* dw2gencfi.c, dw2gencfi.h: New files.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
ae6063d4 3 2000, 2001, 2002, 2003
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132 28
252b5132 29#include "as.h"
3882b010 30#include "safe-ctype.h"
252b5132 31#include "subsegs.h"
316e2c05 32#include "dwarf2dbg.h"
54cfded0 33#include "dw2gencfi.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
29b0f896
AM
52#ifdef BFD_ASSEMBLER
53#define RELOC_ENUM enum bfd_reloc_code_real
54#else
55#define RELOC_ENUM int
246fcdee 56#endif
29b0f896
AM
57
58#ifndef DEFAULT_ARCH
59#define DEFAULT_ARCH "i386"
246fcdee 60#endif
252b5132 61
edde18a5
AM
62#ifndef INLINE
63#if __GNUC__ >= 2
64#define INLINE __inline__
65#else
66#define INLINE
67#endif
68#endif
69
29b0f896
AM
70static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74static INLINE int fits_in_signed_word PARAMS ((offsetT));
75static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
77static int smallest_imm_type PARAMS ((offsetT));
78static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 79static int add_prefix PARAMS ((unsigned int));
3e73aa7c 80static void set_code_flag PARAMS ((int));
47926f60 81static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 82static void set_intel_syntax PARAMS ((int));
e413e4e9 83static void set_cpu_arch PARAMS ((int));
29b0f896
AM
84static char *output_invalid PARAMS ((int c));
85static int i386_operand PARAMS ((char *operand_string));
86static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89static char *parse_insn PARAMS ((char *, char *));
90static char *parse_operands PARAMS ((char *, const char *));
91static void swap_operands PARAMS ((void));
92static void optimize_imm PARAMS ((void));
93static void optimize_disp PARAMS ((void));
94static int match_template PARAMS ((void));
95static int check_string PARAMS ((void));
96static int process_suffix PARAMS ((void));
97static int check_byte_reg PARAMS ((void));
98static int check_long_reg PARAMS ((void));
99static int check_qword_reg PARAMS ((void));
100static int check_word_reg PARAMS ((void));
101static int finalize_imm PARAMS ((void));
102static int process_operands PARAMS ((void));
103static const seg_entry *build_modrm_byte PARAMS ((void));
104static void output_insn PARAMS ((void));
105static void output_branch PARAMS ((void));
106static void output_jump PARAMS ((void));
107static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
108static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
29b0f896
AM
112#ifndef I386COFF
113static void s_bss PARAMS ((int));
252b5132
RH
114#endif
115
a847613f 116static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 117
252b5132 118/* 'md_assemble ()' gathers together information and puts it into a
47926f60 119 i386_insn. */
252b5132 120
520dc8e8
AM
121union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
252b5132
RH
128struct _i386_insn
129 {
47926f60 130 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
47926f60 137 /* OPERANDS gives the number of given operands. */
252b5132
RH
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
47926f60 142 operands. */
252b5132
RH
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 146 use OP[i] for the corresponding operand. */
252b5132
RH
147 unsigned int types[MAX_OPERANDS];
148
520dc8e8
AM
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
252b5132 152
3e73aa7c
JH
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155#define Operand_PCrel 1
156
252b5132 157 /* Relocation type for operand */
f3c180ae 158 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 159
252b5132
RH
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 167 explicit segment overrides are given. */
ce8a8b2f 168 const seg_entry *seg[2];
252b5132
RH
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
3e73aa7c 179 rex_byte rex;
252b5132
RH
180 sib_byte sib;
181 };
182
183typedef struct _i386_insn i386_insn;
184
185/* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187#ifdef LEX_AT
200dbde8 188const char extra_symbol_chars[] = "*%-(@[";
252b5132 189#else
200dbde8 190const char extra_symbol_chars[] = "*%-([";
252b5132
RH
191#endif
192
29b0f896
AM
193#if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
252b5132 198/* This array holds the chars that always start a comment. If the
ce8a8b2f 199 pre-processor is disabled, these aren't very useful. */
252b5132
RH
200const char comment_chars[] = "#/";
201#define PREFIX_SEPARATOR '\\'
252b5132
RH
202
203/* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 207 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
252b5132 210 '/' isn't otherwise defined. */
0d9f6d04 211const char line_comment_chars[] = "#";
29b0f896 212
252b5132 213#else
29b0f896
AM
214/* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216const char comment_chars[] = "#";
217#define PREFIX_SEPARATOR '/'
218
0d9f6d04 219const char line_comment_chars[] = "/#";
252b5132
RH
220#endif
221
63a0b638 222const char line_separator_chars[] = ";";
252b5132 223
ce8a8b2f
AM
224/* Chars that can be used to separate mant from exp in floating point
225 nums. */
252b5132
RH
226const char EXP_CHARS[] = "eE";
227
ce8a8b2f
AM
228/* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
252b5132
RH
231const char FLT_CHARS[] = "fFdDxX";
232
ce8a8b2f 233/* Tables for lexical analysis. */
252b5132
RH
234static char mnemonic_chars[256];
235static char register_chars[256];
236static char operand_chars[256];
237static char identifier_chars[256];
238static char digit_chars[256];
239
ce8a8b2f 240/* Lexical macros. */
252b5132
RH
241#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242#define is_operand_char(x) (operand_chars[(unsigned char) x])
243#define is_register_char(x) (register_chars[(unsigned char) x])
244#define is_space_char(x) ((x) == ' ')
245#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246#define is_digit_char(x) (digit_chars[(unsigned char) x])
247
ce8a8b2f 248/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
249static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251/* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
47926f60 254 assembler instruction). */
252b5132 255static char save_stack[32];
ce8a8b2f 256static char *save_stack_p;
252b5132
RH
257#define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259#define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
47926f60 262/* The instruction we're assembling. */
252b5132
RH
263static i386_insn i;
264
265/* Possible templates for current insn. */
266static const templates *current_templates;
267
47926f60 268/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
269static expressionS disp_expressions[2], im_expressions[2];
270
47926f60
KH
271/* Current operand we are working on. */
272static int this_operand;
252b5132 273
3e73aa7c
JH
274/* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
f3c180ae 281#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
282
283static enum flag_code flag_code;
284static int use_rela_relocations = 0;
285
286/* The names used to print error messages. */
b77a7acd 287static const char *flag_code_names[] =
3e73aa7c
JH
288 {
289 "32",
290 "16",
291 "64"
292 };
252b5132 293
47926f60
KH
294/* 1 for intel syntax,
295 0 if att syntax. */
296static int intel_syntax = 0;
252b5132 297
47926f60
KH
298/* 1 if register prefix % not required. */
299static int allow_naked_reg = 0;
252b5132 300
47926f60
KH
301/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304static char stackop_size = '\0';
eecb386c 305
47926f60
KH
306/* Non-zero to quieten some warnings. */
307static int quiet_warnings = 0;
a38cf1db 308
47926f60
KH
309/* CPU name. */
310static const char *cpu_arch_name = NULL;
a38cf1db 311
47926f60 312/* CPU feature flags. */
29b0f896 313static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 314
fddf5b5b
AM
315/* If set, conditional jumps are not automatically promoted to handle
316 larger than a byte offset. */
317static unsigned int no_cond_jump_promotion = 0;
318
29b0f896
AM
319/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
320symbolS *GOT_symbol;
321
252b5132 322/* Interface to relax_segment.
fddf5b5b
AM
323 There are 3 major relax states for 386 jump insns because the
324 different types of jumps add different sizes to frags when we're
325 figuring out what sort of jump to choose to reach a given label. */
252b5132 326
47926f60 327/* Types. */
93c2a809
AM
328#define UNCOND_JUMP 0
329#define COND_JUMP 1
330#define COND_JUMP86 2
fddf5b5b 331
47926f60 332/* Sizes. */
252b5132
RH
333#define CODE16 1
334#define SMALL 0
29b0f896 335#define SMALL16 (SMALL | CODE16)
252b5132 336#define BIG 2
29b0f896 337#define BIG16 (BIG | CODE16)
252b5132
RH
338
339#ifndef INLINE
340#ifdef __GNUC__
341#define INLINE __inline__
342#else
343#define INLINE
344#endif
345#endif
346
fddf5b5b
AM
347#define ENCODE_RELAX_STATE(type, size) \
348 ((relax_substateT) (((type) << 2) | (size)))
349#define TYPE_FROM_RELAX_STATE(s) \
350 ((s) >> 2)
351#define DISP_SIZE_FROM_RELAX_STATE(s) \
352 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
353
354/* This table is used by relax_frag to promote short jumps to long
355 ones where necessary. SMALL (short) jumps may be promoted to BIG
356 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
357 don't allow a short jump in a 32 bit code segment to be promoted to
358 a 16 bit offset jump because it's slower (requires data size
359 prefix), and doesn't work, unless the destination is in the bottom
360 64k of the code segment (The top 16 bits of eip are zeroed). */
361
362const relax_typeS md_relax_table[] =
363{
24eab124
AM
364 /* The fields are:
365 1) most positive reach of this state,
366 2) most negative reach of this state,
93c2a809 367 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 368 4) which index into the table to try if we can't fit into this one. */
252b5132 369
fddf5b5b 370 /* UNCOND_JUMP states. */
93c2a809
AM
371 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
372 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
373 /* dword jmp adds 4 bytes to frag:
374 0 extra opcode bytes, 4 displacement bytes. */
252b5132 375 {0, 0, 4, 0},
93c2a809
AM
376 /* word jmp adds 2 byte2 to frag:
377 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
378 {0, 0, 2, 0},
379
93c2a809
AM
380 /* COND_JUMP states. */
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
382 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
383 /* dword conditionals adds 5 bytes to frag:
384 1 extra opcode byte, 4 displacement bytes. */
385 {0, 0, 5, 0},
fddf5b5b 386 /* word conditionals add 3 bytes to frag:
93c2a809
AM
387 1 extra opcode byte, 2 displacement bytes. */
388 {0, 0, 3, 0},
389
390 /* COND_JUMP86 states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
393 /* dword conditionals adds 5 bytes to frag:
394 1 extra opcode byte, 4 displacement bytes. */
395 {0, 0, 5, 0},
396 /* word conditionals add 4 bytes to frag:
397 1 displacement byte and a 3 byte long branch insn. */
398 {0, 0, 4, 0}
252b5132
RH
399};
400
e413e4e9
AM
401static const arch_entry cpu_arch[] = {
402 {"i8086", Cpu086 },
403 {"i186", Cpu086|Cpu186 },
404 {"i286", Cpu086|Cpu186|Cpu286 },
405 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
406 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
407 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
408 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
409 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
410 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 411 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
412 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
413 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 414 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
415 {NULL, 0 }
416};
417
29b0f896
AM
418const pseudo_typeS md_pseudo_table[] =
419{
420#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
421 {"align", s_align_bytes, 0},
422#else
423 {"align", s_align_ptwo, 0},
424#endif
425 {"arch", set_cpu_arch, 0},
426#ifndef I386COFF
427 {"bss", s_bss, 0},
428#endif
429 {"ffloat", float_cons, 'f'},
430 {"dfloat", float_cons, 'd'},
431 {"tfloat", float_cons, 'x'},
432 {"value", cons, 2},
433 {"noopt", s_ignore, 0},
434 {"optim", s_ignore, 0},
435 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
436 {"code16", set_code_flag, CODE_16BIT},
437 {"code32", set_code_flag, CODE_32BIT},
438 {"code64", set_code_flag, CODE_64BIT},
439 {"intel_syntax", set_intel_syntax, 1},
440 {"att_syntax", set_intel_syntax, 0},
c6682705 441 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896
AM
442 {"loc", dwarf2_directive_loc, 0},
443 {0, 0, 0}
444};
445
446/* For interface with expression (). */
447extern char *input_line_pointer;
448
449/* Hash table for instruction mnemonic lookup. */
450static struct hash_control *op_hash;
451
452/* Hash table for register lookup. */
453static struct hash_control *reg_hash;
454\f
252b5132
RH
455void
456i386_align_code (fragP, count)
457 fragS *fragP;
458 int count;
459{
ce8a8b2f
AM
460 /* Various efficient no-op patterns for aligning code labels.
461 Note: Don't try to assemble the instructions in the comments.
462 0L and 0w are not legal. */
252b5132
RH
463 static const char f32_1[] =
464 {0x90}; /* nop */
465 static const char f32_2[] =
466 {0x89,0xf6}; /* movl %esi,%esi */
467 static const char f32_3[] =
468 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
469 static const char f32_4[] =
470 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
471 static const char f32_5[] =
472 {0x90, /* nop */
473 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
474 static const char f32_6[] =
475 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
476 static const char f32_7[] =
477 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
478 static const char f32_8[] =
479 {0x90, /* nop */
480 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
481 static const char f32_9[] =
482 {0x89,0xf6, /* movl %esi,%esi */
483 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
484 static const char f32_10[] =
485 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
486 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
487 static const char f32_11[] =
488 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
489 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
490 static const char f32_12[] =
491 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
492 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
493 static const char f32_13[] =
494 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_14[] =
497 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_15[] =
500 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
501 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
502 static const char f16_3[] =
503 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
504 static const char f16_4[] =
505 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
506 static const char f16_5[] =
507 {0x90, /* nop */
508 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
509 static const char f16_6[] =
510 {0x89,0xf6, /* mov %si,%si */
511 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
512 static const char f16_7[] =
513 {0x8d,0x74,0x00, /* lea 0(%si),%si */
514 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
515 static const char f16_8[] =
516 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
517 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
518 static const char *const f32_patt[] = {
519 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
520 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
521 };
522 static const char *const f16_patt[] = {
c3332e24 523 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
524 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
525 };
526
33fef721
JH
527 if (count <= 0 || count > 15)
528 return;
3e73aa7c 529
33fef721
JH
530 /* The recommended way to pad 64bit code is to use NOPs preceded by
531 maximally four 0x66 prefixes. Balance the size of nops. */
532 if (flag_code == CODE_64BIT)
252b5132 533 {
33fef721
JH
534 int i;
535 int nnops = (count + 3) / 4;
536 int len = count / nnops;
537 int remains = count - nnops * len;
538 int pos = 0;
539
540 for (i = 0; i < remains; i++)
252b5132 541 {
33fef721
JH
542 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
543 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
544 pos += len + 1;
545 }
546 for (; i < nnops; i++)
547 {
548 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
549 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
550 pos += len;
252b5132 551 }
252b5132 552 }
33fef721
JH
553 else
554 if (flag_code == CODE_16BIT)
555 {
556 memcpy (fragP->fr_literal + fragP->fr_fix,
557 f16_patt[count - 1], count);
558 if (count > 8)
559 /* Adjust jump offset. */
560 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
561 }
562 else
563 memcpy (fragP->fr_literal + fragP->fr_fix,
564 f32_patt[count - 1], count);
565 fragP->fr_var = count;
252b5132
RH
566}
567
252b5132
RH
568static INLINE unsigned int
569mode_from_disp_size (t)
570 unsigned int t;
571{
3e73aa7c 572 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
573}
574
575static INLINE int
576fits_in_signed_byte (num)
847f7ad4 577 offsetT num;
252b5132
RH
578{
579 return (num >= -128) && (num <= 127);
47926f60 580}
252b5132
RH
581
582static INLINE int
583fits_in_unsigned_byte (num)
847f7ad4 584 offsetT num;
252b5132
RH
585{
586 return (num & 0xff) == num;
47926f60 587}
252b5132
RH
588
589static INLINE int
590fits_in_unsigned_word (num)
847f7ad4 591 offsetT num;
252b5132
RH
592{
593 return (num & 0xffff) == num;
47926f60 594}
252b5132
RH
595
596static INLINE int
597fits_in_signed_word (num)
847f7ad4 598 offsetT num;
252b5132
RH
599{
600 return (-32768 <= num) && (num <= 32767);
47926f60 601}
3e73aa7c
JH
602static INLINE int
603fits_in_signed_long (num)
604 offsetT num ATTRIBUTE_UNUSED;
605{
606#ifndef BFD64
607 return 1;
608#else
609 return (!(((offsetT) -1 << 31) & num)
610 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
611#endif
612} /* fits_in_signed_long() */
613static INLINE int
614fits_in_unsigned_long (num)
615 offsetT num ATTRIBUTE_UNUSED;
616{
617#ifndef BFD64
618 return 1;
619#else
620 return (num & (((offsetT) 2 << 31) - 1)) == num;
621#endif
622} /* fits_in_unsigned_long() */
252b5132
RH
623
624static int
625smallest_imm_type (num)
847f7ad4 626 offsetT num;
252b5132 627{
a847613f 628 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
629 {
630 /* This code is disabled on the 486 because all the Imm1 forms
631 in the opcode table are slower on the i486. They're the
632 versions with the implicitly specified single-position
633 displacement, which has another syntax if you really want to
634 use that form. */
635 if (num == 1)
3e73aa7c 636 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 637 }
252b5132 638 return (fits_in_signed_byte (num)
3e73aa7c 639 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 640 : fits_in_unsigned_byte (num)
3e73aa7c 641 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 642 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
643 ? (Imm16 | Imm32 | Imm32S | Imm64)
644 : fits_in_signed_long (num)
645 ? (Imm32 | Imm32S | Imm64)
646 : fits_in_unsigned_long (num)
647 ? (Imm32 | Imm64)
648 : Imm64);
47926f60 649}
252b5132 650
847f7ad4
AM
651static offsetT
652offset_in_range (val, size)
653 offsetT val;
654 int size;
655{
508866be 656 addressT mask;
ba2adb93 657
847f7ad4
AM
658 switch (size)
659 {
508866be
L
660 case 1: mask = ((addressT) 1 << 8) - 1; break;
661 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 662 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
663#ifdef BFD64
664 case 8: mask = ((addressT) 2 << 63) - 1; break;
665#endif
47926f60 666 default: abort ();
847f7ad4
AM
667 }
668
ba2adb93 669 /* If BFD64, sign extend val. */
3e73aa7c
JH
670 if (!use_rela_relocations)
671 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
672 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 673
47926f60 674 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
675 {
676 char buf1[40], buf2[40];
677
678 sprint_value (buf1, val);
679 sprint_value (buf2, val & mask);
680 as_warn (_("%s shortened to %s"), buf1, buf2);
681 }
682 return val & mask;
683}
684
252b5132
RH
685/* Returns 0 if attempting to add a prefix where one from the same
686 class already exists, 1 if non rep/repne added, 2 if rep/repne
687 added. */
688static int
689add_prefix (prefix)
690 unsigned int prefix;
691{
692 int ret = 1;
693 int q;
694
29b0f896
AM
695 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
696 && flag_code == CODE_64BIT)
3e73aa7c
JH
697 q = REX_PREFIX;
698 else
699 switch (prefix)
700 {
701 default:
702 abort ();
703
704 case CS_PREFIX_OPCODE:
705 case DS_PREFIX_OPCODE:
706 case ES_PREFIX_OPCODE:
707 case FS_PREFIX_OPCODE:
708 case GS_PREFIX_OPCODE:
709 case SS_PREFIX_OPCODE:
710 q = SEG_PREFIX;
711 break;
252b5132 712
3e73aa7c
JH
713 case REPNE_PREFIX_OPCODE:
714 case REPE_PREFIX_OPCODE:
715 ret = 2;
716 /* fall thru */
717 case LOCK_PREFIX_OPCODE:
718 q = LOCKREP_PREFIX;
719 break;
252b5132 720
3e73aa7c
JH
721 case FWAIT_OPCODE:
722 q = WAIT_PREFIX;
723 break;
252b5132 724
3e73aa7c
JH
725 case ADDR_PREFIX_OPCODE:
726 q = ADDR_PREFIX;
727 break;
252b5132 728
3e73aa7c
JH
729 case DATA_PREFIX_OPCODE:
730 q = DATA_PREFIX;
731 break;
732 }
252b5132 733
29b0f896 734 if (i.prefix[q] != 0)
252b5132
RH
735 {
736 as_bad (_("same type of prefix used twice"));
737 return 0;
738 }
739
740 i.prefixes += 1;
741 i.prefix[q] = prefix;
742 return ret;
743}
744
745static void
3e73aa7c 746set_code_flag (value)
e5cb08ac 747 int value;
eecb386c 748{
3e73aa7c
JH
749 flag_code = value;
750 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
751 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
752 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
753 {
754 as_bad (_("64bit mode not supported on this CPU."));
755 }
756 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
757 {
758 as_bad (_("32bit mode not supported on this CPU."));
759 }
eecb386c
AM
760 stackop_size = '\0';
761}
762
763static void
3e73aa7c
JH
764set_16bit_gcc_code_flag (new_code_flag)
765 int new_code_flag;
252b5132 766{
3e73aa7c
JH
767 flag_code = new_code_flag;
768 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
769 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
770 stackop_size = 'l';
252b5132
RH
771}
772
773static void
774set_intel_syntax (syntax_flag)
eecb386c 775 int syntax_flag;
252b5132
RH
776{
777 /* Find out if register prefixing is specified. */
778 int ask_naked_reg = 0;
779
780 SKIP_WHITESPACE ();
29b0f896 781 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
782 {
783 char *string = input_line_pointer;
784 int e = get_symbol_end ();
785
47926f60 786 if (strcmp (string, "prefix") == 0)
252b5132 787 ask_naked_reg = 1;
47926f60 788 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
789 ask_naked_reg = -1;
790 else
d0b47220 791 as_bad (_("bad argument to syntax directive."));
252b5132
RH
792 *input_line_pointer = e;
793 }
794 demand_empty_rest_of_line ();
c3332e24 795
252b5132
RH
796 intel_syntax = syntax_flag;
797
798 if (ask_naked_reg == 0)
799 {
800#ifdef BFD_ASSEMBLER
801 allow_naked_reg = (intel_syntax
24eab124 802 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 803#else
47926f60
KH
804 /* Conservative default. */
805 allow_naked_reg = 0;
252b5132
RH
806#endif
807 }
808 else
