Allow objcopy's --set-section-flags options to add or remove the SHF_EXCLUDE flag...
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
42e04b36 422 vex_encoding_vex,
86fa6981
L
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
72aea328 3993 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 3999 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
7697afb6
JB
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
b6f8c7c4
L
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
72aea328 4025 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
b6f8c7c4
L
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
507916b8 4030 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
507916b8 4039 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
72aea328
JB
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
d3d50934
L
4049 || (i.reg_operands == 1
4050 && i.operands == 1
72aea328 4051 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4055 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
507916b8 4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
507916b8 4077 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
507916b8 4082 i.tm.base_opcode = 0xb8;
b6f8c7c4 4083 i.tm.extension_opcode = None;
507916b8 4084 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
5641ec01
JB
4090 else if (optimize > 1
4091 && !optimize_for_space
72aea328 4092 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
99112332 4114 else if (i.reg_operands == 3
b6f8c7c4
L
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
7a69eac3 4118 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4119 && !i.rounding
e771e7c9 4120 && is_evex_encoding (&i.tm)
80c34c38 4121 && (i.vec_encoding != vex_encoding_evex
dd22218c 4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4124 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4125 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
8305403a
L
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4140 && i.tm.extension_opcode == None))
4141 {
99112332 4142 /* Optimize: -O1:
8305403a
L
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
b6f8c7c4
L
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4176 */
e771e7c9 4177 if (is_evex_encoding (&i.tm))
b6f8c7c4 4178 {
7b1d7ca1 4179 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
7b1d7ca1 4185 else if (optimize > 1)
dd22218c
L
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
b6f8c7c4 4189 }
f74a6307 4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
b6f8c7c4
L
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
392a5972 4205 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4206 && !i.types[0].bitfield.zmmword
392a5972 4207 && !i.types[1].bitfield.zmmword
97ed31ae 4208 && !i.mask
a0a1771e 4209 && !i.broadcast
97ed31ae 4210 && is_evex_encoding (&i.tm)
392a5972
L
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4242 */
a0a1771e 4243 for (j = 0; j < i.operands; j++)
392a5972
L
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
a0a1771e 4276 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
a0a1771e
JB
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4282 }
b6f8c7c4
L
4283}
4284
252b5132
RH
4285/* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289void
65da13b5 4290md_assemble (char *line)
252b5132 4291{
40fb9820 4292 unsigned int j;
83b16ac6 4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4294 const insn_template *t;
252b5132 4295
47926f60 4296 /* Initialize globals. */
252b5132
RH
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4299 i.reloc[j] = NO_RELOC;
252b5132
RH
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4302 save_stack_p = save_stack;
252b5132
RH
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4306 start of a (possibly prefixed) mnemonic. */
252b5132 4307
29b0f896
AM
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
83b16ac6 4311 mnem_suffix = i.suffix;
252b5132 4312
29b0f896 4313 line = parse_operands (line, mnemonic);
ee86248c 4314 this_operand = -1;
8325cc63
JB
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
29b0f896
AM
4317 if (line == NULL)
4318 return;
252b5132 4319
29b0f896
AM
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
050dfa73 4326 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4327 if (intel_syntax
4328 && i.operands > 1
29b0f896 4329 && (strcmp (mnemonic, "bound") != 0)
30123838 4330 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4333 swap_operands ();
4334
ec56d5c0
JB
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
29b0f896
AM
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
b300c311
L
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
a501d77e 4348 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
29b0f896
AM
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
252b5132 4356
83b16ac6 4357 if (!(t = match_template (mnem_suffix)))
29b0f896 4358 return;
252b5132 4359
7bab8ab5 4360 if (sse_check != check_none
81f8a913 4361 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4362 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4369 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4370 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4373 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4374 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4375 {
7bab8ab5 4376 (sse_check == check_warning
daf50ae7
L
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
321fd21e
L
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4386 {
321fd21e
L
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
7ab9ffdd 4391 && intel_syntax)
321fd21e
L
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
cd61ebfe 4395 }
24eab124 4396
40fb9820 4397 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
252b5132 4400
d5de92cf
L
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
c1ba0266
L
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
c32fa91d
L
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
8dc0818e 4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
7a8655d2
JB
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
42164a71 4428 /* Check if HLE prefix is OK. */
165de32a 4429 if (i.hle_prefix && !check_hle ())
42164a71
L
4430 return;
4431
7e8b059b
L
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
04ef582a 4436 /* Check NOTRACK prefix. */
9fef80d6
L
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4439
327e8c42
JB
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
7e8b059b
L
4449
4450 /* Insert BND prefix. */
76d3a78a
JB
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
7e8b059b 4461
29b0f896 4462 /* Check string instruction segment overrides. */
51c8edf6 4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4464 {
51c8edf6 4465 gas_assert (i.mem_operands);
29b0f896 4466 if (!check_string ())
5dd0794d 4467 return;
fc0763e6 4468 i.disp_operands = 0;
29b0f896 4469 }
5dd0794d 4470
b6f8c7c4
L
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
29b0f896
AM
4474 if (!process_suffix ())
4475 return;
e413e4e9 4476
bc0844ae
L
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
29b0f896
AM
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
252b5132 4485
40fb9820 4486 if (i.types[0].bitfield.imm1)
29b0f896 4487 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4488
9afe6eb8
L
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
75e5731b
JB
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
9afe6eb8 4495 i.reg_operands--;
40fb9820 4496
c0f3af97
L
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
65da13b5 4500 process_immext ();
252b5132 4501
29b0f896
AM
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
40fb9820 4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
252b5132 4513
7a8655d2 4514 if (is_any_vex_encoding (&i.tm))
9e5e5283 4515 {
c1dc7af5 4516 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4517 {
c1dc7af5 4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4519 i.tm.name);
4520 return;
4521 }
c0f3af97 4522
9e5e5283
L
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
43234a1e 4528
5dd85c99
SP
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
252b5132 4539
0cfa3eb3
JB
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
252b5132 4551
40fb9820 4552 if (i.tm.opcode_modifier.rex64)
161a04f6 4553 i.rex |= REX_W;
252b5132 4554
29b0f896
AM
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
773f551c 4558
bab6aec1 4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4565 && i.rex != 0))
4566 {
4567 int x;
726c5dcd 4568
29b0f896
AM
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4575 {
3f93af61 4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
a540244d 4579 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4580 "instruction requiring REX prefix."),
a540244d 4581 register_prefix, i.op[x].regs->reg_name);
773f551c 4582
29b0f896
AM
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
773f551c 4588 }
29b0f896
AM
4589 }
4590 }
773f551c 4591
6b6b6807
L
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4595 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
bab6aec1 4599 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
3f93af61 4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
7ab9ffdd 4613 if (i.rex != 0)
29b0f896
AM
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
e379e5f3
L
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
29b0f896
AM
4629}
4630
4631static char *
e3bb37b5 4632parse_insn (char *line, char *mnemonic)
29b0f896
AM
4633{
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
5c6af06e 4637 int supported;
d3ce72d0 4638 const insn_template *t;
b6169b20 4639 char *dot_p = NULL;
29b0f896 4640
29b0f896
AM
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
b6169b20
L
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
29b0f896
AM
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4650 {
29b0f896
AM
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
e44823cf
JB
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
29b0f896
AM
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
e44823cf 4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
45288df1 4674
29b0f896 4675 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4677
29b0f896
AM
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
40fb9820 4681 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4682 {
c6fb90c8 4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
29b0f896
AM
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4695 && flag_code != CODE_64BIT
673fe0f0 4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
45288df1 4702 }
86fa6981 4703 if (current_templates->start->opcode_length == 0)
29b0f896 4704 {
86fa6981
L
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
42e04b36
L
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
6b6b6807
L
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
b6f8c7c4
L
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
86fa6981
L
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4751 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4752 {
4e9ac44a
L
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
d777820b 4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
86fa6981 4769 }
29b0f896
AM
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
45288df1 4777
30a55f88 4778 if (!current_templates)
b6169b20 4779 {
07d5e953
JB
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
f8a5c266 4782 encoding. */
30a55f88 4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4784 i.dir_encoding = dir_encoding_swap;
8d63c93e 4785 else if (mnem_p - 3 == dot_p
a501d77e
L
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4789 else if (mnem_p - 4 == dot_p
f8a5c266
L
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
a501d77e 4793 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
d3ce72d0 4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4799 }
4800
29b0f896
AM
4801 if (!current_templates)
4802 {
b6169b20 4803check_suffix:
1c529385 4804 if (mnem_p > mnemonic)
29b0f896 4805 {
1c529385
LH
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
29b0f896 4808 {
1c529385
LH
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
1c529385
LH
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
29b0f896 4817 mnem_p[-1] = '\0';
d3ce72d0 4818 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
29b0f896 4845 }
29b0f896 4846 }
1c529385 4847
29b0f896
AM
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
252b5132 4854
0cfa3eb3
JB
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
252b5132 4887
29b0f896 4888 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
c0f3af97
L
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4897
548d0ee6
JB
4898 return l;
4899 }
29b0f896 4900 }
3629bb00 4901
548d0ee6
JB
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4912
548d0ee6 4913 return NULL;
29b0f896 4914}
252b5132 4915
29b0f896 4916static char *
e3bb37b5 4917parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4918{
4919 char *token_start;
3138f287 4920
29b0f896
AM
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
252b5132 4923
29b0f896
AM
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
d02603dc 4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
d02603dc 4939 token_start = l; /* After white space. */
29b0f896
AM
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
d02603dc 4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
9d46ce34 4991 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
1286ab78
L
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
29b0f896
AM
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
a7619375 5007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
7f3f1ea2 5027
29b0f896
AM
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040}
7f3f1ea2 5041
050dfa73 5042static void
4d456e3d 5043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5044{
5045 union i386_op temp_op;
40fb9820 5046 i386_operand_type temp_type;
c48dadc9 5047 unsigned int temp_flags;
050dfa73 5048 enum bfd_reloc_code_real temp_reloc;
4eed87de 5049
050dfa73
MM
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
c48dadc9
JB
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
050dfa73
MM
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
c48dadc9 5061
050dfa73
MM
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
050dfa73
MM
5087}
5088
29b0f896 5089static void
e3bb37b5 5090swap_operands (void)
29b0f896 5091{
b7c61d9a 5092 switch (i.operands)
050dfa73 5093 {
c0f3af97 5094 case 5:
b7c61d9a 5095 case 4:
4d456e3d 5096 swap_2_operands (1, i.operands - 2);
1a0670f3 5097 /* Fall through. */
b7c61d9a
L
5098 case 3:
5099 case 2:
4d456e3d 5100 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5101 break;
5102 default:
5103 abort ();
29b0f896 5104 }
29b0f896
AM
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113}
252b5132 5114
29b0f896
AM
5115/* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117static void
e3bb37b5 5118optimize_imm (void)
29b0f896
AM
5119{
5120 char guess_suffix = 0;
5121 int op;
252b5132 5122
29b0f896
AM
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5131 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
7ab9ffdd 5135 {
40fb9820
L
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
bab6aec1 5139 else if (i.types[op].bitfield.word)
252b5132 5140 {
40fb9820
L
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
bab6aec1 5144 else if (i.types[op].bitfield.dword)
40fb9820
L
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
bab6aec1 5149 else if (i.types[op].bitfield.qword)
40fb9820
L
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5152 break;
252b5132 5153 }
29b0f896
AM
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
40fb9820 5159 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5160 {
5161 switch (i.op[op].imms->X_op)
252b5132 5162 {
29b0f896
AM
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
252b5132 5166 {
29b0f896 5167 case LONG_MNEM_SUFFIX:
40fb9820
L
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5170 break;
5171 case WORD_MNEM_SUFFIX:
40fb9820
L
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5176 break;
5177 case BYTE_MNEM_SUFFIX:
40fb9820
L
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
29b0f896 5184 break;
252b5132 5185 }
252b5132 5186
29b0f896
AM
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
40fb9820 5192 if ((i.types[op].bitfield.imm16)
29b0f896 5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5194 {
29b0f896
AM
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
a28def75
L
5198#ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5200 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
a28def75 5208#endif
40fb9820 5209 i.types[op]
c6fb90c8
L
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5212
29b0f896
AM
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5216 i.types[op].bitfield.imm32 = 0;
29b0f896 5217 break;
252b5132 5218
29b0f896
AM
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
9cd96992
JB
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
40fb9820 5229 i386_operand_type mask, allowed;
d3ce72d0 5230 const insn_template *t;
9cd96992 5231
0dfbf9d7
L
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
40fb9820 5234
4eed87de
AM
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
bab6aec1
JB
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
9cd96992
JB
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
40fb9820
L
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
9cd96992
JB
5247 break;
5248 case LONG_MNEM_SUFFIX:
40fb9820 5249 mask.bitfield.imm32 = 1;
9cd96992
JB
5250 break;
5251 case WORD_MNEM_SUFFIX:
40fb9820 5252 mask.bitfield.imm16 = 1;
9cd96992
JB
5253 break;
5254 case BYTE_MNEM_SUFFIX:
40fb9820 5255 mask.bitfield.imm8 = 1;
9cd96992
JB
5256 break;
5257 default:
9cd96992
JB
5258 break;
5259 }
c6fb90c8 5260 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5261 if (!operand_type_all_zero (&allowed))
c6fb90c8 5262 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5263 }
29b0f896 5264 break;
252b5132 5265 }
29b0f896
AM
5266 }
5267}
47926f60 5268
29b0f896
AM
5269/* Try to use the smallest displacement type too. */
5270static void
e3bb37b5 5271optimize_disp (void)
29b0f896
AM
5272{
5273 int op;
3e73aa7c 5274
29b0f896 5275 for (op = i.operands; --op >= 0;)
40fb9820 5276 if (operand_type_check (i.types[op], disp))
252b5132 5277 {
b300c311 5278 if (i.op[op].disps->X_op == O_constant)
252b5132 5279 {
91d6fa6a 5280 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5281
40fb9820 5282 if (i.types[op].bitfield.disp16
91d6fa6a 5283 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
91d6fa6a 5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5289 i.types[op].bitfield.disp64 = 0;
b300c311 5290 }
a28def75
L
5291#ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5293 if (i.types[op].bitfield.disp32
91d6fa6a 5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
91d6fa6a
NC
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5301 i.types[op].bitfield.disp64 = 0;
b300c311 5302 }
a28def75 5303#endif
91d6fa6a 5304 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5305 {
40fb9820
L
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
b300c311
L
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
91d6fa6a 5316 if (fits_in_signed_long (op_disp))
28a9d8f5 5317 {
40fb9820
L
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5320 }
0e1147d9 5321 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5322 && fits_in_unsigned_long (op_disp))
40fb9820 5323 i.types[op].bitfield.disp32 = 1;
b300c311 5324 }
40fb9820
L
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
b5014f7a 5328 && fits_in_disp8 (op_disp))
40fb9820 5329 i.types[op].bitfield.disp8 = 1;
252b5132 5330 }
67a4f2b7
AO
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5341 }
5342 else
b300c311 5343 /* We only support 64bit displacement on constants. */
40fb9820 5344 i.types[op].bitfield.disp64 = 0;
252b5132 5345 }
29b0f896
AM
5346}
5347
4a1b91ea
L
5348/* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351static INLINE int
5352match_broadcast_size (const insn_template *t, unsigned int given)
5353{
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362}
5363
6c30d220
L
5364/* Check if operands are valid for the instruction. */
5365
5366static int
5367check_VecOperands (const insn_template *t)
5368{
43234a1e 5369 unsigned int op;
e2195274
JB
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
45a4bb20 5748 unsigned int j, size_match, check_register;
5614d22c 5749 enum i386_error specific_error = 0;
29b0f896 5750
c0f3af97
L
5751#if MAX_OPERANDS != 5
5752# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5753#endif
5754
29b0f896 5755 found_reverse_match = 0;
539e75ad 5756 addr_prefix_disp = -1;
40fb9820 5757
dc2be329 5758 /* Prepare for mnemonic suffix check. */
40fb9820 5759 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5785 }
5786
01559ecc
L
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
45aa61fe 5790 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5791 {
539e75ad 5792 addr_prefix_disp = -1;
dbbc8b7e 5793 found_reverse_match = 0;
539e75ad 5794
29b0f896
AM
5795 if (i.operands != t->operands)
5796 continue;
5797
50aecf8c 5798 /* Check processor support. */
a65babc9 5799 i.error = unsupported;
45a4bb20 5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5801 continue;
5802
e1d4d893 5803 /* Check AT&T mnemonic. */
a65babc9 5804 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5806 continue;
5807
e92bae62 5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5809 i.error = unsupported_syntax;
5c07affc 5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5814 continue;
5815
dc2be329 5816 /* Check the suffix. */
a65babc9 5817 i.error = invalid_instruction_suffix;
dc2be329
L
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5824 continue;
29b0f896 5825
3ac21baa
JB
5826 size_match = operand_size_match (t);
5827 if (!size_match)
7d5e4556 5828 continue;
539e75ad 5829
6f2f06be
JB
5830 /* This is intentionally not
5831
0cfa3eb3 5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
0cfa3eb3 5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5c07affc
L
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
45aa61fe
AM
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
40fb9820 5849 ? (!t->opcode_modifier.ignoresize
625cbd7a 5850 && !t->opcode_modifier.broadcast
45aa61fe
AM
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
3528c362
JB
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
192dc9c6
JB
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
3528c362
JB
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
192dc9c6
JB
5873 continue;
5874
29b0f896 5875 /* Do not verify operands when there are none. */
50aecf8c 5876 else
29b0f896 5877 {
c6fb90c8 5878 if (!t->operands)
2dbab7d5
L
5879 /* We've found a match; break out of loop. */
5880 break;
29b0f896 5881 }
252b5132 5882
48bcea9f
JB
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
539e75ad 5889 break;
48bcea9f
JB
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
40fb9820 5899 {
48bcea9f
JB
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
40fb9820 5906 {
48bcea9f
JB
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
40fb9820 5909 }
48bcea9f
JB
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
40fb9820 5917 {
48bcea9f
JB
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
40fb9820 5921 }
48bcea9f
JB
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
40fb9820 5924 }
539e75ad 5925 }
48bcea9f 5926 }
539e75ad 5927
02a86693
L
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
56ffb741 5932 /* We check register size if needed. */
e2195274
JB
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
c6fb90c8 5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5943 switch (t->operands)
5944 {
5945 case 1:
40fb9820 5946 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5947 continue;
5948 break;
5949 case 2:
33eaf5de 5950 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
75e5731b
JB
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
8b38ad71 5960 continue;
1212781b
JB
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
75e5731b 5966 && i.types[0].bitfield.instance == Accum
8dc0818e 5967 && (i.flags[1] & Operand_Mem))
1212781b 5968 continue;
f5eb1d70
JB
5969 /* Fall through. */
5970
5971 case 3:
3ac21baa
JB
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
64c49ab3
JB
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5986 || t->opcode_modifier.regmem)
64c49ab3
JB
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5992 && !t->opcode_modifier.regmem)
64c49ab3
JB
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
86fa6981 6002 /* If we want store form, we skip the current load. */
64c49ab3
JB
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
fa99fab2 6007 continue;
1a0670f3 6008 /* Fall through. */
f48ff2ae 6009 case 4:
c0f3af97 6010 case 5:
c6fb90c8 6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
e2195274 6014 || ((check_register & 3) == 3
dc821c5f 6015 && !operand_type_register_match (i.types[0],
40fb9820 6016 operand_types[0],
dc821c5f 6017 i.types[1],
40fb9820 6018 operand_types[1])))
29b0f896
AM
6019 {
6020 /* Check if other direction is valid ... */
38e314eb 6021 if (!t->opcode_modifier.d)
29b0f896
AM
6022 continue;
6023
b6169b20 6024check_reverse:
3ac21baa
JB
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
29b0f896 6027 /* Try reversing direction of operands. */
f5eb1d70
JB
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6030 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6032 || (check_register
dc821c5f 6033 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
45664ddb 6036 operand_types[0])))
29b0f896
AM
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
38e314eb 6041 /* found_reverse_match holds which of D or FloatR
29b0f896 6042 we've found. */
38e314eb
JB
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6046 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6047 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6048 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6054 else
38e314eb 6055 found_reverse_match = Opcode_D;
40fb9820 6056 if (t->opcode_modifier.floatr)
8a2ed489 6057 found_reverse_match |= Opcode_FloatR;
29b0f896 6058 }
f48ff2ae 6059 else
29b0f896 6060 {
f48ff2ae 6061 /* Found a forward 2 operand match here. */
d1cbb4db
L
6062 switch (t->operands)
6063 {
c0f3af97
L
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
1a0670f3 6067 /* Fall through. */
d1cbb4db 6068 case 4:
c6fb90c8
L
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
1a0670f3 6071 /* Fall through. */
d1cbb4db 6072 case 3:
c6fb90c8
L
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
d1cbb4db
L
6075 break;
6076 }
29b0f896 6077
f48ff2ae
L
6078 switch (t->operands)
6079 {
c0f3af97
L
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6082 || !operand_type_register_match (i.types[3],
c0f3af97 6083 operand_types[3],
c0f3af97
L
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
1a0670f3 6087 /* Fall through. */
f48ff2ae 6088 case 4:
40fb9820 6089 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
f7768225
JB
6092 operand_types[1],
6093 i.types[3],
e2195274
JB
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
f48ff2ae 6100 continue;
1a0670f3 6101 /* Fall through. */
f48ff2ae
L
6102 case 3:
6103 /* Here we make use of the fact that there are no
23e42951 6104 reverse match 3 operand instructions. */
40fb9820 6105 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
23e42951
JB
6108 operand_types[0],
6109 i.types[2],
e2195274
JB
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
f48ff2ae
L
6116 continue;
6117 break;
6118 }
29b0f896 6119 }
f48ff2ae 6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6121 slip through to break. */
6122 }
c0f3af97 6123
5614d22c
JB
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
a683cc34 6130
29b0f896
AM
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
a65babc9 6138 const char *err_msg;
5614d22c 6139 switch (specific_error ? specific_error : i.error)
a65babc9
L
6140 {
6141 default:
6142 abort ();
86e026a4 6143 case operand_size_mismatch:
a65babc9
L
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
4a2608e3 6159 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6160 break;
a65babc9
L
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
35262a23 6168 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6169 current_templates->start->name);
6170 return NULL;
6c30d220
L
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
7bab8ab5
JB
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6c30d220
L
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
43234a1e
L
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
43234a1e
L
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
a65babc9
L
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
891edac4 6209 current_templates->start->name);
fa99fab2 6210 return NULL;
29b0f896 6211 }
252b5132 6212
29b0f896
AM
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
0cfa3eb3 6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6217 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6218
40fb9820
L
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
29b0f896
AM
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
539e75ad
L
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
29b0f896
AM
6235 if (found_reverse_match)
6236 {
dfd69174
JB
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
29b0f896
AM
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
f5eb1d70
JB
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6253 }
6254
fa99fab2 6255 return t;
29b0f896
AM
6256}
6257
6258static int
e3bb37b5 6259check_string (void)
29b0f896 6260{
51c8edf6
JB
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6263
51c8edf6 6264 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6265 {
51c8edf6
JB
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
29b0f896 6271 }
51c8edf6
JB
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
29b0f896
AM
6279 return 1;
6280}
6281
6282static int
543613e9 6283process_suffix (void)
29b0f896
AM
6284{
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
673fe0f0 6287 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6288 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6289 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6290 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6291 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6292 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6297 based on GPR operands. */
29b0f896
AM
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
381d071f
L
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
1a035124 6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6305
1a035124
JB
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
29b0f896
AM
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
2eb952a4
L
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
29b0f896
AM
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
2eb952a4
L
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
29b0f896
AM
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
