x86: drop VexImmExt
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
c0f3af97
L
237/* VEX prefix. */
238typedef struct
239{
43234a1e
L
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
c0f3af97
L
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
252b5132 247/* 'md_assemble ()' gathers together information and puts it into a
47926f60 248 i386_insn. */
252b5132 249
520dc8e8
AM
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
a65babc9
L
257enum i386_error
258 {
86e026a4 259 operand_size_mismatch,
a65babc9
L
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
a65babc9
L
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
6c30d220
L
267 unsupported,
268 invalid_vsib_address,
7bab8ab5 269 invalid_vector_register_set,
43234a1e
L
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132 323
8325cc63
JB
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
252b5132
RH
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 333 addressing modes of this insn are encoded. */
252b5132 334 modrm_byte rm;
3e73aa7c 335 rex_byte rex;
43234a1e 336 rex_byte vrex;
252b5132 337 sib_byte sib;
c0f3af97 338 vex_prefix vex;
b6169b20 339
43234a1e
L
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
86fa6981
L
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
891edac4 359
a501d77e
L
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
f8a5c266 367
6b6b6807
L
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
b6f8c7c4
L
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
86fa6981
L
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
d5de92cf
L
383 /* REP prefix. */
384 const char *rep_prefix;
385
165de32a
L
386 /* HLE prefix. */
387 const char *hle_prefix;
42164a71 388
7e8b059b
L
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
04ef582a
L
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
891edac4 395 /* Error message. */
a65babc9 396 enum i386_error error;
252b5132
RH
397 };
398
399typedef struct _i386_insn i386_insn;
400
43234a1e
L
401/* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403struct RC_name
404{
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408};
409
410static const struct RC_name RC_NamesTable[] =
411{
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417};
418
252b5132
RH
419/* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 421const char extra_symbol_chars[] = "*%-([{}"
252b5132 422#ifdef LEX_AT
32137342
NC
423 "@"
424#endif
425#ifdef LEX_QM
426 "?"
252b5132 427#endif
32137342 428 ;
252b5132 429
29b0f896
AM
430#if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 432 && !defined (TE_GNU) \
29b0f896 433 && !defined (TE_LINUX) \
8d63c93e 434 && !defined (TE_NACL) \
29b0f896 435 && !defined (TE_FreeBSD) \
5b806d27 436 && !defined (TE_DragonFly) \
29b0f896 437 && !defined (TE_NetBSD)))
252b5132 438/* This array holds the chars that always start a comment. If the
b3b91714
AM
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441const char *i386_comment_chars = "#/";
442#define SVR4_COMMENT_CHARS 1
252b5132 443#define PREFIX_SEPARATOR '\\'
252b5132 444
b3b91714
AM
445#else
446const char *i386_comment_chars = "#";
447#define PREFIX_SEPARATOR '/'
448#endif
449
252b5132
RH
450/* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 454 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
252b5132 457 '/' isn't otherwise defined. */
b3b91714 458const char line_comment_chars[] = "#/";
252b5132 459
63a0b638 460const char line_separator_chars[] = ";";
252b5132 461
ce8a8b2f
AM
462/* Chars that can be used to separate mant from exp in floating point
463 nums. */
252b5132
RH
464const char EXP_CHARS[] = "eE";
465
ce8a8b2f
AM
466/* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
252b5132
RH
469const char FLT_CHARS[] = "fFdDxX";
470
ce8a8b2f 471/* Tables for lexical analysis. */
252b5132
RH
472static char mnemonic_chars[256];
473static char register_chars[256];
474static char operand_chars[256];
475static char identifier_chars[256];
476static char digit_chars[256];
477
ce8a8b2f 478/* Lexical macros. */
252b5132
RH
479#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480#define is_operand_char(x) (operand_chars[(unsigned char) x])
481#define is_register_char(x) (register_chars[(unsigned char) x])
482#define is_space_char(x) ((x) == ' ')
483#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484#define is_digit_char(x) (digit_chars[(unsigned char) x])
485
0234cb7c 486/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
487static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489/* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
47926f60 492 assembler instruction). */
252b5132 493static char save_stack[32];
ce8a8b2f 494static char *save_stack_p;
252b5132
RH
495#define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497#define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
47926f60 500/* The instruction we're assembling. */
252b5132
RH
501static i386_insn i;
502
503/* Possible templates for current insn. */
504static const templates *current_templates;
505
31b2323c
L
506/* Per instruction expressionS buffers: max displacements & immediates. */
507static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 509
47926f60 510/* Current operand we are working on. */
ee86248c 511static int this_operand = -1;
252b5132 512
3e73aa7c
JH
513/* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521static enum flag_code flag_code;
4fa24527 522static unsigned int object_64bit;
862be3fb 523static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
524static int use_rela_relocations = 0;
525
7af8ed2d
NC
526#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
351f65ca
L
530/* The ELF ABI to use. */
531enum x86_elf_abi
532{
533 I386_ABI,
7f56bc95
L
534 X86_64_ABI,
535 X86_64_X32_ABI
351f65ca
L
536};
537
538static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 539#endif
351f65ca 540
167ad85b
TG
541#if defined (TE_PE) || defined (TE_PEP)
542/* Use big object file format. */
543static int use_big_obj = 0;
544#endif
545
8dcea932
L
546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547/* 1 if generating code for a shared library. */
548static int shared = 0;
549#endif
550
47926f60
KH
551/* 1 for intel syntax,
552 0 if att syntax. */
553static int intel_syntax = 0;
252b5132 554
e89c5eaa
L
555/* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557static int intel64;
558
1efbbeb4
L
559/* 1 for intel mnemonic,
560 0 if att mnemonic. */
561static int intel_mnemonic = !SYSV386_COMPAT;
562
a60de03c
JB
563/* 1 if pseudo registers are permitted. */
564static int allow_pseudo_reg = 0;
565
47926f60
KH
566/* 1 if register prefix % not required. */
567static int allow_naked_reg = 0;
252b5132 568
33eaf5de 569/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572static int add_bnd_prefix = 0;
573
ba104c83 574/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
575static int allow_index_reg = 0;
576
d022bddd
IT
577/* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579static int omit_lock_prefix = 0;
580
e4e00185
AS
581/* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583static int avoid_fence = 0;
584
0cb4071e
L
585/* 1 if the assembler should generate relax relocations. */
586
587static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
7bab8ab5 590static enum check_kind
daf50ae7 591 {
7bab8ab5
JB
592 check_none = 0,
593 check_warning,
594 check_error
daf50ae7 595 }
7bab8ab5 596sse_check, operand_check = check_warning;
daf50ae7 597
b6f8c7c4
L
598/* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603static int optimize = 0;
604
605/* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612static int optimize_for_space = 0;
613
2ca3ace5
L
614/* Register prefix used for error message. */
615static const char *register_prefix = "%";
616
47926f60
KH
617/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620static char stackop_size = '\0';
eecb386c 621
12b55ccc
L
622/* Non-zero to optimize code alignment. */
623int optimize_align_code = 1;
624
47926f60
KH
625/* Non-zero to quieten some warnings. */
626static int quiet_warnings = 0;
a38cf1db 627
47926f60
KH
628/* CPU name. */
629static const char *cpu_arch_name = NULL;
6305a203 630static char *cpu_sub_arch_name = NULL;
a38cf1db 631
47926f60 632/* CPU feature flags. */
40fb9820
L
633static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
ccc9c027
L
635/* If we have selected a cpu we are generating instructions for. */
636static int cpu_arch_tune_set = 0;
637
9103f4f4 638/* Cpu we are generating instructions for. */
fbf3f584 639enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
640
641/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 642static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 643
ccc9c027 644/* CPU instruction set architecture used. */
fbf3f584 645enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 646
9103f4f4 647/* CPU feature flags of instruction set architecture used. */
fbf3f584 648i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 649
fddf5b5b
AM
650/* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652static unsigned int no_cond_jump_promotion = 0;
653
c0f3af97
L
654/* Encode SSE instructions with VEX prefix. */
655static unsigned int sse2avx;
656
539f890d
L
657/* Encode scalar AVX instructions with specific vector length. */
658static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
43234a1e
L
664/* Encode scalar EVEX LIG instructions with specific vector length. */
665static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672/* Encode EVEX WIG instructions with specific evex.w. */
673static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
d3d3c6db
IT
679/* Value to encode in EVEX RC bits, for SAE-only instructions. */
680static enum rc_type evexrcig = rne;
681
29b0f896 682/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 683static symbolS *GOT_symbol;
29b0f896 684
a4447b93
RH
685/* The dwarf2 return column, adjusted for 32 or 64 bit. */
686unsigned int x86_dwarf2_return_column;
687
688/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689int x86_cie_data_alignment;
690
252b5132 691/* Interface to relax_segment.
fddf5b5b
AM
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
252b5132 695
47926f60 696/* Types. */
93c2a809
AM
697#define UNCOND_JUMP 0
698#define COND_JUMP 1
699#define COND_JUMP86 2
fddf5b5b 700
47926f60 701/* Sizes. */
252b5132
RH
702#define CODE16 1
703#define SMALL 0
29b0f896 704#define SMALL16 (SMALL | CODE16)
252b5132 705#define BIG 2
29b0f896 706#define BIG16 (BIG | CODE16)
252b5132
RH
707
708#ifndef INLINE
709#ifdef __GNUC__
710#define INLINE __inline__
711#else
712#define INLINE
713#endif
714#endif
715
fddf5b5b
AM
716#define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718#define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720#define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
722
723/* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731const relax_typeS md_relax_table[] =
732{
24eab124
AM
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
93c2a809 736 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 737 4) which index into the table to try if we can't fit into this one. */
252b5132 738
fddf5b5b 739 /* UNCOND_JUMP states. */
93c2a809
AM
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
252b5132 744 {0, 0, 4, 0},
93c2a809
AM
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
747 {0, 0, 2, 0},
748
93c2a809
AM
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
fddf5b5b 755 /* word conditionals add 3 bytes to frag:
93c2a809
AM
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
252b5132
RH
768};
769
9103f4f4
L
770static const arch_entry cpu_arch[] =
771{
89507696
JB
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
8a2c8fef 774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 775 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 777 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 779 CPU_NONE_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_I186_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I286_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 785 CPU_I386_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 787 CPU_I486_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 789 CPU_I586_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 791 CPU_I686_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 793 CPU_I586_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 795 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_P2_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P3_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 801 CPU_P4_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 803 CPU_CORE_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 805 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 807 CPU_CORE_FLAGS, 1 },
8a2c8fef 808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 811 CPU_CORE2_FLAGS, 1 },
8a2c8fef 812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 815 CPU_COREI7_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 817 CPU_L1OM_FLAGS, 0 },
7a9068fe 818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 819 CPU_K1OM_FLAGS, 0 },
81486035 820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 821 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 823 CPU_K6_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 825 CPU_K6_2_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 827 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 829 CPU_K8_FLAGS, 1 },
8a2c8fef 830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 835 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 837 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER4_FLAGS, 0 },
029f3522 844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 845 CPU_ZNVER1_FLAGS, 0 },
7b458c12 846 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 847 CPU_BTVER1_FLAGS, 0 },
7b458c12 848 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 849 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 851 CPU_8087_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_287_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_387_FLAGS, 0 },
1848e567
L
856 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
857 CPU_687_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_MMX_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_SSE_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_SSE2_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE3_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_AVX_FLAGS, 0 },
6c30d220 876 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX2_FLAGS, 0 },
43234a1e 878 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX512F_FLAGS, 0 },
43234a1e 880 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX512CD_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512ER_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 886 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 888 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 892 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_VMX_FLAGS, 0 },
8729a6f6 894 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_SMX_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 900 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 902 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 904 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_AES_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 912 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 914 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 916 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_F16C_FLAGS, 0 },
6c30d220 918 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_BMI2_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FMA_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_FMA4_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_XOP_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_LWP_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_MOVBE_FLAGS, 0 },
60aa667e 930 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_CX16_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_EPT_FLAGS, 0 },
6c30d220 934 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LZCNT_FLAGS, 0 },
42164a71 936 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_HLE_FLAGS, 0 },
42164a71 938 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_RTM_FLAGS, 0 },
6c30d220 940 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_CLFLUSH_FLAGS, 0 },
22109423 944 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_NOP_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_SVME_FLAGS, 1 },
8a2c8fef 958 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_SVME_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_ABM_FLAGS, 0 },
87973e9f 964 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_BMI_FLAGS, 0 },
2a2a0f38 966 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_TBM_FLAGS, 0 },
e2e1fcde 968 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_ADX_FLAGS, 0 },
e2e1fcde 970 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_PRFCHW_FLAGS, 0 },
5c111e37 974 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_SMAP_FLAGS, 0 },
7e8b059b 976 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_MPX_FLAGS, 0 },
a0046408 978 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_SHA_FLAGS, 0 },
963f3586 980 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 982 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 984 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_SE1_FLAGS, 0 },
c5e7287a 986 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 988 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 990 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
992 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
993 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
994 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
996 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
998 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1000 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1002 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1004 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_CLZERO_FLAGS, 0 },
9916071f 1006 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_MWAITX_FLAGS, 0 },
8eab4136 1008 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_OSPKE_FLAGS, 0 },
8bc52696 1010 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1012 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1013 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1014 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1015 CPU_IBT_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1017 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1018 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1019 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1020 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1021 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1022 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1023 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1024 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1025 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1026 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1027 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1028 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1029 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1030 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1031 CPU_CLDEMOTE_FLAGS, 0 },
293f5f65
L
1032};
1033
1034static const noarch_entry cpu_noarch[] =
1035{
1036 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1037 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1038 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1039 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1040 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1041 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1042 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1043 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1044 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1045 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1048 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1049 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1050 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1059 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1060 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1061 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1062 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1063 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1064 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1065 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1066 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1067};
1068
704209c0 1069#ifdef I386COFF
a6c24e68
NC
1070/* Like s_lcomm_internal in gas/read.c but the alignment string
1071 is allowed to be optional. */
1072
1073static symbolS *
1074pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1075{
1076 addressT align = 0;
1077
1078 SKIP_WHITESPACE ();
1079
7ab9ffdd 1080 if (needs_align
a6c24e68
NC
1081 && *input_line_pointer == ',')
1082 {
1083 align = parse_align (needs_align - 1);
7ab9ffdd 1084
a6c24e68
NC
1085 if (align == (addressT) -1)
1086 return NULL;
1087 }
1088 else
1089 {
1090 if (size >= 8)
1091 align = 3;
1092 else if (size >= 4)
1093 align = 2;
1094 else if (size >= 2)
1095 align = 1;
1096 else
1097 align = 0;
1098 }
1099
1100 bss_alloc (symbolP, size, align);
1101 return symbolP;
1102}
1103
704209c0 1104static void
a6c24e68
NC
1105pe_lcomm (int needs_align)
1106{
1107 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1108}
704209c0 1109#endif
a6c24e68 1110
29b0f896
AM
1111const pseudo_typeS md_pseudo_table[] =
1112{
1113#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1114 {"align", s_align_bytes, 0},
1115#else
1116 {"align", s_align_ptwo, 0},
1117#endif
1118 {"arch", set_cpu_arch, 0},
1119#ifndef I386COFF
1120 {"bss", s_bss, 0},
a6c24e68
NC
1121#else
1122 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1123#endif
1124 {"ffloat", float_cons, 'f'},
1125 {"dfloat", float_cons, 'd'},
1126 {"tfloat", float_cons, 'x'},
1127 {"value", cons, 2},
d182319b 1128 {"slong", signed_cons, 4},
29b0f896
AM
1129 {"noopt", s_ignore, 0},
1130 {"optim", s_ignore, 0},
1131 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1132 {"code16", set_code_flag, CODE_16BIT},
1133 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1134#ifdef BFD64
29b0f896 1135 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1136#endif
29b0f896
AM
1137 {"intel_syntax", set_intel_syntax, 1},
1138 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1139 {"intel_mnemonic", set_intel_mnemonic, 1},
1140 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1141 {"allow_index_reg", set_allow_index_reg, 1},
1142 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1143 {"sse_check", set_check, 0},
1144 {"operand_check", set_check, 1},
3b22753a
L
1145#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1146 {"largecomm", handle_large_common, 0},
07a53e5c 1147#else
68d20676 1148 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1149 {"loc", dwarf2_directive_loc, 0},
1150 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1151#endif
6482c264
NC
1152#ifdef TE_PE
1153 {"secrel32", pe_directive_secrel, 0},
1154#endif
29b0f896
AM
1155 {0, 0, 0}
1156};
1157
1158/* For interface with expression (). */
1159extern char *input_line_pointer;
1160
1161/* Hash table for instruction mnemonic lookup. */
1162static struct hash_control *op_hash;
1163
1164/* Hash table for register lookup. */
1165static struct hash_control *reg_hash;
1166\f
ce8a8b2f
AM
1167 /* Various efficient no-op patterns for aligning code labels.
1168 Note: Don't try to assemble the instructions in the comments.
1169 0L and 0w are not legal. */
62a02d25
L
1170static const unsigned char f32_1[] =
1171 {0x90}; /* nop */
1172static const unsigned char f32_2[] =
1173 {0x66,0x90}; /* xchg %ax,%ax */
1174static const unsigned char f32_3[] =
1175 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1176static const unsigned char f32_4[] =
1177 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1178static const unsigned char f32_6[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1180static const unsigned char f32_7[] =
1181 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1182static const unsigned char f16_3[] =
3ae729d5 1183 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1184static const unsigned char f16_4[] =
3ae729d5
L
1185 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1186static const unsigned char jump_disp8[] =
1187 {0xeb}; /* jmp disp8 */
1188static const unsigned char jump32_disp32[] =
1189 {0xe9}; /* jmp disp32 */
1190static const unsigned char jump16_disp32[] =
1191 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1192/* 32-bit NOPs patterns. */
1193static const unsigned char *const f32_patt[] = {
3ae729d5 1194 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1195};
1196/* 16-bit NOPs patterns. */
1197static const unsigned char *const f16_patt[] = {
3ae729d5 1198 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1199};
1200/* nopl (%[re]ax) */
1201static const unsigned char alt_3[] =
1202 {0x0f,0x1f,0x00};
1203/* nopl 0(%[re]ax) */
1204static const unsigned char alt_4[] =
1205 {0x0f,0x1f,0x40,0x00};
1206/* nopl 0(%[re]ax,%[re]ax,1) */
1207static const unsigned char alt_5[] =
1208 {0x0f,0x1f,0x44,0x00,0x00};
1209/* nopw 0(%[re]ax,%[re]ax,1) */
1210static const unsigned char alt_6[] =
1211 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1212/* nopl 0L(%[re]ax) */
1213static const unsigned char alt_7[] =
1214 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1215/* nopl 0L(%[re]ax,%[re]ax,1) */
1216static const unsigned char alt_8[] =
1217 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218/* nopw 0L(%[re]ax,%[re]ax,1) */
1219static const unsigned char alt_9[] =
1220 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1222static const unsigned char alt_10[] =
1223 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1224/* data16 nopw %cs:0L(%eax,%eax,1) */
1225static const unsigned char alt_11[] =
1226 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1227/* 32-bit and 64-bit NOPs patterns. */
1228static const unsigned char *const alt_patt[] = {
1229 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1230 alt_9, alt_10, alt_11
62a02d25
L
1231};
1232
1233/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1234 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1235
1236static void
1237i386_output_nops (char *where, const unsigned char *const *patt,
1238 int count, int max_single_nop_size)
1239
1240{
3ae729d5
L
1241 /* Place the longer NOP first. */
1242 int last;
1243 int offset;
1244 const unsigned char *nops = patt[max_single_nop_size - 1];
1245
1246 /* Use the smaller one if the requsted one isn't available. */
1247 if (nops == NULL)
62a02d25 1248 {
3ae729d5
L
1249 max_single_nop_size--;
1250 nops = patt[max_single_nop_size - 1];
62a02d25
L
1251 }
1252
3ae729d5
L
1253 last = count % max_single_nop_size;
1254
1255 count -= last;
1256 for (offset = 0; offset < count; offset += max_single_nop_size)
1257 memcpy (where + offset, nops, max_single_nop_size);
1258
1259 if (last)
1260 {
1261 nops = patt[last - 1];
1262 if (nops == NULL)
1263 {
1264 /* Use the smaller one plus one-byte NOP if the needed one
1265 isn't available. */
1266 last--;
1267 nops = patt[last - 1];
1268 memcpy (where + offset, nops, last);
1269 where[offset + last] = *patt[0];
1270 }
1271 else
1272 memcpy (where + offset, nops, last);
1273 }
62a02d25
L
1274}
1275
3ae729d5
L
1276static INLINE int
1277fits_in_imm7 (offsetT num)
1278{
1279 return (num & 0x7f) == num;
1280}
1281
1282static INLINE int
1283fits_in_imm31 (offsetT num)
1284{
1285 return (num & 0x7fffffff) == num;
1286}
62a02d25
L
1287
1288/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1289 single NOP instruction LIMIT. */
1290
1291void
3ae729d5 1292i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1293{
3ae729d5 1294 const unsigned char *const *patt = NULL;
62a02d25 1295 int max_single_nop_size;
3ae729d5
L
1296 /* Maximum number of NOPs before switching to jump over NOPs. */
1297 int max_number_of_nops;
62a02d25 1298
3ae729d5 1299 switch (fragP->fr_type)
62a02d25 1300 {
3ae729d5
L
1301 case rs_fill_nop:
1302 case rs_align_code:
1303 break;
1304 default:
62a02d25
L
1305 return;
1306 }
1307
ccc9c027
L
1308 /* We need to decide which NOP sequence to use for 32bit and
1309 64bit. When -mtune= is used:
4eed87de 1310
76bc74dc
L
1311 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1312 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1313 2. For the rest, alt_patt will be used.
1314
1315 When -mtune= isn't used, alt_patt will be used if
22109423 1316 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1317 be used.
ccc9c027
L
1318
1319 When -march= or .arch is used, we can't use anything beyond
1320 cpu_arch_isa_flags. */
1321
1322 if (flag_code == CODE_16BIT)
1323 {
3ae729d5
L
1324 patt = f16_patt;
1325 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1326 /* Limit number of NOPs to 2 in 16-bit mode. */
1327 max_number_of_nops = 2;
252b5132 1328 }
33fef721 1329 else
ccc9c027 1330 {
fbf3f584 1331 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1332 {
1333 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1334 switch (cpu_arch_tune)
1335 {
1336 case PROCESSOR_UNKNOWN:
1337 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1338 optimize with nops. */
1339 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1340 patt = alt_patt;
ccc9c027
L
1341 else
1342 patt = f32_patt;
1343 break;
ccc9c027
L
1344 case PROCESSOR_PENTIUM4:
1345 case PROCESSOR_NOCONA:
ef05d495 1346 case PROCESSOR_CORE:
76bc74dc 1347 case PROCESSOR_CORE2:
bd5295b2 1348 case PROCESSOR_COREI7:
3632d14b 1349 case PROCESSOR_L1OM:
7a9068fe 1350 case PROCESSOR_K1OM:
76bc74dc 1351 case PROCESSOR_GENERIC64:
ccc9c027
L
1352 case PROCESSOR_K6:
1353 case PROCESSOR_ATHLON:
1354 case PROCESSOR_K8:
4eed87de 1355 case PROCESSOR_AMDFAM10:
8aedb9fe 1356 case PROCESSOR_BD:
029f3522 1357 case PROCESSOR_ZNVER:
7b458c12 1358 case PROCESSOR_BT:
80b8656c 1359 patt = alt_patt;
ccc9c027 1360 break;
76bc74dc 1361 case PROCESSOR_I386:
ccc9c027
L
1362 case PROCESSOR_I486:
1363 case PROCESSOR_PENTIUM:
2dde1948 1364 case PROCESSOR_PENTIUMPRO:
81486035 1365 case PROCESSOR_IAMCU:
ccc9c027
L
1366 case PROCESSOR_GENERIC32:
1367 patt = f32_patt;
1368 break;
4eed87de 1369 }
ccc9c027
L
1370 }
1371 else
1372 {
fbf3f584 1373 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1374 {
1375 case PROCESSOR_UNKNOWN:
e6a14101 1376 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1377 PROCESSOR_UNKNOWN. */
1378 abort ();
1379 break;
1380
76bc74dc 1381 case PROCESSOR_I386:
ccc9c027
L
1382 case PROCESSOR_I486:
1383 case PROCESSOR_PENTIUM:
81486035 1384 case PROCESSOR_IAMCU:
ccc9c027
L
1385 case PROCESSOR_K6:
1386 case PROCESSOR_ATHLON:
1387 case PROCESSOR_K8:
4eed87de 1388 case PROCESSOR_AMDFAM10:
8aedb9fe 1389 case PROCESSOR_BD:
029f3522 1390 case PROCESSOR_ZNVER:
7b458c12 1391 case PROCESSOR_BT:
ccc9c027
L
1392 case PROCESSOR_GENERIC32:
1393 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1394 with nops. */
1395 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1396 patt = alt_patt;
ccc9c027
L
1397 else
1398 patt = f32_patt;
1399 break;
76bc74dc
L
1400 case PROCESSOR_PENTIUMPRO:
1401 case PROCESSOR_PENTIUM4:
1402 case PROCESSOR_NOCONA:
1403 case PROCESSOR_CORE:
ef05d495 1404 case PROCESSOR_CORE2:
bd5295b2 1405 case PROCESSOR_COREI7:
3632d14b 1406 case PROCESSOR_L1OM:
7a9068fe 1407 case PROCESSOR_K1OM:
22109423 1408 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1409 patt = alt_patt;
ccc9c027
L
1410 else
1411 patt = f32_patt;
1412 break;
1413 case PROCESSOR_GENERIC64:
80b8656c 1414 patt = alt_patt;
ccc9c027 1415 break;
4eed87de 1416 }
ccc9c027
L
1417 }
1418
76bc74dc
L
1419 if (patt == f32_patt)
1420 {
3ae729d5
L
1421 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1422 /* Limit number of NOPs to 2 for older processors. */
1423 max_number_of_nops = 2;
76bc74dc
L
1424 }
1425 else
1426 {
3ae729d5
L
1427 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1428 /* Limit number of NOPs to 7 for newer processors. */
1429 max_number_of_nops = 7;
1430 }
1431 }
1432
1433 if (limit == 0)
1434 limit = max_single_nop_size;
1435
1436 if (fragP->fr_type == rs_fill_nop)
1437 {
1438 /* Output NOPs for .nop directive. */
1439 if (limit > max_single_nop_size)
1440 {
1441 as_bad_where (fragP->fr_file, fragP->fr_line,
1442 _("invalid single nop size: %d "
1443 "(expect within [0, %d])"),
1444 limit, max_single_nop_size);
1445 return;
1446 }
1447 }
1448 else
1449 fragP->fr_var = count;
1450
1451 if ((count / max_single_nop_size) > max_number_of_nops)
1452 {
1453 /* Generate jump over NOPs. */
1454 offsetT disp = count - 2;
1455 if (fits_in_imm7 (disp))
1456 {
1457 /* Use "jmp disp8" if possible. */
1458 count = disp;
1459 where[0] = jump_disp8[0];
1460 where[1] = count;
1461 where += 2;
1462 }
1463 else
1464 {
1465 unsigned int size_of_jump;
1466
1467 if (flag_code == CODE_16BIT)
1468 {
1469 where[0] = jump16_disp32[0];
1470 where[1] = jump16_disp32[1];
1471 size_of_jump = 2;
1472 }
1473 else
1474 {
1475 where[0] = jump32_disp32[0];
1476 size_of_jump = 1;
1477 }
1478
1479 count -= size_of_jump + 4;
1480 if (!fits_in_imm31 (count))
1481 {
1482 as_bad_where (fragP->fr_file, fragP->fr_line,
1483 _("jump over nop padding out of range"));
1484 return;
1485 }
1486
1487 md_number_to_chars (where + size_of_jump, count, 4);
1488 where += size_of_jump + 4;
76bc74dc 1489 }
ccc9c027 1490 }
3ae729d5
L
1491
1492 /* Generate multiple NOPs. */
1493 i386_output_nops (where, patt, count, limit);
252b5132
RH
1494}
1495
c6fb90c8 1496static INLINE int
0dfbf9d7 1497operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1498{
0dfbf9d7 1499 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1500 {
1501 case 3:
0dfbf9d7 1502 if (x->array[2])
c6fb90c8 1503 return 0;
1a0670f3 1504 /* Fall through. */
c6fb90c8 1505 case 2:
0dfbf9d7 1506 if (x->array[1])
c6fb90c8 1507 return 0;
1a0670f3 1508 /* Fall through. */
c6fb90c8 1509 case 1:
0dfbf9d7 1510 return !x->array[0];
c6fb90c8
L
1511 default:
1512 abort ();
1513 }
40fb9820
L
1514}
1515
c6fb90c8 1516static INLINE void
0dfbf9d7 1517operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1518{
0dfbf9d7 1519 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1520 {
1521 case 3:
0dfbf9d7 1522 x->array[2] = v;
1a0670f3 1523 /* Fall through. */
c6fb90c8 1524 case 2:
0dfbf9d7 1525 x->array[1] = v;
1a0670f3 1526 /* Fall through. */
c6fb90c8 1527 case 1:
0dfbf9d7 1528 x->array[0] = v;
1a0670f3 1529 /* Fall through. */
c6fb90c8
L
1530 break;
1531 default:
1532 abort ();
1533 }
1534}
40fb9820 1535
c6fb90c8 1536static INLINE int
0dfbf9d7
L
1537operand_type_equal (const union i386_operand_type *x,
1538 const union i386_operand_type *y)
c6fb90c8 1539{
0dfbf9d7 1540 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1541 {
1542 case 3:
0dfbf9d7 1543 if (x->array[2] != y->array[2])
c6fb90c8 1544 return 0;
1a0670f3 1545 /* Fall through. */
c6fb90c8 1546 case 2:
0dfbf9d7 1547 if (x->array[1] != y->array[1])
c6fb90c8 1548 return 0;
1a0670f3 1549 /* Fall through. */
c6fb90c8 1550 case 1:
0dfbf9d7 1551 return x->array[0] == y->array[0];
c6fb90c8
L
1552 break;
1553 default:
1554 abort ();
1555 }
1556}
40fb9820 1557
0dfbf9d7
L
1558static INLINE int
1559cpu_flags_all_zero (const union i386_cpu_flags *x)
1560{
1561 switch (ARRAY_SIZE(x->array))
1562 {
53467f57
IT
1563 case 4:
1564 if (x->array[3])
1565 return 0;
1566 /* Fall through. */
0dfbf9d7
L
1567 case 3:
1568 if (x->array[2])
1569 return 0;
1a0670f3 1570 /* Fall through. */
0dfbf9d7
L
1571 case 2:
1572 if (x->array[1])
1573 return 0;
1a0670f3 1574 /* Fall through. */
0dfbf9d7
L
1575 case 1:
1576 return !x->array[0];
1577 default:
1578 abort ();
1579 }
1580}
1581
0dfbf9d7
L
1582static INLINE int
1583cpu_flags_equal (const union i386_cpu_flags *x,
1584 const union i386_cpu_flags *y)
1585{
1586 switch (ARRAY_SIZE(x->array))
1587 {
53467f57
IT
1588 case 4:
1589 if (x->array[3] != y->array[3])
1590 return 0;
1591 /* Fall through. */
0dfbf9d7
L
1592 case 3:
1593 if (x->array[2] != y->array[2])
1594 return 0;
1a0670f3 1595 /* Fall through. */
0dfbf9d7
L
1596 case 2:
1597 if (x->array[1] != y->array[1])
1598 return 0;
1a0670f3 1599 /* Fall through. */
0dfbf9d7
L
1600 case 1:
1601 return x->array[0] == y->array[0];
1602 break;
1603 default:
1604 abort ();
1605 }
1606}
c6fb90c8
L
1607
1608static INLINE int
1609cpu_flags_check_cpu64 (i386_cpu_flags f)
1610{
1611 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1612 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1613}
1614
c6fb90c8
L
1615static INLINE i386_cpu_flags
1616cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1617{
c6fb90c8
L
1618 switch (ARRAY_SIZE (x.array))
1619 {
53467f57
IT
1620 case 4:
1621 x.array [3] &= y.array [3];
1622 /* Fall through. */
c6fb90c8
L
1623 case 3:
1624 x.array [2] &= y.array [2];
1a0670f3 1625 /* Fall through. */
c6fb90c8
L
1626 case 2:
1627 x.array [1] &= y.array [1];
1a0670f3 1628 /* Fall through. */
c6fb90c8
L
1629 case 1:
1630 x.array [0] &= y.array [0];
1631 break;
1632 default:
1633 abort ();
1634 }
1635 return x;
1636}
40fb9820 1637
c6fb90c8
L
1638static INLINE i386_cpu_flags
1639cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1640{
c6fb90c8 1641 switch (ARRAY_SIZE (x.array))
40fb9820 1642 {
53467f57
IT
1643 case 4:
1644 x.array [3] |= y.array [3];
1645 /* Fall through. */
c6fb90c8
L
1646 case 3:
1647 x.array [2] |= y.array [2];
1a0670f3 1648 /* Fall through. */
c6fb90c8
L
1649 case 2:
1650 x.array [1] |= y.array [1];
1a0670f3 1651 /* Fall through. */
c6fb90c8
L
1652 case 1:
1653 x.array [0] |= y.array [0];
40fb9820
L
1654 break;
1655 default:
1656 abort ();
1657 }
40fb9820
L
1658 return x;
1659}
1660
309d3373
JB
1661static INLINE i386_cpu_flags
1662cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1663{
1664 switch (ARRAY_SIZE (x.array))
1665 {
53467f57
IT
1666 case 4:
1667 x.array [3] &= ~y.array [3];
1668 /* Fall through. */
309d3373
JB
1669 case 3:
1670 x.array [2] &= ~y.array [2];
1a0670f3 1671 /* Fall through. */
309d3373
JB
1672 case 2:
1673 x.array [1] &= ~y.array [1];
1a0670f3 1674 /* Fall through. */
309d3373
JB
1675 case 1:
1676 x.array [0] &= ~y.array [0];
1677 break;
1678 default:
1679 abort ();
1680 }
1681 return x;
1682}
1683
c0f3af97
L
1684#define CPU_FLAGS_ARCH_MATCH 0x1
1685#define CPU_FLAGS_64BIT_MATCH 0x2
1686
c0f3af97 1687#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1688 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1689
1690/* Return CPU flags match bits. */
3629bb00 1691
40fb9820 1692static int
d3ce72d0 1693cpu_flags_match (const insn_template *t)
40fb9820 1694{
c0f3af97
L
1695 i386_cpu_flags x = t->cpu_flags;
1696 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1697
1698 x.bitfield.cpu64 = 0;
1699 x.bitfield.cpuno64 = 0;
1700
0dfbf9d7 1701 if (cpu_flags_all_zero (&x))
c0f3af97
L
1702 {
1703 /* This instruction is available on all archs. */
db12e14e 1704 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1705 }
3629bb00
L
1706 else
1707 {
c0f3af97 1708 /* This instruction is available only on some archs. */
3629bb00
L
1709 i386_cpu_flags cpu = cpu_arch_flags;
1710
ab592e75
JB
1711 /* AVX512VL is no standalone feature - match it and then strip it. */
1712 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1713 return match;
1714 x.bitfield.cpuavx512vl = 0;
1715
3629bb00 1716 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1717 if (!cpu_flags_all_zero (&cpu))
1718 {
a5ff0eb2
L
1719 if (x.bitfield.cpuavx)
1720 {
929f69fa 1721 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1722 if (cpu.bitfield.cpuavx
1723 && (!t->opcode_modifier.sse2avx || sse2avx)
1724 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1725 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1726 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1727 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1728 }
929f69fa
JB
1729 else if (x.bitfield.cpuavx512f)
1730 {
1731 /* We need to check a few extra flags with AVX512F. */
1732 if (cpu.bitfield.cpuavx512f
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1735 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
a5ff0eb2 1738 else
db12e14e 1739 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1740 }
3629bb00 1741 }
c0f3af97 1742 return match;
40fb9820
L
1743}
1744
c6fb90c8
L
1745static INLINE i386_operand_type
1746operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1747{
c6fb90c8
L
1748 switch (ARRAY_SIZE (x.array))
1749 {
1750 case 3:
1751 x.array [2] &= y.array [2];
1a0670f3 1752 /* Fall through. */
c6fb90c8
L
1753 case 2:
1754 x.array [1] &= y.array [1];
1a0670f3 1755 /* Fall through. */
c6fb90c8
L
1756 case 1:
1757 x.array [0] &= y.array [0];
1758 break;
1759 default:
1760 abort ();
1761 }
1762 return x;
40fb9820
L
1763}
1764
73053c1f
JB
1765static INLINE i386_operand_type
1766operand_type_and_not (i386_operand_type x, i386_operand_type y)
1767{
1768 switch (ARRAY_SIZE (x.array))
1769 {
1770 case 3:
1771 x.array [2] &= ~y.array [2];
1772 /* Fall through. */
1773 case 2:
1774 x.array [1] &= ~y.array [1];
1775 /* Fall through. */
1776 case 1:
1777 x.array [0] &= ~y.array [0];
1778 break;
1779 default:
1780 abort ();
1781 }
1782 return x;
1783}
1784
c6fb90c8
L
1785static INLINE i386_operand_type
1786operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1787{
c6fb90c8 1788 switch (ARRAY_SIZE (x.array))
40fb9820 1789 {
c6fb90c8
L
1790 case 3:
1791 x.array [2] |= y.array [2];
1a0670f3 1792 /* Fall through. */
c6fb90c8
L
1793 case 2:
1794 x.array [1] |= y.array [1];
1a0670f3 1795 /* Fall through. */
c6fb90c8
L
1796 case 1:
1797 x.array [0] |= y.array [0];
40fb9820
L
1798 break;
1799 default:
1800 abort ();
1801 }
c6fb90c8
L
1802 return x;
1803}
40fb9820 1804
c6fb90c8
L
1805static INLINE i386_operand_type
1806operand_type_xor (i386_operand_type x, i386_operand_type y)
1807{
1808 switch (ARRAY_SIZE (x.array))
1809 {
1810 case 3:
1811 x.array [2] ^= y.array [2];
1a0670f3 1812 /* Fall through. */
c6fb90c8
L
1813 case 2:
1814 x.array [1] ^= y.array [1];
1a0670f3 1815 /* Fall through. */
c6fb90c8
L
1816 case 1:
1817 x.array [0] ^= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
40fb9820
L
1822 return x;
1823}
1824
1825static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1826static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1827static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1828static const i386_operand_type inoutportreg
1829 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1830static const i386_operand_type reg16_inoutportreg
1831 = OPERAND_TYPE_REG16_INOUTPORTREG;
1832static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1833static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1834static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1835static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1836static const i386_operand_type anydisp
1837 = OPERAND_TYPE_ANYDISP;
40fb9820 1838static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1839static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1840static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1841static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1842static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1843static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1844static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1845static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1846static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1847static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1848static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1849static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1850
1851enum operand_type
1852{
1853 reg,
40fb9820
L
1854 imm,
1855 disp,
1856 anymem
1857};
1858
c6fb90c8 1859static INLINE int
40fb9820
L
1860operand_type_check (i386_operand_type t, enum operand_type c)
1861{
1862 switch (c)
1863 {
1864 case reg:
dc821c5f 1865 return t.bitfield.reg;
40fb9820 1866
40fb9820
L
1867 case imm:
1868 return (t.bitfield.imm8
1869 || t.bitfield.imm8s
1870 || t.bitfield.imm16
1871 || t.bitfield.imm32
1872 || t.bitfield.imm32s
1873 || t.bitfield.imm64);
1874
1875 case disp:
1876 return (t.bitfield.disp8
1877 || t.bitfield.disp16
1878 || t.bitfield.disp32
1879 || t.bitfield.disp32s
1880 || t.bitfield.disp64);
1881
1882 case anymem:
1883 return (t.bitfield.disp8
1884 || t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s
1887 || t.bitfield.disp64
1888 || t.bitfield.baseindex);
1889
1890 default:
1891 abort ();
1892 }
2cfe26b6
AM
1893
1894 return 0;
40fb9820
L
1895}
1896
ca0d63fe 1897/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1898 operand J for instruction template T. */
1899
1900static INLINE int
d3ce72d0 1901match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1902{
1903 return !((i.types[j].bitfield.byte
1904 && !t->operand_types[j].bitfield.byte)
1905 || (i.types[j].bitfield.word
1906 && !t->operand_types[j].bitfield.word)
1907 || (i.types[j].bitfield.dword
1908 && !t->operand_types[j].bitfield.dword)
1909 || (i.types[j].bitfield.qword
ca0d63fe
JB
1910 && !t->operand_types[j].bitfield.qword)
1911 || (i.types[j].bitfield.tbyte
1912 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1913}
1914
1b54b8d7
JB
1915/* Return 1 if there is no conflict in SIMD register on
1916 operand J for instruction template T. */
1917
1918static INLINE int
1919match_simd_size (const insn_template *t, unsigned int j)
1920{
1921 return !((i.types[j].bitfield.xmmword
1922 && !t->operand_types[j].bitfield.xmmword)
1923 || (i.types[j].bitfield.ymmword
1924 && !t->operand_types[j].bitfield.ymmword)
1925 || (i.types[j].bitfield.zmmword
1926 && !t->operand_types[j].bitfield.zmmword));
1927}
1928
5c07affc
L
1929/* Return 1 if there is no conflict in any size on operand J for
1930 instruction template T. */
1931
1932static INLINE int
d3ce72d0 1933match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1934{
1935 return (match_reg_size (t, j)
1936 && !((i.types[j].bitfield.unspecified
af508cb9 1937 && !i.broadcast
5c07affc
L
1938 && !t->operand_types[j].bitfield.unspecified)
1939 || (i.types[j].bitfield.fword
1940 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1941 /* For scalar opcode templates to allow register and memory
1942 operands at the same time, some special casing is needed
d6793fa1
JB
1943 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1944 down-conversion vpmov*. */
1b54b8d7
JB
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
d6793fa1
JB
1947 && (t->operand_types[j].bitfield.byte
1948 || t->operand_types[j].bitfield.word
1949 || t->operand_types[j].bitfield.dword
1b54b8d7
JB
1950 || t->operand_types[j].bitfield.qword))
1951 ? (i.types[j].bitfield.xmmword
1952 || i.types[j].bitfield.ymmword
1953 || i.types[j].bitfield.zmmword)
1954 : !match_simd_size(t, j))));
5c07affc
L
1955}
1956
1957/* Return 1 if there is no size conflict on any operands for
1958 instruction template T. */
1959
1960static INLINE int
d3ce72d0 1961operand_size_match (const insn_template *t)
5c07affc
L
1962{
1963 unsigned int j;
1964 int match = 1;
1965
1966 /* Don't check jump instructions. */
1967 if (t->opcode_modifier.jump
1968 || t->opcode_modifier.jumpbyte
1969 || t->opcode_modifier.jumpdword
1970 || t->opcode_modifier.jumpintersegment)
1971 return match;
1972
1973 /* Check memory and accumulator operand size. */
1974 for (j = 0; j < i.operands; j++)
1975 {
1b54b8d7
JB
1976 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1977 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1978 continue;
1979
1b54b8d7 1980 if (t->operand_types[j].bitfield.reg
dc821c5f 1981 && !match_reg_size (t, j))
5c07affc
L
1982 {
1983 match = 0;
1984 break;
1985 }
1986
1b54b8d7
JB
1987 if (t->operand_types[j].bitfield.regsimd
1988 && !match_simd_size (t, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.acc
1995 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
5c07affc
L
2001 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2002 {
2003 match = 0;
2004 break;
2005 }
2006 }
2007
891edac4 2008 if (match)
5c07affc 2009 return match;
38e314eb 2010 else if (!t->opcode_modifier.d)
891edac4
L
2011 {
2012mismatch:
86e026a4 2013 i.error = operand_size_mismatch;
891edac4
L
2014 return 0;
2015 }
5c07affc
L
2016
2017 /* Check reverse. */
9c2799c2 2018 gas_assert (i.operands == 2);
5c07affc
L
2019
2020 match = 1;
2021 for (j = 0; j < 2; j++)
2022 {
dc821c5f
JB
2023 if ((t->operand_types[j].bitfield.reg
2024 || t->operand_types[j].bitfield.acc)
5c07affc 2025 && !match_reg_size (t, j ? 0 : 1))
891edac4 2026 goto mismatch;
5c07affc
L
2027
2028 if (i.types[j].bitfield.mem
2029 && !match_mem_size (t, j ? 0 : 1))
891edac4 2030 goto mismatch;
5c07affc
L
2031 }
2032
2033 return match;
2034}
2035
c6fb90c8 2036static INLINE int
40fb9820
L
2037operand_type_match (i386_operand_type overlap,
2038 i386_operand_type given)
2039{
2040 i386_operand_type temp = overlap;
2041
2042 temp.bitfield.jumpabsolute = 0;
7d5e4556 2043 temp.bitfield.unspecified = 0;
5c07affc
L
2044 temp.bitfield.byte = 0;
2045 temp.bitfield.word = 0;
2046 temp.bitfield.dword = 0;
2047 temp.bitfield.fword = 0;
2048 temp.bitfield.qword = 0;
2049 temp.bitfield.tbyte = 0;
2050 temp.bitfield.xmmword = 0;
c0f3af97 2051 temp.bitfield.ymmword = 0;
43234a1e 2052 temp.bitfield.zmmword = 0;
0dfbf9d7 2053 if (operand_type_all_zero (&temp))
891edac4 2054 goto mismatch;
40fb9820 2055
891edac4
L
2056 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2057 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2058 return 1;
2059
2060mismatch:
a65babc9 2061 i.error = operand_type_mismatch;
891edac4 2062 return 0;
40fb9820
L
2063}
2064
7d5e4556 2065/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2066 unless the expected operand type register overlap is null.