809 allow_naked_reg = (ask_naked_reg < 0);
810}
811
e413e4e9
AM
812static void
813set_cpu_arch (dummy)
47926f60 814 int dummy ATTRIBUTE_UNUSED;
e413e4e9 815{
47926f60 816 SKIP_WHITESPACE ();
e413e4e9 817
29b0f896 818 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
819 {
820 char *string = input_line_pointer;
821 int e = get_symbol_end ();
822 int i;
823
824 for (i = 0; cpu_arch[i].name; i++)
825 {
826 if (strcmp (string, cpu_arch[i].name) == 0)
827 {
828 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
829 cpu_arch_flags = (cpu_arch[i].flags
830 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
831 break;
832 }
833 }
834 if (!cpu_arch[i].name)
835 as_bad (_("no such architecture: `%s'"), string);
836
837 *input_line_pointer = e;
838 }
839 else
840 as_bad (_("missing cpu architecture"));
841
fddf5b5b
AM
842 no_cond_jump_promotion = 0;
843 if (*input_line_pointer == ','
29b0f896 844 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
845 {
846 char *string = ++input_line_pointer;
847 int e = get_symbol_end ();
848
849 if (strcmp (string, "nojumps") == 0)
850 no_cond_jump_promotion = 1;
851 else if (strcmp (string, "jumps") == 0)
852 ;
853 else
854 as_bad (_("no such architecture modifier: `%s'"), string);
855
856 *input_line_pointer = e;
857 }
858
e413e4e9
AM
859 demand_empty_rest_of_line ();
860}
861
b9d79e03
JH
862#ifdef BFD_ASSEMBLER
863unsigned long
864i386_mach ()
865{
866 if (!strcmp (default_arch, "x86_64"))
867 return bfd_mach_x86_64;
868 else if (!strcmp (default_arch, "i386"))
869 return bfd_mach_i386_i386;
870 else
871 as_fatal (_("Unknown architecture"));
872}
873#endif
874\f
252b5132
RH
875void
876md_begin ()
877{
878 const char *hash_err;
879
47926f60 880 /* Initialize op_hash hash table. */
252b5132
RH
881 op_hash = hash_new ();
882
883 {
29b0f896
AM
884 const template *optab;
885 templates *core_optab;
252b5132 886
47926f60
KH
887 /* Setup for loop. */
888 optab = i386_optab;
252b5132
RH
889 core_optab = (templates *) xmalloc (sizeof (templates));
890 core_optab->start = optab;
891
892 while (1)
893 {
894 ++optab;
895 if (optab->name == NULL
896 || strcmp (optab->name, (optab - 1)->name) != 0)
897 {
898 /* different name --> ship out current template list;
47926f60 899 add to hash table; & begin anew. */
252b5132
RH
900 core_optab->end = optab;
901 hash_err = hash_insert (op_hash,
902 (optab - 1)->name,
903 (PTR) core_optab);
904 if (hash_err)
905 {
252b5132
RH
906 as_fatal (_("Internal Error: Can't hash %s: %s"),
907 (optab - 1)->name,
908 hash_err);
909 }
910 if (optab->name == NULL)
911 break;
912 core_optab = (templates *) xmalloc (sizeof (templates));
913 core_optab->start = optab;
914 }
915 }
916 }
917
47926f60 918 /* Initialize reg_hash hash table. */
252b5132
RH
919 reg_hash = hash_new ();
920 {
29b0f896 921 const reg_entry *regtab;
252b5132
RH
922
923 for (regtab = i386_regtab;
924 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
925 regtab++)
926 {
927 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
928 if (hash_err)
3e73aa7c
JH
929 as_fatal (_("Internal Error: Can't hash %s: %s"),
930 regtab->reg_name,
931 hash_err);
252b5132
RH
932 }
933 }
934
47926f60 935 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 936 {
29b0f896
AM
937 int c;
938 char *p;
252b5132
RH
939
940 for (c = 0; c < 256; c++)
941 {
3882b010 942 if (ISDIGIT (c))
252b5132
RH
943 {
944 digit_chars[c] = c;
945 mnemonic_chars[c] = c;
946 register_chars[c] = c;
947 operand_chars[c] = c;
948 }
3882b010 949 else if (ISLOWER (c))
252b5132
RH
950 {
951 mnemonic_chars[c] = c;
952 register_chars[c] = c;
953 operand_chars[c] = c;
954 }
3882b010 955 else if (ISUPPER (c))
252b5132 956 {
3882b010 957 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
958 register_chars[c] = mnemonic_chars[c];
959 operand_chars[c] = c;
960 }
961
3882b010 962 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
963 identifier_chars[c] = c;
964 else if (c >= 128)
965 {
966 identifier_chars[c] = c;
967 operand_chars[c] = c;
968 }
969 }
970
971#ifdef LEX_AT
972 identifier_chars['@'] = '@';
973#endif
252b5132
RH
974 digit_chars['-'] = '-';
975 identifier_chars['_'] = '_';
976 identifier_chars['.'] = '.';
977
978 for (p = operand_special_chars; *p != '\0'; p++)
979 operand_chars[(unsigned char) *p] = *p;
980 }
981
982#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
983 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
984 {
985 record_alignment (text_section, 2);
986 record_alignment (data_section, 2);
987 record_alignment (bss_section, 2);
988 }
989#endif
990}
991
992void
993i386_print_statistics (file)
994 FILE *file;
995{
996 hash_print_statistics (file, "i386 opcode", op_hash);
997 hash_print_statistics (file, "i386 register", reg_hash);
998}
999\f
252b5132
RH
1000#ifdef DEBUG386
1001
ce8a8b2f 1002/* Debugging routines for md_assemble. */
252b5132
RH
1003static void pi PARAMS ((char *, i386_insn *));
1004static void pte PARAMS ((template *));
1005static void pt PARAMS ((unsigned int));
1006static void pe PARAMS ((expressionS *));
1007static void ps PARAMS ((symbolS *));
1008
1009static void
1010pi (line, x)
1011 char *line;
1012 i386_insn *x;
1013{
09f131f2 1014 unsigned int i;
252b5132
RH
1015
1016 fprintf (stdout, "%s: template ", line);
1017 pte (&x->tm);
09f131f2
JH
1018 fprintf (stdout, " address: base %s index %s scale %x\n",
1019 x->base_reg ? x->base_reg->reg_name : "none",
1020 x->index_reg ? x->index_reg->reg_name : "none",
1021 x->log2_scale_factor);
1022 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1023 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1024 fprintf (stdout, " sib: base %x index %x scale %x\n",
1025 x->sib.base, x->sib.index, x->sib.scale);
1026 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1027 (x->rex & REX_MODE64) != 0,
1028 (x->rex & REX_EXTX) != 0,
1029 (x->rex & REX_EXTY) != 0,
1030 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1031 for (i = 0; i < x->operands; i++)
1032 {
1033 fprintf (stdout, " #%d: ", i + 1);
1034 pt (x->types[i]);
1035 fprintf (stdout, "\n");
1036 if (x->types[i]
3f4438ab 1037 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1038 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1039 if (x->types[i] & Imm)
520dc8e8 1040 pe (x->op[i].imms);
252b5132 1041 if (x->types[i] & Disp)
520dc8e8 1042 pe (x->op[i].disps);
252b5132
RH
1043 }
1044}
1045
1046static void
1047pte (t)
1048 template *t;
1049{
09f131f2 1050 unsigned int i;
252b5132 1051 fprintf (stdout, " %d operands ", t->operands);
47926f60 1052 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1053 if (t->extension_opcode != None)
1054 fprintf (stdout, "ext %x ", t->extension_opcode);
1055 if (t->opcode_modifier & D)
1056 fprintf (stdout, "D");
1057 if (t->opcode_modifier & W)
1058 fprintf (stdout, "W");
1059 fprintf (stdout, "\n");
1060 for (i = 0; i < t->operands; i++)
1061 {
1062 fprintf (stdout, " #%d type ", i + 1);
1063 pt (t->operand_types[i]);
1064 fprintf (stdout, "\n");
1065 }
1066}
1067
1068static void
1069pe (e)
1070 expressionS *e;
1071{
24eab124 1072 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1073 fprintf (stdout, " add_number %ld (%lx)\n",
1074 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1075 if (e->X_add_symbol)
1076 {
1077 fprintf (stdout, " add_symbol ");
1078 ps (e->X_add_symbol);
1079 fprintf (stdout, "\n");
1080 }
1081 if (e->X_op_symbol)
1082 {
1083 fprintf (stdout, " op_symbol ");
1084 ps (e->X_op_symbol);
1085 fprintf (stdout, "\n");
1086 }
1087}
1088
1089static void
1090ps (s)
1091 symbolS *s;
1092{
1093 fprintf (stdout, "%s type %s%s",
1094 S_GET_NAME (s),
1095 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1096 segment_name (S_GET_SEGMENT (s)));
1097}
1098
1099struct type_name
1100 {
1101 unsigned int mask;
1102 char *tname;
1103 }
1104
29b0f896 1105static const type_names[] =
252b5132
RH
1106{
1107 { Reg8, "r8" },
1108 { Reg16, "r16" },
1109 { Reg32, "r32" },
09f131f2 1110 { Reg64, "r64" },
252b5132
RH
1111 { Imm8, "i8" },
1112 { Imm8S, "i8s" },
1113 { Imm16, "i16" },
1114 { Imm32, "i32" },
09f131f2
JH
1115 { Imm32S, "i32s" },
1116 { Imm64, "i64" },
252b5132
RH
1117 { Imm1, "i1" },
1118 { BaseIndex, "BaseIndex" },
1119 { Disp8, "d8" },
1120 { Disp16, "d16" },
1121 { Disp32, "d32" },
09f131f2
JH
1122 { Disp32S, "d32s" },
1123 { Disp64, "d64" },
252b5132
RH
1124 { InOutPortReg, "InOutPortReg" },
1125 { ShiftCount, "ShiftCount" },
1126 { Control, "control reg" },
1127 { Test, "test reg" },
1128 { Debug, "debug reg" },
1129 { FloatReg, "FReg" },
1130 { FloatAcc, "FAcc" },
1131 { SReg2, "SReg2" },
1132 { SReg3, "SReg3" },
1133 { Acc, "Acc" },
1134 { JumpAbsolute, "Jump Absolute" },
1135 { RegMMX, "rMMX" },
3f4438ab 1136 { RegXMM, "rXMM" },
252b5132
RH
1137 { EsSeg, "es" },
1138 { 0, "" }
1139};
1140
1141static void
1142pt (t)
1143 unsigned int t;
1144{
29b0f896 1145 const struct type_name *ty;
252b5132 1146
09f131f2
JH
1147 for (ty = type_names; ty->mask; ty++)
1148 if (t & ty->mask)
1149 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1150 fflush (stdout);
1151}
1152
1153#endif /* DEBUG386 */
1154\f
252b5132 1155#ifdef BFD_ASSEMBLER
29b0f896
AM
1156static bfd_reloc_code_real_type reloc
1157 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1158
1159static bfd_reloc_code_real_type
3e73aa7c 1160reloc (size, pcrel, sign, other)
252b5132
RH
1161 int size;
1162 int pcrel;
3e73aa7c 1163 int sign;
252b5132
RH
1164 bfd_reloc_code_real_type other;
1165{
47926f60
KH
1166 if (other != NO_RELOC)
1167 return other;
252b5132
RH
1168
1169 if (pcrel)
1170 {
3e73aa7c 1171 if (!sign)
e5cb08ac 1172 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1173 switch (size)
1174 {
1175 case 1: return BFD_RELOC_8_PCREL;
1176 case 2: return BFD_RELOC_16_PCREL;
1177 case 4: return BFD_RELOC_32_PCREL;
1178 }
d0b47220 1179 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1180 }
1181 else
1182 {
3e73aa7c 1183 if (sign)
e5cb08ac 1184 switch (size)
3e73aa7c
JH
1185 {
1186 case 4: return BFD_RELOC_X86_64_32S;
1187 }
1188 else
1189 switch (size)
1190 {
1191 case 1: return BFD_RELOC_8;
1192 case 2: return BFD_RELOC_16;
1193 case 4: return BFD_RELOC_32;
1194 case 8: return BFD_RELOC_64;
1195 }
1196 as_bad (_("can not do %s %d byte relocation"),
1197 sign ? "signed" : "unsigned", size);
252b5132
RH
1198 }
1199
bfb32b52 1200 abort ();
252b5132
RH
1201 return BFD_RELOC_NONE;
1202}
1203
47926f60
KH
1204/* Here we decide which fixups can be adjusted to make them relative to
1205 the beginning of the section instead of the symbol. Basically we need
1206 to make sure that the dynamic relocations are done correctly, so in
1207 some cases we force the original symbol to be used. */
1208
252b5132 1209int
c0c949c7 1210tc_i386_fix_adjustable (fixP)
31312f95 1211 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1212{
6d249963 1213#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1214 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1215 return 1;
1216
a161fe53
AM
1217 /* Don't adjust pc-relative references to merge sections in 64-bit
1218 mode. */
1219 if (use_rela_relocations
1220 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1221 && fixP->fx_pcrel)
252b5132 1222 return 0;
31312f95 1223
ce8a8b2f 1224 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1225 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1226 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1227 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1228 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1232 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1233 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1235 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1236 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1242 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1244 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1245 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1246 return 0;
31312f95 1247#endif
252b5132
RH
1248 return 1;
1249}
1250#else
ec56dfb4 1251#define reloc(SIZE,PCREL,SIGN,OTHER) 0
c6682705 1252#define BFD_RELOC_8 0
ec56dfb4
L
1253#define BFD_RELOC_16 0
1254#define BFD_RELOC_32 0
c6682705 1255#define BFD_RELOC_8_PCREL 0
ec56dfb4
L
1256#define BFD_RELOC_16_PCREL 0
1257#define BFD_RELOC_32_PCREL 0
1258#define BFD_RELOC_386_PLT32 0
1259#define BFD_RELOC_386_GOT32 0
1260#define BFD_RELOC_386_GOTOFF 0
13ae64f3
JJ
1261#define BFD_RELOC_386_TLS_GD 0
1262#define BFD_RELOC_386_TLS_LDM 0
1263#define BFD_RELOC_386_TLS_LDO_32 0
1264#define BFD_RELOC_386_TLS_IE_32 0
37e55690
JJ
1265#define BFD_RELOC_386_TLS_IE 0
1266#define BFD_RELOC_386_TLS_GOTIE 0
13ae64f3
JJ
1267#define BFD_RELOC_386_TLS_LE_32 0
1268#define BFD_RELOC_386_TLS_LE 0
ec56dfb4
L
1269#define BFD_RELOC_X86_64_PLT32 0
1270#define BFD_RELOC_X86_64_GOT32 0
1271#define BFD_RELOC_X86_64_GOTPCREL 0
bffbf940
JJ
1272#define BFD_RELOC_X86_64_TLSGD 0
1273#define BFD_RELOC_X86_64_TLSLD 0
1274#define BFD_RELOC_X86_64_DTPOFF32 0
1275#define BFD_RELOC_X86_64_GOTTPOFF 0
1276#define BFD_RELOC_X86_64_TPOFF32 0
252b5132
RH
1277#endif
1278
29b0f896 1279static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1280
1281static int
252b5132 1282intel_float_operand (mnemonic)
29b0f896 1283 const char *mnemonic;
252b5132 1284{
47926f60 1285 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1286 return 2;
252b5132
RH
1287
1288 if (mnemonic[0] == 'f')
1289 return 1;
1290
1291 return 0;
1292}
1293
1294/* This is the guts of the machine-dependent assembler. LINE points to a
1295 machine dependent instruction. This function is supposed to emit
1296 the frags/bytes it assembles to. */
1297
1298void
1299md_assemble (line)
1300 char *line;
1301{
252b5132 1302 int j;
252b5132
RH
1303 char mnemonic[MAX_MNEM_SIZE];
1304
47926f60 1305 /* Initialize globals. */
252b5132
RH
1306 memset (&i, '\0', sizeof (i));
1307 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1308 i.reloc[j] = NO_RELOC;
252b5132
RH
1309 memset (disp_expressions, '\0', sizeof (disp_expressions));
1310 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1311 save_stack_p = save_stack;
252b5132
RH
1312
1313 /* First parse an instruction mnemonic & call i386_operand for the operands.
1314 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1315 start of a (possibly prefixed) mnemonic. */
252b5132 1316
29b0f896
AM
1317 line = parse_insn (line, mnemonic);
1318 if (line == NULL)
1319 return;
252b5132 1320
29b0f896
AM
1321 line = parse_operands (line, mnemonic);
1322 if (line == NULL)
1323 return;
252b5132 1324
29b0f896
AM
1325 /* Now we've parsed the mnemonic into a set of templates, and have the
1326 operands at hand. */
1327
1328 /* All intel opcodes have reversed operands except for "bound" and
1329 "enter". We also don't reverse intersegment "jmp" and "call"
1330 instructions with 2 immediate operands so that the immediate segment
1331 precedes the offset, as it does when in AT&T mode. "enter" and the
1332 intersegment "jmp" and "call" instructions are the only ones that
1333 have two immediate operands. */
1334 if (intel_syntax && i.operands > 1
1335 && (strcmp (mnemonic, "bound") != 0)
1336 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1337 swap_operands ();
1338
1339 if (i.imm_operands)
1340 optimize_imm ();
1341
1342 if (i.disp_operands)
1343 optimize_disp ();
1344
1345 /* Next, we find a template that matches the given insn,
1346 making sure the overlap of the given operands types is consistent
1347 with the template operand types. */
252b5132 1348
29b0f896
AM
1349 if (!match_template ())
1350 return;
252b5132 1351
cd61ebfe
AM
1352 if (intel_syntax)
1353 {
1354 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1355 if (SYSV386_COMPAT
1356 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1357 i.tm.base_opcode ^= FloatR;
1358
1359 /* Zap movzx and movsx suffix. The suffix may have been set from
1360 "word ptr" or "byte ptr" on the source operand, but we'll use
1361 the suffix later to choose the destination register. */
1362 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1363 i.suffix = 0;
1364 }
24eab124 1365
29b0f896
AM
1366 if (i.tm.opcode_modifier & FWait)
1367 if (!add_prefix (FWAIT_OPCODE))
1368 return;
252b5132 1369
29b0f896
AM
1370 /* Check string instruction segment overrides. */
1371 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1372 {
1373 if (!check_string ())
5dd0794d 1374 return;
29b0f896 1375 }
5dd0794d 1376
29b0f896
AM
1377 if (!process_suffix ())
1378 return;
e413e4e9 1379
29b0f896
AM
1380 /* Make still unresolved immediate matches conform to size of immediate
1381 given in i.suffix. */
1382 if (!finalize_imm ())
1383 return;
252b5132 1384
29b0f896
AM
1385 if (i.types[0] & Imm1)
1386 i.imm_operands = 0; /* kludge for shift insns. */
1387 if (i.types[0] & ImplicitRegister)
1388 i.reg_operands--;
1389 if (i.types[1] & ImplicitRegister)
1390 i.reg_operands--;
1391 if (i.types[2] & ImplicitRegister)
1392 i.reg_operands--;
252b5132 1393
29b0f896
AM
1394 if (i.tm.opcode_modifier & ImmExt)
1395 {
1396 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1397 opcode suffix which is coded in the same place as an 8-bit
1398 immediate field would be. Here we fake an 8-bit immediate
1399 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1400
29b0f896 1401 expressionS *exp;
252b5132 1402
29b0f896 1403 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1404
29b0f896
AM
1405 exp = &im_expressions[i.imm_operands++];
1406 i.op[i.operands].imms = exp;
1407 i.types[i.operands++] = Imm8;
1408 exp->X_op = O_constant;
1409 exp->X_add_number = i.tm.extension_opcode;
1410 i.tm.extension_opcode = None;
1411 }
252b5132 1412
29b0f896
AM
1413 /* For insns with operands there are more diddles to do to the opcode. */
1414 if (i.operands)
1415 {
1416 if (!process_operands ())
1417 return;
1418 }
1419 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1420 {
1421 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1422 as_warn (_("translating to `%sp'"), i.tm.name);
1423 }
252b5132 1424
29b0f896
AM
1425 /* Handle conversion of 'int $3' --> special int3 insn. */
1426 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1427 {
1428 i.tm.base_opcode = INT3_OPCODE;
1429 i.imm_operands = 0;
1430 }
252b5132 1431
29b0f896
AM
1432 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1433 && i.op[0].disps->X_op == O_constant)
1434 {
1435 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1436 the absolute address given by the constant. Since ix86 jumps and
1437 calls are pc relative, we need to generate a reloc. */
1438 i.op[0].disps->X_add_symbol = &abs_symbol;
1439 i.op[0].disps->X_op = O_symbol;
1440 }
252b5132 1441
29b0f896
AM
1442 if ((i.tm.opcode_modifier & Rex64) != 0)
1443 i.rex |= REX_MODE64;
252b5132 1444
29b0f896
AM
1445 /* For 8 bit registers we need an empty rex prefix. Also if the
1446 instruction already has a prefix, we need to convert old
1447 registers to new ones. */
773f551c 1448
29b0f896
AM
1449 if (((i.types[0] & Reg8) != 0
1450 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1451 || ((i.types[1] & Reg8) != 0
1452 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1453 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1454 && i.rex != 0))
1455 {
1456 int x;
726c5dcd 1457
29b0f896
AM
1458 i.rex |= REX_OPCODE;
1459 for (x = 0; x < 2; x++)
1460 {
1461 /* Look for 8 bit operand that uses old registers. */
1462 if ((i.types[x] & Reg8) != 0
1463 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1464 {
29b0f896
AM
1465 /* In case it is "hi" register, give up. */
1466 if (i.op[x].regs->reg_num > 3)
1467 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1468 i.op[x].regs->reg_name);
773f551c 1469
29b0f896
AM
1470 /* Otherwise it is equivalent to the extended register.
1471 Since the encoding doesn't change this is merely
1472 cosmetic cleanup for debug output. */
1473
1474 i.op[x].regs = i.op[x].regs + 8;
773f551c 1475 }
29b0f896
AM
1476 }
1477 }
773f551c 1478
29b0f896
AM
1479 if (i.rex != 0)
1480 add_prefix (REX_OPCODE | i.rex);
1481
1482 /* We are ready to output the insn. */
1483 output_insn ();
1484}
1485
1486static char *
1487parse_insn (line, mnemonic)
1488 char *line;
1489 char *mnemonic;
1490{
1491 char *l = line;
1492 char *token_start = l;
1493 char *mnem_p;
1494
1495 /* Non-zero if we found a prefix only acceptable with string insns. */
1496 const char *expecting_string_instruction = NULL;
45288df1 1497
29b0f896
AM
1498 while (1)
1499 {
1500 mnem_p = mnemonic;
1501 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1502 {
1503 mnem_p++;
1504 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1505 {
29b0f896
AM
1506 as_bad (_("no such instruction: `%s'"), token_start);
1507 return NULL;
1508 }
1509 l++;
1510 }
1511 if (!is_space_char (*l)
1512 && *l != END_OF_INSN
1513 && *l != PREFIX_SEPARATOR
1514 && *l != ',')
1515 {
1516 as_bad (_("invalid character %s in mnemonic"),
1517 output_invalid (*l));
1518 return NULL;
1519 }
1520 if (token_start == l)
1521 {
1522 if (*l == PREFIX_SEPARATOR)
1523 as_bad (_("expecting prefix; got nothing"));
1524 else
1525 as_bad (_("expecting mnemonic; got nothing"));
1526 return NULL;
1527 }
45288df1 1528
29b0f896
AM
1529 /* Look up instruction (or prefix) via hash table. */
1530 current_templates = hash_find (op_hash, mnemonic);
47926f60 1531
29b0f896
AM
1532 if (*l != END_OF_INSN
1533 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1534 && current_templates
1535 && (current_templates->start->opcode_modifier & IsPrefix))
1536 {
1537 /* If we are in 16-bit mode, do not allow addr16 or data16.
1538 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1539 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1540 && flag_code != CODE_64BIT
1541 && (((current_templates->start->opcode_modifier & Size32) != 0)
1542 ^ (flag_code == CODE_16BIT)))
1543 {
1544 as_bad (_("redundant %s prefix"),
1545 current_templates->start->name);
1546 return NULL;
45288df1 1547 }
29b0f896
AM
1548 /* Add prefix, checking for repeated prefixes. */
1549 switch (add_prefix (current_templates->start->base_opcode))
1550 {
1551 case 0:
1552 return NULL;
1553 case 2:
1554 expecting_string_instruction = current_templates->start->name;
1555 break;
1556 }
1557 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1558 token_start = ++l;
1559 }
1560 else
1561 break;
1562 }
45288df1 1563
29b0f896
AM
1564 if (!current_templates)
1565 {
1566 /* See if we can get a match by trimming off a suffix. */
1567 switch (mnem_p[-1])
1568 {
1569 case WORD_MNEM_SUFFIX:
1570 case BYTE_MNEM_SUFFIX:
1571 case QWORD_MNEM_SUFFIX:
1572 i.suffix = mnem_p[-1];
1573 mnem_p[-1] = '\0';
1574 current_templates = hash_find (op_hash, mnemonic);
1575 break;
1576 case SHORT_MNEM_SUFFIX:
1577 case LONG_MNEM_SUFFIX:
1578 if (!intel_syntax)
1579 {
1580 i.suffix = mnem_p[-1];
1581 mnem_p[-1] = '\0';
1582 current_templates = hash_find (op_hash, mnemonic);
1583 }
1584 break;
252b5132 1585
29b0f896
AM
1586 /* Intel Syntax. */
1587 case 'd':
1588 if (intel_syntax)
1589 {
1590 if (intel_float_operand (mnemonic))
1591 i.suffix = SHORT_MNEM_SUFFIX;
1592 else
1593 i.suffix = LONG_MNEM_SUFFIX;
1594 mnem_p[-1] = '\0';
1595 current_templates = hash_find (op_hash, mnemonic);
1596 }
1597 break;
1598 }
1599 if (!current_templates)
1600 {
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 }
252b5132 1605
29b0f896
AM
1606 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1607 {
1608 /* Check for a branch hint. We allow ",pt" and ",pn" for
1609 predict taken and predict not taken respectively.
