x86: correct operand size match checks for BMI/BMI2 insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
6b6b6807
L
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
b6f8c7c4
L
375 /* Disable instruction size optimization. */
376 bfd_boolean no_optimize;
377
86fa6981
L
378 /* How to encode vector instructions. */
379 enum
380 {
381 vex_encoding_default = 0,
382 vex_encoding_vex2,
383 vex_encoding_vex3,
384 vex_encoding_evex
385 } vec_encoding;
386
d5de92cf
L
387 /* REP prefix. */
388 const char *rep_prefix;
389
165de32a
L
390 /* HLE prefix. */
391 const char *hle_prefix;
42164a71 392
7e8b059b
L
393 /* Have BND prefix. */
394 const char *bnd_prefix;
395
04ef582a
L
396 /* Have NOTRACK prefix. */
397 const char *notrack_prefix;
398
891edac4 399 /* Error message. */
a65babc9 400 enum i386_error error;
252b5132
RH
401 };
402
403typedef struct _i386_insn i386_insn;
404
43234a1e
L
405/* Link RC type with corresponding string, that'll be looked for in
406 asm. */
407struct RC_name
408{
409 enum rc_type type;
410 const char *name;
411 unsigned int len;
412};
413
414static const struct RC_name RC_NamesTable[] =
415{
416 { rne, STRING_COMMA_LEN ("rn-sae") },
417 { rd, STRING_COMMA_LEN ("rd-sae") },
418 { ru, STRING_COMMA_LEN ("ru-sae") },
419 { rz, STRING_COMMA_LEN ("rz-sae") },
420 { saeonly, STRING_COMMA_LEN ("sae") },
421};
422
252b5132
RH
423/* List of chars besides those in app.c:symbol_chars that can start an
424 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 425const char extra_symbol_chars[] = "*%-([{}"
252b5132 426#ifdef LEX_AT
32137342
NC
427 "@"
428#endif
429#ifdef LEX_QM
430 "?"
252b5132 431#endif
32137342 432 ;
252b5132 433
29b0f896
AM
434#if (defined (TE_I386AIX) \
435 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 436 && !defined (TE_GNU) \
29b0f896 437 && !defined (TE_LINUX) \
8d63c93e
RM
438 && !defined (TE_NACL) \
439 && !defined (TE_NETWARE) \
29b0f896 440 && !defined (TE_FreeBSD) \
5b806d27 441 && !defined (TE_DragonFly) \
29b0f896 442 && !defined (TE_NetBSD)))
252b5132 443/* This array holds the chars that always start a comment. If the
b3b91714
AM
444 pre-processor is disabled, these aren't very useful. The option
445 --divide will remove '/' from this list. */
446const char *i386_comment_chars = "#/";
447#define SVR4_COMMENT_CHARS 1
252b5132 448#define PREFIX_SEPARATOR '\\'
252b5132 449
b3b91714
AM
450#else
451const char *i386_comment_chars = "#";
452#define PREFIX_SEPARATOR '/'
453#endif
454
252b5132
RH
455/* This array holds the chars that only start a comment at the beginning of
456 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
457 .line and .file directives will appear in the pre-processed output.
458 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 459 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
460 #NO_APP at the beginning of its output.
461 Also note that comments started like this one will always work if
252b5132 462 '/' isn't otherwise defined. */
b3b91714 463const char line_comment_chars[] = "#/";
252b5132 464
63a0b638 465const char line_separator_chars[] = ";";
252b5132 466
ce8a8b2f
AM
467/* Chars that can be used to separate mant from exp in floating point
468 nums. */
252b5132
RH
469const char EXP_CHARS[] = "eE";
470
ce8a8b2f
AM
471/* Chars that mean this number is a floating point constant
472 As in 0f12.456
473 or 0d1.2345e12. */
252b5132
RH
474const char FLT_CHARS[] = "fFdDxX";
475
ce8a8b2f 476/* Tables for lexical analysis. */
252b5132
RH
477static char mnemonic_chars[256];
478static char register_chars[256];
479static char operand_chars[256];
480static char identifier_chars[256];
481static char digit_chars[256];
482
ce8a8b2f 483/* Lexical macros. */
252b5132
RH
484#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
485#define is_operand_char(x) (operand_chars[(unsigned char) x])
486#define is_register_char(x) (register_chars[(unsigned char) x])
487#define is_space_char(x) ((x) == ' ')
488#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
489#define is_digit_char(x) (digit_chars[(unsigned char) x])
490
0234cb7c 491/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
492static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
493
494/* md_assemble() always leaves the strings it's passed unaltered. To
495 effect this we maintain a stack of saved characters that we've smashed
496 with '\0's (indicating end of strings for various sub-fields of the
47926f60 497 assembler instruction). */
252b5132 498static char save_stack[32];
ce8a8b2f 499static char *save_stack_p;
252b5132
RH
500#define END_STRING_AND_SAVE(s) \
501 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
502#define RESTORE_END_STRING(s) \
503 do { *(s) = *--save_stack_p; } while (0)
504
47926f60 505/* The instruction we're assembling. */
252b5132
RH
506static i386_insn i;
507
508/* Possible templates for current insn. */
509static const templates *current_templates;
510
31b2323c
L
511/* Per instruction expressionS buffers: max displacements & immediates. */
512static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
513static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 514
47926f60 515/* Current operand we are working on. */
ee86248c 516static int this_operand = -1;
252b5132 517
3e73aa7c
JH
518/* We support four different modes. FLAG_CODE variable is used to distinguish
519 these. */
520
521enum flag_code {
522 CODE_32BIT,
523 CODE_16BIT,
524 CODE_64BIT };
525
526static enum flag_code flag_code;
4fa24527 527static unsigned int object_64bit;
862be3fb 528static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
529static int use_rela_relocations = 0;
530
7af8ed2d
NC
531#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
534
351f65ca
L
535/* The ELF ABI to use. */
536enum x86_elf_abi
537{
538 I386_ABI,
7f56bc95
L
539 X86_64_ABI,
540 X86_64_X32_ABI
351f65ca
L
541};
542
543static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 544#endif
351f65ca 545
167ad85b
TG
546#if defined (TE_PE) || defined (TE_PEP)
547/* Use big object file format. */
548static int use_big_obj = 0;
549#endif
550
8dcea932
L
551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
552/* 1 if generating code for a shared library. */
553static int shared = 0;
554#endif
555
47926f60
KH
556/* 1 for intel syntax,
557 0 if att syntax. */
558static int intel_syntax = 0;
252b5132 559
e89c5eaa
L
560/* 1 for Intel64 ISA,
561 0 if AMD64 ISA. */
562static int intel64;
563
1efbbeb4
L
564/* 1 for intel mnemonic,
565 0 if att mnemonic. */
566static int intel_mnemonic = !SYSV386_COMPAT;
567
5209009a 568/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
569static int old_gcc = OLDGCC_COMPAT;
570
a60de03c
JB
571/* 1 if pseudo registers are permitted. */
572static int allow_pseudo_reg = 0;
573
47926f60
KH
574/* 1 if register prefix % not required. */
575static int allow_naked_reg = 0;
252b5132 576
33eaf5de 577/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
578 instructions supporting it, even if this prefix wasn't specified
579 explicitly. */
580static int add_bnd_prefix = 0;
581
ba104c83 582/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
583static int allow_index_reg = 0;
584
d022bddd
IT
585/* 1 if the assembler should ignore LOCK prefix, even if it was
586 specified explicitly. */
587static int omit_lock_prefix = 0;
588
e4e00185
AS
589/* 1 if the assembler should encode lfence, mfence, and sfence as
590 "lock addl $0, (%{re}sp)". */
591static int avoid_fence = 0;
592
0cb4071e
L
593/* 1 if the assembler should generate relax relocations. */
594
595static int generate_relax_relocations
596 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
597
7bab8ab5 598static enum check_kind
daf50ae7 599 {
7bab8ab5
JB
600 check_none = 0,
601 check_warning,
602 check_error
daf50ae7 603 }
7bab8ab5 604sse_check, operand_check = check_warning;
daf50ae7 605
b6f8c7c4
L
606/* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 */
611static int optimize = 0;
612
613/* Optimization:
614 1. Clear the REX_W bit with register operand if possible.
615 2. Above plus use 128bit vector instruction to clear the full vector
616 register.
617 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
618 "testb $imm7,%r8".
619 */
620static int optimize_for_space = 0;
621
2ca3ace5
L
622/* Register prefix used for error message. */
623static const char *register_prefix = "%";
624
47926f60
KH
625/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
626 leave, push, and pop instructions so that gcc has the same stack
627 frame as in 32 bit mode. */
628static char stackop_size = '\0';
eecb386c 629
12b55ccc
L
630/* Non-zero to optimize code alignment. */
631int optimize_align_code = 1;
632
47926f60
KH
633/* Non-zero to quieten some warnings. */
634static int quiet_warnings = 0;
a38cf1db 635
47926f60
KH
636/* CPU name. */
637static const char *cpu_arch_name = NULL;
6305a203 638static char *cpu_sub_arch_name = NULL;
a38cf1db 639
47926f60 640/* CPU feature flags. */
40fb9820
L
641static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
642
ccc9c027
L
643/* If we have selected a cpu we are generating instructions for. */
644static int cpu_arch_tune_set = 0;
645
9103f4f4 646/* Cpu we are generating instructions for. */
fbf3f584 647enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
648
649/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 650static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 651
ccc9c027 652/* CPU instruction set architecture used. */
fbf3f584 653enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 654
9103f4f4 655/* CPU feature flags of instruction set architecture used. */
fbf3f584 656i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 657
fddf5b5b
AM
658/* If set, conditional jumps are not automatically promoted to handle
659 larger than a byte offset. */
660static unsigned int no_cond_jump_promotion = 0;
661
c0f3af97
L
662/* Encode SSE instructions with VEX prefix. */
663static unsigned int sse2avx;
664
539f890d
L
665/* Encode scalar AVX instructions with specific vector length. */
666static enum
667 {
668 vex128 = 0,
669 vex256
670 } avxscalar;
671
43234a1e
L
672/* Encode scalar EVEX LIG instructions with specific vector length. */
673static enum
674 {
675 evexl128 = 0,
676 evexl256,
677 evexl512
678 } evexlig;
679
680/* Encode EVEX WIG instructions with specific evex.w. */
681static enum
682 {
683 evexw0 = 0,
684 evexw1
685 } evexwig;
686
d3d3c6db
IT
687/* Value to encode in EVEX RC bits, for SAE-only instructions. */
688static enum rc_type evexrcig = rne;
689
29b0f896 690/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 691static symbolS *GOT_symbol;
29b0f896 692
a4447b93
RH
693/* The dwarf2 return column, adjusted for 32 or 64 bit. */
694unsigned int x86_dwarf2_return_column;
695
696/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
697int x86_cie_data_alignment;
698
252b5132 699/* Interface to relax_segment.
fddf5b5b
AM
700 There are 3 major relax states for 386 jump insns because the
701 different types of jumps add different sizes to frags when we're
702 figuring out what sort of jump to choose to reach a given label. */
252b5132 703
47926f60 704/* Types. */
93c2a809
AM
705#define UNCOND_JUMP 0
706#define COND_JUMP 1
707#define COND_JUMP86 2
fddf5b5b 708
47926f60 709/* Sizes. */
252b5132
RH
710#define CODE16 1
711#define SMALL 0
29b0f896 712#define SMALL16 (SMALL | CODE16)
252b5132 713#define BIG 2
29b0f896 714#define BIG16 (BIG | CODE16)
252b5132
RH
715
716#ifndef INLINE
717#ifdef __GNUC__
718#define INLINE __inline__
719#else
720#define INLINE
721#endif
722#endif
723
fddf5b5b
AM
724#define ENCODE_RELAX_STATE(type, size) \
725 ((relax_substateT) (((type) << 2) | (size)))
726#define TYPE_FROM_RELAX_STATE(s) \
727 ((s) >> 2)
728#define DISP_SIZE_FROM_RELAX_STATE(s) \
729 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
730
731/* This table is used by relax_frag to promote short jumps to long
732 ones where necessary. SMALL (short) jumps may be promoted to BIG
733 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
734 don't allow a short jump in a 32 bit code segment to be promoted to
735 a 16 bit offset jump because it's slower (requires data size
736 prefix), and doesn't work, unless the destination is in the bottom
737 64k of the code segment (The top 16 bits of eip are zeroed). */
738
739const relax_typeS md_relax_table[] =
740{
24eab124
AM
741 /* The fields are:
742 1) most positive reach of this state,
743 2) most negative reach of this state,
93c2a809 744 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 745 4) which index into the table to try if we can't fit into this one. */
252b5132 746
fddf5b5b 747 /* UNCOND_JUMP states. */
93c2a809
AM
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
750 /* dword jmp adds 4 bytes to frag:
751 0 extra opcode bytes, 4 displacement bytes. */
252b5132 752 {0, 0, 4, 0},
93c2a809
AM
753 /* word jmp adds 2 byte2 to frag:
754 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
755 {0, 0, 2, 0},
756
93c2a809
AM
757 /* COND_JUMP states. */
758 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
760 /* dword conditionals adds 5 bytes to frag:
761 1 extra opcode byte, 4 displacement bytes. */
762 {0, 0, 5, 0},
fddf5b5b 763 /* word conditionals add 3 bytes to frag:
93c2a809
AM
764 1 extra opcode byte, 2 displacement bytes. */
765 {0, 0, 3, 0},
766
767 /* COND_JUMP86 states. */
768 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
769 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
770 /* dword conditionals adds 5 bytes to frag:
771 1 extra opcode byte, 4 displacement bytes. */
772 {0, 0, 5, 0},
773 /* word conditionals add 4 bytes to frag:
774 1 displacement byte and a 3 byte long branch insn. */
775 {0, 0, 4, 0}
252b5132
RH
776};
777
9103f4f4
L
778static const arch_entry cpu_arch[] =
779{
89507696
JB
780 /* Do not replace the first two entries - i386_target_format()
781 relies on them being there in this order. */
8a2c8fef 782 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 783 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 785 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 787 CPU_NONE_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 789 CPU_I186_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 791 CPU_I286_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 793 CPU_I386_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 795 CPU_I486_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 797 CPU_I586_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_I686_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 801 CPU_I586_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 803 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 805 CPU_P2_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 807 CPU_P3_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 809 CPU_P4_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 813 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 815 CPU_CORE_FLAGS, 1 },
8a2c8fef 816 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 817 CPU_CORE_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 819 CPU_CORE2_FLAGS, 1 },
8a2c8fef 820 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 821 CPU_CORE2_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 823 CPU_COREI7_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 825 CPU_L1OM_FLAGS, 0 },
7a9068fe 826 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 827 CPU_K1OM_FLAGS, 0 },
81486035 828 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 829 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 831 CPU_K6_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 833 CPU_K6_2_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 835 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 837 CPU_K8_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 839 CPU_K8_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 841 CPU_K8_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 843 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 844 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 846 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 847 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 848 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 849 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 850 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 851 CPU_BDVER4_FLAGS, 0 },
029f3522 852 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 853 CPU_ZNVER1_FLAGS, 0 },
7b458c12 854 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 855 CPU_BTVER1_FLAGS, 0 },
7b458c12 856 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 857 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_8087_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_287_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_387_FLAGS, 0 },
1848e567
L
864 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
865 CPU_687_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_MMX_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE3_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 880 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX_FLAGS, 0 },
6c30d220 884 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX2_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512F_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512CD_FLAGS, 0 },
43234a1e 890 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512ER_FLAGS, 0 },
43234a1e 892 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 896 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 898 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_VMX_FLAGS, 0 },
8729a6f6 902 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SMX_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 908 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 910 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 912 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AES_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 920 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 922 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 924 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_F16C_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_BMI2_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_FMA_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_FMA4_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_XOP_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LWP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_MOVBE_FLAGS, 0 },
60aa667e 938 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_CX16_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_EPT_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_LZCNT_FLAGS, 0 },
42164a71 944 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_HLE_FLAGS, 0 },
42164a71 946 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_RTM_FLAGS, 0 },
6c30d220 948 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_CLFLUSH_FLAGS, 0 },
22109423 952 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_NOP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SVME_FLAGS, 1 },
8a2c8fef 966 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_SVME_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ABM_FLAGS, 0 },
87973e9f 972 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_BMI_FLAGS, 0 },
2a2a0f38 974 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_TBM_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_ADX_FLAGS, 0 },
e2e1fcde 978 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 980 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_PRFCHW_FLAGS, 0 },
5c111e37 982 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SMAP_FLAGS, 0 },
7e8b059b 984 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_MPX_FLAGS, 0 },
a0046408 986 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SHA_FLAGS, 0 },
963f3586 988 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 990 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 992 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SE1_FLAGS, 0 },
c5e7287a 994 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 996 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 998 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1000 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1002 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1004 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1006 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1008 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1010 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1012 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_CLZERO_FLAGS, 0 },
9916071f 1014 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_MWAITX_FLAGS, 0 },
8eab4136 1016 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_OSPKE_FLAGS, 0 },
8bc52696 1018 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1020 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1021 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1022 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1023 CPU_IBT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1025 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1026 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1027 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1028 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1029 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1030 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1031 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1032 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1033 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1034 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1035 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1036};
1037
1038static const noarch_entry cpu_noarch[] =
1039{
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1071};
1072
704209c0 1073#ifdef I386COFF
a6c24e68
NC
1074/* Like s_lcomm_internal in gas/read.c but the alignment string
1075 is allowed to be optional. */
1076
1077static symbolS *
1078pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1079{
1080 addressT align = 0;
1081
1082 SKIP_WHITESPACE ();
1083
7ab9ffdd 1084 if (needs_align
a6c24e68
NC
1085 && *input_line_pointer == ',')
1086 {
1087 align = parse_align (needs_align - 1);
7ab9ffdd 1088
a6c24e68
NC
1089 if (align == (addressT) -1)
1090 return NULL;
1091 }
1092 else
1093 {
1094 if (size >= 8)
1095 align = 3;
1096 else if (size >= 4)
1097 align = 2;
1098 else if (size >= 2)
1099 align = 1;
1100 else
1101 align = 0;
1102 }
1103
1104 bss_alloc (symbolP, size, align);
1105 return symbolP;
1106}
1107
704209c0 1108static void
a6c24e68
NC
1109pe_lcomm (int needs_align)
1110{
1111 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1112}
704209c0 1113#endif
a6c24e68 1114
29b0f896
AM
1115const pseudo_typeS md_pseudo_table[] =
1116{
1117#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1118 {"align", s_align_bytes, 0},
1119#else
1120 {"align", s_align_ptwo, 0},
1121#endif
1122 {"arch", set_cpu_arch, 0},
1123#ifndef I386COFF
1124 {"bss", s_bss, 0},
a6c24e68
NC
1125#else
1126 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1127#endif
1128 {"ffloat", float_cons, 'f'},
1129 {"dfloat", float_cons, 'd'},
1130 {"tfloat", float_cons, 'x'},
1131 {"value", cons, 2},
d182319b 1132 {"slong", signed_cons, 4},
29b0f896
AM
1133 {"noopt", s_ignore, 0},
1134 {"optim", s_ignore, 0},
1135 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1136 {"code16", set_code_flag, CODE_16BIT},
1137 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1138#ifdef BFD64
29b0f896 1139 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1140#endif
29b0f896
AM
1141 {"intel_syntax", set_intel_syntax, 1},
1142 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1143 {"intel_mnemonic", set_intel_mnemonic, 1},
1144 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1145 {"allow_index_reg", set_allow_index_reg, 1},
1146 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1147 {"sse_check", set_check, 0},
1148 {"operand_check", set_check, 1},
3b22753a
L
1149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1150 {"largecomm", handle_large_common, 0},
07a53e5c 1151#else
68d20676 1152 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1153 {"loc", dwarf2_directive_loc, 0},
1154 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1155#endif
6482c264
NC
1156#ifdef TE_PE
1157 {"secrel32", pe_directive_secrel, 0},
1158#endif
29b0f896
AM
1159 {0, 0, 0}
1160};
1161
1162/* For interface with expression (). */
1163extern char *input_line_pointer;
1164
1165/* Hash table for instruction mnemonic lookup. */
1166static struct hash_control *op_hash;
1167
1168/* Hash table for register lookup. */
1169static struct hash_control *reg_hash;
1170\f
ce8a8b2f
AM
1171 /* Various efficient no-op patterns for aligning code labels.
1172 Note: Don't try to assemble the instructions in the comments.
1173 0L and 0w are not legal. */
62a02d25
L
1174static const unsigned char f32_1[] =
1175 {0x90}; /* nop */
1176static const unsigned char f32_2[] =
1177 {0x66,0x90}; /* xchg %ax,%ax */
1178static const unsigned char f32_3[] =
1179 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1180static const unsigned char f32_4[] =
1181 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1182static const unsigned char f32_6[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1184static const unsigned char f32_7[] =
1185 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1186static const unsigned char f16_3[] =
3ae729d5 1187 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1188static const unsigned char f16_4[] =
3ae729d5
L
1189 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1190static const unsigned char jump_disp8[] =
1191 {0xeb}; /* jmp disp8 */
1192static const unsigned char jump32_disp32[] =
1193 {0xe9}; /* jmp disp32 */
1194static const unsigned char jump16_disp32[] =
1195 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1196/* 32-bit NOPs patterns. */
1197static const unsigned char *const f32_patt[] = {
3ae729d5 1198 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1199};
1200/* 16-bit NOPs patterns. */
1201static const unsigned char *const f16_patt[] = {
3ae729d5 1202 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1203};
1204/* nopl (%[re]ax) */
1205static const unsigned char alt_3[] =
1206 {0x0f,0x1f,0x00};
1207/* nopl 0(%[re]ax) */
1208static const unsigned char alt_4[] =
1209 {0x0f,0x1f,0x40,0x00};
1210/* nopl 0(%[re]ax,%[re]ax,1) */
1211static const unsigned char alt_5[] =
1212 {0x0f,0x1f,0x44,0x00,0x00};
1213/* nopw 0(%[re]ax,%[re]ax,1) */
1214static const unsigned char alt_6[] =
1215 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1216/* nopl 0L(%[re]ax) */
1217static const unsigned char alt_7[] =
1218 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1219/* nopl 0L(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_8[] =
1221 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1222/* nopw 0L(%[re]ax,%[re]ax,1) */
1223static const unsigned char alt_9[] =
1224 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_10[] =
1227 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1228/* data16 nopw %cs:0L(%eax,%eax,1) */
1229static const unsigned char alt_11[] =
1230 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1231/* 32-bit and 64-bit NOPs patterns. */
1232static const unsigned char *const alt_patt[] = {
1233 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1234 alt_9, alt_10, alt_11
62a02d25
L
1235};
1236
1237/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1238 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1239
1240static void
1241i386_output_nops (char *where, const unsigned char *const *patt,
1242 int count, int max_single_nop_size)
1243
1244{
3ae729d5
L
1245 /* Place the longer NOP first. */
1246 int last;
1247 int offset;
1248 const unsigned char *nops = patt[max_single_nop_size - 1];
1249
1250 /* Use the smaller one if the requsted one isn't available. */
1251 if (nops == NULL)
62a02d25 1252 {
3ae729d5
L
1253 max_single_nop_size--;
1254 nops = patt[max_single_nop_size - 1];
62a02d25
L
1255 }
1256
3ae729d5
L
1257 last = count % max_single_nop_size;
1258
1259 count -= last;
1260 for (offset = 0; offset < count; offset += max_single_nop_size)
1261 memcpy (where + offset, nops, max_single_nop_size);
1262
1263 if (last)
1264 {
1265 nops = patt[last - 1];
1266 if (nops == NULL)
1267 {
1268 /* Use the smaller one plus one-byte NOP if the needed one
1269 isn't available. */
1270 last--;
1271 nops = patt[last - 1];
1272 memcpy (where + offset, nops, last);
1273 where[offset + last] = *patt[0];
1274 }
1275 else
1276 memcpy (where + offset, nops, last);
1277 }
62a02d25
L
1278}
1279
3ae729d5
L
1280static INLINE int
1281fits_in_imm7 (offsetT num)
1282{
1283 return (num & 0x7f) == num;
1284}
1285
1286static INLINE int
1287fits_in_imm31 (offsetT num)
1288{
1289 return (num & 0x7fffffff) == num;
1290}
62a02d25
L
1291
1292/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1293 single NOP instruction LIMIT. */
1294
1295void
3ae729d5 1296i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1297{
3ae729d5 1298 const unsigned char *const *patt = NULL;
62a02d25 1299 int max_single_nop_size;
3ae729d5
L
1300 /* Maximum number of NOPs before switching to jump over NOPs. */
1301 int max_number_of_nops;
62a02d25 1302
3ae729d5 1303 switch (fragP->fr_type)
62a02d25 1304 {
3ae729d5
L
1305 case rs_fill_nop:
1306 case rs_align_code:
1307 break;
1308 default:
62a02d25
L
1309 return;
1310 }
1311
ccc9c027
L
1312 /* We need to decide which NOP sequence to use for 32bit and
1313 64bit. When -mtune= is used:
4eed87de 1314
76bc74dc
L
1315 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1316 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1317 2. For the rest, alt_patt will be used.
1318
1319 When -mtune= isn't used, alt_patt will be used if
22109423 1320 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1321 be used.
ccc9c027
L
1322
1323 When -march= or .arch is used, we can't use anything beyond
1324 cpu_arch_isa_flags. */
1325
1326 if (flag_code == CODE_16BIT)
1327 {
3ae729d5
L
1328 patt = f16_patt;
1329 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1330 /* Limit number of NOPs to 2 in 16-bit mode. */
1331 max_number_of_nops = 2;
252b5132 1332 }
33fef721 1333 else
ccc9c027 1334 {
fbf3f584 1335 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1336 {
1337 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1338 switch (cpu_arch_tune)
1339 {
1340 case PROCESSOR_UNKNOWN:
1341 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1342 optimize with nops. */
1343 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1344 patt = alt_patt;
ccc9c027
L
1345 else
1346 patt = f32_patt;
1347 break;
ccc9c027
L
1348 case PROCESSOR_PENTIUM4:
1349 case PROCESSOR_NOCONA:
ef05d495 1350 case PROCESSOR_CORE:
76bc74dc 1351 case PROCESSOR_CORE2:
bd5295b2 1352 case PROCESSOR_COREI7:
3632d14b 1353 case PROCESSOR_L1OM:
7a9068fe 1354 case PROCESSOR_K1OM:
76bc74dc 1355 case PROCESSOR_GENERIC64:
ccc9c027
L
1356 case PROCESSOR_K6:
1357 case PROCESSOR_ATHLON:
1358 case PROCESSOR_K8:
4eed87de 1359 case PROCESSOR_AMDFAM10:
8aedb9fe 1360 case PROCESSOR_BD:
029f3522 1361 case PROCESSOR_ZNVER:
7b458c12 1362 case PROCESSOR_BT:
80b8656c 1363 patt = alt_patt;
ccc9c027 1364 break;
76bc74dc 1365 case PROCESSOR_I386:
ccc9c027
L
1366 case PROCESSOR_I486:
1367 case PROCESSOR_PENTIUM:
2dde1948 1368 case PROCESSOR_PENTIUMPRO:
81486035 1369 case PROCESSOR_IAMCU:
ccc9c027
L
1370 case PROCESSOR_GENERIC32:
1371 patt = f32_patt;
1372 break;
4eed87de 1373 }
ccc9c027
L
1374 }
1375 else
1376 {
fbf3f584 1377 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1378 {
1379 case PROCESSOR_UNKNOWN:
e6a14101 1380 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1381 PROCESSOR_UNKNOWN. */
1382 abort ();
1383 break;
1384
76bc74dc 1385 case PROCESSOR_I386:
ccc9c027
L
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
81486035 1388 case PROCESSOR_IAMCU:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
ccc9c027
L
1396 case PROCESSOR_GENERIC32:
1397 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1398 with nops. */
1399 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1400 patt = alt_patt;
ccc9c027
L
1401 else
1402 patt = f32_patt;
1403 break;
76bc74dc
L
1404 case PROCESSOR_PENTIUMPRO:
1405 case PROCESSOR_PENTIUM4:
1406 case PROCESSOR_NOCONA:
1407 case PROCESSOR_CORE:
ef05d495 1408 case PROCESSOR_CORE2:
bd5295b2 1409 case PROCESSOR_COREI7:
3632d14b 1410 case PROCESSOR_L1OM:
7a9068fe 1411 case PROCESSOR_K1OM:
22109423 1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1413 patt = alt_patt;
ccc9c027
L
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_GENERIC64:
80b8656c 1418 patt = alt_patt;
ccc9c027 1419 break;
4eed87de 1420 }
ccc9c027
L
1421 }
1422
76bc74dc
L
1423 if (patt == f32_patt)
1424 {
3ae729d5
L
1425 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1426 /* Limit number of NOPs to 2 for older processors. */
1427 max_number_of_nops = 2;
76bc74dc
L
1428 }
1429 else
1430 {
3ae729d5
L
1431 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1432 /* Limit number of NOPs to 7 for newer processors. */
1433 max_number_of_nops = 7;
1434 }
1435 }
1436
1437 if (limit == 0)
1438 limit = max_single_nop_size;
1439
1440 if (fragP->fr_type == rs_fill_nop)
1441 {
1442 /* Output NOPs for .nop directive. */
1443 if (limit > max_single_nop_size)
1444 {
1445 as_bad_where (fragP->fr_file, fragP->fr_line,
1446 _("invalid single nop size: %d "
1447 "(expect within [0, %d])"),
1448 limit, max_single_nop_size);
1449 return;
1450 }
1451 }
1452 else
1453 fragP->fr_var = count;
1454
1455 if ((count / max_single_nop_size) > max_number_of_nops)
1456 {
1457 /* Generate jump over NOPs. */
1458 offsetT disp = count - 2;
1459 if (fits_in_imm7 (disp))
1460 {
1461 /* Use "jmp disp8" if possible. */
1462 count = disp;
1463 where[0] = jump_disp8[0];
1464 where[1] = count;
1465 where += 2;
1466 }
1467 else
1468 {
1469 unsigned int size_of_jump;
1470
1471 if (flag_code == CODE_16BIT)
1472 {
1473 where[0] = jump16_disp32[0];
1474 where[1] = jump16_disp32[1];
1475 size_of_jump = 2;
1476 }
1477 else
1478 {
1479 where[0] = jump32_disp32[0];
1480 size_of_jump = 1;
1481 }
1482
1483 count -= size_of_jump + 4;
1484 if (!fits_in_imm31 (count))
1485 {
1486 as_bad_where (fragP->fr_file, fragP->fr_line,
1487 _("jump over nop padding out of range"));
1488 return;
1489 }
1490
1491 md_number_to_chars (where + size_of_jump, count, 4);
1492 where += size_of_jump + 4;
76bc74dc 1493 }
ccc9c027 1494 }
3ae729d5
L
1495
1496 /* Generate multiple NOPs. */
1497 i386_output_nops (where, patt, count, limit);
252b5132
RH
1498}
1499
c6fb90c8 1500static INLINE int
0dfbf9d7 1501operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1502{
0dfbf9d7 1503 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1504 {
1505 case 3:
0dfbf9d7 1506 if (x->array[2])
c6fb90c8 1507 return 0;
1a0670f3 1508 /* Fall through. */
c6fb90c8 1509 case 2:
0dfbf9d7 1510 if (x->array[1])
c6fb90c8 1511 return 0;
1a0670f3 1512 /* Fall through. */
c6fb90c8 1513 case 1:
0dfbf9d7 1514 return !x->array[0];
c6fb90c8
L
1515 default:
1516 abort ();
1517 }
40fb9820
L
1518}
1519
c6fb90c8 1520static INLINE void
0dfbf9d7 1521operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1522{
0dfbf9d7 1523 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1524 {
1525 case 3:
0dfbf9d7 1526 x->array[2] = v;
1a0670f3 1527 /* Fall through. */
c6fb90c8 1528 case 2:
0dfbf9d7 1529 x->array[1] = v;
1a0670f3 1530 /* Fall through. */
c6fb90c8 1531 case 1:
0dfbf9d7 1532 x->array[0] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8
L
1534 break;
1535 default:
1536 abort ();
1537 }
1538}
40fb9820 1539
c6fb90c8 1540static INLINE int
0dfbf9d7
L
1541operand_type_equal (const union i386_operand_type *x,
1542 const union i386_operand_type *y)
c6fb90c8 1543{
0dfbf9d7 1544 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1545 {
1546 case 3:
0dfbf9d7 1547 if (x->array[2] != y->array[2])
c6fb90c8 1548 return 0;
1a0670f3 1549 /* Fall through. */
c6fb90c8 1550 case 2:
0dfbf9d7 1551 if (x->array[1] != y->array[1])
c6fb90c8 1552 return 0;
1a0670f3 1553 /* Fall through. */
c6fb90c8 1554 case 1:
0dfbf9d7 1555 return x->array[0] == y->array[0];
c6fb90c8
L
1556 break;
1557 default:
1558 abort ();
1559 }
1560}
40fb9820 1561
0dfbf9d7
L
1562static INLINE int
1563cpu_flags_all_zero (const union i386_cpu_flags *x)
1564{
1565 switch (ARRAY_SIZE(x->array))
1566 {
53467f57
IT
1567 case 4:
1568 if (x->array[3])
1569 return 0;
1570 /* Fall through. */
0dfbf9d7
L
1571 case 3:
1572 if (x->array[2])
1573 return 0;
1a0670f3 1574 /* Fall through. */
0dfbf9d7
L
1575 case 2:
1576 if (x->array[1])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 1:
1580 return !x->array[0];
1581 default:
1582 abort ();
1583 }
1584}
1585
0dfbf9d7
L
1586static INLINE int
1587cpu_flags_equal (const union i386_cpu_flags *x,
1588 const union i386_cpu_flags *y)
1589{
1590 switch (ARRAY_SIZE(x->array))
1591 {
53467f57
IT
1592 case 4:
1593 if (x->array[3] != y->array[3])
1594 return 0;
1595 /* Fall through. */
0dfbf9d7
L
1596 case 3:
1597 if (x->array[2] != y->array[2])
1598 return 0;
1a0670f3 1599 /* Fall through. */
0dfbf9d7
L
1600 case 2:
1601 if (x->array[1] != y->array[1])
1602 return 0;
1a0670f3 1603 /* Fall through. */
0dfbf9d7
L
1604 case 1:
1605 return x->array[0] == y->array[0];
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
c6fb90c8
L
1611
1612static INLINE int
1613cpu_flags_check_cpu64 (i386_cpu_flags f)
1614{
1615 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1616 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1617}
1618
c6fb90c8
L
1619static INLINE i386_cpu_flags
1620cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1621{
c6fb90c8
L
1622 switch (ARRAY_SIZE (x.array))
1623 {
53467f57
IT
1624 case 4:
1625 x.array [3] &= y.array [3];
1626 /* Fall through. */
c6fb90c8
L
1627 case 3:
1628 x.array [2] &= y.array [2];
1a0670f3 1629 /* Fall through. */
c6fb90c8
L
1630 case 2:
1631 x.array [1] &= y.array [1];
1a0670f3 1632 /* Fall through. */
c6fb90c8
L
1633 case 1:
1634 x.array [0] &= y.array [0];
1635 break;
1636 default:
1637 abort ();
1638 }
1639 return x;
1640}
40fb9820 1641
c6fb90c8
L
1642static INLINE i386_cpu_flags
1643cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1644{
c6fb90c8 1645 switch (ARRAY_SIZE (x.array))
40fb9820 1646 {
53467f57
IT
1647 case 4:
1648 x.array [3] |= y.array [3];
1649 /* Fall through. */
c6fb90c8
L
1650 case 3:
1651 x.array [2] |= y.array [2];
1a0670f3 1652 /* Fall through. */
c6fb90c8
L
1653 case 2:
1654 x.array [1] |= y.array [1];
1a0670f3 1655 /* Fall through. */
c6fb90c8
L
1656 case 1:
1657 x.array [0] |= y.array [0];
40fb9820
L
1658 break;
1659 default:
1660 abort ();
1661 }
40fb9820
L
1662 return x;
1663}
1664
309d3373
JB
1665static INLINE i386_cpu_flags
1666cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1667{
1668 switch (ARRAY_SIZE (x.array))
1669 {
53467f57
IT
1670 case 4:
1671 x.array [3] &= ~y.array [3];
1672 /* Fall through. */
309d3373
JB
1673 case 3:
1674 x.array [2] &= ~y.array [2];
1a0670f3 1675 /* Fall through. */
309d3373
JB
1676 case 2:
1677 x.array [1] &= ~y.array [1];
1a0670f3 1678 /* Fall through. */
309d3373
JB
1679 case 1:
1680 x.array [0] &= ~y.array [0];
1681 break;
1682 default:
1683 abort ();
1684 }
1685 return x;
1686}
1687
c0f3af97
L
1688#define CPU_FLAGS_ARCH_MATCH 0x1
1689#define CPU_FLAGS_64BIT_MATCH 0x2
1690
c0f3af97 1691#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1692 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1693
1694/* Return CPU flags match bits. */
3629bb00 1695
40fb9820 1696static int
d3ce72d0 1697cpu_flags_match (const insn_template *t)
40fb9820 1698{
c0f3af97
L
1699 i386_cpu_flags x = t->cpu_flags;
1700 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1701
1702 x.bitfield.cpu64 = 0;
1703 x.bitfield.cpuno64 = 0;
1704
0dfbf9d7 1705 if (cpu_flags_all_zero (&x))
c0f3af97
L
1706 {
1707 /* This instruction is available on all archs. */
db12e14e 1708 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1709 }
3629bb00
L
1710 else
1711 {
c0f3af97 1712 /* This instruction is available only on some archs. */
3629bb00
L
1713 i386_cpu_flags cpu = cpu_arch_flags;
1714
ab592e75
JB
1715 /* AVX512VL is no standalone feature - match it and then strip it. */
1716 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1717 return match;
1718 x.bitfield.cpuavx512vl = 0;
1719
3629bb00 1720 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1721 if (!cpu_flags_all_zero (&cpu))
1722 {
a5ff0eb2
L
1723 if (x.bitfield.cpuavx)
1724 {
929f69fa 1725 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1726 if (cpu.bitfield.cpuavx
1727 && (!t->opcode_modifier.sse2avx || sse2avx)
1728 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1729 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1730 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1731 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1732 }
929f69fa
JB
1733 else if (x.bitfield.cpuavx512f)
1734 {
1735 /* We need to check a few extra flags with AVX512F. */
1736 if (cpu.bitfield.cpuavx512f
1737 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1738 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1739 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1740 match |= CPU_FLAGS_ARCH_MATCH;
1741 }
a5ff0eb2 1742 else
db12e14e 1743 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1744 }
3629bb00 1745 }
c0f3af97 1746 return match;
40fb9820
L
1747}
1748
c6fb90c8
L
1749static INLINE i386_operand_type
1750operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1751{
c6fb90c8
L
1752 switch (ARRAY_SIZE (x.array))
1753 {
1754 case 3:
1755 x.array [2] &= y.array [2];
1a0670f3 1756 /* Fall through. */
c6fb90c8
L
1757 case 2:
1758 x.array [1] &= y.array [1];
1a0670f3 1759 /* Fall through. */
c6fb90c8
L
1760 case 1:
1761 x.array [0] &= y.array [0];
1762 break;
1763 default:
1764 abort ();
1765 }
1766 return x;
40fb9820
L
1767}
1768
73053c1f
JB
1769static INLINE i386_operand_type
1770operand_type_and_not (i386_operand_type x, i386_operand_type y)
1771{
1772 switch (ARRAY_SIZE (x.array))
1773 {
1774 case 3:
1775 x.array [2] &= ~y.array [2];
1776 /* Fall through. */
1777 case 2:
1778 x.array [1] &= ~y.array [1];
1779 /* Fall through. */
1780 case 1:
1781 x.array [0] &= ~y.array [0];
1782 break;
1783 default:
1784 abort ();
1785 }
1786 return x;
1787}
1788
c6fb90c8
L
1789static INLINE i386_operand_type
1790operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1791{
c6fb90c8 1792 switch (ARRAY_SIZE (x.array))
40fb9820 1793 {
c6fb90c8
L
1794 case 3:
1795 x.array [2] |= y.array [2];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 2:
1798 x.array [1] |= y.array [1];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 1:
1801 x.array [0] |= y.array [0];
40fb9820
L
1802 break;
1803 default:
1804 abort ();
1805 }
c6fb90c8
L
1806 return x;
1807}
40fb9820 1808
c6fb90c8
L
1809static INLINE i386_operand_type
1810operand_type_xor (i386_operand_type x, i386_operand_type y)
1811{
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] ^= y.array [2];
1a0670f3 1816 /* Fall through. */
c6fb90c8
L
1817 case 2:
1818 x.array [1] ^= y.array [1];
1a0670f3 1819 /* Fall through. */
c6fb90c8
L
1820 case 1:
1821 x.array [0] ^= y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
40fb9820
L
1826 return x;
1827}
1828
1829static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1830static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1831static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1832static const i386_operand_type inoutportreg
1833 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1834static const i386_operand_type reg16_inoutportreg
1835 = OPERAND_TYPE_REG16_INOUTPORTREG;
1836static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1837static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1838static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1839static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1840static const i386_operand_type anydisp
1841 = OPERAND_TYPE_ANYDISP;
40fb9820 1842static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1843static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1844static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1845static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1846static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1847static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1848static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1849static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1850static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1851static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1852static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1853static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1854
1855enum operand_type
1856{
1857 reg,
40fb9820
L
1858 imm,
1859 disp,
1860 anymem
1861};
1862
c6fb90c8 1863static INLINE int
40fb9820
L
1864operand_type_check (i386_operand_type t, enum operand_type c)
1865{
1866 switch (c)
1867 {
1868 case reg:
dc821c5f 1869 return t.bitfield.reg;
40fb9820 1870
40fb9820
L
1871 case imm:
1872 return (t.bitfield.imm8
1873 || t.bitfield.imm8s
1874 || t.bitfield.imm16
1875 || t.bitfield.imm32
1876 || t.bitfield.imm32s
1877 || t.bitfield.imm64);
1878
1879 case disp:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64);
1885
1886 case anymem:
1887 return (t.bitfield.disp8
1888 || t.bitfield.disp16
1889 || t.bitfield.disp32
1890 || t.bitfield.disp32s
1891 || t.bitfield.disp64
1892 || t.bitfield.baseindex);
1893
1894 default:
1895 abort ();
1896 }
2cfe26b6
AM
1897
1898 return 0;
40fb9820
L
1899}
1900
ca0d63fe 1901/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1902 operand J for instruction template T. */
1903
1904static INLINE int
d3ce72d0 1905match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1906{
1907 return !((i.types[j].bitfield.byte
1908 && !t->operand_types[j].bitfield.byte)
1909 || (i.types[j].bitfield.word
1910 && !t->operand_types[j].bitfield.word)
1911 || (i.types[j].bitfield.dword
1912 && !t->operand_types[j].bitfield.dword)
1913 || (i.types[j].bitfield.qword
ca0d63fe
JB
1914 && !t->operand_types[j].bitfield.qword)
1915 || (i.types[j].bitfield.tbyte
1916 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1917}
1918
1b54b8d7
JB
1919/* Return 1 if there is no conflict in SIMD register on
1920 operand J for instruction template T. */
1921
1922static INLINE int
1923match_simd_size (const insn_template *t, unsigned int j)
1924{
1925 return !((i.types[j].bitfield.xmmword
1926 && !t->operand_types[j].bitfield.xmmword)
1927 || (i.types[j].bitfield.ymmword
1928 && !t->operand_types[j].bitfield.ymmword)
1929 || (i.types[j].bitfield.zmmword
1930 && !t->operand_types[j].bitfield.zmmword));
1931}
1932
5c07affc
L
1933/* Return 1 if there is no conflict in any size on operand J for
1934 instruction template T. */
1935
1936static INLINE int
d3ce72d0 1937match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1938{
1939 return (match_reg_size (t, j)
1940 && !((i.types[j].bitfield.unspecified
af508cb9 1941 && !i.broadcast
5c07affc
L
1942 && !t->operand_types[j].bitfield.unspecified)
1943 || (i.types[j].bitfield.fword
1944 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1945 /* For scalar opcode templates to allow register and memory
1946 operands at the same time, some special casing is needed
1947 here. */
1948 || ((t->operand_types[j].bitfield.regsimd
1949 && !t->opcode_modifier.broadcast
1950 && (t->operand_types[j].bitfield.dword
1951 || t->operand_types[j].bitfield.qword))
1952 ? (i.types[j].bitfield.xmmword
1953 || i.types[j].bitfield.ymmword
1954 || i.types[j].bitfield.zmmword)
1955 : !match_simd_size(t, j))));
5c07affc
L
1956}
1957
1958/* Return 1 if there is no size conflict on any operands for
1959 instruction template T. */
1960
1961static INLINE int
d3ce72d0 1962operand_size_match (const insn_template *t)
5c07affc
L
1963{
1964 unsigned int j;
1965 int match = 1;
1966
1967 /* Don't check jump instructions. */
1968 if (t->opcode_modifier.jump
1969 || t->opcode_modifier.jumpbyte
1970 || t->opcode_modifier.jumpdword
1971 || t->opcode_modifier.jumpintersegment)
1972 return match;
1973
1974 /* Check memory and accumulator operand size. */
1975 for (j = 0; j < i.operands; j++)
1976 {
1b54b8d7
JB
1977 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1978 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1979 continue;
1980
1b54b8d7 1981 if (t->operand_types[j].bitfield.reg
dc821c5f 1982 && !match_reg_size (t, j))
5c07affc
L
1983 {
1984 match = 0;
1985 break;
1986 }
1987
1b54b8d7
JB
1988 if (t->operand_types[j].bitfield.regsimd
1989 && !match_simd_size (t, j))
1990 {
1991 match = 0;
1992 break;
1993 }
1994
1995 if (t->operand_types[j].bitfield.acc
1996 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1997 {
1998 match = 0;
1999 break;
2000 }
2001
5c07affc
L
2002 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2003 {
2004 match = 0;
2005 break;
2006 }
2007 }
2008
891edac4 2009 if (match)
5c07affc 2010 return match;
38e314eb 2011 else if (!t->opcode_modifier.d)
891edac4
L
2012 {
2013mismatch:
86e026a4 2014 i.error = operand_size_mismatch;
891edac4
L
2015 return 0;
2016 }
5c07affc
L
2017
2018 /* Check reverse. */
9c2799c2 2019 gas_assert (i.operands == 2);
5c07affc
L
2020
2021 match = 1;
2022 for (j = 0; j < 2; j++)
2023 {
dc821c5f
JB
2024 if ((t->operand_types[j].bitfield.reg
2025 || t->operand_types[j].bitfield.acc)
5c07affc 2026 && !match_reg_size (t, j ? 0 : 1))
891edac4 2027 goto mismatch;
5c07affc
L
2028
2029 if (i.types[j].bitfield.mem
2030 && !match_mem_size (t, j ? 0 : 1))
891edac4 2031 goto mismatch;
5c07affc
L
2032 }
2033
2034 return match;
2035}
2036
c6fb90c8 2037static INLINE int
40fb9820
L
2038operand_type_match (i386_operand_type overlap,
2039 i386_operand_type given)
2040{
2041 i386_operand_type temp = overlap;
2042
2043 temp.bitfield.jumpabsolute = 0;
7d5e4556 2044 temp.bitfield.unspecified = 0;
5c07affc
L
2045 temp.bitfield.byte = 0;
2046 temp.bitfield.word = 0;
2047 temp.bitfield.dword = 0;
2048 temp.bitfield.fword = 0;
2049 temp.bitfield.qword = 0;
2050 temp.bitfield.tbyte = 0;
2051 temp.bitfield.xmmword = 0;
c0f3af97 2052 temp.bitfield.ymmword = 0;
43234a1e 2053 temp.bitfield.zmmword = 0;
0dfbf9d7 2054 if (operand_type_all_zero (&temp))
891edac4 2055 goto mismatch;
40fb9820 2056
891edac4
L
2057 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2058 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2059 return 1;
2060
2061mismatch:
a65babc9 2062 i.error = operand_type_mismatch;
891edac4 2063 return 0;
40fb9820
L
2064}
2065
7d5e4556 2066/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2067 unless the expected operand type register overlap is null.