2067 Memory operand size of certain SIMD instructions is also being checked
2068 here. */
40fb9820 2069
c6fb90c8 2070static INLINE int
dc821c5f 2071operand_type_register_match (i386_operand_type g0,
40fb9820 2072 i386_operand_type t0,
40fb9820
L
2073 i386_operand_type g1,
2074 i386_operand_type t1)
2075{
10c17abd
JB
2076 if (!g0.bitfield.reg
2077 && !g0.bitfield.regsimd
2078 && (!operand_type_check (g0, anymem)
2079 || g0.bitfield.unspecified
2080 || !t0.bitfield.regsimd))
40fb9820
L
2081 return 1;
2082
10c17abd
JB
2083 if (!g1.bitfield.reg
2084 && !g1.bitfield.regsimd
2085 && (!operand_type_check (g1, anymem)
2086 || g1.bitfield.unspecified
2087 || !t1.bitfield.regsimd))
40fb9820
L
2088 return 1;
2089
dc821c5f
JB
2090 if (g0.bitfield.byte == g1.bitfield.byte
2091 && g0.bitfield.word == g1.bitfield.word
2092 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2093 && g0.bitfield.qword == g1.bitfield.qword
2094 && g0.bitfield.xmmword == g1.bitfield.xmmword
2095 && g0.bitfield.ymmword == g1.bitfield.ymmword
2096 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2097 return 1;
2098
dc821c5f
JB
2099 if (!(t0.bitfield.byte & t1.bitfield.byte)
2100 && !(t0.bitfield.word & t1.bitfield.word)
2101 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2102 && !(t0.bitfield.qword & t1.bitfield.qword)
2103 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2104 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2105 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2106 return 1;
2107
a65babc9 2108 i.error = register_type_mismatch;
891edac4
L
2109
2110 return 0;
40fb9820
L
2111}
2112
4c692bc7
JB
2113static INLINE unsigned int
2114register_number (const reg_entry *r)
2115{
2116 unsigned int nr = r->reg_num;
2117
2118 if (r->reg_flags & RegRex)
2119 nr += 8;
2120
200cbe0f
L
2121 if (r->reg_flags & RegVRex)
2122 nr += 16;
2123
4c692bc7
JB
2124 return nr;
2125}
2126
252b5132 2127static INLINE unsigned int
40fb9820 2128mode_from_disp_size (i386_operand_type t)
252b5132 2129{
b5014f7a 2130 if (t.bitfield.disp8)
40fb9820
L
2131 return 1;
2132 else if (t.bitfield.disp16
2133 || t.bitfield.disp32
2134 || t.bitfield.disp32s)
2135 return 2;
2136 else
2137 return 0;
252b5132
RH
2138}
2139
2140static INLINE int
65879393 2141fits_in_signed_byte (addressT num)
252b5132 2142{
65879393 2143 return num + 0x80 <= 0xff;
47926f60 2144}
252b5132
RH
2145
2146static INLINE int
65879393 2147fits_in_unsigned_byte (addressT num)
252b5132 2148{
65879393 2149 return num <= 0xff;
47926f60 2150}
252b5132
RH
2151
2152static INLINE int
65879393 2153fits_in_unsigned_word (addressT num)
252b5132 2154{
65879393 2155 return num <= 0xffff;
47926f60 2156}
252b5132
RH
2157
2158static INLINE int
65879393 2159fits_in_signed_word (addressT num)
252b5132 2160{
65879393 2161 return num + 0x8000 <= 0xffff;
47926f60 2162}
2a962e6d 2163
3e73aa7c 2164static INLINE int
65879393 2165fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2166{
2167#ifndef BFD64
2168 return 1;
2169#else
65879393 2170 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2171#endif
2172} /* fits_in_signed_long() */
2a962e6d 2173
3e73aa7c 2174static INLINE int
65879393 2175fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2176{
2177#ifndef BFD64
2178 return 1;
2179#else
65879393 2180 return num <= 0xffffffff;
3e73aa7c
JH
2181#endif
2182} /* fits_in_unsigned_long() */
252b5132 2183
43234a1e 2184static INLINE int
b5014f7a 2185fits_in_disp8 (offsetT num)
43234a1e
L
2186{
2187 int shift = i.memshift;
2188 unsigned int mask;
2189
2190 if (shift == -1)
2191 abort ();
2192
2193 mask = (1 << shift) - 1;
2194
2195 /* Return 0 if NUM isn't properly aligned. */
2196 if ((num & mask))
2197 return 0;
2198
2199 /* Check if NUM will fit in 8bit after shift. */
2200 return fits_in_signed_byte (num >> shift);
2201}
2202
a683cc34
SP
2203static INLINE int
2204fits_in_imm4 (offsetT num)
2205{
2206 return (num & 0xf) == num;
2207}
2208
40fb9820 2209static i386_operand_type
e3bb37b5 2210smallest_imm_type (offsetT num)
252b5132 2211{
40fb9820 2212 i386_operand_type t;
7ab9ffdd 2213
0dfbf9d7 2214 operand_type_set (&t, 0);
40fb9820
L
2215 t.bitfield.imm64 = 1;
2216
2217 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2218 {
2219 /* This code is disabled on the 486 because all the Imm1 forms
2220 in the opcode table are slower on the i486. They're the
2221 versions with the implicitly specified single-position
2222 displacement, which has another syntax if you really want to
2223 use that form. */
40fb9820
L
2224 t.bitfield.imm1 = 1;
2225 t.bitfield.imm8 = 1;
2226 t.bitfield.imm8s = 1;
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_byte (num))
2232 {
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_unsigned_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2247 {
2248 t.bitfield.imm16 = 1;
2249 t.bitfield.imm32 = 1;
2250 t.bitfield.imm32s = 1;
2251 }
2252 else if (fits_in_signed_long (num))
2253 {
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_unsigned_long (num))
2258 t.bitfield.imm32 = 1;
2259
2260 return t;
47926f60 2261}
252b5132 2262
847f7ad4 2263static offsetT
e3bb37b5 2264offset_in_range (offsetT val, int size)
847f7ad4 2265{
508866be 2266 addressT mask;
ba2adb93 2267
847f7ad4
AM
2268 switch (size)
2269 {
508866be
L
2270 case 1: mask = ((addressT) 1 << 8) - 1; break;
2271 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2272 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2273#ifdef BFD64
2274 case 8: mask = ((addressT) 2 << 63) - 1; break;
2275#endif
47926f60 2276 default: abort ();
847f7ad4
AM
2277 }
2278
9de868bf
L
2279#ifdef BFD64
2280 /* If BFD64, sign extend val for 32bit address mode. */
2281 if (flag_code != CODE_64BIT
2282 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2283 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2284 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2285#endif
ba2adb93 2286
47926f60 2287 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2288 {
2289 char buf1[40], buf2[40];
2290
2291 sprint_value (buf1, val);
2292 sprint_value (buf2, val & mask);
2293 as_warn (_("%s shortened to %s"), buf1, buf2);
2294 }
2295 return val & mask;
2296}
2297
c32fa91d
L
2298enum PREFIX_GROUP
2299{
2300 PREFIX_EXIST = 0,
2301 PREFIX_LOCK,
2302 PREFIX_REP,
04ef582a 2303 PREFIX_DS,
c32fa91d
L
2304 PREFIX_OTHER
2305};
2306
2307/* Returns
2308 a. PREFIX_EXIST if attempting to add a prefix where one from the
2309 same class already exists.
2310 b. PREFIX_LOCK if lock prefix is added.
2311 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2312 d. PREFIX_DS if ds prefix is added.
2313 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2314 */
2315
2316static enum PREFIX_GROUP
e3bb37b5 2317add_prefix (unsigned int prefix)
252b5132 2318{
c32fa91d 2319 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2320 unsigned int q;
252b5132 2321
29b0f896
AM
2322 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2323 && flag_code == CODE_64BIT)
b1905489 2324 {
161a04f6
L
2325 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2326 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2327 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2328 ret = PREFIX_EXIST;
b1905489
JB
2329 q = REX_PREFIX;
2330 }
3e73aa7c 2331 else
b1905489
JB
2332 {
2333 switch (prefix)
2334 {
2335 default:
2336 abort ();
2337
b1905489 2338 case DS_PREFIX_OPCODE:
04ef582a
L
2339 ret = PREFIX_DS;
2340 /* Fall through. */
2341 case CS_PREFIX_OPCODE:
b1905489
JB
2342 case ES_PREFIX_OPCODE:
2343 case FS_PREFIX_OPCODE:
2344 case GS_PREFIX_OPCODE:
2345 case SS_PREFIX_OPCODE:
2346 q = SEG_PREFIX;
2347 break;
2348
2349 case REPNE_PREFIX_OPCODE:
2350 case REPE_PREFIX_OPCODE:
c32fa91d
L
2351 q = REP_PREFIX;
2352 ret = PREFIX_REP;
2353 break;
2354
b1905489 2355 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2356 q = LOCK_PREFIX;
2357 ret = PREFIX_LOCK;
b1905489
JB
2358 break;
2359
2360 case FWAIT_OPCODE:
2361 q = WAIT_PREFIX;
2362 break;
2363
2364 case ADDR_PREFIX_OPCODE:
2365 q = ADDR_PREFIX;
2366 break;
2367
2368 case DATA_PREFIX_OPCODE:
2369 q = DATA_PREFIX;
2370 break;
2371 }
2372 if (i.prefix[q] != 0)
c32fa91d 2373 ret = PREFIX_EXIST;
b1905489 2374 }
252b5132 2375
b1905489 2376 if (ret)
252b5132 2377 {
b1905489
JB
2378 if (!i.prefix[q])
2379 ++i.prefixes;
2380 i.prefix[q] |= prefix;
252b5132 2381 }
b1905489
JB
2382 else
2383 as_bad (_("same type of prefix used twice"));
252b5132 2384
252b5132
RH
2385 return ret;
2386}
2387
2388static void
78f12dd3 2389update_code_flag (int value, int check)
eecb386c 2390{
78f12dd3
L
2391 PRINTF_LIKE ((*as_error));
2392
1e9cc1c2 2393 flag_code = (enum flag_code) value;
40fb9820
L
2394 if (flag_code == CODE_64BIT)
2395 {
2396 cpu_arch_flags.bitfield.cpu64 = 1;
2397 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2398 }
2399 else
2400 {
2401 cpu_arch_flags.bitfield.cpu64 = 0;
2402 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2403 }
2404 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2405 {
78f12dd3
L
2406 if (check)
2407 as_error = as_fatal;
2408 else
2409 as_error = as_bad;
2410 (*as_error) (_("64bit mode not supported on `%s'."),
2411 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2412 }
40fb9820 2413 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2414 {
78f12dd3
L
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("32bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2421 }
eecb386c
AM
2422 stackop_size = '\0';
2423}
2424
78f12dd3
L
2425static void
2426set_code_flag (int value)
2427{
2428 update_code_flag (value, 0);
2429}
2430
eecb386c 2431static void
e3bb37b5 2432set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2433{
1e9cc1c2 2434 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2435 if (flag_code != CODE_16BIT)
2436 abort ();
2437 cpu_arch_flags.bitfield.cpu64 = 0;
2438 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2439 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2440}
2441
2442static void
e3bb37b5 2443set_intel_syntax (int syntax_flag)
252b5132
RH
2444{
2445 /* Find out if register prefixing is specified. */
2446 int ask_naked_reg = 0;
2447
2448 SKIP_WHITESPACE ();
29b0f896 2449 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2450 {
d02603dc
NC
2451 char *string;
2452 int e = get_symbol_name (&string);
252b5132 2453
47926f60 2454 if (strcmp (string, "prefix") == 0)
252b5132 2455 ask_naked_reg = 1;
47926f60 2456 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2457 ask_naked_reg = -1;
2458 else
d0b47220 2459 as_bad (_("bad argument to syntax directive."));
d02603dc 2460 (void) restore_line_pointer (e);
252b5132
RH
2461 }
2462 demand_empty_rest_of_line ();
c3332e24 2463
252b5132
RH
2464 intel_syntax = syntax_flag;
2465
2466 if (ask_naked_reg == 0)
f86103b7
AM
2467 allow_naked_reg = (intel_syntax
2468 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2469 else
2470 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2471
ee86248c 2472 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2473
e4a3b5a4 2474 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2475 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2476 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2477}
2478
1efbbeb4
L
2479static void
2480set_intel_mnemonic (int mnemonic_flag)
2481{
e1d4d893 2482 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2483}
2484
db51cc60
L
2485static void
2486set_allow_index_reg (int flag)
2487{
2488 allow_index_reg = flag;
2489}
2490
cb19c032 2491static void
7bab8ab5 2492set_check (int what)
cb19c032 2493{
7bab8ab5
JB
2494 enum check_kind *kind;
2495 const char *str;
2496
2497 if (what)
2498 {
2499 kind = &operand_check;
2500 str = "operand";
2501 }
2502 else
2503 {
2504 kind = &sse_check;
2505 str = "sse";
2506 }
2507
cb19c032
L
2508 SKIP_WHITESPACE ();
2509
2510 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2511 {
d02603dc
NC
2512 char *string;
2513 int e = get_symbol_name (&string);
cb19c032
L
2514
2515 if (strcmp (string, "none") == 0)
7bab8ab5 2516 *kind = check_none;
cb19c032 2517 else if (strcmp (string, "warning") == 0)
7bab8ab5 2518 *kind = check_warning;
cb19c032 2519 else if (strcmp (string, "error") == 0)
7bab8ab5 2520 *kind = check_error;
cb19c032 2521 else
7bab8ab5 2522 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2523 (void) restore_line_pointer (e);
cb19c032
L
2524 }
2525 else
7bab8ab5 2526 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2527
2528 demand_empty_rest_of_line ();
2529}
2530
8a9036a4
L
2531static void
2532check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2533 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2534{
2535#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2536 static const char *arch;
2537
2538 /* Intel LIOM is only supported on ELF. */
2539 if (!IS_ELF)
2540 return;
2541
2542 if (!arch)
2543 {
2544 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2545 use default_arch. */
2546 arch = cpu_arch_name;
2547 if (!arch)
2548 arch = default_arch;
2549 }
2550
81486035
L
2551 /* If we are targeting Intel MCU, we must enable it. */
2552 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2553 || new_flag.bitfield.cpuiamcu)
2554 return;
2555
3632d14b 2556 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2557 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2558 || new_flag.bitfield.cpul1om)
8a9036a4 2559 return;
76ba9986 2560
7a9068fe
L
2561 /* If we are targeting Intel K1OM, we must enable it. */
2562 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2563 || new_flag.bitfield.cpuk1om)
2564 return;
2565
8a9036a4
L
2566 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2567#endif
2568}
2569
e413e4e9 2570static void
e3bb37b5 2571set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2572{
47926f60 2573 SKIP_WHITESPACE ();
e413e4e9 2574
29b0f896 2575 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2576 {
d02603dc
NC
2577 char *string;
2578 int e = get_symbol_name (&string);
91d6fa6a 2579 unsigned int j;
40fb9820 2580 i386_cpu_flags flags;
e413e4e9 2581
91d6fa6a 2582 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2583 {
91d6fa6a 2584 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2585 {
91d6fa6a 2586 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2587
5c6af06e
JB
2588 if (*string != '.')
2589 {
91d6fa6a 2590 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2591 cpu_sub_arch_name = NULL;
91d6fa6a 2592 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2593 if (flag_code == CODE_64BIT)
2594 {
2595 cpu_arch_flags.bitfield.cpu64 = 1;
2596 cpu_arch_flags.bitfield.cpuno64 = 0;
2597 }
2598 else
2599 {
2600 cpu_arch_flags.bitfield.cpu64 = 0;
2601 cpu_arch_flags.bitfield.cpuno64 = 1;
2602 }
91d6fa6a
NC
2603 cpu_arch_isa = cpu_arch[j].type;
2604 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2605 if (!cpu_arch_tune_set)
2606 {
2607 cpu_arch_tune = cpu_arch_isa;
2608 cpu_arch_tune_flags = cpu_arch_isa_flags;
2609 }
5c6af06e
JB
2610 break;
2611 }
40fb9820 2612
293f5f65
L
2613 flags = cpu_flags_or (cpu_arch_flags,
2614 cpu_arch[j].flags);
81486035 2615
5b64d091 2616 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2617 {
6305a203
L
2618 if (cpu_sub_arch_name)
2619 {
2620 char *name = cpu_sub_arch_name;
2621 cpu_sub_arch_name = concat (name,
91d6fa6a 2622 cpu_arch[j].name,
1bf57e9f 2623 (const char *) NULL);
6305a203
L
2624 free (name);
2625 }
2626 else
91d6fa6a 2627 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2628 cpu_arch_flags = flags;
a586129e 2629 cpu_arch_isa_flags = flags;
5c6af06e 2630 }
0089dace
L
2631 else
2632 cpu_arch_isa_flags
2633 = cpu_flags_or (cpu_arch_isa_flags,
2634 cpu_arch[j].flags);
d02603dc 2635 (void) restore_line_pointer (e);
5c6af06e
JB
2636 demand_empty_rest_of_line ();
2637 return;
e413e4e9
AM
2638 }
2639 }
293f5f65
L
2640
2641 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2642 {
33eaf5de 2643 /* Disable an ISA extension. */
293f5f65
L
2644 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2645 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2646 {
2647 flags = cpu_flags_and_not (cpu_arch_flags,
2648 cpu_noarch[j].flags);
2649 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2650 {
2651 if (cpu_sub_arch_name)
2652 {
2653 char *name = cpu_sub_arch_name;
2654 cpu_sub_arch_name = concat (name, string,
2655 (const char *) NULL);
2656 free (name);
2657 }
2658 else
2659 cpu_sub_arch_name = xstrdup (string);
2660 cpu_arch_flags = flags;
2661 cpu_arch_isa_flags = flags;
2662 }
2663 (void) restore_line_pointer (e);
2664 demand_empty_rest_of_line ();
2665 return;
2666 }
2667
2668 j = ARRAY_SIZE (cpu_arch);
2669 }
2670
91d6fa6a 2671 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2672 as_bad (_("no such architecture: `%s'"), string);
2673
2674 *input_line_pointer = e;
2675 }
2676 else
2677 as_bad (_("missing cpu architecture"));
2678
fddf5b5b
AM
2679 no_cond_jump_promotion = 0;
2680 if (*input_line_pointer == ','
29b0f896 2681 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2682 {
d02603dc
NC
2683 char *string;
2684 char e;
2685
2686 ++input_line_pointer;
2687 e = get_symbol_name (&string);
fddf5b5b
AM
2688
2689 if (strcmp (string, "nojumps") == 0)
2690 no_cond_jump_promotion = 1;
2691 else if (strcmp (string, "jumps") == 0)
2692 ;
2693 else
2694 as_bad (_("no such architecture modifier: `%s'"), string);
2695
d02603dc 2696 (void) restore_line_pointer (e);
fddf5b5b
AM
2697 }
2698
e413e4e9
AM
2699 demand_empty_rest_of_line ();
2700}
2701
8a9036a4
L
2702enum bfd_architecture
2703i386_arch (void)
2704{
3632d14b 2705 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2706 {
2707 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2708 || flag_code != CODE_64BIT)
2709 as_fatal (_("Intel L1OM is 64bit ELF only"));
2710 return bfd_arch_l1om;
2711 }
7a9068fe
L
2712 else if (cpu_arch_isa == PROCESSOR_K1OM)
2713 {
2714 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2715 || flag_code != CODE_64BIT)
2716 as_fatal (_("Intel K1OM is 64bit ELF only"));
2717 return bfd_arch_k1om;
2718 }
81486035
L
2719 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2720 {
2721 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2722 || flag_code == CODE_64BIT)
2723 as_fatal (_("Intel MCU is 32bit ELF only"));
2724 return bfd_arch_iamcu;
2725 }
8a9036a4
L
2726 else
2727 return bfd_arch_i386;
2728}
2729
b9d79e03 2730unsigned long
7016a5d5 2731i386_mach (void)
b9d79e03 2732{
351f65ca 2733 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2734 {
3632d14b 2735 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2736 {
351f65ca
L
2737 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2738 || default_arch[6] != '\0')
8a9036a4
L
2739 as_fatal (_("Intel L1OM is 64bit ELF only"));
2740 return bfd_mach_l1om;
2741 }
7a9068fe
L
2742 else if (cpu_arch_isa == PROCESSOR_K1OM)
2743 {
2744 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2745 || default_arch[6] != '\0')
2746 as_fatal (_("Intel K1OM is 64bit ELF only"));
2747 return bfd_mach_k1om;
2748 }
351f65ca 2749 else if (default_arch[6] == '\0')
8a9036a4 2750 return bfd_mach_x86_64;
351f65ca
L
2751 else
2752 return bfd_mach_x64_32;
8a9036a4 2753 }
5197d474
L
2754 else if (!strcmp (default_arch, "i386")
2755 || !strcmp (default_arch, "iamcu"))
81486035
L
2756 {
2757 if (cpu_arch_isa == PROCESSOR_IAMCU)
2758 {
2759 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2760 as_fatal (_("Intel MCU is 32bit ELF only"));
2761 return bfd_mach_i386_iamcu;
2762 }
2763 else
2764 return bfd_mach_i386_i386;
2765 }
b9d79e03 2766 else
2b5d6a91 2767 as_fatal (_("unknown architecture"));
b9d79e03 2768}
b9d79e03 2769\f
252b5132 2770void
7016a5d5 2771md_begin (void)
252b5132
RH
2772{
2773 const char *hash_err;
2774
86fa6981
L
2775 /* Support pseudo prefixes like {disp32}. */
2776 lex_type ['{'] = LEX_BEGIN_NAME;
2777
47926f60 2778 /* Initialize op_hash hash table. */
252b5132
RH
2779 op_hash = hash_new ();
2780
2781 {
d3ce72d0 2782 const insn_template *optab;
29b0f896 2783 templates *core_optab;
252b5132 2784
47926f60
KH
2785 /* Setup for loop. */
2786 optab = i386_optab;
add39d23 2787 core_optab = XNEW (templates);
252b5132
RH
2788 core_optab->start = optab;
2789
2790 while (1)
2791 {
2792 ++optab;
2793 if (optab->name == NULL
2794 || strcmp (optab->name, (optab - 1)->name) != 0)
2795 {
2796 /* different name --> ship out current template list;
47926f60 2797 add to hash table; & begin anew. */
252b5132
RH
2798 core_optab->end = optab;
2799 hash_err = hash_insert (op_hash,
2800 (optab - 1)->name,
5a49b8ac 2801 (void *) core_optab);
252b5132
RH
2802 if (hash_err)
2803 {
b37df7c4 2804 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2805 (optab - 1)->name,
2806 hash_err);
2807 }
2808 if (optab->name == NULL)
2809 break;
add39d23 2810 core_optab = XNEW (templates);
252b5132
RH
2811 core_optab->start = optab;
2812 }
2813 }
2814 }
2815
47926f60 2816 /* Initialize reg_hash hash table. */
252b5132
RH
2817 reg_hash = hash_new ();
2818 {
29b0f896 2819 const reg_entry *regtab;
c3fe08fa 2820 unsigned int regtab_size = i386_regtab_size;
252b5132 2821
c3fe08fa 2822 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2823 {
5a49b8ac 2824 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2825 if (hash_err)
b37df7c4 2826 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2827 regtab->reg_name,
2828 hash_err);
252b5132
RH
2829 }
2830 }
2831
47926f60 2832 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2833 {
29b0f896
AM
2834 int c;
2835 char *p;
252b5132
RH
2836
2837 for (c = 0; c < 256; c++)
2838 {
3882b010 2839 if (ISDIGIT (c))
252b5132
RH
2840 {
2841 digit_chars[c] = c;
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
3882b010 2846 else if (ISLOWER (c))
252b5132
RH
2847 {
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
3882b010 2852 else if (ISUPPER (c))
252b5132 2853 {
3882b010 2854 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2855 register_chars[c] = mnemonic_chars[c];
2856 operand_chars[c] = c;
2857 }
43234a1e 2858 else if (c == '{' || c == '}')
86fa6981
L
2859 {
2860 mnemonic_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
252b5132 2863
3882b010 2864 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2865 identifier_chars[c] = c;
2866 else if (c >= 128)
2867 {
2868 identifier_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871 }
2872
2873#ifdef LEX_AT
2874 identifier_chars['@'] = '@';
32137342
NC
2875#endif
2876#ifdef LEX_QM
2877 identifier_chars['?'] = '?';
2878 operand_chars['?'] = '?';
252b5132 2879#endif
252b5132 2880 digit_chars['-'] = '-';
c0f3af97 2881 mnemonic_chars['_'] = '_';
791fe849 2882 mnemonic_chars['-'] = '-';
0003779b 2883 mnemonic_chars['.'] = '.';
252b5132
RH
2884 identifier_chars['_'] = '_';
2885 identifier_chars['.'] = '.';
2886
2887 for (p = operand_special_chars; *p != '\0'; p++)
2888 operand_chars[(unsigned char) *p] = *p;
2889 }
2890
a4447b93
RH
2891 if (flag_code == CODE_64BIT)
2892 {
ca19b261
KT
2893#if defined (OBJ_COFF) && defined (TE_PE)
2894 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2895 ? 32 : 16);
2896#else
a4447b93 2897 x86_dwarf2_return_column = 16;
ca19b261 2898#endif
61ff971f 2899 x86_cie_data_alignment = -8;
a4447b93
RH
2900 }
2901 else
2902 {
2903 x86_dwarf2_return_column = 8;
2904 x86_cie_data_alignment = -4;
2905 }
252b5132
RH
2906}
2907
2908void
e3bb37b5 2909i386_print_statistics (FILE *file)
252b5132
RH
2910{
2911 hash_print_statistics (file, "i386 opcode", op_hash);
2912 hash_print_statistics (file, "i386 register", reg_hash);
2913}
2914\f
252b5132
RH
2915#ifdef DEBUG386
2916
ce8a8b2f 2917/* Debugging routines for md_assemble. */
d3ce72d0 2918static void pte (insn_template *);
40fb9820 2919static void pt (i386_operand_type);
e3bb37b5
L
2920static void pe (expressionS *);
2921static void ps (symbolS *);
252b5132
RH
2922
2923static void
e3bb37b5 2924pi (char *line, i386_insn *x)
252b5132 2925{
09137c09 2926 unsigned int j;
252b5132
RH
2927
2928 fprintf (stdout, "%s: template ", line);
2929 pte (&x->tm);
09f131f2
JH
2930 fprintf (stdout, " address: base %s index %s scale %x\n",
2931 x->base_reg ? x->base_reg->reg_name : "none",
2932 x->index_reg ? x->index_reg->reg_name : "none",
2933 x->log2_scale_factor);
2934 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2935 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2936 fprintf (stdout, " sib: base %x index %x scale %x\n",
2937 x->sib.base, x->sib.index, x->sib.scale);
2938 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2939 (x->rex & REX_W) != 0,
2940 (x->rex & REX_R) != 0,
2941 (x->rex & REX_X) != 0,
2942 (x->rex & REX_B) != 0);
09137c09 2943 for (j = 0; j < x->operands; j++)
252b5132 2944 {
09137c09
SP
2945 fprintf (stdout, " #%d: ", j + 1);
2946 pt (x->types[j]);
252b5132 2947 fprintf (stdout, "\n");
dc821c5f 2948 if (x->types[j].bitfield.reg
09137c09 2949 || x->types[j].bitfield.regmmx
1b54b8d7 2950 || x->types[j].bitfield.regsimd
09137c09
SP
2951 || x->types[j].bitfield.sreg2
2952 || x->types[j].bitfield.sreg3
2953 || x->types[j].bitfield.control
2954 || x->types[j].bitfield.debug
2955 || x->types[j].bitfield.test)
2956 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2957 if (operand_type_check (x->types[j], imm))
2958 pe (x->op[j].imms);
2959 if (operand_type_check (x->types[j], disp))
2960 pe (x->op[j].disps);
252b5132
RH
2961 }
2962}
2963
2964static void
d3ce72d0 2965pte (insn_template *t)
252b5132 2966{
09137c09 2967 unsigned int j;
252b5132 2968 fprintf (stdout, " %d operands ", t->operands);
47926f60 2969 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2970 if (t->extension_opcode != None)
2971 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2972 if (t->opcode_modifier.d)
252b5132 2973 fprintf (stdout, "D");
40fb9820 2974 if (t->opcode_modifier.w)
252b5132
RH
2975 fprintf (stdout, "W");
2976 fprintf (stdout, "\n");
09137c09 2977 for (j = 0; j < t->operands; j++)
252b5132 2978 {
09137c09
SP
2979 fprintf (stdout, " #%d type ", j + 1);
2980 pt (t->operand_types[j]);
252b5132
RH
2981 fprintf (stdout, "\n");
2982 }
2983}
2984
2985static void
e3bb37b5 2986pe (expressionS *e)
252b5132 2987{
24eab124 2988 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2989 fprintf (stdout, " add_number %ld (%lx)\n",
2990 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2991 if (e->X_add_symbol)
2992 {
2993 fprintf (stdout, " add_symbol ");
2994 ps (e->X_add_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997 if (e->X_op_symbol)
2998 {
2999 fprintf (stdout, " op_symbol ");
3000 ps (e->X_op_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003}
3004
3005static void
e3bb37b5 3006ps (symbolS *s)
252b5132
RH
3007{
3008 fprintf (stdout, "%s type %s%s",
3009 S_GET_NAME (s),
3010 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3011 segment_name (S_GET_SEGMENT (s)));
3012}
3013
7b81dfbb 3014static struct type_name
252b5132 3015 {
40fb9820
L
3016 i386_operand_type mask;
3017 const char *name;
252b5132 3018 }
7b81dfbb 3019const type_names[] =
252b5132 3020{
40fb9820
L
3021 { OPERAND_TYPE_REG8, "r8" },
3022 { OPERAND_TYPE_REG16, "r16" },
3023 { OPERAND_TYPE_REG32, "r32" },
3024 { OPERAND_TYPE_REG64, "r64" },
3025 { OPERAND_TYPE_IMM8, "i8" },
3026 { OPERAND_TYPE_IMM8, "i8s" },
3027 { OPERAND_TYPE_IMM16, "i16" },
3028 { OPERAND_TYPE_IMM32, "i32" },
3029 { OPERAND_TYPE_IMM32S, "i32s" },
3030 { OPERAND_TYPE_IMM64, "i64" },
3031 { OPERAND_TYPE_IMM1, "i1" },
3032 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3033 { OPERAND_TYPE_DISP8, "d8" },
3034 { OPERAND_TYPE_DISP16, "d16" },
3035 { OPERAND_TYPE_DISP32, "d32" },
3036 { OPERAND_TYPE_DISP32S, "d32s" },
3037 { OPERAND_TYPE_DISP64, "d64" },
3038 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3039 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3040 { OPERAND_TYPE_CONTROL, "control reg" },
3041 { OPERAND_TYPE_TEST, "test reg" },
3042 { OPERAND_TYPE_DEBUG, "debug reg" },
3043 { OPERAND_TYPE_FLOATREG, "FReg" },
3044 { OPERAND_TYPE_FLOATACC, "FAcc" },
3045 { OPERAND_TYPE_SREG2, "SReg2" },
3046 { OPERAND_TYPE_SREG3, "SReg3" },
3047 { OPERAND_TYPE_ACC, "Acc" },
3048 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3049 { OPERAND_TYPE_REGMMX, "rMMX" },
3050 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3051 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3052 { OPERAND_TYPE_REGZMM, "rZMM" },
3053 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3054 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3055};
3056
3057static void
40fb9820 3058pt (i386_operand_type t)
252b5132 3059{
40fb9820 3060 unsigned int j;
c6fb90c8 3061 i386_operand_type a;
252b5132 3062
40fb9820 3063 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3064 {
3065 a = operand_type_and (t, type_names[j].mask);
0349dc08 3066 if (!operand_type_all_zero (&a))
c6fb90c8
L
3067 fprintf (stdout, "%s, ", type_names[j].name);
3068 }
252b5132
RH
3069 fflush (stdout);
3070}
3071
3072#endif /* DEBUG386 */
3073\f
252b5132 3074static bfd_reloc_code_real_type
3956db08 3075reloc (unsigned int size,
64e74474
AM
3076 int pcrel,
3077 int sign,
3078 bfd_reloc_code_real_type other)
252b5132 3079{
47926f60 3080 if (other != NO_RELOC)
3956db08 3081 {
91d6fa6a 3082 reloc_howto_type *rel;
3956db08
JB
3083
3084 if (size == 8)
3085 switch (other)
3086 {
64e74474
AM
3087 case BFD_RELOC_X86_64_GOT32:
3088 return BFD_RELOC_X86_64_GOT64;
3089 break;
553d1284
L
3090 case BFD_RELOC_X86_64_GOTPLT64:
3091 return BFD_RELOC_X86_64_GOTPLT64;
3092 break;
64e74474
AM
3093 case BFD_RELOC_X86_64_PLTOFF64:
3094 return BFD_RELOC_X86_64_PLTOFF64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPC32:
3097 other = BFD_RELOC_X86_64_GOTPC64;
3098 break;
3099 case BFD_RELOC_X86_64_GOTPCREL:
3100 other = BFD_RELOC_X86_64_GOTPCREL64;
3101 break;
3102 case BFD_RELOC_X86_64_TPOFF32:
3103 other = BFD_RELOC_X86_64_TPOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_DTPOFF32:
3106 other = BFD_RELOC_X86_64_DTPOFF64;
3107 break;
3108 default:
3109 break;
3956db08 3110 }
e05278af 3111
8ce3d284 3112#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3113 if (other == BFD_RELOC_SIZE32)
3114 {
3115 if (size == 8)
1ab668bf 3116 other = BFD_RELOC_SIZE64;
8fd4256d 3117 if (pcrel)
1ab668bf
AM
3118 {
3119 as_bad (_("there are no pc-relative size relocations"));
3120 return NO_RELOC;
3121 }
8fd4256d 3122 }
8ce3d284 3123#endif
8fd4256d 3124
e05278af 3125 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3126 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3127 sign = -1;
3128
91d6fa6a
NC
3129 rel = bfd_reloc_type_lookup (stdoutput, other);
3130 if (!rel)
3956db08 3131 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3132 else if (size != bfd_get_reloc_size (rel))
3956db08 3133 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3134 bfd_get_reloc_size (rel),
3956db08 3135 size);
91d6fa6a 3136 else if (pcrel && !rel->pc_relative)
3956db08 3137 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3138 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3139 && !sign)
91d6fa6a 3140 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3141 && sign > 0))
3956db08
JB
3142 as_bad (_("relocated field and relocation type differ in signedness"));
3143 else
3144 return other;
3145 return NO_RELOC;
3146 }
252b5132
RH
3147
3148 if (pcrel)
3149 {
3e73aa7c 3150 if (!sign)
3956db08 3151 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3152 switch (size)
3153 {
3154 case 1: return BFD_RELOC_8_PCREL;
3155 case 2: return BFD_RELOC_16_PCREL;
d258b828 3156 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3157 case 8: return BFD_RELOC_64_PCREL;
252b5132 3158 }
3956db08 3159 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3160 }
3161 else
3162 {
3956db08 3163 if (sign > 0)
e5cb08ac 3164 switch (size)
3e73aa7c
JH
3165 {
3166 case 4: return BFD_RELOC_X86_64_32S;
3167 }
3168 else
3169 switch (size)
3170 {
3171 case 1: return BFD_RELOC_8;
3172 case 2: return BFD_RELOC_16;
3173 case 4: return BFD_RELOC_32;
3174 case 8: return BFD_RELOC_64;
3175 }
3956db08
JB
3176 as_bad (_("cannot do %s %u byte relocation"),
3177 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3178 }
3179
0cc9e1d3 3180 return NO_RELOC;
252b5132
RH
3181}
3182
47926f60
KH
3183/* Here we decide which fixups can be adjusted to make them relative to
3184 the beginning of the section instead of the symbol. Basically we need
3185 to make sure that the dynamic relocations are done correctly, so in
3186 some cases we force the original symbol to be used. */
3187
252b5132 3188int
e3bb37b5 3189tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3190{
6d249963 3191#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3192 if (!IS_ELF)
31312f95
AM
3193 return 1;
3194
a161fe53
AM
3195 /* Don't adjust pc-relative references to merge sections in 64-bit
3196 mode. */
3197 if (use_rela_relocations
3198 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3199 && fixP->fx_pcrel)
252b5132 3200 return 0;
31312f95 3201
8d01d9a9
AJ
3202 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3203 and changed later by validate_fix. */
3204 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3205 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3206 return 0;
3207
8fd4256d
L
3208 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3209 for size relocations. */
3210 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3211 || fixP->fx_r_type == BFD_RELOC_SIZE64
3212 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3213 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3214 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3215 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3228 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3234 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3241 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3242 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3243 return 0;
31312f95 3244#endif
252b5132
RH
3245 return 1;
3246}
252b5132 3247
b4cac588 3248static int
e3bb37b5 3249intel_float_operand (const char *mnemonic)
252b5132 3250{
9306ca4a
JB
3251 /* Note that the value returned is meaningful only for opcodes with (memory)
3252 operands, hence the code here is free to improperly handle opcodes that
3253 have no operands (for better performance and smaller code). */
3254
3255 if (mnemonic[0] != 'f')
3256 return 0; /* non-math */
3257
3258 switch (mnemonic[1])
3259 {
3260 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3261 the fs segment override prefix not currently handled because no
3262 call path can make opcodes without operands get here */
3263 case 'i':
3264 return 2 /* integer op */;
3265 case 'l':
3266 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3267 return 3; /* fldcw/fldenv */
3268 break;
3269 case 'n':
3270 if (mnemonic[2] != 'o' /* fnop */)
3271 return 3; /* non-waiting control op */
3272 break;
3273 case 'r':
3274 if (mnemonic[2] == 's')
3275 return 3; /* frstor/frstpm */
3276 break;
3277 case 's':
3278 if (mnemonic[2] == 'a')
3279 return 3; /* fsave */
3280 if (mnemonic[2] == 't')
3281 {
3282 switch (mnemonic[3])
3283 {
3284 case 'c': /* fstcw */
3285 case 'd': /* fstdw */
3286 case 'e': /* fstenv */
3287 case 's': /* fsts[gw] */
3288 return 3;
3289 }
3290 }
3291 break;
3292 case 'x':
3293 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3294 return 0; /* fxsave/fxrstor are not really math ops */
3295 break;
3296 }
252b5132 3297
9306ca4a 3298 return 1;
252b5132
RH
3299}
3300
c0f3af97
L
3301/* Build the VEX prefix. */
3302
3303static void
d3ce72d0 3304build_vex_prefix (const insn_template *t)
c0f3af97
L
3305{
3306 unsigned int register_specifier;
3307 unsigned int implied_prefix;
3308 unsigned int vector_length;
3309
3310 /* Check register specifier. */
3311 if (i.vex.register_specifier)
43234a1e
L
3312 {
3313 register_specifier =
3314 ~register_number (i.vex.register_specifier) & 0xf;
3315 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3316 }
c0f3af97
L
3317 else
3318 register_specifier = 0xf;
3319
33eaf5de 3320 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3321 operand. */
86fa6981
L
3322 if (i.vec_encoding != vex_encoding_vex3
3323 && i.dir_encoding == dir_encoding_default
fa99fab2 3324 && i.operands == i.reg_operands
7f399153 3325 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3326 && i.tm.opcode_modifier.load
fa99fab2
L
3327 && i.rex == REX_B)
3328 {
3329 unsigned int xchg = i.operands - 1;
3330 union i386_op temp_op;
3331 i386_operand_type temp_type;
3332
3333 temp_type = i.types[xchg];
3334 i.types[xchg] = i.types[0];
3335 i.types[0] = temp_type;
3336 temp_op = i.op[xchg];
3337 i.op[xchg] = i.op[0];
3338 i.op[0] = temp_op;
3339
9c2799c2 3340 gas_assert (i.rm.mode == 3);
fa99fab2
L
3341
3342 i.rex = REX_R;
3343 xchg = i.rm.regmem;
3344 i.rm.regmem = i.rm.reg;
3345 i.rm.reg = xchg;
3346
3347 /* Use the next insn. */
3348 i.tm = t[1];
3349 }
3350
539f890d
L
3351 if (i.tm.opcode_modifier.vex == VEXScalar)
3352 vector_length = avxscalar;
10c17abd
JB
3353 else if (i.tm.opcode_modifier.vex == VEX256)
3354 vector_length = 1;
539f890d 3355 else
10c17abd
JB
3356 {
3357 unsigned int op;
3358
3359 vector_length = 0;
3360 for (op = 0; op < t->operands; ++op)
3361 if (t->operand_types[op].bitfield.xmmword
3362 && t->operand_types[op].bitfield.ymmword
3363 && i.types[op].bitfield.ymmword)
3364 {
3365 vector_length = 1;
3366 break;
3367 }
3368 }
c0f3af97
L
3369
3370 switch ((i.tm.base_opcode >> 8) & 0xff)
3371 {
3372 case 0:
3373 implied_prefix = 0;
3374 break;
3375 case DATA_PREFIX_OPCODE:
3376 implied_prefix = 1;
3377 break;
3378 case REPE_PREFIX_OPCODE:
3379 implied_prefix = 2;
3380 break;
3381 case REPNE_PREFIX_OPCODE:
3382 implied_prefix = 3;
3383 break;
3384 default:
3385 abort ();
3386 }
3387
3388 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3389 if (i.vec_encoding != vex_encoding_vex3
3390 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3391 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3392 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3393 {
3394 /* 2-byte VEX prefix. */
3395 unsigned int r;
3396
3397 i.vex.length = 2;
3398 i.vex.bytes[0] = 0xc5;
3399
3400 /* Check the REX.R bit. */
3401 r = (i.rex & REX_R) ? 0 : 1;
3402 i.vex.bytes[1] = (r << 7
3403 | register_specifier << 3
3404 | vector_length << 2
3405 | implied_prefix);
3406 }
3407 else
3408 {
3409 /* 3-byte VEX prefix. */
3410 unsigned int m, w;
3411
f88c9eb0 3412 i.vex.length = 3;
f88c9eb0 3413
7f399153 3414 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3415 {
7f399153
L
3416 case VEX0F:
3417 m = 0x1;
80de6e00 3418 i.vex.bytes[0] = 0xc4;
7f399153
L
3419 break;
3420 case VEX0F38:
3421 m = 0x2;
80de6e00 3422 i.vex.bytes[0] = 0xc4;
7f399153
L
3423 break;
3424 case VEX0F3A:
3425 m = 0x3;
80de6e00 3426 i.vex.bytes[0] = 0xc4;
7f399153
L
3427 break;
3428 case XOP08:
5dd85c99
SP
3429 m = 0x8;
3430 i.vex.bytes[0] = 0x8f;
7f399153
L
3431 break;
3432 case XOP09:
f88c9eb0
SP
3433 m = 0x9;
3434 i.vex.bytes[0] = 0x8f;
7f399153
L
3435 break;
3436 case XOP0A:
f88c9eb0
SP
3437 m = 0xa;
3438 i.vex.bytes[0] = 0x8f;
7f399153
L
3439 break;
3440 default:
3441 abort ();
f88c9eb0 3442 }
c0f3af97 3443
c0f3af97
L
3444 /* The high 3 bits of the second VEX byte are 1's compliment
3445 of RXB bits from REX. */
3446 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3447
3448 /* Check the REX.W bit. */
3449 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3450 if (i.tm.opcode_modifier.vexw == VEXW1)
3451 w = 1;
c0f3af97
L
3452
3453 i.vex.bytes[2] = (w << 7
3454 | register_specifier << 3
3455 | vector_length << 2
3456 | implied_prefix);
3457 }
3458}
3459
e771e7c9
JB
3460static INLINE bfd_boolean
3461is_evex_encoding (const insn_template *t)
3462{
3463 return t->opcode_modifier.evex
3464 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3465 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3466}
3467
43234a1e
L
3468/* Build the EVEX prefix. */
3469
3470static void
3471build_evex_prefix (void)
3472{
3473 unsigned int register_specifier;
3474 unsigned int implied_prefix;
3475 unsigned int m, w;
3476 rex_byte vrex_used = 0;
3477
3478 /* Check register specifier. */
3479 if (i.vex.register_specifier)
3480 {
3481 gas_assert ((i.vrex & REX_X) == 0);
3482
3483 register_specifier = i.vex.register_specifier->reg_num;
3484 if ((i.vex.register_specifier->reg_flags & RegRex))
3485 register_specifier += 8;
3486 /* The upper 16 registers are encoded in the fourth byte of the
3487 EVEX prefix. */
3488 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3489 i.vex.bytes[3] = 0x8;
3490 register_specifier = ~register_specifier & 0xf;
3491 }
3492 else
3493 {
3494 register_specifier = 0xf;
3495
3496 /* Encode upper 16 vector index register in the fourth byte of
3497 the EVEX prefix. */
3498 if (!(i.vrex & REX_X))
3499 i.vex.bytes[3] = 0x8;
3500 else
3501 vrex_used |= REX_X;
3502 }
3503
3504 switch ((i.tm.base_opcode >> 8) & 0xff)
3505 {
3506 case 0:
3507 implied_prefix = 0;
3508 break;
3509 case DATA_PREFIX_OPCODE:
3510 implied_prefix = 1;
3511 break;
3512 case REPE_PREFIX_OPCODE:
3513 implied_prefix = 2;
3514 break;
3515 case REPNE_PREFIX_OPCODE:
3516 implied_prefix = 3;
3517 break;
3518 default:
3519 abort ();
3520 }
3521
3522 /* 4 byte EVEX prefix. */
3523 i.vex.length = 4;
3524 i.vex.bytes[0] = 0x62;
3525
3526 /* mmmm bits. */
3527 switch (i.tm.opcode_modifier.vexopcode)
3528 {
3529 case VEX0F:
3530 m = 1;
3531 break;
3532 case VEX0F38:
3533 m = 2;
3534 break;
3535 case VEX0F3A:
3536 m = 3;
3537 break;
3538 default:
3539 abort ();
3540 break;
3541 }
3542
3543 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3544 bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 /* The fifth bit of the second EVEX byte is 1's compliment of the
3548 REX_R bit in VREX. */
3549 if (!(i.vrex & REX_R))
3550 i.vex.bytes[1] |= 0x10;
3551 else
3552 vrex_used |= REX_R;
3553
3554 if ((i.reg_operands + i.imm_operands) == i.operands)
3555 {
3556 /* When all operands are registers, the REX_X bit in REX is not
3557 used. We reuse it to encode the upper 16 registers, which is
3558 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3559 as 1's compliment. */
3560 if ((i.vrex & REX_B))
3561 {
3562 vrex_used |= REX_B;
3563 i.vex.bytes[1] &= ~0x40;
3564 }
3565 }
3566
3567 /* EVEX instructions shouldn't need the REX prefix. */
3568 i.vrex &= ~vrex_used;
3569 gas_assert (i.vrex == 0);
3570
3571 /* Check the REX.W bit. */
3572 w = (i.rex & REX_W) ? 1 : 0;
3573 if (i.tm.opcode_modifier.vexw)
3574 {
3575 if (i.tm.opcode_modifier.vexw == VEXW1)
3576 w = 1;
3577 }
3578 /* If w is not set it means we are dealing with WIG instruction. */
3579 else if (!w)
3580 {
3581 if (evexwig == evexw1)
3582 w = 1;
3583 }
3584
3585 /* Encode the U bit. */
3586 implied_prefix |= 0x4;
3587
3588 /* The third byte of the EVEX prefix. */
3589 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3590
3591 /* The fourth byte of the EVEX prefix. */
3592 /* The zeroing-masking bit. */
3593 if (i.mask && i.mask->zeroing)
3594 i.vex.bytes[3] |= 0x80;
3595
3596 /* Don't always set the broadcast bit if there is no RC. */
3597 if (!i.rounding)
3598 {
3599 /* Encode the vector length. */
3600 unsigned int vec_length;
3601
e771e7c9
JB
3602 if (!i.tm.opcode_modifier.evex
3603 || i.tm.opcode_modifier.evex == EVEXDYN)
3604 {
3605 unsigned int op;
3606
3607 vec_length = 0;
3608 for (op = 0; op < i.tm.operands; ++op)
3609 if (i.tm.operand_types[op].bitfield.xmmword
3610 + i.tm.operand_types[op].bitfield.ymmword
3611 + i.tm.operand_types[op].bitfield.zmmword > 1)
3612 {
3613 if (i.types[op].bitfield.zmmword)
3614 i.tm.opcode_modifier.evex = EVEX512;
3615 else if (i.types[op].bitfield.ymmword)
3616 i.tm.opcode_modifier.evex = EVEX256;
3617 else if (i.types[op].bitfield.xmmword)
3618 i.tm.opcode_modifier.evex = EVEX128;
3619 else
3620 continue;
3621 break;
3622 }
3623 }
3624
43234a1e
L
3625 switch (i.tm.opcode_modifier.evex)
3626 {
3627 case EVEXLIG: /* LL' is ignored */
3628 vec_length = evexlig << 5;
3629 break;
3630 case EVEX128:
3631 vec_length = 0 << 5;
3632 break;
3633 case EVEX256:
3634 vec_length = 1 << 5;
3635 break;
3636 case EVEX512:
3637 vec_length = 2 << 5;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643 i.vex.bytes[3] |= vec_length;
3644 /* Encode the broadcast bit. */
3645 if (i.broadcast)
3646 i.vex.bytes[3] |= 0x10;
3647 }
3648 else
3649 {
3650 if (i.rounding->type != saeonly)
3651 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3652 else
d3d3c6db 3653 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3654 }
3655
3656 if (i.mask && i.mask->mask)
3657 i.vex.bytes[3] |= i.mask->mask->reg_num;
3658}
3659
65da13b5
L
3660static void
3661process_immext (void)
3662{
3663 expressionS *exp;
3664
4c692bc7
JB
3665 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3666 && i.operands > 0)
65da13b5 3667 {
4c692bc7
JB
3668 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3669 with an opcode suffix which is coded in the same place as an
3670 8-bit immediate field would be.
