9152
9153 save_input_line_pointer = input_line_pointer;
9154 input_line_pointer = imm_start;
9155
d258b828 9156 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9157 if (gotfree_input_line)
9158 input_line_pointer = gotfree_input_line;
252b5132
RH
9159
9160 exp_seg = expression (exp);
9161
83183c0c 9162 SKIP_WHITESPACE ();
43234a1e
L
9163
9164 /* Handle vector operations. */
9165 if (*input_line_pointer == '{')
9166 {
9167 input_line_pointer = check_VecOperations (input_line_pointer,
9168 NULL);
9169 if (input_line_pointer == NULL)
9170 return 0;
9171 }
9172
252b5132 9173 if (*input_line_pointer)
f3c180ae 9174 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9175
9176 input_line_pointer = save_input_line_pointer;
f3c180ae 9177 if (gotfree_input_line)
ee86248c
JB
9178 {
9179 free (gotfree_input_line);
9180
9181 if (exp->X_op == O_constant || exp->X_op == O_register)
9182 exp->X_op = O_illegal;
9183 }
9184
9185 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9186}
252b5132 9187
ee86248c
JB
9188static int
9189i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9190 i386_operand_type types, const char *imm_start)
9191{
9192 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9193 {
313c53d1
L
9194 if (imm_start)
9195 as_bad (_("missing or invalid immediate expression `%s'"),
9196 imm_start);
3992d3b7 9197 return 0;
252b5132 9198 }
3e73aa7c 9199 else if (exp->X_op == O_constant)
252b5132 9200 {
47926f60 9201 /* Size it properly later. */
40fb9820 9202 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9203 /* If not 64bit, sign extend val. */
9204 if (flag_code != CODE_64BIT
4eed87de
AM
9205 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9206 exp->X_add_number
9207 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9208 }
4c63da97 9209#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9210 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9211 && exp_seg != absolute_section
47926f60 9212 && exp_seg != text_section
24eab124
AM
9213 && exp_seg != data_section
9214 && exp_seg != bss_section
9215 && exp_seg != undefined_section
f86103b7 9216 && !bfd_is_com_section (exp_seg))
252b5132 9217 {
d0b47220 9218 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9219 return 0;
9220 }
9221#endif
a841bdf5 9222 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9223 {
313c53d1
L
9224 if (imm_start)
9225 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9226 return 0;
9227 }
252b5132
RH
9228 else
9229 {
9230 /* This is an address. The size of the address will be
24eab124 9231 determined later, depending on destination register,
3e73aa7c 9232 suffix, or the default for the section. */
40fb9820
L
9233 i.types[this_operand].bitfield.imm8 = 1;
9234 i.types[this_operand].bitfield.imm16 = 1;
9235 i.types[this_operand].bitfield.imm32 = 1;
9236 i.types[this_operand].bitfield.imm32s = 1;
9237 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9238 i.types[this_operand] = operand_type_and (i.types[this_operand],
9239 types);
252b5132
RH
9240 }
9241
9242 return 1;
9243}
9244
551c1ca1 9245static char *
e3bb37b5 9246i386_scale (char *scale)
252b5132 9247{
551c1ca1
AM
9248 offsetT val;
9249 char *save = input_line_pointer;
252b5132 9250
551c1ca1
AM
9251 input_line_pointer = scale;
9252 val = get_absolute_expression ();
9253
9254 switch (val)
252b5132 9255 {
551c1ca1 9256 case 1:
252b5132
RH
9257 i.log2_scale_factor = 0;
9258 break;
551c1ca1 9259 case 2:
252b5132
RH
9260 i.log2_scale_factor = 1;
9261 break;
551c1ca1 9262 case 4:
252b5132
RH
9263 i.log2_scale_factor = 2;
9264 break;
551c1ca1 9265 case 8:
252b5132
RH
9266 i.log2_scale_factor = 3;
9267 break;
9268 default:
a724f0f4
JB
9269 {
9270 char sep = *input_line_pointer;
9271
9272 *input_line_pointer = '\0';
9273 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9274 scale);
9275 *input_line_pointer = sep;
9276 input_line_pointer = save;
9277 return NULL;
9278 }
252b5132 9279 }
29b0f896 9280 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9281 {
9282 as_warn (_("scale factor of %d without an index register"),
24eab124 9283 1 << i.log2_scale_factor);
252b5132 9284 i.log2_scale_factor = 0;
252b5132 9285 }
551c1ca1
AM
9286 scale = input_line_pointer;
9287 input_line_pointer = save;
9288 return scale;
252b5132
RH
9289}
9290
252b5132 9291static int
e3bb37b5 9292i386_displacement (char *disp_start, char *disp_end)
252b5132 9293{
29b0f896 9294 expressionS *exp;
252b5132
RH
9295 segT exp_seg = 0;
9296 char *save_input_line_pointer;
f3c180ae 9297 char *gotfree_input_line;
40fb9820
L
9298 int override;
9299 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9300 int ret;
252b5132 9301
31b2323c
L
9302 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9303 {
9304 as_bad (_("at most %d displacement operands are allowed"),
9305 MAX_MEMORY_OPERANDS);
9306 return 0;
9307 }
9308
0dfbf9d7 9309 operand_type_set (&bigdisp, 0);
40fb9820
L
9310 if ((i.types[this_operand].bitfield.jumpabsolute)
9311 || (!current_templates->start->opcode_modifier.jump
9312 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9313 {
40fb9820 9314 bigdisp.bitfield.disp32 = 1;
e05278af 9315 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9316 if (flag_code == CODE_64BIT)
9317 {
9318 if (!override)
9319 {
9320 bigdisp.bitfield.disp32s = 1;
9321 bigdisp.bitfield.disp64 = 1;
9322 }
9323 }
9324 else if ((flag_code == CODE_16BIT) ^ override)
9325 {
9326 bigdisp.bitfield.disp32 = 0;
9327 bigdisp.bitfield.disp16 = 1;
9328 }
e05278af
JB
9329 }
9330 else
9331 {
9332 /* For PC-relative branches, the width of the displacement
9333 is dependent upon data size, not address size. */
e05278af 9334 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9335 if (flag_code == CODE_64BIT)
9336 {
9337 if (override || i.suffix == WORD_MNEM_SUFFIX)
9338 bigdisp.bitfield.disp16 = 1;
9339 else
9340 {
9341 bigdisp.bitfield.disp32 = 1;
9342 bigdisp.bitfield.disp32s = 1;
9343 }
9344 }
9345 else
e05278af
JB
9346 {
9347 if (!override)
9348 override = (i.suffix == (flag_code != CODE_16BIT
9349 ? WORD_MNEM_SUFFIX
9350 : LONG_MNEM_SUFFIX));
40fb9820
L
9351 bigdisp.bitfield.disp32 = 1;
9352 if ((flag_code == CODE_16BIT) ^ override)
9353 {
9354 bigdisp.bitfield.disp32 = 0;
9355 bigdisp.bitfield.disp16 = 1;
9356 }
e05278af 9357 }
e05278af 9358 }
c6fb90c8
L
9359 i.types[this_operand] = operand_type_or (i.types[this_operand],
9360 bigdisp);
252b5132
RH
9361
9362 exp = &disp_expressions[i.disp_operands];
520dc8e8 9363 i.op[this_operand].disps = exp;
252b5132
RH
9364 i.disp_operands++;
9365 save_input_line_pointer = input_line_pointer;
9366 input_line_pointer = disp_start;
9367 END_STRING_AND_SAVE (disp_end);
9368
9369#ifndef GCC_ASM_O_HACK
9370#define GCC_ASM_O_HACK 0
9371#endif
9372#if GCC_ASM_O_HACK
9373 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9374 if (i.types[this_operand].bitfield.baseIndex
24eab124 9375 && displacement_string_end[-1] == '+')
252b5132
RH
9376 {
9377 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9378 constraint within gcc asm statements.
9379 For instance:
9380
9381 #define _set_tssldt_desc(n,addr,limit,type) \
9382 __asm__ __volatile__ ( \
9383 "movw %w2,%0\n\t" \
9384 "movw %w1,2+%0\n\t" \
9385 "rorl $16,%1\n\t" \
9386 "movb %b1,4+%0\n\t" \
9387 "movb %4,5+%0\n\t" \
9388 "movb $0,6+%0\n\t" \
9389 "movb %h1,7+%0\n\t" \
9390 "rorl $16,%1" \
9391 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9392
9393 This works great except that the output assembler ends
9394 up looking a bit weird if it turns out that there is
9395 no offset. You end up producing code that looks like:
9396
9397 #APP
9398 movw $235,(%eax)
9399 movw %dx,2+(%eax)
9400 rorl $16,%edx
9401 movb %dl,4+(%eax)
9402 movb $137,5+(%eax)
9403 movb $0,6+(%eax)
9404 movb %dh,7+(%eax)
9405 rorl $16,%edx
9406 #NO_APP
9407
47926f60 9408 So here we provide the missing zero. */
24eab124
AM
9409
9410 *displacement_string_end = '0';
252b5132
RH
9411 }
9412#endif
d258b828 9413 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9414 if (gotfree_input_line)
9415 input_line_pointer = gotfree_input_line;
252b5132 9416
24eab124 9417 exp_seg = expression (exp);
252b5132 9418
636c26b0
AM
9419 SKIP_WHITESPACE ();
9420 if (*input_line_pointer)
9421 as_bad (_("junk `%s' after expression"), input_line_pointer);
9422#if GCC_ASM_O_HACK
9423 RESTORE_END_STRING (disp_end + 1);
9424#endif
636c26b0 9425 input_line_pointer = save_input_line_pointer;
636c26b0 9426 if (gotfree_input_line)
ee86248c
JB
9427 {
9428 free (gotfree_input_line);
9429
9430 if (exp->X_op == O_constant || exp->X_op == O_register)
9431 exp->X_op = O_illegal;
9432 }
9433
9434 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9435
9436 RESTORE_END_STRING (disp_end);
9437
9438 return ret;
9439}
9440
9441static int
9442i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9443 i386_operand_type types, const char *disp_start)
9444{
9445 i386_operand_type bigdisp;
9446 int ret = 1;
636c26b0 9447
24eab124
AM
9448 /* We do this to make sure that the section symbol is in
9449 the symbol table. We will ultimately change the relocation
47926f60 9450 to be relative to the beginning of the section. */
1ae12ab7 9451 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9452 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9453 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9454 {
636c26b0 9455 if (exp->X_op != O_symbol)
3992d3b7 9456 goto inv_disp;
636c26b0 9457
e5cb08ac 9458 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9459 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9460 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9461 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9462 exp->X_op = O_subtract;
9463 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9464 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9465 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9466 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9467 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9468 else
29b0f896 9469 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9470 }
252b5132 9471
3992d3b7
AM
9472 else if (exp->X_op == O_absent
9473 || exp->X_op == O_illegal
ee86248c 9474 || exp->X_op == O_big)
2daf4fd8 9475 {
3992d3b7
AM
9476 inv_disp:
9477 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9478 disp_start);
3992d3b7 9479 ret = 0;
2daf4fd8
AM
9480 }
9481
0e1147d9
L
9482 else if (flag_code == CODE_64BIT
9483 && !i.prefix[ADDR_PREFIX]
9484 && exp->X_op == O_constant)
9485 {
9486 /* Since displacement is signed extended to 64bit, don't allow
9487 disp32 and turn off disp32s if they are out of range. */
9488 i.types[this_operand].bitfield.disp32 = 0;
9489 if (!fits_in_signed_long (exp->X_add_number))
9490 {
9491 i.types[this_operand].bitfield.disp32s = 0;
9492 if (i.types[this_operand].bitfield.baseindex)
9493 {
9494 as_bad (_("0x%lx out range of signed 32bit displacement"),
9495 (long) exp->X_add_number);
9496 ret = 0;
9497 }
9498 }
9499 }
9500
4c63da97 9501#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9502 else if (exp->X_op != O_constant
9503 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9504 && exp_seg != absolute_section
9505 && exp_seg != text_section
9506 && exp_seg != data_section
9507 && exp_seg != bss_section
9508 && exp_seg != undefined_section
9509 && !bfd_is_com_section (exp_seg))
24eab124 9510 {
d0b47220 9511 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9512 ret = 0;
24eab124 9513 }
252b5132 9514#endif
3956db08 9515
40fb9820
L
9516 /* Check if this is a displacement only operand. */
9517 bigdisp = i.types[this_operand];
9518 bigdisp.bitfield.disp8 = 0;
9519 bigdisp.bitfield.disp16 = 0;
9520 bigdisp.bitfield.disp32 = 0;
9521 bigdisp.bitfield.disp32s = 0;
9522 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9523 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9524 i.types[this_operand] = operand_type_and (i.types[this_operand],
9525 types);
3956db08 9526
3992d3b7 9527 return ret;
252b5132
RH
9528}
9529
2abc2bec
JB
9530/* Return the active addressing mode, taking address override and
9531 registers forming the address into consideration. Update the
9532 address override prefix if necessary. */
47926f60 9533
2abc2bec
JB
9534static enum flag_code
9535i386_addressing_mode (void)
252b5132 9536{
be05d201
L
9537 enum flag_code addr_mode;
9538
9539 if (i.prefix[ADDR_PREFIX])
9540 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9541 else
9542 {
9543 addr_mode = flag_code;
9544
24eab124 9545#if INFER_ADDR_PREFIX
be05d201
L
9546 if (i.mem_operands == 0)
9547 {
9548 /* Infer address prefix from the first memory operand. */
9549 const reg_entry *addr_reg = i.base_reg;
9550
9551 if (addr_reg == NULL)
9552 addr_reg = i.index_reg;
eecb386c 9553
be05d201
L
9554 if (addr_reg)
9555 {
e968fc9b 9556 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9557 addr_mode = CODE_32BIT;
9558 else if (flag_code != CODE_64BIT
dc821c5f 9559 && addr_reg->reg_type.bitfield.word)
be05d201
L
9560 addr_mode = CODE_16BIT;
9561
9562 if (addr_mode != flag_code)
9563 {
9564 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9565 i.prefixes += 1;
9566 /* Change the size of any displacement too. At most one
9567 of Disp16 or Disp32 is set.