2068 Memory operand size of certain SIMD instructions is also being checked
2069 here. */
40fb9820 2070
c6fb90c8 2071static INLINE int
dc821c5f 2072operand_type_register_match (i386_operand_type g0,
40fb9820 2073 i386_operand_type t0,
40fb9820
L
2074 i386_operand_type g1,
2075 i386_operand_type t1)
2076{
10c17abd
JB
2077 if (!g0.bitfield.reg
2078 && !g0.bitfield.regsimd
2079 && (!operand_type_check (g0, anymem)
2080 || g0.bitfield.unspecified
2081 || !t0.bitfield.regsimd))
40fb9820
L
2082 return 1;
2083
10c17abd
JB
2084 if (!g1.bitfield.reg
2085 && !g1.bitfield.regsimd
2086 && (!operand_type_check (g1, anymem)
2087 || g1.bitfield.unspecified
2088 || !t1.bitfield.regsimd))
40fb9820
L
2089 return 1;
2090
dc821c5f
JB
2091 if (g0.bitfield.byte == g1.bitfield.byte
2092 && g0.bitfield.word == g1.bitfield.word
2093 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2094 && g0.bitfield.qword == g1.bitfield.qword
2095 && g0.bitfield.xmmword == g1.bitfield.xmmword
2096 && g0.bitfield.ymmword == g1.bitfield.ymmword
2097 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2098 return 1;
2099
dc821c5f
JB
2100 if (!(t0.bitfield.byte & t1.bitfield.byte)
2101 && !(t0.bitfield.word & t1.bitfield.word)
2102 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2103 && !(t0.bitfield.qword & t1.bitfield.qword)
2104 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2105 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2106 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2107 return 1;
2108
a65babc9 2109 i.error = register_type_mismatch;
891edac4
L
2110
2111 return 0;
40fb9820
L
2112}
2113
4c692bc7
JB
2114static INLINE unsigned int
2115register_number (const reg_entry *r)
2116{
2117 unsigned int nr = r->reg_num;
2118
2119 if (r->reg_flags & RegRex)
2120 nr += 8;
2121
200cbe0f
L
2122 if (r->reg_flags & RegVRex)
2123 nr += 16;
2124
4c692bc7
JB
2125 return nr;
2126}
2127
252b5132 2128static INLINE unsigned int
40fb9820 2129mode_from_disp_size (i386_operand_type t)
252b5132 2130{
b5014f7a 2131 if (t.bitfield.disp8)
40fb9820
L
2132 return 1;
2133 else if (t.bitfield.disp16
2134 || t.bitfield.disp32
2135 || t.bitfield.disp32s)
2136 return 2;
2137 else
2138 return 0;
252b5132
RH
2139}
2140
2141static INLINE int
65879393 2142fits_in_signed_byte (addressT num)
252b5132 2143{
65879393 2144 return num + 0x80 <= 0xff;
47926f60 2145}
252b5132
RH
2146
2147static INLINE int
65879393 2148fits_in_unsigned_byte (addressT num)
252b5132 2149{
65879393 2150 return num <= 0xff;
47926f60 2151}
252b5132
RH
2152
2153static INLINE int
65879393 2154fits_in_unsigned_word (addressT num)
252b5132 2155{
65879393 2156 return num <= 0xffff;
47926f60 2157}
252b5132
RH
2158
2159static INLINE int
65879393 2160fits_in_signed_word (addressT num)
252b5132 2161{
65879393 2162 return num + 0x8000 <= 0xffff;
47926f60 2163}
2a962e6d 2164
3e73aa7c 2165static INLINE int
65879393 2166fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2167{
2168#ifndef BFD64
2169 return 1;
2170#else
65879393 2171 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2172#endif
2173} /* fits_in_signed_long() */
2a962e6d 2174
3e73aa7c 2175static INLINE int
65879393 2176fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2177{
2178#ifndef BFD64
2179 return 1;
2180#else
65879393 2181 return num <= 0xffffffff;
3e73aa7c
JH
2182#endif
2183} /* fits_in_unsigned_long() */
252b5132 2184
43234a1e 2185static INLINE int
b5014f7a 2186fits_in_disp8 (offsetT num)
43234a1e
L
2187{
2188 int shift = i.memshift;
2189 unsigned int mask;
2190
2191 if (shift == -1)
2192 abort ();
2193
2194 mask = (1 << shift) - 1;
2195
2196 /* Return 0 if NUM isn't properly aligned. */
2197 if ((num & mask))
2198 return 0;
2199
2200 /* Check if NUM will fit in 8bit after shift. */
2201 return fits_in_signed_byte (num >> shift);
2202}
2203
a683cc34
SP
2204static INLINE int
2205fits_in_imm4 (offsetT num)
2206{
2207 return (num & 0xf) == num;
2208}
2209
40fb9820 2210static i386_operand_type
e3bb37b5 2211smallest_imm_type (offsetT num)
252b5132 2212{
40fb9820 2213 i386_operand_type t;
7ab9ffdd 2214
0dfbf9d7 2215 operand_type_set (&t, 0);
40fb9820
L
2216 t.bitfield.imm64 = 1;
2217
2218 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2219 {
2220 /* This code is disabled on the 486 because all the Imm1 forms
2221 in the opcode table are slower on the i486. They're the
2222 versions with the implicitly specified single-position
2223 displacement, which has another syntax if you really want to
2224 use that form. */
40fb9820
L
2225 t.bitfield.imm1 = 1;
2226 t.bitfield.imm8 = 1;
2227 t.bitfield.imm8s = 1;
2228 t.bitfield.imm16 = 1;
2229 t.bitfield.imm32 = 1;
2230 t.bitfield.imm32s = 1;
2231 }
2232 else if (fits_in_signed_byte (num))
2233 {
2234 t.bitfield.imm8 = 1;
2235 t.bitfield.imm8s = 1;
2236 t.bitfield.imm16 = 1;
2237 t.bitfield.imm32 = 1;
2238 t.bitfield.imm32s = 1;
2239 }
2240 else if (fits_in_unsigned_byte (num))
2241 {
2242 t.bitfield.imm8 = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2248 {
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_long (num))
2254 {
2255 t.bitfield.imm32 = 1;
2256 t.bitfield.imm32s = 1;
2257 }
2258 else if (fits_in_unsigned_long (num))
2259 t.bitfield.imm32 = 1;
2260
2261 return t;
47926f60 2262}
252b5132 2263
847f7ad4 2264static offsetT
e3bb37b5 2265offset_in_range (offsetT val, int size)
847f7ad4 2266{
508866be 2267 addressT mask;
ba2adb93 2268
847f7ad4
AM
2269 switch (size)
2270 {
508866be
L
2271 case 1: mask = ((addressT) 1 << 8) - 1; break;
2272 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2273 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2274#ifdef BFD64
2275 case 8: mask = ((addressT) 2 << 63) - 1; break;
2276#endif
47926f60 2277 default: abort ();
847f7ad4
AM
2278 }
2279
9de868bf
L
2280#ifdef BFD64
2281 /* If BFD64, sign extend val for 32bit address mode. */
2282 if (flag_code != CODE_64BIT
2283 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2284 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2285 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2286#endif
ba2adb93 2287
47926f60 2288 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2289 {
2290 char buf1[40], buf2[40];
2291
2292 sprint_value (buf1, val);
2293 sprint_value (buf2, val & mask);
2294 as_warn (_("%s shortened to %s"), buf1, buf2);
2295 }
2296 return val & mask;
2297}
2298
c32fa91d
L
2299enum PREFIX_GROUP
2300{
2301 PREFIX_EXIST = 0,
2302 PREFIX_LOCK,
2303 PREFIX_REP,
04ef582a 2304 PREFIX_DS,
c32fa91d
L
2305 PREFIX_OTHER
2306};
2307
2308/* Returns
2309 a. PREFIX_EXIST if attempting to add a prefix where one from the
2310 same class already exists.
2311 b. PREFIX_LOCK if lock prefix is added.
2312 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2313 d. PREFIX_DS if ds prefix is added.
2314 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2315 */
2316
2317static enum PREFIX_GROUP
e3bb37b5 2318add_prefix (unsigned int prefix)
252b5132 2319{
c32fa91d 2320 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2321 unsigned int q;
252b5132 2322
29b0f896
AM
2323 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2324 && flag_code == CODE_64BIT)
b1905489 2325 {
161a04f6
L
2326 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2327 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2328 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2329 ret = PREFIX_EXIST;
b1905489
JB
2330 q = REX_PREFIX;
2331 }
3e73aa7c 2332 else
b1905489
JB
2333 {
2334 switch (prefix)
2335 {
2336 default:
2337 abort ();
2338
b1905489 2339 case DS_PREFIX_OPCODE:
04ef582a
L
2340 ret = PREFIX_DS;
2341 /* Fall through. */
2342 case CS_PREFIX_OPCODE:
b1905489
JB
2343 case ES_PREFIX_OPCODE:
2344 case FS_PREFIX_OPCODE:
2345 case GS_PREFIX_OPCODE:
2346 case SS_PREFIX_OPCODE:
2347 q = SEG_PREFIX;
2348 break;
2349
2350 case REPNE_PREFIX_OPCODE:
2351 case REPE_PREFIX_OPCODE:
c32fa91d
L
2352 q = REP_PREFIX;
2353 ret = PREFIX_REP;
2354 break;
2355
b1905489 2356 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2357 q = LOCK_PREFIX;
2358 ret = PREFIX_LOCK;
b1905489
JB
2359 break;
2360
2361 case FWAIT_OPCODE:
2362 q = WAIT_PREFIX;
2363 break;
2364
2365 case ADDR_PREFIX_OPCODE:
2366 q = ADDR_PREFIX;
2367 break;
2368
2369 case DATA_PREFIX_OPCODE:
2370 q = DATA_PREFIX;
2371 break;
2372 }
2373 if (i.prefix[q] != 0)
c32fa91d 2374 ret = PREFIX_EXIST;
b1905489 2375 }
252b5132 2376
b1905489 2377 if (ret)
252b5132 2378 {
b1905489
JB
2379 if (!i.prefix[q])
2380 ++i.prefixes;
2381 i.prefix[q] |= prefix;
252b5132 2382 }
b1905489
JB
2383 else
2384 as_bad (_("same type of prefix used twice"));
252b5132 2385
252b5132
RH
2386 return ret;
2387}
2388
2389static void
78f12dd3 2390update_code_flag (int value, int check)
eecb386c 2391{
78f12dd3
L
2392 PRINTF_LIKE ((*as_error));
2393
1e9cc1c2 2394 flag_code = (enum flag_code) value;
40fb9820
L
2395 if (flag_code == CODE_64BIT)
2396 {
2397 cpu_arch_flags.bitfield.cpu64 = 1;
2398 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2399 }
2400 else
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 0;
2403 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2404 }
2405 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2406 {
78f12dd3
L
2407 if (check)
2408 as_error = as_fatal;
2409 else
2410 as_error = as_bad;
2411 (*as_error) (_("64bit mode not supported on `%s'."),
2412 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2413 }
40fb9820 2414 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2415 {
78f12dd3
L
2416 if (check)
2417 as_error = as_fatal;
2418 else
2419 as_error = as_bad;
2420 (*as_error) (_("32bit mode not supported on `%s'."),
2421 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2422 }
eecb386c
AM
2423 stackop_size = '\0';
2424}
2425
78f12dd3
L
2426static void
2427set_code_flag (int value)
2428{
2429 update_code_flag (value, 0);
2430}
2431
eecb386c 2432static void
e3bb37b5 2433set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2434{
1e9cc1c2 2435 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2436 if (flag_code != CODE_16BIT)
2437 abort ();
2438 cpu_arch_flags.bitfield.cpu64 = 0;
2439 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2440 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2441}
2442
2443static void
e3bb37b5 2444set_intel_syntax (int syntax_flag)
252b5132
RH
2445{
2446 /* Find out if register prefixing is specified. */
2447 int ask_naked_reg = 0;
2448
2449 SKIP_WHITESPACE ();
29b0f896 2450 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2451 {
d02603dc
NC
2452 char *string;
2453 int e = get_symbol_name (&string);
252b5132 2454
47926f60 2455 if (strcmp (string, "prefix") == 0)
252b5132 2456 ask_naked_reg = 1;
47926f60 2457 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2458 ask_naked_reg = -1;
2459 else
d0b47220 2460 as_bad (_("bad argument to syntax directive."));
d02603dc 2461 (void) restore_line_pointer (e);
252b5132
RH
2462 }
2463 demand_empty_rest_of_line ();
c3332e24 2464
252b5132
RH
2465 intel_syntax = syntax_flag;
2466
2467 if (ask_naked_reg == 0)
f86103b7
AM
2468 allow_naked_reg = (intel_syntax
2469 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2470 else
2471 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2472
ee86248c 2473 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2474
e4a3b5a4 2475 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2476 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2477 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2478}
2479
1efbbeb4
L
2480static void
2481set_intel_mnemonic (int mnemonic_flag)
2482{
e1d4d893 2483 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2484}
2485
db51cc60
L
2486static void
2487set_allow_index_reg (int flag)
2488{
2489 allow_index_reg = flag;
2490}
2491
cb19c032 2492static void
7bab8ab5 2493set_check (int what)
cb19c032 2494{
7bab8ab5
JB
2495 enum check_kind *kind;
2496 const char *str;
2497
2498 if (what)
2499 {
2500 kind = &operand_check;
2501 str = "operand";
2502 }
2503 else
2504 {
2505 kind = &sse_check;
2506 str = "sse";
2507 }
2508
cb19c032
L
2509 SKIP_WHITESPACE ();
2510
2511 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2512 {
d02603dc
NC
2513 char *string;
2514 int e = get_symbol_name (&string);
cb19c032
L
2515
2516 if (strcmp (string, "none") == 0)
7bab8ab5 2517 *kind = check_none;
cb19c032 2518 else if (strcmp (string, "warning") == 0)
7bab8ab5 2519 *kind = check_warning;
cb19c032 2520 else if (strcmp (string, "error") == 0)
7bab8ab5 2521 *kind = check_error;
cb19c032 2522 else
7bab8ab5 2523 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2524 (void) restore_line_pointer (e);
cb19c032
L
2525 }
2526 else
7bab8ab5 2527 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2528
2529 demand_empty_rest_of_line ();
2530}
2531
8a9036a4
L
2532static void
2533check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2534 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2535{
2536#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2537 static const char *arch;
2538
2539 /* Intel LIOM is only supported on ELF. */
2540 if (!IS_ELF)
2541 return;
2542
2543 if (!arch)
2544 {
2545 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2546 use default_arch. */
2547 arch = cpu_arch_name;
2548 if (!arch)
2549 arch = default_arch;
2550 }
2551
81486035
L
2552 /* If we are targeting Intel MCU, we must enable it. */
2553 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2554 || new_flag.bitfield.cpuiamcu)
2555 return;
2556
3632d14b 2557 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2559 || new_flag.bitfield.cpul1om)
8a9036a4 2560 return;
76ba9986 2561
7a9068fe
L
2562 /* If we are targeting Intel K1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2564 || new_flag.bitfield.cpuk1om)
2565 return;
2566
8a9036a4
L
2567 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2568#endif
2569}
2570
e413e4e9 2571static void
e3bb37b5 2572set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2573{
47926f60 2574 SKIP_WHITESPACE ();
e413e4e9 2575
29b0f896 2576 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2577 {
d02603dc
NC
2578 char *string;
2579 int e = get_symbol_name (&string);
91d6fa6a 2580 unsigned int j;
40fb9820 2581 i386_cpu_flags flags;
e413e4e9 2582
91d6fa6a 2583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2584 {
91d6fa6a 2585 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2586 {
91d6fa6a 2587 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2588
5c6af06e
JB
2589 if (*string != '.')
2590 {
91d6fa6a 2591 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2592 cpu_sub_arch_name = NULL;
91d6fa6a 2593 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2594 if (flag_code == CODE_64BIT)
2595 {
2596 cpu_arch_flags.bitfield.cpu64 = 1;
2597 cpu_arch_flags.bitfield.cpuno64 = 0;
2598 }
2599 else
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 0;
2602 cpu_arch_flags.bitfield.cpuno64 = 1;
2603 }
91d6fa6a
NC
2604 cpu_arch_isa = cpu_arch[j].type;
2605 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2606 if (!cpu_arch_tune_set)
2607 {
2608 cpu_arch_tune = cpu_arch_isa;
2609 cpu_arch_tune_flags = cpu_arch_isa_flags;
2610 }
5c6af06e
JB
2611 break;
2612 }
40fb9820 2613
293f5f65
L
2614 flags = cpu_flags_or (cpu_arch_flags,
2615 cpu_arch[j].flags);
81486035 2616
5b64d091 2617 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2618 {
6305a203
L
2619 if (cpu_sub_arch_name)
2620 {
2621 char *name = cpu_sub_arch_name;
2622 cpu_sub_arch_name = concat (name,
91d6fa6a 2623 cpu_arch[j].name,
1bf57e9f 2624 (const char *) NULL);
6305a203
L
2625 free (name);
2626 }
2627 else
91d6fa6a 2628 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2629 cpu_arch_flags = flags;
a586129e 2630 cpu_arch_isa_flags = flags;
5c6af06e 2631 }
d02603dc 2632 (void) restore_line_pointer (e);
5c6af06e
JB
2633 demand_empty_rest_of_line ();
2634 return;
e413e4e9
AM
2635 }
2636 }
293f5f65
L
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
33eaf5de 2640 /* Disable an ISA extension. */
293f5f65
L
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
91d6fa6a 2668 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
fddf5b5b
AM
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
29b0f896 2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2679 {
d02603dc
NC
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
fddf5b5b
AM
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
d02603dc 2693 (void) restore_line_pointer (e);
fddf5b5b
AM
2694 }
2695
e413e4e9
AM
2696 demand_empty_rest_of_line ();
2697}
2698
8a9036a4
L
2699enum bfd_architecture
2700i386_arch (void)
2701{
3632d14b 2702 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
7a9068fe
L
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
81486035
L
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
8a9036a4
L
2723 else
2724 return bfd_arch_i386;
2725}
2726
b9d79e03 2727unsigned long
7016a5d5 2728i386_mach (void)
b9d79e03 2729{
351f65ca 2730 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2731 {
3632d14b 2732 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2733 {
351f65ca
L
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
8a9036a4
L
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
7a9068fe
L
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
351f65ca 2746 else if (default_arch[6] == '\0')
8a9036a4 2747 return bfd_mach_x86_64;
351f65ca
L
2748 else
2749 return bfd_mach_x64_32;
8a9036a4 2750 }
5197d474
L
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
81486035
L
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
b9d79e03 2763 else
2b5d6a91 2764 as_fatal (_("unknown architecture"));
b9d79e03 2765}
b9d79e03 2766\f
252b5132 2767void
7016a5d5 2768md_begin (void)
252b5132
RH
2769{
2770 const char *hash_err;
2771
86fa6981
L
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
47926f60 2775 /* Initialize op_hash hash table. */
252b5132
RH
2776 op_hash = hash_new ();
2777
2778 {
d3ce72d0 2779 const insn_template *optab;
29b0f896 2780 templates *core_optab;
252b5132 2781
47926f60
KH
2782 /* Setup for loop. */
2783 optab = i386_optab;
add39d23 2784 core_optab = XNEW (templates);
252b5132
RH
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
47926f60 2794 add to hash table; & begin anew. */
252b5132
RH
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
5a49b8ac 2798 (void *) core_optab);
252b5132
RH
2799 if (hash_err)
2800 {
b37df7c4 2801 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
add39d23 2807 core_optab = XNEW (templates);
252b5132
RH
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
47926f60 2813 /* Initialize reg_hash hash table. */
252b5132
RH
2814 reg_hash = hash_new ();
2815 {
29b0f896 2816 const reg_entry *regtab;
c3fe08fa 2817 unsigned int regtab_size = i386_regtab_size;
252b5132 2818
c3fe08fa 2819 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2820 {
5a49b8ac 2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2822 if (hash_err)
b37df7c4 2823 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2824 regtab->reg_name,
2825 hash_err);
252b5132
RH
2826 }
2827 }
2828
47926f60 2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2830 {
29b0f896
AM
2831 int c;
2832 char *p;
252b5132
RH
2833
2834 for (c = 0; c < 256; c++)
2835 {
3882b010 2836 if (ISDIGIT (c))
252b5132
RH
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
3882b010 2843 else if (ISLOWER (c))
252b5132
RH
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
3882b010 2849 else if (ISUPPER (c))
252b5132 2850 {
3882b010 2851 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
43234a1e 2855 else if (c == '{' || c == '}')
86fa6981
L
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
252b5132 2860
3882b010 2861 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870#ifdef LEX_AT
2871 identifier_chars['@'] = '@';
32137342
NC
2872#endif
2873#ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
252b5132 2876#endif
252b5132 2877 digit_chars['-'] = '-';
c0f3af97 2878 mnemonic_chars['_'] = '_';
791fe849 2879 mnemonic_chars['-'] = '-';
0003779b 2880 mnemonic_chars['.'] = '.';
252b5132
RH
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
a4447b93
RH
2888 if (flag_code == CODE_64BIT)
2889 {
ca19b261
KT
2890#if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893#else
a4447b93 2894 x86_dwarf2_return_column = 16;
ca19b261 2895#endif
61ff971f 2896 x86_cie_data_alignment = -8;
a4447b93
RH
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
252b5132
RH
2903}
2904
2905void
e3bb37b5 2906i386_print_statistics (FILE *file)
252b5132
RH
2907{
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910}
2911\f
252b5132
RH
2912#ifdef DEBUG386
2913
ce8a8b2f 2914/* Debugging routines for md_assemble. */
d3ce72d0 2915static void pte (insn_template *);
40fb9820 2916static void pt (i386_operand_type);
e3bb37b5
L
2917static void pe (expressionS *);
2918static void ps (symbolS *);
252b5132
RH
2919
2920static void
e3bb37b5 2921pi (char *line, i386_insn *x)
252b5132 2922{
09137c09 2923 unsigned int j;
252b5132
RH
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
09f131f2
JH
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2932 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
09137c09 2940 for (j = 0; j < x->operands; j++)
252b5132 2941 {
09137c09
SP
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
252b5132 2944 fprintf (stdout, "\n");
dc821c5f 2945 if (x->types[j].bitfield.reg
09137c09 2946 || x->types[j].bitfield.regmmx
1b54b8d7 2947 || x->types[j].bitfield.regsimd
09137c09
SP
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
252b5132
RH
2958 }
2959}
2960
2961static void
d3ce72d0 2962pte (insn_template *t)
252b5132 2963{
09137c09 2964 unsigned int j;
252b5132 2965 fprintf (stdout, " %d operands ", t->operands);
47926f60 2966 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2969 if (t->opcode_modifier.d)
252b5132 2970 fprintf (stdout, "D");
40fb9820 2971 if (t->opcode_modifier.w)
252b5132
RH
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
09137c09 2974 for (j = 0; j < t->operands; j++)
252b5132 2975 {
09137c09
SP
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
252b5132
RH
2978 fprintf (stdout, "\n");
2979 }
2980}
2981
2982static void
e3bb37b5 2983pe (expressionS *e)
252b5132 2984{
24eab124 2985 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000}
3001
3002static void
e3bb37b5 3003ps (symbolS *s)
252b5132
RH
3004{
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009}
3010
7b81dfbb 3011static struct type_name
252b5132 3012 {
40fb9820
L
3013 i386_operand_type mask;
3014 const char *name;
252b5132 3015 }
7b81dfbb 3016const type_names[] =
252b5132 3017{
40fb9820
L
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3048 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3051 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3052};
3053
3054static void
40fb9820 3055pt (i386_operand_type t)
252b5132 3056{
40fb9820 3057 unsigned int j;
c6fb90c8 3058 i386_operand_type a;
252b5132 3059
40fb9820 3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
0349dc08 3063 if (!operand_type_all_zero (&a))
c6fb90c8
L
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
252b5132
RH
3066 fflush (stdout);
3067}
3068
3069#endif /* DEBUG386 */
3070\f
252b5132 3071static bfd_reloc_code_real_type
3956db08 3072reloc (unsigned int size,
64e74474
AM
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
252b5132 3076{
47926f60 3077 if (other != NO_RELOC)
3956db08 3078 {
91d6fa6a 3079 reloc_howto_type *rel;
3956db08
JB
3080
3081 if (size == 8)
3082 switch (other)
3083 {
64e74474
AM
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
553d1284
L
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
64e74474
AM
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3956db08 3107 }
e05278af 3108
8ce3d284 3109#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
1ab668bf 3113 other = BFD_RELOC_SIZE64;
8fd4256d 3114 if (pcrel)
1ab668bf
AM
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
8fd4256d 3119 }
8ce3d284 3120#endif
8fd4256d 3121
e05278af 3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3124 sign = -1;
3125
91d6fa6a
NC
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3956db08 3128 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3129 else if (size != bfd_get_reloc_size (rel))
3956db08 3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3131 bfd_get_reloc_size (rel),
3956db08 3132 size);
91d6fa6a 3133 else if (pcrel && !rel->pc_relative)
3956db08 3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3136 && !sign)
91d6fa6a 3137 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3138 && sign > 0))
3956db08
JB
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
252b5132
RH
3144
3145 if (pcrel)
3146 {
3e73aa7c 3147 if (!sign)
3956db08 3148 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
d258b828 3153 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3154 case 8: return BFD_RELOC_64_PCREL;
252b5132 3155 }
3956db08 3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3157 }
3158 else
3159 {
3956db08 3160 if (sign > 0)
e5cb08ac 3161 switch (size)
3e73aa7c
JH
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3956db08
JB
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3175 }
3176
0cc9e1d3 3177 return NO_RELOC;
252b5132
RH
3178}
3179
47926f60
KH
3180/* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
252b5132 3185int
e3bb37b5 3186tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3187{
6d249963 3188#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3189 if (!IS_ELF)
31312f95
AM
3190 return 1;
3191
a161fe53
AM
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
252b5132 3197 return 0;
31312f95 3198
8d01d9a9
AJ
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
8fd4256d
L
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
31312f95 3241#endif
252b5132
RH
3242 return 1;
3243}
252b5132 3244
b4cac588 3245static int
e3bb37b5 3246intel_float_operand (const char *mnemonic)
252b5132 3247{
9306ca4a
JB
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
252b5132 3294
9306ca4a 3295 return 1;
252b5132
RH
3296}
3297
c0f3af97
L
3298/* Build the VEX prefix. */
3299
3300static void
d3ce72d0 3301build_vex_prefix (const insn_template *t)
c0f3af97
L
3302{
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
43234a1e
L
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
c0f3af97
L
3314 else
3315 register_specifier = 0xf;
3316
33eaf5de 3317 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3318 operand. */
86fa6981
L
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
fa99fab2 3321 && i.operands == i.reg_operands
7f399153 3322 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3323 && i.tm.opcode_modifier.load
fa99fab2
L
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
9c2799c2 3337 gas_assert (i.rm.mode == 3);
fa99fab2
L
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
539f890d
L
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
10c17abd
JB
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
539f890d 3352 else
10c17abd
JB
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
c0f3af97
L
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3388 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
f88c9eb0 3409 i.vex.length = 3;
f88c9eb0 3410
7f399153 3411 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3412 {
7f399153
L
3413 case VEX0F:
3414 m = 0x1;
80de6e00 3415 i.vex.bytes[0] = 0xc4;
7f399153
L
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
80de6e00 3419 i.vex.bytes[0] = 0xc4;
7f399153
L
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
80de6e00 3423 i.vex.bytes[0] = 0xc4;
7f399153
L
3424 break;
3425 case XOP08:
5dd85c99
SP
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
7f399153
L
3428 break;
3429 case XOP09:
f88c9eb0
SP
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
7f399153
L
3432 break;
3433 case XOP0A:
f88c9eb0
SP
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
7f399153
L
3436 break;
3437 default:
3438 abort ();
f88c9eb0 3439 }
c0f3af97 3440
c0f3af97
L
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
c0f3af97
L
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455}
3456
43234a1e
L
3457/* Build the EVEX prefix. */
3458
3459static void
3460build_evex_prefix (void)
3461{
3462 unsigned int register_specifier;
3463 unsigned int implied_prefix;
3464 unsigned int m, w;
3465 rex_byte vrex_used = 0;
3466
3467 /* Check register specifier. */
3468 if (i.vex.register_specifier)
3469 {
3470 gas_assert ((i.vrex & REX_X) == 0);
3471
3472 register_specifier = i.vex.register_specifier->reg_num;
3473 if ((i.vex.register_specifier->reg_flags & RegRex))
3474 register_specifier += 8;
3475 /* The upper 16 registers are encoded in the fourth byte of the
3476 EVEX prefix. */
3477 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3478 i.vex.bytes[3] = 0x8;
3479 register_specifier = ~register_specifier & 0xf;
3480 }
3481 else
3482 {
3483 register_specifier = 0xf;
3484
3485 /* Encode upper 16 vector index register in the fourth byte of
3486 the EVEX prefix. */
3487 if (!(i.vrex & REX_X))
3488 i.vex.bytes[3] = 0x8;
3489 else
3490 vrex_used |= REX_X;
3491 }
3492
3493 switch ((i.tm.base_opcode >> 8) & 0xff)
3494 {
3495 case 0:
3496 implied_prefix = 0;
3497 break;
3498 case DATA_PREFIX_OPCODE:
3499 implied_prefix = 1;
3500 break;
3501 case REPE_PREFIX_OPCODE:
3502 implied_prefix = 2;
3503 break;
3504 case REPNE_PREFIX_OPCODE:
3505 implied_prefix = 3;
3506 break;
3507 default:
3508 abort ();
3509 }
3510
3511 /* 4 byte EVEX prefix. */
3512 i.vex.length = 4;
3513 i.vex.bytes[0] = 0x62;
3514
3515 /* mmmm bits. */
3516 switch (i.tm.opcode_modifier.vexopcode)
3517 {
3518 case VEX0F:
3519 m = 1;
3520 break;
3521 case VEX0F38:
3522 m = 2;
3523 break;
3524 case VEX0F3A:
3525 m = 3;
3526 break;
3527 default:
3528 abort ();
3529 break;
3530 }
3531
3532 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3533 bits from REX. */
3534 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3535
3536 /* The fifth bit of the second EVEX byte is 1's compliment of the
3537 REX_R bit in VREX. */
3538 if (!(i.vrex & REX_R))
3539 i.vex.bytes[1] |= 0x10;
3540 else
3541 vrex_used |= REX_R;
3542
3543 if ((i.reg_operands + i.imm_operands) == i.operands)
3544 {
3545 /* When all operands are registers, the REX_X bit in REX is not
3546 used. We reuse it to encode the upper 16 registers, which is
3547 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3548 as 1's compliment. */
3549 if ((i.vrex & REX_B))
3550 {
3551 vrex_used |= REX_B;
3552 i.vex.bytes[1] &= ~0x40;
3553 }
3554 }
3555
3556 /* EVEX instructions shouldn't need the REX prefix. */
3557 i.vrex &= ~vrex_used;
3558 gas_assert (i.vrex == 0);
3559
3560 /* Check the REX.W bit. */
3561 w = (i.rex & REX_W) ? 1 : 0;
3562 if (i.tm.opcode_modifier.vexw)
3563 {
3564 if (i.tm.opcode_modifier.vexw == VEXW1)
3565 w = 1;
3566 }
3567 /* If w is not set it means we are dealing with WIG instruction. */
3568 else if (!w)
3569 {
3570 if (evexwig == evexw1)
3571 w = 1;
3572 }
3573
3574 /* Encode the U bit. */
3575 implied_prefix |= 0x4;
3576
3577 /* The third byte of the EVEX prefix. */
3578 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3579
3580 /* The fourth byte of the EVEX prefix. */
3581 /* The zeroing-masking bit. */
3582 if (i.mask && i.mask->zeroing)
3583 i.vex.bytes[3] |= 0x80;
3584
3585 /* Don't always set the broadcast bit if there is no RC. */
3586 if (!i.rounding)
3587 {
3588 /* Encode the vector length. */
3589 unsigned int vec_length;
3590
3591 switch (i.tm.opcode_modifier.evex)
3592 {
3593 case EVEXLIG: /* LL' is ignored */
3594 vec_length = evexlig << 5;
3595 break;
3596 case EVEX128:
3597 vec_length = 0 << 5;
3598 break;
3599 case EVEX256:
3600 vec_length = 1 << 5;
3601 break;
3602 case EVEX512:
3603 vec_length = 2 << 5;
3604 break;
3605 default:
3606 abort ();
3607 break;
3608 }
3609 i.vex.bytes[3] |= vec_length;
3610 /* Encode the broadcast bit. */
3611 if (i.broadcast)
3612 i.vex.bytes[3] |= 0x10;
3613 }
3614 else
3615 {
3616 if (i.rounding->type != saeonly)
3617 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3618 else
d3d3c6db 3619 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3620 }
3621
3622 if (i.mask && i.mask->mask)
3623 i.vex.bytes[3] |= i.mask->mask->reg_num;
3624}
3625
65da13b5
L
3626static void
3627process_immext (void)
3628{
3629 expressionS *exp;
3630
4c692bc7
JB
3631 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3632 && i.operands > 0)
65da13b5 3633 {
4c692bc7
JB
3634 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3635 with an opcode suffix which is coded in the same place as an
3636 8-bit immediate field would be.
3637 Here we check those operands and remove them afterwards. */
65da13b5
L
3638 unsigned int x;
3639
3640 for (x = 0; x < i.operands; x++)
4c692bc7 3641 if (register_number (i.op[x].regs) != x)
65da13b5 3642 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3643 register_prefix, i.op[x].regs->reg_name, x + 1,
3644 i.tm.name);
3645
3646 i.operands = 0;
65da13b5
L
3647 }
3648
9916071f
AP
3649 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3650 {
3651 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3652 suffix which is coded in the same place as an 8-bit immediate
3653 field would be.
3654 Here we check those operands and remove them afterwards. */
3655 unsigned int x;
3656
3657 if (i.operands != 3)
3658 abort();
3659
3660 for (x = 0; x < 2; x++)
3661 if (register_number (i.op[x].regs) != x)
3662 goto bad_register_operand;
3663
3664 /* Check for third operand for mwaitx/monitorx insn. */
3665 if (register_number (i.op[x].regs)
3666 != (x + (i.tm.extension_opcode == 0xfb)))
3667 {
3668bad_register_operand:
3669 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3670 register_prefix, i.op[x].regs->reg_name, x+1,
3671 i.tm.name);
3672 }
3673
3674 i.operands = 0;
3675 }
3676
c0f3af97 3677 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3678 which is coded in the same place as an 8-bit immediate field
3679 would be. Here we fake an 8-bit immediate operand from the
3680 opcode suffix stored in tm.extension_opcode.