3671 Here we check those operands and remove them afterwards. */
65da13b5
L
3672 unsigned int x;
3673
3674 for (x = 0; x < i.operands; x++)
4c692bc7 3675 if (register_number (i.op[x].regs) != x)
65da13b5 3676 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3677 register_prefix, i.op[x].regs->reg_name, x + 1,
3678 i.tm.name);
3679
3680 i.operands = 0;
65da13b5
L
3681 }
3682
9916071f
AP
3683 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3684 {
3685 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3686 suffix which is coded in the same place as an 8-bit immediate
3687 field would be.
3688 Here we check those operands and remove them afterwards. */
3689 unsigned int x;
3690
3691 if (i.operands != 3)
3692 abort();
3693
3694 for (x = 0; x < 2; x++)
3695 if (register_number (i.op[x].regs) != x)
3696 goto bad_register_operand;
3697
3698 /* Check for third operand for mwaitx/monitorx insn. */
3699 if (register_number (i.op[x].regs)
3700 != (x + (i.tm.extension_opcode == 0xfb)))
3701 {
3702bad_register_operand:
3703 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3704 register_prefix, i.op[x].regs->reg_name, x+1,
3705 i.tm.name);
3706 }
3707
3708 i.operands = 0;
3709 }
3710
c0f3af97 3711 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3712 which is coded in the same place as an 8-bit immediate field
3713 would be. Here we fake an 8-bit immediate operand from the
3714 opcode suffix stored in tm.extension_opcode.
3715
c1e679ec 3716 AVX instructions also use this encoding, for some of
c0f3af97 3717 3 argument instructions. */
65da13b5 3718
43234a1e 3719 gas_assert (i.imm_operands <= 1
7ab9ffdd 3720 && (i.operands <= 2
43234a1e 3721 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3722 || i.tm.opcode_modifier.vexopcode
3723 || is_evex_encoding (&i.tm))
7ab9ffdd 3724 && i.operands <= 4)));
65da13b5
L
3725
3726 exp = &im_expressions[i.imm_operands++];
3727 i.op[i.operands].imms = exp;
3728 i.types[i.operands] = imm8;
3729 i.operands++;
3730 exp->X_op = O_constant;
3731 exp->X_add_number = i.tm.extension_opcode;
3732 i.tm.extension_opcode = None;
3733}
3734
42164a71
L
3735
3736static int
3737check_hle (void)
3738{
3739 switch (i.tm.opcode_modifier.hleprefixok)
3740 {
3741 default:
3742 abort ();
82c2def5 3743 case HLEPrefixNone:
165de32a
L
3744 as_bad (_("invalid instruction `%s' after `%s'"),
3745 i.tm.name, i.hle_prefix);
42164a71 3746 return 0;
82c2def5 3747 case HLEPrefixLock:
42164a71
L
3748 if (i.prefix[LOCK_PREFIX])
3749 return 1;
165de32a 3750 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3751 return 0;
82c2def5 3752 case HLEPrefixAny:
42164a71 3753 return 1;
82c2def5 3754 case HLEPrefixRelease:
42164a71
L
3755 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3756 {
3757 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3758 i.tm.name);
3759 return 0;
3760 }
3761 if (i.mem_operands == 0
3762 || !operand_type_check (i.types[i.operands - 1], anymem))
3763 {
3764 as_bad (_("memory destination needed for instruction `%s'"
3765 " after `xrelease'"), i.tm.name);
3766 return 0;
3767 }
3768 return 1;
3769 }
3770}
3771
b6f8c7c4
L
3772/* Try the shortest encoding by shortening operand size. */
3773
3774static void
3775optimize_encoding (void)
3776{
3777 int j;
3778
3779 if (optimize_for_space
3780 && i.reg_operands == 1
3781 && i.imm_operands == 1
3782 && !i.types[1].bitfield.byte
3783 && i.op[0].imms->X_op == O_constant
3784 && fits_in_imm7 (i.op[0].imms->X_add_number)
3785 && ((i.tm.base_opcode == 0xa8
3786 && i.tm.extension_opcode == None)
3787 || (i.tm.base_opcode == 0xf6
3788 && i.tm.extension_opcode == 0x0)))
3789 {
3790 /* Optimize: -Os:
3791 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3792 */
3793 unsigned int base_regnum = i.op[1].regs->reg_num;
3794 if (flag_code == CODE_64BIT || base_regnum < 4)
3795 {
3796 i.types[1].bitfield.byte = 1;
3797 /* Ignore the suffix. */
3798 i.suffix = 0;
3799 if (base_regnum >= 4
3800 && !(i.op[1].regs->reg_flags & RegRex))
3801 {
3802 /* Handle SP, BP, SI and DI registers. */
3803 if (i.types[1].bitfield.word)
3804 j = 16;
3805 else if (i.types[1].bitfield.dword)
3806 j = 32;
3807 else
3808 j = 48;
3809 i.op[1].regs -= j;
3810 }
3811 }
3812 }
3813 else if (flag_code == CODE_64BIT
d3d50934
L
3814 && ((i.types[1].bitfield.qword
3815 && i.reg_operands == 1
b6f8c7c4
L
3816 && i.imm_operands == 1
3817 && i.op[0].imms->X_op == O_constant
3818 && ((i.tm.base_opcode == 0xb0
3819 && i.tm.extension_opcode == None
3820 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3821 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3822 && (((i.tm.base_opcode == 0x24
3823 || i.tm.base_opcode == 0xa8)
3824 && i.tm.extension_opcode == None)
3825 || (i.tm.base_opcode == 0x80
3826 && i.tm.extension_opcode == 0x4)
3827 || ((i.tm.base_opcode == 0xf6
3828 || i.tm.base_opcode == 0xc6)
3829 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3830 || (i.types[0].bitfield.qword
3831 && ((i.reg_operands == 2
3832 && i.op[0].regs == i.op[1].regs
3833 && ((i.tm.base_opcode == 0x30
3834 || i.tm.base_opcode == 0x28)
3835 && i.tm.extension_opcode == None))
3836 || (i.reg_operands == 1
3837 && i.operands == 1
3838 && i.tm.base_opcode == 0x30
3839 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3840 {
3841 /* Optimize: -O:
3842 andq $imm31, %r64 -> andl $imm31, %r32
3843 testq $imm31, %r64 -> testl $imm31, %r32
3844 xorq %r64, %r64 -> xorl %r32, %r32
3845 subq %r64, %r64 -> subl %r32, %r32
3846 movq $imm31, %r64 -> movl $imm31, %r32
3847 movq $imm32, %r64 -> movl $imm32, %r32
3848 */
3849 i.tm.opcode_modifier.norex64 = 1;
3850 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3851 {
3852 /* Handle
3853 movq $imm31, %r64 -> movl $imm31, %r32
3854 movq $imm32, %r64 -> movl $imm32, %r32
3855 */
3856 i.tm.operand_types[0].bitfield.imm32 = 1;
3857 i.tm.operand_types[0].bitfield.imm32s = 0;
3858 i.tm.operand_types[0].bitfield.imm64 = 0;
3859 i.types[0].bitfield.imm32 = 1;
3860 i.types[0].bitfield.imm32s = 0;
3861 i.types[0].bitfield.imm64 = 0;
3862 i.types[1].bitfield.dword = 1;
3863 i.types[1].bitfield.qword = 0;
3864 if (i.tm.base_opcode == 0xc6)
3865 {
3866 /* Handle
3867 movq $imm31, %r64 -> movl $imm31, %r32
3868 */
3869 i.tm.base_opcode = 0xb0;
3870 i.tm.extension_opcode = None;
3871 i.tm.opcode_modifier.shortform = 1;
3872 i.tm.opcode_modifier.modrm = 0;
3873 }
3874 }
3875 }
3876 else if (optimize > 1
3877 && i.reg_operands == 3
3878 && i.op[0].regs == i.op[1].regs
3879 && !i.types[2].bitfield.xmmword
3880 && (i.tm.opcode_modifier.vex
3881 || (!i.mask
3882 && !i.rounding
e771e7c9 3883 && is_evex_encoding (&i.tm)
80c34c38
L
3884 && (i.vec_encoding != vex_encoding_evex
3885 || i.tm.cpu_flags.bitfield.cpuavx512vl
0089dace 3886 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3887 && ((i.tm.base_opcode == 0x55
3888 || i.tm.base_opcode == 0x6655
3889 || i.tm.base_opcode == 0x66df
3890 || i.tm.base_opcode == 0x57
3891 || i.tm.base_opcode == 0x6657
8305403a
L
3892 || i.tm.base_opcode == 0x66ef
3893 || i.tm.base_opcode == 0x66f8
3894 || i.tm.base_opcode == 0x66f9
3895 || i.tm.base_opcode == 0x66fa
3896 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3897 && i.tm.extension_opcode == None))
3898 {
3899 /* Optimize: -O2:
8305403a
L
3900 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3901 vpsubq and vpsubw:
b6f8c7c4
L
3902 EVEX VOP %zmmM, %zmmM, %zmmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 EVEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3907 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandn and vpxor:
3911 VEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN
3913 VOP, one of vpandnd and vpandnq:
3914 EVEX VOP %zmmM, %zmmM, %zmmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 EVEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3919 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3920 VOP, one of vpxord and vpxorq:
3921 EVEX VOP %zmmM, %zmmM, %zmmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 EVEX VOP %ymmM, %ymmM, %ymmN
3925 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3926 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3927 */
e771e7c9 3928 if (is_evex_encoding (&i.tm))
b6f8c7c4 3929 {
0089dace 3930 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3931 i.tm.opcode_modifier.evex = EVEX128;
3932 else
3933 {
3934 i.tm.opcode_modifier.vex = VEX128;
3935 i.tm.opcode_modifier.vexw = VEXW0;
3936 i.tm.opcode_modifier.evex = 0;
3937 }
3938 }
3939 else
3940 i.tm.opcode_modifier.vex = VEX128;
3941
3942 if (i.tm.opcode_modifier.vex)
3943 for (j = 0; j < 3; j++)
3944 {
3945 i.types[j].bitfield.xmmword = 1;
3946 i.types[j].bitfield.ymmword = 0;
3947 }
3948 }
3949}
3950
252b5132
RH
3951/* This is the guts of the machine-dependent assembler. LINE points to a
3952 machine dependent instruction. This function is supposed to emit
3953 the frags/bytes it assembles to. */
3954
3955void
65da13b5 3956md_assemble (char *line)
252b5132 3957{
40fb9820 3958 unsigned int j;
83b16ac6 3959 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3960 const insn_template *t;
252b5132 3961
47926f60 3962 /* Initialize globals. */
252b5132
RH
3963 memset (&i, '\0', sizeof (i));
3964 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3965 i.reloc[j] = NO_RELOC;
252b5132
RH
3966 memset (disp_expressions, '\0', sizeof (disp_expressions));
3967 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3968 save_stack_p = save_stack;
252b5132
RH
3969
3970 /* First parse an instruction mnemonic & call i386_operand for the operands.
3971 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3972 start of a (possibly prefixed) mnemonic. */
252b5132 3973
29b0f896
AM
3974 line = parse_insn (line, mnemonic);
3975 if (line == NULL)
3976 return;
83b16ac6 3977 mnem_suffix = i.suffix;
252b5132 3978
29b0f896 3979 line = parse_operands (line, mnemonic);
ee86248c 3980 this_operand = -1;
8325cc63
JB
3981 xfree (i.memop1_string);
3982 i.memop1_string = NULL;
29b0f896
AM
3983 if (line == NULL)
3984 return;
252b5132 3985
29b0f896
AM
3986 /* Now we've parsed the mnemonic into a set of templates, and have the
3987 operands at hand. */
3988
3989 /* All intel opcodes have reversed operands except for "bound" and
3990 "enter". We also don't reverse intersegment "jmp" and "call"
3991 instructions with 2 immediate operands so that the immediate segment
050dfa73 3992 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3993 if (intel_syntax
3994 && i.operands > 1
29b0f896 3995 && (strcmp (mnemonic, "bound") != 0)
30123838 3996 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3997 && !(operand_type_check (i.types[0], imm)
3998 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3999 swap_operands ();
4000
ec56d5c0
JB
4001 /* The order of the immediates should be reversed
4002 for 2 immediates extrq and insertq instructions */
4003 if (i.imm_operands == 2
4004 && (strcmp (mnemonic, "extrq") == 0
4005 || strcmp (mnemonic, "insertq") == 0))
4006 swap_2_operands (0, 1);
4007
29b0f896
AM
4008 if (i.imm_operands)
4009 optimize_imm ();
4010
b300c311
L
4011 /* Don't optimize displacement for movabs since it only takes 64bit
4012 displacement. */
4013 if (i.disp_operands
a501d77e 4014 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4015 && (flag_code != CODE_64BIT
4016 || strcmp (mnemonic, "movabs") != 0))
4017 optimize_disp ();
29b0f896
AM
4018
4019 /* Next, we find a template that matches the given insn,
4020 making sure the overlap of the given operands types is consistent
4021 with the template operand types. */
252b5132 4022
83b16ac6 4023 if (!(t = match_template (mnem_suffix)))
29b0f896 4024 return;
252b5132 4025
7bab8ab5 4026 if (sse_check != check_none
81f8a913 4027 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4028 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4029 && (i.tm.cpu_flags.bitfield.cpusse
4030 || i.tm.cpu_flags.bitfield.cpusse2
4031 || i.tm.cpu_flags.bitfield.cpusse3
4032 || i.tm.cpu_flags.bitfield.cpussse3
4033 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4034 || i.tm.cpu_flags.bitfield.cpusse4_2
4035 || i.tm.cpu_flags.bitfield.cpupclmul
4036 || i.tm.cpu_flags.bitfield.cpuaes
4037 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4038 {
7bab8ab5 4039 (sse_check == check_warning
daf50ae7
L
4040 ? as_warn
4041 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4042 }
4043
321fd21e
L
4044 /* Zap movzx and movsx suffix. The suffix has been set from
4045 "word ptr" or "byte ptr" on the source operand in Intel syntax
4046 or extracted from mnemonic in AT&T syntax. But we'll use
4047 the destination register to choose the suffix for encoding. */
4048 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4049 {
321fd21e
L
4050 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4051 there is no suffix, the default will be byte extension. */
4052 if (i.reg_operands != 2
4053 && !i.suffix
7ab9ffdd 4054 && intel_syntax)
321fd21e
L
4055 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4056
4057 i.suffix = 0;
cd61ebfe 4058 }
24eab124 4059
40fb9820 4060 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4061 if (!add_prefix (FWAIT_OPCODE))
4062 return;
252b5132 4063
d5de92cf
L
4064 /* Check if REP prefix is OK. */
4065 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4066 {
4067 as_bad (_("invalid instruction `%s' after `%s'"),
4068 i.tm.name, i.rep_prefix);
4069 return;
4070 }
4071
c1ba0266
L
4072 /* Check for lock without a lockable instruction. Destination operand
4073 must be memory unless it is xchg (0x86). */
c32fa91d
L
4074 if (i.prefix[LOCK_PREFIX]
4075 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4076 || i.mem_operands == 0
4077 || (i.tm.base_opcode != 0x86
4078 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4079 {
4080 as_bad (_("expecting lockable instruction after `lock'"));
4081 return;
4082 }
4083
42164a71 4084 /* Check if HLE prefix is OK. */
165de32a 4085 if (i.hle_prefix && !check_hle ())
42164a71
L
4086 return;
4087
7e8b059b
L
4088 /* Check BND prefix. */
4089 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4090 as_bad (_("expecting valid branch instruction after `bnd'"));
4091
04ef582a 4092 /* Check NOTRACK prefix. */
9fef80d6
L
4093 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4094 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4095
327e8c42
JB
4096 if (i.tm.cpu_flags.bitfield.cpumpx)
4097 {
4098 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4099 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4100 else if (flag_code != CODE_16BIT
4101 ? i.prefix[ADDR_PREFIX]
4102 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4103 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4104 }
7e8b059b
L
4105
4106 /* Insert BND prefix. */
4107 if (add_bnd_prefix
4108 && i.tm.opcode_modifier.bndprefixok
4109 && !i.prefix[BND_PREFIX])
4110 add_prefix (BND_PREFIX_OPCODE);
4111
29b0f896 4112 /* Check string instruction segment overrides. */
40fb9820 4113 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4114 {
4115 if (!check_string ())
5dd0794d 4116 return;
fc0763e6 4117 i.disp_operands = 0;
29b0f896 4118 }
5dd0794d 4119
b6f8c7c4
L
4120 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4121 optimize_encoding ();
4122
29b0f896
AM
4123 if (!process_suffix ())
4124 return;
e413e4e9 4125
bc0844ae
L
4126 /* Update operand types. */
4127 for (j = 0; j < i.operands; j++)
4128 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4129
29b0f896
AM
4130 /* Make still unresolved immediate matches conform to size of immediate
4131 given in i.suffix. */
4132 if (!finalize_imm ())
4133 return;
252b5132 4134
40fb9820 4135 if (i.types[0].bitfield.imm1)
29b0f896 4136 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4137
9afe6eb8
L
4138 /* We only need to check those implicit registers for instructions
4139 with 3 operands or less. */
4140 if (i.operands <= 3)
4141 for (j = 0; j < i.operands; j++)
4142 if (i.types[j].bitfield.inoutportreg
4143 || i.types[j].bitfield.shiftcount
1b54b8d7 4144 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4145 i.reg_operands--;
40fb9820 4146
c0f3af97
L
4147 /* ImmExt should be processed after SSE2AVX. */
4148 if (!i.tm.opcode_modifier.sse2avx
4149 && i.tm.opcode_modifier.immext)
65da13b5 4150 process_immext ();
252b5132 4151
29b0f896
AM
4152 /* For insns with operands there are more diddles to do to the opcode. */
4153 if (i.operands)
4154 {
4155 if (!process_operands ())
4156 return;
4157 }
40fb9820 4158 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4159 {
4160 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4161 as_warn (_("translating to `%sp'"), i.tm.name);
4162 }
252b5132 4163
e771e7c9
JB
4164 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4165 || is_evex_encoding (&i.tm))
9e5e5283
L
4166 {
4167 if (flag_code == CODE_16BIT)
4168 {
4169 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4170 i.tm.name);
4171 return;
4172 }
c0f3af97 4173
9e5e5283
L
4174 if (i.tm.opcode_modifier.vex)
4175 build_vex_prefix (t);
4176 else
4177 build_evex_prefix ();
4178 }
43234a1e 4179
5dd85c99
SP
4180 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4181 instructions may define INT_OPCODE as well, so avoid this corner
4182 case for those instructions that use MODRM. */
4183 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4184 && !i.tm.opcode_modifier.modrm
4185 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4186 {
4187 i.tm.base_opcode = INT3_OPCODE;
4188 i.imm_operands = 0;
4189 }
252b5132 4190
40fb9820
L
4191 if ((i.tm.opcode_modifier.jump
4192 || i.tm.opcode_modifier.jumpbyte
4193 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4194 && i.op[0].disps->X_op == O_constant)
4195 {
4196 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4197 the absolute address given by the constant. Since ix86 jumps and
4198 calls are pc relative, we need to generate a reloc. */
4199 i.op[0].disps->X_add_symbol = &abs_symbol;
4200 i.op[0].disps->X_op = O_symbol;
4201 }
252b5132 4202
40fb9820 4203 if (i.tm.opcode_modifier.rex64)
161a04f6 4204 i.rex |= REX_W;
252b5132 4205
29b0f896
AM
4206 /* For 8 bit registers we need an empty rex prefix. Also if the
4207 instruction already has a prefix, we need to convert old
4208 registers to new ones. */
773f551c 4209
dc821c5f 4210 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4211 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4213 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4214 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4215 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4216 && i.rex != 0))
4217 {
4218 int x;
726c5dcd 4219
29b0f896
AM
4220 i.rex |= REX_OPCODE;
4221 for (x = 0; x < 2; x++)
4222 {
4223 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4224 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4225 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4226 {
29b0f896
AM
4227 /* In case it is "hi" register, give up. */
4228 if (i.op[x].regs->reg_num > 3)
a540244d 4229 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4230 "instruction requiring REX prefix."),
a540244d 4231 register_prefix, i.op[x].regs->reg_name);
773f551c 4232
29b0f896
AM
4233 /* Otherwise it is equivalent to the extended register.
4234 Since the encoding doesn't change this is merely
4235 cosmetic cleanup for debug output. */
4236
4237 i.op[x].regs = i.op[x].regs + 8;
773f551c 4238 }
29b0f896
AM
4239 }
4240 }
773f551c 4241
6b6b6807
L
4242 if (i.rex == 0 && i.rex_encoding)
4243 {
4244 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4245 that uses legacy register. If it is "hi" register, don't add
4246 the REX_OPCODE byte. */
4247 int x;
4248 for (x = 0; x < 2; x++)
4249 if (i.types[x].bitfield.reg
4250 && i.types[x].bitfield.byte
4251 && (i.op[x].regs->reg_flags & RegRex64) == 0
4252 && i.op[x].regs->reg_num > 3)
4253 {
4254 i.rex_encoding = FALSE;
4255 break;
4256 }
4257
4258 if (i.rex_encoding)
4259 i.rex = REX_OPCODE;
4260 }
4261
7ab9ffdd 4262 if (i.rex != 0)
29b0f896
AM
4263 add_prefix (REX_OPCODE | i.rex);
4264
4265 /* We are ready to output the insn. */
4266 output_insn ();
4267}
4268
4269static char *
e3bb37b5 4270parse_insn (char *line, char *mnemonic)
29b0f896
AM
4271{
4272 char *l = line;
4273 char *token_start = l;
4274 char *mnem_p;
5c6af06e 4275 int supported;
d3ce72d0 4276 const insn_template *t;
b6169b20 4277 char *dot_p = NULL;
29b0f896 4278
29b0f896
AM
4279 while (1)
4280 {
4281 mnem_p = mnemonic;
4282 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4283 {
b6169b20
L
4284 if (*mnem_p == '.')
4285 dot_p = mnem_p;
29b0f896
AM
4286 mnem_p++;
4287 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4288 {
29b0f896
AM
4289 as_bad (_("no such instruction: `%s'"), token_start);
4290 return NULL;
4291 }
4292 l++;
4293 }
4294 if (!is_space_char (*l)
4295 && *l != END_OF_INSN
e44823cf
JB
4296 && (intel_syntax
4297 || (*l != PREFIX_SEPARATOR
4298 && *l != ',')))
29b0f896
AM
4299 {
4300 as_bad (_("invalid character %s in mnemonic"),
4301 output_invalid (*l));
4302 return NULL;
4303 }
4304 if (token_start == l)
4305 {
e44823cf 4306 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4307 as_bad (_("expecting prefix; got nothing"));
4308 else
4309 as_bad (_("expecting mnemonic; got nothing"));
4310 return NULL;
4311 }
45288df1 4312
29b0f896 4313 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4314 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4315
29b0f896
AM
4316 if (*l != END_OF_INSN
4317 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4318 && current_templates
40fb9820 4319 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4320 {
c6fb90c8 4321 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4322 {
4323 as_bad ((flag_code != CODE_64BIT
4324 ? _("`%s' is only supported in 64-bit mode")
4325 : _("`%s' is not supported in 64-bit mode")),
4326 current_templates->start->name);
4327 return NULL;
4328 }
29b0f896
AM
4329 /* If we are in 16-bit mode, do not allow addr16 or data16.
4330 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4331 if ((current_templates->start->opcode_modifier.size16
4332 || current_templates->start->opcode_modifier.size32)
29b0f896 4333 && flag_code != CODE_64BIT
40fb9820 4334 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4335 ^ (flag_code == CODE_16BIT)))
4336 {
4337 as_bad (_("redundant %s prefix"),
4338 current_templates->start->name);
4339 return NULL;
45288df1 4340 }
86fa6981 4341 if (current_templates->start->opcode_length == 0)
29b0f896 4342 {
86fa6981
L
4343 /* Handle pseudo prefixes. */
4344 switch (current_templates->start->base_opcode)
4345 {
4346 case 0x0:
4347 /* {disp8} */
4348 i.disp_encoding = disp_encoding_8bit;
4349 break;
4350 case 0x1:
4351 /* {disp32} */
4352 i.disp_encoding = disp_encoding_32bit;
4353 break;
4354 case 0x2:
4355 /* {load} */
4356 i.dir_encoding = dir_encoding_load;
4357 break;
4358 case 0x3:
4359 /* {store} */
4360 i.dir_encoding = dir_encoding_store;
4361 break;
4362 case 0x4:
4363 /* {vex2} */
4364 i.vec_encoding = vex_encoding_vex2;
4365 break;
4366 case 0x5:
4367 /* {vex3} */
4368 i.vec_encoding = vex_encoding_vex3;
4369 break;
4370 case 0x6:
4371 /* {evex} */
4372 i.vec_encoding = vex_encoding_evex;
4373 break;
6b6b6807
L
4374 case 0x7:
4375 /* {rex} */
4376 i.rex_encoding = TRUE;
4377 break;
b6f8c7c4
L
4378 case 0x8:
4379 /* {nooptimize} */
4380 i.no_optimize = TRUE;
4381 break;
86fa6981
L
4382 default:
4383 abort ();
4384 }
4385 }
4386 else
4387 {
4388 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4389 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4390 {
4e9ac44a
L
4391 case PREFIX_EXIST:
4392 return NULL;
4393 case PREFIX_DS:
d777820b 4394 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4395 i.notrack_prefix = current_templates->start->name;
4396 break;
4397 case PREFIX_REP:
4398 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4399 i.hle_prefix = current_templates->start->name;
4400 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4401 i.bnd_prefix = current_templates->start->name;
4402 else
4403 i.rep_prefix = current_templates->start->name;
4404 break;
4405 default:
4406 break;
86fa6981 4407 }
29b0f896
AM
4408 }
4409 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4410 token_start = ++l;
4411 }
4412 else
4413 break;
4414 }
45288df1 4415
30a55f88 4416 if (!current_templates)
b6169b20 4417 {
f8a5c266
L
4418 /* Check if we should swap operand or force 32bit displacement in
4419 encoding. */
30a55f88 4420 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4421 i.dir_encoding = dir_encoding_store;
8d63c93e 4422 else if (mnem_p - 3 == dot_p
a501d77e
L
4423 && dot_p[1] == 'd'
4424 && dot_p[2] == '8')
4425 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4426 else if (mnem_p - 4 == dot_p
f8a5c266
L
4427 && dot_p[1] == 'd'
4428 && dot_p[2] == '3'
4429 && dot_p[3] == '2')
a501d77e 4430 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4431 else
4432 goto check_suffix;
4433 mnem_p = dot_p;
4434 *dot_p = '\0';
d3ce72d0 4435 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4436 }
4437
29b0f896
AM
4438 if (!current_templates)
4439 {
b6169b20 4440check_suffix:
29b0f896
AM
4441 /* See if we can get a match by trimming off a suffix. */
4442 switch (mnem_p[-1])
4443 {
4444 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4445 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4446 i.suffix = SHORT_MNEM_SUFFIX;
4447 else
1a0670f3 4448 /* Fall through. */
29b0f896
AM
4449 case BYTE_MNEM_SUFFIX:
4450 case QWORD_MNEM_SUFFIX:
4451 i.suffix = mnem_p[-1];
4452 mnem_p[-1] = '\0';
d3ce72d0
NC
4453 current_templates = (const templates *) hash_find (op_hash,
4454 mnemonic);
29b0f896
AM
4455 break;
4456 case SHORT_MNEM_SUFFIX:
4457 case LONG_MNEM_SUFFIX:
4458 if (!intel_syntax)
4459 {
4460 i.suffix = mnem_p[-1];
4461 mnem_p[-1] = '\0';
d3ce72d0
NC
4462 current_templates = (const templates *) hash_find (op_hash,
4463 mnemonic);
29b0f896
AM
4464 }
4465 break;
252b5132 4466
29b0f896
AM
4467 /* Intel Syntax. */
4468 case 'd':
4469 if (intel_syntax)
4470 {
9306ca4a 4471 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4472 i.suffix = SHORT_MNEM_SUFFIX;
4473 else
4474 i.suffix = LONG_MNEM_SUFFIX;
4475 mnem_p[-1] = '\0';
d3ce72d0
NC
4476 current_templates = (const templates *) hash_find (op_hash,
4477 mnemonic);
29b0f896
AM
4478 }
4479 break;
4480 }
4481 if (!current_templates)
4482 {
4483 as_bad (_("no such instruction: `%s'"), token_start);
4484 return NULL;
4485 }
4486 }
252b5132 4487
40fb9820
L
4488 if (current_templates->start->opcode_modifier.jump
4489 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4490 {
4491 /* Check for a branch hint. We allow ",pt" and ",pn" for
4492 predict taken and predict not taken respectively.
4493 I'm not sure that branch hints actually do anything on loop
4494 and jcxz insns (JumpByte) for current Pentium4 chips. They
4495 may work in the future and it doesn't hurt to accept them
4496 now. */
4497 if (l[0] == ',' && l[1] == 'p')
4498 {
4499 if (l[2] == 't')
4500 {
4501 if (!add_prefix (DS_PREFIX_OPCODE))
4502 return NULL;
4503 l += 3;
4504 }
4505 else if (l[2] == 'n')
4506 {
4507 if (!add_prefix (CS_PREFIX_OPCODE))
4508 return NULL;
4509 l += 3;
4510 }
4511 }
4512 }
4513 /* Any other comma loses. */
4514 if (*l == ',')
4515 {
4516 as_bad (_("invalid character %s in mnemonic"),
4517 output_invalid (*l));
4518 return NULL;
4519 }
252b5132 4520
29b0f896 4521 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4522 supported = 0;
4523 for (t = current_templates->start; t < current_templates->end; ++t)
4524 {
c0f3af97
L
4525 supported |= cpu_flags_match (t);
4526 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4527 {
4528 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4529 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4530
548d0ee6
JB
4531 return l;
4532 }
29b0f896 4533 }
3629bb00 4534
548d0ee6
JB
4535 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4536 as_bad (flag_code == CODE_64BIT
4537 ? _("`%s' is not supported in 64-bit mode")
4538 : _("`%s' is only supported in 64-bit mode"),
4539 current_templates->start->name);
4540 else
4541 as_bad (_("`%s' is not supported on `%s%s'"),
4542 current_templates->start->name,
4543 cpu_arch_name ? cpu_arch_name : default_arch,
4544 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4545
548d0ee6 4546 return NULL;
29b0f896 4547}
252b5132 4548
29b0f896 4549static char *
e3bb37b5 4550parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4551{
4552 char *token_start;
3138f287 4553
29b0f896
AM
4554 /* 1 if operand is pending after ','. */
4555 unsigned int expecting_operand = 0;
252b5132 4556
29b0f896
AM
4557 /* Non-zero if operand parens not balanced. */
4558 unsigned int paren_not_balanced;
4559
4560 while (*l != END_OF_INSN)
4561 {
4562 /* Skip optional white space before operand. */
4563 if (is_space_char (*l))
4564 ++l;
d02603dc 4565 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4566 {
4567 as_bad (_("invalid character %s before operand %d"),
4568 output_invalid (*l),
4569 i.operands + 1);
4570 return NULL;
4571 }
d02603dc 4572 token_start = l; /* After white space. */
29b0f896
AM
4573 paren_not_balanced = 0;
4574 while (paren_not_balanced || *l != ',')
4575 {
4576 if (*l == END_OF_INSN)
4577 {
4578 if (paren_not_balanced)
4579 {
4580 if (!intel_syntax)
4581 as_bad (_("unbalanced parenthesis in operand %d."),
4582 i.operands + 1);
4583 else
4584 as_bad (_("unbalanced brackets in operand %d."),
4585 i.operands + 1);
4586 return NULL;
4587 }
4588 else
4589 break; /* we are done */
4590 }
d02603dc 4591 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4592 {
4593 as_bad (_("invalid character %s in operand %d"),
4594 output_invalid (*l),
4595 i.operands + 1);
4596 return NULL;
4597 }
4598 if (!intel_syntax)
4599 {
4600 if (*l == '(')
4601 ++paren_not_balanced;
4602 if (*l == ')')
4603 --paren_not_balanced;
4604 }
4605 else
4606 {
4607 if (*l == '[')
4608 ++paren_not_balanced;
4609 if (*l == ']')
4610 --paren_not_balanced;
4611 }
4612 l++;
4613 }
4614 if (l != token_start)
4615 { /* Yes, we've read in another operand. */
4616 unsigned int operand_ok;
4617 this_operand = i.operands++;
4618 if (i.operands > MAX_OPERANDS)
4619 {
4620 as_bad (_("spurious operands; (%d operands/instruction max)"),
4621 MAX_OPERANDS);
4622 return NULL;
4623 }
9d46ce34 4624 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4625 /* Now parse operand adding info to 'i' as we go along. */
4626 END_STRING_AND_SAVE (l);
4627
4628 if (intel_syntax)
4629 operand_ok =
4630 i386_intel_operand (token_start,
4631 intel_float_operand (mnemonic));
4632 else
a7619375 4633 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4634
4635 RESTORE_END_STRING (l);
4636 if (!operand_ok)
4637 return NULL;
4638 }
4639 else
4640 {
4641 if (expecting_operand)
4642 {
4643 expecting_operand_after_comma:
4644 as_bad (_("expecting operand after ','; got nothing"));
4645 return NULL;
4646 }
4647 if (*l == ',')
4648 {
4649 as_bad (_("expecting operand before ','; got nothing"));
4650 return NULL;
4651 }
4652 }
7f3f1ea2 4653
29b0f896
AM
4654 /* Now *l must be either ',' or END_OF_INSN. */
4655 if (*l == ',')
4656 {
4657 if (*++l == END_OF_INSN)
4658 {
4659 /* Just skip it, if it's \n complain. */
4660 goto expecting_operand_after_comma;
4661 }
4662 expecting_operand = 1;
4663 }
4664 }
4665 return l;
4666}
7f3f1ea2 4667
050dfa73 4668static void
4d456e3d 4669swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4670{
4671 union i386_op temp_op;
40fb9820 4672 i386_operand_type temp_type;
050dfa73 4673 enum bfd_reloc_code_real temp_reloc;
4eed87de 4674
050dfa73
MM
4675 temp_type = i.types[xchg2];
4676 i.types[xchg2] = i.types[xchg1];
4677 i.types[xchg1] = temp_type;
4678 temp_op = i.op[xchg2];
4679 i.op[xchg2] = i.op[xchg1];
4680 i.op[xchg1] = temp_op;
4681 temp_reloc = i.reloc[xchg2];
4682 i.reloc[xchg2] = i.reloc[xchg1];
4683 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4684
4685 if (i.mask)
4686 {
4687 if (i.mask->operand == xchg1)
4688 i.mask->operand = xchg2;
4689 else if (i.mask->operand == xchg2)
4690 i.mask->operand = xchg1;
4691 }
4692 if (i.broadcast)
4693 {
4694 if (i.broadcast->operand == xchg1)
4695 i.broadcast->operand = xchg2;
4696 else if (i.broadcast->operand == xchg2)
4697 i.broadcast->operand = xchg1;
4698 }
4699 if (i.rounding)
4700 {
4701 if (i.rounding->operand == xchg1)
4702 i.rounding->operand = xchg2;
4703 else if (i.rounding->operand == xchg2)
4704 i.rounding->operand = xchg1;
4705 }
050dfa73
MM
4706}
4707
29b0f896 4708static void
e3bb37b5 4709swap_operands (void)
29b0f896 4710{
b7c61d9a 4711 switch (i.operands)
050dfa73 4712 {
c0f3af97 4713 case 5:
b7c61d9a 4714 case 4:
4d456e3d 4715 swap_2_operands (1, i.operands - 2);
1a0670f3 4716 /* Fall through. */
b7c61d9a
L
4717 case 3:
4718 case 2:
4d456e3d 4719 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4720 break;
4721 default:
4722 abort ();
29b0f896 4723 }
29b0f896
AM
4724
4725 if (i.mem_operands == 2)
4726 {
4727 const seg_entry *temp_seg;
4728 temp_seg = i.seg[0];
4729 i.seg[0] = i.seg[1];
4730 i.seg[1] = temp_seg;
4731 }
4732}
252b5132 4733
29b0f896
AM
4734/* Try to ensure constant immediates are represented in the smallest
4735 opcode possible. */
4736static void
e3bb37b5 4737optimize_imm (void)
29b0f896
AM
4738{
4739 char guess_suffix = 0;
4740 int op;
252b5132 4741
29b0f896
AM
4742 if (i.suffix)
4743 guess_suffix = i.suffix;
4744 else if (i.reg_operands)
4745 {
4746 /* Figure out a suffix from the last register operand specified.
4747 We can't do this properly yet, ie. excluding InOutPortReg,
4748 but the following works for instructions with immediates.
4749 In any case, we can't set i.suffix yet. */
4750 for (op = i.operands; --op >= 0;)
dc821c5f 4751 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4752 {
40fb9820
L
4753 guess_suffix = BYTE_MNEM_SUFFIX;
4754 break;
4755 }
dc821c5f 4756 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4757 {
40fb9820
L
4758 guess_suffix = WORD_MNEM_SUFFIX;
4759 break;
4760 }
dc821c5f 4761 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4762 {
4763 guess_suffix = LONG_MNEM_SUFFIX;
4764 break;
4765 }
dc821c5f 4766 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4767 {
4768 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4769 break;
252b5132 4770 }
29b0f896
AM
4771 }
4772 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4773 guess_suffix = WORD_MNEM_SUFFIX;
4774
4775 for (op = i.operands; --op >= 0;)
40fb9820 4776 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4777 {
4778 switch (i.op[op].imms->X_op)
252b5132 4779 {
29b0f896
AM
4780 case O_constant:
4781 /* If a suffix is given, this operand may be shortened. */
4782 switch (guess_suffix)
252b5132 4783 {
29b0f896 4784 case LONG_MNEM_SUFFIX:
40fb9820
L
4785 i.types[op].bitfield.imm32 = 1;
4786 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4787 break;
4788 case WORD_MNEM_SUFFIX:
40fb9820
L
4789 i.types[op].bitfield.imm16 = 1;
4790 i.types[op].bitfield.imm32 = 1;
4791 i.types[op].bitfield.imm32s = 1;
4792 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4793 break;
4794 case BYTE_MNEM_SUFFIX:
40fb9820
L
4795 i.types[op].bitfield.imm8 = 1;
4796 i.types[op].bitfield.imm8s = 1;
4797 i.types[op].bitfield.imm16 = 1;
4798 i.types[op].bitfield.imm32 = 1;
4799 i.types[op].bitfield.imm32s = 1;
4800 i.types[op].bitfield.imm64 = 1;
29b0f896 4801 break;
252b5132 4802 }
252b5132 4803
29b0f896
AM
4804 /* If this operand is at most 16 bits, convert it
4805 to a signed 16 bit number before trying to see
4806 whether it will fit in an even smaller size.
