x86-64: Skip GNU2 TLS tests only without compiler support
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
42e04b36 422 vex_encoding_vex,
86fa6981
L
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
72aea328 3993 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 3999 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
7697afb6
JB
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
b6f8c7c4
L
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
72aea328 4025 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
b6f8c7c4
L
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
507916b8 4030 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
507916b8 4039 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
72aea328
JB
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
d3d50934
L
4049 || (i.reg_operands == 1
4050 && i.operands == 1
72aea328 4051 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4055 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
507916b8 4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
507916b8 4077 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
507916b8 4082 i.tm.base_opcode = 0xb8;
b6f8c7c4 4083 i.tm.extension_opcode = None;
507916b8 4084 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
5641ec01
JB
4090 else if (optimize > 1
4091 && !optimize_for_space
72aea328 4092 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
99112332 4114 else if (i.reg_operands == 3
b6f8c7c4
L
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
7a69eac3 4118 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4119 && !i.rounding
e771e7c9 4120 && is_evex_encoding (&i.tm)
80c34c38 4121 && (i.vec_encoding != vex_encoding_evex
dd22218c 4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4124 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4125 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
8305403a
L
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4140 && i.tm.extension_opcode == None))
4141 {
99112332 4142 /* Optimize: -O1:
8305403a
L
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
b6f8c7c4
L
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4176 */
e771e7c9 4177 if (is_evex_encoding (&i.tm))
b6f8c7c4 4178 {
7b1d7ca1 4179 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
7b1d7ca1 4185 else if (optimize > 1)
dd22218c
L
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
b6f8c7c4 4189 }
f74a6307 4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
b6f8c7c4
L
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
392a5972 4205 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4206 && !i.types[0].bitfield.zmmword
392a5972 4207 && !i.types[1].bitfield.zmmword
97ed31ae 4208 && !i.mask
a0a1771e 4209 && !i.broadcast
97ed31ae 4210 && is_evex_encoding (&i.tm)
392a5972
L
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4242 */
a0a1771e 4243 for (j = 0; j < i.operands; j++)
392a5972
L
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
a0a1771e 4276 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
a0a1771e
JB
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4282 }
b6f8c7c4
L
4283}
4284
252b5132
RH
4285/* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289void
65da13b5 4290md_assemble (char *line)
252b5132 4291{
40fb9820 4292 unsigned int j;
83b16ac6 4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4294 const insn_template *t;
252b5132 4295
47926f60 4296 /* Initialize globals. */
252b5132
RH
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4299 i.reloc[j] = NO_RELOC;
252b5132
RH
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4302 save_stack_p = save_stack;
252b5132
RH
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4306 start of a (possibly prefixed) mnemonic. */
252b5132 4307
29b0f896
AM
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
83b16ac6 4311 mnem_suffix = i.suffix;
252b5132 4312
29b0f896 4313 line = parse_operands (line, mnemonic);
ee86248c 4314 this_operand = -1;
8325cc63
JB
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
29b0f896
AM
4317 if (line == NULL)
4318 return;
252b5132 4319
29b0f896
AM
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
050dfa73 4326 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4327 if (intel_syntax
4328 && i.operands > 1
29b0f896 4329 && (strcmp (mnemonic, "bound") != 0)
30123838 4330 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4333 swap_operands ();
4334
ec56d5c0
JB
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
29b0f896
AM
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
b300c311
L
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
a501d77e 4348 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
29b0f896
AM
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
252b5132 4356
83b16ac6 4357 if (!(t = match_template (mnem_suffix)))
29b0f896 4358 return;
252b5132 4359
7bab8ab5 4360 if (sse_check != check_none
81f8a913 4361 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4362 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4369 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4370 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4373 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4374 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4375 {
7bab8ab5 4376 (sse_check == check_warning
daf50ae7
L
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
321fd21e
L
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4386 {
321fd21e
L
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
7ab9ffdd 4391 && intel_syntax)
321fd21e
L
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
cd61ebfe 4395 }
24eab124 4396
40fb9820 4397 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
252b5132 4400
d5de92cf
L
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
c1ba0266
L
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
c32fa91d
L
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
8dc0818e 4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
7a8655d2
JB
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
42164a71 4428 /* Check if HLE prefix is OK. */
165de32a 4429 if (i.hle_prefix && !check_hle ())
42164a71
L
4430 return;
4431
7e8b059b
L
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
04ef582a 4436 /* Check NOTRACK prefix. */
9fef80d6
L
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4439
327e8c42
JB
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
7e8b059b
L
4449
4450 /* Insert BND prefix. */
76d3a78a
JB
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
7e8b059b 4461
29b0f896 4462 /* Check string instruction segment overrides. */
51c8edf6 4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4464 {
51c8edf6 4465 gas_assert (i.mem_operands);
29b0f896 4466 if (!check_string ())
5dd0794d 4467 return;
fc0763e6 4468 i.disp_operands = 0;
29b0f896 4469 }
5dd0794d 4470
b6f8c7c4
L
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
29b0f896
AM
4474 if (!process_suffix ())
4475 return;
e413e4e9 4476
bc0844ae
L
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
29b0f896
AM
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
252b5132 4485
40fb9820 4486 if (i.types[0].bitfield.imm1)
29b0f896 4487 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4488
9afe6eb8
L
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
75e5731b
JB
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
9afe6eb8 4495 i.reg_operands--;
40fb9820 4496
c0f3af97
L
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
65da13b5 4500 process_immext ();
252b5132 4501
29b0f896
AM
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
40fb9820 4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
252b5132 4513
7a8655d2 4514 if (is_any_vex_encoding (&i.tm))
9e5e5283 4515 {
c1dc7af5 4516 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4517 {
c1dc7af5 4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4519 i.tm.name);
4520 return;
4521 }
c0f3af97 4522
9e5e5283
L
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
43234a1e 4528
5dd85c99
SP
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
252b5132 4539
0cfa3eb3
JB
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
252b5132 4551
40fb9820 4552 if (i.tm.opcode_modifier.rex64)
161a04f6 4553 i.rex |= REX_W;
252b5132 4554
29b0f896
AM
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
773f551c 4558
bab6aec1 4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4565 && i.rex != 0))
4566 {
4567 int x;
726c5dcd 4568
29b0f896
AM
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4575 {
3f93af61 4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
a540244d 4579 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4580 "instruction requiring REX prefix."),
a540244d 4581 register_prefix, i.op[x].regs->reg_name);
773f551c 4582
29b0f896
AM
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
773f551c 4588 }
29b0f896
AM
4589 }
4590 }
773f551c 4591
6b6b6807
L
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4595 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
bab6aec1 4599 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
3f93af61 4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
7ab9ffdd 4613 if (i.rex != 0)
29b0f896
AM
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
e379e5f3
L
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
29b0f896
AM
4629}
4630
4631static char *
e3bb37b5 4632parse_insn (char *line, char *mnemonic)
29b0f896
AM
4633{
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
5c6af06e 4637 int supported;
d3ce72d0 4638 const insn_template *t;
b6169b20 4639 char *dot_p = NULL;
29b0f896 4640
29b0f896
AM
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
b6169b20
L
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
29b0f896
AM
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4650 {
29b0f896
AM
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
e44823cf
JB
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
29b0f896
AM
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
e44823cf 4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
45288df1 4674
29b0f896 4675 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4677
29b0f896
AM
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
40fb9820 4681 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4682 {
c6fb90c8 4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
29b0f896
AM
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4695 && flag_code != CODE_64BIT
673fe0f0 4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
45288df1 4702 }
86fa6981 4703 if (current_templates->start->opcode_length == 0)
29b0f896 4704 {
86fa6981
L
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
42e04b36
L
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
6b6b6807
L
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
b6f8c7c4
L
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
86fa6981
L
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4751 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4752 {
4e9ac44a
L
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
d777820b 4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
86fa6981 4769 }
29b0f896
AM
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
45288df1 4777
30a55f88 4778 if (!current_templates)
b6169b20 4779 {
07d5e953
JB
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
f8a5c266 4782 encoding. */
30a55f88 4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4784 i.dir_encoding = dir_encoding_swap;
8d63c93e 4785 else if (mnem_p - 3 == dot_p
a501d77e
L
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4789 else if (mnem_p - 4 == dot_p
f8a5c266
L
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
a501d77e 4793 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
d3ce72d0 4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4799 }
4800
29b0f896
AM
4801 if (!current_templates)
4802 {
b6169b20 4803check_suffix:
1c529385 4804 if (mnem_p > mnemonic)
29b0f896 4805 {
1c529385
LH
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
29b0f896 4808 {
1c529385
LH
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
1c529385
LH
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
29b0f896 4817 mnem_p[-1] = '\0';
d3ce72d0 4818 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
29b0f896 4845 }
29b0f896 4846 }
1c529385 4847
29b0f896
AM
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
252b5132 4854
0cfa3eb3
JB
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
252b5132 4887
29b0f896 4888 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
c0f3af97
L
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4897
548d0ee6
JB
4898 return l;
4899 }
29b0f896 4900 }
3629bb00 4901
548d0ee6
JB
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4912
548d0ee6 4913 return NULL;
29b0f896 4914}
252b5132 4915
29b0f896 4916static char *
e3bb37b5 4917parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4918{
4919 char *token_start;
3138f287 4920
29b0f896
AM
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
252b5132 4923
29b0f896
AM
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
d02603dc 4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
d02603dc 4939 token_start = l; /* After white space. */
29b0f896
AM
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
d02603dc 4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
9d46ce34 4991 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
1286ab78
L
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
29b0f896
AM
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
a7619375 5007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
7f3f1ea2 5027
29b0f896
AM
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040}
7f3f1ea2 5041
050dfa73 5042static void
4d456e3d 5043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5044{
5045 union i386_op temp_op;
40fb9820 5046 i386_operand_type temp_type;
c48dadc9 5047 unsigned int temp_flags;
050dfa73 5048 enum bfd_reloc_code_real temp_reloc;
4eed87de 5049
050dfa73
MM
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
c48dadc9
JB
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
050dfa73
MM
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
c48dadc9 5061
050dfa73
MM
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
050dfa73
MM
5087}
5088
29b0f896 5089static void
e3bb37b5 5090swap_operands (void)
29b0f896 5091{
b7c61d9a 5092 switch (i.operands)
050dfa73 5093 {
c0f3af97 5094 case 5:
b7c61d9a 5095 case 4:
4d456e3d 5096 swap_2_operands (1, i.operands - 2);
1a0670f3 5097 /* Fall through. */
b7c61d9a
L
5098 case 3:
5099 case 2:
4d456e3d 5100 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5101 break;
5102 default:
5103 abort ();
29b0f896 5104 }
29b0f896
AM
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113}
252b5132 5114
29b0f896
AM
5115/* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117static void
e3bb37b5 5118optimize_imm (void)
29b0f896
AM
5119{
5120 char guess_suffix = 0;
5121 int op;
252b5132 5122
29b0f896
AM
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5131 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
7ab9ffdd 5135 {
40fb9820
L
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
bab6aec1 5139 else if (i.types[op].bitfield.word)
252b5132 5140 {
40fb9820
L
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
bab6aec1 5144 else if (i.types[op].bitfield.dword)
40fb9820
L
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
bab6aec1 5149 else if (i.types[op].bitfield.qword)
40fb9820
L
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5152 break;
252b5132 5153 }
29b0f896
AM
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
40fb9820 5159 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5160 {
5161 switch (i.op[op].imms->X_op)
252b5132 5162 {
29b0f896
AM
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
252b5132 5166 {
29b0f896 5167 case LONG_MNEM_SUFFIX:
40fb9820
L
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5170 break;
5171 case WORD_MNEM_SUFFIX:
40fb9820
L
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5176 break;
5177 case BYTE_MNEM_SUFFIX:
40fb9820
L
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
29b0f896 5184 break;
252b5132 5185 }
252b5132 5186
29b0f896
AM
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
40fb9820 5192 if ((i.types[op].bitfield.imm16)
29b0f896 5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5194 {
29b0f896
AM
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
a28def75
L
5198#ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5200 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
a28def75 5208#endif
40fb9820 5209 i.types[op]
c6fb90c8
L
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5212
29b0f896
AM
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5216 i.types[op].bitfield.imm32 = 0;
29b0f896 5217 break;
252b5132 5218
29b0f896
AM
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
9cd96992
JB
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
40fb9820 5229 i386_operand_type mask, allowed;
d3ce72d0 5230 const insn_template *t;
9cd96992 5231
0dfbf9d7
L
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
40fb9820 5234
4eed87de
AM
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
bab6aec1
JB
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
9cd96992
JB
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
40fb9820
L
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
9cd96992
JB
5247 break;
5248 case LONG_MNEM_SUFFIX:
40fb9820 5249 mask.bitfield.imm32 = 1;
9cd96992
JB
5250 break;
5251 case WORD_MNEM_SUFFIX:
40fb9820 5252 mask.bitfield.imm16 = 1;
9cd96992
JB
5253 break;
5254 case BYTE_MNEM_SUFFIX:
40fb9820 5255 mask.bitfield.imm8 = 1;
9cd96992
JB
5256 break;
5257 default:
9cd96992
JB
5258 break;
5259 }
c6fb90c8 5260 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5261 if (!operand_type_all_zero (&allowed))
c6fb90c8 5262 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5263 }
29b0f896 5264 break;
252b5132 5265 }
29b0f896
AM
5266 }
5267}
47926f60 5268
29b0f896
AM
5269/* Try to use the smallest displacement type too. */
5270static void
e3bb37b5 5271optimize_disp (void)
29b0f896
AM
5272{
5273 int op;
3e73aa7c 5274
29b0f896 5275 for (op = i.operands; --op >= 0;)
40fb9820 5276 if (operand_type_check (i.types[op], disp))
252b5132 5277 {
b300c311 5278 if (i.op[op].disps->X_op == O_constant)
252b5132 5279 {
91d6fa6a 5280 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5281
40fb9820 5282 if (i.types[op].bitfield.disp16
91d6fa6a 5283 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
91d6fa6a 5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5289 i.types[op].bitfield.disp64 = 0;
b300c311 5290 }
a28def75
L
5291#ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5293 if (i.types[op].bitfield.disp32