3681
c1e679ec 3682 AVX instructions also use this encoding, for some of
c0f3af97 3683 3 argument instructions. */
65da13b5 3684
43234a1e 3685 gas_assert (i.imm_operands <= 1
7ab9ffdd 3686 && (i.operands <= 2
43234a1e
L
3687 || ((i.tm.opcode_modifier.vex
3688 || i.tm.opcode_modifier.evex)
7ab9ffdd 3689 && i.operands <= 4)));
65da13b5
L
3690
3691 exp = &im_expressions[i.imm_operands++];
3692 i.op[i.operands].imms = exp;
3693 i.types[i.operands] = imm8;
3694 i.operands++;
3695 exp->X_op = O_constant;
3696 exp->X_add_number = i.tm.extension_opcode;
3697 i.tm.extension_opcode = None;
3698}
3699
42164a71
L
3700
3701static int
3702check_hle (void)
3703{
3704 switch (i.tm.opcode_modifier.hleprefixok)
3705 {
3706 default:
3707 abort ();
82c2def5 3708 case HLEPrefixNone:
165de32a
L
3709 as_bad (_("invalid instruction `%s' after `%s'"),
3710 i.tm.name, i.hle_prefix);
42164a71 3711 return 0;
82c2def5 3712 case HLEPrefixLock:
42164a71
L
3713 if (i.prefix[LOCK_PREFIX])
3714 return 1;
165de32a 3715 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3716 return 0;
82c2def5 3717 case HLEPrefixAny:
42164a71 3718 return 1;
82c2def5 3719 case HLEPrefixRelease:
42164a71
L
3720 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3721 {
3722 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3723 i.tm.name);
3724 return 0;
3725 }
3726 if (i.mem_operands == 0
3727 || !operand_type_check (i.types[i.operands - 1], anymem))
3728 {
3729 as_bad (_("memory destination needed for instruction `%s'"
3730 " after `xrelease'"), i.tm.name);
3731 return 0;
3732 }
3733 return 1;
3734 }
3735}
3736
b6f8c7c4
L
3737/* Try the shortest encoding by shortening operand size. */
3738
3739static void
3740optimize_encoding (void)
3741{
3742 int j;
3743
3744 if (optimize_for_space
3745 && i.reg_operands == 1
3746 && i.imm_operands == 1
3747 && !i.types[1].bitfield.byte
3748 && i.op[0].imms->X_op == O_constant
3749 && fits_in_imm7 (i.op[0].imms->X_add_number)
3750 && ((i.tm.base_opcode == 0xa8
3751 && i.tm.extension_opcode == None)
3752 || (i.tm.base_opcode == 0xf6
3753 && i.tm.extension_opcode == 0x0)))
3754 {
3755 /* Optimize: -Os:
3756 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3757 */
3758 unsigned int base_regnum = i.op[1].regs->reg_num;
3759 if (flag_code == CODE_64BIT || base_regnum < 4)
3760 {
3761 i.types[1].bitfield.byte = 1;
3762 /* Ignore the suffix. */
3763 i.suffix = 0;
3764 if (base_regnum >= 4
3765 && !(i.op[1].regs->reg_flags & RegRex))
3766 {
3767 /* Handle SP, BP, SI and DI registers. */
3768 if (i.types[1].bitfield.word)
3769 j = 16;
3770 else if (i.types[1].bitfield.dword)
3771 j = 32;
3772 else
3773 j = 48;
3774 i.op[1].regs -= j;
3775 }
3776 }
3777 }
3778 else if (flag_code == CODE_64BIT
3779 && ((i.reg_operands == 1
3780 && i.imm_operands == 1
3781 && i.op[0].imms->X_op == O_constant
3782 && ((i.tm.base_opcode == 0xb0
3783 && i.tm.extension_opcode == None
3784 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3785 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3786 && (((i.tm.base_opcode == 0x24
3787 || i.tm.base_opcode == 0xa8)
3788 && i.tm.extension_opcode == None)
3789 || (i.tm.base_opcode == 0x80
3790 && i.tm.extension_opcode == 0x4)
3791 || ((i.tm.base_opcode == 0xf6
3792 || i.tm.base_opcode == 0xc6)
3793 && i.tm.extension_opcode == 0x0)))))
3794 || (i.reg_operands == 2
3795 && i.op[0].regs == i.op[1].regs
3796 && ((i.tm.base_opcode == 0x30
3797 || i.tm.base_opcode == 0x28)
3798 && i.tm.extension_opcode == None)))
3799 && i.types[1].bitfield.qword)
3800 {
3801 /* Optimize: -O:
3802 andq $imm31, %r64 -> andl $imm31, %r32
3803 testq $imm31, %r64 -> testl $imm31, %r32
3804 xorq %r64, %r64 -> xorl %r32, %r32
3805 subq %r64, %r64 -> subl %r32, %r32
3806 movq $imm31, %r64 -> movl $imm31, %r32
3807 movq $imm32, %r64 -> movl $imm32, %r32
3808 */
3809 i.tm.opcode_modifier.norex64 = 1;
3810 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3811 {
3812 /* Handle
3813 movq $imm31, %r64 -> movl $imm31, %r32
3814 movq $imm32, %r64 -> movl $imm32, %r32
3815 */
3816 i.tm.operand_types[0].bitfield.imm32 = 1;
3817 i.tm.operand_types[0].bitfield.imm32s = 0;
3818 i.tm.operand_types[0].bitfield.imm64 = 0;
3819 i.types[0].bitfield.imm32 = 1;
3820 i.types[0].bitfield.imm32s = 0;
3821 i.types[0].bitfield.imm64 = 0;
3822 i.types[1].bitfield.dword = 1;
3823 i.types[1].bitfield.qword = 0;
3824 if (i.tm.base_opcode == 0xc6)
3825 {
3826 /* Handle
3827 movq $imm31, %r64 -> movl $imm31, %r32
3828 */
3829 i.tm.base_opcode = 0xb0;
3830 i.tm.extension_opcode = None;
3831 i.tm.opcode_modifier.shortform = 1;
3832 i.tm.opcode_modifier.modrm = 0;
3833 }
3834 }
3835 }
3836 else if (optimize > 1
3837 && i.reg_operands == 3
3838 && i.op[0].regs == i.op[1].regs
3839 && !i.types[2].bitfield.xmmword
3840 && (i.tm.opcode_modifier.vex
3841 || (!i.mask
3842 && !i.rounding
3843 && i.tm.opcode_modifier.evex
3844 && cpu_arch_flags.bitfield.cpuavx512vl))
3845 && ((i.tm.base_opcode == 0x55
3846 || i.tm.base_opcode == 0x6655
3847 || i.tm.base_opcode == 0x66df
3848 || i.tm.base_opcode == 0x57
3849 || i.tm.base_opcode == 0x6657
8305403a
L
3850 || i.tm.base_opcode == 0x66ef
3851 || i.tm.base_opcode == 0x66f8
3852 || i.tm.base_opcode == 0x66f9
3853 || i.tm.base_opcode == 0x66fa
3854 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3855 && i.tm.extension_opcode == None))
3856 {
3857 /* Optimize: -O2:
8305403a
L
3858 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3859 vpsubq and vpsubw:
b6f8c7c4
L
3860 EVEX VOP %zmmM, %zmmM, %zmmN
3861 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3862 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3863 EVEX VOP %ymmM, %ymmM, %ymmN
3864 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3865 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3866 VEX VOP %ymmM, %ymmM, %ymmN
3867 -> VEX VOP %xmmM, %xmmM, %xmmN
3868 VOP, one of vpandn and vpxor:
3869 VEX VOP %ymmM, %ymmM, %ymmN
3870 -> VEX VOP %xmmM, %xmmM, %xmmN
3871 VOP, one of vpandnd and vpandnq:
3872 EVEX VOP %zmmM, %zmmM, %zmmN
3873 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3874 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3875 EVEX VOP %ymmM, %ymmM, %ymmN
3876 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3877 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3878 VOP, one of vpxord and vpxorq:
3879 EVEX VOP %zmmM, %zmmM, %zmmN
3880 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 EVEX VOP %ymmM, %ymmM, %ymmN
3883 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3884 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3885 */
3886 if (i.tm.opcode_modifier.evex)
3887 {
3888 /* If only lower 16 vector registers are used, we can use
3889 VEX encoding. */
3890 for (j = 0; j < 3; j++)
3891 if (register_number (i.op[j].regs) > 15)
3892 break;
3893
3894 if (j < 3)
3895 i.tm.opcode_modifier.evex = EVEX128;
3896 else
3897 {
3898 i.tm.opcode_modifier.vex = VEX128;
3899 i.tm.opcode_modifier.vexw = VEXW0;
3900 i.tm.opcode_modifier.evex = 0;
3901 }
3902 }
3903 else
3904 i.tm.opcode_modifier.vex = VEX128;
3905
3906 if (i.tm.opcode_modifier.vex)
3907 for (j = 0; j < 3; j++)
3908 {
3909 i.types[j].bitfield.xmmword = 1;
3910 i.types[j].bitfield.ymmword = 0;
3911 }
3912 }
3913}
3914
252b5132
RH
3915/* This is the guts of the machine-dependent assembler. LINE points to a
3916 machine dependent instruction. This function is supposed to emit
3917 the frags/bytes it assembles to. */
3918
3919void
65da13b5 3920md_assemble (char *line)
252b5132 3921{
40fb9820 3922 unsigned int j;
83b16ac6 3923 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3924 const insn_template *t;
252b5132 3925
47926f60 3926 /* Initialize globals. */
252b5132
RH
3927 memset (&i, '\0', sizeof (i));
3928 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3929 i.reloc[j] = NO_RELOC;
252b5132
RH
3930 memset (disp_expressions, '\0', sizeof (disp_expressions));
3931 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3932 save_stack_p = save_stack;
252b5132
RH
3933
3934 /* First parse an instruction mnemonic & call i386_operand for the operands.
3935 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3936 start of a (possibly prefixed) mnemonic. */
252b5132 3937
29b0f896
AM
3938 line = parse_insn (line, mnemonic);
3939 if (line == NULL)
3940 return;
83b16ac6 3941 mnem_suffix = i.suffix;
252b5132 3942
29b0f896 3943 line = parse_operands (line, mnemonic);
ee86248c 3944 this_operand = -1;
8325cc63
JB
3945 xfree (i.memop1_string);
3946 i.memop1_string = NULL;
29b0f896
AM
3947 if (line == NULL)
3948 return;
252b5132 3949
29b0f896
AM
3950 /* Now we've parsed the mnemonic into a set of templates, and have the
3951 operands at hand. */
3952
3953 /* All intel opcodes have reversed operands except for "bound" and
3954 "enter". We also don't reverse intersegment "jmp" and "call"
3955 instructions with 2 immediate operands so that the immediate segment
050dfa73 3956 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3957 if (intel_syntax
3958 && i.operands > 1
29b0f896 3959 && (strcmp (mnemonic, "bound") != 0)
30123838 3960 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3961 && !(operand_type_check (i.types[0], imm)
3962 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3963 swap_operands ();
3964
ec56d5c0
JB
3965 /* The order of the immediates should be reversed
3966 for 2 immediates extrq and insertq instructions */
3967 if (i.imm_operands == 2
3968 && (strcmp (mnemonic, "extrq") == 0
3969 || strcmp (mnemonic, "insertq") == 0))
3970 swap_2_operands (0, 1);
3971
29b0f896
AM
3972 if (i.imm_operands)
3973 optimize_imm ();
3974
b300c311
L
3975 /* Don't optimize displacement for movabs since it only takes 64bit
3976 displacement. */
3977 if (i.disp_operands
a501d77e 3978 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3979 && (flag_code != CODE_64BIT
3980 || strcmp (mnemonic, "movabs") != 0))
3981 optimize_disp ();
29b0f896
AM
3982
3983 /* Next, we find a template that matches the given insn,
3984 making sure the overlap of the given operands types is consistent
3985 with the template operand types. */
252b5132 3986
83b16ac6 3987 if (!(t = match_template (mnem_suffix)))
29b0f896 3988 return;
252b5132 3989
7bab8ab5 3990 if (sse_check != check_none
81f8a913 3991 && !i.tm.opcode_modifier.noavx
6e3e5c9e 3992 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
3993 && (i.tm.cpu_flags.bitfield.cpusse
3994 || i.tm.cpu_flags.bitfield.cpusse2
3995 || i.tm.cpu_flags.bitfield.cpusse3
3996 || i.tm.cpu_flags.bitfield.cpussse3
3997 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
3998 || i.tm.cpu_flags.bitfield.cpusse4_2
3999 || i.tm.cpu_flags.bitfield.cpupclmul
4000 || i.tm.cpu_flags.bitfield.cpuaes
4001 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4002 {
7bab8ab5 4003 (sse_check == check_warning
daf50ae7
L
4004 ? as_warn
4005 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4006 }
4007
321fd21e
L
4008 /* Zap movzx and movsx suffix. The suffix has been set from
4009 "word ptr" or "byte ptr" on the source operand in Intel syntax
4010 or extracted from mnemonic in AT&T syntax. But we'll use
4011 the destination register to choose the suffix for encoding. */
4012 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4013 {
321fd21e
L
4014 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4015 there is no suffix, the default will be byte extension. */
4016 if (i.reg_operands != 2
4017 && !i.suffix
7ab9ffdd 4018 && intel_syntax)
321fd21e
L
4019 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4020
4021 i.suffix = 0;
cd61ebfe 4022 }
24eab124 4023
40fb9820 4024 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4025 if (!add_prefix (FWAIT_OPCODE))
4026 return;
252b5132 4027
d5de92cf
L
4028 /* Check if REP prefix is OK. */
4029 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4030 {
4031 as_bad (_("invalid instruction `%s' after `%s'"),
4032 i.tm.name, i.rep_prefix);
4033 return;
4034 }
4035
c1ba0266
L
4036 /* Check for lock without a lockable instruction. Destination operand
4037 must be memory unless it is xchg (0x86). */
c32fa91d
L
4038 if (i.prefix[LOCK_PREFIX]
4039 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4040 || i.mem_operands == 0
4041 || (i.tm.base_opcode != 0x86
4042 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4043 {
4044 as_bad (_("expecting lockable instruction after `lock'"));
4045 return;
4046 }
4047
42164a71 4048 /* Check if HLE prefix is OK. */
165de32a 4049 if (i.hle_prefix && !check_hle ())
42164a71
L
4050 return;
4051
7e8b059b
L
4052 /* Check BND prefix. */
4053 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4054 as_bad (_("expecting valid branch instruction after `bnd'"));
4055
04ef582a 4056 /* Check NOTRACK prefix. */
9fef80d6
L
4057 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4058 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4059
327e8c42
JB
4060 if (i.tm.cpu_flags.bitfield.cpumpx)
4061 {
4062 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4063 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4064 else if (flag_code != CODE_16BIT
4065 ? i.prefix[ADDR_PREFIX]
4066 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4067 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4068 }
7e8b059b
L
4069
4070 /* Insert BND prefix. */
4071 if (add_bnd_prefix
4072 && i.tm.opcode_modifier.bndprefixok
4073 && !i.prefix[BND_PREFIX])
4074 add_prefix (BND_PREFIX_OPCODE);
4075
29b0f896 4076 /* Check string instruction segment overrides. */
40fb9820 4077 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4078 {
4079 if (!check_string ())
5dd0794d 4080 return;
fc0763e6 4081 i.disp_operands = 0;
29b0f896 4082 }
5dd0794d 4083
b6f8c7c4
L
4084 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4085 optimize_encoding ();
4086
29b0f896
AM
4087 if (!process_suffix ())
4088 return;
e413e4e9 4089
bc0844ae
L
4090 /* Update operand types. */
4091 for (j = 0; j < i.operands; j++)
4092 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4093
29b0f896
AM
4094 /* Make still unresolved immediate matches conform to size of immediate
4095 given in i.suffix. */
4096 if (!finalize_imm ())
4097 return;
252b5132 4098
40fb9820 4099 if (i.types[0].bitfield.imm1)
29b0f896 4100 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4101
9afe6eb8
L
4102 /* We only need to check those implicit registers for instructions
4103 with 3 operands or less. */
4104 if (i.operands <= 3)
4105 for (j = 0; j < i.operands; j++)
4106 if (i.types[j].bitfield.inoutportreg
4107 || i.types[j].bitfield.shiftcount
1b54b8d7 4108 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4109 i.reg_operands--;
40fb9820 4110
c0f3af97
L
4111 /* ImmExt should be processed after SSE2AVX. */
4112 if (!i.tm.opcode_modifier.sse2avx
4113 && i.tm.opcode_modifier.immext)
65da13b5 4114 process_immext ();
252b5132 4115
29b0f896
AM
4116 /* For insns with operands there are more diddles to do to the opcode. */
4117 if (i.operands)
4118 {
4119 if (!process_operands ())
4120 return;
4121 }
40fb9820 4122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4123 {
4124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4125 as_warn (_("translating to `%sp'"), i.tm.name);
4126 }
252b5132 4127
9e5e5283
L
4128 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4129 {
4130 if (flag_code == CODE_16BIT)
4131 {
4132 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4133 i.tm.name);
4134 return;
4135 }
c0f3af97 4136
9e5e5283
L
4137 if (i.tm.opcode_modifier.vex)
4138 build_vex_prefix (t);
4139 else
4140 build_evex_prefix ();
4141 }
43234a1e 4142
5dd85c99
SP
4143 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4144 instructions may define INT_OPCODE as well, so avoid this corner
4145 case for those instructions that use MODRM. */
4146 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4147 && !i.tm.opcode_modifier.modrm
4148 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4149 {
4150 i.tm.base_opcode = INT3_OPCODE;
4151 i.imm_operands = 0;
4152 }
252b5132 4153
40fb9820
L
4154 if ((i.tm.opcode_modifier.jump
4155 || i.tm.opcode_modifier.jumpbyte
4156 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4157 && i.op[0].disps->X_op == O_constant)
4158 {
4159 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4160 the absolute address given by the constant. Since ix86 jumps and
4161 calls are pc relative, we need to generate a reloc. */
4162 i.op[0].disps->X_add_symbol = &abs_symbol;
4163 i.op[0].disps->X_op = O_symbol;
4164 }
252b5132 4165
40fb9820 4166 if (i.tm.opcode_modifier.rex64)
161a04f6 4167 i.rex |= REX_W;
252b5132 4168
29b0f896
AM
4169 /* For 8 bit registers we need an empty rex prefix. Also if the
4170 instruction already has a prefix, we need to convert old
4171 registers to new ones. */
773f551c 4172
dc821c5f 4173 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4174 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4176 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4177 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4178 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4179 && i.rex != 0))
4180 {
4181 int x;
726c5dcd 4182
29b0f896
AM
4183 i.rex |= REX_OPCODE;
4184 for (x = 0; x < 2; x++)
4185 {
4186 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4187 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4188 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4189 {
29b0f896
AM
4190 /* In case it is "hi" register, give up. */
4191 if (i.op[x].regs->reg_num > 3)
a540244d 4192 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4193 "instruction requiring REX prefix."),
a540244d 4194 register_prefix, i.op[x].regs->reg_name);
773f551c 4195
29b0f896
AM
4196 /* Otherwise it is equivalent to the extended register.
4197 Since the encoding doesn't change this is merely
4198 cosmetic cleanup for debug output. */
4199
4200 i.op[x].regs = i.op[x].regs + 8;
773f551c 4201 }
29b0f896
AM
4202 }
4203 }
773f551c 4204
6b6b6807
L
4205 if (i.rex == 0 && i.rex_encoding)
4206 {
4207 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4208 that uses legacy register. If it is "hi" register, don't add
4209 the REX_OPCODE byte. */
4210 int x;
4211 for (x = 0; x < 2; x++)
4212 if (i.types[x].bitfield.reg
4213 && i.types[x].bitfield.byte
4214 && (i.op[x].regs->reg_flags & RegRex64) == 0
4215 && i.op[x].regs->reg_num > 3)
4216 {
4217 i.rex_encoding = FALSE;
4218 break;
4219 }
4220
4221 if (i.rex_encoding)
4222 i.rex = REX_OPCODE;
4223 }
4224
7ab9ffdd 4225 if (i.rex != 0)
29b0f896
AM
4226 add_prefix (REX_OPCODE | i.rex);
4227
4228 /* We are ready to output the insn. */
4229 output_insn ();
4230}
4231
4232static char *
e3bb37b5 4233parse_insn (char *line, char *mnemonic)
29b0f896
AM
4234{
4235 char *l = line;
4236 char *token_start = l;
4237 char *mnem_p;
5c6af06e 4238 int supported;
d3ce72d0 4239 const insn_template *t;
b6169b20 4240 char *dot_p = NULL;
29b0f896 4241
29b0f896
AM
4242 while (1)
4243 {
4244 mnem_p = mnemonic;
4245 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4246 {
b6169b20
L
4247 if (*mnem_p == '.')
4248 dot_p = mnem_p;
29b0f896
AM
4249 mnem_p++;
4250 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4251 {
29b0f896
AM
4252 as_bad (_("no such instruction: `%s'"), token_start);
4253 return NULL;
4254 }
4255 l++;
4256 }
4257 if (!is_space_char (*l)
4258 && *l != END_OF_INSN
e44823cf
JB
4259 && (intel_syntax
4260 || (*l != PREFIX_SEPARATOR
4261 && *l != ',')))
29b0f896
AM
4262 {
4263 as_bad (_("invalid character %s in mnemonic"),
4264 output_invalid (*l));
4265 return NULL;
4266 }
4267 if (token_start == l)
4268 {
e44823cf 4269 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4270 as_bad (_("expecting prefix; got nothing"));
4271 else
4272 as_bad (_("expecting mnemonic; got nothing"));
4273 return NULL;
4274 }
45288df1 4275
29b0f896 4276 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4277 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4278
29b0f896
AM
4279 if (*l != END_OF_INSN
4280 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4281 && current_templates
40fb9820 4282 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4283 {
c6fb90c8 4284 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4285 {
4286 as_bad ((flag_code != CODE_64BIT
4287 ? _("`%s' is only supported in 64-bit mode")
4288 : _("`%s' is not supported in 64-bit mode")),
4289 current_templates->start->name);
4290 return NULL;
4291 }
29b0f896
AM
4292 /* If we are in 16-bit mode, do not allow addr16 or data16.
4293 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4294 if ((current_templates->start->opcode_modifier.size16
4295 || current_templates->start->opcode_modifier.size32)
29b0f896 4296 && flag_code != CODE_64BIT
40fb9820 4297 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4298 ^ (flag_code == CODE_16BIT)))
4299 {
4300 as_bad (_("redundant %s prefix"),
4301 current_templates->start->name);
4302 return NULL;
45288df1 4303 }
86fa6981 4304 if (current_templates->start->opcode_length == 0)
29b0f896 4305 {
86fa6981
L
4306 /* Handle pseudo prefixes. */
4307 switch (current_templates->start->base_opcode)
4308 {
4309 case 0x0:
4310 /* {disp8} */
4311 i.disp_encoding = disp_encoding_8bit;
4312 break;
4313 case 0x1:
4314 /* {disp32} */
4315 i.disp_encoding = disp_encoding_32bit;
4316 break;
4317 case 0x2:
4318 /* {load} */
4319 i.dir_encoding = dir_encoding_load;
4320 break;
4321 case 0x3:
4322 /* {store} */
4323 i.dir_encoding = dir_encoding_store;
4324 break;
4325 case 0x4:
4326 /* {vex2} */
4327 i.vec_encoding = vex_encoding_vex2;
4328 break;
4329 case 0x5:
4330 /* {vex3} */
4331 i.vec_encoding = vex_encoding_vex3;
4332 break;
4333 case 0x6:
4334 /* {evex} */
4335 i.vec_encoding = vex_encoding_evex;
4336 break;
6b6b6807
L
4337 case 0x7:
4338 /* {rex} */
4339 i.rex_encoding = TRUE;
4340 break;
b6f8c7c4
L
4341 case 0x8:
4342 /* {nooptimize} */
4343 i.no_optimize = TRUE;
4344 break;
86fa6981
L
4345 default:
4346 abort ();
4347 }
4348 }
4349 else
4350 {
4351 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4352 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4353 {
4e9ac44a
L
4354 case PREFIX_EXIST:
4355 return NULL;
4356 case PREFIX_DS:
d777820b 4357 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4358 i.notrack_prefix = current_templates->start->name;
4359 break;
4360 case PREFIX_REP:
4361 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4362 i.hle_prefix = current_templates->start->name;
4363 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4364 i.bnd_prefix = current_templates->start->name;
4365 else
4366 i.rep_prefix = current_templates->start->name;
4367 break;
4368 default:
4369 break;
86fa6981 4370 }
29b0f896
AM
4371 }
4372 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4373 token_start = ++l;
4374 }
4375 else
4376 break;
4377 }
45288df1 4378
30a55f88 4379 if (!current_templates)
b6169b20 4380 {
f8a5c266
L
4381 /* Check if we should swap operand or force 32bit displacement in
4382 encoding. */
30a55f88 4383 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4384 i.dir_encoding = dir_encoding_store;
8d63c93e 4385 else if (mnem_p - 3 == dot_p
a501d77e
L
4386 && dot_p[1] == 'd'
4387 && dot_p[2] == '8')
4388 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4389 else if (mnem_p - 4 == dot_p
f8a5c266
L
4390 && dot_p[1] == 'd'
4391 && dot_p[2] == '3'
4392 && dot_p[3] == '2')
a501d77e 4393 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4394 else
4395 goto check_suffix;
4396 mnem_p = dot_p;
4397 *dot_p = '\0';
d3ce72d0 4398 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4399 }
4400
29b0f896
AM
4401 if (!current_templates)
4402 {
b6169b20 4403check_suffix:
29b0f896
AM
4404 /* See if we can get a match by trimming off a suffix. */
4405 switch (mnem_p[-1])
4406 {
4407 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4408 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4409 i.suffix = SHORT_MNEM_SUFFIX;
4410 else
1a0670f3 4411 /* Fall through. */
29b0f896
AM
4412 case BYTE_MNEM_SUFFIX:
4413 case QWORD_MNEM_SUFFIX:
4414 i.suffix = mnem_p[-1];
4415 mnem_p[-1] = '\0';
d3ce72d0
NC
4416 current_templates = (const templates *) hash_find (op_hash,
4417 mnemonic);
29b0f896
AM
4418 break;
4419 case SHORT_MNEM_SUFFIX:
4420 case LONG_MNEM_SUFFIX:
4421 if (!intel_syntax)
4422 {
4423 i.suffix = mnem_p[-1];
4424 mnem_p[-1] = '\0';
d3ce72d0
NC
4425 current_templates = (const templates *) hash_find (op_hash,
4426 mnemonic);
29b0f896
AM
4427 }
4428 break;
252b5132 4429
29b0f896
AM
4430 /* Intel Syntax. */
4431 case 'd':
4432 if (intel_syntax)
4433 {
9306ca4a 4434 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4435 i.suffix = SHORT_MNEM_SUFFIX;
4436 else
4437 i.suffix = LONG_MNEM_SUFFIX;
4438 mnem_p[-1] = '\0';
d3ce72d0
NC
4439 current_templates = (const templates *) hash_find (op_hash,
4440 mnemonic);
29b0f896
AM
4441 }
4442 break;
4443 }
4444 if (!current_templates)
4445 {
4446 as_bad (_("no such instruction: `%s'"), token_start);
4447 return NULL;
4448 }
4449 }
252b5132 4450
40fb9820
L
4451 if (current_templates->start->opcode_modifier.jump
4452 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4453 {
4454 /* Check for a branch hint. We allow ",pt" and ",pn" for
4455 predict taken and predict not taken respectively.
4456 I'm not sure that branch hints actually do anything on loop
4457 and jcxz insns (JumpByte) for current Pentium4 chips. They
4458 may work in the future and it doesn't hurt to accept them
4459 now. */
4460 if (l[0] == ',' && l[1] == 'p')
4461 {
4462 if (l[2] == 't')
4463 {
4464 if (!add_prefix (DS_PREFIX_OPCODE))
4465 return NULL;
4466 l += 3;
4467 }
4468 else if (l[2] == 'n')
4469 {
4470 if (!add_prefix (CS_PREFIX_OPCODE))
4471 return NULL;
4472 l += 3;
4473 }
4474 }
4475 }
4476 /* Any other comma loses. */
4477 if (*l == ',')
4478 {
4479 as_bad (_("invalid character %s in mnemonic"),
4480 output_invalid (*l));
4481 return NULL;
4482 }
252b5132 4483
29b0f896 4484 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4485 supported = 0;
4486 for (t = current_templates->start; t < current_templates->end; ++t)
4487 {
c0f3af97
L
4488 supported |= cpu_flags_match (t);
4489 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4490 {
4491 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4492 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4493
548d0ee6
JB
4494 return l;
4495 }
29b0f896 4496 }
3629bb00 4497
548d0ee6
JB
4498 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4499 as_bad (flag_code == CODE_64BIT
4500 ? _("`%s' is not supported in 64-bit mode")
4501 : _("`%s' is only supported in 64-bit mode"),
4502 current_templates->start->name);
4503 else
4504 as_bad (_("`%s' is not supported on `%s%s'"),
4505 current_templates->start->name,
4506 cpu_arch_name ? cpu_arch_name : default_arch,
4507 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4508
548d0ee6 4509 return NULL;
29b0f896 4510}
252b5132 4511
29b0f896 4512static char *
e3bb37b5 4513parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4514{
4515 char *token_start;
3138f287 4516
29b0f896
AM
4517 /* 1 if operand is pending after ','. */
4518 unsigned int expecting_operand = 0;
252b5132 4519
29b0f896
AM
4520 /* Non-zero if operand parens not balanced. */
4521 unsigned int paren_not_balanced;
4522
4523 while (*l != END_OF_INSN)
4524 {
4525 /* Skip optional white space before operand. */
4526 if (is_space_char (*l))
4527 ++l;
d02603dc 4528 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4529 {
4530 as_bad (_("invalid character %s before operand %d"),
4531 output_invalid (*l),
4532 i.operands + 1);
4533 return NULL;
4534 }
d02603dc 4535 token_start = l; /* After white space. */
29b0f896
AM
4536 paren_not_balanced = 0;
4537 while (paren_not_balanced || *l != ',')
4538 {
4539 if (*l == END_OF_INSN)
4540 {
4541 if (paren_not_balanced)
4542 {
4543 if (!intel_syntax)
4544 as_bad (_("unbalanced parenthesis in operand %d."),
4545 i.operands + 1);
4546 else
4547 as_bad (_("unbalanced brackets in operand %d."),
4548 i.operands + 1);
4549 return NULL;
4550 }
4551 else
4552 break; /* we are done */
4553 }
d02603dc 4554 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4555 {
4556 as_bad (_("invalid character %s in operand %d"),
4557 output_invalid (*l),
4558 i.operands + 1);
4559 return NULL;
4560 }
4561 if (!intel_syntax)
4562 {
4563 if (*l == '(')
4564 ++paren_not_balanced;
4565 if (*l == ')')
4566 --paren_not_balanced;
4567 }
4568 else
4569 {
4570 if (*l == '[')
4571 ++paren_not_balanced;
4572 if (*l == ']')
4573 --paren_not_balanced;
4574 }
4575 l++;
4576 }
4577 if (l != token_start)
4578 { /* Yes, we've read in another operand. */
4579 unsigned int operand_ok;
4580 this_operand = i.operands++;
4581 if (i.operands > MAX_OPERANDS)
4582 {
4583 as_bad (_("spurious operands; (%d operands/instruction max)"),
4584 MAX_OPERANDS);
4585 return NULL;
4586 }
9d46ce34 4587 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4588 /* Now parse operand adding info to 'i' as we go along. */
4589 END_STRING_AND_SAVE (l);
4590
4591 if (intel_syntax)
4592 operand_ok =
4593 i386_intel_operand (token_start,
4594 intel_float_operand (mnemonic));
4595 else
a7619375 4596 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4597
4598 RESTORE_END_STRING (l);
4599 if (!operand_ok)
4600 return NULL;
4601 }
4602 else
4603 {
4604 if (expecting_operand)
4605 {
4606 expecting_operand_after_comma:
4607 as_bad (_("expecting operand after ','; got nothing"));
4608 return NULL;
4609 }
4610 if (*l == ',')
4611 {
4612 as_bad (_("expecting operand before ','; got nothing"));
4613 return NULL;
4614 }
4615 }
7f3f1ea2 4616
29b0f896
AM
4617 /* Now *l must be either ',' or END_OF_INSN. */
4618 if (*l == ',')
4619 {
4620 if (*++l == END_OF_INSN)
4621 {
4622 /* Just skip it, if it's \n complain. */
4623 goto expecting_operand_after_comma;
4624 }
4625 expecting_operand = 1;
4626 }
4627 }
4628 return l;
4629}
7f3f1ea2 4630
050dfa73 4631static void
4d456e3d 4632swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4633{
4634 union i386_op temp_op;
40fb9820 4635 i386_operand_type temp_type;
050dfa73 4636 enum bfd_reloc_code_real temp_reloc;
4eed87de 4637
050dfa73
MM
4638 temp_type = i.types[xchg2];
4639 i.types[xchg2] = i.types[xchg1];
4640 i.types[xchg1] = temp_type;
4641 temp_op = i.op[xchg2];
4642 i.op[xchg2] = i.op[xchg1];
4643 i.op[xchg1] = temp_op;
4644 temp_reloc = i.reloc[xchg2];
4645 i.reloc[xchg2] = i.reloc[xchg1];
4646 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4647
4648 if (i.mask)
4649 {
4650 if (i.mask->operand == xchg1)
4651 i.mask->operand = xchg2;
4652 else if (i.mask->operand == xchg2)
4653 i.mask->operand = xchg1;
4654 }
4655 if (i.broadcast)
4656 {
4657 if (i.broadcast->operand == xchg1)
4658 i.broadcast->operand = xchg2;
4659 else if (i.broadcast->operand == xchg2)
4660 i.broadcast->operand = xchg1;
4661 }
4662 if (i.rounding)
4663 {
4664 if (i.rounding->operand == xchg1)
4665 i.rounding->operand = xchg2;
4666 else if (i.rounding->operand == xchg2)
4667 i.rounding->operand = xchg1;
4668 }
050dfa73
MM
4669}
4670
29b0f896 4671static void
e3bb37b5 4672swap_operands (void)
29b0f896 4673{
b7c61d9a 4674 switch (i.operands)
050dfa73 4675 {
c0f3af97 4676 case 5:
b7c61d9a 4677 case 4:
4d456e3d 4678 swap_2_operands (1, i.operands - 2);
1a0670f3 4679 /* Fall through. */
b7c61d9a
L
4680 case 3:
4681 case 2:
4d456e3d 4682 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4683 break;
4684 default:
4685 abort ();
29b0f896 4686 }
29b0f896
AM
4687
4688 if (i.mem_operands == 2)
4689 {
4690 const seg_entry *temp_seg;
4691 temp_seg = i.seg[0];
4692 i.seg[0] = i.seg[1];
4693 i.seg[1] = temp_seg;
4694 }
4695}
252b5132 4696
29b0f896
AM
4697/* Try to ensure constant immediates are represented in the smallest
4698 opcode possible. */
4699static void
e3bb37b5 4700optimize_imm (void)
29b0f896
AM
4701{
4702 char guess_suffix = 0;
4703 int op;
252b5132 4704
29b0f896
AM
4705 if (i.suffix)
4706 guess_suffix = i.suffix;
4707 else if (i.reg_operands)
4708 {
4709 /* Figure out a suffix from the last register operand specified.
4710 We can't do this properly yet, ie. excluding InOutPortReg,
4711 but the following works for instructions with immediates.
4712 In any case, we can't set i.suffix yet. */
4713 for (op = i.operands; --op >= 0;)
dc821c5f 4714 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4715 {
40fb9820
L
4716 guess_suffix = BYTE_MNEM_SUFFIX;
4717 break;
4718 }
dc821c5f 4719 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4720 {
40fb9820
L
4721 guess_suffix = WORD_MNEM_SUFFIX;
4722 break;
4723 }
dc821c5f 4724 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4725 {
4726 guess_suffix = LONG_MNEM_SUFFIX;
4727 break;
4728 }
dc821c5f 4729 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4730 {
4731 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4732 break;
252b5132 4733 }
29b0f896
AM
4734 }
4735 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4736 guess_suffix = WORD_MNEM_SUFFIX;
4737
4738 for (op = i.operands; --op >= 0;)
40fb9820 4739 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4740 {
4741 switch (i.op[op].imms->X_op)
252b5132 4742 {
29b0f896
AM
4743 case O_constant:
4744 /* If a suffix is given, this operand may be shortened. */
4745 switch (guess_suffix)
252b5132 4746 {
29b0f896 4747 case LONG_MNEM_SUFFIX:
40fb9820
L
4748 i.types[op].bitfield.imm32 = 1;
4749 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4750 break;
4751 case WORD_MNEM_SUFFIX:
40fb9820
L
4752 i.types[op].bitfield.imm16 = 1;
4753 i.types[op].bitfield.imm32 = 1;
4754 i.types[op].bitfield.imm32s = 1;
4755 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4756 break;
4757 case BYTE_MNEM_SUFFIX:
40fb9820
L
4758 i.types[op].bitfield.imm8 = 1;
4759 i.types[op].bitfield.imm8s = 1;
4760 i.types[op].bitfield.imm16 = 1;
4761 i.types[op].bitfield.imm32 = 1;
4762 i.types[op].bitfield.imm32s = 1;
4763 i.types[op].bitfield.imm64 = 1;
29b0f896 4764 break;
252b5132 4765 }
252b5132 4766
29b0f896
AM
4767 /* If this operand is at most 16 bits, convert it
4768 to a signed 16 bit number before trying to see
4769 whether it will fit in an even smaller size.