955e1e6a
L
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
29b0f896
AM
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
2eb952a4
L
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
29b0f896
AM
6363 return 0;
6364 }
40fb9820 6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
62b3f548 6371 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
29b0f896 6372 {
13e600d0
JB
6373 i.suffix = stackop_size;
6374 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6375 {
6376 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6377 .code16gcc directive to support 16-bit mode with
6378 32-bit address. For IRET without a suffix, generate
6379 16-bit IRET (opcode 0xcf) to return from an interrupt
6380 handler. */
13e600d0
JB
6381 if (i.tm.base_opcode == 0xcf)
6382 {
6383 i.suffix = WORD_MNEM_SUFFIX;
6384 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6385 }
6386 /* Warn about changed behavior for segment register push/pop. */
6387 else if ((i.tm.base_opcode | 1) == 0x07)
6388 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6389 i.tm.name);
06f74c5c 6390 }
29b0f896 6391 }
c006a730 6392 else if (!i.suffix
0cfa3eb3
JB
6393 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6394 || i.tm.opcode_modifier.jump == JUMP_BYTE
6395 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6396 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6397 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6398 {
6399 switch (flag_code)
6400 {
6401 case CODE_64BIT:
40fb9820 6402 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6403 {
6404 i.suffix = QWORD_MNEM_SUFFIX;
6405 break;
6406 }
1a0670f3 6407 /* Fall through. */
9306ca4a 6408 case CODE_32BIT:
40fb9820 6409 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6410 i.suffix = LONG_MNEM_SUFFIX;
6411 break;
6412 case CODE_16BIT:
40fb9820 6413 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6414 i.suffix = WORD_MNEM_SUFFIX;
6415 break;
6416 }
6417 }
252b5132 6418
c006a730 6419 if (!i.suffix
873494c8
JB
6420 && (!i.tm.opcode_modifier.defaultsize
6421 /* Also cover lret/retf/iret in 64-bit mode. */
6422 || (flag_code == CODE_64BIT
6423 && !i.tm.opcode_modifier.no_lsuf
6424 && !i.tm.opcode_modifier.no_qsuf))
62b3f548
JB
6425 && !i.tm.opcode_modifier.ignoresize
6426 /* Accept FLDENV et al without suffix. */
6427 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6428 {
c006a730
JB
6429 unsigned int suffixes;
6430
6431 suffixes = !i.tm.opcode_modifier.no_bsuf;
6432 if (!i.tm.opcode_modifier.no_wsuf)
6433 suffixes |= 1 << 1;
6434 if (!i.tm.opcode_modifier.no_lsuf)
6435 suffixes |= 1 << 2;
6436 if (!i.tm.opcode_modifier.no_ldsuf)
6437 suffixes |= 1 << 3;
6438 if (!i.tm.opcode_modifier.no_ssuf)
6439 suffixes |= 1 << 4;
6440 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6441 suffixes |= 1 << 5;
6442
6443 /* Are multiple suffixes allowed? */
6444 if (suffixes & (suffixes - 1))
9306ca4a 6445 {
873494c8
JB
6446 if (intel_syntax
6447 && (!i.tm.opcode_modifier.defaultsize
6448 || operand_check == check_error))
9306ca4a 6449 {
c006a730 6450 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6451 return 0;
6452 }
c006a730 6453 if (operand_check == check_error)
9306ca4a 6454 {
c006a730
JB
6455 as_bad (_("no instruction mnemonic suffix given and "
6456 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6457 return 0;
6458 }
c006a730 6459 if (operand_check == check_warning)
873494c8
JB
6460 as_warn (_("%s; using default for `%s'"),
6461 intel_syntax
6462 ? _("ambiguous operand size")
6463 : _("no instruction mnemonic suffix given and "
6464 "no register operands"),
6465 i.tm.name);
c006a730
JB
6466
6467 if (i.tm.opcode_modifier.floatmf)
6468 i.suffix = SHORT_MNEM_SUFFIX;
6469 else if (flag_code == CODE_16BIT)
6470 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6471 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6472 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6473 else
6474 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6475 }
29b0f896 6476 }
252b5132 6477
d2224064
JB
6478 /* Change the opcode based on the operand size given by i.suffix. */
6479 switch (i.suffix)
29b0f896 6480 {
d2224064
JB
6481 /* Size floating point instruction. */
6482 case LONG_MNEM_SUFFIX:
6483 if (i.tm.opcode_modifier.floatmf)
6484 {
6485 i.tm.base_opcode ^= 4;
6486 break;
6487 }
6488 /* fall through */
6489 case WORD_MNEM_SUFFIX:
6490 case QWORD_MNEM_SUFFIX:
29b0f896 6491 /* It's not a byte, select word/dword operation. */
40fb9820 6492 if (i.tm.opcode_modifier.w)
29b0f896 6493 {
40fb9820 6494 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6495 i.tm.base_opcode |= 8;
6496 else
6497 i.tm.base_opcode |= 1;
6498 }
d2224064
JB
6499 /* fall through */
6500 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6501 /* Now select between word & dword operations via the operand
6502 size prefix, except for instructions that will ignore this
6503 prefix anyway. */
75c0a438 6504 if (i.reg_operands > 0
bab6aec1 6505 && i.types[0].bitfield.class == Reg
75c0a438 6506 && i.tm.opcode_modifier.addrprefixopreg
474da251 6507 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6508 || i.operands == 1))
cb712a9e 6509 {
ca61edf2
L
6510 /* The address size override prefix changes the size of the
6511 first operand. */
40fb9820 6512 if ((flag_code == CODE_32BIT
75c0a438 6513 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6514 || (flag_code != CODE_32BIT
75c0a438 6515 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6516 if (!add_prefix (ADDR_PREFIX_OPCODE))
6517 return 0;
6518 }
6519 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6520 && !i.tm.opcode_modifier.ignoresize
6521 && !i.tm.opcode_modifier.floatmf
a38d7118 6522 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6523 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6524 || (flag_code == CODE_64BIT
0cfa3eb3 6525 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6526 {
6527 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6528
0cfa3eb3 6529 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6530 prefix = ADDR_PREFIX_OPCODE;
252b5132 6531
29b0f896
AM
6532 if (!add_prefix (prefix))
6533 return 0;
24eab124 6534 }
252b5132 6535
29b0f896
AM
6536 /* Set mode64 for an operand. */
6537 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6538 && flag_code == CODE_64BIT
d2224064 6539 && !i.tm.opcode_modifier.norex64
46e883c5 6540 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6541 need rex64. */
6542 && ! (i.operands == 2
6543 && i.tm.base_opcode == 0x90
6544 && i.tm.extension_opcode == None
75e5731b
JB
6545 && i.types[0].bitfield.instance == Accum
6546 && i.types[0].bitfield.qword
6547 && i.types[1].bitfield.instance == Accum
6548 && i.types[1].bitfield.qword))
d2224064 6549 i.rex |= REX_W;
3e73aa7c 6550
d2224064 6551 break;
29b0f896 6552 }
7ecd2f8b 6553
c0a30a9f
L
6554 if (i.reg_operands != 0
6555 && i.operands > 1
6556 && i.tm.opcode_modifier.addrprefixopreg
474da251 6557 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6558 {
6559 /* Check invalid register operand when the address size override
6560 prefix changes the size of register operands. */
6561 unsigned int op;
6562 enum { need_word, need_dword, need_qword } need;
6563
6564 if (flag_code == CODE_32BIT)
6565 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6566 else
6567 {
6568 if (i.prefix[ADDR_PREFIX])
6569 need = need_dword;
6570 else
6571 need = flag_code == CODE_64BIT ? need_qword : need_word;
6572 }
6573
6574 for (op = 0; op < i.operands; op++)
bab6aec1 6575 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6576 && ((need == need_word
6577 && !i.op[op].regs->reg_type.bitfield.word)
6578 || (need == need_dword
6579 && !i.op[op].regs->reg_type.bitfield.dword)
6580 || (need == need_qword
6581 && !i.op[op].regs->reg_type.bitfield.qword)))
6582 {
6583 as_bad (_("invalid register operand size for `%s'"),
6584 i.tm.name);
6585 return 0;
6586 }
6587 }
6588
29b0f896
AM
6589 return 1;
6590}
3e73aa7c 6591
29b0f896 6592static int
543613e9 6593check_byte_reg (void)
29b0f896
AM
6594{
6595 int op;
543613e9 6596
29b0f896
AM
6597 for (op = i.operands; --op >= 0;)
6598 {
dc821c5f 6599 /* Skip non-register operands. */
bab6aec1 6600 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6601 continue;
6602
29b0f896
AM
6603 /* If this is an eight bit register, it's OK. If it's the 16 or
6604 32 bit version of an eight bit register, we will just use the
6605 low portion, and that's OK too. */
dc821c5f 6606 if (i.types[op].bitfield.byte)
29b0f896
AM
6607 continue;
6608
5a819eb9 6609 /* I/O port address operands are OK too. */
75e5731b
JB
6610 if (i.tm.operand_types[op].bitfield.instance == RegD
6611 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6612 continue;
6613
9344ff29
L
6614 /* crc32 doesn't generate this warning. */
6615 if (i.tm.base_opcode == 0xf20f38f0)
6616 continue;
6617
dc821c5f
JB
6618 if ((i.types[op].bitfield.word
6619 || i.types[op].bitfield.dword
6620 || i.types[op].bitfield.qword)
5a819eb9
JB
6621 && i.op[op].regs->reg_num < 4
6622 /* Prohibit these changes in 64bit mode, since the lowering
6623 would be more complicated. */
6624 && flag_code != CODE_64BIT)
29b0f896 6625 {
29b0f896 6626#if REGISTER_WARNINGS
5a819eb9 6627 if (!quiet_warnings)
a540244d
L
6628 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6629 register_prefix,
dc821c5f 6630 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6631 ? REGNAM_AL - REGNAM_AX
6632 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6633 register_prefix,
29b0f896
AM
6634 i.op[op].regs->reg_name,
6635 i.suffix);
6636#endif
6637 continue;
6638 }
6639 /* Any other register is bad. */
bab6aec1 6640 if (i.types[op].bitfield.class == Reg
3528c362
JB
6641 || i.types[op].bitfield.class == RegMMX
6642 || i.types[op].bitfield.class == RegSIMD
00cee14f 6643 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6644 || i.types[op].bitfield.class == RegCR
6645 || i.types[op].bitfield.class == RegDR
6646 || i.types[op].bitfield.class == RegTR)
29b0f896 6647 {
a540244d
L
6648 as_bad (_("`%s%s' not allowed with `%s%c'"),
6649 register_prefix,
29b0f896
AM
6650 i.op[op].regs->reg_name,
6651 i.tm.name,
6652 i.suffix);
6653 return 0;
6654 }
6655 }
6656 return 1;
6657}
6658
6659static int
e3bb37b5 6660check_long_reg (void)
29b0f896
AM
6661{
6662 int op;
6663
6664 for (op = i.operands; --op >= 0;)
dc821c5f 6665 /* Skip non-register operands. */
bab6aec1 6666 if (i.types[op].bitfield.class != Reg)
dc821c5f 6667 continue;
29b0f896
AM
6668 /* Reject eight bit registers, except where the template requires
6669 them. (eg. movzb) */
dc821c5f 6670 else if (i.types[op].bitfield.byte
bab6aec1 6671 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6672 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6673 && (i.tm.operand_types[op].bitfield.word
6674 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6675 {
a540244d
L
6676 as_bad (_("`%s%s' not allowed with `%s%c'"),
6677 register_prefix,
29b0f896
AM
6678 i.op[op].regs->reg_name,
6679 i.tm.name,
6680 i.suffix);
6681 return 0;
6682 }
be4c5e58
L
6683 /* Error if the e prefix on a general reg is missing. */
6684 else if (i.types[op].bitfield.word
bab6aec1 6685 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6686 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6687 && i.tm.operand_types[op].bitfield.dword)
29b0f896 6688 {
be4c5e58
L
6689 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6690 register_prefix, i.op[op].regs->reg_name,
6691 i.suffix);
6692 return 0;
252b5132 6693 }
e4630f71 6694 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6695 else if (i.types[op].bitfield.qword
bab6aec1 6696 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6697 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6698 && i.tm.operand_types[op].bitfield.dword)
252b5132 6699 {
34828aad 6700 if (intel_syntax
bc31405e
L
6701 && (i.tm.opcode_modifier.toqword
6702 /* Also convert to QWORD for MOVSXD. */
6703 || i.tm.base_opcode == 0x63)
3528c362 6704 && i.types[0].bitfield.class != RegSIMD)
34828aad 6705 {
ca61edf2 6706 /* Convert to QWORD. We want REX byte. */
34828aad
L
6707 i.suffix = QWORD_MNEM_SUFFIX;
6708 }
6709 else
6710 {
2b5d6a91 6711 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6712 register_prefix, i.op[op].regs->reg_name,
6713 i.suffix);
6714 return 0;
6715 }
29b0f896
AM
6716 }
6717 return 1;
6718}
252b5132 6719
29b0f896 6720static int
e3bb37b5 6721check_qword_reg (void)
29b0f896
AM
6722{
6723 int op;
252b5132 6724
29b0f896 6725 for (op = i.operands; --op >= 0; )
dc821c5f 6726 /* Skip non-register operands. */
bab6aec1 6727 if (i.types[op].bitfield.class != Reg)
dc821c5f 6728 continue;
29b0f896
AM
6729 /* Reject eight bit registers, except where the template requires
6730 them. (eg. movzb) */
dc821c5f 6731 else if (i.types[op].bitfield.byte
bab6aec1 6732 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6733 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6734 && (i.tm.operand_types[op].bitfield.word
6735 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6736 {
a540244d
L
6737 as_bad (_("`%s%s' not allowed with `%s%c'"),
6738 register_prefix,
29b0f896
AM
6739 i.op[op].regs->reg_name,
6740 i.tm.name,
6741 i.suffix);
6742 return 0;
6743 }
e4630f71 6744 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6745 else if ((i.types[op].bitfield.word
6746 || i.types[op].bitfield.dword)
bab6aec1 6747 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6748 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6749 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6750 {
6751 /* Prohibit these changes in the 64bit mode, since the
6752 lowering is more complicated. */
34828aad 6753 if (intel_syntax
ca61edf2 6754 && i.tm.opcode_modifier.todword
3528c362 6755 && i.types[0].bitfield.class != RegSIMD)
34828aad 6756 {
ca61edf2 6757 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6758 i.suffix = LONG_MNEM_SUFFIX;
6759 }
6760 else
6761 {
2b5d6a91 6762 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6763 register_prefix, i.op[op].regs->reg_name,
6764 i.suffix);
6765 return 0;
6766 }
252b5132 6767 }
29b0f896
AM
6768 return 1;
6769}
252b5132 6770
29b0f896 6771static int
e3bb37b5 6772check_word_reg (void)
29b0f896
AM
6773{
6774 int op;
6775 for (op = i.operands; --op >= 0;)
dc821c5f 6776 /* Skip non-register operands. */
bab6aec1 6777 if (i.types[op].bitfield.class != Reg)
dc821c5f 6778 continue;
29b0f896
AM
6779 /* Reject eight bit registers, except where the template requires
6780 them. (eg. movzb) */
dc821c5f 6781 else if (i.types[op].bitfield.byte
bab6aec1 6782 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6783 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6784 && (i.tm.operand_types[op].bitfield.word
6785 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6786 {
a540244d
L
6787 as_bad (_("`%s%s' not allowed with `%s%c'"),
6788 register_prefix,
29b0f896
AM
6789 i.op[op].regs->reg_name,
6790 i.tm.name,
6791 i.suffix);
6792 return 0;
6793 }
e4630f71 6794 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6795 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6796 && (i.types[op].bitfield.dword
6797 || i.types[op].bitfield.qword)
bab6aec1 6798 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6799 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6800 && i.tm.operand_types[op].bitfield.word)
252b5132 6801 {
29b0f896
AM
6802 /* Prohibit these changes in the 64bit mode, since the
6803 lowering is more complicated. */
6804 if (flag_code == CODE_64BIT)
252b5132 6805 {
2b5d6a91 6806 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6807 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6808 i.suffix);
6809 return 0;
252b5132 6810 }
29b0f896 6811#if REGISTER_WARNINGS
cecf1424
JB
6812 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6813 register_prefix,
6814 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6815 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6816#endif
6817 }
6818 return 1;
6819}
252b5132 6820
29b0f896 6821static int
40fb9820 6822update_imm (unsigned int j)
29b0f896 6823{
bc0844ae 6824 i386_operand_type overlap = i.types[j];
40fb9820
L
6825 if ((overlap.bitfield.imm8
6826 || overlap.bitfield.imm8s
6827 || overlap.bitfield.imm16
6828 || overlap.bitfield.imm32
6829 || overlap.bitfield.imm32s
6830 || overlap.bitfield.imm64)
0dfbf9d7
L
6831 && !operand_type_equal (&overlap, &imm8)
6832 && !operand_type_equal (&overlap, &imm8s)
6833 && !operand_type_equal (&overlap, &imm16)
6834 && !operand_type_equal (&overlap, &imm32)
6835 && !operand_type_equal (&overlap, &imm32s)
6836 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6837 {
6838 if (i.suffix)
6839 {
40fb9820
L
6840 i386_operand_type temp;
6841
0dfbf9d7 6842 operand_type_set (&temp, 0);
7ab9ffdd 6843 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6844 {
6845 temp.bitfield.imm8 = overlap.bitfield.imm8;
6846 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6847 }
6848 else if (i.suffix == WORD_MNEM_SUFFIX)
6849 temp.bitfield.imm16 = overlap.bitfield.imm16;
6850 else if (i.suffix == QWORD_MNEM_SUFFIX)
6851 {
6852 temp.bitfield.imm64 = overlap.bitfield.imm64;
6853 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6854 }
6855 else
6856 temp.bitfield.imm32 = overlap.bitfield.imm32;
6857 overlap = temp;
29b0f896 6858 }
0dfbf9d7
L
6859 else if (operand_type_equal (&overlap, &imm16_32_32s)
6860 || operand_type_equal (&overlap, &imm16_32)
6861 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6862 {
40fb9820 6863 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6864 overlap = imm16;
40fb9820 6865 else
65da13b5 6866 overlap = imm32s;
29b0f896 6867 }
0dfbf9d7
L
6868 if (!operand_type_equal (&overlap, &imm8)
6869 && !operand_type_equal (&overlap, &imm8s)
6870 && !operand_type_equal (&overlap, &imm16)
6871 && !operand_type_equal (&overlap, &imm32)
6872 && !operand_type_equal (&overlap, &imm32s)
6873 && !operand_type_equal (&overlap, &imm64))
29b0f896 6874 {
4eed87de
AM
6875 as_bad (_("no instruction mnemonic suffix given; "
6876 "can't determine immediate size"));
29b0f896
AM
6877 return 0;
6878 }
6879 }
40fb9820 6880 i.types[j] = overlap;
29b0f896 6881
40fb9820
L
6882 return 1;
6883}
6884
6885static int
6886finalize_imm (void)
6887{
bc0844ae 6888 unsigned int j, n;
29b0f896 6889
bc0844ae
L
6890 /* Update the first 2 immediate operands. */
6891 n = i.operands > 2 ? 2 : i.operands;
6892 if (n)
6893 {
6894 for (j = 0; j < n; j++)
6895 if (update_imm (j) == 0)
6896 return 0;
40fb9820 6897
bc0844ae
L
6898 /* The 3rd operand can't be immediate operand. */
6899 gas_assert (operand_type_check (i.types[2], imm) == 0);
6900 }
29b0f896
AM
6901
6902 return 1;
6903}
6904
6905static int
e3bb37b5 6906process_operands (void)
29b0f896
AM
6907{
6908 /* Default segment register this instruction will use for memory
6909 accesses. 0 means unknown. This is only for optimizing out
6910 unnecessary segment overrides. */
6911 const seg_entry *default_seg = 0;
6912
2426c15f 6913 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6914 {
91d6fa6a
NC
6915 unsigned int dupl = i.operands;
6916 unsigned int dest = dupl - 1;
9fcfb3d7
L
6917 unsigned int j;
6918
c0f3af97 6919 /* The destination must be an xmm register. */
9c2799c2 6920 gas_assert (i.reg_operands
91d6fa6a 6921 && MAX_OPERANDS > dupl
7ab9ffdd 6922 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6923
75e5731b 6924 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6925 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6926 {
8cd7925b 6927 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6928 {
6929 /* Keep xmm0 for instructions with VEX prefix and 3
6930 sources. */
75e5731b 6931 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6932 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6933 goto duplicate;
6934 }
e2ec9d29 6935 else
c0f3af97
L
6936 {
6937 /* We remove the first xmm0 and keep the number of
6938 operands unchanged, which in fact duplicates the
6939 destination. */
6940 for (j = 1; j < i.operands; j++)
6941 {
6942 i.op[j - 1] = i.op[j];
6943 i.types[j - 1] = i.types[j];
6944 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6945 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6946 }
6947 }
6948 }
6949 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6950 {
91d6fa6a 6951 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6952 && (i.tm.opcode_modifier.vexsources
6953 == VEX3SOURCES));
c0f3af97
L
6954
6955 /* Add the implicit xmm0 for instructions with VEX prefix
6956 and 3 sources. */
6957 for (j = i.operands; j > 0; j--)
6958 {
6959 i.op[j] = i.op[j - 1];
6960 i.types[j] = i.types[j - 1];
6961 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6962 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6963 }
6964 i.op[0].regs
6965 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6966 i.types[0] = regxmm;
c0f3af97
L
6967 i.tm.operand_types[0] = regxmm;
6968
6969 i.operands += 2;
6970 i.reg_operands += 2;
6971 i.tm.operands += 2;
6972
91d6fa6a 6973 dupl++;
c0f3af97 6974 dest++;
91d6fa6a
NC
6975 i.op[dupl] = i.op[dest];
6976 i.types[dupl] = i.types[dest];
6977 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6978 i.flags[dupl] = i.flags[dest];
e2ec9d29 6979 }
c0f3af97
L
6980 else
6981 {
6982duplicate:
6983 i.operands++;
6984 i.reg_operands++;
6985 i.tm.operands++;
6986
91d6fa6a
NC
6987 i.op[dupl] = i.op[dest];
6988 i.types[dupl] = i.types[dest];
6989 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6990 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6991 }
6992
6993 if (i.tm.opcode_modifier.immext)
6994 process_immext ();
6995 }
75e5731b 6996 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6997 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6998 {
6999 unsigned int j;
7000
9fcfb3d7
L
7001 for (j = 1; j < i.operands; j++)
7002 {
7003 i.op[j - 1] = i.op[j];
7004 i.types[j - 1] = i.types[j];
7005
7006 /* We need to adjust fields in i.tm since they are used by
7007 build_modrm_byte. */
7008 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7009
7010 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7011 }
7012
e2ec9d29
L
7013 i.operands--;
7014 i.reg_operands--;
e2ec9d29
L
7015 i.tm.operands--;
7016 }
920d2ddc
IT
7017 else if (i.tm.opcode_modifier.implicitquadgroup)
7018 {
a477a8c4
JB
7019 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7020
920d2ddc 7021 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7022 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7023 regnum = register_number (i.op[1].regs);
7024 first_reg_in_group = regnum & ~3;
7025 last_reg_in_group = first_reg_in_group + 3;
7026 if (regnum != first_reg_in_group)
7027 as_warn (_("source register `%s%s' implicitly denotes"
7028 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7029 register_prefix, i.op[1].regs->reg_name,
7030 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7031 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7032 i.tm.name);
7033 }
e2ec9d29
L
7034 else if (i.tm.opcode_modifier.regkludge)
7035 {
7036 /* The imul $imm, %reg instruction is converted into
7037 imul $imm, %reg, %reg, and the clr %reg instruction
7038 is converted into xor %reg, %reg. */
7039
7040 unsigned int first_reg_op;
7041
7042 if (operand_type_check (i.types[0], reg))
7043 first_reg_op = 0;
7044 else
7045 first_reg_op = 1;
7046 /* Pretend we saw the extra register operand. */
9c2799c2 7047 gas_assert (i.reg_operands == 1
7ab9ffdd 7048 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7049 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7050 i.types[first_reg_op + 1] = i.types[first_reg_op];
7051 i.operands++;
7052 i.reg_operands++;
29b0f896
AM
7053 }
7054
85b80b0f 7055 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7056 {
7057 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7058 must be put into the modrm byte). Now, we make the modrm and
7059 index base bytes based on all the info we've collected. */
29b0f896
AM
7060
7061 default_seg = build_modrm_byte ();
7062 }
00cee14f 7063 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7064 {
7065 if (flag_code != CODE_64BIT
7066 ? i.tm.base_opcode == POP_SEG_SHORT
7067 && i.op[0].regs->reg_num == 1
7068 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7069 && i.op[0].regs->reg_num < 4)
7070 {
7071 as_bad (_("you can't `%s %s%s'"),
7072 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7073 return 0;
7074 }
7075 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7076 {
7077 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7078 i.tm.opcode_length = 2;
7079 }
7080 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7081 }
8a2ed489 7082 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7083 {
7084 default_seg = &ds;
7085 }
40fb9820 7086 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7087 {
7088 /* For the string instructions that allow a segment override
7089 on one of their operands, the default segment is ds. */
7090 default_seg = &ds;
7091 }
85b80b0f
JB
7092 else if (i.tm.opcode_modifier.shortform)
7093 {
7094 /* The register or float register operand is in operand
7095 0 or 1. */
bab6aec1 7096 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7097
7098 /* Register goes in low 3 bits of opcode. */
7099 i.tm.base_opcode |= i.op[op].regs->reg_num;
7100 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7101 i.rex |= REX_B;
7102 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7103 {
7104 /* Warn about some common errors, but press on regardless.
7105 The first case can be generated by gcc (<= 2.8.1). */
7106 if (i.operands == 2)
7107 {
7108 /* Reversed arguments on faddp, fsubp, etc. */
7109 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7110 register_prefix, i.op[!intel_syntax].regs->reg_name,
7111 register_prefix, i.op[intel_syntax].regs->reg_name);
7112 }
7113 else
7114 {
7115 /* Extraneous `l' suffix on fp insn. */
7116 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7117 register_prefix, i.op[0].regs->reg_name);
7118 }
7119 }
7120 }
29b0f896 7121
75178d9d
L
7122 if (i.tm.base_opcode == 0x8d /* lea */
7123 && i.seg[0]
7124 && !quiet_warnings)
30123838 7125 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7126
7127 /* If a segment was explicitly specified, and the specified segment
7128 is not the default, use an opcode prefix to select it. If we
7129 never figured out what the default segment is, then default_seg
7130 will be zero at this point, and the specified segment prefix will
7131 always be used. */
29b0f896
AM
7132 if ((i.seg[0]) && (i.seg[0] != default_seg))
7133 {
7134 if (!add_prefix (i.seg[0]->seg_prefix))
7135 return 0;
7136 }
7137 return 1;
7138}
7139
7140static const seg_entry *
e3bb37b5 7141build_modrm_byte (void)
29b0f896
AM
7142{
7143 const seg_entry *default_seg = 0;
c0f3af97 7144 unsigned int source, dest;
8cd7925b 7145 int vex_3_sources;
c0f3af97 7146
8cd7925b 7147 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7148 if (vex_3_sources)
7149 {
91d6fa6a 7150 unsigned int nds, reg_slot;
4c2c6516 7151 expressionS *exp;
c0f3af97 7152
6b8d3588 7153 dest = i.operands - 1;
c0f3af97 7154 nds = dest - 1;
922d8de8 7155
a683cc34 7156 /* There are 2 kinds of instructions:
bed3d976 7157 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7158 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7159 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7160 ZMM register.
bed3d976 7161 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7162 plus 1 memory operand, with VexXDS. */
922d8de8 7163 gas_assert ((i.reg_operands == 4
bed3d976
JB
7164 || (i.reg_operands == 3 && i.mem_operands == 1))
7165 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7166 && i.tm.opcode_modifier.vexw
3528c362 7167 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7168
48db9223
JB
7169 /* If VexW1 is set, the first non-immediate operand is the source and
7170 the second non-immediate one is encoded in the immediate operand. */
7171 if (i.tm.opcode_modifier.vexw == VEXW1)
7172 {
7173 source = i.imm_operands;
7174 reg_slot = i.imm_operands + 1;
7175 }
7176 else
7177 {
7178 source = i.imm_operands + 1;
7179 reg_slot = i.imm_operands;
7180 }
7181
a683cc34 7182 if (i.imm_operands == 0)
bed3d976
JB
7183 {
7184 /* When there is no immediate operand, generate an 8bit
7185 immediate operand to encode the first operand. */
7186 exp = &im_expressions[i.imm_operands++];
7187 i.op[i.operands].imms = exp;
7188 i.types[i.operands] = imm8;
7189 i.operands++;
7190
3528c362 7191 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7192 exp->X_op = O_constant;
7193 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7194 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7195 }
922d8de8 7196 else
bed3d976 7197 {
9d3bf266
JB
7198 gas_assert (i.imm_operands == 1);
7199 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7200 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7201
9d3bf266
JB
7202 /* Turn on Imm8 again so that output_imm will generate it. */
7203 i.types[0].bitfield.imm8 = 1;
bed3d976 7204
3528c362 7205 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7206 i.op[0].imms->X_add_number
bed3d976 7207 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7208 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7209 }
a683cc34 7210
3528c362 7211 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7212 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7213 }
7214 else
7215 source = dest = 0;
29b0f896
AM
7216
7217 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7218 implicit registers do not count. If there are 3 register
7219 operands, it must be a instruction with VexNDS. For a
7220 instruction with VexNDD, the destination register is encoded
7221 in VEX prefix. If there are 4 register operands, it must be
7222 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7223 if (i.mem_operands == 0
7224 && ((i.reg_operands == 2
2426c15f 7225 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7226 || (i.reg_operands == 3
2426c15f 7227 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7228 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7229 {
cab737b9
L
7230 switch (i.operands)
7231 {
7232 case 2:
7233 source = 0;
7234 break;
7235 case 3:
c81128dc
L
7236 /* When there are 3 operands, one of them may be immediate,
7237 which may be the first or the last operand. Otherwise,
c0f3af97
L
7238 the first operand must be shift count register (cl) or it
7239 is an instruction with VexNDS. */
9c2799c2 7240 gas_assert (i.imm_operands == 1
7ab9ffdd 7241 || (i.imm_operands == 0
2426c15f 7242 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7243 || (i.types[0].bitfield.instance == RegC
7244 && i.types[0].bitfield.byte))));
40fb9820 7245 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7246 || (i.types[0].bitfield.instance == RegC
7247 && i.types[0].bitfield.byte))
40fb9820
L
7248 source = 1;
7249 else
7250 source = 0;
cab737b9
L
7251 break;
7252 case 4:
368d64cc
L
7253 /* When there are 4 operands, the first two must be 8bit
7254 immediate operands. The source operand will be the 3rd
c0f3af97
L
7255 one.