91d6fa6a 5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
91d6fa6a
NC
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5301 i.types[op].bitfield.disp64 = 0;
b300c311 5302 }
a28def75 5303#endif
91d6fa6a 5304 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5305 {
40fb9820
L
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
b300c311
L
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
91d6fa6a 5316 if (fits_in_signed_long (op_disp))
28a9d8f5 5317 {
40fb9820
L
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5320 }
0e1147d9 5321 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5322 && fits_in_unsigned_long (op_disp))
40fb9820 5323 i.types[op].bitfield.disp32 = 1;
b300c311 5324 }
40fb9820
L
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
b5014f7a 5328 && fits_in_disp8 (op_disp))
40fb9820 5329 i.types[op].bitfield.disp8 = 1;
252b5132 5330 }
67a4f2b7
AO
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5341 }
5342 else
b300c311 5343 /* We only support 64bit displacement on constants. */
40fb9820 5344 i.types[op].bitfield.disp64 = 0;
252b5132 5345 }
29b0f896
AM
5346}
5347
4a1b91ea
L
5348/* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351static INLINE int
5352match_broadcast_size (const insn_template *t, unsigned int given)
5353{
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362}
5363
6c30d220
L
5364/* Check if operands are valid for the instruction. */
5365
5366static int
5367check_VecOperands (const insn_template *t)
5368{
43234a1e 5369 unsigned int op;
e2195274
JB
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
45a4bb20 5748 unsigned int j, size_match, check_register;
5614d22c 5749 enum i386_error specific_error = 0;
29b0f896 5750
c0f3af97
L
5751#if MAX_OPERANDS != 5
5752# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5753#endif
5754
29b0f896 5755 found_reverse_match = 0;
539e75ad 5756 addr_prefix_disp = -1;
40fb9820 5757
dc2be329 5758 /* Prepare for mnemonic suffix check. */
40fb9820 5759 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5785 }
5786
01559ecc
L
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
45aa61fe 5790 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5791 {
539e75ad 5792 addr_prefix_disp = -1;
dbbc8b7e 5793 found_reverse_match = 0;
539e75ad 5794
29b0f896
AM
5795 if (i.operands != t->operands)
5796 continue;
5797
50aecf8c 5798 /* Check processor support. */
a65babc9 5799 i.error = unsupported;
45a4bb20 5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5801 continue;
5802
e1d4d893 5803 /* Check AT&T mnemonic. */
a65babc9 5804 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5806 continue;
5807
e92bae62 5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5809 i.error = unsupported_syntax;
5c07affc 5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5814 continue;
5815
dc2be329 5816 /* Check the suffix. */
a65babc9 5817 i.error = invalid_instruction_suffix;
dc2be329
L
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5824 continue;
29b0f896 5825
3ac21baa
JB
5826 size_match = operand_size_match (t);
5827 if (!size_match)
7d5e4556 5828 continue;
539e75ad 5829
6f2f06be
JB
5830 /* This is intentionally not
5831
0cfa3eb3 5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
0cfa3eb3 5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5c07affc
L
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
45aa61fe
AM
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
40fb9820 5849 ? (!t->opcode_modifier.ignoresize
625cbd7a 5850 && !t->opcode_modifier.broadcast
45aa61fe
AM
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
3528c362
JB
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
192dc9c6
JB
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
3528c362
JB
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
192dc9c6
JB
5873 continue;
5874
29b0f896 5875 /* Do not verify operands when there are none. */
50aecf8c 5876 else
29b0f896 5877 {
c6fb90c8 5878 if (!t->operands)
2dbab7d5
L
5879 /* We've found a match; break out of loop. */
5880 break;
29b0f896 5881 }
252b5132 5882
48bcea9f
JB
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
539e75ad 5889 break;
48bcea9f
JB
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
40fb9820 5899 {
48bcea9f
JB
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
40fb9820 5906 {
48bcea9f
JB
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
40fb9820 5909 }
48bcea9f
JB
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
40fb9820 5917 {
48bcea9f
JB
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
40fb9820 5921 }
48bcea9f
JB
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
40fb9820 5924 }
539e75ad 5925 }
48bcea9f 5926 }
539e75ad 5927
02a86693
L
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
56ffb741 5932 /* We check register size if needed. */
e2195274
JB
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
c6fb90c8 5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5943 switch (t->operands)
5944 {
5945 case 1:
40fb9820 5946 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5947 continue;
5948 break;
5949 case 2:
33eaf5de 5950 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
75e5731b
JB
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
8b38ad71 5960 continue;
1212781b
JB
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
75e5731b 5966 && i.types[0].bitfield.instance == Accum
8dc0818e 5967 && (i.flags[1] & Operand_Mem))
1212781b 5968 continue;
f5eb1d70
JB
5969 /* Fall through. */
5970
5971 case 3:
3ac21baa
JB
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
64c49ab3
JB
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5986 || t->opcode_modifier.regmem)
64c49ab3
JB
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5992 && !t->opcode_modifier.regmem)
64c49ab3
JB
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
86fa6981 6002 /* If we want store form, we skip the current load. */
64c49ab3
JB
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
fa99fab2 6007 continue;
1a0670f3 6008 /* Fall through. */
f48ff2ae 6009 case 4:
c0f3af97 6010 case 5:
c6fb90c8 6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
e2195274 6014 || ((check_register & 3) == 3
dc821c5f 6015 && !operand_type_register_match (i.types[0],
40fb9820 6016 operand_types[0],
dc821c5f 6017 i.types[1],
40fb9820 6018 operand_types[1])))
29b0f896
AM
6019 {
6020 /* Check if other direction is valid ... */
38e314eb 6021 if (!t->opcode_modifier.d)
29b0f896
AM
6022 continue;
6023
b6169b20 6024check_reverse:
3ac21baa
JB
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
29b0f896 6027 /* Try reversing direction of operands. */
f5eb1d70
JB
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6030 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6032 || (check_register
dc821c5f 6033 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
45664ddb 6036 operand_types[0])))
29b0f896
AM
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
38e314eb 6041 /* found_reverse_match holds which of D or FloatR
29b0f896 6042 we've found. */
38e314eb
JB
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6046 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6047 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6048 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6054 else
38e314eb 6055 found_reverse_match = Opcode_D;
40fb9820 6056 if (t->opcode_modifier.floatr)
8a2ed489 6057 found_reverse_match |= Opcode_FloatR;
29b0f896 6058 }
f48ff2ae 6059 else
29b0f896 6060 {
f48ff2ae 6061 /* Found a forward 2 operand match here. */
d1cbb4db
L
6062 switch (t->operands)
6063 {
c0f3af97
L
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
1a0670f3 6067 /* Fall through. */
d1cbb4db 6068 case 4:
c6fb90c8
L
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
1a0670f3 6071 /* Fall through. */
d1cbb4db 6072 case 3:
c6fb90c8
L
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
d1cbb4db
L
6075 break;
6076 }
29b0f896 6077
f48ff2ae
L
6078 switch (t->operands)
6079 {
c0f3af97
L
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6082 || !operand_type_register_match (i.types[3],
c0f3af97 6083 operand_types[3],
c0f3af97
L
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
1a0670f3 6087 /* Fall through. */
f48ff2ae 6088 case 4:
40fb9820 6089 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
f7768225
JB
6092 operand_types[1],
6093 i.types[3],
e2195274
JB
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
f48ff2ae 6100 continue;
1a0670f3 6101 /* Fall through. */
f48ff2ae
L
6102 case 3:
6103 /* Here we make use of the fact that there are no
23e42951 6104 reverse match 3 operand instructions. */
40fb9820 6105 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
23e42951
JB
6108 operand_types[0],
6109 i.types[2],
e2195274
JB
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
f48ff2ae
L
6116 continue;
6117 break;
6118 }
29b0f896 6119 }
f48ff2ae 6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6121 slip through to break. */
6122 }
c0f3af97 6123
5614d22c
JB
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
a683cc34 6130
29b0f896
AM
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
a65babc9 6138 const char *err_msg;
5614d22c 6139 switch (specific_error ? specific_error : i.error)
a65babc9
L
6140 {
6141 default:
6142 abort ();
86e026a4 6143 case operand_size_mismatch:
a65babc9
L
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
4a2608e3 6159 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6160 break;
a65babc9
L
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
35262a23 6168 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6169 current_templates->start->name);
6170 return NULL;
6c30d220
L
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
7bab8ab5
JB
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6c30d220
L
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
43234a1e
L
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
43234a1e
L
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
a65babc9
L
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
891edac4 6209 current_templates->start->name);
fa99fab2 6210 return NULL;
29b0f896 6211 }
252b5132 6212
29b0f896
AM
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
0cfa3eb3 6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6217 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6218
40fb9820
L
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
29b0f896
AM
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
539e75ad
L
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
29b0f896
AM
6235 if (found_reverse_match)
6236 {
dfd69174
JB
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
29b0f896
AM
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
f5eb1d70
JB
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6253 }
6254
fa99fab2 6255 return t;
29b0f896
AM
6256}
6257
6258static int
e3bb37b5 6259check_string (void)
29b0f896 6260{
51c8edf6
JB
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6263
51c8edf6 6264 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6265 {
51c8edf6
JB
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
29b0f896 6271 }
51c8edf6
JB
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
29b0f896
AM
6279 return 1;
6280}
6281
6282static int
543613e9 6283process_suffix (void)
29b0f896
AM
6284{
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
673fe0f0 6287 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6288 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6289 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6290 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6291 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6292 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6297 based on GPR operands. */
29b0f896
AM
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
381d071f
L
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
1a035124 6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6305
1a035124
JB
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
29b0f896
AM
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
2eb952a4
L
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
29b0f896
AM
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
2eb952a4
L
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
29b0f896
AM
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
955e1e6a
L
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
29b0f896
AM
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
2eb952a4
L
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
29b0f896
AM
6363 return 0;
6364 }
40fb9820 6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
40fb9820 6371 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6372 && !i.suffix
6373 /* exclude fldenv/frstor/fsave/fstenv */
c006a730 6374 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6375 {
13e600d0
JB
6376 i.suffix = stackop_size;
6377 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6378 {
6379 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6380 .code16gcc directive to support 16-bit mode with
6381 32-bit address. For IRET without a suffix, generate
6382 16-bit IRET (opcode 0xcf) to return from an interrupt
6383 handler. */
13e600d0
JB
6384 if (i.tm.base_opcode == 0xcf)
6385 {
6386 i.suffix = WORD_MNEM_SUFFIX;
6387 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6388 }
6389 /* Warn about changed behavior for segment register push/pop. */
6390 else if ((i.tm.base_opcode | 1) == 0x07)
6391 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6392 i.tm.name);
06f74c5c 6393 }
29b0f896 6394 }
c006a730 6395 else if (!i.suffix
0cfa3eb3
JB
6396 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6397 || i.tm.opcode_modifier.jump == JUMP_BYTE
6398 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6399 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6400 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6401 {
6402 switch (flag_code)
6403 {
6404 case CODE_64BIT:
40fb9820 6405 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6406 {
6407 i.suffix = QWORD_MNEM_SUFFIX;
6408 break;
6409 }
1a0670f3 6410 /* Fall through. */
9306ca4a 6411 case CODE_32BIT:
40fb9820 6412 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6413 i.suffix = LONG_MNEM_SUFFIX;
6414 break;
6415 case CODE_16BIT:
40fb9820 6416 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6417 i.suffix = WORD_MNEM_SUFFIX;
6418 break;
6419 }
6420 }
252b5132 6421
c006a730
JB
6422 if (!i.suffix
6423 && !i.tm.opcode_modifier.defaultsize
6424 && !i.tm.opcode_modifier.ignoresize)
29b0f896 6425 {
c006a730
JB
6426 unsigned int suffixes;
6427
6428 suffixes = !i.tm.opcode_modifier.no_bsuf;
6429 if (!i.tm.opcode_modifier.no_wsuf)
6430 suffixes |= 1 << 1;
6431 if (!i.tm.opcode_modifier.no_lsuf)
6432 suffixes |= 1 << 2;
6433 if (!i.tm.opcode_modifier.no_ldsuf)
6434 suffixes |= 1 << 3;
6435 if (!i.tm.opcode_modifier.no_ssuf)
6436 suffixes |= 1 << 4;
6437 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6438 suffixes |= 1 << 5;
6439
6440 /* Are multiple suffixes allowed? */
6441 if (suffixes & (suffixes - 1))
9306ca4a 6442 {
c006a730 6443 if (intel_syntax)
9306ca4a 6444 {
c006a730 6445 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6446 return 0;
6447 }
c006a730 6448 if (operand_check == check_error)
9306ca4a 6449 {
c006a730
JB
6450 as_bad (_("no instruction mnemonic suffix given and "
6451 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6452 return 0;
6453 }
c006a730
JB
6454 if (operand_check == check_warning)
6455 as_warn (_("no instruction mnemonic suffix given and "
6456 "no register operands; using default for `%s'"),
6457 i.tm.name);
6458
6459 if (i.tm.opcode_modifier.floatmf)
6460 i.suffix = SHORT_MNEM_SUFFIX;
6461 else if (flag_code == CODE_16BIT)
6462 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6463 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6464 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6465 else
6466 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6467 }
29b0f896 6468 }
252b5132 6469
d2224064
JB
6470 /* Change the opcode based on the operand size given by i.suffix. */
6471 switch (i.suffix)
29b0f896 6472 {
d2224064
JB
6473 /* Size floating point instruction. */
6474 case LONG_MNEM_SUFFIX:
6475 if (i.tm.opcode_modifier.floatmf)
6476 {
6477 i.tm.base_opcode ^= 4;
6478 break;
6479 }
6480 /* fall through */
6481 case WORD_MNEM_SUFFIX:
6482 case QWORD_MNEM_SUFFIX:
29b0f896 6483 /* It's not a byte, select word/dword operation. */
40fb9820 6484 if (i.tm.opcode_modifier.w)
29b0f896 6485 {
40fb9820 6486 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6487 i.tm.base_opcode |= 8;
6488 else
6489 i.tm.base_opcode |= 1;
6490 }
d2224064
JB
6491 /* fall through */
6492 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6493 /* Now select between word & dword operations via the operand
6494 size prefix, except for instructions that will ignore this
6495 prefix anyway. */
75c0a438 6496 if (i.reg_operands > 0
bab6aec1 6497 && i.types[0].bitfield.class == Reg
75c0a438 6498 && i.tm.opcode_modifier.addrprefixopreg
474da251 6499 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6500 || i.operands == 1))
cb712a9e 6501 {
ca61edf2
L
6502 /* The address size override prefix changes the size of the
6503 first operand. */
40fb9820 6504 if ((flag_code == CODE_32BIT
75c0a438 6505 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6506 || (flag_code != CODE_32BIT
75c0a438 6507 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6508 if (!add_prefix (ADDR_PREFIX_OPCODE))
6509 return 0;
6510 }
6511 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6512 && !i.tm.opcode_modifier.ignoresize
6513 && !i.tm.opcode_modifier.floatmf
a38d7118 6514 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6515 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6516 || (flag_code == CODE_64BIT
0cfa3eb3 6517 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6518 {
6519 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6520
0cfa3eb3 6521 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6522 prefix = ADDR_PREFIX_OPCODE;
252b5132 6523
29b0f896
AM
6524 if (!add_prefix (prefix))
6525 return 0;
24eab124 6526 }
252b5132 6527
29b0f896
AM
6528 /* Set mode64 for an operand. */
6529 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6530 && flag_code == CODE_64BIT
d2224064 6531 && !i.tm.opcode_modifier.norex64
46e883c5 6532 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6533 need rex64. */
6534 && ! (i.operands == 2
6535 && i.tm.base_opcode == 0x90
6536 && i.tm.extension_opcode == None
75e5731b
JB
6537 && i.types[0].bitfield.instance == Accum
6538 && i.types[0].bitfield.qword
6539 && i.types[1].bitfield.instance == Accum
6540 && i.types[1].bitfield.qword))
d2224064 6541 i.rex |= REX_W;
3e73aa7c 6542