4770 This allows a 16-bit operand such as $0xffe0 to
4771 be recognised as within Imm8S range. */
40fb9820 4772 if ((i.types[op].bitfield.imm16)
29b0f896 4773 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4774 {
29b0f896
AM
4775 i.op[op].imms->X_add_number =
4776 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4777 }
a28def75
L
4778#ifdef BFD64
4779 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4780 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4781 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4782 == 0))
4783 {
4784 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4785 ^ ((offsetT) 1 << 31))
4786 - ((offsetT) 1 << 31));
4787 }
a28def75 4788#endif
40fb9820 4789 i.types[op]
c6fb90c8
L
4790 = operand_type_or (i.types[op],
4791 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4792
29b0f896
AM
4793 /* We must avoid matching of Imm32 templates when 64bit
4794 only immediate is available. */
4795 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4796 i.types[op].bitfield.imm32 = 0;
29b0f896 4797 break;
252b5132 4798
29b0f896
AM
4799 case O_absent:
4800 case O_register:
4801 abort ();
4802
4803 /* Symbols and expressions. */
4804 default:
9cd96992
JB
4805 /* Convert symbolic operand to proper sizes for matching, but don't
4806 prevent matching a set of insns that only supports sizes other
4807 than those matching the insn suffix. */
4808 {
40fb9820 4809 i386_operand_type mask, allowed;
d3ce72d0 4810 const insn_template *t;
9cd96992 4811
0dfbf9d7
L
4812 operand_type_set (&mask, 0);
4813 operand_type_set (&allowed, 0);
40fb9820 4814
4eed87de
AM
4815 for (t = current_templates->start;
4816 t < current_templates->end;
4817 ++t)
c6fb90c8
L
4818 allowed = operand_type_or (allowed,
4819 t->operand_types[op]);
9cd96992
JB
4820 switch (guess_suffix)
4821 {
4822 case QWORD_MNEM_SUFFIX:
40fb9820
L
4823 mask.bitfield.imm64 = 1;
4824 mask.bitfield.imm32s = 1;
9cd96992
JB
4825 break;
4826 case LONG_MNEM_SUFFIX:
40fb9820 4827 mask.bitfield.imm32 = 1;
9cd96992
JB
4828 break;
4829 case WORD_MNEM_SUFFIX:
40fb9820 4830 mask.bitfield.imm16 = 1;
9cd96992
JB
4831 break;
4832 case BYTE_MNEM_SUFFIX:
40fb9820 4833 mask.bitfield.imm8 = 1;
9cd96992
JB
4834 break;
4835 default:
9cd96992
JB
4836 break;
4837 }
c6fb90c8 4838 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4839 if (!operand_type_all_zero (&allowed))
c6fb90c8 4840 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4841 }
29b0f896 4842 break;
252b5132 4843 }
29b0f896
AM
4844 }
4845}
47926f60 4846
29b0f896
AM
4847/* Try to use the smallest displacement type too. */
4848static void
e3bb37b5 4849optimize_disp (void)
29b0f896
AM
4850{
4851 int op;
3e73aa7c 4852
29b0f896 4853 for (op = i.operands; --op >= 0;)
40fb9820 4854 if (operand_type_check (i.types[op], disp))
252b5132 4855 {
b300c311 4856 if (i.op[op].disps->X_op == O_constant)
252b5132 4857 {
91d6fa6a 4858 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4859
40fb9820 4860 if (i.types[op].bitfield.disp16
91d6fa6a 4861 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4862 {
4863 /* If this operand is at most 16 bits, convert
4864 to a signed 16 bit number and don't use 64bit
4865 displacement. */
91d6fa6a 4866 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4867 i.types[op].bitfield.disp64 = 0;
b300c311 4868 }
a28def75
L
4869#ifdef BFD64
4870 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4871 if (i.types[op].bitfield.disp32
91d6fa6a 4872 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4873 {
4874 /* If this operand is at most 32 bits, convert
4875 to a signed 32 bit number and don't use 64bit
4876 displacement. */
91d6fa6a
NC
4877 op_disp &= (((offsetT) 2 << 31) - 1);
4878 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4879 i.types[op].bitfield.disp64 = 0;
b300c311 4880 }
a28def75 4881#endif
91d6fa6a 4882 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4883 {
40fb9820
L
4884 i.types[op].bitfield.disp8 = 0;
4885 i.types[op].bitfield.disp16 = 0;
4886 i.types[op].bitfield.disp32 = 0;
4887 i.types[op].bitfield.disp32s = 0;
4888 i.types[op].bitfield.disp64 = 0;
b300c311
L
4889 i.op[op].disps = 0;
4890 i.disp_operands--;
4891 }
4892 else if (flag_code == CODE_64BIT)
4893 {
91d6fa6a 4894 if (fits_in_signed_long (op_disp))
28a9d8f5 4895 {
40fb9820
L
4896 i.types[op].bitfield.disp64 = 0;
4897 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4898 }
0e1147d9 4899 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4900 && fits_in_unsigned_long (op_disp))
40fb9820 4901 i.types[op].bitfield.disp32 = 1;
b300c311 4902 }
40fb9820
L
4903 if ((i.types[op].bitfield.disp32
4904 || i.types[op].bitfield.disp32s
4905 || i.types[op].bitfield.disp16)
b5014f7a 4906 && fits_in_disp8 (op_disp))
40fb9820 4907 i.types[op].bitfield.disp8 = 1;
252b5132 4908 }
67a4f2b7
AO
4909 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4910 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4911 {
4912 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4913 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4914 i.types[op].bitfield.disp8 = 0;
4915 i.types[op].bitfield.disp16 = 0;
4916 i.types[op].bitfield.disp32 = 0;
4917 i.types[op].bitfield.disp32s = 0;
4918 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4919 }
4920 else
b300c311 4921 /* We only support 64bit displacement on constants. */
40fb9820 4922 i.types[op].bitfield.disp64 = 0;
252b5132 4923 }
29b0f896
AM
4924}
4925
6c30d220
L
4926/* Check if operands are valid for the instruction. */
4927
4928static int
4929check_VecOperands (const insn_template *t)
4930{
43234a1e
L
4931 unsigned int op;
4932
6c30d220
L
4933 /* Without VSIB byte, we can't have a vector register for index. */
4934 if (!t->opcode_modifier.vecsib
4935 && i.index_reg
1b54b8d7
JB
4936 && (i.index_reg->reg_type.bitfield.xmmword
4937 || i.index_reg->reg_type.bitfield.ymmword
4938 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4939 {
4940 i.error = unsupported_vector_index_register;
4941 return 1;
4942 }
4943
ad8ecc81
MZ
4944 /* Check if default mask is allowed. */
4945 if (t->opcode_modifier.nodefmask
4946 && (!i.mask || i.mask->mask->reg_num == 0))
4947 {
4948 i.error = no_default_mask;
4949 return 1;
4950 }
4951
7bab8ab5
JB
4952 /* For VSIB byte, we need a vector register for index, and all vector
4953 registers must be distinct. */
4954 if (t->opcode_modifier.vecsib)
4955 {
4956 if (!i.index_reg
6c30d220 4957 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4958 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4959 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4960 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4961 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4962 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4963 {
4964 i.error = invalid_vsib_address;
4965 return 1;
4966 }
4967
43234a1e
L
4968 gas_assert (i.reg_operands == 2 || i.mask);
4969 if (i.reg_operands == 2 && !i.mask)
4970 {
1b54b8d7
JB
4971 gas_assert (i.types[0].bitfield.regsimd);
4972 gas_assert (i.types[0].bitfield.xmmword
4973 || i.types[0].bitfield.ymmword);
4974 gas_assert (i.types[2].bitfield.regsimd);
4975 gas_assert (i.types[2].bitfield.xmmword
4976 || i.types[2].bitfield.ymmword);
43234a1e
L
4977 if (operand_check == check_none)
4978 return 0;
4979 if (register_number (i.op[0].regs)
4980 != register_number (i.index_reg)
4981 && register_number (i.op[2].regs)
4982 != register_number (i.index_reg)
4983 && register_number (i.op[0].regs)
4984 != register_number (i.op[2].regs))
4985 return 0;
4986 if (operand_check == check_error)
4987 {
4988 i.error = invalid_vector_register_set;
4989 return 1;
4990 }
4991 as_warn (_("mask, index, and destination registers should be distinct"));
4992 }
8444f82a
MZ
4993 else if (i.reg_operands == 1 && i.mask)
4994 {
1b54b8d7
JB
4995 if (i.types[1].bitfield.regsimd
4996 && (i.types[1].bitfield.xmmword
4997 || i.types[1].bitfield.ymmword
4998 || i.types[1].bitfield.zmmword)
8444f82a
MZ
4999 && (register_number (i.op[1].regs)
5000 == register_number (i.index_reg)))
5001 {
5002 if (operand_check == check_error)
5003 {
5004 i.error = invalid_vector_register_set;
5005 return 1;
5006 }
5007 if (operand_check != check_none)
5008 as_warn (_("index and destination registers should be distinct"));
5009 }
5010 }
43234a1e 5011 }
7bab8ab5 5012
43234a1e
L
5013 /* Check if broadcast is supported by the instruction and is applied
5014 to the memory operand. */
5015 if (i.broadcast)
5016 {
5017 int broadcasted_opnd_size;
5018
5019 /* Check if specified broadcast is supported in this instruction,
5020 and it's applied to memory operand of DWORD or QWORD type,
5021 depending on VecESize. */
5022 if (i.broadcast->type != t->opcode_modifier.broadcast
5023 || !i.types[i.broadcast->operand].bitfield.mem
5024 || (t->opcode_modifier.vecesize == 0
5025 && !i.types[i.broadcast->operand].bitfield.dword
5026 && !i.types[i.broadcast->operand].bitfield.unspecified)
5027 || (t->opcode_modifier.vecesize == 1
5028 && !i.types[i.broadcast->operand].bitfield.qword
5029 && !i.types[i.broadcast->operand].bitfield.unspecified))
5030 goto bad_broadcast;
5031
5032 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5033 if (i.broadcast->type == BROADCAST_1TO16)
5034 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5035 else if (i.broadcast->type == BROADCAST_1TO8)
5036 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
5037 else if (i.broadcast->type == BROADCAST_1TO4)
5038 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5039 else if (i.broadcast->type == BROADCAST_1TO2)
5040 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
5041 else
5042 goto bad_broadcast;
5043
5044 if ((broadcasted_opnd_size == 256
5045 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5046 || (broadcasted_opnd_size == 512
5047 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5048 {
5049 bad_broadcast:
5050 i.error = unsupported_broadcast;
5051 return 1;
5052 }
5053 }
5054 /* If broadcast is supported in this instruction, we need to check if
5055 operand of one-element size isn't specified without broadcast. */
5056 else if (t->opcode_modifier.broadcast && i.mem_operands)
5057 {
5058 /* Find memory operand. */
5059 for (op = 0; op < i.operands; op++)
5060 if (operand_type_check (i.types[op], anymem))
5061 break;
5062 gas_assert (op < i.operands);
5063 /* Check size of the memory operand. */
5064 if ((t->opcode_modifier.vecesize == 0
5065 && i.types[op].bitfield.dword)
5066 || (t->opcode_modifier.vecesize == 1
5067 && i.types[op].bitfield.qword))
5068 {
5069 i.error = broadcast_needed;
5070 return 1;
5071 }
5072 }
5073
5074 /* Check if requested masking is supported. */
5075 if (i.mask
5076 && (!t->opcode_modifier.masking
5077 || (i.mask->zeroing
5078 && t->opcode_modifier.masking == MERGING_MASKING)))
5079 {
5080 i.error = unsupported_masking;
5081 return 1;
5082 }
5083
5084 /* Check if masking is applied to dest operand. */
5085 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5086 {
5087 i.error = mask_not_on_destination;
5088 return 1;
5089 }
5090
43234a1e
L
5091 /* Check RC/SAE. */
5092 if (i.rounding)
5093 {
5094 if ((i.rounding->type != saeonly
5095 && !t->opcode_modifier.staticrounding)
5096 || (i.rounding->type == saeonly
5097 && (t->opcode_modifier.staticrounding
5098 || !t->opcode_modifier.sae)))
5099 {
5100 i.error = unsupported_rc_sae;
5101 return 1;
5102 }
5103 /* If the instruction has several immediate operands and one of
5104 them is rounding, the rounding operand should be the last
5105 immediate operand. */
5106 if (i.imm_operands > 1
5107 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5108 {
43234a1e 5109 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5110 return 1;
5111 }
6c30d220
L
5112 }
5113
43234a1e 5114 /* Check vector Disp8 operand. */
b5014f7a
JB
5115 if (t->opcode_modifier.disp8memshift
5116 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5117 {
5118 if (i.broadcast)
5119 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5120 else
5121 i.memshift = t->opcode_modifier.disp8memshift;
5122
5123 for (op = 0; op < i.operands; op++)
5124 if (operand_type_check (i.types[op], disp)
5125 && i.op[op].disps->X_op == O_constant)
5126 {
b5014f7a 5127 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5128 {
b5014f7a
JB
5129 i.types[op].bitfield.disp8 = 1;
5130 return 0;
43234a1e 5131 }
b5014f7a 5132 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5133 }
5134 }
b5014f7a
JB
5135
5136 i.memshift = 0;
43234a1e 5137
6c30d220
L
5138 return 0;
5139}
5140
43f3e2ee 5141/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5142 operand types. */
5143
5144static int
5145VEX_check_operands (const insn_template *t)
5146{
86fa6981 5147 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5148 {
86fa6981
L
5149 /* This instruction must be encoded with EVEX prefix. */
5150 if (!t->opcode_modifier.evex)
5151 {
5152 i.error = unsupported;
5153 return 1;
5154 }
5155 return 0;
43234a1e
L
5156 }
5157
a683cc34 5158 if (!t->opcode_modifier.vex)
86fa6981
L
5159 {
5160 /* This instruction template doesn't have VEX prefix. */
5161 if (i.vec_encoding != vex_encoding_default)
5162 {
5163 i.error = unsupported;
5164 return 1;
5165 }
5166 return 0;
5167 }
a683cc34
SP
5168
5169 /* Only check VEX_Imm4, which must be the first operand. */
5170 if (t->operand_types[0].bitfield.vec_imm4)
5171 {
5172 if (i.op[0].imms->X_op != O_constant
5173 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5174 {
a65babc9 5175 i.error = bad_imm4;
891edac4
L
5176 return 1;
5177 }
a683cc34
SP
5178
5179 /* Turn off Imm8 so that update_imm won't complain. */
5180 i.types[0] = vec_imm4;
5181 }
5182
5183 return 0;
5184}
5185
d3ce72d0 5186static const insn_template *
83b16ac6 5187match_template (char mnem_suffix)
29b0f896
AM
5188{
5189 /* Points to template once we've found it. */
d3ce72d0 5190 const insn_template *t;
40fb9820 5191 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5192 i386_operand_type overlap4;
29b0f896 5193 unsigned int found_reverse_match;
83b16ac6 5194 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5195 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5196 int addr_prefix_disp;
a5c311ca 5197 unsigned int j;
3629bb00 5198 unsigned int found_cpu_match;
45664ddb 5199 unsigned int check_register;
5614d22c 5200 enum i386_error specific_error = 0;
29b0f896 5201
c0f3af97
L
5202#if MAX_OPERANDS != 5
5203# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5204#endif
5205
29b0f896 5206 found_reverse_match = 0;
539e75ad 5207 addr_prefix_disp = -1;
40fb9820
L
5208
5209 memset (&suffix_check, 0, sizeof (suffix_check));
5210 if (i.suffix == BYTE_MNEM_SUFFIX)
5211 suffix_check.no_bsuf = 1;
5212 else if (i.suffix == WORD_MNEM_SUFFIX)
5213 suffix_check.no_wsuf = 1;
5214 else if (i.suffix == SHORT_MNEM_SUFFIX)
5215 suffix_check.no_ssuf = 1;
5216 else if (i.suffix == LONG_MNEM_SUFFIX)
5217 suffix_check.no_lsuf = 1;
5218 else if (i.suffix == QWORD_MNEM_SUFFIX)
5219 suffix_check.no_qsuf = 1;
5220 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5221 suffix_check.no_ldsuf = 1;
29b0f896 5222
83b16ac6
JB
5223 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5224 if (intel_syntax)
5225 {
5226 switch (mnem_suffix)
5227 {
5228 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5229 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5230 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5231 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5232 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5233 }
5234 }
5235
01559ecc
L
5236 /* Must have right number of operands. */
5237 i.error = number_of_operands_mismatch;
5238
45aa61fe 5239 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5240 {
539e75ad
L
5241 addr_prefix_disp = -1;
5242
29b0f896
AM
5243 if (i.operands != t->operands)
5244 continue;
5245
50aecf8c 5246 /* Check processor support. */
a65babc9 5247 i.error = unsupported;
c0f3af97
L
5248 found_cpu_match = (cpu_flags_match (t)
5249 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5250 if (!found_cpu_match)
5251 continue;
5252
e1d4d893 5253 /* Check old gcc support. */
a65babc9 5254 i.error = old_gcc_only;
e1d4d893
L
5255 if (!old_gcc && t->opcode_modifier.oldgcc)
5256 continue;
5257
5258 /* Check AT&T mnemonic. */
a65babc9 5259 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5260 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5261 continue;
5262
e92bae62 5263 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5264 i.error = unsupported_syntax;
5c07affc 5265 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5266 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5267 || (intel64 && t->opcode_modifier.amd64)
5268 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5269 continue;
5270
20592a94 5271 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5272 i.error = invalid_instruction_suffix;
567e4e96
L
5273 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5274 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5275 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5276 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5277 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5278 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5279 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5280 continue;
83b16ac6
JB
5281 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5282 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5283 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5284 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5285 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5286 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5287 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5288 continue;
29b0f896 5289
5c07affc 5290 if (!operand_size_match (t))
7d5e4556 5291 continue;
539e75ad 5292
5c07affc
L
5293 for (j = 0; j < MAX_OPERANDS; j++)
5294 operand_types[j] = t->operand_types[j];
5295
45aa61fe
AM
5296 /* In general, don't allow 64-bit operands in 32-bit mode. */
5297 if (i.suffix == QWORD_MNEM_SUFFIX
5298 && flag_code != CODE_64BIT
5299 && (intel_syntax
40fb9820 5300 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5301 && !intel_float_operand (t->name))
5302 : intel_float_operand (t->name) != 2)
40fb9820 5303 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5304 && !operand_types[0].bitfield.regsimd)
40fb9820 5305 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5306 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5307 && (t->base_opcode != 0x0fc7
5308 || t->extension_opcode != 1 /* cmpxchg8b */))
5309 continue;
5310
192dc9c6
JB
5311 /* In general, don't allow 32-bit operands on pre-386. */
5312 else if (i.suffix == LONG_MNEM_SUFFIX
5313 && !cpu_arch_flags.bitfield.cpui386
5314 && (intel_syntax
5315 ? (!t->opcode_modifier.ignoresize
5316 && !intel_float_operand (t->name))
5317 : intel_float_operand (t->name) != 2)
5318 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5319 && !operand_types[0].bitfield.regsimd)
192dc9c6 5320 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5321 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5322 continue;
5323
29b0f896 5324 /* Do not verify operands when there are none. */
50aecf8c 5325 else
29b0f896 5326 {
c6fb90c8 5327 if (!t->operands)
2dbab7d5
L
5328 /* We've found a match; break out of loop. */
5329 break;
29b0f896 5330 }
252b5132 5331
539e75ad
L
5332 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5333 into Disp32/Disp16/Disp32 operand. */
5334 if (i.prefix[ADDR_PREFIX] != 0)
5335 {
40fb9820 5336 /* There should be only one Disp operand. */
539e75ad
L
5337 switch (flag_code)
5338 {
5339 case CODE_16BIT:
40fb9820
L
5340 for (j = 0; j < MAX_OPERANDS; j++)
5341 {
5342 if (operand_types[j].bitfield.disp16)
5343 {
5344 addr_prefix_disp = j;
5345 operand_types[j].bitfield.disp32 = 1;
5346 operand_types[j].bitfield.disp16 = 0;
5347 break;
5348 }
5349 }
539e75ad
L
5350 break;
5351 case CODE_32BIT:
40fb9820
L
5352 for (j = 0; j < MAX_OPERANDS; j++)
5353 {
5354 if (operand_types[j].bitfield.disp32)
5355 {
5356 addr_prefix_disp = j;
5357 operand_types[j].bitfield.disp32 = 0;
5358 operand_types[j].bitfield.disp16 = 1;
5359 break;
5360 }
5361 }
539e75ad
L
5362 break;
5363 case CODE_64BIT:
40fb9820
L
5364 for (j = 0; j < MAX_OPERANDS; j++)
5365 {
5366 if (operand_types[j].bitfield.disp64)
5367 {
5368 addr_prefix_disp = j;
5369 operand_types[j].bitfield.disp64 = 0;
5370 operand_types[j].bitfield.disp32 = 1;
5371 break;
5372 }
5373 }
539e75ad
L
5374 break;
5375 }
539e75ad
L
5376 }
5377
02a86693
L
5378 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5379 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5380 continue;
5381
56ffb741
L
5382 /* We check register size if needed. */
5383 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5384 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5385 switch (t->operands)
5386 {
5387 case 1:
40fb9820 5388 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5389 continue;
5390 break;
5391 case 2:
33eaf5de 5392 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5393 only in 32bit mode and we can use opcode 0x90. In 64bit
5394 mode, we can't use 0x90 for xchg %eax, %eax since it should
5395 zero-extend %eax to %rax. */
5396 if (flag_code == CODE_64BIT
5397 && t->base_opcode == 0x90
0dfbf9d7
L
5398 && operand_type_equal (&i.types [0], &acc32)
5399 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5400 continue;
86fa6981
L
5401 /* If we want store form, we reverse direction of operands. */
5402 if (i.dir_encoding == dir_encoding_store
5403 && t->opcode_modifier.d)
5404 goto check_reverse;
1a0670f3 5405 /* Fall through. */
b6169b20 5406
29b0f896 5407 case 3:
86fa6981
L
5408 /* If we want store form, we skip the current load. */
5409 if (i.dir_encoding == dir_encoding_store
5410 && i.mem_operands == 0
5411 && t->opcode_modifier.load)
fa99fab2 5412 continue;
1a0670f3 5413 /* Fall through. */
f48ff2ae 5414 case 4:
c0f3af97 5415 case 5:
c6fb90c8 5416 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5417 if (!operand_type_match (overlap0, i.types[0])
5418 || !operand_type_match (overlap1, i.types[1])
45664ddb 5419 || (check_register
dc821c5f 5420 && !operand_type_register_match (i.types[0],
40fb9820 5421 operand_types[0],
dc821c5f 5422 i.types[1],
40fb9820 5423 operand_types[1])))
29b0f896
AM
5424 {
5425 /* Check if other direction is valid ... */
38e314eb 5426 if (!t->opcode_modifier.d)
29b0f896
AM
5427 continue;
5428
b6169b20 5429check_reverse:
29b0f896 5430 /* Try reversing direction of operands. */
c6fb90c8
L
5431 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5432 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5433 if (!operand_type_match (overlap0, i.types[0])
5434 || !operand_type_match (overlap1, i.types[1])
45664ddb 5435 || (check_register
dc821c5f 5436 && !operand_type_register_match (i.types[0],
45664ddb 5437 operand_types[1],
45664ddb
L
5438 i.types[1],
5439 operand_types[0])))
29b0f896
AM
5440 {
5441 /* Does not match either direction. */
5442 continue;
5443 }
38e314eb 5444 /* found_reverse_match holds which of D or FloatR
29b0f896 5445 we've found. */
38e314eb
JB
5446 if (!t->opcode_modifier.d)
5447 found_reverse_match = 0;
5448 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5449 found_reverse_match = Opcode_FloatD;
5450 else
38e314eb 5451 found_reverse_match = Opcode_D;
40fb9820 5452 if (t->opcode_modifier.floatr)
8a2ed489 5453 found_reverse_match |= Opcode_FloatR;
29b0f896 5454 }
f48ff2ae 5455 else
29b0f896 5456 {
f48ff2ae 5457 /* Found a forward 2 operand match here. */
d1cbb4db
L
5458 switch (t->operands)
5459 {
c0f3af97
L
5460 case 5:
5461 overlap4 = operand_type_and (i.types[4],
5462 operand_types[4]);
1a0670f3 5463 /* Fall through. */
d1cbb4db 5464 case 4:
c6fb90c8
L
5465 overlap3 = operand_type_and (i.types[3],
5466 operand_types[3]);
1a0670f3 5467 /* Fall through. */
d1cbb4db 5468 case 3:
c6fb90c8
L
5469 overlap2 = operand_type_and (i.types[2],
5470 operand_types[2]);
d1cbb4db
L
5471 break;
5472 }
29b0f896 5473
f48ff2ae
L
5474 switch (t->operands)
5475 {
c0f3af97
L
5476 case 5:
5477 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5478 || !operand_type_register_match (i.types[3],
c0f3af97 5479 operand_types[3],
c0f3af97
L
5480 i.types[4],
5481 operand_types[4]))
5482 continue;
1a0670f3 5483 /* Fall through. */
f48ff2ae 5484 case 4:
40fb9820 5485 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5486 || (check_register
dc821c5f 5487 && !operand_type_register_match (i.types[2],
45664ddb 5488 operand_types[2],
45664ddb
L
5489 i.types[3],
5490 operand_types[3])))
f48ff2ae 5491 continue;
1a0670f3 5492 /* Fall through. */
f48ff2ae
L
5493 case 3:
5494 /* Here we make use of the fact that there are no
23e42951 5495 reverse match 3 operand instructions. */
40fb9820 5496 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5497 || (check_register
23e42951
JB
5498 && (!operand_type_register_match (i.types[0],
5499 operand_types[0],
5500 i.types[2],
5501 operand_types[2])
5502 || !operand_type_register_match (i.types[1],
5503 operand_types[1],
5504 i.types[2],
5505 operand_types[2]))))
f48ff2ae
L
5506 continue;
5507 break;
5508 }
29b0f896 5509 }
f48ff2ae 5510 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5511 slip through to break. */
5512 }
3629bb00 5513 if (!found_cpu_match)
29b0f896
AM
5514 {
5515 found_reverse_match = 0;
5516 continue;
5517 }
c0f3af97 5518
5614d22c
JB
5519 /* Check if vector and VEX operands are valid. */
5520 if (check_VecOperands (t) || VEX_check_operands (t))
5521 {
5522 specific_error = i.error;
5523 continue;
5524 }
a683cc34 5525
29b0f896
AM
5526 /* We've found a match; break out of loop. */
5527 break;
5528 }
5529
5530 if (t == current_templates->end)
5531 {
5532 /* We found no match. */
a65babc9 5533 const char *err_msg;
5614d22c 5534 switch (specific_error ? specific_error : i.error)
a65babc9
L
5535 {
5536 default:
5537 abort ();
86e026a4 5538 case operand_size_mismatch:
a65babc9
L
5539 err_msg = _("operand size mismatch");
5540 break;
5541 case operand_type_mismatch:
5542 err_msg = _("operand type mismatch");
5543 break;
5544 case register_type_mismatch:
5545 err_msg = _("register type mismatch");
5546 break;
5547 case number_of_operands_mismatch:
5548 err_msg = _("number of operands mismatch");
5549 break;
5550 case invalid_instruction_suffix:
5551 err_msg = _("invalid instruction suffix");
5552 break;
5553 case bad_imm4:
4a2608e3 5554 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5555 break;
5556 case old_gcc_only:
5557 err_msg = _("only supported with old gcc");
5558 break;
5559 case unsupported_with_intel_mnemonic:
5560 err_msg = _("unsupported with Intel mnemonic");
5561 break;
5562 case unsupported_syntax:
5563 err_msg = _("unsupported syntax");
5564 break;
5565 case unsupported:
35262a23 5566 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5567 current_templates->start->name);
5568 return NULL;
6c30d220
L
5569 case invalid_vsib_address:
5570 err_msg = _("invalid VSIB address");
5571 break;
7bab8ab5
JB
5572 case invalid_vector_register_set:
5573 err_msg = _("mask, index, and destination registers must be distinct");
5574 break;
6c30d220
L
5575 case unsupported_vector_index_register:
5576 err_msg = _("unsupported vector index register");
5577 break;
43234a1e
L
5578 case unsupported_broadcast:
5579 err_msg = _("unsupported broadcast");
5580 break;
5581 case broadcast_not_on_src_operand:
5582 err_msg = _("broadcast not on source memory operand");
5583 break;
5584 case broadcast_needed:
5585 err_msg = _("broadcast is needed for operand of such type");
5586 break;
5587 case unsupported_masking:
5588 err_msg = _("unsupported masking");
5589 break;
5590 case mask_not_on_destination:
5591 err_msg = _("mask not on destination operand");
5592 break;
5593 case no_default_mask:
5594 err_msg = _("default mask isn't allowed");
5595 break;
5596 case unsupported_rc_sae:
5597 err_msg = _("unsupported static rounding/sae");
5598 break;
5599 case rc_sae_operand_not_last_imm:
5600 if (intel_syntax)
5601 err_msg = _("RC/SAE operand must precede immediate operands");
5602 else
5603 err_msg = _("RC/SAE operand must follow immediate operands");
5604 break;
5605 case invalid_register_operand:
5606 err_msg = _("invalid register operand");
5607 break;
a65babc9
L
5608 }
5609 as_bad (_("%s for `%s'"), err_msg,
891edac4 5610 current_templates->start->name);
fa99fab2 5611 return NULL;
29b0f896 5612 }
252b5132 5613
29b0f896
AM
5614 if (!quiet_warnings)
5615 {
5616 if (!intel_syntax
40fb9820
L
5617 && (i.types[0].bitfield.jumpabsolute
5618 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5619 {
5620 as_warn (_("indirect %s without `*'"), t->name);
5621 }
5622
40fb9820
L
5623 if (t->opcode_modifier.isprefix
5624 && t->opcode_modifier.ignoresize)
29b0f896
AM
5625 {
5626 /* Warn them that a data or address size prefix doesn't
5627 affect assembly of the next line of code. */
5628 as_warn (_("stand-alone `%s' prefix"), t->name);
5629 }
5630 }
5631
5632 /* Copy the template we found. */
5633 i.tm = *t;
539e75ad
L
5634
5635 if (addr_prefix_disp != -1)
5636 i.tm.operand_types[addr_prefix_disp]
5637 = operand_types[addr_prefix_disp];
5638
29b0f896
AM
5639 if (found_reverse_match)
5640 {
5641 /* If we found a reverse match we must alter the opcode
5642 direction bit. found_reverse_match holds bits to change
5643 (different for int & float insns). */
5644
5645 i.tm.base_opcode ^= found_reverse_match;
5646
539e75ad
L
5647 i.tm.operand_types[0] = operand_types[1];
5648 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5649 }
5650
fa99fab2 5651 return t;
29b0f896
AM
5652}
5653
5654static int
e3bb37b5 5655check_string (void)
29b0f896 5656{
40fb9820
L
5657 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5658 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5659 {
5660 if (i.seg[0] != NULL && i.seg[0] != &es)
5661 {
a87af027 5662 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5663 i.tm.name,
a87af027
JB
5664 mem_op + 1,
5665 register_prefix);
29b0f896
AM
5666 return 0;
5667 }
5668 /* There's only ever one segment override allowed per instruction.
5669 This instruction possibly has a legal segment override on the
5670 second operand, so copy the segment to where non-string
5671 instructions store it, allowing common code. */
5672 i.seg[0] = i.seg[1];
5673 }
40fb9820 5674 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5675 {
5676 if (i.seg[1] != NULL && i.seg[1] != &es)
5677 {
a87af027 5678 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5679 i.tm.name,
a87af027
JB
5680 mem_op + 2,
5681 register_prefix);
29b0f896
AM
5682 return 0;
5683 }
5684 }
5685 return 1;
5686}
5687
5688static int
543613e9 5689process_suffix (void)
29b0f896
AM
5690{
5691 /* If matched instruction specifies an explicit instruction mnemonic
5692 suffix, use it. */
40fb9820
L
5693 if (i.tm.opcode_modifier.size16)
5694 i.suffix = WORD_MNEM_SUFFIX;
5695 else if (i.tm.opcode_modifier.size32)
5696 i.suffix = LONG_MNEM_SUFFIX;
5697 else if (i.tm.opcode_modifier.size64)
5698 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5699 else if (i.reg_operands)
5700 {
5701 /* If there's no instruction mnemonic suffix we try to invent one
5702 based on register operands. */
5703 if (!i.suffix)
5704 {
5705 /* We take i.suffix from the last register operand specified,
5706 Destination register type is more significant than source
381d071f
L
5707 register type. crc32 in SSE4.2 prefers source register
5708 type. */
5709 if (i.tm.base_opcode == 0xf20f38f1)
5710 {
dc821c5f 5711 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5712 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5713 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5714 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5715 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5716 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5717 }
9344ff29 5718 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5719 {
dc821c5f 5720 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5721 i.suffix = BYTE_MNEM_SUFFIX;
5722 }
381d071f
L
5723
5724 if (!i.suffix)
5725 {
5726 int op;
5727
20592a94
L
5728 if (i.tm.base_opcode == 0xf20f38f1
5729 || i.tm.base_opcode == 0xf20f38f0)
5730 {
5731 /* We have to know the operand size for crc32. */
5732 as_bad (_("ambiguous memory operand size for `%s`"),
5733 i.tm.name);
5734 return 0;
5735 }
5736
381d071f 5737 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5738 if (!i.tm.operand_types[op].bitfield.inoutportreg
5739 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5740 {
8819ada6
JB
5741 if (!i.types[op].bitfield.reg)
5742 continue;
5743 if (i.types[op].bitfield.byte)
5744 i.suffix = BYTE_MNEM_SUFFIX;
5745 else if (i.types[op].bitfield.word)
5746 i.suffix = WORD_MNEM_SUFFIX;
5747 else if (i.types[op].bitfield.dword)
5748 i.suffix = LONG_MNEM_SUFFIX;
5749 else if (i.types[op].bitfield.qword)
5750 i.suffix = QWORD_MNEM_SUFFIX;
5751 else
5752 continue;
5753 break;
381d071f
L
5754 }
5755 }
29b0f896
AM
5756 }
5757 else if (i.suffix == BYTE_MNEM_SUFFIX)
5758 {
2eb952a4
L
5759 if (intel_syntax
5760 && i.tm.opcode_modifier.ignoresize
5761 && i.tm.opcode_modifier.no_bsuf)
5762 i.suffix = 0;
5763 else if (!check_byte_reg ())
29b0f896
AM
5764 return 0;
5765 }
5766 else if (i.suffix == LONG_MNEM_SUFFIX)
5767 {
2eb952a4
L
5768 if (intel_syntax
5769 && i.tm.opcode_modifier.ignoresize
5770 && i.tm.opcode_modifier.no_lsuf)
5771 i.suffix = 0;
5772 else if (!check_long_reg ())
29b0f896
AM
5773 return 0;
5774 }
5775 else if (i.suffix == QWORD_MNEM_SUFFIX)
5776 {
955e1e6a
L
5777 if (intel_syntax
5778 && i.tm.opcode_modifier.ignoresize
5779 && i.tm.opcode_modifier.no_qsuf)
5780 i.suffix = 0;
5781 else if (!check_qword_reg ())
29b0f896
AM
5782 return 0;
5783 }
5784 else if (i.suffix == WORD_MNEM_SUFFIX)
5785 {
2eb952a4
L
5786 if (intel_syntax
5787 && i.tm.opcode_modifier.ignoresize
5788 && i.tm.opcode_modifier.no_wsuf)
5789 i.suffix = 0;
5790 else if (!check_word_reg ())
29b0f896
AM
5791 return 0;
5792 }
c0f3af97 5793 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5794 || i.suffix == YMMWORD_MNEM_SUFFIX
5795 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5796 {
43234a1e 5797 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5798 should check if it is a valid suffix. */
5799 }
40fb9820 5800 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5801 /* Do nothing if the instruction is going to ignore the prefix. */
5802 ;
5803 else
5804 abort ();
5805 }
40fb9820 5806 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5807 && !i.suffix
5808 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5809 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5810 {
5811 i.suffix = stackop_size;
5812 }
9306ca4a
JB
5813 else if (intel_syntax
5814 && !i.suffix
40fb9820
L
5815 && (i.tm.operand_types[0].bitfield.jumpabsolute
5816 || i.tm.opcode_modifier.jumpbyte
5817 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5818 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5819 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5820 {
5821 switch (flag_code)
5822 {
5823 case CODE_64BIT:
40fb9820 5824 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5825 {
5826 i.suffix = QWORD_MNEM_SUFFIX;
5827 break;
5828 }
1a0670f3 5829 /* Fall through. */
9306ca4a 5830 case CODE_32BIT:
40fb9820 5831 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5832 i.suffix = LONG_MNEM_SUFFIX;
5833 break;
5834 case CODE_16BIT:
40fb9820 5835 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5836 i.suffix = WORD_MNEM_SUFFIX;
5837 break;
5838 }
5839 }
252b5132 5840
9306ca4a 5841 if (!i.suffix)
29b0f896 5842 {
9306ca4a
JB
5843 if (!intel_syntax)
5844 {
40fb9820 5845 if (i.tm.opcode_modifier.w)
9306ca4a 5846 {
4eed87de
AM
5847 as_bad (_("no instruction mnemonic suffix given and "
5848 "no register operands; can't size instruction"));
9306ca4a
JB
5849 return 0;
5850 }
5851 }
5852 else
5853 {
40fb9820 5854 unsigned int suffixes;
7ab9ffdd 5855
40fb9820
L
5856 suffixes = !i.tm.opcode_modifier.no_bsuf;
5857 if (!i.tm.opcode_modifier.no_wsuf)
5858 suffixes |= 1 << 1;
5859 if (!i.tm.opcode_modifier.no_lsuf)
5860 suffixes |= 1 << 2;
fc4adea1 5861 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5862 suffixes |= 1 << 3;
5863 if (!i.tm.opcode_modifier.no_ssuf)
5864 suffixes |= 1 << 4;
c2b9da16 5865 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5866 suffixes |= 1 << 5;
5867
5868 /* There are more than suffix matches. */
5869 if (i.tm.opcode_modifier.w
9306ca4a 5870 || ((suffixes & (suffixes - 1))
40fb9820
L
5871 && !i.tm.opcode_modifier.defaultsize
5872 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5873 {
5874 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5875 return 0;
5876 }
5877 }
29b0f896 5878 }
252b5132 5879
9306ca4a
JB
5880 /* Change the opcode based on the operand size given by i.suffix;
5881 We don't need to change things for byte insns. */
5882
582d5edd
L
5883 if (i.suffix
5884 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5885 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5886 && i.suffix != YMMWORD_MNEM_SUFFIX
5887 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5888 {
5889 /* It's not a byte, select word/dword operation. */
40fb9820 5890 if (i.tm.opcode_modifier.w)
29b0f896 5891 {
40fb9820 5892 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5893 i.tm.base_opcode |= 8;
5894 else
5895 i.tm.base_opcode |= 1;
5896 }
0f3f3d8b 5897
29b0f896
AM
5898 /* Now select between word & dword operations via the operand
5899 size prefix, except for instructions that will ignore this
5900 prefix anyway. */
ca61edf2 5901 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5902 {
ca61edf2
L
5903 /* The address size override prefix changes the size of the
5904 first operand. */
40fb9820 5905 if ((flag_code == CODE_32BIT
dc821c5f 5906 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5907 || (flag_code != CODE_32BIT
dc821c5f 5908 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5909 if (!add_prefix (ADDR_PREFIX_OPCODE))
5910 return 0;
5911 }
5912 else if (i.suffix != QWORD_MNEM_SUFFIX
5913 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5914 && !i.tm.opcode_modifier.ignoresize
5915 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5916 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5917 || (flag_code == CODE_64BIT
40fb9820 5918 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5919 {
5920 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5921
40fb9820 5922 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5923 prefix = ADDR_PREFIX_OPCODE;
252b5132 5924
29b0f896
AM
5925 if (!add_prefix (prefix))
5926 return 0;
24eab124 5927 }
252b5132 5928
29b0f896
AM
5929 /* Set mode64 for an operand. */
5930 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5931 && flag_code == CODE_64BIT
40fb9820 5932 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5933 {
5934 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5935 need rex64. cmpxchg8b is also a special case. */
5936 if (! (i.operands == 2
5937 && i.tm.base_opcode == 0x90
5938 && i.tm.extension_opcode == None
0dfbf9d7
L
5939 && operand_type_equal (&i.types [0], &acc64)
5940 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5941 && ! (i.operands == 1
5942 && i.tm.base_opcode == 0xfc7
5943 && i.tm.extension_opcode == 1
40fb9820
L
5944 && !operand_type_check (i.types [0], reg)
5945 && operand_type_check (i.types [0], anymem)))
f6bee062 5946 i.rex |= REX_W;
46e883c5 5947 }
3e73aa7c 5948
29b0f896
AM
5949 /* Size floating point instruction. */
5950 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5951 if (i.tm.opcode_modifier.floatmf)
543613e9 5952 i.tm.base_opcode ^= 4;
29b0f896 5953 }
7ecd2f8b 5954
29b0f896
AM
5955 return 1;
5956}
3e73aa7c 5957
29b0f896 5958static int
543613e9 5959check_byte_reg (void)
29b0f896
AM
5960{
5961 int op;
543613e9 5962
29b0f896
AM
5963 for (op = i.operands; --op >= 0;)
5964 {
dc821c5f
JB
5965 /* Skip non-register operands. */
5966 if (!i.types[op].bitfield.reg)
5967 continue;
5968
29b0f896
AM
5969 /* If this is an eight bit register, it's OK. If it's the 16 or
5970 32 bit version of an eight bit register, we will just use the
5971 low portion, and that's OK too. */
dc821c5f 5972 if (i.types[op].bitfield.byte)
29b0f896
AM
5973 continue;
5974
5a819eb9
JB
5975 /* I/O port address operands are OK too. */
5976 if (i.tm.operand_types[op].bitfield.inoutportreg)
5977 continue;
5978
9344ff29
L
5979 /* crc32 doesn't generate this warning. */
5980 if (i.tm.base_opcode == 0xf20f38f0)
5981 continue;
5982
dc821c5f
JB
5983 if ((i.types[op].bitfield.word
5984 || i.types[op].bitfield.dword
5985 || i.types[op].bitfield.qword)
5a819eb9
JB
5986 && i.op[op].regs->reg_num < 4
5987 /* Prohibit these changes in 64bit mode, since the lowering
5988 would be more complicated. */
5989 && flag_code != CODE_64BIT)
29b0f896 5990 {
29b0f896 5991#if REGISTER_WARNINGS
5a819eb9 5992 if (!quiet_warnings)
a540244d
L
5993 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5994 register_prefix,
dc821c5f 5995 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
5996 ? REGNAM_AL - REGNAM_AX
5997 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5998 register_prefix,
29b0f896
AM
5999 i.op[op].regs->reg_name,
6000 i.suffix);
6001#endif
6002 continue;
6003 }
6004 /* Any other register is bad. */
dc821c5f 6005 if (i.types[op].bitfield.reg
40fb9820 6006 || i.types[op].bitfield.regmmx
1b54b8d7 6007 || i.types[op].bitfield.regsimd
40fb9820
L
6008 || i.types[op].bitfield.sreg2
6009 || i.types[op].bitfield.sreg3
6010 || i.types[op].bitfield.control
6011 || i.types[op].bitfield.debug
ca0d63fe 6012 || i.types[op].bitfield.test)
29b0f896 6013 {
a540244d
L
6014 as_bad (_("`%s%s' not allowed with `%s%c'"),
6015 register_prefix,
29b0f896
AM
6016 i.op[op].regs->reg_name,
6017 i.tm.name,
6018 i.suffix);
6019 return 0;
6020 }
6021 }
6022 return 1;
6023}
6024
6025static int
e3bb37b5 6026check_long_reg (void)
29b0f896
AM
6027{
6028 int op;
6029
6030 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6031 /* Skip non-register operands. */
6032 if (!i.types[op].bitfield.reg)
6033 continue;
29b0f896
AM
6034 /* Reject eight bit registers, except where the template requires
6035 them. (eg. movzb) */
dc821c5f
JB
6036 else if (i.types[op].bitfield.byte
6037 && (i.tm.operand_types[op].bitfield.reg
6038 || i.tm.operand_types[op].bitfield.acc)
6039 && (i.tm.operand_types[op].bitfield.word
6040 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6041 {
a540244d
L
6042 as_bad (_("`%s%s' not allowed with `%s%c'"),
6043 register_prefix,
29b0f896
AM
6044 i.op[op].regs->reg_name,
6045 i.tm.name,
6046 i.suffix);
6047 return 0;
6048 }
e4630f71 6049 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6050 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6051 && i.types[op].bitfield.word
6052 && (i.tm.operand_types[op].bitfield.reg
6053 || i.tm.operand_types[op].bitfield.acc)
6054 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6055 {
6056 /* Prohibit these changes in the 64bit mode, since the
6057 lowering is more complicated. */
6058 if (flag_code == CODE_64BIT)
252b5132 6059 {
2b5d6a91 6060 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6061 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6062 i.suffix);
6063 return 0;
252b5132 6064 }
29b0f896 6065#if REGISTER_WARNINGS
cecf1424
JB
6066 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6067 register_prefix,
6068 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6069 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6070#endif
252b5132 6071 }
e4630f71 6072 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6073 else if (i.types[op].bitfield.qword
6074 && (i.tm.operand_types[op].bitfield.reg
6075 || i.tm.operand_types[op].bitfield.acc)
6076 && i.tm.operand_types[op].bitfield.dword)
252b5132 6077 {
34828aad 6078 if (intel_syntax
ca61edf2 6079 && i.tm.opcode_modifier.toqword
1b54b8d7 6080 && !i.types[0].bitfield.regsimd)
34828aad 6081 {
ca61edf2 6082 /* Convert to QWORD. We want REX byte. */
34828aad
L
6083 i.suffix = QWORD_MNEM_SUFFIX;
6084 }
6085 else
6086 {
2b5d6a91 6087 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6088 register_prefix, i.op[op].regs->reg_name,
6089 i.suffix);
6090 return 0;
6091 }
29b0f896
AM
6092 }
6093 return 1;
6094}
252b5132 6095
29b0f896 6096static int
e3bb37b5 6097check_qword_reg (void)
29b0f896
AM
6098{
6099 int op;
252b5132 6100
29b0f896 6101 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6102 /* Skip non-register operands. */
6103 if (!i.types[op].bitfield.reg)
6104 continue;
29b0f896
AM
6105 /* Reject eight bit registers, except where the template requires
6106 them. (eg. movzb) */
dc821c5f
JB
6107 else if (i.types[op].bitfield.byte
6108 && (i.tm.operand_types[op].bitfield.reg
6109 || i.tm.operand_types[op].bitfield.acc)
6110 && (i.tm.operand_types[op].bitfield.word
6111 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6112 {
a540244d
L
6113 as_bad (_("`%s%s' not allowed with `%s%c'"),
6114 register_prefix,
29b0f896
AM
6115 i.op[op].regs->reg_name,
6116 i.tm.name,
6117 i.suffix);
6118 return 0;
6119 }
e4630f71 6120 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6121 else if ((i.types[op].bitfield.word
6122 || i.types[op].bitfield.dword)
6123 && (i.tm.operand_types[op].bitfield.reg
6124 || i.tm.operand_types[op].bitfield.acc)
6125 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6126 {
6127 /* Prohibit these changes in the 64bit mode, since the
6128 lowering is more complicated. */
34828aad 6129 if (intel_syntax
ca61edf2 6130 && i.tm.opcode_modifier.todword
1b54b8d7 6131 && !i.types[0].bitfield.regsimd)
34828aad 6132 {
ca61edf2 6133 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6134 i.suffix = LONG_MNEM_SUFFIX;
6135 }
6136 else
6137 {
2b5d6a91 6138 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6139 register_prefix, i.op[op].regs->reg_name,
6140 i.suffix);
6141 return 0;
6142 }
252b5132 6143 }
29b0f896
AM
6144 return 1;
6145}
252b5132 6146
29b0f896 6147static int
e3bb37b5 6148check_word_reg (void)
29b0f896
AM
6149{
6150 int op;
6151 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6152 /* Skip non-register operands. */
6153 if (!i.types[op].bitfield.reg)
6154 continue;
29b0f896
AM
6155 /* Reject eight bit registers, except where the template requires
6156 them. (eg. movzb) */
dc821c5f
JB
6157 else if (i.types[op].bitfield.byte
6158 && (i.tm.operand_types[op].bitfield.reg
6159 || i.tm.operand_types[op].bitfield.acc)
6160 && (i.tm.operand_types[op].bitfield.word
6161 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6162 {
a540244d
L
6163 as_bad (_("`%s%s' not allowed with `%s%c'"),
6164 register_prefix,
29b0f896
AM
6165 i.op[op].regs->reg_name,
6166 i.tm.name,
6167 i.suffix);
6168 return 0;
6169 }
e4630f71 6170 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6171 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6172 && (i.types[op].bitfield.dword
6173 || i.types[op].bitfield.qword)
6174 && (i.tm.operand_types[op].bitfield.reg
6175 || i.tm.operand_types[op].bitfield.acc)
6176 && i.tm.operand_types[op].bitfield.word)
252b5132 6177 {
29b0f896
AM
6178 /* Prohibit these changes in the 64bit mode, since the
6179 lowering is more complicated. */
6180 if (flag_code == CODE_64BIT)
252b5132 6181 {
2b5d6a91 6182 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6183 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6184 i.suffix);
6185 return 0;
252b5132 6186 }
29b0f896 6187#if REGISTER_WARNINGS
cecf1424
JB
6188 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6189 register_prefix,
6190 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6191 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6192#endif
6193 }
6194 return 1;
6195}
252b5132 6196
29b0f896 6197static int
40fb9820 6198update_imm (unsigned int j)
29b0f896 6199{
bc0844ae 6200 i386_operand_type overlap = i.types[j];
40fb9820
L
6201 if ((overlap.bitfield.imm8
6202 || overlap.bitfield.imm8s
6203 || overlap.bitfield.imm16
6204 || overlap.bitfield.imm32
6205 || overlap.bitfield.imm32s
6206 || overlap.bitfield.imm64)
0dfbf9d7
L
6207 && !operand_type_equal (&overlap, &imm8)
6208 && !operand_type_equal (&overlap, &imm8s)
6209 && !operand_type_equal (&overlap, &imm16)
6210 && !operand_type_equal (&overlap, &imm32)
6211 && !operand_type_equal (&overlap, &imm32s)
6212 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6213 {
6214 if (i.suffix)
6215 {
40fb9820
L
6216 i386_operand_type temp;
6217
0dfbf9d7 6218 operand_type_set (&temp, 0);
7ab9ffdd 6219 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6220 {
6221 temp.bitfield.imm8 = overlap.bitfield.imm8;
6222 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6223 }
6224 else if (i.suffix == WORD_MNEM_SUFFIX)
6225 temp.bitfield.imm16 = overlap.bitfield.imm16;
6226 else if (i.suffix == QWORD_MNEM_SUFFIX)
6227 {
6228 temp.bitfield.imm64 = overlap.bitfield.imm64;
6229 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6230 }
6231 else
6232 temp.bitfield.imm32 = overlap.bitfield.imm32;
6233 overlap = temp;
29b0f896 6234 }
0dfbf9d7
L
6235 else if (operand_type_equal (&overlap, &imm16_32_32s)
6236 || operand_type_equal (&overlap, &imm16_32)
6237 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6238 {
40fb9820 6239 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6240 overlap = imm16;
40fb9820 6241 else
65da13b5 6242 overlap = imm32s;
29b0f896 6243 }
0dfbf9d7
L
6244 if (!operand_type_equal (&overlap, &imm8)
6245 && !operand_type_equal (&overlap, &imm8s)
6246 && !operand_type_equal (&overlap, &imm16)
6247 && !operand_type_equal (&overlap, &imm32)
6248 && !operand_type_equal (&overlap, &imm32s)
6249 && !operand_type_equal (&overlap, &imm64))
29b0f896 6250 {
4eed87de
AM
6251 as_bad (_("no instruction mnemonic suffix given; "
6252 "can't determine immediate size"));
29b0f896
AM
6253 return 0;
6254 }
6255 }
40fb9820 6256 i.types[j] = overlap;
29b0f896 6257
40fb9820
L
6258 return 1;
6259}
6260
6261static int
6262finalize_imm (void)
6263{
bc0844ae 6264 unsigned int j, n;
29b0f896 6265
bc0844ae
L
6266 /* Update the first 2 immediate operands. */
6267 n = i.operands > 2 ? 2 : i.operands;
6268 if (n)
6269 {
6270 for (j = 0; j < n; j++)
6271 if (update_imm (j) == 0)
6272 return 0;
40fb9820 6273
bc0844ae
L
6274 /* The 3rd operand can't be immediate operand. */
6275 gas_assert (operand_type_check (i.types[2], imm) == 0);
6276 }
29b0f896
AM
6277
6278 return 1;
6279}
6280
6281static int
e3bb37b5 6282process_operands (void)
29b0f896
AM
6283{
6284 /* Default segment register this instruction will use for memory
6285 accesses. 0 means unknown. This is only for optimizing out
6286 unnecessary segment overrides. */
6287 const seg_entry *default_seg = 0;
6288
2426c15f 6289 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6290 {
91d6fa6a
NC
6291 unsigned int dupl = i.operands;
6292 unsigned int dest = dupl - 1;
9fcfb3d7
L
6293 unsigned int j;
6294
c0f3af97 6295 /* The destination must be an xmm register. */
9c2799c2 6296 gas_assert (i.reg_operands
91d6fa6a 6297 && MAX_OPERANDS > dupl
7ab9ffdd 6298 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6299
1b54b8d7
JB
6300 if (i.tm.operand_types[0].bitfield.acc
6301 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6302 {
8cd7925b 6303 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6304 {
6305 /* Keep xmm0 for instructions with VEX prefix and 3
6306 sources. */
1b54b8d7
JB
6307 i.tm.operand_types[0].bitfield.acc = 0;
6308 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6309 goto duplicate;
6310 }
e2ec9d29 6311 else
c0f3af97
L
6312 {
6313 /* We remove the first xmm0 and keep the number of
6314 operands unchanged, which in fact duplicates the
6315 destination. */
6316 for (j = 1; j < i.operands; j++)
6317 {
6318 i.op[j - 1] = i.op[j];
6319 i.types[j - 1] = i.types[j];
6320 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6321 }
6322 }
6323 }
6324 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6325 {
91d6fa6a 6326 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6327 && (i.tm.opcode_modifier.vexsources
6328 == VEX3SOURCES));
c0f3af97
L
6329
6330 /* Add the implicit xmm0 for instructions with VEX prefix
6331 and 3 sources. */
6332 for (j = i.operands; j > 0; j--)
6333 {
6334 i.op[j] = i.op[j - 1];
6335 i.types[j] = i.types[j - 1];
6336 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6337 }
6338 i.op[0].regs
6339 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6340 i.types[0] = regxmm;
c0f3af97
L
6341 i.tm.operand_types[0] = regxmm;
6342
6343 i.operands += 2;
6344 i.reg_operands += 2;
6345 i.tm.operands += 2;
6346
91d6fa6a 6347 dupl++;
c0f3af97 6348 dest++;
91d6fa6a
NC
6349 i.op[dupl] = i.op[dest];
6350 i.types[dupl] = i.types[dest];
6351 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6352 }
c0f3af97
L
6353 else
6354 {
6355duplicate:
6356 i.operands++;
6357 i.reg_operands++;
6358 i.tm.operands++;
6359
91d6fa6a
NC
6360 i.op[dupl] = i.op[dest];
6361 i.types[dupl] = i.types[dest];
6362 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6363 }
6364
6365 if (i.tm.opcode_modifier.immext)
6366 process_immext ();
6367 }
1b54b8d7
JB
6368 else if (i.tm.operand_types[0].bitfield.acc
6369 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6370 {
6371 unsigned int j;
6372
9fcfb3d7
L
6373 for (j = 1; j < i.operands; j++)
6374 {
6375 i.op[j - 1] = i.op[j];
6376 i.types[j - 1] = i.types[j];
6377
6378 /* We need to adjust fields in i.tm since they are used by
6379 build_modrm_byte. */
6380 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6381 }
6382
e2ec9d29
L
6383 i.operands--;
6384 i.reg_operands--;
e2ec9d29
L
6385 i.tm.operands--;
6386 }
920d2ddc
IT
6387 else if (i.tm.opcode_modifier.implicitquadgroup)
6388 {
a477a8c4
JB
6389 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6390
920d2ddc 6391 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6392 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6393 regnum = register_number (i.op[1].regs);
6394 first_reg_in_group = regnum & ~3;
6395 last_reg_in_group = first_reg_in_group + 3;
6396 if (regnum != first_reg_in_group)
6397 as_warn (_("source register `%s%s' implicitly denotes"
6398 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6399 register_prefix, i.op[1].regs->reg_name,
6400 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6401 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6402 i.tm.name);
6403 }
e2ec9d29
L
6404 else if (i.tm.opcode_modifier.regkludge)
6405 {
6406 /* The imul $imm, %reg instruction is converted into
6407 imul $imm, %reg, %reg, and the clr %reg instruction
6408 is converted into xor %reg, %reg. */
6409
6410 unsigned int first_reg_op;
6411
6412 if (operand_type_check (i.types[0], reg))
6413 first_reg_op = 0;
6414 else
6415 first_reg_op = 1;
6416 /* Pretend we saw the extra register operand. */
9c2799c2 6417 gas_assert (i.reg_operands == 1
7ab9ffdd 6418 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6419 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6420 i.types[first_reg_op + 1] = i.types[first_reg_op];
6421 i.operands++;
6422 i.reg_operands++;
29b0f896
AM
6423 }
6424
40fb9820 6425 if (i.tm.opcode_modifier.shortform)
29b0f896 6426 {
40fb9820
L
6427 if (i.types[0].bitfield.sreg2
6428 || i.types[0].bitfield.sreg3)
29b0f896 6429 {
4eed87de
AM
6430 if (i.tm.base_opcode == POP_SEG_SHORT
6431 && i.op[0].regs->reg_num == 1)
29b0f896 6432 {
a87af027 6433 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6434 return 0;
29b0f896 6435 }
4eed87de
AM
6436 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6437 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6438 i.rex |= REX_B;
4eed87de
AM
6439 }
6440 else
6441 {
7ab9ffdd 6442 /* The register or float register operand is in operand
85f10a01 6443 0 or 1. */
40fb9820 6444 unsigned int op;
7ab9ffdd 6445
ca0d63fe 6446 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6447 || operand_type_check (i.types[0], reg))
6448 op = 0;
6449 else
6450 op = 1;
4eed87de
AM
6451 /* Register goes in low 3 bits of opcode. */
6452 i.tm.base_opcode |= i.op[op].regs->reg_num;
6453 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6454 i.rex |= REX_B;
40fb9820 6455 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6456 {
4eed87de
AM
6457 /* Warn about some common errors, but press on regardless.