7256
7257 For instructions with VexNDS, if the first operand
7258 an imm8, the source operand is the 2nd one. If the last
7259 operand is imm8, the source operand is the first one. */
9c2799c2 7260 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7261 && i.types[0].bitfield.imm8
7262 && i.types[1].bitfield.imm8)
2426c15f 7263 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7264 && i.imm_operands == 1
7265 && (i.types[0].bitfield.imm8
43234a1e
L
7266 || i.types[i.operands - 1].bitfield.imm8
7267 || i.rounding)));
9f2670f2
L
7268 if (i.imm_operands == 2)
7269 source = 2;
7270 else
c0f3af97
L
7271 {
7272 if (i.types[0].bitfield.imm8)
7273 source = 1;
7274 else
7275 source = 0;
7276 }
c0f3af97
L
7277 break;
7278 case 5:
e771e7c9 7279 if (is_evex_encoding (&i.tm))
43234a1e
L
7280 {
7281 /* For EVEX instructions, when there are 5 operands, the
7282 first one must be immediate operand. If the second one
7283 is immediate operand, the source operand is the 3th
7284 one. If the last one is immediate operand, the source
7285 operand is the 2nd one. */
7286 gas_assert (i.imm_operands == 2
7287 && i.tm.opcode_modifier.sae
7288 && operand_type_check (i.types[0], imm));
7289 if (operand_type_check (i.types[1], imm))
7290 source = 2;
7291 else if (operand_type_check (i.types[4], imm))
7292 source = 1;
7293 else
7294 abort ();
7295 }
cab737b9
L
7296 break;
7297 default:
7298 abort ();
7299 }
7300
c0f3af97
L
7301 if (!vex_3_sources)
7302 {
7303 dest = source + 1;
7304
43234a1e
L
7305 /* RC/SAE operand could be between DEST and SRC. That happens
7306 when one operand is GPR and the other one is XMM/YMM/ZMM
7307 register. */
7308 if (i.rounding && i.rounding->operand == (int) dest)
7309 dest++;
7310
2426c15f 7311 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7312 {
43234a1e 7313 /* For instructions with VexNDS, the register-only source
c5d0745b 7314 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7315 register. It is encoded in VEX prefix. */
f12dc422
L
7316
7317 i386_operand_type op;
7318 unsigned int vvvv;
7319
7320 /* Check register-only source operand when two source
7321 operands are swapped. */
7322 if (!i.tm.operand_types[source].bitfield.baseindex
7323 && i.tm.operand_types[dest].bitfield.baseindex)
7324 {
7325 vvvv = source;
7326 source = dest;
7327 }
7328 else
7329 vvvv = dest;
7330
7331 op = i.tm.operand_types[vvvv];
c0f3af97 7332 if ((dest + 1) >= i.operands
bab6aec1 7333 || ((op.bitfield.class != Reg
dc821c5f 7334 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7335 && op.bitfield.class != RegSIMD
43234a1e 7336 && !operand_type_equal (&op, &regmask)))
c0f3af97 7337 abort ();
f12dc422 7338 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7339 dest++;
7340 }
7341 }
29b0f896
AM
7342
7343 i.rm.mode = 3;
dfd69174
JB
7344 /* One of the register operands will be encoded in the i.rm.reg
7345 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7346 fields. If no form of this instruction supports a memory
7347 destination operand, then we assume the source operand may
7348 sometimes be a memory operand and so we need to store the
7349 destination in the i.rm.reg field. */
dfd69174 7350 if (!i.tm.opcode_modifier.regmem
40fb9820 7351 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7352 {
7353 i.rm.reg = i.op[dest].regs->reg_num;
7354 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7355 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7356 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7357 i.has_regmmx = TRUE;
3528c362
JB
7358 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7359 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7360 {
7361 if (i.types[dest].bitfield.zmmword
7362 || i.types[source].bitfield.zmmword)
7363 i.has_regzmm = TRUE;
7364 else if (i.types[dest].bitfield.ymmword
7365 || i.types[source].bitfield.ymmword)
7366 i.has_regymm = TRUE;
7367 else
7368 i.has_regxmm = TRUE;
7369 }
29b0f896 7370 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7371 i.rex |= REX_R;
43234a1e
L
7372 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7373 i.vrex |= REX_R;
29b0f896 7374 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7375 i.rex |= REX_B;
43234a1e
L
7376 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7377 i.vrex |= REX_B;
29b0f896
AM
7378 }
7379 else
7380 {
7381 i.rm.reg = i.op[source].regs->reg_num;
7382 i.rm.regmem = i.op[dest].regs->reg_num;
7383 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7384 i.rex |= REX_B;
43234a1e
L
7385 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7386 i.vrex |= REX_B;
29b0f896 7387 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7388 i.rex |= REX_R;
43234a1e
L
7389 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7390 i.vrex |= REX_R;
29b0f896 7391 }
e0c7f900 7392 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7393 {
4a5c67ed 7394 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7395 abort ();
e0c7f900 7396 i.rex &= ~REX_R;
c4a530c5
JB
7397 add_prefix (LOCK_PREFIX_OPCODE);
7398 }
29b0f896
AM
7399 }
7400 else
7401 { /* If it's not 2 reg operands... */
c0f3af97
L
7402 unsigned int mem;
7403
29b0f896
AM
7404 if (i.mem_operands)
7405 {
7406 unsigned int fake_zero_displacement = 0;
99018f42 7407 unsigned int op;
4eed87de 7408
7ab9ffdd 7409 for (op = 0; op < i.operands; op++)
8dc0818e 7410 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7411 break;
7ab9ffdd 7412 gas_assert (op < i.operands);
29b0f896 7413
6c30d220
L
7414 if (i.tm.opcode_modifier.vecsib)
7415 {
e968fc9b 7416 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7417 abort ();
7418
7419 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7420 if (!i.base_reg)
7421 {
7422 i.sib.base = NO_BASE_REGISTER;
7423 i.sib.scale = i.log2_scale_factor;
7424 i.types[op].bitfield.disp8 = 0;
7425 i.types[op].bitfield.disp16 = 0;
7426 i.types[op].bitfield.disp64 = 0;
43083a50 7427 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7428 {
7429 /* Must be 32 bit */
7430 i.types[op].bitfield.disp32 = 1;
7431 i.types[op].bitfield.disp32s = 0;
7432 }
7433 else
7434 {
7435 i.types[op].bitfield.disp32 = 0;
7436 i.types[op].bitfield.disp32s = 1;
7437 }
7438 }
7439 i.sib.index = i.index_reg->reg_num;
7440 if ((i.index_reg->reg_flags & RegRex) != 0)
7441 i.rex |= REX_X;
43234a1e
L
7442 if ((i.index_reg->reg_flags & RegVRex) != 0)
7443 i.vrex |= REX_X;
6c30d220
L
7444 }
7445
29b0f896
AM
7446 default_seg = &ds;
7447
7448 if (i.base_reg == 0)
7449 {
7450 i.rm.mode = 0;
7451 if (!i.disp_operands)
9bb129e8 7452 fake_zero_displacement = 1;
29b0f896
AM
7453 if (i.index_reg == 0)
7454 {
73053c1f
JB
7455 i386_operand_type newdisp;
7456
6c30d220 7457 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7458 /* Operand is just <disp> */
20f0a1fc 7459 if (flag_code == CODE_64BIT)
29b0f896
AM
7460 {
7461 /* 64bit mode overwrites the 32bit absolute
7462 addressing by RIP relative addressing and
7463 absolute addressing is encoded by one of the
7464 redundant SIB forms. */
7465 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7466 i.sib.base = NO_BASE_REGISTER;
7467 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7468 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7469 }
fc225355
L
7470 else if ((flag_code == CODE_16BIT)
7471 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7472 {
7473 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7474 newdisp = disp16;
20f0a1fc
NC
7475 }
7476 else
7477 {
7478 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7479 newdisp = disp32;
29b0f896 7480 }
73053c1f
JB
7481 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7482 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7483 }
6c30d220 7484 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7485 {
6c30d220 7486 /* !i.base_reg && i.index_reg */
e968fc9b 7487 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7488 i.sib.index = NO_INDEX_REGISTER;
7489 else
7490 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7491 i.sib.base = NO_BASE_REGISTER;
7492 i.sib.scale = i.log2_scale_factor;
7493 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7494 i.types[op].bitfield.disp8 = 0;
7495 i.types[op].bitfield.disp16 = 0;
7496 i.types[op].bitfield.disp64 = 0;
43083a50 7497 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7498 {
7499 /* Must be 32 bit */
7500 i.types[op].bitfield.disp32 = 1;
7501 i.types[op].bitfield.disp32s = 0;
7502 }
29b0f896 7503 else
40fb9820
L
7504 {
7505 i.types[op].bitfield.disp32 = 0;
7506 i.types[op].bitfield.disp32s = 1;
7507 }
29b0f896 7508 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7509 i.rex |= REX_X;
29b0f896
AM
7510 }
7511 }
7512 /* RIP addressing for 64bit mode. */
e968fc9b 7513 else if (i.base_reg->reg_num == RegIP)
29b0f896 7514 {
6c30d220 7515 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7516 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7517 i.types[op].bitfield.disp8 = 0;
7518 i.types[op].bitfield.disp16 = 0;
7519 i.types[op].bitfield.disp32 = 0;
7520 i.types[op].bitfield.disp32s = 1;
7521 i.types[op].bitfield.disp64 = 0;
71903a11 7522 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7523 if (! i.disp_operands)
7524 fake_zero_displacement = 1;
29b0f896 7525 }
dc821c5f 7526 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7527 {
6c30d220 7528 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7529 switch (i.base_reg->reg_num)
7530 {
7531 case 3: /* (%bx) */
7532 if (i.index_reg == 0)
7533 i.rm.regmem = 7;
7534 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7535 i.rm.regmem = i.index_reg->reg_num - 6;
7536 break;
7537 case 5: /* (%bp) */
7538 default_seg = &ss;
7539 if (i.index_reg == 0)
7540 {
7541 i.rm.regmem = 6;
40fb9820 7542 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7543 {
7544 /* fake (%bp) into 0(%bp) */
b5014f7a 7545 i.types[op].bitfield.disp8 = 1;
252b5132 7546 fake_zero_displacement = 1;
29b0f896
AM
7547 }
7548 }
7549 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7550 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7551 break;
7552 default: /* (%si) -> 4 or (%di) -> 5 */
7553 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7554 }
7555 i.rm.mode = mode_from_disp_size (i.types[op]);
7556 }
7557 else /* i.base_reg and 32/64 bit mode */
7558 {
7559 if (flag_code == CODE_64BIT
40fb9820
L
7560 && operand_type_check (i.types[op], disp))
7561 {
73053c1f
JB
7562 i.types[op].bitfield.disp16 = 0;
7563 i.types[op].bitfield.disp64 = 0;
40fb9820 7564 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7565 {
7566 i.types[op].bitfield.disp32 = 0;
7567 i.types[op].bitfield.disp32s = 1;
7568 }
40fb9820 7569 else
73053c1f
JB
7570 {
7571 i.types[op].bitfield.disp32 = 1;
7572 i.types[op].bitfield.disp32s = 0;
7573 }
40fb9820 7574 }
20f0a1fc 7575
6c30d220
L
7576 if (!i.tm.opcode_modifier.vecsib)
7577 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7578 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7579 i.rex |= REX_B;
29b0f896
AM
7580 i.sib.base = i.base_reg->reg_num;
7581 /* x86-64 ignores REX prefix bit here to avoid decoder
7582 complications. */
848930b2
JB
7583 if (!(i.base_reg->reg_flags & RegRex)
7584 && (i.base_reg->reg_num == EBP_REG_NUM
7585 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7586 default_seg = &ss;
848930b2 7587 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7588 {
848930b2 7589 fake_zero_displacement = 1;
b5014f7a 7590 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7591 }
7592 i.sib.scale = i.log2_scale_factor;
7593 if (i.index_reg == 0)
7594 {
6c30d220 7595 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7596 /* <disp>(%esp) becomes two byte modrm with no index
7597 register. We've already stored the code for esp
7598 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7599 Any base register besides %esp will not use the
7600 extra modrm byte. */
7601 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7602 }
6c30d220 7603 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7604 {
e968fc9b 7605 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7606 i.sib.index = NO_INDEX_REGISTER;
7607 else
7608 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7609 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7610 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7611 i.rex |= REX_X;
29b0f896 7612 }
67a4f2b7
AO
7613
7614 if (i.disp_operands
7615 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7616 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7617 i.rm.mode = 0;
7618 else
a501d77e
L
7619 {
7620 if (!fake_zero_displacement
7621 && !i.disp_operands
7622 && i.disp_encoding)
7623 {
7624 fake_zero_displacement = 1;
7625 if (i.disp_encoding == disp_encoding_8bit)
7626 i.types[op].bitfield.disp8 = 1;
7627 else
7628 i.types[op].bitfield.disp32 = 1;
7629 }
7630 i.rm.mode = mode_from_disp_size (i.types[op]);
7631 }
29b0f896 7632 }
252b5132 7633
29b0f896
AM
7634 if (fake_zero_displacement)
7635 {
7636 /* Fakes a zero displacement assuming that i.types[op]
7637 holds the correct displacement size. */
7638 expressionS *exp;
7639
9c2799c2 7640 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7641 exp = &disp_expressions[i.disp_operands++];
7642 i.op[op].disps = exp;
7643 exp->X_op = O_constant;
7644 exp->X_add_number = 0;
7645 exp->X_add_symbol = (symbolS *) 0;
7646 exp->X_op_symbol = (symbolS *) 0;
7647 }
c0f3af97
L
7648
7649 mem = op;
29b0f896 7650 }
c0f3af97
L
7651 else
7652 mem = ~0;
252b5132 7653
8c43a48b 7654 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7655 {
7656 if (operand_type_check (i.types[0], imm))
7657 i.vex.register_specifier = NULL;
7658 else
7659 {
7660 /* VEX.vvvv encodes one of the sources when the first
7661 operand is not an immediate. */
1ef99a7b 7662 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7663 i.vex.register_specifier = i.op[0].regs;
7664 else
7665 i.vex.register_specifier = i.op[1].regs;
7666 }
7667
7668 /* Destination is a XMM register encoded in the ModRM.reg
7669 and VEX.R bit. */
7670 i.rm.reg = i.op[2].regs->reg_num;
7671 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7672 i.rex |= REX_R;
7673
7674 /* ModRM.rm and VEX.B encodes the other source. */
7675 if (!i.mem_operands)
7676 {
7677 i.rm.mode = 3;
7678
1ef99a7b 7679 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7680 i.rm.regmem = i.op[1].regs->reg_num;
7681 else
7682 i.rm.regmem = i.op[0].regs->reg_num;
7683
7684 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7685 i.rex |= REX_B;
7686 }
7687 }
2426c15f 7688 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7689 {
7690 i.vex.register_specifier = i.op[2].regs;
7691 if (!i.mem_operands)
7692 {
7693 i.rm.mode = 3;
7694 i.rm.regmem = i.op[1].regs->reg_num;
7695 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7696 i.rex |= REX_B;
7697 }
7698 }
29b0f896
AM
7699 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7700 (if any) based on i.tm.extension_opcode. Again, we must be
7701 careful to make sure that segment/control/debug/test/MMX
7702 registers are coded into the i.rm.reg field. */
f88c9eb0 7703 else if (i.reg_operands)
29b0f896 7704 {
99018f42 7705 unsigned int op;
7ab9ffdd
L
7706 unsigned int vex_reg = ~0;
7707
7708 for (op = 0; op < i.operands; op++)
b4a3a7b4 7709 {
bab6aec1 7710 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7711 || i.types[op].bitfield.class == RegBND
7712 || i.types[op].bitfield.class == RegMask
00cee14f 7713 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7714 || i.types[op].bitfield.class == RegCR
7715 || i.types[op].bitfield.class == RegDR
7716 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7717 break;
3528c362 7718 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7719 {
7720 if (i.types[op].bitfield.zmmword)
7721 i.has_regzmm = TRUE;
7722 else if (i.types[op].bitfield.ymmword)
7723 i.has_regymm = TRUE;
7724 else
7725 i.has_regxmm = TRUE;
7726 break;
7727 }
3528c362 7728 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7729 {
7730 i.has_regmmx = TRUE;
7731 break;
7732 }
7733 }
c0209578 7734
7ab9ffdd
L
7735 if (vex_3_sources)
7736 op = dest;
2426c15f 7737 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7738 {
7739 /* For instructions with VexNDS, the register-only
7740 source operand is encoded in VEX prefix. */
7741 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7742
7ab9ffdd 7743 if (op > mem)
c0f3af97 7744 {
7ab9ffdd
L
7745 vex_reg = op++;
7746 gas_assert (op < i.operands);
c0f3af97
L
7747 }
7748 else
c0f3af97 7749 {
f12dc422
L
7750 /* Check register-only source operand when two source
7751 operands are swapped. */
7752 if (!i.tm.operand_types[op].bitfield.baseindex
7753 && i.tm.operand_types[op + 1].bitfield.baseindex)
7754 {
7755 vex_reg = op;
7756 op += 2;
7757 gas_assert (mem == (vex_reg + 1)
7758 && op < i.operands);
7759 }
7760 else
7761 {
7762 vex_reg = op + 1;
7763 gas_assert (vex_reg < i.operands);
7764 }
c0f3af97 7765 }
7ab9ffdd 7766 }
2426c15f 7767 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7768 {
f12dc422 7769 /* For instructions with VexNDD, the register destination
7ab9ffdd 7770 is encoded in VEX prefix. */
f12dc422
L
7771 if (i.mem_operands == 0)
7772 {
7773 /* There is no memory operand. */
7774 gas_assert ((op + 2) == i.operands);
7775 vex_reg = op + 1;
7776 }
7777 else
8d63c93e 7778 {
ed438a93
JB
7779 /* There are only 2 non-immediate operands. */
7780 gas_assert (op < i.imm_operands + 2
7781 && i.operands == i.imm_operands + 2);
7782 vex_reg = i.imm_operands + 1;
f12dc422 7783 }
7ab9ffdd
L
7784 }
7785 else
7786 gas_assert (op < i.operands);
99018f42 7787
7ab9ffdd
L
7788 if (vex_reg != (unsigned int) ~0)
7789 {
f12dc422 7790 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7791
bab6aec1 7792 if ((type->bitfield.class != Reg
dc821c5f 7793 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7794 && type->bitfield.class != RegSIMD
43234a1e 7795 && !operand_type_equal (type, &regmask))
7ab9ffdd 7796 abort ();
f88c9eb0 7797
7ab9ffdd
L
7798 i.vex.register_specifier = i.op[vex_reg].regs;
7799 }
7800
1b9f0c97
L
7801 /* Don't set OP operand twice. */
7802 if (vex_reg != op)
7ab9ffdd 7803 {
1b9f0c97
L
7804 /* If there is an extension opcode to put here, the
7805 register number must be put into the regmem field. */
7806 if (i.tm.extension_opcode != None)
7807 {
7808 i.rm.regmem = i.op[op].regs->reg_num;
7809 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7810 i.rex |= REX_B;
43234a1e
L
7811 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7812 i.vrex |= REX_B;
1b9f0c97
L
7813 }
7814 else
7815 {
7816 i.rm.reg = i.op[op].regs->reg_num;
7817 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7818 i.rex |= REX_R;
43234a1e
L
7819 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7820 i.vrex |= REX_R;
1b9f0c97 7821 }
7ab9ffdd 7822 }
252b5132 7823
29b0f896
AM
7824 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7825 must set it to 3 to indicate this is a register operand
7826 in the regmem field. */
7827 if (!i.mem_operands)
7828 i.rm.mode = 3;
7829 }
252b5132 7830
29b0f896 7831 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7832 if (i.tm.extension_opcode != None)
29b0f896
AM
7833 i.rm.reg = i.tm.extension_opcode;
7834 }
7835 return default_seg;
7836}
252b5132 7837
376cd056
JB
7838static unsigned int
7839flip_code16 (unsigned int code16)
7840{
7841 gas_assert (i.tm.operands == 1);
7842
7843 return !(i.prefix[REX_PREFIX] & REX_W)
7844 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7845 || i.tm.operand_types[0].bitfield.disp32s
7846 : i.tm.operand_types[0].bitfield.disp16)
7847 ? CODE16 : 0;
7848}
7849
29b0f896 7850static void
e3bb37b5 7851output_branch (void)
29b0f896
AM
7852{
7853 char *p;
f8a5c266 7854 int size;
29b0f896
AM
7855 int code16;
7856 int prefix;
7857 relax_substateT subtype;
7858 symbolS *sym;
7859 offsetT off;
7860
f8a5c266 7861 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7862 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7863
7864 prefix = 0;
7865 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7866 {
29b0f896
AM
7867 prefix = 1;
7868 i.prefixes -= 1;
376cd056 7869 code16 ^= flip_code16(code16);
252b5132 7870 }
29b0f896
AM
7871 /* Pentium4 branch hints. */
7872 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7873 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7874 {
29b0f896
AM
7875 prefix++;
7876 i.prefixes--;
7877 }
7878 if (i.prefix[REX_PREFIX] != 0)
7879 {
7880 prefix++;
7881 i.prefixes--;
2f66722d
AM
7882 }
7883
7e8b059b
L
7884 /* BND prefixed jump. */
7885 if (i.prefix[BND_PREFIX] != 0)
7886 {
6cb0a70e
JB
7887 prefix++;
7888 i.prefixes--;
7e8b059b
L
7889 }
7890
f2810fe0
JB
7891 if (i.prefixes != 0)
7892 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7893
7894 /* It's always a symbol; End frag & setup for relax.
7895 Make sure there is enough room in this frag for the largest
7896 instruction we may generate in md_convert_frag. This is 2
7897 bytes for the opcode and room for the prefix and largest
7898 displacement. */
7899 frag_grow (prefix + 2 + 4);
7900 /* Prefix and 1 opcode byte go in fr_fix. */
7901 p = frag_more (prefix + 1);
7902 if (i.prefix[DATA_PREFIX] != 0)
7903 *p++ = DATA_PREFIX_OPCODE;
7904 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7905 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7906 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7907 if (i.prefix[BND_PREFIX] != 0)
7908 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7909 if (i.prefix[REX_PREFIX] != 0)
7910 *p++ = i.prefix[REX_PREFIX];
7911 *p = i.tm.base_opcode;
7912
7913 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7914 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7915 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7916 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7917 else
f8a5c266 7918 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7919 subtype |= code16;
3e73aa7c 7920
29b0f896
AM
7921 sym = i.op[0].disps->X_add_symbol;
7922 off = i.op[0].disps->X_add_number;
3e73aa7c 7923
29b0f896
AM
7924 if (i.op[0].disps->X_op != O_constant
7925 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7926 {
29b0f896
AM
7927 /* Handle complex expressions. */
7928 sym = make_expr_symbol (i.op[0].disps);
7929 off = 0;
7930 }
3e73aa7c 7931
29b0f896
AM
7932 /* 1 possible extra opcode + 4 byte displacement go in var part.
7933 Pass reloc in fr_var. */
d258b828 7934 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7935}
3e73aa7c 7936
bd7ab16b
L
7937#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7938/* Return TRUE iff PLT32 relocation should be used for branching to
7939 symbol S. */
7940
7941static bfd_boolean
7942need_plt32_p (symbolS *s)
7943{
7944 /* PLT32 relocation is ELF only. */
7945 if (!IS_ELF)
7946 return FALSE;
7947
a5def729
RO
7948#ifdef TE_SOLARIS
7949 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7950 krtld support it. */
7951 return FALSE;
7952#endif
7953
bd7ab16b
L
7954 /* Since there is no need to prepare for PLT branch on x86-64, we
7955 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7956 be used as a marker for 32-bit PC-relative branches. */
7957 if (!object_64bit)
7958 return FALSE;
7959
7960 /* Weak or undefined symbol need PLT32 relocation. */
7961 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7962 return TRUE;
7963
7964 /* Non-global symbol doesn't need PLT32 relocation. */
7965 if (! S_IS_EXTERNAL (s))
7966 return FALSE;
7967
7968 /* Other global symbols need PLT32 relocation. NB: Symbol with
7969 non-default visibilities are treated as normal global symbol
7970 so that PLT32 relocation can be used as a marker for 32-bit
7971 PC-relative branches. It is useful for linker relaxation. */
7972 return TRUE;
7973}
7974#endif
7975
29b0f896 7976static void
e3bb37b5 7977output_jump (void)
29b0f896
AM
7978{
7979 char *p;
7980 int size;
3e02c1cc 7981 fixS *fixP;
bd7ab16b 7982 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7983
0cfa3eb3 7984 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7985 {
7986 /* This is a loop or jecxz type instruction. */
7987 size = 1;
7988 if (i.prefix[ADDR_PREFIX] != 0)
7989 {
7990 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7991 i.prefixes -= 1;
7992 }
7993 /* Pentium4 branch hints. */
7994 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7995 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7996 {
7997 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7998 i.prefixes--;
3e73aa7c
JH
7999 }
8000 }
29b0f896
AM
8001 else
8002 {
8003 int code16;
3e73aa7c 8004
29b0f896
AM
8005 code16 = 0;
8006 if (flag_code == CODE_16BIT)
8007 code16 = CODE16;
3e73aa7c 8008
29b0f896
AM
8009 if (i.prefix[DATA_PREFIX] != 0)
8010 {
8011 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8012 i.prefixes -= 1;
376cd056 8013 code16 ^= flip_code16(code16);
29b0f896 8014 }
252b5132 8015
29b0f896
AM
8016 size = 4;
8017 if (code16)
8018 size = 2;
8019 }
9fcc94b6 8020
6cb0a70e
JB
8021 /* BND prefixed jump. */
8022 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8023 {
6cb0a70e 8024 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8025 i.prefixes -= 1;
8026 }
252b5132 8027
6cb0a70e 8028 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8029 {
6cb0a70e 8030 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8031 i.prefixes -= 1;
8032 }
8033
f2810fe0
JB
8034 if (i.prefixes != 0)
8035 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8036
42164a71
L
8037 p = frag_more (i.tm.opcode_length + size);
8038 switch (i.tm.opcode_length)
8039 {
8040 case 2:
8041 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8042 /* Fall through. */
42164a71
L
8043 case 1:
8044 *p++ = i.tm.base_opcode;
8045 break;
8046 default:
8047 abort ();
8048 }
e0890092 8049
bd7ab16b
L
8050#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8051 if (size == 4
8052 && jump_reloc == NO_RELOC
8053 && need_plt32_p (i.op[0].disps->X_add_symbol))
8054 jump_reloc = BFD_RELOC_X86_64_PLT32;
8055#endif
8056
8057 jump_reloc = reloc (size, 1, 1, jump_reloc);
8058
3e02c1cc 8059 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8060 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8061
8062 /* All jumps handled here are signed, but don't use a signed limit
8063 check for 32 and 16 bit jumps as we want to allow wrap around at
8064 4G and 64k respectively. */
8065 if (size == 1)
8066 fixP->fx_signed = 1;
29b0f896 8067}
e0890092 8068
29b0f896 8069static void
e3bb37b5 8070output_interseg_jump (void)
29b0f896
AM
8071{
8072 char *p;
8073 int size;
8074 int prefix;
8075 int code16;
252b5132 8076
29b0f896
AM
8077 code16 = 0;
8078 if (flag_code == CODE_16BIT)
8079 code16 = CODE16;
a217f122 8080
29b0f896
AM
8081 prefix = 0;
8082 if (i.prefix[DATA_PREFIX] != 0)
8083 {
8084 prefix = 1;
8085 i.prefixes -= 1;
8086 code16 ^= CODE16;
8087 }
6cb0a70e
JB
8088
8089 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8090
29b0f896
AM
8091 size = 4;
8092 if (code16)
8093 size = 2;
252b5132 8094
f2810fe0
JB
8095 if (i.prefixes != 0)
8096 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8097
29b0f896
AM
8098 /* 1 opcode; 2 segment; offset */
8099 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8100
29b0f896
AM
8101 if (i.prefix[DATA_PREFIX] != 0)
8102 *p++ = DATA_PREFIX_OPCODE;
252b5132 8103
29b0f896
AM
8104 if (i.prefix[REX_PREFIX] != 0)
8105 *p++ = i.prefix[REX_PREFIX];
252b5132 8106
29b0f896
AM
8107 *p++ = i.tm.base_opcode;
8108 if (i.op[1].imms->X_op == O_constant)
8109 {
8110 offsetT n = i.op[1].imms->X_add_number;
252b5132 8111
29b0f896
AM
8112 if (size == 2
8113 && !fits_in_unsigned_word (n)
8114 && !fits_in_signed_word (n))
8115 {
8116 as_bad (_("16-bit jump out of range"));
8117 return;
8118 }
8119 md_number_to_chars (p, n, size);
8120 }
8121 else
8122 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8123 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8124 if (i.op[0].imms->X_op != O_constant)
8125 as_bad (_("can't handle non absolute segment in `%s'"),
8126 i.tm.name);
8127 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8128}
a217f122 8129
b4a3a7b4
L
8130#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8131void
8132x86_cleanup (void)
8133{
8134 char *p;
8135 asection *seg = now_seg;
8136 subsegT subseg = now_subseg;
8137 asection *sec;
8138 unsigned int alignment, align_size_1;
8139 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8140 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8141 unsigned int padding;
8142
8143 if (!IS_ELF || !x86_used_note)
8144 return;
8145
b4a3a7b4
L
8146 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8147
8148 /* The .note.gnu.property section layout:
8149
8150 Field Length Contents
8151 ---- ---- ----
8152 n_namsz 4 4
8153 n_descsz 4 The note descriptor size
8154 n_type 4 NT_GNU_PROPERTY_TYPE_0
8155 n_name 4 "GNU"
8156 n_desc n_descsz The program property array
8157 .... .... ....
8158 */
8159
8160 /* Create the .note.gnu.property section. */
8161 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8162 bfd_set_section_flags (sec,
b4a3a7b4
L
8163 (SEC_ALLOC
8164 | SEC_LOAD
8165 | SEC_DATA
8166 | SEC_HAS_CONTENTS
8167 | SEC_READONLY));
8168
8169 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8170 {
8171 align_size_1 = 7;
8172 alignment = 3;
8173 }
8174 else
8175 {
8176 align_size_1 = 3;
8177 alignment = 2;
8178 }
8179
fd361982 8180 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8181 elf_section_type (sec) = SHT_NOTE;
8182
8183 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8184 + 4-byte data */
8185 isa_1_descsz_raw = 4 + 4 + 4;
8186 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8187 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8188
8189 feature_2_descsz_raw = isa_1_descsz;
8190 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8191 + 4-byte data */
8192 feature_2_descsz_raw += 4 + 4 + 4;
8193 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8194 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8195 & ~align_size_1);
8196
8197 descsz = feature_2_descsz;
8198 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8199 p = frag_more (4 + 4 + 4 + 4 + descsz);
8200
8201 /* Write n_namsz. */
8202 md_number_to_chars (p, (valueT) 4, 4);
8203
8204 /* Write n_descsz. */
8205 md_number_to_chars (p + 4, (valueT) descsz, 4);
8206
8207 /* Write n_type. */
8208 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8209
8210 /* Write n_name. */
8211 memcpy (p + 4 * 3, "GNU", 4);
8212
8213 /* Write 4-byte type. */
8214 md_number_to_chars (p + 4 * 4,
8215 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8216
8217 /* Write 4-byte data size. */
8218 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8219
8220 /* Write 4-byte data. */
8221 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8222
8223 /* Zero out paddings. */
8224 padding = isa_1_descsz - isa_1_descsz_raw;
8225 if (padding)
8226 memset (p + 4 * 7, 0, padding);
8227
8228 /* Write 4-byte type. */
8229 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8230 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8231
8232 /* Write 4-byte data size. */
8233 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8234
8235 /* Write 4-byte data. */
8236 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8237 (valueT) x86_feature_2_used, 4);
8238
8239 /* Zero out paddings. */
8240 padding = feature_2_descsz - feature_2_descsz_raw;
8241 if (padding)
8242 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8243
8244 /* We probably can't restore the current segment, for there likely
8245 isn't one yet... */
8246 if (seg && subseg)
8247 subseg_set (seg, subseg);
8248}
8249#endif
8250
9c33702b
JB
8251static unsigned int
8252encoding_length (const fragS *start_frag, offsetT start_off,
8253 const char *frag_now_ptr)
8254{
8255 unsigned int len = 0;
8256
8257 if (start_frag != frag_now)
8258 {
8259 const fragS *fr = start_frag;
8260
8261 do {
8262 len += fr->fr_fix;
8263 fr = fr->fr_next;
8264 } while (fr && fr != frag_now);
8265 }
8266
8267 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8268}
8269
e379e5f3
L
8270/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8271 be macro-fused with conditional jumps. */
8272
8273static int
8274maybe_fused_with_jcc_p (void)
8275{
8276 /* No RIP address. */
8277 if (i.base_reg && i.base_reg->reg_num == RegIP)
8278 return 0;
8279
8280 /* No VEX/EVEX encoding. */
8281 if (is_any_vex_encoding (&i.tm))
8282 return 0;
8283
8284 /* and, add, sub with destination register. */
8285 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8286 || i.tm.base_opcode <= 5
8287 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8288 || ((i.tm.base_opcode | 3) == 0x83
8289 && ((i.tm.extension_opcode | 1) == 0x5
8290 || i.tm.extension_opcode == 0x0)))
8291 return (i.types[1].bitfield.class == Reg
8292 || i.types[1].bitfield.instance == Accum);
8293
8294 /* test, cmp with any register. */
8295 if ((i.tm.base_opcode | 1) == 0x85
8296 || (i.tm.base_opcode | 1) == 0xa9
8297 || ((i.tm.base_opcode | 1) == 0xf7
8298 && i.tm.extension_opcode == 0)
8299 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8300 || ((i.tm.base_opcode | 3) == 0x83
8301 && (i.tm.extension_opcode == 0x7)))
8302 return (i.types[0].bitfield.class == Reg
8303 || i.types[0].bitfield.instance == Accum
8304 || i.types[1].bitfield.class == Reg
8305 || i.types[1].bitfield.instance == Accum);
8306
8307 /* inc, dec with any register. */
8308 if ((i.tm.cpu_flags.bitfield.cpuno64
8309 && (i.tm.base_opcode | 0xf) == 0x4f)
8310 || ((i.tm.base_opcode | 1) == 0xff
8311 && i.tm.extension_opcode <= 0x1))
8312 return (i.types[0].bitfield.class == Reg
8313 || i.types[0].bitfield.instance == Accum);
8314
8315 return 0;
8316}
8317
8318/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8319
8320static int
8321add_fused_jcc_padding_frag_p (void)
8322{
8323 /* NB: Don't work with COND_JUMP86 without i386. */
8324 if (!align_branch_power
8325 || now_seg == absolute_section
8326 || !cpu_arch_flags.bitfield.cpui386
8327 || !(align_branch & align_branch_fused_bit))
8328 return 0;
8329
8330 if (maybe_fused_with_jcc_p ())
8331 {
8332 if (last_insn.kind == last_insn_other
8333 || last_insn.seg != now_seg)
8334 return 1;
8335 if (flag_debug)
8336 as_warn_where (last_insn.file, last_insn.line,
8337 _("`%s` skips -malign-branch-boundary on `%s`"),
8338 last_insn.name, i.tm.name);
8339 }
8340
8341 return 0;
8342}
8343
8344/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8345
8346static int
8347add_branch_prefix_frag_p (void)
8348{
8349 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8350 to PadLock instructions since they include prefixes in opcode. */
8351 if (!align_branch_power
8352 || !align_branch_prefix_size
8353 || now_seg == absolute_section
8354 || i.tm.cpu_flags.bitfield.cpupadlock
8355 || !cpu_arch_flags.bitfield.cpui386)
8356 return 0;
8357
8358 /* Don't add prefix if it is a prefix or there is no operand in case
8359 that segment prefix is special. */
8360 if (!i.operands || i.tm.opcode_modifier.isprefix)
8361 return 0;
8362
8363 if (last_insn.kind == last_insn_other
8364 || last_insn.seg != now_seg)
8365 return 1;
8366
8367 if (flag_debug)
8368 as_warn_where (last_insn.file, last_insn.line,
8369 _("`%s` skips -malign-branch-boundary on `%s`"),
8370 last_insn.name, i.tm.name);
8371
8372 return 0;
8373}
8374
8375/* Return 1 if a BRANCH_PADDING frag should be generated. */
8376
8377static int
8378add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8379{
8380 int add_padding;
8381
8382 /* NB: Don't work with COND_JUMP86 without i386. */
8383 if (!align_branch_power
8384 || now_seg == absolute_section
8385 || !cpu_arch_flags.bitfield.cpui386)
8386 return 0;
8387
8388 add_padding = 0;
8389
8390 /* Check for jcc and direct jmp. */
8391 if (i.tm.opcode_modifier.jump == JUMP)
8392 {
8393 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8394 {
8395 *branch_p = align_branch_jmp;
8396 add_padding = align_branch & align_branch_jmp_bit;
8397 }
8398 else
8399 {
8400 *branch_p = align_branch_jcc;
8401 if ((align_branch & align_branch_jcc_bit))
8402 add_padding = 1;
8403 }
8404 }
8405 else if (is_any_vex_encoding (&i.tm))
8406 return 0;
8407 else if ((i.tm.base_opcode | 1) == 0xc3)
8408 {
8409 /* Near ret. */
8410 *branch_p = align_branch_ret;
8411 if ((align_branch & align_branch_ret_bit))
8412 add_padding = 1;
8413 }
8414 else
8415 {
8416 /* Check for indirect jmp, direct and indirect calls. */
8417 if (i.tm.base_opcode == 0xe8)
8418 {
8419 /* Direct call. */
8420 *branch_p = align_branch_call;
8421 if ((align_branch & align_branch_call_bit))
8422 add_padding = 1;
8423 }
8424 else if (i.tm.base_opcode == 0xff
8425 && (i.tm.extension_opcode == 2
8426 || i.tm.extension_opcode == 4))
8427 {
8428 /* Indirect call and jmp. */
8429 *branch_p = align_branch_indirect;
8430 if ((align_branch & align_branch_indirect_bit))
8431 add_padding = 1;
8432 }
8433
8434 if (add_padding
8435 && i.disp_operands
8436 && tls_get_addr
8437 && (i.op[0].disps->X_op == O_symbol
8438 || (i.op[0].disps->X_op == O_subtract
8439 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8440 {
8441 symbolS *s = i.op[0].disps->X_add_symbol;
8442 /* No padding to call to global or undefined tls_get_addr. */
8443 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8444 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8445 return 0;
8446 }
8447 }
8448
8449 if (add_padding
8450 && last_insn.kind != last_insn_other
8451 && last_insn.seg == now_seg)
8452 {
8453 if (flag_debug)
8454 as_warn_where (last_insn.file, last_insn.line,
8455 _("`%s` skips -malign-branch-boundary on `%s`"),
8456 last_insn.name, i.tm.name);
8457 return 0;
8458 }
8459
8460 return add_padding;
8461}
8462
29b0f896 8463static void
e3bb37b5 8464output_insn (void)
29b0f896 8465{
2bbd9c25
JJ
8466 fragS *insn_start_frag;
8467 offsetT insn_start_off;
e379e5f3
L
8468 fragS *fragP = NULL;
8469 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8470
b4a3a7b4
L
8471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8472 if (IS_ELF && x86_used_note)
8473 {
8474 if (i.tm.cpu_flags.bitfield.cpucmov)
8475 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8476 if (i.tm.cpu_flags.bitfield.cpusse)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8478 if (i.tm.cpu_flags.bitfield.cpusse2)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8480 if (i.tm.cpu_flags.bitfield.cpusse3)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8482 if (i.tm.cpu_flags.bitfield.cpussse3)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8484 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8486 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8488 if (i.tm.cpu_flags.bitfield.cpuavx)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8490 if (i.tm.cpu_flags.bitfield.cpuavx2)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8492 if (i.tm.cpu_flags.bitfield.cpufma)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8494 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8516 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8522 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8524
8525 if (i.tm.cpu_flags.bitfield.cpu8087
8526 || i.tm.cpu_flags.bitfield.cpu287
8527 || i.tm.cpu_flags.bitfield.cpu387
8528 || i.tm.cpu_flags.bitfield.cpu687
8529 || i.tm.cpu_flags.bitfield.cpufisttp)
8530 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8531 if (i.has_regmmx
8532 || i.tm.base_opcode == 0xf77 /* emms */
8533 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8534 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8535 if (i.has_regxmm)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8537 if (i.has_regymm)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8539 if (i.has_regzmm)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8541 if (i.tm.cpu_flags.bitfield.cpufxsr)
8542 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8543 if (i.tm.cpu_flags.bitfield.cpuxsave)
8544 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8545 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8546 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8547 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8548 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8549 }
8550#endif
8551
29b0f896
AM
8552 /* Tie dwarf2 debug info to the address at the start of the insn.