1610 I'm not sure that branch hints actually do anything on loop
1611 and jcxz insns (JumpByte) for current Pentium4 chips. They
1612 may work in the future and it doesn't hurt to accept them
1613 now. */
1614 if (l[0] == ',' && l[1] == 'p')
1615 {
1616 if (l[2] == 't')
1617 {
1618 if (!add_prefix (DS_PREFIX_OPCODE))
1619 return NULL;
1620 l += 3;
1621 }
1622 else if (l[2] == 'n')
1623 {
1624 if (!add_prefix (CS_PREFIX_OPCODE))
1625 return NULL;
1626 l += 3;
1627 }
1628 }
1629 }
1630 /* Any other comma loses. */
1631 if (*l == ',')
1632 {
1633 as_bad (_("invalid character %s in mnemonic"),
1634 output_invalid (*l));
1635 return NULL;
1636 }
252b5132 1637
29b0f896
AM
1638 /* Check if instruction is supported on specified architecture. */
1639 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1640 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1641 {
1642 as_warn (_("`%s' is not supported on `%s'"),
1643 current_templates->start->name, cpu_arch_name);
1644 }
1645 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1646 {
1647 as_warn (_("use .code16 to ensure correct addressing mode"));
1648 }
252b5132 1649
29b0f896
AM
1650 /* Check for rep/repne without a string instruction. */
1651 if (expecting_string_instruction
1652 && !(current_templates->start->opcode_modifier & IsString))
1653 {
1654 as_bad (_("expecting string instruction after `%s'"),
1655 expecting_string_instruction);
1656 return NULL;
1657 }
252b5132 1658
29b0f896
AM
1659 return l;
1660}
252b5132 1661
29b0f896
AM
1662static char *
1663parse_operands (l, mnemonic)
1664 char *l;
1665 const char *mnemonic;
1666{
1667 char *token_start;
3138f287 1668
29b0f896
AM
1669 /* 1 if operand is pending after ','. */
1670 unsigned int expecting_operand = 0;
252b5132 1671
29b0f896
AM
1672 /* Non-zero if operand parens not balanced. */
1673 unsigned int paren_not_balanced;
1674
1675 while (*l != END_OF_INSN)
1676 {
1677 /* Skip optional white space before operand. */
1678 if (is_space_char (*l))
1679 ++l;
1680 if (!is_operand_char (*l) && *l != END_OF_INSN)
1681 {
1682 as_bad (_("invalid character %s before operand %d"),
1683 output_invalid (*l),
1684 i.operands + 1);
1685 return NULL;
1686 }
1687 token_start = l; /* after white space */
1688 paren_not_balanced = 0;
1689 while (paren_not_balanced || *l != ',')
1690 {
1691 if (*l == END_OF_INSN)
1692 {
1693 if (paren_not_balanced)
1694 {
1695 if (!intel_syntax)
1696 as_bad (_("unbalanced parenthesis in operand %d."),
1697 i.operands + 1);
1698 else
1699 as_bad (_("unbalanced brackets in operand %d."),
1700 i.operands + 1);
1701 return NULL;
1702 }
1703 else
1704 break; /* we are done */
1705 }
1706 else if (!is_operand_char (*l) && !is_space_char (*l))
1707 {
1708 as_bad (_("invalid character %s in operand %d"),
1709 output_invalid (*l),
1710 i.operands + 1);
1711 return NULL;
1712 }
1713 if (!intel_syntax)
1714 {
1715 if (*l == '(')
1716 ++paren_not_balanced;
1717 if (*l == ')')
1718 --paren_not_balanced;
1719 }
1720 else
1721 {
1722 if (*l == '[')
1723 ++paren_not_balanced;
1724 if (*l == ']')
1725 --paren_not_balanced;
1726 }
1727 l++;
1728 }
1729 if (l != token_start)
1730 { /* Yes, we've read in another operand. */
1731 unsigned int operand_ok;
1732 this_operand = i.operands++;
1733 if (i.operands > MAX_OPERANDS)
1734 {
1735 as_bad (_("spurious operands; (%d operands/instruction max)"),
1736 MAX_OPERANDS);
1737 return NULL;
1738 }
1739 /* Now parse operand adding info to 'i' as we go along. */
1740 END_STRING_AND_SAVE (l);
1741
1742 if (intel_syntax)
1743 operand_ok =
1744 i386_intel_operand (token_start,
1745 intel_float_operand (mnemonic));
1746 else
1747 operand_ok = i386_operand (token_start);
1748
1749 RESTORE_END_STRING (l);
1750 if (!operand_ok)
1751 return NULL;
1752 }
1753 else
1754 {
1755 if (expecting_operand)
1756 {
1757 expecting_operand_after_comma:
1758 as_bad (_("expecting operand after ','; got nothing"));
1759 return NULL;
1760 }
1761 if (*l == ',')
1762 {
1763 as_bad (_("expecting operand before ','; got nothing"));
1764 return NULL;
1765 }
1766 }
7f3f1ea2 1767
29b0f896
AM
1768 /* Now *l must be either ',' or END_OF_INSN. */
1769 if (*l == ',')
1770 {
1771 if (*++l == END_OF_INSN)
1772 {
1773 /* Just skip it, if it's \n complain. */
1774 goto expecting_operand_after_comma;
1775 }
1776 expecting_operand = 1;
1777 }
1778 }
1779 return l;
1780}
7f3f1ea2 1781
29b0f896
AM
1782static void
1783swap_operands ()
1784{
1785 union i386_op temp_op;
1786 unsigned int temp_type;
1787 RELOC_ENUM temp_reloc;
1788 int xchg1 = 0;
1789 int xchg2 = 0;
252b5132 1790
29b0f896
AM
1791 if (i.operands == 2)
1792 {
1793 xchg1 = 0;
1794 xchg2 = 1;
1795 }
1796 else if (i.operands == 3)
1797 {
1798 xchg1 = 0;
1799 xchg2 = 2;
1800 }
1801 temp_type = i.types[xchg2];
1802 i.types[xchg2] = i.types[xchg1];
1803 i.types[xchg1] = temp_type;
1804 temp_op = i.op[xchg2];
1805 i.op[xchg2] = i.op[xchg1];
1806 i.op[xchg1] = temp_op;
1807 temp_reloc = i.reloc[xchg2];
1808 i.reloc[xchg2] = i.reloc[xchg1];
1809 i.reloc[xchg1] = temp_reloc;
1810
1811 if (i.mem_operands == 2)
1812 {
1813 const seg_entry *temp_seg;
1814 temp_seg = i.seg[0];
1815 i.seg[0] = i.seg[1];
1816 i.seg[1] = temp_seg;
1817 }
1818}
252b5132 1819
29b0f896
AM
1820/* Try to ensure constant immediates are represented in the smallest
1821 opcode possible. */
1822static void
1823optimize_imm ()
1824{
1825 char guess_suffix = 0;
1826 int op;
252b5132 1827
29b0f896
AM
1828 if (i.suffix)
1829 guess_suffix = i.suffix;
1830 else if (i.reg_operands)
1831 {
1832 /* Figure out a suffix from the last register operand specified.
1833 We can't do this properly yet, ie. excluding InOutPortReg,
1834 but the following works for instructions with immediates.
1835 In any case, we can't set i.suffix yet. */
1836 for (op = i.operands; --op >= 0;)
1837 if (i.types[op] & Reg)
252b5132 1838 {
29b0f896
AM
1839 if (i.types[op] & Reg8)
1840 guess_suffix = BYTE_MNEM_SUFFIX;
1841 else if (i.types[op] & Reg16)
1842 guess_suffix = WORD_MNEM_SUFFIX;
1843 else if (i.types[op] & Reg32)
1844 guess_suffix = LONG_MNEM_SUFFIX;
1845 else if (i.types[op] & Reg64)
1846 guess_suffix = QWORD_MNEM_SUFFIX;
1847 break;
252b5132 1848 }
29b0f896
AM
1849 }
1850 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1851 guess_suffix = WORD_MNEM_SUFFIX;
1852
1853 for (op = i.operands; --op >= 0;)
1854 if (i.types[op] & Imm)
1855 {
1856 switch (i.op[op].imms->X_op)
252b5132 1857 {
29b0f896
AM
1858 case O_constant:
1859 /* If a suffix is given, this operand may be shortened. */
1860 switch (guess_suffix)
252b5132 1861 {
29b0f896
AM
1862 case LONG_MNEM_SUFFIX:
1863 i.types[op] |= Imm32 | Imm64;
1864 break;
1865 case WORD_MNEM_SUFFIX:
1866 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1867 break;
1868 case BYTE_MNEM_SUFFIX:
1869 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1870 break;
252b5132 1871 }
252b5132 1872
29b0f896
AM
1873 /* If this operand is at most 16 bits, convert it
1874 to a signed 16 bit number before trying to see
1875 whether it will fit in an even smaller size.
1876 This allows a 16-bit operand such as $0xffe0 to
1877 be recognised as within Imm8S range. */
1878 if ((i.types[op] & Imm16)
1879 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1880 {
29b0f896
AM
1881 i.op[op].imms->X_add_number =
1882 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1883 }
1884 if ((i.types[op] & Imm32)
1885 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1886 == 0))
1887 {
1888 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1889 ^ ((offsetT) 1 << 31))
1890 - ((offsetT) 1 << 31));
1891 }
1892 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 1893
29b0f896
AM
1894 /* We must avoid matching of Imm32 templates when 64bit
1895 only immediate is available. */
1896 if (guess_suffix == QWORD_MNEM_SUFFIX)
1897 i.types[op] &= ~Imm32;
1898 break;
252b5132 1899
29b0f896
AM
1900 case O_absent:
1901 case O_register:
1902 abort ();
1903
1904 /* Symbols and expressions. */
1905 default:
1906 /* Convert symbolic operand to proper sizes for matching. */
1907 switch (guess_suffix)
1908 {
1909 case QWORD_MNEM_SUFFIX:
1910 i.types[op] = Imm64 | Imm32S;
1911 break;
1912 case LONG_MNEM_SUFFIX:
1913 i.types[op] = Imm32 | Imm64;
1914 break;
1915 case WORD_MNEM_SUFFIX:
1916 i.types[op] = Imm16 | Imm32 | Imm64;
1917 break;
1918 break;
1919 case BYTE_MNEM_SUFFIX:
1920 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1921 break;
1922 break;
252b5132 1923 }
29b0f896 1924 break;
252b5132 1925 }
29b0f896
AM
1926 }
1927}
47926f60 1928
29b0f896
AM
1929/* Try to use the smallest displacement type too. */
1930static void
1931optimize_disp ()
1932{
1933 int op;
3e73aa7c 1934
29b0f896
AM
1935 for (op = i.operands; --op >= 0;)
1936 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 1937 {
29b0f896
AM
1938 offsetT disp = i.op[op].disps->X_add_number;
1939
1940 if (i.types[op] & Disp16)
252b5132 1941 {
29b0f896
AM
1942 /* We know this operand is at most 16 bits, so
1943 convert to a signed 16 bit number before trying
1944 to see whether it will fit in an even smaller
1945 size. */
1946
1947 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 1948 }
29b0f896 1949 else if (i.types[op] & Disp32)
252b5132 1950 {
29b0f896
AM
1951 /* We know this operand is at most 32 bits, so convert to a
1952 signed 32 bit number before trying to see whether it will
1953 fit in an even smaller size. */
1954 disp &= (((offsetT) 2 << 31) - 1);
1955 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 1956 }
29b0f896 1957 if (flag_code == CODE_64BIT)
252b5132 1958 {
29b0f896
AM
1959 if (fits_in_signed_long (disp))
1960 i.types[op] |= Disp32S;
1961 if (fits_in_unsigned_long (disp))
1962 i.types[op] |= Disp32;
252b5132 1963 }
29b0f896
AM
1964 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1965 && fits_in_signed_byte (disp))
1966 i.types[op] |= Disp8;
252b5132 1967 }
29b0f896
AM
1968}
1969
1970static int
1971match_template ()
1972{
1973 /* Points to template once we've found it. */
1974 const template *t;
1975 unsigned int overlap0, overlap1, overlap2;
1976 unsigned int found_reverse_match;
1977 int suffix_check;
1978
1979#define MATCH(overlap, given, template) \
1980 ((overlap & ~JumpAbsolute) \
1981 && (((given) & (BaseIndex | JumpAbsolute)) \
1982 == ((overlap) & (BaseIndex | JumpAbsolute))))
1983
1984 /* If given types r0 and r1 are registers they must be of the same type
1985 unless the expected operand type register overlap is null.
1986 Note that Acc in a template matches every size of reg. */
1987#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1988 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
1989 || ((g0) & Reg) == ((g1) & Reg) \
1990 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1991
1992 overlap0 = 0;
1993 overlap1 = 0;
1994 overlap2 = 0;
1995 found_reverse_match = 0;
1996 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1997 ? No_bSuf
1998 : (i.suffix == WORD_MNEM_SUFFIX
1999 ? No_wSuf
2000 : (i.suffix == SHORT_MNEM_SUFFIX
2001 ? No_sSuf
2002 : (i.suffix == LONG_MNEM_SUFFIX
2003 ? No_lSuf
2004 : (i.suffix == QWORD_MNEM_SUFFIX
2005 ? No_qSuf
2006 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2007 ? No_xSuf : 0))))));
2008
2009 for (t = current_templates->start;
2010 t < current_templates->end;
2011 t++)
2012 {
2013 /* Must have right number of operands. */
2014 if (i.operands != t->operands)
2015 continue;
2016
2017 /* Check the suffix, except for some instructions in intel mode. */
2018 if ((t->opcode_modifier & suffix_check)
2019 && !(intel_syntax
2020 && (t->opcode_modifier & IgnoreSize))
2021 && !(intel_syntax
2022 && t->base_opcode == 0xd9
2023 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2024 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2025 continue;
2026
2027 /* Do not verify operands when there are none. */
2028 else if (!t->operands)
2029 {
2030 if (t->cpu_flags & ~cpu_arch_flags)
2031 continue;
2032 /* We've found a match; break out of loop. */
2033 break;
2034 }
252b5132 2035
29b0f896
AM
2036 overlap0 = i.types[0] & t->operand_types[0];
2037 switch (t->operands)
2038 {
2039 case 1:
2040 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2041 continue;
2042 break;
2043 case 2:
2044 case 3:
2045 overlap1 = i.types[1] & t->operand_types[1];
2046 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2047 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2048 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2049 t->operand_types[0],
2050 overlap1, i.types[1],
2051 t->operand_types[1]))
2052 {
2053 /* Check if other direction is valid ... */
2054 if ((t->opcode_modifier & (D | FloatD)) == 0)
2055 continue;
2056
2057 /* Try reversing direction of operands. */
2058 overlap0 = i.types[0] & t->operand_types[1];
2059 overlap1 = i.types[1] & t->operand_types[0];
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2061 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2062 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2063 t->operand_types[1],
2064 overlap1, i.types[1],
2065 t->operand_types[0]))
2066 {
2067 /* Does not match either direction. */
2068 continue;
2069 }
2070 /* found_reverse_match holds which of D or FloatDR
2071 we've found. */
2072 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2073 }
2074 /* Found a forward 2 operand match here. */
2075 else if (t->operands == 3)
2076 {
2077 /* Here we make use of the fact that there are no
2078 reverse match 3 operand instructions, and all 3
2079 operand instructions only need to be checked for
2080 register consistency between operands 2 and 3. */
2081 overlap2 = i.types[2] & t->operand_types[2];
2082 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2083 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2084 t->operand_types[1],
2085 overlap2, i.types[2],
2086 t->operand_types[2]))
2087
2088 continue;
2089 }
2090 /* Found either forward/reverse 2 or 3 operand match here:
2091 slip through to break. */
2092 }
2093 if (t->cpu_flags & ~cpu_arch_flags)
2094 {
2095 found_reverse_match = 0;
2096 continue;
2097 }
2098 /* We've found a match; break out of loop. */
2099 break;
2100 }
2101
2102 if (t == current_templates->end)
2103 {
2104 /* We found no match. */
2105 as_bad (_("suffix or operands invalid for `%s'"),
2106 current_templates->start->name);
2107 return 0;
2108 }
252b5132 2109
29b0f896
AM
2110 if (!quiet_warnings)
2111 {
2112 if (!intel_syntax
2113 && ((i.types[0] & JumpAbsolute)
2114 != (t->operand_types[0] & JumpAbsolute)))
2115 {
2116 as_warn (_("indirect %s without `*'"), t->name);
2117 }
2118
2119 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2120 == (IsPrefix | IgnoreSize))
2121 {
2122 /* Warn them that a data or address size prefix doesn't
2123 affect assembly of the next line of code. */
2124 as_warn (_("stand-alone `%s' prefix"), t->name);
2125 }
2126 }
2127
2128 /* Copy the template we found. */
2129 i.tm = *t;
2130 if (found_reverse_match)
2131 {
2132 /* If we found a reverse match we must alter the opcode
2133 direction bit. found_reverse_match holds bits to change
2134 (different for int & float insns). */
2135
2136 i.tm.base_opcode ^= found_reverse_match;
2137
2138 i.tm.operand_types[0] = t->operand_types[1];
2139 i.tm.operand_types[1] = t->operand_types[0];
2140 }
2141
2142 return 1;
2143}
2144
2145static int
2146check_string ()
2147{
2148 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2149 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2150 {
2151 if (i.seg[0] != NULL && i.seg[0] != &es)
2152 {
2153 as_bad (_("`%s' operand %d must use `%%es' segment"),
2154 i.tm.name,
2155 mem_op + 1);
2156 return 0;
2157 }
2158 /* There's only ever one segment override allowed per instruction.
2159 This instruction possibly has a legal segment override on the
2160 second operand, so copy the segment to where non-string
2161 instructions store it, allowing common code. */
2162 i.seg[0] = i.seg[1];
2163 }
2164 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2165 {
2166 if (i.seg[1] != NULL && i.seg[1] != &es)
2167 {
2168 as_bad (_("`%s' operand %d must use `%%es' segment"),
2169 i.tm.name,
2170 mem_op + 2);
2171 return 0;
2172 }
2173 }
2174 return 1;
2175}
2176
2177static int
2178process_suffix ()
2179{
2180 /* If matched instruction specifies an explicit instruction mnemonic
2181 suffix, use it. */
2182 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2183 {
2184 if (i.tm.opcode_modifier & Size16)
2185 i.suffix = WORD_MNEM_SUFFIX;
2186 else if (i.tm.opcode_modifier & Size64)
2187 i.suffix = QWORD_MNEM_SUFFIX;
2188 else
2189 i.suffix = LONG_MNEM_SUFFIX;
2190 }
2191 else if (i.reg_operands)
2192 {
2193 /* If there's no instruction mnemonic suffix we try to invent one
2194 based on register operands. */
2195 if (!i.suffix)
2196 {
2197 /* We take i.suffix from the last register operand specified,
2198 Destination register type is more significant than source
2199 register type. */
2200 int op;
2201 for (op = i.operands; --op >= 0;)
2202 if ((i.types[op] & Reg)
2203 && !(i.tm.operand_types[op] & InOutPortReg))
2204 {
2205 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2206 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2207 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2208 LONG_MNEM_SUFFIX);
2209 break;
2210 }
2211 }
2212 else if (i.suffix == BYTE_MNEM_SUFFIX)
2213 {
2214 if (!check_byte_reg ())
2215 return 0;
2216 }
2217 else if (i.suffix == LONG_MNEM_SUFFIX)
2218 {
2219 if (!check_long_reg ())
2220 return 0;
2221 }
2222 else if (i.suffix == QWORD_MNEM_SUFFIX)
2223 {
2224 if (!check_qword_reg ())
2225 return 0;
2226 }
2227 else if (i.suffix == WORD_MNEM_SUFFIX)
2228 {
2229 if (!check_word_reg ())
2230 return 0;
2231 }
2232 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2233 /* Do nothing if the instruction is going to ignore the prefix. */
2234 ;
2235 else
2236 abort ();
2237 }
2238 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2239 {
2240 i.suffix = stackop_size;
2241 }
252b5132 2242
29b0f896
AM
2243 /* Change the opcode based on the operand size given by i.suffix;
2244 We need not change things for byte insns. */
252b5132 2245
29b0f896
AM
2246 if (!i.suffix && (i.tm.opcode_modifier & W))
2247 {
2248 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2249 return 0;
2250 }
252b5132 2251
29b0f896
AM
2252 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2253 {
2254 /* It's not a byte, select word/dword operation. */
2255 if (i.tm.opcode_modifier & W)
2256 {
2257 if (i.tm.opcode_modifier & ShortForm)
2258 i.tm.base_opcode |= 8;
2259 else
2260 i.tm.base_opcode |= 1;
2261 }
0f3f3d8b 2262
29b0f896
AM
2263 /* Now select between word & dword operations via the operand
2264 size prefix, except for instructions that will ignore this
2265 prefix anyway. */
2266 if (i.suffix != QWORD_MNEM_SUFFIX
9146926a
AM
2267 && !(i.tm.opcode_modifier & IgnoreSize)
2268 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2269 || (flag_code == CODE_64BIT
2270 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
29b0f896
AM
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
252b5132 2275
29b0f896
AM
2276 if (!add_prefix (prefix))
2277 return 0;
24eab124 2278 }
252b5132 2279
29b0f896
AM
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2282 && flag_code == CODE_64BIT
29b0f896 2283 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2284 i.rex |= REX_MODE64;
3e73aa7c 2285
29b0f896
AM
2286 /* Size floating point instruction. */
2287 if (i.suffix == LONG_MNEM_SUFFIX)
2288 {
2289 if (i.tm.opcode_modifier & FloatMF)
2290 i.tm.base_opcode ^= 4;
2291 }
2292 }
7ecd2f8b 2293
29b0f896
AM
2294 return 1;
2295}
3e73aa7c 2296
29b0f896
AM
2297static int
2298check_byte_reg ()
2299{
2300 int op;
2301 for (op = i.operands; --op >= 0;)
2302 {
2303 /* If this is an eight bit register, it's OK. If it's the 16 or
2304 32 bit version of an eight bit register, we will just use the
2305 low portion, and that's OK too. */
2306 if (i.types[op] & Reg8)
2307 continue;
2308
2309 /* movzx and movsx should not generate this warning. */
2310 if (intel_syntax
2311 && (i.tm.base_opcode == 0xfb7
2312 || i.tm.base_opcode == 0xfb6
2313 || i.tm.base_opcode == 0x63
2314 || i.tm.base_opcode == 0xfbe
2315 || i.tm.base_opcode == 0xfbf))
2316 continue;
2317
2318 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2319#if 0
2320 /* Check that the template allows eight bit regs. This
2321 kills insns such as `orb $1,%edx', which maybe should be
2322 allowed. */
2323 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2324#endif
2325 )
2326 {
2327 /* Prohibit these changes in the 64bit mode, since the
2328 lowering is more complicated. */
2329 if (flag_code == CODE_64BIT
2330 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2331 {
0f3f3d8b 2332 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2333 i.op[op].regs->reg_name,
2334 i.suffix);
2335 return 0;
2336 }
2337#if REGISTER_WARNINGS
2338 if (!quiet_warnings
2339 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2340 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2341 (i.op[op].regs + (i.types[op] & Reg16
2342 ? REGNAM_AL - REGNAM_AX
2343 : REGNAM_AL - REGNAM_EAX))->reg_name,
2344 i.op[op].regs->reg_name,
2345 i.suffix);
2346#endif
2347 continue;
2348 }
2349 /* Any other register is bad. */
2350 if (i.types[op] & (Reg | RegMMX | RegXMM
2351 | SReg2 | SReg3
2352 | Control | Debug | Test
2353 | FloatReg | FloatAcc))
2354 {
2355 as_bad (_("`%%%s' not allowed with `%s%c'"),
2356 i.op[op].regs->reg_name,
2357 i.tm.name,
2358 i.suffix);
2359 return 0;
2360 }
2361 }
2362 return 1;
2363}
2364
2365static int
2366check_long_reg ()
2367{
2368 int op;
2369
2370 for (op = i.operands; --op >= 0;)
2371 /* Reject eight bit registers, except where the template requires
2372 them. (eg. movzb) */
2373 if ((i.types[op] & Reg8) != 0
2374 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2375 {
2376 as_bad (_("`%%%s' not allowed with `%s%c'"),
2377 i.op[op].regs->reg_name,
2378 i.tm.name,
2379 i.suffix);
2380 return 0;
2381 }
2382 /* Warn if the e prefix on a general reg is missing. */
2383 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2384 && (i.types[op] & Reg16) != 0
2385 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2386 {
2387 /* Prohibit these changes in the 64bit mode, since the
2388 lowering is more complicated. */
2389 if (flag_code == CODE_64BIT)
252b5132 2390 {
0f3f3d8b 2391 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2392 i.op[op].regs->reg_name,
2393 i.suffix);
2394 return 0;
252b5132 2395 }
29b0f896
AM
2396#if REGISTER_WARNINGS
2397 else
2398 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2399 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2400 i.op[op].regs->reg_name,
2401 i.suffix);
2402#endif
252b5132 2403 }
29b0f896
AM
2404 /* Warn if the r prefix on a general reg is missing. */
2405 else if ((i.types[op] & Reg64) != 0
2406 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2407 {
0f3f3d8b 2408 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2409 i.op[op].regs->reg_name,
2410 i.suffix);
2411 return 0;
2412 }
2413 return 1;
2414}
252b5132 2415
29b0f896
AM
2416static int
2417check_qword_reg ()
2418{
2419 int op;
252b5132 2420
29b0f896
AM
2421 for (op = i.operands; --op >= 0; )
2422 /* Reject eight bit registers, except where the template requires
2423 them. (eg. movzb) */
2424 if ((i.types[op] & Reg8) != 0
2425 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2426 {
2427 as_bad (_("`%%%s' not allowed with `%s%c'"),
2428 i.op[op].regs->reg_name,
2429 i.tm.name,
2430 i.suffix);
2431 return 0;
2432 }
2433 /* Warn if the e prefix on a general reg is missing. */
2434 else if (((i.types[op] & Reg16) != 0
2435 || (i.types[op] & Reg32) != 0)
2436 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2437 {
2438 /* Prohibit these changes in the 64bit mode, since the
2439 lowering is more complicated. */
0f3f3d8b 2440 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2441 i.op[op].regs->reg_name,
2442 i.suffix);
2443 return 0;
252b5132 2444 }
29b0f896
AM
2445 return 1;
2446}
252b5132 2447
29b0f896
AM
2448static int
2449check_word_reg ()
2450{
2451 int op;
2452 for (op = i.operands; --op >= 0;)
2453 /* Reject eight bit registers, except where the template requires
2454 them. (eg. movzb) */
2455 if ((i.types[op] & Reg8) != 0
2456 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2457 {
2458 as_bad (_("`%%%s' not allowed with `%s%c'"),
2459 i.op[op].regs->reg_name,
2460 i.tm.name,
2461 i.suffix);
2462 return 0;
2463 }
2464 /* Warn if the e prefix on a general reg is present. */
2465 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2466 && (i.types[op] & Reg32) != 0
2467 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2468 {
29b0f896
AM
2469 /* Prohibit these changes in the 64bit mode, since the
2470 lowering is more complicated. */
2471 if (flag_code == CODE_64BIT)
252b5132 2472 {
0f3f3d8b 2473 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2474 i.op[op].regs->reg_name,
2475 i.suffix);
2476 return 0;
252b5132 2477 }
29b0f896
AM
2478 else
2479#if REGISTER_WARNINGS
2480 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2481 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2482 i.op[op].regs->reg_name,
2483 i.suffix);
2484#endif
2485 }
2486 return 1;
2487}
252b5132 2488
29b0f896
AM
2489static int
2490finalize_imm ()
2491{
2492 unsigned int overlap0, overlap1, overlap2;
2493
2494 overlap0 = i.types[0] & i.tm.operand_types[0];
2495 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2496 && overlap0 != Imm8 && overlap0 != Imm8S
2497 && overlap0 != Imm16 && overlap0 != Imm32S
2498 && overlap0 != Imm32 && overlap0 != Imm64)
2499 {
2500 if (i.suffix)
2501 {
2502 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2503 ? Imm8 | Imm8S
2504 : (i.suffix == WORD_MNEM_SUFFIX
2505 ? Imm16
2506 : (i.suffix == QWORD_MNEM_SUFFIX
2507 ? Imm64 | Imm32S
2508 : Imm32)));
2509 }
2510 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2511 || overlap0 == (Imm16 | Imm32)
2512 || overlap0 == (Imm16 | Imm32S))
2513 {
2514 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2515 ? Imm16 : Imm32S);
2516 }
2517 if (overlap0 != Imm8 && overlap0 != Imm8S
2518 && overlap0 != Imm16 && overlap0 != Imm32S
2519 && overlap0 != Imm32 && overlap0 != Imm64)
2520 {
2521 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2522 return 0;
2523 }
2524 }
2525 i.types[0] = overlap0;
2526
2527 overlap1 = i.types[1] & i.tm.operand_types[1];
2528 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2529 && overlap1 != Imm8 && overlap1 != Imm8S
2530 && overlap1 != Imm16 && overlap1 != Imm32S
2531 && overlap1 != Imm32 && overlap1 != Imm64)
2532 {
2533 if (i.suffix)
2534 {
2535 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2536 ? Imm8 | Imm8S
2537 : (i.suffix == WORD_MNEM_SUFFIX
2538 ? Imm16
2539 : (i.suffix == QWORD_MNEM_SUFFIX
2540 ? Imm64 | Imm32S
2541 : Imm32)));
2542 }
2543 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2544 || overlap1 == (Imm16 | Imm32)
2545 || overlap1 == (Imm16 | Imm32S))
2546 {
2547 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2548 ? Imm16 : Imm32S);
2549 }
2550 if (overlap1 != Imm8 && overlap1 != Imm8S
2551 && overlap1 != Imm16 && overlap1 != Imm32S
2552 && overlap1 != Imm32 && overlap1 != Imm64)
2553 {
2554 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2555 return 0;
2556 }
2557 }
2558 i.types[1] = overlap1;
2559
2560 overlap2 = i.types[2] & i.tm.operand_types[2];
2561 assert ((overlap2 & Imm) == 0);
2562 i.types[2] = overlap2;
2563
2564 return 1;
2565}
2566
2567static int
2568process_operands ()
2569{
2570 /* Default segment register this instruction will use for memory
2571 accesses. 0 means unknown. This is only for optimizing out
2572 unnecessary segment overrides. */
2573 const seg_entry *default_seg = 0;
2574
2575 /* The imul $imm, %reg instruction is converted into
2576 imul $imm, %reg, %reg, and the clr %reg instruction
2577 is converted into xor %reg, %reg. */
2578 if (i.tm.opcode_modifier & regKludge)
2579 {
2580 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2581 /* Pretend we saw the extra register operand. */
2582 assert (i.op[first_reg_op + 1].regs == 0);
2583 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2584 i.types[first_reg_op + 1] = i.types[first_reg_op];
2585 i.reg_operands = 2;
2586 }
2587
2588 if (i.tm.opcode_modifier & ShortForm)
2589 {
2590 /* The register or float register operand is in operand 0 or 1. */
2591 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2592 /* Register goes in low 3 bits of opcode. */
2593 i.tm.base_opcode |= i.op[op].regs->reg_num;
2594 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2595 i.rex |= REX_EXTZ;
2596 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2597 {
2598 /* Warn about some common errors, but press on regardless.