9568 FIXME. There doesn't seem to be any real need for
9569 separate Disp16 and Disp32 flags. The same goes for
9570 Imm16 and Imm32. Removing them would probably clean
9571 up the code quite a lot. */
9572 if (flag_code != CODE_64BIT
9573 && (i.types[this_operand].bitfield.disp16
9574 || i.types[this_operand].bitfield.disp32))
9575 i.types[this_operand]
9576 = operand_type_xor (i.types[this_operand], disp16_32);
9577 }
9578 }
9579 }
24eab124 9580#endif
be05d201
L
9581 }
9582
2abc2bec
JB
9583 return addr_mode;
9584}
9585
9586/* Make sure the memory operand we've been dealt is valid.
9587 Return 1 on success, 0 on a failure. */
9588
9589static int
9590i386_index_check (const char *operand_string)
9591{
9592 const char *kind = "base/index";
9593 enum flag_code addr_mode = i386_addressing_mode ();
9594
fc0763e6
JB
9595 if (current_templates->start->opcode_modifier.isstring
9596 && !current_templates->start->opcode_modifier.immext
9597 && (current_templates->end[-1].opcode_modifier.isstring
9598 || i.mem_operands))
9599 {
9600 /* Memory operands of string insns are special in that they only allow
9601 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9602 const reg_entry *expected_reg;
9603 static const char *di_si[][2] =
9604 {
9605 { "esi", "edi" },
9606 { "si", "di" },
9607 { "rsi", "rdi" }
9608 };
9609 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9610
9611 kind = "string address";
9612
8325cc63 9613 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9614 {
9615 i386_operand_type type = current_templates->end[-1].operand_types[0];
9616
9617 if (!type.bitfield.baseindex
9618 || ((!i.mem_operands != !intel_syntax)
9619 && current_templates->end[-1].operand_types[1]
9620 .bitfield.baseindex))
9621 type = current_templates->end[-1].operand_types[1];
be05d201
L
9622 expected_reg = hash_find (reg_hash,
9623 di_si[addr_mode][type.bitfield.esseg]);
9624
fc0763e6
JB
9625 }
9626 else
be05d201 9627 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9628
be05d201
L
9629 if (i.base_reg != expected_reg
9630 || i.index_reg
fc0763e6 9631 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9632 {
be05d201
L
9633 /* The second memory operand must have the same size as
9634 the first one. */
9635 if (i.mem_operands
9636 && i.base_reg
9637 && !((addr_mode == CODE_64BIT
dc821c5f 9638 && i.base_reg->reg_type.bitfield.qword)
be05d201 9639 || (addr_mode == CODE_32BIT
dc821c5f
JB
9640 ? i.base_reg->reg_type.bitfield.dword
9641 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9642 goto bad_address;
9643
fc0763e6
JB
9644 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9645 operand_string,
9646 intel_syntax ? '[' : '(',
9647 register_prefix,
be05d201 9648 expected_reg->reg_name,
fc0763e6 9649 intel_syntax ? ']' : ')');
be05d201 9650 return 1;
fc0763e6 9651 }
be05d201
L
9652 else
9653 return 1;
9654
9655bad_address:
9656 as_bad (_("`%s' is not a valid %s expression"),
9657 operand_string, kind);
9658 return 0;
3e73aa7c
JH
9659 }
9660 else
9661 {
be05d201
L
9662 if (addr_mode != CODE_16BIT)
9663 {
9664 /* 32-bit/64-bit checks. */
9665 if ((i.base_reg
e968fc9b
JB
9666 && ((addr_mode == CODE_64BIT
9667 ? !i.base_reg->reg_type.bitfield.qword
9668 : !i.base_reg->reg_type.bitfield.dword)
9669 || (i.index_reg && i.base_reg->reg_num == RegIP)
9670 || i.base_reg->reg_num == RegIZ))
be05d201 9671 || (i.index_reg
1b54b8d7
JB
9672 && !i.index_reg->reg_type.bitfield.xmmword
9673 && !i.index_reg->reg_type.bitfield.ymmword
9674 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9675 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9676 ? !i.index_reg->reg_type.bitfield.qword
9677 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9678 || !i.index_reg->reg_type.bitfield.baseindex)))
9679 goto bad_address;
8178be5b
JB
9680
9681 /* bndmk, bndldx, and bndstx have special restrictions. */
9682 if (current_templates->start->base_opcode == 0xf30f1b
9683 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9684 {
9685 /* They cannot use RIP-relative addressing. */
e968fc9b 9686 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9687 {
9688 as_bad (_("`%s' cannot be used here"), operand_string);
9689 return 0;
9690 }
9691
9692 /* bndldx and bndstx ignore their scale factor. */
9693 if (current_templates->start->base_opcode != 0xf30f1b
9694 && i.log2_scale_factor)
9695 as_warn (_("register scaling is being ignored here"));
9696 }
be05d201
L
9697 }
9698 else
3e73aa7c 9699 {
be05d201 9700 /* 16-bit checks. */
3e73aa7c 9701 if ((i.base_reg
dc821c5f 9702 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9703 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9704 || (i.index_reg
dc821c5f 9705 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9706 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9707 || !(i.base_reg
9708 && i.base_reg->reg_num < 6
9709 && i.index_reg->reg_num >= 6
9710 && i.log2_scale_factor == 0))))
be05d201 9711 goto bad_address;
3e73aa7c
JH
9712 }
9713 }
be05d201 9714 return 1;
24eab124 9715}
252b5132 9716
43234a1e
L
9717/* Handle vector immediates. */
9718
9719static int
9720RC_SAE_immediate (const char *imm_start)
9721{
9722 unsigned int match_found, j;
9723 const char *pstr = imm_start;
9724 expressionS *exp;
9725
9726 if (*pstr != '{')
9727 return 0;
9728
9729 pstr++;
9730 match_found = 0;
9731 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9732 {
9733 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9734 {
9735 if (!i.rounding)
9736 {
9737 rc_op.type = RC_NamesTable[j].type;
9738 rc_op.operand = this_operand;
9739 i.rounding = &rc_op;
9740 }
9741 else
9742 {
9743 as_bad (_("duplicated `%s'"), imm_start);
9744 return 0;
9745 }
9746 pstr += RC_NamesTable[j].len;
9747 match_found = 1;
9748 break;
9749 }
9750 }
9751 if (!match_found)
9752 return 0;
9753
9754 if (*pstr++ != '}')
9755 {
9756 as_bad (_("Missing '}': '%s'"), imm_start);
9757 return 0;
9758 }
9759 /* RC/SAE immediate string should contain nothing more. */;
9760 if (*pstr != 0)
9761 {
9762 as_bad (_("Junk after '}': '%s'"), imm_start);
9763 return 0;
9764 }
9765
9766 exp = &im_expressions[i.imm_operands++];
9767 i.op[this_operand].imms = exp;
9768
9769 exp->X_op = O_constant;
9770 exp->X_add_number = 0;
9771 exp->X_add_symbol = (symbolS *) 0;
9772 exp->X_op_symbol = (symbolS *) 0;
9773
9774 i.types[this_operand].bitfield.imm8 = 1;
9775 return 1;
9776}
9777
8325cc63
JB
9778/* Only string instructions can have a second memory operand, so
9779 reduce current_templates to just those if it contains any. */
9780static int
9781maybe_adjust_templates (void)
9782{
9783 const insn_template *t;
9784
9785 gas_assert (i.mem_operands == 1);
9786
9787 for (t = current_templates->start; t < current_templates->end; ++t)
9788 if (t->opcode_modifier.isstring)
9789 break;
9790
9791 if (t < current_templates->end)
9792 {
9793 static templates aux_templates;
9794 bfd_boolean recheck;
9795
9796 aux_templates.start = t;
9797 for (; t < current_templates->end; ++t)
9798 if (!t->opcode_modifier.isstring)
9799 break;
9800 aux_templates.end = t;
9801
9802 /* Determine whether to re-check the first memory operand. */
9803 recheck = (aux_templates.start != current_templates->start
9804 || t != current_templates->end);
9805
9806 current_templates = &aux_templates;
9807
9808 if (recheck)
9809 {
9810 i.mem_operands = 0;
9811 if (i.memop1_string != NULL
9812 && i386_index_check (i.memop1_string) == 0)
9813 return 0;
9814 i.mem_operands = 1;
9815 }
9816 }
9817
9818 return 1;
9819}
9820
fc0763e6 9821/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9822 on error. */
252b5132 9823
252b5132 9824static int
a7619375 9825i386_att_operand (char *operand_string)
252b5132 9826{
af6bdddf
AM
9827 const reg_entry *r;
9828 char *end_op;
24eab124 9829 char *op_string = operand_string;
252b5132 9830
24eab124 9831 if (is_space_char (*op_string))
252b5132
RH
9832 ++op_string;
9833
24eab124 9834 /* We check for an absolute prefix (differentiating,
47926f60 9835 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9836 if (*op_string == ABSOLUTE_PREFIX)
9837 {
9838 ++op_string;
9839 if (is_space_char (*op_string))
9840 ++op_string;
40fb9820 9841 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9842 }
252b5132 9843
47926f60 9844 /* Check if operand is a register. */
4d1bb795 9845 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9846 {
40fb9820
L
9847 i386_operand_type temp;
9848
24eab124
AM
9849 /* Check for a segment override by searching for ':' after a
9850 segment register. */
9851 op_string = end_op;
9852 if (is_space_char (*op_string))
9853 ++op_string;
40fb9820
L
9854 if (*op_string == ':'
9855 && (r->reg_type.bitfield.sreg2
9856 || r->reg_type.bitfield.sreg3))
24eab124
AM
9857 {
9858 switch (r->reg_num)
9859 {
9860 case 0:
9861 i.seg[i.mem_operands] = &es;
9862 break;
9863 case 1:
9864 i.seg[i.mem_operands] = &cs;
9865 break;
9866 case 2:
9867 i.seg[i.mem_operands] = &ss;
9868 break;
9869 case 3:
9870 i.seg[i.mem_operands] = &ds;
9871 break;
9872 case 4:
9873 i.seg[i.mem_operands] = &fs;
9874 break;
9875 case 5:
9876 i.seg[i.mem_operands] = &gs;
9877 break;
9878 }
252b5132 9879
24eab124 9880 /* Skip the ':' and whitespace. */
252b5132
RH
9881 ++op_string;
9882 if (is_space_char (*op_string))
24eab124 9883 ++op_string;
252b5132 9884
24eab124
AM
9885 if (!is_digit_char (*op_string)
9886 && !is_identifier_char (*op_string)
9887 && *op_string != '('
9888 && *op_string != ABSOLUTE_PREFIX)
9889 {
9890 as_bad (_("bad memory operand `%s'"), op_string);
9891 return 0;
9892 }
47926f60 9893 /* Handle case of %es:*foo. */
24eab124
AM
9894 if (*op_string == ABSOLUTE_PREFIX)
9895 {
9896 ++op_string;
9897 if (is_space_char (*op_string))
9898 ++op_string;