4807 This allows a 16-bit operand such as $0xffe0 to
4808 be recognised as within Imm8S range. */
40fb9820 4809 if ((i.types[op].bitfield.imm16)
29b0f896 4810 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4811 {
29b0f896
AM
4812 i.op[op].imms->X_add_number =
4813 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4814 }
a28def75
L
4815#ifdef BFD64
4816 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4817 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4818 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4819 == 0))
4820 {
4821 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4822 ^ ((offsetT) 1 << 31))
4823 - ((offsetT) 1 << 31));
4824 }
a28def75 4825#endif
40fb9820 4826 i.types[op]
c6fb90c8
L
4827 = operand_type_or (i.types[op],
4828 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4829
29b0f896
AM
4830 /* We must avoid matching of Imm32 templates when 64bit
4831 only immediate is available. */
4832 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4833 i.types[op].bitfield.imm32 = 0;
29b0f896 4834 break;
252b5132 4835
29b0f896
AM
4836 case O_absent:
4837 case O_register:
4838 abort ();
4839
4840 /* Symbols and expressions. */
4841 default:
9cd96992
JB
4842 /* Convert symbolic operand to proper sizes for matching, but don't
4843 prevent matching a set of insns that only supports sizes other
4844 than those matching the insn suffix. */
4845 {
40fb9820 4846 i386_operand_type mask, allowed;
d3ce72d0 4847 const insn_template *t;
9cd96992 4848
0dfbf9d7
L
4849 operand_type_set (&mask, 0);
4850 operand_type_set (&allowed, 0);
40fb9820 4851
4eed87de
AM
4852 for (t = current_templates->start;
4853 t < current_templates->end;
4854 ++t)
c6fb90c8
L
4855 allowed = operand_type_or (allowed,
4856 t->operand_types[op]);
9cd96992
JB
4857 switch (guess_suffix)
4858 {
4859 case QWORD_MNEM_SUFFIX:
40fb9820
L
4860 mask.bitfield.imm64 = 1;
4861 mask.bitfield.imm32s = 1;
9cd96992
JB
4862 break;
4863 case LONG_MNEM_SUFFIX:
40fb9820 4864 mask.bitfield.imm32 = 1;
9cd96992
JB
4865 break;
4866 case WORD_MNEM_SUFFIX:
40fb9820 4867 mask.bitfield.imm16 = 1;
9cd96992
JB
4868 break;
4869 case BYTE_MNEM_SUFFIX:
40fb9820 4870 mask.bitfield.imm8 = 1;
9cd96992
JB
4871 break;
4872 default:
9cd96992
JB
4873 break;
4874 }
c6fb90c8 4875 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4876 if (!operand_type_all_zero (&allowed))
c6fb90c8 4877 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4878 }
29b0f896 4879 break;
252b5132 4880 }
29b0f896
AM
4881 }
4882}
47926f60 4883
29b0f896
AM
4884/* Try to use the smallest displacement type too. */
4885static void
e3bb37b5 4886optimize_disp (void)
29b0f896
AM
4887{
4888 int op;
3e73aa7c 4889
29b0f896 4890 for (op = i.operands; --op >= 0;)
40fb9820 4891 if (operand_type_check (i.types[op], disp))
252b5132 4892 {
b300c311 4893 if (i.op[op].disps->X_op == O_constant)
252b5132 4894 {
91d6fa6a 4895 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4896
40fb9820 4897 if (i.types[op].bitfield.disp16
91d6fa6a 4898 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4899 {
4900 /* If this operand is at most 16 bits, convert
4901 to a signed 16 bit number and don't use 64bit
4902 displacement. */
91d6fa6a 4903 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4904 i.types[op].bitfield.disp64 = 0;
b300c311 4905 }
a28def75
L
4906#ifdef BFD64
4907 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4908 if (i.types[op].bitfield.disp32
91d6fa6a 4909 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4910 {
4911 /* If this operand is at most 32 bits, convert
4912 to a signed 32 bit number and don't use 64bit
4913 displacement. */
91d6fa6a
NC
4914 op_disp &= (((offsetT) 2 << 31) - 1);
4915 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4916 i.types[op].bitfield.disp64 = 0;
b300c311 4917 }
a28def75 4918#endif
91d6fa6a 4919 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4920 {
40fb9820
L
4921 i.types[op].bitfield.disp8 = 0;
4922 i.types[op].bitfield.disp16 = 0;
4923 i.types[op].bitfield.disp32 = 0;
4924 i.types[op].bitfield.disp32s = 0;
4925 i.types[op].bitfield.disp64 = 0;
b300c311
L
4926 i.op[op].disps = 0;
4927 i.disp_operands--;
4928 }
4929 else if (flag_code == CODE_64BIT)
4930 {
91d6fa6a 4931 if (fits_in_signed_long (op_disp))
28a9d8f5 4932 {
40fb9820
L
4933 i.types[op].bitfield.disp64 = 0;
4934 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4935 }
0e1147d9 4936 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4937 && fits_in_unsigned_long (op_disp))
40fb9820 4938 i.types[op].bitfield.disp32 = 1;
b300c311 4939 }
40fb9820
L
4940 if ((i.types[op].bitfield.disp32
4941 || i.types[op].bitfield.disp32s
4942 || i.types[op].bitfield.disp16)
b5014f7a 4943 && fits_in_disp8 (op_disp))
40fb9820 4944 i.types[op].bitfield.disp8 = 1;
252b5132 4945 }
67a4f2b7
AO
4946 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4947 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4948 {
4949 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4950 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4951 i.types[op].bitfield.disp8 = 0;
4952 i.types[op].bitfield.disp16 = 0;
4953 i.types[op].bitfield.disp32 = 0;
4954 i.types[op].bitfield.disp32s = 0;
4955 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4956 }
4957 else
b300c311 4958 /* We only support 64bit displacement on constants. */
40fb9820 4959 i.types[op].bitfield.disp64 = 0;
252b5132 4960 }
29b0f896
AM
4961}
4962
6c30d220
L
4963/* Check if operands are valid for the instruction. */
4964
4965static int
4966check_VecOperands (const insn_template *t)
4967{
43234a1e
L
4968 unsigned int op;
4969
6c30d220
L
4970 /* Without VSIB byte, we can't have a vector register for index. */
4971 if (!t->opcode_modifier.vecsib
4972 && i.index_reg
1b54b8d7
JB
4973 && (i.index_reg->reg_type.bitfield.xmmword
4974 || i.index_reg->reg_type.bitfield.ymmword
4975 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4976 {
4977 i.error = unsupported_vector_index_register;
4978 return 1;
4979 }
4980
ad8ecc81
MZ
4981 /* Check if default mask is allowed. */
4982 if (t->opcode_modifier.nodefmask
4983 && (!i.mask || i.mask->mask->reg_num == 0))
4984 {
4985 i.error = no_default_mask;
4986 return 1;
4987 }
4988
7bab8ab5
JB
4989 /* For VSIB byte, we need a vector register for index, and all vector
4990 registers must be distinct. */
4991 if (t->opcode_modifier.vecsib)
4992 {
4993 if (!i.index_reg
6c30d220 4994 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4995 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4996 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4997 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4998 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4999 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5000 {
5001 i.error = invalid_vsib_address;
5002 return 1;
5003 }
5004
43234a1e
L
5005 gas_assert (i.reg_operands == 2 || i.mask);
5006 if (i.reg_operands == 2 && !i.mask)
5007 {
1b54b8d7
JB
5008 gas_assert (i.types[0].bitfield.regsimd);
5009 gas_assert (i.types[0].bitfield.xmmword
5010 || i.types[0].bitfield.ymmword);
5011 gas_assert (i.types[2].bitfield.regsimd);
5012 gas_assert (i.types[2].bitfield.xmmword
5013 || i.types[2].bitfield.ymmword);
43234a1e
L
5014 if (operand_check == check_none)
5015 return 0;
5016 if (register_number (i.op[0].regs)
5017 != register_number (i.index_reg)
5018 && register_number (i.op[2].regs)
5019 != register_number (i.index_reg)
5020 && register_number (i.op[0].regs)
5021 != register_number (i.op[2].regs))
5022 return 0;
5023 if (operand_check == check_error)
5024 {
5025 i.error = invalid_vector_register_set;
5026 return 1;
5027 }
5028 as_warn (_("mask, index, and destination registers should be distinct"));
5029 }
8444f82a
MZ
5030 else if (i.reg_operands == 1 && i.mask)
5031 {
1b54b8d7
JB
5032 if (i.types[1].bitfield.regsimd
5033 && (i.types[1].bitfield.xmmword
5034 || i.types[1].bitfield.ymmword
5035 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5036 && (register_number (i.op[1].regs)
5037 == register_number (i.index_reg)))
5038 {
5039 if (operand_check == check_error)
5040 {
5041 i.error = invalid_vector_register_set;
5042 return 1;
5043 }
5044 if (operand_check != check_none)
5045 as_warn (_("index and destination registers should be distinct"));
5046 }
5047 }
43234a1e 5048 }
7bab8ab5 5049
43234a1e
L
5050 /* Check if broadcast is supported by the instruction and is applied
5051 to the memory operand. */
5052 if (i.broadcast)
5053 {
8e6e0792 5054 i386_operand_type type, overlap;
43234a1e
L
5055
5056 /* Check if specified broadcast is supported in this instruction,
c39e5b26 5057 and it's applied to memory operand of DWORD or QWORD type. */
32546502 5058 op = i.broadcast->operand;
8e6e0792 5059 if (!t->opcode_modifier.broadcast
32546502 5060 || !i.types[op].bitfield.mem
c39e5b26
JB
5061 || (!i.types[op].bitfield.unspecified
5062 && (t->operand_types[op].bitfield.dword
5063 ? !i.types[op].bitfield.dword
5064 : !i.types[op].bitfield.qword)))
43234a1e
L
5065 {
5066 bad_broadcast:
5067 i.error = unsupported_broadcast;
5068 return 1;
5069 }
8e6e0792
JB
5070
5071 operand_type_set (&type, 0);
c39e5b26 5072 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
8e6e0792
JB
5073 {
5074 case 8:
5075 type.bitfield.qword = 1;
5076 break;
5077 case 16:
5078 type.bitfield.xmmword = 1;
5079 break;
5080 case 32:
5081 type.bitfield.ymmword = 1;
5082 break;
5083 case 64:
5084 type.bitfield.zmmword = 1;
5085 break;
5086 default:
5087 goto bad_broadcast;
5088 }
5089
5090 overlap = operand_type_and (type, t->operand_types[op]);
5091 if (operand_type_all_zero (&overlap))
5092 goto bad_broadcast;
5093
5094 if (t->opcode_modifier.checkregsize)
5095 {
5096 unsigned int j;
5097
5098 for (j = 0; j < i.operands; ++j)
5099 {
5100 if (j != op
5101 && !operand_type_register_match(i.types[j],
5102 t->operand_types[j],
5103 type,
5104 t->operand_types[op]))
5105 goto bad_broadcast;
5106 }
5107 }
43234a1e
L
5108 }
5109 /* If broadcast is supported in this instruction, we need to check if
5110 operand of one-element size isn't specified without broadcast. */
5111 else if (t->opcode_modifier.broadcast && i.mem_operands)
5112 {
5113 /* Find memory operand. */
5114 for (op = 0; op < i.operands; op++)
5115 if (operand_type_check (i.types[op], anymem))
5116 break;
5117 gas_assert (op < i.operands);
5118 /* Check size of the memory operand. */
c39e5b26
JB
5119 if (t->operand_types[op].bitfield.dword
5120 ? i.types[op].bitfield.dword
5121 : i.types[op].bitfield.qword)
43234a1e
L
5122 {
5123 i.error = broadcast_needed;
5124 return 1;
5125 }
5126 }
c39e5b26
JB
5127 else
5128 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5129
5130 /* Check if requested masking is supported. */
5131 if (i.mask
5132 && (!t->opcode_modifier.masking
5133 || (i.mask->zeroing
5134 && t->opcode_modifier.masking == MERGING_MASKING)))
5135 {
5136 i.error = unsupported_masking;
5137 return 1;
5138 }
5139
5140 /* Check if masking is applied to dest operand. */
5141 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5142 {
5143 i.error = mask_not_on_destination;
5144 return 1;
5145 }
5146
43234a1e
L
5147 /* Check RC/SAE. */
5148 if (i.rounding)
5149 {
5150 if ((i.rounding->type != saeonly
5151 && !t->opcode_modifier.staticrounding)
5152 || (i.rounding->type == saeonly
5153 && (t->opcode_modifier.staticrounding
5154 || !t->opcode_modifier.sae)))
5155 {
5156 i.error = unsupported_rc_sae;
5157 return 1;
5158 }
5159 /* If the instruction has several immediate operands and one of
5160 them is rounding, the rounding operand should be the last
5161 immediate operand. */
5162 if (i.imm_operands > 1
5163 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5164 {
43234a1e 5165 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5166 return 1;
5167 }
6c30d220
L
5168 }
5169
43234a1e 5170 /* Check vector Disp8 operand. */
b5014f7a
JB
5171 if (t->opcode_modifier.disp8memshift
5172 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5173 {
5174 if (i.broadcast)
c39e5b26 5175 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
43234a1e
L
5176 else
5177 i.memshift = t->opcode_modifier.disp8memshift;
5178
5179 for (op = 0; op < i.operands; op++)
5180 if (operand_type_check (i.types[op], disp)
5181 && i.op[op].disps->X_op == O_constant)
5182 {
b5014f7a 5183 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5184 {
b5014f7a
JB
5185 i.types[op].bitfield.disp8 = 1;
5186 return 0;
43234a1e 5187 }
b5014f7a 5188 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5189 }
5190 }
b5014f7a
JB
5191
5192 i.memshift = 0;
43234a1e 5193
6c30d220
L
5194 return 0;
5195}
5196
43f3e2ee 5197/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5198 operand types. */
5199
5200static int
5201VEX_check_operands (const insn_template *t)
5202{
86fa6981 5203 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5204 {
86fa6981 5205 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5206 if (!is_evex_encoding (t))
86fa6981
L
5207 {
5208 i.error = unsupported;
5209 return 1;
5210 }
5211 return 0;
43234a1e
L
5212 }
5213
a683cc34 5214 if (!t->opcode_modifier.vex)
86fa6981
L
5215 {
5216 /* This instruction template doesn't have VEX prefix. */
5217 if (i.vec_encoding != vex_encoding_default)
5218 {
5219 i.error = unsupported;
5220 return 1;
5221 }
5222 return 0;
5223 }
a683cc34
SP
5224
5225 /* Only check VEX_Imm4, which must be the first operand. */
5226 if (t->operand_types[0].bitfield.vec_imm4)
5227 {
5228 if (i.op[0].imms->X_op != O_constant
5229 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5230 {
a65babc9 5231 i.error = bad_imm4;
891edac4
L
5232 return 1;
5233 }
a683cc34
SP
5234
5235 /* Turn off Imm8 so that update_imm won't complain. */
5236 i.types[0] = vec_imm4;
5237 }
5238
5239 return 0;
5240}
5241
d3ce72d0 5242static const insn_template *
83b16ac6 5243match_template (char mnem_suffix)
29b0f896
AM
5244{
5245 /* Points to template once we've found it. */
d3ce72d0 5246 const insn_template *t;
40fb9820 5247 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5248 i386_operand_type overlap4;
29b0f896 5249 unsigned int found_reverse_match;
83b16ac6 5250 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5251 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5252 int addr_prefix_disp;
a5c311ca 5253 unsigned int j;
3629bb00 5254 unsigned int found_cpu_match;
45664ddb 5255 unsigned int check_register;
5614d22c 5256 enum i386_error specific_error = 0;
29b0f896 5257
c0f3af97
L
5258#if MAX_OPERANDS != 5
5259# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5260#endif
5261
29b0f896 5262 found_reverse_match = 0;
539e75ad 5263 addr_prefix_disp = -1;
40fb9820
L
5264
5265 memset (&suffix_check, 0, sizeof (suffix_check));
5266 if (i.suffix == BYTE_MNEM_SUFFIX)
5267 suffix_check.no_bsuf = 1;
5268 else if (i.suffix == WORD_MNEM_SUFFIX)
5269 suffix_check.no_wsuf = 1;
5270 else if (i.suffix == SHORT_MNEM_SUFFIX)
5271 suffix_check.no_ssuf = 1;
5272 else if (i.suffix == LONG_MNEM_SUFFIX)
5273 suffix_check.no_lsuf = 1;
5274 else if (i.suffix == QWORD_MNEM_SUFFIX)
5275 suffix_check.no_qsuf = 1;
5276 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5277 suffix_check.no_ldsuf = 1;
29b0f896 5278
83b16ac6
JB
5279 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5280 if (intel_syntax)
5281 {
5282 switch (mnem_suffix)
5283 {
5284 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5285 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5286 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5287 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5288 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5289 }
5290 }
5291
01559ecc
L
5292 /* Must have right number of operands. */
5293 i.error = number_of_operands_mismatch;
5294
45aa61fe 5295 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5296 {
539e75ad
L
5297 addr_prefix_disp = -1;
5298
29b0f896
AM
5299 if (i.operands != t->operands)
5300 continue;
5301
50aecf8c 5302 /* Check processor support. */
a65babc9 5303 i.error = unsupported;
c0f3af97
L
5304 found_cpu_match = (cpu_flags_match (t)
5305 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5306 if (!found_cpu_match)
5307 continue;
5308
e1d4d893 5309 /* Check AT&T mnemonic. */
a65babc9 5310 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5311 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5312 continue;
5313
e92bae62 5314 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5315 i.error = unsupported_syntax;
5c07affc 5316 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5317 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5318 || (intel64 && t->opcode_modifier.amd64)
5319 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5320 continue;
5321
20592a94 5322 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5323 i.error = invalid_instruction_suffix;
567e4e96
L
5324 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5325 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5326 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5327 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5328 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5329 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5330 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5331 continue;
83b16ac6
JB
5332 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5333 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5334 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5335 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5336 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5337 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5338 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5339 continue;
29b0f896 5340
5c07affc 5341 if (!operand_size_match (t))
7d5e4556 5342 continue;
539e75ad 5343
5c07affc
L
5344 for (j = 0; j < MAX_OPERANDS; j++)
5345 operand_types[j] = t->operand_types[j];
5346
45aa61fe
AM
5347 /* In general, don't allow 64-bit operands in 32-bit mode. */
5348 if (i.suffix == QWORD_MNEM_SUFFIX
5349 && flag_code != CODE_64BIT
5350 && (intel_syntax
40fb9820 5351 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5352 && !intel_float_operand (t->name))
5353 : intel_float_operand (t->name) != 2)
40fb9820 5354 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5355 && !operand_types[0].bitfield.regsimd)
40fb9820 5356 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5357 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5358 && (t->base_opcode != 0x0fc7
5359 || t->extension_opcode != 1 /* cmpxchg8b */))
5360 continue;
5361
192dc9c6
JB
5362 /* In general, don't allow 32-bit operands on pre-386. */
5363 else if (i.suffix == LONG_MNEM_SUFFIX
5364 && !cpu_arch_flags.bitfield.cpui386
5365 && (intel_syntax
5366 ? (!t->opcode_modifier.ignoresize
5367 && !intel_float_operand (t->name))
5368 : intel_float_operand (t->name) != 2)
5369 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5370 && !operand_types[0].bitfield.regsimd)
192dc9c6 5371 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5372 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5373 continue;
5374
29b0f896 5375 /* Do not verify operands when there are none. */
50aecf8c 5376 else
29b0f896 5377 {
c6fb90c8 5378 if (!t->operands)
2dbab7d5
L
5379 /* We've found a match; break out of loop. */
5380 break;
29b0f896 5381 }
252b5132 5382
539e75ad
L
5383 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5384 into Disp32/Disp16/Disp32 operand. */
5385 if (i.prefix[ADDR_PREFIX] != 0)
5386 {
40fb9820 5387 /* There should be only one Disp operand. */
539e75ad
L
5388 switch (flag_code)
5389 {
5390 case CODE_16BIT:
40fb9820
L
5391 for (j = 0; j < MAX_OPERANDS; j++)
5392 {
5393 if (operand_types[j].bitfield.disp16)
5394 {
5395 addr_prefix_disp = j;
5396 operand_types[j].bitfield.disp32 = 1;
5397 operand_types[j].bitfield.disp16 = 0;
5398 break;
5399 }
5400 }
539e75ad
L
5401 break;
5402 case CODE_32BIT:
40fb9820
L
5403 for (j = 0; j < MAX_OPERANDS; j++)
5404 {
5405 if (operand_types[j].bitfield.disp32)
5406 {
5407 addr_prefix_disp = j;
5408 operand_types[j].bitfield.disp32 = 0;
5409 operand_types[j].bitfield.disp16 = 1;
5410 break;
5411 }
5412 }
539e75ad
L
5413 break;
5414 case CODE_64BIT:
40fb9820
L
5415 for (j = 0; j < MAX_OPERANDS; j++)
5416 {
5417 if (operand_types[j].bitfield.disp64)
5418 {
5419 addr_prefix_disp = j;
5420 operand_types[j].bitfield.disp64 = 0;
5421 operand_types[j].bitfield.disp32 = 1;
5422 break;
5423 }
5424 }
539e75ad
L
5425 break;
5426 }
539e75ad
L
5427 }
5428
02a86693
L
5429 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5430 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5431 continue;
5432
56ffb741
L
5433 /* We check register size if needed. */
5434 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5435 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5436 switch (t->operands)
5437 {
5438 case 1:
40fb9820 5439 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5440 continue;
5441 break;
5442 case 2:
33eaf5de 5443 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5444 only in 32bit mode and we can use opcode 0x90. In 64bit
5445 mode, we can't use 0x90 for xchg %eax, %eax since it should
5446 zero-extend %eax to %rax. */
5447 if (flag_code == CODE_64BIT
5448 && t->base_opcode == 0x90
0dfbf9d7
L
5449 && operand_type_equal (&i.types [0], &acc32)
5450 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5451 continue;
1212781b
JB
5452 /* xrelease mov %eax, <disp> is another special case. It must not
5453 match the accumulator-only encoding of mov. */
5454 if (flag_code != CODE_64BIT
5455 && i.hle_prefix
5456 && t->base_opcode == 0xa0
5457 && i.types[0].bitfield.acc
5458 && operand_type_check (i.types[1], anymem))
5459 continue;
86fa6981
L
5460 /* If we want store form, we reverse direction of operands. */
5461 if (i.dir_encoding == dir_encoding_store
5462 && t->opcode_modifier.d)
5463 goto check_reverse;
1a0670f3 5464 /* Fall through. */
b6169b20 5465
29b0f896 5466 case 3:
86fa6981
L
5467 /* If we want store form, we skip the current load. */
5468 if (i.dir_encoding == dir_encoding_store
5469 && i.mem_operands == 0
5470 && t->opcode_modifier.load)
fa99fab2 5471 continue;
1a0670f3 5472 /* Fall through. */
f48ff2ae 5473 case 4:
c0f3af97 5474 case 5:
c6fb90c8 5475 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5476 if (!operand_type_match (overlap0, i.types[0])
5477 || !operand_type_match (overlap1, i.types[1])
45664ddb 5478 || (check_register
dc821c5f 5479 && !operand_type_register_match (i.types[0],
40fb9820 5480 operand_types[0],
dc821c5f 5481 i.types[1],
40fb9820 5482 operand_types[1])))
29b0f896
AM
5483 {
5484 /* Check if other direction is valid ... */
38e314eb 5485 if (!t->opcode_modifier.d)
29b0f896
AM
5486 continue;
5487
b6169b20 5488check_reverse:
29b0f896 5489 /* Try reversing direction of operands. */
c6fb90c8
L
5490 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5491 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5492 if (!operand_type_match (overlap0, i.types[0])
5493 || !operand_type_match (overlap1, i.types[1])
45664ddb 5494 || (check_register
dc821c5f 5495 && !operand_type_register_match (i.types[0],
45664ddb 5496 operand_types[1],
45664ddb
L
5497 i.types[1],
5498 operand_types[0])))
29b0f896
AM
5499 {
5500 /* Does not match either direction. */
5501 continue;
5502 }
38e314eb 5503 /* found_reverse_match holds which of D or FloatR
29b0f896 5504 we've found. */
38e314eb
JB
5505 if (!t->opcode_modifier.d)
5506 found_reverse_match = 0;
5507 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5508 found_reverse_match = Opcode_FloatD;
5509 else
38e314eb 5510 found_reverse_match = Opcode_D;
40fb9820 5511 if (t->opcode_modifier.floatr)
8a2ed489 5512 found_reverse_match |= Opcode_FloatR;
29b0f896 5513 }
f48ff2ae 5514 else
29b0f896 5515 {
f48ff2ae 5516 /* Found a forward 2 operand match here. */
d1cbb4db
L
5517 switch (t->operands)
5518 {
c0f3af97
L
5519 case 5:
5520 overlap4 = operand_type_and (i.types[4],
5521 operand_types[4]);
1a0670f3 5522 /* Fall through. */
d1cbb4db 5523 case 4:
c6fb90c8
L
5524 overlap3 = operand_type_and (i.types[3],
5525 operand_types[3]);
1a0670f3 5526 /* Fall through. */
d1cbb4db 5527 case 3:
c6fb90c8
L
5528 overlap2 = operand_type_and (i.types[2],
5529 operand_types[2]);
d1cbb4db
L
5530 break;
5531 }
29b0f896 5532
f48ff2ae
L
5533 switch (t->operands)
5534 {
c0f3af97
L
5535 case 5:
5536 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5537 || !operand_type_register_match (i.types[3],
c0f3af97 5538 operand_types[3],
c0f3af97
L
5539 i.types[4],
5540 operand_types[4]))
5541 continue;
1a0670f3 5542 /* Fall through. */
f48ff2ae 5543 case 4:
40fb9820 5544 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5545 || (check_register
f7768225
JB
5546 && (!operand_type_register_match (i.types[1],
5547 operand_types[1],
5548 i.types[3],
5549 operand_types[3])
5550 || !operand_type_register_match (i.types[2],
5551 operand_types[2],
5552 i.types[3],
5553 operand_types[3]))))
f48ff2ae 5554 continue;
1a0670f3 5555 /* Fall through. */
f48ff2ae
L
5556 case 3:
5557 /* Here we make use of the fact that there are no
23e42951 5558 reverse match 3 operand instructions. */
40fb9820 5559 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5560 || (check_register
23e42951
JB
5561 && (!operand_type_register_match (i.types[0],
5562 operand_types[0],
5563 i.types[2],
5564 operand_types[2])
5565 || !operand_type_register_match (i.types[1],
5566 operand_types[1],
5567 i.types[2],
5568 operand_types[2]))))
f48ff2ae
L
5569 continue;
5570 break;
5571 }
29b0f896 5572 }
f48ff2ae 5573 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5574 slip through to break. */
5575 }
3629bb00 5576 if (!found_cpu_match)
29b0f896
AM
5577 {
5578 found_reverse_match = 0;
5579 continue;
5580 }
c0f3af97 5581
5614d22c
JB
5582 /* Check if vector and VEX operands are valid. */
5583 if (check_VecOperands (t) || VEX_check_operands (t))
5584 {
5585 specific_error = i.error;
5586 continue;
5587 }
a683cc34 5588
29b0f896
AM
5589 /* We've found a match; break out of loop. */
5590 break;
5591 }
5592
5593 if (t == current_templates->end)
5594 {
5595 /* We found no match. */
a65babc9 5596 const char *err_msg;
5614d22c 5597 switch (specific_error ? specific_error : i.error)
a65babc9
L
5598 {
5599 default:
5600 abort ();
86e026a4 5601 case operand_size_mismatch:
a65babc9
L
5602 err_msg = _("operand size mismatch");
5603 break;
5604 case operand_type_mismatch:
5605 err_msg = _("operand type mismatch");
5606 break;
5607 case register_type_mismatch:
5608 err_msg = _("register type mismatch");
5609 break;
5610 case number_of_operands_mismatch:
5611 err_msg = _("number of operands mismatch");
5612 break;
5613 case invalid_instruction_suffix:
5614 err_msg = _("invalid instruction suffix");
5615 break;
5616 case bad_imm4:
4a2608e3 5617 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5618 break;
a65babc9
L
5619 case unsupported_with_intel_mnemonic:
5620 err_msg = _("unsupported with Intel mnemonic");
5621 break;
5622 case unsupported_syntax:
5623 err_msg = _("unsupported syntax");
5624 break;
5625 case unsupported:
35262a23 5626 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5627 current_templates->start->name);
5628 return NULL;
6c30d220
L
5629 case invalid_vsib_address:
5630 err_msg = _("invalid VSIB address");
5631 break;
7bab8ab5
JB
5632 case invalid_vector_register_set:
5633 err_msg = _("mask, index, and destination registers must be distinct");
5634 break;
6c30d220
L
5635 case unsupported_vector_index_register:
5636 err_msg = _("unsupported vector index register");
5637 break;
43234a1e
L
5638 case unsupported_broadcast:
5639 err_msg = _("unsupported broadcast");
5640 break;
5641 case broadcast_not_on_src_operand:
5642 err_msg = _("broadcast not on source memory operand");
5643 break;
5644 case broadcast_needed:
5645 err_msg = _("broadcast is needed for operand of such type");
5646 break;
5647 case unsupported_masking:
5648 err_msg = _("unsupported masking");
5649 break;
5650 case mask_not_on_destination:
5651 err_msg = _("mask not on destination operand");
5652 break;
5653 case no_default_mask:
5654 err_msg = _("default mask isn't allowed");
5655 break;
5656 case unsupported_rc_sae:
5657 err_msg = _("unsupported static rounding/sae");
5658 break;
5659 case rc_sae_operand_not_last_imm:
5660 if (intel_syntax)
5661 err_msg = _("RC/SAE operand must precede immediate operands");
5662 else
5663 err_msg = _("RC/SAE operand must follow immediate operands");
5664 break;
5665 case invalid_register_operand:
5666 err_msg = _("invalid register operand");
5667 break;
a65babc9
L
5668 }
5669 as_bad (_("%s for `%s'"), err_msg,
891edac4 5670 current_templates->start->name);
fa99fab2 5671 return NULL;
29b0f896 5672 }
252b5132 5673
29b0f896
AM
5674 if (!quiet_warnings)
5675 {
5676 if (!intel_syntax
40fb9820
L
5677 && (i.types[0].bitfield.jumpabsolute
5678 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5679 {
5680 as_warn (_("indirect %s without `*'"), t->name);
5681 }
5682
40fb9820
L
5683 if (t->opcode_modifier.isprefix
5684 && t->opcode_modifier.ignoresize)
29b0f896
AM
5685 {
5686 /* Warn them that a data or address size prefix doesn't
5687 affect assembly of the next line of code. */
5688 as_warn (_("stand-alone `%s' prefix"), t->name);
5689 }
5690 }
5691
5692 /* Copy the template we found. */
5693 i.tm = *t;
539e75ad
L
5694
5695 if (addr_prefix_disp != -1)
5696 i.tm.operand_types[addr_prefix_disp]
5697 = operand_types[addr_prefix_disp];
5698
29b0f896
AM
5699 if (found_reverse_match)
5700 {
5701 /* If we found a reverse match we must alter the opcode
5702 direction bit. found_reverse_match holds bits to change
5703 (different for int & float insns). */
5704
5705 i.tm.base_opcode ^= found_reverse_match;
5706
539e75ad
L
5707 i.tm.operand_types[0] = operand_types[1];
5708 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5709 }
5710
fa99fab2 5711 return t;
29b0f896
AM
5712}
5713
5714static int
e3bb37b5 5715check_string (void)
29b0f896 5716{
40fb9820
L
5717 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5718 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5719 {
5720 if (i.seg[0] != NULL && i.seg[0] != &es)
5721 {
a87af027 5722 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5723 i.tm.name,
a87af027
JB
5724 mem_op + 1,
5725 register_prefix);
29b0f896
AM
5726 return 0;
5727 }
5728 /* There's only ever one segment override allowed per instruction.