8553 We can't do this after the insn has been output as the current
8554 frag may have been closed off. eg. by frag_var. */
8555 dwarf2_emit_insn (0);
8556
2bbd9c25
JJ
8557 insn_start_frag = frag_now;
8558 insn_start_off = frag_now_fix ();
8559
e379e5f3
L
8560 if (add_branch_padding_frag_p (&branch))
8561 {
8562 char *p;
8563 /* Branch can be 8 bytes. Leave some room for prefixes. */
8564 unsigned int max_branch_padding_size = 14;
8565
8566 /* Align section to boundary. */
8567 record_alignment (now_seg, align_branch_power);
8568
8569 /* Make room for padding. */
8570 frag_grow (max_branch_padding_size);
8571
8572 /* Start of the padding. */
8573 p = frag_more (0);
8574
8575 fragP = frag_now;
8576
8577 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8578 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8579 NULL, 0, p);
8580
8581 fragP->tc_frag_data.branch_type = branch;
8582 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8583 }
8584
29b0f896 8585 /* Output jumps. */
0cfa3eb3 8586 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8587 output_branch ();
0cfa3eb3
JB
8588 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8589 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8590 output_jump ();
0cfa3eb3 8591 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8592 output_interseg_jump ();
8593 else
8594 {
8595 /* Output normal instructions here. */
8596 char *p;
8597 unsigned char *q;
47465058 8598 unsigned int j;
331d2d0d 8599 unsigned int prefix;
4dffcebc 8600
e4e00185 8601 if (avoid_fence
c3949f43
JB
8602 && (i.tm.base_opcode == 0xfaee8
8603 || i.tm.base_opcode == 0xfaef0
8604 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8605 {
8606 /* Encode lfence, mfence, and sfence as
8607 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8608 offsetT val = 0x240483f0ULL;
8609 p = frag_more (5);
8610 md_number_to_chars (p, val, 5);
8611 return;
8612 }
8613
d022bddd
IT
8614 /* Some processors fail on LOCK prefix. This options makes
8615 assembler ignore LOCK prefix and serves as a workaround. */
8616 if (omit_lock_prefix)
8617 {
8618 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8619 return;
8620 i.prefix[LOCK_PREFIX] = 0;
8621 }
8622
e379e5f3
L
8623 if (branch)
8624 /* Skip if this is a branch. */
8625 ;
8626 else if (add_fused_jcc_padding_frag_p ())
8627 {
8628 /* Make room for padding. */
8629 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8630 p = frag_more (0);
8631
8632 fragP = frag_now;
8633
8634 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8635 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8636 NULL, 0, p);
8637
8638 fragP->tc_frag_data.branch_type = align_branch_fused;
8639 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8640 }
8641 else if (add_branch_prefix_frag_p ())
8642 {
8643 unsigned int max_prefix_size = align_branch_prefix_size;
8644
8645 /* Make room for padding. */
8646 frag_grow (max_prefix_size);
8647 p = frag_more (0);
8648
8649 fragP = frag_now;
8650
8651 frag_var (rs_machine_dependent, max_prefix_size, 0,
8652 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8653 NULL, 0, p);
8654
8655 fragP->tc_frag_data.max_bytes = max_prefix_size;
8656 }
8657
43234a1e
L
8658 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8659 don't need the explicit prefix. */
8660 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8661 {
c0f3af97 8662 switch (i.tm.opcode_length)
bc4bd9ab 8663 {
c0f3af97
L
8664 case 3:
8665 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8666 {
c0f3af97 8667 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8668 if (!i.tm.cpu_flags.bitfield.cpupadlock
8669 || prefix != REPE_PREFIX_OPCODE
8670 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8671 add_prefix (prefix);
c0f3af97
L
8672 }
8673 break;
8674 case 2:
8675 if ((i.tm.base_opcode & 0xff0000) != 0)
8676 {
8677 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8678 add_prefix (prefix);
4dffcebc 8679 }
c0f3af97
L
8680 break;
8681 case 1:
8682 break;
390c91cf
L
8683 case 0:
8684 /* Check for pseudo prefixes. */
8685 as_bad_where (insn_start_frag->fr_file,
8686 insn_start_frag->fr_line,
8687 _("pseudo prefix without instruction"));
8688 return;
c0f3af97
L
8689 default:
8690 abort ();
bc4bd9ab 8691 }
c0f3af97 8692
6d19a37a 8693#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8694 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8695 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8696 perform IE->LE optimization. A dummy REX_OPCODE prefix
8697 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8698 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8699 if (x86_elf_abi == X86_64_X32_ABI
8700 && i.operands == 2
14470f07
L
8701 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8702 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8703 && i.prefix[REX_PREFIX] == 0)
8704 add_prefix (REX_OPCODE);
6d19a37a 8705#endif
cf61b747 8706
c0f3af97
L
8707 /* The prefix bytes. */
8708 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8709 if (*q)
8710 FRAG_APPEND_1_CHAR (*q);
0f10071e 8711 }
ae5c1c7b 8712 else
c0f3af97
L
8713 {
8714 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8715 if (*q)
8716 switch (j)
8717 {
8718 case REX_PREFIX:
8719 /* REX byte is encoded in VEX prefix. */
8720 break;
8721 case SEG_PREFIX:
8722 case ADDR_PREFIX:
8723 FRAG_APPEND_1_CHAR (*q);
8724 break;
8725 default:
8726 /* There should be no other prefixes for instructions
8727 with VEX prefix. */
8728 abort ();
8729 }
8730
43234a1e
L
8731 /* For EVEX instructions i.vrex should become 0 after
8732 build_evex_prefix. For VEX instructions upper 16 registers
8733 aren't available, so VREX should be 0. */
8734 if (i.vrex)
8735 abort ();
c0f3af97
L
8736 /* Now the VEX prefix. */
8737 p = frag_more (i.vex.length);
8738 for (j = 0; j < i.vex.length; j++)
8739 p[j] = i.vex.bytes[j];
8740 }
252b5132 8741
29b0f896 8742 /* Now the opcode; be careful about word order here! */
4dffcebc 8743 if (i.tm.opcode_length == 1)
29b0f896
AM
8744 {
8745 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8746 }
8747 else
8748 {
4dffcebc 8749 switch (i.tm.opcode_length)
331d2d0d 8750 {
43234a1e
L
8751 case 4:
8752 p = frag_more (4);
8753 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8754 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8755 break;
4dffcebc 8756 case 3:
331d2d0d
L
8757 p = frag_more (3);
8758 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8759 break;
8760 case 2:
8761 p = frag_more (2);
8762 break;
8763 default:
8764 abort ();
8765 break;
331d2d0d 8766 }
0f10071e 8767
29b0f896
AM
8768 /* Put out high byte first: can't use md_number_to_chars! */
8769 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8770 *p = i.tm.base_opcode & 0xff;
8771 }
3e73aa7c 8772
29b0f896 8773 /* Now the modrm byte and sib byte (if present). */
40fb9820 8774 if (i.tm.opcode_modifier.modrm)
29b0f896 8775 {
4a3523fa
L
8776 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8777 | i.rm.reg << 3
8778 | i.rm.mode << 6));
29b0f896
AM
8779 /* If i.rm.regmem == ESP (4)
8780 && i.rm.mode != (Register mode)
8781 && not 16 bit
8782 ==> need second modrm byte. */
8783 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8784 && i.rm.mode != 3
dc821c5f 8785 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8786 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8787 | i.sib.index << 3
8788 | i.sib.scale << 6));
29b0f896 8789 }
3e73aa7c 8790
29b0f896 8791 if (i.disp_operands)
2bbd9c25 8792 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8793
29b0f896 8794 if (i.imm_operands)
2bbd9c25 8795 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8796
8797 /*
8798 * frag_now_fix () returning plain abs_section_offset when we're in the
8799 * absolute section, and abs_section_offset not getting updated as data
8800 * gets added to the frag breaks the logic below.
8801 */
8802 if (now_seg != absolute_section)
8803 {
8804 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8805 if (j > 15)
8806 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8807 j);
e379e5f3
L
8808 else if (fragP)
8809 {
8810 /* NB: Don't add prefix with GOTPC relocation since
8811 output_disp() above depends on the fixed encoding
8812 length. Can't add prefix with TLS relocation since
8813 it breaks TLS linker optimization. */
8814 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8815 /* Prefix count on the current instruction. */
8816 unsigned int count = i.vex.length;
8817 unsigned int k;
8818 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8819 /* REX byte is encoded in VEX/EVEX prefix. */
8820 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8821 count++;
8822
8823 /* Count prefixes for extended opcode maps. */
8824 if (!i.vex.length)
8825 switch (i.tm.opcode_length)
8826 {
8827 case 3:
8828 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8829 {
8830 count++;
8831 switch ((i.tm.base_opcode >> 8) & 0xff)
8832 {
8833 case 0x38:
8834 case 0x3a:
8835 count++;
8836 break;
8837 default:
8838 break;
8839 }
8840 }
8841 break;
8842 case 2:
8843 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8844 count++;
8845 break;
8846 case 1:
8847 break;
8848 default:
8849 abort ();
8850 }
8851
8852 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8853 == BRANCH_PREFIX)
8854 {
8855 /* Set the maximum prefix size in BRANCH_PREFIX
8856 frag. */
8857 if (fragP->tc_frag_data.max_bytes > max)
8858 fragP->tc_frag_data.max_bytes = max;
8859 if (fragP->tc_frag_data.max_bytes > count)
8860 fragP->tc_frag_data.max_bytes -= count;
8861 else
8862 fragP->tc_frag_data.max_bytes = 0;
8863 }
8864 else
8865 {
8866 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8867 frag. */
8868 unsigned int max_prefix_size;
8869 if (align_branch_prefix_size > max)
8870 max_prefix_size = max;
8871 else
8872 max_prefix_size = align_branch_prefix_size;
8873 if (max_prefix_size > count)
8874 fragP->tc_frag_data.max_prefix_length
8875 = max_prefix_size - count;
8876 }
8877
8878 /* Use existing segment prefix if possible. Use CS
8879 segment prefix in 64-bit mode. In 32-bit mode, use SS
8880 segment prefix with ESP/EBP base register and use DS
8881 segment prefix without ESP/EBP base register. */
8882 if (i.prefix[SEG_PREFIX])
8883 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8884 else if (flag_code == CODE_64BIT)
8885 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8886 else if (i.base_reg
8887 && (i.base_reg->reg_num == 4
8888 || i.base_reg->reg_num == 5))
8889 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8890 else
8891 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8892 }
9c33702b 8893 }
29b0f896 8894 }
252b5132 8895
e379e5f3
L
8896 /* NB: Don't work with COND_JUMP86 without i386. */
8897 if (align_branch_power
8898 && now_seg != absolute_section
8899 && cpu_arch_flags.bitfield.cpui386)
8900 {
8901 /* Terminate each frag so that we can add prefix and check for
8902 fused jcc. */
8903 frag_wane (frag_now);
8904 frag_new (0);
8905 }
8906
29b0f896
AM
8907#ifdef DEBUG386
8908 if (flag_debug)
8909 {
7b81dfbb 8910 pi ("" /*line*/, &i);
29b0f896
AM
8911 }
8912#endif /* DEBUG386 */
8913}
252b5132 8914
e205caa7
L
8915/* Return the size of the displacement operand N. */
8916
8917static int
8918disp_size (unsigned int n)
8919{
8920 int size = 4;
43234a1e 8921
b5014f7a 8922 if (i.types[n].bitfield.disp64)
40fb9820
L
8923 size = 8;
8924 else if (i.types[n].bitfield.disp8)
8925 size = 1;
8926 else if (i.types[n].bitfield.disp16)
8927 size = 2;
e205caa7
L
8928 return size;
8929}
8930
8931/* Return the size of the immediate operand N. */
8932
8933static int
8934imm_size (unsigned int n)
8935{
8936 int size = 4;
40fb9820
L
8937 if (i.types[n].bitfield.imm64)
8938 size = 8;
8939 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8940 size = 1;
8941 else if (i.types[n].bitfield.imm16)
8942 size = 2;
e205caa7
L
8943 return size;
8944}
8945
29b0f896 8946static void
64e74474 8947output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8948{
8949 char *p;
8950 unsigned int n;
252b5132 8951
29b0f896
AM
8952 for (n = 0; n < i.operands; n++)
8953 {
b5014f7a 8954 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8955 {
8956 if (i.op[n].disps->X_op == O_constant)
8957 {
e205caa7 8958 int size = disp_size (n);
43234a1e 8959 offsetT val = i.op[n].disps->X_add_number;
252b5132 8960
629cfaf1
JB
8961 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8962 size);
29b0f896
AM
8963 p = frag_more (size);
8964 md_number_to_chars (p, val, size);
8965 }
8966 else
8967 {
f86103b7 8968 enum bfd_reloc_code_real reloc_type;
e205caa7 8969 int size = disp_size (n);
40fb9820 8970 int sign = i.types[n].bitfield.disp32s;
29b0f896 8971 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8972 fixS *fixP;
29b0f896 8973
e205caa7 8974 /* We can't have 8 bit displacement here. */
9c2799c2 8975 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8976
29b0f896
AM
8977 /* The PC relative address is computed relative
8978 to the instruction boundary, so in case immediate
8979 fields follows, we need to adjust the value. */
8980 if (pcrel && i.imm_operands)
8981 {
29b0f896 8982 unsigned int n1;
e205caa7 8983 int sz = 0;
252b5132 8984
29b0f896 8985 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8986 if (operand_type_check (i.types[n1], imm))
252b5132 8987 {
e205caa7
L
8988 /* Only one immediate is allowed for PC
8989 relative address. */
9c2799c2 8990 gas_assert (sz == 0);
e205caa7
L
8991 sz = imm_size (n1);
8992 i.op[n].disps->X_add_number -= sz;
252b5132 8993 }
29b0f896 8994 /* We should find the immediate. */
9c2799c2 8995 gas_assert (sz != 0);
29b0f896 8996 }
520dc8e8 8997
29b0f896 8998 p = frag_more (size);
d258b828 8999 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9000 if (GOT_symbol
2bbd9c25 9001 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9002 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9003 || reloc_type == BFD_RELOC_X86_64_32S
9004 || (reloc_type == BFD_RELOC_64
9005 && object_64bit))
d6ab8113
JB
9006 && (i.op[n].disps->X_op == O_symbol
9007 || (i.op[n].disps->X_op == O_add
9008 && ((symbol_get_value_expression
9009 (i.op[n].disps->X_op_symbol)->X_op)
9010 == O_subtract))))
9011 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9012 {
4fa24527 9013 if (!object_64bit)
7b81dfbb
AJ
9014 {
9015 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9016 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9017 i.op[n].imms->X_add_number +=
9018 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9019 }
9020 else if (reloc_type == BFD_RELOC_64)
9021 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9022 else
7b81dfbb
AJ
9023 /* Don't do the adjustment for x86-64, as there
9024 the pcrel addressing is relative to the _next_
9025 insn, and that is taken care of in other code. */
d6ab8113 9026 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9027 }
e379e5f3
L
9028 else if (align_branch_power)
9029 {
9030 switch (reloc_type)
9031 {
9032 case BFD_RELOC_386_TLS_GD:
9033 case BFD_RELOC_386_TLS_LDM:
9034 case BFD_RELOC_386_TLS_IE:
9035 case BFD_RELOC_386_TLS_IE_32:
9036 case BFD_RELOC_386_TLS_GOTIE:
9037 case BFD_RELOC_386_TLS_GOTDESC:
9038 case BFD_RELOC_386_TLS_DESC_CALL:
9039 case BFD_RELOC_X86_64_TLSGD:
9040 case BFD_RELOC_X86_64_TLSLD:
9041 case BFD_RELOC_X86_64_GOTTPOFF:
9042 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9043 case BFD_RELOC_X86_64_TLSDESC_CALL:
9044 i.has_gotpc_tls_reloc = TRUE;
9045 default:
9046 break;
9047 }
9048 }
02a86693
L
9049 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9050 size, i.op[n].disps, pcrel,
9051 reloc_type);
9052 /* Check for "call/jmp *mem", "mov mem, %reg",
9053 "test %reg, mem" and "binop mem, %reg" where binop
9054 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9055 instructions without data prefix. Always generate
9056 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9057 if (i.prefix[DATA_PREFIX] == 0
9058 && (generate_relax_relocations
9059 || (!object_64bit
9060 && i.rm.mode == 0
9061 && i.rm.regmem == 5))
0cb4071e
L
9062 && (i.rm.mode == 2
9063 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9064 && !is_any_vex_encoding(&i.tm)
02a86693
L
9065 && ((i.operands == 1
9066 && i.tm.base_opcode == 0xff
9067 && (i.rm.reg == 2 || i.rm.reg == 4))
9068 || (i.operands == 2
9069 && (i.tm.base_opcode == 0x8b
9070 || i.tm.base_opcode == 0x85
2ae4c703 9071 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9072 {
9073 if (object_64bit)
9074 {
9075 fixP->fx_tcbit = i.rex != 0;
9076 if (i.base_reg
e968fc9b 9077 && (i.base_reg->reg_num == RegIP))
02a86693
L
9078 fixP->fx_tcbit2 = 1;
9079 }
9080 else
9081 fixP->fx_tcbit2 = 1;
9082 }
29b0f896
AM
9083 }
9084 }
9085 }
9086}
252b5132 9087
29b0f896 9088static void
64e74474 9089output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9090{
9091 char *p;
9092 unsigned int n;
252b5132 9093
29b0f896
AM
9094 for (n = 0; n < i.operands; n++)
9095 {
43234a1e
L
9096 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9097 if (i.rounding && (int) n == i.rounding->operand)
9098 continue;
9099
40fb9820 9100 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9101 {
9102 if (i.op[n].imms->X_op == O_constant)
9103 {
e205caa7 9104 int size = imm_size (n);
29b0f896 9105 offsetT val;
b4cac588 9106
29b0f896
AM
9107 val = offset_in_range (i.op[n].imms->X_add_number,
9108 size);
9109 p = frag_more (size);
9110 md_number_to_chars (p, val, size);
9111 }
9112 else
9113 {
9114 /* Not absolute_section.
9115 Need a 32-bit fixup (don't support 8bit
9116 non-absolute imms). Try to support other
9117 sizes ... */
f86103b7 9118 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9119 int size = imm_size (n);
9120 int sign;
29b0f896 9121
40fb9820 9122 if (i.types[n].bitfield.imm32s
a7d61044 9123 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9124 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9125 sign = 1;
e205caa7
L
9126 else
9127 sign = 0;
520dc8e8 9128
29b0f896 9129 p = frag_more (size);
d258b828 9130 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9131
2bbd9c25
JJ
9132 /* This is tough to explain. We end up with this one if we
9133 * have operands that look like
9134 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9135 * obtain the absolute address of the GOT, and it is strongly
9136 * preferable from a performance point of view to avoid using
9137 * a runtime relocation for this. The actual sequence of
9138 * instructions often look something like:
9139 *
9140 * call .L66
9141 * .L66:
9142 * popl %ebx
9143 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9144 *
9145 * The call and pop essentially return the absolute address
9146 * of the label .L66 and store it in %ebx. The linker itself
9147 * will ultimately change the first operand of the addl so
9148 * that %ebx points to the GOT, but to keep things simple, the
9149 * .o file must have this operand set so that it generates not
9150 * the absolute address of .L66, but the absolute address of
9151 * itself. This allows the linker itself simply treat a GOTPC
9152 * relocation as asking for a pcrel offset to the GOT to be
9153 * added in, and the addend of the relocation is stored in the
9154 * operand field for the instruction itself.
9155 *
9156 * Our job here is to fix the operand so that it would add
9157 * the correct offset so that %ebx would point to itself. The
9158 * thing that is tricky is that .-.L66 will point to the
9159 * beginning of the instruction, so we need to further modify
9160 * the operand so that it will point to itself. There are
9161 * other cases where you have something like:
9162 *
9163 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9164 *
9165 * and here no correction would be required. Internally in
9166 * the assembler we treat operands of this form as not being
9167 * pcrel since the '.' is explicitly mentioned, and I wonder
9168 * whether it would simplify matters to do it this way. Who
9169 * knows. In earlier versions of the PIC patches, the
9170 * pcrel_adjust field was used to store the correction, but
9171 * since the expression is not pcrel, I felt it would be
9172 * confusing to do it this way. */
9173
d6ab8113 9174 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9175 || reloc_type == BFD_RELOC_X86_64_32S
9176 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9177 && GOT_symbol
9178 && GOT_symbol == i.op[n].imms->X_add_symbol
9179 && (i.op[n].imms->X_op == O_symbol
9180 || (i.op[n].imms->X_op == O_add
9181 && ((symbol_get_value_expression
9182 (i.op[n].imms->X_op_symbol)->X_op)
9183 == O_subtract))))
9184 {
4fa24527 9185 if (!object_64bit)
d6ab8113 9186 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9187 else if (size == 4)
d6ab8113 9188 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9189 else if (size == 8)
9190 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9191 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9192 i.op[n].imms->X_add_number +=
9193 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9194 }
29b0f896
AM
9195 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9196 i.op[n].imms, 0, reloc_type);
9197 }
9198 }
9199 }
252b5132
RH
9200}
9201\f
d182319b
JB
9202/* x86_cons_fix_new is called via the expression parsing code when a
9203 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9204static int cons_sign = -1;
9205
9206void
e3bb37b5 9207x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9208 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9209{
d258b828 9210 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9211
9212#ifdef TE_PE
9213 if (exp->X_op == O_secrel)
9214 {
9215 exp->X_op = O_symbol;
9216 r = BFD_RELOC_32_SECREL;
9217 }
9218#endif
9219
9220 fix_new_exp (frag, off, len, exp, 0, r);
9221}
9222
357d1bd8
L
9223/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9224 purpose of the `.dc.a' internal pseudo-op. */
9225
9226int
9227x86_address_bytes (void)
9228{
9229 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9230 return 4;
9231 return stdoutput->arch_info->bits_per_address / 8;
9232}
9233
d382c579
TG
9234#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9235 || defined (LEX_AT)
d258b828 9236# define lex_got(reloc, adjust, types) NULL
718ddfc0 9237#else
f3c180ae
AM
9238/* Parse operands of the form
9239 <symbol>@GOTOFF+<nnn>
9240 and similar .plt or .got references.
9241
9242 If we find one, set up the correct relocation in RELOC and copy the
9243 input string, minus the `@GOTOFF' into a malloc'd buffer for
9244 parsing by the calling routine. Return this buffer, and if ADJUST
9245 is non-null set it to the length of the string we removed from the
9246 input line. Otherwise return NULL. */
9247static char *
91d6fa6a 9248lex_got (enum bfd_reloc_code_real *rel,
64e74474 9249 int *adjust,
d258b828 9250 i386_operand_type *types)
f3c180ae 9251{
7b81dfbb
AJ
9252 /* Some of the relocations depend on the size of what field is to
9253 be relocated. But in our callers i386_immediate and i386_displacement
9254 we don't yet know the operand size (this will be set by insn
9255 matching). Hence we record the word32 relocation here,
9256 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9257 static const struct {
9258 const char *str;
cff8d58a 9259 int len;
4fa24527 9260 const enum bfd_reloc_code_real rel[2];
40fb9820 9261 const i386_operand_type types64;
f3c180ae 9262 } gotrel[] = {
8ce3d284 9263#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9264 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9265 BFD_RELOC_SIZE32 },
9266 OPERAND_TYPE_IMM32_64 },
8ce3d284 9267#endif
cff8d58a
L
9268 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9269 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9270 OPERAND_TYPE_IMM64 },
cff8d58a
L
9271 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9272 BFD_RELOC_X86_64_PLT32 },
40fb9820 9273 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9274 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9275 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9276 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9277 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9278 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9279 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9280 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9281 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9282 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9283 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9284 BFD_RELOC_X86_64_TLSGD },
40fb9820 9285 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9286 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9287 _dummy_first_bfd_reloc_code_real },
40fb9820 9288 OPERAND_TYPE_NONE },
cff8d58a
L
9289 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9290 BFD_RELOC_X86_64_TLSLD },
40fb9820 9291 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9292 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9293 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9294 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9295 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9296 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9297 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9298 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9299 _dummy_first_bfd_reloc_code_real },
40fb9820 9300 OPERAND_TYPE_NONE },
cff8d58a
L
9301 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9302 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9303 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9304 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9305 _dummy_first_bfd_reloc_code_real },
40fb9820 9306 OPERAND_TYPE_NONE },
cff8d58a
L
9307 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9308 _dummy_first_bfd_reloc_code_real },
40fb9820 9309 OPERAND_TYPE_NONE },
cff8d58a
L
9310 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9311 BFD_RELOC_X86_64_GOT32 },
40fb9820 9312 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9313 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9314 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9315 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9316 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9317 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9318 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9319 };
9320 char *cp;
9321 unsigned int j;
9322
d382c579 9323#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9324 if (!IS_ELF)
9325 return NULL;
d382c579 9326#endif
718ddfc0 9327
f3c180ae 9328 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9329 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9330 return NULL;
9331
47465058 9332 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9333 {
cff8d58a 9334 int len = gotrel[j].len;
28f81592 9335 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9336 {
4fa24527 9337 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9338 {
28f81592
AM
9339 int first, second;
9340 char *tmpbuf, *past_reloc;
f3c180ae 9341
91d6fa6a 9342 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9343
3956db08
JB
9344 if (types)
9345 {
9346 if (flag_code != CODE_64BIT)
40fb9820
L
9347 {
9348 types->bitfield.imm32 = 1;
9349 types->bitfield.disp32 = 1;
9350 }
3956db08
JB
9351 else
9352 *types = gotrel[j].types64;
9353 }
9354
8fd4256d 9355 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9356 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9357
28f81592 9358 /* The length of the first part of our input line. */
f3c180ae 9359 first = cp - input_line_pointer;
28f81592
AM
9360
9361 /* The second part goes from after the reloc token until
67c11a9b 9362 (and including) an end_of_line char or comma. */
28f81592 9363 past_reloc = cp + 1 + len;
67c11a9b
AM
9364 cp = past_reloc;
9365 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9366 ++cp;
9367 second = cp + 1 - past_reloc;
28f81592
AM
9368
9369 /* Allocate and copy string. The trailing NUL shouldn't
9370 be necessary, but be safe. */
add39d23 9371 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9372 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9373 if (second != 0 && *past_reloc != ' ')
9374 /* Replace the relocation token with ' ', so that
9375 errors like foo@GOTOFF1 will be detected. */
9376 tmpbuf[first++] = ' ';
af89796a
L
9377 else
9378 /* Increment length by 1 if the relocation token is
9379 removed. */
9380 len++;
9381 if (adjust)
9382 *adjust = len;
0787a12d
AM
9383 memcpy (tmpbuf + first, past_reloc, second);
9384 tmpbuf[first + second] = '\0';
f3c180ae
AM
9385 return tmpbuf;
9386 }
9387
4fa24527
JB
9388 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9389 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9390 return NULL;
9391 }
9392 }
9393
9394 /* Might be a symbol version string. Don't as_bad here. */
9395 return NULL;
9396}
4e4f7c87 9397#endif
f3c180ae 9398
a988325c
NC
9399#ifdef TE_PE
9400#ifdef lex_got
9401#undef lex_got
9402#endif
9403/* Parse operands of the form
9404 <symbol>@SECREL32+<nnn>
9405
9406 If we find one, set up the correct relocation in RELOC and copy the
9407 input string, minus the `@SECREL32' into a malloc'd buffer for
9408 parsing by the calling routine. Return this buffer, and if ADJUST
9409 is non-null set it to the length of the string we removed from the
34bca508
L
9410 input line. Otherwise return NULL.