40fb9820 9899 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9900 }
9901 goto do_memory_reference;
9902 }
43234a1e
L
9903
9904 /* Handle vector operations. */
9905 if (*op_string == '{')
9906 {
9907 op_string = check_VecOperations (op_string, NULL);
9908 if (op_string == NULL)
9909 return 0;
9910 }
9911
24eab124
AM
9912 if (*op_string)
9913 {
d0b47220 9914 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9915 return 0;
9916 }
40fb9820
L
9917 temp = r->reg_type;
9918 temp.bitfield.baseindex = 0;
c6fb90c8
L
9919 i.types[this_operand] = operand_type_or (i.types[this_operand],
9920 temp);
7d5e4556 9921 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9922 i.op[this_operand].regs = r;
24eab124
AM
9923 i.reg_operands++;
9924 }
af6bdddf
AM
9925 else if (*op_string == REGISTER_PREFIX)
9926 {
9927 as_bad (_("bad register name `%s'"), op_string);
9928 return 0;
9929 }
24eab124 9930 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9931 {
24eab124 9932 ++op_string;
40fb9820 9933 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9934 {
d0b47220 9935 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9936 return 0;
9937 }
9938 if (!i386_immediate (op_string))
9939 return 0;
9940 }
43234a1e
L
9941 else if (RC_SAE_immediate (operand_string))
9942 {
9943 /* If it is a RC or SAE immediate, do nothing. */
9944 ;
9945 }
24eab124
AM
9946 else if (is_digit_char (*op_string)
9947 || is_identifier_char (*op_string)
d02603dc 9948 || *op_string == '"'
e5cb08ac 9949 || *op_string == '(')
24eab124 9950 {
47926f60 9951 /* This is a memory reference of some sort. */
af6bdddf 9952 char *base_string;
252b5132 9953
47926f60 9954 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9955 char *displacement_string_start;
9956 char *displacement_string_end;
43234a1e 9957 char *vop_start;
252b5132 9958
24eab124 9959 do_memory_reference:
8325cc63
JB
9960 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9961 return 0;
24eab124 9962 if ((i.mem_operands == 1
40fb9820 9963 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9964 || i.mem_operands == 2)
9965 {
9966 as_bad (_("too many memory references for `%s'"),
9967 current_templates->start->name);
9968 return 0;
9969 }
252b5132 9970
24eab124
AM
9971 /* Check for base index form. We detect the base index form by
9972 looking for an ')' at the end of the operand, searching
9973 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9974 after the '('. */
af6bdddf 9975 base_string = op_string + strlen (op_string);
c3332e24 9976
43234a1e
L
9977 /* Handle vector operations. */
9978 vop_start = strchr (op_string, '{');
9979 if (vop_start && vop_start < base_string)
9980 {
9981 if (check_VecOperations (vop_start, base_string) == NULL)
9982 return 0;
9983 base_string = vop_start;
9984 }
9985
af6bdddf
AM
9986 --base_string;
9987 if (is_space_char (*base_string))
9988 --base_string;
252b5132 9989
47926f60 9990 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9991 displacement_string_start = op_string;
9992 displacement_string_end = base_string + 1;
252b5132 9993
24eab124
AM
9994 if (*base_string == ')')
9995 {
af6bdddf 9996 char *temp_string;
24eab124
AM
9997 unsigned int parens_balanced = 1;
9998 /* We've already checked that the number of left & right ()'s are
47926f60 9999 equal, so this loop will not be infinite. */
24eab124
AM
10000 do
10001 {
10002 base_string--;
10003 if (*base_string == ')')
10004 parens_balanced++;
10005 if (*base_string == '(')
10006 parens_balanced--;
10007 }
10008 while (parens_balanced);
c3332e24 10009
af6bdddf 10010 temp_string = base_string;
c3332e24 10011
24eab124 10012 /* Skip past '(' and whitespace. */
252b5132
RH
10013 ++base_string;
10014 if (is_space_char (*base_string))
24eab124 10015 ++base_string;
252b5132 10016
af6bdddf 10017 if (*base_string == ','
4eed87de
AM
10018 || ((i.base_reg = parse_register (base_string, &end_op))
10019 != NULL))
252b5132 10020 {
af6bdddf 10021 displacement_string_end = temp_string;
252b5132 10022
40fb9820 10023 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10024
af6bdddf 10025 if (i.base_reg)
24eab124 10026 {
24eab124
AM
10027 base_string = end_op;
10028 if (is_space_char (*base_string))
10029 ++base_string;
af6bdddf
AM
10030 }
10031
10032 /* There may be an index reg or scale factor here. */
10033 if (*base_string == ',')
10034 {
10035 ++base_string;
10036 if (is_space_char (*base_string))
10037 ++base_string;
10038
4eed87de
AM
10039 if ((i.index_reg = parse_register (base_string, &end_op))
10040 != NULL)
24eab124 10041 {
af6bdddf 10042 base_string = end_op;
24eab124
AM
10043 if (is_space_char (*base_string))
10044 ++base_string;
af6bdddf
AM
10045 if (*base_string == ',')
10046 {
10047 ++base_string;
10048 if (is_space_char (*base_string))
10049 ++base_string;
10050 }
e5cb08ac 10051 else if (*base_string != ')')
af6bdddf 10052 {
4eed87de
AM
10053 as_bad (_("expecting `,' or `)' "
10054 "after index register in `%s'"),
af6bdddf
AM
10055 operand_string);
10056 return 0;
10057 }
24eab124 10058 }
af6bdddf 10059 else if (*base_string == REGISTER_PREFIX)
24eab124 10060 {
f76bf5e0
L
10061 end_op = strchr (base_string, ',');
10062 if (end_op)
10063 *end_op = '\0';
af6bdddf 10064 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10065 return 0;
10066 }
252b5132 10067
47926f60 10068 /* Check for scale factor. */
551c1ca1 10069 if (*base_string != ')')
af6bdddf 10070 {
551c1ca1
AM
10071 char *end_scale = i386_scale (base_string);
10072
10073 if (!end_scale)
af6bdddf 10074 return 0;
24eab124 10075
551c1ca1 10076 base_string = end_scale;
af6bdddf
AM
10077 if (is_space_char (*base_string))
10078 ++base_string;
10079 if (*base_string != ')')
10080 {
4eed87de
AM
10081 as_bad (_("expecting `)' "
10082 "after scale factor in `%s'"),
af6bdddf
AM
10083 operand_string);
10084 return 0;
10085 }
10086 }
10087 else if (!i.index_reg)
24eab124 10088 {
4eed87de
AM
10089 as_bad (_("expecting index register or scale factor "
10090 "after `,'; got '%c'"),
af6bdddf 10091 *base_string);
24eab124
AM
10092 return 0;
10093 }
10094 }
af6bdddf 10095 else if (*base_string != ')')
24eab124 10096 {
4eed87de
AM
10097 as_bad (_("expecting `,' or `)' "
10098 "after base register in `%s'"),
af6bdddf 10099 operand_string);
24eab124
AM
10100 return 0;
10101 }
c3332e24 10102 }
af6bdddf 10103 else if (*base_string == REGISTER_PREFIX)
c3332e24 10104 {
f76bf5e0
L
10105 end_op = strchr (base_string, ',');
10106 if (end_op)
10107 *end_op = '\0';
af6bdddf 10108 as_bad (_("bad register name `%s'"), base_string);
24eab124 10109 return 0;
c3332e24 10110 }
24eab124
AM
10111 }
10112
10113 /* If there's an expression beginning the operand, parse it,
10114 assuming displacement_string_start and
10115 displacement_string_end are meaningful. */
10116 if (displacement_string_start != displacement_string_end)
10117 {
10118 if (!i386_displacement (displacement_string_start,
10119 displacement_string_end))
10120 return 0;
10121 }
10122
10123 /* Special case for (%dx) while doing input/output op. */
10124 if (i.base_reg
2fb5be8d 10125 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10126 && i.index_reg == 0
10127 && i.log2_scale_factor == 0
10128 && i.seg[i.mem_operands] == 0
40fb9820 10129 && !operand_type_check (i.types[this_operand], disp))
24eab124 10130 {
2fb5be8d 10131 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10132 return 1;
10133 }
10134
eecb386c
AM
10135 if (i386_index_check (operand_string) == 0)
10136 return 0;
c48dadc9 10137 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10138 if (i.mem_operands == 0)
10139 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10140 i.mem_operands++;
10141 }
10142 else
ce8a8b2f
AM
10143 {
10144 /* It's not a memory operand; argh! */
24eab124
AM
10145 as_bad (_("invalid char %s beginning operand %d `%s'"),
10146 output_invalid (*op_string),
10147 this_operand + 1,
10148 op_string);
10149 return 0;
10150 }
47926f60 10151 return 1; /* Normal return. */
252b5132
RH
10152}
10153\f
fa94de6b
RM
10154/* Calculate the maximum variable size (i.e., excluding fr_fix)
10155 that an rs_machine_dependent frag may reach. */
10156
10157unsigned int
10158i386_frag_max_var (fragS *frag)
10159{
10160 /* The only relaxable frags are for jumps.
10161 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10162 gas_assert (frag->fr_type == rs_machine_dependent);
10163 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10164}
10165
b084df0b
L
10166#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10167static int
8dcea932 10168elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10169{
10170 /* STT_GNU_IFUNC symbol must go through PLT. */
10171 if ((symbol_get_bfdsym (fr_symbol)->flags
10172 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10173 return 0;
10174
10175 if (!S_IS_EXTERNAL (fr_symbol))
10176 /* Symbol may be weak or local. */
10177 return !S_IS_WEAK (fr_symbol);
10178
8dcea932
L
10179 /* Global symbols with non-default visibility can't be preempted. */
10180 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10181 return 1;
10182
10183 if (fr_var != NO_RELOC)
10184 switch ((enum bfd_reloc_code_real) fr_var)
10185 {
10186 case BFD_RELOC_386_PLT32:
10187 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10188 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10189 return 0;
10190 default:
10191 abort ();
10192 }
10193
b084df0b
L
10194 /* Global symbols with default visibility in a shared library may be
10195 preempted by another definition. */
8dcea932 10196 return !shared;
b084df0b
L
10197}
10198#endif
10199
ee7fcc42
AM
10200/* md_estimate_size_before_relax()
10201
10202 Called just before relax() for rs_machine_dependent frags. The x86
10203 assembler uses these frags to handle variable size jump
10204 instructions.