6458 The first case can be generated by gcc (<= 2.8.1). */
6459 if (i.operands == 2)
6460 {
6461 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6462 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6463 register_prefix, i.op[!intel_syntax].regs->reg_name,
6464 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6465 }
6466 else
6467 {
6468 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6469 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6470 register_prefix, i.op[0].regs->reg_name);
4eed87de 6471 }
29b0f896
AM
6472 }
6473 }
6474 }
40fb9820 6475 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6476 {
6477 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6478 must be put into the modrm byte). Now, we make the modrm and
6479 index base bytes based on all the info we've collected. */
29b0f896
AM
6480
6481 default_seg = build_modrm_byte ();
6482 }
8a2ed489 6483 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6484 {
6485 default_seg = &ds;
6486 }
40fb9820 6487 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6488 {
6489 /* For the string instructions that allow a segment override
6490 on one of their operands, the default segment is ds. */
6491 default_seg = &ds;
6492 }
6493
75178d9d
L
6494 if (i.tm.base_opcode == 0x8d /* lea */
6495 && i.seg[0]
6496 && !quiet_warnings)
30123838 6497 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6498
6499 /* If a segment was explicitly specified, and the specified segment
6500 is not the default, use an opcode prefix to select it. If we
6501 never figured out what the default segment is, then default_seg
6502 will be zero at this point, and the specified segment prefix will
6503 always be used. */
29b0f896
AM
6504 if ((i.seg[0]) && (i.seg[0] != default_seg))
6505 {
6506 if (!add_prefix (i.seg[0]->seg_prefix))
6507 return 0;
6508 }
6509 return 1;
6510}
6511
6512static const seg_entry *
e3bb37b5 6513build_modrm_byte (void)
29b0f896
AM
6514{
6515 const seg_entry *default_seg = 0;
c0f3af97 6516 unsigned int source, dest;
8cd7925b 6517 int vex_3_sources;
c0f3af97
L
6518
6519 /* The first operand of instructions with VEX prefix and 3 sources
6520 must be VEX_Imm4. */
8cd7925b 6521 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6522 if (vex_3_sources)
6523 {
91d6fa6a 6524 unsigned int nds, reg_slot;
4c2c6516 6525 expressionS *exp;
c0f3af97 6526
922d8de8 6527 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6528 && i.tm.opcode_modifier.immext)
6529 {
6530 dest = i.operands - 2;
6531 gas_assert (dest == 3);
6532 }
922d8de8 6533 else
a683cc34 6534 dest = i.operands - 1;
c0f3af97 6535 nds = dest - 1;
922d8de8 6536
a683cc34
SP
6537 /* There are 2 kinds of instructions:
6538 1. 5 operands: 4 register operands or 3 register operands
6539 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6540 VexW0 or VexW1. The destination must be either XMM, YMM or
6541 ZMM register.
a683cc34
SP
6542 2. 4 operands: 4 register operands or 3 register operands
6543 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6544 gas_assert ((i.reg_operands == 4
a683cc34
SP
6545 || (i.reg_operands == 3 && i.mem_operands == 1))
6546 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6547 && (i.tm.opcode_modifier.veximmext
6548 || (i.imm_operands == 1
6549 && i.types[0].bitfield.vec_imm4
6550 && (i.tm.opcode_modifier.vexw == VEXW0
6551 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6552 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6553
6554 if (i.imm_operands == 0)
6555 {
6556 /* When there is no immediate operand, generate an 8bit
6557 immediate operand to encode the first operand. */
6558 exp = &im_expressions[i.imm_operands++];
6559 i.op[i.operands].imms = exp;
6560 i.types[i.operands] = imm8;
6561 i.operands++;
6562 /* If VexW1 is set, the first operand is the source and
6563 the second operand is encoded in the immediate operand. */
6564 if (i.tm.opcode_modifier.vexw == VEXW1)
6565 {
6566 source = 0;
6567 reg_slot = 1;
6568 }
6569 else
6570 {
6571 source = 1;
6572 reg_slot = 0;
6573 }
6574
6575 /* FMA swaps REG and NDS. */
6576 if (i.tm.cpu_flags.bitfield.cpufma)
6577 {
6578 unsigned int tmp;
6579 tmp = reg_slot;
6580 reg_slot = nds;
6581 nds = tmp;
6582 }
6583
10c17abd 6584 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6585 exp->X_op = O_constant;
4c692bc7 6586 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6587 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6588 }
922d8de8 6589 else
a683cc34
SP
6590 {
6591 unsigned int imm_slot;
6592
6593 if (i.tm.opcode_modifier.vexw == VEXW0)
6594 {
6595 /* If VexW0 is set, the third operand is the source and
6596 the second operand is encoded in the immediate
6597 operand. */
6598 source = 2;
6599 reg_slot = 1;
6600 }
6601 else
6602 {
6603 /* VexW1 is set, the second operand is the source and
6604 the third operand is encoded in the immediate
6605 operand. */
6606 source = 1;
6607 reg_slot = 2;
6608 }
6609
6610 if (i.tm.opcode_modifier.immext)
6611 {
33eaf5de 6612 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6613 operand. */
6614 imm_slot = i.operands - 1;
6615 source--;
6616 reg_slot--;
6617 }
6618 else
6619 {
6620 imm_slot = 0;
6621
6622 /* Turn on Imm8 so that output_imm will generate it. */
6623 i.types[imm_slot].bitfield.imm8 = 1;
6624 }
6625
10c17abd 6626 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6627 i.op[imm_slot].imms->X_add_number
4c692bc7 6628 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6629 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6630 }
6631
10c17abd 6632 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6633 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6634 }
6635 else
6636 source = dest = 0;
29b0f896
AM
6637
6638 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6639 implicit registers do not count. If there are 3 register
6640 operands, it must be a instruction with VexNDS. For a
6641 instruction with VexNDD, the destination register is encoded
6642 in VEX prefix. If there are 4 register operands, it must be
6643 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6644 if (i.mem_operands == 0
6645 && ((i.reg_operands == 2
2426c15f 6646 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6647 || (i.reg_operands == 3
2426c15f 6648 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6649 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6650 {
cab737b9
L
6651 switch (i.operands)
6652 {
6653 case 2:
6654 source = 0;
6655 break;
6656 case 3:
c81128dc
L
6657 /* When there are 3 operands, one of them may be immediate,
6658 which may be the first or the last operand. Otherwise,
c0f3af97
L
6659 the first operand must be shift count register (cl) or it
6660 is an instruction with VexNDS. */
9c2799c2 6661 gas_assert (i.imm_operands == 1
7ab9ffdd 6662 || (i.imm_operands == 0
2426c15f 6663 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6664 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6665 if (operand_type_check (i.types[0], imm)
6666 || i.types[0].bitfield.shiftcount)
6667 source = 1;
6668 else
6669 source = 0;
cab737b9
L
6670 break;
6671 case 4:
368d64cc
L
6672 /* When there are 4 operands, the first two must be 8bit
6673 immediate operands. The source operand will be the 3rd
c0f3af97
L
6674 one.
6675
6676 For instructions with VexNDS, if the first operand
6677 an imm8, the source operand is the 2nd one. If the last
6678 operand is imm8, the source operand is the first one. */
9c2799c2 6679 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6680 && i.types[0].bitfield.imm8
6681 && i.types[1].bitfield.imm8)
2426c15f 6682 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6683 && i.imm_operands == 1
6684 && (i.types[0].bitfield.imm8
43234a1e
L
6685 || i.types[i.operands - 1].bitfield.imm8
6686 || i.rounding)));
9f2670f2
L
6687 if (i.imm_operands == 2)
6688 source = 2;
6689 else
c0f3af97
L
6690 {
6691 if (i.types[0].bitfield.imm8)
6692 source = 1;
6693 else
6694 source = 0;
6695 }
c0f3af97
L
6696 break;
6697 case 5:
43234a1e
L
6698 if (i.tm.opcode_modifier.evex)
6699 {
6700 /* For EVEX instructions, when there are 5 operands, the
6701 first one must be immediate operand. If the second one
6702 is immediate operand, the source operand is the 3th
6703 one. If the last one is immediate operand, the source
6704 operand is the 2nd one. */
6705 gas_assert (i.imm_operands == 2
6706 && i.tm.opcode_modifier.sae
6707 && operand_type_check (i.types[0], imm));
6708 if (operand_type_check (i.types[1], imm))
6709 source = 2;
6710 else if (operand_type_check (i.types[4], imm))
6711 source = 1;
6712 else
6713 abort ();
6714 }
cab737b9
L
6715 break;
6716 default:
6717 abort ();
6718 }
6719
c0f3af97
L
6720 if (!vex_3_sources)
6721 {
6722 dest = source + 1;
6723
43234a1e
L
6724 /* RC/SAE operand could be between DEST and SRC. That happens
6725 when one operand is GPR and the other one is XMM/YMM/ZMM
6726 register. */
6727 if (i.rounding && i.rounding->operand == (int) dest)
6728 dest++;
6729
2426c15f 6730 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6731 {
43234a1e 6732 /* For instructions with VexNDS, the register-only source
c5d0745b 6733 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6734 register. It is encoded in VEX prefix. We need to
6735 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6736
6737 i386_operand_type op;
6738 unsigned int vvvv;
6739
6740 /* Check register-only source operand when two source
6741 operands are swapped. */
6742 if (!i.tm.operand_types[source].bitfield.baseindex
6743 && i.tm.operand_types[dest].bitfield.baseindex)
6744 {
6745 vvvv = source;
6746 source = dest;
6747 }
6748 else
6749 vvvv = dest;
6750
6751 op = i.tm.operand_types[vvvv];
fa99fab2 6752 op.bitfield.regmem = 0;
c0f3af97 6753 if ((dest + 1) >= i.operands
dc821c5f
JB
6754 || ((!op.bitfield.reg
6755 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6756 && !op.bitfield.regsimd
43234a1e 6757 && !operand_type_equal (&op, &regmask)))
c0f3af97 6758 abort ();
f12dc422 6759 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6760 dest++;
6761 }
6762 }
29b0f896
AM
6763
6764 i.rm.mode = 3;
6765 /* One of the register operands will be encoded in the i.tm.reg
6766 field, the other in the combined i.tm.mode and i.tm.regmem
6767 fields. If no form of this instruction supports a memory
6768 destination operand, then we assume the source operand may
6769 sometimes be a memory operand and so we need to store the
6770 destination in the i.rm.reg field. */
40fb9820
L
6771 if (!i.tm.operand_types[dest].bitfield.regmem
6772 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6773 {
6774 i.rm.reg = i.op[dest].regs->reg_num;
6775 i.rm.regmem = i.op[source].regs->reg_num;
6776 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6777 i.rex |= REX_R;
43234a1e
L
6778 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6779 i.vrex |= REX_R;
29b0f896 6780 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6781 i.rex |= REX_B;
43234a1e
L
6782 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6783 i.vrex |= REX_B;
29b0f896
AM
6784 }
6785 else
6786 {
6787 i.rm.reg = i.op[source].regs->reg_num;
6788 i.rm.regmem = i.op[dest].regs->reg_num;
6789 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6790 i.rex |= REX_B;
43234a1e
L
6791 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6792 i.vrex |= REX_B;
29b0f896 6793 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6794 i.rex |= REX_R;
43234a1e
L
6795 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6796 i.vrex |= REX_R;
29b0f896 6797 }
161a04f6 6798 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6799 {
40fb9820
L
6800 if (!i.types[0].bitfield.control
6801 && !i.types[1].bitfield.control)
c4a530c5 6802 abort ();
161a04f6 6803 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6804 add_prefix (LOCK_PREFIX_OPCODE);
6805 }
29b0f896
AM
6806 }
6807 else
6808 { /* If it's not 2 reg operands... */
c0f3af97
L
6809 unsigned int mem;
6810
29b0f896
AM
6811 if (i.mem_operands)
6812 {
6813 unsigned int fake_zero_displacement = 0;
99018f42 6814 unsigned int op;
4eed87de 6815
7ab9ffdd
L
6816 for (op = 0; op < i.operands; op++)
6817 if (operand_type_check (i.types[op], anymem))
6818 break;
7ab9ffdd 6819 gas_assert (op < i.operands);
29b0f896 6820
6c30d220
L
6821 if (i.tm.opcode_modifier.vecsib)
6822 {
6823 if (i.index_reg->reg_num == RegEiz
6824 || i.index_reg->reg_num == RegRiz)
6825 abort ();
6826
6827 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6828 if (!i.base_reg)
6829 {
6830 i.sib.base = NO_BASE_REGISTER;
6831 i.sib.scale = i.log2_scale_factor;
6832 i.types[op].bitfield.disp8 = 0;
6833 i.types[op].bitfield.disp16 = 0;
6834 i.types[op].bitfield.disp64 = 0;
43083a50 6835 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6836 {
6837 /* Must be 32 bit */
6838 i.types[op].bitfield.disp32 = 1;
6839 i.types[op].bitfield.disp32s = 0;
6840 }
6841 else
6842 {
6843 i.types[op].bitfield.disp32 = 0;
6844 i.types[op].bitfield.disp32s = 1;
6845 }
6846 }
6847 i.sib.index = i.index_reg->reg_num;
6848 if ((i.index_reg->reg_flags & RegRex) != 0)
6849 i.rex |= REX_X;
43234a1e
L
6850 if ((i.index_reg->reg_flags & RegVRex) != 0)
6851 i.vrex |= REX_X;
6c30d220
L
6852 }
6853
29b0f896
AM
6854 default_seg = &ds;
6855
6856 if (i.base_reg == 0)
6857 {
6858 i.rm.mode = 0;
6859 if (!i.disp_operands)
9bb129e8 6860 fake_zero_displacement = 1;
29b0f896
AM
6861 if (i.index_reg == 0)
6862 {
73053c1f
JB
6863 i386_operand_type newdisp;
6864
6c30d220 6865 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6866 /* Operand is just <disp> */
20f0a1fc 6867 if (flag_code == CODE_64BIT)
29b0f896
AM
6868 {
6869 /* 64bit mode overwrites the 32bit absolute
6870 addressing by RIP relative addressing and
6871 absolute addressing is encoded by one of the
6872 redundant SIB forms. */
6873 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6874 i.sib.base = NO_BASE_REGISTER;
6875 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6876 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6877 }
fc225355
L
6878 else if ((flag_code == CODE_16BIT)
6879 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6880 {
6881 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6882 newdisp = disp16;
20f0a1fc
NC
6883 }
6884 else
6885 {
6886 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6887 newdisp = disp32;
29b0f896 6888 }
73053c1f
JB
6889 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6890 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6891 }
6c30d220 6892 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6893 {
6c30d220 6894 /* !i.base_reg && i.index_reg */
db51cc60
L
6895 if (i.index_reg->reg_num == RegEiz
6896 || i.index_reg->reg_num == RegRiz)
6897 i.sib.index = NO_INDEX_REGISTER;
6898 else
6899 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6900 i.sib.base = NO_BASE_REGISTER;
6901 i.sib.scale = i.log2_scale_factor;
6902 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6903 i.types[op].bitfield.disp8 = 0;
6904 i.types[op].bitfield.disp16 = 0;
6905 i.types[op].bitfield.disp64 = 0;
43083a50 6906 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6907 {
6908 /* Must be 32 bit */
6909 i.types[op].bitfield.disp32 = 1;
6910 i.types[op].bitfield.disp32s = 0;
6911 }
29b0f896 6912 else
40fb9820
L
6913 {
6914 i.types[op].bitfield.disp32 = 0;
6915 i.types[op].bitfield.disp32s = 1;
6916 }
29b0f896 6917 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6918 i.rex |= REX_X;
29b0f896
AM
6919 }
6920 }
6921 /* RIP addressing for 64bit mode. */
9a04903e
JB
6922 else if (i.base_reg->reg_num == RegRip ||
6923 i.base_reg->reg_num == RegEip)
29b0f896 6924 {
6c30d220 6925 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6926 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6927 i.types[op].bitfield.disp8 = 0;
6928 i.types[op].bitfield.disp16 = 0;
6929 i.types[op].bitfield.disp32 = 0;
6930 i.types[op].bitfield.disp32s = 1;
6931 i.types[op].bitfield.disp64 = 0;
71903a11 6932 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6933 if (! i.disp_operands)
6934 fake_zero_displacement = 1;
29b0f896 6935 }
dc821c5f 6936 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6937 {
6c30d220 6938 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6939 switch (i.base_reg->reg_num)
6940 {
6941 case 3: /* (%bx) */
6942 if (i.index_reg == 0)
6943 i.rm.regmem = 7;
6944 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6945 i.rm.regmem = i.index_reg->reg_num - 6;
6946 break;
6947 case 5: /* (%bp) */
6948 default_seg = &ss;
6949 if (i.index_reg == 0)
6950 {
6951 i.rm.regmem = 6;
40fb9820 6952 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6953 {
6954 /* fake (%bp) into 0(%bp) */
b5014f7a 6955 i.types[op].bitfield.disp8 = 1;
252b5132 6956 fake_zero_displacement = 1;
29b0f896
AM
6957 }
6958 }
6959 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6960 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6961 break;
6962 default: /* (%si) -> 4 or (%di) -> 5 */
6963 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6964 }
6965 i.rm.mode = mode_from_disp_size (i.types[op]);
6966 }
6967 else /* i.base_reg and 32/64 bit mode */
6968 {
6969 if (flag_code == CODE_64BIT
40fb9820
L
6970 && operand_type_check (i.types[op], disp))
6971 {
73053c1f
JB
6972 i.types[op].bitfield.disp16 = 0;
6973 i.types[op].bitfield.disp64 = 0;
40fb9820 6974 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
6975 {
6976 i.types[op].bitfield.disp32 = 0;
6977 i.types[op].bitfield.disp32s = 1;
6978 }
40fb9820 6979 else
73053c1f
JB
6980 {
6981 i.types[op].bitfield.disp32 = 1;
6982 i.types[op].bitfield.disp32s = 0;
6983 }
40fb9820 6984 }
20f0a1fc 6985
6c30d220
L
6986 if (!i.tm.opcode_modifier.vecsib)
6987 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6988 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6989 i.rex |= REX_B;
29b0f896
AM
6990 i.sib.base = i.base_reg->reg_num;
6991 /* x86-64 ignores REX prefix bit here to avoid decoder
6992 complications. */
848930b2
JB
6993 if (!(i.base_reg->reg_flags & RegRex)
6994 && (i.base_reg->reg_num == EBP_REG_NUM
6995 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6996 default_seg = &ss;
848930b2 6997 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6998 {
848930b2 6999 fake_zero_displacement = 1;
b5014f7a 7000 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7001 }
7002 i.sib.scale = i.log2_scale_factor;
7003 if (i.index_reg == 0)
7004 {
6c30d220 7005 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7006 /* <disp>(%esp) becomes two byte modrm with no index
7007 register. We've already stored the code for esp
7008 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7009 Any base register besides %esp will not use the
7010 extra modrm byte. */
7011 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7012 }
6c30d220 7013 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7014 {
db51cc60
L
7015 if (i.index_reg->reg_num == RegEiz
7016 || i.index_reg->reg_num == RegRiz)
7017 i.sib.index = NO_INDEX_REGISTER;
7018 else
7019 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7020 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7021 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7022 i.rex |= REX_X;
29b0f896 7023 }
67a4f2b7
AO
7024
7025 if (i.disp_operands
7026 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7027 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7028 i.rm.mode = 0;
7029 else
a501d77e
L
7030 {
7031 if (!fake_zero_displacement
7032 && !i.disp_operands
7033 && i.disp_encoding)
7034 {
7035 fake_zero_displacement = 1;
7036 if (i.disp_encoding == disp_encoding_8bit)
7037 i.types[op].bitfield.disp8 = 1;
7038 else
7039 i.types[op].bitfield.disp32 = 1;
7040 }
7041 i.rm.mode = mode_from_disp_size (i.types[op]);
7042 }
29b0f896 7043 }
252b5132 7044
29b0f896
AM
7045 if (fake_zero_displacement)
7046 {
7047 /* Fakes a zero displacement assuming that i.types[op]
7048 holds the correct displacement size. */
7049 expressionS *exp;
7050
9c2799c2 7051 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7052 exp = &disp_expressions[i.disp_operands++];
7053 i.op[op].disps = exp;
7054 exp->X_op = O_constant;
7055 exp->X_add_number = 0;
7056 exp->X_add_symbol = (symbolS *) 0;
7057 exp->X_op_symbol = (symbolS *) 0;
7058 }
c0f3af97
L
7059
7060 mem = op;
29b0f896 7061 }
c0f3af97
L
7062 else
7063 mem = ~0;
252b5132 7064
8c43a48b 7065 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7066 {
7067 if (operand_type_check (i.types[0], imm))
7068 i.vex.register_specifier = NULL;
7069 else
7070 {
7071 /* VEX.vvvv encodes one of the sources when the first
7072 operand is not an immediate. */
1ef99a7b 7073 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7074 i.vex.register_specifier = i.op[0].regs;
7075 else
7076 i.vex.register_specifier = i.op[1].regs;
7077 }
7078
7079 /* Destination is a XMM register encoded in the ModRM.reg
7080 and VEX.R bit. */
7081 i.rm.reg = i.op[2].regs->reg_num;
7082 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7083 i.rex |= REX_R;
7084
7085 /* ModRM.rm and VEX.B encodes the other source. */
7086 if (!i.mem_operands)
7087 {
7088 i.rm.mode = 3;
7089
1ef99a7b 7090 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7091 i.rm.regmem = i.op[1].regs->reg_num;
7092 else
7093 i.rm.regmem = i.op[0].regs->reg_num;
7094
7095 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7096 i.rex |= REX_B;
7097 }
7098 }
2426c15f 7099 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7100 {
7101 i.vex.register_specifier = i.op[2].regs;
7102 if (!i.mem_operands)
7103 {
7104 i.rm.mode = 3;
7105 i.rm.regmem = i.op[1].regs->reg_num;
7106 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7107 i.rex |= REX_B;
7108 }
7109 }
29b0f896
AM
7110 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7111 (if any) based on i.tm.extension_opcode. Again, we must be
7112 careful to make sure that segment/control/debug/test/MMX
7113 registers are coded into the i.rm.reg field. */
f88c9eb0 7114 else if (i.reg_operands)
29b0f896 7115 {
99018f42 7116 unsigned int op;
7ab9ffdd
L
7117 unsigned int vex_reg = ~0;
7118
7119 for (op = 0; op < i.operands; op++)
dc821c5f 7120 if (i.types[op].bitfield.reg
7ab9ffdd 7121 || i.types[op].bitfield.regmmx
1b54b8d7 7122 || i.types[op].bitfield.regsimd
7e8b059b 7123 || i.types[op].bitfield.regbnd
43234a1e 7124 || i.types[op].bitfield.regmask
7ab9ffdd
L
7125 || i.types[op].bitfield.sreg2
7126 || i.types[op].bitfield.sreg3
7127 || i.types[op].bitfield.control
7128 || i.types[op].bitfield.debug
7129 || i.types[op].bitfield.test)
7130 break;
c0209578 7131
7ab9ffdd
L
7132 if (vex_3_sources)
7133 op = dest;
2426c15f 7134 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7135 {
7136 /* For instructions with VexNDS, the register-only
7137 source operand is encoded in VEX prefix. */
7138 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7139
7ab9ffdd 7140 if (op > mem)
c0f3af97 7141 {
7ab9ffdd
L
7142 vex_reg = op++;
7143 gas_assert (op < i.operands);
c0f3af97
L
7144 }
7145 else
c0f3af97 7146 {
f12dc422
L
7147 /* Check register-only source operand when two source
7148 operands are swapped. */
7149 if (!i.tm.operand_types[op].bitfield.baseindex
7150 && i.tm.operand_types[op + 1].bitfield.baseindex)
7151 {
7152 vex_reg = op;
7153 op += 2;
7154 gas_assert (mem == (vex_reg + 1)
7155 && op < i.operands);
7156 }
7157 else
7158 {
7159 vex_reg = op + 1;
7160 gas_assert (vex_reg < i.operands);
7161 }
c0f3af97 7162 }
7ab9ffdd 7163 }
2426c15f 7164 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7165 {
f12dc422 7166 /* For instructions with VexNDD, the register destination
7ab9ffdd 7167 is encoded in VEX prefix. */
f12dc422
L
7168 if (i.mem_operands == 0)
7169 {
7170 /* There is no memory operand. */
7171 gas_assert ((op + 2) == i.operands);
7172 vex_reg = op + 1;
7173 }
7174 else
8d63c93e 7175 {
f12dc422
L
7176 /* There are only 2 operands. */
7177 gas_assert (op < 2 && i.operands == 2);
7178 vex_reg = 1;
7179 }
7ab9ffdd
L
7180 }
7181 else
7182 gas_assert (op < i.operands);
99018f42 7183
7ab9ffdd
L
7184 if (vex_reg != (unsigned int) ~0)
7185 {
f12dc422 7186 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7187
dc821c5f
JB
7188 if ((!type->bitfield.reg
7189 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7190 && !type->bitfield.regsimd
43234a1e 7191 && !operand_type_equal (type, &regmask))
7ab9ffdd 7192 abort ();
f88c9eb0 7193
7ab9ffdd
L
7194 i.vex.register_specifier = i.op[vex_reg].regs;
7195 }
7196
1b9f0c97
L
7197 /* Don't set OP operand twice. */
7198 if (vex_reg != op)
7ab9ffdd 7199 {
1b9f0c97
L
7200 /* If there is an extension opcode to put here, the
7201 register number must be put into the regmem field. */
7202 if (i.tm.extension_opcode != None)
7203 {
7204 i.rm.regmem = i.op[op].regs->reg_num;
7205 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7206 i.rex |= REX_B;
43234a1e
L
7207 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7208 i.vrex |= REX_B;
1b9f0c97
L
7209 }
7210 else
7211 {
7212 i.rm.reg = i.op[op].regs->reg_num;
7213 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7214 i.rex |= REX_R;
43234a1e
L
7215 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7216 i.vrex |= REX_R;
1b9f0c97 7217 }
7ab9ffdd 7218 }
252b5132 7219
29b0f896
AM
7220 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7221 must set it to 3 to indicate this is a register operand
7222 in the regmem field. */
7223 if (!i.mem_operands)
7224 i.rm.mode = 3;
7225 }
252b5132 7226
29b0f896 7227 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7228 if (i.tm.extension_opcode != None)
29b0f896
AM
7229 i.rm.reg = i.tm.extension_opcode;
7230 }
7231 return default_seg;
7232}
252b5132 7233
29b0f896 7234static void
e3bb37b5 7235output_branch (void)
29b0f896
AM
7236{
7237 char *p;
f8a5c266 7238 int size;
29b0f896
AM
7239 int code16;
7240 int prefix;
7241 relax_substateT subtype;
7242 symbolS *sym;
7243 offsetT off;
7244
f8a5c266 7245 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7246 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7247
7248 prefix = 0;
7249 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7250 {
29b0f896
AM
7251 prefix = 1;
7252 i.prefixes -= 1;
7253 code16 ^= CODE16;
252b5132 7254 }
29b0f896
AM
7255 /* Pentium4 branch hints. */
7256 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7257 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7258 {
29b0f896
AM
7259 prefix++;
7260 i.prefixes--;
7261 }
7262 if (i.prefix[REX_PREFIX] != 0)
7263 {
7264 prefix++;
7265 i.prefixes--;
2f66722d
AM
7266 }
7267
7e8b059b
L
7268 /* BND prefixed jump. */
7269 if (i.prefix[BND_PREFIX] != 0)
7270 {
7271 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7272 i.prefixes -= 1;
7273 }
7274
29b0f896
AM
7275 if (i.prefixes != 0 && !intel_syntax)
7276 as_warn (_("skipping prefixes on this instruction"));
7277
7278 /* It's always a symbol; End frag & setup for relax.
7279 Make sure there is enough room in this frag for the largest
7280 instruction we may generate in md_convert_frag. This is 2
7281 bytes for the opcode and room for the prefix and largest
7282 displacement. */
7283 frag_grow (prefix + 2 + 4);
7284 /* Prefix and 1 opcode byte go in fr_fix. */
7285 p = frag_more (prefix + 1);
7286 if (i.prefix[DATA_PREFIX] != 0)
7287 *p++ = DATA_PREFIX_OPCODE;
7288 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7289 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7290 *p++ = i.prefix[SEG_PREFIX];
7291 if (i.prefix[REX_PREFIX] != 0)
7292 *p++ = i.prefix[REX_PREFIX];
7293 *p = i.tm.base_opcode;
7294
7295 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7296 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7297 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7298 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7299 else
f8a5c266 7300 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7301 subtype |= code16;
3e73aa7c 7302
29b0f896
AM
7303 sym = i.op[0].disps->X_add_symbol;
7304 off = i.op[0].disps->X_add_number;
3e73aa7c 7305
29b0f896
AM
7306 if (i.op[0].disps->X_op != O_constant
7307 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7308 {
29b0f896
AM
7309 /* Handle complex expressions. */
7310 sym = make_expr_symbol (i.op[0].disps);
7311 off = 0;
7312 }
3e73aa7c 7313
29b0f896
AM
7314 /* 1 possible extra opcode + 4 byte displacement go in var part.
7315 Pass reloc in fr_var. */
d258b828 7316 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7317}
3e73aa7c 7318
bd7ab16b
L
7319#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7320/* Return TRUE iff PLT32 relocation should be used for branching to
7321 symbol S. */
7322
7323static bfd_boolean
7324need_plt32_p (symbolS *s)
7325{
7326 /* PLT32 relocation is ELF only. */
7327 if (!IS_ELF)
7328 return FALSE;
7329
7330 /* Since there is no need to prepare for PLT branch on x86-64, we
7331 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7332 be used as a marker for 32-bit PC-relative branches. */
7333 if (!object_64bit)
7334 return FALSE;
7335
7336 /* Weak or undefined symbol need PLT32 relocation. */
7337 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7338 return TRUE;
7339
7340 /* Non-global symbol doesn't need PLT32 relocation. */
7341 if (! S_IS_EXTERNAL (s))
7342 return FALSE;
7343
7344 /* Other global symbols need PLT32 relocation. NB: Symbol with
7345 non-default visibilities are treated as normal global symbol
7346 so that PLT32 relocation can be used as a marker for 32-bit
7347 PC-relative branches. It is useful for linker relaxation. */
7348 return TRUE;
7349}
7350#endif
7351
29b0f896 7352static void
e3bb37b5 7353output_jump (void)
29b0f896
AM
7354{
7355 char *p;
7356 int size;
3e02c1cc 7357 fixS *fixP;
bd7ab16b 7358 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7359
40fb9820 7360 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7361 {
7362 /* This is a loop or jecxz type instruction. */
7363 size = 1;
7364 if (i.prefix[ADDR_PREFIX] != 0)
7365 {
7366 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7367 i.prefixes -= 1;
7368 }
7369 /* Pentium4 branch hints. */
7370 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7371 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7372 {
7373 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7374 i.prefixes--;
3e73aa7c
JH
7375 }
7376 }
29b0f896
AM
7377 else
7378 {
7379 int code16;
3e73aa7c 7380
29b0f896
AM
7381 code16 = 0;
7382 if (flag_code == CODE_16BIT)
7383 code16 = CODE16;
3e73aa7c 7384
29b0f896
AM
7385 if (i.prefix[DATA_PREFIX] != 0)
7386 {
7387 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7388 i.prefixes -= 1;
7389 code16 ^= CODE16;
7390 }
252b5132 7391
29b0f896
AM
7392 size = 4;
7393 if (code16)
7394 size = 2;
7395 }
9fcc94b6 7396
29b0f896
AM
7397 if (i.prefix[REX_PREFIX] != 0)
7398 {
7399 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7400 i.prefixes -= 1;
7401 }
252b5132 7402
7e8b059b
L
7403 /* BND prefixed jump. */
7404 if (i.prefix[BND_PREFIX] != 0)
7405 {
7406 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7407 i.prefixes -= 1;
7408 }
7409
29b0f896
AM
7410 if (i.prefixes != 0 && !intel_syntax)
7411 as_warn (_("skipping prefixes on this instruction"));
e0890092 7412
42164a71
L
7413 p = frag_more (i.tm.opcode_length + size);
7414 switch (i.tm.opcode_length)
7415 {
7416 case 2:
7417 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7418 /* Fall through. */
42164a71
L
7419 case 1:
7420 *p++ = i.tm.base_opcode;
7421 break;
7422 default:
7423 abort ();
7424 }
e0890092 7425
bd7ab16b
L
7426#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7427 if (size == 4
7428 && jump_reloc == NO_RELOC
7429 && need_plt32_p (i.op[0].disps->X_add_symbol))
7430 jump_reloc = BFD_RELOC_X86_64_PLT32;
7431#endif
7432
7433 jump_reloc = reloc (size, 1, 1, jump_reloc);
7434
3e02c1cc 7435 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7436 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7437
7438 /* All jumps handled here are signed, but don't use a signed limit
7439 check for 32 and 16 bit jumps as we want to allow wrap around at
7440 4G and 64k respectively. */
7441 if (size == 1)
7442 fixP->fx_signed = 1;
29b0f896 7443}
e0890092 7444
29b0f896 7445static void
e3bb37b5 7446output_interseg_jump (void)
29b0f896
AM
7447{
7448 char *p;
7449 int size;
7450 int prefix;
7451 int code16;
252b5132 7452
29b0f896
AM
7453 code16 = 0;
7454 if (flag_code == CODE_16BIT)
7455 code16 = CODE16;
a217f122 7456
29b0f896
AM
7457 prefix = 0;
7458 if (i.prefix[DATA_PREFIX] != 0)
7459 {
7460 prefix = 1;
7461 i.prefixes -= 1;
7462 code16 ^= CODE16;
7463 }
7464 if (i.prefix[REX_PREFIX] != 0)
7465 {
7466 prefix++;
7467 i.prefixes -= 1;
7468 }
252b5132 7469
29b0f896
AM
7470 size = 4;
7471 if (code16)
7472 size = 2;
252b5132 7473
29b0f896
AM
7474 if (i.prefixes != 0 && !intel_syntax)
7475 as_warn (_("skipping prefixes on this instruction"));
252b5132 7476
29b0f896
AM
7477 /* 1 opcode; 2 segment; offset */
7478 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7479
29b0f896
AM
7480 if (i.prefix[DATA_PREFIX] != 0)
7481 *p++ = DATA_PREFIX_OPCODE;
252b5132 7482
29b0f896
AM
7483 if (i.prefix[REX_PREFIX] != 0)
7484 *p++ = i.prefix[REX_PREFIX];
252b5132 7485
29b0f896
AM
7486 *p++ = i.tm.base_opcode;
7487 if (i.op[1].imms->X_op == O_constant)
7488 {
7489 offsetT n = i.op[1].imms->X_add_number;
252b5132 7490
29b0f896
AM
7491 if (size == 2
7492 && !fits_in_unsigned_word (n)
7493 && !fits_in_signed_word (n))
7494 {
7495 as_bad (_("16-bit jump out of range"));
7496 return;
7497 }
7498 md_number_to_chars (p, n, size);
7499 }
7500 else
7501 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7502 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7503 if (i.op[0].imms->X_op != O_constant)
7504 as_bad (_("can't handle non absolute segment in `%s'"),
7505 i.tm.name);
7506 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7507}
a217f122 7508
29b0f896 7509static void
e3bb37b5 7510output_insn (void)
29b0f896 7511{
2bbd9c25
JJ
7512 fragS *insn_start_frag;
7513 offsetT insn_start_off;
7514
29b0f896
AM
7515 /* Tie dwarf2 debug info to the address at the start of the insn.