5729 This instruction possibly has a legal segment override on the
5730 second operand, so copy the segment to where non-string
5731 instructions store it, allowing common code. */
5732 i.seg[0] = i.seg[1];
5733 }
40fb9820 5734 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5735 {
5736 if (i.seg[1] != NULL && i.seg[1] != &es)
5737 {
a87af027 5738 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5739 i.tm.name,
a87af027
JB
5740 mem_op + 2,
5741 register_prefix);
29b0f896
AM
5742 return 0;
5743 }
5744 }
5745 return 1;
5746}
5747
5748static int
543613e9 5749process_suffix (void)
29b0f896
AM
5750{
5751 /* If matched instruction specifies an explicit instruction mnemonic
5752 suffix, use it. */
40fb9820
L
5753 if (i.tm.opcode_modifier.size16)
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 else if (i.tm.opcode_modifier.size32)
5756 i.suffix = LONG_MNEM_SUFFIX;
5757 else if (i.tm.opcode_modifier.size64)
5758 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5759 else if (i.reg_operands)
5760 {
5761 /* If there's no instruction mnemonic suffix we try to invent one
5762 based on register operands. */
5763 if (!i.suffix)
5764 {
5765 /* We take i.suffix from the last register operand specified,
5766 Destination register type is more significant than source
381d071f
L
5767 register type. crc32 in SSE4.2 prefers source register
5768 type. */
5769 if (i.tm.base_opcode == 0xf20f38f1)
5770 {
dc821c5f 5771 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5772 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5773 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5774 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5775 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5776 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5777 }
9344ff29 5778 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5779 {
dc821c5f 5780 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5781 i.suffix = BYTE_MNEM_SUFFIX;
5782 }
381d071f
L
5783
5784 if (!i.suffix)
5785 {
5786 int op;
5787
20592a94
L
5788 if (i.tm.base_opcode == 0xf20f38f1
5789 || i.tm.base_opcode == 0xf20f38f0)
5790 {
5791 /* We have to know the operand size for crc32. */
5792 as_bad (_("ambiguous memory operand size for `%s`"),
5793 i.tm.name);
5794 return 0;
5795 }
5796
381d071f 5797 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5798 if (!i.tm.operand_types[op].bitfield.inoutportreg
5799 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5800 {
8819ada6
JB
5801 if (!i.types[op].bitfield.reg)
5802 continue;
5803 if (i.types[op].bitfield.byte)
5804 i.suffix = BYTE_MNEM_SUFFIX;
5805 else if (i.types[op].bitfield.word)
5806 i.suffix = WORD_MNEM_SUFFIX;
5807 else if (i.types[op].bitfield.dword)
5808 i.suffix = LONG_MNEM_SUFFIX;
5809 else if (i.types[op].bitfield.qword)
5810 i.suffix = QWORD_MNEM_SUFFIX;
5811 else
5812 continue;
5813 break;
381d071f
L
5814 }
5815 }
29b0f896
AM
5816 }
5817 else if (i.suffix == BYTE_MNEM_SUFFIX)
5818 {
2eb952a4
L
5819 if (intel_syntax
5820 && i.tm.opcode_modifier.ignoresize
5821 && i.tm.opcode_modifier.no_bsuf)
5822 i.suffix = 0;
5823 else if (!check_byte_reg ())
29b0f896
AM
5824 return 0;
5825 }
5826 else if (i.suffix == LONG_MNEM_SUFFIX)
5827 {
2eb952a4
L
5828 if (intel_syntax
5829 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5830 && i.tm.opcode_modifier.no_lsuf
5831 && !i.tm.opcode_modifier.todword
5832 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5833 i.suffix = 0;
5834 else if (!check_long_reg ())
29b0f896
AM
5835 return 0;
5836 }
5837 else if (i.suffix == QWORD_MNEM_SUFFIX)
5838 {
955e1e6a
L
5839 if (intel_syntax
5840 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5841 && i.tm.opcode_modifier.no_qsuf
5842 && !i.tm.opcode_modifier.todword
5843 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5844 i.suffix = 0;
5845 else if (!check_qword_reg ())
29b0f896
AM
5846 return 0;
5847 }
5848 else if (i.suffix == WORD_MNEM_SUFFIX)
5849 {
2eb952a4
L
5850 if (intel_syntax
5851 && i.tm.opcode_modifier.ignoresize
5852 && i.tm.opcode_modifier.no_wsuf)
5853 i.suffix = 0;
5854 else if (!check_word_reg ())
29b0f896
AM
5855 return 0;
5856 }
40fb9820 5857 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5858 /* Do nothing if the instruction is going to ignore the prefix. */
5859 ;
5860 else
5861 abort ();
5862 }
40fb9820 5863 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5864 && !i.suffix
5865 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5866 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5867 {
5868 i.suffix = stackop_size;
5869 }
9306ca4a
JB
5870 else if (intel_syntax
5871 && !i.suffix
40fb9820
L
5872 && (i.tm.operand_types[0].bitfield.jumpabsolute
5873 || i.tm.opcode_modifier.jumpbyte
5874 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5875 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5876 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5877 {
5878 switch (flag_code)
5879 {
5880 case CODE_64BIT:
40fb9820 5881 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5882 {
5883 i.suffix = QWORD_MNEM_SUFFIX;
5884 break;
5885 }
1a0670f3 5886 /* Fall through. */
9306ca4a 5887 case CODE_32BIT:
40fb9820 5888 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5889 i.suffix = LONG_MNEM_SUFFIX;
5890 break;
5891 case CODE_16BIT:
40fb9820 5892 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5893 i.suffix = WORD_MNEM_SUFFIX;
5894 break;
5895 }
5896 }
252b5132 5897
9306ca4a 5898 if (!i.suffix)
29b0f896 5899 {
9306ca4a
JB
5900 if (!intel_syntax)
5901 {
40fb9820 5902 if (i.tm.opcode_modifier.w)
9306ca4a 5903 {
4eed87de
AM
5904 as_bad (_("no instruction mnemonic suffix given and "
5905 "no register operands; can't size instruction"));
9306ca4a
JB
5906 return 0;
5907 }
5908 }
5909 else
5910 {
40fb9820 5911 unsigned int suffixes;
7ab9ffdd 5912
40fb9820
L
5913 suffixes = !i.tm.opcode_modifier.no_bsuf;
5914 if (!i.tm.opcode_modifier.no_wsuf)
5915 suffixes |= 1 << 1;
5916 if (!i.tm.opcode_modifier.no_lsuf)
5917 suffixes |= 1 << 2;
fc4adea1 5918 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5919 suffixes |= 1 << 3;
5920 if (!i.tm.opcode_modifier.no_ssuf)
5921 suffixes |= 1 << 4;
c2b9da16 5922 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5923 suffixes |= 1 << 5;
5924
5925 /* There are more than suffix matches. */
5926 if (i.tm.opcode_modifier.w
9306ca4a 5927 || ((suffixes & (suffixes - 1))
40fb9820
L
5928 && !i.tm.opcode_modifier.defaultsize
5929 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5930 {
5931 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5932 return 0;
5933 }
5934 }
29b0f896 5935 }
252b5132 5936
d2224064
JB
5937 /* Change the opcode based on the operand size given by i.suffix. */
5938 switch (i.suffix)
29b0f896 5939 {
d2224064
JB
5940 /* Size floating point instruction. */
5941 case LONG_MNEM_SUFFIX:
5942 if (i.tm.opcode_modifier.floatmf)
5943 {
5944 i.tm.base_opcode ^= 4;
5945 break;
5946 }
5947 /* fall through */
5948 case WORD_MNEM_SUFFIX:
5949 case QWORD_MNEM_SUFFIX:
29b0f896 5950 /* It's not a byte, select word/dword operation. */
40fb9820 5951 if (i.tm.opcode_modifier.w)
29b0f896 5952 {
40fb9820 5953 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5954 i.tm.base_opcode |= 8;
5955 else
5956 i.tm.base_opcode |= 1;
5957 }
d2224064
JB
5958 /* fall through */
5959 case SHORT_MNEM_SUFFIX:
29b0f896
AM
5960 /* Now select between word & dword operations via the operand
5961 size prefix, except for instructions that will ignore this
5962 prefix anyway. */
ca61edf2 5963 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5964 {
ca61edf2
L
5965 /* The address size override prefix changes the size of the
5966 first operand. */
40fb9820 5967 if ((flag_code == CODE_32BIT
dc821c5f 5968 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5969 || (flag_code != CODE_32BIT
dc821c5f 5970 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5971 if (!add_prefix (ADDR_PREFIX_OPCODE))
5972 return 0;
5973 }
5974 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
5975 && !i.tm.opcode_modifier.ignoresize
5976 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5977 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5978 || (flag_code == CODE_64BIT
40fb9820 5979 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5980 {
5981 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5982
40fb9820 5983 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5984 prefix = ADDR_PREFIX_OPCODE;
252b5132 5985
29b0f896
AM
5986 if (!add_prefix (prefix))
5987 return 0;
24eab124 5988 }
252b5132 5989
29b0f896
AM
5990 /* Set mode64 for an operand. */
5991 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5992 && flag_code == CODE_64BIT
d2224064 5993 && !i.tm.opcode_modifier.norex64
46e883c5 5994 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
5995 need rex64. */
5996 && ! (i.operands == 2
5997 && i.tm.base_opcode == 0x90
5998 && i.tm.extension_opcode == None
5999 && operand_type_equal (&i.types [0], &acc64)
6000 && operand_type_equal (&i.types [1], &acc64)))
6001 i.rex |= REX_W;
3e73aa7c 6002
d2224064 6003 break;
29b0f896 6004 }
7ecd2f8b 6005
29b0f896
AM
6006 return 1;
6007}
3e73aa7c 6008
29b0f896 6009static int
543613e9 6010check_byte_reg (void)
29b0f896
AM
6011{
6012 int op;
543613e9 6013
29b0f896
AM
6014 for (op = i.operands; --op >= 0;)
6015 {
dc821c5f
JB
6016 /* Skip non-register operands. */
6017 if (!i.types[op].bitfield.reg)
6018 continue;
6019
29b0f896
AM
6020 /* If this is an eight bit register, it's OK. If it's the 16 or
6021 32 bit version of an eight bit register, we will just use the
6022 low portion, and that's OK too. */
dc821c5f 6023 if (i.types[op].bitfield.byte)
29b0f896
AM
6024 continue;
6025
5a819eb9
JB
6026 /* I/O port address operands are OK too. */
6027 if (i.tm.operand_types[op].bitfield.inoutportreg)
6028 continue;
6029
9344ff29
L
6030 /* crc32 doesn't generate this warning. */
6031 if (i.tm.base_opcode == 0xf20f38f0)
6032 continue;
6033
dc821c5f
JB
6034 if ((i.types[op].bitfield.word
6035 || i.types[op].bitfield.dword
6036 || i.types[op].bitfield.qword)
5a819eb9
JB
6037 && i.op[op].regs->reg_num < 4
6038 /* Prohibit these changes in 64bit mode, since the lowering
6039 would be more complicated. */
6040 && flag_code != CODE_64BIT)
29b0f896 6041 {
29b0f896 6042#if REGISTER_WARNINGS
5a819eb9 6043 if (!quiet_warnings)
a540244d
L
6044 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6045 register_prefix,
dc821c5f 6046 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6047 ? REGNAM_AL - REGNAM_AX
6048 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6049 register_prefix,
29b0f896
AM
6050 i.op[op].regs->reg_name,
6051 i.suffix);
6052#endif
6053 continue;
6054 }
6055 /* Any other register is bad. */
dc821c5f 6056 if (i.types[op].bitfield.reg
40fb9820 6057 || i.types[op].bitfield.regmmx
1b54b8d7 6058 || i.types[op].bitfield.regsimd
40fb9820
L
6059 || i.types[op].bitfield.sreg2
6060 || i.types[op].bitfield.sreg3
6061 || i.types[op].bitfield.control
6062 || i.types[op].bitfield.debug
ca0d63fe 6063 || i.types[op].bitfield.test)
29b0f896 6064 {
a540244d
L
6065 as_bad (_("`%s%s' not allowed with `%s%c'"),
6066 register_prefix,
29b0f896
AM
6067 i.op[op].regs->reg_name,
6068 i.tm.name,
6069 i.suffix);
6070 return 0;
6071 }
6072 }
6073 return 1;
6074}
6075
6076static int
e3bb37b5 6077check_long_reg (void)
29b0f896
AM
6078{
6079 int op;
6080
6081 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6082 /* Skip non-register operands. */
6083 if (!i.types[op].bitfield.reg)
6084 continue;
29b0f896
AM
6085 /* Reject eight bit registers, except where the template requires
6086 them. (eg. movzb) */
dc821c5f
JB
6087 else if (i.types[op].bitfield.byte
6088 && (i.tm.operand_types[op].bitfield.reg
6089 || i.tm.operand_types[op].bitfield.acc)
6090 && (i.tm.operand_types[op].bitfield.word
6091 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6092 {
a540244d
L
6093 as_bad (_("`%s%s' not allowed with `%s%c'"),
6094 register_prefix,
29b0f896
AM
6095 i.op[op].regs->reg_name,
6096 i.tm.name,
6097 i.suffix);
6098 return 0;
6099 }
e4630f71 6100 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6101 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6102 && i.types[op].bitfield.word
6103 && (i.tm.operand_types[op].bitfield.reg
6104 || i.tm.operand_types[op].bitfield.acc)
6105 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6106 {
6107 /* Prohibit these changes in the 64bit mode, since the
6108 lowering is more complicated. */
6109 if (flag_code == CODE_64BIT)
252b5132 6110 {
2b5d6a91 6111 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6112 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6113 i.suffix);
6114 return 0;
252b5132 6115 }
29b0f896 6116#if REGISTER_WARNINGS
cecf1424
JB
6117 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6118 register_prefix,
6119 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6120 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6121#endif
252b5132 6122 }
e4630f71 6123 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6124 else if (i.types[op].bitfield.qword
6125 && (i.tm.operand_types[op].bitfield.reg
6126 || i.tm.operand_types[op].bitfield.acc)
6127 && i.tm.operand_types[op].bitfield.dword)
252b5132 6128 {
34828aad 6129 if (intel_syntax
ca61edf2 6130 && i.tm.opcode_modifier.toqword
1b54b8d7 6131 && !i.types[0].bitfield.regsimd)
34828aad 6132 {
ca61edf2 6133 /* Convert to QWORD. We want REX byte. */
34828aad
L
6134 i.suffix = QWORD_MNEM_SUFFIX;
6135 }
6136 else
6137 {
2b5d6a91 6138 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6139 register_prefix, i.op[op].regs->reg_name,
6140 i.suffix);
6141 return 0;
6142 }
29b0f896
AM
6143 }
6144 return 1;
6145}
252b5132 6146
29b0f896 6147static int
e3bb37b5 6148check_qword_reg (void)
29b0f896
AM
6149{
6150 int op;
252b5132 6151
29b0f896 6152 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6153 /* Skip non-register operands. */
6154 if (!i.types[op].bitfield.reg)
6155 continue;
29b0f896
AM
6156 /* Reject eight bit registers, except where the template requires
6157 them. (eg. movzb) */
dc821c5f
JB
6158 else if (i.types[op].bitfield.byte
6159 && (i.tm.operand_types[op].bitfield.reg
6160 || i.tm.operand_types[op].bitfield.acc)
6161 && (i.tm.operand_types[op].bitfield.word
6162 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6163 {
a540244d
L
6164 as_bad (_("`%s%s' not allowed with `%s%c'"),
6165 register_prefix,
29b0f896
AM
6166 i.op[op].regs->reg_name,
6167 i.tm.name,
6168 i.suffix);
6169 return 0;
6170 }
e4630f71 6171 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6172 else if ((i.types[op].bitfield.word
6173 || i.types[op].bitfield.dword)
6174 && (i.tm.operand_types[op].bitfield.reg
6175 || i.tm.operand_types[op].bitfield.acc)
6176 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6177 {
6178 /* Prohibit these changes in the 64bit mode, since the
6179 lowering is more complicated. */
34828aad 6180 if (intel_syntax
ca61edf2 6181 && i.tm.opcode_modifier.todword
1b54b8d7 6182 && !i.types[0].bitfield.regsimd)
34828aad 6183 {
ca61edf2 6184 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 }
6187 else
6188 {
2b5d6a91 6189 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6190 register_prefix, i.op[op].regs->reg_name,
6191 i.suffix);
6192 return 0;
6193 }
252b5132 6194 }
29b0f896
AM
6195 return 1;
6196}
252b5132 6197
29b0f896 6198static int
e3bb37b5 6199check_word_reg (void)
29b0f896
AM
6200{
6201 int op;
6202 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6203 /* Skip non-register operands. */
6204 if (!i.types[op].bitfield.reg)
6205 continue;
29b0f896
AM
6206 /* Reject eight bit registers, except where the template requires
6207 them. (eg. movzb) */
dc821c5f
JB
6208 else if (i.types[op].bitfield.byte
6209 && (i.tm.operand_types[op].bitfield.reg
6210 || i.tm.operand_types[op].bitfield.acc)
6211 && (i.tm.operand_types[op].bitfield.word
6212 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6213 {
a540244d
L
6214 as_bad (_("`%s%s' not allowed with `%s%c'"),
6215 register_prefix,
29b0f896
AM
6216 i.op[op].regs->reg_name,
6217 i.tm.name,
6218 i.suffix);
6219 return 0;
6220 }
e4630f71 6221 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6222 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6223 && (i.types[op].bitfield.dword
6224 || i.types[op].bitfield.qword)
6225 && (i.tm.operand_types[op].bitfield.reg
6226 || i.tm.operand_types[op].bitfield.acc)
6227 && i.tm.operand_types[op].bitfield.word)
252b5132 6228 {
29b0f896
AM
6229 /* Prohibit these changes in the 64bit mode, since the
6230 lowering is more complicated. */
6231 if (flag_code == CODE_64BIT)
252b5132 6232 {
2b5d6a91 6233 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6234 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6235 i.suffix);
6236 return 0;
252b5132 6237 }
29b0f896 6238#if REGISTER_WARNINGS
cecf1424
JB
6239 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6240 register_prefix,
6241 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6242 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6243#endif
6244 }
6245 return 1;
6246}
252b5132 6247
29b0f896 6248static int
40fb9820 6249update_imm (unsigned int j)
29b0f896 6250{
bc0844ae 6251 i386_operand_type overlap = i.types[j];
40fb9820
L
6252 if ((overlap.bitfield.imm8
6253 || overlap.bitfield.imm8s
6254 || overlap.bitfield.imm16
6255 || overlap.bitfield.imm32
6256 || overlap.bitfield.imm32s
6257 || overlap.bitfield.imm64)
0dfbf9d7
L
6258 && !operand_type_equal (&overlap, &imm8)
6259 && !operand_type_equal (&overlap, &imm8s)
6260 && !operand_type_equal (&overlap, &imm16)
6261 && !operand_type_equal (&overlap, &imm32)
6262 && !operand_type_equal (&overlap, &imm32s)
6263 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6264 {
6265 if (i.suffix)
6266 {
40fb9820
L
6267 i386_operand_type temp;
6268
0dfbf9d7 6269 operand_type_set (&temp, 0);
7ab9ffdd 6270 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6271 {
6272 temp.bitfield.imm8 = overlap.bitfield.imm8;
6273 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6274 }
6275 else if (i.suffix == WORD_MNEM_SUFFIX)
6276 temp.bitfield.imm16 = overlap.bitfield.imm16;
6277 else if (i.suffix == QWORD_MNEM_SUFFIX)
6278 {
6279 temp.bitfield.imm64 = overlap.bitfield.imm64;
6280 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6281 }
6282 else
6283 temp.bitfield.imm32 = overlap.bitfield.imm32;
6284 overlap = temp;
29b0f896 6285 }
0dfbf9d7
L
6286 else if (operand_type_equal (&overlap, &imm16_32_32s)
6287 || operand_type_equal (&overlap, &imm16_32)
6288 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6289 {
40fb9820 6290 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6291 overlap = imm16;
40fb9820 6292 else
65da13b5 6293 overlap = imm32s;
29b0f896 6294 }
0dfbf9d7
L
6295 if (!operand_type_equal (&overlap, &imm8)
6296 && !operand_type_equal (&overlap, &imm8s)
6297 && !operand_type_equal (&overlap, &imm16)
6298 && !operand_type_equal (&overlap, &imm32)
6299 && !operand_type_equal (&overlap, &imm32s)
6300 && !operand_type_equal (&overlap, &imm64))
29b0f896 6301 {
4eed87de
AM
6302 as_bad (_("no instruction mnemonic suffix given; "
6303 "can't determine immediate size"));
29b0f896
AM
6304 return 0;
6305 }
6306 }
40fb9820 6307 i.types[j] = overlap;
29b0f896 6308
40fb9820
L
6309 return 1;
6310}
6311
6312static int
6313finalize_imm (void)
6314{
bc0844ae 6315 unsigned int j, n;
29b0f896 6316
bc0844ae
L
6317 /* Update the first 2 immediate operands. */
6318 n = i.operands > 2 ? 2 : i.operands;
6319 if (n)
6320 {
6321 for (j = 0; j < n; j++)
6322 if (update_imm (j) == 0)
6323 return 0;
40fb9820 6324
bc0844ae
L
6325 /* The 3rd operand can't be immediate operand. */
6326 gas_assert (operand_type_check (i.types[2], imm) == 0);
6327 }
29b0f896
AM
6328
6329 return 1;
6330}
6331
6332static int
e3bb37b5 6333process_operands (void)
29b0f896
AM
6334{
6335 /* Default segment register this instruction will use for memory
6336 accesses. 0 means unknown. This is only for optimizing out
6337 unnecessary segment overrides. */
6338 const seg_entry *default_seg = 0;
6339
2426c15f 6340 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6341 {
91d6fa6a
NC
6342 unsigned int dupl = i.operands;
6343 unsigned int dest = dupl - 1;
9fcfb3d7
L
6344 unsigned int j;
6345
c0f3af97 6346 /* The destination must be an xmm register. */
9c2799c2 6347 gas_assert (i.reg_operands
91d6fa6a 6348 && MAX_OPERANDS > dupl
7ab9ffdd 6349 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6350
1b54b8d7
JB
6351 if (i.tm.operand_types[0].bitfield.acc
6352 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6353 {
8cd7925b 6354 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6355 {
6356 /* Keep xmm0 for instructions with VEX prefix and 3
6357 sources. */
1b54b8d7
JB
6358 i.tm.operand_types[0].bitfield.acc = 0;
6359 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6360 goto duplicate;
6361 }
e2ec9d29 6362 else
c0f3af97
L
6363 {
6364 /* We remove the first xmm0 and keep the number of
6365 operands unchanged, which in fact duplicates the
6366 destination. */
6367 for (j = 1; j < i.operands; j++)
6368 {
6369 i.op[j - 1] = i.op[j];
6370 i.types[j - 1] = i.types[j];
6371 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6372 }
6373 }
6374 }
6375 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6376 {
91d6fa6a 6377 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6378 && (i.tm.opcode_modifier.vexsources
6379 == VEX3SOURCES));
c0f3af97
L
6380
6381 /* Add the implicit xmm0 for instructions with VEX prefix
6382 and 3 sources. */
6383 for (j = i.operands; j > 0; j--)
6384 {
6385 i.op[j] = i.op[j - 1];
6386 i.types[j] = i.types[j - 1];
6387 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6388 }
6389 i.op[0].regs
6390 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6391 i.types[0] = regxmm;
c0f3af97
L
6392 i.tm.operand_types[0] = regxmm;
6393
6394 i.operands += 2;
6395 i.reg_operands += 2;
6396 i.tm.operands += 2;
6397
91d6fa6a 6398 dupl++;
c0f3af97 6399 dest++;
91d6fa6a
NC
6400 i.op[dupl] = i.op[dest];
6401 i.types[dupl] = i.types[dest];
6402 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6403 }
c0f3af97
L
6404 else
6405 {
6406duplicate:
6407 i.operands++;
6408 i.reg_operands++;
6409 i.tm.operands++;
6410
91d6fa6a
NC
6411 i.op[dupl] = i.op[dest];
6412 i.types[dupl] = i.types[dest];
6413 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6414 }
6415
6416 if (i.tm.opcode_modifier.immext)
6417 process_immext ();
6418 }
1b54b8d7
JB
6419 else if (i.tm.operand_types[0].bitfield.acc
6420 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6421 {
6422 unsigned int j;
6423
9fcfb3d7
L
6424 for (j = 1; j < i.operands; j++)
6425 {
6426 i.op[j - 1] = i.op[j];
6427 i.types[j - 1] = i.types[j];
6428
6429 /* We need to adjust fields in i.tm since they are used by
6430 build_modrm_byte. */
6431 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6432 }
6433
e2ec9d29
L
6434 i.operands--;
6435 i.reg_operands--;
e2ec9d29
L
6436 i.tm.operands--;
6437 }
920d2ddc
IT
6438 else if (i.tm.opcode_modifier.implicitquadgroup)
6439 {
a477a8c4
JB
6440 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6441
920d2ddc 6442 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6443 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6444 regnum = register_number (i.op[1].regs);
6445 first_reg_in_group = regnum & ~3;
6446 last_reg_in_group = first_reg_in_group + 3;
6447 if (regnum != first_reg_in_group)
6448 as_warn (_("source register `%s%s' implicitly denotes"
6449 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6450 register_prefix, i.op[1].regs->reg_name,
6451 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6452 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6453 i.tm.name);
6454 }
e2ec9d29
L
6455 else if (i.tm.opcode_modifier.regkludge)
6456 {
6457 /* The imul $imm, %reg instruction is converted into
6458 imul $imm, %reg, %reg, and the clr %reg instruction
6459 is converted into xor %reg, %reg. */
6460
6461 unsigned int first_reg_op;
6462
6463 if (operand_type_check (i.types[0], reg))
6464 first_reg_op = 0;
6465 else
6466 first_reg_op = 1;
6467 /* Pretend we saw the extra register operand. */
9c2799c2 6468 gas_assert (i.reg_operands == 1
7ab9ffdd 6469 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6470 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6471 i.types[first_reg_op + 1] = i.types[first_reg_op];
6472 i.operands++;
6473 i.reg_operands++;
29b0f896
AM
6474 }
6475
40fb9820 6476 if (i.tm.opcode_modifier.shortform)
29b0f896 6477 {
40fb9820
L
6478 if (i.types[0].bitfield.sreg2
6479 || i.types[0].bitfield.sreg3)
29b0f896 6480 {
4eed87de
AM
6481 if (i.tm.base_opcode == POP_SEG_SHORT
6482 && i.op[0].regs->reg_num == 1)
29b0f896 6483 {
a87af027 6484 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6485 return 0;
29b0f896 6486 }
4eed87de
AM
6487 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6488 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6489 i.rex |= REX_B;
4eed87de
AM
6490 }
6491 else
6492 {
7ab9ffdd 6493 /* The register or float register operand is in operand
85f10a01 6494 0 or 1. */
40fb9820 6495 unsigned int op;
7ab9ffdd 6496
ca0d63fe 6497 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6498 || operand_type_check (i.types[0], reg))
6499 op = 0;
6500 else
6501 op = 1;
4eed87de
AM
6502 /* Register goes in low 3 bits of opcode. */
6503 i.tm.base_opcode |= i.op[op].regs->reg_num;
6504 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6505 i.rex |= REX_B;
40fb9820 6506 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6507 {
4eed87de
AM
6508 /* Warn about some common errors, but press on regardless.
6509 The first case can be generated by gcc (<= 2.8.1). */
6510 if (i.operands == 2)
6511 {
6512 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6513 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6514 register_prefix, i.op[!intel_syntax].regs->reg_name,
6515 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6516 }
6517 else
6518 {
6519 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6520 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6521 register_prefix, i.op[0].regs->reg_name);
4eed87de 6522 }
29b0f896
AM
6523 }
6524 }
6525 }
40fb9820 6526 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6527 {
6528 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6529 must be put into the modrm byte). Now, we make the modrm and
6530 index base bytes based on all the info we've collected. */
29b0f896
AM
6531
6532 default_seg = build_modrm_byte ();
6533 }
8a2ed489 6534 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6535 {
6536 default_seg = &ds;
6537 }
40fb9820 6538 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6539 {
6540 /* For the string instructions that allow a segment override
6541 on one of their operands, the default segment is ds. */
6542 default_seg = &ds;
6543 }
6544
75178d9d
L
6545 if (i.tm.base_opcode == 0x8d /* lea */
6546 && i.seg[0]
6547 && !quiet_warnings)
30123838 6548 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6549
6550 /* If a segment was explicitly specified, and the specified segment
6551 is not the default, use an opcode prefix to select it. If we
6552 never figured out what the default segment is, then default_seg
6553 will be zero at this point, and the specified segment prefix will
6554 always be used. */
29b0f896
AM
6555 if ((i.seg[0]) && (i.seg[0] != default_seg))
6556 {
6557 if (!add_prefix (i.seg[0]->seg_prefix))
6558 return 0;
6559 }
6560 return 1;
6561}
6562
6563static const seg_entry *
e3bb37b5 6564build_modrm_byte (void)
29b0f896
AM
6565{
6566 const seg_entry *default_seg = 0;
c0f3af97 6567 unsigned int source, dest;
8cd7925b 6568 int vex_3_sources;
c0f3af97 6569
8cd7925b 6570 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6571 if (vex_3_sources)
6572 {
91d6fa6a 6573 unsigned int nds, reg_slot;
4c2c6516 6574 expressionS *exp;
c0f3af97 6575
6b8d3588 6576 dest = i.operands - 1;
c0f3af97 6577 nds = dest - 1;
922d8de8 6578
a683cc34
SP
6579 /* There are 2 kinds of instructions:
6580 1. 5 operands: 4 register operands or 3 register operands
6581 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6582 VexW0 or VexW1. The destination must be either XMM, YMM or
6583 ZMM register.
a683cc34 6584 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6585 plus 1 memory operand, with VexXDS. */
922d8de8 6586 gas_assert ((i.reg_operands == 4
a683cc34
SP
6587 || (i.reg_operands == 3 && i.mem_operands == 1))
6588 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6589 && i.tm.opcode_modifier.vexw
6590 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34
SP
6591
6592 if (i.imm_operands == 0)
6593 {
6594 /* When there is no immediate operand, generate an 8bit
6595 immediate operand to encode the first operand. */
6596 exp = &im_expressions[i.imm_operands++];
6597 i.op[i.operands].imms = exp;
6598 i.types[i.operands] = imm8;
6599 i.operands++;
6600 /* If VexW1 is set, the first operand is the source and
6601 the second operand is encoded in the immediate operand. */
6602 if (i.tm.opcode_modifier.vexw == VEXW1)
6603 {
6604 source = 0;
6605 reg_slot = 1;
6606 }
6607 else
6608 {
6609 source = 1;
6610 reg_slot = 0;
6611 }
6612
10c17abd 6613 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6614 exp->X_op = O_constant;
4c692bc7 6615 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6616 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6617 }
922d8de8 6618 else
a683cc34
SP
6619 {
6620 unsigned int imm_slot;
6621
2f1bada2
JB
6622 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6623
a683cc34
SP
6624 if (i.tm.opcode_modifier.vexw == VEXW0)
6625 {
6626 /* If VexW0 is set, the third operand is the source and
6627 the second operand is encoded in the immediate
6628 operand. */
6629 source = 2;
6630 reg_slot = 1;
6631 }
6632 else
6633 {
6634 /* VexW1 is set, the second operand is the source and
6635 the third operand is encoded in the immediate
6636 operand. */
6637 source = 1;
6638 reg_slot = 2;
6639 }
6640
6641 if (i.tm.opcode_modifier.immext)
6642 {
33eaf5de 6643 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6644 operand. */
6645 imm_slot = i.operands - 1;
6646 source--;
6647 reg_slot--;
6648 }
6649 else
6650 {
6651 imm_slot = 0;
6652
6653 /* Turn on Imm8 so that output_imm will generate it. */
6654 i.types[imm_slot].bitfield.imm8 = 1;
6655 }
6656
10c17abd 6657 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6658 i.op[imm_slot].imms->X_add_number
4c692bc7 6659 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6660 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6661 }
6662
10c17abd 6663 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6664 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6665 }
6666 else
6667 source = dest = 0;
29b0f896
AM
6668
6669 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6670 implicit registers do not count. If there are 3 register
6671 operands, it must be a instruction with VexNDS. For a
6672 instruction with VexNDD, the destination register is encoded
6673 in VEX prefix. If there are 4 register operands, it must be
6674 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6675 if (i.mem_operands == 0
6676 && ((i.reg_operands == 2
2426c15f 6677 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6678 || (i.reg_operands == 3
2426c15f 6679 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6680 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6681 {
cab737b9
L
6682 switch (i.operands)
6683 {
6684 case 2:
6685 source = 0;
6686 break;
6687 case 3:
c81128dc
L
6688 /* When there are 3 operands, one of them may be immediate,
6689 which may be the first or the last operand. Otherwise,
c0f3af97
L
6690 the first operand must be shift count register (cl) or it
6691 is an instruction with VexNDS. */
9c2799c2 6692 gas_assert (i.imm_operands == 1
7ab9ffdd 6693 || (i.imm_operands == 0
2426c15f 6694 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6695 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6696 if (operand_type_check (i.types[0], imm)
6697 || i.types[0].bitfield.shiftcount)
6698 source = 1;
6699 else
6700 source = 0;
cab737b9
L
6701 break;
6702 case 4:
368d64cc
L
6703 /* When there are 4 operands, the first two must be 8bit
6704 immediate operands. The source operand will be the 3rd
c0f3af97
L
6705 one.
6706
6707 For instructions with VexNDS, if the first operand
6708 an imm8, the source operand is the 2nd one. If the last
6709 operand is imm8, the source operand is the first one. */
9c2799c2 6710 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6711 && i.types[0].bitfield.imm8
6712 && i.types[1].bitfield.imm8)
2426c15f 6713 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6714 && i.imm_operands == 1
6715 && (i.types[0].bitfield.imm8
43234a1e
L
6716 || i.types[i.operands - 1].bitfield.imm8
6717 || i.rounding)));
9f2670f2
L
6718 if (i.imm_operands == 2)
6719 source = 2;
6720 else
c0f3af97
L
6721 {
6722 if (i.types[0].bitfield.imm8)
6723 source = 1;
6724 else
6725 source = 0;
6726 }
c0f3af97
L
6727 break;
6728 case 5:
e771e7c9 6729 if (is_evex_encoding (&i.tm))
43234a1e
L
6730 {
6731 /* For EVEX instructions, when there are 5 operands, the
6732 first one must be immediate operand. If the second one
6733 is immediate operand, the source operand is the 3th
6734 one. If the last one is immediate operand, the source
6735 operand is the 2nd one. */
6736 gas_assert (i.imm_operands == 2
6737 && i.tm.opcode_modifier.sae
6738 && operand_type_check (i.types[0], imm));
6739 if (operand_type_check (i.types[1], imm))
6740 source = 2;
6741 else if (operand_type_check (i.types[4], imm))
6742 source = 1;
6743 else
6744 abort ();
6745 }
cab737b9
L
6746 break;
6747 default:
6748 abort ();
6749 }
6750
c0f3af97
L
6751 if (!vex_3_sources)
6752 {
6753 dest = source + 1;
6754
43234a1e
L
6755 /* RC/SAE operand could be between DEST and SRC. That happens
6756 when one operand is GPR and the other one is XMM/YMM/ZMM
6757 register. */
6758 if (i.rounding && i.rounding->operand == (int) dest)
6759 dest++;
6760
2426c15f 6761 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6762 {
43234a1e 6763 /* For instructions with VexNDS, the register-only source
c5d0745b 6764 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6765 register. It is encoded in VEX prefix. We need to
6766 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6767
6768 i386_operand_type op;
6769 unsigned int vvvv;
6770
6771 /* Check register-only source operand when two source
6772 operands are swapped. */
6773 if (!i.tm.operand_types[source].bitfield.baseindex
6774 && i.tm.operand_types[dest].bitfield.baseindex)
6775 {
6776 vvvv = source;
6777 source = dest;
6778 }
6779 else
6780 vvvv = dest;
6781
6782 op = i.tm.operand_types[vvvv];
fa99fab2 6783 op.bitfield.regmem = 0;
c0f3af97 6784 if ((dest + 1) >= i.operands
dc821c5f
JB
6785 || ((!op.bitfield.reg
6786 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6787 && !op.bitfield.regsimd
43234a1e 6788 && !operand_type_equal (&op, &regmask)))
c0f3af97 6789 abort ();
f12dc422 6790 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6791 dest++;
6792 }
6793 }
29b0f896
AM
6794
6795 i.rm.mode = 3;
6796 /* One of the register operands will be encoded in the i.tm.reg
6797 field, the other in the combined i.tm.mode and i.tm.regmem
6798 fields. If no form of this instruction supports a memory
6799 destination operand, then we assume the source operand may
6800 sometimes be a memory operand and so we need to store the
6801 destination in the i.rm.reg field. */
40fb9820
L
6802 if (!i.tm.operand_types[dest].bitfield.regmem
6803 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6804 {
6805 i.rm.reg = i.op[dest].regs->reg_num;
6806 i.rm.regmem = i.op[source].regs->reg_num;
6807 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6808 i.rex |= REX_R;
43234a1e
L
6809 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6810 i.vrex |= REX_R;
29b0f896 6811 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6812 i.rex |= REX_B;
43234a1e
L
6813 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6814 i.vrex |= REX_B;
29b0f896
AM
6815 }
6816 else
6817 {
6818 i.rm.reg = i.op[source].regs->reg_num;
6819 i.rm.regmem = i.op[dest].regs->reg_num;
6820 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6821 i.rex |= REX_B;
43234a1e
L
6822 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6823 i.vrex |= REX_B;
29b0f896 6824 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6825 i.rex |= REX_R;
43234a1e
L
6826 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6827 i.vrex |= REX_R;
29b0f896 6828 }
161a04f6 6829 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6830 {
40fb9820
L
6831 if (!i.types[0].bitfield.control
6832 && !i.types[1].bitfield.control)
c4a530c5 6833 abort ();
161a04f6 6834 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6835 add_prefix (LOCK_PREFIX_OPCODE);
6836 }
29b0f896
AM
6837 }
6838 else
6839 { /* If it's not 2 reg operands... */
c0f3af97
L
6840 unsigned int mem;
6841
29b0f896
AM
6842 if (i.mem_operands)
6843 {
6844 unsigned int fake_zero_displacement = 0;
99018f42 6845 unsigned int op;
4eed87de 6846
7ab9ffdd
L
6847 for (op = 0; op < i.operands; op++)
6848 if (operand_type_check (i.types[op], anymem))
6849 break;
7ab9ffdd 6850 gas_assert (op < i.operands);
29b0f896 6851
6c30d220
L
6852 if (i.tm.opcode_modifier.vecsib)
6853 {
6854 if (i.index_reg->reg_num == RegEiz
6855 || i.index_reg->reg_num == RegRiz)
6856 abort ();
6857
6858 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6859 if (!i.base_reg)
6860 {
6861 i.sib.base = NO_BASE_REGISTER;
6862 i.sib.scale = i.log2_scale_factor;
6863 i.types[op].bitfield.disp8 = 0;
6864 i.types[op].bitfield.disp16 = 0;
6865 i.types[op].bitfield.disp64 = 0;
43083a50 6866 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6867 {
6868 /* Must be 32 bit */
6869 i.types[op].bitfield.disp32 = 1;
6870 i.types[op].bitfield.disp32s = 0;
6871 }
6872 else
6873 {
6874 i.types[op].bitfield.disp32 = 0;
6875 i.types[op].bitfield.disp32s = 1;
6876 }
6877 }
6878 i.sib.index = i.index_reg->reg_num;
6879 if ((i.index_reg->reg_flags & RegRex) != 0)
6880 i.rex |= REX_X;
43234a1e
L
6881 if ((i.index_reg->reg_flags & RegVRex) != 0)
6882 i.vrex |= REX_X;
6c30d220
L
6883 }
6884
29b0f896
AM
6885 default_seg = &ds;
6886
6887 if (i.base_reg == 0)
6888 {
6889 i.rm.mode = 0;
6890 if (!i.disp_operands)
9bb129e8 6891 fake_zero_displacement = 1;
29b0f896
AM
6892 if (i.index_reg == 0)
6893 {
73053c1f
JB
6894 i386_operand_type newdisp;
6895
6c30d220 6896 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6897 /* Operand is just <disp> */
20f0a1fc 6898 if (flag_code == CODE_64BIT)
29b0f896
AM
6899 {
6900 /* 64bit mode overwrites the 32bit absolute
6901 addressing by RIP relative addressing and
6902 absolute addressing is encoded by one of the
6903 redundant SIB forms. */
6904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6905 i.sib.base = NO_BASE_REGISTER;
6906 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6907 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6908 }
fc225355
L
6909 else if ((flag_code == CODE_16BIT)
6910 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6911 {
6912 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6913 newdisp = disp16;
20f0a1fc
NC
6914 }
6915 else
6916 {
6917 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6918 newdisp = disp32;
29b0f896 6919 }
73053c1f
JB
6920 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6921 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6922 }
6c30d220 6923 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6924 {
6c30d220 6925 /* !i.base_reg && i.index_reg */
db51cc60
L
6926 if (i.index_reg->reg_num == RegEiz
6927 || i.index_reg->reg_num == RegRiz)
6928 i.sib.index = NO_INDEX_REGISTER;
6929 else
6930 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6931 i.sib.base = NO_BASE_REGISTER;
6932 i.sib.scale = i.log2_scale_factor;
6933 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6934 i.types[op].bitfield.disp8 = 0;
6935 i.types[op].bitfield.disp16 = 0;
6936 i.types[op].bitfield.disp64 = 0;
43083a50 6937 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6938 {
6939 /* Must be 32 bit */
6940 i.types[op].bitfield.disp32 = 1;
6941 i.types[op].bitfield.disp32s = 0;
6942 }
29b0f896 6943 else
40fb9820
L
6944 {
6945 i.types[op].bitfield.disp32 = 0;
6946 i.types[op].bitfield.disp32s = 1;
6947 }
29b0f896 6948 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6949 i.rex |= REX_X;
29b0f896
AM
6950 }
6951 }
6952 /* RIP addressing for 64bit mode. */
9a04903e
JB
6953 else if (i.base_reg->reg_num == RegRip ||
6954 i.base_reg->reg_num == RegEip)
29b0f896 6955 {
6c30d220 6956 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6957 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6958 i.types[op].bitfield.disp8 = 0;
6959 i.types[op].bitfield.disp16 = 0;
6960 i.types[op].bitfield.disp32 = 0;
6961 i.types[op].bitfield.disp32s = 1;
6962 i.types[op].bitfield.disp64 = 0;
71903a11 6963 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6964 if (! i.disp_operands)
6965 fake_zero_displacement = 1;
29b0f896 6966 }
dc821c5f 6967 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6968 {
6c30d220 6969 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6970 switch (i.base_reg->reg_num)
6971 {
6972 case 3: /* (%bx) */
6973 if (i.index_reg == 0)
6974 i.rm.regmem = 7;
6975 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6976 i.rm.regmem = i.index_reg->reg_num - 6;
6977 break;
6978 case 5: /* (%bp) */
6979 default_seg = &ss;
6980 if (i.index_reg == 0)
6981 {
6982 i.rm.regmem = 6;
40fb9820 6983 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6984 {
6985 /* fake (%bp) into 0(%bp) */
b5014f7a 6986 i.types[op].bitfield.disp8 = 1;
252b5132 6987 fake_zero_displacement = 1;
29b0f896
AM
6988 }
6989 }
6990 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6991 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6992 break;
6993 default: /* (%si) -> 4 or (%di) -> 5 */
6994 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6995 }
6996 i.rm.mode = mode_from_disp_size (i.types[op]);
6997 }
6998 else /* i.base_reg and 32/64 bit mode */
6999 {
7000 if (flag_code == CODE_64BIT
40fb9820
L
7001 && operand_type_check (i.types[op], disp))
7002 {
73053c1f
JB
7003 i.types[op].bitfield.disp16 = 0;
7004 i.types[op].bitfield.disp64 = 0;
40fb9820 7005 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7006 {
7007 i.types[op].bitfield.disp32 = 0;
7008 i.types[op].bitfield.disp32s = 1;
7009 }
40fb9820 7010 else
73053c1f
JB
7011 {
7012 i.types[op].bitfield.disp32 = 1;
7013 i.types[op].bitfield.disp32s = 0;
7014 }
40fb9820 7015 }
20f0a1fc 7016
6c30d220
L
7017 if (!i.tm.opcode_modifier.vecsib)
7018 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7019 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7020 i.rex |= REX_B;
29b0f896
AM
7021 i.sib.base = i.base_reg->reg_num;
7022 /* x86-64 ignores REX prefix bit here to avoid decoder
7023 complications. */
848930b2
JB
7024 if (!(i.base_reg->reg_flags & RegRex)
7025 && (i.base_reg->reg_num == EBP_REG_NUM
7026 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7027 default_seg = &ss;
848930b2 7028 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7029 {
848930b2 7030 fake_zero_displacement = 1;
b5014f7a 7031 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7032 }
7033 i.sib.scale = i.log2_scale_factor;
7034 if (i.index_reg == 0)
7035 {
6c30d220 7036 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7037 /* <disp>(%esp) becomes two byte modrm with no index
7038 register. We've already stored the code for esp
7039 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7040 Any base register besides %esp will not use the
7041 extra modrm byte. */
7042 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7043 }
6c30d220 7044 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7045 {
db51cc60
L
7046 if (i.index_reg->reg_num == RegEiz
7047 || i.index_reg->reg_num == RegRiz)
7048 i.sib.index = NO_INDEX_REGISTER;
7049 else
7050 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7051 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7052 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7053 i.rex |= REX_X;
29b0f896 7054 }
67a4f2b7
AO
7055
7056 if (i.disp_operands
7057 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7058 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7059 i.rm.mode = 0;
7060 else
a501d77e
L
7061 {
7062 if (!fake_zero_displacement
7063 && !i.disp_operands
7064 && i.disp_encoding)
7065 {
7066 fake_zero_displacement = 1;
7067 if (i.disp_encoding == disp_encoding_8bit)
7068 i.types[op].bitfield.disp8 = 1;
7069 else
7070 i.types[op].bitfield.disp32 = 1;
7071 }
7072 i.rm.mode = mode_from_disp_size (i.types[op]);
7073 }
29b0f896 7074 }
252b5132 7075
29b0f896
AM
7076 if (fake_zero_displacement)
7077 {
7078 /* Fakes a zero displacement assuming that i.types[op]
7079 holds the correct displacement size. */
7080 expressionS *exp;
7081
9c2799c2 7082 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7083 exp = &disp_expressions[i.disp_operands++];
7084 i.op[op].disps = exp;
7085 exp->X_op = O_constant;
7086 exp->X_add_number = 0;
7087 exp->X_add_symbol = (symbolS *) 0;
7088 exp->X_op_symbol = (symbolS *) 0;
7089 }
c0f3af97
L
7090
7091 mem = op;
29b0f896 7092 }
c0f3af97
L
7093 else
7094 mem = ~0;
252b5132 7095
8c43a48b 7096 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7097 {
7098 if (operand_type_check (i.types[0], imm))
7099 i.vex.register_specifier = NULL;
7100 else
7101 {
7102 /* VEX.vvvv encodes one of the sources when the first
7103 operand is not an immediate. */
1ef99a7b 7104 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7105 i.vex.register_specifier = i.op[0].regs;
7106 else
7107 i.vex.register_specifier = i.op[1].regs;
7108 }
7109
7110 /* Destination is a XMM register encoded in the ModRM.reg
7111 and VEX.R bit. */
7112 i.rm.reg = i.op[2].regs->reg_num;
7113 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7114 i.rex |= REX_R;
7115
7116 /* ModRM.rm and VEX.B encodes the other source. */
7117 if (!i.mem_operands)
7118 {
7119 i.rm.mode = 3;
7120
1ef99a7b 7121 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7122 i.rm.regmem = i.op[1].regs->reg_num;
7123 else
7124 i.rm.regmem = i.op[0].regs->reg_num;
7125
7126 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7127 i.rex |= REX_B;
7128 }
7129 }
2426c15f 7130 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7131 {
7132 i.vex.register_specifier = i.op[2].regs;
7133 if (!i.mem_operands)
7134 {
7135 i.rm.mode = 3;
7136 i.rm.regmem = i.op[1].regs->reg_num;
7137 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7138 i.rex |= REX_B;
7139 }
7140 }
29b0f896
AM
7141 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7142 (if any) based on i.tm.extension_opcode. Again, we must be
7143 careful to make sure that segment/control/debug/test/MMX
7144 registers are coded into the i.rm.reg field. */
f88c9eb0 7145 else if (i.reg_operands)
29b0f896 7146 {
99018f42 7147 unsigned int op;
7ab9ffdd
L
7148 unsigned int vex_reg = ~0;
7149
7150 for (op = 0; op < i.operands; op++)
dc821c5f 7151 if (i.types[op].bitfield.reg
7ab9ffdd 7152 || i.types[op].bitfield.regmmx
1b54b8d7 7153 || i.types[op].bitfield.regsimd
7e8b059b 7154 || i.types[op].bitfield.regbnd
43234a1e 7155 || i.types[op].bitfield.regmask
7ab9ffdd
L
7156 || i.types[op].bitfield.sreg2
7157 || i.types[op].bitfield.sreg3
7158 || i.types[op].bitfield.control
7159 || i.types[op].bitfield.debug
7160 || i.types[op].bitfield.test)
7161 break;
c0209578 7162
7ab9ffdd
L
7163 if (vex_3_sources)
7164 op = dest;
2426c15f 7165 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7166 {
7167 /* For instructions with VexNDS, the register-only
7168 source operand is encoded in VEX prefix. */
7169 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7170
7ab9ffdd 7171 if (op > mem)
c0f3af97 7172 {
7ab9ffdd
L
7173 vex_reg = op++;
7174 gas_assert (op < i.operands);
c0f3af97
L
7175 }
7176 else
c0f3af97 7177 {
f12dc422
L
7178 /* Check register-only source operand when two source
7179 operands are swapped. */
7180 if (!i.tm.operand_types[op].bitfield.baseindex
7181 && i.tm.operand_types[op + 1].bitfield.baseindex)
7182 {
7183 vex_reg = op;
7184 op += 2;
7185 gas_assert (mem == (vex_reg + 1)
7186 && op < i.operands);
7187 }
7188 else
7189 {
7190 vex_reg = op + 1;
7191 gas_assert (vex_reg < i.operands);
7192 }
c0f3af97 7193 }
7ab9ffdd 7194 }
2426c15f 7195 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7196 {
f12dc422 7197 /* For instructions with VexNDD, the register destination
7ab9ffdd 7198 is encoded in VEX prefix. */
f12dc422
L
7199 if (i.mem_operands == 0)
7200 {
7201 /* There is no memory operand. */
7202 gas_assert ((op + 2) == i.operands);
7203 vex_reg = op + 1;
7204 }
7205 else
8d63c93e 7206 {
ed438a93
JB
7207 /* There are only 2 non-immediate operands. */
7208 gas_assert (op < i.imm_operands + 2
7209 && i.operands == i.imm_operands + 2);
7210 vex_reg = i.imm_operands + 1;
f12dc422 7211 }
7ab9ffdd
L
7212 }
7213 else
7214 gas_assert (op < i.operands);
99018f42 7215
7ab9ffdd
L
7216 if (vex_reg != (unsigned int) ~0)
7217 {
f12dc422 7218 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7219
dc821c5f
JB
7220 if ((!type->bitfield.reg
7221 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7222 && !type->bitfield.regsimd
43234a1e 7223 && !operand_type_equal (type, &regmask))
7ab9ffdd 7224 abort ();
f88c9eb0 7225
7ab9ffdd
L
7226 i.vex.register_specifier = i.op[vex_reg].regs;
7227 }
7228
1b9f0c97
L
7229 /* Don't set OP operand twice. */
7230 if (vex_reg != op)
7ab9ffdd 7231 {
1b9f0c97
L
7232 /* If there is an extension opcode to put here, the
7233 register number must be put into the regmem field. */
7234 if (i.tm.extension_opcode != None)
7235 {
7236 i.rm.regmem = i.op[op].regs->reg_num;
7237 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7238 i.rex |= REX_B;
43234a1e
L
7239 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7240 i.vrex |= REX_B;
1b9f0c97
L
7241 }
7242 else
7243 {
7244 i.rm.reg = i.op[op].regs->reg_num;
7245 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7246 i.rex |= REX_R;
43234a1e
L
7247 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7248 i.vrex |= REX_R;
1b9f0c97 7249 }
7ab9ffdd 7250 }
252b5132 7251
29b0f896
AM
7252 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7253 must set it to 3 to indicate this is a register operand
7254 in the regmem field. */
7255 if (!i.mem_operands)
7256 i.rm.mode = 3;
7257 }
252b5132 7258
29b0f896 7259 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7260 if (i.tm.extension_opcode != None)
29b0f896
AM
7261 i.rm.reg = i.tm.extension_opcode;
7262 }
7263 return default_seg;
7264}
252b5132 7265
29b0f896 7266static void
e3bb37b5 7267output_branch (void)
29b0f896
AM
7268{
7269 char *p;
f8a5c266 7270 int size;
29b0f896
AM
7271 int code16;
7272 int prefix;
7273 relax_substateT subtype;
7274 symbolS *sym;
7275 offsetT off;
7276
f8a5c266 7277 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7278 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7279
7280 prefix = 0;
7281 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7282 {
29b0f896
AM
7283 prefix = 1;
7284 i.prefixes -= 1;
7285 code16 ^= CODE16;
252b5132 7286 }
29b0f896
AM
7287 /* Pentium4 branch hints. */
7288 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7289 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7290 {
29b0f896
AM
7291 prefix++;
7292 i.prefixes--;
7293 }
7294 if (i.prefix[REX_PREFIX] != 0)
7295 {
7296 prefix++;
7297 i.prefixes--;
2f66722d
AM
7298 }
7299
7e8b059b
L
7300 /* BND prefixed jump. */
7301 if (i.prefix[BND_PREFIX] != 0)
7302 {
7303 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7304 i.prefixes -= 1;
7305 }
7306
29b0f896
AM
7307 if (i.prefixes != 0 && !intel_syntax)
7308 as_warn (_("skipping prefixes on this instruction"));
7309
7310 /* It's always a symbol; End frag & setup for relax.
7311 Make sure there is enough room in this frag for the largest
7312 instruction we may generate in md_convert_frag. This is 2
7313 bytes for the opcode and room for the prefix and largest
7314 displacement. */
7315 frag_grow (prefix + 2 + 4);
7316 /* Prefix and 1 opcode byte go in fr_fix. */
7317 p = frag_more (prefix + 1);
7318 if (i.prefix[DATA_PREFIX] != 0)
7319 *p++ = DATA_PREFIX_OPCODE;
7320 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7321 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7322 *p++ = i.prefix[SEG_PREFIX];
7323 if (i.prefix[REX_PREFIX] != 0)
7324 *p++ = i.prefix[REX_PREFIX];
7325 *p = i.tm.base_opcode;
7326
7327 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7328 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7329 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7330 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7331 else
f8a5c266 7332 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7333 subtype |= code16;
3e73aa7c 7334
29b0f896
AM
7335 sym = i.op[0].disps->X_add_symbol;
7336 off = i.op[0].disps->X_add_number;
3e73aa7c 7337
29b0f896
AM
7338 if (i.op[0].disps->X_op != O_constant
7339 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7340 {
29b0f896
AM
7341 /* Handle complex expressions. */
7342 sym = make_expr_symbol (i.op[0].disps);
7343 off = 0;
7344 }
3e73aa7c 7345
29b0f896
AM
7346 /* 1 possible extra opcode + 4 byte displacement go in var part.