10205
10206 Any symbol that is now undefined will not become defined.
10207 Return the correct fr_subtype in the frag.
10208 Return the initial "guess for variable size of frag" to caller.
10209 The guess is actually the growth beyond the fixed part. Whatever
10210 we do to grow the fixed or variable part contributes to our
10211 returned value. */
10212
252b5132 10213int
7016a5d5 10214md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10215{
252b5132 10216 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10217 check for un-relaxable symbols. On an ELF system, we can't relax
10218 an externally visible symbol, because it may be overridden by a
10219 shared library. */
10220 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10221#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10222 || (IS_ELF
8dcea932
L
10223 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10224 fragP->fr_var))
fbeb56a4
DK
10225#endif
10226#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10227 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10228 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10229#endif
10230 )
252b5132 10231 {
b98ef147
AM
10232 /* Symbol is undefined in this segment, or we need to keep a
10233 reloc so that weak symbols can be overridden. */
10234 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10235 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10236 unsigned char *opcode;
10237 int old_fr_fix;
f6af82bd 10238
ee7fcc42 10239 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10240 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10241 else if (size == 2)
f6af82bd 10242 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10243#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10244 else if (need_plt32_p (fragP->fr_symbol))
10245 reloc_type = BFD_RELOC_X86_64_PLT32;
10246#endif
f6af82bd
AM
10247 else
10248 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10249
ee7fcc42
AM
10250 old_fr_fix = fragP->fr_fix;
10251 opcode = (unsigned char *) fragP->fr_opcode;
10252
fddf5b5b 10253 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10254 {
fddf5b5b
AM
10255 case UNCOND_JUMP:
10256 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10257 opcode[0] = 0xe9;
252b5132 10258 fragP->fr_fix += size;
062cd5e7
AS
10259 fix_new (fragP, old_fr_fix, size,
10260 fragP->fr_symbol,
10261 fragP->fr_offset, 1,
10262 reloc_type);
252b5132
RH
10263 break;
10264
fddf5b5b 10265 case COND_JUMP86:
412167cb
AM
10266 if (size == 2
10267 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10268 {
10269 /* Negate the condition, and branch past an
10270 unconditional jump. */
10271 opcode[0] ^= 1;
10272 opcode[1] = 3;
10273 /* Insert an unconditional jump. */
10274 opcode[2] = 0xe9;
10275 /* We added two extra opcode bytes, and have a two byte
10276 offset. */
10277 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10278 fix_new (fragP, old_fr_fix + 2, 2,
10279 fragP->fr_symbol,
10280 fragP->fr_offset, 1,
10281 reloc_type);
fddf5b5b
AM
10282 break;
10283 }
10284 /* Fall through. */
10285
10286 case COND_JUMP:
412167cb
AM
10287 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10288 {
3e02c1cc
AM
10289 fixS *fixP;
10290
412167cb 10291 fragP->fr_fix += 1;
3e02c1cc
AM
10292 fixP = fix_new (fragP, old_fr_fix, 1,
10293 fragP->fr_symbol,
10294 fragP->fr_offset, 1,
10295 BFD_RELOC_8_PCREL);
10296 fixP->fx_signed = 1;
412167cb
AM
10297 break;
10298 }
93c2a809 10299
24eab124 10300 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10301 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10302 opcode[1] = opcode[0] + 0x10;
f6af82bd 10303 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10304 /* We've added an opcode byte. */
10305 fragP->fr_fix += 1 + size;
062cd5e7
AS
10306 fix_new (fragP, old_fr_fix + 1, size,
10307 fragP->fr_symbol,
10308 fragP->fr_offset, 1,
10309 reloc_type);
252b5132 10310 break;
fddf5b5b
AM
10311
10312 default:
10313 BAD_CASE (fragP->fr_subtype);
10314 break;
252b5132
RH
10315 }
10316 frag_wane (fragP);
ee7fcc42 10317 return fragP->fr_fix - old_fr_fix;
252b5132 10318 }
93c2a809 10319
93c2a809
AM
10320 /* Guess size depending on current relax state. Initially the relax
10321 state will correspond to a short jump and we return 1, because
10322 the variable part of the frag (the branch offset) is one byte
10323 long. However, we can relax a section more than once and in that
10324 case we must either set fr_subtype back to the unrelaxed state,
10325 or return the value for the appropriate branch. */
10326 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10327}
10328
47926f60
KH
10329/* Called after relax() is finished.
10330
10331 In: Address of frag.
10332 fr_type == rs_machine_dependent.
10333 fr_subtype is what the address relaxed to.
10334
10335 Out: Any fixSs and constants are set up.
10336 Caller will turn frag into a ".space 0". */
10337
252b5132 10338void
7016a5d5
TG
10339md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10340 fragS *fragP)
252b5132 10341{
29b0f896 10342 unsigned char *opcode;
252b5132 10343 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10344 offsetT target_address;
10345 offsetT opcode_address;
252b5132 10346 unsigned int extension = 0;
847f7ad4 10347 offsetT displacement_from_opcode_start;
252b5132
RH
10348
10349 opcode = (unsigned char *) fragP->fr_opcode;
10350
47926f60 10351 /* Address we want to reach in file space. */
252b5132 10352 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10353
47926f60 10354 /* Address opcode resides at in file space. */
252b5132
RH
10355 opcode_address = fragP->fr_address + fragP->fr_fix;
10356
47926f60 10357 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10358 displacement_from_opcode_start = target_address - opcode_address;
10359
fddf5b5b 10360 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10361 {
47926f60
KH
10362 /* Don't have to change opcode. */
10363 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10364 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10365 }
10366 else
10367 {
10368 if (no_cond_jump_promotion
10369 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10370 as_warn_where (fragP->fr_file, fragP->fr_line,
10371 _("long jump required"));
252b5132 10372
fddf5b5b
AM
10373 switch (fragP->fr_subtype)
10374 {
10375 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10376 extension = 4; /* 1 opcode + 4 displacement */
10377 opcode[0] = 0xe9;
10378 where_to_put_displacement = &opcode[1];
10379 break;
252b5132 10380
fddf5b5b
AM
10381 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10382 extension = 2; /* 1 opcode + 2 displacement */
10383 opcode[0] = 0xe9;
10384 where_to_put_displacement = &opcode[1];
10385 break;
252b5132 10386
fddf5b5b
AM
10387 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10388 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10389 extension = 5; /* 2 opcode + 4 displacement */
10390 opcode[1] = opcode[0] + 0x10;
10391 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10392 where_to_put_displacement = &opcode[2];
10393 break;
252b5132 10394
fddf5b5b
AM
10395 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10396 extension = 3; /* 2 opcode + 2 displacement */
10397 opcode[1] = opcode[0] + 0x10;
10398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10399 where_to_put_displacement = &opcode[2];
10400 break;
252b5132 10401
fddf5b5b
AM
10402 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10403 extension = 4;
10404 opcode[0] ^= 1;
10405 opcode[1] = 3;
10406 opcode[2] = 0xe9;
10407 where_to_put_displacement = &opcode[3];
10408 break;
10409
10410 default:
10411 BAD_CASE (fragP->fr_subtype);
10412 break;
10413 }
252b5132 10414 }
fddf5b5b 10415
7b81dfbb
AJ
10416 /* If size if less then four we are sure that the operand fits,
10417 but if it's 4, then it could be that the displacement is larger
10418 then -/+ 2GB. */
10419 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10420 && object_64bit
10421 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10422 + ((addressT) 1 << 31))
10423 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10424 {
10425 as_bad_where (fragP->fr_file, fragP->fr_line,
10426 _("jump target out of range"));
10427 /* Make us emit 0. */
10428 displacement_from_opcode_start = extension;
10429 }
47926f60 10430 /* Now put displacement after opcode. */
252b5132
RH
10431 md_number_to_chars ((char *) where_to_put_displacement,
10432 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10433 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10434 fragP->fr_fix += extension;
10435}
10436\f
7016a5d5 10437/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10438 by our caller that we have all the info we need to fix it up.
10439
7016a5d5
TG
10440 Parameter valP is the pointer to the value of the bits.
10441
252b5132
RH
10442 On the 386, immediates, displacements, and data pointers are all in
10443 the same (little-endian) format, so we don't need to care about which
10444 we are handling. */
10445
94f592af 10446void
7016a5d5 10447md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10448{
94f592af 10449 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10450 valueT value = *valP;
252b5132 10451
f86103b7 10452#if !defined (TE_Mach)
93382f6d
AM
10453 if (fixP->fx_pcrel)
10454 {
10455 switch (fixP->fx_r_type)
10456 {
5865bb77
ILT
10457 default:
10458 break;
10459
d6ab8113
JB
10460 case BFD_RELOC_64:
10461 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10462 break;
93382f6d 10463 case BFD_RELOC_32:
ae8887b5 10464 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10465 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10466 break;
10467 case BFD_RELOC_16:
10468 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10469 break;
10470 case BFD_RELOC_8:
10471 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10472 break;
10473 }
10474 }
252b5132 10475
a161fe53 10476 if (fixP->fx_addsy != NULL
31312f95 10477 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10478 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10479 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10480 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10481 && !use_rela_relocations)
252b5132 10482 {
31312f95
AM
10483 /* This is a hack. There should be a better way to handle this.
10484 This covers for the fact that bfd_install_relocation will
10485 subtract the current location (for partial_inplace, PC relative
10486 relocations); see more below. */
252b5132 10487#ifndef OBJ_AOUT
718ddfc0 10488 if (IS_ELF
252b5132
RH
10489#ifdef TE_PE
10490 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10491#endif
10492 )
10493 value += fixP->fx_where + fixP->fx_frag->fr_address;
10494#endif
10495#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10496 if (IS_ELF)
252b5132 10497 {
6539b54b 10498 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10499
6539b54b 10500 if ((sym_seg == seg
2f66722d 10501 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10502 && sym_seg != absolute_section))
af65af87 10503 && !generic_force_reloc (fixP))
2f66722d
AM
10504 {
10505 /* Yes, we add the values in twice. This is because
6539b54b
AM
10506 bfd_install_relocation subtracts them out again. I think
10507 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10508 it. FIXME. */
10509 value += fixP->fx_where + fixP->fx_frag->fr_address;
10510 }
252b5132
RH
10511 }
10512#endif
10513#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10514 /* For some reason, the PE format does not store a
10515 section address offset for a PC relative symbol. */
10516 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10517 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10518 value += md_pcrel_from (fixP);
10519#endif
10520 }
fbeb56a4 10521#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10522 if (fixP->fx_addsy != NULL
10523 && S_IS_WEAK (fixP->fx_addsy)
10524 /* PR 16858: Do not modify weak function references. */
10525 && ! fixP->fx_pcrel)
fbeb56a4 10526 {
296a8689
NC
10527#if !defined (TE_PEP)
10528 /* For x86 PE weak function symbols are neither PC-relative
10529 nor do they set S_IS_FUNCTION. So the only reliable way
10530 to detect them is to check the flags of their containing
10531 section. */
10532 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10533 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10534 ;
10535 else
10536#endif
fbeb56a4
DK
10537 value -= S_GET_VALUE (fixP->fx_addsy);
10538 }
10539#endif
252b5132
RH
10540
10541 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10542 and we must not disappoint it. */
252b5132 10543#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10544 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10545 switch (fixP->fx_r_type)
10546 {
10547 case BFD_RELOC_386_PLT32:
3e73aa7c 10548 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10549 /* Make the jump instruction point to the address of the operand.
10550 At runtime we merely add the offset to the actual PLT entry.
10551 NB: Subtract the offset size only for jump instructions. */
10552 if (fixP->fx_pcrel)
10553 value = -4;
47926f60 10554 break;
31312f95 10555
13ae64f3
JJ
10556 case BFD_RELOC_386_TLS_GD:
10557 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10558 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10559 case BFD_RELOC_386_TLS_IE:
10560 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10561 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10562 case BFD_RELOC_X86_64_TLSGD:
10563 case BFD_RELOC_X86_64_TLSLD:
10564 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10565 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10566 value = 0; /* Fully resolved at runtime. No addend. */
10567 /* Fallthrough */
10568 case BFD_RELOC_386_TLS_LE:
10569 case BFD_RELOC_386_TLS_LDO_32:
10570 case BFD_RELOC_386_TLS_LE_32:
10571 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10572 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10573 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10574 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10575 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10576 break;
10577
67a4f2b7
AO
10578 case BFD_RELOC_386_TLS_DESC_CALL:
10579 case BFD_RELOC_X86_64_TLSDESC_CALL:
10580 value = 0; /* Fully resolved at runtime. No addend. */
10581 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10582 fixP->fx_done = 0;
10583 return;
10584
47926f60
KH
10585 case BFD_RELOC_VTABLE_INHERIT:
10586 case BFD_RELOC_VTABLE_ENTRY:
10587 fixP->fx_done = 0;
94f592af 10588 return;
47926f60
KH
10589
10590 default:
10591 break;
10592 }
10593#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10594 *valP = value;
f86103b7 10595#endif /* !defined (TE_Mach) */
3e73aa7c 10596
3e73aa7c 10597 /* Are we finished with this relocation now? */
c6682705 10598 if (fixP->fx_addsy == NULL)
3e73aa7c 10599 fixP->fx_done = 1;
fbeb56a4
DK
10600#if defined (OBJ_COFF) && defined (TE_PE)
10601 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10602 {
10603 fixP->fx_done = 0;
10604 /* Remember value for tc_gen_reloc. */
10605 fixP->fx_addnumber = value;
10606 /* Clear out the frag for now. */
10607 value = 0;
10608 }
10609#endif
3e73aa7c
JH
10610 else if (use_rela_relocations)
10611 {
10612 fixP->fx_no_overflow = 1;
062cd5e7
AS
10613 /* Remember value for tc_gen_reloc. */
10614 fixP->fx_addnumber = value;
3e73aa7c
JH
10615 value = 0;
10616 }
f86103b7 10617
94f592af 10618 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10619}
252b5132 10620\f
6d4af3c2 10621const char *
499ac353 10622md_atof (int type, char *litP, int *sizeP)
252b5132 10623{
499ac353
NC
10624 /* This outputs the LITTLENUMs in REVERSE order;
10625 in accord with the bigendian 386. */
10626 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10627}
10628\f
2d545b82 10629static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10630
252b5132 10631static char *
e3bb37b5 10632output_invalid (int c)
252b5132 10633{
3882b010 10634 if (ISPRINT (c))
f9f21a03
L
10635 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10636 "'%c'", c);
252b5132 10637 else
f9f21a03 10638 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10639 "(0x%x)", (unsigned char) c);
252b5132
RH
10640 return output_invalid_buf;
10641}
10642
af6bdddf 10643/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10644
10645static const reg_entry *
4d1bb795 10646parse_real_register (char *reg_string, char **end_op)
252b5132 10647{
af6bdddf
AM
10648 char *s = reg_string;
10649 char *p;
252b5132
RH
10650 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10651 const reg_entry *r;
10652
10653 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10654 if (*s == REGISTER_PREFIX)
10655 ++s;
10656
10657 if (is_space_char (*s))
10658 ++s;
10659
10660 p = reg_name_given;
af6bdddf 10661 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10662 {
10663 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10664 return (const reg_entry *) NULL;
10665 s++;
252b5132
RH
10666 }
10667
6588847e
DN
10668 /* For naked regs, make sure that we are not dealing with an identifier.