7516 We can't do this after the insn has been output as the current
7517 frag may have been closed off. eg. by frag_var. */
7518 dwarf2_emit_insn (0);
7519
2bbd9c25
JJ
7520 insn_start_frag = frag_now;
7521 insn_start_off = frag_now_fix ();
7522
29b0f896 7523 /* Output jumps. */
40fb9820 7524 if (i.tm.opcode_modifier.jump)
29b0f896 7525 output_branch ();
40fb9820
L
7526 else if (i.tm.opcode_modifier.jumpbyte
7527 || i.tm.opcode_modifier.jumpdword)
29b0f896 7528 output_jump ();
40fb9820 7529 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7530 output_interseg_jump ();
7531 else
7532 {
7533 /* Output normal instructions here. */
7534 char *p;
7535 unsigned char *q;
47465058 7536 unsigned int j;
331d2d0d 7537 unsigned int prefix;
4dffcebc 7538
e4e00185
AS
7539 if (avoid_fence
7540 && i.tm.base_opcode == 0xfae
7541 && i.operands == 1
7542 && i.imm_operands == 1
7543 && (i.op[0].imms->X_add_number == 0xe8
7544 || i.op[0].imms->X_add_number == 0xf0
7545 || i.op[0].imms->X_add_number == 0xf8))
7546 {
7547 /* Encode lfence, mfence, and sfence as
7548 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7549 offsetT val = 0x240483f0ULL;
7550 p = frag_more (5);
7551 md_number_to_chars (p, val, 5);
7552 return;
7553 }
7554
d022bddd
IT
7555 /* Some processors fail on LOCK prefix. This options makes
7556 assembler ignore LOCK prefix and serves as a workaround. */
7557 if (omit_lock_prefix)
7558 {
7559 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7560 return;
7561 i.prefix[LOCK_PREFIX] = 0;
7562 }
7563
43234a1e
L
7564 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7565 don't need the explicit prefix. */
7566 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7567 {
c0f3af97 7568 switch (i.tm.opcode_length)
bc4bd9ab 7569 {
c0f3af97
L
7570 case 3:
7571 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7572 {
c0f3af97
L
7573 prefix = (i.tm.base_opcode >> 24) & 0xff;
7574 goto check_prefix;
7575 }
7576 break;
7577 case 2:
7578 if ((i.tm.base_opcode & 0xff0000) != 0)
7579 {
7580 prefix = (i.tm.base_opcode >> 16) & 0xff;
7581 if (i.tm.cpu_flags.bitfield.cpupadlock)
7582 {
4dffcebc 7583check_prefix:
c0f3af97 7584 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7585 || (i.prefix[REP_PREFIX]
c0f3af97
L
7586 != REPE_PREFIX_OPCODE))
7587 add_prefix (prefix);
7588 }
7589 else
4dffcebc
L
7590 add_prefix (prefix);
7591 }
c0f3af97
L
7592 break;
7593 case 1:
7594 break;
390c91cf
L
7595 case 0:
7596 /* Check for pseudo prefixes. */
7597 as_bad_where (insn_start_frag->fr_file,
7598 insn_start_frag->fr_line,
7599 _("pseudo prefix without instruction"));
7600 return;
c0f3af97
L
7601 default:
7602 abort ();
bc4bd9ab 7603 }
c0f3af97 7604
6d19a37a 7605#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7606 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7607 R_X86_64_GOTTPOFF relocation so that linker can safely
7608 perform IE->LE optimization. */
7609 if (x86_elf_abi == X86_64_X32_ABI
7610 && i.operands == 2
7611 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7612 && i.prefix[REX_PREFIX] == 0)
7613 add_prefix (REX_OPCODE);
6d19a37a 7614#endif
cf61b747 7615
c0f3af97
L
7616 /* The prefix bytes. */
7617 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7618 if (*q)
7619 FRAG_APPEND_1_CHAR (*q);
0f10071e 7620 }
ae5c1c7b 7621 else
c0f3af97
L
7622 {
7623 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7624 if (*q)
7625 switch (j)
7626 {
7627 case REX_PREFIX:
7628 /* REX byte is encoded in VEX prefix. */
7629 break;
7630 case SEG_PREFIX:
7631 case ADDR_PREFIX:
7632 FRAG_APPEND_1_CHAR (*q);
7633 break;
7634 default:
7635 /* There should be no other prefixes for instructions
7636 with VEX prefix. */
7637 abort ();
7638 }
7639
43234a1e
L
7640 /* For EVEX instructions i.vrex should become 0 after
7641 build_evex_prefix. For VEX instructions upper 16 registers
7642 aren't available, so VREX should be 0. */
7643 if (i.vrex)
7644 abort ();
c0f3af97
L
7645 /* Now the VEX prefix. */
7646 p = frag_more (i.vex.length);
7647 for (j = 0; j < i.vex.length; j++)
7648 p[j] = i.vex.bytes[j];
7649 }
252b5132 7650
29b0f896 7651 /* Now the opcode; be careful about word order here! */
4dffcebc 7652 if (i.tm.opcode_length == 1)
29b0f896
AM
7653 {
7654 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7655 }
7656 else
7657 {
4dffcebc 7658 switch (i.tm.opcode_length)
331d2d0d 7659 {
43234a1e
L
7660 case 4:
7661 p = frag_more (4);
7662 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7663 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7664 break;
4dffcebc 7665 case 3:
331d2d0d
L
7666 p = frag_more (3);
7667 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7668 break;
7669 case 2:
7670 p = frag_more (2);
7671 break;
7672 default:
7673 abort ();
7674 break;
331d2d0d 7675 }
0f10071e 7676
29b0f896
AM
7677 /* Put out high byte first: can't use md_number_to_chars! */
7678 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7679 *p = i.tm.base_opcode & 0xff;
7680 }
3e73aa7c 7681
29b0f896 7682 /* Now the modrm byte and sib byte (if present). */
40fb9820 7683 if (i.tm.opcode_modifier.modrm)
29b0f896 7684 {
4a3523fa
L
7685 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7686 | i.rm.reg << 3
7687 | i.rm.mode << 6));
29b0f896
AM
7688 /* If i.rm.regmem == ESP (4)
7689 && i.rm.mode != (Register mode)
7690 && not 16 bit
7691 ==> need second modrm byte. */
7692 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7693 && i.rm.mode != 3
dc821c5f 7694 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7695 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7696 | i.sib.index << 3
7697 | i.sib.scale << 6));
29b0f896 7698 }
3e73aa7c 7699
29b0f896 7700 if (i.disp_operands)
2bbd9c25 7701 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7702
29b0f896 7703 if (i.imm_operands)
2bbd9c25 7704 output_imm (insn_start_frag, insn_start_off);
29b0f896 7705 }
252b5132 7706
29b0f896
AM
7707#ifdef DEBUG386
7708 if (flag_debug)
7709 {
7b81dfbb 7710 pi ("" /*line*/, &i);
29b0f896
AM
7711 }
7712#endif /* DEBUG386 */
7713}
252b5132 7714
e205caa7
L
7715/* Return the size of the displacement operand N. */
7716
7717static int
7718disp_size (unsigned int n)
7719{
7720 int size = 4;
43234a1e 7721
b5014f7a 7722 if (i.types[n].bitfield.disp64)
40fb9820
L
7723 size = 8;
7724 else if (i.types[n].bitfield.disp8)
7725 size = 1;
7726 else if (i.types[n].bitfield.disp16)
7727 size = 2;
e205caa7
L
7728 return size;
7729}
7730
7731/* Return the size of the immediate operand N. */
7732
7733static int
7734imm_size (unsigned int n)
7735{
7736 int size = 4;
40fb9820
L
7737 if (i.types[n].bitfield.imm64)
7738 size = 8;
7739 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7740 size = 1;
7741 else if (i.types[n].bitfield.imm16)
7742 size = 2;
e205caa7
L
7743 return size;
7744}
7745
29b0f896 7746static void
64e74474 7747output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7748{
7749 char *p;
7750 unsigned int n;
252b5132 7751
29b0f896
AM
7752 for (n = 0; n < i.operands; n++)
7753 {
b5014f7a 7754 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7755 {
7756 if (i.op[n].disps->X_op == O_constant)
7757 {
e205caa7 7758 int size = disp_size (n);
43234a1e 7759 offsetT val = i.op[n].disps->X_add_number;
252b5132 7760
b5014f7a 7761 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7762 p = frag_more (size);
7763 md_number_to_chars (p, val, size);
7764 }
7765 else
7766 {
f86103b7 7767 enum bfd_reloc_code_real reloc_type;
e205caa7 7768 int size = disp_size (n);
40fb9820 7769 int sign = i.types[n].bitfield.disp32s;
29b0f896 7770 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7771 fixS *fixP;
29b0f896 7772
e205caa7 7773 /* We can't have 8 bit displacement here. */
9c2799c2 7774 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7775
29b0f896
AM
7776 /* The PC relative address is computed relative
7777 to the instruction boundary, so in case immediate
7778 fields follows, we need to adjust the value. */
7779 if (pcrel && i.imm_operands)
7780 {
29b0f896 7781 unsigned int n1;
e205caa7 7782 int sz = 0;
252b5132 7783
29b0f896 7784 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7785 if (operand_type_check (i.types[n1], imm))
252b5132 7786 {
e205caa7
L
7787 /* Only one immediate is allowed for PC
7788 relative address. */
9c2799c2 7789 gas_assert (sz == 0);
e205caa7
L
7790 sz = imm_size (n1);
7791 i.op[n].disps->X_add_number -= sz;
252b5132 7792 }
29b0f896 7793 /* We should find the immediate. */
9c2799c2 7794 gas_assert (sz != 0);
29b0f896 7795 }
520dc8e8 7796
29b0f896 7797 p = frag_more (size);
d258b828 7798 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7799 if (GOT_symbol
2bbd9c25 7800 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7801 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7802 || reloc_type == BFD_RELOC_X86_64_32S
7803 || (reloc_type == BFD_RELOC_64
7804 && object_64bit))
d6ab8113
JB
7805 && (i.op[n].disps->X_op == O_symbol
7806 || (i.op[n].disps->X_op == O_add
7807 && ((symbol_get_value_expression
7808 (i.op[n].disps->X_op_symbol)->X_op)
7809 == O_subtract))))
7810 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7811 {
7812 offsetT add;
7813
7814 if (insn_start_frag == frag_now)
7815 add = (p - frag_now->fr_literal) - insn_start_off;
7816 else
7817 {
7818 fragS *fr;
7819
7820 add = insn_start_frag->fr_fix - insn_start_off;
7821 for (fr = insn_start_frag->fr_next;
7822 fr && fr != frag_now; fr = fr->fr_next)
7823 add += fr->fr_fix;
7824 add += p - frag_now->fr_literal;
7825 }
7826
4fa24527 7827 if (!object_64bit)
7b81dfbb
AJ
7828 {
7829 reloc_type = BFD_RELOC_386_GOTPC;
7830 i.op[n].imms->X_add_number += add;
7831 }
7832 else if (reloc_type == BFD_RELOC_64)
7833 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7834 else
7b81dfbb
AJ
7835 /* Don't do the adjustment for x86-64, as there
7836 the pcrel addressing is relative to the _next_
7837 insn, and that is taken care of in other code. */
d6ab8113 7838 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7839 }
02a86693
L
7840 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7841 size, i.op[n].disps, pcrel,
7842 reloc_type);
7843 /* Check for "call/jmp *mem", "mov mem, %reg",
7844 "test %reg, mem" and "binop mem, %reg" where binop
7845 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7846 instructions. Always generate R_386_GOT32X for
7847 "sym*GOT" operand in 32-bit mode. */
7848 if ((generate_relax_relocations
7849 || (!object_64bit
7850 && i.rm.mode == 0
7851 && i.rm.regmem == 5))
7852 && (i.rm.mode == 2
7853 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7854 && ((i.operands == 1
7855 && i.tm.base_opcode == 0xff
7856 && (i.rm.reg == 2 || i.rm.reg == 4))
7857 || (i.operands == 2
7858 && (i.tm.base_opcode == 0x8b
7859 || i.tm.base_opcode == 0x85
7860 || (i.tm.base_opcode & 0xc7) == 0x03))))
7861 {
7862 if (object_64bit)
7863 {
7864 fixP->fx_tcbit = i.rex != 0;
7865 if (i.base_reg
7866 && (i.base_reg->reg_num == RegRip
7867 || i.base_reg->reg_num == RegEip))
7868 fixP->fx_tcbit2 = 1;
7869 }
7870 else
7871 fixP->fx_tcbit2 = 1;
7872 }
29b0f896
AM
7873 }
7874 }
7875 }
7876}
252b5132 7877
29b0f896 7878static void
64e74474 7879output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7880{
7881 char *p;
7882 unsigned int n;
252b5132 7883
29b0f896
AM
7884 for (n = 0; n < i.operands; n++)
7885 {
43234a1e
L
7886 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7887 if (i.rounding && (int) n == i.rounding->operand)
7888 continue;
7889
40fb9820 7890 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7891 {
7892 if (i.op[n].imms->X_op == O_constant)
7893 {
e205caa7 7894 int size = imm_size (n);
29b0f896 7895 offsetT val;
b4cac588 7896
29b0f896
AM
7897 val = offset_in_range (i.op[n].imms->X_add_number,
7898 size);
7899 p = frag_more (size);
7900 md_number_to_chars (p, val, size);
7901 }
7902 else
7903 {
7904 /* Not absolute_section.
7905 Need a 32-bit fixup (don't support 8bit
7906 non-absolute imms). Try to support other
7907 sizes ... */
f86103b7 7908 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7909 int size = imm_size (n);
7910 int sign;
29b0f896 7911
40fb9820 7912 if (i.types[n].bitfield.imm32s
a7d61044 7913 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7914 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7915 sign = 1;
e205caa7
L
7916 else
7917 sign = 0;
520dc8e8 7918
29b0f896 7919 p = frag_more (size);
d258b828 7920 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7921
2bbd9c25
JJ
7922 /* This is tough to explain. We end up with this one if we
7923 * have operands that look like
7924 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7925 * obtain the absolute address of the GOT, and it is strongly
7926 * preferable from a performance point of view to avoid using
7927 * a runtime relocation for this. The actual sequence of
7928 * instructions often look something like:
7929 *
7930 * call .L66
7931 * .L66:
7932 * popl %ebx
7933 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7934 *
7935 * The call and pop essentially return the absolute address
7936 * of the label .L66 and store it in %ebx. The linker itself
7937 * will ultimately change the first operand of the addl so
7938 * that %ebx points to the GOT, but to keep things simple, the
7939 * .o file must have this operand set so that it generates not
7940 * the absolute address of .L66, but the absolute address of
7941 * itself. This allows the linker itself simply treat a GOTPC
7942 * relocation as asking for a pcrel offset to the GOT to be
7943 * added in, and the addend of the relocation is stored in the
7944 * operand field for the instruction itself.
7945 *
7946 * Our job here is to fix the operand so that it would add
7947 * the correct offset so that %ebx would point to itself. The
7948 * thing that is tricky is that .-.L66 will point to the
7949 * beginning of the instruction, so we need to further modify
7950 * the operand so that it will point to itself. There are
7951 * other cases where you have something like:
7952 *
7953 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7954 *
7955 * and here no correction would be required. Internally in
7956 * the assembler we treat operands of this form as not being
7957 * pcrel since the '.' is explicitly mentioned, and I wonder
7958 * whether it would simplify matters to do it this way. Who
7959 * knows. In earlier versions of the PIC patches, the
7960 * pcrel_adjust field was used to store the correction, but
7961 * since the expression is not pcrel, I felt it would be
7962 * confusing to do it this way. */
7963
d6ab8113 7964 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7965 || reloc_type == BFD_RELOC_X86_64_32S
7966 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7967 && GOT_symbol
7968 && GOT_symbol == i.op[n].imms->X_add_symbol
7969 && (i.op[n].imms->X_op == O_symbol
7970 || (i.op[n].imms->X_op == O_add
7971 && ((symbol_get_value_expression
7972 (i.op[n].imms->X_op_symbol)->X_op)
7973 == O_subtract))))
7974 {
2bbd9c25
JJ
7975 offsetT add;
7976
7977 if (insn_start_frag == frag_now)
7978 add = (p - frag_now->fr_literal) - insn_start_off;
7979 else
7980 {
7981 fragS *fr;
7982
7983 add = insn_start_frag->fr_fix - insn_start_off;
7984 for (fr = insn_start_frag->fr_next;
7985 fr && fr != frag_now; fr = fr->fr_next)
7986 add += fr->fr_fix;
7987 add += p - frag_now->fr_literal;
7988 }
7989
4fa24527 7990 if (!object_64bit)
d6ab8113 7991 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7992 else if (size == 4)
d6ab8113 7993 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7994 else if (size == 8)
7995 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7996 i.op[n].imms->X_add_number += add;
29b0f896 7997 }
29b0f896
AM
7998 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7999 i.op[n].imms, 0, reloc_type);
8000 }
8001 }
8002 }
252b5132
RH
8003}
8004\f
d182319b
JB
8005/* x86_cons_fix_new is called via the expression parsing code when a
8006 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8007static int cons_sign = -1;
8008
8009void
e3bb37b5 8010x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8011 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8012{
d258b828 8013 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8014
8015#ifdef TE_PE
8016 if (exp->X_op == O_secrel)
8017 {
8018 exp->X_op = O_symbol;
8019 r = BFD_RELOC_32_SECREL;
8020 }
8021#endif
8022
8023 fix_new_exp (frag, off, len, exp, 0, r);
8024}
8025
357d1bd8
L
8026/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8027 purpose of the `.dc.a' internal pseudo-op. */
8028
8029int
8030x86_address_bytes (void)
8031{
8032 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8033 return 4;
8034 return stdoutput->arch_info->bits_per_address / 8;
8035}
8036
d382c579
TG
8037#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8038 || defined (LEX_AT)
d258b828 8039# define lex_got(reloc, adjust, types) NULL
718ddfc0 8040#else
f3c180ae
AM
8041/* Parse operands of the form
8042 <symbol>@GOTOFF+<nnn>
8043 and similar .plt or .got references.
8044
8045 If we find one, set up the correct relocation in RELOC and copy the
8046 input string, minus the `@GOTOFF' into a malloc'd buffer for
8047 parsing by the calling routine. Return this buffer, and if ADJUST
8048 is non-null set it to the length of the string we removed from the
8049 input line. Otherwise return NULL. */
8050static char *
91d6fa6a 8051lex_got (enum bfd_reloc_code_real *rel,
64e74474 8052 int *adjust,
d258b828 8053 i386_operand_type *types)
f3c180ae 8054{
7b81dfbb
AJ
8055 /* Some of the relocations depend on the size of what field is to
8056 be relocated. But in our callers i386_immediate and i386_displacement
8057 we don't yet know the operand size (this will be set by insn
8058 matching). Hence we record the word32 relocation here,
8059 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8060 static const struct {
8061 const char *str;
cff8d58a 8062 int len;
4fa24527 8063 const enum bfd_reloc_code_real rel[2];
40fb9820 8064 const i386_operand_type types64;
f3c180ae 8065 } gotrel[] = {
8ce3d284 8066#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8067 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8068 BFD_RELOC_SIZE32 },
8069 OPERAND_TYPE_IMM32_64 },
8ce3d284 8070#endif
cff8d58a
L
8071 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8072 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8073 OPERAND_TYPE_IMM64 },
cff8d58a
L
8074 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8075 BFD_RELOC_X86_64_PLT32 },
40fb9820 8076 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8077 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8078 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8079 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8080 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8081 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8082 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8083 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8084 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8085 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8086 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8087 BFD_RELOC_X86_64_TLSGD },
40fb9820 8088 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8089 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8090 _dummy_first_bfd_reloc_code_real },
40fb9820 8091 OPERAND_TYPE_NONE },
cff8d58a
L
8092 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8093 BFD_RELOC_X86_64_TLSLD },
40fb9820 8094 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8095 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8096 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8097 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8098 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8099 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8100 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8101 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8102 _dummy_first_bfd_reloc_code_real },
40fb9820 8103 OPERAND_TYPE_NONE },
cff8d58a
L
8104 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8105 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8106 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8107 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8108 _dummy_first_bfd_reloc_code_real },
40fb9820 8109 OPERAND_TYPE_NONE },
cff8d58a
L
8110 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8111 _dummy_first_bfd_reloc_code_real },
40fb9820 8112 OPERAND_TYPE_NONE },
cff8d58a
L
8113 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8114 BFD_RELOC_X86_64_GOT32 },
40fb9820 8115 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8116 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8117 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8118 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8119 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8120 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8121 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8122 };
8123 char *cp;
8124 unsigned int j;
8125
d382c579 8126#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8127 if (!IS_ELF)
8128 return NULL;
d382c579 8129#endif
718ddfc0 8130
f3c180ae 8131 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8132 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8133 return NULL;
8134
47465058 8135 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8136 {
cff8d58a 8137 int len = gotrel[j].len;
28f81592 8138 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8139 {
4fa24527 8140 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8141 {
28f81592
AM
8142 int first, second;
8143 char *tmpbuf, *past_reloc;
f3c180ae 8144
91d6fa6a 8145 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8146
3956db08
JB
8147 if (types)
8148 {
8149 if (flag_code != CODE_64BIT)
40fb9820
L
8150 {
8151 types->bitfield.imm32 = 1;
8152 types->bitfield.disp32 = 1;
8153 }
3956db08
JB
8154 else
8155 *types = gotrel[j].types64;
8156 }
8157
8fd4256d 8158 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8159 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8160
28f81592 8161 /* The length of the first part of our input line. */
f3c180ae 8162 first = cp - input_line_pointer;
28f81592
AM
8163
8164 /* The second part goes from after the reloc token until
67c11a9b 8165 (and including) an end_of_line char or comma. */
28f81592 8166 past_reloc = cp + 1 + len;
67c11a9b
AM
8167 cp = past_reloc;
8168 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8169 ++cp;
8170 second = cp + 1 - past_reloc;
28f81592
AM
8171
8172 /* Allocate and copy string. The trailing NUL shouldn't
8173 be necessary, but be safe. */
add39d23 8174 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8175 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8176 if (second != 0 && *past_reloc != ' ')
8177 /* Replace the relocation token with ' ', so that
8178 errors like foo@GOTOFF1 will be detected. */
8179 tmpbuf[first++] = ' ';
af89796a
L
8180 else
8181 /* Increment length by 1 if the relocation token is
8182 removed. */
8183 len++;
8184 if (adjust)
8185 *adjust = len;
0787a12d
AM
8186 memcpy (tmpbuf + first, past_reloc, second);
8187 tmpbuf[first + second] = '\0';
f3c180ae
AM
8188 return tmpbuf;
8189 }
8190
4fa24527
JB
8191 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8192 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8193 return NULL;
8194 }
8195 }
8196
8197 /* Might be a symbol version string. Don't as_bad here. */
8198 return NULL;
8199}
4e4f7c87 8200#endif
f3c180ae 8201
a988325c
NC
8202#ifdef TE_PE
8203#ifdef lex_got
8204#undef lex_got
8205#endif
8206/* Parse operands of the form
8207 <symbol>@SECREL32+<nnn>
8208
8209 If we find one, set up the correct relocation in RELOC and copy the
8210 input string, minus the `@SECREL32' into a malloc'd buffer for
8211 parsing by the calling routine. Return this buffer, and if ADJUST
8212 is non-null set it to the length of the string we removed from the
34bca508
L
8213 input line. Otherwise return NULL.
8214
a988325c
NC
8215 This function is copied from the ELF version above adjusted for PE targets. */
8216
8217static char *
8218lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8219 int *adjust ATTRIBUTE_UNUSED,
d258b828 8220 i386_operand_type *types)
a988325c
NC
8221{
8222 static const struct
8223 {
8224 const char *str;
8225 int len;
8226 const enum bfd_reloc_code_real rel[2];
8227 const i386_operand_type types64;
8228 }
8229 gotrel[] =
8230 {
8231 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8232 BFD_RELOC_32_SECREL },
8233 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8234 };
8235
8236 char *cp;
8237 unsigned j;
8238
8239 for (cp = input_line_pointer; *cp != '@'; cp++)
8240 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8241 return NULL;
8242
8243 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8244 {
8245 int len = gotrel[j].len;
8246
8247 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8248 {
8249 if (gotrel[j].rel[object_64bit] != 0)
8250 {
8251 int first, second;
8252 char *tmpbuf, *past_reloc;
8253
8254 *rel = gotrel[j].rel[object_64bit];
8255 if (adjust)
8256 *adjust = len;
8257
8258 if (types)
8259 {
8260 if (flag_code != CODE_64BIT)
8261 {
8262 types->bitfield.imm32 = 1;
8263 types->bitfield.disp32 = 1;
8264 }
8265 else
8266 *types = gotrel[j].types64;
8267 }
8268
8269 /* The length of the first part of our input line. */
8270 first = cp - input_line_pointer;
8271
8272 /* The second part goes from after the reloc token until
8273 (and including) an end_of_line char or comma. */
8274 past_reloc = cp + 1 + len;
8275 cp = past_reloc;
8276 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8277 ++cp;
8278 second = cp + 1 - past_reloc;
8279
8280 /* Allocate and copy string. The trailing NUL shouldn't
8281 be necessary, but be safe. */
add39d23 8282 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8283 memcpy (tmpbuf, input_line_pointer, first);
8284 if (second != 0 && *past_reloc != ' ')
8285 /* Replace the relocation token with ' ', so that
8286 errors like foo@SECLREL321 will be detected. */
8287 tmpbuf[first++] = ' ';
8288 memcpy (tmpbuf + first, past_reloc, second);
8289 tmpbuf[first + second] = '\0';
8290 return tmpbuf;
8291 }
8292
8293 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8294 gotrel[j].str, 1 << (5 + object_64bit));
8295 return NULL;
8296 }
8297 }
8298
8299 /* Might be a symbol version string. Don't as_bad here. */
8300 return NULL;
8301}
8302
8303#endif /* TE_PE */
8304
62ebcb5c 8305bfd_reloc_code_real_type
e3bb37b5 8306x86_cons (expressionS *exp, int size)
f3c180ae 8307{
62ebcb5c
AM
8308 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8309
ee86248c
JB
8310 intel_syntax = -intel_syntax;
8311
3c7b9c2c 8312 exp->X_md = 0;
4fa24527 8313 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8314 {
8315 /* Handle @GOTOFF and the like in an expression. */
8316 char *save;
8317 char *gotfree_input_line;
4a57f2cf 8318 int adjust = 0;
f3c180ae
AM
8319
8320 save = input_line_pointer;
d258b828 8321 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8322 if (gotfree_input_line)
8323 input_line_pointer = gotfree_input_line;
8324
8325 expression (exp);
8326
8327 if (gotfree_input_line)
8328 {
8329 /* expression () has merrily parsed up to the end of line,
8330 or a comma - in the wrong buffer. Transfer how far
8331 input_line_pointer has moved to the right buffer. */
8332 input_line_pointer = (save
8333 + (input_line_pointer - gotfree_input_line)
8334 + adjust);
8335 free (gotfree_input_line);
3992d3b7
AM
8336 if (exp->X_op == O_constant
8337 || exp->X_op == O_absent
8338 || exp->X_op == O_illegal
0398aac5 8339 || exp->X_op == O_register
3992d3b7
AM
8340 || exp->X_op == O_big)
8341 {
8342 char c = *input_line_pointer;
8343 *input_line_pointer = 0;
8344 as_bad (_("missing or invalid expression `%s'"), save);
8345 *input_line_pointer = c;
8346 }
f3c180ae
AM
8347 }
8348 }
8349 else
8350 expression (exp);
ee86248c
JB
8351
8352 intel_syntax = -intel_syntax;
8353
8354 if (intel_syntax)
8355 i386_intel_simplify (exp);
62ebcb5c
AM
8356
8357 return got_reloc;
f3c180ae 8358}
f3c180ae 8359
9f32dd5b
L
8360static void
8361signed_cons (int size)
6482c264 8362{
d182319b
JB
8363 if (flag_code == CODE_64BIT)
8364 cons_sign = 1;
8365 cons (size);
8366 cons_sign = -1;
6482c264
NC
8367}
8368
d182319b 8369#ifdef TE_PE
6482c264 8370static void
7016a5d5 8371pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8372{
8373 expressionS exp;
8374
8375 do
8376 {
8377 expression (&exp);
8378 if (exp.X_op == O_symbol)
8379 exp.X_op = O_secrel;
8380
8381 emit_expr (&exp, 4);
8382 }
8383 while (*input_line_pointer++ == ',');
8384
8385 input_line_pointer--;
8386 demand_empty_rest_of_line ();
8387}
6482c264
NC
8388#endif
8389
43234a1e
L
8390/* Handle Vector operations. */
8391
8392static char *
8393check_VecOperations (char *op_string, char *op_end)
8394{
8395 const reg_entry *mask;
8396 const char *saved;
8397 char *end_op;
8398
8399 while (*op_string
8400 && (op_end == NULL || op_string < op_end))
8401 {
8402 saved = op_string;
8403 if (*op_string == '{')
8404 {
8405 op_string++;
8406
8407 /* Check broadcasts. */
8408 if (strncmp (op_string, "1to", 3) == 0)
8409 {
8410 int bcst_type;
8411
8412 if (i.broadcast)
8413 goto duplicated_vec_op;
8414
8415 op_string += 3;
8416 if (*op_string == '8')
8417 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8418 else if (*op_string == '4')
8419 bcst_type = BROADCAST_1TO4;
8420 else if (*op_string == '2')
8421 bcst_type = BROADCAST_1TO2;
43234a1e
L
8422 else if (*op_string == '1'
8423 && *(op_string+1) == '6')
8424 {
8425 bcst_type = BROADCAST_1TO16;
8426 op_string++;
8427 }
8428 else
8429 {
8430 as_bad (_("Unsupported broadcast: `%s'"), saved);
8431 return NULL;
8432 }
8433 op_string++;
8434
8435 broadcast_op.type = bcst_type;
8436 broadcast_op.operand = this_operand;
8437 i.broadcast = &broadcast_op;
8438 }
8439 /* Check masking operation. */
8440 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8441 {
8442 /* k0 can't be used for write mask. */
6d2cd6b2 8443 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8444 {
6d2cd6b2
JB
8445 as_bad (_("`%s%s' can't be used for write mask"),
8446 register_prefix, mask->reg_name);
43234a1e
L
8447 return NULL;
8448 }
8449
8450 if (!i.mask)
8451 {
8452 mask_op.mask = mask;
8453 mask_op.zeroing = 0;
8454 mask_op.operand = this_operand;
8455 i.mask = &mask_op;
8456 }
8457 else
8458 {
8459 if (i.mask->mask)
8460 goto duplicated_vec_op;
8461
8462 i.mask->mask = mask;
8463
8464 /* Only "{z}" is allowed here. No need to check
8465 zeroing mask explicitly. */
8466 if (i.mask->operand != this_operand)
8467 {
8468 as_bad (_("invalid write mask `%s'"), saved);
8469 return NULL;
8470 }
8471 }
8472
8473 op_string = end_op;
8474 }
8475 /* Check zeroing-flag for masking operation. */
8476 else if (*op_string == 'z')
8477 {
8478 if (!i.mask)
8479 {
8480 mask_op.mask = NULL;
8481 mask_op.zeroing = 1;
8482 mask_op.operand = this_operand;
8483 i.mask = &mask_op;
8484 }
8485 else
8486 {
8487 if (i.mask->zeroing)
8488 {
8489 duplicated_vec_op:
8490 as_bad (_("duplicated `%s'"), saved);
8491 return NULL;
8492 }
8493
8494 i.mask->zeroing = 1;
8495
8496 /* Only "{%k}" is allowed here. No need to check mask
8497 register explicitly. */
8498 if (i.mask->operand != this_operand)
8499 {
8500 as_bad (_("invalid zeroing-masking `%s'"),
8501 saved);
8502 return NULL;
8503 }
8504 }
8505
8506 op_string++;
8507 }
8508 else
8509 goto unknown_vec_op;
8510
8511 if (*op_string != '}')
8512 {
8513 as_bad (_("missing `}' in `%s'"), saved);
8514 return NULL;
8515 }
8516 op_string++;
8517 continue;
8518 }
8519 unknown_vec_op:
8520 /* We don't know this one. */
8521 as_bad (_("unknown vector operation: `%s'"), saved);
8522 return NULL;
8523 }
8524
6d2cd6b2
JB
8525 if (i.mask && i.mask->zeroing && !i.mask->mask)
8526 {
8527 as_bad (_("zeroing-masking only allowed with write mask"));
8528 return NULL;
8529 }
8530
43234a1e
L
8531 return op_string;
8532}
8533
252b5132 8534static int
70e41ade 8535i386_immediate (char *imm_start)
252b5132
RH
8536{
8537 char *save_input_line_pointer;
f3c180ae 8538 char *gotfree_input_line;
252b5132 8539 segT exp_seg = 0;
47926f60 8540 expressionS *exp;
40fb9820
L
8541 i386_operand_type types;
8542
0dfbf9d7 8543 operand_type_set (&types, ~0);
252b5132
RH
8544
8545 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8546 {
31b2323c
L
8547 as_bad (_("at most %d immediate operands are allowed"),
8548 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8549 return 0;
8550 }
8551
8552 exp = &im_expressions[i.imm_operands++];
520dc8e8 8553 i.op[this_operand].imms = exp;
252b5132
RH
8554
8555 if (is_space_char (*imm_start))
8556 ++imm_start;
8557
8558 save_input_line_pointer = input_line_pointer;
8559 input_line_pointer = imm_start;
8560
d258b828 8561 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8562 if (gotfree_input_line)
8563 input_line_pointer = gotfree_input_line;
252b5132
RH
8564
8565 exp_seg = expression (exp);
8566
83183c0c 8567 SKIP_WHITESPACE ();
43234a1e
L
8568
8569 /* Handle vector operations. */
8570 if (*input_line_pointer == '{')
8571 {
8572 input_line_pointer = check_VecOperations (input_line_pointer,
8573 NULL);
8574 if (input_line_pointer == NULL)
8575 return 0;
8576 }
8577
252b5132 8578 if (*input_line_pointer)
f3c180ae 8579 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8580
8581 input_line_pointer = save_input_line_pointer;
f3c180ae 8582 if (gotfree_input_line)
ee86248c
JB
8583 {
8584 free (gotfree_input_line);
8585
8586 if (exp->X_op == O_constant || exp->X_op == O_register)
8587 exp->X_op = O_illegal;
8588 }
8589
8590 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8591}
252b5132 8592
ee86248c
JB
8593static int
8594i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8595 i386_operand_type types, const char *imm_start)
8596{
8597 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8598 {
313c53d1
L
8599 if (imm_start)
8600 as_bad (_("missing or invalid immediate expression `%s'"),
8601 imm_start);
3992d3b7 8602 return 0;
252b5132 8603 }
3e73aa7c 8604 else if (exp->X_op == O_constant)
252b5132 8605 {
47926f60 8606 /* Size it properly later. */
40fb9820 8607 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8608 /* If not 64bit, sign extend val. */
8609 if (flag_code != CODE_64BIT
4eed87de
AM
8610 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8611 exp->X_add_number
8612 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8613 }
4c63da97 8614#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8615 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8616 && exp_seg != absolute_section
47926f60 8617 && exp_seg != text_section
24eab124
AM
8618 && exp_seg != data_section
8619 && exp_seg != bss_section
8620 && exp_seg != undefined_section
f86103b7 8621 && !bfd_is_com_section (exp_seg))
252b5132 8622 {
d0b47220 8623 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8624 return 0;
8625 }
8626#endif
a841bdf5 8627 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8628 {
313c53d1
L
8629 if (imm_start)
8630 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8631 return 0;
8632 }
252b5132
RH
8633 else
8634 {
8635 /* This is an address. The size of the address will be
24eab124 8636 determined later, depending on destination register,
3e73aa7c 8637 suffix, or the default for the section. */
40fb9820
L
8638 i.types[this_operand].bitfield.imm8 = 1;
8639 i.types[this_operand].bitfield.imm16 = 1;
8640 i.types[this_operand].bitfield.imm32 = 1;
8641 i.types[this_operand].bitfield.imm32s = 1;
8642 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8643 i.types[this_operand] = operand_type_and (i.types[this_operand],
8644 types);
252b5132
RH
8645 }
8646
8647 return 1;
8648}
8649
551c1ca1 8650static char *
e3bb37b5 8651i386_scale (char *scale)
252b5132 8652{
551c1ca1
AM
8653 offsetT val;
8654 char *save = input_line_pointer;
252b5132 8655
551c1ca1
AM
8656 input_line_pointer = scale;
8657 val = get_absolute_expression ();
8658
8659 switch (val)
252b5132 8660 {
551c1ca1 8661 case 1:
252b5132
RH
8662 i.log2_scale_factor = 0;
8663 break;
551c1ca1 8664 case 2:
252b5132
RH
8665 i.log2_scale_factor = 1;
8666 break;
551c1ca1 8667 case 4:
252b5132
RH
8668 i.log2_scale_factor = 2;
8669 break;
551c1ca1 8670 case 8:
252b5132
RH
8671 i.log2_scale_factor = 3;
8672 break;
8673 default:
a724f0f4
JB
8674 {
8675 char sep = *input_line_pointer;
8676
8677 *input_line_pointer = '\0';
8678 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8679 scale);
8680 *input_line_pointer = sep;
8681 input_line_pointer = save;
8682 return NULL;
8683 }
252b5132 8684 }
29b0f896 8685 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8686 {
8687 as_warn (_("scale factor of %d without an index register"),
24eab124 8688 1 << i.log2_scale_factor);
252b5132 8689 i.log2_scale_factor = 0;
252b5132 8690 }
551c1ca1
AM
8691 scale = input_line_pointer;
8692 input_line_pointer = save;
8693 return scale;
252b5132
RH
8694}
8695
252b5132 8696static int
e3bb37b5 8697i386_displacement (char *disp_start, char *disp_end)
252b5132 8698{
29b0f896 8699 expressionS *exp;
252b5132
RH
8700 segT exp_seg = 0;
8701 char *save_input_line_pointer;
f3c180ae 8702 char *gotfree_input_line;
40fb9820
L
8703 int override;
8704 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8705 int ret;
252b5132 8706
31b2323c
L
8707 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8708 {
8709 as_bad (_("at most %d displacement operands are allowed"),
8710 MAX_MEMORY_OPERANDS);
8711 return 0;
8712 }
8713
0dfbf9d7 8714 operand_type_set (&bigdisp, 0);
40fb9820
L
8715 if ((i.types[this_operand].bitfield.jumpabsolute)
8716 || (!current_templates->start->opcode_modifier.jump
8717 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8718 {
40fb9820 8719 bigdisp.bitfield.disp32 = 1;
e05278af 8720 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8721 if (flag_code == CODE_64BIT)
8722 {
8723 if (!override)
8724 {
8725 bigdisp.bitfield.disp32s = 1;
8726 bigdisp.bitfield.disp64 = 1;
8727 }
8728 }
8729 else if ((flag_code == CODE_16BIT) ^ override)
8730 {
8731 bigdisp.bitfield.disp32 = 0;
8732 bigdisp.bitfield.disp16 = 1;
8733 }
e05278af
JB
8734 }
8735 else
8736 {
8737 /* For PC-relative branches, the width of the displacement
8738 is dependent upon data size, not address size. */
e05278af 8739 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8740 if (flag_code == CODE_64BIT)
8741 {
8742 if (override || i.suffix == WORD_MNEM_SUFFIX)
8743 bigdisp.bitfield.disp16 = 1;
8744 else
8745 {
8746 bigdisp.bitfield.disp32 = 1;
8747 bigdisp.bitfield.disp32s = 1;
8748 }
8749 }
8750 else
e05278af
JB
8751 {
8752 if (!override)
8753 override = (i.suffix == (flag_code != CODE_16BIT
8754 ? WORD_MNEM_SUFFIX
8755 : LONG_MNEM_SUFFIX));
40fb9820
L
8756 bigdisp.bitfield.disp32 = 1;
8757 if ((flag_code == CODE_16BIT) ^ override)
8758 {
8759 bigdisp.bitfield.disp32 = 0;
8760 bigdisp.bitfield.disp16 = 1;
8761 }
e05278af 8762 }
e05278af 8763 }
c6fb90c8
L
8764 i.types[this_operand] = operand_type_or (i.types[this_operand],
8765 bigdisp);
252b5132
RH
8766
8767 exp = &disp_expressions[i.disp_operands];
520dc8e8 8768 i.op[this_operand].disps = exp;
252b5132
RH
8769 i.disp_operands++;
8770 save_input_line_pointer = input_line_pointer;
8771 input_line_pointer = disp_start;
8772 END_STRING_AND_SAVE (disp_end);
8773
8774#ifndef GCC_ASM_O_HACK
8775#define GCC_ASM_O_HACK 0
8776#endif
8777#if GCC_ASM_O_HACK
8778 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8779 if (i.types[this_operand].bitfield.baseIndex
24eab124 8780 && displacement_string_end[-1] == '+')
252b5132
RH
8781 {
8782 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8783 constraint within gcc asm statements.