9411
a988325c
NC
9412 This function is copied from the ELF version above adjusted for PE targets. */
9413
9414static char *
9415lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9416 int *adjust ATTRIBUTE_UNUSED,
d258b828 9417 i386_operand_type *types)
a988325c
NC
9418{
9419 static const struct
9420 {
9421 const char *str;
9422 int len;
9423 const enum bfd_reloc_code_real rel[2];
9424 const i386_operand_type types64;
9425 }
9426 gotrel[] =
9427 {
9428 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9429 BFD_RELOC_32_SECREL },
9430 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9431 };
9432
9433 char *cp;
9434 unsigned j;
9435
9436 for (cp = input_line_pointer; *cp != '@'; cp++)
9437 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9438 return NULL;
9439
9440 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9441 {
9442 int len = gotrel[j].len;
9443
9444 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9445 {
9446 if (gotrel[j].rel[object_64bit] != 0)
9447 {
9448 int first, second;
9449 char *tmpbuf, *past_reloc;
9450
9451 *rel = gotrel[j].rel[object_64bit];
9452 if (adjust)
9453 *adjust = len;
9454
9455 if (types)
9456 {
9457 if (flag_code != CODE_64BIT)
9458 {
9459 types->bitfield.imm32 = 1;
9460 types->bitfield.disp32 = 1;
9461 }
9462 else
9463 *types = gotrel[j].types64;
9464 }
9465
9466 /* The length of the first part of our input line. */
9467 first = cp - input_line_pointer;
9468
9469 /* The second part goes from after the reloc token until
9470 (and including) an end_of_line char or comma. */
9471 past_reloc = cp + 1 + len;
9472 cp = past_reloc;
9473 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9474 ++cp;
9475 second = cp + 1 - past_reloc;
9476
9477 /* Allocate and copy string. The trailing NUL shouldn't
9478 be necessary, but be safe. */
add39d23 9479 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9480 memcpy (tmpbuf, input_line_pointer, first);
9481 if (second != 0 && *past_reloc != ' ')
9482 /* Replace the relocation token with ' ', so that
9483 errors like foo@SECLREL321 will be detected. */
9484 tmpbuf[first++] = ' ';
9485 memcpy (tmpbuf + first, past_reloc, second);
9486 tmpbuf[first + second] = '\0';
9487 return tmpbuf;
9488 }
9489
9490 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9491 gotrel[j].str, 1 << (5 + object_64bit));
9492 return NULL;
9493 }
9494 }
9495
9496 /* Might be a symbol version string. Don't as_bad here. */
9497 return NULL;
9498}
9499
9500#endif /* TE_PE */
9501
62ebcb5c 9502bfd_reloc_code_real_type
e3bb37b5 9503x86_cons (expressionS *exp, int size)
f3c180ae 9504{
62ebcb5c
AM
9505 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9506
ee86248c
JB
9507 intel_syntax = -intel_syntax;
9508
3c7b9c2c 9509 exp->X_md = 0;
4fa24527 9510 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9511 {
9512 /* Handle @GOTOFF and the like in an expression. */
9513 char *save;
9514 char *gotfree_input_line;
4a57f2cf 9515 int adjust = 0;
f3c180ae
AM
9516
9517 save = input_line_pointer;
d258b828 9518 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9519 if (gotfree_input_line)
9520 input_line_pointer = gotfree_input_line;
9521
9522 expression (exp);
9523
9524 if (gotfree_input_line)
9525 {
9526 /* expression () has merrily parsed up to the end of line,
9527 or a comma - in the wrong buffer. Transfer how far
9528 input_line_pointer has moved to the right buffer. */
9529 input_line_pointer = (save
9530 + (input_line_pointer - gotfree_input_line)
9531 + adjust);
9532 free (gotfree_input_line);
3992d3b7
AM
9533 if (exp->X_op == O_constant
9534 || exp->X_op == O_absent
9535 || exp->X_op == O_illegal
0398aac5 9536 || exp->X_op == O_register
3992d3b7
AM
9537 || exp->X_op == O_big)
9538 {
9539 char c = *input_line_pointer;
9540 *input_line_pointer = 0;
9541 as_bad (_("missing or invalid expression `%s'"), save);
9542 *input_line_pointer = c;
9543 }
b9519cfe
L
9544 else if ((got_reloc == BFD_RELOC_386_PLT32
9545 || got_reloc == BFD_RELOC_X86_64_PLT32)
9546 && exp->X_op != O_symbol)
9547 {
9548 char c = *input_line_pointer;
9549 *input_line_pointer = 0;
9550 as_bad (_("invalid PLT expression `%s'"), save);
9551 *input_line_pointer = c;
9552 }
f3c180ae
AM
9553 }
9554 }
9555 else
9556 expression (exp);
ee86248c
JB
9557
9558 intel_syntax = -intel_syntax;
9559
9560 if (intel_syntax)
9561 i386_intel_simplify (exp);
62ebcb5c
AM
9562
9563 return got_reloc;
f3c180ae 9564}
f3c180ae 9565
9f32dd5b
L
9566static void
9567signed_cons (int size)
6482c264 9568{
d182319b
JB
9569 if (flag_code == CODE_64BIT)
9570 cons_sign = 1;
9571 cons (size);
9572 cons_sign = -1;
6482c264
NC
9573}
9574
d182319b 9575#ifdef TE_PE
6482c264 9576static void
7016a5d5 9577pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9578{
9579 expressionS exp;
9580
9581 do
9582 {
9583 expression (&exp);
9584 if (exp.X_op == O_symbol)
9585 exp.X_op = O_secrel;
9586
9587 emit_expr (&exp, 4);
9588 }
9589 while (*input_line_pointer++ == ',');
9590
9591 input_line_pointer--;
9592 demand_empty_rest_of_line ();
9593}
6482c264
NC
9594#endif
9595
43234a1e
L
9596/* Handle Vector operations. */
9597
9598static char *
9599check_VecOperations (char *op_string, char *op_end)
9600{
9601 const reg_entry *mask;
9602 const char *saved;
9603 char *end_op;
9604
9605 while (*op_string
9606 && (op_end == NULL || op_string < op_end))
9607 {
9608 saved = op_string;
9609 if (*op_string == '{')
9610 {
9611 op_string++;
9612
9613 /* Check broadcasts. */
9614 if (strncmp (op_string, "1to", 3) == 0)
9615 {
9616 int bcst_type;
9617
9618 if (i.broadcast)
9619 goto duplicated_vec_op;
9620
9621 op_string += 3;
9622 if (*op_string == '8')
8e6e0792 9623 bcst_type = 8;
b28d1bda 9624 else if (*op_string == '4')
8e6e0792 9625 bcst_type = 4;
b28d1bda 9626 else if (*op_string == '2')
8e6e0792 9627 bcst_type = 2;
43234a1e
L
9628 else if (*op_string == '1'
9629 && *(op_string+1) == '6')
9630 {
8e6e0792 9631 bcst_type = 16;
43234a1e
L
9632 op_string++;
9633 }
9634 else
9635 {
9636 as_bad (_("Unsupported broadcast: `%s'"), saved);
9637 return NULL;
9638 }
9639 op_string++;
9640
9641 broadcast_op.type = bcst_type;
9642 broadcast_op.operand = this_operand;
1f75763a 9643 broadcast_op.bytes = 0;
43234a1e
L
9644 i.broadcast = &broadcast_op;
9645 }
9646 /* Check masking operation. */
9647 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9648 {
9649 /* k0 can't be used for write mask. */
f74a6307 9650 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9651 {
6d2cd6b2
JB
9652 as_bad (_("`%s%s' can't be used for write mask"),
9653 register_prefix, mask->reg_name);
43234a1e
L
9654 return NULL;
9655 }
9656
9657 if (!i.mask)
9658 {
9659 mask_op.mask = mask;
9660 mask_op.zeroing = 0;
9661 mask_op.operand = this_operand;
9662 i.mask = &mask_op;
9663 }
9664 else
9665 {
9666 if (i.mask->mask)
9667 goto duplicated_vec_op;
9668
9669 i.mask->mask = mask;
9670
9671 /* Only "{z}" is allowed here. No need to check
9672 zeroing mask explicitly. */
9673 if (i.mask->operand != this_operand)
9674 {
9675 as_bad (_("invalid write mask `%s'"), saved);
9676 return NULL;
9677 }
9678 }
9679
9680 op_string = end_op;
9681 }
9682 /* Check zeroing-flag for masking operation. */
9683 else if (*op_string == 'z')
9684 {
9685 if (!i.mask)
9686 {
9687 mask_op.mask = NULL;
9688 mask_op.zeroing = 1;
9689 mask_op.operand = this_operand;
9690 i.mask = &mask_op;
9691 }
9692 else
9693 {
9694 if (i.mask->zeroing)
9695 {
9696 duplicated_vec_op:
9697 as_bad (_("duplicated `%s'"), saved);
9698 return NULL;
9699 }
9700
9701 i.mask->zeroing = 1;
9702
9703 /* Only "{%k}" is allowed here. No need to check mask
9704 register explicitly. */
9705 if (i.mask->operand != this_operand)
9706 {
9707 as_bad (_("invalid zeroing-masking `%s'"),
9708 saved);
9709 return NULL;
9710 }
9711 }
9712
9713 op_string++;
9714 }
9715 else
9716 goto unknown_vec_op;
9717
9718 if (*op_string != '}')
9719 {
9720 as_bad (_("missing `}' in `%s'"), saved);
9721 return NULL;
9722 }
9723 op_string++;
0ba3a731
L
9724
9725 /* Strip whitespace since the addition of pseudo prefixes
9726 changed how the scrubber treats '{'. */
9727 if (is_space_char (*op_string))
9728 ++op_string;
9729
43234a1e
L
9730 continue;
9731 }
9732 unknown_vec_op:
9733 /* We don't know this one. */
9734 as_bad (_("unknown vector operation: `%s'"), saved);
9735 return NULL;
9736 }
9737
6d2cd6b2
JB
9738 if (i.mask && i.mask->zeroing && !i.mask->mask)
9739 {
9740 as_bad (_("zeroing-masking only allowed with write mask"));
9741 return NULL;
9742 }
9743
43234a1e
L
9744 return op_string;
9745}
9746
252b5132 9747static int
70e41ade 9748i386_immediate (char *imm_start)
252b5132
RH
9749{
9750 char *save_input_line_pointer;
f3c180ae 9751 char *gotfree_input_line;
252b5132 9752 segT exp_seg = 0;
47926f60 9753 expressionS *exp;
40fb9820
L
9754 i386_operand_type types;
9755
0dfbf9d7 9756 operand_type_set (&types, ~0);
252b5132
RH
9757
9758 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9759 {
31b2323c
L
9760 as_bad (_("at most %d immediate operands are allowed"),
9761 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9762 return 0;
9763 }
9764
9765 exp = &im_expressions[i.imm_operands++];
520dc8e8 9766 i.op[this_operand].imms = exp;
252b5132
RH
9767
9768 if (is_space_char (*imm_start))
9769 ++imm_start;
9770
9771 save_input_line_pointer = input_line_pointer;
9772 input_line_pointer = imm_start;
9773
d258b828 9774 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9775 if (gotfree_input_line)
9776 input_line_pointer = gotfree_input_line;
252b5132
RH
9777
9778 exp_seg = expression (exp);
9779
83183c0c 9780 SKIP_WHITESPACE ();
43234a1e
L
9781
9782 /* Handle vector operations. */
9783 if (*input_line_pointer == '{')
9784 {
9785 input_line_pointer = check_VecOperations (input_line_pointer,
9786 NULL);
9787 if (input_line_pointer == NULL)
9788 return 0;
9789 }
9790
252b5132 9791 if (*input_line_pointer)
f3c180ae 9792 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9793
9794 input_line_pointer = save_input_line_pointer;
f3c180ae 9795 if (gotfree_input_line)
ee86248c
JB
9796 {
9797 free (gotfree_input_line);
9798
9799 if (exp->X_op == O_constant || exp->X_op == O_register)
9800 exp->X_op = O_illegal;
9801 }
9802
9803 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9804}
252b5132 9805
ee86248c
JB
9806static int
9807i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9808 i386_operand_type types, const char *imm_start)
9809{
9810 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9811 {
313c53d1
L
9812 if (imm_start)
9813 as_bad (_("missing or invalid immediate expression `%s'"),
9814 imm_start);
3992d3b7 9815 return 0;
252b5132 9816 }
3e73aa7c 9817 else if (exp->X_op == O_constant)
252b5132 9818 {
47926f60 9819 /* Size it properly later. */
40fb9820 9820 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9821 /* If not 64bit, sign extend val. */
9822 if (flag_code != CODE_64BIT
4eed87de
AM
9823 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9824 exp->X_add_number
9825 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9826 }
4c63da97 9827#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9828 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9829 && exp_seg != absolute_section
47926f60 9830 && exp_seg != text_section
24eab124
AM
9831 && exp_seg != data_section
9832 && exp_seg != bss_section
9833 && exp_seg != undefined_section
f86103b7 9834 && !bfd_is_com_section (exp_seg))
252b5132 9835 {
d0b47220 9836 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9837 return 0;
9838 }
9839#endif
a841bdf5 9840 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9841 {
313c53d1
L
9842 if (imm_start)
9843 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9844 return 0;
9845 }
252b5132
RH
9846 else
9847 {
9848 /* This is an address. The size of the address will be
24eab124 9849 determined later, depending on destination register,
3e73aa7c 9850 suffix, or the default for the section. */
40fb9820
L
9851 i.types[this_operand].bitfield.imm8 = 1;
9852 i.types[this_operand].bitfield.imm16 = 1;
9853 i.types[this_operand].bitfield.imm32 = 1;
9854 i.types[this_operand].bitfield.imm32s = 1;
9855 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9856 i.types[this_operand] = operand_type_and (i.types[this_operand],
9857 types);
252b5132
RH
9858 }
9859
9860 return 1;
9861}
9862
551c1ca1 9863static char *
e3bb37b5 9864i386_scale (char *scale)
252b5132 9865{
551c1ca1
AM
9866 offsetT val;
9867 char *save = input_line_pointer;
252b5132 9868
551c1ca1
AM
9869 input_line_pointer = scale;
9870 val = get_absolute_expression ();
9871
9872 switch (val)
252b5132 9873 {
551c1ca1 9874 case 1:
252b5132
RH
9875 i.log2_scale_factor = 0;
9876 break;
551c1ca1 9877 case 2:
252b5132
RH
9878 i.log2_scale_factor = 1;
9879 break;
551c1ca1 9880 case 4:
252b5132
RH
9881 i.log2_scale_factor = 2;
9882 break;
551c1ca1 9883 case 8:
252b5132
RH
9884 i.log2_scale_factor = 3;
9885 break;
9886 default:
a724f0f4
JB
9887 {
9888 char sep = *input_line_pointer;
9889
9890 *input_line_pointer = '\0';
9891 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9892 scale);
9893 *input_line_pointer = sep;
9894 input_line_pointer = save;
9895 return NULL;
9896 }
252b5132 9897 }
29b0f896 9898 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9899 {
9900 as_warn (_("scale factor of %d without an index register"),
24eab124 9901 1 << i.log2_scale_factor);
252b5132 9902 i.log2_scale_factor = 0;
252b5132 9903 }
551c1ca1
AM
9904 scale = input_line_pointer;
9905 input_line_pointer = save;
9906 return scale;
252b5132
RH
9907}
9908
252b5132 9909static int
e3bb37b5 9910i386_displacement (char *disp_start, char *disp_end)
252b5132 9911{
29b0f896 9912 expressionS *exp;
252b5132
RH
9913 segT exp_seg = 0;
9914 char *save_input_line_pointer;
f3c180ae 9915 char *gotfree_input_line;
40fb9820
L
9916 int override;
9917 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9918 int ret;
252b5132 9919
31b2323c
L
9920 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9921 {
9922 as_bad (_("at most %d displacement operands are allowed"),
9923 MAX_MEMORY_OPERANDS);
9924 return 0;
9925 }
9926
0dfbf9d7 9927 operand_type_set (&bigdisp, 0);
6f2f06be 9928 if (i.jumpabsolute
48bcea9f 9929 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9930 || (current_templates->start->opcode_modifier.jump != JUMP
9931 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9932 {
48bcea9f 9933 i386_addressing_mode ();
e05278af 9934 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9935 if (flag_code == CODE_64BIT)
9936 {
9937 if (!override)
9938 {
9939 bigdisp.bitfield.disp32s = 1;
9940 bigdisp.bitfield.disp64 = 1;
9941 }
48bcea9f
JB
9942 else
9943 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9944 }
9945 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9946 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9947 else
9948 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9949 }
9950 else
9951 {
376cd056
JB
9952 /* For PC-relative branches, the width of the displacement may be
9953 dependent upon data size, but is never dependent upon address size.
9954 Also make sure to not unintentionally match against a non-PC-relative
9955 branch template. */
9956 static templates aux_templates;
9957 const insn_template *t = current_templates->start;
9958 bfd_boolean has_intel64 = FALSE;
9959
9960 aux_templates.start = t;
9961 while (++t < current_templates->end)
9962 {
9963 if (t->opcode_modifier.jump
9964 != current_templates->start->opcode_modifier.jump)
9965 break;
9966 if (t->opcode_modifier.intel64)
9967 has_intel64 = TRUE;
9968 }
9969 if (t < current_templates->end)
9970 {
9971 aux_templates.end = t;
9972 current_templates = &aux_templates;
9973 }
9974
e05278af 9975 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9976 if (flag_code == CODE_64BIT)
9977 {
376cd056
JB
9978 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9979 && (!intel64 || !has_intel64))
40fb9820
L
9980 bigdisp.bitfield.disp16 = 1;
9981 else
48bcea9f 9982 bigdisp.bitfield.disp32s = 1;
40fb9820
L
9983 }
9984 else
e05278af
JB
9985 {
9986 if (!override)
9987 override = (i.suffix == (flag_code != CODE_16BIT
9988 ? WORD_MNEM_SUFFIX
9989 : LONG_MNEM_SUFFIX));
40fb9820
L
9990 bigdisp.bitfield.disp32 = 1;
9991 if ((flag_code == CODE_16BIT) ^ override)
9992 {
9993 bigdisp.bitfield.disp32 = 0;
9994 bigdisp.bitfield.disp16 = 1;
9995 }
e05278af 9996 }
e05278af 9997 }
c6fb90c8
L
9998 i.types[this_operand] = operand_type_or (i.types[this_operand],
9999 bigdisp);
252b5132
RH
10000
10001 exp = &disp_expressions[i.disp_operands];
520dc8e8 10002 i.op[this_operand].disps = exp;
252b5132
RH
10003 i.disp_operands++;
10004 save_input_line_pointer = input_line_pointer;
10005 input_line_pointer = disp_start;
10006 END_STRING_AND_SAVE (disp_end);
10007
10008#ifndef GCC_ASM_O_HACK
10009#define GCC_ASM_O_HACK 0
10010#endif
10011#if GCC_ASM_O_HACK
10012 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10013 if (i.types[this_operand].bitfield.baseIndex
24eab124 10014 && displacement_string_end[-1] == '+')
252b5132
RH
10015 {
10016 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10017 constraint within gcc asm statements.
10018 For instance:
10019
10020 #define _set_tssldt_desc(n,addr,limit,type) \
10021 __asm__ __volatile__ ( \
10022 "movw %w2,%0\n\t" \
10023 "movw %w1,2+%0\n\t" \
10024 "rorl $16,%1\n\t" \
10025 "movb %b1,4+%0\n\t" \
10026 "movb %4,5+%0\n\t" \
10027 "movb $0,6+%0\n\t" \
10028 "movb %h1,7+%0\n\t" \
10029 "rorl $16,%1" \
10030 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10031
10032 This works great except that the output assembler ends
10033 up looking a bit weird if it turns out that there is
10034 no offset. You end up producing code that looks like:
10035
10036 #APP
10037 movw $235,(%eax)
10038 movw %dx,2+(%eax)
10039 rorl $16,%edx
10040 movb %dl,4+(%eax)
10041 movb $137,5+(%eax)
10042 movb $0,6+(%eax)
10043 movb %dh,7+(%eax)
10044 rorl $16,%edx
10045 #NO_APP
10046
47926f60 10047 So here we provide the missing zero. */
24eab124
AM
10048
10049 *displacement_string_end = '0';
252b5132
RH
10050 }
10051#endif
d258b828 10052 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10053 if (gotfree_input_line)
10054 input_line_pointer = gotfree_input_line;
252b5132 10055
24eab124 10056 exp_seg = expression (exp);
252b5132 10057
636c26b0
AM
10058 SKIP_WHITESPACE ();
10059 if (*input_line_pointer)
10060 as_bad (_("junk `%s' after expression"), input_line_pointer);
10061#if GCC_ASM_O_HACK
10062 RESTORE_END_STRING (disp_end + 1);
10063#endif
636c26b0 10064 input_line_pointer = save_input_line_pointer;
636c26b0 10065 if (gotfree_input_line)
ee86248c
JB
10066 {
10067 free (gotfree_input_line);
10068
10069 if (exp->X_op == O_constant || exp->X_op == O_register)
10070 exp->X_op = O_illegal;
10071 }
10072
10073 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10074
10075 RESTORE_END_STRING (disp_end);
10076
10077 return ret;
10078}
10079
10080static int
10081i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10082 i386_operand_type types, const char *disp_start)
10083{
10084 i386_operand_type bigdisp;
10085 int ret = 1;
636c26b0 10086
24eab124
AM
10087 /* We do this to make sure that the section symbol is in
10088 the symbol table. We will ultimately change the relocation
47926f60 10089 to be relative to the beginning of the section. */
1ae12ab7 10090 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10091 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10092 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10093 {
636c26b0 10094 if (exp->X_op != O_symbol)
3992d3b7 10095 goto inv_disp;
636c26b0 10096
e5cb08ac 10097 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10098 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10099 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10100 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10101 exp->X_op = O_subtract;
10102 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10103 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10104 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10105 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10106 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10107 else
29b0f896 10108 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10109 }
252b5132 10110
3992d3b7
AM
10111 else if (exp->X_op == O_absent
10112 || exp->X_op == O_illegal
ee86248c 10113 || exp->X_op == O_big)
2daf4fd8 10114 {
3992d3b7
AM
10115 inv_disp:
10116 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10117 disp_start);
3992d3b7 10118 ret = 0;
2daf4fd8
AM
10119 }
10120
0e1147d9
L
10121 else if (flag_code == CODE_64BIT
10122 && !i.prefix[ADDR_PREFIX]
10123 && exp->X_op == O_constant)
10124 {
10125 /* Since displacement is signed extended to 64bit, don't allow
10126 disp32 and turn off disp32s if they are out of range. */
10127 i.types[this_operand].bitfield.disp32 = 0;
10128 if (!fits_in_signed_long (exp->X_add_number))
10129 {
10130 i.types[this_operand].bitfield.disp32s = 0;
10131 if (i.types[this_operand].bitfield.baseindex)
10132 {
10133 as_bad (_("0x%lx out range of signed 32bit displacement"),
10134 (long) exp->X_add_number);
10135 ret = 0;
10136 }
10137 }
10138 }
10139
4c63da97 10140#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10141 else if (exp->X_op != O_constant
10142 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10143 && exp_seg != absolute_section
10144 && exp_seg != text_section
10145 && exp_seg != data_section
10146 && exp_seg != bss_section
10147 && exp_seg != undefined_section
10148 && !bfd_is_com_section (exp_seg))
24eab124 10149 {
d0b47220 10150 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10151 ret = 0;
24eab124 10152 }
252b5132 10153#endif
3956db08 10154
48bcea9f
JB
10155 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10156 /* Constants get taken care of by optimize_disp(). */
10157 && exp->X_op != O_constant)
10158 i.types[this_operand].bitfield.disp8 = 1;
10159
40fb9820
L
10160 /* Check if this is a displacement only operand. */
10161 bigdisp = i.types[this_operand];
10162 bigdisp.bitfield.disp8 = 0;
10163 bigdisp.bitfield.disp16 = 0;
10164 bigdisp.bitfield.disp32 = 0;
10165 bigdisp.bitfield.disp32s = 0;
10166 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10167 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10168 i.types[this_operand] = operand_type_and (i.types[this_operand],
10169 types);
3956db08 10170
3992d3b7 10171 return ret;
252b5132
RH
10172}
10173
2abc2bec
JB
10174/* Return the active addressing mode, taking address override and
10175 registers forming the address into consideration. Update the
10176 address override prefix if necessary. */
47926f60 10177
2abc2bec
JB
10178static enum flag_code
10179i386_addressing_mode (void)
252b5132 10180{
be05d201
L
10181 enum flag_code addr_mode;
10182
10183 if (i.prefix[ADDR_PREFIX])
10184 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10185 else
10186 {
10187 addr_mode = flag_code;
10188
24eab124 10189#if INFER_ADDR_PREFIX
be05d201
L
10190 if (i.mem_operands == 0)
10191 {
10192 /* Infer address prefix from the first memory operand. */
10193 const reg_entry *addr_reg = i.base_reg;
10194
10195 if (addr_reg == NULL)
10196 addr_reg = i.index_reg;
eecb386c 10197
be05d201
L
10198 if (addr_reg)
10199 {
e968fc9b 10200 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10201 addr_mode = CODE_32BIT;
10202 else if (flag_code != CODE_64BIT
dc821c5f 10203 && addr_reg->reg_type.bitfield.word)
be05d201
L
10204 addr_mode = CODE_16BIT;
10205
10206 if (addr_mode != flag_code)
10207 {
10208 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10209 i.prefixes += 1;
10210 /* Change the size of any displacement too. At most one
10211 of Disp16 or Disp32 is set.
10212 FIXME. There doesn't seem to be any real need for
10213 separate Disp16 and Disp32 flags. The same goes for
10214 Imm16 and Imm32. Removing them would probably clean
10215 up the code quite a lot. */
10216 if (flag_code != CODE_64BIT
10217 && (i.types[this_operand].bitfield.disp16
10218 || i.types[this_operand].bitfield.disp32))
10219 i.types[this_operand]
10220 = operand_type_xor (i.types[this_operand], disp16_32);
10221 }
10222 }
10223 }
24eab124 10224#endif
be05d201
L
10225 }
10226
2abc2bec
JB
10227 return addr_mode;
10228}
10229
10230/* Make sure the memory operand we've been dealt is valid.