7347 Pass reloc in fr_var. */
d258b828 7348 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7349}
3e73aa7c 7350
bd7ab16b
L
7351#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7352/* Return TRUE iff PLT32 relocation should be used for branching to
7353 symbol S. */
7354
7355static bfd_boolean
7356need_plt32_p (symbolS *s)
7357{
7358 /* PLT32 relocation is ELF only. */
7359 if (!IS_ELF)
7360 return FALSE;
7361
7362 /* Since there is no need to prepare for PLT branch on x86-64, we
7363 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7364 be used as a marker for 32-bit PC-relative branches. */
7365 if (!object_64bit)
7366 return FALSE;
7367
7368 /* Weak or undefined symbol need PLT32 relocation. */
7369 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7370 return TRUE;
7371
7372 /* Non-global symbol doesn't need PLT32 relocation. */
7373 if (! S_IS_EXTERNAL (s))
7374 return FALSE;
7375
7376 /* Other global symbols need PLT32 relocation. NB: Symbol with
7377 non-default visibilities are treated as normal global symbol
7378 so that PLT32 relocation can be used as a marker for 32-bit
7379 PC-relative branches. It is useful for linker relaxation. */
7380 return TRUE;
7381}
7382#endif
7383
29b0f896 7384static void
e3bb37b5 7385output_jump (void)
29b0f896
AM
7386{
7387 char *p;
7388 int size;
3e02c1cc 7389 fixS *fixP;
bd7ab16b 7390 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7391
40fb9820 7392 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7393 {
7394 /* This is a loop or jecxz type instruction. */
7395 size = 1;
7396 if (i.prefix[ADDR_PREFIX] != 0)
7397 {
7398 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7399 i.prefixes -= 1;
7400 }
7401 /* Pentium4 branch hints. */
7402 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7403 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7404 {
7405 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7406 i.prefixes--;
3e73aa7c
JH
7407 }
7408 }
29b0f896
AM
7409 else
7410 {
7411 int code16;
3e73aa7c 7412
29b0f896
AM
7413 code16 = 0;
7414 if (flag_code == CODE_16BIT)
7415 code16 = CODE16;
3e73aa7c 7416
29b0f896
AM
7417 if (i.prefix[DATA_PREFIX] != 0)
7418 {
7419 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7420 i.prefixes -= 1;
7421 code16 ^= CODE16;
7422 }
252b5132 7423
29b0f896
AM
7424 size = 4;
7425 if (code16)
7426 size = 2;
7427 }
9fcc94b6 7428
29b0f896
AM
7429 if (i.prefix[REX_PREFIX] != 0)
7430 {
7431 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7432 i.prefixes -= 1;
7433 }
252b5132 7434
7e8b059b
L
7435 /* BND prefixed jump. */
7436 if (i.prefix[BND_PREFIX] != 0)
7437 {
7438 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7439 i.prefixes -= 1;
7440 }
7441
29b0f896
AM
7442 if (i.prefixes != 0 && !intel_syntax)
7443 as_warn (_("skipping prefixes on this instruction"));
e0890092 7444
42164a71
L
7445 p = frag_more (i.tm.opcode_length + size);
7446 switch (i.tm.opcode_length)
7447 {
7448 case 2:
7449 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7450 /* Fall through. */
42164a71
L
7451 case 1:
7452 *p++ = i.tm.base_opcode;
7453 break;
7454 default:
7455 abort ();
7456 }
e0890092 7457
bd7ab16b
L
7458#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7459 if (size == 4
7460 && jump_reloc == NO_RELOC
7461 && need_plt32_p (i.op[0].disps->X_add_symbol))
7462 jump_reloc = BFD_RELOC_X86_64_PLT32;
7463#endif
7464
7465 jump_reloc = reloc (size, 1, 1, jump_reloc);
7466
3e02c1cc 7467 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7468 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7469
7470 /* All jumps handled here are signed, but don't use a signed limit
7471 check for 32 and 16 bit jumps as we want to allow wrap around at
7472 4G and 64k respectively. */
7473 if (size == 1)
7474 fixP->fx_signed = 1;
29b0f896 7475}
e0890092 7476
29b0f896 7477static void
e3bb37b5 7478output_interseg_jump (void)
29b0f896
AM
7479{
7480 char *p;
7481 int size;
7482 int prefix;
7483 int code16;
252b5132 7484
29b0f896
AM
7485 code16 = 0;
7486 if (flag_code == CODE_16BIT)
7487 code16 = CODE16;
a217f122 7488
29b0f896
AM
7489 prefix = 0;
7490 if (i.prefix[DATA_PREFIX] != 0)
7491 {
7492 prefix = 1;
7493 i.prefixes -= 1;
7494 code16 ^= CODE16;
7495 }
7496 if (i.prefix[REX_PREFIX] != 0)
7497 {
7498 prefix++;
7499 i.prefixes -= 1;
7500 }
252b5132 7501
29b0f896
AM
7502 size = 4;
7503 if (code16)
7504 size = 2;
252b5132 7505
29b0f896
AM
7506 if (i.prefixes != 0 && !intel_syntax)
7507 as_warn (_("skipping prefixes on this instruction"));
252b5132 7508
29b0f896
AM
7509 /* 1 opcode; 2 segment; offset */
7510 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7511
29b0f896
AM
7512 if (i.prefix[DATA_PREFIX] != 0)
7513 *p++ = DATA_PREFIX_OPCODE;
252b5132 7514
29b0f896
AM
7515 if (i.prefix[REX_PREFIX] != 0)
7516 *p++ = i.prefix[REX_PREFIX];
252b5132 7517
29b0f896
AM
7518 *p++ = i.tm.base_opcode;
7519 if (i.op[1].imms->X_op == O_constant)
7520 {
7521 offsetT n = i.op[1].imms->X_add_number;
252b5132 7522
29b0f896
AM
7523 if (size == 2
7524 && !fits_in_unsigned_word (n)
7525 && !fits_in_signed_word (n))
7526 {
7527 as_bad (_("16-bit jump out of range"));
7528 return;
7529 }
7530 md_number_to_chars (p, n, size);
7531 }
7532 else
7533 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7534 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7535 if (i.op[0].imms->X_op != O_constant)
7536 as_bad (_("can't handle non absolute segment in `%s'"),
7537 i.tm.name);
7538 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7539}
a217f122 7540
29b0f896 7541static void
e3bb37b5 7542output_insn (void)
29b0f896 7543{
2bbd9c25
JJ
7544 fragS *insn_start_frag;
7545 offsetT insn_start_off;
7546
29b0f896
AM
7547 /* Tie dwarf2 debug info to the address at the start of the insn.
7548 We can't do this after the insn has been output as the current
7549 frag may have been closed off. eg. by frag_var. */
7550 dwarf2_emit_insn (0);
7551
2bbd9c25
JJ
7552 insn_start_frag = frag_now;
7553 insn_start_off = frag_now_fix ();
7554
29b0f896 7555 /* Output jumps. */
40fb9820 7556 if (i.tm.opcode_modifier.jump)
29b0f896 7557 output_branch ();
40fb9820
L
7558 else if (i.tm.opcode_modifier.jumpbyte
7559 || i.tm.opcode_modifier.jumpdword)
29b0f896 7560 output_jump ();
40fb9820 7561 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7562 output_interseg_jump ();
7563 else
7564 {
7565 /* Output normal instructions here. */
7566 char *p;
7567 unsigned char *q;
47465058 7568 unsigned int j;
331d2d0d 7569 unsigned int prefix;
4dffcebc 7570
e4e00185
AS
7571 if (avoid_fence
7572 && i.tm.base_opcode == 0xfae
7573 && i.operands == 1
7574 && i.imm_operands == 1
7575 && (i.op[0].imms->X_add_number == 0xe8
7576 || i.op[0].imms->X_add_number == 0xf0
7577 || i.op[0].imms->X_add_number == 0xf8))
7578 {
7579 /* Encode lfence, mfence, and sfence as
7580 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7581 offsetT val = 0x240483f0ULL;
7582 p = frag_more (5);
7583 md_number_to_chars (p, val, 5);
7584 return;
7585 }
7586
d022bddd
IT
7587 /* Some processors fail on LOCK prefix. This options makes
7588 assembler ignore LOCK prefix and serves as a workaround. */
7589 if (omit_lock_prefix)
7590 {
7591 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7592 return;
7593 i.prefix[LOCK_PREFIX] = 0;
7594 }
7595
43234a1e
L
7596 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7597 don't need the explicit prefix. */
7598 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7599 {
c0f3af97 7600 switch (i.tm.opcode_length)
bc4bd9ab 7601 {
c0f3af97
L
7602 case 3:
7603 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7604 {
c0f3af97
L
7605 prefix = (i.tm.base_opcode >> 24) & 0xff;
7606 goto check_prefix;
7607 }
7608 break;
7609 case 2:
7610 if ((i.tm.base_opcode & 0xff0000) != 0)
7611 {
7612 prefix = (i.tm.base_opcode >> 16) & 0xff;
7613 if (i.tm.cpu_flags.bitfield.cpupadlock)
7614 {
4dffcebc 7615check_prefix:
c0f3af97 7616 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7617 || (i.prefix[REP_PREFIX]
c0f3af97
L
7618 != REPE_PREFIX_OPCODE))
7619 add_prefix (prefix);
7620 }
7621 else
4dffcebc
L
7622 add_prefix (prefix);
7623 }
c0f3af97
L
7624 break;
7625 case 1:
7626 break;
390c91cf
L
7627 case 0:
7628 /* Check for pseudo prefixes. */
7629 as_bad_where (insn_start_frag->fr_file,
7630 insn_start_frag->fr_line,
7631 _("pseudo prefix without instruction"));
7632 return;
c0f3af97
L
7633 default:
7634 abort ();
bc4bd9ab 7635 }
c0f3af97 7636
6d19a37a 7637#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7638 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7639 R_X86_64_GOTTPOFF relocation so that linker can safely
7640 perform IE->LE optimization. */
7641 if (x86_elf_abi == X86_64_X32_ABI
7642 && i.operands == 2
7643 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7644 && i.prefix[REX_PREFIX] == 0)
7645 add_prefix (REX_OPCODE);
6d19a37a 7646#endif
cf61b747 7647
c0f3af97
L
7648 /* The prefix bytes. */
7649 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7650 if (*q)
7651 FRAG_APPEND_1_CHAR (*q);
0f10071e 7652 }
ae5c1c7b 7653 else
c0f3af97
L
7654 {
7655 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7656 if (*q)
7657 switch (j)
7658 {
7659 case REX_PREFIX:
7660 /* REX byte is encoded in VEX prefix. */
7661 break;
7662 case SEG_PREFIX:
7663 case ADDR_PREFIX:
7664 FRAG_APPEND_1_CHAR (*q);
7665 break;
7666 default:
7667 /* There should be no other prefixes for instructions
7668 with VEX prefix. */
7669 abort ();
7670 }
7671
43234a1e
L
7672 /* For EVEX instructions i.vrex should become 0 after
7673 build_evex_prefix. For VEX instructions upper 16 registers
7674 aren't available, so VREX should be 0. */
7675 if (i.vrex)
7676 abort ();
c0f3af97
L
7677 /* Now the VEX prefix. */
7678 p = frag_more (i.vex.length);
7679 for (j = 0; j < i.vex.length; j++)
7680 p[j] = i.vex.bytes[j];
7681 }
252b5132 7682
29b0f896 7683 /* Now the opcode; be careful about word order here! */
4dffcebc 7684 if (i.tm.opcode_length == 1)
29b0f896
AM
7685 {
7686 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7687 }
7688 else
7689 {
4dffcebc 7690 switch (i.tm.opcode_length)
331d2d0d 7691 {
43234a1e
L
7692 case 4:
7693 p = frag_more (4);
7694 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7695 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7696 break;
4dffcebc 7697 case 3:
331d2d0d
L
7698 p = frag_more (3);
7699 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7700 break;
7701 case 2:
7702 p = frag_more (2);
7703 break;
7704 default:
7705 abort ();
7706 break;
331d2d0d 7707 }
0f10071e 7708
29b0f896
AM
7709 /* Put out high byte first: can't use md_number_to_chars! */
7710 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7711 *p = i.tm.base_opcode & 0xff;
7712 }
3e73aa7c 7713
29b0f896 7714 /* Now the modrm byte and sib byte (if present). */
40fb9820 7715 if (i.tm.opcode_modifier.modrm)
29b0f896 7716 {
4a3523fa
L
7717 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7718 | i.rm.reg << 3
7719 | i.rm.mode << 6));
29b0f896
AM
7720 /* If i.rm.regmem == ESP (4)
7721 && i.rm.mode != (Register mode)
7722 && not 16 bit
7723 ==> need second modrm byte. */
7724 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7725 && i.rm.mode != 3
dc821c5f 7726 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7727 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7728 | i.sib.index << 3
7729 | i.sib.scale << 6));
29b0f896 7730 }
3e73aa7c 7731
29b0f896 7732 if (i.disp_operands)
2bbd9c25 7733 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7734
29b0f896 7735 if (i.imm_operands)
2bbd9c25 7736 output_imm (insn_start_frag, insn_start_off);
29b0f896 7737 }
252b5132 7738
29b0f896
AM
7739#ifdef DEBUG386
7740 if (flag_debug)
7741 {
7b81dfbb 7742 pi ("" /*line*/, &i);
29b0f896
AM
7743 }
7744#endif /* DEBUG386 */
7745}
252b5132 7746
e205caa7
L
7747/* Return the size of the displacement operand N. */
7748
7749static int
7750disp_size (unsigned int n)
7751{
7752 int size = 4;
43234a1e 7753
b5014f7a 7754 if (i.types[n].bitfield.disp64)
40fb9820
L
7755 size = 8;
7756 else if (i.types[n].bitfield.disp8)
7757 size = 1;
7758 else if (i.types[n].bitfield.disp16)
7759 size = 2;
e205caa7
L
7760 return size;
7761}
7762
7763/* Return the size of the immediate operand N. */
7764
7765static int
7766imm_size (unsigned int n)
7767{
7768 int size = 4;
40fb9820
L
7769 if (i.types[n].bitfield.imm64)
7770 size = 8;
7771 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7772 size = 1;
7773 else if (i.types[n].bitfield.imm16)
7774 size = 2;
e205caa7
L
7775 return size;
7776}
7777
29b0f896 7778static void
64e74474 7779output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7780{
7781 char *p;
7782 unsigned int n;
252b5132 7783
29b0f896
AM
7784 for (n = 0; n < i.operands; n++)
7785 {
b5014f7a 7786 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7787 {
7788 if (i.op[n].disps->X_op == O_constant)
7789 {
e205caa7 7790 int size = disp_size (n);
43234a1e 7791 offsetT val = i.op[n].disps->X_add_number;
252b5132 7792
b5014f7a 7793 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7794 p = frag_more (size);
7795 md_number_to_chars (p, val, size);
7796 }
7797 else
7798 {
f86103b7 7799 enum bfd_reloc_code_real reloc_type;
e205caa7 7800 int size = disp_size (n);
40fb9820 7801 int sign = i.types[n].bitfield.disp32s;
29b0f896 7802 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7803 fixS *fixP;
29b0f896 7804
e205caa7 7805 /* We can't have 8 bit displacement here. */
9c2799c2 7806 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7807
29b0f896
AM
7808 /* The PC relative address is computed relative
7809 to the instruction boundary, so in case immediate
7810 fields follows, we need to adjust the value. */
7811 if (pcrel && i.imm_operands)
7812 {
29b0f896 7813 unsigned int n1;
e205caa7 7814 int sz = 0;
252b5132 7815
29b0f896 7816 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7817 if (operand_type_check (i.types[n1], imm))
252b5132 7818 {
e205caa7
L
7819 /* Only one immediate is allowed for PC
7820 relative address. */
9c2799c2 7821 gas_assert (sz == 0);
e205caa7
L
7822 sz = imm_size (n1);
7823 i.op[n].disps->X_add_number -= sz;
252b5132 7824 }
29b0f896 7825 /* We should find the immediate. */
9c2799c2 7826 gas_assert (sz != 0);
29b0f896 7827 }
520dc8e8 7828
29b0f896 7829 p = frag_more (size);
d258b828 7830 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7831 if (GOT_symbol
2bbd9c25 7832 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7833 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7834 || reloc_type == BFD_RELOC_X86_64_32S
7835 || (reloc_type == BFD_RELOC_64
7836 && object_64bit))
d6ab8113
JB
7837 && (i.op[n].disps->X_op == O_symbol
7838 || (i.op[n].disps->X_op == O_add
7839 && ((symbol_get_value_expression
7840 (i.op[n].disps->X_op_symbol)->X_op)
7841 == O_subtract))))
7842 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7843 {
7844 offsetT add;
7845
7846 if (insn_start_frag == frag_now)
7847 add = (p - frag_now->fr_literal) - insn_start_off;
7848 else
7849 {
7850 fragS *fr;
7851
7852 add = insn_start_frag->fr_fix - insn_start_off;
7853 for (fr = insn_start_frag->fr_next;
7854 fr && fr != frag_now; fr = fr->fr_next)
7855 add += fr->fr_fix;
7856 add += p - frag_now->fr_literal;
7857 }
7858
4fa24527 7859 if (!object_64bit)
7b81dfbb
AJ
7860 {
7861 reloc_type = BFD_RELOC_386_GOTPC;
7862 i.op[n].imms->X_add_number += add;
7863 }
7864 else if (reloc_type == BFD_RELOC_64)
7865 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7866 else
7b81dfbb
AJ
7867 /* Don't do the adjustment for x86-64, as there
7868 the pcrel addressing is relative to the _next_
7869 insn, and that is taken care of in other code. */
d6ab8113 7870 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7871 }
02a86693
L
7872 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7873 size, i.op[n].disps, pcrel,
7874 reloc_type);
7875 /* Check for "call/jmp *mem", "mov mem, %reg",
7876 "test %reg, mem" and "binop mem, %reg" where binop
7877 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7878 instructions. Always generate R_386_GOT32X for
7879 "sym*GOT" operand in 32-bit mode. */
7880 if ((generate_relax_relocations
7881 || (!object_64bit
7882 && i.rm.mode == 0
7883 && i.rm.regmem == 5))
7884 && (i.rm.mode == 2
7885 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7886 && ((i.operands == 1
7887 && i.tm.base_opcode == 0xff
7888 && (i.rm.reg == 2 || i.rm.reg == 4))
7889 || (i.operands == 2
7890 && (i.tm.base_opcode == 0x8b
7891 || i.tm.base_opcode == 0x85
7892 || (i.tm.base_opcode & 0xc7) == 0x03))))
7893 {
7894 if (object_64bit)
7895 {
7896 fixP->fx_tcbit = i.rex != 0;
7897 if (i.base_reg
7898 && (i.base_reg->reg_num == RegRip
7899 || i.base_reg->reg_num == RegEip))
7900 fixP->fx_tcbit2 = 1;
7901 }
7902 else
7903 fixP->fx_tcbit2 = 1;
7904 }
29b0f896
AM
7905 }
7906 }
7907 }
7908}
252b5132 7909
29b0f896 7910static void
64e74474 7911output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7912{
7913 char *p;
7914 unsigned int n;
252b5132 7915
29b0f896
AM
7916 for (n = 0; n < i.operands; n++)
7917 {
43234a1e
L
7918 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7919 if (i.rounding && (int) n == i.rounding->operand)
7920 continue;
7921
40fb9820 7922 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7923 {
7924 if (i.op[n].imms->X_op == O_constant)
7925 {
e205caa7 7926 int size = imm_size (n);
29b0f896 7927 offsetT val;
b4cac588 7928
29b0f896
AM
7929 val = offset_in_range (i.op[n].imms->X_add_number,
7930 size);
7931 p = frag_more (size);
7932 md_number_to_chars (p, val, size);
7933 }
7934 else
7935 {
7936 /* Not absolute_section.
7937 Need a 32-bit fixup (don't support 8bit
7938 non-absolute imms). Try to support other
7939 sizes ... */
f86103b7 7940 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7941 int size = imm_size (n);
7942 int sign;
29b0f896 7943
40fb9820 7944 if (i.types[n].bitfield.imm32s
a7d61044 7945 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7946 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7947 sign = 1;
e205caa7
L
7948 else
7949 sign = 0;
520dc8e8 7950
29b0f896 7951 p = frag_more (size);
d258b828 7952 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7953
2bbd9c25
JJ
7954 /* This is tough to explain. We end up with this one if we
7955 * have operands that look like
7956 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7957 * obtain the absolute address of the GOT, and it is strongly
7958 * preferable from a performance point of view to avoid using
7959 * a runtime relocation for this. The actual sequence of
7960 * instructions often look something like:
7961 *
7962 * call .L66
7963 * .L66:
7964 * popl %ebx
7965 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7966 *
7967 * The call and pop essentially return the absolute address
7968 * of the label .L66 and store it in %ebx. The linker itself
7969 * will ultimately change the first operand of the addl so
7970 * that %ebx points to the GOT, but to keep things simple, the
7971 * .o file must have this operand set so that it generates not
7972 * the absolute address of .L66, but the absolute address of
7973 * itself. This allows the linker itself simply treat a GOTPC
7974 * relocation as asking for a pcrel offset to the GOT to be
7975 * added in, and the addend of the relocation is stored in the
7976 * operand field for the instruction itself.
7977 *
7978 * Our job here is to fix the operand so that it would add
7979 * the correct offset so that %ebx would point to itself. The
7980 * thing that is tricky is that .-.L66 will point to the
7981 * beginning of the instruction, so we need to further modify
7982 * the operand so that it will point to itself. There are
7983 * other cases where you have something like:
7984 *
7985 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7986 *
7987 * and here no correction would be required. Internally in
7988 * the assembler we treat operands of this form as not being
7989 * pcrel since the '.' is explicitly mentioned, and I wonder
7990 * whether it would simplify matters to do it this way. Who
7991 * knows. In earlier versions of the PIC patches, the
7992 * pcrel_adjust field was used to store the correction, but
7993 * since the expression is not pcrel, I felt it would be
7994 * confusing to do it this way. */
7995
d6ab8113 7996 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7997 || reloc_type == BFD_RELOC_X86_64_32S
7998 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7999 && GOT_symbol
8000 && GOT_symbol == i.op[n].imms->X_add_symbol
8001 && (i.op[n].imms->X_op == O_symbol
8002 || (i.op[n].imms->X_op == O_add
8003 && ((symbol_get_value_expression
8004 (i.op[n].imms->X_op_symbol)->X_op)
8005 == O_subtract))))
8006 {
2bbd9c25
JJ
8007 offsetT add;
8008
8009 if (insn_start_frag == frag_now)
8010 add = (p - frag_now->fr_literal) - insn_start_off;
8011 else
8012 {
8013 fragS *fr;
8014
8015 add = insn_start_frag->fr_fix - insn_start_off;
8016 for (fr = insn_start_frag->fr_next;
8017 fr && fr != frag_now; fr = fr->fr_next)
8018 add += fr->fr_fix;
8019 add += p - frag_now->fr_literal;
8020 }
8021
4fa24527 8022 if (!object_64bit)
d6ab8113 8023 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8024 else if (size == 4)
d6ab8113 8025 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8026 else if (size == 8)
8027 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8028 i.op[n].imms->X_add_number += add;
29b0f896 8029 }
29b0f896
AM
8030 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8031 i.op[n].imms, 0, reloc_type);
8032 }
8033 }
8034 }
252b5132
RH
8035}
8036\f
d182319b
JB
8037/* x86_cons_fix_new is called via the expression parsing code when a
8038 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8039static int cons_sign = -1;
8040
8041void
e3bb37b5 8042x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8043 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8044{
d258b828 8045 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8046
8047#ifdef TE_PE
8048 if (exp->X_op == O_secrel)
8049 {
8050 exp->X_op = O_symbol;
8051 r = BFD_RELOC_32_SECREL;
8052 }
8053#endif
8054
8055 fix_new_exp (frag, off, len, exp, 0, r);
8056}
8057
357d1bd8
L
8058/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8059 purpose of the `.dc.a' internal pseudo-op. */
8060
8061int
8062x86_address_bytes (void)
8063{
8064 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8065 return 4;
8066 return stdoutput->arch_info->bits_per_address / 8;
8067}
8068
d382c579
TG
8069#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8070 || defined (LEX_AT)
d258b828 8071# define lex_got(reloc, adjust, types) NULL
718ddfc0 8072#else
f3c180ae
AM
8073/* Parse operands of the form
8074 <symbol>@GOTOFF+<nnn>
8075 and similar .plt or .got references.
8076
8077 If we find one, set up the correct relocation in RELOC and copy the
8078 input string, minus the `@GOTOFF' into a malloc'd buffer for
8079 parsing by the calling routine. Return this buffer, and if ADJUST
8080 is non-null set it to the length of the string we removed from the
8081 input line. Otherwise return NULL. */
8082static char *
91d6fa6a 8083lex_got (enum bfd_reloc_code_real *rel,
64e74474 8084 int *adjust,
d258b828 8085 i386_operand_type *types)
f3c180ae 8086{
7b81dfbb
AJ
8087 /* Some of the relocations depend on the size of what field is to
8088 be relocated. But in our callers i386_immediate and i386_displacement
8089 we don't yet know the operand size (this will be set by insn
8090 matching). Hence we record the word32 relocation here,
8091 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8092 static const struct {
8093 const char *str;
cff8d58a 8094 int len;
4fa24527 8095 const enum bfd_reloc_code_real rel[2];
40fb9820 8096 const i386_operand_type types64;
f3c180ae 8097 } gotrel[] = {
8ce3d284 8098#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8099 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8100 BFD_RELOC_SIZE32 },
8101 OPERAND_TYPE_IMM32_64 },
8ce3d284 8102#endif
cff8d58a
L
8103 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8104 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8105 OPERAND_TYPE_IMM64 },
cff8d58a
L
8106 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8107 BFD_RELOC_X86_64_PLT32 },
40fb9820 8108 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8109 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8110 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8111 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8112 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8113 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8114 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8115 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8116 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8117 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8118 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8119 BFD_RELOC_X86_64_TLSGD },
40fb9820 8120 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8121 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8122 _dummy_first_bfd_reloc_code_real },
40fb9820 8123 OPERAND_TYPE_NONE },
cff8d58a
L
8124 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8125 BFD_RELOC_X86_64_TLSLD },
40fb9820 8126 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8127 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8128 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8129 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8130 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8131 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8132 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8133 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8134 _dummy_first_bfd_reloc_code_real },
40fb9820 8135 OPERAND_TYPE_NONE },
cff8d58a
L
8136 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8137 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8138 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8139 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8140 _dummy_first_bfd_reloc_code_real },
40fb9820 8141 OPERAND_TYPE_NONE },
cff8d58a
L
8142 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8143 _dummy_first_bfd_reloc_code_real },
40fb9820 8144 OPERAND_TYPE_NONE },
cff8d58a
L
8145 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8146 BFD_RELOC_X86_64_GOT32 },
40fb9820 8147 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8148 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8149 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8150 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8151 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8152 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8153 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8154 };
8155 char *cp;
8156 unsigned int j;
8157
d382c579 8158#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8159 if (!IS_ELF)
8160 return NULL;
d382c579 8161#endif
718ddfc0 8162
f3c180ae 8163 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8164 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8165 return NULL;
8166
47465058 8167 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8168 {
cff8d58a 8169 int len = gotrel[j].len;
28f81592 8170 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8171 {
4fa24527 8172 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8173 {
28f81592
AM
8174 int first, second;
8175 char *tmpbuf, *past_reloc;
f3c180ae 8176
91d6fa6a 8177 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8178
3956db08
JB
8179 if (types)
8180 {
8181 if (flag_code != CODE_64BIT)
40fb9820
L
8182 {
8183 types->bitfield.imm32 = 1;
8184 types->bitfield.disp32 = 1;
8185 }
3956db08
JB
8186 else
8187 *types = gotrel[j].types64;
8188 }
8189
8fd4256d 8190 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8191 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8192
28f81592 8193 /* The length of the first part of our input line. */
f3c180ae 8194 first = cp - input_line_pointer;
28f81592
AM
8195
8196 /* The second part goes from after the reloc token until
67c11a9b 8197 (and including) an end_of_line char or comma. */
28f81592 8198 past_reloc = cp + 1 + len;
67c11a9b
AM
8199 cp = past_reloc;
8200 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8201 ++cp;
8202 second = cp + 1 - past_reloc;
28f81592
AM
8203
8204 /* Allocate and copy string. The trailing NUL shouldn't
8205 be necessary, but be safe. */
add39d23 8206 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8207 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8208 if (second != 0 && *past_reloc != ' ')
8209 /* Replace the relocation token with ' ', so that
8210 errors like foo@GOTOFF1 will be detected. */
8211 tmpbuf[first++] = ' ';
af89796a
L
8212 else
8213 /* Increment length by 1 if the relocation token is
8214 removed. */
8215 len++;
8216 if (adjust)
8217 *adjust = len;
0787a12d
AM
8218 memcpy (tmpbuf + first, past_reloc, second);
8219 tmpbuf[first + second] = '\0';
f3c180ae
AM
8220 return tmpbuf;
8221 }
8222
4fa24527
JB
8223 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8224 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8225 return NULL;
8226 }
8227 }
8228
8229 /* Might be a symbol version string. Don't as_bad here. */
8230 return NULL;
8231}
4e4f7c87 8232#endif
f3c180ae 8233
a988325c
NC
8234#ifdef TE_PE
8235#ifdef lex_got
8236#undef lex_got
8237#endif
8238/* Parse operands of the form
8239 <symbol>@SECREL32+<nnn>
8240
8241 If we find one, set up the correct relocation in RELOC and copy the
8242 input string, minus the `@SECREL32' into a malloc'd buffer for
8243 parsing by the calling routine. Return this buffer, and if ADJUST
8244 is non-null set it to the length of the string we removed from the
34bca508
L
8245 input line. Otherwise return NULL.
8246
a988325c
NC
8247 This function is copied from the ELF version above adjusted for PE targets. */
8248
8249static char *
8250lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8251 int *adjust ATTRIBUTE_UNUSED,
d258b828 8252 i386_operand_type *types)
a988325c
NC
8253{
8254 static const struct
8255 {
8256 const char *str;
8257 int len;
8258 const enum bfd_reloc_code_real rel[2];
8259 const i386_operand_type types64;
8260 }
8261 gotrel[] =
8262 {
8263 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8264 BFD_RELOC_32_SECREL },
8265 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8266 };
8267
8268 char *cp;
8269 unsigned j;
8270
8271 for (cp = input_line_pointer; *cp != '@'; cp++)
8272 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8273 return NULL;
8274
8275 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8276 {
8277 int len = gotrel[j].len;
8278
8279 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8280 {
8281 if (gotrel[j].rel[object_64bit] != 0)
8282 {
8283 int first, second;
8284 char *tmpbuf, *past_reloc;
8285
8286 *rel = gotrel[j].rel[object_64bit];
8287 if (adjust)
8288 *adjust = len;
8289
8290 if (types)
8291 {
8292 if (flag_code != CODE_64BIT)
8293 {
8294 types->bitfield.imm32 = 1;
8295 types->bitfield.disp32 = 1;
8296 }
8297 else
8298 *types = gotrel[j].types64;
8299 }
8300
8301 /* The length of the first part of our input line. */
8302 first = cp - input_line_pointer;
8303
8304 /* The second part goes from after the reloc token until
8305 (and including) an end_of_line char or comma. */
8306 past_reloc = cp + 1 + len;
8307 cp = past_reloc;
8308 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8309 ++cp;
8310 second = cp + 1 - past_reloc;
8311
8312 /* Allocate and copy string. The trailing NUL shouldn't
8313 be necessary, but be safe. */
add39d23 8314 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8315 memcpy (tmpbuf, input_line_pointer, first);
8316 if (second != 0 && *past_reloc != ' ')
8317 /* Replace the relocation token with ' ', so that
8318 errors like foo@SECLREL321 will be detected. */
8319 tmpbuf[first++] = ' ';
8320 memcpy (tmpbuf + first, past_reloc, second);
8321 tmpbuf[first + second] = '\0';
8322 return tmpbuf;
8323 }
8324
8325 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8326 gotrel[j].str, 1 << (5 + object_64bit));
8327 return NULL;
8328 }
8329 }
8330
8331 /* Might be a symbol version string. Don't as_bad here. */
8332 return NULL;
8333}
8334
8335#endif /* TE_PE */
8336
62ebcb5c 8337bfd_reloc_code_real_type
e3bb37b5 8338x86_cons (expressionS *exp, int size)
f3c180ae 8339{
62ebcb5c
AM
8340 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8341
ee86248c
JB
8342 intel_syntax = -intel_syntax;
8343
3c7b9c2c 8344 exp->X_md = 0;
4fa24527 8345 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8346 {
8347 /* Handle @GOTOFF and the like in an expression. */
8348 char *save;
8349 char *gotfree_input_line;
4a57f2cf 8350 int adjust = 0;
f3c180ae
AM
8351
8352 save = input_line_pointer;
d258b828 8353 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8354 if (gotfree_input_line)
8355 input_line_pointer = gotfree_input_line;
8356
8357 expression (exp);
8358
8359 if (gotfree_input_line)
8360 {
8361 /* expression () has merrily parsed up to the end of line,
8362 or a comma - in the wrong buffer. Transfer how far
8363 input_line_pointer has moved to the right buffer. */
8364 input_line_pointer = (save
8365 + (input_line_pointer - gotfree_input_line)
8366 + adjust);
8367 free (gotfree_input_line);
3992d3b7
AM
8368 if (exp->X_op == O_constant
8369 || exp->X_op == O_absent
8370 || exp->X_op == O_illegal
0398aac5 8371 || exp->X_op == O_register
3992d3b7
AM
8372 || exp->X_op == O_big)
8373 {
8374 char c = *input_line_pointer;
8375 *input_line_pointer = 0;
8376 as_bad (_("missing or invalid expression `%s'"), save);
8377 *input_line_pointer = c;
8378 }
f3c180ae
AM
8379 }
8380 }
8381 else
8382 expression (exp);
ee86248c
JB
8383
8384 intel_syntax = -intel_syntax;
8385
8386 if (intel_syntax)
8387 i386_intel_simplify (exp);
62ebcb5c
AM
8388
8389 return got_reloc;
f3c180ae 8390}
f3c180ae 8391
9f32dd5b
L
8392static void
8393signed_cons (int size)
6482c264 8394{
d182319b
JB
8395 if (flag_code == CODE_64BIT)
8396 cons_sign = 1;
8397 cons (size);
8398 cons_sign = -1;
6482c264
NC
8399}
8400
d182319b 8401#ifdef TE_PE
6482c264 8402static void
7016a5d5 8403pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8404{
8405 expressionS exp;
8406
8407 do
8408 {
8409 expression (&exp);
8410 if (exp.X_op == O_symbol)
8411 exp.X_op = O_secrel;
8412
8413 emit_expr (&exp, 4);
8414 }
8415 while (*input_line_pointer++ == ',');
8416
8417 input_line_pointer--;
8418 demand_empty_rest_of_line ();
8419}
6482c264
NC
8420#endif
8421
43234a1e
L
8422/* Handle Vector operations. */
8423
8424static char *
8425check_VecOperations (char *op_string, char *op_end)
8426{
8427 const reg_entry *mask;
8428 const char *saved;
8429 char *end_op;
8430
8431 while (*op_string
8432 && (op_end == NULL || op_string < op_end))
8433 {
8434 saved = op_string;
8435 if (*op_string == '{')
8436 {
8437 op_string++;
8438
8439 /* Check broadcasts. */
8440 if (strncmp (op_string, "1to", 3) == 0)
8441 {
8442 int bcst_type;
8443
8444 if (i.broadcast)
8445 goto duplicated_vec_op;
8446
8447 op_string += 3;
8448 if (*op_string == '8')
8e6e0792 8449 bcst_type = 8;
b28d1bda 8450 else if (*op_string == '4')
8e6e0792 8451 bcst_type = 4;
b28d1bda 8452 else if (*op_string == '2')
8e6e0792 8453 bcst_type = 2;
43234a1e
L
8454 else if (*op_string == '1'
8455 && *(op_string+1) == '6')
8456 {
8e6e0792 8457 bcst_type = 16;
43234a1e
L
8458 op_string++;
8459 }
8460 else
8461 {
8462 as_bad (_("Unsupported broadcast: `%s'"), saved);
8463 return NULL;
8464 }
8465 op_string++;
8466
8467 broadcast_op.type = bcst_type;
8468 broadcast_op.operand = this_operand;
8469 i.broadcast = &broadcast_op;
8470 }
8471 /* Check masking operation. */
8472 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8473 {
8474 /* k0 can't be used for write mask. */
6d2cd6b2 8475 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8476 {
6d2cd6b2
JB
8477 as_bad (_("`%s%s' can't be used for write mask"),
8478 register_prefix, mask->reg_name);
43234a1e
L
8479 return NULL;
8480 }
8481
8482 if (!i.mask)
8483 {
8484 mask_op.mask = mask;
8485 mask_op.zeroing = 0;
8486 mask_op.operand = this_operand;
8487 i.mask = &mask_op;
8488 }
8489 else
8490 {
8491 if (i.mask->mask)
8492 goto duplicated_vec_op;
8493
8494 i.mask->mask = mask;
8495
8496 /* Only "{z}" is allowed here. No need to check
8497 zeroing mask explicitly. */
8498 if (i.mask->operand != this_operand)
8499 {
8500 as_bad (_("invalid write mask `%s'"), saved);
8501 return NULL;
8502 }
8503 }
8504
8505 op_string = end_op;
8506 }
8507 /* Check zeroing-flag for masking operation. */
8508 else if (*op_string == 'z')
8509 {
8510 if (!i.mask)
8511 {
8512 mask_op.mask = NULL;
8513 mask_op.zeroing = 1;
8514 mask_op.operand = this_operand;
8515 i.mask = &mask_op;
8516 }
8517 else
8518 {
8519 if (i.mask->zeroing)
8520 {
8521 duplicated_vec_op:
8522 as_bad (_("duplicated `%s'"), saved);
8523 return NULL;
8524 }
8525
8526 i.mask->zeroing = 1;
8527
8528 /* Only "{%k}" is allowed here. No need to check mask
8529 register explicitly. */
8530 if (i.mask->operand != this_operand)
8531 {
8532 as_bad (_("invalid zeroing-masking `%s'"),
8533 saved);
8534 return NULL;
8535 }
8536 }
8537
8538 op_string++;
8539 }
8540 else
8541 goto unknown_vec_op;
8542
8543 if (*op_string != '}')
8544 {
8545 as_bad (_("missing `}' in `%s'"), saved);
8546 return NULL;
8547 }
8548 op_string++;
0ba3a731
L
8549
8550 /* Strip whitespace since the addition of pseudo prefixes
8551 changed how the scrubber treats '{'. */
8552 if (is_space_char (*op_string))
8553 ++op_string;
8554
43234a1e
L
8555 continue;
8556 }
8557 unknown_vec_op:
8558 /* We don't know this one. */
8559 as_bad (_("unknown vector operation: `%s'"), saved);
8560 return NULL;
8561 }
8562
6d2cd6b2
JB
8563 if (i.mask && i.mask->zeroing && !i.mask->mask)
8564 {
8565 as_bad (_("zeroing-masking only allowed with write mask"));
8566 return NULL;
8567 }
8568
43234a1e
L
8569 return op_string;
8570}
8571
252b5132 8572static int
70e41ade 8573i386_immediate (char *imm_start)
252b5132
RH
8574{
8575 char *save_input_line_pointer;
f3c180ae 8576 char *gotfree_input_line;
252b5132 8577 segT exp_seg = 0;
47926f60 8578 expressionS *exp;
40fb9820
L
8579 i386_operand_type types;
8580
0dfbf9d7 8581 operand_type_set (&types, ~0);
252b5132
RH
8582
8583 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8584 {
31b2323c
L
8585 as_bad (_("at most %d immediate operands are allowed"),
8586 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8587 return 0;
8588 }
8589
8590 exp = &im_expressions[i.imm_operands++];
520dc8e8 8591 i.op[this_operand].imms = exp;
252b5132
RH
8592
8593 if (is_space_char (*imm_start))
8594 ++imm_start;
8595
8596 save_input_line_pointer = input_line_pointer;
8597 input_line_pointer = imm_start;
8598
d258b828 8599 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8600 if (gotfree_input_line)
8601 input_line_pointer = gotfree_input_line;
252b5132
RH
8602
8603 exp_seg = expression (exp);
8604
83183c0c 8605 SKIP_WHITESPACE ();
43234a1e
L
8606
8607 /* Handle vector operations. */
8608 if (*input_line_pointer == '{')
8609 {
8610 input_line_pointer = check_VecOperations (input_line_pointer,
8611 NULL);
8612 if (input_line_pointer == NULL)
8613 return 0;
8614 }
8615
252b5132 8616 if (*input_line_pointer)
f3c180ae 8617 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8618
8619 input_line_pointer = save_input_line_pointer;
f3c180ae 8620 if (gotfree_input_line)
ee86248c
JB
8621 {
8622 free (gotfree_input_line);
8623
8624 if (exp->X_op == O_constant || exp->X_op == O_register)
8625 exp->X_op = O_illegal;
8626 }
8627
8628 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8629}
252b5132 8630
ee86248c
JB
8631static int
8632i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8633 i386_operand_type types, const char *imm_start)
8634{
8635 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8636 {
313c53d1
L
8637 if (imm_start)
8638 as_bad (_("missing or invalid immediate expression `%s'"),
8639 imm_start);
3992d3b7 8640 return 0;
252b5132 8641 }
3e73aa7c 8642 else if (exp->X_op == O_constant)
252b5132 8643 {
47926f60 8644 /* Size it properly later. */
40fb9820 8645 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8646 /* If not 64bit, sign extend val. */
8647 if (flag_code != CODE_64BIT
4eed87de
AM
8648 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8649 exp->X_add_number
8650 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8651 }
4c63da97 8652#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8653 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8654 && exp_seg != absolute_section
47926f60 8655 && exp_seg != text_section
24eab124
AM
8656 && exp_seg != data_section
8657 && exp_seg != bss_section
8658 && exp_seg != undefined_section
f86103b7 8659 && !bfd_is_com_section (exp_seg))
252b5132 8660 {
d0b47220 8661 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8662 return 0;
8663 }
8664#endif
a841bdf5 8665 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8666 {
313c53d1
L
8667 if (imm_start)
8668 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8669 return 0;
8670 }
252b5132
RH
8671 else
8672 {
8673 /* This is an address. The size of the address will be
24eab124 8674 determined later, depending on destination register,
3e73aa7c 8675 suffix, or the default for the section. */
40fb9820
L
8676 i.types[this_operand].bitfield.imm8 = 1;
8677 i.types[this_operand].bitfield.imm16 = 1;
8678 i.types[this_operand].bitfield.imm32 = 1;
8679 i.types[this_operand].bitfield.imm32s = 1;
8680 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8681 i.types[this_operand] = operand_type_and (i.types[this_operand],
8682 types);
252b5132
RH
8683 }
8684
8685 return 1;
8686}
8687
551c1ca1 8688static char *
e3bb37b5 8689i386_scale (char *scale)
252b5132 8690{
551c1ca1
AM
8691 offsetT val;
8692 char *save = input_line_pointer;
252b5132 8693
551c1ca1
AM
8694 input_line_pointer = scale;
8695 val = get_absolute_expression ();
8696
8697 switch (val)
252b5132 8698 {
551c1ca1 8699 case 1:
252b5132
RH
8700 i.log2_scale_factor = 0;
8701 break;
551c1ca1 8702 case 2:
252b5132
RH
8703 i.log2_scale_factor = 1;
8704 break;
551c1ca1 8705 case 4:
252b5132
RH
8706 i.log2_scale_factor = 2;
8707 break;
551c1ca1 8708 case 8:
252b5132
RH
8709 i.log2_scale_factor = 3;
8710 break;
8711 default:
a724f0f4
JB
8712 {
8713 char sep = *input_line_pointer;
8714
8715 *input_line_pointer = '\0';
8716 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8717 scale);
8718 *input_line_pointer = sep;
8719 input_line_pointer = save;
8720 return NULL;
8721 }
252b5132 8722 }
29b0f896 8723 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8724 {
8725 as_warn (_("scale factor of %d without an index register"),
24eab124 8726 1 << i.log2_scale_factor);
252b5132 8727 i.log2_scale_factor = 0;
252b5132 8728 }
551c1ca1
AM
8729 scale = input_line_pointer;
8730 input_line_pointer = save;
8731 return scale;
252b5132
RH
8732}
8733
252b5132 8734static int
e3bb37b5 8735i386_displacement (char *disp_start, char *disp_end)
252b5132 8736{
29b0f896 8737 expressionS *exp;
252b5132
RH
8738 segT exp_seg = 0;
8739 char *save_input_line_pointer;
f3c180ae 8740 char *gotfree_input_line;
40fb9820
L
8741 int override;
8742 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8743 int ret;
252b5132 8744
31b2323c
L
8745 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8746 {
8747 as_bad (_("at most %d displacement operands are allowed"),
8748 MAX_MEMORY_OPERANDS);
8749 return 0;
8750 }
8751
0dfbf9d7 8752 operand_type_set (&bigdisp, 0);
40fb9820
L
8753 if ((i.types[this_operand].bitfield.jumpabsolute)
8754 || (!current_templates->start->opcode_modifier.jump
8755 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8756 {
40fb9820 8757 bigdisp.bitfield.disp32 = 1;
e05278af 8758 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8759 if (flag_code == CODE_64BIT)
8760 {
8761 if (!override)
8762 {
8763 bigdisp.bitfield.disp32s = 1;
8764 bigdisp.bitfield.disp64 = 1;
8765 }
8766 }
8767 else if ((flag_code == CODE_16BIT) ^ override)
8768 {
8769 bigdisp.bitfield.disp32 = 0;
8770 bigdisp.bitfield.disp16 = 1;
8771 }
e05278af
JB
8772 }
8773 else
8774 {
8775 /* For PC-relative branches, the width of the displacement
8776 is dependent upon data size, not address size. */
e05278af 8777 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8778 if (flag_code == CODE_64BIT)
8779 {
8780 if (override || i.suffix == WORD_MNEM_SUFFIX)
8781 bigdisp.bitfield.disp16 = 1;
8782 else
8783 {
8784 bigdisp.bitfield.disp32 = 1;
8785 bigdisp.bitfield.disp32s = 1;
8786 }
8787 }
8788 else
e05278af
JB
8789 {
8790 if (!override)
8791 override = (i.suffix == (flag_code != CODE_16BIT
8792 ? WORD_MNEM_SUFFIX
8793 : LONG_MNEM_SUFFIX));
40fb9820
L
8794 bigdisp.bitfield.disp32 = 1;
8795 if ((flag_code == CODE_16BIT) ^ override)
8796 {
8797 bigdisp.bitfield.disp32 = 0;
8798 bigdisp.bitfield.disp16 = 1;
8799 }
e05278af 8800 }
e05278af 8801 }
c6fb90c8
L
8802 i.types[this_operand] = operand_type_or (i.types[this_operand],
8803 bigdisp);
252b5132
RH
8804
8805 exp = &disp_expressions[i.disp_operands];
520dc8e8 8806 i.op[this_operand].disps = exp;
252b5132
RH
8807 i.disp_operands++;
8808 save_input_line_pointer = input_line_pointer;
8809 input_line_pointer = disp_start;
8810 END_STRING_AND_SAVE (disp_end);
8811
8812#ifndef GCC_ASM_O_HACK
8813#define GCC_ASM_O_HACK 0
8814#endif
8815#if GCC_ASM_O_HACK
8816 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8817 if (i.types[this_operand].bitfield.baseIndex
24eab124 8818 && displacement_string_end[-1] == '+')
252b5132
RH
8819 {
8820 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8821 constraint within gcc asm statements.