8784 For instance:
8785
8786 #define _set_tssldt_desc(n,addr,limit,type) \
8787 __asm__ __volatile__ ( \
8788 "movw %w2,%0\n\t" \
8789 "movw %w1,2+%0\n\t" \
8790 "rorl $16,%1\n\t" \
8791 "movb %b1,4+%0\n\t" \
8792 "movb %4,5+%0\n\t" \
8793 "movb $0,6+%0\n\t" \
8794 "movb %h1,7+%0\n\t" \
8795 "rorl $16,%1" \
8796 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8797
8798 This works great except that the output assembler ends
8799 up looking a bit weird if it turns out that there is
8800 no offset. You end up producing code that looks like:
8801
8802 #APP
8803 movw $235,(%eax)
8804 movw %dx,2+(%eax)
8805 rorl $16,%edx
8806 movb %dl,4+(%eax)
8807 movb $137,5+(%eax)
8808 movb $0,6+(%eax)
8809 movb %dh,7+(%eax)
8810 rorl $16,%edx
8811 #NO_APP
8812
47926f60 8813 So here we provide the missing zero. */
24eab124
AM
8814
8815 *displacement_string_end = '0';
252b5132
RH
8816 }
8817#endif
d258b828 8818 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8819 if (gotfree_input_line)
8820 input_line_pointer = gotfree_input_line;
252b5132 8821
24eab124 8822 exp_seg = expression (exp);
252b5132 8823
636c26b0
AM
8824 SKIP_WHITESPACE ();
8825 if (*input_line_pointer)
8826 as_bad (_("junk `%s' after expression"), input_line_pointer);
8827#if GCC_ASM_O_HACK
8828 RESTORE_END_STRING (disp_end + 1);
8829#endif
636c26b0 8830 input_line_pointer = save_input_line_pointer;
636c26b0 8831 if (gotfree_input_line)
ee86248c
JB
8832 {
8833 free (gotfree_input_line);
8834
8835 if (exp->X_op == O_constant || exp->X_op == O_register)
8836 exp->X_op = O_illegal;
8837 }
8838
8839 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8840
8841 RESTORE_END_STRING (disp_end);
8842
8843 return ret;
8844}
8845
8846static int
8847i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8848 i386_operand_type types, const char *disp_start)
8849{
8850 i386_operand_type bigdisp;
8851 int ret = 1;
636c26b0 8852
24eab124
AM
8853 /* We do this to make sure that the section symbol is in
8854 the symbol table. We will ultimately change the relocation
47926f60 8855 to be relative to the beginning of the section. */
1ae12ab7 8856 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8857 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8858 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8859 {
636c26b0 8860 if (exp->X_op != O_symbol)
3992d3b7 8861 goto inv_disp;
636c26b0 8862
e5cb08ac 8863 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8864 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8865 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8866 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8867 exp->X_op = O_subtract;
8868 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8869 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8870 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8871 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8872 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8873 else
29b0f896 8874 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8875 }
252b5132 8876
3992d3b7
AM
8877 else if (exp->X_op == O_absent
8878 || exp->X_op == O_illegal
ee86248c 8879 || exp->X_op == O_big)
2daf4fd8 8880 {
3992d3b7
AM
8881 inv_disp:
8882 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8883 disp_start);
3992d3b7 8884 ret = 0;
2daf4fd8
AM
8885 }
8886
0e1147d9
L
8887 else if (flag_code == CODE_64BIT
8888 && !i.prefix[ADDR_PREFIX]
8889 && exp->X_op == O_constant)
8890 {
8891 /* Since displacement is signed extended to 64bit, don't allow
8892 disp32 and turn off disp32s if they are out of range. */
8893 i.types[this_operand].bitfield.disp32 = 0;
8894 if (!fits_in_signed_long (exp->X_add_number))
8895 {
8896 i.types[this_operand].bitfield.disp32s = 0;
8897 if (i.types[this_operand].bitfield.baseindex)
8898 {
8899 as_bad (_("0x%lx out range of signed 32bit displacement"),
8900 (long) exp->X_add_number);
8901 ret = 0;
8902 }
8903 }
8904 }
8905
4c63da97 8906#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8907 else if (exp->X_op != O_constant
8908 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8909 && exp_seg != absolute_section
8910 && exp_seg != text_section
8911 && exp_seg != data_section
8912 && exp_seg != bss_section
8913 && exp_seg != undefined_section
8914 && !bfd_is_com_section (exp_seg))
24eab124 8915 {
d0b47220 8916 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8917 ret = 0;
24eab124 8918 }
252b5132 8919#endif
3956db08 8920
40fb9820
L
8921 /* Check if this is a displacement only operand. */
8922 bigdisp = i.types[this_operand];
8923 bigdisp.bitfield.disp8 = 0;
8924 bigdisp.bitfield.disp16 = 0;
8925 bigdisp.bitfield.disp32 = 0;
8926 bigdisp.bitfield.disp32s = 0;
8927 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8928 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8929 i.types[this_operand] = operand_type_and (i.types[this_operand],
8930 types);
3956db08 8931
3992d3b7 8932 return ret;
252b5132
RH
8933}
8934
2abc2bec
JB
8935/* Return the active addressing mode, taking address override and
8936 registers forming the address into consideration. Update the
8937 address override prefix if necessary. */
47926f60 8938
2abc2bec
JB
8939static enum flag_code
8940i386_addressing_mode (void)
252b5132 8941{
be05d201
L
8942 enum flag_code addr_mode;
8943
8944 if (i.prefix[ADDR_PREFIX])
8945 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8946 else
8947 {
8948 addr_mode = flag_code;
8949
24eab124 8950#if INFER_ADDR_PREFIX
be05d201
L
8951 if (i.mem_operands == 0)
8952 {
8953 /* Infer address prefix from the first memory operand. */
8954 const reg_entry *addr_reg = i.base_reg;
8955
8956 if (addr_reg == NULL)
8957 addr_reg = i.index_reg;
eecb386c 8958
be05d201
L
8959 if (addr_reg)
8960 {
8961 if (addr_reg->reg_num == RegEip
8962 || addr_reg->reg_num == RegEiz
dc821c5f 8963 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8964 addr_mode = CODE_32BIT;
8965 else if (flag_code != CODE_64BIT
dc821c5f 8966 && addr_reg->reg_type.bitfield.word)
be05d201
L
8967 addr_mode = CODE_16BIT;
8968
8969 if (addr_mode != flag_code)
8970 {
8971 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8972 i.prefixes += 1;
8973 /* Change the size of any displacement too. At most one
8974 of Disp16 or Disp32 is set.
8975 FIXME. There doesn't seem to be any real need for
8976 separate Disp16 and Disp32 flags. The same goes for
8977 Imm16 and Imm32. Removing them would probably clean
8978 up the code quite a lot. */
8979 if (flag_code != CODE_64BIT
8980 && (i.types[this_operand].bitfield.disp16
8981 || i.types[this_operand].bitfield.disp32))
8982 i.types[this_operand]
8983 = operand_type_xor (i.types[this_operand], disp16_32);
8984 }
8985 }
8986 }
24eab124 8987#endif
be05d201
L
8988 }
8989
2abc2bec
JB
8990 return addr_mode;
8991}
8992
8993/* Make sure the memory operand we've been dealt is valid.
8994 Return 1 on success, 0 on a failure. */
8995
8996static int
8997i386_index_check (const char *operand_string)
8998{
8999 const char *kind = "base/index";
9000 enum flag_code addr_mode = i386_addressing_mode ();
9001
fc0763e6
JB
9002 if (current_templates->start->opcode_modifier.isstring
9003 && !current_templates->start->opcode_modifier.immext
9004 && (current_templates->end[-1].opcode_modifier.isstring
9005 || i.mem_operands))
9006 {
9007 /* Memory operands of string insns are special in that they only allow
9008 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9009 const reg_entry *expected_reg;
9010 static const char *di_si[][2] =
9011 {
9012 { "esi", "edi" },
9013 { "si", "di" },
9014 { "rsi", "rdi" }
9015 };
9016 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9017
9018 kind = "string address";
9019
8325cc63 9020 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9021 {
9022 i386_operand_type type = current_templates->end[-1].operand_types[0];
9023
9024 if (!type.bitfield.baseindex
9025 || ((!i.mem_operands != !intel_syntax)
9026 && current_templates->end[-1].operand_types[1]
9027 .bitfield.baseindex))
9028 type = current_templates->end[-1].operand_types[1];
be05d201
L
9029 expected_reg = hash_find (reg_hash,
9030 di_si[addr_mode][type.bitfield.esseg]);
9031
fc0763e6
JB
9032 }
9033 else
be05d201 9034 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9035
be05d201
L
9036 if (i.base_reg != expected_reg
9037 || i.index_reg
fc0763e6 9038 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9039 {
be05d201
L
9040 /* The second memory operand must have the same size as
9041 the first one. */
9042 if (i.mem_operands
9043 && i.base_reg
9044 && !((addr_mode == CODE_64BIT
dc821c5f 9045 && i.base_reg->reg_type.bitfield.qword)
be05d201 9046 || (addr_mode == CODE_32BIT
dc821c5f
JB
9047 ? i.base_reg->reg_type.bitfield.dword
9048 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9049 goto bad_address;
9050
fc0763e6
JB
9051 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9052 operand_string,
9053 intel_syntax ? '[' : '(',
9054 register_prefix,
be05d201 9055 expected_reg->reg_name,
fc0763e6 9056 intel_syntax ? ']' : ')');
be05d201 9057 return 1;
fc0763e6 9058 }
be05d201
L
9059 else
9060 return 1;
9061
9062bad_address:
9063 as_bad (_("`%s' is not a valid %s expression"),
9064 operand_string, kind);
9065 return 0;
3e73aa7c
JH
9066 }
9067 else
9068 {
be05d201
L
9069 if (addr_mode != CODE_16BIT)
9070 {
9071 /* 32-bit/64-bit checks. */
9072 if ((i.base_reg
9073 && (addr_mode == CODE_64BIT
dc821c5f
JB
9074 ? !i.base_reg->reg_type.bitfield.qword
9075 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9076 && (i.index_reg
9077 || (i.base_reg->reg_num
9078 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9079 || (i.index_reg
1b54b8d7
JB
9080 && !i.index_reg->reg_type.bitfield.xmmword
9081 && !i.index_reg->reg_type.bitfield.ymmword
9082 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9083 && ((addr_mode == CODE_64BIT
dc821c5f 9084 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9085 || i.index_reg->reg_num == RegRiz)
dc821c5f 9086 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9087 || i.index_reg->reg_num == RegEiz))
9088 || !i.index_reg->reg_type.bitfield.baseindex)))
9089 goto bad_address;
8178be5b
JB
9090
9091 /* bndmk, bndldx, and bndstx have special restrictions. */
9092 if (current_templates->start->base_opcode == 0xf30f1b
9093 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9094 {
9095 /* They cannot use RIP-relative addressing. */
9096 if (i.base_reg && i.base_reg->reg_num == RegRip)
9097 {
9098 as_bad (_("`%s' cannot be used here"), operand_string);
9099 return 0;
9100 }
9101
9102 /* bndldx and bndstx ignore their scale factor. */
9103 if (current_templates->start->base_opcode != 0xf30f1b
9104 && i.log2_scale_factor)
9105 as_warn (_("register scaling is being ignored here"));
9106 }
be05d201
L
9107 }
9108 else
3e73aa7c 9109 {
be05d201 9110 /* 16-bit checks. */
3e73aa7c 9111 if ((i.base_reg
dc821c5f 9112 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9113 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9114 || (i.index_reg
dc821c5f 9115 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9116 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9117 || !(i.base_reg
9118 && i.base_reg->reg_num < 6
9119 && i.index_reg->reg_num >= 6
9120 && i.log2_scale_factor == 0))))
be05d201 9121 goto bad_address;
3e73aa7c
JH
9122 }
9123 }
be05d201 9124 return 1;
24eab124 9125}
252b5132 9126
43234a1e
L
9127/* Handle vector immediates. */
9128
9129static int
9130RC_SAE_immediate (const char *imm_start)
9131{
9132 unsigned int match_found, j;
9133 const char *pstr = imm_start;
9134 expressionS *exp;
9135
9136 if (*pstr != '{')
9137 return 0;
9138
9139 pstr++;
9140 match_found = 0;
9141 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9142 {
9143 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9144 {
9145 if (!i.rounding)
9146 {
9147 rc_op.type = RC_NamesTable[j].type;
9148 rc_op.operand = this_operand;
9149 i.rounding = &rc_op;
9150 }
9151 else
9152 {
9153 as_bad (_("duplicated `%s'"), imm_start);
9154 return 0;
9155 }
9156 pstr += RC_NamesTable[j].len;
9157 match_found = 1;
9158 break;
9159 }
9160 }
9161 if (!match_found)
9162 return 0;
9163
9164 if (*pstr++ != '}')
9165 {
9166 as_bad (_("Missing '}': '%s'"), imm_start);
9167 return 0;
9168 }
9169 /* RC/SAE immediate string should contain nothing more. */;
9170 if (*pstr != 0)
9171 {
9172 as_bad (_("Junk after '}': '%s'"), imm_start);
9173 return 0;
9174 }
9175
9176 exp = &im_expressions[i.imm_operands++];
9177 i.op[this_operand].imms = exp;
9178
9179 exp->X_op = O_constant;
9180 exp->X_add_number = 0;
9181 exp->X_add_symbol = (symbolS *) 0;
9182 exp->X_op_symbol = (symbolS *) 0;
9183
9184 i.types[this_operand].bitfield.imm8 = 1;
9185 return 1;
9186}
9187
8325cc63
JB
9188/* Only string instructions can have a second memory operand, so
9189 reduce current_templates to just those if it contains any. */
9190static int
9191maybe_adjust_templates (void)
9192{
9193 const insn_template *t;
9194
9195 gas_assert (i.mem_operands == 1);
9196
9197 for (t = current_templates->start; t < current_templates->end; ++t)
9198 if (t->opcode_modifier.isstring)
9199 break;
9200
9201 if (t < current_templates->end)
9202 {
9203 static templates aux_templates;
9204 bfd_boolean recheck;
9205
9206 aux_templates.start = t;
9207 for (; t < current_templates->end; ++t)
9208 if (!t->opcode_modifier.isstring)
9209 break;
9210 aux_templates.end = t;
9211
9212 /* Determine whether to re-check the first memory operand. */
9213 recheck = (aux_templates.start != current_templates->start
9214 || t != current_templates->end);
9215
9216 current_templates = &aux_templates;
9217
9218 if (recheck)
9219 {
9220 i.mem_operands = 0;
9221 if (i.memop1_string != NULL
9222 && i386_index_check (i.memop1_string) == 0)
9223 return 0;
9224 i.mem_operands = 1;
9225 }
9226 }
9227
9228 return 1;
9229}
9230
fc0763e6 9231/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9232 on error. */
252b5132 9233
252b5132 9234static int
a7619375 9235i386_att_operand (char *operand_string)
252b5132 9236{
af6bdddf
AM
9237 const reg_entry *r;
9238 char *end_op;
24eab124 9239 char *op_string = operand_string;
252b5132 9240
24eab124 9241 if (is_space_char (*op_string))
252b5132
RH
9242 ++op_string;
9243
24eab124 9244 /* We check for an absolute prefix (differentiating,
47926f60 9245 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9246 if (*op_string == ABSOLUTE_PREFIX)
9247 {
9248 ++op_string;
9249 if (is_space_char (*op_string))
9250 ++op_string;
40fb9820 9251 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9252 }
252b5132 9253
47926f60 9254 /* Check if operand is a register. */
4d1bb795 9255 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9256 {
40fb9820
L
9257 i386_operand_type temp;
9258
24eab124
AM
9259 /* Check for a segment override by searching for ':' after a
9260 segment register. */
9261 op_string = end_op;
9262 if (is_space_char (*op_string))
9263 ++op_string;
40fb9820
L
9264 if (*op_string == ':'
9265 && (r->reg_type.bitfield.sreg2
9266 || r->reg_type.bitfield.sreg3))
24eab124
AM
9267 {
9268 switch (r->reg_num)
9269 {
9270 case 0:
9271 i.seg[i.mem_operands] = &es;
9272 break;
9273 case 1:
9274 i.seg[i.mem_operands] = &cs;
9275 break;
9276 case 2:
9277 i.seg[i.mem_operands] = &ss;
9278 break;
9279 case 3:
9280 i.seg[i.mem_operands] = &ds;
9281 break;
9282 case 4:
9283 i.seg[i.mem_operands] = &fs;
9284 break;
9285 case 5:
9286 i.seg[i.mem_operands] = &gs;
9287 break;
9288 }
252b5132 9289
24eab124 9290 /* Skip the ':' and whitespace. */
252b5132
RH
9291 ++op_string;
9292 if (is_space_char (*op_string))
24eab124 9293 ++op_string;
252b5132 9294
24eab124
AM
9295 if (!is_digit_char (*op_string)
9296 && !is_identifier_char (*op_string)
9297 && *op_string != '('
9298 && *op_string != ABSOLUTE_PREFIX)
9299 {
9300 as_bad (_("bad memory operand `%s'"), op_string);
9301 return 0;
9302 }
47926f60 9303 /* Handle case of %es:*foo. */
24eab124
AM
9304 if (*op_string == ABSOLUTE_PREFIX)
9305 {
9306 ++op_string;
9307 if (is_space_char (*op_string))
9308 ++op_string;
40fb9820 9309 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9310 }
9311 goto do_memory_reference;
9312 }
43234a1e
L
9313
9314 /* Handle vector operations. */
9315 if (*op_string == '{')
9316 {
9317 op_string = check_VecOperations (op_string, NULL);
9318 if (op_string == NULL)
9319 return 0;
9320 }
9321
24eab124
AM
9322 if (*op_string)
9323 {
d0b47220 9324 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9325 return 0;
9326 }
40fb9820
L
9327 temp = r->reg_type;
9328 temp.bitfield.baseindex = 0;
c6fb90c8
L
9329 i.types[this_operand] = operand_type_or (i.types[this_operand],
9330 temp);
7d5e4556 9331 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9332 i.op[this_operand].regs = r;
24eab124
AM
9333 i.reg_operands++;
9334 }
af6bdddf
AM
9335 else if (*op_string == REGISTER_PREFIX)
9336 {
9337 as_bad (_("bad register name `%s'"), op_string);
9338 return 0;
9339 }
24eab124 9340 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9341 {
24eab124 9342 ++op_string;
40fb9820 9343 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9344 {
d0b47220 9345 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9346 return 0;
9347 }
9348 if (!i386_immediate (op_string))
9349 return 0;
9350 }
43234a1e
L
9351 else if (RC_SAE_immediate (operand_string))
9352 {
9353 /* If it is a RC or SAE immediate, do nothing. */
9354 ;
9355 }
24eab124
AM
9356 else if (is_digit_char (*op_string)
9357 || is_identifier_char (*op_string)
d02603dc 9358 || *op_string == '"'
e5cb08ac 9359 || *op_string == '(')
24eab124 9360 {
47926f60 9361 /* This is a memory reference of some sort. */
af6bdddf 9362 char *base_string;
252b5132 9363
47926f60 9364 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9365 char *displacement_string_start;
9366 char *displacement_string_end;
43234a1e 9367 char *vop_start;
252b5132 9368
24eab124 9369 do_memory_reference:
8325cc63
JB
9370 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9371 return 0;
24eab124 9372 if ((i.mem_operands == 1
40fb9820 9373 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9374 || i.mem_operands == 2)
9375 {
9376 as_bad (_("too many memory references for `%s'"),
9377 current_templates->start->name);
9378 return 0;
9379 }
252b5132 9380
24eab124
AM
9381 /* Check for base index form. We detect the base index form by
9382 looking for an ')' at the end of the operand, searching
9383 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9384 after the '('. */
af6bdddf 9385 base_string = op_string + strlen (op_string);
c3332e24 9386
43234a1e
L
9387 /* Handle vector operations. */
9388 vop_start = strchr (op_string, '{');
9389 if (vop_start && vop_start < base_string)
9390 {
9391 if (check_VecOperations (vop_start, base_string) == NULL)
9392 return 0;
9393 base_string = vop_start;
9394 }
9395
af6bdddf
AM
9396 --base_string;
9397 if (is_space_char (*base_string))
9398 --base_string;
252b5132 9399
47926f60 9400 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9401 displacement_string_start = op_string;
9402 displacement_string_end = base_string + 1;
252b5132 9403
24eab124
AM
9404 if (*base_string == ')')
9405 {
af6bdddf 9406 char *temp_string;
24eab124
AM
9407 unsigned int parens_balanced = 1;
9408 /* We've already checked that the number of left & right ()'s are
47926f60 9409 equal, so this loop will not be infinite. */
24eab124
AM
9410 do
9411 {
9412 base_string--;
9413 if (*base_string == ')')
9414 parens_balanced++;
9415 if (*base_string == '(')
9416 parens_balanced--;
9417 }
9418 while (parens_balanced);
c3332e24 9419
af6bdddf 9420 temp_string = base_string;
c3332e24 9421
24eab124 9422 /* Skip past '(' and whitespace. */
252b5132
RH
9423 ++base_string;
9424 if (is_space_char (*base_string))
24eab124 9425 ++base_string;
252b5132 9426
af6bdddf 9427 if (*base_string == ','
4eed87de
AM
9428 || ((i.base_reg = parse_register (base_string, &end_op))
9429 != NULL))
252b5132 9430 {
af6bdddf 9431 displacement_string_end = temp_string;
252b5132 9432
40fb9820 9433 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9434
af6bdddf 9435 if (i.base_reg)
24eab124 9436 {
24eab124
AM
9437 base_string = end_op;
9438 if (is_space_char (*base_string))
9439 ++base_string;
af6bdddf
AM
9440 }
9441
9442 /* There may be an index reg or scale factor here. */
9443 if (*base_string == ',')
9444 {
9445 ++base_string;
9446 if (is_space_char (*base_string))
9447 ++base_string;
9448
4eed87de
AM
9449 if ((i.index_reg = parse_register (base_string, &end_op))
9450 != NULL)
24eab124 9451 {
af6bdddf 9452 base_string = end_op;
24eab124
AM
9453 if (is_space_char (*base_string))
9454 ++base_string;
af6bdddf
AM
9455 if (*base_string == ',')
9456 {
9457 ++base_string;
9458 if (is_space_char (*base_string))
9459 ++base_string;
9460 }
e5cb08ac 9461 else if (*base_string != ')')
af6bdddf 9462 {
4eed87de
AM
9463 as_bad (_("expecting `,' or `)' "
9464 "after index register in `%s'"),
af6bdddf
AM
9465 operand_string);
9466 return 0;
9467 }
24eab124 9468 }
af6bdddf 9469 else if (*base_string == REGISTER_PREFIX)
24eab124 9470 {
f76bf5e0
L
9471 end_op = strchr (base_string, ',');
9472 if (end_op)
9473 *end_op = '\0';
af6bdddf 9474 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9475 return 0;
9476 }
252b5132 9477
47926f60 9478 /* Check for scale factor. */
551c1ca1 9479 if (*base_string != ')')
af6bdddf 9480 {
551c1ca1
AM
9481 char *end_scale = i386_scale (base_string);
9482
9483 if (!end_scale)
af6bdddf 9484 return 0;
24eab124 9485
551c1ca1 9486 base_string = end_scale;
af6bdddf
AM
9487 if (is_space_char (*base_string))
9488 ++base_string;
9489 if (*base_string != ')')
9490 {
4eed87de
AM
9491 as_bad (_("expecting `)' "
9492 "after scale factor in `%s'"),
af6bdddf
AM
9493 operand_string);
9494 return 0;
9495 }
9496 }
9497 else if (!i.index_reg)
24eab124 9498 {
4eed87de
AM
9499 as_bad (_("expecting index register or scale factor "
9500 "after `,'; got '%c'"),
af6bdddf 9501 *base_string);
24eab124
AM
9502 return 0;
9503 }
9504 }
af6bdddf 9505 else if (*base_string != ')')
24eab124 9506 {
4eed87de
AM
9507 as_bad (_("expecting `,' or `)' "
9508 "after base register in `%s'"),
af6bdddf 9509 operand_string);
24eab124
AM
9510 return 0;
9511 }
c3332e24 9512 }
af6bdddf 9513 else if (*base_string == REGISTER_PREFIX)
c3332e24 9514 {
f76bf5e0
L
9515 end_op = strchr (base_string, ',');
9516 if (end_op)
9517 *end_op = '\0';
af6bdddf 9518 as_bad (_("bad register name `%s'"), base_string);
24eab124 9519 return 0;
c3332e24 9520 }
24eab124
AM
9521 }
9522
9523 /* If there's an expression beginning the operand, parse it,
9524 assuming displacement_string_start and
9525 displacement_string_end are meaningful. */
9526 if (displacement_string_start != displacement_string_end)
9527 {
9528 if (!i386_displacement (displacement_string_start,
9529 displacement_string_end))
9530 return 0;
9531 }
9532
9533 /* Special case for (%dx) while doing input/output op. */
9534 if (i.base_reg
0dfbf9d7
L
9535 && operand_type_equal (&i.base_reg->reg_type,
9536 &reg16_inoutportreg)
24eab124
AM
9537 && i.index_reg == 0
9538 && i.log2_scale_factor == 0
9539 && i.seg[i.mem_operands] == 0
40fb9820 9540 && !operand_type_check (i.types[this_operand], disp))
24eab124 9541 {
65da13b5 9542 i.types[this_operand] = inoutportreg;
24eab124
AM
9543 return 1;
9544 }
9545
eecb386c
AM
9546 if (i386_index_check (operand_string) == 0)
9547 return 0;
5c07affc 9548 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9549 if (i.mem_operands == 0)
9550 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9551 i.mem_operands++;
9552 }
9553 else
ce8a8b2f
AM
9554 {
9555 /* It's not a memory operand; argh! */
24eab124
AM
9556 as_bad (_("invalid char %s beginning operand %d `%s'"),
9557 output_invalid (*op_string),
9558 this_operand + 1,
9559 op_string);
9560 return 0;
9561 }
47926f60 9562 return 1; /* Normal return. */
252b5132
RH
9563}
9564\f
fa94de6b
RM
9565/* Calculate the maximum variable size (i.e., excluding fr_fix)
9566 that an rs_machine_dependent frag may reach. */
9567
9568unsigned int
9569i386_frag_max_var (fragS *frag)
9570{
9571 /* The only relaxable frags are for jumps.
9572 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9573 gas_assert (frag->fr_type == rs_machine_dependent);
9574 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9575}
9576
b084df0b
L
9577#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9578static int
8dcea932 9579elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9580{
9581 /* STT_GNU_IFUNC symbol must go through PLT. */
9582 if ((symbol_get_bfdsym (fr_symbol)->flags
9583 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9584 return 0;
9585
9586 if (!S_IS_EXTERNAL (fr_symbol))
9587 /* Symbol may be weak or local. */
9588 return !S_IS_WEAK (fr_symbol);
9589
8dcea932
L
9590 /* Global symbols with non-default visibility can't be preempted. */
9591 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9592 return 1;
9593
9594 if (fr_var != NO_RELOC)
9595 switch ((enum bfd_reloc_code_real) fr_var)
9596 {
9597 case BFD_RELOC_386_PLT32:
9598 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9599 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9600 return 0;
9601 default:
9602 abort ();
9603 }
9604
b084df0b
L
9605 /* Global symbols with default visibility in a shared library may be
9606 preempted by another definition. */
8dcea932 9607 return !shared;
b084df0b
L
9608}
9609#endif
9610
ee7fcc42
AM
9611/* md_estimate_size_before_relax()
9612
9613 Called just before relax() for rs_machine_dependent frags. The x86
9614 assembler uses these frags to handle variable size jump
9615 instructions.
9616
9617 Any symbol that is now undefined will not become defined.
9618 Return the correct fr_subtype in the frag.
9619 Return the initial "guess for variable size of frag" to caller.
9620 The guess is actually the growth beyond the fixed part. Whatever
9621 we do to grow the fixed or variable part contributes to our
9622 returned value. */
9623
252b5132 9624int
7016a5d5 9625md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9626{
252b5132 9627 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9628 check for un-relaxable symbols. On an ELF system, we can't relax
9629 an externally visible symbol, because it may be overridden by a
9630 shared library. */
9631 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9632#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9633 || (IS_ELF
8dcea932
L
9634 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9635 fragP->fr_var))
fbeb56a4
DK
9636#endif
9637#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9638 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9639 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9640#endif
9641 )
252b5132 9642 {
b98ef147
AM
9643 /* Symbol is undefined in this segment, or we need to keep a
9644 reloc so that weak symbols can be overridden. */
9645 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9646 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9647 unsigned char *opcode;
9648 int old_fr_fix;
f6af82bd 9649
ee7fcc42 9650 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9651 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9652 else if (size == 2)
f6af82bd 9653 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9654#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9655 else if (need_plt32_p (fragP->fr_symbol))
9656 reloc_type = BFD_RELOC_X86_64_PLT32;
9657#endif
f6af82bd
AM
9658 else
9659 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9660
ee7fcc42
AM
9661 old_fr_fix = fragP->fr_fix;
9662 opcode = (unsigned char *) fragP->fr_opcode;
9663
fddf5b5b 9664 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9665 {
fddf5b5b
AM
9666 case UNCOND_JUMP:
9667 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9668 opcode[0] = 0xe9;
252b5132 9669 fragP->fr_fix += size;
062cd5e7
AS
9670 fix_new (fragP, old_fr_fix, size,
9671 fragP->fr_symbol,
9672 fragP->fr_offset, 1,
9673 reloc_type);
252b5132
RH
9674 break;
9675
fddf5b5b 9676 case COND_JUMP86:
412167cb
AM
9677 if (size == 2
9678 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9679 {
9680 /* Negate the condition, and branch past an
9681 unconditional jump. */
9682 opcode[0] ^= 1;
9683 opcode[1] = 3;
9684 /* Insert an unconditional jump. */
9685 opcode[2] = 0xe9;
9686 /* We added two extra opcode bytes, and have a two byte
9687 offset. */
9688 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9689 fix_new (fragP, old_fr_fix + 2, 2,
9690 fragP->fr_symbol,
9691 fragP->fr_offset, 1,
9692 reloc_type);
fddf5b5b
AM
9693 break;
9694 }
9695 /* Fall through. */
9696
9697 case COND_JUMP:
412167cb
AM
9698 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9699 {
3e02c1cc
AM
9700 fixS *fixP;
9701
412167cb 9702 fragP->fr_fix += 1;
3e02c1cc
AM
9703 fixP = fix_new (fragP, old_fr_fix, 1,
9704 fragP->fr_symbol,
9705 fragP->fr_offset, 1,
9706 BFD_RELOC_8_PCREL);
9707 fixP->fx_signed = 1;
412167cb
AM
9708 break;
9709 }
93c2a809 9710
24eab124 9711 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9712 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9713 opcode[1] = opcode[0] + 0x10;
f6af82bd 9714 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9715 /* We've added an opcode byte. */
9716 fragP->fr_fix += 1 + size;
062cd5e7
AS
9717 fix_new (fragP, old_fr_fix + 1, size,
9718 fragP->fr_symbol,
9719 fragP->fr_offset, 1,
9720 reloc_type);
252b5132 9721 break;
fddf5b5b
AM
9722
9723 default:
9724 BAD_CASE (fragP->fr_subtype);
9725 break;
252b5132
RH
9726 }
9727 frag_wane (fragP);
ee7fcc42 9728 return fragP->fr_fix - old_fr_fix;
252b5132 9729 }
93c2a809 9730
93c2a809
AM
9731 /* Guess size depending on current relax state. Initially the relax
9732 state will correspond to a short jump and we return 1, because
9733 the variable part of the frag (the branch offset) is one byte
9734 long. However, we can relax a section more than once and in that
9735 case we must either set fr_subtype back to the unrelaxed state,
9736 or return the value for the appropriate branch. */
9737 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9738}
9739
47926f60
KH
9740/* Called after relax() is finished.
9741
9742 In: Address of frag.
9743 fr_type == rs_machine_dependent.
9744 fr_subtype is what the address relaxed to.
9745
9746 Out: Any fixSs and constants are set up.
9747 Caller will turn frag into a ".space 0". */
9748
252b5132 9749void
7016a5d5
TG
9750md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9751 fragS *fragP)
252b5132 9752{
29b0f896 9753 unsigned char *opcode;
252b5132 9754 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9755 offsetT target_address;
9756 offsetT opcode_address;
252b5132 9757 unsigned int extension = 0;
847f7ad4 9758 offsetT displacement_from_opcode_start;
252b5132
RH
9759
9760 opcode = (unsigned char *) fragP->fr_opcode;
9761
47926f60 9762 /* Address we want to reach in file space. */
252b5132 9763 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9764
47926f60 9765 /* Address opcode resides at in file space. */
252b5132
RH
9766 opcode_address = fragP->fr_address + fragP->fr_fix;
9767
47926f60 9768 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9769 displacement_from_opcode_start = target_address - opcode_address;
9770
fddf5b5b 9771 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9772 {
47926f60
KH
9773 /* Don't have to change opcode. */
9774 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9775 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9776 }
9777 else
9778 {
9779 if (no_cond_jump_promotion
9780 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9781 as_warn_where (fragP->fr_file, fragP->fr_line,
9782 _("long jump required"));
252b5132 9783
fddf5b5b
AM
9784 switch (fragP->fr_subtype)
9785 {
9786 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9787 extension = 4; /* 1 opcode + 4 displacement */
9788 opcode[0] = 0xe9;
9789 where_to_put_displacement = &opcode[1];
9790 break;
252b5132 9791
fddf5b5b
AM
9792 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9793 extension = 2; /* 1 opcode + 2 displacement */
9794 opcode[0] = 0xe9;
9795 where_to_put_displacement = &opcode[1];
9796 break;
252b5132 9797
fddf5b5b
AM
9798 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9799 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9800 extension = 5; /* 2 opcode + 4 displacement */
9801 opcode[1] = opcode[0] + 0x10;
9802 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9803 where_to_put_displacement = &opcode[2];
9804 break;
252b5132 9805
fddf5b5b
AM
9806 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9807 extension = 3; /* 2 opcode + 2 displacement */
9808 opcode[1] = opcode[0] + 0x10;
9809 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9810 where_to_put_displacement = &opcode[2];
9811 break;
252b5132 9812
fddf5b5b
AM
9813 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9814 extension = 4;
9815 opcode[0] ^= 1;
9816 opcode[1] = 3;
9817 opcode[2] = 0xe9;
9818 where_to_put_displacement = &opcode[3];
9819 break;
9820
9821 default:
9822 BAD_CASE (fragP->fr_subtype);
9823 break;
9824 }
252b5132 9825 }
fddf5b5b 9826
7b81dfbb
AJ
9827 /* If size if less then four we are sure that the operand fits,
9828 but if it's 4, then it could be that the displacement is larger
9829 then -/+ 2GB. */
9830 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9831 && object_64bit
9832 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9833 + ((addressT) 1 << 31))
9834 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9835 {
9836 as_bad_where (fragP->fr_file, fragP->fr_line,
9837 _("jump target out of range"));
9838 /* Make us emit 0. */
9839 displacement_from_opcode_start = extension;
9840 }
47926f60 9841 /* Now put displacement after opcode. */
252b5132
RH
9842 md_number_to_chars ((char *) where_to_put_displacement,
9843 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9844 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9845 fragP->fr_fix += extension;
9846}
9847\f
7016a5d5 9848/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9849 by our caller that we have all the info we need to fix it up.
9850
7016a5d5
TG
9851 Parameter valP is the pointer to the value of the bits.
9852
252b5132
RH
9853 On the 386, immediates, displacements, and data pointers are all in
9854 the same (little-endian) format, so we don't need to care about which
9855 we are handling. */
9856
94f592af 9857void
7016a5d5 9858md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9859{
94f592af 9860 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9861 valueT value = *valP;
252b5132 9862
f86103b7 9863#if !defined (TE_Mach)
93382f6d
AM
9864 if (fixP->fx_pcrel)
9865 {
9866 switch (fixP->fx_r_type)
9867 {
5865bb77
ILT
9868 default:
9869 break;
9870
d6ab8113
JB
9871 case BFD_RELOC_64:
9872 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9873 break;
93382f6d 9874 case BFD_RELOC_32:
ae8887b5 9875 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9876 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9877 break;
9878 case BFD_RELOC_16:
9879 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9880 break;
9881 case BFD_RELOC_8:
9882 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9883 break;
9884 }
9885 }
252b5132 9886
a161fe53 9887 if (fixP->fx_addsy != NULL
31312f95 9888 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9889 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9890 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9891 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9892 && !use_rela_relocations)
252b5132 9893 {
31312f95
AM
9894 /* This is a hack. There should be a better way to handle this.
9895 This covers for the fact that bfd_install_relocation will
9896 subtract the current location (for partial_inplace, PC relative
9897 relocations); see more below. */
252b5132 9898#ifndef OBJ_AOUT
718ddfc0 9899 if (IS_ELF
252b5132
RH
9900#ifdef TE_PE
9901 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9902#endif
9903 )
9904 value += fixP->fx_where + fixP->fx_frag->fr_address;
9905#endif
9906#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9907 if (IS_ELF)
252b5132 9908 {
6539b54b 9909 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9910
6539b54b 9911 if ((sym_seg == seg
2f66722d 9912 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9913 && sym_seg != absolute_section))
af65af87 9914 && !generic_force_reloc (fixP))
2f66722d
AM
9915 {
9916 /* Yes, we add the values in twice. This is because
6539b54b
AM
9917 bfd_install_relocation subtracts them out again. I think
9918 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9919 it. FIXME. */
9920 value += fixP->fx_where + fixP->fx_frag->fr_address;
9921 }
252b5132
RH
9922 }
9923#endif
9924#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9925 /* For some reason, the PE format does not store a
9926 section address offset for a PC relative symbol. */
9927 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9928 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9929 value += md_pcrel_from (fixP);
9930#endif
9931 }
fbeb56a4 9932#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9933 if (fixP->fx_addsy != NULL
9934 && S_IS_WEAK (fixP->fx_addsy)
9935 /* PR 16858: Do not modify weak function references. */
9936 && ! fixP->fx_pcrel)
fbeb56a4 9937 {
296a8689
NC
9938#if !defined (TE_PEP)
9939 /* For x86 PE weak function symbols are neither PC-relative
9940 nor do they set S_IS_FUNCTION. So the only reliable way
9941 to detect them is to check the flags of their containing
9942 section. */
9943 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9944 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9945 ;
9946 else
9947#endif
fbeb56a4
DK
9948 value -= S_GET_VALUE (fixP->fx_addsy);
9949 }
9950#endif
252b5132
RH
9951
9952 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9953 and we must not disappoint it. */
252b5132 9954#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9955 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9956 switch (fixP->fx_r_type)
9957 {
9958 case BFD_RELOC_386_PLT32:
3e73aa7c 9959 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9960 /* Make the jump instruction point to the address of the operand. At
9961 runtime we merely add the offset to the actual PLT entry. */
9962 value = -4;
9963 break;
31312f95 9964
13ae64f3
JJ
9965 case BFD_RELOC_386_TLS_GD:
9966 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9967 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9968 case BFD_RELOC_386_TLS_IE:
9969 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9970 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9971 case BFD_RELOC_X86_64_TLSGD:
9972 case BFD_RELOC_X86_64_TLSLD:
9973 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9974 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9975 value = 0; /* Fully resolved at runtime. No addend. */
9976 /* Fallthrough */
9977 case BFD_RELOC_386_TLS_LE:
9978 case BFD_RELOC_386_TLS_LDO_32:
9979 case BFD_RELOC_386_TLS_LE_32:
9980 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9981 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9982 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9983 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9984 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9985 break;
9986
67a4f2b7
AO
9987 case BFD_RELOC_386_TLS_DESC_CALL:
9988 case BFD_RELOC_X86_64_TLSDESC_CALL:
9989 value = 0; /* Fully resolved at runtime. No addend. */
9990 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9991 fixP->fx_done = 0;
9992 return;
9993
47926f60
KH
9994 case BFD_RELOC_VTABLE_INHERIT:
9995 case BFD_RELOC_VTABLE_ENTRY:
9996 fixP->fx_done = 0;
94f592af 9997 return;
47926f60
KH
9998
9999 default:
10000 break;
10001 }
10002#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10003 *valP = value;
f86103b7 10004#endif /* !defined (TE_Mach) */
3e73aa7c 10005
3e73aa7c 10006 /* Are we finished with this relocation now? */
c6682705 10007 if (fixP->fx_addsy == NULL)
3e73aa7c 10008 fixP->fx_done = 1;
fbeb56a4
DK
10009#if defined (OBJ_COFF) && defined (TE_PE)
10010 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10011 {
10012 fixP->fx_done = 0;
10013 /* Remember value for tc_gen_reloc. */
10014 fixP->fx_addnumber = value;
10015 /* Clear out the frag for now. */
10016 value = 0;
10017 }
10018#endif
3e73aa7c
JH
10019 else if (use_rela_relocations)
10020 {
10021 fixP->fx_no_overflow = 1;
062cd5e7
AS
10022 /* Remember value for tc_gen_reloc. */
10023 fixP->fx_addnumber = value;
3e73aa7c
JH
10024 value = 0;
10025 }
f86103b7 10026
94f592af 10027 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10028}
252b5132 10029\f
6d4af3c2 10030const char *
499ac353 10031md_atof (int type, char *litP, int *sizeP)
252b5132 10032{
499ac353
NC
10033 /* This outputs the LITTLENUMs in REVERSE order;
10034 in accord with the bigendian 386. */
10035 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10036}
10037\f
2d545b82 10038static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10039
252b5132 10040static char *
e3bb37b5 10041output_invalid (int c)
252b5132 10042{
3882b010 10043 if (ISPRINT (c))
f9f21a03
L
10044 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10045 "'%c'", c);
252b5132 10046 else
f9f21a03 10047 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10048 "(0x%x)", (unsigned char) c);
252b5132
RH
10049 return output_invalid_buf;
10050}
10051
af6bdddf 10052/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10053
10054static const reg_entry *
4d1bb795 10055parse_real_register (char *reg_string, char **end_op)
252b5132 10056{
af6bdddf
AM
10057 char *s = reg_string;
10058 char *p;
252b5132
RH
10059 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10060 const reg_entry *r;
10061
10062 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10063 if (*s == REGISTER_PREFIX)
10064 ++s;
10065
10066 if (is_space_char (*s))
10067 ++s;
10068
10069 p = reg_name_given;
af6bdddf 10070 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10071 {
10072 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10073 return (const reg_entry *) NULL;
10074 s++;
252b5132
RH
10075 }
10076
6588847e
DN
10077 /* For naked regs, make sure that we are not dealing with an identifier.