10231 Return 1 on success, 0 on a failure. */
10232
10233static int
10234i386_index_check (const char *operand_string)
10235{
10236 const char *kind = "base/index";
10237 enum flag_code addr_mode = i386_addressing_mode ();
10238
fc0763e6 10239 if (current_templates->start->opcode_modifier.isstring
c3949f43 10240 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10241 && (current_templates->end[-1].opcode_modifier.isstring
10242 || i.mem_operands))
10243 {
10244 /* Memory operands of string insns are special in that they only allow
10245 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10246 const reg_entry *expected_reg;
10247 static const char *di_si[][2] =
10248 {
10249 { "esi", "edi" },
10250 { "si", "di" },
10251 { "rsi", "rdi" }
10252 };
10253 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10254
10255 kind = "string address";
10256
8325cc63 10257 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10258 {
51c8edf6
JB
10259 int es_op = current_templates->end[-1].opcode_modifier.isstring
10260 - IS_STRING_ES_OP0;
10261 int op = 0;
fc0763e6 10262
51c8edf6 10263 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10264 || ((!i.mem_operands != !intel_syntax)
10265 && current_templates->end[-1].operand_types[1]
10266 .bitfield.baseindex))
51c8edf6
JB
10267 op = 1;
10268 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10269 }
10270 else
be05d201 10271 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10272
be05d201
L
10273 if (i.base_reg != expected_reg
10274 || i.index_reg
fc0763e6 10275 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10276 {
be05d201
L
10277 /* The second memory operand must have the same size as
10278 the first one. */
10279 if (i.mem_operands
10280 && i.base_reg
10281 && !((addr_mode == CODE_64BIT
dc821c5f 10282 && i.base_reg->reg_type.bitfield.qword)
be05d201 10283 || (addr_mode == CODE_32BIT
dc821c5f
JB
10284 ? i.base_reg->reg_type.bitfield.dword
10285 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10286 goto bad_address;
10287
fc0763e6
JB
10288 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10289 operand_string,
10290 intel_syntax ? '[' : '(',
10291 register_prefix,
be05d201 10292 expected_reg->reg_name,
fc0763e6 10293 intel_syntax ? ']' : ')');
be05d201 10294 return 1;
fc0763e6 10295 }
be05d201
L
10296 else
10297 return 1;
10298
10299bad_address:
10300 as_bad (_("`%s' is not a valid %s expression"),
10301 operand_string, kind);
10302 return 0;
3e73aa7c
JH
10303 }
10304 else
10305 {
be05d201
L
10306 if (addr_mode != CODE_16BIT)
10307 {
10308 /* 32-bit/64-bit checks. */
10309 if ((i.base_reg
e968fc9b
JB
10310 && ((addr_mode == CODE_64BIT
10311 ? !i.base_reg->reg_type.bitfield.qword
10312 : !i.base_reg->reg_type.bitfield.dword)
10313 || (i.index_reg && i.base_reg->reg_num == RegIP)
10314 || i.base_reg->reg_num == RegIZ))
be05d201 10315 || (i.index_reg
1b54b8d7
JB
10316 && !i.index_reg->reg_type.bitfield.xmmword
10317 && !i.index_reg->reg_type.bitfield.ymmword
10318 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10319 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10320 ? !i.index_reg->reg_type.bitfield.qword
10321 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10322 || !i.index_reg->reg_type.bitfield.baseindex)))
10323 goto bad_address;
8178be5b
JB
10324
10325 /* bndmk, bndldx, and bndstx have special restrictions. */
10326 if (current_templates->start->base_opcode == 0xf30f1b
10327 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10328 {
10329 /* They cannot use RIP-relative addressing. */
e968fc9b 10330 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10331 {
10332 as_bad (_("`%s' cannot be used here"), operand_string);
10333 return 0;
10334 }
10335
10336 /* bndldx and bndstx ignore their scale factor. */
10337 if (current_templates->start->base_opcode != 0xf30f1b
10338 && i.log2_scale_factor)
10339 as_warn (_("register scaling is being ignored here"));
10340 }
be05d201
L
10341 }
10342 else
3e73aa7c 10343 {
be05d201 10344 /* 16-bit checks. */
3e73aa7c 10345 if ((i.base_reg
dc821c5f 10346 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10347 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10348 || (i.index_reg
dc821c5f 10349 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10350 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10351 || !(i.base_reg
10352 && i.base_reg->reg_num < 6
10353 && i.index_reg->reg_num >= 6
10354 && i.log2_scale_factor == 0))))
be05d201 10355 goto bad_address;
3e73aa7c
JH
10356 }
10357 }
be05d201 10358 return 1;
24eab124 10359}
252b5132 10360
43234a1e
L
10361/* Handle vector immediates. */
10362
10363static int
10364RC_SAE_immediate (const char *imm_start)
10365{
10366 unsigned int match_found, j;
10367 const char *pstr = imm_start;
10368 expressionS *exp;
10369
10370 if (*pstr != '{')
10371 return 0;
10372
10373 pstr++;
10374 match_found = 0;
10375 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10376 {
10377 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10378 {
10379 if (!i.rounding)
10380 {
10381 rc_op.type = RC_NamesTable[j].type;
10382 rc_op.operand = this_operand;
10383 i.rounding = &rc_op;
10384 }
10385 else
10386 {
10387 as_bad (_("duplicated `%s'"), imm_start);
10388 return 0;
10389 }
10390 pstr += RC_NamesTable[j].len;
10391 match_found = 1;
10392 break;
10393 }
10394 }
10395 if (!match_found)
10396 return 0;
10397
10398 if (*pstr++ != '}')
10399 {
10400 as_bad (_("Missing '}': '%s'"), imm_start);
10401 return 0;
10402 }
10403 /* RC/SAE immediate string should contain nothing more. */;
10404 if (*pstr != 0)
10405 {
10406 as_bad (_("Junk after '}': '%s'"), imm_start);
10407 return 0;
10408 }
10409
10410 exp = &im_expressions[i.imm_operands++];
10411 i.op[this_operand].imms = exp;
10412
10413 exp->X_op = O_constant;
10414 exp->X_add_number = 0;
10415 exp->X_add_symbol = (symbolS *) 0;
10416 exp->X_op_symbol = (symbolS *) 0;
10417
10418 i.types[this_operand].bitfield.imm8 = 1;
10419 return 1;
10420}
10421
8325cc63
JB
10422/* Only string instructions can have a second memory operand, so
10423 reduce current_templates to just those if it contains any. */
10424static int
10425maybe_adjust_templates (void)
10426{
10427 const insn_template *t;
10428
10429 gas_assert (i.mem_operands == 1);
10430
10431 for (t = current_templates->start; t < current_templates->end; ++t)
10432 if (t->opcode_modifier.isstring)
10433 break;
10434
10435 if (t < current_templates->end)
10436 {
10437 static templates aux_templates;
10438 bfd_boolean recheck;
10439
10440 aux_templates.start = t;
10441 for (; t < current_templates->end; ++t)
10442 if (!t->opcode_modifier.isstring)
10443 break;
10444 aux_templates.end = t;
10445
10446 /* Determine whether to re-check the first memory operand. */
10447 recheck = (aux_templates.start != current_templates->start
10448 || t != current_templates->end);
10449
10450 current_templates = &aux_templates;
10451
10452 if (recheck)
10453 {
10454 i.mem_operands = 0;
10455 if (i.memop1_string != NULL
10456 && i386_index_check (i.memop1_string) == 0)
10457 return 0;
10458 i.mem_operands = 1;
10459 }
10460 }
10461
10462 return 1;
10463}
10464
fc0763e6 10465/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10466 on error. */
252b5132 10467
252b5132 10468static int
a7619375 10469i386_att_operand (char *operand_string)
252b5132 10470{
af6bdddf
AM
10471 const reg_entry *r;
10472 char *end_op;
24eab124 10473 char *op_string = operand_string;
252b5132 10474
24eab124 10475 if (is_space_char (*op_string))
252b5132
RH
10476 ++op_string;
10477
24eab124 10478 /* We check for an absolute prefix (differentiating,
47926f60 10479 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10480 if (*op_string == ABSOLUTE_PREFIX)
10481 {
10482 ++op_string;
10483 if (is_space_char (*op_string))
10484 ++op_string;
6f2f06be 10485 i.jumpabsolute = TRUE;
24eab124 10486 }
252b5132 10487
47926f60 10488 /* Check if operand is a register. */
4d1bb795 10489 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10490 {
40fb9820
L
10491 i386_operand_type temp;
10492
24eab124
AM
10493 /* Check for a segment override by searching for ':' after a
10494 segment register. */
10495 op_string = end_op;
10496 if (is_space_char (*op_string))
10497 ++op_string;
00cee14f 10498 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10499 {
10500 switch (r->reg_num)
10501 {
10502 case 0:
10503 i.seg[i.mem_operands] = &es;
10504 break;
10505 case 1:
10506 i.seg[i.mem_operands] = &cs;
10507 break;
10508 case 2:
10509 i.seg[i.mem_operands] = &ss;
10510 break;
10511 case 3:
10512 i.seg[i.mem_operands] = &ds;
10513 break;
10514 case 4:
10515 i.seg[i.mem_operands] = &fs;
10516 break;
10517 case 5:
10518 i.seg[i.mem_operands] = &gs;
10519 break;
10520 }
252b5132 10521
24eab124 10522 /* Skip the ':' and whitespace. */
252b5132
RH
10523 ++op_string;
10524 if (is_space_char (*op_string))
24eab124 10525 ++op_string;
252b5132 10526
24eab124
AM
10527 if (!is_digit_char (*op_string)
10528 && !is_identifier_char (*op_string)
10529 && *op_string != '('
10530 && *op_string != ABSOLUTE_PREFIX)
10531 {
10532 as_bad (_("bad memory operand `%s'"), op_string);
10533 return 0;
10534 }
47926f60 10535 /* Handle case of %es:*foo. */
24eab124
AM
10536 if (*op_string == ABSOLUTE_PREFIX)
10537 {
10538 ++op_string;
10539 if (is_space_char (*op_string))
10540 ++op_string;
6f2f06be 10541 i.jumpabsolute = TRUE;
24eab124
AM
10542 }
10543 goto do_memory_reference;
10544 }
43234a1e
L
10545
10546 /* Handle vector operations. */
10547 if (*op_string == '{')
10548 {
10549 op_string = check_VecOperations (op_string, NULL);
10550 if (op_string == NULL)
10551 return 0;
10552 }
10553
24eab124
AM
10554 if (*op_string)
10555 {
d0b47220 10556 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10557 return 0;
10558 }
40fb9820
L
10559 temp = r->reg_type;
10560 temp.bitfield.baseindex = 0;
c6fb90c8
L
10561 i.types[this_operand] = operand_type_or (i.types[this_operand],
10562 temp);
7d5e4556 10563 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10564 i.op[this_operand].regs = r;
24eab124
AM
10565 i.reg_operands++;
10566 }
af6bdddf
AM
10567 else if (*op_string == REGISTER_PREFIX)
10568 {
10569 as_bad (_("bad register name `%s'"), op_string);
10570 return 0;
10571 }
24eab124 10572 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10573 {
24eab124 10574 ++op_string;
6f2f06be 10575 if (i.jumpabsolute)
24eab124 10576 {
d0b47220 10577 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10578 return 0;
10579 }
10580 if (!i386_immediate (op_string))
10581 return 0;
10582 }
43234a1e
L
10583 else if (RC_SAE_immediate (operand_string))
10584 {
10585 /* If it is a RC or SAE immediate, do nothing. */
10586 ;
10587 }
24eab124
AM
10588 else if (is_digit_char (*op_string)
10589 || is_identifier_char (*op_string)
d02603dc 10590 || *op_string == '"'
e5cb08ac 10591 || *op_string == '(')
24eab124 10592 {
47926f60 10593 /* This is a memory reference of some sort. */
af6bdddf 10594 char *base_string;
252b5132 10595
47926f60 10596 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10597 char *displacement_string_start;
10598 char *displacement_string_end;
43234a1e 10599 char *vop_start;
252b5132 10600
24eab124 10601 do_memory_reference:
8325cc63
JB
10602 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10603 return 0;
24eab124 10604 if ((i.mem_operands == 1
40fb9820 10605 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10606 || i.mem_operands == 2)
10607 {
10608 as_bad (_("too many memory references for `%s'"),
10609 current_templates->start->name);
10610 return 0;
10611 }
252b5132 10612
24eab124
AM
10613 /* Check for base index form. We detect the base index form by
10614 looking for an ')' at the end of the operand, searching
10615 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10616 after the '('. */
af6bdddf 10617 base_string = op_string + strlen (op_string);
c3332e24 10618
43234a1e
L
10619 /* Handle vector operations. */
10620 vop_start = strchr (op_string, '{');
10621 if (vop_start && vop_start < base_string)
10622 {
10623 if (check_VecOperations (vop_start, base_string) == NULL)
10624 return 0;
10625 base_string = vop_start;
10626 }
10627
af6bdddf
AM
10628 --base_string;
10629 if (is_space_char (*base_string))
10630 --base_string;
252b5132 10631
47926f60 10632 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10633 displacement_string_start = op_string;
10634 displacement_string_end = base_string + 1;
252b5132 10635
24eab124
AM
10636 if (*base_string == ')')
10637 {
af6bdddf 10638 char *temp_string;
24eab124
AM
10639 unsigned int parens_balanced = 1;
10640 /* We've already checked that the number of left & right ()'s are
47926f60 10641 equal, so this loop will not be infinite. */
24eab124
AM
10642 do
10643 {
10644 base_string--;
10645 if (*base_string == ')')
10646 parens_balanced++;
10647 if (*base_string == '(')
10648 parens_balanced--;
10649 }
10650 while (parens_balanced);
c3332e24 10651
af6bdddf 10652 temp_string = base_string;
c3332e24 10653
24eab124 10654 /* Skip past '(' and whitespace. */
252b5132
RH
10655 ++base_string;
10656 if (is_space_char (*base_string))
24eab124 10657 ++base_string;
252b5132 10658
af6bdddf 10659 if (*base_string == ','
4eed87de
AM
10660 || ((i.base_reg = parse_register (base_string, &end_op))
10661 != NULL))
252b5132 10662 {
af6bdddf 10663 displacement_string_end = temp_string;
252b5132 10664
40fb9820 10665 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10666
af6bdddf 10667 if (i.base_reg)
24eab124 10668 {
24eab124
AM
10669 base_string = end_op;
10670 if (is_space_char (*base_string))
10671 ++base_string;
af6bdddf
AM
10672 }
10673
10674 /* There may be an index reg or scale factor here. */
10675 if (*base_string == ',')
10676 {
10677 ++base_string;
10678 if (is_space_char (*base_string))
10679 ++base_string;
10680
4eed87de
AM
10681 if ((i.index_reg = parse_register (base_string, &end_op))
10682 != NULL)
24eab124 10683 {
af6bdddf 10684 base_string = end_op;
24eab124
AM
10685 if (is_space_char (*base_string))
10686 ++base_string;
af6bdddf
AM
10687 if (*base_string == ',')
10688 {
10689 ++base_string;
10690 if (is_space_char (*base_string))
10691 ++base_string;
10692 }
e5cb08ac 10693 else if (*base_string != ')')
af6bdddf 10694 {
4eed87de
AM
10695 as_bad (_("expecting `,' or `)' "
10696 "after index register in `%s'"),
af6bdddf
AM
10697 operand_string);
10698 return 0;
10699 }
24eab124 10700 }
af6bdddf 10701 else if (*base_string == REGISTER_PREFIX)
24eab124 10702 {
f76bf5e0
L
10703 end_op = strchr (base_string, ',');
10704 if (end_op)
10705 *end_op = '\0';
af6bdddf 10706 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10707 return 0;
10708 }
252b5132 10709
47926f60 10710 /* Check for scale factor. */
551c1ca1 10711 if (*base_string != ')')
af6bdddf 10712 {
551c1ca1
AM
10713 char *end_scale = i386_scale (base_string);
10714
10715 if (!end_scale)
af6bdddf 10716 return 0;
24eab124 10717
551c1ca1 10718 base_string = end_scale;
af6bdddf
AM
10719 if (is_space_char (*base_string))
10720 ++base_string;
10721 if (*base_string != ')')
10722 {
4eed87de
AM
10723 as_bad (_("expecting `)' "
10724 "after scale factor in `%s'"),
af6bdddf
AM
10725 operand_string);
10726 return 0;
10727 }
10728 }
10729 else if (!i.index_reg)
24eab124 10730 {
4eed87de
AM
10731 as_bad (_("expecting index register or scale factor "
10732 "after `,'; got '%c'"),
af6bdddf 10733 *base_string);
24eab124
AM
10734 return 0;
10735 }
10736 }
af6bdddf 10737 else if (*base_string != ')')
24eab124 10738 {
4eed87de
AM
10739 as_bad (_("expecting `,' or `)' "
10740 "after base register in `%s'"),
af6bdddf 10741 operand_string);
24eab124
AM
10742 return 0;
10743 }
c3332e24 10744 }
af6bdddf 10745 else if (*base_string == REGISTER_PREFIX)
c3332e24 10746 {
f76bf5e0
L
10747 end_op = strchr (base_string, ',');
10748 if (end_op)
10749 *end_op = '\0';
af6bdddf 10750 as_bad (_("bad register name `%s'"), base_string);
24eab124 10751 return 0;
c3332e24 10752 }
24eab124
AM
10753 }
10754
10755 /* If there's an expression beginning the operand, parse it,
10756 assuming displacement_string_start and
10757 displacement_string_end are meaningful. */
10758 if (displacement_string_start != displacement_string_end)
10759 {
10760 if (!i386_displacement (displacement_string_start,
10761 displacement_string_end))
10762 return 0;
10763 }
10764
10765 /* Special case for (%dx) while doing input/output op. */
10766 if (i.base_reg
75e5731b
JB
10767 && i.base_reg->reg_type.bitfield.instance == RegD
10768 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10769 && i.index_reg == 0
10770 && i.log2_scale_factor == 0
10771 && i.seg[i.mem_operands] == 0
40fb9820 10772 && !operand_type_check (i.types[this_operand], disp))
24eab124 10773 {
2fb5be8d 10774 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10775 return 1;
10776 }
10777
eecb386c
AM
10778 if (i386_index_check (operand_string) == 0)
10779 return 0;
c48dadc9 10780 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10781 if (i.mem_operands == 0)
10782 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10783 i.mem_operands++;
10784 }
10785 else
ce8a8b2f
AM
10786 {
10787 /* It's not a memory operand; argh! */
24eab124
AM
10788 as_bad (_("invalid char %s beginning operand %d `%s'"),
10789 output_invalid (*op_string),
10790 this_operand + 1,
10791 op_string);
10792 return 0;
10793 }
47926f60 10794 return 1; /* Normal return. */
252b5132
RH
10795}
10796\f
fa94de6b
RM
10797/* Calculate the maximum variable size (i.e., excluding fr_fix)
10798 that an rs_machine_dependent frag may reach. */
10799
10800unsigned int
10801i386_frag_max_var (fragS *frag)
10802{
10803 /* The only relaxable frags are for jumps.
10804 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10805 gas_assert (frag->fr_type == rs_machine_dependent);
10806 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10807}
10808
b084df0b
L
10809#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10810static int
8dcea932 10811elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10812{
10813 /* STT_GNU_IFUNC symbol must go through PLT. */
10814 if ((symbol_get_bfdsym (fr_symbol)->flags
10815 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10816 return 0;
10817
10818 if (!S_IS_EXTERNAL (fr_symbol))
10819 /* Symbol may be weak or local. */
10820 return !S_IS_WEAK (fr_symbol);
10821
8dcea932
L
10822 /* Global symbols with non-default visibility can't be preempted. */
10823 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10824 return 1;
10825
10826 if (fr_var != NO_RELOC)
10827 switch ((enum bfd_reloc_code_real) fr_var)
10828 {
10829 case BFD_RELOC_386_PLT32:
10830 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10831 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10832 return 0;
10833 default:
10834 abort ();
10835 }
10836
b084df0b
L
10837 /* Global symbols with default visibility in a shared library may be
10838 preempted by another definition. */
8dcea932 10839 return !shared;
b084df0b
L
10840}
10841#endif
10842
e379e5f3
L
10843/* Return the next non-empty frag. */
10844
10845static fragS *
10846i386_next_non_empty_frag (fragS *fragP)
10847{
10848 /* There may be a frag with a ".fill 0" when there is no room in
10849 the current frag for frag_grow in output_insn. */
10850 for (fragP = fragP->fr_next;
10851 (fragP != NULL
10852 && fragP->fr_type == rs_fill
10853 && fragP->fr_fix == 0);
10854 fragP = fragP->fr_next)
10855 ;
10856 return fragP;
10857}
10858
10859/* Return the next jcc frag after BRANCH_PADDING. */
10860
10861static fragS *
10862i386_next_jcc_frag (fragS *fragP)
10863{
10864 if (!fragP)
10865 return NULL;
10866
10867 if (fragP->fr_type == rs_machine_dependent
10868 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10869 == BRANCH_PADDING))
10870 {
10871 fragP = i386_next_non_empty_frag (fragP);
10872 if (fragP->fr_type != rs_machine_dependent)
10873 return NULL;
10874 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10875 return fragP;
10876 }
10877
10878 return NULL;
10879}
10880
10881/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10882
10883static void
10884i386_classify_machine_dependent_frag (fragS *fragP)
10885{
10886 fragS *cmp_fragP;
10887 fragS *pad_fragP;
10888 fragS *branch_fragP;
10889 fragS *next_fragP;
10890 unsigned int max_prefix_length;
10891
10892 if (fragP->tc_frag_data.classified)
10893 return;
10894
10895 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10896 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10897 for (next_fragP = fragP;
10898 next_fragP != NULL;
10899 next_fragP = next_fragP->fr_next)
10900 {
10901 next_fragP->tc_frag_data.classified = 1;
10902 if (next_fragP->fr_type == rs_machine_dependent)
10903 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10904 {
10905 case BRANCH_PADDING:
10906 /* The BRANCH_PADDING frag must be followed by a branch
10907 frag. */
10908 branch_fragP = i386_next_non_empty_frag (next_fragP);
10909 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10910 break;
10911 case FUSED_JCC_PADDING:
10912 /* Check if this is a fused jcc:
10913 FUSED_JCC_PADDING
10914 CMP like instruction
10915 BRANCH_PADDING
10916 COND_JUMP
10917 */
10918 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10919 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10920 branch_fragP = i386_next_jcc_frag (pad_fragP);
10921 if (branch_fragP)
10922 {
10923 /* The BRANCH_PADDING frag is merged with the
10924 FUSED_JCC_PADDING frag. */
10925 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10926 /* CMP like instruction size. */
10927 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10928 frag_wane (pad_fragP);
10929 /* Skip to branch_fragP. */
10930 next_fragP = branch_fragP;
10931 }
10932 else if (next_fragP->tc_frag_data.max_prefix_length)
10933 {
10934 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10935 a fused jcc. */
10936 next_fragP->fr_subtype
10937 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10938 next_fragP->tc_frag_data.max_bytes
10939 = next_fragP->tc_frag_data.max_prefix_length;
10940 /* This will be updated in the BRANCH_PREFIX scan. */
10941 next_fragP->tc_frag_data.max_prefix_length = 0;
10942 }
10943 else
10944 frag_wane (next_fragP);
10945 break;
10946 }
10947 }
10948
10949 /* Stop if there is no BRANCH_PREFIX. */
10950 if (!align_branch_prefix_size)
10951 return;
10952
10953 /* Scan for BRANCH_PREFIX. */
10954 for (; fragP != NULL; fragP = fragP->fr_next)
10955 {
10956 if (fragP->fr_type != rs_machine_dependent
10957 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10958 != BRANCH_PREFIX))
10959 continue;
10960
10961 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10962 COND_JUMP_PREFIX. */
10963 max_prefix_length = 0;
10964 for (next_fragP = fragP;
10965 next_fragP != NULL;
10966 next_fragP = next_fragP->fr_next)
10967 {
10968 if (next_fragP->fr_type == rs_fill)
10969 /* Skip rs_fill frags. */
10970 continue;
10971 else if (next_fragP->fr_type != rs_machine_dependent)
10972 /* Stop for all other frags. */
10973 break;
10974
10975 /* rs_machine_dependent frags. */
10976 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10977 == BRANCH_PREFIX)
10978 {
10979 /* Count BRANCH_PREFIX frags. */
10980 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10981 {
10982 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10983 frag_wane (next_fragP);
10984 }
10985 else
10986 max_prefix_length
10987 += next_fragP->tc_frag_data.max_bytes;
10988 }
10989 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10990 == BRANCH_PADDING)
10991 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10992 == FUSED_JCC_PADDING))
10993 {
10994 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10995 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10996 break;
10997 }
10998 else
10999 /* Stop for other rs_machine_dependent frags. */
11000 break;
11001 }
11002
11003 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11004
11005 /* Skip to the next frag. */
11006 fragP = next_fragP;
11007 }
11008}
11009
11010/* Compute padding size for
11011
11012 FUSED_JCC_PADDING
11013 CMP like instruction
11014 BRANCH_PADDING
11015 COND_JUMP/UNCOND_JUMP
11016
11017 or
11018
11019 BRANCH_PADDING
11020 COND_JUMP/UNCOND_JUMP
11021 */
11022
11023static int
11024i386_branch_padding_size (fragS *fragP, offsetT address)
11025{
11026 unsigned int offset, size, padding_size;
11027 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11028
11029 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11030 if (!address)
11031 address = fragP->fr_address;
11032 address += fragP->fr_fix;
11033
11034 /* CMP like instrunction size. */
11035 size = fragP->tc_frag_data.cmp_size;
11036
11037 /* The base size of the branch frag. */
11038 size += branch_fragP->fr_fix;
11039
11040 /* Add opcode and displacement bytes for the rs_machine_dependent
11041 branch frag. */
11042 if (branch_fragP->fr_type == rs_machine_dependent)
11043 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11044
11045 /* Check if branch is within boundary and doesn't end at the last
11046 byte. */
11047 offset = address & ((1U << align_branch_power) - 1);
11048 if ((offset + size) >= (1U << align_branch_power))
11049 /* Padding needed to avoid crossing boundary. */
11050 padding_size = (1U << align_branch_power) - offset;
11051 else
11052 /* No padding needed. */
11053 padding_size = 0;
11054
11055 /* The return value may be saved in tc_frag_data.length which is
11056 unsigned byte. */
11057 if (!fits_in_unsigned_byte (padding_size))
11058 abort ();
11059
11060 return padding_size;
11061}
11062
11063/* i386_generic_table_relax_frag()
11064
11065 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11066 grow/shrink padding to align branch frags. Hand others to
11067 relax_frag(). */
11068
11069long
11070i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11071{
11072 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11073 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11074 {
11075 long padding_size = i386_branch_padding_size (fragP, 0);
11076 long grow = padding_size - fragP->tc_frag_data.length;
11077
11078 /* When the BRANCH_PREFIX frag is used, the computed address
11079 must match the actual address and there should be no padding. */
11080 if (fragP->tc_frag_data.padding_address
11081 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11082 || padding_size))
11083 abort ();
11084
11085 /* Update the padding size. */
11086 if (grow)
11087 fragP->tc_frag_data.length = padding_size;
11088
11089 return grow;
11090 }
11091 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11092 {
11093 fragS *padding_fragP, *next_fragP;
11094 long padding_size, left_size, last_size;
11095
11096 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11097 if (!padding_fragP)
11098 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11099 return (fragP->tc_frag_data.length
11100 - fragP->tc_frag_data.last_length);
11101
11102 /* Compute the relative address of the padding frag in the very
11103 first time where the BRANCH_PREFIX frag sizes are zero. */
11104 if (!fragP->tc_frag_data.padding_address)
11105 fragP->tc_frag_data.padding_address
11106 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11107
11108 /* First update the last length from the previous interation. */
11109 left_size = fragP->tc_frag_data.prefix_length;
11110 for (next_fragP = fragP;
11111 next_fragP != padding_fragP;
11112 next_fragP = next_fragP->fr_next)
11113 if (next_fragP->fr_type == rs_machine_dependent
11114 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11115 == BRANCH_PREFIX))
11116 {
11117 if (left_size)
11118 {
11119 int max = next_fragP->tc_frag_data.max_bytes;
11120 if (max)
11121 {
11122 int size;
11123 if (max > left_size)
11124 size = left_size;
11125 else
11126 size = max;
11127 left_size -= size;
11128 next_fragP->tc_frag_data.last_length = size;
11129 }
11130 }
11131 else
11132 next_fragP->tc_frag_data.last_length = 0;
11133 }
11134
11135 /* Check the padding size for the padding frag. */
11136 padding_size = i386_branch_padding_size
11137 (padding_fragP, (fragP->fr_address
11138 + fragP->tc_frag_data.padding_address));
11139
11140 last_size = fragP->tc_frag_data.prefix_length;
11141 /* Check if there is change from the last interation. */
11142 if (padding_size == last_size)
11143 {
11144 /* Update the expected address of the padding frag. */
11145 padding_fragP->tc_frag_data.padding_address
11146 = (fragP->fr_address + padding_size
11147 + fragP->tc_frag_data.padding_address);
11148 return 0;
11149 }
11150
11151 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11152 {
11153 /* No padding if there is no sufficient room. Clear the
11154 expected address of the padding frag. */
11155 padding_fragP->tc_frag_data.padding_address = 0;
11156 padding_size = 0;
11157 }
11158 else
11159 /* Store the expected address of the padding frag. */
11160 padding_fragP->tc_frag_data.padding_address
11161 = (fragP->fr_address + padding_size
11162 + fragP->tc_frag_data.padding_address);
11163
11164 fragP->tc_frag_data.prefix_length = padding_size;
11165
11166 /* Update the length for the current interation. */
11167 left_size = padding_size;
11168 for (next_fragP = fragP;
11169 next_fragP != padding_fragP;
11170 next_fragP = next_fragP->fr_next)
11171 if (next_fragP->fr_type == rs_machine_dependent
11172 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11173 == BRANCH_PREFIX))
11174 {
11175 if (left_size)
11176 {
11177 int max = next_fragP->tc_frag_data.max_bytes;
11178 if (max)
11179 {
11180 int size;
11181 if (max > left_size)
11182 size = left_size;
11183 else
11184 size = max;
11185 left_size -= size;
11186 next_fragP->tc_frag_data.length = size;
11187 }
11188 }
11189 else
11190 next_fragP->tc_frag_data.length = 0;
11191 }
11192
11193 return (fragP->tc_frag_data.length
11194 - fragP->tc_frag_data.last_length);
11195 }
11196 return relax_frag (segment, fragP, stretch);
11197}
11198
ee7fcc42
AM
11199/* md_estimate_size_before_relax()
11200
11201 Called just before relax() for rs_machine_dependent frags. The x86
11202 assembler uses these frags to handle variable size jump
11203 instructions.
11204
11205 Any symbol that is now undefined will not become defined.
11206 Return the correct fr_subtype in the frag.
11207 Return the initial "guess for variable size of frag" to caller.
11208 The guess is actually the growth beyond the fixed part. Whatever
11209 we do to grow the fixed or variable part contributes to our
11210 returned value. */
11211
252b5132 11212int
7016a5d5 11213md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11214{
e379e5f3
L
11215 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11216 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11217 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11218 {
11219 i386_classify_machine_dependent_frag (fragP);
11220 return fragP->tc_frag_data.length;
11221 }
11222
252b5132 11223 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11224 check for un-relaxable symbols. On an ELF system, we can't relax
11225 an externally visible symbol, because it may be overridden by a
11226 shared library. */
11227 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11228#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11229 || (IS_ELF
8dcea932
L
11230 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11231 fragP->fr_var))
fbeb56a4
DK
11232#endif
11233#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11234 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11235 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11236#endif
11237 )
252b5132 11238 {
b98ef147
AM
11239 /* Symbol is undefined in this segment, or we need to keep a
11240 reloc so that weak symbols can be overridden. */
11241 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11242 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11243 unsigned char *opcode;
11244 int old_fr_fix;
f6af82bd 11245
ee7fcc42 11246 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11247 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11248 else if (size == 2)
f6af82bd 11249 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11250#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11251 else if (need_plt32_p (fragP->fr_symbol))
11252 reloc_type = BFD_RELOC_X86_64_PLT32;
11253#endif
f6af82bd
AM
11254 else
11255 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11256
ee7fcc42
AM
11257 old_fr_fix = fragP->fr_fix;
11258 opcode = (unsigned char *) fragP->fr_opcode;
11259
fddf5b5b 11260 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11261 {
fddf5b5b
AM
11262 case UNCOND_JUMP:
11263 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11264 opcode[0] = 0xe9;
252b5132 11265 fragP->fr_fix += size;
062cd5e7
AS
11266 fix_new (fragP, old_fr_fix, size,
11267 fragP->fr_symbol,
11268 fragP->fr_offset, 1,
11269 reloc_type);
252b5132
RH
11270 break;
11271
fddf5b5b 11272 case COND_JUMP86:
412167cb
AM
11273 if (size == 2
11274 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11275 {
11276 /* Negate the condition, and branch past an
11277 unconditional jump. */
11278 opcode[0] ^= 1;
11279 opcode[1] = 3;
11280 /* Insert an unconditional jump. */
11281 opcode[2] = 0xe9;
11282 /* We added two extra opcode bytes, and have a two byte
11283 offset. */
11284 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11285 fix_new (fragP, old_fr_fix + 2, 2,
11286 fragP->fr_symbol,
11287 fragP->fr_offset, 1,
11288 reloc_type);
fddf5b5b
AM
11289 break;
11290 }
11291 /* Fall through. */
11292
11293 case COND_JUMP:
412167cb
AM
11294 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11295 {
3e02c1cc
AM
11296 fixS *fixP;
11297
412167cb 11298 fragP->fr_fix += 1;
3e02c1cc
AM
11299 fixP = fix_new (fragP, old_fr_fix, 1,
11300 fragP->fr_symbol,
11301 fragP->fr_offset, 1,
11302 BFD_RELOC_8_PCREL);
11303 fixP->fx_signed = 1;
412167cb
AM
11304 break;
11305 }
93c2a809 11306
24eab124 11307 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11308 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11309 opcode[1] = opcode[0] + 0x10;
f6af82bd 11310 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11311 /* We've added an opcode byte. */
11312 fragP->fr_fix += 1 + size;
062cd5e7
AS
11313 fix_new (fragP, old_fr_fix + 1, size,
11314 fragP->fr_symbol,
11315 fragP->fr_offset, 1,
11316 reloc_type);
252b5132 11317 break;
fddf5b5b
AM
11318
11319 default:
11320 BAD_CASE (fragP->fr_subtype);
11321 break;
252b5132
RH
11322 }
11323 frag_wane (fragP);
ee7fcc42 11324 return fragP->fr_fix - old_fr_fix;
252b5132 11325 }
93c2a809 11326
93c2a809
AM
11327 /* Guess size depending on current relax state. Initially the relax
11328 state will correspond to a short jump and we return 1, because
11329 the variable part of the frag (the branch offset) is one byte
11330 long. However, we can relax a section more than once and in that
11331 case we must either set fr_subtype back to the unrelaxed state,
11332 or return the value for the appropriate branch. */
11333 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11334}
11335
47926f60
KH
11336/* Called after relax() is finished.
11337
11338 In: Address of frag.
11339 fr_type == rs_machine_dependent.
11340 fr_subtype is what the address relaxed to.
11341
11342 Out: Any fixSs and constants are set up.
11343 Caller will turn frag into a ".space 0". */
11344
252b5132 11345void
7016a5d5
TG
11346md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11347 fragS *fragP)
252b5132 11348{
29b0f896 11349 unsigned char *opcode;
252b5132 11350 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11351 offsetT target_address;
11352 offsetT opcode_address;
252b5132 11353 unsigned int extension = 0;
847f7ad4 11354 offsetT displacement_from_opcode_start;
252b5132 11355
e379e5f3
L
11356 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11357 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11358 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11359 {
11360 /* Generate nop padding. */
11361 unsigned int size = fragP->tc_frag_data.length;
11362 if (size)
11363 {
11364 if (size > fragP->tc_frag_data.max_bytes)
11365 abort ();
11366
11367 if (flag_debug)
11368 {
11369 const char *msg;
11370 const char *branch = "branch";
11371 const char *prefix = "";
11372 fragS *padding_fragP;
11373 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11374 == BRANCH_PREFIX)
11375 {
11376 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11377 switch (fragP->tc_frag_data.default_prefix)
11378 {
11379 default:
11380 abort ();
11381 break;
11382 case CS_PREFIX_OPCODE:
11383 prefix = " cs";
11384 break;
11385 case DS_PREFIX_OPCODE:
11386 prefix = " ds";
11387 break;
11388 case ES_PREFIX_OPCODE:
11389 prefix = " es";
11390 break;
11391 case FS_PREFIX_OPCODE:
11392 prefix = " fs";
11393 break;
11394 case GS_PREFIX_OPCODE:
11395 prefix = " gs";
11396 break;
11397 case SS_PREFIX_OPCODE:
11398 prefix = " ss";
11399 break;
11400 }
11401 if (padding_fragP)
11402 msg = _("%s:%u: add %d%s at 0x%llx to align "
11403 "%s within %d-byte boundary\n");
11404 else
11405 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11406 "align %s within %d-byte boundary\n");
11407 }
11408 else
11409 {
11410 padding_fragP = fragP;
11411 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11412 "%s within %d-byte boundary\n");
11413 }
11414
11415 if (padding_fragP)
11416 switch (padding_fragP->tc_frag_data.branch_type)
11417 {
11418 case align_branch_jcc:
11419 branch = "jcc";
11420 break;
11421 case align_branch_fused:
11422 branch = "fused jcc";
11423 break;
11424 case align_branch_jmp:
11425 branch = "jmp";
11426 break;
11427 case align_branch_call:
11428 branch = "call";
11429 break;
11430 case align_branch_indirect:
11431 branch = "indiret branch";
11432 break;
11433 case align_branch_ret:
11434 branch = "ret";
11435 break;
11436 default:
11437 break;
11438 }
11439
11440 fprintf (stdout, msg,
11441 fragP->fr_file, fragP->fr_line, size, prefix,
11442 (long long) fragP->fr_address, branch,
11443 1 << align_branch_power);
11444 }
11445 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11446 memset (fragP->fr_opcode,
11447 fragP->tc_frag_data.default_prefix, size);
11448 else
11449 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11450 size, 0);
11451 fragP->fr_fix += size;
11452 }
11453 return;
11454 }
11455
252b5132
RH
11456 opcode = (unsigned char *) fragP->fr_opcode;
11457
47926f60 11458 /* Address we want to reach in file space. */
252b5132 11459 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11460
47926f60 11461 /* Address opcode resides at in file space. */
252b5132
RH
11462 opcode_address = fragP->fr_address + fragP->fr_fix;
11463
47926f60 11464 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11465 displacement_from_opcode_start = target_address - opcode_address;
11466
fddf5b5b 11467 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11468 {
47926f60
KH
11469 /* Don't have to change opcode. */
11470 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11471 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11472 }
11473 else
11474 {
11475 if (no_cond_jump_promotion
11476 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11477 as_warn_where (fragP->fr_file, fragP->fr_line,
11478 _("long jump required"));
252b5132 11479
fddf5b5b
AM
11480 switch (fragP->fr_subtype)
11481 {
11482 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11483 extension = 4; /* 1 opcode + 4 displacement */
11484 opcode[0] = 0xe9;
11485 where_to_put_displacement = &opcode[1];
11486 break;
252b5132 11487
fddf5b5b
AM
11488 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11489 extension = 2; /* 1 opcode + 2 displacement */
11490 opcode[0] = 0xe9;
11491 where_to_put_displacement = &opcode[1];
11492 break;
252b5132 11493
fddf5b5b
AM
11494 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11495 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11496 extension = 5; /* 2 opcode + 4 displacement */
11497 opcode[1] = opcode[0] + 0x10;
11498 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11499 where_to_put_displacement = &opcode[2];
11500 break;
252b5132 11501
fddf5b5b
AM
11502 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11503 extension = 3; /* 2 opcode + 2 displacement */
11504 opcode[1] = opcode[0] + 0x10;
11505 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11506 where_to_put_displacement = &opcode[2];
11507 break;
252b5132 11508
fddf5b5b
AM
11509 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11510 extension = 4;
11511 opcode[0] ^= 1;
11512 opcode[1] = 3;
11513 opcode[2] = 0xe9;
11514 where_to_put_displacement = &opcode[3];
11515 break;
11516
11517 default:
11518 BAD_CASE (fragP->fr_subtype);
11519 break;
11520 }
252b5132 11521 }
fddf5b5b 11522
7b81dfbb
AJ
11523 /* If size if less then four we are sure that the operand fits,
11524 but if it's 4, then it could be that the displacement is larger
11525 then -/+ 2GB. */
11526 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11527 && object_64bit
11528 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11529 + ((addressT) 1 << 31))
11530 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11531 {
11532 as_bad_where (fragP->fr_file, fragP->fr_line,
11533 _("jump target out of range"));
11534 /* Make us emit 0. */
11535 displacement_from_opcode_start = extension;
11536 }
47926f60 11537 /* Now put displacement after opcode. */
252b5132
RH
11538 md_number_to_chars ((char *) where_to_put_displacement,
11539 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11540 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11541 fragP->fr_fix += extension;
11542}
11543\f
7016a5d5 11544/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11545 by our caller that we have all the info we need to fix it up.