10669 This prevents confusing an identifier like `eax_var' with register
10670 `eax'. */
10671 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10672 return (const reg_entry *) NULL;
10673
af6bdddf 10674 *end_op = s;
252b5132
RH
10675
10676 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10677
5f47d35b 10678 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10679 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10680 {
0e0eea78
JB
10681 if (!cpu_arch_flags.bitfield.cpu8087
10682 && !cpu_arch_flags.bitfield.cpu287
10683 && !cpu_arch_flags.bitfield.cpu387)
10684 return (const reg_entry *) NULL;
10685
5f47d35b
AM
10686 if (is_space_char (*s))
10687 ++s;
10688 if (*s == '(')
10689 {
af6bdddf 10690 ++s;
5f47d35b
AM
10691 if (is_space_char (*s))
10692 ++s;
10693 if (*s >= '0' && *s <= '7')
10694 {
db557034 10695 int fpr = *s - '0';
af6bdddf 10696 ++s;
5f47d35b
AM
10697 if (is_space_char (*s))
10698 ++s;
10699 if (*s == ')')
10700 {
10701 *end_op = s + 1;
1e9cc1c2 10702 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10703 know (r);
10704 return r + fpr;
5f47d35b 10705 }
5f47d35b 10706 }
47926f60 10707 /* We have "%st(" then garbage. */
5f47d35b
AM
10708 return (const reg_entry *) NULL;
10709 }
10710 }
10711
a60de03c
JB
10712 if (r == NULL || allow_pseudo_reg)
10713 return r;
10714
0dfbf9d7 10715 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10716 return (const reg_entry *) NULL;
10717
dc821c5f 10718 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10719 || r->reg_type.bitfield.sreg3
10720 || r->reg_type.bitfield.control
10721 || r->reg_type.bitfield.debug
10722 || r->reg_type.bitfield.test)
10723 && !cpu_arch_flags.bitfield.cpui386)
10724 return (const reg_entry *) NULL;
10725
6e041cf4 10726 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10727 return (const reg_entry *) NULL;
10728
6e041cf4
JB
10729 if (!cpu_arch_flags.bitfield.cpuavx512f)
10730 {
10731 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10732 return (const reg_entry *) NULL;
40f12533 10733
6e041cf4
JB
10734 if (!cpu_arch_flags.bitfield.cpuavx)
10735 {
10736 if (r->reg_type.bitfield.ymmword)
10737 return (const reg_entry *) NULL;
1848e567 10738
6e041cf4
JB
10739 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10740 return (const reg_entry *) NULL;
10741 }
10742 }
43234a1e 10743
1adf7f56
JB
10744 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10745 return (const reg_entry *) NULL;
10746
db51cc60 10747 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10748 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10749 return (const reg_entry *) NULL;
10750
1d3f8286
JB
10751 /* Upper 16 vector registers are only available with VREX in 64bit
10752 mode, and require EVEX encoding. */
10753 if (r->reg_flags & RegVRex)
43234a1e 10754 {
e951d5ca 10755 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10756 || flag_code != CODE_64BIT)
10757 return (const reg_entry *) NULL;
1d3f8286
JB
10758
10759 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10760 }
10761
4787f4a5
JB
10762 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10763 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10764 && flag_code != CODE_64BIT)
20f0a1fc 10765 return (const reg_entry *) NULL;
1ae00879 10766
b7240065
JB
10767 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10768 return (const reg_entry *) NULL;
10769
252b5132
RH
10770 return r;
10771}
4d1bb795
JB
10772
10773/* REG_STRING starts *before* REGISTER_PREFIX. */
10774
10775static const reg_entry *
10776parse_register (char *reg_string, char **end_op)
10777{
10778 const reg_entry *r;
10779
10780 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10781 r = parse_real_register (reg_string, end_op);
10782 else
10783 r = NULL;
10784 if (!r)
10785 {
10786 char *save = input_line_pointer;
10787 char c;
10788 symbolS *symbolP;
10789
10790 input_line_pointer = reg_string;
d02603dc 10791 c = get_symbol_name (&reg_string);
4d1bb795
JB
10792 symbolP = symbol_find (reg_string);
10793 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10794 {
10795 const expressionS *e = symbol_get_value_expression (symbolP);
10796
0398aac5 10797 know (e->X_op == O_register);
4eed87de 10798 know (e->X_add_number >= 0
c3fe08fa 10799 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10800 r = i386_regtab + e->X_add_number;
d3bb6b49 10801 if ((r->reg_flags & RegVRex))
86fa6981 10802 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10803 *end_op = input_line_pointer;
10804 }
10805 *input_line_pointer = c;
10806 input_line_pointer = save;
10807 }
10808 return r;
10809}
10810
10811int
10812i386_parse_name (char *name, expressionS *e, char *nextcharP)
10813{
10814 const reg_entry *r;
10815 char *end = input_line_pointer;
10816
10817 *end = *nextcharP;
10818 r = parse_register (name, &input_line_pointer);
10819 if (r && end <= input_line_pointer)
10820 {
10821 *nextcharP = *input_line_pointer;
10822 *input_line_pointer = 0;
10823 e->X_op = O_register;
10824 e->X_add_number = r - i386_regtab;
10825 return 1;
10826 }
10827 input_line_pointer = end;
10828 *end = 0;
ee86248c 10829 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10830}
10831
10832void
10833md_operand (expressionS *e)
10834{
ee86248c
JB
10835 char *end;
10836 const reg_entry *r;
4d1bb795 10837
ee86248c
JB
10838 switch (*input_line_pointer)
10839 {
10840 case REGISTER_PREFIX:
10841 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10842 if (r)
10843 {
10844 e->X_op = O_register;
10845 e->X_add_number = r - i386_regtab;
10846 input_line_pointer = end;
10847 }
ee86248c
JB
10848 break;
10849
10850 case '[':
9c2799c2 10851 gas_assert (intel_syntax);
ee86248c
JB
10852 end = input_line_pointer++;
10853 expression (e);
10854 if (*input_line_pointer == ']')
10855 {
10856 ++input_line_pointer;
10857 e->X_op_symbol = make_expr_symbol (e);
10858 e->X_add_symbol = NULL;
10859 e->X_add_number = 0;
10860 e->X_op = O_index;
10861 }
10862 else
10863 {
10864 e->X_op = O_absent;
10865 input_line_pointer = end;
10866 }
10867 break;
4d1bb795
JB
10868 }
10869}
10870
252b5132 10871\f
4cc782b5 10872#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10873const char *md_shortopts = "kVQ:sqnO::";
252b5132 10874#else
b6f8c7c4 10875const char *md_shortopts = "qnO::";
252b5132 10876#endif
6e0b89ee 10877
3e73aa7c 10878#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10879#define OPTION_64 (OPTION_MD_BASE + 1)
10880#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10881#define OPTION_MARCH (OPTION_MD_BASE + 3)
10882#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10883#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10884#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10885#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10886#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10887#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10888#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10889#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10890#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10891#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10892#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10893#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10894#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10895#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10896#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10897#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10898#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10899#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10900#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10901#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10902#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10903#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 10904#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 10905
99ad8390
NC
10906struct option md_longopts[] =
10907{
3e73aa7c 10908 {"32", no_argument, NULL, OPTION_32},
321098a5 10909#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10910 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10911 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10912#endif
10913#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10914 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10915 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 10916 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 10917#endif
b3b91714 10918 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10919 {"march", required_argument, NULL, OPTION_MARCH},
10920 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10921 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10922 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10923 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10924 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10925 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10926 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10927 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10928 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 10929 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 10930 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10931 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10932 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10933# if defined (TE_PE) || defined (TE_PEP)
10934 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10935#endif
d1982f93 10936 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10937 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10938 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10939 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10940 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10941 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10942 {NULL, no_argument, NULL, 0}
10943};
10944size_t md_longopts_size = sizeof (md_longopts);
10945
10946int
17b9d67d 10947md_parse_option (int c, const char *arg)
252b5132 10948{
91d6fa6a 10949 unsigned int j;
293f5f65 10950 char *arch, *next, *saved;
9103f4f4 10951
252b5132
RH
10952 switch (c)
10953 {
12b55ccc
L
10954 case 'n':
10955 optimize_align_code = 0;
10956 break;
10957
a38cf1db
AM
10958 case 'q':
10959 quiet_warnings = 1;
252b5132
RH
10960 break;
10961
10962#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10963 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10964 should be emitted or not. FIXME: Not implemented. */
10965 case 'Q':
252b5132
RH
10966 break;
10967
10968 /* -V: SVR4 argument to print version ID. */
10969 case 'V':
10970 print_version_id ();
10971 break;
10972
a38cf1db
AM
10973 /* -k: Ignore for FreeBSD compatibility. */
10974 case 'k':
252b5132 10975 break;
4cc782b5
ILT
10976
10977 case 's':
10978 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10979 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10980 break;
8dcea932
L
10981
10982 case OPTION_MSHARED:
10983 shared = 1;
10984 break;
b4a3a7b4
L
10985
10986 case OPTION_X86_USED_NOTE:
10987 if (strcasecmp (arg, "yes") == 0)
10988 x86_used_note = 1;
10989 else if (strcasecmp (arg, "no") == 0)
10990 x86_used_note = 0;
10991 else
10992 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10993 break;
10994
10995
99ad8390 10996#endif
321098a5 10997#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10998 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10999 case OPTION_64:
11000 {
11001 const char **list, **l;
11002
3e73aa7c
JH
11003 list = bfd_target_list ();
11004 for (l = list; *l != NULL; l++)
8620418b 11005 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11006 || strcmp (*l, "coff-x86-64") == 0
11007 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11008 || strcmp (*l, "pei-x86-64") == 0
11009 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11010 {
11011 default_arch = "x86_64";
11012 break;
11013 }
3e73aa7c 11014 if (*l == NULL)
2b5d6a91 11015 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11016 free (list);
11017 }
11018 break;
11019#endif
252b5132 11020
351f65ca 11021#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11022 case OPTION_X32:
351f65ca
L
11023 if (IS_ELF)
11024 {
11025 const char **list, **l;
11026
11027 list = bfd_target_list ();
11028 for (l = list; *l != NULL; l++)
11029 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11030 {
11031 default_arch = "x86_64:32";
11032 break;
11033 }
11034 if (*l == NULL)
2b5d6a91 11035 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11036 free (list);
11037 }
11038 else
11039 as_fatal (_("32bit x86_64 is only supported for ELF"));
11040 break;
11041#endif
11042
6e0b89ee
AM
11043 case OPTION_32:
11044 default_arch = "i386";
11045 break;
11046
b3b91714
AM
11047 case OPTION_DIVIDE:
11048#ifdef SVR4_COMMENT_CHARS
11049 {
11050 char *n, *t;
11051 const char *s;
11052
add39d23 11053 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11054 t = n;
11055 for (s = i386_comment_chars; *s != '\0'; s++)
11056 if (*s != '/')
11057 *t++ = *s;
11058 *t = '\0';
11059 i386_comment_chars = n;
11060 }
11061#endif
11062 break;
11063
9103f4f4 11064 case OPTION_MARCH:
293f5f65
L
11065 saved = xstrdup (arg);
11066 arch = saved;
11067 /* Allow -march=+nosse. */
11068 if (*arch == '+')
11069 arch++;
6305a203 11070 do
9103f4f4 11071 {
6305a203 11072 if (*arch == '.')