d2224064 6543 break;
29b0f896 6544 }
7ecd2f8b 6545
c0a30a9f
L
6546 if (i.reg_operands != 0
6547 && i.operands > 1
6548 && i.tm.opcode_modifier.addrprefixopreg
474da251 6549 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6550 {
6551 /* Check invalid register operand when the address size override
6552 prefix changes the size of register operands. */
6553 unsigned int op;
6554 enum { need_word, need_dword, need_qword } need;
6555
6556 if (flag_code == CODE_32BIT)
6557 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6558 else
6559 {
6560 if (i.prefix[ADDR_PREFIX])
6561 need = need_dword;
6562 else
6563 need = flag_code == CODE_64BIT ? need_qword : need_word;
6564 }
6565
6566 for (op = 0; op < i.operands; op++)
bab6aec1 6567 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6568 && ((need == need_word
6569 && !i.op[op].regs->reg_type.bitfield.word)
6570 || (need == need_dword
6571 && !i.op[op].regs->reg_type.bitfield.dword)
6572 || (need == need_qword
6573 && !i.op[op].regs->reg_type.bitfield.qword)))
6574 {
6575 as_bad (_("invalid register operand size for `%s'"),
6576 i.tm.name);
6577 return 0;
6578 }
6579 }
6580
29b0f896
AM
6581 return 1;
6582}
3e73aa7c 6583
29b0f896 6584static int
543613e9 6585check_byte_reg (void)
29b0f896
AM
6586{
6587 int op;
543613e9 6588
29b0f896
AM
6589 for (op = i.operands; --op >= 0;)
6590 {
dc821c5f 6591 /* Skip non-register operands. */
bab6aec1 6592 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6593 continue;
6594
29b0f896
AM
6595 /* If this is an eight bit register, it's OK. If it's the 16 or
6596 32 bit version of an eight bit register, we will just use the
6597 low portion, and that's OK too. */
dc821c5f 6598 if (i.types[op].bitfield.byte)
29b0f896
AM
6599 continue;
6600
5a819eb9 6601 /* I/O port address operands are OK too. */
75e5731b
JB
6602 if (i.tm.operand_types[op].bitfield.instance == RegD
6603 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6604 continue;
6605
9344ff29
L
6606 /* crc32 doesn't generate this warning. */
6607 if (i.tm.base_opcode == 0xf20f38f0)
6608 continue;
6609
dc821c5f
JB
6610 if ((i.types[op].bitfield.word
6611 || i.types[op].bitfield.dword
6612 || i.types[op].bitfield.qword)
5a819eb9
JB
6613 && i.op[op].regs->reg_num < 4
6614 /* Prohibit these changes in 64bit mode, since the lowering
6615 would be more complicated. */
6616 && flag_code != CODE_64BIT)
29b0f896 6617 {
29b0f896 6618#if REGISTER_WARNINGS
5a819eb9 6619 if (!quiet_warnings)
a540244d
L
6620 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6621 register_prefix,
dc821c5f 6622 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6623 ? REGNAM_AL - REGNAM_AX
6624 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6625 register_prefix,
29b0f896
AM
6626 i.op[op].regs->reg_name,
6627 i.suffix);
6628#endif
6629 continue;
6630 }
6631 /* Any other register is bad. */
bab6aec1 6632 if (i.types[op].bitfield.class == Reg
3528c362
JB
6633 || i.types[op].bitfield.class == RegMMX
6634 || i.types[op].bitfield.class == RegSIMD
00cee14f 6635 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6636 || i.types[op].bitfield.class == RegCR
6637 || i.types[op].bitfield.class == RegDR
6638 || i.types[op].bitfield.class == RegTR)
29b0f896 6639 {
a540244d
L
6640 as_bad (_("`%s%s' not allowed with `%s%c'"),
6641 register_prefix,
29b0f896
AM
6642 i.op[op].regs->reg_name,
6643 i.tm.name,
6644 i.suffix);
6645 return 0;
6646 }
6647 }
6648 return 1;
6649}
6650
6651static int
e3bb37b5 6652check_long_reg (void)
29b0f896
AM
6653{
6654 int op;
6655
6656 for (op = i.operands; --op >= 0;)
dc821c5f 6657 /* Skip non-register operands. */
bab6aec1 6658 if (i.types[op].bitfield.class != Reg)
dc821c5f 6659 continue;
29b0f896
AM
6660 /* Reject eight bit registers, except where the template requires
6661 them. (eg. movzb) */
dc821c5f 6662 else if (i.types[op].bitfield.byte
bab6aec1 6663 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6664 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6665 && (i.tm.operand_types[op].bitfield.word
6666 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6667 {
a540244d
L
6668 as_bad (_("`%s%s' not allowed with `%s%c'"),
6669 register_prefix,
29b0f896
AM
6670 i.op[op].regs->reg_name,
6671 i.tm.name,
6672 i.suffix);
6673 return 0;
6674 }
e4630f71 6675 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6676 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6677 && i.types[op].bitfield.word
bab6aec1 6678 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6679 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6680 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6681 {
6682 /* Prohibit these changes in the 64bit mode, since the
6683 lowering is more complicated. */
6684 if (flag_code == CODE_64BIT)
252b5132 6685 {
2b5d6a91 6686 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6687 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6688 i.suffix);
6689 return 0;
252b5132 6690 }
29b0f896 6691#if REGISTER_WARNINGS
cecf1424
JB
6692 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6693 register_prefix,
6694 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6695 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6696#endif
252b5132 6697 }
e4630f71 6698 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6699 else if (i.types[op].bitfield.qword
bab6aec1 6700 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6701 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6702 && i.tm.operand_types[op].bitfield.dword)
252b5132 6703 {
34828aad 6704 if (intel_syntax
ca61edf2 6705 && i.tm.opcode_modifier.toqword
3528c362 6706 && i.types[0].bitfield.class != RegSIMD)
34828aad 6707 {
ca61edf2 6708 /* Convert to QWORD. We want REX byte. */
34828aad
L
6709 i.suffix = QWORD_MNEM_SUFFIX;
6710 }
6711 else
6712 {
2b5d6a91 6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
29b0f896
AM
6718 }
6719 return 1;
6720}
252b5132 6721
29b0f896 6722static int
e3bb37b5 6723check_qword_reg (void)
29b0f896
AM
6724{
6725 int op;
252b5132 6726
29b0f896 6727 for (op = i.operands; --op >= 0; )
dc821c5f 6728 /* Skip non-register operands. */
bab6aec1 6729 if (i.types[op].bitfield.class != Reg)
dc821c5f 6730 continue;
29b0f896
AM
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
dc821c5f 6733 else if (i.types[op].bitfield.byte
bab6aec1 6734 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6735 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6738 {
a540244d
L
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
29b0f896
AM
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
e4630f71 6746 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6747 else if ((i.types[op].bitfield.word
6748 || i.types[op].bitfield.dword)
bab6aec1 6749 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6750 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6751 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6752 {
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
34828aad 6755 if (intel_syntax
ca61edf2 6756 && i.tm.opcode_modifier.todword
3528c362 6757 && i.types[0].bitfield.class != RegSIMD)
34828aad 6758 {
ca61edf2 6759 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6760 i.suffix = LONG_MNEM_SUFFIX;
6761 }
6762 else
6763 {
2b5d6a91 6764 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6765 register_prefix, i.op[op].regs->reg_name,
6766 i.suffix);
6767 return 0;
6768 }
252b5132 6769 }
29b0f896
AM
6770 return 1;
6771}
252b5132 6772
29b0f896 6773static int
e3bb37b5 6774check_word_reg (void)
29b0f896
AM
6775{
6776 int op;
6777 for (op = i.operands; --op >= 0;)
dc821c5f 6778 /* Skip non-register operands. */
bab6aec1 6779 if (i.types[op].bitfield.class != Reg)
dc821c5f 6780 continue;
29b0f896
AM
6781 /* Reject eight bit registers, except where the template requires
6782 them. (eg. movzb) */
dc821c5f 6783 else if (i.types[op].bitfield.byte
bab6aec1 6784 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6785 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6786 && (i.tm.operand_types[op].bitfield.word
6787 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6788 {
a540244d
L
6789 as_bad (_("`%s%s' not allowed with `%s%c'"),
6790 register_prefix,
29b0f896
AM
6791 i.op[op].regs->reg_name,
6792 i.tm.name,
6793 i.suffix);
6794 return 0;
6795 }
e4630f71 6796 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6797 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6798 && (i.types[op].bitfield.dword
6799 || i.types[op].bitfield.qword)
bab6aec1 6800 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6801 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6802 && i.tm.operand_types[op].bitfield.word)
252b5132 6803 {
29b0f896
AM
6804 /* Prohibit these changes in the 64bit mode, since the
6805 lowering is more complicated. */
6806 if (flag_code == CODE_64BIT)
252b5132 6807 {
2b5d6a91 6808 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6809 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6810 i.suffix);
6811 return 0;
252b5132 6812 }
29b0f896 6813#if REGISTER_WARNINGS
cecf1424
JB
6814 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6815 register_prefix,
6816 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6817 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6818#endif
6819 }
6820 return 1;
6821}
252b5132 6822
29b0f896 6823static int
40fb9820 6824update_imm (unsigned int j)
29b0f896 6825{
bc0844ae 6826 i386_operand_type overlap = i.types[j];
40fb9820
L
6827 if ((overlap.bitfield.imm8
6828 || overlap.bitfield.imm8s
6829 || overlap.bitfield.imm16
6830 || overlap.bitfield.imm32
6831 || overlap.bitfield.imm32s
6832 || overlap.bitfield.imm64)
0dfbf9d7
L
6833 && !operand_type_equal (&overlap, &imm8)
6834 && !operand_type_equal (&overlap, &imm8s)
6835 && !operand_type_equal (&overlap, &imm16)
6836 && !operand_type_equal (&overlap, &imm32)
6837 && !operand_type_equal (&overlap, &imm32s)
6838 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6839 {
6840 if (i.suffix)
6841 {
40fb9820
L
6842 i386_operand_type temp;
6843
0dfbf9d7 6844 operand_type_set (&temp, 0);
7ab9ffdd 6845 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6846 {
6847 temp.bitfield.imm8 = overlap.bitfield.imm8;
6848 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6849 }
6850 else if (i.suffix == WORD_MNEM_SUFFIX)
6851 temp.bitfield.imm16 = overlap.bitfield.imm16;
6852 else if (i.suffix == QWORD_MNEM_SUFFIX)
6853 {
6854 temp.bitfield.imm64 = overlap.bitfield.imm64;
6855 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6856 }
6857 else
6858 temp.bitfield.imm32 = overlap.bitfield.imm32;
6859 overlap = temp;
29b0f896 6860 }
0dfbf9d7
L
6861 else if (operand_type_equal (&overlap, &imm16_32_32s)
6862 || operand_type_equal (&overlap, &imm16_32)
6863 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6864 {
40fb9820 6865 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6866 overlap = imm16;
40fb9820 6867 else
65da13b5 6868 overlap = imm32s;
29b0f896 6869 }
0dfbf9d7
L
6870 if (!operand_type_equal (&overlap, &imm8)
6871 && !operand_type_equal (&overlap, &imm8s)
6872 && !operand_type_equal (&overlap, &imm16)
6873 && !operand_type_equal (&overlap, &imm32)
6874 && !operand_type_equal (&overlap, &imm32s)
6875 && !operand_type_equal (&overlap, &imm64))
29b0f896 6876 {
4eed87de
AM
6877 as_bad (_("no instruction mnemonic suffix given; "
6878 "can't determine immediate size"));
29b0f896
AM
6879 return 0;
6880 }
6881 }
40fb9820 6882 i.types[j] = overlap;
29b0f896 6883
40fb9820
L
6884 return 1;
6885}
6886
6887static int
6888finalize_imm (void)
6889{
bc0844ae 6890 unsigned int j, n;
29b0f896 6891
bc0844ae
L
6892 /* Update the first 2 immediate operands. */
6893 n = i.operands > 2 ? 2 : i.operands;
6894 if (n)
6895 {
6896 for (j = 0; j < n; j++)
6897 if (update_imm (j) == 0)
6898 return 0;
40fb9820 6899
bc0844ae
L
6900 /* The 3rd operand can't be immediate operand. */
6901 gas_assert (operand_type_check (i.types[2], imm) == 0);
6902 }
29b0f896
AM
6903
6904 return 1;
6905}
6906
6907static int
e3bb37b5 6908process_operands (void)
29b0f896
AM
6909{
6910 /* Default segment register this instruction will use for memory
6911 accesses. 0 means unknown. This is only for optimizing out
6912 unnecessary segment overrides. */
6913 const seg_entry *default_seg = 0;
6914
2426c15f 6915 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6916 {
91d6fa6a
NC
6917 unsigned int dupl = i.operands;
6918 unsigned int dest = dupl - 1;
9fcfb3d7
L
6919 unsigned int j;
6920
c0f3af97 6921 /* The destination must be an xmm register. */
9c2799c2 6922 gas_assert (i.reg_operands
91d6fa6a 6923 && MAX_OPERANDS > dupl
7ab9ffdd 6924 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6925
75e5731b 6926 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6927 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6928 {
8cd7925b 6929 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6930 {
6931 /* Keep xmm0 for instructions with VEX prefix and 3
6932 sources. */
75e5731b 6933 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6934 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6935 goto duplicate;
6936 }
e2ec9d29 6937 else
c0f3af97
L
6938 {
6939 /* We remove the first xmm0 and keep the number of
6940 operands unchanged, which in fact duplicates the
6941 destination. */
6942 for (j = 1; j < i.operands; j++)
6943 {
6944 i.op[j - 1] = i.op[j];
6945 i.types[j - 1] = i.types[j];
6946 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6947 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6948 }
6949 }
6950 }
6951 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6952 {
91d6fa6a 6953 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6954 && (i.tm.opcode_modifier.vexsources
6955 == VEX3SOURCES));
c0f3af97
L
6956
6957 /* Add the implicit xmm0 for instructions with VEX prefix
6958 and 3 sources. */
6959 for (j = i.operands; j > 0; j--)
6960 {
6961 i.op[j] = i.op[j - 1];
6962 i.types[j] = i.types[j - 1];
6963 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6964 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6965 }
6966 i.op[0].regs
6967 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6968 i.types[0] = regxmm;
c0f3af97
L
6969 i.tm.operand_types[0] = regxmm;
6970
6971 i.operands += 2;
6972 i.reg_operands += 2;
6973 i.tm.operands += 2;
6974
91d6fa6a 6975 dupl++;
c0f3af97 6976 dest++;
91d6fa6a
NC
6977 i.op[dupl] = i.op[dest];
6978 i.types[dupl] = i.types[dest];
6979 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6980 i.flags[dupl] = i.flags[dest];
e2ec9d29 6981 }
c0f3af97
L
6982 else
6983 {
6984duplicate:
6985 i.operands++;
6986 i.reg_operands++;
6987 i.tm.operands++;
6988
91d6fa6a
NC
6989 i.op[dupl] = i.op[dest];
6990 i.types[dupl] = i.types[dest];
6991 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6992 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6993 }
6994
6995 if (i.tm.opcode_modifier.immext)
6996 process_immext ();
6997 }
75e5731b 6998 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6999 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7000 {
7001 unsigned int j;
7002
9fcfb3d7
L
7003 for (j = 1; j < i.operands; j++)
7004 {
7005 i.op[j - 1] = i.op[j];
7006 i.types[j - 1] = i.types[j];
7007
7008 /* We need to adjust fields in i.tm since they are used by
7009 build_modrm_byte. */
7010 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7011
7012 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7013 }
7014
e2ec9d29
L
7015 i.operands--;
7016 i.reg_operands--;
e2ec9d29
L
7017 i.tm.operands--;
7018 }
920d2ddc
IT
7019 else if (i.tm.opcode_modifier.implicitquadgroup)
7020 {
a477a8c4
JB
7021 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7022
920d2ddc 7023 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7024 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7025 regnum = register_number (i.op[1].regs);
7026 first_reg_in_group = regnum & ~3;
7027 last_reg_in_group = first_reg_in_group + 3;
7028 if (regnum != first_reg_in_group)
7029 as_warn (_("source register `%s%s' implicitly denotes"
7030 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7031 register_prefix, i.op[1].regs->reg_name,
7032 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7033 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7034 i.tm.name);
7035 }
e2ec9d29
L
7036 else if (i.tm.opcode_modifier.regkludge)
7037 {
7038 /* The imul $imm, %reg instruction is converted into
7039 imul $imm, %reg, %reg, and the clr %reg instruction
7040 is converted into xor %reg, %reg. */
7041
7042 unsigned int first_reg_op;
7043
7044 if (operand_type_check (i.types[0], reg))
7045 first_reg_op = 0;
7046 else
7047 first_reg_op = 1;
7048 /* Pretend we saw the extra register operand. */
9c2799c2 7049 gas_assert (i.reg_operands == 1
7ab9ffdd 7050 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7051 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7052 i.types[first_reg_op + 1] = i.types[first_reg_op];
7053 i.operands++;
7054 i.reg_operands++;
29b0f896
AM
7055 }
7056
85b80b0f 7057 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7058 {
7059 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7060 must be put into the modrm byte). Now, we make the modrm and
7061 index base bytes based on all the info we've collected. */
29b0f896
AM
7062
7063 default_seg = build_modrm_byte ();
7064 }
00cee14f 7065 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7066 {
7067 if (flag_code != CODE_64BIT
7068 ? i.tm.base_opcode == POP_SEG_SHORT
7069 && i.op[0].regs->reg_num == 1
7070 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7071 && i.op[0].regs->reg_num < 4)
7072 {
7073 as_bad (_("you can't `%s %s%s'"),
7074 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7075 return 0;
7076 }
7077 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7078 {
7079 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7080 i.tm.opcode_length = 2;
7081 }
7082 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7083 }
8a2ed489 7084 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7085 {
7086 default_seg = &ds;
7087 }
40fb9820 7088 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7089 {
7090 /* For the string instructions that allow a segment override
7091 on one of their operands, the default segment is ds. */
7092 default_seg = &ds;
7093 }
85b80b0f
JB
7094 else if (i.tm.opcode_modifier.shortform)
7095 {
7096 /* The register or float register operand is in operand
7097 0 or 1. */
bab6aec1 7098 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7099
7100 /* Register goes in low 3 bits of opcode. */
7101 i.tm.base_opcode |= i.op[op].regs->reg_num;
7102 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7103 i.rex |= REX_B;
7104 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7105 {
7106 /* Warn about some common errors, but press on regardless.