11546
7016a5d5
TG
11547 Parameter valP is the pointer to the value of the bits.
11548
252b5132
RH
11549 On the 386, immediates, displacements, and data pointers are all in
11550 the same (little-endian) format, so we don't need to care about which
11551 we are handling. */
11552
94f592af 11553void
7016a5d5 11554md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11555{
94f592af 11556 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11557 valueT value = *valP;
252b5132 11558
f86103b7 11559#if !defined (TE_Mach)
93382f6d
AM
11560 if (fixP->fx_pcrel)
11561 {
11562 switch (fixP->fx_r_type)
11563 {
5865bb77
ILT
11564 default:
11565 break;
11566
d6ab8113
JB
11567 case BFD_RELOC_64:
11568 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11569 break;
93382f6d 11570 case BFD_RELOC_32:
ae8887b5 11571 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11572 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11573 break;
11574 case BFD_RELOC_16:
11575 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11576 break;
11577 case BFD_RELOC_8:
11578 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11579 break;
11580 }
11581 }
252b5132 11582
a161fe53 11583 if (fixP->fx_addsy != NULL
31312f95 11584 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11585 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11586 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11587 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11588 && !use_rela_relocations)
252b5132 11589 {
31312f95
AM
11590 /* This is a hack. There should be a better way to handle this.
11591 This covers for the fact that bfd_install_relocation will
11592 subtract the current location (for partial_inplace, PC relative
11593 relocations); see more below. */
252b5132 11594#ifndef OBJ_AOUT
718ddfc0 11595 if (IS_ELF
252b5132
RH
11596#ifdef TE_PE
11597 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11598#endif
11599 )
11600 value += fixP->fx_where + fixP->fx_frag->fr_address;
11601#endif
11602#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11603 if (IS_ELF)
252b5132 11604 {
6539b54b 11605 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11606
6539b54b 11607 if ((sym_seg == seg
2f66722d 11608 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11609 && sym_seg != absolute_section))
af65af87 11610 && !generic_force_reloc (fixP))
2f66722d
AM
11611 {
11612 /* Yes, we add the values in twice. This is because
6539b54b
AM
11613 bfd_install_relocation subtracts them out again. I think
11614 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11615 it. FIXME. */
11616 value += fixP->fx_where + fixP->fx_frag->fr_address;
11617 }
252b5132
RH
11618 }
11619#endif
11620#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11621 /* For some reason, the PE format does not store a
11622 section address offset for a PC relative symbol. */
11623 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11624 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11625 value += md_pcrel_from (fixP);
11626#endif
11627 }
fbeb56a4 11628#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11629 if (fixP->fx_addsy != NULL
11630 && S_IS_WEAK (fixP->fx_addsy)
11631 /* PR 16858: Do not modify weak function references. */
11632 && ! fixP->fx_pcrel)
fbeb56a4 11633 {
296a8689
NC
11634#if !defined (TE_PEP)
11635 /* For x86 PE weak function symbols are neither PC-relative
11636 nor do they set S_IS_FUNCTION. So the only reliable way
11637 to detect them is to check the flags of their containing
11638 section. */
11639 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11640 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11641 ;
11642 else
11643#endif
fbeb56a4
DK
11644 value -= S_GET_VALUE (fixP->fx_addsy);
11645 }
11646#endif
252b5132
RH
11647
11648 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11649 and we must not disappoint it. */
252b5132 11650#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11651 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11652 switch (fixP->fx_r_type)
11653 {
11654 case BFD_RELOC_386_PLT32:
3e73aa7c 11655 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11656 /* Make the jump instruction point to the address of the operand.
11657 At runtime we merely add the offset to the actual PLT entry.
11658 NB: Subtract the offset size only for jump instructions. */
11659 if (fixP->fx_pcrel)
11660 value = -4;
47926f60 11661 break;
31312f95 11662
13ae64f3
JJ
11663 case BFD_RELOC_386_TLS_GD:
11664 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11665 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11666 case BFD_RELOC_386_TLS_IE:
11667 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11668 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11669 case BFD_RELOC_X86_64_TLSGD:
11670 case BFD_RELOC_X86_64_TLSLD:
11671 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11672 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11673 value = 0; /* Fully resolved at runtime. No addend. */
11674 /* Fallthrough */
11675 case BFD_RELOC_386_TLS_LE:
11676 case BFD_RELOC_386_TLS_LDO_32:
11677 case BFD_RELOC_386_TLS_LE_32:
11678 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11679 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11680 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11681 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11682 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11683 break;
11684
67a4f2b7
AO
11685 case BFD_RELOC_386_TLS_DESC_CALL:
11686 case BFD_RELOC_X86_64_TLSDESC_CALL:
11687 value = 0; /* Fully resolved at runtime. No addend. */
11688 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11689 fixP->fx_done = 0;
11690 return;
11691
47926f60
KH
11692 case BFD_RELOC_VTABLE_INHERIT:
11693 case BFD_RELOC_VTABLE_ENTRY:
11694 fixP->fx_done = 0;
94f592af 11695 return;
47926f60
KH
11696
11697 default:
11698 break;
11699 }
11700#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11701 *valP = value;
f86103b7 11702#endif /* !defined (TE_Mach) */
3e73aa7c 11703
3e73aa7c 11704 /* Are we finished with this relocation now? */
c6682705 11705 if (fixP->fx_addsy == NULL)
3e73aa7c 11706 fixP->fx_done = 1;
fbeb56a4
DK
11707#if defined (OBJ_COFF) && defined (TE_PE)
11708 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11709 {
11710 fixP->fx_done = 0;
11711 /* Remember value for tc_gen_reloc. */
11712 fixP->fx_addnumber = value;
11713 /* Clear out the frag for now. */
11714 value = 0;
11715 }
11716#endif
3e73aa7c
JH
11717 else if (use_rela_relocations)
11718 {
11719 fixP->fx_no_overflow = 1;
062cd5e7
AS
11720 /* Remember value for tc_gen_reloc. */
11721 fixP->fx_addnumber = value;
3e73aa7c
JH
11722 value = 0;
11723 }
f86103b7 11724
94f592af 11725 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11726}
252b5132 11727\f
6d4af3c2 11728const char *
499ac353 11729md_atof (int type, char *litP, int *sizeP)
252b5132 11730{
499ac353
NC
11731 /* This outputs the LITTLENUMs in REVERSE order;
11732 in accord with the bigendian 386. */
11733 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11734}
11735\f
2d545b82 11736static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11737
252b5132 11738static char *
e3bb37b5 11739output_invalid (int c)
252b5132 11740{
3882b010 11741 if (ISPRINT (c))
f9f21a03
L
11742 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11743 "'%c'", c);
252b5132 11744 else
f9f21a03 11745 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11746 "(0x%x)", (unsigned char) c);
252b5132
RH
11747 return output_invalid_buf;
11748}
11749
af6bdddf 11750/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11751
11752static const reg_entry *
4d1bb795 11753parse_real_register (char *reg_string, char **end_op)
252b5132 11754{
af6bdddf
AM
11755 char *s = reg_string;
11756 char *p;
252b5132
RH
11757 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11758 const reg_entry *r;
11759
11760 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11761 if (*s == REGISTER_PREFIX)
11762 ++s;
11763
11764 if (is_space_char (*s))
11765 ++s;
11766
11767 p = reg_name_given;
af6bdddf 11768 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11769 {
11770 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11771 return (const reg_entry *) NULL;
11772 s++;
252b5132
RH
11773 }
11774
6588847e
DN
11775 /* For naked regs, make sure that we are not dealing with an identifier.
11776 This prevents confusing an identifier like `eax_var' with register
11777 `eax'. */
11778 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11779 return (const reg_entry *) NULL;
11780
af6bdddf 11781 *end_op = s;
252b5132
RH
11782
11783 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11784
5f47d35b 11785 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11786 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11787 {
0e0eea78
JB
11788 if (!cpu_arch_flags.bitfield.cpu8087
11789 && !cpu_arch_flags.bitfield.cpu287
11790 && !cpu_arch_flags.bitfield.cpu387)
11791 return (const reg_entry *) NULL;
11792
5f47d35b
AM
11793 if (is_space_char (*s))
11794 ++s;
11795 if (*s == '(')
11796 {
af6bdddf 11797 ++s;
5f47d35b
AM
11798 if (is_space_char (*s))
11799 ++s;
11800 if (*s >= '0' && *s <= '7')
11801 {
db557034 11802 int fpr = *s - '0';
af6bdddf 11803 ++s;
5f47d35b
AM
11804 if (is_space_char (*s))
11805 ++s;
11806 if (*s == ')')
11807 {
11808 *end_op = s + 1;
1e9cc1c2 11809 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11810 know (r);
11811 return r + fpr;
5f47d35b 11812 }
5f47d35b 11813 }
47926f60 11814 /* We have "%st(" then garbage. */
5f47d35b
AM
11815 return (const reg_entry *) NULL;
11816 }
11817 }
11818
a60de03c
JB
11819 if (r == NULL || allow_pseudo_reg)
11820 return r;
11821
0dfbf9d7 11822 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11823 return (const reg_entry *) NULL;
11824
dc821c5f 11825 if ((r->reg_type.bitfield.dword
00cee14f 11826 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11827 || r->reg_type.bitfield.class == RegCR
11828 || r->reg_type.bitfield.class == RegDR
11829 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11830 && !cpu_arch_flags.bitfield.cpui386)
11831 return (const reg_entry *) NULL;
11832
3528c362 11833 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11834 return (const reg_entry *) NULL;
11835
6e041cf4
JB
11836 if (!cpu_arch_flags.bitfield.cpuavx512f)
11837 {
f74a6307
JB
11838 if (r->reg_type.bitfield.zmmword
11839 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11840 return (const reg_entry *) NULL;
40f12533 11841
6e041cf4
JB
11842 if (!cpu_arch_flags.bitfield.cpuavx)
11843 {
11844 if (r->reg_type.bitfield.ymmword)
11845 return (const reg_entry *) NULL;
1848e567 11846
6e041cf4
JB
11847 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11848 return (const reg_entry *) NULL;
11849 }
11850 }
43234a1e 11851
f74a6307 11852 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11853 return (const reg_entry *) NULL;
11854
db51cc60 11855 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11856 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11857 return (const reg_entry *) NULL;
11858
1d3f8286
JB
11859 /* Upper 16 vector registers are only available with VREX in 64bit
11860 mode, and require EVEX encoding. */
11861 if (r->reg_flags & RegVRex)
43234a1e 11862 {
e951d5ca 11863 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11864 || flag_code != CODE_64BIT)
11865 return (const reg_entry *) NULL;
1d3f8286
JB
11866
11867 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11868 }
11869
4787f4a5 11870 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11871 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11872 && flag_code != CODE_64BIT)
20f0a1fc 11873 return (const reg_entry *) NULL;
1ae00879 11874
00cee14f
JB
11875 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11876 && !intel_syntax)
b7240065
JB
11877 return (const reg_entry *) NULL;
11878
252b5132
RH
11879 return r;
11880}
4d1bb795
JB
11881
11882/* REG_STRING starts *before* REGISTER_PREFIX. */
11883
11884static const reg_entry *
11885parse_register (char *reg_string, char **end_op)
11886{
11887 const reg_entry *r;
11888
11889 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11890 r = parse_real_register (reg_string, end_op);
11891 else
11892 r = NULL;
11893 if (!r)
11894 {
11895 char *save = input_line_pointer;
11896 char c;
11897 symbolS *symbolP;
11898
11899 input_line_pointer = reg_string;
d02603dc 11900 c = get_symbol_name (&reg_string);
4d1bb795
JB
11901 symbolP = symbol_find (reg_string);
11902 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11903 {
11904 const expressionS *e = symbol_get_value_expression (symbolP);
11905
0398aac5 11906 know (e->X_op == O_register);
4eed87de 11907 know (e->X_add_number >= 0
c3fe08fa 11908 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11909 r = i386_regtab + e->X_add_number;
d3bb6b49 11910 if ((r->reg_flags & RegVRex))
86fa6981 11911 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11912 *end_op = input_line_pointer;
11913 }
11914 *input_line_pointer = c;
11915 input_line_pointer = save;
11916 }
11917 return r;
11918}
11919
11920int
11921i386_parse_name (char *name, expressionS *e, char *nextcharP)
11922{
11923 const reg_entry *r;
11924 char *end = input_line_pointer;
11925
11926 *end = *nextcharP;
11927 r = parse_register (name, &input_line_pointer);
11928 if (r && end <= input_line_pointer)
11929 {
11930 *nextcharP = *input_line_pointer;
11931 *input_line_pointer = 0;
11932 e->X_op = O_register;
11933 e->X_add_number = r - i386_regtab;
11934 return 1;
11935 }
11936 input_line_pointer = end;
11937 *end = 0;
ee86248c 11938 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11939}
11940
11941void
11942md_operand (expressionS *e)
11943{
ee86248c
JB
11944 char *end;
11945 const reg_entry *r;
4d1bb795 11946
ee86248c
JB
11947 switch (*input_line_pointer)
11948 {
11949 case REGISTER_PREFIX:
11950 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11951 if (r)
11952 {
11953 e->X_op = O_register;
11954 e->X_add_number = r - i386_regtab;
11955 input_line_pointer = end;
11956 }
ee86248c
JB
11957 break;
11958
11959 case '[':
9c2799c2 11960 gas_assert (intel_syntax);
ee86248c
JB
11961 end = input_line_pointer++;
11962 expression (e);
11963 if (*input_line_pointer == ']')
11964 {
11965 ++input_line_pointer;
11966 e->X_op_symbol = make_expr_symbol (e);
11967 e->X_add_symbol = NULL;
11968 e->X_add_number = 0;
11969 e->X_op = O_index;
11970 }
11971 else
11972 {
11973 e->X_op = O_absent;
11974 input_line_pointer = end;
11975 }
11976 break;
4d1bb795
JB
11977 }
11978}
11979
252b5132 11980\f
4cc782b5 11981#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11982const char *md_shortopts = "kVQ:sqnO::";
252b5132 11983#else
b6f8c7c4 11984const char *md_shortopts = "qnO::";
252b5132 11985#endif
6e0b89ee 11986
3e73aa7c 11987#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11988#define OPTION_64 (OPTION_MD_BASE + 1)
11989#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11990#define OPTION_MARCH (OPTION_MD_BASE + 3)
11991#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11992#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11993#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11994#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11995#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11996#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11997#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11998#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11999#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12000#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12001#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12002#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12003#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12004#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12005#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12006#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12007#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12008#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12009#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12010#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12011#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12012#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12013#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12014#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12015#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12016#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12017#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12018
99ad8390
NC
12019struct option md_longopts[] =
12020{
3e73aa7c 12021 {"32", no_argument, NULL, OPTION_32},
321098a5 12022#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12023 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12024 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12025#endif
12026#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12027 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12028 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12029 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12030#endif
b3b91714 12031 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12032 {"march", required_argument, NULL, OPTION_MARCH},
12033 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12034 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12035 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12036 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12037 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12038 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12039 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12040 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12041 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12042 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12043 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12044 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12045 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12046# if defined (TE_PE) || defined (TE_PEP)
12047 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12048#endif
d1982f93 12049 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12050 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12051 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12052 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12053 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12054 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12055 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12056 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12057 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12058 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12059 {NULL, no_argument, NULL, 0}
12060};
12061size_t md_longopts_size = sizeof (md_longopts);
12062
12063int
17b9d67d 12064md_parse_option (int c, const char *arg)
252b5132 12065{
91d6fa6a 12066 unsigned int j;
e379e5f3 12067 char *arch, *next, *saved, *type;
9103f4f4 12068
252b5132
RH
12069 switch (c)
12070 {
12b55ccc
L
12071 case 'n':
12072 optimize_align_code = 0;
12073 break;
12074
a38cf1db
AM
12075 case 'q':
12076 quiet_warnings = 1;
252b5132
RH
12077 break;
12078
12079#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12080 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12081 should be emitted or not. FIXME: Not implemented. */
12082 case 'Q':
d4693039
JB
12083 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12084 return 0;
252b5132
RH
12085 break;
12086
12087 /* -V: SVR4 argument to print version ID. */
12088 case 'V':
12089 print_version_id ();
12090 break;
12091
a38cf1db
AM
12092 /* -k: Ignore for FreeBSD compatibility. */
12093 case 'k':
252b5132 12094 break;
4cc782b5
ILT
12095
12096 case 's':
12097 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12098 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12099 break;
8dcea932
L
12100
12101 case OPTION_MSHARED:
12102 shared = 1;
12103 break;
b4a3a7b4
L
12104
12105 case OPTION_X86_USED_NOTE:
12106 if (strcasecmp (arg, "yes") == 0)
12107 x86_used_note = 1;
12108 else if (strcasecmp (arg, "no") == 0)
12109 x86_used_note = 0;
12110 else
12111 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12112 break;
12113
12114
99ad8390 12115#endif
321098a5 12116#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12117 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12118 case OPTION_64:
12119 {
12120 const char **list, **l;
12121
3e73aa7c
JH
12122 list = bfd_target_list ();
12123 for (l = list; *l != NULL; l++)
8620418b 12124 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12125 || strcmp (*l, "coff-x86-64") == 0
12126 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12127 || strcmp (*l, "pei-x86-64") == 0
12128 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12129 {
12130 default_arch = "x86_64";
12131 break;
12132 }
3e73aa7c 12133 if (*l == NULL)
2b5d6a91 12134 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12135 free (list);
12136 }
12137 break;
12138#endif
252b5132 12139
351f65ca 12140#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12141 case OPTION_X32:
351f65ca
L
12142 if (IS_ELF)
12143 {
12144 const char **list, **l;
12145
12146 list = bfd_target_list ();
12147 for (l = list; *l != NULL; l++)
12148 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12149 {
12150 default_arch = "x86_64:32";
12151 break;
12152 }
12153 if (*l == NULL)
2b5d6a91 12154 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12155 free (list);
12156 }
12157 else
12158 as_fatal (_("32bit x86_64 is only supported for ELF"));
12159 break;
12160#endif
12161
6e0b89ee
AM
12162 case OPTION_32:
12163 default_arch = "i386";
12164 break;
12165
b3b91714
AM
12166 case OPTION_DIVIDE:
12167#ifdef SVR4_COMMENT_CHARS
12168 {
12169 char *n, *t;
12170 const char *s;
12171
add39d23 12172 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12173 t = n;
12174 for (s = i386_comment_chars; *s != '\0'; s++)
12175 if (*s != '/')
12176 *t++ = *s;
12177 *t = '\0';
12178 i386_comment_chars = n;
12179 }
12180#endif
12181 break;
12182
9103f4f4 12183 case OPTION_MARCH:
293f5f65
L
12184 saved = xstrdup (arg);
12185 arch = saved;
12186 /* Allow -march=+nosse. */
12187 if (*arch == '+')
12188 arch++;
6305a203 12189 do
9103f4f4 12190 {
6305a203 12191 if (*arch == '.')
2b5d6a91 12192 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12193 next = strchr (arch, '+');
12194 if (next)
12195 *next++ = '\0';
91d6fa6a 12196 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12197 {
91d6fa6a 12198 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12199 {
6305a203 12200 /* Processor. */
1ded5609
JB
12201 if (! cpu_arch[j].flags.bitfield.cpui386)
12202 continue;
12203
91d6fa6a 12204 cpu_arch_name = cpu_arch[j].name;
6305a203 12205 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12206 cpu_arch_flags = cpu_arch[j].flags;
12207 cpu_arch_isa = cpu_arch[j].type;
12208 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12209 if (!cpu_arch_tune_set)
12210 {
12211 cpu_arch_tune = cpu_arch_isa;
12212 cpu_arch_tune_flags = cpu_arch_isa_flags;
12213 }
12214 break;
12215 }
91d6fa6a
NC
12216 else if (*cpu_arch [j].name == '.'
12217 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12218 {
33eaf5de 12219 /* ISA extension. */
6305a203 12220 i386_cpu_flags flags;
309d3373 12221
293f5f65
L
12222 flags = cpu_flags_or (cpu_arch_flags,
12223 cpu_arch[j].flags);
81486035 12224
5b64d091 12225 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12226 {
12227 if (cpu_sub_arch_name)
12228 {
12229 char *name = cpu_sub_arch_name;
12230 cpu_sub_arch_name = concat (name,
91d6fa6a 12231 cpu_arch[j].name,
1bf57e9f 12232 (const char *) NULL);
6305a203
L
12233 free (name);
12234 }
12235 else
91d6fa6a 12236 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12237 cpu_arch_flags = flags;
a586129e 12238 cpu_arch_isa_flags = flags;
6305a203 12239 }
0089dace
L
12240 else
12241 cpu_arch_isa_flags
12242 = cpu_flags_or (cpu_arch_isa_flags,
12243 cpu_arch[j].flags);
6305a203 12244 break;
ccc9c027 12245 }
9103f4f4 12246 }
6305a203 12247
293f5f65
L
12248 if (j >= ARRAY_SIZE (cpu_arch))
12249 {
33eaf5de 12250 /* Disable an ISA extension. */
293f5f65
L
12251 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12252 if (strcmp (arch, cpu_noarch [j].name) == 0)
12253 {
12254 i386_cpu_flags flags;
12255
12256 flags = cpu_flags_and_not (cpu_arch_flags,
12257 cpu_noarch[j].flags);
12258 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12259 {
12260 if (cpu_sub_arch_name)
12261 {
12262 char *name = cpu_sub_arch_name;
12263 cpu_sub_arch_name = concat (arch,
12264 (const char *) NULL);
12265 free (name);
12266 }
12267 else
12268 cpu_sub_arch_name = xstrdup (arch);
12269 cpu_arch_flags = flags;
12270 cpu_arch_isa_flags = flags;
12271 }
12272 break;
12273 }
12274
12275 if (j >= ARRAY_SIZE (cpu_noarch))
12276 j = ARRAY_SIZE (cpu_arch);
12277 }
12278
91d6fa6a 12279 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12280 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12281
12282 arch = next;
9103f4f4 12283 }
293f5f65
L
12284 while (next != NULL);
12285 free (saved);
9103f4f4
L
12286 break;
12287
12288 case OPTION_MTUNE:
12289 if (*arg == '.')
2b5d6a91 12290 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12291 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12292 {
91d6fa6a 12293 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12294 {
ccc9c027 12295 cpu_arch_tune_set = 1;
91d6fa6a
NC
12296 cpu_arch_tune = cpu_arch [j].type;
12297 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12298 break;
12299 }
12300 }
91d6fa6a 12301 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12302 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12303 break;
12304
1efbbeb4
L
12305 case OPTION_MMNEMONIC:
12306 if (strcasecmp (arg, "att") == 0)
12307 intel_mnemonic = 0;
12308 else if (strcasecmp (arg, "intel") == 0)
12309 intel_mnemonic = 1;
12310 else
2b5d6a91 12311 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12312 break;
12313
12314 case OPTION_MSYNTAX:
12315 if (strcasecmp (arg, "att") == 0)
12316 intel_syntax = 0;
12317 else if (strcasecmp (arg, "intel") == 0)
12318 intel_syntax = 1;
12319 else
2b5d6a91 12320 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12321 break;
12322
12323 case OPTION_MINDEX_REG:
12324 allow_index_reg = 1;
12325 break;
12326
12327 case OPTION_MNAKED_REG:
12328 allow_naked_reg = 1;
12329 break;
12330
c0f3af97
L
12331 case OPTION_MSSE2AVX:
12332 sse2avx = 1;
12333 break;
12334
daf50ae7
L
12335 case OPTION_MSSE_CHECK:
12336 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12337 sse_check = check_error;
daf50ae7 12338 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12339 sse_check = check_warning;
daf50ae7 12340 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12341 sse_check = check_none;
daf50ae7 12342 else
2b5d6a91 12343 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12344 break;
12345
7bab8ab5
JB
12346 case OPTION_MOPERAND_CHECK:
12347 if (strcasecmp (arg, "error") == 0)
12348 operand_check = check_error;
12349 else if (strcasecmp (arg, "warning") == 0)
12350 operand_check = check_warning;
12351 else if (strcasecmp (arg, "none") == 0)
12352 operand_check = check_none;
12353 else
12354 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12355 break;
12356
539f890d
L
12357 case OPTION_MAVXSCALAR:
12358 if (strcasecmp (arg, "128") == 0)
12359 avxscalar = vex128;
12360 else if (strcasecmp (arg, "256") == 0)
12361 avxscalar = vex256;
12362 else
2b5d6a91 12363 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12364 break;
12365
03751133
L
12366 case OPTION_MVEXWIG:
12367 if (strcmp (arg, "0") == 0)
40c9c8de 12368 vexwig = vexw0;
03751133 12369 else if (strcmp (arg, "1") == 0)
40c9c8de 12370 vexwig = vexw1;
03751133
L
12371 else
12372 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12373 break;
12374
7e8b059b
L
12375 case OPTION_MADD_BND_PREFIX:
12376 add_bnd_prefix = 1;
12377 break;
12378
43234a1e
L
12379 case OPTION_MEVEXLIG:
12380 if (strcmp (arg, "128") == 0)
12381 evexlig = evexl128;
12382 else if (strcmp (arg, "256") == 0)
12383 evexlig = evexl256;
12384 else if (strcmp (arg, "512") == 0)
12385 evexlig = evexl512;
12386 else
12387 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12388 break;
12389
d3d3c6db
IT
12390 case OPTION_MEVEXRCIG:
12391 if (strcmp (arg, "rne") == 0)
12392 evexrcig = rne;
12393 else if (strcmp (arg, "rd") == 0)
12394 evexrcig = rd;
12395 else if (strcmp (arg, "ru") == 0)
12396 evexrcig = ru;
12397 else if (strcmp (arg, "rz") == 0)
12398 evexrcig = rz;
12399 else
12400 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12401 break;
12402
43234a1e
L
12403 case OPTION_MEVEXWIG:
12404 if (strcmp (arg, "0") == 0)
12405 evexwig = evexw0;
12406 else if (strcmp (arg, "1") == 0)
12407 evexwig = evexw1;
12408 else
12409 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12410 break;
12411
167ad85b
TG
12412# if defined (TE_PE) || defined (TE_PEP)
12413 case OPTION_MBIG_OBJ:
12414 use_big_obj = 1;
12415 break;
12416#endif
12417
d1982f93 12418 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12419 if (strcasecmp (arg, "yes") == 0)
12420 omit_lock_prefix = 1;
12421 else if (strcasecmp (arg, "no") == 0)
12422 omit_lock_prefix = 0;
12423 else
12424 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12425 break;
12426
e4e00185
AS
12427 case OPTION_MFENCE_AS_LOCK_ADD:
12428 if (strcasecmp (arg, "yes") == 0)
12429 avoid_fence = 1;
12430 else if (strcasecmp (arg, "no") == 0)
12431 avoid_fence = 0;
12432 else
12433 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12434 break;
12435
0cb4071e
L
12436 case OPTION_MRELAX_RELOCATIONS:
12437 if (strcasecmp (arg, "yes") == 0)
12438 generate_relax_relocations = 1;
12439 else if (strcasecmp (arg, "no") == 0)
12440 generate_relax_relocations = 0;
12441 else
12442 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12443 break;
12444
e379e5f3
L
12445 case OPTION_MALIGN_BRANCH_BOUNDARY:
12446 {
12447 char *end;
12448 long int align = strtoul (arg, &end, 0);
12449 if (*end == '\0')
12450 {
12451 if (align == 0)
12452 {
12453 align_branch_power = 0;
12454 break;
12455 }
12456 else if (align >= 16)
12457 {
12458 int align_power;
12459 for (align_power = 0;
12460 (align & 1) == 0;
12461 align >>= 1, align_power++)
12462 continue;
12463 /* Limit alignment power to 31. */
12464 if (align == 1 && align_power < 32)
12465 {
12466 align_branch_power = align_power;
12467 break;
12468 }
12469 }
12470 }
12471 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12472 }
12473 break;
12474
12475 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12476 {
12477 char *end;
12478 int align = strtoul (arg, &end, 0);
12479 /* Some processors only support 5 prefixes. */
12480 if (*end == '\0' && align >= 0 && align < 6)
12481 {
12482 align_branch_prefix_size = align;
12483 break;
12484 }
12485 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12486 arg);
12487 }
12488 break;
12489
12490 case OPTION_MALIGN_BRANCH:
12491 align_branch = 0;
12492 saved = xstrdup (arg);
12493 type = saved;
12494 do
12495 {
12496 next = strchr (type, '+');
12497 if (next)
12498 *next++ = '\0';
12499 if (strcasecmp (type, "jcc") == 0)
12500 align_branch |= align_branch_jcc_bit;
12501 else if (strcasecmp (type, "fused") == 0)
12502 align_branch |= align_branch_fused_bit;
12503 else if (strcasecmp (type, "jmp") == 0)
12504 align_branch |= align_branch_jmp_bit;
12505 else if (strcasecmp (type, "call") == 0)
12506 align_branch |= align_branch_call_bit;
12507 else if (strcasecmp (type, "ret") == 0)
12508 align_branch |= align_branch_ret_bit;
12509 else if (strcasecmp (type, "indirect") == 0)
12510 align_branch |= align_branch_indirect_bit;
12511 else
12512 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12513 type = next;
12514 }
12515 while (next != NULL);
12516 free (saved);
12517 break;
12518
76cf450b
L
12519 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12520 align_branch_power = 5;
12521 align_branch_prefix_size = 5;
12522 align_branch = (align_branch_jcc_bit
12523 | align_branch_fused_bit
12524 | align_branch_jmp_bit);
12525 break;
12526
5db04b09 12527 case OPTION_MAMD64:
e89c5eaa 12528 intel64 = 0;
5db04b09
L
12529 break;
12530
12531 case OPTION_MINTEL64:
e89c5eaa 12532 intel64 = 1;
5db04b09
L
12533 break;
12534
b6f8c7c4
L
12535 case 'O':
12536 if (arg == NULL)
12537 {
12538 optimize = 1;
12539 /* Turn off -Os. */
12540 optimize_for_space = 0;
12541 }
12542 else if (*arg == 's')
12543 {
12544 optimize_for_space = 1;
12545 /* Turn on all encoding optimizations. */
41fd2579 12546 optimize = INT_MAX;
b6f8c7c4
L
12547 }
12548 else
12549 {
12550 optimize = atoi (arg);
12551 /* Turn off -Os. */
12552 optimize_for_space = 0;
12553 }
12554 break;
12555
252b5132
RH
12556 default:
12557 return 0;
12558 }
12559 return 1;
12560}
12561
8a2c8fef
L
12562#define MESSAGE_TEMPLATE \
12563" "
12564
293f5f65
L
12565static char *
12566output_message (FILE *stream, char *p, char *message, char *start,
12567 int *left_p, const char *name, int len)
12568{
12569 int size = sizeof (MESSAGE_TEMPLATE);
12570 int left = *left_p;
12571
12572 /* Reserve 2 spaces for ", " or ",\0" */
12573 left -= len + 2;
12574
12575 /* Check if there is any room. */
12576 if (left >= 0)
12577 {
12578 if (p != start)
12579 {
12580 *p++ = ',';
12581 *p++ = ' ';
12582 }
12583 p = mempcpy (p, name, len);
12584 }
12585 else
12586 {
12587 /* Output the current message now and start a new one. */
12588 *p++ = ',';
12589 *p = '\0';
12590 fprintf (stream, "%s\n", message);
12591 p = start;
12592 left = size - (start - message) - len - 2;
12593
12594 gas_assert (left >= 0);
12595
12596 p = mempcpy (p, name, len);
12597 }
12598
12599 *left_p = left;
12600 return p;
12601}
12602
8a2c8fef 12603static void
1ded5609 12604show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12605{
12606 static char message[] = MESSAGE_TEMPLATE;
12607 char *start = message + 27;
12608 char *p;
12609 int size = sizeof (MESSAGE_TEMPLATE);
12610 int left;
12611 const char *name;
12612 int len;
12613 unsigned int j;
12614
12615 p = start;
12616 left = size - (start - message);
12617 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12618 {
12619 /* Should it be skipped? */
12620 if (cpu_arch [j].skip)
12621 continue;
12622
12623 name = cpu_arch [j].name;
12624 len = cpu_arch [j].len;
12625 if (*name == '.')