2b5d6a91 11073 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11074 next = strchr (arch, '+');
11075 if (next)
11076 *next++ = '\0';
91d6fa6a 11077 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11078 {
91d6fa6a 11079 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11080 {
6305a203 11081 /* Processor. */
1ded5609
JB
11082 if (! cpu_arch[j].flags.bitfield.cpui386)
11083 continue;
11084
91d6fa6a 11085 cpu_arch_name = cpu_arch[j].name;
6305a203 11086 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11087 cpu_arch_flags = cpu_arch[j].flags;
11088 cpu_arch_isa = cpu_arch[j].type;
11089 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11090 if (!cpu_arch_tune_set)
11091 {
11092 cpu_arch_tune = cpu_arch_isa;
11093 cpu_arch_tune_flags = cpu_arch_isa_flags;
11094 }
11095 break;
11096 }
91d6fa6a
NC
11097 else if (*cpu_arch [j].name == '.'
11098 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11099 {
33eaf5de 11100 /* ISA extension. */
6305a203 11101 i386_cpu_flags flags;
309d3373 11102
293f5f65
L
11103 flags = cpu_flags_or (cpu_arch_flags,
11104 cpu_arch[j].flags);
81486035 11105
5b64d091 11106 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11107 {
11108 if (cpu_sub_arch_name)
11109 {
11110 char *name = cpu_sub_arch_name;
11111 cpu_sub_arch_name = concat (name,
91d6fa6a 11112 cpu_arch[j].name,
1bf57e9f 11113 (const char *) NULL);
6305a203
L
11114 free (name);
11115 }
11116 else
91d6fa6a 11117 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11118 cpu_arch_flags = flags;
a586129e 11119 cpu_arch_isa_flags = flags;
6305a203 11120 }
0089dace
L
11121 else
11122 cpu_arch_isa_flags
11123 = cpu_flags_or (cpu_arch_isa_flags,
11124 cpu_arch[j].flags);
6305a203 11125 break;
ccc9c027 11126 }
9103f4f4 11127 }
6305a203 11128
293f5f65
L
11129 if (j >= ARRAY_SIZE (cpu_arch))
11130 {
33eaf5de 11131 /* Disable an ISA extension. */
293f5f65
L
11132 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11133 if (strcmp (arch, cpu_noarch [j].name) == 0)
11134 {
11135 i386_cpu_flags flags;
11136
11137 flags = cpu_flags_and_not (cpu_arch_flags,
11138 cpu_noarch[j].flags);
11139 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11140 {
11141 if (cpu_sub_arch_name)
11142 {
11143 char *name = cpu_sub_arch_name;
11144 cpu_sub_arch_name = concat (arch,
11145 (const char *) NULL);
11146 free (name);
11147 }
11148 else
11149 cpu_sub_arch_name = xstrdup (arch);
11150 cpu_arch_flags = flags;
11151 cpu_arch_isa_flags = flags;
11152 }
11153 break;
11154 }
11155
11156 if (j >= ARRAY_SIZE (cpu_noarch))
11157 j = ARRAY_SIZE (cpu_arch);
11158 }
11159
91d6fa6a 11160 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11161 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11162
11163 arch = next;
9103f4f4 11164 }
293f5f65
L
11165 while (next != NULL);
11166 free (saved);
9103f4f4
L
11167 break;
11168
11169 case OPTION_MTUNE:
11170 if (*arg == '.')
2b5d6a91 11171 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11172 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11173 {
91d6fa6a 11174 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11175 {
ccc9c027 11176 cpu_arch_tune_set = 1;
91d6fa6a
NC
11177 cpu_arch_tune = cpu_arch [j].type;
11178 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11179 break;
11180 }
11181 }
91d6fa6a 11182 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11183 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11184 break;
11185
1efbbeb4
L
11186 case OPTION_MMNEMONIC:
11187 if (strcasecmp (arg, "att") == 0)
11188 intel_mnemonic = 0;
11189 else if (strcasecmp (arg, "intel") == 0)
11190 intel_mnemonic = 1;
11191 else
2b5d6a91 11192 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11193 break;
11194
11195 case OPTION_MSYNTAX:
11196 if (strcasecmp (arg, "att") == 0)
11197 intel_syntax = 0;
11198 else if (strcasecmp (arg, "intel") == 0)
11199 intel_syntax = 1;
11200 else
2b5d6a91 11201 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11202 break;
11203
11204 case OPTION_MINDEX_REG:
11205 allow_index_reg = 1;
11206 break;
11207
11208 case OPTION_MNAKED_REG:
11209 allow_naked_reg = 1;
11210 break;
11211
c0f3af97
L
11212 case OPTION_MSSE2AVX:
11213 sse2avx = 1;
11214 break;
11215
daf50ae7
L
11216 case OPTION_MSSE_CHECK:
11217 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11218 sse_check = check_error;
daf50ae7 11219 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11220 sse_check = check_warning;
daf50ae7 11221 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11222 sse_check = check_none;
daf50ae7 11223 else
2b5d6a91 11224 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11225 break;
11226
7bab8ab5
JB
11227 case OPTION_MOPERAND_CHECK:
11228 if (strcasecmp (arg, "error") == 0)
11229 operand_check = check_error;
11230 else if (strcasecmp (arg, "warning") == 0)
11231 operand_check = check_warning;
11232 else if (strcasecmp (arg, "none") == 0)
11233 operand_check = check_none;
11234 else
11235 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11236 break;
11237
539f890d
L
11238 case OPTION_MAVXSCALAR:
11239 if (strcasecmp (arg, "128") == 0)
11240 avxscalar = vex128;
11241 else if (strcasecmp (arg, "256") == 0)
11242 avxscalar = vex256;
11243 else
2b5d6a91 11244 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11245 break;
11246
03751133
L
11247 case OPTION_MVEXWIG:
11248 if (strcmp (arg, "0") == 0)
11249 vexwig = evexw0;
11250 else if (strcmp (arg, "1") == 0)
11251 vexwig = evexw1;
11252 else
11253 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11254 break;
11255
7e8b059b
L
11256 case OPTION_MADD_BND_PREFIX:
11257 add_bnd_prefix = 1;
11258 break;
11259
43234a1e
L
11260 case OPTION_MEVEXLIG:
11261 if (strcmp (arg, "128") == 0)
11262 evexlig = evexl128;
11263 else if (strcmp (arg, "256") == 0)
11264 evexlig = evexl256;
11265 else if (strcmp (arg, "512") == 0)
11266 evexlig = evexl512;
11267 else
11268 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11269 break;
11270
d3d3c6db
IT
11271 case OPTION_MEVEXRCIG:
11272 if (strcmp (arg, "rne") == 0)
11273 evexrcig = rne;
11274 else if (strcmp (arg, "rd") == 0)
11275 evexrcig = rd;
11276 else if (strcmp (arg, "ru") == 0)
11277 evexrcig = ru;
11278 else if (strcmp (arg, "rz") == 0)
11279 evexrcig = rz;
11280 else
11281 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11282 break;
11283
43234a1e
L
11284 case OPTION_MEVEXWIG:
11285 if (strcmp (arg, "0") == 0)
11286 evexwig = evexw0;
11287 else if (strcmp (arg, "1") == 0)
11288 evexwig = evexw1;
11289 else
11290 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11291 break;
11292
167ad85b
TG
11293# if defined (TE_PE) || defined (TE_PEP)
11294 case OPTION_MBIG_OBJ:
11295 use_big_obj = 1;
11296 break;
11297#endif
11298
d1982f93 11299 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11300 if (strcasecmp (arg, "yes") == 0)
11301 omit_lock_prefix = 1;
11302 else if (strcasecmp (arg, "no") == 0)
11303 omit_lock_prefix = 0;
11304 else
11305 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11306 break;
11307
e4e00185
AS
11308 case OPTION_MFENCE_AS_LOCK_ADD:
11309 if (strcasecmp (arg, "yes") == 0)
11310 avoid_fence = 1;
11311 else if (strcasecmp (arg, "no") == 0)
11312 avoid_fence = 0;
11313 else
11314 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11315 break;
11316
0cb4071e
L
11317 case OPTION_MRELAX_RELOCATIONS:
11318 if (strcasecmp (arg, "yes") == 0)
11319 generate_relax_relocations = 1;
11320 else if (strcasecmp (arg, "no") == 0)
11321 generate_relax_relocations = 0;
11322 else
11323 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11324 break;
11325
5db04b09 11326 case OPTION_MAMD64:
e89c5eaa 11327 intel64 = 0;
5db04b09
L
11328 break;
11329
11330 case OPTION_MINTEL64:
e89c5eaa 11331 intel64 = 1;
5db04b09
L
11332 break;
11333
b6f8c7c4
L
11334 case 'O':
11335 if (arg == NULL)
11336 {
11337 optimize = 1;
11338 /* Turn off -Os. */
11339 optimize_for_space = 0;
11340 }
11341 else if (*arg == 's')
11342 {
11343 optimize_for_space = 1;
11344 /* Turn on all encoding optimizations. */
11345 optimize = -1;
11346 }
11347 else
11348 {
11349 optimize = atoi (arg);
11350 /* Turn off -Os. */
11351 optimize_for_space = 0;
11352 }
11353 break;
11354
252b5132
RH
11355 default:
11356 return 0;
11357 }
11358 return 1;
11359}
11360
8a2c8fef
L
11361#define MESSAGE_TEMPLATE \
11362" "
11363
293f5f65
L
11364static char *
11365output_message (FILE *stream, char *p, char *message, char *start,
11366 int *left_p, const char *name, int len)
11367{
11368 int size = sizeof (MESSAGE_TEMPLATE);
11369 int left = *left_p;
11370
11371 /* Reserve 2 spaces for ", " or ",\0" */
11372 left -= len + 2;
11373
11374 /* Check if there is any room. */
11375 if (left >= 0)
11376 {
11377 if (p != start)
11378 {
11379 *p++ = ',';
11380 *p++ = ' ';
11381 }
11382 p = mempcpy (p, name, len);
11383 }
11384 else
11385 {
11386 /* Output the current message now and start a new one. */
11387 *p++ = ',';
11388 *p = '\0';
11389 fprintf (stream, "%s\n", message);
11390 p = start;
11391 left = size - (start - message) - len - 2;
11392
11393 gas_assert (left >= 0);
11394
11395 p = mempcpy (p, name, len);
11396 }
11397
11398 *left_p = left;
11399 return p;
11400}
11401
8a2c8fef 11402static void
1ded5609 11403show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11404{
11405 static char message[] = MESSAGE_TEMPLATE;
11406 char *start = message + 27;
11407 char *p;
11408 int size = sizeof (MESSAGE_TEMPLATE);
11409 int left;
11410 const char *name;
11411 int len;
11412 unsigned int j;
11413
11414 p = start;
11415 left = size - (start - message);
11416 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11417 {
11418 /* Should it be skipped? */
11419 if (cpu_arch [j].skip)
11420 continue;
11421
11422 name = cpu_arch [j].name;
11423 len = cpu_arch [j].len;
11424 if (*name == '.')