7107 The first case can be generated by gcc (<= 2.8.1). */
7108 if (i.operands == 2)
7109 {
7110 /* Reversed arguments on faddp, fsubp, etc. */
7111 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7112 register_prefix, i.op[!intel_syntax].regs->reg_name,
7113 register_prefix, i.op[intel_syntax].regs->reg_name);
7114 }
7115 else
7116 {
7117 /* Extraneous `l' suffix on fp insn. */
7118 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7119 register_prefix, i.op[0].regs->reg_name);
7120 }
7121 }
7122 }
29b0f896 7123
75178d9d
L
7124 if (i.tm.base_opcode == 0x8d /* lea */
7125 && i.seg[0]
7126 && !quiet_warnings)
30123838 7127 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7128
7129 /* If a segment was explicitly specified, and the specified segment
7130 is not the default, use an opcode prefix to select it. If we
7131 never figured out what the default segment is, then default_seg
7132 will be zero at this point, and the specified segment prefix will
7133 always be used. */
29b0f896
AM
7134 if ((i.seg[0]) && (i.seg[0] != default_seg))
7135 {
7136 if (!add_prefix (i.seg[0]->seg_prefix))
7137 return 0;
7138 }
7139 return 1;
7140}
7141
7142static const seg_entry *
e3bb37b5 7143build_modrm_byte (void)
29b0f896
AM
7144{
7145 const seg_entry *default_seg = 0;
c0f3af97 7146 unsigned int source, dest;
8cd7925b 7147 int vex_3_sources;
c0f3af97 7148
8cd7925b 7149 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7150 if (vex_3_sources)
7151 {
91d6fa6a 7152 unsigned int nds, reg_slot;
4c2c6516 7153 expressionS *exp;
c0f3af97 7154
6b8d3588 7155 dest = i.operands - 1;
c0f3af97 7156 nds = dest - 1;
922d8de8 7157
a683cc34 7158 /* There are 2 kinds of instructions:
bed3d976 7159 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7160 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7161 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7162 ZMM register.
bed3d976 7163 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7164 plus 1 memory operand, with VexXDS. */
922d8de8 7165 gas_assert ((i.reg_operands == 4
bed3d976
JB
7166 || (i.reg_operands == 3 && i.mem_operands == 1))
7167 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7168 && i.tm.opcode_modifier.vexw
3528c362 7169 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7170
48db9223
JB
7171 /* If VexW1 is set, the first non-immediate operand is the source and
7172 the second non-immediate one is encoded in the immediate operand. */
7173 if (i.tm.opcode_modifier.vexw == VEXW1)
7174 {
7175 source = i.imm_operands;
7176 reg_slot = i.imm_operands + 1;
7177 }
7178 else
7179 {
7180 source = i.imm_operands + 1;
7181 reg_slot = i.imm_operands;
7182 }
7183
a683cc34 7184 if (i.imm_operands == 0)
bed3d976
JB
7185 {
7186 /* When there is no immediate operand, generate an 8bit
7187 immediate operand to encode the first operand. */
7188 exp = &im_expressions[i.imm_operands++];
7189 i.op[i.operands].imms = exp;
7190 i.types[i.operands] = imm8;
7191 i.operands++;
7192
3528c362 7193 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7194 exp->X_op = O_constant;
7195 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7196 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7197 }
922d8de8 7198 else
bed3d976 7199 {
9d3bf266
JB
7200 gas_assert (i.imm_operands == 1);
7201 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7202 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7203
9d3bf266
JB
7204 /* Turn on Imm8 again so that output_imm will generate it. */
7205 i.types[0].bitfield.imm8 = 1;
bed3d976 7206
3528c362 7207 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7208 i.op[0].imms->X_add_number
bed3d976 7209 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7210 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7211 }
a683cc34 7212
3528c362 7213 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7214 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7215 }
7216 else
7217 source = dest = 0;
29b0f896
AM
7218
7219 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7220 implicit registers do not count. If there are 3 register
7221 operands, it must be a instruction with VexNDS. For a
7222 instruction with VexNDD, the destination register is encoded
7223 in VEX prefix. If there are 4 register operands, it must be
7224 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7225 if (i.mem_operands == 0
7226 && ((i.reg_operands == 2
2426c15f 7227 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7228 || (i.reg_operands == 3
2426c15f 7229 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7230 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7231 {
cab737b9
L
7232 switch (i.operands)
7233 {
7234 case 2:
7235 source = 0;
7236 break;
7237 case 3:
c81128dc
L
7238 /* When there are 3 operands, one of them may be immediate,
7239 which may be the first or the last operand. Otherwise,
c0f3af97
L
7240 the first operand must be shift count register (cl) or it
7241 is an instruction with VexNDS. */
9c2799c2 7242 gas_assert (i.imm_operands == 1
7ab9ffdd 7243 || (i.imm_operands == 0
2426c15f 7244 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7245 || (i.types[0].bitfield.instance == RegC
7246 && i.types[0].bitfield.byte))));
40fb9820 7247 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7248 || (i.types[0].bitfield.instance == RegC
7249 && i.types[0].bitfield.byte))
40fb9820
L
7250 source = 1;
7251 else
7252 source = 0;
cab737b9
L
7253 break;
7254 case 4:
368d64cc
L
7255 /* When there are 4 operands, the first two must be 8bit
7256 immediate operands. The source operand will be the 3rd
c0f3af97
L
7257 one.
7258
7259 For instructions with VexNDS, if the first operand
7260 an imm8, the source operand is the 2nd one. If the last
7261 operand is imm8, the source operand is the first one. */
9c2799c2 7262 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7263 && i.types[0].bitfield.imm8
7264 && i.types[1].bitfield.imm8)
2426c15f 7265 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7266 && i.imm_operands == 1
7267 && (i.types[0].bitfield.imm8
43234a1e
L
7268 || i.types[i.operands - 1].bitfield.imm8
7269 || i.rounding)));
9f2670f2
L
7270 if (i.imm_operands == 2)
7271 source = 2;
7272 else
c0f3af97
L
7273 {
7274 if (i.types[0].bitfield.imm8)
7275 source = 1;
7276 else
7277 source = 0;
7278 }
c0f3af97
L
7279 break;
7280 case 5:
e771e7c9 7281 if (is_evex_encoding (&i.tm))
43234a1e
L
7282 {
7283 /* For EVEX instructions, when there are 5 operands, the
7284 first one must be immediate operand. If the second one
7285 is immediate operand, the source operand is the 3th
7286 one. If the last one is immediate operand, the source
7287 operand is the 2nd one. */
7288 gas_assert (i.imm_operands == 2
7289 && i.tm.opcode_modifier.sae
7290 && operand_type_check (i.types[0], imm));
7291 if (operand_type_check (i.types[1], imm))
7292 source = 2;
7293 else if (operand_type_check (i.types[4], imm))
7294 source = 1;
7295 else
7296 abort ();
7297 }
cab737b9
L
7298 break;
7299 default:
7300 abort ();
7301 }
7302
c0f3af97
L
7303 if (!vex_3_sources)
7304 {
7305 dest = source + 1;
7306
43234a1e
L
7307 /* RC/SAE operand could be between DEST and SRC. That happens
7308 when one operand is GPR and the other one is XMM/YMM/ZMM
7309 register. */
7310 if (i.rounding && i.rounding->operand == (int) dest)
7311 dest++;
7312
2426c15f 7313 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7314 {
43234a1e 7315 /* For instructions with VexNDS, the register-only source
c5d0745b 7316 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7317 register. It is encoded in VEX prefix. */
f12dc422
L
7318
7319 i386_operand_type op;
7320 unsigned int vvvv;
7321
7322 /* Check register-only source operand when two source
7323 operands are swapped. */
7324 if (!i.tm.operand_types[source].bitfield.baseindex
7325 && i.tm.operand_types[dest].bitfield.baseindex)
7326 {
7327 vvvv = source;
7328 source = dest;
7329 }
7330 else
7331 vvvv = dest;
7332
7333 op = i.tm.operand_types[vvvv];
c0f3af97 7334 if ((dest + 1) >= i.operands
bab6aec1 7335 || ((op.bitfield.class != Reg
dc821c5f 7336 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7337 && op.bitfield.class != RegSIMD
43234a1e 7338 && !operand_type_equal (&op, &regmask)))
c0f3af97 7339 abort ();
f12dc422 7340 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7341 dest++;
7342 }
7343 }
29b0f896
AM
7344
7345 i.rm.mode = 3;
dfd69174
JB
7346 /* One of the register operands will be encoded in the i.rm.reg
7347 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7348 fields. If no form of this instruction supports a memory
7349 destination operand, then we assume the source operand may
7350 sometimes be a memory operand and so we need to store the
7351 destination in the i.rm.reg field. */
dfd69174 7352 if (!i.tm.opcode_modifier.regmem
40fb9820 7353 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7354 {
7355 i.rm.reg = i.op[dest].regs->reg_num;
7356 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7357 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7358 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7359 i.has_regmmx = TRUE;
3528c362
JB
7360 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7361 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7362 {
7363 if (i.types[dest].bitfield.zmmword
7364 || i.types[source].bitfield.zmmword)
7365 i.has_regzmm = TRUE;
7366 else if (i.types[dest].bitfield.ymmword
7367 || i.types[source].bitfield.ymmword)
7368 i.has_regymm = TRUE;
7369 else
7370 i.has_regxmm = TRUE;
7371 }
29b0f896 7372 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7373 i.rex |= REX_R;
43234a1e
L
7374 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7375 i.vrex |= REX_R;
29b0f896 7376 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7377 i.rex |= REX_B;
43234a1e
L
7378 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7379 i.vrex |= REX_B;
29b0f896
AM
7380 }
7381 else
7382 {
7383 i.rm.reg = i.op[source].regs->reg_num;
7384 i.rm.regmem = i.op[dest].regs->reg_num;
7385 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7386 i.rex |= REX_B;
43234a1e
L
7387 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7388 i.vrex |= REX_B;
29b0f896 7389 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7390 i.rex |= REX_R;
43234a1e
L
7391 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7392 i.vrex |= REX_R;
29b0f896 7393 }
e0c7f900 7394 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7395 {
4a5c67ed 7396 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7397 abort ();
e0c7f900 7398 i.rex &= ~REX_R;
c4a530c5
JB
7399 add_prefix (LOCK_PREFIX_OPCODE);
7400 }
29b0f896
AM
7401 }
7402 else
7403 { /* If it's not 2 reg operands... */
c0f3af97
L
7404 unsigned int mem;
7405
29b0f896
AM
7406 if (i.mem_operands)
7407 {
7408 unsigned int fake_zero_displacement = 0;
99018f42 7409 unsigned int op;
4eed87de 7410
7ab9ffdd 7411 for (op = 0; op < i.operands; op++)
8dc0818e 7412 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7413 break;
7ab9ffdd 7414 gas_assert (op < i.operands);
29b0f896 7415
6c30d220
L
7416 if (i.tm.opcode_modifier.vecsib)
7417 {
e968fc9b 7418 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7419 abort ();
7420
7421 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7422 if (!i.base_reg)
7423 {
7424 i.sib.base = NO_BASE_REGISTER;
7425 i.sib.scale = i.log2_scale_factor;
7426 i.types[op].bitfield.disp8 = 0;
7427 i.types[op].bitfield.disp16 = 0;
7428 i.types[op].bitfield.disp64 = 0;
43083a50 7429 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7430 {
7431 /* Must be 32 bit */
7432 i.types[op].bitfield.disp32 = 1;
7433 i.types[op].bitfield.disp32s = 0;
7434 }
7435 else
7436 {
7437 i.types[op].bitfield.disp32 = 0;
7438 i.types[op].bitfield.disp32s = 1;
7439 }
7440 }
7441 i.sib.index = i.index_reg->reg_num;
7442 if ((i.index_reg->reg_flags & RegRex) != 0)
7443 i.rex |= REX_X;
43234a1e
L
7444 if ((i.index_reg->reg_flags & RegVRex) != 0)
7445 i.vrex |= REX_X;
6c30d220
L
7446 }
7447
29b0f896
AM
7448 default_seg = &ds;
7449
7450 if (i.base_reg == 0)
7451 {
7452 i.rm.mode = 0;
7453 if (!i.disp_operands)
9bb129e8 7454 fake_zero_displacement = 1;
29b0f896
AM
7455 if (i.index_reg == 0)
7456 {
73053c1f
JB
7457 i386_operand_type newdisp;
7458
6c30d220 7459 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7460 /* Operand is just <disp> */
20f0a1fc 7461 if (flag_code == CODE_64BIT)
29b0f896
AM
7462 {
7463 /* 64bit mode overwrites the 32bit absolute
7464 addressing by RIP relative addressing and
7465 absolute addressing is encoded by one of the
7466 redundant SIB forms. */
7467 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7468 i.sib.base = NO_BASE_REGISTER;
7469 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7470 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7471 }
fc225355
L
7472 else if ((flag_code == CODE_16BIT)
7473 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7474 {
7475 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7476 newdisp = disp16;
20f0a1fc
NC
7477 }
7478 else
7479 {
7480 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7481 newdisp = disp32;
29b0f896 7482 }
73053c1f
JB