2599 The first case can be generated by gcc (<= 2.8.1). */
2600 if (i.operands == 2)
2601 {
2602 /* Reversed arguments on faddp, fsubp, etc. */
2603 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2604 i.op[1].regs->reg_name,
2605 i.op[0].regs->reg_name);
2606 }
2607 else
2608 {
2609 /* Extraneous `l' suffix on fp insn. */
2610 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2611 i.op[0].regs->reg_name);
2612 }
2613 }
2614 }
2615 else if (i.tm.opcode_modifier & Modrm)
2616 {
2617 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2618 must be put into the modrm byte). Now, we make the modrm and
2619 index base bytes based on all the info we've collected. */
29b0f896
AM
2620
2621 default_seg = build_modrm_byte ();
2622 }
2623 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2624 {
2625 if (i.tm.base_opcode == POP_SEG_SHORT
2626 && i.op[0].regs->reg_num == 1)
2627 {
2628 as_bad (_("you can't `pop %%cs'"));
2629 return 0;
2630 }
2631 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2632 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2633 i.rex |= REX_EXTZ;
2634 }
2635 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2636 {
2637 default_seg = &ds;
2638 }
2639 else if ((i.tm.opcode_modifier & IsString) != 0)
2640 {
2641 /* For the string instructions that allow a segment override
2642 on one of their operands, the default segment is ds. */
2643 default_seg = &ds;
2644 }
2645
52271982
AM
2646 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2647 as_warn (_("segment override on `lea' is ineffectual"));
2648
2649 /* If a segment was explicitly specified, and the specified segment
2650 is not the default, use an opcode prefix to select it. If we
2651 never figured out what the default segment is, then default_seg
2652 will be zero at this point, and the specified segment prefix will
2653 always be used. */
29b0f896
AM
2654 if ((i.seg[0]) && (i.seg[0] != default_seg))
2655 {
2656 if (!add_prefix (i.seg[0]->seg_prefix))
2657 return 0;
2658 }
2659 return 1;
2660}
2661
2662static const seg_entry *
2663build_modrm_byte ()
2664{
2665 const seg_entry *default_seg = 0;
2666
2667 /* i.reg_operands MUST be the number of real register operands;
2668 implicit registers do not count. */
2669 if (i.reg_operands == 2)
2670 {
2671 unsigned int source, dest;
2672 source = ((i.types[0]
2673 & (Reg | RegMMX | RegXMM
2674 | SReg2 | SReg3
2675 | Control | Debug | Test))
2676 ? 0 : 1);
2677 dest = source + 1;
2678
2679 i.rm.mode = 3;
2680 /* One of the register operands will be encoded in the i.tm.reg
2681 field, the other in the combined i.tm.mode and i.tm.regmem
2682 fields. If no form of this instruction supports a memory
2683 destination operand, then we assume the source operand may
2684 sometimes be a memory operand and so we need to store the
2685 destination in the i.rm.reg field. */
2686 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2687 {
2688 i.rm.reg = i.op[dest].regs->reg_num;
2689 i.rm.regmem = i.op[source].regs->reg_num;
2690 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2691 i.rex |= REX_EXTX;
2692 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2693 i.rex |= REX_EXTZ;
2694 }
2695 else
2696 {
2697 i.rm.reg = i.op[source].regs->reg_num;
2698 i.rm.regmem = i.op[dest].regs->reg_num;
2699 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2700 i.rex |= REX_EXTZ;
2701 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2702 i.rex |= REX_EXTX;
2703 }
2704 }
2705 else
2706 { /* If it's not 2 reg operands... */
2707 if (i.mem_operands)
2708 {
2709 unsigned int fake_zero_displacement = 0;
2710 unsigned int op = ((i.types[0] & AnyMem)
2711 ? 0
2712 : (i.types[1] & AnyMem) ? 1 : 2);
2713
2714 default_seg = &ds;
2715
2716 if (i.base_reg == 0)
2717 {
2718 i.rm.mode = 0;
2719 if (!i.disp_operands)
2720 fake_zero_displacement = 1;
2721 if (i.index_reg == 0)
2722 {
2723 /* Operand is just <disp> */
2724 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2725 && (flag_code != CODE_64BIT))
2726 {
2727 i.rm.regmem = NO_BASE_REGISTER_16;
2728 i.types[op] &= ~Disp;
2729 i.types[op] |= Disp16;
2730 }
2731 else if (flag_code != CODE_64BIT
2732 || (i.prefix[ADDR_PREFIX] != 0))
2733 {
2734 i.rm.regmem = NO_BASE_REGISTER;
2735 i.types[op] &= ~Disp;
2736 i.types[op] |= Disp32;
2737 }
2738 else
2739 {
2740 /* 64bit mode overwrites the 32bit absolute
2741 addressing by RIP relative addressing and
2742 absolute addressing is encoded by one of the
2743 redundant SIB forms. */
2744 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2745 i.sib.base = NO_BASE_REGISTER;
2746 i.sib.index = NO_INDEX_REGISTER;
2747 i.types[op] &= ~Disp;
2748 i.types[op] |= Disp32S;
2749 }
2750 }
2751 else /* !i.base_reg && i.index_reg */
2752 {
2753 i.sib.index = i.index_reg->reg_num;
2754 i.sib.base = NO_BASE_REGISTER;
2755 i.sib.scale = i.log2_scale_factor;
2756 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2757 i.types[op] &= ~Disp;
2758 if (flag_code != CODE_64BIT)
2759 i.types[op] |= Disp32; /* Must be 32 bit */
2760 else
2761 i.types[op] |= Disp32S;
2762 if ((i.index_reg->reg_flags & RegRex) != 0)
2763 i.rex |= REX_EXTY;
2764 }
2765 }
2766 /* RIP addressing for 64bit mode. */
2767 else if (i.base_reg->reg_type == BaseIndex)
2768 {
2769 i.rm.regmem = NO_BASE_REGISTER;
2770 i.types[op] &= ~Disp;
2771 i.types[op] |= Disp32S;
2772 i.flags[op] = Operand_PCrel;
2773 }
2774 else if (i.base_reg->reg_type & Reg16)
2775 {
2776 switch (i.base_reg->reg_num)
2777 {
2778 case 3: /* (%bx) */
2779 if (i.index_reg == 0)
2780 i.rm.regmem = 7;
2781 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2782 i.rm.regmem = i.index_reg->reg_num - 6;
2783 break;
2784 case 5: /* (%bp) */
2785 default_seg = &ss;
2786 if (i.index_reg == 0)
2787 {
2788 i.rm.regmem = 6;
2789 if ((i.types[op] & Disp) == 0)
2790 {
2791 /* fake (%bp) into 0(%bp) */
2792 i.types[op] |= Disp8;
252b5132 2793 fake_zero_displacement = 1;
29b0f896
AM
2794 }
2795 }
2796 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2797 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2798 break;
2799 default: /* (%si) -> 4 or (%di) -> 5 */
2800 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2801 }
2802 i.rm.mode = mode_from_disp_size (i.types[op]);
2803 }
2804 else /* i.base_reg and 32/64 bit mode */
2805 {
2806 if (flag_code == CODE_64BIT
2807 && (i.types[op] & Disp))
2808 {
2809 if (i.types[op] & Disp8)
2810 i.types[op] = Disp8 | Disp32S;
2811 else
2812 i.types[op] = Disp32S;
2813 }
2814 i.rm.regmem = i.base_reg->reg_num;
2815 if ((i.base_reg->reg_flags & RegRex) != 0)
2816 i.rex |= REX_EXTZ;
2817 i.sib.base = i.base_reg->reg_num;
2818 /* x86-64 ignores REX prefix bit here to avoid decoder
2819 complications. */
2820 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2821 {
2822 default_seg = &ss;
2823 if (i.disp_operands == 0)
2824 {
2825 fake_zero_displacement = 1;
2826 i.types[op] |= Disp8;
2827 }
2828 }
2829 else if (i.base_reg->reg_num == ESP_REG_NUM)
2830 {
2831 default_seg = &ss;
2832 }
2833 i.sib.scale = i.log2_scale_factor;
2834 if (i.index_reg == 0)
2835 {
2836 /* <disp>(%esp) becomes two byte modrm with no index
2837 register. We've already stored the code for esp
2838 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2839 Any base register besides %esp will not use the
2840 extra modrm byte. */
2841 i.sib.index = NO_INDEX_REGISTER;
2842#if !SCALE1_WHEN_NO_INDEX
2843 /* Another case where we force the second modrm byte. */
2844 if (i.log2_scale_factor)
2845 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 2846#endif
29b0f896
AM
2847 }
2848 else
2849 {
2850 i.sib.index = i.index_reg->reg_num;
2851 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2852 if ((i.index_reg->reg_flags & RegRex) != 0)
2853 i.rex |= REX_EXTY;
2854 }
2855 i.rm.mode = mode_from_disp_size (i.types[op]);
2856 }
252b5132 2857
29b0f896
AM
2858 if (fake_zero_displacement)
2859 {
2860 /* Fakes a zero displacement assuming that i.types[op]
2861 holds the correct displacement size. */
2862 expressionS *exp;
2863
2864 assert (i.op[op].disps == 0);
2865 exp = &disp_expressions[i.disp_operands++];
2866 i.op[op].disps = exp;
2867 exp->X_op = O_constant;
2868 exp->X_add_number = 0;
2869 exp->X_add_symbol = (symbolS *) 0;
2870 exp->X_op_symbol = (symbolS *) 0;
2871 }
2872 }
252b5132 2873
29b0f896
AM
2874 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2875 (if any) based on i.tm.extension_opcode. Again, we must be
2876 careful to make sure that segment/control/debug/test/MMX
2877 registers are coded into the i.rm.reg field. */
2878 if (i.reg_operands)
2879 {
2880 unsigned int op =
2881 ((i.types[0]
2882 & (Reg | RegMMX | RegXMM
2883 | SReg2 | SReg3
2884 | Control | Debug | Test))
2885 ? 0
2886 : ((i.types[1]
2887 & (Reg | RegMMX | RegXMM
2888 | SReg2 | SReg3
2889 | Control | Debug | Test))
2890 ? 1
2891 : 2));
2892 /* If there is an extension opcode to put here, the register
2893 number must be put into the regmem field. */
2894 if (i.tm.extension_opcode != None)
2895 {
2896 i.rm.regmem = i.op[op].regs->reg_num;
2897 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2898 i.rex |= REX_EXTZ;
2899 }
2900 else
2901 {
2902 i.rm.reg = i.op[op].regs->reg_num;
2903 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2904 i.rex |= REX_EXTX;
2905 }
252b5132 2906
29b0f896
AM
2907 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2908 must set it to 3 to indicate this is a register operand
2909 in the regmem field. */
2910 if (!i.mem_operands)
2911 i.rm.mode = 3;
2912 }
252b5132 2913
29b0f896
AM
2914 /* Fill in i.rm.reg field with extension opcode (if any). */
2915 if (i.tm.extension_opcode != None)
2916 i.rm.reg = i.tm.extension_opcode;
2917 }
2918 return default_seg;
2919}
252b5132 2920
29b0f896
AM
2921static void
2922output_branch ()
2923{
2924 char *p;
2925 int code16;
2926 int prefix;
2927 relax_substateT subtype;
2928 symbolS *sym;
2929 offsetT off;
2930
2931 code16 = 0;
2932 if (flag_code == CODE_16BIT)
2933 code16 = CODE16;
2934
2935 prefix = 0;
2936 if (i.prefix[DATA_PREFIX] != 0)
252b5132 2937 {
29b0f896
AM
2938 prefix = 1;
2939 i.prefixes -= 1;
2940 code16 ^= CODE16;
252b5132 2941 }
29b0f896
AM
2942 /* Pentium4 branch hints. */
2943 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2944 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 2945 {
29b0f896
AM
2946 prefix++;
2947 i.prefixes--;
2948 }
2949 if (i.prefix[REX_PREFIX] != 0)
2950 {
2951 prefix++;
2952 i.prefixes--;
2f66722d
AM
2953 }
2954
29b0f896
AM
2955 if (i.prefixes != 0 && !intel_syntax)
2956 as_warn (_("skipping prefixes on this instruction"));
2957
2958 /* It's always a symbol; End frag & setup for relax.
2959 Make sure there is enough room in this frag for the largest
2960 instruction we may generate in md_convert_frag. This is 2
2961 bytes for the opcode and room for the prefix and largest
2962 displacement. */
2963 frag_grow (prefix + 2 + 4);
2964 /* Prefix and 1 opcode byte go in fr_fix. */
2965 p = frag_more (prefix + 1);
2966 if (i.prefix[DATA_PREFIX] != 0)
2967 *p++ = DATA_PREFIX_OPCODE;
2968 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2969 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2970 *p++ = i.prefix[SEG_PREFIX];
2971 if (i.prefix[REX_PREFIX] != 0)
2972 *p++ = i.prefix[REX_PREFIX];
2973 *p = i.tm.base_opcode;
2974
2975 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2976 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2977 else if ((cpu_arch_flags & Cpu386) != 0)
2978 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2979 else
2980 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2981 subtype |= code16;
3e73aa7c 2982
29b0f896
AM
2983 sym = i.op[0].disps->X_add_symbol;
2984 off = i.op[0].disps->X_add_number;
3e73aa7c 2985
29b0f896
AM
2986 if (i.op[0].disps->X_op != O_constant
2987 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 2988 {
29b0f896
AM
2989 /* Handle complex expressions. */
2990 sym = make_expr_symbol (i.op[0].disps);
2991 off = 0;
2992 }
3e73aa7c 2993
29b0f896
AM
2994 /* 1 possible extra opcode + 4 byte displacement go in var part.
2995 Pass reloc in fr_var. */
2996 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2997}
3e73aa7c 2998
29b0f896
AM
2999static void
3000output_jump ()
3001{
3002 char *p;
3003 int size;
3e02c1cc 3004 fixS *fixP;
29b0f896
AM
3005
3006 if (i.tm.opcode_modifier & JumpByte)
3007 {
3008 /* This is a loop or jecxz type instruction. */
3009 size = 1;
3010 if (i.prefix[ADDR_PREFIX] != 0)
3011 {
3012 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3013 i.prefixes -= 1;
3014 }
3015 /* Pentium4 branch hints. */
3016 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3017 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3018 {
3019 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3020 i.prefixes--;
3e73aa7c
JH
3021 }
3022 }
29b0f896
AM
3023 else
3024 {
3025 int code16;
3e73aa7c 3026
29b0f896
AM
3027 code16 = 0;
3028 if (flag_code == CODE_16BIT)
3029 code16 = CODE16;
3e73aa7c 3030
29b0f896
AM
3031 if (i.prefix[DATA_PREFIX] != 0)
3032 {
3033 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3034 i.prefixes -= 1;
3035 code16 ^= CODE16;
3036 }
252b5132 3037
29b0f896
AM
3038 size = 4;
3039 if (code16)
3040 size = 2;
3041 }
9fcc94b6 3042
29b0f896
AM
3043 if (i.prefix[REX_PREFIX] != 0)
3044 {
3045 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3046 i.prefixes -= 1;
3047 }
252b5132 3048
29b0f896
AM
3049 if (i.prefixes != 0 && !intel_syntax)
3050 as_warn (_("skipping prefixes on this instruction"));
e0890092 3051
29b0f896
AM
3052 p = frag_more (1 + size);
3053 *p++ = i.tm.base_opcode;
e0890092 3054
3e02c1cc
AM
3055 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3056 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3057
3058 /* All jumps handled here are signed, but don't use a signed limit
3059 check for 32 and 16 bit jumps as we want to allow wrap around at
3060 4G and 64k respectively. */
3061 if (size == 1)
3062 fixP->fx_signed = 1;
29b0f896 3063}
e0890092 3064
29b0f896
AM
3065static void
3066output_interseg_jump ()
3067{
3068 char *p;
3069 int size;
3070 int prefix;
3071 int code16;
252b5132 3072
29b0f896
AM
3073 code16 = 0;
3074 if (flag_code == CODE_16BIT)
3075 code16 = CODE16;
a217f122 3076
29b0f896
AM
3077 prefix = 0;
3078 if (i.prefix[DATA_PREFIX] != 0)
3079 {
3080 prefix = 1;
3081 i.prefixes -= 1;
3082 code16 ^= CODE16;
3083 }
3084 if (i.prefix[REX_PREFIX] != 0)
3085 {
3086 prefix++;
3087 i.prefixes -= 1;
3088 }
252b5132 3089
29b0f896
AM
3090 size = 4;
3091 if (code16)
3092 size = 2;
252b5132 3093
29b0f896
AM
3094 if (i.prefixes != 0 && !intel_syntax)
3095 as_warn (_("skipping prefixes on this instruction"));
252b5132 3096
29b0f896
AM
3097 /* 1 opcode; 2 segment; offset */
3098 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3099
29b0f896
AM
3100 if (i.prefix[DATA_PREFIX] != 0)
3101 *p++ = DATA_PREFIX_OPCODE;
252b5132 3102
29b0f896
AM
3103 if (i.prefix[REX_PREFIX] != 0)
3104 *p++ = i.prefix[REX_PREFIX];
252b5132 3105
29b0f896
AM
3106 *p++ = i.tm.base_opcode;
3107 if (i.op[1].imms->X_op == O_constant)
3108 {
3109 offsetT n = i.op[1].imms->X_add_number;
252b5132 3110
29b0f896
AM
3111 if (size == 2
3112 && !fits_in_unsigned_word (n)
3113 && !fits_in_signed_word (n))
3114 {
3115 as_bad (_("16-bit jump out of range"));
3116 return;
3117 }
3118 md_number_to_chars (p, n, size);
3119 }
3120 else
3121 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3122 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3123 if (i.op[0].imms->X_op != O_constant)
3124 as_bad (_("can't handle non absolute segment in `%s'"),
3125 i.tm.name);
3126 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3127}
a217f122 3128
2bbd9c25 3129
29b0f896
AM
3130static void
3131output_insn ()
3132{
2bbd9c25
JJ
3133 fragS *insn_start_frag;
3134 offsetT insn_start_off;
3135
29b0f896
AM
3136 /* Tie dwarf2 debug info to the address at the start of the insn.