11425 {
11426 /* It is an extension. Skip if we aren't asked to show it. */
11427 if (ext)
11428 {
11429 name++;
11430 len--;
11431 }
11432 else
11433 continue;
11434 }
11435 else if (ext)
11436 {
11437 /* It is an processor. Skip if we show only extension. */
11438 continue;
11439 }
1ded5609
JB
11440 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11441 {
11442 /* It is an impossible processor - skip. */
11443 continue;
11444 }
8a2c8fef 11445
293f5f65 11446 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11447 }
11448
293f5f65
L
11449 /* Display disabled extensions. */
11450 if (ext)
11451 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11452 {
11453 name = cpu_noarch [j].name;
11454 len = cpu_noarch [j].len;
11455 p = output_message (stream, p, message, start, &left, name,
11456 len);
11457 }
11458
8a2c8fef
L
11459 *p = '\0';
11460 fprintf (stream, "%s\n", message);
11461}
11462
252b5132 11463void
8a2c8fef 11464md_show_usage (FILE *stream)
252b5132 11465{
4cc782b5
ILT
11466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11467 fprintf (stream, _("\
a38cf1db
AM
11468 -Q ignored\n\
11469 -V print assembler version number\n\
b3b91714
AM
11470 -k ignored\n"));
11471#endif
11472 fprintf (stream, _("\
12b55ccc 11473 -n Do not optimize code alignment\n\
b3b91714
AM
11474 -q quieten some warnings\n"));
11475#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11476 fprintf (stream, _("\
a38cf1db 11477 -s ignored\n"));
b3b91714 11478#endif
d7f449c0
L
11479#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11480 || defined (TE_PE) || defined (TE_PEP))
751d281c 11481 fprintf (stream, _("\
570561f7 11482 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11483#endif
b3b91714
AM
11484#ifdef SVR4_COMMENT_CHARS
11485 fprintf (stream, _("\
11486 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11487#else
11488 fprintf (stream, _("\
b3b91714 11489 --divide ignored\n"));
4cc782b5 11490#endif
9103f4f4 11491 fprintf (stream, _("\
6305a203 11492 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11493 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11494 show_arch (stream, 0, 1);
8a2c8fef
L
11495 fprintf (stream, _("\
11496 EXTENSION is combination of:\n"));
1ded5609 11497 show_arch (stream, 1, 0);
6305a203 11498 fprintf (stream, _("\
8a2c8fef 11499 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11500 show_arch (stream, 0, 0);
ba104c83 11501 fprintf (stream, _("\
c0f3af97
L
11502 -msse2avx encode SSE instructions with VEX prefix\n"));
11503 fprintf (stream, _("\
7c5c05ef 11504 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11505 check SSE instructions\n"));
11506 fprintf (stream, _("\
7c5c05ef 11507 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11508 check operand combinations for validity\n"));
11509 fprintf (stream, _("\
7c5c05ef
L
11510 -mavxscalar=[128|256] (default: 128)\n\
11511 encode scalar AVX instructions with specific vector\n\
539f890d
L
11512 length\n"));
11513 fprintf (stream, _("\
03751133
L
11514 -mvexwig=[0|1] (default: 0)\n\
11515 encode VEX instructions with specific VEX.W value\n\
11516 for VEX.W bit ignored instructions\n"));
11517 fprintf (stream, _("\
7c5c05ef
L
11518 -mevexlig=[128|256|512] (default: 128)\n\
11519 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11520 length\n"));
11521 fprintf (stream, _("\
7c5c05ef
L
11522 -mevexwig=[0|1] (default: 0)\n\
11523 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11524 for EVEX.W bit ignored instructions\n"));
11525 fprintf (stream, _("\
7c5c05ef 11526 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11527 encode EVEX instructions with specific EVEX.RC value\n\
11528 for SAE-only ignored instructions\n"));
11529 fprintf (stream, _("\
7c5c05ef
L
11530 -mmnemonic=[att|intel] "));
11531 if (SYSV386_COMPAT)
11532 fprintf (stream, _("(default: att)\n"));
11533 else
11534 fprintf (stream, _("(default: intel)\n"));
11535 fprintf (stream, _("\
11536 use AT&T/Intel mnemonic\n"));
ba104c83 11537 fprintf (stream, _("\
7c5c05ef
L
11538 -msyntax=[att|intel] (default: att)\n\
11539 use AT&T/Intel syntax\n"));
ba104c83
L
11540 fprintf (stream, _("\
11541 -mindex-reg support pseudo index registers\n"));
11542 fprintf (stream, _("\
11543 -mnaked-reg don't require `%%' prefix for registers\n"));
11544 fprintf (stream, _("\
7e8b059b 11545 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11547 fprintf (stream, _("\
11548 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11549 fprintf (stream, _("\
11550 -mx86-used-note=[no|yes] "));
11551 if (DEFAULT_X86_USED_NOTE)
11552 fprintf (stream, _("(default: yes)\n"));
11553 else
11554 fprintf (stream, _("(default: no)\n"));
11555 fprintf (stream, _("\
11556 generate x86 used ISA and feature properties\n"));
11557#endif
11558#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11559 fprintf (stream, _("\
11560 -mbig-obj generate big object files\n"));
11561#endif
d022bddd 11562 fprintf (stream, _("\
7c5c05ef 11563 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11564 strip all lock prefixes\n"));
5db04b09 11565 fprintf (stream, _("\
7c5c05ef 11566 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11567 encode lfence, mfence and sfence as\n\
11568 lock addl $0x0, (%%{re}sp)\n"));
11569 fprintf (stream, _("\
7c5c05ef
L
11570 -mrelax-relocations=[no|yes] "));
11571 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11572 fprintf (stream, _("(default: yes)\n"));
11573 else
11574 fprintf (stream, _("(default: no)\n"));
11575 fprintf (stream, _("\
0cb4071e
L
11576 generate relax relocations\n"));
11577 fprintf (stream, _("\
7c5c05ef 11578 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11579 fprintf (stream, _("\
11580 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11581}
11582
3e73aa7c 11583#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11584 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11585 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11586
11587/* Pick the target format to use. */
11588
47926f60 11589const char *
e3bb37b5 11590i386_target_format (void)
252b5132 11591{
351f65ca
L
11592 if (!strncmp (default_arch, "x86_64", 6))
11593 {
11594 update_code_flag (CODE_64BIT, 1);
11595 if (default_arch[6] == '\0')
7f56bc95 11596 x86_elf_abi = X86_64_ABI;
351f65ca 11597 else
7f56bc95 11598 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11599 }
3e73aa7c 11600 else if (!strcmp (default_arch, "i386"))
78f12dd3 11601 update_code_flag (CODE_32BIT, 1);
5197d474
L
11602 else if (!strcmp (default_arch, "iamcu"))
11603 {
11604 update_code_flag (CODE_32BIT, 1);
11605 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11606 {
11607 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11608 cpu_arch_name = "iamcu";
11609 cpu_sub_arch_name = NULL;
11610 cpu_arch_flags = iamcu_flags;
11611 cpu_arch_isa = PROCESSOR_IAMCU;
11612 cpu_arch_isa_flags = iamcu_flags;
11613 if (!cpu_arch_tune_set)
11614 {
11615 cpu_arch_tune = cpu_arch_isa;
11616 cpu_arch_tune_flags = cpu_arch_isa_flags;
11617 }
11618 }
8d471ec1 11619 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11620 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11621 cpu_arch_name);
11622 }
3e73aa7c 11623 else
2b5d6a91 11624 as_fatal (_("unknown architecture"));
89507696
JB
11625
11626 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11627 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11628 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11629 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11630
252b5132
RH
11631 switch (OUTPUT_FLAVOR)
11632 {
9384f2ff 11633#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11634 case bfd_target_aout_flavour:
47926f60 11635 return AOUT_TARGET_FORMAT;
4c63da97 11636#endif
9384f2ff
AM
11637#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11638# if defined (TE_PE) || defined (TE_PEP)
11639 case bfd_target_coff_flavour:
167ad85b
TG
11640 if (flag_code == CODE_64BIT)
11641 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11642 else
11643 return "pe-i386";
9384f2ff 11644# elif defined (TE_GO32)
0561d57c
JK
11645 case bfd_target_coff_flavour:
11646 return "coff-go32";
9384f2ff 11647# else
252b5132
RH
11648 case bfd_target_coff_flavour:
11649 return "coff-i386";
9384f2ff 11650# endif
4c63da97 11651#endif
3e73aa7c 11652#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11653 case bfd_target_elf_flavour:
3e73aa7c 11654 {
351f65ca
L
11655 const char *format;
11656
11657 switch (x86_elf_abi)
4fa24527 11658 {
351f65ca
L
11659 default:
11660 format = ELF_TARGET_FORMAT;
11661 break;
7f56bc95 11662 case X86_64_ABI:
351f65ca 11663 use_rela_relocations = 1;
4fa24527 11664 object_64bit = 1;
351f65ca
L
11665 format = ELF_TARGET_FORMAT64;
11666 break;
7f56bc95 11667 case X86_64_X32_ABI:
4fa24527 11668 use_rela_relocations = 1;
351f65ca 11669 object_64bit = 1;
862be3fb 11670 disallow_64bit_reloc = 1;
351f65ca
L
11671 format = ELF_TARGET_FORMAT32;
11672 break;
4fa24527 11673 }
3632d14b 11674 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11675 {
7f56bc95 11676 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11677 as_fatal (_("Intel L1OM is 64bit only"));
11678 return ELF_TARGET_L1OM_FORMAT;
11679 }
b49f93f6 11680 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11681 {
11682 if (x86_elf_abi != X86_64_ABI)
11683 as_fatal (_("Intel K1OM is 64bit only"));
11684 return ELF_TARGET_K1OM_FORMAT;
11685 }
81486035
L
11686 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11687 {
11688 if (x86_elf_abi != I386_ABI)
11689 as_fatal (_("Intel MCU is 32bit only"));
11690 return ELF_TARGET_IAMCU_FORMAT;
11691 }
8a9036a4 11692 else
351f65ca 11693 return format;
3e73aa7c 11694 }
e57f8c65
TG
11695#endif
11696#if defined (OBJ_MACH_O)
11697 case bfd_target_mach_o_flavour:
d382c579
TG
11698 if (flag_code == CODE_64BIT)
11699 {
11700 use_rela_relocations = 1;
11701 object_64bit = 1;
11702 return "mach-o-x86-64";
11703 }
11704 else
11705 return "mach-o-i386";
4c63da97 11706#endif
252b5132
RH
11707 default:
11708 abort ();
11709 return NULL;
11710 }
11711}
11712
47926f60 11713#endif /* OBJ_MAYBE_ more than one */
252b5132 11714\f
252b5132 11715symbolS *
7016a5d5 11716md_undefined_symbol (char *name)
252b5132 11717{
18dc2407
ILT
11718 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11719 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11720 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11721 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11722 {
11723 if (!GOT_symbol)
11724 {
11725 if (symbol_find (name))
11726 as_bad (_("GOT already in symbol table"));
11727 GOT_symbol = symbol_new (name, undefined_section,
11728 (valueT) 0, &zero_address_frag);
11729 };
11730 return GOT_symbol;
11731 }
252b5132
RH
11732 return 0;
11733}
11734
11735/* Round up a section size to the appropriate boundary. */
47926f60 11736
252b5132 11737valueT
7016a5d5 11738md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11739{
4c63da97
AM
11740#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11741 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11742 {
11743 /* For a.out, force the section size to be aligned. If we don't do
11744 this, BFD will align it for us, but it will not write out the
11745 final bytes of the section. This may be a bug in BFD, but it is
11746 easier to fix it here since that is how the other a.out targets
11747 work. */
11748 int align;
11749
11750 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11751 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11752 }
252b5132
RH
11753#endif
11754
11755 return size;
11756}
11757
11758/* On the i386, PC-relative offsets are relative to the start of the
11759 next instruction. That is, the address of the offset, plus its
11760 size, since the offset is always the last part of the insn. */
11761
11762long
e3bb37b5 11763md_pcrel_from (fixS *fixP)
252b5132
RH
11764{
11765 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11766}
11767
11768#ifndef I386COFF
11769
11770static void
e3bb37b5 11771s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11772{
29b0f896 11773 int temp;
252b5132 11774
8a75718c
JB
11775#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11776 if (IS_ELF)
11777 obj_elf_section_change_hook ();
11778#endif
252b5132
RH
11779 temp = get_absolute_expression ();
11780 subseg_set (bss_section, (subsegT) temp);
11781 demand_empty_rest_of_line ();
11782}
11783
11784#endif
11785
252b5132 11786void
e3bb37b5 11787i386_validate_fix (fixS *fixp)
252b5132 11788{
02a86693 11789 if (fixp->fx_subsy)
252b5132 11790 {
02a86693 11791 if (fixp->fx_subsy == GOT_symbol)
23df1078 11792 {
02a86693
L
11793 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11794 {
11795 if (!object_64bit)
11796 abort ();
11797#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11798 if (fixp->fx_tcbit2)
56ceb5b5
L
11799 fixp->fx_r_type = (fixp->fx_tcbit
11800 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11801 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11802 else