7483 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7484 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7485 }
6c30d220 7486 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7487 {
6c30d220 7488 /* !i.base_reg && i.index_reg */
e968fc9b 7489 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7490 i.sib.index = NO_INDEX_REGISTER;
7491 else
7492 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7493 i.sib.base = NO_BASE_REGISTER;
7494 i.sib.scale = i.log2_scale_factor;
7495 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7496 i.types[op].bitfield.disp8 = 0;
7497 i.types[op].bitfield.disp16 = 0;
7498 i.types[op].bitfield.disp64 = 0;
43083a50 7499 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7500 {
7501 /* Must be 32 bit */
7502 i.types[op].bitfield.disp32 = 1;
7503 i.types[op].bitfield.disp32s = 0;
7504 }
29b0f896 7505 else
40fb9820
L
7506 {
7507 i.types[op].bitfield.disp32 = 0;
7508 i.types[op].bitfield.disp32s = 1;
7509 }
29b0f896 7510 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7511 i.rex |= REX_X;
29b0f896
AM
7512 }
7513 }
7514 /* RIP addressing for 64bit mode. */
e968fc9b 7515 else if (i.base_reg->reg_num == RegIP)
29b0f896 7516 {
6c30d220 7517 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7518 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7519 i.types[op].bitfield.disp8 = 0;
7520 i.types[op].bitfield.disp16 = 0;
7521 i.types[op].bitfield.disp32 = 0;
7522 i.types[op].bitfield.disp32s = 1;
7523 i.types[op].bitfield.disp64 = 0;
71903a11 7524 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7525 if (! i.disp_operands)
7526 fake_zero_displacement = 1;
29b0f896 7527 }
dc821c5f 7528 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7529 {
6c30d220 7530 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7531 switch (i.base_reg->reg_num)
7532 {
7533 case 3: /* (%bx) */
7534 if (i.index_reg == 0)
7535 i.rm.regmem = 7;
7536 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7537 i.rm.regmem = i.index_reg->reg_num - 6;
7538 break;
7539 case 5: /* (%bp) */
7540 default_seg = &ss;
7541 if (i.index_reg == 0)
7542 {
7543 i.rm.regmem = 6;
40fb9820 7544 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7545 {
7546 /* fake (%bp) into 0(%bp) */
b5014f7a 7547 i.types[op].bitfield.disp8 = 1;
252b5132 7548 fake_zero_displacement = 1;
29b0f896
AM
7549 }
7550 }
7551 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7552 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7553 break;
7554 default: /* (%si) -> 4 or (%di) -> 5 */
7555 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7556 }
7557 i.rm.mode = mode_from_disp_size (i.types[op]);
7558 }
7559 else /* i.base_reg and 32/64 bit mode */
7560 {
7561 if (flag_code == CODE_64BIT
40fb9820
L
7562 && operand_type_check (i.types[op], disp))
7563 {
73053c1f
JB
7564 i.types[op].bitfield.disp16 = 0;
7565 i.types[op].bitfield.disp64 = 0;
40fb9820 7566 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7567 {
7568 i.types[op].bitfield.disp32 = 0;
7569 i.types[op].bitfield.disp32s = 1;
7570 }
40fb9820 7571 else
73053c1f
JB
7572 {
7573 i.types[op].bitfield.disp32 = 1;
7574 i.types[op].bitfield.disp32s = 0;
7575 }
40fb9820 7576 }
20f0a1fc 7577
6c30d220
L
7578 if (!i.tm.opcode_modifier.vecsib)
7579 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7580 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7581 i.rex |= REX_B;
29b0f896
AM
7582 i.sib.base = i.base_reg->reg_num;
7583 /* x86-64 ignores REX prefix bit here to avoid decoder
7584 complications. */
848930b2
JB
7585 if (!(i.base_reg->reg_flags & RegRex)
7586 && (i.base_reg->reg_num == EBP_REG_NUM
7587 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7588 default_seg = &ss;
848930b2 7589 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7590 {
848930b2 7591 fake_zero_displacement = 1;
b5014f7a 7592 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7593 }
7594 i.sib.scale = i.log2_scale_factor;
7595 if (i.index_reg == 0)
7596 {
6c30d220 7597 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7598 /* <disp>(%esp) becomes two byte modrm with no index
7599 register. We've already stored the code for esp
7600 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7601 Any base register besides %esp will not use the
7602 extra modrm byte. */
7603 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7604 }
6c30d220 7605 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7606 {
e968fc9b 7607 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7608 i.sib.index = NO_INDEX_REGISTER;
7609 else
7610 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7611 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7612 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7613 i.rex |= REX_X;
29b0f896 7614 }
67a4f2b7
AO
7615
7616 if (i.disp_operands
7617 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7618 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7619 i.rm.mode = 0;
7620 else
a501d77e
L
7621 {
7622 if (!fake_zero_displacement
7623 && !i.disp_operands
7624 && i.disp_encoding)
7625 {
7626 fake_zero_displacement = 1;
7627 if (i.disp_encoding == disp_encoding_8bit)
7628 i.types[op].bitfield.disp8 = 1;
7629 else
7630 i.types[op].bitfield.disp32 = 1;
7631 }
7632 i.rm.mode = mode_from_disp_size (i.types[op]);
7633 }
29b0f896 7634 }
252b5132 7635
29b0f896
AM
7636 if (fake_zero_displacement)
7637 {
7638 /* Fakes a zero displacement assuming that i.types[op]
7639 holds the correct displacement size. */
7640 expressionS *exp;
7641
9c2799c2 7642 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7643 exp = &disp_expressions[i.disp_operands++];
7644 i.op[op].disps = exp;
7645 exp->X_op = O_constant;
7646 exp->X_add_number = 0;
7647 exp->X_add_symbol = (symbolS *) 0;
7648 exp->X_op_symbol = (symbolS *) 0;
7649 }
c0f3af97
L
7650
7651 mem = op;
29b0f896 7652 }
c0f3af97
L
7653 else
7654 mem = ~0;
252b5132 7655
8c43a48b 7656 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7657 {
7658 if (operand_type_check (i.types[0], imm))
7659 i.vex.register_specifier = NULL;
7660 else
7661 {
7662 /* VEX.vvvv encodes one of the sources when the first
7663 operand is not an immediate. */
1ef99a7b 7664 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7665 i.vex.register_specifier = i.op[0].regs;
7666 else
7667 i.vex.register_specifier = i.op[1].regs;
7668 }
7669
7670 /* Destination is a XMM register encoded in the ModRM.reg
7671 and VEX.R bit. */
7672 i.rm.reg = i.op[2].regs->reg_num;
7673 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7674 i.rex |= REX_R;
7675
7676 /* ModRM.rm and VEX.B encodes the other source. */
7677 if (!i.mem_operands)
7678 {
7679 i.rm.mode = 3;
7680
1ef99a7b 7681 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7682 i.rm.regmem = i.op[1].regs->reg_num;
7683 else
7684 i.rm.regmem = i.op[0].regs->reg_num;
7685
7686 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7687 i.rex |= REX_B;
7688 }
7689 }
2426c15f 7690 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7691 {
7692 i.vex.register_specifier = i.op[2].regs;
7693 if (!i.mem_operands)
7694 {
7695 i.rm.mode = 3;
7696 i.rm.regmem = i.op[1].regs->reg_num;
7697 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7698 i.rex |= REX_B;
7699 }
7700 }
29b0f896
AM
7701 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7702 (if any) based on i.tm.extension_opcode. Again, we must be
7703 careful to make sure that segment/control/debug/test/MMX
7704 registers are coded into the i.rm.reg field. */
f88c9eb0 7705 else if (i.reg_operands)
29b0f896 7706 {
99018f42 7707 unsigned int op;
7ab9ffdd
L
7708 unsigned int vex_reg = ~0;
7709
7710 for (op = 0; op < i.operands; op++)
b4a3a7b4 7711 {
bab6aec1 7712 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7713 || i.types[op].bitfield.class == RegBND
7714 || i.types[op].bitfield.class == RegMask
00cee14f 7715 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7716 || i.types[op].bitfield.class == RegCR
7717 || i.types[op].bitfield.class == RegDR
7718 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7719 break;
3528c362 7720 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7721 {
7722 if (i.types[op].bitfield.zmmword)
7723 i.has_regzmm = TRUE;
7724 else if (i.types[op].bitfield.ymmword)
7725 i.has_regymm = TRUE;
7726 else
7727 i.has_regxmm = TRUE;
7728 break;
7729 }
3528c362 7730 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7731 {
7732 i.has_regmmx = TRUE;
7733 break;
7734 }
7735 }
c0209578 7736
7ab9ffdd
L
7737 if (vex_3_sources)
7738 op = dest;
2426c15f 7739 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7740 {
7741 /* For instructions with VexNDS, the register-only
7742 source operand is encoded in VEX prefix. */
7743 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7744
7ab9ffdd 7745 if (op > mem)
c0f3af97 7746 {
7ab9ffdd
L
7747 vex_reg = op++;
7748 gas_assert (op < i.operands);
c0f3af97
L
7749 }
7750 else
c0f3af97 7751 {
f12dc422
L
7752 /* Check register-only source operand when two source
7753 operands are swapped. */
7754 if (!i.tm.operand_types[op].bitfield.baseindex
7755 && i.tm.operand_types[op + 1].bitfield.baseindex)
7756 {
7757 vex_reg = op;
7758 op += 2;
7759 gas_assert (mem == (vex_reg + 1)
7760 && op < i.operands);
7761 }
7762 else
7763 {
7764 vex_reg = op + 1;
7765 gas_assert (vex_reg < i.operands);
7766 }
c0f3af97 7767 }
7ab9ffdd 7768 }
2426c15f 7769 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7770 {
f12dc422 7771 /* For instructions with VexNDD, the register destination
7ab9ffdd 7772 is encoded in VEX prefix. */
f12dc422
L
7773 if (i.mem_operands == 0)
7774 {
7775 /* There is no memory operand. */
7776 gas_assert ((op + 2) == i.operands);
7777 vex_reg = op + 1;
7778 }
7779 else
8d63c93e 7780 {
ed438a93
JB
7781 /* There are only 2 non-immediate operands. */
7782 gas_assert (op < i.imm_operands + 2
7783 && i.operands == i.imm_operands + 2);
7784 vex_reg = i.imm_operands + 1;
f12dc422 7785 }
7ab9ffdd
L
7786 }
7787 else
7788 gas_assert (op < i.operands);
99018f42 7789
7ab9ffdd
L
7790 if (vex_reg != (unsigned int) ~0)
7791 {
f12dc422 7792 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7793
bab6aec1 7794 if ((type->bitfield.class != Reg
dc821c5f 7795 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7796 && type->bitfield.class != RegSIMD
43234a1e 7797 && !operand_type_equal (type, &regmask))
7ab9ffdd 7798 abort ();
f88c9eb0 7799
7ab9ffdd
L
7800 i.vex.register_specifier = i.op[vex_reg].regs;
7801 }
7802
1b9f0c97
L
7803 /* Don't set OP operand twice. */
7804 if (vex_reg != op)
7ab9ffdd 7805 {
1b9f0c97
L
7806 /* If there is an extension opcode to put here, the
7807 register number must be put into the regmem field. */
7808 if (i.tm.extension_opcode != None)
7809 {
7810 i.rm.regmem = i.op[op].regs->reg_num;
7811 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7812 i.rex |= REX_B;
43234a1e
L
7813 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7814 i.vrex |= REX_B;
1b9f0c97
L
7815 }
7816 else
7817 {
7818 i.rm.reg = i.op[op].regs->reg_num;
7819 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7820 i.rex |= REX_R;
43234a1e
L
7821 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7822 i.vrex |= REX_R;
1b9f0c97 7823 }
7ab9ffdd 7824 }
252b5132 7825
29b0f896
AM
7826 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7827 must set it to 3 to indicate this is a register operand
7828 in the regmem field. */
7829 if (!i.mem_operands)
7830 i.rm.mode = 3;
7831 }
252b5132 7832
29b0f896 7833 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7834 if (i.tm.extension_opcode != None)
29b0f896
AM
7835 i.rm.reg = i.tm.extension_opcode;
7836 }
7837 return default_seg;
7838}
252b5132 7839
376cd056
JB
7840static unsigned int
7841flip_code16 (unsigned int code16)
7842{
7843 gas_assert (i.tm.operands == 1);
7844
7845 return !(i.prefix[REX_PREFIX] & REX_W)
7846 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7847 || i.tm.operand_types[0].bitfield.disp32s
7848 : i.tm.operand_types[0].bitfield.disp16)
7849 ? CODE16 : 0;
7850}
7851
29b0f896 7852static void
e3bb37b5 7853output_branch (void)
29b0f896
AM
7854{
7855 char *p;
f8a5c266 7856 int size;
29b0f896
AM
7857 int code16;
7858 int prefix;
7859 relax_substateT subtype;
7860 symbolS *sym;
7861 offsetT off;
7862
f8a5c266 7863 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7864 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7865
7866 prefix = 0;
7867 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7868 {
29b0f896
AM
7869 prefix = 1;
7870 i.prefixes -= 1;
376cd056 7871 code16 ^= flip_code16(code16);
252b5132 7872 }
29b0f896
AM
7873 /* Pentium4 branch hints. */
7874 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7875 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7876 {
29b0f896
AM
7877 prefix++;
7878 i.prefixes--;
7879 }
7880 if (i.prefix[REX_PREFIX] != 0)
7881 {
7882 prefix++;
7883 i.prefixes--;
2f66722d
AM
7884 }
7885
7e8b059b
L
7886 /* BND prefixed jump. */
7887 if (i.prefix[BND_PREFIX] != 0)
7888 {
6cb0a70e
JB
7889 prefix++;
7890 i.prefixes--;
7e8b059b
L
7891 }
7892
f2810fe0
JB
7893 if (i.prefixes != 0)
7894 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7895
7896 /* It's always a symbol; End frag & setup for relax.