12626 {
12627 /* It is an extension. Skip if we aren't asked to show it. */
12628 if (ext)
12629 {
12630 name++;
12631 len--;
12632 }
12633 else
12634 continue;
12635 }
12636 else if (ext)
12637 {
12638 /* It is an processor. Skip if we show only extension. */
12639 continue;
12640 }
1ded5609
JB
12641 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12642 {
12643 /* It is an impossible processor - skip. */
12644 continue;
12645 }
8a2c8fef 12646
293f5f65 12647 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12648 }
12649
293f5f65
L
12650 /* Display disabled extensions. */
12651 if (ext)
12652 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12653 {
12654 name = cpu_noarch [j].name;
12655 len = cpu_noarch [j].len;
12656 p = output_message (stream, p, message, start, &left, name,
12657 len);
12658 }
12659
8a2c8fef
L
12660 *p = '\0';
12661 fprintf (stream, "%s\n", message);
12662}
12663
252b5132 12664void
8a2c8fef 12665md_show_usage (FILE *stream)
252b5132 12666{
4cc782b5
ILT
12667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12668 fprintf (stream, _("\
d4693039 12669 -Qy, -Qn ignored\n\
a38cf1db 12670 -V print assembler version number\n\
b3b91714
AM
12671 -k ignored\n"));
12672#endif
12673 fprintf (stream, _("\
12b55ccc 12674 -n Do not optimize code alignment\n\
b3b91714
AM
12675 -q quieten some warnings\n"));
12676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12677 fprintf (stream, _("\
a38cf1db 12678 -s ignored\n"));
b3b91714 12679#endif
d7f449c0
L
12680#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12681 || defined (TE_PE) || defined (TE_PEP))
751d281c 12682 fprintf (stream, _("\
570561f7 12683 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12684#endif
b3b91714
AM
12685#ifdef SVR4_COMMENT_CHARS
12686 fprintf (stream, _("\
12687 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12688#else
12689 fprintf (stream, _("\
b3b91714 12690 --divide ignored\n"));
4cc782b5 12691#endif
9103f4f4 12692 fprintf (stream, _("\
6305a203 12693 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12694 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12695 show_arch (stream, 0, 1);
8a2c8fef
L
12696 fprintf (stream, _("\
12697 EXTENSION is combination of:\n"));
1ded5609 12698 show_arch (stream, 1, 0);
6305a203 12699 fprintf (stream, _("\
8a2c8fef 12700 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12701 show_arch (stream, 0, 0);
ba104c83 12702 fprintf (stream, _("\
c0f3af97
L
12703 -msse2avx encode SSE instructions with VEX prefix\n"));
12704 fprintf (stream, _("\
7c5c05ef 12705 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12706 check SSE instructions\n"));
12707 fprintf (stream, _("\
7c5c05ef 12708 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12709 check operand combinations for validity\n"));
12710 fprintf (stream, _("\
7c5c05ef
L
12711 -mavxscalar=[128|256] (default: 128)\n\
12712 encode scalar AVX instructions with specific vector\n\
539f890d
L
12713 length\n"));
12714 fprintf (stream, _("\
03751133
L
12715 -mvexwig=[0|1] (default: 0)\n\
12716 encode VEX instructions with specific VEX.W value\n\
12717 for VEX.W bit ignored instructions\n"));
12718 fprintf (stream, _("\
7c5c05ef
L
12719 -mevexlig=[128|256|512] (default: 128)\n\
12720 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12721 length\n"));
12722 fprintf (stream, _("\
7c5c05ef
L
12723 -mevexwig=[0|1] (default: 0)\n\
12724 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12725 for EVEX.W bit ignored instructions\n"));
12726 fprintf (stream, _("\
7c5c05ef 12727 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12728 encode EVEX instructions with specific EVEX.RC value\n\
12729 for SAE-only ignored instructions\n"));
12730 fprintf (stream, _("\
7c5c05ef
L
12731 -mmnemonic=[att|intel] "));
12732 if (SYSV386_COMPAT)
12733 fprintf (stream, _("(default: att)\n"));
12734 else
12735 fprintf (stream, _("(default: intel)\n"));
12736 fprintf (stream, _("\
12737 use AT&T/Intel mnemonic\n"));
ba104c83 12738 fprintf (stream, _("\
7c5c05ef
L
12739 -msyntax=[att|intel] (default: att)\n\
12740 use AT&T/Intel syntax\n"));
ba104c83
L
12741 fprintf (stream, _("\
12742 -mindex-reg support pseudo index registers\n"));
12743 fprintf (stream, _("\
12744 -mnaked-reg don't require `%%' prefix for registers\n"));
12745 fprintf (stream, _("\
7e8b059b 12746 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12747#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12748 fprintf (stream, _("\
12749 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12750 fprintf (stream, _("\
12751 -mx86-used-note=[no|yes] "));
12752 if (DEFAULT_X86_USED_NOTE)
12753 fprintf (stream, _("(default: yes)\n"));
12754 else
12755 fprintf (stream, _("(default: no)\n"));
12756 fprintf (stream, _("\
12757 generate x86 used ISA and feature properties\n"));
12758#endif
12759#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12760 fprintf (stream, _("\
12761 -mbig-obj generate big object files\n"));
12762#endif
d022bddd 12763 fprintf (stream, _("\
7c5c05ef 12764 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12765 strip all lock prefixes\n"));
5db04b09 12766 fprintf (stream, _("\
7c5c05ef 12767 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12768 encode lfence, mfence and sfence as\n\
12769 lock addl $0x0, (%%{re}sp)\n"));
12770 fprintf (stream, _("\
7c5c05ef
L
12771 -mrelax-relocations=[no|yes] "));
12772 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12773 fprintf (stream, _("(default: yes)\n"));
12774 else
12775 fprintf (stream, _("(default: no)\n"));
12776 fprintf (stream, _("\
0cb4071e
L
12777 generate relax relocations\n"));
12778 fprintf (stream, _("\
e379e5f3
L
12779 -malign-branch-boundary=NUM (default: 0)\n\
12780 align branches within NUM byte boundary\n"));
12781 fprintf (stream, _("\
12782 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12783 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12784 indirect\n\
12785 specify types of branches to align\n"));
12786 fprintf (stream, _("\
12787 -malign-branch-prefix-size=NUM (default: 5)\n\
12788 align branches with NUM prefixes per instruction\n"));
12789 fprintf (stream, _("\
76cf450b
L
12790 -mbranches-within-32B-boundaries\n\
12791 align branches within 32 byte boundary\n"));
12792 fprintf (stream, _("\
7c5c05ef 12793 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12794 fprintf (stream, _("\
12795 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12796}
12797
3e73aa7c 12798#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12799 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12800 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12801
12802/* Pick the target format to use. */
12803
47926f60 12804const char *
e3bb37b5 12805i386_target_format (void)
252b5132 12806{
351f65ca
L
12807 if (!strncmp (default_arch, "x86_64", 6))
12808 {
12809 update_code_flag (CODE_64BIT, 1);
12810 if (default_arch[6] == '\0')
7f56bc95 12811 x86_elf_abi = X86_64_ABI;
351f65ca 12812 else
7f56bc95 12813 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12814 }
3e73aa7c 12815 else if (!strcmp (default_arch, "i386"))
78f12dd3 12816 update_code_flag (CODE_32BIT, 1);
5197d474
L
12817 else if (!strcmp (default_arch, "iamcu"))
12818 {
12819 update_code_flag (CODE_32BIT, 1);
12820 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12821 {
12822 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12823 cpu_arch_name = "iamcu";
12824 cpu_sub_arch_name = NULL;
12825 cpu_arch_flags = iamcu_flags;
12826 cpu_arch_isa = PROCESSOR_IAMCU;
12827 cpu_arch_isa_flags = iamcu_flags;
12828 if (!cpu_arch_tune_set)
12829 {
12830 cpu_arch_tune = cpu_arch_isa;
12831 cpu_arch_tune_flags = cpu_arch_isa_flags;
12832 }
12833 }
8d471ec1 12834 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12835 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12836 cpu_arch_name);
12837 }
3e73aa7c 12838 else
2b5d6a91 12839 as_fatal (_("unknown architecture"));
89507696
JB
12840
12841 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12842 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12843 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12844 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12845
252b5132
RH
12846 switch (OUTPUT_FLAVOR)
12847 {
9384f2ff 12848#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12849 case bfd_target_aout_flavour:
47926f60 12850 return AOUT_TARGET_FORMAT;
4c63da97 12851#endif
9384f2ff
AM
12852#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12853# if defined (TE_PE) || defined (TE_PEP)
12854 case bfd_target_coff_flavour:
167ad85b
TG
12855 if (flag_code == CODE_64BIT)
12856 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12857 else
12858 return "pe-i386";
9384f2ff 12859# elif defined (TE_GO32)
0561d57c
JK
12860 case bfd_target_coff_flavour:
12861 return "coff-go32";
9384f2ff 12862# else
252b5132
RH
12863 case bfd_target_coff_flavour:
12864 return "coff-i386";
9384f2ff 12865# endif
4c63da97 12866#endif
3e73aa7c 12867#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12868 case bfd_target_elf_flavour:
3e73aa7c 12869 {
351f65ca
L
12870 const char *format;
12871
12872 switch (x86_elf_abi)
4fa24527 12873 {
351f65ca
L
12874 default:
12875 format = ELF_TARGET_FORMAT;
e379e5f3
L
12876#ifndef TE_SOLARIS
12877 tls_get_addr = "___tls_get_addr";
12878#endif
351f65ca 12879 break;
7f56bc95 12880 case X86_64_ABI:
351f65ca 12881 use_rela_relocations = 1;
4fa24527 12882 object_64bit = 1;
e379e5f3
L
12883#ifndef TE_SOLARIS
12884 tls_get_addr = "__tls_get_addr";
12885#endif
351f65ca
L
12886 format = ELF_TARGET_FORMAT64;
12887 break;
7f56bc95 12888 case X86_64_X32_ABI:
4fa24527 12889 use_rela_relocations = 1;
351f65ca 12890 object_64bit = 1;
e379e5f3
L
12891#ifndef TE_SOLARIS
12892 tls_get_addr = "__tls_get_addr";
12893#endif
862be3fb 12894 disallow_64bit_reloc = 1;
351f65ca
L
12895 format = ELF_TARGET_FORMAT32;
12896 break;
4fa24527 12897 }
3632d14b 12898 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12899 {
7f56bc95 12900 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12901 as_fatal (_("Intel L1OM is 64bit only"));
12902 return ELF_TARGET_L1OM_FORMAT;
12903 }
b49f93f6 12904 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12905 {
12906 if (x86_elf_abi != X86_64_ABI)
12907 as_fatal (_("Intel K1OM is 64bit only"));
12908 return ELF_TARGET_K1OM_FORMAT;
12909 }
81486035
L
12910 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12911 {
12912 if (x86_elf_abi != I386_ABI)
12913 as_fatal (_("Intel MCU is 32bit only"));
12914 return ELF_TARGET_IAMCU_FORMAT;
12915 }
8a9036a4 12916 else
351f65ca 12917 return format;
3e73aa7c 12918 }
e57f8c65
TG
12919#endif
12920#if defined (OBJ_MACH_O)
12921 case bfd_target_mach_o_flavour:
d382c579
TG
12922 if (flag_code == CODE_64BIT)
12923 {
12924 use_rela_relocations = 1;
12925 object_64bit = 1;
12926 return "mach-o-x86-64";
12927 }
12928 else
12929 return "mach-o-i386";
4c63da97 12930#endif
252b5132
RH
12931 default:
12932 abort ();
12933 return NULL;
12934 }
12935}
12936
47926f60 12937#endif /* OBJ_MAYBE_ more than one */
252b5132 12938\f
252b5132 12939symbolS *
7016a5d5 12940md_undefined_symbol (char *name)
252b5132 12941{
18dc2407
ILT
12942 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12943 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12944 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12945 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12946 {
12947 if (!GOT_symbol)
12948 {
12949 if (symbol_find (name))
12950 as_bad (_("GOT already in symbol table"));
12951 GOT_symbol = symbol_new (name, undefined_section,
12952 (valueT) 0, &zero_address_frag);
12953 };
12954 return GOT_symbol;
12955 }
252b5132
RH
12956 return 0;
12957}
12958
12959/* Round up a section size to the appropriate boundary. */
47926f60 12960
252b5132 12961valueT
7016a5d5 12962md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12963{
4c63da97
AM
12964#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12965 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12966 {
12967 /* For a.out, force the section size to be aligned. If we don't do
12968 this, BFD will align it for us, but it will not write out the
12969 final bytes of the section. This may be a bug in BFD, but it is
12970 easier to fix it here since that is how the other a.out targets
12971 work. */
12972 int align;
12973
fd361982 12974 align = bfd_section_alignment (segment);
8d3842cd 12975 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12976 }
252b5132
RH
12977#endif
12978
12979 return size;
12980}
12981
12982/* On the i386, PC-relative offsets are relative to the start of the
12983 next instruction. That is, the address of the offset, plus its
12984 size, since the offset is always the last part of the insn. */
12985
12986long
e3bb37b5 12987md_pcrel_from (fixS *fixP)
252b5132
RH
12988{
12989 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12990}
12991
12992#ifndef I386COFF
12993
12994static void
e3bb37b5 12995s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 12996{
29b0f896 12997 int temp;
252b5132 12998
8a75718c
JB
12999#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13000 if (IS_ELF)
13001 obj_elf_section_change_hook ();
13002#endif
252b5132
RH
13003 temp = get_absolute_expression ();
13004 subseg_set (bss_section, (subsegT) temp);
13005 demand_empty_rest_of_line ();
13006}
13007
13008#endif
13009
e379e5f3
L
13010/* Remember constant directive. */
13011
13012void
13013i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13014{
13015 if (last_insn.kind != last_insn_directive
13016 && (bfd_section_flags (now_seg) & SEC_CODE))
13017 {
13018 last_insn.seg = now_seg;
13019 last_insn.kind = last_insn_directive;
13020 last_insn.name = "constant directive";
13021 last_insn.file = as_where (&last_insn.line);
13022 }
13023}
13024
252b5132 13025void
e3bb37b5 13026i386_validate_fix (fixS *fixp)
252b5132 13027{
02a86693 13028 if (fixp->fx_subsy)
252b5132 13029 {
02a86693 13030 if (fixp->fx_subsy == GOT_symbol)
23df1078 13031 {
02a86693
L
13032 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13033 {
13034 if (!object_64bit)
13035 abort ();
13036#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13037 if (fixp->fx_tcbit2)
56ceb5b5
L
13038 fixp->fx_r_type = (fixp->fx_tcbit
13039 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13040 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13041 else
13042#endif
13043 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13044 }
d6ab8113 13045 else
02a86693
L
13046 {
13047 if (!object_64bit)
13048 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13049 else
13050 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13051 }
13052 fixp->fx_subsy = 0;
23df1078 13053 }
252b5132 13054 }
02a86693
L
13055#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13056 else if (!object_64bit)
13057 {
13058 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13059 && fixp->fx_tcbit2)
13060 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13061 }
13062#endif
252b5132
RH
13063}
13064
252b5132 13065arelent *
7016a5d5 13066tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13067{
13068 arelent *rel;
13069 bfd_reloc_code_real_type code;
13070
13071 switch (fixp->fx_r_type)
13072 {
8ce3d284 13073#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13074 case BFD_RELOC_SIZE32:
13075 case BFD_RELOC_SIZE64:
13076 if (S_IS_DEFINED (fixp->fx_addsy)
13077 && !S_IS_EXTERNAL (fixp->fx_addsy))
13078 {
13079 /* Resolve size relocation against local symbol to size of
13080 the symbol plus addend. */
13081 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13082 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13083 && !fits_in_unsigned_long (value))
13084 as_bad_where (fixp->fx_file, fixp->fx_line,
13085 _("symbol size computation overflow"));
13086 fixp->fx_addsy = NULL;
13087 fixp->fx_subsy = NULL;
13088 md_apply_fix (fixp, (valueT *) &value, NULL);
13089 return NULL;
13090 }
8ce3d284 13091#endif
1a0670f3 13092 /* Fall through. */
8fd4256d 13093
3e73aa7c
JH
13094 case BFD_RELOC_X86_64_PLT32:
13095 case BFD_RELOC_X86_64_GOT32:
13096 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13097 case BFD_RELOC_X86_64_GOTPCRELX:
13098 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13099 case BFD_RELOC_386_PLT32:
13100 case BFD_RELOC_386_GOT32:
02a86693 13101 case BFD_RELOC_386_GOT32X:
252b5132
RH
13102 case BFD_RELOC_386_GOTOFF:
13103 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13104 case BFD_RELOC_386_TLS_GD:
13105 case BFD_RELOC_386_TLS_LDM:
13106 case BFD_RELOC_386_TLS_LDO_32:
13107 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13108 case BFD_RELOC_386_TLS_IE:
13109 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13110 case BFD_RELOC_386_TLS_LE_32:
13111 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13112 case BFD_RELOC_386_TLS_GOTDESC:
13113 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13114 case BFD_RELOC_X86_64_TLSGD:
13115 case BFD_RELOC_X86_64_TLSLD:
13116 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13117 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13118 case BFD_RELOC_X86_64_GOTTPOFF:
13119 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13120 case BFD_RELOC_X86_64_TPOFF64:
13121 case BFD_RELOC_X86_64_GOTOFF64:
13122 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13123 case BFD_RELOC_X86_64_GOT64:
13124 case BFD_RELOC_X86_64_GOTPCREL64:
13125 case BFD_RELOC_X86_64_GOTPC64:
13126 case BFD_RELOC_X86_64_GOTPLT64:
13127 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13128 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13129 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13130 case BFD_RELOC_RVA:
13131 case BFD_RELOC_VTABLE_ENTRY:
13132 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13133#ifdef TE_PE
13134 case BFD_RELOC_32_SECREL:
13135#endif
252b5132
RH
13136 code = fixp->fx_r_type;
13137 break;
dbbaec26
L
13138 case BFD_RELOC_X86_64_32S:
13139 if (!fixp->fx_pcrel)
13140 {
13141 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13142 code = fixp->fx_r_type;
13143 break;
13144 }
1a0670f3 13145 /* Fall through. */
252b5132 13146 default:
93382f6d 13147 if (fixp->fx_pcrel)
252b5132 13148 {
93382f6d
AM
13149 switch (fixp->fx_size)
13150 {
13151 default:
b091f402
AM
13152 as_bad_where (fixp->fx_file, fixp->fx_line,
13153 _("can not do %d byte pc-relative relocation"),
13154 fixp->fx_size);
93382f6d
AM
13155 code = BFD_RELOC_32_PCREL;
13156 break;
13157 case 1: code = BFD_RELOC_8_PCREL; break;
13158 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13159 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13160#ifdef BFD64
13161 case 8: code = BFD_RELOC_64_PCREL; break;
13162#endif
93382f6d
AM
13163 }
13164 }
13165 else
13166 {
13167 switch (fixp->fx_size)
13168 {
13169 default:
b091f402
AM
13170 as_bad_where (fixp->fx_file, fixp->fx_line,
13171 _("can not do %d byte relocation"),
13172 fixp->fx_size);
93382f6d
AM
13173 code = BFD_RELOC_32;
13174 break;
13175 case 1: code = BFD_RELOC_8; break;
13176 case 2: code = BFD_RELOC_16; break;
13177 case 4: code = BFD_RELOC_32; break;
937149dd 13178#ifdef BFD64
3e73aa7c 13179 case 8: code = BFD_RELOC_64; break;
937149dd 13180#endif
93382f6d 13181 }
252b5132
RH
13182 }
13183 break;
13184 }
252b5132 13185
d182319b
JB
13186 if ((code == BFD_RELOC_32
13187 || code == BFD_RELOC_32_PCREL
13188 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13189 && GOT_symbol
13190 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13191 {
4fa24527 13192 if (!object_64bit)
d6ab8113
JB
13193 code = BFD_RELOC_386_GOTPC;
13194 else
13195 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13196 }
7b81dfbb
AJ
13197 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13198 && GOT_symbol
13199 && fixp->fx_addsy == GOT_symbol)
13200 {
13201 code = BFD_RELOC_X86_64_GOTPC64;
13202 }
252b5132 13203
add39d23
TS
13204 rel = XNEW (arelent);
13205 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13206 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13207
13208 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13209
3e73aa7c
JH
13210 if (!use_rela_relocations)
13211 {
13212 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13213 vtable entry to be used in the relocation's section offset. */
13214 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13215 rel->address = fixp->fx_offset;
fbeb56a4
DK
13216#if defined (OBJ_COFF) && defined (TE_PE)
13217 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13218 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13219 else
13220#endif
c6682705 13221 rel->addend = 0;
3e73aa7c
JH
13222 }
13223 /* Use the rela in 64bit mode. */
252b5132 13224 else
3e73aa7c 13225 {
862be3fb
L
13226 if (disallow_64bit_reloc)
13227 switch (code)
13228 {
862be3fb
L
13229 case BFD_RELOC_X86_64_DTPOFF64:
13230 case BFD_RELOC_X86_64_TPOFF64:
13231 case BFD_RELOC_64_PCREL:
13232 case BFD_RELOC_X86_64_GOTOFF64:
13233 case BFD_RELOC_X86_64_GOT64:
13234 case BFD_RELOC_X86_64_GOTPCREL64:
13235 case BFD_RELOC_X86_64_GOTPC64:
13236 case BFD_RELOC_X86_64_GOTPLT64:
13237 case BFD_RELOC_X86_64_PLTOFF64:
13238 as_bad_where (fixp->fx_file, fixp->fx_line,
13239 _("cannot represent relocation type %s in x32 mode"),
13240 bfd_get_reloc_code_name (code));
13241 break;
13242 default:
13243 break;
13244 }
13245
062cd5e7
AS
13246 if (!fixp->fx_pcrel)
13247 rel->addend = fixp->fx_offset;
13248 else
13249 switch (code)
13250 {
13251 case BFD_RELOC_X86_64_PLT32:
13252 case BFD_RELOC_X86_64_GOT32:
13253 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13254 case BFD_RELOC_X86_64_GOTPCRELX:
13255 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13256 case BFD_RELOC_X86_64_TLSGD:
13257 case BFD_RELOC_X86_64_TLSLD:
13258 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13259 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13260 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13261 rel->addend = fixp->fx_offset - fixp->fx_size;
13262 break;
13263 default:
13264 rel->addend = (section->vma
13265 - fixp->fx_size
13266 + fixp->fx_addnumber
13267 + md_pcrel_from (fixp));
13268 break;
13269 }
3e73aa7c
JH
13270 }
13271
252b5132
RH
13272 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13273 if (rel->howto == NULL)
13274 {
13275 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13276 _("cannot represent relocation type %s"),
252b5132
RH
13277 bfd_get_reloc_code_name (code));
13278 /* Set howto to a garbage value so that we can keep going. */
13279 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13280 gas_assert (rel->howto != NULL);
252b5132
RH
13281 }
13282
13283 return rel;
13284}
13285
ee86248c 13286#include "tc-i386-intel.c"
54cfded0 13287
a60de03c
JB
13288void
13289tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13290{
a60de03c
JB
13291 int saved_naked_reg;
13292 char saved_register_dot;
54cfded0 13293
a60de03c
JB
13294 saved_naked_reg = allow_naked_reg;
13295 allow_naked_reg = 1;
13296 saved_register_dot = register_chars['.'];
13297 register_chars['.'] = '.';
13298 allow_pseudo_reg = 1;
13299 expression_and_evaluate (exp);
13300 allow_pseudo_reg = 0;
13301 register_chars['.'] = saved_register_dot;
13302 allow_naked_reg = saved_naked_reg;
13303
e96d56a1 13304 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13305 {
a60de03c
JB
13306 if ((addressT) exp->X_add_number < i386_regtab_size)
13307 {
13308 exp->X_op = O_constant;
13309 exp->X_add_number = i386_regtab[exp->X_add_number]
13310 .dw2_regnum[flag_code >> 1];
13311 }
13312 else
13313 exp->X_op = O_illegal;
54cfded0 13314 }
54cfded0
AM
13315}
13316
13317void
13318tc_x86_frame_initial_instructions (void)
13319{
a60de03c
JB
13320 static unsigned int sp_regno[2];
13321
13322 if (!sp_regno[flag_code >> 1])
13323 {
13324 char *saved_input = input_line_pointer;
13325 char sp[][4] = {"esp", "rsp"};
13326 expressionS exp;
a4447b93 13327
a60de03c
JB
13328 input_line_pointer = sp[flag_code >> 1];
13329 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13330 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13331 sp_regno[flag_code >> 1] = exp.X_add_number;
13332 input_line_pointer = saved_input;
13333 }
a4447b93 13334
61ff971f
L
13335 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13336 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13337}
d2b2c203 13338
d7921315
L
13339int
13340x86_dwarf2_addr_size (void)
13341{
13342#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13343 if (x86_elf_abi == X86_64_X32_ABI)
13344 return 4;
13345#endif
13346 return bfd_arch_bits_per_address (stdoutput) / 8;
13347}
13348
d2b2c203
DJ
13349int
13350i386_elf_section_type (const char *str, size_t len)
13351{
13352 if (flag_code == CODE_64BIT
13353 && len == sizeof ("unwind") - 1
13354 && strncmp (str, "unwind", 6) == 0)
13355 return SHT_X86_64_UNWIND;
13356
13357 return -1;
13358}
bb41ade5 13359
ad5fec3b
EB
13360#ifdef TE_SOLARIS
13361void
13362i386_solaris_fix_up_eh_frame (segT sec)
13363{
13364 if (flag_code == CODE_64BIT)
13365 elf_section_type (sec) = SHT_X86_64_UNWIND;
13366}
13367#endif
13368
bb41ade5
AM
13369#ifdef TE_PE
13370void
13371tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13372{
91d6fa6a 13373 expressionS exp;
bb41ade5 13374
91d6fa6a
NC
13375 exp.X_op = O_secrel;
13376 exp.X_add_symbol = symbol;
13377 exp.X_add_number = 0;
13378 emit_expr (&exp, size);
bb41ade5
AM
13379}
13380#endif
3b22753a
L
13381
13382#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13383/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13384
01e1a5bc 13385bfd_vma
6d4af3c2 13386x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13387{
13388 if (flag_code == CODE_64BIT)
13389 {
13390 if (letter == 'l')
13391 return SHF_X86_64_LARGE;
13392
8f3bae45 13393 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13394 }
3b22753a 13395 else
8f3bae45 13396 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13397 return -1;
13398}
13399
01e1a5bc 13400bfd_vma
3b22753a
L
13401x86_64_section_word (char *str, size_t len)
13402{
8620418b 13403 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13404 return SHF_X86_64_LARGE;
13405
13406 return -1;
13407}
13408
13409static void
13410handle_large_common (int small ATTRIBUTE_UNUSED)
13411{
13412 if (flag_code != CODE_64BIT)
13413 {
13414 s_comm_internal (0, elf_common_parse);
13415 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13416 }
13417 else
13418 {
13419 static segT lbss_section;
13420 asection *saved_com_section_ptr = elf_com_section_ptr;
13421 asection *saved_bss_section = bss_section;
13422
13423 if (lbss_section == NULL)
13424 {
13425 flagword applicable;
13426 segT seg = now_seg;
13427 subsegT subseg = now_subseg;
13428
13429 /* The .lbss section is for local .largecomm symbols. */
13430 lbss_section = subseg_new (".lbss", 0);
13431 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13432 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13433 seg_info (lbss_section)->bss = 1;
13434
13435 subseg_set (seg, subseg);
13436 }
13437
13438 elf_com_section_ptr = &_bfd_elf_large_com_section;
13439 bss_section = lbss_section;
13440
13441 s_comm_internal (0, elf_common_parse);
13442
13443 elf_com_section_ptr = saved_com_section_ptr;
13444 bss_section = saved_bss_section;
13445 }
13446}
13447#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.307817 seconds and 4 git commands to generate.