10078 This prevents confusing an identifier like `eax_var' with register
10079 `eax'. */
10080 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10081 return (const reg_entry *) NULL;
10082
af6bdddf 10083 *end_op = s;
252b5132
RH
10084
10085 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10086
5f47d35b 10087 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10088 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10089 {
5f47d35b
AM
10090 if (is_space_char (*s))
10091 ++s;
10092 if (*s == '(')
10093 {
af6bdddf 10094 ++s;
5f47d35b
AM
10095 if (is_space_char (*s))
10096 ++s;
10097 if (*s >= '0' && *s <= '7')
10098 {
db557034 10099 int fpr = *s - '0';
af6bdddf 10100 ++s;
5f47d35b
AM
10101 if (is_space_char (*s))
10102 ++s;
10103 if (*s == ')')
10104 {
10105 *end_op = s + 1;
1e9cc1c2 10106 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10107 know (r);
10108 return r + fpr;
5f47d35b 10109 }
5f47d35b 10110 }
47926f60 10111 /* We have "%st(" then garbage. */
5f47d35b
AM
10112 return (const reg_entry *) NULL;
10113 }
10114 }
10115
a60de03c
JB
10116 if (r == NULL || allow_pseudo_reg)
10117 return r;
10118
0dfbf9d7 10119 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10120 return (const reg_entry *) NULL;
10121
dc821c5f 10122 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10123 || r->reg_type.bitfield.sreg3
10124 || r->reg_type.bitfield.control
10125 || r->reg_type.bitfield.debug
10126 || r->reg_type.bitfield.test)
10127 && !cpu_arch_flags.bitfield.cpui386)
10128 return (const reg_entry *) NULL;
10129
ca0d63fe 10130 if (r->reg_type.bitfield.tbyte
309d3373
JB
10131 && !cpu_arch_flags.bitfield.cpu8087
10132 && !cpu_arch_flags.bitfield.cpu287
10133 && !cpu_arch_flags.bitfield.cpu387)
10134 return (const reg_entry *) NULL;
10135
1848e567 10136 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
10137 return (const reg_entry *) NULL;
10138
1b54b8d7 10139 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
10140 return (const reg_entry *) NULL;
10141
1b54b8d7 10142 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
10143 return (const reg_entry *) NULL;
10144
1b54b8d7 10145 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
10146 return (const reg_entry *) NULL;
10147
10148 if (r->reg_type.bitfield.regmask
10149 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
10150 return (const reg_entry *) NULL;
10151
db51cc60 10152 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10153 if (!allow_index_reg
db51cc60
L
10154 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10155 return (const reg_entry *) NULL;
10156
43234a1e
L
10157 /* Upper 16 vector register is only available with VREX in 64bit
10158 mode. */
10159 if ((r->reg_flags & RegVRex))
10160 {
86fa6981
L
10161 if (i.vec_encoding == vex_encoding_default)
10162 i.vec_encoding = vex_encoding_evex;
10163
43234a1e 10164 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 10165 || i.vec_encoding != vex_encoding_evex
43234a1e
L
10166 || flag_code != CODE_64BIT)
10167 return (const reg_entry *) NULL;
43234a1e
L
10168 }
10169
a60de03c 10170 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10171 || r->reg_type.bitfield.qword)
40fb9820 10172 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10173 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10174 && flag_code != CODE_64BIT)
20f0a1fc 10175 return (const reg_entry *) NULL;
1ae00879 10176
b7240065
JB
10177 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10178 return (const reg_entry *) NULL;
10179
252b5132
RH
10180 return r;
10181}
4d1bb795
JB
10182
10183/* REG_STRING starts *before* REGISTER_PREFIX. */
10184
10185static const reg_entry *
10186parse_register (char *reg_string, char **end_op)
10187{
10188 const reg_entry *r;
10189
10190 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10191 r = parse_real_register (reg_string, end_op);
10192 else
10193 r = NULL;
10194 if (!r)
10195 {
10196 char *save = input_line_pointer;
10197 char c;
10198 symbolS *symbolP;
10199
10200 input_line_pointer = reg_string;
d02603dc 10201 c = get_symbol_name (&reg_string);
4d1bb795
JB
10202 symbolP = symbol_find (reg_string);
10203 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10204 {
10205 const expressionS *e = symbol_get_value_expression (symbolP);
10206
0398aac5 10207 know (e->X_op == O_register);
4eed87de 10208 know (e->X_add_number >= 0
c3fe08fa 10209 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10210 r = i386_regtab + e->X_add_number;
d3bb6b49 10211 if ((r->reg_flags & RegVRex))
86fa6981 10212 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10213 *end_op = input_line_pointer;
10214 }
10215 *input_line_pointer = c;
10216 input_line_pointer = save;
10217 }
10218 return r;
10219}
10220
10221int
10222i386_parse_name (char *name, expressionS *e, char *nextcharP)
10223{
10224 const reg_entry *r;
10225 char *end = input_line_pointer;
10226
10227 *end = *nextcharP;
10228 r = parse_register (name, &input_line_pointer);
10229 if (r && end <= input_line_pointer)
10230 {
10231 *nextcharP = *input_line_pointer;
10232 *input_line_pointer = 0;
10233 e->X_op = O_register;
10234 e->X_add_number = r - i386_regtab;
10235 return 1;
10236 }
10237 input_line_pointer = end;
10238 *end = 0;
ee86248c 10239 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10240}
10241
10242void
10243md_operand (expressionS *e)
10244{
ee86248c
JB
10245 char *end;
10246 const reg_entry *r;
4d1bb795 10247
ee86248c
JB
10248 switch (*input_line_pointer)
10249 {
10250 case REGISTER_PREFIX:
10251 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10252 if (r)
10253 {
10254 e->X_op = O_register;
10255 e->X_add_number = r - i386_regtab;
10256 input_line_pointer = end;
10257 }
ee86248c
JB
10258 break;
10259
10260 case '[':
9c2799c2 10261 gas_assert (intel_syntax);
ee86248c
JB
10262 end = input_line_pointer++;
10263 expression (e);
10264 if (*input_line_pointer == ']')
10265 {
10266 ++input_line_pointer;
10267 e->X_op_symbol = make_expr_symbol (e);
10268 e->X_add_symbol = NULL;
10269 e->X_add_number = 0;
10270 e->X_op = O_index;
10271 }
10272 else
10273 {
10274 e->X_op = O_absent;
10275 input_line_pointer = end;
10276 }
10277 break;
4d1bb795
JB
10278 }
10279}
10280
252b5132 10281\f
4cc782b5 10282#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10283const char *md_shortopts = "kVQ:sqnO::";
252b5132 10284#else
b6f8c7c4 10285const char *md_shortopts = "qnO::";
252b5132 10286#endif
6e0b89ee 10287
3e73aa7c 10288#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10289#define OPTION_64 (OPTION_MD_BASE + 1)
10290#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10291#define OPTION_MARCH (OPTION_MD_BASE + 3)
10292#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10293#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10294#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10295#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10296#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10297#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10298#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10299#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10300#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10301#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10302#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10303#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10304#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10305#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10306#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10307#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10308#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10309#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10310#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10311#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10312#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10313#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10314
99ad8390
NC
10315struct option md_longopts[] =
10316{
3e73aa7c 10317 {"32", no_argument, NULL, OPTION_32},
321098a5 10318#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10319 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10320 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10321#endif
10322#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10323 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10324 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10325#endif
b3b91714 10326 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10327 {"march", required_argument, NULL, OPTION_MARCH},
10328 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10329 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10330 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10331 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10332 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10333 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10334 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10335 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10336 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10337 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10338 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10339 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10340 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10341# if defined (TE_PE) || defined (TE_PEP)
10342 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10343#endif
d1982f93 10344 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10345 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10346 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10347 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10348 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10349 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10350 {NULL, no_argument, NULL, 0}
10351};
10352size_t md_longopts_size = sizeof (md_longopts);
10353
10354int
17b9d67d 10355md_parse_option (int c, const char *arg)
252b5132 10356{
91d6fa6a 10357 unsigned int j;
293f5f65 10358 char *arch, *next, *saved;
9103f4f4 10359
252b5132
RH
10360 switch (c)
10361 {
12b55ccc
L
10362 case 'n':
10363 optimize_align_code = 0;
10364 break;
10365
a38cf1db
AM
10366 case 'q':
10367 quiet_warnings = 1;
252b5132
RH
10368 break;
10369
10370#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10371 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10372 should be emitted or not. FIXME: Not implemented. */
10373 case 'Q':
252b5132
RH
10374 break;
10375
10376 /* -V: SVR4 argument to print version ID. */
10377 case 'V':
10378 print_version_id ();
10379 break;
10380
a38cf1db
AM
10381 /* -k: Ignore for FreeBSD compatibility. */
10382 case 'k':
252b5132 10383 break;
4cc782b5
ILT
10384
10385 case 's':
10386 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10387 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10388 break;
8dcea932
L
10389
10390 case OPTION_MSHARED:
10391 shared = 1;
10392 break;
99ad8390 10393#endif
321098a5 10394#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10395 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10396 case OPTION_64:
10397 {
10398 const char **list, **l;
10399
3e73aa7c
JH
10400 list = bfd_target_list ();
10401 for (l = list; *l != NULL; l++)
8620418b 10402 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10403 || strcmp (*l, "coff-x86-64") == 0
10404 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10405 || strcmp (*l, "pei-x86-64") == 0
10406 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10407 {
10408 default_arch = "x86_64";
10409 break;
10410 }
3e73aa7c 10411 if (*l == NULL)
2b5d6a91 10412 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10413 free (list);
10414 }
10415 break;
10416#endif
252b5132 10417
351f65ca 10418#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10419 case OPTION_X32:
351f65ca
L
10420 if (IS_ELF)
10421 {
10422 const char **list, **l;
10423
10424 list = bfd_target_list ();
10425 for (l = list; *l != NULL; l++)
10426 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10427 {
10428 default_arch = "x86_64:32";
10429 break;
10430 }
10431 if (*l == NULL)
2b5d6a91 10432 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10433 free (list);
10434 }
10435 else
10436 as_fatal (_("32bit x86_64 is only supported for ELF"));
10437 break;
10438#endif
10439
6e0b89ee
AM
10440 case OPTION_32:
10441 default_arch = "i386";
10442 break;
10443
b3b91714
AM
10444 case OPTION_DIVIDE:
10445#ifdef SVR4_COMMENT_CHARS
10446 {
10447 char *n, *t;
10448 const char *s;
10449
add39d23 10450 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10451 t = n;
10452 for (s = i386_comment_chars; *s != '\0'; s++)
10453 if (*s != '/')
10454 *t++ = *s;
10455 *t = '\0';
10456 i386_comment_chars = n;
10457 }
10458#endif
10459 break;
10460
9103f4f4 10461 case OPTION_MARCH:
293f5f65
L
10462 saved = xstrdup (arg);
10463 arch = saved;
10464 /* Allow -march=+nosse. */
10465 if (*arch == '+')
10466 arch++;
6305a203 10467 do
9103f4f4 10468 {
6305a203 10469 if (*arch == '.')
2b5d6a91 10470 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10471 next = strchr (arch, '+');
10472 if (next)
10473 *next++ = '\0';
91d6fa6a 10474 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10475 {
91d6fa6a 10476 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10477 {
6305a203 10478 /* Processor. */
1ded5609
JB
10479 if (! cpu_arch[j].flags.bitfield.cpui386)
10480 continue;
10481
91d6fa6a 10482 cpu_arch_name = cpu_arch[j].name;
6305a203 10483 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10484 cpu_arch_flags = cpu_arch[j].flags;
10485 cpu_arch_isa = cpu_arch[j].type;
10486 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10487 if (!cpu_arch_tune_set)
10488 {
10489 cpu_arch_tune = cpu_arch_isa;
10490 cpu_arch_tune_flags = cpu_arch_isa_flags;
10491 }
10492 break;
10493 }
91d6fa6a
NC
10494 else if (*cpu_arch [j].name == '.'
10495 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10496 {
33eaf5de 10497 /* ISA extension. */
6305a203 10498 i386_cpu_flags flags;
309d3373 10499
293f5f65
L
10500 flags = cpu_flags_or (cpu_arch_flags,
10501 cpu_arch[j].flags);
81486035 10502
5b64d091 10503 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10504 {
10505 if (cpu_sub_arch_name)
10506 {
10507 char *name = cpu_sub_arch_name;
10508 cpu_sub_arch_name = concat (name,
91d6fa6a 10509 cpu_arch[j].name,
1bf57e9f 10510 (const char *) NULL);
6305a203
L
10511 free (name);
10512 }
10513 else
91d6fa6a 10514 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10515 cpu_arch_flags = flags;
a586129e 10516 cpu_arch_isa_flags = flags;
6305a203
L
10517 }
10518 break;
ccc9c027 10519 }
9103f4f4 10520 }
6305a203 10521
293f5f65
L
10522 if (j >= ARRAY_SIZE (cpu_arch))
10523 {
33eaf5de 10524 /* Disable an ISA extension. */
293f5f65
L
10525 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10526 if (strcmp (arch, cpu_noarch [j].name) == 0)
10527 {
10528 i386_cpu_flags flags;
10529
10530 flags = cpu_flags_and_not (cpu_arch_flags,
10531 cpu_noarch[j].flags);
10532 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10533 {
10534 if (cpu_sub_arch_name)
10535 {
10536 char *name = cpu_sub_arch_name;
10537 cpu_sub_arch_name = concat (arch,
10538 (const char *) NULL);
10539 free (name);
10540 }
10541 else
10542 cpu_sub_arch_name = xstrdup (arch);
10543 cpu_arch_flags = flags;
10544 cpu_arch_isa_flags = flags;
10545 }
10546 break;
10547 }
10548
10549 if (j >= ARRAY_SIZE (cpu_noarch))
10550 j = ARRAY_SIZE (cpu_arch);
10551 }
10552
91d6fa6a 10553 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10554 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10555
10556 arch = next;
9103f4f4 10557 }
293f5f65
L
10558 while (next != NULL);
10559 free (saved);
9103f4f4
L
10560 break;
10561
10562 case OPTION_MTUNE:
10563 if (*arg == '.')
2b5d6a91 10564 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10565 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10566 {
91d6fa6a 10567 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10568 {
ccc9c027 10569 cpu_arch_tune_set = 1;
91d6fa6a
NC
10570 cpu_arch_tune = cpu_arch [j].type;
10571 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10572 break;
10573 }
10574 }
91d6fa6a 10575 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10576 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10577 break;
10578
1efbbeb4
L
10579 case OPTION_MMNEMONIC:
10580 if (strcasecmp (arg, "att") == 0)
10581 intel_mnemonic = 0;
10582 else if (strcasecmp (arg, "intel") == 0)
10583 intel_mnemonic = 1;
10584 else
2b5d6a91 10585 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10586 break;
10587
10588 case OPTION_MSYNTAX:
10589 if (strcasecmp (arg, "att") == 0)
10590 intel_syntax = 0;
10591 else if (strcasecmp (arg, "intel") == 0)
10592 intel_syntax = 1;
10593 else
2b5d6a91 10594 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10595 break;
10596
10597 case OPTION_MINDEX_REG:
10598 allow_index_reg = 1;
10599 break;
10600
10601 case OPTION_MNAKED_REG:
10602 allow_naked_reg = 1;
10603 break;
10604
10605 case OPTION_MOLD_GCC:
10606 old_gcc = 1;
1efbbeb4
L
10607 break;
10608
c0f3af97
L
10609 case OPTION_MSSE2AVX:
10610 sse2avx = 1;
10611 break;
10612
daf50ae7
L
10613 case OPTION_MSSE_CHECK:
10614 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10615 sse_check = check_error;
daf50ae7 10616 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10617 sse_check = check_warning;
daf50ae7 10618 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10619 sse_check = check_none;
daf50ae7 10620 else
2b5d6a91 10621 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10622 break;
10623
7bab8ab5
JB
10624 case OPTION_MOPERAND_CHECK:
10625 if (strcasecmp (arg, "error") == 0)
10626 operand_check = check_error;
10627 else if (strcasecmp (arg, "warning") == 0)
10628 operand_check = check_warning;
10629 else if (strcasecmp (arg, "none") == 0)
10630 operand_check = check_none;
10631 else
10632 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10633 break;
10634
539f890d
L
10635 case OPTION_MAVXSCALAR:
10636 if (strcasecmp (arg, "128") == 0)
10637 avxscalar = vex128;
10638 else if (strcasecmp (arg, "256") == 0)
10639 avxscalar = vex256;
10640 else
2b5d6a91 10641 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10642 break;
10643
7e8b059b
L
10644 case OPTION_MADD_BND_PREFIX:
10645 add_bnd_prefix = 1;
10646 break;
10647
43234a1e
L
10648 case OPTION_MEVEXLIG:
10649 if (strcmp (arg, "128") == 0)
10650 evexlig = evexl128;
10651 else if (strcmp (arg, "256") == 0)
10652 evexlig = evexl256;
10653 else if (strcmp (arg, "512") == 0)
10654 evexlig = evexl512;
10655 else
10656 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10657 break;
10658
d3d3c6db
IT
10659 case OPTION_MEVEXRCIG:
10660 if (strcmp (arg, "rne") == 0)
10661 evexrcig = rne;
10662 else if (strcmp (arg, "rd") == 0)
10663 evexrcig = rd;
10664 else if (strcmp (arg, "ru") == 0)
10665 evexrcig = ru;
10666 else if (strcmp (arg, "rz") == 0)
10667 evexrcig = rz;
10668 else
10669 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10670 break;
10671
43234a1e
L
10672 case OPTION_MEVEXWIG:
10673 if (strcmp (arg, "0") == 0)
10674 evexwig = evexw0;
10675 else if (strcmp (arg, "1") == 0)
10676 evexwig = evexw1;
10677 else
10678 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10679 break;
10680
167ad85b
TG
10681# if defined (TE_PE) || defined (TE_PEP)
10682 case OPTION_MBIG_OBJ:
10683 use_big_obj = 1;
10684 break;
10685#endif
10686
d1982f93 10687 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10688 if (strcasecmp (arg, "yes") == 0)
10689 omit_lock_prefix = 1;
10690 else if (strcasecmp (arg, "no") == 0)
10691 omit_lock_prefix = 0;
10692 else
10693 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10694 break;
10695
e4e00185
AS
10696 case OPTION_MFENCE_AS_LOCK_ADD:
10697 if (strcasecmp (arg, "yes") == 0)
10698 avoid_fence = 1;
10699 else if (strcasecmp (arg, "no") == 0)
10700 avoid_fence = 0;
10701 else
10702 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10703 break;
10704
0cb4071e
L
10705 case OPTION_MRELAX_RELOCATIONS:
10706 if (strcasecmp (arg, "yes") == 0)
10707 generate_relax_relocations = 1;
10708 else if (strcasecmp (arg, "no") == 0)
10709 generate_relax_relocations = 0;
10710 else
10711 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10712 break;
10713
5db04b09 10714 case OPTION_MAMD64:
e89c5eaa 10715 intel64 = 0;
5db04b09
L
10716 break;
10717
10718 case OPTION_MINTEL64:
e89c5eaa 10719 intel64 = 1;
5db04b09
L
10720 break;
10721
b6f8c7c4
L
10722 case 'O':
10723 if (arg == NULL)
10724 {
10725 optimize = 1;
10726 /* Turn off -Os. */
10727 optimize_for_space = 0;
10728 }
10729 else if (*arg == 's')
10730 {
10731 optimize_for_space = 1;
10732 /* Turn on all encoding optimizations. */
10733 optimize = -1;
10734 }
10735 else
10736 {
10737 optimize = atoi (arg);
10738 /* Turn off -Os. */
10739 optimize_for_space = 0;
10740 }
10741 break;
10742
252b5132
RH
10743 default:
10744 return 0;
10745 }
10746 return 1;
10747}
10748
8a2c8fef
L
10749#define MESSAGE_TEMPLATE \
10750" "
10751
293f5f65
L
10752static char *
10753output_message (FILE *stream, char *p, char *message, char *start,
10754 int *left_p, const char *name, int len)
10755{
10756 int size = sizeof (MESSAGE_TEMPLATE);
10757 int left = *left_p;
10758
10759 /* Reserve 2 spaces for ", " or ",\0" */
10760 left -= len + 2;
10761
10762 /* Check if there is any room. */
10763 if (left >= 0)
10764 {
10765 if (p != start)
10766 {
10767 *p++ = ',';
10768 *p++ = ' ';
10769 }
10770 p = mempcpy (p, name, len);
10771 }
10772 else
10773 {
10774 /* Output the current message now and start a new one. */
10775 *p++ = ',';
10776 *p = '\0';
10777 fprintf (stream, "%s\n", message);
10778 p = start;
10779 left = size - (start - message) - len - 2;
10780
10781 gas_assert (left >= 0);
10782
10783 p = mempcpy (p, name, len);
10784 }
10785
10786 *left_p = left;
10787 return p;
10788}
10789
8a2c8fef 10790static void
1ded5609 10791show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10792{
10793 static char message[] = MESSAGE_TEMPLATE;
10794 char *start = message + 27;
10795 char *p;
10796 int size = sizeof (MESSAGE_TEMPLATE);
10797 int left;
10798 const char *name;
10799 int len;
10800 unsigned int j;
10801
10802 p = start;
10803 left = size - (start - message);
10804 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10805 {
10806 /* Should it be skipped? */
10807 if (cpu_arch [j].skip)
10808 continue;
10809
10810 name = cpu_arch [j].name;
10811 len = cpu_arch [j].len;
10812 if (*name == '.')
10813 {
10814 /* It is an extension. Skip if we aren't asked to show it. */
10815 if (ext)
10816 {
10817 name++;
10818 len--;
10819 }
10820 else
10821 continue;
10822 }
10823 else if (ext)
10824 {
10825 /* It is an processor. Skip if we show only extension. */
10826 continue;
10827 }
1ded5609
JB
10828 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10829 {
10830 /* It is an impossible processor - skip. */
10831 continue;
10832 }
8a2c8fef 10833
293f5f65 10834 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10835 }
10836
293f5f65
L
10837 /* Display disabled extensions. */
10838 if (ext)
10839 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10840 {
10841 name = cpu_noarch [j].name;
10842 len = cpu_noarch [j].len;
10843 p = output_message (stream, p, message, start, &left, name,
10844 len);
10845 }
10846
8a2c8fef
L
10847 *p = '\0';
10848 fprintf (stream, "%s\n", message);
10849}
10850
252b5132 10851void
8a2c8fef 10852md_show_usage (FILE *stream)
252b5132 10853{
4cc782b5
ILT
10854#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10855 fprintf (stream, _("\
a38cf1db
AM
10856 -Q ignored\n\
10857 -V print assembler version number\n\
b3b91714
AM
10858 -k ignored\n"));
10859#endif
10860 fprintf (stream, _("\
12b55ccc 10861 -n Do not optimize code alignment\n\
b3b91714
AM
10862 -q quieten some warnings\n"));
10863#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10864 fprintf (stream, _("\
a38cf1db 10865 -s ignored\n"));
b3b91714 10866#endif
321098a5
L
10867#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10868 || defined (TE_PE) || defined (TE_PEP))
751d281c 10869 fprintf (stream, _("\
570561f7 10870 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10871#endif
b3b91714
AM
10872#ifdef SVR4_COMMENT_CHARS
10873 fprintf (stream, _("\
10874 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10875#else
10876 fprintf (stream, _("\
b3b91714 10877 --divide ignored\n"));
4cc782b5 10878#endif
9103f4f4 10879 fprintf (stream, _("\
6305a203 10880 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10881 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10882 show_arch (stream, 0, 1);
8a2c8fef
L
10883 fprintf (stream, _("\
10884 EXTENSION is combination of:\n"));
1ded5609 10885 show_arch (stream, 1, 0);
6305a203 10886 fprintf (stream, _("\
8a2c8fef 10887 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10888 show_arch (stream, 0, 0);
ba104c83 10889 fprintf (stream, _("\
c0f3af97
L
10890 -msse2avx encode SSE instructions with VEX prefix\n"));
10891 fprintf (stream, _("\
daf50ae7
L
10892 -msse-check=[none|error|warning]\n\
10893 check SSE instructions\n"));
10894 fprintf (stream, _("\
7bab8ab5
JB
10895 -moperand-check=[none|error|warning]\n\
10896 check operand combinations for validity\n"));
10897 fprintf (stream, _("\
539f890d
L
10898 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10899 length\n"));
10900 fprintf (stream, _("\
43234a1e
L
10901 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10902 length\n"));
10903 fprintf (stream, _("\
10904 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10905 for EVEX.W bit ignored instructions\n"));
10906 fprintf (stream, _("\
d3d3c6db
IT
10907 -mevexrcig=[rne|rd|ru|rz]\n\
10908 encode EVEX instructions with specific EVEX.RC value\n\
10909 for SAE-only ignored instructions\n"));
10910 fprintf (stream, _("\
ba104c83
L
10911 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10912 fprintf (stream, _("\
10913 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10914 fprintf (stream, _("\
10915 -mindex-reg support pseudo index registers\n"));
10916 fprintf (stream, _("\
10917 -mnaked-reg don't require `%%' prefix for registers\n"));
10918 fprintf (stream, _("\
10919 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10920 fprintf (stream, _("\
10921 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10922 fprintf (stream, _("\
10923 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10924# if defined (TE_PE) || defined (TE_PEP)
10925 fprintf (stream, _("\
10926 -mbig-obj generate big object files\n"));
10927#endif
d022bddd
IT
10928 fprintf (stream, _("\
10929 -momit-lock-prefix=[no|yes]\n\
10930 strip all lock prefixes\n"));
5db04b09 10931 fprintf (stream, _("\
e4e00185
AS
10932 -mfence-as-lock-add=[no|yes]\n\
10933 encode lfence, mfence and sfence as\n\
10934 lock addl $0x0, (%%{re}sp)\n"));
10935 fprintf (stream, _("\
0cb4071e
L
10936 -mrelax-relocations=[no|yes]\n\
10937 generate relax relocations\n"));
10938 fprintf (stream, _("\
5db04b09
L
10939 -mamd64 accept only AMD64 ISA\n"));
10940 fprintf (stream, _("\
10941 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10942}
10943
3e73aa7c 10944#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10945 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10946 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10947
10948/* Pick the target format to use. */
10949
47926f60 10950const char *
e3bb37b5 10951i386_target_format (void)
252b5132 10952{
351f65ca
L
10953 if (!strncmp (default_arch, "x86_64", 6))
10954 {
10955 update_code_flag (CODE_64BIT, 1);
10956 if (default_arch[6] == '\0')
7f56bc95 10957 x86_elf_abi = X86_64_ABI;
351f65ca 10958 else
7f56bc95 10959 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10960 }
3e73aa7c 10961 else if (!strcmp (default_arch, "i386"))
78f12dd3 10962 update_code_flag (CODE_32BIT, 1);
5197d474
L
10963 else if (!strcmp (default_arch, "iamcu"))
10964 {
10965 update_code_flag (CODE_32BIT, 1);
10966 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10967 {
10968 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10969 cpu_arch_name = "iamcu";
10970 cpu_sub_arch_name = NULL;
10971 cpu_arch_flags = iamcu_flags;
10972 cpu_arch_isa = PROCESSOR_IAMCU;
10973 cpu_arch_isa_flags = iamcu_flags;
10974 if (!cpu_arch_tune_set)
10975 {
10976 cpu_arch_tune = cpu_arch_isa;
10977 cpu_arch_tune_flags = cpu_arch_isa_flags;
10978 }
10979 }
8d471ec1 10980 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10981 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10982 cpu_arch_name);
10983 }
3e73aa7c 10984 else
2b5d6a91 10985 as_fatal (_("unknown architecture"));
89507696
JB
10986
10987 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10988 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10989 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10990 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10991
252b5132
RH
10992 switch (OUTPUT_FLAVOR)
10993 {
9384f2ff 10994#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10995 case bfd_target_aout_flavour:
47926f60 10996 return AOUT_TARGET_FORMAT;
4c63da97 10997#endif
9384f2ff
AM
10998#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10999# if defined (TE_PE) || defined (TE_PEP)
11000 case bfd_target_coff_flavour:
167ad85b
TG
11001 if (flag_code == CODE_64BIT)
11002 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11003 else
11004 return "pe-i386";
9384f2ff 11005# elif defined (TE_GO32)
0561d57c
JK
11006 case bfd_target_coff_flavour:
11007 return "coff-go32";
9384f2ff 11008# else
252b5132
RH
11009 case bfd_target_coff_flavour:
11010 return "coff-i386";
9384f2ff 11011# endif
4c63da97 11012#endif
3e73aa7c 11013#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11014 case bfd_target_elf_flavour:
3e73aa7c 11015 {
351f65ca
L
11016 const char *format;
11017
11018 switch (x86_elf_abi)
4fa24527 11019 {
351f65ca
L
11020 default:
11021 format = ELF_TARGET_FORMAT;
11022 break;
7f56bc95 11023 case X86_64_ABI:
351f65ca 11024 use_rela_relocations = 1;
4fa24527 11025 object_64bit = 1;
351f65ca
L
11026 format = ELF_TARGET_FORMAT64;
11027 break;
7f56bc95 11028 case X86_64_X32_ABI:
4fa24527 11029 use_rela_relocations = 1;
351f65ca 11030 object_64bit = 1;
862be3fb 11031 disallow_64bit_reloc = 1;
351f65ca
L
11032 format = ELF_TARGET_FORMAT32;
11033 break;
4fa24527 11034 }
3632d14b 11035 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11036 {
7f56bc95 11037 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11038 as_fatal (_("Intel L1OM is 64bit only"));
11039 return ELF_TARGET_L1OM_FORMAT;
11040 }
b49f93f6 11041 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11042 {
11043 if (x86_elf_abi != X86_64_ABI)
11044 as_fatal (_("Intel K1OM is 64bit only"));
11045 return ELF_TARGET_K1OM_FORMAT;
11046 }
81486035
L
11047 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11048 {
11049 if (x86_elf_abi != I386_ABI)
11050 as_fatal (_("Intel MCU is 32bit only"));
11051 return ELF_TARGET_IAMCU_FORMAT;
11052 }
8a9036a4 11053 else
351f65ca 11054 return format;
3e73aa7c 11055 }
e57f8c65
TG
11056#endif
11057#if defined (OBJ_MACH_O)
11058 case bfd_target_mach_o_flavour:
d382c579
TG
11059 if (flag_code == CODE_64BIT)
11060 {
11061 use_rela_relocations = 1;
11062 object_64bit = 1;
11063 return "mach-o-x86-64";
11064 }
11065 else
11066 return "mach-o-i386";
4c63da97 11067#endif
252b5132
RH
11068 default:
11069 abort ();
11070 return NULL;
11071 }
11072}
11073
47926f60 11074#endif /* OBJ_MAYBE_ more than one */
252b5132 11075\f
252b5132 11076symbolS *
7016a5d5 11077md_undefined_symbol (char *name)
252b5132 11078{
18dc2407
ILT
11079 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11080 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11081 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11082 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11083 {
11084 if (!GOT_symbol)
11085 {
11086 if (symbol_find (name))
11087 as_bad (_("GOT already in symbol table"));
11088 GOT_symbol = symbol_new (name, undefined_section,
11089 (valueT) 0, &zero_address_frag);
11090 };
11091 return GOT_symbol;
11092 }
252b5132
RH
11093 return 0;
11094}
11095
11096/* Round up a section size to the appropriate boundary. */
47926f60 11097
252b5132 11098valueT
7016a5d5 11099md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11100{
4c63da97
AM
11101#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11102 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11103 {
11104 /* For a.out, force the section size to be aligned. If we don't do
11105 this, BFD will align it for us, but it will not write out the
11106 final bytes of the section. This may be a bug in BFD, but it is
11107 easier to fix it here since that is how the other a.out targets
11108 work. */
11109 int align;
11110
11111 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11112 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11113 }
252b5132
RH
11114#endif
11115
11116 return size;
11117}
11118
11119/* On the i386, PC-relative offsets are relative to the start of the
11120 next instruction. That is, the address of the offset, plus its
11121 size, since the offset is always the last part of the insn. */
11122
11123long
e3bb37b5 11124md_pcrel_from (fixS *fixP)
252b5132
RH
11125{
11126 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11127}
11128
11129#ifndef I386COFF
11130
11131static void
e3bb37b5 11132s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11133{
29b0f896 11134 int temp;
252b5132 11135
8a75718c
JB
11136#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11137 if (IS_ELF)
11138 obj_elf_section_change_hook ();
11139#endif
252b5132
RH
11140 temp = get_absolute_expression ();
11141 subseg_set (bss_section, (subsegT) temp);
11142 demand_empty_rest_of_line ();
11143}
11144
11145#endif
11146
252b5132 11147void
e3bb37b5 11148i386_validate_fix (fixS *fixp)
252b5132 11149{
02a86693 11150 if (fixp->fx_subsy)
252b5132 11151 {
02a86693 11152 if (fixp->fx_subsy == GOT_symbol)
23df1078 11153 {
02a86693
L
11154 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11155 {
11156 if (!object_64bit)
11157 abort ();
11158#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11159 if (fixp->fx_tcbit2)
56ceb5b5
L
11160 fixp->fx_r_type = (fixp->fx_tcbit
11161 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11162 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11163 else
11164#endif
11165 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11166 }
d6ab8113 11167 else
02a86693
L
11168 {
11169 if (!object_64bit)
11170 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11171 else
11172 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11173 }
11174 fixp->fx_subsy = 0;
23df1078 11175 }
252b5132 11176 }
02a86693
L
11177#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11178 else if (!object_64bit)
11179 {
11180 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11181 && fixp->fx_tcbit2)
11182 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11183 }
11184#endif
252b5132
RH
11185}
11186
252b5132 11187arelent *
7016a5d5 11188tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11189{
11190 arelent *rel;
11191 bfd_reloc_code_real_type code;
11192
11193 switch (fixp->fx_r_type)
11194 {
8ce3d284 11195#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11196 case BFD_RELOC_SIZE32:
11197 case BFD_RELOC_SIZE64:
11198 if (S_IS_DEFINED (fixp->fx_addsy)
11199 && !S_IS_EXTERNAL (fixp->fx_addsy))
11200 {
11201 /* Resolve size relocation against local symbol to size of
11202 the symbol plus addend. */
11203 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11204 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11205 && !fits_in_unsigned_long (value))
11206 as_bad_where (fixp->fx_file, fixp->fx_line,
11207 _("symbol size computation overflow"));
11208 fixp->fx_addsy = NULL;
11209 fixp->fx_subsy = NULL;
11210 md_apply_fix (fixp, (valueT *) &value, NULL);
11211 return NULL;
11212 }
8ce3d284 11213#endif
1a0670f3 11214 /* Fall through. */
8fd4256d 11215
3e73aa7c
JH
11216 case BFD_RELOC_X86_64_PLT32:
11217 case BFD_RELOC_X86_64_GOT32:
11218 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11219 case BFD_RELOC_X86_64_GOTPCRELX:
11220 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11221 case BFD_RELOC_386_PLT32:
11222 case BFD_RELOC_386_GOT32:
02a86693 11223 case BFD_RELOC_386_GOT32X:
252b5132
RH
11224 case BFD_RELOC_386_GOTOFF:
11225 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11226 case BFD_RELOC_386_TLS_GD:
11227 case BFD_RELOC_386_TLS_LDM:
11228 case BFD_RELOC_386_TLS_LDO_32:
11229 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11230 case BFD_RELOC_386_TLS_IE:
11231 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11232 case BFD_RELOC_386_TLS_LE_32:
11233 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11234 case BFD_RELOC_386_TLS_GOTDESC:
11235 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11236 case BFD_RELOC_X86_64_TLSGD:
11237 case BFD_RELOC_X86_64_TLSLD:
11238 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11239 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11240 case BFD_RELOC_X86_64_GOTTPOFF:
11241 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11242 case BFD_RELOC_X86_64_TPOFF64:
11243 case BFD_RELOC_X86_64_GOTOFF64:
11244 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11245 case BFD_RELOC_X86_64_GOT64:
11246 case BFD_RELOC_X86_64_GOTPCREL64:
11247 case BFD_RELOC_X86_64_GOTPC64:
11248 case BFD_RELOC_X86_64_GOTPLT64:
11249 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11250 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11251 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11252 case BFD_RELOC_RVA:
11253 case BFD_RELOC_VTABLE_ENTRY:
11254 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11255#ifdef TE_PE
11256 case BFD_RELOC_32_SECREL:
11257#endif
252b5132
RH
11258 code = fixp->fx_r_type;
11259 break;
dbbaec26
L
11260 case BFD_RELOC_X86_64_32S:
11261 if (!fixp->fx_pcrel)
11262 {
11263 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11264 code = fixp->fx_r_type;
11265 break;
11266 }
1a0670f3 11267 /* Fall through. */
252b5132 11268 default:
93382f6d 11269 if (fixp->fx_pcrel)
252b5132 11270 {
93382f6d
AM
11271 switch (fixp->fx_size)
11272 {
11273 default:
b091f402
AM
11274 as_bad_where (fixp->fx_file, fixp->fx_line,
11275 _("can not do %d byte pc-relative relocation"),
11276 fixp->fx_size);
93382f6d
AM
11277 code = BFD_RELOC_32_PCREL;
11278 break;
11279 case 1: code = BFD_RELOC_8_PCREL; break;
11280 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11281 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11282#ifdef BFD64
11283 case 8: code = BFD_RELOC_64_PCREL; break;
11284#endif
93382f6d
AM
11285 }
11286 }
11287 else
11288 {
11289 switch (fixp->fx_size)
11290 {
11291 default:
b091f402
AM
11292 as_bad_where (fixp->fx_file, fixp->fx_line,
11293 _("can not do %d byte relocation"),
11294 fixp->fx_size);
93382f6d
AM
11295 code = BFD_RELOC_32;
11296 break;
11297 case 1: code = BFD_RELOC_8; break;
11298 case 2: code = BFD_RELOC_16; break;
11299 case 4: code = BFD_RELOC_32; break;
937149dd 11300#ifdef BFD64
3e73aa7c 11301 case 8: code = BFD_RELOC_64; break;
937149dd 11302#endif
93382f6d 11303 }
252b5132
RH
11304 }
11305 break;
11306 }
252b5132 11307
d182319b
JB
11308 if ((code == BFD_RELOC_32
11309 || code == BFD_RELOC_32_PCREL
11310 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11311 && GOT_symbol
11312 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11313 {
4fa24527 11314 if (!object_64bit)
d6ab8113
JB
11315 code = BFD_RELOC_386_GOTPC;
11316 else
11317 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11318 }
7b81dfbb
AJ
11319 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11320 && GOT_symbol
11321 && fixp->fx_addsy == GOT_symbol)
11322 {
11323 code = BFD_RELOC_X86_64_GOTPC64;
11324 }
252b5132 11325
add39d23
TS
11326 rel = XNEW (arelent);
11327 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11328 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11329
11330 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11331
3e73aa7c
JH
11332 if (!use_rela_relocations)
11333 {
11334 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11335 vtable entry to be used in the relocation's section offset. */
11336 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11337 rel->address = fixp->fx_offset;
fbeb56a4
DK
11338#if defined (OBJ_COFF) && defined (TE_PE)
11339 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11340 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11341 else
11342#endif
c6682705 11343 rel->addend = 0;
3e73aa7c
JH
11344 }
11345 /* Use the rela in 64bit mode. */
252b5132 11346 else
3e73aa7c 11347 {
862be3fb
L
11348 if (disallow_64bit_reloc)
11349 switch (code)
11350 {
862be3fb
L
11351 case BFD_RELOC_X86_64_DTPOFF64:
11352 case BFD_RELOC_X86_64_TPOFF64:
11353 case BFD_RELOC_64_PCREL:
11354 case BFD_RELOC_X86_64_GOTOFF64:
11355 case BFD_RELOC_X86_64_GOT64:
11356 case BFD_RELOC_X86_64_GOTPCREL64:
11357 case BFD_RELOC_X86_64_GOTPC64:
11358 case BFD_RELOC_X86_64_GOTPLT64:
11359 case BFD_RELOC_X86_64_PLTOFF64:
11360 as_bad_where (fixp->fx_file, fixp->fx_line,
11361 _("cannot represent relocation type %s in x32 mode"),
11362 bfd_get_reloc_code_name (code));
11363 break;
11364 default:
11365 break;
11366 }
11367
062cd5e7
AS
11368 if (!fixp->fx_pcrel)
11369 rel->addend = fixp->fx_offset;
11370 else
11371 switch (code)
11372 {
11373 case BFD_RELOC_X86_64_PLT32:
11374 case BFD_RELOC_X86_64_GOT32:
11375 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11376 case BFD_RELOC_X86_64_GOTPCRELX:
11377 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11378 case BFD_RELOC_X86_64_TLSGD:
11379 case BFD_RELOC_X86_64_TLSLD:
11380 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11381 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11382 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11383 rel->addend = fixp->fx_offset - fixp->fx_size;
11384 break;
11385 default:
11386 rel->addend = (section->vma
11387 - fixp->fx_size
11388 + fixp->fx_addnumber
11389 + md_pcrel_from (fixp));
11390 break;
11391 }
3e73aa7c
JH
11392 }
11393
252b5132
RH
11394 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11395 if (rel->howto == NULL)
11396 {
11397 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11398 _("cannot represent relocation type %s"),
252b5132
RH
11399 bfd_get_reloc_code_name (code));
11400 /* Set howto to a garbage value so that we can keep going. */
11401 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11402 gas_assert (rel->howto != NULL);
252b5132
RH
11403 }
11404
11405 return rel;
11406}
11407
ee86248c 11408#include "tc-i386-intel.c"
54cfded0 11409
a60de03c
JB
11410void
11411tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11412{
a60de03c
JB
11413 int saved_naked_reg;
11414 char saved_register_dot;
54cfded0 11415
a60de03c
JB
11416 saved_naked_reg = allow_naked_reg;
11417 allow_naked_reg = 1;
11418 saved_register_dot = register_chars['.'];
11419 register_chars['.'] = '.';
11420 allow_pseudo_reg = 1;
11421 expression_and_evaluate (exp);
11422 allow_pseudo_reg = 0;
11423 register_chars['.'] = saved_register_dot;
11424 allow_naked_reg = saved_naked_reg;
11425
e96d56a1 11426 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11427 {
a60de03c
JB
11428 if ((addressT) exp->X_add_number < i386_regtab_size)
11429 {
11430 exp->X_op = O_constant;
11431 exp->X_add_number = i386_regtab[exp->X_add_number]
11432 .dw2_regnum[flag_code >> 1];
11433 }
11434 else
11435 exp->X_op = O_illegal;
54cfded0 11436 }
54cfded0
AM
11437}
11438
11439void
11440tc_x86_frame_initial_instructions (void)
11441{
a60de03c
JB
11442 static unsigned int sp_regno[2];
11443
11444 if (!sp_regno[flag_code >> 1])
11445 {
11446 char *saved_input = input_line_pointer;
11447 char sp[][4] = {"esp", "rsp"};
11448 expressionS exp;
a4447b93 11449
a60de03c
JB
11450 input_line_pointer = sp[flag_code >> 1];
11451 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11452 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11453 sp_regno[flag_code >> 1] = exp.X_add_number;
11454 input_line_pointer = saved_input;
11455 }
a4447b93 11456
61ff971f
L
11457 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11458 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11459}
d2b2c203 11460
d7921315
L
11461int
11462x86_dwarf2_addr_size (void)
11463{
11464#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11465 if (x86_elf_abi == X86_64_X32_ABI)
11466 return 4;
11467#endif
11468 return bfd_arch_bits_per_address (stdoutput) / 8;
11469}
11470
d2b2c203
DJ
11471int
11472i386_elf_section_type (const char *str, size_t len)
11473{
11474 if (flag_code == CODE_64BIT
11475 && len == sizeof ("unwind") - 1
11476 && strncmp (str, "unwind", 6) == 0)
11477 return SHT_X86_64_UNWIND;
11478
11479 return -1;
11480}
bb41ade5 11481
ad5fec3b
EB
11482#ifdef TE_SOLARIS
11483void
11484i386_solaris_fix_up_eh_frame (segT sec)
11485{
11486 if (flag_code == CODE_64BIT)
11487 elf_section_type (sec) = SHT_X86_64_UNWIND;
11488}
11489#endif
11490
bb41ade5
AM
11491#ifdef TE_PE
11492void
11493tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11494{
91d6fa6a 11495 expressionS exp;
bb41ade5 11496
91d6fa6a
NC
11497 exp.X_op = O_secrel;
11498 exp.X_add_symbol = symbol;
11499 exp.X_add_number = 0;
11500 emit_expr (&exp, size);
bb41ade5
AM
11501}
11502#endif
3b22753a
L
11503
11504#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11505/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11506
01e1a5bc 11507bfd_vma
6d4af3c2 11508x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11509{
11510 if (flag_code == CODE_64BIT)
11511 {
11512 if (letter == 'l')
11513 return SHF_X86_64_LARGE;
11514
8f3bae45 11515 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11516 }
3b22753a 11517 else
8f3bae45 11518 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11519 return -1;
11520}
11521
01e1a5bc 11522bfd_vma
3b22753a
L
11523x86_64_section_word (char *str, size_t len)
11524{
8620418b 11525 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11526 return SHF_X86_64_LARGE;
11527
11528 return -1;
11529}
11530
11531static void
11532handle_large_common (int small ATTRIBUTE_UNUSED)
11533{
11534 if (flag_code != CODE_64BIT)
11535 {
11536 s_comm_internal (0, elf_common_parse);
11537 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11538 }
11539 else
11540 {
11541 static segT lbss_section;
11542 asection *saved_com_section_ptr = elf_com_section_ptr;
11543 asection *saved_bss_section = bss_section;
11544
11545 if (lbss_section == NULL)
11546 {
11547 flagword applicable;
11548 segT seg = now_seg;
11549 subsegT subseg = now_subseg;
11550
11551 /* The .lbss section is for local .largecomm symbols. */
11552 lbss_section = subseg_new (".lbss", 0);
11553 applicable = bfd_applicable_section_flags (stdoutput);
11554 bfd_set_section_flags (stdoutput, lbss_section,
11555 applicable & SEC_ALLOC);
11556 seg_info (lbss_section)->bss = 1;
11557
11558 subseg_set (seg, subseg);
11559 }
11560
11561 elf_com_section_ptr = &_bfd_elf_large_com_section;
11562 bss_section = lbss_section;
11563
11564 s_comm_internal (0, elf_common_parse);
11565
11566 elf_com_section_ptr = saved_com_section_ptr;
11567 bss_section = saved_bss_section;
11568 }
11569}
11570#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.202549 seconds and 4 git commands to generate.