7897 Make sure there is enough room in this frag for the largest
7898 instruction we may generate in md_convert_frag. This is 2
7899 bytes for the opcode and room for the prefix and largest
7900 displacement. */
7901 frag_grow (prefix + 2 + 4);
7902 /* Prefix and 1 opcode byte go in fr_fix. */
7903 p = frag_more (prefix + 1);
7904 if (i.prefix[DATA_PREFIX] != 0)
7905 *p++ = DATA_PREFIX_OPCODE;
7906 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7907 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7908 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7909 if (i.prefix[BND_PREFIX] != 0)
7910 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7911 if (i.prefix[REX_PREFIX] != 0)
7912 *p++ = i.prefix[REX_PREFIX];
7913 *p = i.tm.base_opcode;
7914
7915 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7916 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7917 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7918 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7919 else
f8a5c266 7920 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7921 subtype |= code16;
3e73aa7c 7922
29b0f896
AM
7923 sym = i.op[0].disps->X_add_symbol;
7924 off = i.op[0].disps->X_add_number;
3e73aa7c 7925
29b0f896
AM
7926 if (i.op[0].disps->X_op != O_constant
7927 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7928 {
29b0f896
AM
7929 /* Handle complex expressions. */
7930 sym = make_expr_symbol (i.op[0].disps);
7931 off = 0;
7932 }
3e73aa7c 7933
29b0f896
AM
7934 /* 1 possible extra opcode + 4 byte displacement go in var part.
7935 Pass reloc in fr_var. */
d258b828 7936 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7937}
3e73aa7c 7938
bd7ab16b
L
7939#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7940/* Return TRUE iff PLT32 relocation should be used for branching to
7941 symbol S. */
7942
7943static bfd_boolean
7944need_plt32_p (symbolS *s)
7945{
7946 /* PLT32 relocation is ELF only. */
7947 if (!IS_ELF)
7948 return FALSE;
7949
a5def729
RO
7950#ifdef TE_SOLARIS
7951 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7952 krtld support it. */
7953 return FALSE;
7954#endif
7955
bd7ab16b
L
7956 /* Since there is no need to prepare for PLT branch on x86-64, we
7957 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7958 be used as a marker for 32-bit PC-relative branches. */
7959 if (!object_64bit)
7960 return FALSE;
7961
7962 /* Weak or undefined symbol need PLT32 relocation. */
7963 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7964 return TRUE;
7965
7966 /* Non-global symbol doesn't need PLT32 relocation. */
7967 if (! S_IS_EXTERNAL (s))
7968 return FALSE;
7969
7970 /* Other global symbols need PLT32 relocation. NB: Symbol with
7971 non-default visibilities are treated as normal global symbol
7972 so that PLT32 relocation can be used as a marker for 32-bit
7973 PC-relative branches. It is useful for linker relaxation. */
7974 return TRUE;
7975}
7976#endif
7977
29b0f896 7978static void
e3bb37b5 7979output_jump (void)
29b0f896
AM
7980{
7981 char *p;
7982 int size;
3e02c1cc 7983 fixS *fixP;
bd7ab16b 7984 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7985
0cfa3eb3 7986 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7987 {
7988 /* This is a loop or jecxz type instruction. */
7989 size = 1;
7990 if (i.prefix[ADDR_PREFIX] != 0)
7991 {
7992 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7993 i.prefixes -= 1;
7994 }
7995 /* Pentium4 branch hints. */
7996 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7997 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7998 {
7999 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8000 i.prefixes--;
3e73aa7c
JH
8001 }
8002 }
29b0f896
AM
8003 else
8004 {
8005 int code16;
3e73aa7c 8006
29b0f896
AM
8007 code16 = 0;
8008 if (flag_code == CODE_16BIT)
8009 code16 = CODE16;
3e73aa7c 8010
29b0f896
AM
8011 if (i.prefix[DATA_PREFIX] != 0)
8012 {
8013 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8014 i.prefixes -= 1;
376cd056 8015 code16 ^= flip_code16(code16);
29b0f896 8016 }
252b5132 8017
29b0f896
AM
8018 size = 4;
8019 if (code16)
8020 size = 2;
8021 }
9fcc94b6 8022
6cb0a70e
JB
8023 /* BND prefixed jump. */
8024 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8025 {
6cb0a70e 8026 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8027 i.prefixes -= 1;
8028 }
252b5132 8029
6cb0a70e 8030 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8031 {
6cb0a70e 8032 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8033 i.prefixes -= 1;
8034 }
8035
f2810fe0
JB
8036 if (i.prefixes != 0)
8037 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8038
42164a71
L
8039 p = frag_more (i.tm.opcode_length + size);
8040 switch (i.tm.opcode_length)
8041 {
8042 case 2:
8043 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8044 /* Fall through. */
42164a71
L
8045 case 1:
8046 *p++ = i.tm.base_opcode;
8047 break;
8048 default:
8049 abort ();
8050 }
e0890092 8051
bd7ab16b
L
8052#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8053 if (size == 4
8054 && jump_reloc == NO_RELOC
8055 && need_plt32_p (i.op[0].disps->X_add_symbol))
8056 jump_reloc = BFD_RELOC_X86_64_PLT32;
8057#endif
8058
8059 jump_reloc = reloc (size, 1, 1, jump_reloc);
8060
3e02c1cc 8061 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8062 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8063
8064 /* All jumps handled here are signed, but don't use a signed limit
8065 check for 32 and 16 bit jumps as we want to allow wrap around at
8066 4G and 64k respectively. */
8067 if (size == 1)
8068 fixP->fx_signed = 1;
29b0f896 8069}
e0890092 8070
29b0f896 8071static void
e3bb37b5 8072output_interseg_jump (void)
29b0f896
AM
8073{
8074 char *p;
8075 int size;
8076 int prefix;
8077 int code16;
252b5132 8078
29b0f896
AM
8079 code16 = 0;
8080 if (flag_code == CODE_16BIT)
8081 code16 = CODE16;
a217f122 8082
29b0f896
AM
8083 prefix = 0;
8084 if (i.prefix[DATA_PREFIX] != 0)
8085 {
8086 prefix = 1;
8087 i.prefixes -= 1;
8088 code16 ^= CODE16;
8089 }
6cb0a70e
JB
8090
8091 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8092
29b0f896
AM
8093 size = 4;
8094 if (code16)
8095 size = 2;
252b5132 8096
f2810fe0
JB
8097 if (i.prefixes != 0)
8098 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8099
29b0f896
AM
8100 /* 1 opcode; 2 segment; offset */
8101 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8102
29b0f896
AM
8103 if (i.prefix[DATA_PREFIX] != 0)
8104 *p++ = DATA_PREFIX_OPCODE;
252b5132 8105
29b0f896
AM
8106 if (i.prefix[REX_PREFIX] != 0)
8107 *p++ = i.prefix[REX_PREFIX];
252b5132 8108
29b0f896
AM
8109 *p++ = i.tm.base_opcode;
8110 if (i.op[1].imms->X_op == O_constant)
8111 {
8112 offsetT n = i.op[1].imms->X_add_number;
252b5132 8113
29b0f896
AM
8114 if (size == 2
8115 && !fits_in_unsigned_word (n)
8116 && !fits_in_signed_word (n))
8117 {
8118 as_bad (_("16-bit jump out of range"));
8119 return;
8120 }
8121 md_number_to_chars (p, n, size);
8122 }
8123 else
8124 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8125 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8126 if (i.op[0].imms->X_op != O_constant)
8127 as_bad (_("can't handle non absolute segment in `%s'"),
8128 i.tm.name);
8129 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8130}
a217f122 8131
b4a3a7b4
L
8132#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8133void
8134x86_cleanup (void)
8135{
8136 char *p;
8137 asection *seg = now_seg;
8138 subsegT subseg = now_subseg;
8139 asection *sec;
8140 unsigned int alignment, align_size_1;
8141 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8142 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8143 unsigned int padding;
8144
8145 if (!IS_ELF || !x86_used_note)
8146 return;
8147
b4a3a7b4
L
8148 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8149
8150 /* The .note.gnu.property section layout:
8151
8152 Field Length Contents
8153 ---- ---- ----
8154 n_namsz 4 4
8155 n_descsz 4 The note descriptor size
8156 n_type 4 NT_GNU_PROPERTY_TYPE_0
8157 n_name 4 "GNU"
8158 n_desc n_descsz The program property array
8159 .... .... ....
8160 */
8161
8162 /* Create the .note.gnu.property section. */
8163 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8164 bfd_set_section_flags (sec,
b4a3a7b4
L
8165 (SEC_ALLOC
8166 | SEC_LOAD
8167 | SEC_DATA
8168 | SEC_HAS_CONTENTS
8169 | SEC_READONLY));
8170
8171 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8172 {
8173 align_size_1 = 7;
8174 alignment = 3;
8175 }
8176 else
8177 {
8178 align_size_1 = 3;
8179 alignment = 2;
8180 }
8181
fd361982 8182 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8183 elf_section_type (sec) = SHT_NOTE;
8184
8185 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8186 + 4-byte data */
8187 isa_1_descsz_raw = 4 + 4 + 4;
8188 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8189 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8190
8191 feature_2_descsz_raw = isa_1_descsz;
8192 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8193 + 4-byte data */
8194 feature_2_descsz_raw += 4 + 4 + 4;
8195 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8196 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8197 & ~align_size_1);
8198
8199 descsz = feature_2_descsz;
8200 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8201 p = frag_more (4 + 4 + 4 + 4 + descsz);
8202
8203 /* Write n_namsz. */
8204 md_number_to_chars (p, (valueT) 4, 4);
8205
8206 /* Write n_descsz. */
8207 md_number_to_chars (p + 4, (valueT) descsz, 4);
8208
8209 /* Write n_type. */
8210 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8211
8212 /* Write n_name. */
8213 memcpy (p + 4 * 3, "GNU", 4);
8214
8215 /* Write 4-byte type. */
8216 md_number_to_chars (p + 4 * 4,
8217 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8218
8219 /* Write 4-byte data size. */
8220 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8221
8222 /* Write 4-byte data. */
8223 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8224
8225 /* Zero out paddings. */
8226 padding = isa_1_descsz - isa_1_descsz_raw;
8227 if (padding)
8228 memset (p + 4 * 7, 0, padding);
8229
8230 /* Write 4-byte type. */
8231 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8232 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8233
8234 /* Write 4-byte data size. */
8235 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8236
8237 /* Write 4-byte data. */
8238 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8239 (valueT) x86_feature_2_used, 4);
8240
8241 /* Zero out paddings. */
8242 padding = feature_2_descsz - feature_2_descsz_raw;
8243 if (padding)
8244 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8245
8246 /* We probably can't restore the current segment, for there likely
8247 isn't one yet... */
8248 if (seg && subseg)
8249 subseg_set (seg, subseg);
8250}
8251#endif
8252
9c33702b
JB
8253static unsigned int
8254encoding_length (const fragS *start_frag, offsetT start_off,
8255 const char *frag_now_ptr)
8256{
8257 unsigned int len = 0;
8258
8259 if (start_frag != frag_now)
8260 {
8261 const fragS *fr = start_frag;
8262
8263 do {
8264 len += fr->fr_fix;
8265 fr = fr->fr_next;
8266 } while (fr && fr != frag_now);
8267 }
8268
8269 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8270}
8271
e379e5f3
L
8272/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8273 be macro-fused with conditional jumps. */
8274
8275static int
8276maybe_fused_with_jcc_p (void)
8277{
8278 /* No RIP address. */
8279 if (i.base_reg && i.base_reg->reg_num == RegIP)
8280 return 0;
8281
8282 /* No VEX/EVEX encoding. */
8283 if (is_any_vex_encoding (&i.tm))
8284 return 0;
8285
8286 /* and, add, sub with destination register. */
8287 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8288 || i.tm.base_opcode <= 5
8289 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8290 || ((i.tm.base_opcode | 3) == 0x83
8291 && ((i.tm.extension_opcode | 1) == 0x5
8292 || i.tm.extension_opcode == 0x0)))
8293 return (i.types[1].bitfield.class == Reg
8294 || i.types[1].bitfield.instance == Accum);
8295
8296 /* test, cmp with any register. */
8297 if ((i.tm.base_opcode | 1) == 0x85
8298 || (i.tm.base_opcode | 1) == 0xa9
8299 || ((i.tm.base_opcode | 1) == 0xf7
8300 && i.tm.extension_opcode == 0)
8301 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8302 || ((i.tm.base_opcode | 3) == 0x83
8303 && (i.tm.extension_opcode == 0x7)))
8304 return (i.types[0].bitfield.class == Reg
8305 || i.types[0].bitfield.instance == Accum
8306 || i.types[1].bitfield.class == Reg
8307 || i.types[1].bitfield.instance == Accum);
8308
8309 /* inc, dec with any register. */
8310 if ((i.tm.cpu_flags.bitfield.cpuno64
8311 && (i.tm.base_opcode | 0xf) == 0x4f)
8312 || ((i.tm.base_opcode | 1) == 0xff
8313 && i.tm.extension_opcode <= 0x1))
8314 return (i.types[0].bitfield.class == Reg
8315 || i.types[0].bitfield.instance == Accum);
8316
8317 return 0;
8318}
8319
8320/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8321
8322static int
8323add_fused_jcc_padding_frag_p (void)
8324{
8325 /* NB: Don't work with COND_JUMP86 without i386. */
8326 if (!align_branch_power
8327 || now_seg == absolute_section
8328 || !cpu_arch_flags.bitfield.cpui386
8329 || !(align_branch & align_branch_fused_bit))
8330 return 0;
8331
8332 if (maybe_fused_with_jcc_p ())
8333 {
8334 if (last_insn.kind == last_insn_other
8335 || last_insn.seg != now_seg)
8336 return 1;
8337 if (flag_debug)
8338 as_warn_where (last_insn.file, last_insn.line,
8339 _("`%s` skips -malign-branch-boundary on `%s`"),
8340 last_insn.name, i.tm.name);
8341 }
8342
8343 return 0;
8344}
8345
8346/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8347