8822 For instance:
8823
8824 #define _set_tssldt_desc(n,addr,limit,type) \
8825 __asm__ __volatile__ ( \
8826 "movw %w2,%0\n\t" \
8827 "movw %w1,2+%0\n\t" \
8828 "rorl $16,%1\n\t" \
8829 "movb %b1,4+%0\n\t" \
8830 "movb %4,5+%0\n\t" \
8831 "movb $0,6+%0\n\t" \
8832 "movb %h1,7+%0\n\t" \
8833 "rorl $16,%1" \
8834 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8835
8836 This works great except that the output assembler ends
8837 up looking a bit weird if it turns out that there is
8838 no offset. You end up producing code that looks like:
8839
8840 #APP
8841 movw $235,(%eax)
8842 movw %dx,2+(%eax)
8843 rorl $16,%edx
8844 movb %dl,4+(%eax)
8845 movb $137,5+(%eax)
8846 movb $0,6+(%eax)
8847 movb %dh,7+(%eax)
8848 rorl $16,%edx
8849 #NO_APP
8850
47926f60 8851 So here we provide the missing zero. */
24eab124
AM
8852
8853 *displacement_string_end = '0';
252b5132
RH
8854 }
8855#endif
d258b828 8856 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8857 if (gotfree_input_line)
8858 input_line_pointer = gotfree_input_line;
252b5132 8859
24eab124 8860 exp_seg = expression (exp);
252b5132 8861
636c26b0
AM
8862 SKIP_WHITESPACE ();
8863 if (*input_line_pointer)
8864 as_bad (_("junk `%s' after expression"), input_line_pointer);
8865#if GCC_ASM_O_HACK
8866 RESTORE_END_STRING (disp_end + 1);
8867#endif
636c26b0 8868 input_line_pointer = save_input_line_pointer;
636c26b0 8869 if (gotfree_input_line)
ee86248c
JB
8870 {
8871 free (gotfree_input_line);
8872
8873 if (exp->X_op == O_constant || exp->X_op == O_register)
8874 exp->X_op = O_illegal;
8875 }
8876
8877 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8878
8879 RESTORE_END_STRING (disp_end);
8880
8881 return ret;
8882}
8883
8884static int
8885i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8886 i386_operand_type types, const char *disp_start)
8887{
8888 i386_operand_type bigdisp;
8889 int ret = 1;
636c26b0 8890
24eab124
AM
8891 /* We do this to make sure that the section symbol is in
8892 the symbol table. We will ultimately change the relocation
47926f60 8893 to be relative to the beginning of the section. */
1ae12ab7 8894 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8895 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8896 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8897 {
636c26b0 8898 if (exp->X_op != O_symbol)
3992d3b7 8899 goto inv_disp;
636c26b0 8900
e5cb08ac 8901 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8902 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8903 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8904 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8905 exp->X_op = O_subtract;
8906 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8907 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8908 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8909 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8910 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8911 else
29b0f896 8912 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8913 }
252b5132 8914
3992d3b7
AM
8915 else if (exp->X_op == O_absent
8916 || exp->X_op == O_illegal
ee86248c 8917 || exp->X_op == O_big)
2daf4fd8 8918 {
3992d3b7
AM
8919 inv_disp:
8920 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8921 disp_start);
3992d3b7 8922 ret = 0;
2daf4fd8
AM
8923 }
8924
0e1147d9
L
8925 else if (flag_code == CODE_64BIT
8926 && !i.prefix[ADDR_PREFIX]
8927 && exp->X_op == O_constant)
8928 {
8929 /* Since displacement is signed extended to 64bit, don't allow
8930 disp32 and turn off disp32s if they are out of range. */
8931 i.types[this_operand].bitfield.disp32 = 0;
8932 if (!fits_in_signed_long (exp->X_add_number))
8933 {
8934 i.types[this_operand].bitfield.disp32s = 0;
8935 if (i.types[this_operand].bitfield.baseindex)
8936 {
8937 as_bad (_("0x%lx out range of signed 32bit displacement"),
8938 (long) exp->X_add_number);
8939 ret = 0;
8940 }
8941 }
8942 }
8943
4c63da97 8944#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8945 else if (exp->X_op != O_constant
8946 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8947 && exp_seg != absolute_section
8948 && exp_seg != text_section
8949 && exp_seg != data_section
8950 && exp_seg != bss_section
8951 && exp_seg != undefined_section
8952 && !bfd_is_com_section (exp_seg))
24eab124 8953 {
d0b47220 8954 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8955 ret = 0;
24eab124 8956 }
252b5132 8957#endif
3956db08 8958
40fb9820
L
8959 /* Check if this is a displacement only operand. */
8960 bigdisp = i.types[this_operand];
8961 bigdisp.bitfield.disp8 = 0;
8962 bigdisp.bitfield.disp16 = 0;
8963 bigdisp.bitfield.disp32 = 0;
8964 bigdisp.bitfield.disp32s = 0;
8965 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8966 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8967 i.types[this_operand] = operand_type_and (i.types[this_operand],
8968 types);
3956db08 8969
3992d3b7 8970 return ret;
252b5132
RH
8971}
8972
2abc2bec
JB
8973/* Return the active addressing mode, taking address override and
8974 registers forming the address into consideration. Update the
8975 address override prefix if necessary. */
47926f60 8976
2abc2bec
JB
8977static enum flag_code
8978i386_addressing_mode (void)
252b5132 8979{
be05d201
L
8980 enum flag_code addr_mode;
8981
8982 if (i.prefix[ADDR_PREFIX])
8983 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8984 else
8985 {
8986 addr_mode = flag_code;
8987
24eab124 8988#if INFER_ADDR_PREFIX
be05d201
L
8989 if (i.mem_operands == 0)
8990 {
8991 /* Infer address prefix from the first memory operand. */
8992 const reg_entry *addr_reg = i.base_reg;
8993
8994 if (addr_reg == NULL)
8995 addr_reg = i.index_reg;
eecb386c 8996
be05d201
L
8997 if (addr_reg)
8998 {
8999 if (addr_reg->reg_num == RegEip
9000 || addr_reg->reg_num == RegEiz
dc821c5f 9001 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9002 addr_mode = CODE_32BIT;
9003 else if (flag_code != CODE_64BIT
dc821c5f 9004 && addr_reg->reg_type.bitfield.word)
be05d201
L
9005 addr_mode = CODE_16BIT;
9006
9007 if (addr_mode != flag_code)
9008 {
9009 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9010 i.prefixes += 1;
9011 /* Change the size of any displacement too. At most one
9012 of Disp16 or Disp32 is set.
9013 FIXME. There doesn't seem to be any real need for
9014 separate Disp16 and Disp32 flags. The same goes for
9015 Imm16 and Imm32. Removing them would probably clean
9016 up the code quite a lot. */
9017 if (flag_code != CODE_64BIT
9018 && (i.types[this_operand].bitfield.disp16
9019 || i.types[this_operand].bitfield.disp32))
9020 i.types[this_operand]
9021 = operand_type_xor (i.types[this_operand], disp16_32);
9022 }
9023 }
9024 }
24eab124 9025#endif
be05d201
L
9026 }
9027
2abc2bec
JB
9028 return addr_mode;
9029}
9030
9031/* Make sure the memory operand we've been dealt is valid.
9032 Return 1 on success, 0 on a failure. */
9033
9034static int
9035i386_index_check (const char *operand_string)
9036{
9037 const char *kind = "base/index";
9038 enum flag_code addr_mode = i386_addressing_mode ();
9039
fc0763e6
JB
9040 if (current_templates->start->opcode_modifier.isstring
9041 && !current_templates->start->opcode_modifier.immext
9042 && (current_templates->end[-1].opcode_modifier.isstring
9043 || i.mem_operands))
9044 {
9045 /* Memory operands of string insns are special in that they only allow
9046 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9047 const reg_entry *expected_reg;
9048 static const char *di_si[][2] =
9049 {
9050 { "esi", "edi" },
9051 { "si", "di" },
9052 { "rsi", "rdi" }
9053 };
9054 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9055
9056 kind = "string address";
9057
8325cc63 9058 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9059 {
9060 i386_operand_type type = current_templates->end[-1].operand_types[0];
9061
9062 if (!type.bitfield.baseindex
9063 || ((!i.mem_operands != !intel_syntax)
9064 && current_templates->end[-1].operand_types[1]
9065 .bitfield.baseindex))
9066 type = current_templates->end[-1].operand_types[1];
be05d201
L
9067 expected_reg = hash_find (reg_hash,
9068 di_si[addr_mode][type.bitfield.esseg]);
9069
fc0763e6
JB
9070 }
9071 else
be05d201 9072 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9073
be05d201
L
9074 if (i.base_reg != expected_reg
9075 || i.index_reg
fc0763e6 9076 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9077 {
be05d201
L
9078 /* The second memory operand must have the same size as
9079 the first one. */
9080 if (i.mem_operands
9081 && i.base_reg
9082 && !((addr_mode == CODE_64BIT
dc821c5f 9083 && i.base_reg->reg_type.bitfield.qword)
be05d201 9084 || (addr_mode == CODE_32BIT
dc821c5f
JB
9085 ? i.base_reg->reg_type.bitfield.dword
9086 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9087 goto bad_address;
9088
fc0763e6
JB
9089 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9090 operand_string,
9091 intel_syntax ? '[' : '(',
9092 register_prefix,
be05d201 9093 expected_reg->reg_name,
fc0763e6 9094 intel_syntax ? ']' : ')');
be05d201 9095 return 1;
fc0763e6 9096 }
be05d201
L
9097 else
9098 return 1;
9099
9100bad_address:
9101 as_bad (_("`%s' is not a valid %s expression"),
9102 operand_string, kind);
9103 return 0;
3e73aa7c
JH
9104 }
9105 else
9106 {
be05d201
L
9107 if (addr_mode != CODE_16BIT)
9108 {
9109 /* 32-bit/64-bit checks. */
9110 if ((i.base_reg
9111 && (addr_mode == CODE_64BIT
dc821c5f
JB
9112 ? !i.base_reg->reg_type.bitfield.qword
9113 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9114 && (i.index_reg
9115 || (i.base_reg->reg_num
9116 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9117 || (i.index_reg
1b54b8d7
JB
9118 && !i.index_reg->reg_type.bitfield.xmmword
9119 && !i.index_reg->reg_type.bitfield.ymmword
9120 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9121 && ((addr_mode == CODE_64BIT
dc821c5f 9122 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9123 || i.index_reg->reg_num == RegRiz)
dc821c5f 9124 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9125 || i.index_reg->reg_num == RegEiz))
9126 || !i.index_reg->reg_type.bitfield.baseindex)))
9127 goto bad_address;
8178be5b
JB
9128
9129 /* bndmk, bndldx, and bndstx have special restrictions. */
9130 if (current_templates->start->base_opcode == 0xf30f1b
9131 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9132 {
9133 /* They cannot use RIP-relative addressing. */
9134 if (i.base_reg && i.base_reg->reg_num == RegRip)
9135 {
9136 as_bad (_("`%s' cannot be used here"), operand_string);
9137 return 0;
9138 }
9139
9140 /* bndldx and bndstx ignore their scale factor. */
9141 if (current_templates->start->base_opcode != 0xf30f1b
9142 && i.log2_scale_factor)
9143 as_warn (_("register scaling is being ignored here"));
9144 }
be05d201
L
9145 }
9146 else
3e73aa7c 9147 {
be05d201 9148 /* 16-bit checks. */
3e73aa7c 9149 if ((i.base_reg
dc821c5f 9150 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9151 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9152 || (i.index_reg
dc821c5f 9153 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9154 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9155 || !(i.base_reg
9156 && i.base_reg->reg_num < 6
9157 && i.index_reg->reg_num >= 6
9158 && i.log2_scale_factor == 0))))
be05d201 9159 goto bad_address;
3e73aa7c
JH
9160 }
9161 }
be05d201 9162 return 1;
24eab124 9163}
252b5132 9164
43234a1e
L
9165/* Handle vector immediates. */
9166
9167static int
9168RC_SAE_immediate (const char *imm_start)
9169{
9170 unsigned int match_found, j;
9171 const char *pstr = imm_start;
9172 expressionS *exp;
9173
9174 if (*pstr != '{')
9175 return 0;
9176
9177 pstr++;
9178 match_found = 0;
9179 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9180 {
9181 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9182 {
9183 if (!i.rounding)
9184 {
9185 rc_op.type = RC_NamesTable[j].type;
9186 rc_op.operand = this_operand;
9187 i.rounding = &rc_op;
9188 }
9189 else
9190 {
9191 as_bad (_("duplicated `%s'"), imm_start);
9192 return 0;
9193 }
9194 pstr += RC_NamesTable[j].len;
9195 match_found = 1;
9196 break;
9197 }
9198 }
9199 if (!match_found)
9200 return 0;
9201
9202 if (*pstr++ != '}')
9203 {
9204 as_bad (_("Missing '}': '%s'"), imm_start);
9205 return 0;
9206 }
9207 /* RC/SAE immediate string should contain nothing more. */;
9208 if (*pstr != 0)
9209 {
9210 as_bad (_("Junk after '}': '%s'"), imm_start);
9211 return 0;
9212 }
9213
9214 exp = &im_expressions[i.imm_operands++];
9215 i.op[this_operand].imms = exp;
9216
9217 exp->X_op = O_constant;
9218 exp->X_add_number = 0;
9219 exp->X_add_symbol = (symbolS *) 0;
9220 exp->X_op_symbol = (symbolS *) 0;
9221
9222 i.types[this_operand].bitfield.imm8 = 1;
9223 return 1;
9224}
9225
8325cc63
JB
9226/* Only string instructions can have a second memory operand, so
9227 reduce current_templates to just those if it contains any. */
9228static int
9229maybe_adjust_templates (void)
9230{
9231 const insn_template *t;
9232
9233 gas_assert (i.mem_operands == 1);
9234
9235 for (t = current_templates->start; t < current_templates->end; ++t)
9236 if (t->opcode_modifier.isstring)
9237 break;
9238
9239 if (t < current_templates->end)
9240 {
9241 static templates aux_templates;
9242 bfd_boolean recheck;
9243
9244 aux_templates.start = t;
9245 for (; t < current_templates->end; ++t)
9246 if (!t->opcode_modifier.isstring)
9247 break;
9248 aux_templates.end = t;
9249
9250 /* Determine whether to re-check the first memory operand. */
9251 recheck = (aux_templates.start != current_templates->start
9252 || t != current_templates->end);
9253
9254 current_templates = &aux_templates;
9255
9256 if (recheck)
9257 {
9258 i.mem_operands = 0;
9259 if (i.memop1_string != NULL
9260 && i386_index_check (i.memop1_string) == 0)
9261 return 0;
9262 i.mem_operands = 1;
9263 }
9264 }
9265
9266 return 1;
9267}
9268
fc0763e6 9269/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9270 on error. */
252b5132 9271
252b5132 9272static int
a7619375 9273i386_att_operand (char *operand_string)
252b5132 9274{
af6bdddf
AM
9275 const reg_entry *r;
9276 char *end_op;
24eab124 9277 char *op_string = operand_string;
252b5132 9278
24eab124 9279 if (is_space_char (*op_string))
252b5132
RH
9280 ++op_string;
9281
24eab124 9282 /* We check for an absolute prefix (differentiating,
47926f60 9283 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9284 if (*op_string == ABSOLUTE_PREFIX)
9285 {
9286 ++op_string;
9287 if (is_space_char (*op_string))
9288 ++op_string;
40fb9820 9289 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9290 }
252b5132 9291
47926f60 9292 /* Check if operand is a register. */
4d1bb795 9293 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9294 {
40fb9820
L
9295 i386_operand_type temp;
9296
24eab124
AM
9297 /* Check for a segment override by searching for ':' after a
9298 segment register. */
9299 op_string = end_op;
9300 if (is_space_char (*op_string))
9301 ++op_string;
40fb9820
L
9302 if (*op_string == ':'
9303 && (r->reg_type.bitfield.sreg2
9304 || r->reg_type.bitfield.sreg3))
24eab124
AM
9305 {
9306 switch (r->reg_num)
9307 {
9308 case 0:
9309 i.seg[i.mem_operands] = &es;
9310 break;
9311 case 1:
9312 i.seg[i.mem_operands] = &cs;
9313 break;
9314 case 2:
9315 i.seg[i.mem_operands] = &ss;
9316 break;
9317 case 3:
9318 i.seg[i.mem_operands] = &ds;
9319 break;
9320 case 4:
9321 i.seg[i.mem_operands] = &fs;
9322 break;
9323 case 5:
9324 i.seg[i.mem_operands] = &gs;
9325 break;
9326 }
252b5132 9327
24eab124 9328 /* Skip the ':' and whitespace. */
252b5132
RH
9329 ++op_string;
9330 if (is_space_char (*op_string))
24eab124 9331 ++op_string;
252b5132 9332
24eab124
AM
9333 if (!is_digit_char (*op_string)
9334 && !is_identifier_char (*op_string)
9335 && *op_string != '('
9336 && *op_string != ABSOLUTE_PREFIX)
9337 {
9338 as_bad (_("bad memory operand `%s'"), op_string);
9339 return 0;
9340 }
47926f60 9341 /* Handle case of %es:*foo. */
24eab124
AM
9342 if (*op_string == ABSOLUTE_PREFIX)
9343 {
9344 ++op_string;
9345 if (is_space_char (*op_string))
9346 ++op_string;
40fb9820 9347 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9348 }
9349 goto do_memory_reference;
9350 }
43234a1e
L
9351
9352 /* Handle vector operations. */
9353 if (*op_string == '{')
9354 {
9355 op_string = check_VecOperations (op_string, NULL);
9356 if (op_string == NULL)
9357 return 0;
9358 }
9359
24eab124
AM
9360 if (*op_string)
9361 {
d0b47220 9362 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9363 return 0;
9364 }
40fb9820
L
9365 temp = r->reg_type;
9366 temp.bitfield.baseindex = 0;
c6fb90c8
L
9367 i.types[this_operand] = operand_type_or (i.types[this_operand],
9368 temp);
7d5e4556 9369 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9370 i.op[this_operand].regs = r;
24eab124
AM
9371 i.reg_operands++;
9372 }
af6bdddf
AM
9373 else if (*op_string == REGISTER_PREFIX)
9374 {
9375 as_bad (_("bad register name `%s'"), op_string);
9376 return 0;
9377 }
24eab124 9378 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9379 {
24eab124 9380 ++op_string;
40fb9820 9381 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9382 {
d0b47220 9383 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9384 return 0;
9385 }
9386 if (!i386_immediate (op_string))
9387 return 0;
9388 }
43234a1e
L
9389 else if (RC_SAE_immediate (operand_string))
9390 {
9391 /* If it is a RC or SAE immediate, do nothing. */
9392 ;
9393 }
24eab124
AM
9394 else if (is_digit_char (*op_string)
9395 || is_identifier_char (*op_string)
d02603dc 9396 || *op_string == '"'
e5cb08ac 9397 || *op_string == '(')
24eab124 9398 {
47926f60 9399 /* This is a memory reference of some sort. */
af6bdddf 9400 char *base_string;
252b5132 9401
47926f60 9402 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9403 char *displacement_string_start;
9404 char *displacement_string_end;
43234a1e 9405 char *vop_start;
252b5132 9406
24eab124 9407 do_memory_reference:
8325cc63
JB
9408 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9409 return 0;
24eab124 9410 if ((i.mem_operands == 1
40fb9820 9411 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9412 || i.mem_operands == 2)
9413 {
9414 as_bad (_("too many memory references for `%s'"),
9415 current_templates->start->name);
9416 return 0;
9417 }
252b5132 9418
24eab124
AM
9419 /* Check for base index form. We detect the base index form by
9420 looking for an ')' at the end of the operand, searching
9421 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9422 after the '('. */
af6bdddf 9423 base_string = op_string + strlen (op_string);
c3332e24 9424
43234a1e
L
9425 /* Handle vector operations. */
9426 vop_start = strchr (op_string, '{');
9427 if (vop_start && vop_start < base_string)
9428 {
9429 if (check_VecOperations (vop_start, base_string) == NULL)
9430 return 0;
9431 base_string = vop_start;
9432 }
9433
af6bdddf
AM
9434 --base_string;
9435 if (is_space_char (*base_string))
9436 --base_string;
252b5132 9437
47926f60 9438 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9439 displacement_string_start = op_string;
9440 displacement_string_end = base_string + 1;
252b5132 9441
24eab124
AM
9442 if (*base_string == ')')
9443 {
af6bdddf 9444 char *temp_string;
24eab124
AM
9445 unsigned int parens_balanced = 1;
9446 /* We've already checked that the number of left & right ()'s are
47926f60 9447 equal, so this loop will not be infinite. */
24eab124
AM
9448 do
9449 {
9450 base_string--;
9451 if (*base_string == ')')
9452 parens_balanced++;
9453 if (*base_string == '(')
9454 parens_balanced--;
9455 }
9456 while (parens_balanced);
c3332e24 9457
af6bdddf 9458 temp_string = base_string;
c3332e24 9459
24eab124 9460 /* Skip past '(' and whitespace. */
252b5132
RH
9461 ++base_string;
9462 if (is_space_char (*base_string))
24eab124 9463 ++base_string;
252b5132 9464
af6bdddf 9465 if (*base_string == ','
4eed87de
AM
9466 || ((i.base_reg = parse_register (base_string, &end_op))
9467 != NULL))
252b5132 9468 {
af6bdddf 9469 displacement_string_end = temp_string;
252b5132 9470
40fb9820 9471 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9472
af6bdddf 9473 if (i.base_reg)
24eab124 9474 {
24eab124
AM
9475 base_string = end_op;
9476 if (is_space_char (*base_string))
9477 ++base_string;
af6bdddf
AM
9478 }
9479
9480 /* There may be an index reg or scale factor here. */
9481 if (*base_string == ',')
9482 {
9483 ++base_string;
9484 if (is_space_char (*base_string))
9485 ++base_string;
9486
4eed87de
AM
9487 if ((i.index_reg = parse_register (base_string, &end_op))
9488 != NULL)
24eab124 9489 {
af6bdddf 9490 base_string = end_op;
24eab124
AM
9491 if (is_space_char (*base_string))
9492 ++base_string;
af6bdddf
AM
9493 if (*base_string == ',')
9494 {
9495 ++base_string;
9496 if (is_space_char (*base_string))
9497 ++base_string;
9498 }
e5cb08ac 9499 else if (*base_string != ')')
af6bdddf 9500 {
4eed87de
AM
9501 as_bad (_("expecting `,' or `)' "
9502 "after index register in `%s'"),
af6bdddf
AM
9503 operand_string);
9504 return 0;
9505 }
24eab124 9506 }
af6bdddf 9507 else if (*base_string == REGISTER_PREFIX)
24eab124 9508 {
f76bf5e0
L
9509 end_op = strchr (base_string, ',');
9510 if (end_op)
9511 *end_op = '\0';
af6bdddf 9512 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9513 return 0;
9514 }
252b5132 9515
47926f60 9516 /* Check for scale factor. */
551c1ca1 9517 if (*base_string != ')')
af6bdddf 9518 {
551c1ca1
AM
9519 char *end_scale = i386_scale (base_string);
9520
9521 if (!end_scale)
af6bdddf 9522 return 0;
24eab124 9523
551c1ca1 9524 base_string = end_scale;
af6bdddf
AM
9525 if (is_space_char (*base_string))
9526 ++base_string;
9527 if (*base_string != ')')
9528 {
4eed87de
AM
9529 as_bad (_("expecting `)' "
9530 "after scale factor in `%s'"),
af6bdddf
AM
9531 operand_string);
9532 return 0;
9533 }
9534 }
9535 else if (!i.index_reg)
24eab124 9536 {
4eed87de
AM
9537 as_bad (_("expecting index register or scale factor "
9538 "after `,'; got '%c'"),
af6bdddf 9539 *base_string);
24eab124
AM
9540 return 0;
9541 }
9542 }
af6bdddf 9543 else if (*base_string != ')')
24eab124 9544 {
4eed87de
AM
9545 as_bad (_("expecting `,' or `)' "
9546 "after base register in `%s'"),
af6bdddf 9547 operand_string);
24eab124
AM
9548 return 0;
9549 }
c3332e24 9550 }
af6bdddf 9551 else if (*base_string == REGISTER_PREFIX)
c3332e24 9552 {
f76bf5e0
L
9553 end_op = strchr (base_string, ',');
9554 if (end_op)
9555 *end_op = '\0';
af6bdddf 9556 as_bad (_("bad register name `%s'"), base_string);
24eab124 9557 return 0;
c3332e24 9558 }
24eab124
AM
9559 }
9560
9561 /* If there's an expression beginning the operand, parse it,
9562 assuming displacement_string_start and
9563 displacement_string_end are meaningful. */
9564 if (displacement_string_start != displacement_string_end)
9565 {
9566 if (!i386_displacement (displacement_string_start,
9567 displacement_string_end))
9568 return 0;
9569 }
9570
9571 /* Special case for (%dx) while doing input/output op. */
9572 if (i.base_reg
0dfbf9d7
L
9573 && operand_type_equal (&i.base_reg->reg_type,
9574 &reg16_inoutportreg)
24eab124
AM
9575 && i.index_reg == 0
9576 && i.log2_scale_factor == 0
9577 && i.seg[i.mem_operands] == 0
40fb9820 9578 && !operand_type_check (i.types[this_operand], disp))
24eab124 9579 {
65da13b5 9580 i.types[this_operand] = inoutportreg;
24eab124
AM
9581 return 1;
9582 }
9583
eecb386c
AM
9584 if (i386_index_check (operand_string) == 0)
9585 return 0;
5c07affc 9586 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9587 if (i.mem_operands == 0)
9588 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9589 i.mem_operands++;
9590 }
9591 else
ce8a8b2f
AM
9592 {
9593 /* It's not a memory operand; argh! */
24eab124
AM
9594 as_bad (_("invalid char %s beginning operand %d `%s'"),
9595 output_invalid (*op_string),
9596 this_operand + 1,
9597 op_string);
9598 return 0;
9599 }
47926f60 9600 return 1; /* Normal return. */
252b5132
RH
9601}
9602\f
fa94de6b
RM
9603/* Calculate the maximum variable size (i.e., excluding fr_fix)
9604 that an rs_machine_dependent frag may reach. */
9605
9606unsigned int
9607i386_frag_max_var (fragS *frag)
9608{
9609 /* The only relaxable frags are for jumps.
9610 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9611 gas_assert (frag->fr_type == rs_machine_dependent);
9612 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9613}
9614
b084df0b
L
9615#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9616static int
8dcea932 9617elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9618{
9619 /* STT_GNU_IFUNC symbol must go through PLT. */
9620 if ((symbol_get_bfdsym (fr_symbol)->flags
9621 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9622 return 0;
9623
9624 if (!S_IS_EXTERNAL (fr_symbol))
9625 /* Symbol may be weak or local. */
9626 return !S_IS_WEAK (fr_symbol);
9627
8dcea932
L
9628 /* Global symbols with non-default visibility can't be preempted. */
9629 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9630 return 1;
9631
9632 if (fr_var != NO_RELOC)
9633 switch ((enum bfd_reloc_code_real) fr_var)
9634 {
9635 case BFD_RELOC_386_PLT32:
9636 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9637 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9638 return 0;
9639 default:
9640 abort ();
9641 }
9642
b084df0b
L
9643 /* Global symbols with default visibility in a shared library may be
9644 preempted by another definition. */
8dcea932 9645 return !shared;
b084df0b
L
9646}
9647#endif
9648
ee7fcc42
AM
9649/* md_estimate_size_before_relax()
9650
9651 Called just before relax() for rs_machine_dependent frags. The x86
9652 assembler uses these frags to handle variable size jump
9653 instructions.
9654
9655 Any symbol that is now undefined will not become defined.
9656 Return the correct fr_subtype in the frag.
9657 Return the initial "guess for variable size of frag" to caller.
9658 The guess is actually the growth beyond the fixed part. Whatever
9659 we do to grow the fixed or variable part contributes to our
9660 returned value. */
9661
252b5132 9662int
7016a5d5 9663md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9664{
252b5132 9665 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9666 check for un-relaxable symbols. On an ELF system, we can't relax
9667 an externally visible symbol, because it may be overridden by a
9668 shared library. */
9669 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9670#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9671 || (IS_ELF
8dcea932
L
9672 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9673 fragP->fr_var))
fbeb56a4
DK
9674#endif
9675#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9676 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9677 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9678#endif
9679 )
252b5132 9680 {
b98ef147
AM
9681 /* Symbol is undefined in this segment, or we need to keep a
9682 reloc so that weak symbols can be overridden. */
9683 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9684 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9685 unsigned char *opcode;
9686 int old_fr_fix;
f6af82bd 9687
ee7fcc42 9688 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9689 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9690 else if (size == 2)
f6af82bd 9691 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9692#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9693 else if (need_plt32_p (fragP->fr_symbol))
9694 reloc_type = BFD_RELOC_X86_64_PLT32;
9695#endif
f6af82bd
AM
9696 else
9697 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9698
ee7fcc42
AM
9699 old_fr_fix = fragP->fr_fix;
9700 opcode = (unsigned char *) fragP->fr_opcode;
9701
fddf5b5b 9702 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9703 {
fddf5b5b
AM
9704 case UNCOND_JUMP:
9705 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9706 opcode[0] = 0xe9;
252b5132 9707 fragP->fr_fix += size;
062cd5e7
AS
9708 fix_new (fragP, old_fr_fix, size,
9709 fragP->fr_symbol,
9710 fragP->fr_offset, 1,
9711 reloc_type);
252b5132
RH
9712 break;
9713
fddf5b5b 9714 case COND_JUMP86:
412167cb
AM
9715 if (size == 2
9716 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9717 {
9718 /* Negate the condition, and branch past an
9719 unconditional jump. */
9720 opcode[0] ^= 1;
9721 opcode[1] = 3;
9722 /* Insert an unconditional jump. */
9723 opcode[2] = 0xe9;
9724 /* We added two extra opcode bytes, and have a two byte
9725 offset. */
9726 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9727 fix_new (fragP, old_fr_fix + 2, 2,
9728 fragP->fr_symbol,
9729 fragP->fr_offset, 1,
9730 reloc_type);
fddf5b5b
AM
9731 break;
9732 }
9733 /* Fall through. */
9734
9735 case COND_JUMP:
412167cb
AM
9736 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9737 {
3e02c1cc
AM
9738 fixS *fixP;
9739
412167cb 9740 fragP->fr_fix += 1;
3e02c1cc
AM
9741 fixP = fix_new (fragP, old_fr_fix, 1,
9742 fragP->fr_symbol,
9743 fragP->fr_offset, 1,
9744 BFD_RELOC_8_PCREL);
9745 fixP->fx_signed = 1;
412167cb
AM
9746 break;
9747 }
93c2a809 9748
24eab124 9749 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9750 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9751 opcode[1] = opcode[0] + 0x10;
f6af82bd 9752 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9753 /* We've added an opcode byte. */
9754 fragP->fr_fix += 1 + size;
062cd5e7
AS
9755 fix_new (fragP, old_fr_fix + 1, size,
9756 fragP->fr_symbol,
9757 fragP->fr_offset, 1,
9758 reloc_type);
252b5132 9759 break;
fddf5b5b
AM
9760
9761 default:
9762 BAD_CASE (fragP->fr_subtype);
9763 break;
252b5132
RH
9764 }
9765 frag_wane (fragP);
ee7fcc42 9766 return fragP->fr_fix - old_fr_fix;
252b5132 9767 }
93c2a809 9768
93c2a809
AM
9769 /* Guess size depending on current relax state. Initially the relax
9770 state will correspond to a short jump and we return 1, because
9771 the variable part of the frag (the branch offset) is one byte
9772 long. However, we can relax a section more than once and in that
9773 case we must either set fr_subtype back to the unrelaxed state,
9774 or return the value for the appropriate branch. */
9775 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9776}
9777
47926f60
KH
9778/* Called after relax() is finished.
9779
9780 In: Address of frag.
9781 fr_type == rs_machine_dependent.
9782 fr_subtype is what the address relaxed to.
9783
9784 Out: Any fixSs and constants are set up.
9785 Caller will turn frag into a ".space 0". */
9786
252b5132 9787void
7016a5d5
TG
9788md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9789 fragS *fragP)
252b5132 9790{
29b0f896 9791 unsigned char *opcode;
252b5132 9792 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9793 offsetT target_address;
9794 offsetT opcode_address;
252b5132 9795 unsigned int extension = 0;
847f7ad4 9796 offsetT displacement_from_opcode_start;
252b5132
RH
9797
9798 opcode = (unsigned char *) fragP->fr_opcode;
9799
47926f60 9800 /* Address we want to reach in file space. */
252b5132 9801 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9802
47926f60 9803 /* Address opcode resides at in file space. */
252b5132
RH
9804 opcode_address = fragP->fr_address + fragP->fr_fix;
9805
47926f60 9806 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9807 displacement_from_opcode_start = target_address - opcode_address;
9808
fddf5b5b 9809 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9810 {
47926f60
KH
9811 /* Don't have to change opcode. */
9812 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9813 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9814 }
9815 else
9816 {
9817 if (no_cond_jump_promotion
9818 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9819 as_warn_where (fragP->fr_file, fragP->fr_line,
9820 _("long jump required"));
252b5132 9821
fddf5b5b
AM
9822 switch (fragP->fr_subtype)
9823 {
9824 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9825 extension = 4; /* 1 opcode + 4 displacement */
9826 opcode[0] = 0xe9;
9827 where_to_put_displacement = &opcode[1];
9828 break;
252b5132 9829
fddf5b5b
AM
9830 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9831 extension = 2; /* 1 opcode + 2 displacement */
9832 opcode[0] = 0xe9;
9833 where_to_put_displacement = &opcode[1];
9834 break;
252b5132 9835
fddf5b5b
AM
9836 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9837 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9838 extension = 5; /* 2 opcode + 4 displacement */
9839 opcode[1] = opcode[0] + 0x10;
9840 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9841 where_to_put_displacement = &opcode[2];
9842 break;
252b5132 9843
fddf5b5b
AM
9844 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9845 extension = 3; /* 2 opcode + 2 displacement */
9846 opcode[1] = opcode[0] + 0x10;
9847 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9848 where_to_put_displacement = &opcode[2];
9849 break;
252b5132 9850
fddf5b5b
AM
9851 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9852 extension = 4;
9853 opcode[0] ^= 1;
9854 opcode[1] = 3;
9855 opcode[2] = 0xe9;
9856 where_to_put_displacement = &opcode[3];
9857 break;
9858
9859 default:
9860 BAD_CASE (fragP->fr_subtype);
9861 break;
9862 }
252b5132 9863 }
fddf5b5b 9864
7b81dfbb
AJ
9865 /* If size if less then four we are sure that the operand fits,
9866 but if it's 4, then it could be that the displacement is larger
9867 then -/+ 2GB. */
9868 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9869 && object_64bit
9870 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9871 + ((addressT) 1 << 31))
9872 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9873 {
9874 as_bad_where (fragP->fr_file, fragP->fr_line,
9875 _("jump target out of range"));
9876 /* Make us emit 0. */
9877 displacement_from_opcode_start = extension;
9878 }
47926f60 9879 /* Now put displacement after opcode. */
252b5132
RH
9880 md_number_to_chars ((char *) where_to_put_displacement,
9881 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9882 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9883 fragP->fr_fix += extension;
9884}
9885\f
7016a5d5 9886/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9887 by our caller that we have all the info we need to fix it up.
9888
7016a5d5
TG
9889 Parameter valP is the pointer to the value of the bits.
9890
252b5132
RH
9891 On the 386, immediates, displacements, and data pointers are all in
9892 the same (little-endian) format, so we don't need to care about which
9893 we are handling. */
9894
94f592af 9895void
7016a5d5 9896md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9897{
94f592af 9898 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9899 valueT value = *valP;
252b5132 9900
f86103b7 9901#if !defined (TE_Mach)
93382f6d
AM
9902 if (fixP->fx_pcrel)
9903 {
9904 switch (fixP->fx_r_type)
9905 {
5865bb77
ILT
9906 default:
9907 break;
9908
d6ab8113
JB
9909 case BFD_RELOC_64:
9910 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9911 break;
93382f6d 9912 case BFD_RELOC_32:
ae8887b5 9913 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9914 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9915 break;
9916 case BFD_RELOC_16:
9917 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9918 break;
9919 case BFD_RELOC_8:
9920 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9921 break;
9922 }
9923 }
252b5132 9924
a161fe53 9925 if (fixP->fx_addsy != NULL
31312f95 9926 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9927 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9928 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9929 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9930 && !use_rela_relocations)
252b5132 9931 {
31312f95
AM
9932 /* This is a hack. There should be a better way to handle this.
9933 This covers for the fact that bfd_install_relocation will
9934 subtract the current location (for partial_inplace, PC relative
9935 relocations); see more below. */
252b5132 9936#ifndef OBJ_AOUT
718ddfc0 9937 if (IS_ELF
252b5132
RH
9938#ifdef TE_PE
9939 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9940#endif
9941 )
9942 value += fixP->fx_where + fixP->fx_frag->fr_address;
9943#endif
9944#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9945 if (IS_ELF)
252b5132 9946 {
6539b54b 9947 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9948
6539b54b 9949 if ((sym_seg == seg
2f66722d 9950 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9951 && sym_seg != absolute_section))
af65af87 9952 && !generic_force_reloc (fixP))
2f66722d
AM
9953 {
9954 /* Yes, we add the values in twice. This is because
6539b54b
AM
9955 bfd_install_relocation subtracts them out again. I think
9956 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9957 it. FIXME. */
9958 value += fixP->fx_where + fixP->fx_frag->fr_address;
9959 }
252b5132
RH
9960 }
9961#endif
9962#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9963 /* For some reason, the PE format does not store a
9964 section address offset for a PC relative symbol. */
9965 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9966 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9967 value += md_pcrel_from (fixP);
9968#endif
9969 }
fbeb56a4 9970#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9971 if (fixP->fx_addsy != NULL
9972 && S_IS_WEAK (fixP->fx_addsy)
9973 /* PR 16858: Do not modify weak function references. */
9974 && ! fixP->fx_pcrel)
fbeb56a4 9975 {
296a8689
NC
9976#if !defined (TE_PEP)
9977 /* For x86 PE weak function symbols are neither PC-relative
9978 nor do they set S_IS_FUNCTION. So the only reliable way
9979 to detect them is to check the flags of their containing
9980 section. */
9981 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9982 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9983 ;
9984 else
9985#endif
fbeb56a4
DK
9986 value -= S_GET_VALUE (fixP->fx_addsy);
9987 }
9988#endif
252b5132
RH
9989
9990 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9991 and we must not disappoint it. */
252b5132 9992#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9993 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9994 switch (fixP->fx_r_type)
9995 {
9996 case BFD_RELOC_386_PLT32:
3e73aa7c 9997 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9998 /* Make the jump instruction point to the address of the operand. At
9999 runtime we merely add the offset to the actual PLT entry. */
10000 value = -4;
10001 break;
31312f95 10002
13ae64f3
JJ
10003 case BFD_RELOC_386_TLS_GD:
10004 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10005 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10006 case BFD_RELOC_386_TLS_IE:
10007 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10008 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10009 case BFD_RELOC_X86_64_TLSGD:
10010 case BFD_RELOC_X86_64_TLSLD:
10011 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10012 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10013 value = 0; /* Fully resolved at runtime. No addend. */
10014 /* Fallthrough */
10015 case BFD_RELOC_386_TLS_LE:
10016 case BFD_RELOC_386_TLS_LDO_32:
10017 case BFD_RELOC_386_TLS_LE_32:
10018 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10019 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10020 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10021 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10022 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10023 break;
10024
67a4f2b7
AO
10025 case BFD_RELOC_386_TLS_DESC_CALL:
10026 case BFD_RELOC_X86_64_TLSDESC_CALL:
10027 value = 0; /* Fully resolved at runtime. No addend. */
10028 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10029 fixP->fx_done = 0;
10030 return;
10031
47926f60
KH
10032 case BFD_RELOC_VTABLE_INHERIT:
10033 case BFD_RELOC_VTABLE_ENTRY:
10034 fixP->fx_done = 0;
94f592af 10035 return;
47926f60
KH
10036
10037 default:
10038 break;
10039 }
10040#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10041 *valP = value;
f86103b7 10042#endif /* !defined (TE_Mach) */
3e73aa7c 10043
3e73aa7c 10044 /* Are we finished with this relocation now? */
c6682705 10045 if (fixP->fx_addsy == NULL)
3e73aa7c 10046 fixP->fx_done = 1;
fbeb56a4
DK
10047#if defined (OBJ_COFF) && defined (TE_PE)
10048 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10049 {
10050 fixP->fx_done = 0;
10051 /* Remember value for tc_gen_reloc. */
10052 fixP->fx_addnumber = value;
10053 /* Clear out the frag for now. */
10054 value = 0;
10055 }
10056#endif
3e73aa7c
JH
10057 else if (use_rela_relocations)
10058 {
10059 fixP->fx_no_overflow = 1;
062cd5e7
AS
10060 /* Remember value for tc_gen_reloc. */
10061 fixP->fx_addnumber = value;
3e73aa7c
JH
10062 value = 0;
10063 }
f86103b7 10064
94f592af 10065 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10066}
252b5132 10067\f
6d4af3c2 10068const char *
499ac353 10069md_atof (int type, char *litP, int *sizeP)
252b5132 10070{
499ac353
NC
10071 /* This outputs the LITTLENUMs in REVERSE order;
10072 in accord with the bigendian 386. */
10073 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10074}
10075\f
2d545b82 10076static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10077
252b5132 10078static char *
e3bb37b5 10079output_invalid (int c)
252b5132 10080{
3882b010 10081 if (ISPRINT (c))
f9f21a03
L
10082 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10083 "'%c'", c);
252b5132 10084 else
f9f21a03 10085 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10086 "(0x%x)", (unsigned char) c);
252b5132
RH
10087 return output_invalid_buf;
10088}
10089
af6bdddf 10090/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10091
10092static const reg_entry *
4d1bb795 10093parse_real_register (char *reg_string, char **end_op)
252b5132 10094{
af6bdddf
AM
10095 char *s = reg_string;
10096 char *p;
252b5132
RH
10097 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10098 const reg_entry *r;
10099
10100 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10101 if (*s == REGISTER_PREFIX)
10102 ++s;
10103
10104 if (is_space_char (*s))
10105 ++s;
10106
10107 p = reg_name_given;
af6bdddf 10108 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10109 {
10110 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10111 return (const reg_entry *) NULL;
10112 s++;
252b5132
RH
10113 }
10114
6588847e
DN
10115 /* For naked regs, make sure that we are not dealing with an identifier.