3137 We can't do this after the insn has been output as the current
3138 frag may have been closed off. eg. by frag_var. */
3139 dwarf2_emit_insn (0);
3140
2bbd9c25
JJ
3141 insn_start_frag = frag_now;
3142 insn_start_off = frag_now_fix ();
3143
29b0f896
AM
3144 /* Output jumps. */
3145 if (i.tm.opcode_modifier & Jump)
3146 output_branch ();
3147 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3148 output_jump ();
3149 else if (i.tm.opcode_modifier & JumpInterSegment)
3150 output_interseg_jump ();
3151 else
3152 {
3153 /* Output normal instructions here. */
3154 char *p;
3155 unsigned char *q;
252b5132 3156
29b0f896
AM
3157 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3158 byte for the SSE instructions to specify a prefix they require. */
3159 if (i.tm.base_opcode & 0xff0000)
3160 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3161
29b0f896
AM
3162 /* The prefix bytes. */
3163 for (q = i.prefix;
3164 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3165 q++)
3166 {
3167 if (*q)
3168 {
3169 p = frag_more (1);
3170 md_number_to_chars (p, (valueT) *q, 1);
3171 }
3172 }
252b5132 3173
29b0f896
AM
3174 /* Now the opcode; be careful about word order here! */
3175 if (fits_in_unsigned_byte (i.tm.base_opcode))
3176 {
3177 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3178 }
3179 else
3180 {
3181 p = frag_more (2);
3182 /* Put out high byte first: can't use md_number_to_chars! */
3183 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3184 *p = i.tm.base_opcode & 0xff;
3185 }
3e73aa7c 3186
29b0f896
AM
3187 /* Now the modrm byte and sib byte (if present). */
3188 if (i.tm.opcode_modifier & Modrm)
3189 {
3190 p = frag_more (1);
3191 md_number_to_chars (p,
3192 (valueT) (i.rm.regmem << 0
3193 | i.rm.reg << 3
3194 | i.rm.mode << 6),
3195 1);
3196 /* If i.rm.regmem == ESP (4)
3197 && i.rm.mode != (Register mode)
3198 && not 16 bit
3199 ==> need second modrm byte. */
3200 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3201 && i.rm.mode != 3
3202 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3203 {
3204 p = frag_more (1);
3205 md_number_to_chars (p,
3206 (valueT) (i.sib.base << 0
3207 | i.sib.index << 3
3208 | i.sib.scale << 6),
3209 1);
3210 }
3211 }
3e73aa7c 3212
29b0f896 3213 if (i.disp_operands)
2bbd9c25 3214 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3215
29b0f896 3216 if (i.imm_operands)
2bbd9c25 3217 output_imm (insn_start_frag, insn_start_off);
29b0f896 3218 }
252b5132 3219
29b0f896
AM
3220#ifdef DEBUG386
3221 if (flag_debug)
3222 {
3223 pi (line, &i);
3224 }
3225#endif /* DEBUG386 */
3226}
252b5132 3227
29b0f896 3228static void
2bbd9c25
JJ
3229output_disp (insn_start_frag, insn_start_off)
3230 fragS *insn_start_frag;
3231 offsetT insn_start_off;
29b0f896
AM
3232{
3233 char *p;
3234 unsigned int n;
252b5132 3235
29b0f896
AM
3236 for (n = 0; n < i.operands; n++)
3237 {
3238 if (i.types[n] & Disp)
3239 {
3240 if (i.op[n].disps->X_op == O_constant)
3241 {
3242 int size;
3243 offsetT val;
252b5132 3244
29b0f896
AM
3245 size = 4;
3246 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3247 {
3248 size = 2;
3249 if (i.types[n] & Disp8)
3250 size = 1;
3251 if (i.types[n] & Disp64)
3252 size = 8;
3253 }
3254 val = offset_in_range (i.op[n].disps->X_add_number,
3255 size);
3256 p = frag_more (size);
3257 md_number_to_chars (p, val, size);
3258 }
3259 else
3260 {
2bbd9c25 3261 RELOC_ENUM reloc_type;
29b0f896
AM
3262 int size = 4;
3263 int sign = 0;
3264 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3265
3266 /* The PC relative address is computed relative
3267 to the instruction boundary, so in case immediate
3268 fields follows, we need to adjust the value. */
3269 if (pcrel && i.imm_operands)
3270 {
3271 int imm_size = 4;
3272 unsigned int n1;
252b5132 3273
29b0f896
AM
3274 for (n1 = 0; n1 < i.operands; n1++)
3275 if (i.types[n1] & Imm)
252b5132 3276 {
29b0f896 3277 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3278 {
29b0f896
AM
3279 imm_size = 2;
3280 if (i.types[n1] & (Imm8 | Imm8S))
3281 imm_size = 1;
3282 if (i.types[n1] & Imm64)
3283 imm_size = 8;
252b5132 3284 }
29b0f896 3285 break;
252b5132 3286 }
29b0f896
AM
3287 /* We should find the immediate. */
3288 if (n1 == i.operands)
3289 abort ();
3290 i.op[n].disps->X_add_number -= imm_size;
3291 }
520dc8e8 3292
29b0f896
AM
3293 if (i.types[n] & Disp32S)
3294 sign = 1;
3e73aa7c 3295
29b0f896
AM
3296 if (i.types[n] & (Disp16 | Disp64))
3297 {
3298 size = 2;
3299 if (i.types[n] & Disp64)
3300 size = 8;
3301 }
520dc8e8 3302
29b0f896 3303 p = frag_more (size);
2bbd9c25
JJ
3304 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3305#ifdef BFD_ASSEMBLER
3306 if (reloc_type == BFD_RELOC_32
3307 && GOT_symbol
3308 && GOT_symbol == i.op[n].disps->X_add_symbol
3309 && (i.op[n].disps->X_op == O_symbol
3310 || (i.op[n].disps->X_op == O_add
3311 && ((symbol_get_value_expression
3312 (i.op[n].disps->X_op_symbol)->X_op)
3313 == O_subtract))))
3314 {
3315 offsetT add;
3316
3317 if (insn_start_frag == frag_now)
3318 add = (p - frag_now->fr_literal) - insn_start_off;
3319 else
3320 {
3321 fragS *fr;
3322
3323 add = insn_start_frag->fr_fix - insn_start_off;
3324 for (fr = insn_start_frag->fr_next;
3325 fr && fr != frag_now; fr = fr->fr_next)
3326 add += fr->fr_fix;
3327 add += p - frag_now->fr_literal;
3328 }
3329
3330 /* We don't support dynamic linking on x86-64 yet. */
3331 if (flag_code == CODE_64BIT)
3332 abort ();
3333 reloc_type = BFD_RELOC_386_GOTPC;
3334 i.op[n].disps->X_add_number += add;
3335 }
3336#endif
062cd5e7 3337 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3338 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3339 }
3340 }
3341 }
3342}
252b5132 3343
29b0f896 3344static void
2bbd9c25
JJ
3345output_imm (insn_start_frag, insn_start_off)
3346 fragS *insn_start_frag;
3347 offsetT insn_start_off;
29b0f896
AM
3348{
3349 char *p;
3350 unsigned int n;
252b5132 3351
29b0f896
AM
3352 for (n = 0; n < i.operands; n++)
3353 {
3354 if (i.types[n] & Imm)
3355 {
3356 if (i.op[n].imms->X_op == O_constant)
3357 {
3358 int size;
3359 offsetT val;
b4cac588 3360
29b0f896
AM
3361 size = 4;
3362 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3363 {
3364 size = 2;
3365 if (i.types[n] & (Imm8 | Imm8S))
3366 size = 1;
3367 else if (i.types[n] & Imm64)
3368 size = 8;
3369 }
3370 val = offset_in_range (i.op[n].imms->X_add_number,
3371 size);
3372 p = frag_more (size);
3373 md_number_to_chars (p, val, size);
3374 }
3375 else
3376 {
3377 /* Not absolute_section.
3378 Need a 32-bit fixup (don't support 8bit
3379 non-absolute imms). Try to support other
3380 sizes ... */
3381 RELOC_ENUM reloc_type;
3382 int size = 4;
3383 int sign = 0;
3384
3385 if ((i.types[n] & (Imm32S))
3386 && i.suffix == QWORD_MNEM_SUFFIX)
3387 sign = 1;
3388 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3389 {
3390 size = 2;
3391 if (i.types[n] & (Imm8 | Imm8S))
3392 size = 1;
3393 if (i.types[n] & Imm64)
3394 size = 8;
3395 }
520dc8e8 3396
29b0f896
AM
3397 p = frag_more (size);
3398 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3399#ifdef BFD_ASSEMBLER
2bbd9c25
JJ
3400 /* This is tough to explain. We end up with this one if we
3401 * have operands that look like
3402 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3403 * obtain the absolute address of the GOT, and it is strongly
3404 * preferable from a performance point of view to avoid using
3405 * a runtime relocation for this. The actual sequence of
3406 * instructions often look something like:
3407 *
3408 * call .L66
3409 * .L66:
3410 * popl %ebx
3411 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3412 *
3413 * The call and pop essentially return the absolute address
3414 * of the label .L66 and store it in %ebx. The linker itself
3415 * will ultimately change the first operand of the addl so
3416 * that %ebx points to the GOT, but to keep things simple, the
3417 * .o file must have this operand set so that it generates not
3418 * the absolute address of .L66, but the absolute address of
3419 * itself. This allows the linker itself simply treat a GOTPC
3420 * relocation as asking for a pcrel offset to the GOT to be
3421 * added in, and the addend of the relocation is stored in the
3422 * operand field for the instruction itself.
3423 *
3424 * Our job here is to fix the operand so that it would add
3425 * the correct offset so that %ebx would point to itself. The
3426 * thing that is tricky is that .-.L66 will point to the
3427 * beginning of the instruction, so we need to further modify
3428 * the operand so that it will point to itself. There are
3429 * other cases where you have something like:
3430 *
3431 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3432 *
3433 * and here no correction would be required. Internally in
3434 * the assembler we treat operands of this form as not being
3435 * pcrel since the '.' is explicitly mentioned, and I wonder
3436 * whether it would simplify matters to do it this way. Who
3437 * knows. In earlier versions of the PIC patches, the
3438 * pcrel_adjust field was used to store the correction, but
3439 * since the expression is not pcrel, I felt it would be
3440 * confusing to do it this way. */
3441
29b0f896
AM
3442 if (reloc_type == BFD_RELOC_32
3443 && GOT_symbol
3444 && GOT_symbol == i.op[n].imms->X_add_symbol
3445 && (i.op[n].imms->X_op == O_symbol
3446 || (i.op[n].imms->X_op == O_add
3447 && ((symbol_get_value_expression
3448 (i.op[n].imms->X_op_symbol)->X_op)
3449 == O_subtract))))
3450 {
2bbd9c25
JJ
3451 offsetT add;
3452
3453 if (insn_start_frag == frag_now)
3454 add = (p - frag_now->fr_literal) - insn_start_off;
3455 else
3456 {
3457 fragS *fr;
3458
3459 add = insn_start_frag->fr_fix - insn_start_off;
3460 for (fr = insn_start_frag->fr_next;
3461 fr && fr != frag_now; fr = fr->fr_next)
3462 add += fr->fr_fix;
3463 add += p - frag_now->fr_literal;
3464 }
3465
29b0f896
AM
3466 /* We don't support dynamic linking on x86-64 yet. */
3467 if (flag_code == CODE_64BIT)
3468 abort ();
3469 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3470 i.op[n].imms->X_add_number += add;
29b0f896 3471 }
252b5132 3472#endif
29b0f896
AM
3473 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3474 i.op[n].imms, 0, reloc_type);
3475 }
3476 }
3477 }
252b5132
RH
3478}
3479\f
f3c180ae
AM
3480#ifndef LEX_AT
3481static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3482
3483/* Parse operands of the form
3484 <symbol>@GOTOFF+<nnn>
3485 and similar .plt or .got references.
3486
3487 If we find one, set up the correct relocation in RELOC and copy the
3488 input string, minus the `@GOTOFF' into a malloc'd buffer for
3489 parsing by the calling routine. Return this buffer, and if ADJUST
3490 is non-null set it to the length of the string we removed from the
3491 input line. Otherwise return NULL. */
3492static char *
3493lex_got (reloc, adjust)
3494 RELOC_ENUM *reloc;
3495 int *adjust;
3496{
3497 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3498 static const struct {
3499 const char *str;
3500 const RELOC_ENUM rel[NUM_FLAG_CODE];
3501 } gotrel[] = {
13ae64f3
JJ
3502 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3503 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3504 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3505 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3506 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3507 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3508 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3509 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3510 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3511 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3512 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3513 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3514 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3515 };
3516 char *cp;
3517 unsigned int j;
3518
3519 for (cp = input_line_pointer; *cp != '@'; cp++)
3520 if (is_end_of_line[(unsigned char) *cp])
3521 return NULL;
3522
3523 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3524 {
3525 int len;
3526
3527 len = strlen (gotrel[j].str);
28f81592 3528 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3529 {
3530 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3531 {
28f81592
AM
3532 int first, second;
3533 char *tmpbuf, *past_reloc;
f3c180ae
AM
3534
3535 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3536 if (adjust)
3537 *adjust = len;
f3c180ae
AM
3538
3539 if (GOT_symbol == NULL)
3540 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3541
3542 /* Replace the relocation token with ' ', so that
3543 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3544
3545 /* The length of the first part of our input line. */
f3c180ae 3546 first = cp - input_line_pointer;
28f81592
AM
3547
3548 /* The second part goes from after the reloc token until
3549 (and including) an end_of_line char. Don't use strlen
3550 here as the end_of_line char may not be a NUL. */
3551 past_reloc = cp + 1 + len;
3552 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3553 ;
3554 second = cp - past_reloc;
3555
3556 /* Allocate and copy string. The trailing NUL shouldn't
3557 be necessary, but be safe. */
3558 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3559 memcpy (tmpbuf, input_line_pointer, first);
3560 tmpbuf[first] = ' ';
28f81592
AM
3561 memcpy (tmpbuf + first + 1, past_reloc, second);
3562 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3563 return tmpbuf;
3564 }
3565
3566 as_bad (_("@%s reloc is not supported in %s bit mode"),
3567 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3568 return NULL;
3569 }
3570 }
3571
3572 /* Might be a symbol version string. Don't as_bad here. */
3573 return NULL;
3574}
3575
3576/* x86_cons_fix_new is called via the expression parsing code when a
3577 reloc is needed. We use this hook to get the correct .got reloc. */
3578static RELOC_ENUM got_reloc = NO_RELOC;
3579
3580void
3581x86_cons_fix_new (frag, off, len, exp)
3582 fragS *frag;
3583 unsigned int off;
3584 unsigned int len;
3585 expressionS *exp;
3586{
3587 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3588 got_reloc = NO_RELOC;
3589 fix_new_exp (frag, off, len, exp, 0, r);
3590}
3591
3592void
3593x86_cons (exp, size)
3594 expressionS *exp;
3595 int size;
3596{
3597 if (size == 4)
3598 {
3599 /* Handle @GOTOFF and the like in an expression. */
3600 char *save;
3601 char *gotfree_input_line;
3602 int adjust;
3603
3604 save = input_line_pointer;
3605 gotfree_input_line = lex_got (&got_reloc, &adjust);
3606 if (gotfree_input_line)
3607 input_line_pointer = gotfree_input_line;
3608
3609 expression (exp);
3610
3611 if (gotfree_input_line)
3612 {
3613 /* expression () has merrily parsed up to the end of line,
3614 or a comma - in the wrong buffer. Transfer how far
3615 input_line_pointer has moved to the right buffer. */
3616 input_line_pointer = (save
3617 + (input_line_pointer - gotfree_input_line)
3618 + adjust);
3619 free (gotfree_input_line);
3620 }
3621 }
3622 else
3623 expression (exp);
3624}
3625#endif
3626
252b5132
RH
3627static int i386_immediate PARAMS ((char *));
3628
3629static int
3630i386_immediate (imm_start)
3631 char *imm_start;
3632{
3633 char *save_input_line_pointer;
f3c180ae
AM
3634#ifndef LEX_AT
3635 char *gotfree_input_line;
3636#endif
252b5132 3637 segT exp_seg = 0;
47926f60 3638 expressionS *exp;
252b5132
RH
3639
3640 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3641 {
d0b47220 3642 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3643 return 0;
3644 }
3645
3646 exp = &im_expressions[i.imm_operands++];
520dc8e8 3647 i.op[this_operand].imms = exp;
252b5132
RH
3648
3649 if (is_space_char (*imm_start))
3650 ++imm_start;
3651
3652 save_input_line_pointer = input_line_pointer;
3653 input_line_pointer = imm_start;
3654
3655#ifndef LEX_AT
f3c180ae
AM
3656 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3657 if (gotfree_input_line)
3658 input_line_pointer = gotfree_input_line;
252b5132
RH
3659#endif
3660
3661 exp_seg = expression (exp);
3662
83183c0c 3663 SKIP_WHITESPACE ();
252b5132 3664 if (*input_line_pointer)
f3c180ae 3665 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3666
3667 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3668#ifndef LEX_AT
3669 if (gotfree_input_line)
3670 free (gotfree_input_line);
3671#endif
252b5132 3672
2daf4fd8 3673 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3674 {
47926f60 3675 /* Missing or bad expr becomes absolute 0. */
d0b47220 3676 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3677 imm_start);
252b5132
RH
3678 exp->X_op = O_constant;
3679 exp->X_add_number = 0;
3680 exp->X_add_symbol = (symbolS *) 0;
3681 exp->X_op_symbol = (symbolS *) 0;
252b5132 3682 }
3e73aa7c 3683 else if (exp->X_op == O_constant)
252b5132 3684 {
47926f60 3685 /* Size it properly later. */
3e73aa7c
JH
3686 i.types[this_operand] |= Imm64;
3687 /* If BFD64, sign extend val. */
3688 if (!use_rela_relocations)
3689 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3690 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3691 }
4c63da97 3692#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3693 else if (1
4c63da97 3694#ifdef BFD_ASSEMBLER
47926f60 3695 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3696#endif
31312f95 3697 && exp_seg != absolute_section
47926f60 3698 && exp_seg != text_section
24eab124
AM
3699 && exp_seg != data_section
3700 && exp_seg != bss_section
3701 && exp_seg != undefined_section
252b5132 3702#ifdef BFD_ASSEMBLER
24eab124 3703 && !bfd_is_com_section (exp_seg)
252b5132 3704#endif
24eab124 3705 )
252b5132 3706 {
4c63da97 3707#ifdef BFD_ASSEMBLER
d0b47220 3708 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3709#else
d0b47220 3710 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3711#endif
252b5132
RH
3712 return 0;
3713 }
3714#endif
3715 else
3716 {
3717 /* This is an address. The size of the address will be
24eab124 3718 determined later, depending on destination register,
3e73aa7c
JH
3719 suffix, or the default for the section. */
3720 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3721 }
3722
3723 return 1;
3724}
3725
551c1ca1 3726static char *i386_scale PARAMS ((char *));
252b5132 3727
551c1ca1 3728static char *
252b5132
RH
3729i386_scale (scale)
3730 char *scale;
3731{
551c1ca1
AM
3732 offsetT val;
3733 char *save = input_line_pointer;
252b5132 3734
551c1ca1
AM
3735 input_line_pointer = scale;
3736 val = get_absolute_expression ();
3737
3738 switch (val)
252b5132 3739 {
551c1ca1
AM
3740 case 0:
3741 case 1:
252b5132
RH
3742 i.log2_scale_factor = 0;
3743 break;
551c1ca1 3744 case 2:
252b5132
RH
3745 i.log2_scale_factor = 1;
3746 break;
551c1ca1 3747 case 4:
252b5132
RH
3748 i.log2_scale_factor = 2;
3749 break;
551c1ca1 3750 case 8:
252b5132
RH
3751 i.log2_scale_factor = 3;
3752 break;
3753 default:
252b5132 3754 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3755 scale);
551c1ca1
AM
3756 input_line_pointer = save;
3757 return NULL;
252b5132 3758 }
29b0f896 3759 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3760 {
3761 as_warn (_("scale factor of %d without an index register"),
24eab124 3762 1 << i.log2_scale_factor);
252b5132
RH
3763#if SCALE1_WHEN_NO_INDEX
3764 i.log2_scale_factor = 0;
3765#endif
3766 }
551c1ca1
AM
3767 scale = input_line_pointer;
3768 input_line_pointer = save;
3769 return scale;
252b5132
RH
3770}
3771
3772static int i386_displacement PARAMS ((char *, char *));
3773
3774static int
3775i386_displacement (disp_start, disp_end)
3776 char *disp_start;
3777 char *disp_end;
3778{
29b0f896 3779 expressionS *exp;
252b5132
RH
3780 segT exp_seg = 0;
3781 char *save_input_line_pointer;
f3c180ae
AM
3782#ifndef LEX_AT
3783 char *gotfree_input_line;
3784#endif
252b5132
RH
3785 int bigdisp = Disp32;
3786
3e73aa7c 3787 if (flag_code == CODE_64BIT)
7ecd2f8b 3788 {
29b0f896
AM
3789 if (i.prefix[ADDR_PREFIX] == 0)
3790 bigdisp = Disp64;
7ecd2f8b
JH
3791 }
3792 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3793 bigdisp = Disp16;
252b5132
RH
3794 i.types[this_operand] |= bigdisp;
3795
3796 exp = &disp_expressions[i.disp_operands];
520dc8e8 3797 i.op[this_operand].disps = exp;
252b5132
RH
3798 i.disp_operands++;
3799 save_input_line_pointer = input_line_pointer;
3800 input_line_pointer = disp_start;
3801 END_STRING_AND_SAVE (disp_end);
3802
3803#ifndef GCC_ASM_O_HACK
3804#define GCC_ASM_O_HACK 0
3805#endif
3806#if GCC_ASM_O_HACK
3807 END_STRING_AND_SAVE (disp_end + 1);
3808 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3809 && displacement_string_end[-1] == '+')
252b5132
RH
3810 {
3811 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3812 constraint within gcc asm statements.
3813 For instance:
3814
3815 #define _set_tssldt_desc(n,addr,limit,type) \
3816 __asm__ __volatile__ ( \
3817 "movw %w2,%0\n\t" \
3818 "movw %w1,2+%0\n\t" \
3819 "rorl $16,%1\n\t" \
3820 "movb %b1,4+%0\n\t" \
3821 "movb %4,5+%0\n\t" \
3822 "movb $0,6+%0\n\t" \
3823 "movb %h1,7+%0\n\t" \
3824 "rorl $16,%1" \
3825 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3826
3827 This works great except that the output assembler ends
3828 up looking a bit weird if it turns out that there is
3829 no offset. You end up producing code that looks like:
3830
3831 #APP
3832 movw $235,(%eax)
3833 movw %dx,2+(%eax)
3834 rorl $16,%edx
3835 movb %dl,4+(%eax)
3836 movb $137,5+(%eax)
3837 movb $0,6+(%eax)
3838 movb %dh,7+(%eax)
3839 rorl $16,%edx
3840 #NO_APP
3841
47926f60 3842 So here we provide the missing zero. */
24eab124
AM
3843
3844 *displacement_string_end = '0';
252b5132
RH
3845 }
3846#endif
3847#ifndef LEX_AT
f3c180ae
AM
3848 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3849 if (gotfree_input_line)
3850 input_line_pointer = gotfree_input_line;
252b5132
RH
3851#endif
3852
24eab124 3853 exp_seg = expression (exp);
252b5132 3854
636c26b0
AM
3855 SKIP_WHITESPACE ();
3856 if (*input_line_pointer)
3857 as_bad (_("junk `%s' after expression"), input_line_pointer);
3858#if GCC_ASM_O_HACK
3859 RESTORE_END_STRING (disp_end + 1);
3860#endif
3861 RESTORE_END_STRING (disp_end);
3862 input_line_pointer = save_input_line_pointer;
3863#ifndef LEX_AT
3864 if (gotfree_input_line)
3865 free (gotfree_input_line);
3866#endif
3867
252b5132 3868#ifdef BFD_ASSEMBLER
24eab124
AM
3869 /* We do this to make sure that the section symbol is in
3870 the symbol table. We will ultimately change the relocation
47926f60 3871 to be relative to the beginning of the section. */
1ae12ab7
AM
3872 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3873 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3874 {
636c26b0
AM
3875 if (exp->X_op != O_symbol)
3876 {
3877 as_bad (_("bad expression used with @%s"),
3878 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3879 ? "GOTPCREL"
3880 : "GOTOFF"));
3881 return 0;
3882 }
3883
e5cb08ac 3884 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3885 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3886 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3887 exp->X_op = O_subtract;
3888 exp->X_op_symbol = GOT_symbol;
1ae12ab7 3889 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 3890 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3891 else
29b0f896 3892 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3893 }
252b5132
RH
3894#endif
3895
2daf4fd8
AM
3896 if (exp->X_op == O_absent || exp->X_op == O_big)
3897 {
47926f60 3898 /* Missing or bad expr becomes absolute 0. */
d0b47220 3899 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3900 disp_start);
3901 exp->X_op = O_constant;
3902 exp->X_add_number = 0;
3903 exp->X_add_symbol = (symbolS *) 0;
3904 exp->X_op_symbol = (symbolS *) 0;
3905 }
3906
4c63da97 3907#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3908 if (exp->X_op != O_constant
4c63da97 3909#ifdef BFD_ASSEMBLER
45288df1 3910 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3911#endif
31312f95 3912 && exp_seg != absolute_section
45288df1
AM
3913 && exp_seg != text_section
3914 && exp_seg != data_section
3915 && exp_seg != bss_section
31312f95
AM
3916 && exp_seg != undefined_section
3917#ifdef BFD_ASSEMBLER
3918 && !bfd_is_com_section (exp_seg)
3919#endif
3920 )
24eab124 3921 {
4c63da97 3922#ifdef BFD_ASSEMBLER
d0b47220 3923 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3924#else
d0b47220 3925 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3926#endif
24eab124
AM
3927 return 0;
3928 }
252b5132 3929#endif
3e73aa7c
JH
3930 else if (flag_code == CODE_64BIT)
3931 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3932 return 1;
3933}
3934
e5cb08ac 3935static int i386_index_check PARAMS ((const char *));
252b5132 3936
eecb386c 3937/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3938 Return 1 on success, 0 on a failure. */
3939
252b5132 3940static int
eecb386c
AM
3941i386_index_check (operand_string)
3942 const char *operand_string;
252b5132 3943{
3e73aa7c 3944 int ok;
24eab124 3945#if INFER_ADDR_PREFIX
eecb386c
AM
3946 int fudged = 0;
3947
24eab124
AM
3948 tryprefix:
3949#endif
3e73aa7c
JH
3950 ok = 1;
3951 if (flag_code == CODE_64BIT)
3952 {
7ecd2f8b
JH
3953 if (i.prefix[ADDR_PREFIX] == 0)
3954 {
3955 /* 64bit checks. */
3956 if ((i.base_reg
3957 && ((i.base_reg->reg_type & Reg64) == 0)
3958 && (i.base_reg->reg_type != BaseIndex
3959 || i.index_reg))
3960 || (i.index_reg
29b0f896
AM
3961 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3962 != (Reg64 | BaseIndex))))
7ecd2f8b
JH
3963 ok = 0;
3964 }
3965 else
3966 {
3967 /* 32bit checks. */
3968 if ((i.base_reg
3969 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3970 || (i.index_reg
29b0f896
AM
3971 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3972 != (Reg32 | BaseIndex))))
7ecd2f8b
JH
3973 ok = 0;
3974 }
3e73aa7c
JH
3975 }
3976 else
3977 {
3978 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3979 {
3980 /* 16bit checks. */
3981 if ((i.base_reg
29b0f896
AM
3982 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
3983 != (Reg16 | BaseIndex)))
3e73aa7c 3984 || (i.index_reg
29b0f896
AM
3985 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
3986 != (Reg16 | BaseIndex))
3987 || !(i.base_reg
3988 && i.base_reg->reg_num < 6
3989 && i.index_reg->reg_num >= 6
3990 && i.log2_scale_factor == 0))))
3e73aa7c
JH
3991 ok = 0;
3992 }
3993 else
e5cb08ac 3994 {
3e73aa7c
JH
3995 /* 32bit checks. */
3996 if ((i.base_reg
3997 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3998 || (i.index_reg
29b0f896
AM
3999 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4000 != (Reg32 | BaseIndex))))
e5cb08ac 4001 ok = 0;
3e73aa7c
JH
4002 }
4003 }
4004 if (!ok)
24eab124
AM
4005 {
4006#if INFER_ADDR_PREFIX
3e73aa7c
JH
4007 if (flag_code != CODE_64BIT
4008 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
4009 {
4010 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4011 i.prefixes += 1;