8348static int
8349add_branch_prefix_frag_p (void)
8350{
8351 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8352 to PadLock instructions since they include prefixes in opcode. */
8353 if (!align_branch_power
8354 || !align_branch_prefix_size
8355 || now_seg == absolute_section
8356 || i.tm.cpu_flags.bitfield.cpupadlock
8357 || !cpu_arch_flags.bitfield.cpui386)
8358 return 0;
8359
8360 /* Don't add prefix if it is a prefix or there is no operand in case
8361 that segment prefix is special. */
8362 if (!i.operands || i.tm.opcode_modifier.isprefix)
8363 return 0;
8364
8365 if (last_insn.kind == last_insn_other
8366 || last_insn.seg != now_seg)
8367 return 1;
8368
8369 if (flag_debug)
8370 as_warn_where (last_insn.file, last_insn.line,
8371 _("`%s` skips -malign-branch-boundary on `%s`"),
8372 last_insn.name, i.tm.name);
8373
8374 return 0;
8375}
8376
8377/* Return 1 if a BRANCH_PADDING frag should be generated. */
8378
8379static int
8380add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8381{
8382 int add_padding;
8383
8384 /* NB: Don't work with COND_JUMP86 without i386. */
8385 if (!align_branch_power
8386 || now_seg == absolute_section
8387 || !cpu_arch_flags.bitfield.cpui386)
8388 return 0;
8389
8390 add_padding = 0;
8391
8392 /* Check for jcc and direct jmp. */
8393 if (i.tm.opcode_modifier.jump == JUMP)
8394 {
8395 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8396 {
8397 *branch_p = align_branch_jmp;
8398 add_padding = align_branch & align_branch_jmp_bit;
8399 }
8400 else
8401 {
8402 *branch_p = align_branch_jcc;
8403 if ((align_branch & align_branch_jcc_bit))
8404 add_padding = 1;
8405 }
8406 }
8407 else if (is_any_vex_encoding (&i.tm))
8408 return 0;
8409 else if ((i.tm.base_opcode | 1) == 0xc3)
8410 {
8411 /* Near ret. */
8412 *branch_p = align_branch_ret;
8413 if ((align_branch & align_branch_ret_bit))
8414 add_padding = 1;
8415 }
8416 else
8417 {
8418 /* Check for indirect jmp, direct and indirect calls. */
8419 if (i.tm.base_opcode == 0xe8)
8420 {
8421 /* Direct call. */
8422 *branch_p = align_branch_call;
8423 if ((align_branch & align_branch_call_bit))
8424 add_padding = 1;
8425 }
8426 else if (i.tm.base_opcode == 0xff
8427 && (i.tm.extension_opcode == 2
8428 || i.tm.extension_opcode == 4))
8429 {
8430 /* Indirect call and jmp. */
8431 *branch_p = align_branch_indirect;
8432 if ((align_branch & align_branch_indirect_bit))
8433 add_padding = 1;
8434 }
8435
8436 if (add_padding
8437 && i.disp_operands
8438 && tls_get_addr
8439 && (i.op[0].disps->X_op == O_symbol
8440 || (i.op[0].disps->X_op == O_subtract
8441 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8442 {
8443 symbolS *s = i.op[0].disps->X_add_symbol;
8444 /* No padding to call to global or undefined tls_get_addr. */
8445 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8446 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8447 return 0;
8448 }
8449 }
8450
8451 if (add_padding
8452 && last_insn.kind != last_insn_other
8453 && last_insn.seg == now_seg)
8454 {
8455 if (flag_debug)
8456 as_warn_where (last_insn.file, last_insn.line,
8457 _("`%s` skips -malign-branch-boundary on `%s`"),
8458 last_insn.name, i.tm.name);
8459 return 0;
8460 }
8461
8462 return add_padding;
8463}
8464
29b0f896 8465static void
e3bb37b5 8466output_insn (void)
29b0f896 8467{
2bbd9c25
JJ
8468 fragS *insn_start_frag;
8469 offsetT insn_start_off;
e379e5f3
L
8470 fragS *fragP = NULL;
8471 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8472
b4a3a7b4
L
8473#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8474 if (IS_ELF && x86_used_note)
8475 {
8476 if (i.tm.cpu_flags.bitfield.cpucmov)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8478 if (i.tm.cpu_flags.bitfield.cpusse)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8480 if (i.tm.cpu_flags.bitfield.cpusse2)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8482 if (i.tm.cpu_flags.bitfield.cpusse3)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8484 if (i.tm.cpu_flags.bitfield.cpussse3)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8486 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8488 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8490 if (i.tm.cpu_flags.bitfield.cpuavx)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8492 if (i.tm.cpu_flags.bitfield.cpuavx2)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8494 if (i.tm.cpu_flags.bitfield.cpufma)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8516 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8524 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8526
8527 if (i.tm.cpu_flags.bitfield.cpu8087
8528 || i.tm.cpu_flags.bitfield.cpu287
8529 || i.tm.cpu_flags.bitfield.cpu387
8530 || i.tm.cpu_flags.bitfield.cpu687
8531 || i.tm.cpu_flags.bitfield.cpufisttp)
8532 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8533 if (i.has_regmmx
8534 || i.tm.base_opcode == 0xf77 /* emms */
8535 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8537 if (i.has_regxmm)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8539 if (i.has_regymm)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8541 if (i.has_regzmm)
8542 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8543 if (i.tm.cpu_flags.bitfield.cpufxsr)
8544 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8545 if (i.tm.cpu_flags.bitfield.cpuxsave)
8546 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8547 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8548 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8549 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8550 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8551 }
8552#endif
8553
29b0f896
AM
8554 /* Tie dwarf2 debug info to the address at the start of the insn.
8555 We can't do this after the insn has been output as the current
8556 frag may have been closed off. eg. by frag_var. */
8557 dwarf2_emit_insn (0);
8558
2bbd9c25
JJ
8559 insn_start_frag = frag_now;
8560 insn_start_off = frag_now_fix ();
8561
e379e5f3
L
8562 if (add_branch_padding_frag_p (&branch))
8563 {
8564 char *p;
8565 /* Branch can be 8 bytes. Leave some room for prefixes. */
8566 unsigned int max_branch_padding_size = 14;
8567
8568 /* Align section to boundary. */
8569 record_alignment (now_seg, align_branch_power);
8570
8571 /* Make room for padding. */
8572 frag_grow (max_branch_padding_size);
8573
8574 /* Start of the padding. */
8575 p = frag_more (0);
8576
8577 fragP = frag_now;
8578
8579 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8580 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8581 NULL, 0, p);
8582
8583 fragP->tc_frag_data.branch_type = branch;
8584 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8585 }
8586
29b0f896 8587 /* Output jumps. */
0cfa3eb3 8588 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8589 output_branch ();
0cfa3eb3
JB
8590 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8591 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8592 output_jump ();
0cfa3eb3 8593 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8594 output_interseg_jump ();
8595 else
8596 {
8597 /* Output normal instructions here. */
8598 char *p;
8599 unsigned char *q;
47465058 8600 unsigned int j;
331d2d0d 8601 unsigned int prefix;
4dffcebc 8602
e4e00185 8603 if (avoid_fence
c3949f43
JB
8604 && (i.tm.base_opcode == 0xfaee8
8605 || i.tm.base_opcode == 0xfaef0
8606 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8607 {
8608 /* Encode lfence, mfence, and sfence as
8609 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8610 offsetT val = 0x240483f0ULL;
8611 p = frag_more (5);
8612 md_number_to_chars (p, val, 5);
8613 return;
8614 }
8615
d022bddd
IT
8616 /* Some processors fail on LOCK prefix. This options makes
8617 assembler ignore LOCK prefix and serves as a workaround. */
8618 if (omit_lock_prefix)
8619 {
8620 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8621 return;
8622 i.prefix[LOCK_PREFIX] = 0;
8623 }
8624
e379e5f3
L
8625 if (branch)
8626 /* Skip if this is a branch. */
8627 ;
8628 else if (add_fused_jcc_padding_frag_p ())
8629 {
8630 /* Make room for padding. */
8631 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8632 p = frag_more (0);
8633
8634 fragP = frag_now;
8635
8636 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8637 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8638 NULL, 0, p);
8639
8640 fragP->tc_frag_data.branch_type = align_branch_fused;
8641 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8642 }
8643 else if (add_branch_prefix_frag_p ())
8644 {
8645 unsigned int max_prefix_size = align_branch_prefix_size;
8646
8647 /* Make room for padding. */
8648 frag_grow (max_prefix_size);
8649 p = frag_more (0);
8650
8651 fragP = frag_now;
8652
8653 frag_var (rs_machine_dependent, max_prefix_size, 0,
8654 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8655 NULL, 0, p);
8656
8657 fragP->tc_frag_data.max_bytes = max_prefix_size;
8658 }
8659
43234a1e
L
8660 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8661 don't need the explicit prefix. */
8662 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8663 {
c0f3af97 8664 switch (i.tm.opcode_length)
bc4bd9ab 8665 {
c0f3af97
L
8666 case 3:
8667 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8668 {
c0f3af97 8669 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8670 if (!i.tm.cpu_flags.bitfield.cpupadlock
8671 || prefix != REPE_PREFIX_OPCODE
8672 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8673 add_prefix (prefix);
c0f3af97
L
8674 }
8675 break;
8676 case 2:
8677 if ((i.tm.base_opcode & 0xff0000) != 0)
8678 {
8679 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8680 add_prefix (prefix);
4dffcebc 8681 }
c0f3af97
L
8682 break;
8683 case 1:
8684 break;
390c91cf
L
8685 case 0:
8686 /* Check for pseudo prefixes. */
8687 as_bad_where (insn_start_frag->fr_file,
8688 insn_start_frag->fr_line,
8689 _("pseudo prefix without instruction"));
8690 return;
c0f3af97
L
8691 default:
8692 abort ();
bc4bd9ab 8693 }
c0f3af97 8694
6d19a37a 8695#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8696 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8697 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8698 perform IE->LE optimization. A dummy REX_OPCODE prefix
8699 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8700 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8701 if (x86_elf_abi == X86_64_X32_ABI
8702 && i.operands == 2
14470f07
L
8703 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8704 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8705 && i.prefix[REX_PREFIX] == 0)
8706 add_prefix (REX_OPCODE);
6d19a37a 8707#endif
cf61b747 8708
c0f3af97
L
8709 /* The prefix bytes. */
8710 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8711 if (*q)
8712 FRAG_APPEND_1_CHAR (*q);
0f10071e 8713 }
ae5c1c7b 8714 else
c0f3af97
L
8715 {
8716 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8717 if (*q)
8718 switch (j)
8719 {
8720 case REX_PREFIX:
8721 /* REX byte is encoded in VEX prefix. */
8722 break;
8723 case SEG_PREFIX:
8724 case ADDR_PREFIX:
8725 FRAG_APPEND_1_CHAR (*q);
8726 break;
8727 default:
8728 /* There should be no other prefixes for instructions
8729 with VEX prefix. */
8730 abort ();
8731 }
8732
43234a1e
L
8733 /* For EVEX instructions i.vrex should become 0 after
8734 build_evex_prefix. For VEX instructions upper 16 registers
8735 aren't available, so VREX should be 0. */
8736 if (i.vrex)
8737 abort ();
c0f3af97
L
8738 /* Now the VEX prefix. */
8739 p = frag_more (i.vex.length);
8740 for (j = 0; j < i.vex.length; j++)
8741 p[j] = i.vex.bytes[j];
8742 }
252b5132 8743
29b0f896 8744 /* Now the opcode; be careful about word order here! */
4dffcebc 8745 if (i.tm.opcode_length == 1)
29b0f896
AM
8746 {
8747 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8748 }
8749 else
8750 {
4dffcebc 8751 switch (i.tm.opcode_length)
331d2d0d 8752 {
43234a1e
L
8753 case 4:
8754 p = frag_more (4);
8755 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8756 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8757 break;
4dffcebc 8758 case 3:
331d2d0d
L
8759 p = frag_more (3);
8760 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8761 break;
8762 case 2:
8763 p = frag_more (2);
8764 break;
8765 default:
8766 abort ();
8767 break;
331d2d0d 8768 }
0f10071e 8769
29b0f896
AM
8770 /* Put out high byte first: can't use md_number_to_chars! */
8771 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8772 *p = i.tm.base_opcode & 0xff;
8773 }
3e73aa7c 8774
29b0f896 8775 /* Now the modrm byte and sib byte (if present). */
40fb9820 8776 if (i.tm.opcode_modifier.modrm)
29b0f896 8777 {
4a3523fa
L
8778 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8779 | i.rm.reg << 3
8780 | i.rm.mode << 6));
29b0f896
AM
8781 /* If i.rm.regmem == ESP (4)
8782 && i.rm.mode != (Register mode)
8783 && not 16 bit
8784 ==> need second modrm byte. */
8785 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8786 && i.rm.mode != 3
dc821c5f 8787 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8788 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8789 | i.sib.index << 3
8790 | i.sib.scale << 6));
29b0f896 8791 }
3e73aa7c 8792
29b0f896 8793 if (i.disp_operands)
2bbd9c25 8794 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8795
29b0f896 8796 if (i.imm_operands)
2bbd9c25 8797 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8798
8799 /*
8800 * frag_now_fix () returning plain abs_section_offset when we're in the
8801 * absolute section, and abs_section_offset not getting updated as data
8802 * gets added to the frag breaks the logic below.