10116 This prevents confusing an identifier like `eax_var' with register
10117 `eax'. */
10118 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10119 return (const reg_entry *) NULL;
10120
af6bdddf 10121 *end_op = s;
252b5132
RH
10122
10123 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10124
5f47d35b 10125 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10126 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10127 {
5f47d35b
AM
10128 if (is_space_char (*s))
10129 ++s;
10130 if (*s == '(')
10131 {
af6bdddf 10132 ++s;
5f47d35b
AM
10133 if (is_space_char (*s))
10134 ++s;
10135 if (*s >= '0' && *s <= '7')
10136 {
db557034 10137 int fpr = *s - '0';
af6bdddf 10138 ++s;
5f47d35b
AM
10139 if (is_space_char (*s))
10140 ++s;
10141 if (*s == ')')
10142 {
10143 *end_op = s + 1;
1e9cc1c2 10144 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10145 know (r);
10146 return r + fpr;
5f47d35b 10147 }
5f47d35b 10148 }
47926f60 10149 /* We have "%st(" then garbage. */
5f47d35b
AM
10150 return (const reg_entry *) NULL;
10151 }
10152 }
10153
a60de03c
JB
10154 if (r == NULL || allow_pseudo_reg)
10155 return r;
10156
0dfbf9d7 10157 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10158 return (const reg_entry *) NULL;
10159
dc821c5f 10160 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10161 || r->reg_type.bitfield.sreg3
10162 || r->reg_type.bitfield.control
10163 || r->reg_type.bitfield.debug
10164 || r->reg_type.bitfield.test)
10165 && !cpu_arch_flags.bitfield.cpui386)
10166 return (const reg_entry *) NULL;
10167
ca0d63fe 10168 if (r->reg_type.bitfield.tbyte
309d3373
JB
10169 && !cpu_arch_flags.bitfield.cpu8087
10170 && !cpu_arch_flags.bitfield.cpu287
10171 && !cpu_arch_flags.bitfield.cpu387)
10172 return (const reg_entry *) NULL;
10173
1848e567 10174 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
10175 return (const reg_entry *) NULL;
10176
1b54b8d7 10177 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
10178 return (const reg_entry *) NULL;
10179
1b54b8d7 10180 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
10181 return (const reg_entry *) NULL;
10182
1b54b8d7 10183 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
10184 return (const reg_entry *) NULL;
10185
10186 if (r->reg_type.bitfield.regmask
10187 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
10188 return (const reg_entry *) NULL;
10189
db51cc60 10190 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10191 if (!allow_index_reg
db51cc60
L
10192 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10193 return (const reg_entry *) NULL;
10194
43234a1e
L
10195 /* Upper 16 vector register is only available with VREX in 64bit
10196 mode. */
10197 if ((r->reg_flags & RegVRex))
10198 {
86fa6981
L
10199 if (i.vec_encoding == vex_encoding_default)
10200 i.vec_encoding = vex_encoding_evex;
10201
43234a1e 10202 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 10203 || i.vec_encoding != vex_encoding_evex
43234a1e
L
10204 || flag_code != CODE_64BIT)
10205 return (const reg_entry *) NULL;
43234a1e
L
10206 }
10207
a60de03c 10208 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10209 || r->reg_type.bitfield.qword)
40fb9820 10210 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10211 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10212 && flag_code != CODE_64BIT)
20f0a1fc 10213 return (const reg_entry *) NULL;
1ae00879 10214
b7240065
JB
10215 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10216 return (const reg_entry *) NULL;
10217
252b5132
RH
10218 return r;
10219}
4d1bb795
JB
10220
10221/* REG_STRING starts *before* REGISTER_PREFIX. */
10222
10223static const reg_entry *
10224parse_register (char *reg_string, char **end_op)
10225{
10226 const reg_entry *r;
10227
10228 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10229 r = parse_real_register (reg_string, end_op);
10230 else
10231 r = NULL;
10232 if (!r)
10233 {
10234 char *save = input_line_pointer;
10235 char c;
10236 symbolS *symbolP;
10237
10238 input_line_pointer = reg_string;
d02603dc 10239 c = get_symbol_name (&reg_string);
4d1bb795
JB
10240 symbolP = symbol_find (reg_string);
10241 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10242 {
10243 const expressionS *e = symbol_get_value_expression (symbolP);
10244
0398aac5 10245 know (e->X_op == O_register);
4eed87de 10246 know (e->X_add_number >= 0
c3fe08fa 10247 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10248 r = i386_regtab + e->X_add_number;
d3bb6b49 10249 if ((r->reg_flags & RegVRex))
86fa6981 10250 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10251 *end_op = input_line_pointer;
10252 }
10253 *input_line_pointer = c;
10254 input_line_pointer = save;
10255 }
10256 return r;
10257}
10258
10259int
10260i386_parse_name (char *name, expressionS *e, char *nextcharP)
10261{
10262 const reg_entry *r;
10263 char *end = input_line_pointer;
10264
10265 *end = *nextcharP;
10266 r = parse_register (name, &input_line_pointer);
10267 if (r && end <= input_line_pointer)
10268 {
10269 *nextcharP = *input_line_pointer;
10270 *input_line_pointer = 0;
10271 e->X_op = O_register;
10272 e->X_add_number = r - i386_regtab;
10273 return 1;
10274 }
10275 input_line_pointer = end;
10276 *end = 0;
ee86248c 10277 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10278}
10279
10280void
10281md_operand (expressionS *e)
10282{
ee86248c
JB
10283 char *end;
10284 const reg_entry *r;
4d1bb795 10285
ee86248c
JB
10286 switch (*input_line_pointer)
10287 {
10288 case REGISTER_PREFIX:
10289 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10290 if (r)
10291 {
10292 e->X_op = O_register;
10293 e->X_add_number = r - i386_regtab;
10294 input_line_pointer = end;
10295 }
ee86248c
JB
10296 break;
10297
10298 case '[':
9c2799c2 10299 gas_assert (intel_syntax);
ee86248c
JB
10300 end = input_line_pointer++;
10301 expression (e);
10302 if (*input_line_pointer == ']')
10303 {
10304 ++input_line_pointer;
10305 e->X_op_symbol = make_expr_symbol (e);
10306 e->X_add_symbol = NULL;
10307 e->X_add_number = 0;
10308 e->X_op = O_index;
10309 }
10310 else
10311 {
10312 e->X_op = O_absent;
10313 input_line_pointer = end;
10314 }
10315 break;
4d1bb795
JB
10316 }
10317}
10318
252b5132 10319\f
4cc782b5 10320#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10321const char *md_shortopts = "kVQ:sqnO::";
252b5132 10322#else
b6f8c7c4 10323const char *md_shortopts = "qnO::";
252b5132 10324#endif
6e0b89ee 10325
3e73aa7c 10326#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10327#define OPTION_64 (OPTION_MD_BASE + 1)
10328#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10329#define OPTION_MARCH (OPTION_MD_BASE + 3)
10330#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10331#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10332#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10333#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10334#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10335#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10336#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10337#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10338#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10339#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10340#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10341#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10342#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10343#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10344#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10345#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10346#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10347#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10348#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10349#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10350#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10351
99ad8390
NC
10352struct option md_longopts[] =
10353{
3e73aa7c 10354 {"32", no_argument, NULL, OPTION_32},
321098a5 10355#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10356 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10357 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10358#endif
10359#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10360 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10361 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10362#endif
b3b91714 10363 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10364 {"march", required_argument, NULL, OPTION_MARCH},
10365 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10366 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10367 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10368 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10369 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10370 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10371 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10372 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10373 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10374 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10375 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10376 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10377# if defined (TE_PE) || defined (TE_PEP)
10378 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10379#endif
d1982f93 10380 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10381 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10382 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10383 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10384 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10385 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10386 {NULL, no_argument, NULL, 0}
10387};
10388size_t md_longopts_size = sizeof (md_longopts);
10389
10390int
17b9d67d 10391md_parse_option (int c, const char *arg)
252b5132 10392{
91d6fa6a 10393 unsigned int j;
293f5f65 10394 char *arch, *next, *saved;
9103f4f4 10395
252b5132
RH
10396 switch (c)
10397 {
12b55ccc
L
10398 case 'n':
10399 optimize_align_code = 0;
10400 break;
10401
a38cf1db
AM
10402 case 'q':
10403 quiet_warnings = 1;
252b5132
RH
10404 break;
10405
10406#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10407 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10408 should be emitted or not. FIXME: Not implemented. */
10409 case 'Q':
252b5132
RH
10410 break;
10411
10412 /* -V: SVR4 argument to print version ID. */
10413 case 'V':
10414 print_version_id ();
10415 break;
10416
a38cf1db
AM
10417 /* -k: Ignore for FreeBSD compatibility. */
10418 case 'k':
252b5132 10419 break;
4cc782b5
ILT
10420
10421 case 's':
10422 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10423 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10424 break;
8dcea932
L
10425
10426 case OPTION_MSHARED:
10427 shared = 1;
10428 break;
99ad8390 10429#endif
321098a5 10430#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10431 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10432 case OPTION_64:
10433 {
10434 const char **list, **l;
10435
3e73aa7c
JH
10436 list = bfd_target_list ();
10437 for (l = list; *l != NULL; l++)
8620418b 10438 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10439 || strcmp (*l, "coff-x86-64") == 0
10440 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10441 || strcmp (*l, "pei-x86-64") == 0
10442 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10443 {
10444 default_arch = "x86_64";
10445 break;
10446 }
3e73aa7c 10447 if (*l == NULL)
2b5d6a91 10448 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10449 free (list);
10450 }
10451 break;
10452#endif
252b5132 10453
351f65ca 10454#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10455 case OPTION_X32:
351f65ca
L
10456 if (IS_ELF)
10457 {
10458 const char **list, **l;
10459
10460 list = bfd_target_list ();
10461 for (l = list; *l != NULL; l++)
10462 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10463 {
10464 default_arch = "x86_64:32";
10465 break;
10466 }
10467 if (*l == NULL)
2b5d6a91 10468 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10469 free (list);
10470 }
10471 else
10472 as_fatal (_("32bit x86_64 is only supported for ELF"));
10473 break;
10474#endif
10475
6e0b89ee
AM
10476 case OPTION_32:
10477 default_arch = "i386";
10478 break;
10479
b3b91714
AM
10480 case OPTION_DIVIDE:
10481#ifdef SVR4_COMMENT_CHARS
10482 {
10483 char *n, *t;
10484 const char *s;
10485
add39d23 10486 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10487 t = n;
10488 for (s = i386_comment_chars; *s != '\0'; s++)
10489 if (*s != '/')
10490 *t++ = *s;
10491 *t = '\0';
10492 i386_comment_chars = n;
10493 }
10494#endif
10495 break;
10496
9103f4f4 10497 case OPTION_MARCH:
293f5f65
L
10498 saved = xstrdup (arg);
10499 arch = saved;
10500 /* Allow -march=+nosse. */
10501 if (*arch == '+')
10502 arch++;
6305a203 10503 do
9103f4f4 10504 {
6305a203 10505 if (*arch == '.')
2b5d6a91 10506 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10507 next = strchr (arch, '+');
10508 if (next)
10509 *next++ = '\0';
91d6fa6a 10510 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10511 {
91d6fa6a 10512 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10513 {
6305a203 10514 /* Processor. */
1ded5609
JB
10515 if (! cpu_arch[j].flags.bitfield.cpui386)
10516 continue;
10517
91d6fa6a 10518 cpu_arch_name = cpu_arch[j].name;
6305a203 10519 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10520 cpu_arch_flags = cpu_arch[j].flags;
10521 cpu_arch_isa = cpu_arch[j].type;
10522 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10523 if (!cpu_arch_tune_set)
10524 {
10525 cpu_arch_tune = cpu_arch_isa;
10526 cpu_arch_tune_flags = cpu_arch_isa_flags;
10527 }
10528 break;
10529 }
91d6fa6a
NC
10530 else if (*cpu_arch [j].name == '.'
10531 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10532 {
33eaf5de 10533 /* ISA extension. */
6305a203 10534 i386_cpu_flags flags;
309d3373 10535
293f5f65
L
10536 flags = cpu_flags_or (cpu_arch_flags,
10537 cpu_arch[j].flags);
81486035 10538
5b64d091 10539 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10540 {
10541 if (cpu_sub_arch_name)
10542 {
10543 char *name = cpu_sub_arch_name;
10544 cpu_sub_arch_name = concat (name,
91d6fa6a 10545 cpu_arch[j].name,
1bf57e9f 10546 (const char *) NULL);
6305a203
L
10547 free (name);
10548 }
10549 else
91d6fa6a 10550 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10551 cpu_arch_flags = flags;
a586129e 10552 cpu_arch_isa_flags = flags;
6305a203 10553 }
0089dace
L
10554 else
10555 cpu_arch_isa_flags
10556 = cpu_flags_or (cpu_arch_isa_flags,
10557 cpu_arch[j].flags);
6305a203 10558 break;
ccc9c027 10559 }
9103f4f4 10560 }
6305a203 10561
293f5f65
L
10562 if (j >= ARRAY_SIZE (cpu_arch))
10563 {
33eaf5de 10564 /* Disable an ISA extension. */
293f5f65
L
10565 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10566 if (strcmp (arch, cpu_noarch [j].name) == 0)
10567 {
10568 i386_cpu_flags flags;
10569
10570 flags = cpu_flags_and_not (cpu_arch_flags,
10571 cpu_noarch[j].flags);
10572 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10573 {
10574 if (cpu_sub_arch_name)
10575 {
10576 char *name = cpu_sub_arch_name;
10577 cpu_sub_arch_name = concat (arch,
10578 (const char *) NULL);
10579 free (name);
10580 }
10581 else
10582 cpu_sub_arch_name = xstrdup (arch);
10583 cpu_arch_flags = flags;
10584 cpu_arch_isa_flags = flags;
10585 }
10586 break;
10587 }
10588
10589 if (j >= ARRAY_SIZE (cpu_noarch))
10590 j = ARRAY_SIZE (cpu_arch);
10591 }
10592
91d6fa6a 10593 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10594 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10595
10596 arch = next;
9103f4f4 10597 }
293f5f65
L
10598 while (next != NULL);
10599 free (saved);
9103f4f4
L
10600 break;
10601
10602 case OPTION_MTUNE:
10603 if (*arg == '.')
2b5d6a91 10604 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10605 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10606 {
91d6fa6a 10607 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10608 {
ccc9c027 10609 cpu_arch_tune_set = 1;
91d6fa6a
NC
10610 cpu_arch_tune = cpu_arch [j].type;
10611 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10612 break;
10613 }
10614 }
91d6fa6a 10615 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10616 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10617 break;
10618
1efbbeb4
L
10619 case OPTION_MMNEMONIC:
10620 if (strcasecmp (arg, "att") == 0)
10621 intel_mnemonic = 0;
10622 else if (strcasecmp (arg, "intel") == 0)
10623 intel_mnemonic = 1;
10624 else
2b5d6a91 10625 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10626 break;
10627
10628 case OPTION_MSYNTAX:
10629 if (strcasecmp (arg, "att") == 0)
10630 intel_syntax = 0;
10631 else if (strcasecmp (arg, "intel") == 0)
10632 intel_syntax = 1;
10633 else
2b5d6a91 10634 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10635 break;
10636
10637 case OPTION_MINDEX_REG:
10638 allow_index_reg = 1;
10639 break;
10640
10641 case OPTION_MNAKED_REG:
10642 allow_naked_reg = 1;
10643 break;
10644
c0f3af97
L
10645 case OPTION_MSSE2AVX:
10646 sse2avx = 1;
10647 break;
10648
daf50ae7
L
10649 case OPTION_MSSE_CHECK:
10650 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10651 sse_check = check_error;
daf50ae7 10652 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10653 sse_check = check_warning;
daf50ae7 10654 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10655 sse_check = check_none;
daf50ae7 10656 else
2b5d6a91 10657 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10658 break;
10659
7bab8ab5
JB
10660 case OPTION_MOPERAND_CHECK:
10661 if (strcasecmp (arg, "error") == 0)
10662 operand_check = check_error;
10663 else if (strcasecmp (arg, "warning") == 0)
10664 operand_check = check_warning;
10665 else if (strcasecmp (arg, "none") == 0)
10666 operand_check = check_none;
10667 else
10668 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10669 break;
10670
539f890d
L
10671 case OPTION_MAVXSCALAR:
10672 if (strcasecmp (arg, "128") == 0)
10673 avxscalar = vex128;
10674 else if (strcasecmp (arg, "256") == 0)
10675 avxscalar = vex256;
10676 else
2b5d6a91 10677 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10678 break;
10679
7e8b059b
L
10680 case OPTION_MADD_BND_PREFIX:
10681 add_bnd_prefix = 1;
10682 break;
10683
43234a1e
L
10684 case OPTION_MEVEXLIG:
10685 if (strcmp (arg, "128") == 0)
10686 evexlig = evexl128;
10687 else if (strcmp (arg, "256") == 0)
10688 evexlig = evexl256;
10689 else if (strcmp (arg, "512") == 0)
10690 evexlig = evexl512;
10691 else
10692 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10693 break;
10694
d3d3c6db
IT
10695 case OPTION_MEVEXRCIG:
10696 if (strcmp (arg, "rne") == 0)
10697 evexrcig = rne;
10698 else if (strcmp (arg, "rd") == 0)
10699 evexrcig = rd;
10700 else if (strcmp (arg, "ru") == 0)
10701 evexrcig = ru;
10702 else if (strcmp (arg, "rz") == 0)
10703 evexrcig = rz;
10704 else
10705 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10706 break;
10707
43234a1e
L
10708 case OPTION_MEVEXWIG:
10709 if (strcmp (arg, "0") == 0)
10710 evexwig = evexw0;
10711 else if (strcmp (arg, "1") == 0)
10712 evexwig = evexw1;
10713 else
10714 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10715 break;
10716
167ad85b
TG
10717# if defined (TE_PE) || defined (TE_PEP)
10718 case OPTION_MBIG_OBJ:
10719 use_big_obj = 1;
10720 break;
10721#endif
10722
d1982f93 10723 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10724 if (strcasecmp (arg, "yes") == 0)
10725 omit_lock_prefix = 1;
10726 else if (strcasecmp (arg, "no") == 0)
10727 omit_lock_prefix = 0;
10728 else
10729 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10730 break;
10731
e4e00185
AS
10732 case OPTION_MFENCE_AS_LOCK_ADD:
10733 if (strcasecmp (arg, "yes") == 0)
10734 avoid_fence = 1;
10735 else if (strcasecmp (arg, "no") == 0)
10736 avoid_fence = 0;
10737 else
10738 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10739 break;
10740
0cb4071e
L
10741 case OPTION_MRELAX_RELOCATIONS:
10742 if (strcasecmp (arg, "yes") == 0)
10743 generate_relax_relocations = 1;
10744 else if (strcasecmp (arg, "no") == 0)
10745 generate_relax_relocations = 0;
10746 else
10747 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10748 break;
10749
5db04b09 10750 case OPTION_MAMD64:
e89c5eaa 10751 intel64 = 0;
5db04b09
L
10752 break;
10753
10754 case OPTION_MINTEL64:
e89c5eaa 10755 intel64 = 1;
5db04b09
L
10756 break;
10757
b6f8c7c4
L
10758 case 'O':
10759 if (arg == NULL)
10760 {
10761 optimize = 1;
10762 /* Turn off -Os. */
10763 optimize_for_space = 0;
10764 }
10765 else if (*arg == 's')
10766 {
10767 optimize_for_space = 1;
10768 /* Turn on all encoding optimizations. */
10769 optimize = -1;
10770 }
10771 else
10772 {
10773 optimize = atoi (arg);
10774 /* Turn off -Os. */
10775 optimize_for_space = 0;
10776 }
10777 break;
10778
252b5132
RH
10779 default:
10780 return 0;
10781 }
10782 return 1;
10783}
10784
8a2c8fef
L
10785#define MESSAGE_TEMPLATE \
10786" "
10787
293f5f65
L
10788static char *
10789output_message (FILE *stream, char *p, char *message, char *start,
10790 int *left_p, const char *name, int len)
10791{
10792 int size = sizeof (MESSAGE_TEMPLATE);
10793 int left = *left_p;
10794
10795 /* Reserve 2 spaces for ", " or ",\0" */
10796 left -= len + 2;
10797
10798 /* Check if there is any room. */
10799 if (left >= 0)
10800 {
10801 if (p != start)
10802 {
10803 *p++ = ',';
10804 *p++ = ' ';
10805 }
10806 p = mempcpy (p, name, len);
10807 }
10808 else
10809 {
10810 /* Output the current message now and start a new one. */
10811 *p++ = ',';
10812 *p = '\0';
10813 fprintf (stream, "%s\n", message);
10814 p = start;
10815 left = size - (start - message) - len - 2;
10816
10817 gas_assert (left >= 0);
10818
10819 p = mempcpy (p, name, len);
10820 }
10821
10822 *left_p = left;
10823 return p;
10824}
10825
8a2c8fef 10826static void
1ded5609 10827show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10828{
10829 static char message[] = MESSAGE_TEMPLATE;
10830 char *start = message + 27;
10831 char *p;
10832 int size = sizeof (MESSAGE_TEMPLATE);
10833 int left;
10834 const char *name;
10835 int len;
10836 unsigned int j;
10837
10838 p = start;
10839 left = size - (start - message);
10840 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10841 {
10842 /* Should it be skipped? */
10843 if (cpu_arch [j].skip)
10844 continue;
10845
10846 name = cpu_arch [j].name;
10847 len = cpu_arch [j].len;
10848 if (*name == '.')
10849 {
10850 /* It is an extension. Skip if we aren't asked to show it. */
10851 if (ext)
10852 {
10853 name++;
10854 len--;
10855 }
10856 else
10857 continue;
10858 }
10859 else if (ext)
10860 {
10861 /* It is an processor. Skip if we show only extension. */
10862 continue;
10863 }
1ded5609
JB
10864 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10865 {
10866 /* It is an impossible processor - skip. */
10867 continue;
10868 }
8a2c8fef 10869
293f5f65 10870 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10871 }
10872
293f5f65
L
10873 /* Display disabled extensions. */
10874 if (ext)
10875 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10876 {
10877 name = cpu_noarch [j].name;
10878 len = cpu_noarch [j].len;
10879 p = output_message (stream, p, message, start, &left, name,
10880 len);
10881 }
10882
8a2c8fef
L
10883 *p = '\0';
10884 fprintf (stream, "%s\n", message);
10885}
10886
252b5132 10887void
8a2c8fef 10888md_show_usage (FILE *stream)
252b5132 10889{
4cc782b5
ILT
10890#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10891 fprintf (stream, _("\
a38cf1db
AM
10892 -Q ignored\n\
10893 -V print assembler version number\n\
b3b91714
AM
10894 -k ignored\n"));
10895#endif
10896 fprintf (stream, _("\
12b55ccc 10897 -n Do not optimize code alignment\n\
b3b91714
AM
10898 -q quieten some warnings\n"));
10899#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10900 fprintf (stream, _("\
a38cf1db 10901 -s ignored\n"));
b3b91714 10902#endif
321098a5
L
10903#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10904 || defined (TE_PE) || defined (TE_PEP))
751d281c 10905 fprintf (stream, _("\
570561f7 10906 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10907#endif
b3b91714
AM
10908#ifdef SVR4_COMMENT_CHARS
10909 fprintf (stream, _("\
10910 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10911#else
10912 fprintf (stream, _("\
b3b91714 10913 --divide ignored\n"));
4cc782b5 10914#endif
9103f4f4 10915 fprintf (stream, _("\
6305a203 10916 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10917 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10918 show_arch (stream, 0, 1);
8a2c8fef
L
10919 fprintf (stream, _("\
10920 EXTENSION is combination of:\n"));
1ded5609 10921 show_arch (stream, 1, 0);
6305a203 10922 fprintf (stream, _("\
8a2c8fef 10923 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10924 show_arch (stream, 0, 0);
ba104c83 10925 fprintf (stream, _("\
c0f3af97
L
10926 -msse2avx encode SSE instructions with VEX prefix\n"));
10927 fprintf (stream, _("\
daf50ae7
L
10928 -msse-check=[none|error|warning]\n\
10929 check SSE instructions\n"));
10930 fprintf (stream, _("\
7bab8ab5
JB
10931 -moperand-check=[none|error|warning]\n\
10932 check operand combinations for validity\n"));
10933 fprintf (stream, _("\
539f890d
L
10934 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10935 length\n"));
10936 fprintf (stream, _("\
43234a1e
L
10937 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10938 length\n"));
10939 fprintf (stream, _("\
10940 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10941 for EVEX.W bit ignored instructions\n"));
10942 fprintf (stream, _("\
d3d3c6db
IT
10943 -mevexrcig=[rne|rd|ru|rz]\n\
10944 encode EVEX instructions with specific EVEX.RC value\n\
10945 for SAE-only ignored instructions\n"));
10946 fprintf (stream, _("\
ba104c83
L
10947 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10948 fprintf (stream, _("\
10949 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10950 fprintf (stream, _("\
10951 -mindex-reg support pseudo index registers\n"));
10952 fprintf (stream, _("\
10953 -mnaked-reg don't require `%%' prefix for registers\n"));
10954 fprintf (stream, _("\
7e8b059b 10955 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10956 fprintf (stream, _("\
10957 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10958# if defined (TE_PE) || defined (TE_PEP)
10959 fprintf (stream, _("\
10960 -mbig-obj generate big object files\n"));
10961#endif
d022bddd
IT
10962 fprintf (stream, _("\
10963 -momit-lock-prefix=[no|yes]\n\
10964 strip all lock prefixes\n"));
5db04b09 10965 fprintf (stream, _("\
e4e00185
AS
10966 -mfence-as-lock-add=[no|yes]\n\
10967 encode lfence, mfence and sfence as\n\
10968 lock addl $0x0, (%%{re}sp)\n"));
10969 fprintf (stream, _("\
0cb4071e
L
10970 -mrelax-relocations=[no|yes]\n\
10971 generate relax relocations\n"));
10972 fprintf (stream, _("\
5db04b09
L
10973 -mamd64 accept only AMD64 ISA\n"));
10974 fprintf (stream, _("\
10975 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10976}
10977
3e73aa7c 10978#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10979 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10980 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10981
10982/* Pick the target format to use. */
10983
47926f60 10984const char *
e3bb37b5 10985i386_target_format (void)
252b5132 10986{
351f65ca
L
10987 if (!strncmp (default_arch, "x86_64", 6))
10988 {
10989 update_code_flag (CODE_64BIT, 1);
10990 if (default_arch[6] == '\0')
7f56bc95 10991 x86_elf_abi = X86_64_ABI;
351f65ca 10992 else
7f56bc95 10993 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10994 }
3e73aa7c 10995 else if (!strcmp (default_arch, "i386"))
78f12dd3 10996 update_code_flag (CODE_32BIT, 1);
5197d474
L
10997 else if (!strcmp (default_arch, "iamcu"))
10998 {
10999 update_code_flag (CODE_32BIT, 1);
11000 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11001 {
11002 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11003 cpu_arch_name = "iamcu";
11004 cpu_sub_arch_name = NULL;
11005 cpu_arch_flags = iamcu_flags;
11006 cpu_arch_isa = PROCESSOR_IAMCU;
11007 cpu_arch_isa_flags = iamcu_flags;
11008 if (!cpu_arch_tune_set)
11009 {
11010 cpu_arch_tune = cpu_arch_isa;
11011 cpu_arch_tune_flags = cpu_arch_isa_flags;
11012 }
11013 }
8d471ec1 11014 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11015 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11016 cpu_arch_name);
11017 }
3e73aa7c 11018 else
2b5d6a91 11019 as_fatal (_("unknown architecture"));
89507696
JB
11020
11021 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11022 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11023 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11024 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11025
252b5132
RH
11026 switch (OUTPUT_FLAVOR)
11027 {
9384f2ff 11028#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11029 case bfd_target_aout_flavour:
47926f60 11030 return AOUT_TARGET_FORMAT;
4c63da97 11031#endif
9384f2ff
AM
11032#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11033# if defined (TE_PE) || defined (TE_PEP)
11034 case bfd_target_coff_flavour:
167ad85b
TG
11035 if (flag_code == CODE_64BIT)
11036 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11037 else
11038 return "pe-i386";
9384f2ff 11039# elif defined (TE_GO32)
0561d57c
JK
11040 case bfd_target_coff_flavour:
11041 return "coff-go32";
9384f2ff 11042# else
252b5132
RH
11043 case bfd_target_coff_flavour:
11044 return "coff-i386";
9384f2ff 11045# endif
4c63da97 11046#endif
3e73aa7c 11047#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11048 case bfd_target_elf_flavour:
3e73aa7c 11049 {
351f65ca
L
11050 const char *format;
11051
11052 switch (x86_elf_abi)
4fa24527 11053 {
351f65ca
L
11054 default:
11055 format = ELF_TARGET_FORMAT;
11056 break;
7f56bc95 11057 case X86_64_ABI:
351f65ca 11058 use_rela_relocations = 1;
4fa24527 11059 object_64bit = 1;
351f65ca
L
11060 format = ELF_TARGET_FORMAT64;
11061 break;
7f56bc95 11062 case X86_64_X32_ABI:
4fa24527 11063 use_rela_relocations = 1;
351f65ca 11064 object_64bit = 1;
862be3fb 11065 disallow_64bit_reloc = 1;
351f65ca
L
11066 format = ELF_TARGET_FORMAT32;
11067 break;
4fa24527 11068 }
3632d14b 11069 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11070 {
7f56bc95 11071 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11072 as_fatal (_("Intel L1OM is 64bit only"));
11073 return ELF_TARGET_L1OM_FORMAT;
11074 }
b49f93f6 11075 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11076 {
11077 if (x86_elf_abi != X86_64_ABI)
11078 as_fatal (_("Intel K1OM is 64bit only"));
11079 return ELF_TARGET_K1OM_FORMAT;
11080 }
81486035
L
11081 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11082 {
11083 if (x86_elf_abi != I386_ABI)
11084 as_fatal (_("Intel MCU is 32bit only"));
11085 return ELF_TARGET_IAMCU_FORMAT;
11086 }
8a9036a4 11087 else
351f65ca 11088 return format;
3e73aa7c 11089 }
e57f8c65
TG
11090#endif
11091#if defined (OBJ_MACH_O)
11092 case bfd_target_mach_o_flavour:
d382c579
TG
11093 if (flag_code == CODE_64BIT)
11094 {
11095 use_rela_relocations = 1;
11096 object_64bit = 1;
11097 return "mach-o-x86-64";
11098 }
11099 else
11100 return "mach-o-i386";
4c63da97 11101#endif
252b5132
RH
11102 default:
11103 abort ();
11104 return NULL;
11105 }
11106}
11107
47926f60 11108#endif /* OBJ_MAYBE_ more than one */
252b5132 11109\f
252b5132 11110symbolS *
7016a5d5 11111md_undefined_symbol (char *name)
252b5132 11112{
18dc2407
ILT
11113 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11114 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11115 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11116 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11117 {
11118 if (!GOT_symbol)
11119 {
11120 if (symbol_find (name))
11121 as_bad (_("GOT already in symbol table"));
11122 GOT_symbol = symbol_new (name, undefined_section,
11123 (valueT) 0, &zero_address_frag);
11124 };
11125 return GOT_symbol;
11126 }
252b5132
RH
11127 return 0;
11128}
11129
11130/* Round up a section size to the appropriate boundary. */
47926f60 11131
252b5132 11132valueT
7016a5d5 11133md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11134{
4c63da97
AM
11135#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11136 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11137 {
11138 /* For a.out, force the section size to be aligned. If we don't do
11139 this, BFD will align it for us, but it will not write out the
11140 final bytes of the section. This may be a bug in BFD, but it is
11141 easier to fix it here since that is how the other a.out targets
11142 work. */
11143 int align;
11144
11145 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11146 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11147 }
252b5132
RH
11148#endif
11149
11150 return size;
11151}
11152
11153/* On the i386, PC-relative offsets are relative to the start of the
11154 next instruction. That is, the address of the offset, plus its
11155 size, since the offset is always the last part of the insn. */
11156
11157long
e3bb37b5 11158md_pcrel_from (fixS *fixP)
252b5132
RH
11159{
11160 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11161}
11162
11163#ifndef I386COFF
11164
11165static void
e3bb37b5 11166s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11167{
29b0f896 11168 int temp;
252b5132 11169
8a75718c
JB
11170#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11171 if (IS_ELF)
11172 obj_elf_section_change_hook ();
11173#endif
252b5132
RH
11174 temp = get_absolute_expression ();
11175 subseg_set (bss_section, (subsegT) temp);
11176 demand_empty_rest_of_line ();
11177}
11178
11179#endif
11180
252b5132 11181void
e3bb37b5 11182i386_validate_fix (fixS *fixp)
252b5132 11183{
02a86693 11184 if (fixp->fx_subsy)
252b5132 11185 {
02a86693 11186 if (fixp->fx_subsy == GOT_symbol)
23df1078 11187 {
02a86693
L
11188 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11189 {
11190 if (!object_64bit)
11191 abort ();
11192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11193 if (fixp->fx_tcbit2)
56ceb5b5
L
11194 fixp->fx_r_type = (fixp->fx_tcbit
11195 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11196 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11197 else
11198#endif
11199 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11200 }
d6ab8113 11201 else
02a86693
L
11202 {
11203 if (!object_64bit)
11204 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11205 else
11206 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11207 }
11208 fixp->fx_subsy = 0;
23df1078 11209 }
252b5132 11210 }
02a86693
L
11211#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11212 else if (!object_64bit)
11213 {
11214 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11215 && fixp->fx_tcbit2)
11216 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11217 }
11218#endif
252b5132
RH
11219}
11220
252b5132 11221arelent *
7016a5d5 11222tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11223{
11224 arelent *rel;
11225 bfd_reloc_code_real_type code;
11226
11227 switch (fixp->fx_r_type)
11228 {
8ce3d284 11229#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11230 case BFD_RELOC_SIZE32:
11231 case BFD_RELOC_SIZE64:
11232 if (S_IS_DEFINED (fixp->fx_addsy)
11233 && !S_IS_EXTERNAL (fixp->fx_addsy))
11234 {
11235 /* Resolve size relocation against local symbol to size of
11236 the symbol plus addend. */
11237 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11238 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11239 && !fits_in_unsigned_long (value))
11240 as_bad_where (fixp->fx_file, fixp->fx_line,
11241 _("symbol size computation overflow"));
11242 fixp->fx_addsy = NULL;
11243 fixp->fx_subsy = NULL;
11244 md_apply_fix (fixp, (valueT *) &value, NULL);
11245 return NULL;
11246 }
8ce3d284 11247#endif
1a0670f3 11248 /* Fall through. */
8fd4256d 11249
3e73aa7c
JH
11250 case BFD_RELOC_X86_64_PLT32:
11251 case BFD_RELOC_X86_64_GOT32:
11252 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11253 case BFD_RELOC_X86_64_GOTPCRELX:
11254 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11255 case BFD_RELOC_386_PLT32:
11256 case BFD_RELOC_386_GOT32:
02a86693 11257 case BFD_RELOC_386_GOT32X:
252b5132
RH
11258 case BFD_RELOC_386_GOTOFF:
11259 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11260 case BFD_RELOC_386_TLS_GD:
11261 case BFD_RELOC_386_TLS_LDM:
11262 case BFD_RELOC_386_TLS_LDO_32:
11263 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11264 case BFD_RELOC_386_TLS_IE:
11265 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11266 case BFD_RELOC_386_TLS_LE_32:
11267 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11268 case BFD_RELOC_386_TLS_GOTDESC:
11269 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11270 case BFD_RELOC_X86_64_TLSGD:
11271 case BFD_RELOC_X86_64_TLSLD:
11272 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11273 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11274 case BFD_RELOC_X86_64_GOTTPOFF:
11275 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11276 case BFD_RELOC_X86_64_TPOFF64:
11277 case BFD_RELOC_X86_64_GOTOFF64:
11278 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11279 case BFD_RELOC_X86_64_GOT64:
11280 case BFD_RELOC_X86_64_GOTPCREL64:
11281 case BFD_RELOC_X86_64_GOTPC64:
11282 case BFD_RELOC_X86_64_GOTPLT64:
11283 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11284 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11285 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11286 case BFD_RELOC_RVA:
11287 case BFD_RELOC_VTABLE_ENTRY:
11288 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11289#ifdef TE_PE
11290 case BFD_RELOC_32_SECREL:
11291#endif
252b5132
RH
11292 code = fixp->fx_r_type;
11293 break;
dbbaec26
L
11294 case BFD_RELOC_X86_64_32S:
11295 if (!fixp->fx_pcrel)
11296 {
11297 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11298 code = fixp->fx_r_type;
11299 break;
11300 }
1a0670f3 11301 /* Fall through. */
252b5132 11302 default:
93382f6d 11303 if (fixp->fx_pcrel)
252b5132 11304 {
93382f6d
AM
11305 switch (fixp->fx_size)
11306 {
11307 default:
b091f402
AM
11308 as_bad_where (fixp->fx_file, fixp->fx_line,
11309 _("can not do %d byte pc-relative relocation"),
11310 fixp->fx_size);
93382f6d
AM
11311 code = BFD_RELOC_32_PCREL;
11312 break;
11313 case 1: code = BFD_RELOC_8_PCREL; break;
11314 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11315 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11316#ifdef BFD64
11317 case 8: code = BFD_RELOC_64_PCREL; break;
11318#endif
93382f6d
AM
11319 }
11320 }
11321 else
11322 {
11323 switch (fixp->fx_size)
11324 {
11325 default:
b091f402
AM
11326 as_bad_where (fixp->fx_file, fixp->fx_line,
11327 _("can not do %d byte relocation"),
11328 fixp->fx_size);
93382f6d
AM
11329 code = BFD_RELOC_32;
11330 break;
11331 case 1: code = BFD_RELOC_8; break;
11332 case 2: code = BFD_RELOC_16; break;
11333 case 4: code = BFD_RELOC_32; break;
937149dd 11334#ifdef BFD64
3e73aa7c 11335 case 8: code = BFD_RELOC_64; break;
937149dd 11336#endif
93382f6d 11337 }
252b5132
RH
11338 }
11339 break;
11340 }
252b5132 11341
d182319b
JB
11342 if ((code == BFD_RELOC_32
11343 || code == BFD_RELOC_32_PCREL
11344 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11345 && GOT_symbol
11346 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11347 {
4fa24527 11348 if (!object_64bit)
d6ab8113
JB
11349 code = BFD_RELOC_386_GOTPC;
11350 else
11351 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11352 }
7b81dfbb
AJ
11353 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11354 && GOT_symbol
11355 && fixp->fx_addsy == GOT_symbol)
11356 {
11357 code = BFD_RELOC_X86_64_GOTPC64;
11358 }
252b5132 11359
add39d23
TS
11360 rel = XNEW (arelent);
11361 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11362 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11363
11364 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11365
3e73aa7c
JH
11366 if (!use_rela_relocations)
11367 {
11368 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11369 vtable entry to be used in the relocation's section offset. */
11370 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11371 rel->address = fixp->fx_offset;
fbeb56a4
DK
11372#if defined (OBJ_COFF) && defined (TE_PE)
11373 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11374 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11375 else
11376#endif
c6682705 11377 rel->addend = 0;
3e73aa7c
JH
11378 }
11379 /* Use the rela in 64bit mode. */
252b5132 11380 else
3e73aa7c 11381 {
862be3fb
L
11382 if (disallow_64bit_reloc)
11383 switch (code)
11384 {
862be3fb
L
11385 case BFD_RELOC_X86_64_DTPOFF64:
11386 case BFD_RELOC_X86_64_TPOFF64:
11387 case BFD_RELOC_64_PCREL:
11388 case BFD_RELOC_X86_64_GOTOFF64:
11389 case BFD_RELOC_X86_64_GOT64:
11390 case BFD_RELOC_X86_64_GOTPCREL64:
11391 case BFD_RELOC_X86_64_GOTPC64:
11392 case BFD_RELOC_X86_64_GOTPLT64:
11393 case BFD_RELOC_X86_64_PLTOFF64:
11394 as_bad_where (fixp->fx_file, fixp->fx_line,
11395 _("cannot represent relocation type %s in x32 mode"),
11396 bfd_get_reloc_code_name (code));
11397 break;
11398 default:
11399 break;
11400 }
11401
062cd5e7
AS
11402 if (!fixp->fx_pcrel)
11403 rel->addend = fixp->fx_offset;
11404 else
11405 switch (code)
11406 {
11407 case BFD_RELOC_X86_64_PLT32:
11408 case BFD_RELOC_X86_64_GOT32:
11409 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11410 case BFD_RELOC_X86_64_GOTPCRELX:
11411 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11412 case BFD_RELOC_X86_64_TLSGD:
11413 case BFD_RELOC_X86_64_TLSLD:
11414 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11415 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11416 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11417 rel->addend = fixp->fx_offset - fixp->fx_size;
11418 break;
11419 default:
11420 rel->addend = (section->vma
11421 - fixp->fx_size
11422 + fixp->fx_addnumber
11423 + md_pcrel_from (fixp));
11424 break;
11425 }
3e73aa7c
JH
11426 }
11427
252b5132
RH
11428 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11429 if (rel->howto == NULL)
11430 {
11431 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11432 _("cannot represent relocation type %s"),
252b5132
RH
11433 bfd_get_reloc_code_name (code));
11434 /* Set howto to a garbage value so that we can keep going. */
11435 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11436 gas_assert (rel->howto != NULL);
252b5132
RH
11437 }
11438
11439 return rel;
11440}
11441
ee86248c 11442#include "tc-i386-intel.c"
54cfded0 11443
a60de03c
JB
11444void
11445tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11446{
a60de03c
JB
11447 int saved_naked_reg;
11448 char saved_register_dot;
54cfded0 11449
a60de03c
JB
11450 saved_naked_reg = allow_naked_reg;
11451 allow_naked_reg = 1;
11452 saved_register_dot = register_chars['.'];
11453 register_chars['.'] = '.';
11454 allow_pseudo_reg = 1;
11455 expression_and_evaluate (exp);
11456 allow_pseudo_reg = 0;
11457 register_chars['.'] = saved_register_dot;
11458 allow_naked_reg = saved_naked_reg;
11459
e96d56a1 11460 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11461 {
a60de03c
JB
11462 if ((addressT) exp->X_add_number < i386_regtab_size)
11463 {
11464 exp->X_op = O_constant;
11465 exp->X_add_number = i386_regtab[exp->X_add_number]
11466 .dw2_regnum[flag_code >> 1];
11467 }
11468 else
11469 exp->X_op = O_illegal;
54cfded0 11470 }
54cfded0
AM
11471}
11472
11473void
11474tc_x86_frame_initial_instructions (void)
11475{
a60de03c
JB
11476 static unsigned int sp_regno[2];
11477
11478 if (!sp_regno[flag_code >> 1])
11479 {
11480 char *saved_input = input_line_pointer;
11481 char sp[][4] = {"esp", "rsp"};
11482 expressionS exp;
a4447b93 11483
a60de03c
JB
11484 input_line_pointer = sp[flag_code >> 1];
11485 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11486 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11487 sp_regno[flag_code >> 1] = exp.X_add_number;
11488 input_line_pointer = saved_input;
11489 }
a4447b93 11490
61ff971f
L
11491 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11492 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11493}
d2b2c203 11494
d7921315
L
11495int
11496x86_dwarf2_addr_size (void)
11497{
11498#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11499 if (x86_elf_abi == X86_64_X32_ABI)
11500 return 4;
11501#endif
11502 return bfd_arch_bits_per_address (stdoutput) / 8;
11503}
11504
d2b2c203
DJ
11505int
11506i386_elf_section_type (const char *str, size_t len)
11507{
11508 if (flag_code == CODE_64BIT
11509 && len == sizeof ("unwind") - 1
11510 && strncmp (str, "unwind", 6) == 0)
11511 return SHT_X86_64_UNWIND;
11512
11513 return -1;
11514}
bb41ade5 11515
ad5fec3b
EB
11516#ifdef TE_SOLARIS
11517void
11518i386_solaris_fix_up_eh_frame (segT sec)
11519{
11520 if (flag_code == CODE_64BIT)
11521 elf_section_type (sec) = SHT_X86_64_UNWIND;
11522}
11523#endif
11524
bb41ade5
AM
11525#ifdef TE_PE
11526void
11527tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11528{
91d6fa6a 11529 expressionS exp;
bb41ade5 11530
91d6fa6a
NC
11531 exp.X_op = O_secrel;
11532 exp.X_add_symbol = symbol;
11533 exp.X_add_number = 0;
11534 emit_expr (&exp, size);
bb41ade5
AM
11535}
11536#endif
3b22753a
L
11537
11538#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11539/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11540
01e1a5bc 11541bfd_vma
6d4af3c2 11542x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11543{
11544 if (flag_code == CODE_64BIT)
11545 {
11546 if (letter == 'l')
11547 return SHF_X86_64_LARGE;
11548
8f3bae45 11549 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11550 }
3b22753a 11551 else
8f3bae45 11552 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11553 return -1;
11554}
11555
01e1a5bc 11556bfd_vma
3b22753a
L
11557x86_64_section_word (char *str, size_t len)
11558{
8620418b 11559 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11560 return SHF_X86_64_LARGE;
11561
11562 return -1;
11563}
11564
11565static void
11566handle_large_common (int small ATTRIBUTE_UNUSED)
11567{
11568 if (flag_code != CODE_64BIT)
11569 {
11570 s_comm_internal (0, elf_common_parse);
11571 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11572 }
11573 else
11574 {
11575 static segT lbss_section;
11576 asection *saved_com_section_ptr = elf_com_section_ptr;
11577 asection *saved_bss_section = bss_section;
11578
11579 if (lbss_section == NULL)
11580 {
11581 flagword applicable;
11582 segT seg = now_seg;
11583 subsegT subseg = now_subseg;
11584
11585 /* The .lbss section is for local .largecomm symbols. */
11586 lbss_section = subseg_new (".lbss", 0);
11587 applicable = bfd_applicable_section_flags (stdoutput);
11588 bfd_set_section_flags (stdoutput, lbss_section,
11589 applicable & SEC_ALLOC);
11590 seg_info (lbss_section)->bss = 1;
11591
11592 subseg_set (seg, subseg);
11593 }
11594
11595 elf_com_section_ptr = &_bfd_elf_large_com_section;
11596 bss_section = lbss_section;
11597
11598 s_comm_internal (0, elf_common_parse);
11599
11600 elf_com_section_ptr = saved_com_section_ptr;
11601 bss_section = saved_bss_section;
11602 }
11603}
11604#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.857824 seconds and 4 git commands to generate.