b23bac36
AM
4012 /* Change the size of any displacement too. At most one of
4013 Disp16 or Disp32 is set.
4014 FIXME. There doesn't seem to be any real need for separate
4015 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4016 Removing them would probably clean up the code quite a lot. */
29b0f896
AM
4017 if (i.types[this_operand] & (Disp16 | Disp32))
4018 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4019 fudged = 1;
24eab124
AM
4020 goto tryprefix;
4021 }
eecb386c
AM
4022 if (fudged)
4023 as_bad (_("`%s' is not a valid base/index expression"),
4024 operand_string);
4025 else
c388dee8 4026#endif
eecb386c
AM
4027 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4028 operand_string,
3e73aa7c 4029 flag_code_names[flag_code]);
eecb386c 4030 return 0;
24eab124
AM
4031 }
4032 return 1;
4033}
252b5132 4034
252b5132 4035/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4036 on error. */
252b5132 4037
252b5132
RH
4038static int
4039i386_operand (operand_string)
4040 char *operand_string;
4041{
af6bdddf
AM
4042 const reg_entry *r;
4043 char *end_op;
24eab124 4044 char *op_string = operand_string;
252b5132 4045
24eab124 4046 if (is_space_char (*op_string))
252b5132
RH
4047 ++op_string;
4048
24eab124 4049 /* We check for an absolute prefix (differentiating,
47926f60 4050 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4051 if (*op_string == ABSOLUTE_PREFIX)
4052 {
4053 ++op_string;
4054 if (is_space_char (*op_string))
4055 ++op_string;
4056 i.types[this_operand] |= JumpAbsolute;
4057 }
252b5132 4058
47926f60 4059 /* Check if operand is a register. */
af6bdddf
AM
4060 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4061 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4062 {
24eab124
AM
4063 /* Check for a segment override by searching for ':' after a
4064 segment register. */
4065 op_string = end_op;
4066 if (is_space_char (*op_string))
4067 ++op_string;
4068 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4069 {
4070 switch (r->reg_num)
4071 {
4072 case 0:
4073 i.seg[i.mem_operands] = &es;
4074 break;
4075 case 1:
4076 i.seg[i.mem_operands] = &cs;
4077 break;
4078 case 2:
4079 i.seg[i.mem_operands] = &ss;
4080 break;
4081 case 3:
4082 i.seg[i.mem_operands] = &ds;
4083 break;
4084 case 4:
4085 i.seg[i.mem_operands] = &fs;
4086 break;
4087 case 5:
4088 i.seg[i.mem_operands] = &gs;
4089 break;
4090 }
252b5132 4091
24eab124 4092 /* Skip the ':' and whitespace. */
252b5132
RH
4093 ++op_string;
4094 if (is_space_char (*op_string))
24eab124 4095 ++op_string;
252b5132 4096
24eab124
AM
4097 if (!is_digit_char (*op_string)
4098 && !is_identifier_char (*op_string)
4099 && *op_string != '('
4100 && *op_string != ABSOLUTE_PREFIX)
4101 {
4102 as_bad (_("bad memory operand `%s'"), op_string);
4103 return 0;
4104 }
47926f60 4105 /* Handle case of %es:*foo. */
24eab124
AM
4106 if (*op_string == ABSOLUTE_PREFIX)
4107 {
4108 ++op_string;
4109 if (is_space_char (*op_string))
4110 ++op_string;
4111 i.types[this_operand] |= JumpAbsolute;
4112 }
4113 goto do_memory_reference;
4114 }
4115 if (*op_string)
4116 {
d0b47220 4117 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4118 return 0;
4119 }
4120 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4121 i.op[this_operand].regs = r;
24eab124
AM
4122 i.reg_operands++;
4123 }
af6bdddf
AM
4124 else if (*op_string == REGISTER_PREFIX)
4125 {
4126 as_bad (_("bad register name `%s'"), op_string);
4127 return 0;
4128 }
24eab124 4129 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4130 {
24eab124
AM
4131 ++op_string;
4132 if (i.types[this_operand] & JumpAbsolute)
4133 {
d0b47220 4134 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4135 return 0;
4136 }
4137 if (!i386_immediate (op_string))
4138 return 0;
4139 }
4140 else if (is_digit_char (*op_string)
4141 || is_identifier_char (*op_string)
e5cb08ac 4142 || *op_string == '(')
24eab124 4143 {
47926f60 4144 /* This is a memory reference of some sort. */
af6bdddf 4145 char *base_string;
252b5132 4146
47926f60 4147 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4148 char *displacement_string_start;
4149 char *displacement_string_end;
252b5132 4150
24eab124 4151 do_memory_reference:
24eab124
AM
4152 if ((i.mem_operands == 1
4153 && (current_templates->start->opcode_modifier & IsString) == 0)
4154 || i.mem_operands == 2)
4155 {
4156 as_bad (_("too many memory references for `%s'"),
4157 current_templates->start->name);
4158 return 0;
4159 }
252b5132 4160
24eab124
AM
4161 /* Check for base index form. We detect the base index form by
4162 looking for an ')' at the end of the operand, searching
4163 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4164 after the '('. */
af6bdddf 4165 base_string = op_string + strlen (op_string);
c3332e24 4166
af6bdddf
AM
4167 --base_string;
4168 if (is_space_char (*base_string))
4169 --base_string;
252b5132 4170
47926f60 4171 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4172 displacement_string_start = op_string;
4173 displacement_string_end = base_string + 1;
252b5132 4174
24eab124
AM
4175 if (*base_string == ')')
4176 {
af6bdddf 4177 char *temp_string;
24eab124
AM
4178 unsigned int parens_balanced = 1;
4179 /* We've already checked that the number of left & right ()'s are
47926f60 4180 equal, so this loop will not be infinite. */
24eab124
AM
4181 do
4182 {
4183 base_string--;
4184 if (*base_string == ')')
4185 parens_balanced++;
4186 if (*base_string == '(')
4187 parens_balanced--;
4188 }
4189 while (parens_balanced);
c3332e24 4190
af6bdddf 4191 temp_string = base_string;
c3332e24 4192
24eab124 4193 /* Skip past '(' and whitespace. */
252b5132
RH
4194 ++base_string;
4195 if (is_space_char (*base_string))
24eab124 4196 ++base_string;
252b5132 4197
af6bdddf
AM
4198 if (*base_string == ','
4199 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4200 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4201 {
af6bdddf 4202 displacement_string_end = temp_string;
252b5132 4203
af6bdddf 4204 i.types[this_operand] |= BaseIndex;
252b5132 4205
af6bdddf 4206 if (i.base_reg)
24eab124 4207 {
24eab124
AM
4208 base_string = end_op;
4209 if (is_space_char (*base_string))
4210 ++base_string;
af6bdddf
AM
4211 }
4212
4213 /* There may be an index reg or scale factor here. */
4214 if (*base_string == ',')
4215 {
4216 ++base_string;
4217 if (is_space_char (*base_string))
4218 ++base_string;
4219
4220 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4221 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4222 {
af6bdddf 4223 base_string = end_op;
24eab124
AM
4224 if (is_space_char (*base_string))
4225 ++base_string;
af6bdddf
AM
4226 if (*base_string == ',')
4227 {
4228 ++base_string;
4229 if (is_space_char (*base_string))
4230 ++base_string;
4231 }
e5cb08ac 4232 else if (*base_string != ')')
af6bdddf
AM
4233 {
4234 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4235 operand_string);
4236 return 0;
4237 }
24eab124 4238 }
af6bdddf 4239 else if (*base_string == REGISTER_PREFIX)
24eab124 4240 {
af6bdddf 4241 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4242 return 0;
4243 }
252b5132 4244
47926f60 4245 /* Check for scale factor. */
551c1ca1 4246 if (*base_string != ')')
af6bdddf 4247 {
551c1ca1
AM
4248 char *end_scale = i386_scale (base_string);
4249
4250 if (!end_scale)
af6bdddf 4251 return 0;
24eab124 4252
551c1ca1 4253 base_string = end_scale;
af6bdddf
AM
4254 if (is_space_char (*base_string))
4255 ++base_string;
4256 if (*base_string != ')')
4257 {
4258 as_bad (_("expecting `)' after scale factor in `%s'"),
4259 operand_string);
4260 return 0;
4261 }
4262 }
4263 else if (!i.index_reg)
24eab124 4264 {
af6bdddf
AM
4265 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4266 *base_string);
24eab124
AM
4267 return 0;
4268 }
4269 }
af6bdddf 4270 else if (*base_string != ')')
24eab124 4271 {
af6bdddf
AM
4272 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4273 operand_string);
24eab124
AM
4274 return 0;
4275 }
c3332e24 4276 }
af6bdddf 4277 else if (*base_string == REGISTER_PREFIX)
c3332e24 4278 {
af6bdddf 4279 as_bad (_("bad register name `%s'"), base_string);
24eab124 4280 return 0;
c3332e24 4281 }
24eab124
AM
4282 }
4283
4284 /* If there's an expression beginning the operand, parse it,
4285 assuming displacement_string_start and
4286 displacement_string_end are meaningful. */
4287 if (displacement_string_start != displacement_string_end)
4288 {
4289 if (!i386_displacement (displacement_string_start,
4290 displacement_string_end))
4291 return 0;
4292 }
4293
4294 /* Special case for (%dx) while doing input/output op. */
4295 if (i.base_reg
4296 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4297 && i.index_reg == 0
4298 && i.log2_scale_factor == 0
4299 && i.seg[i.mem_operands] == 0
4300 && (i.types[this_operand] & Disp) == 0)
4301 {
4302 i.types[this_operand] = InOutPortReg;
4303 return 1;
4304 }
4305
eecb386c
AM
4306 if (i386_index_check (operand_string) == 0)
4307 return 0;
24eab124
AM
4308 i.mem_operands++;
4309 }
4310 else
ce8a8b2f
AM
4311 {
4312 /* It's not a memory operand; argh! */
24eab124
AM
4313 as_bad (_("invalid char %s beginning operand %d `%s'"),
4314 output_invalid (*op_string),
4315 this_operand + 1,
4316 op_string);
4317 return 0;
4318 }
47926f60 4319 return 1; /* Normal return. */
252b5132
RH
4320}
4321\f
ee7fcc42
AM
4322/* md_estimate_size_before_relax()
4323
4324 Called just before relax() for rs_machine_dependent frags. The x86
4325 assembler uses these frags to handle variable size jump
4326 instructions.
4327
4328 Any symbol that is now undefined will not become defined.
4329 Return the correct fr_subtype in the frag.
4330 Return the initial "guess for variable size of frag" to caller.
4331 The guess is actually the growth beyond the fixed part. Whatever
4332 we do to grow the fixed or variable part contributes to our
4333 returned value. */
4334
252b5132
RH
4335int
4336md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4337 fragS *fragP;
4338 segT segment;
252b5132 4339{
252b5132 4340 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4341 check for un-relaxable symbols. On an ELF system, we can't relax
4342 an externally visible symbol, because it may be overridden by a
4343 shared library. */
4344 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4345#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4346 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4347 && (S_IS_EXTERNAL (fragP->fr_symbol)
4348 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4349#endif
4350 )
252b5132 4351 {
b98ef147
AM
4352 /* Symbol is undefined in this segment, or we need to keep a
4353 reloc so that weak symbols can be overridden. */
4354 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 4355 RELOC_ENUM reloc_type;
ee7fcc42
AM
4356 unsigned char *opcode;
4357 int old_fr_fix;
f6af82bd 4358
ee7fcc42
AM
4359 if (fragP->fr_var != NO_RELOC)
4360 reloc_type = fragP->fr_var;
b98ef147 4361 else if (size == 2)
f6af82bd
AM
4362 reloc_type = BFD_RELOC_16_PCREL;
4363 else
4364 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4365
ee7fcc42
AM
4366 old_fr_fix = fragP->fr_fix;
4367 opcode = (unsigned char *) fragP->fr_opcode;
4368
fddf5b5b 4369 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4370 {
fddf5b5b
AM
4371 case UNCOND_JUMP:
4372 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4373 opcode[0] = 0xe9;
252b5132 4374 fragP->fr_fix += size;
062cd5e7
AS
4375 fix_new (fragP, old_fr_fix, size,
4376 fragP->fr_symbol,
4377 fragP->fr_offset, 1,
4378 reloc_type);
252b5132
RH
4379 break;
4380
fddf5b5b 4381 case COND_JUMP86:
412167cb
AM
4382 if (size == 2
4383 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4384 {
4385 /* Negate the condition, and branch past an
4386 unconditional jump. */
4387 opcode[0] ^= 1;
4388 opcode[1] = 3;
4389 /* Insert an unconditional jump. */
4390 opcode[2] = 0xe9;
4391 /* We added two extra opcode bytes, and have a two byte
4392 offset. */
4393 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4394 fix_new (fragP, old_fr_fix + 2, 2,
4395 fragP->fr_symbol,
4396 fragP->fr_offset, 1,
4397 reloc_type);
fddf5b5b
AM
4398 break;
4399 }
4400 /* Fall through. */
4401
4402 case COND_JUMP:
412167cb
AM
4403 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4404 {
3e02c1cc
AM
4405 fixS *fixP;
4406
412167cb 4407 fragP->fr_fix += 1;
3e02c1cc
AM
4408 fixP = fix_new (fragP, old_fr_fix, 1,
4409 fragP->fr_symbol,
4410 fragP->fr_offset, 1,
4411 BFD_RELOC_8_PCREL);
4412 fixP->fx_signed = 1;
412167cb
AM
4413 break;
4414 }
93c2a809 4415
24eab124 4416 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4417 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4418 opcode[1] = opcode[0] + 0x10;
f6af82bd 4419 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4420 /* We've added an opcode byte. */
4421 fragP->fr_fix += 1 + size;
062cd5e7
AS
4422 fix_new (fragP, old_fr_fix + 1, size,
4423 fragP->fr_symbol,
4424 fragP->fr_offset, 1,
4425 reloc_type);
252b5132 4426 break;
fddf5b5b
AM
4427
4428 default:
4429 BAD_CASE (fragP->fr_subtype);
4430 break;
252b5132
RH
4431 }
4432 frag_wane (fragP);
ee7fcc42 4433 return fragP->fr_fix - old_fr_fix;
252b5132 4434 }
93c2a809 4435
93c2a809
AM
4436 /* Guess size depending on current relax state. Initially the relax
4437 state will correspond to a short jump and we return 1, because
4438 the variable part of the frag (the branch offset) is one byte
4439 long. However, we can relax a section more than once and in that
4440 case we must either set fr_subtype back to the unrelaxed state,
4441 or return the value for the appropriate branch. */
4442 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4443}
4444
47926f60
KH
4445/* Called after relax() is finished.
4446
4447 In: Address of frag.
4448 fr_type == rs_machine_dependent.
4449 fr_subtype is what the address relaxed to.
4450
4451 Out: Any fixSs and constants are set up.
4452 Caller will turn frag into a ".space 0". */
4453
252b5132
RH
4454#ifndef BFD_ASSEMBLER
4455void
4456md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4457 object_headers *headers ATTRIBUTE_UNUSED;
4458 segT sec ATTRIBUTE_UNUSED;
29b0f896 4459 fragS *fragP;
252b5132
RH
4460#else
4461void
4462md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4463 bfd *abfd ATTRIBUTE_UNUSED;
4464 segT sec ATTRIBUTE_UNUSED;
29b0f896 4465 fragS *fragP;
252b5132
RH
4466#endif
4467{
29b0f896 4468 unsigned char *opcode;
252b5132 4469 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4470 offsetT target_address;
4471 offsetT opcode_address;
252b5132 4472 unsigned int extension = 0;
847f7ad4 4473 offsetT displacement_from_opcode_start;
252b5132
RH
4474
4475 opcode = (unsigned char *) fragP->fr_opcode;
4476
47926f60 4477 /* Address we want to reach in file space. */
252b5132 4478 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4479
47926f60 4480 /* Address opcode resides at in file space. */
252b5132
RH
4481 opcode_address = fragP->fr_address + fragP->fr_fix;
4482
47926f60 4483 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4484 displacement_from_opcode_start = target_address - opcode_address;
4485
fddf5b5b 4486 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4487 {
47926f60
KH
4488 /* Don't have to change opcode. */
4489 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4490 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4491 }
4492 else
4493 {
4494 if (no_cond_jump_promotion
4495 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4496 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4497
fddf5b5b
AM
4498 switch (fragP->fr_subtype)
4499 {
4500 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4501 extension = 4; /* 1 opcode + 4 displacement */
4502 opcode[0] = 0xe9;
4503 where_to_put_displacement = &opcode[1];
4504 break;
252b5132 4505
fddf5b5b
AM
4506 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4507 extension = 2; /* 1 opcode + 2 displacement */
4508 opcode[0] = 0xe9;
4509 where_to_put_displacement = &opcode[1];
4510 break;
252b5132 4511
fddf5b5b
AM
4512 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4513 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4514 extension = 5; /* 2 opcode + 4 displacement */
4515 opcode[1] = opcode[0] + 0x10;
4516 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4517 where_to_put_displacement = &opcode[2];
4518 break;
252b5132 4519
fddf5b5b
AM
4520 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4521 extension = 3; /* 2 opcode + 2 displacement */
4522 opcode[1] = opcode[0] + 0x10;
4523 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4524 where_to_put_displacement = &opcode[2];
4525 break;
252b5132 4526
fddf5b5b
AM
4527 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4528 extension = 4;
4529 opcode[0] ^= 1;
4530 opcode[1] = 3;
4531 opcode[2] = 0xe9;
4532 where_to_put_displacement = &opcode[3];
4533 break;
4534
4535 default:
4536 BAD_CASE (fragP->fr_subtype);
4537 break;
4538 }
252b5132 4539 }
fddf5b5b 4540
47926f60 4541 /* Now put displacement after opcode. */
252b5132
RH
4542 md_number_to_chars ((char *) where_to_put_displacement,
4543 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4544 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4545 fragP->fr_fix += extension;
4546}
4547\f
47926f60
KH
4548/* Size of byte displacement jmp. */
4549int md_short_jump_size = 2;
4550
4551/* Size of dword displacement jmp. */
4552int md_long_jump_size = 5;
252b5132 4553
47926f60
KH
4554/* Size of relocation record. */
4555const int md_reloc_size = 8;
252b5132
RH
4556
4557void
4558md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4559 char *ptr;
4560 addressT from_addr, to_addr;
ab9da554
ILT
4561 fragS *frag ATTRIBUTE_UNUSED;
4562 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4563{
847f7ad4 4564 offsetT offset;
252b5132
RH
4565
4566 offset = to_addr - (from_addr + 2);
47926f60
KH
4567 /* Opcode for byte-disp jump. */
4568 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4569 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4570}
4571
4572void
4573md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4574 char *ptr;
4575 addressT from_addr, to_addr;
a38cf1db
AM
4576 fragS *frag ATTRIBUTE_UNUSED;
4577 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4578{
847f7ad4 4579 offsetT offset;
252b5132 4580
a38cf1db
AM
4581 offset = to_addr - (from_addr + 5);
4582 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4583 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4584}
4585\f
4586/* Apply a fixup (fixS) to segment data, once it has been determined
4587 by our caller that we have all the info we need to fix it up.
4588
4589 On the 386, immediates, displacements, and data pointers are all in
4590 the same (little-endian) format, so we don't need to care about which
4591 we are handling. */
4592
94f592af
NC
4593void
4594md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4595 /* The fix we're to put in. */
4596 fixS *fixP;
47926f60 4597 /* Pointer to the value of the bits. */
c6682705 4598 valueT *valP;
47926f60
KH
4599 /* Segment fix is from. */
4600 segT seg ATTRIBUTE_UNUSED;
252b5132 4601{
94f592af 4602 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4603 valueT value = *valP;
252b5132 4604
e1b283bb 4605#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4606 if (fixP->fx_pcrel)
4607 {
4608 switch (fixP->fx_r_type)
4609 {
5865bb77
ILT
4610 default:
4611 break;
4612
93382f6d
AM
4613 case BFD_RELOC_32:
4614 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4615 break;
4616 case BFD_RELOC_16:
4617 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4618 break;
4619 case BFD_RELOC_8:
4620 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4621 break;
4622 }
4623 }
252b5132 4624
a161fe53 4625 if (fixP->fx_addsy != NULL
31312f95
AM
4626 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4627 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4628 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4629 && !use_rela_relocations)
252b5132 4630 {
31312f95
AM
4631 /* This is a hack. There should be a better way to handle this.
4632 This covers for the fact that bfd_install_relocation will
4633 subtract the current location (for partial_inplace, PC relative
4634 relocations); see more below. */
252b5132
RH
4635#ifndef OBJ_AOUT
4636 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4637#ifdef TE_PE
4638 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4639#endif
4640 )
4641 value += fixP->fx_where + fixP->fx_frag->fr_address;
4642#endif
4643#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4644 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4645 {
6539b54b 4646 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4647
6539b54b 4648 if ((sym_seg == seg
2f66722d 4649 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4650 && sym_seg != absolute_section))
ae6063d4 4651 && !generic_force_reloc (fixP))
2f66722d
AM
4652 {
4653 /* Yes, we add the values in twice. This is because
6539b54b
AM
4654 bfd_install_relocation subtracts them out again. I think
4655 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4656 it. FIXME. */
4657 value += fixP->fx_where + fixP->fx_frag->fr_address;
4658 }
252b5132
RH
4659 }
4660#endif
4661#if defined (OBJ_COFF) && defined (TE_PE)
4662 /* For some reason, the PE format does not store a section
24eab124 4663 address offset for a PC relative symbol. */
252b5132
RH
4664 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4665 value += md_pcrel_from (fixP);
4666#endif
4667 }
4668
4669 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4670 and we must not dissappoint it. */
252b5132
RH
4671#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4672 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4673 && fixP->fx_addsy)
47926f60
KH
4674 switch (fixP->fx_r_type)
4675 {
4676 case BFD_RELOC_386_PLT32:
3e73aa7c 4677 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4678 /* Make the jump instruction point to the address of the operand. At
4679 runtime we merely add the offset to the actual PLT entry. */
4680 value = -4;
4681 break;
31312f95 4682
13ae64f3
JJ
4683 case BFD_RELOC_386_TLS_GD:
4684 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4685 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4686 case BFD_RELOC_386_TLS_IE:
4687 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4688 case BFD_RELOC_X86_64_TLSGD:
4689 case BFD_RELOC_X86_64_TLSLD:
4690 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4691 value = 0; /* Fully resolved at runtime. No addend. */
4692 /* Fallthrough */
4693 case BFD_RELOC_386_TLS_LE:
4694 case BFD_RELOC_386_TLS_LDO_32:
4695 case BFD_RELOC_386_TLS_LE_32:
4696 case BFD_RELOC_X86_64_DTPOFF32:
4697 case BFD_RELOC_X86_64_TPOFF32:
4698 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4699 break;
4700
4701 case BFD_RELOC_386_GOT32:
4702 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4703 value = 0; /* Fully resolved at runtime. No addend. */
4704 break;
47926f60
KH
4705
4706 case BFD_RELOC_VTABLE_INHERIT:
4707 case BFD_RELOC_VTABLE_ENTRY:
4708 fixP->fx_done = 0;
94f592af 4709 return;
47926f60
KH
4710
4711 default:
4712 break;
4713 }
4714#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4715 *valP = value;
47926f60 4716#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c 4717
3e73aa7c 4718 /* Are we finished with this relocation now? */
c6682705 4719 if (fixP->fx_addsy == NULL)
3e73aa7c 4720 fixP->fx_done = 1;
94f592af 4721#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4722 else if (use_rela_relocations)
4723 {
4724 fixP->fx_no_overflow = 1;
062cd5e7
AS
4725 /* Remember value for tc_gen_reloc. */
4726 fixP->fx_addnumber = value;
3e73aa7c
JH
4727 value = 0;
4728 }
3e73aa7c 4729#endif
94f592af 4730 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4731}
252b5132 4732\f
252b5132
RH
4733#define MAX_LITTLENUMS 6
4734
47926f60
KH
4735/* Turn the string pointed to by litP into a floating point constant
4736 of type TYPE, and emit the appropriate bytes. The number of
4737 LITTLENUMS emitted is stored in *SIZEP. An error message is
4738 returned, or NULL on OK. */
4739
252b5132
RH
4740char *
4741md_atof (type, litP, sizeP)
2ab9b79e 4742 int type;
252b5132
RH
4743 char *litP;
4744 int *sizeP;
4745{
4746 int prec;
4747 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4748 LITTLENUM_TYPE *wordP;
4749 char *t;
4750
4751 switch (type)
4752 {
4753 case 'f':
4754 case 'F':
4755 prec = 2;
4756 break;
4757
4758 case 'd':
4759 case 'D':
4760 prec = 4;
4761 break;
4762
4763 case 'x':
4764 case 'X':
4765 prec = 5;
4766 break;
4767
4768 default:
4769 *sizeP = 0;
4770 return _("Bad call to md_atof ()");
4771 }
4772 t = atof_ieee (input_line_pointer, type, words);
4773 if (t)
4774 input_line_pointer = t;
4775
4776 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4777 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4778 the bigendian 386. */
4779 for (wordP = words + prec - 1; prec--;)
4780 {
4781 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4782 litP += sizeof (LITTLENUM_TYPE);
4783 }
4784 return 0;
4785}
4786\f
4787char output_invalid_buf[8];
4788
252b5132
RH
4789static char *
4790output_invalid (c)
4791 int c;
4792{
3882b010 4793 if (ISPRINT (c))
252b5132
RH
4794 sprintf (output_invalid_buf, "'%c'", c);
4795 else
4796 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4797 return output_invalid_buf;
4798}
4799
af6bdddf 4800/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4801
4802static const reg_entry *
4803parse_register (reg_string, end_op)
4804 char *reg_string;
4805 char **end_op;
4806{
af6bdddf
AM
4807 char *s = reg_string;
4808 char *p;
252b5132
RH
4809 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4810 const reg_entry *r;
4811
4812 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4813 if (*s == REGISTER_PREFIX)
4814 ++s;
4815
4816 if (is_space_char (*s))
4817 ++s;
4818
4819 p = reg_name_given;
af6bdddf 4820 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4821 {
4822 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4823 return (const reg_entry *) NULL;
4824 s++;
252b5132
RH
4825 }
4826
6588847e
DN
4827 /* For naked regs, make sure that we are not dealing with an identifier.