11803#endif
11804 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11805 }
d6ab8113 11806 else
02a86693
L
11807 {
11808 if (!object_64bit)
11809 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11810 else
11811 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11812 }
11813 fixp->fx_subsy = 0;
23df1078 11814 }
252b5132 11815 }
02a86693
L
11816#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11817 else if (!object_64bit)
11818 {
11819 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11820 && fixp->fx_tcbit2)
11821 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11822 }
11823#endif
252b5132
RH
11824}
11825
252b5132 11826arelent *
7016a5d5 11827tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11828{
11829 arelent *rel;
11830 bfd_reloc_code_real_type code;
11831
11832 switch (fixp->fx_r_type)
11833 {
8ce3d284 11834#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11835 case BFD_RELOC_SIZE32:
11836 case BFD_RELOC_SIZE64:
11837 if (S_IS_DEFINED (fixp->fx_addsy)
11838 && !S_IS_EXTERNAL (fixp->fx_addsy))
11839 {
11840 /* Resolve size relocation against local symbol to size of
11841 the symbol plus addend. */
11842 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11843 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11844 && !fits_in_unsigned_long (value))
11845 as_bad_where (fixp->fx_file, fixp->fx_line,
11846 _("symbol size computation overflow"));
11847 fixp->fx_addsy = NULL;
11848 fixp->fx_subsy = NULL;
11849 md_apply_fix (fixp, (valueT *) &value, NULL);
11850 return NULL;
11851 }
8ce3d284 11852#endif
1a0670f3 11853 /* Fall through. */
8fd4256d 11854
3e73aa7c
JH
11855 case BFD_RELOC_X86_64_PLT32:
11856 case BFD_RELOC_X86_64_GOT32:
11857 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11858 case BFD_RELOC_X86_64_GOTPCRELX:
11859 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11860 case BFD_RELOC_386_PLT32:
11861 case BFD_RELOC_386_GOT32:
02a86693 11862 case BFD_RELOC_386_GOT32X:
252b5132
RH
11863 case BFD_RELOC_386_GOTOFF:
11864 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11865 case BFD_RELOC_386_TLS_GD:
11866 case BFD_RELOC_386_TLS_LDM:
11867 case BFD_RELOC_386_TLS_LDO_32:
11868 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11869 case BFD_RELOC_386_TLS_IE:
11870 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11871 case BFD_RELOC_386_TLS_LE_32:
11872 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11873 case BFD_RELOC_386_TLS_GOTDESC:
11874 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11875 case BFD_RELOC_X86_64_TLSGD:
11876 case BFD_RELOC_X86_64_TLSLD:
11877 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11878 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11879 case BFD_RELOC_X86_64_GOTTPOFF:
11880 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11881 case BFD_RELOC_X86_64_TPOFF64:
11882 case BFD_RELOC_X86_64_GOTOFF64:
11883 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11884 case BFD_RELOC_X86_64_GOT64:
11885 case BFD_RELOC_X86_64_GOTPCREL64:
11886 case BFD_RELOC_X86_64_GOTPC64:
11887 case BFD_RELOC_X86_64_GOTPLT64:
11888 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11889 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11890 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11891 case BFD_RELOC_RVA:
11892 case BFD_RELOC_VTABLE_ENTRY:
11893 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11894#ifdef TE_PE
11895 case BFD_RELOC_32_SECREL:
11896#endif
252b5132
RH
11897 code = fixp->fx_r_type;
11898 break;
dbbaec26
L
11899 case BFD_RELOC_X86_64_32S:
11900 if (!fixp->fx_pcrel)
11901 {
11902 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11903 code = fixp->fx_r_type;
11904 break;
11905 }
1a0670f3 11906 /* Fall through. */
252b5132 11907 default:
93382f6d 11908 if (fixp->fx_pcrel)
252b5132 11909 {
93382f6d
AM
11910 switch (fixp->fx_size)
11911 {
11912 default:
b091f402
AM
11913 as_bad_where (fixp->fx_file, fixp->fx_line,
11914 _("can not do %d byte pc-relative relocation"),
11915 fixp->fx_size);
93382f6d
AM
11916 code = BFD_RELOC_32_PCREL;
11917 break;
11918 case 1: code = BFD_RELOC_8_PCREL; break;
11919 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11920 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11921#ifdef BFD64
11922 case 8: code = BFD_RELOC_64_PCREL; break;
11923#endif
93382f6d
AM
11924 }
11925 }
11926 else
11927 {
11928 switch (fixp->fx_size)
11929 {
11930 default:
b091f402
AM
11931 as_bad_where (fixp->fx_file, fixp->fx_line,
11932 _("can not do %d byte relocation"),
11933 fixp->fx_size);
93382f6d
AM
11934 code = BFD_RELOC_32;
11935 break;
11936 case 1: code = BFD_RELOC_8; break;
11937 case 2: code = BFD_RELOC_16; break;
11938 case 4: code = BFD_RELOC_32; break;
937149dd 11939#ifdef BFD64
3e73aa7c 11940 case 8: code = BFD_RELOC_64; break;
937149dd 11941#endif
93382f6d 11942 }
252b5132
RH
11943 }
11944 break;
11945 }
252b5132 11946
d182319b
JB
11947 if ((code == BFD_RELOC_32
11948 || code == BFD_RELOC_32_PCREL
11949 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11950 && GOT_symbol
11951 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11952 {
4fa24527 11953 if (!object_64bit)
d6ab8113
JB
11954 code = BFD_RELOC_386_GOTPC;
11955 else
11956 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11957 }
7b81dfbb
AJ
11958 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11959 && GOT_symbol
11960 && fixp->fx_addsy == GOT_symbol)
11961 {
11962 code = BFD_RELOC_X86_64_GOTPC64;
11963 }
252b5132 11964
add39d23
TS
11965 rel = XNEW (arelent);
11966 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11967 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11968
11969 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11970
3e73aa7c
JH
11971 if (!use_rela_relocations)
11972 {
11973 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11974 vtable entry to be used in the relocation's section offset. */
11975 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11976 rel->address = fixp->fx_offset;
fbeb56a4
DK
11977#if defined (OBJ_COFF) && defined (TE_PE)
11978 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11979 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11980 else
11981#endif
c6682705 11982 rel->addend = 0;
3e73aa7c
JH
11983 }
11984 /* Use the rela in 64bit mode. */
252b5132 11985 else
3e73aa7c 11986 {
862be3fb
L
11987 if (disallow_64bit_reloc)
11988 switch (code)
11989 {
862be3fb
L
11990 case BFD_RELOC_X86_64_DTPOFF64:
11991 case BFD_RELOC_X86_64_TPOFF64:
11992 case BFD_RELOC_64_PCREL:
11993 case BFD_RELOC_X86_64_GOTOFF64:
11994 case BFD_RELOC_X86_64_GOT64:
11995 case BFD_RELOC_X86_64_GOTPCREL64:
11996 case BFD_RELOC_X86_64_GOTPC64:
11997 case BFD_RELOC_X86_64_GOTPLT64:
11998 case BFD_RELOC_X86_64_PLTOFF64:
11999 as_bad_where (fixp->fx_file, fixp->fx_line,
12000 _("cannot represent relocation type %s in x32 mode"),
12001 bfd_get_reloc_code_name (code));
12002 break;
12003 default:
12004 break;
12005 }
12006
062cd5e7
AS
12007 if (!fixp->fx_pcrel)
12008 rel->addend = fixp->fx_offset;
12009 else
12010 switch (code)
12011 {
12012 case BFD_RELOC_X86_64_PLT32:
12013 case BFD_RELOC_X86_64_GOT32:
12014 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12015 case BFD_RELOC_X86_64_GOTPCRELX:
12016 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12017 case BFD_RELOC_X86_64_TLSGD:
12018 case BFD_RELOC_X86_64_TLSLD:
12019 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12020 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12021 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12022 rel->addend = fixp->fx_offset - fixp->fx_size;
12023 break;
12024 default:
12025 rel->addend = (section->vma
12026 - fixp->fx_size
12027 + fixp->fx_addnumber
12028 + md_pcrel_from (fixp));
12029 break;
12030 }
3e73aa7c
JH
12031 }
12032
252b5132
RH
12033 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12034 if (rel->howto == NULL)
12035 {
12036 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12037 _("cannot represent relocation type %s"),
252b5132
RH
12038 bfd_get_reloc_code_name (code));
12039 /* Set howto to a garbage value so that we can keep going. */
12040 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12041 gas_assert (rel->howto != NULL);
252b5132
RH
12042 }
12043
12044 return rel;
12045}
12046
ee86248c 12047#include "tc-i386-intel.c"
54cfded0 12048
a60de03c
JB
12049void
12050tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12051{
a60de03c
JB
12052 int saved_naked_reg;
12053 char saved_register_dot;
54cfded0 12054
a60de03c
JB
12055 saved_naked_reg = allow_naked_reg;
12056 allow_naked_reg = 1;
12057 saved_register_dot = register_chars['.'];
12058 register_chars['.'] = '.';
12059 allow_pseudo_reg = 1;
12060 expression_and_evaluate (exp);
12061 allow_pseudo_reg = 0;
12062 register_chars['.'] = saved_register_dot;
12063 allow_naked_reg = saved_naked_reg;
12064
e96d56a1 12065 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12066 {
a60de03c
JB
12067 if ((addressT) exp->X_add_number < i386_regtab_size)
12068 {
12069 exp->X_op = O_constant;
12070 exp->X_add_number = i386_regtab[exp->X_add_number]
12071 .dw2_regnum[flag_code >> 1];
12072 }
12073 else
12074 exp->X_op = O_illegal;
54cfded0 12075 }
54cfded0
AM
12076}
12077
12078void
12079tc_x86_frame_initial_instructions (void)
12080{
a60de03c
JB
12081 static unsigned int sp_regno[2];
12082
12083 if (!sp_regno[flag_code >> 1])
12084 {
12085 char *saved_input = input_line_pointer;
12086 char sp[][4] = {"esp", "rsp"};
12087 expressionS exp;
a4447b93 12088
a60de03c
JB
12089 input_line_pointer = sp[flag_code >> 1];
12090 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12091 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12092 sp_regno[flag_code >> 1] = exp.X_add_number;
12093 input_line_pointer = saved_input;
12094 }
a4447b93 12095
61ff971f
L
12096 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12097 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12098}
d2b2c203 12099
d7921315
L
12100int
12101x86_dwarf2_addr_size (void)
12102{
12103#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12104 if (x86_elf_abi == X86_64_X32_ABI)
12105 return 4;
12106#endif
12107 return bfd_arch_bits_per_address (stdoutput) / 8;
12108}
12109
d2b2c203
DJ
12110int
12111i386_elf_section_type (const char *str, size_t len)
12112{
12113 if (flag_code == CODE_64BIT
12114 && len == sizeof ("unwind") - 1
12115 && strncmp (str, "unwind", 6) == 0)
12116 return SHT_X86_64_UNWIND;
12117
12118 return -1;
12119}
bb41ade5 12120
ad5fec3b
EB
12121#ifdef TE_SOLARIS
12122void
12123i386_solaris_fix_up_eh_frame (segT sec)
12124{
12125 if (flag_code == CODE_64BIT)
12126 elf_section_type (sec) = SHT_X86_64_UNWIND;
12127}
12128#endif
12129
bb41ade5
AM
12130#ifdef TE_PE
12131void
12132tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12133{
91d6fa6a 12134 expressionS exp;
bb41ade5 12135
91d6fa6a
NC
12136 exp.X_op = O_secrel;
12137 exp.X_add_symbol = symbol;
12138 exp.X_add_number = 0;
12139 emit_expr (&exp, size);
bb41ade5
AM
12140}
12141#endif
3b22753a
L
12142
12143#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12144/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12145
01e1a5bc 12146bfd_vma
6d4af3c2 12147x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12148{
12149 if (flag_code == CODE_64BIT)
12150 {
12151 if (letter == 'l')
12152 return SHF_X86_64_LARGE;
12153
8f3bae45 12154 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12155 }
3b22753a 12156 else
8f3bae45 12157 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12158 return -1;
12159}
12160
01e1a5bc 12161bfd_vma
3b22753a
L
12162x86_64_section_word (char *str, size_t len)
12163{
8620418b 12164 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12165 return SHF_X86_64_LARGE;
12166
12167 return -1;
12168}
12169
12170static void
12171handle_large_common (int small ATTRIBUTE_UNUSED)
12172{
12173 if (flag_code != CODE_64BIT)
12174 {
12175 s_comm_internal (0, elf_common_parse);
12176 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12177 }
12178 else
12179 {
12180 static segT lbss_section;
12181 asection *saved_com_section_ptr = elf_com_section_ptr;
12182 asection *saved_bss_section = bss_section;
12183
12184 if (lbss_section == NULL)
12185 {
12186 flagword applicable;
12187 segT seg = now_seg;
12188 subsegT subseg = now_subseg;
12189
12190 /* The .lbss section is for local .largecomm symbols. */
12191 lbss_section = subseg_new (".lbss", 0);
12192 applicable = bfd_applicable_section_flags (stdoutput);
12193 bfd_set_section_flags (stdoutput, lbss_section,
12194 applicable & SEC_ALLOC);
12195 seg_info (lbss_section)->bss = 1;
12196
12197 subseg_set (seg, subseg);
12198 }
12199
12200 elf_com_section_ptr = &_bfd_elf_large_com_section;
12201 bss_section = lbss_section;
12202
12203 s_comm_internal (0, elf_common_parse);
12204
12205 elf_com_section_ptr = saved_com_section_ptr;
12206 bss_section = saved_bss_section;
12207 }
12208}
12209#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.260027 seconds and 4 git commands to generate.