4828 This prevents confusing an identifier like `eax_var' with register
4829 `eax'. */
4830 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4831 return (const reg_entry *) NULL;
4832
af6bdddf 4833 *end_op = s;
252b5132
RH
4834
4835 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4836
5f47d35b 4837 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4838 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4839 {
5f47d35b
AM
4840 if (is_space_char (*s))
4841 ++s;
4842 if (*s == '(')
4843 {
af6bdddf 4844 ++s;
5f47d35b
AM
4845 if (is_space_char (*s))
4846 ++s;
4847 if (*s >= '0' && *s <= '7')
4848 {
4849 r = &i386_float_regtab[*s - '0'];
af6bdddf 4850 ++s;
5f47d35b
AM
4851 if (is_space_char (*s))
4852 ++s;
4853 if (*s == ')')
4854 {
4855 *end_op = s + 1;
4856 return r;
4857 }
5f47d35b 4858 }
47926f60 4859 /* We have "%st(" then garbage. */
5f47d35b
AM
4860 return (const reg_entry *) NULL;
4861 }
4862 }
4863
1ae00879 4864 if (r != NULL
29b0f896 4865 && (r->reg_flags & (RegRex64 | RegRex)) != 0
1ae00879
AM
4866 && flag_code != CODE_64BIT)
4867 {
4868 return (const reg_entry *) NULL;
4869 }
4870
252b5132
RH
4871 return r;
4872}
4873\f
4cc782b5 4874#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4875const char *md_shortopts = "kVQ:sq";
252b5132 4876#else
65172ab8 4877const char *md_shortopts = "q";
252b5132 4878#endif
6e0b89ee 4879
252b5132 4880struct option md_longopts[] = {
3e73aa7c
JH
4881#define OPTION_32 (OPTION_MD_BASE + 0)
4882 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4883#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4884#define OPTION_64 (OPTION_MD_BASE + 1)
4885 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4886#endif
252b5132
RH
4887 {NULL, no_argument, NULL, 0}
4888};
4889size_t md_longopts_size = sizeof (md_longopts);
4890
4891int
4892md_parse_option (c, arg)
4893 int c;
ab9da554 4894 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4895{
4896 switch (c)
4897 {
a38cf1db
AM
4898 case 'q':
4899 quiet_warnings = 1;
252b5132
RH
4900 break;
4901
4902#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4903 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4904 should be emitted or not. FIXME: Not implemented. */
4905 case 'Q':
252b5132
RH
4906 break;
4907
4908 /* -V: SVR4 argument to print version ID. */
4909 case 'V':
4910 print_version_id ();
4911 break;
4912
a38cf1db
AM
4913 /* -k: Ignore for FreeBSD compatibility. */
4914 case 'k':
252b5132 4915 break;
4cc782b5
ILT
4916
4917 case 's':
4918 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 4919 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 4920 break;
6e0b89ee 4921
3e73aa7c
JH
4922 case OPTION_64:
4923 {
4924 const char **list, **l;
4925
3e73aa7c
JH
4926 list = bfd_target_list ();
4927 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4928 if (strcmp (*l, "elf64-x86-64") == 0)
4929 {
4930 default_arch = "x86_64";
4931 break;
4932 }
3e73aa7c 4933 if (*l == NULL)
6e0b89ee 4934 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4935 free (list);
4936 }
4937 break;
4938#endif
252b5132 4939
6e0b89ee
AM
4940 case OPTION_32:
4941 default_arch = "i386";
4942 break;
4943
252b5132
RH
4944 default:
4945 return 0;
4946 }
4947 return 1;
4948}
4949
4950void
4951md_show_usage (stream)
4952 FILE *stream;
4953{
4cc782b5
ILT
4954#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4955 fprintf (stream, _("\
a38cf1db
AM
4956 -Q ignored\n\
4957 -V print assembler version number\n\
4958 -k ignored\n\
4959 -q quieten some warnings\n\
4960 -s ignored\n"));
4961#else
4962 fprintf (stream, _("\
4963 -q quieten some warnings\n"));
4cc782b5 4964#endif
252b5132
RH
4965}
4966
4967#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4968#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4969 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4970
4971/* Pick the target format to use. */
4972
47926f60 4973const char *
252b5132
RH
4974i386_target_format ()
4975{
3e73aa7c
JH
4976 if (!strcmp (default_arch, "x86_64"))
4977 set_code_flag (CODE_64BIT);
4978 else if (!strcmp (default_arch, "i386"))
4979 set_code_flag (CODE_32BIT);
4980 else
4981 as_fatal (_("Unknown architecture"));
252b5132
RH
4982 switch (OUTPUT_FLAVOR)
4983 {
4c63da97
AM
4984#ifdef OBJ_MAYBE_AOUT
4985 case bfd_target_aout_flavour:
47926f60 4986 return AOUT_TARGET_FORMAT;
4c63da97
AM
4987#endif
4988#ifdef OBJ_MAYBE_COFF
252b5132
RH
4989 case bfd_target_coff_flavour:
4990 return "coff-i386";
4c63da97 4991#endif
3e73aa7c 4992#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4993 case bfd_target_elf_flavour:
3e73aa7c 4994 {
e5cb08ac
KH
4995 if (flag_code == CODE_64BIT)
4996 use_rela_relocations = 1;
4ada7262 4997 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 4998 }
4c63da97 4999#endif
252b5132
RH
5000 default:
5001 abort ();
5002 return NULL;
5003 }
5004}
5005
47926f60 5006#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5007
5008#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5009void i386_elf_emit_arch_note ()
5010{
5011 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5012 && cpu_arch_name != NULL)
5013 {
5014 char *p;
5015 asection *seg = now_seg;
5016 subsegT subseg = now_subseg;
5017 Elf_Internal_Note i_note;
5018 Elf_External_Note e_note;
5019 asection *note_secp;
5020 int len;
5021
5022 /* Create the .note section. */
5023 note_secp = subseg_new (".note", 0);
5024 bfd_set_section_flags (stdoutput,
5025 note_secp,
5026 SEC_HAS_CONTENTS | SEC_READONLY);
5027
5028 /* Process the arch string. */
5029 len = strlen (cpu_arch_name);
5030
5031 i_note.namesz = len + 1;
5032 i_note.descsz = 0;
5033 i_note.type = NT_ARCH;
5034 p = frag_more (sizeof (e_note.namesz));
5035 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5036 p = frag_more (sizeof (e_note.descsz));
5037 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5038 p = frag_more (sizeof (e_note.type));
5039 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5040 p = frag_more (len + 1);
5041 strcpy (p, cpu_arch_name);
5042
5043 frag_align (2, 0, 0);
5044
5045 subseg_set (seg, subseg);
5046 }
5047}
5048#endif
47926f60 5049#endif /* BFD_ASSEMBLER */
252b5132 5050\f
252b5132
RH
5051symbolS *
5052md_undefined_symbol (name)
5053 char *name;
5054{
18dc2407
ILT
5055 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5056 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5057 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5058 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5059 {
5060 if (!GOT_symbol)
5061 {
5062 if (symbol_find (name))
5063 as_bad (_("GOT already in symbol table"));
5064 GOT_symbol = symbol_new (name, undefined_section,
5065 (valueT) 0, &zero_address_frag);
5066 };
5067 return GOT_symbol;
5068 }
252b5132
RH
5069 return 0;
5070}
5071
5072/* Round up a section size to the appropriate boundary. */
47926f60 5073
252b5132
RH
5074valueT
5075md_section_align (segment, size)
ab9da554 5076 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5077 valueT size;
5078{
252b5132 5079#ifdef BFD_ASSEMBLER
4c63da97
AM
5080#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5081 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5082 {
5083 /* For a.out, force the section size to be aligned. If we don't do
5084 this, BFD will align it for us, but it will not write out the
5085 final bytes of the section. This may be a bug in BFD, but it is
5086 easier to fix it here since that is how the other a.out targets
5087 work. */
5088 int align;
5089
5090 align = bfd_get_section_alignment (stdoutput, segment);
5091 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5092 }
252b5132
RH
5093#endif
5094#endif
5095
5096 return size;
5097}
5098
5099/* On the i386, PC-relative offsets are relative to the start of the
5100 next instruction. That is, the address of the offset, plus its
5101 size, since the offset is always the last part of the insn. */
5102
5103long
5104md_pcrel_from (fixP)
5105 fixS *fixP;
5106{
5107 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5108}
5109
5110#ifndef I386COFF
5111
5112static void
5113s_bss (ignore)
ab9da554 5114 int ignore ATTRIBUTE_UNUSED;
252b5132 5115{
29b0f896 5116 int temp;
252b5132
RH
5117
5118 temp = get_absolute_expression ();
5119 subseg_set (bss_section, (subsegT) temp);
5120 demand_empty_rest_of_line ();
5121}
5122
5123#endif
5124
252b5132
RH
5125#ifdef BFD_ASSEMBLER
5126
5127void
5128i386_validate_fix (fixp)
5129 fixS *fixp;
5130{
5131 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5132 {
3e73aa7c 5133 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5134 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5135 {
5136 if (flag_code != CODE_64BIT)
5137 abort ();
5138 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5139 }
5140 else
5141 {
5142 if (flag_code == CODE_64BIT)
5143 abort ();
5144 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5145 }
252b5132
RH
5146 fixp->fx_subsy = 0;
5147 }
5148}
5149
252b5132
RH
5150arelent *
5151tc_gen_reloc (section, fixp)
ab9da554 5152 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5153 fixS *fixp;
5154{
5155 arelent *rel;
5156 bfd_reloc_code_real_type code;
5157
5158 switch (fixp->fx_r_type)
5159 {
3e73aa7c
JH
5160 case BFD_RELOC_X86_64_PLT32:
5161 case BFD_RELOC_X86_64_GOT32:
5162 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5163 case BFD_RELOC_386_PLT32:
5164 case BFD_RELOC_386_GOT32:
5165 case BFD_RELOC_386_GOTOFF:
5166 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5167 case BFD_RELOC_386_TLS_GD:
5168 case BFD_RELOC_386_TLS_LDM:
5169 case BFD_RELOC_386_TLS_LDO_32:
5170 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5171 case BFD_RELOC_386_TLS_IE:
5172 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5173 case BFD_RELOC_386_TLS_LE_32:
5174 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5175 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5176 case BFD_RELOC_X86_64_TLSGD:
5177 case BFD_RELOC_X86_64_TLSLD:
5178 case BFD_RELOC_X86_64_DTPOFF32:
5179 case BFD_RELOC_X86_64_GOTTPOFF:
5180 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5181 case BFD_RELOC_RVA:
5182 case BFD_RELOC_VTABLE_ENTRY:
5183 case BFD_RELOC_VTABLE_INHERIT:
5184 code = fixp->fx_r_type;
5185 break;
5186 default:
93382f6d 5187 if (fixp->fx_pcrel)
252b5132 5188 {
93382f6d
AM
5189 switch (fixp->fx_size)
5190 {
5191 default:
b091f402
AM
5192 as_bad_where (fixp->fx_file, fixp->fx_line,
5193 _("can not do %d byte pc-relative relocation"),
5194 fixp->fx_size);
93382f6d
AM
5195 code = BFD_RELOC_32_PCREL;
5196 break;
5197 case 1: code = BFD_RELOC_8_PCREL; break;
5198 case 2: code = BFD_RELOC_16_PCREL; break;
5199 case 4: code = BFD_RELOC_32_PCREL; break;
5200 }
5201 }
5202 else
5203 {
5204 switch (fixp->fx_size)
5205 {
5206 default:
b091f402
AM
5207 as_bad_where (fixp->fx_file, fixp->fx_line,
5208 _("can not do %d byte relocation"),
5209 fixp->fx_size);
93382f6d
AM
5210 code = BFD_RELOC_32;
5211 break;
5212 case 1: code = BFD_RELOC_8; break;
5213 case 2: code = BFD_RELOC_16; break;
5214 case 4: code = BFD_RELOC_32; break;
937149dd 5215#ifdef BFD64
3e73aa7c 5216 case 8: code = BFD_RELOC_64; break;
937149dd 5217#endif
93382f6d 5218 }
252b5132
RH
5219 }
5220 break;
5221 }
252b5132
RH
5222
5223 if (code == BFD_RELOC_32
5224 && GOT_symbol
5225 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5226 {
5227 /* We don't support GOTPC on 64bit targets. */
5228 if (flag_code == CODE_64BIT)
bfb32b52 5229 abort ();
3e73aa7c
JH
5230 code = BFD_RELOC_386_GOTPC;
5231 }
252b5132
RH
5232
5233 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5234 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5235 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5236
5237 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
5238 if (!use_rela_relocations)
5239 {
5240 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5241 vtable entry to be used in the relocation's section offset. */
5242 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5243 rel->address = fixp->fx_offset;
252b5132 5244
c6682705 5245 rel->addend = 0;
3e73aa7c
JH
5246 }
5247 /* Use the rela in 64bit mode. */
252b5132 5248 else
3e73aa7c 5249 {
062cd5e7
AS
5250 if (!fixp->fx_pcrel)
5251 rel->addend = fixp->fx_offset;
5252 else
5253 switch (code)
5254 {
5255 case BFD_RELOC_X86_64_PLT32:
5256 case BFD_RELOC_X86_64_GOT32:
5257 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5258 case BFD_RELOC_X86_64_TLSGD:
5259 case BFD_RELOC_X86_64_TLSLD:
5260 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5261 rel->addend = fixp->fx_offset - fixp->fx_size;
5262 break;
5263 default:
5264 rel->addend = (section->vma
5265 - fixp->fx_size
5266 + fixp->fx_addnumber
5267 + md_pcrel_from (fixp));
5268 break;
5269 }
3e73aa7c
JH
5270 }
5271
252b5132
RH
5272 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5273 if (rel->howto == NULL)
5274 {
5275 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5276 _("cannot represent relocation type %s"),
252b5132
RH
5277 bfd_get_reloc_code_name (code));
5278 /* Set howto to a garbage value so that we can keep going. */
5279 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5280 assert (rel->howto != NULL);
5281 }
5282
5283 return rel;
5284}
5285
29b0f896 5286#else /* !BFD_ASSEMBLER */
252b5132
RH
5287
5288#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5289void
5290tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5291 char *where;
5292 fixS *fixP;
5293 relax_addressT segment_address_in_file;
5294{
47926f60
KH
5295 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5296 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 5297
47926f60 5298 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
5299 long r_symbolnum;
5300
5301 know (fixP->fx_addsy != NULL);
5302
5303 md_number_to_chars (where,
5304 (valueT) (fixP->fx_frag->fr_address
5305 + fixP->fx_where - segment_address_in_file),
5306 4);
5307
5308 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5309 ? S_GET_TYPE (fixP->fx_addsy)
5310 : fixP->fx_addsy->sy_number);
5311
5312 where[6] = (r_symbolnum >> 16) & 0x0ff;
5313 where[5] = (r_symbolnum >> 8) & 0x0ff;
5314 where[4] = r_symbolnum & 0x0ff;
5315 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5316 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5317 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5318}
5319
47926f60 5320#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
5321
5322#if defined (I386COFF)
5323
5324short
5325tc_coff_fix2rtype (fixP)
5326 fixS *fixP;
5327{
5328 if (fixP->fx_r_type == R_IMAGEBASE)
5329 return R_IMAGEBASE;
5330
5331 return (fixP->fx_pcrel ?
5332 (fixP->fx_size == 1 ? R_PCRBYTE :
5333 fixP->fx_size == 2 ? R_PCRWORD :
5334 R_PCRLONG) :
5335 (fixP->fx_size == 1 ? R_RELBYTE :
5336 fixP->fx_size == 2 ? R_RELWORD :
5337 R_DIR32));
5338}
5339
5340int
5341tc_coff_sizemachdep (frag)
5342 fragS *frag;
5343{
5344 if (frag->fr_next)
5345 return (frag->fr_next->fr_address - frag->fr_address);
5346 else
5347 return 0;
5348}
5349
47926f60 5350#endif /* I386COFF */
252b5132 5351
29b0f896 5352#endif /* !BFD_ASSEMBLER */
64a0c779
DN
5353\f
5354/* Parse operands using Intel syntax. This implements a recursive descent
5355 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5356 Programmer's Guide.
5357
5358 FIXME: We do not recognize the full operand grammar defined in the MASM
5359 documentation. In particular, all the structure/union and
5360 high-level macro operands are missing.
5361
5362 Uppercase words are terminals, lower case words are non-terminals.
5363 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5364 bars '|' denote choices. Most grammar productions are implemented in
5365 functions called 'intel_<production>'.
5366
5367 Initial production is 'expr'.
5368
64a0c779
DN
5369 addOp + | -
5370
5371 alpha [a-zA-Z]
5372
5373 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5374
5375 constant digits [[ radixOverride ]]
5376
5377 dataType BYTE | WORD | DWORD | QWORD | XWORD
5378
5379 digits decdigit
b77a7acd
AJ
5380 | digits decdigit
5381 | digits hexdigit
64a0c779
DN
5382
5383 decdigit [0-9]
5384
5385 e05 e05 addOp e06
b77a7acd 5386 | e06
64a0c779
DN
5387
5388 e06 e06 mulOp e09
b77a7acd 5389 | e09
64a0c779
DN
5390
5391 e09 OFFSET e10
5392 | e09 PTR e10
5393 | e09 : e10
5394 | e10
5395
5396 e10 e10 [ expr ]
b77a7acd 5397 | e11
64a0c779
DN
5398
5399 e11 ( expr )
b77a7acd 5400 | [ expr ]
64a0c779
DN
5401 | constant
5402 | dataType
5403 | id
5404 | $
5405 | register
5406
5407 => expr SHORT e05
b77a7acd 5408 | e05
64a0c779
DN
5409
5410 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5411 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5412
5413 hexdigit a | b | c | d | e | f
b77a7acd 5414 | A | B | C | D | E | F
64a0c779
DN
5415
5416 id alpha
b77a7acd 5417 | id alpha
64a0c779
DN
5418 | id decdigit
5419
5420 mulOp * | / | MOD
5421
5422 quote " | '
5423
5424 register specialRegister
b77a7acd 5425 | gpRegister
64a0c779
DN
5426 | byteRegister
5427
5428 segmentRegister CS | DS | ES | FS | GS | SS
5429
5430 specialRegister CR0 | CR2 | CR3
b77a7acd 5431 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5432 | TR3 | TR4 | TR5 | TR6 | TR7
5433
64a0c779
DN
5434 We simplify the grammar in obvious places (e.g., register parsing is
5435 done by calling parse_register) and eliminate immediate left recursion
5436 to implement a recursive-descent parser.
5437
5438 expr SHORT e05
b77a7acd 5439 | e05
64a0c779
DN
5440
5441 e05 e06 e05'
5442
5443 e05' addOp e06 e05'
b77a7acd 5444 | Empty
64a0c779
DN
5445
5446 e06 e09 e06'
5447
5448 e06' mulOp e09 e06'
b77a7acd 5449 | Empty
64a0c779
DN
5450
5451 e09 OFFSET e10 e09'
b77a7acd 5452 | e10 e09'
64a0c779
DN
5453
5454 e09' PTR e10 e09'
b77a7acd 5455 | : e10 e09'
64a0c779
DN
5456 | Empty
5457
5458 e10 e11 e10'
5459
5460 e10' [ expr ] e10'
b77a7acd 5461 | Empty
64a0c779
DN
5462
5463 e11 ( expr )
b77a7acd 5464 | [ expr ]
64a0c779
DN
5465 | BYTE
5466 | WORD
5467 | DWORD
5468 | QWORD
5469 | XWORD
5470 | .
5471 | $
5472 | register
5473 | id
5474 | constant */
5475
5476/* Parsing structure for the intel syntax parser. Used to implement the
5477 semantic actions for the operand grammar. */
5478struct intel_parser_s
5479 {
5480 char *op_string; /* The string being parsed. */
5481 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5482 int op_modifier; /* Operand modifier. */
64a0c779
DN
5483 int is_mem; /* 1 if operand is memory reference. */
5484 const reg_entry *reg; /* Last register reference found. */
5485 char *disp; /* Displacement string being built. */
5486 };
5487
5488static struct intel_parser_s intel_parser;
5489
5490/* Token structure for parsing intel syntax. */
5491struct intel_token
5492 {
5493 int code; /* Token code. */
5494 const reg_entry *reg; /* Register entry for register tokens. */
5495 char *str; /* String representation. */
5496 };
5497
5498static struct intel_token cur_token, prev_token;
5499
50705ef4
AM
5500/* Token codes for the intel parser. Since T_SHORT is already used
5501 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5502#define T_NIL -1
5503#define T_CONST 1
5504#define T_REG 2
5505#define T_BYTE 3
5506#define T_WORD 4
5507#define T_DWORD 5
5508#define T_QWORD 6
5509#define T_XWORD 7
50705ef4 5510#undef T_SHORT
64a0c779
DN
5511#define T_SHORT 8
5512#define T_OFFSET 9
5513#define T_PTR 10
5514#define T_ID 11
5515
5516/* Prototypes for intel parser functions. */
5517static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5518static void intel_get_token PARAMS ((void));
5519static void intel_putback_token PARAMS ((void));
5520static int intel_expr PARAMS ((void));
5521static int intel_e05 PARAMS ((void));
5522static int intel_e05_1 PARAMS ((void));
5523static int intel_e06 PARAMS ((void));
5524static int intel_e06_1 PARAMS ((void));
5525static int intel_e09 PARAMS ((void));
5526static int intel_e09_1 PARAMS ((void));
5527static int intel_e10 PARAMS ((void));
5528static int intel_e10_1 PARAMS ((void));
5529static int intel_e11 PARAMS ((void));
64a0c779 5530
64a0c779
DN
5531static int
5532i386_intel_operand (operand_string, got_a_float)
5533 char *operand_string;
5534 int got_a_float;
5535{
5536 int ret;
5537 char *p;
5538
5539 /* Initialize token holders. */
5540 cur_token.code = prev_token.code = T_NIL;
5541 cur_token.reg = prev_token.reg = NULL;
5542 cur_token.str = prev_token.str = NULL;
5543
5544 /* Initialize parser structure. */
e5cb08ac 5545 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5546 if (p == NULL)
5547 abort ();
5548 strcpy (intel_parser.op_string, operand_string);
5549 intel_parser.got_a_float = got_a_float;
5550 intel_parser.op_modifier = -1;
5551 intel_parser.is_mem = 0;
5552 intel_parser.reg = NULL;
e5cb08ac 5553 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5554 if (intel_parser.disp == NULL)
5555 abort ();
5556 intel_parser.disp[0] = '\0';
5557
5558 /* Read the first token and start the parser. */
5559 intel_get_token ();
5560 ret = intel_expr ();
5561
5562 if (ret)
5563 {
5564 /* If we found a memory reference, hand it over to i386_displacement
5565 to fill in the rest of the operand fields. */
5566 if (intel_parser.is_mem)
5567 {
5568 if ((i.mem_operands == 1
5569 && (current_templates->start->opcode_modifier & IsString) == 0)
5570 || i.mem_operands == 2)
5571 {
5572 as_bad (_("too many memory references for '%s'"),
5573 current_templates->start->name);
5574 ret = 0;
5575 }
5576 else
5577 {
5578 char *s = intel_parser.disp;
5579 i.mem_operands++;
5580
5581 /* Add the displacement expression. */
5582 if (*s != '\0')
5583 ret = i386_displacement (s, s + strlen (s))
5584 && i386_index_check (s);
5585 }
5586 }
5587
5588 /* Constant and OFFSET expressions are handled by i386_immediate. */
5589 else if (intel_parser.op_modifier == OFFSET_FLAT
5590 || intel_parser.reg == NULL)
5591 ret = i386_immediate (intel_parser.disp);
5592 }
5593
5594 free (p);
5595 free (intel_parser.disp);
5596
5597 return ret;
5598}
5599
64a0c779 5600/* expr SHORT e05
b77a7acd 5601 | e05 */
64a0c779
DN
5602static int
5603intel_expr ()
5604{
5605 /* expr SHORT e05 */
5606 if (cur_token.code == T_SHORT)
5607 {
5608 intel_parser.op_modifier = SHORT;
5609 intel_match_token (T_SHORT);
5610
5611 return (intel_e05 ());
5612 }
5613
5614 /* expr e05 */
5615 else
5616 return intel_e05 ();
5617}
5618
64a0c779
DN
5619/* e05 e06 e05'
5620
4a1805b1 5621 e05' addOp e06 e05'
64a0c779
DN
5622 | Empty */
5623static int
5624intel_e05 ()
5625{
5626 return (intel_e06 () && intel_e05_1 ());
5627}
5628
5629static int
5630intel_e05_1 ()
5631{
5632 /* e05' addOp e06 e05' */
5633 if (cur_token.code == '+' || cur_token.code == '-')
5634 {
5635 strcat (intel_parser.disp, cur_token.str);
5636 intel_match_token (cur_token.code);
5637
5638 return (intel_e06 () && intel_e05_1 ());
5639 }
5640
5641 /* e05' Empty */
5642 else
5643 return 1;
4a1805b1 5644}
64a0c779
DN
5645
5646/* e06 e09 e06'
5647
5648 e06' mulOp e09 e06'
b77a7acd 5649 | Empty */
64a0c779
DN
5650static int
5651intel_e06 ()
5652{
5653 return (intel_e09 () && intel_e06_1 ());
5654}
5655
5656static int
5657intel_e06_1 ()
5658{
5659 /* e06' mulOp e09 e06' */
5660 if (cur_token.code == '*' || cur_token.code == '/')
5661 {
5662 strcat (intel_parser.disp, cur_token.str);
5663 intel_match_token (cur_token.code);
5664
5665 return (intel_e09 () && intel_e06_1 ());
5666 }
4a1805b1 5667
64a0c779 5668 /* e06' Empty */
4a1805b1 5669 else
64a0c779
DN
5670 return 1;
5671}
5672
64a0c779 5673/* e09 OFFSET e10 e09'
b77a7acd 5674 | e10 e09'
64a0c779
DN
5675
5676 e09' PTR e10 e09'
b77a7acd 5677 | : e10 e09'
64a0c779
DN
5678 | Empty */
5679static int
5680intel_e09 ()
5681{
5682 /* e09 OFFSET e10 e09' */
5683 if (cur_token.code == T_OFFSET)
5684 {
5685 intel_parser.is_mem = 0;
5686 intel_parser.op_modifier = OFFSET_FLAT;
5687 intel_match_token (T_OFFSET);
5688
5689 return (intel_e10 () && intel_e09_1 ());
5690 }
5691
5692 /* e09 e10 e09' */
5693 else
5694 return (intel_e10 () && intel_e09_1 ());
5695}
5696
5697static int
5698intel_e09_1 ()
5699{
5700 /* e09' PTR e10 e09' */
5701 if (cur_token.code == T_PTR)
5702 {
5703 if (prev_token.code == T_BYTE)
5704 i.suffix = BYTE_MNEM_SUFFIX;
5705
5706 else if (prev_token.code == T_WORD)
5707 {
5708 if (intel_parser.got_a_float == 2) /* "fi..." */
5709 i.suffix = SHORT_MNEM_SUFFIX;
5710 else
5711 i.suffix = WORD_MNEM_SUFFIX;
5712 }
5713
5714 else if (prev_token.code == T_DWORD)
5715 {
5716 if (intel_parser.got_a_float == 1) /* "f..." */
5717 i.suffix = SHORT_MNEM_SUFFIX;
5718 else
5719 i.suffix = LONG_MNEM_SUFFIX;
5720 }
5721
5722 else if (prev_token.code == T_QWORD)
f16b83df
JH
5723 {
5724 if (intel_parser.got_a_float == 1) /* "f..." */
5725 i.suffix = LONG_MNEM_SUFFIX;
5726 else
3e73aa7c 5727 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5728 }
64a0c779
DN
5729
5730 else if (prev_token.code == T_XWORD)
5731 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5732
5733 else
5734 {
5735 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5736 return 0;
5737 }
5738
5739 intel_match_token (T_PTR);
5740
5741 return (intel_e10 () && intel_e09_1 ());
5742 }
5743
5744 /* e09 : e10 e09' */
5745 else if (cur_token.code == ':')
5746 {
21d6c4af
DN
5747 /* Mark as a memory operand only if it's not already known to be an
5748 offset expression. */
5749 if (intel_parser.op_modifier != OFFSET_FLAT)
5750 intel_parser.is_mem = 1;
64a0c779
DN
5751
5752 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5753 }
5754
5755 /* e09' Empty */
5756 else
5757 return 1;
5758}
5759
5760/* e10 e11 e10'
5761
5762 e10' [ expr ] e10'
b77a7acd 5763 | Empty */
64a0c779
DN
5764static int
5765intel_e10 ()
5766{
5767 return (intel_e11 () && intel_e10_1 ());
5768}
5769
5770static int
5771intel_e10_1 ()
5772{
5773 /* e10' [ expr ] e10' */
5774 if (cur_token.code == '[')
5775 {
5776 intel_match_token ('[');
21d6c4af
DN
5777
5778 /* Mark as a memory operand only if it's not already known to be an
5779 offset expression. If it's an offset expression, we need to keep
5780 the brace in. */
5781 if (intel_parser.op_modifier != OFFSET_FLAT)
5782 intel_parser.is_mem = 1;
5783 else
5784 strcat (intel_parser.disp, "[");
4a1805b1 5785
64a0c779 5786 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5787 if (*intel_parser.disp != '\0'
5788 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5789 strcat (intel_parser.disp, "+");
5790
21d6c4af
DN
5791 if (intel_expr () && intel_match_token (']'))
5792 {
5793 /* Preserve brackets when the operand is an offset expression. */
5794 if (intel_parser.op_modifier == OFFSET_FLAT)
5795 strcat (intel_parser.disp, "]");
5796
5797 return intel_e10_1 ();
5798 }
5799 else
5800 return 0;
64a0c779
DN
5801 }
5802
5803 /* e10' Empty */
5804 else
5805 return 1;
5806}
5807
64a0c779 5808/* e11 ( expr )
b77a7acd 5809 | [ expr ]
64a0c779
DN
5810 | BYTE
5811 | WORD
5812 | DWORD
5813 | QWORD
5814 | XWORD
4a1805b1 5815 | $
64a0c779
DN
5816 | .
5817 | register
5818 | id
5819 | constant */
5820static int
5821intel_e11 ()
5822{
5823 /* e11 ( expr ) */
5824 if (cur_token.code == '(')
5825 {
5826 intel_match_token ('(');
5827 strcat (intel_parser.disp, "(");
5828
5829 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5830 {
5831 strcat (intel_parser.disp, ")");
5832 return 1;
5833 }
64a0c779
DN
5834 else
5835 return 0;
5836 }
5837
5838 /* e11 [ expr ] */
5839 else if (cur_token.code == '[')
5840 {
5841 intel_match_token ('[');
21d6c4af
DN
5842
5843 /* Mark as a memory operand only if it's not already known to be an
5844 offset expression. If it's an offset expression, we need to keep
5845 the brace in. */
5846 if (intel_parser.op_modifier != OFFSET_FLAT)
5847 intel_parser.is_mem = 1;
5848 else
5849 strcat (intel_parser.disp, "[");
4a1805b1 5850
64a0c779
DN
5851 /* Operands for jump/call inside brackets denote absolute addresses. */
5852 if (current_templates->start->opcode_modifier & Jump
5853 || current_templates->start->opcode_modifier & JumpDword
5854 || current_templates->start->opcode_modifier & JumpByte
5855 || current_templates->start->opcode_modifier & JumpInterSegment)
5856 i.types[this_operand] |= JumpAbsolute;
5857
5858 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5859 if (*intel_parser.disp != '\0'
5860 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5861 strcat (intel_parser.disp, "+");
5862
21d6c4af
DN
5863 if (intel_expr () && intel_match_token (']'))
5864 {
5865 /* Preserve brackets when the operand is an offset expression. */
5866 if (intel_parser.op_modifier == OFFSET_FLAT)
5867 strcat (intel_parser.disp, "]");
5868
5869 return 1;
5870 }
5871 else
5872 return 0;
64a0c779
DN
5873 }
5874
4a1805b1 5875 /* e11 BYTE
64a0c779
DN
5876 | WORD
5877 | DWORD
5878 | QWORD
5879 | XWORD */
5880 else if (cur_token.code == T_BYTE
5881 || cur_token.code == T_WORD
5882 || cur_token.code == T_DWORD
5883 || cur_token.code == T_QWORD
5884 || cur_token.code == T_XWORD)
5885 {
5886 intel_match_token (cur_token.code);
5887
5888 return 1;
5889 }
5890
5891 /* e11 $
5892 | . */
5893 else if (cur_token.code == '$' || cur_token.code == '.')
5894 {
5895 strcat (intel_parser.disp, cur_token.str);
5896 intel_match_token (cur_token.code);
21d6c4af
DN
5897
5898 /* Mark as a memory operand only if it's not already known to be an
5899 offset expression. */
5900 if (intel_parser.op_modifier != OFFSET_FLAT)
5901 intel_parser.is_mem = 1;
64a0c779
DN
5902
5903 return 1;
5904 }
5905
5906 /* e11 register */
5907 else if (cur_token.code == T_REG)
5908 {
5909 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5910
5911 intel_match_token (T_REG);
5912
5913 /* Check for segment change. */
5914 if (cur_token.code == ':')
5915 {
5916 if (reg->reg_type & (SReg2 | SReg3))
5917 {
5918 switch (reg->reg_num)
5919 {
5920 case 0:
5921 i.seg[i.mem_operands] = &es;
5922 break;
5923 case 1:
5924 i.seg[i.mem_operands] = &cs;
5925 break;
5926 case 2:
5927 i.seg[i.mem_operands] = &ss;
5928 break;
5929 case 3:
5930 i.seg[i.mem_operands] = &ds;
5931 break;
5932 case 4:
5933 i.seg[i.mem_operands] = &fs;
5934 break;
5935 case 5:
5936 i.seg[i.mem_operands] = &gs;
5937 break;
5938 }
5939 }
5940 else
5941 {
5942 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5943 return 0;
5944 }
5945 }
5946
5947 /* Not a segment register. Check for register scaling. */
5948 else if (cur_token.code == '*')
5949 {
5950 if (!intel_parser.is_mem)
5951 {
5952 as_bad (_("Register scaling only allowed in memory operands."));
5953 return 0;
5954 }
5955
4a1805b1 5956 /* What follows must be a valid scale. */
64a0c779
DN
5957 if (intel_match_token ('*')
5958 && strchr ("01248", *cur_token.str))
5959 {
5960 i.index_reg = reg;
5961 i.types[this_operand] |= BaseIndex;
5962
5963 /* Set the scale after setting the register (otherwise,
5964 i386_scale will complain) */
5965 i386_scale (cur_token.str);
5966 intel_match_token (T_CONST);
5967 }
5968 else
5969 {
5970 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5971 cur_token.str);
5972 return 0;
5973 }
5974 }
5975
5976 /* No scaling. If this is a memory operand, the register is either a
5977 base register (first occurrence) or an index register (second
5978 occurrence). */
5979 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5980 {
5981 if (i.base_reg && i.index_reg)
5982 {
5983 as_bad (_("Too many register references in memory operand.\n"));
5984 return 0;
5985 }
5986
5987 if (i.base_reg == NULL)
5988 i.base_reg = reg;
5989 else
5990 i.index_reg = reg;
5991
5992 i.types[this_operand] |= BaseIndex;
5993 }
5994
5995 /* Offset modifier. Add the register to the displacement string to be
5996 parsed as an immediate expression after we're done. */
5997 else if (intel_parser.op_modifier == OFFSET_FLAT)
5998 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5999
64a0c779
DN
6000 /* It's neither base nor index nor offset. */
6001 else
6002 {
6003 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6004 i.op[this_operand].regs = reg;
6005 i.reg_operands++;
6006 }
6007
6008 /* Since registers are not part of the displacement string (except
6009 when we're parsing offset operands), we may need to remove any
6010 preceding '+' from the displacement string. */
6011 if (*intel_parser.disp != '\0'
6012 && intel_parser.op_modifier != OFFSET_FLAT)
6013 {
6014 char *s = intel_parser.disp;
6015 s += strlen (s) - 1;
6016 if (*s == '+')
6017 *s = '\0';
6018 }
6019
6020 return 1;
6021 }
4a1805b1 6022
64a0c779
DN
6023 /* e11 id */
6024 else if (cur_token.code == T_ID)
6025 {
6026 /* Add the identifier to the displacement string. */
6027 strcat (intel_parser.disp, cur_token.str);
6028 intel_match_token (T_ID);
6029
6030 /* The identifier represents a memory reference only if it's not
6031 preceded by an offset modifier. */
21d6c4af 6032 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
6033 intel_parser.is_mem = 1;
6034
6035 return 1;
6036 }
6037
6038 /* e11 constant */
6039 else if (cur_token.code == T_CONST
e5cb08ac 6040 || cur_token.code == '-'
64a0c779
DN
6041 || cur_token.code == '+')
6042 {
6043 char *save_str;
6044
6045 /* Allow constants that start with `+' or `-'. */
6046 if (cur_token.code == '-' || cur_token.code == '+')
6047 {
6048 strcat (intel_parser.disp, cur_token.str);
6049 intel_match_token (cur_token.code);
6050 if (cur_token.code != T_CONST)
6051 {
6052 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6053 cur_token.str);
6054 return 0;
6055 }
6056 }
6057
e5cb08ac 6058 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6059 if (save_str == NULL)
bc805888 6060 abort ();
64a0c779
DN
6061 strcpy (save_str, cur_token.str);
6062
6063 /* Get the next token to check for register scaling. */
6064 intel_match_token (cur_token.code);
6065
6066 /* Check if this constant is a scaling factor for an index register. */
6067 if (cur_token.code == '*')
6068 {
6069 if (intel_match_token ('*') && cur_token.code == T_REG)
6070 {
6071 if (!intel_parser.is_mem)
6072 {
6073 as_bad (_("Register scaling only allowed in memory operands."));
6074 return 0;
6075 }
6076
4a1805b1 6077 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6078 a valid scale. */
6079 if (strchr ("01248", *save_str))
6080 {
6081 i.index_reg = cur_token.reg;
6082 i.types[this_operand] |= BaseIndex;
6083
6084 /* Set the scale after setting the register (otherwise,
6085 i386_scale will complain) */
6086 i386_scale (save_str);
6087 intel_match_token (T_REG);
6088
6089 /* Since registers are not part of the displacement
6090 string, we may need to remove any preceding '+' from
6091 the displacement string. */
6092 if (*intel_parser.disp != '\0')
6093 {
6094 char *s = intel_parser.disp;
6095 s += strlen (s) - 1;
6096 if (*s == '+')
6097 *s = '\0';
6098 }
6099
6100 free (save_str);
6101
6102 return 1;
6103 }
6104 else
6105 return 0;
6106 }
6107
6108 /* The constant was not used for register scaling. Since we have
6109 already consumed the token following `*' we now need to put it
6110 back in the stream. */
6111 else
6112 intel_putback_token ();
6113 }
6114
6115 /* Add the constant to the displacement string. */
6116 strcat (intel_parser.disp, save_str);
6117 free (save_str);
6118
6119 return 1;
6120 }
6121
64a0c779
DN
6122 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6123 return 0;
6124}
6125
64a0c779
DN
6126/* Match the given token against cur_token. If they match, read the next
6127 token from the operand string. */
6128static int
6129intel_match_token (code)
e5cb08ac 6130 int code;
64a0c779
DN
6131{
6132 if (cur_token.code == code)
6133 {
6134 intel_get_token ();
6135 return 1;
6136 }
6137 else
6138 {
6139 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6140 return 0;
6141 }
6142}
6143
64a0c779
DN
6144/* Read a new token from intel_parser.op_string and store it in cur_token. */
6145static void
6146intel_get_token ()
6147{
6148 char *end_op;
6149 const reg_entry *reg;
6150 struct intel_token new_token;
6151
6152 new_token.code = T_NIL;
6153 new_token.reg = NULL;
6154 new_token.str = NULL;
6155
4a1805b1 6156 /* Free the memory allocated to the previous token and move
64a0c779
DN
6157 cur_token to prev_token. */
6158 if (prev_token.str)
6159 free (prev_token.str);
6160
6161 prev_token = cur_token;
6162
6163 /* Skip whitespace. */
6164 while (is_space_char (*intel_parser.op_string))
6165 intel_parser.op_string++;
6166
6167 /* Return an empty token if we find nothing else on the line. */
6168 if (*intel_parser.op_string == '\0')
6169 {
6170 cur_token = new_token;
6171 return;
6172 }
6173
6174 /* The new token cannot be larger than the remainder of the operand
6175 string. */
e5cb08ac 6176 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6177 if (new_token.str == NULL)
bc805888 6178 abort ();
64a0c779
DN
6179 new_token.str[0] = '\0';
6180
6181 if (strchr ("0123456789", *intel_parser.op_string))
6182 {
6183 char *p = new_token.str;
6184 char *q = intel_parser.op_string;
6185 new_token.code = T_CONST;
6186
6187 /* Allow any kind of identifier char to encompass floating point and
6188 hexadecimal numbers. */
6189 while (is_identifier_char (*q))
6190 *p++ = *q++;
6191 *p = '\0';
6192
6193 /* Recognize special symbol names [0-9][bf]. */
6194 if (strlen (intel_parser.op_string) == 2
4a1805b1 6195 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6196 || intel_parser.op_string[1] == 'f'))
6197 new_token.code = T_ID;
6198 }
6199
6200 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6201 {
6202 new_token.code = *intel_parser.op_string;
6203 new_token.str[0] = *intel_parser.op_string;
6204 new_token.str[1] = '\0';
6205 }
6206
6207 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6208 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6209 {
6210 new_token.code = T_REG;
6211 new_token.reg = reg;
6212
6213 if (*intel_parser.op_string == REGISTER_PREFIX)
6214 {
6215 new_token.str[0] = REGISTER_PREFIX;
6216 new_token.str[1] = '\0';
6217 }
6218
6219 strcat (new_token.str, reg->reg_name);
6220 }
6221
6222 else if (is_identifier_char (*intel_parser.op_string))
6223 {
6224 char *p = new_token.str;
6225 char *q = intel_parser.op_string;
6226
6227 /* A '.' or '$' followed by an identifier char is an identifier.
6228 Otherwise, it's operator '.' followed by an expression. */
6229 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6230 {
6231 new_token.code = *q;
6232 new_token.str[0] = *q;
6233 new_token.str[1] = '\0';
6234 }
6235 else
6236 {
6237 while (is_identifier_char (*q) || *q == '@')
6238 *p++ = *q++;
6239 *p = '\0';
6240
6241 if (strcasecmp (new_token.str, "BYTE") == 0)
6242 new_token.code = T_BYTE;
6243
6244 else if (strcasecmp (new_token.str, "WORD") == 0)
6245 new_token.code = T_WORD;
6246
6247 else if (strcasecmp (new_token.str, "DWORD") == 0)
6248 new_token.code = T_DWORD;
6249
6250 else if (strcasecmp (new_token.str, "QWORD") == 0)
6251 new_token.code = T_QWORD;
6252
6253 else if (strcasecmp (new_token.str, "XWORD") == 0)
6254 new_token.code = T_XWORD;
6255
6256 else if (strcasecmp (new_token.str, "PTR") == 0)
6257 new_token.code = T_PTR;
6258
6259 else if (strcasecmp (new_token.str, "SHORT") == 0)
6260 new_token.code = T_SHORT;
6261
6262 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6263 {
6264 new_token.code = T_OFFSET;
6265
6266 /* ??? This is not mentioned in the MASM grammar but gcc
6267 makes use of it with -mintel-syntax. OFFSET may be
6268 followed by FLAT: */
6269 if (strncasecmp (q, " FLAT:", 6) == 0)
6270 strcat (new_token.str, " FLAT:");
6271 }
6272
6273 /* ??? This is not mentioned in the MASM grammar. */
6274 else if (strcasecmp (new_token.str, "FLAT") == 0)
6275 new_token.code = T_OFFSET;
6276
6277 else
6278 new_token.code = T_ID;
6279 }
6280 }
6281
6282 else
6283 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6284
6285 intel_parser.op_string += strlen (new_token.str);
6286 cur_token = new_token;
6287}
6288
64a0c779
DN
6289/* Put cur_token back into the token stream and make cur_token point to
6290 prev_token. */
6291static void
6292intel_putback_token ()
6293{
6294 intel_parser.op_string -= strlen (cur_token.str);
6295 free (cur_token.str);
6296 cur_token = prev_token;
4a1805b1 6297
64a0c779
DN
6298 /* Forget prev_token. */
6299 prev_token.code = T_NIL;
6300 prev_token.reg = NULL;
6301 prev_token.str = NULL;
6302}
54cfded0
AM
6303
6304void
6305tc_x86_cfi_init (void)
6306{
6307 struct cfi_config cfi_config;
6308
6309 if (flag_code == CODE_64BIT)
6310 {
6311 cfi_config.addr_length = 8;
6312 cfi_config.eh_align = 8;
6313 cfi_config.code_align = 1;
6314 cfi_config.data_align = -8;
6315 cfi_config.ra_column = 0x10;
6316 cfi_config.reloc_type = BFD_RELOC_64;
6317 }
6318 else
6319 {
6320 cfi_config.addr_length = 4;
6321 cfi_config.eh_align = 4;
6322 cfi_config.code_align = 1;
6323 cfi_config.data_align = -4;
6324 cfi_config.ra_column = 0x08;
6325 cfi_config.reloc_type = BFD_RELOC_32;
6326 }
6327
6328 cfi_set_config (&cfi_config);
6329}
6330
6331unsigned long
6332tc_x86_regname_to_dw2regnum (const char *regname)
6333{
6334 unsigned int regnum;
6335 unsigned int regnames_count;
6336 char *regnames_32[] =
6337 {
6338 "eax", "ebx", "ecx", "edx",
6339 "edi", "esi", "ebp", "esp",
6340 "eip"
6341 };
6342 char *regnames_64[] =
6343 {
6344 "rax", "rbx", "rcx", "rdx",
6345 "rdi", "rsi", "rbp", "rsp",
6346 "r8", "r9", "r10", "r11",
6347 "r12", "r13", "r14", "r15",
6348 "rip"
6349 };
6350 char **regnames;
6351
6352 if (flag_code == CODE_64BIT)
6353 {
6354 regnames = regnames_64;
6355 regnames_count = sizeof (regnames_64);
6356 }
6357 else
6358 {
6359 regnames = regnames_32;
6360 regnames_count = sizeof (regnames_32);
6361 }
6362
6363 for (regnum = 0; regnum < regnames_count; regnum++)
6364 if (strcmp (regname, regnames[regnum]) == 0)
6365 return regnum;
6366
6367 as_bad (_("unknown register name '%s'"), regname);
6368 return -1;
6369}
6370
6371void
6372tc_x86_frame_initial_instructions (void)
6373{
6374 if (flag_code == CODE_64BIT)
6375 {
6376 cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("rsp"), 8);
6377 cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("rip"), -8);
6378 }
6379 else
6380 {
6381 cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("esp"), 4);
6382 cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("eip"), -4);
6383 }
6384}
This page took 0.539706 seconds and 4 git commands to generate.