8803 */
8804 if (now_seg != absolute_section)
8805 {
8806 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8807 if (j > 15)
8808 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8809 j);
e379e5f3
L
8810 else if (fragP)
8811 {
8812 /* NB: Don't add prefix with GOTPC relocation since
8813 output_disp() above depends on the fixed encoding
8814 length. Can't add prefix with TLS relocation since
8815 it breaks TLS linker optimization. */
8816 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8817 /* Prefix count on the current instruction. */
8818 unsigned int count = i.vex.length;
8819 unsigned int k;
8820 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8821 /* REX byte is encoded in VEX/EVEX prefix. */
8822 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8823 count++;
8824
8825 /* Count prefixes for extended opcode maps. */
8826 if (!i.vex.length)
8827 switch (i.tm.opcode_length)
8828 {
8829 case 3:
8830 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8831 {
8832 count++;
8833 switch ((i.tm.base_opcode >> 8) & 0xff)
8834 {
8835 case 0x38:
8836 case 0x3a:
8837 count++;
8838 break;
8839 default:
8840 break;
8841 }
8842 }
8843 break;
8844 case 2:
8845 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8846 count++;
8847 break;
8848 case 1:
8849 break;
8850 default:
8851 abort ();
8852 }
8853
8854 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8855 == BRANCH_PREFIX)
8856 {
8857 /* Set the maximum prefix size in BRANCH_PREFIX
8858 frag. */
8859 if (fragP->tc_frag_data.max_bytes > max)
8860 fragP->tc_frag_data.max_bytes = max;
8861 if (fragP->tc_frag_data.max_bytes > count)
8862 fragP->tc_frag_data.max_bytes -= count;
8863 else
8864 fragP->tc_frag_data.max_bytes = 0;
8865 }
8866 else
8867 {
8868 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8869 frag. */
8870 unsigned int max_prefix_size;
8871 if (align_branch_prefix_size > max)
8872 max_prefix_size = max;
8873 else
8874 max_prefix_size = align_branch_prefix_size;
8875 if (max_prefix_size > count)
8876 fragP->tc_frag_data.max_prefix_length
8877 = max_prefix_size - count;
8878 }
8879
8880 /* Use existing segment prefix if possible. Use CS
8881 segment prefix in 64-bit mode. In 32-bit mode, use SS
8882 segment prefix with ESP/EBP base register and use DS
8883 segment prefix without ESP/EBP base register. */
8884 if (i.prefix[SEG_PREFIX])
8885 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8886 else if (flag_code == CODE_64BIT)
8887 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8888 else if (i.base_reg
8889 && (i.base_reg->reg_num == 4
8890 || i.base_reg->reg_num == 5))
8891 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8892 else
8893 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8894 }
9c33702b 8895 }
29b0f896 8896 }
252b5132 8897
e379e5f3
L
8898 /* NB: Don't work with COND_JUMP86 without i386. */
8899 if (align_branch_power
8900 && now_seg != absolute_section
8901 && cpu_arch_flags.bitfield.cpui386)
8902 {
8903 /* Terminate each frag so that we can add prefix and check for
8904 fused jcc. */
8905 frag_wane (frag_now);
8906 frag_new (0);
8907 }
8908
29b0f896
AM
8909#ifdef DEBUG386
8910 if (flag_debug)
8911 {
7b81dfbb 8912 pi ("" /*line*/, &i);
29b0f896
AM
8913 }
8914#endif /* DEBUG386 */
8915}
252b5132 8916
e205caa7
L
8917/* Return the size of the displacement operand N. */
8918
8919static int
8920disp_size (unsigned int n)
8921{
8922 int size = 4;
43234a1e 8923
b5014f7a 8924 if (i.types[n].bitfield.disp64)
40fb9820
L
8925 size = 8;
8926 else if (i.types[n].bitfield.disp8)
8927 size = 1;
8928 else if (i.types[n].bitfield.disp16)
8929 size = 2;
e205caa7
L
8930 return size;
8931}
8932
8933/* Return the size of the immediate operand N. */
8934
8935static int
8936imm_size (unsigned int n)
8937{
8938 int size = 4;
40fb9820
L
8939 if (i.types[n].bitfield.imm64)
8940 size = 8;
8941 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8942 size = 1;
8943 else if (i.types[n].bitfield.imm16)
8944 size = 2;
e205caa7
L
8945 return size;
8946}
8947
29b0f896 8948static void
64e74474 8949output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8950{
8951 char *p;
8952 unsigned int n;
252b5132 8953
29b0f896
AM
8954 for (n = 0; n < i.operands; n++)
8955 {
b5014f7a 8956 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8957 {
8958 if (i.op[n].disps->X_op == O_constant)
8959 {
e205caa7 8960 int size = disp_size (n);
43234a1e 8961 offsetT val = i.op[n].disps->X_add_number;
252b5132 8962
629cfaf1
JB
8963 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8964 size);
29b0f896
AM
8965 p = frag_more (size);
8966 md_number_to_chars (p, val, size);
8967 }
8968 else
8969 {
f86103b7 8970 enum bfd_reloc_code_real reloc_type;
e205caa7 8971 int size = disp_size (n);
40fb9820 8972 int sign = i.types[n].bitfield.disp32s;
29b0f896 8973 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8974 fixS *fixP;
29b0f896 8975
e205caa7 8976 /* We can't have 8 bit displacement here. */
9c2799c2 8977 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8978
29b0f896
AM
8979 /* The PC relative address is computed relative
8980 to the instruction boundary, so in case immediate
8981 fields follows, we need to adjust the value. */
8982 if (pcrel && i.imm_operands)
8983 {
29b0f896 8984 unsigned int n1;
e205caa7 8985 int sz = 0;
252b5132 8986
29b0f896 8987 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8988 if (operand_type_check (i.types[n1], imm))
252b5132 8989 {
e205caa7
L
8990 /* Only one immediate is allowed for PC
8991 relative address. */
9c2799c2 8992 gas_assert (sz == 0);
e205caa7
L
8993 sz = imm_size (n1);
8994 i.op[n].disps->X_add_number -= sz;
252b5132 8995 }
29b0f896 8996 /* We should find the immediate. */
9c2799c2 8997 gas_assert (sz != 0);
29b0f896 8998 }
520dc8e8 8999
29b0f896 9000 p = frag_more (size);
d258b828 9001 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9002 if (GOT_symbol
2bbd9c25 9003 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9004 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9005 || reloc_type == BFD_RELOC_X86_64_32S
9006 || (reloc_type == BFD_RELOC_64
9007 && object_64bit))
d6ab8113
JB
9008 && (i.op[n].disps->X_op == O_symbol
9009 || (i.op[n].disps->X_op == O_add
9010 && ((symbol_get_value_expression
9011 (i.op[n].disps->X_op_symbol)->X_op)
9012 == O_subtract))))
9013 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9014 {
4fa24527 9015 if (!object_64bit)
7b81dfbb
AJ
9016 {
9017 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9018 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9019 i.op[n].imms->X_add_number +=
9020 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9021 }
9022 else if (reloc_type == BFD_RELOC_64)
9023 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9024 else
7b81dfbb
AJ
9025 /* Don't do the adjustment for x86-64, as there
9026 the pcrel addressing is relative to the _next_
9027 insn, and that is taken care of in other code. */
d6ab8113 9028 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9029 }
e379e5f3
L
9030 else if (align_branch_power)
9031 {
9032 switch (reloc_type)
9033 {
9034 case BFD_RELOC_386_TLS_GD:
9035 case BFD_RELOC_386_TLS_LDM:
9036 case BFD_RELOC_386_TLS_IE:
9037 case BFD_RELOC_386_TLS_IE_32:
9038 case BFD_RELOC_386_TLS_GOTIE:
9039 case BFD_RELOC_386_TLS_GOTDESC:
9040 case BFD_RELOC_386_TLS_DESC_CALL:
9041 case BFD_RELOC_X86_64_TLSGD:
9042 case BFD_RELOC_X86_64_TLSLD:
9043 case BFD_RELOC_X86_64_GOTTPOFF:
9044 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9045 case BFD_RELOC_X86_64_TLSDESC_CALL:
9046 i.has_gotpc_tls_reloc = TRUE;
9047 default:
9048 break;
9049 }
9050 }
02a86693
L
9051 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9052 size, i.op[n].disps, pcrel,
9053 reloc_type);
9054 /* Check for "call/jmp *mem", "mov mem, %reg",
9055 "test %reg, mem" and "binop mem, %reg" where binop
9056 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9057 instructions without data prefix. Always generate
9058 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9059 if (i.prefix[DATA_PREFIX] == 0
9060 && (generate_relax_relocations
9061 || (!object_64bit
9062 && i.rm.mode == 0
9063 && i.rm.regmem == 5))
0cb4071e
L
9064 && (i.rm.mode == 2
9065 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
9066 && ((i.operands == 1
9067 && i.tm.base_opcode == 0xff
9068 && (i.rm.reg == 2 || i.rm.reg == 4))
9069 || (i.operands == 2
9070 && (i.tm.base_opcode == 0x8b
9071 || i.tm.base_opcode == 0x85
9072 || (i.tm.base_opcode & 0xc7) == 0x03))))
9073 {
9074 if (object_64bit)
9075 {
9076 fixP->fx_tcbit = i.rex != 0;
9077 if (i.base_reg
e968fc9b 9078 && (i.base_reg->reg_num == RegIP))
02a86693
L
9079 fixP->fx_tcbit2 = 1;
9080 }
9081 else
9082 fixP->fx_tcbit2 = 1;
9083 }
29b0f896
AM
9084 }
9085 }
9086 }
9087}
252b5132 9088
29b0f896 9089static void
64e74474 9090output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9091{
9092 char *p;
9093 unsigned int n;
252b5132 9094
29b0f896
AM
9095 for (n = 0; n < i.operands; n++)
9096 {
43234a1e
L
9097 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9098 if (i.rounding && (int) n == i.rounding->operand)
9099 continue;
9100
40fb9820 9101 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9102 {
9103 if (i.op[n].imms->X_op == O_constant)
9104 {
e205caa7 9105 int size = imm_size (n);
29b0f896 9106 offsetT val;
b4cac588 9107
29b0f896
AM
9108 val = offset_in_range (i.op[n].imms->X_add_number,
9109 size);
9110 p = frag_more (size);
9111 md_number_to_chars (p, val, size);
9112 }
9113 else
9114 {
9115 /* Not absolute_section.
9116 Need a 32-bit fixup (don't support 8bit
9117 non-absolute imms). Try to support other
9118 sizes ... */
f86103b7 9119 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9120 int size = imm_size (n);
9121 int sign;
29b0f896 9122
40fb9820 9123 if (i.types[n].bitfield.imm32s
a7d61044 9124 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9125 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9126 sign = 1;
e205caa7
L
9127 else
9128 sign = 0;
520dc8e8 9129
29b0f896 9130 p = frag_more (size);
d258b828 9131 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9132
2bbd9c25
JJ
9133 /* This is tough to explain. We end up with this one if we
9134 * have operands that look like
9135 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9136 * obtain the absolute address of the GOT, and it is strongly
9137 * preferable from a performance point of view to avoid using
9138 * a runtime relocation for this. The actual sequence of
9139 * instructions often look something like:
9140 *
9141 * call .L66
9142 * .L66:
9143 * popl %ebx
9144 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9145 *
9146 * The call and pop essentially return the absolute address
9147 * of the label .L66 and store it in %ebx. The linker itself
9148 * will ultimately change the first operand of the addl so
9149 * that %ebx points to the GOT, but to keep things simple, the
9150 * .o file must have this operand set so that it generates not
9151 * the absolute address of .L66, but the absolute address of
9152 * itself. This allows the linker itself simply treat a GOTPC
9153 * relocation as asking for a pcrel offset to the GOT to be
9154 * added in, and the addend of the relocation is stored in the
9155 * operand field for the instruction itself.
9156 *
9157 * Our job here is to fix the operand so that it would add
9158 * the correct offset so that %ebx would point to itself. The
9159 * thing that is tricky is that .-.L66 will point to the
9160 * beginning of the instruction, so we need to further modify
9161 * the operand so that it will point to itself. There are
9162 * other cases where you have something like:
9163 *
9164 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9165 *
9166 * and here no correction would be required. Internally in
9167 * the assembler we treat operands of this form as not being
9168 * pcrel since the '.' is explicitly mentioned, and I wonder
9169 * whether it would simplify matters to do it this way. Who
9170 * knows. In earlier versions of the PIC patches, the
9171 * pcrel_adjust field was used to store the correction, but
9172 * since the expression is not pcrel, I felt it would be
9173 * confusing to do it this way. */
9174
d6ab8113 9175 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9176 || reloc_type == BFD_RELOC_X86_64_32S
9177 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9178 && GOT_symbol
9179 && GOT_symbol == i.op[n].imms->X_add_symbol
9180 && (i.op[n].imms->X_op == O_symbol
9181 || (i.op[n].imms->X_op == O_add
9182 && ((symbol_get_value_expression
9183 (i.op[n].imms->X_op_symbol)->X_op)
9184 == O_subtract))))
9185 {
4fa24527 9186 if (!object_64bit)
d6ab8113 9187 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9188 else if (size == 4)
d6ab8113 9189 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9190 else if (size == 8)
9191 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9192 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9193 i.op[n].imms->X_add_number +=
9194 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9195 }
29b0f896
AM
9196 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9197 i.op[n].imms, 0, reloc_type);
9198 }
9199 }
9200 }
252b5132
RH
9201}
9202\f
d182319b
JB
9203/* x86_cons_fix_new is called via the expression parsing code when a
9204 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9205static int cons_sign = -1;
9206
9207void
e3bb37b5 9208x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9209 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9210{
d258b828 9211 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9212
9213#ifdef TE_PE
9214 if (exp->X_op == O_secrel)
9215 {
9216 exp->X_op = O_symbol;
9217 r = BFD_RELOC_32_SECREL;
9218 }
9219#endif
9220
9221 fix_new_exp (frag, off, len, exp, 0, r);
9222}
9223
357d1bd8
L
9224/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9225 purpose of the `.dc.a' internal pseudo-op. */
9226
9227int
9228x86_address_bytes (void)
9229{
9230 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9231 return 4;
9232 return stdoutput->arch_info->bits_per_address / 8;
9233}
9234
d382c579
TG
9235#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9236 || defined (LEX_AT)
d258b828 9237# define lex_got(reloc, adjust, types) NULL
718ddfc0 9238#else
f3c180ae
AM
9239/* Parse operands of the form
9240 <symbol>@GOTOFF+<nnn>
9241 and similar .plt or .got references.
9242
9243 If we find one, set up the correct relocation in RELOC and copy the
9244 input string, minus the `@GOTOFF' into a malloc'd buffer for
9245 parsing by the calling routine. Return this buffer, and if ADJUST
9246 is non-null set it to the length of the string we removed from the
9247 input line. Otherwise return NULL. */
9248static char *
91d6fa6a 9249lex_got (enum bfd_reloc_code_real *rel,
64e74474 9250 int *adjust,
d258b828 9251 i386_operand_type *types)
f3c180ae 9252{
7b81dfbb
AJ
9253 /* Some of the relocations depend on the size of what field is to
9254 be relocated. But in our callers i386_immediate and i386_displacement
9255 we don't yet know the operand size (this will be set by insn
9256 matching). Hence we record the word32 relocation here,
9257 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9258 static const struct {
9259 const char *str;
cff8d58a 9260 int len;
4fa24527 9261 const enum bfd_reloc_code_real rel[2];
40fb9820 9262 const i386_operand_type types64;
f3c180ae 9263 } gotrel[] = {
8ce3d284 9264#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9265 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9266 BFD_RELOC_SIZE32 },
9267 OPERAND_TYPE_IMM32_64 },
8ce3d284 9268#endif
cff8d58a
L
9269 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9270 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9271 OPERAND_TYPE_IMM64 },
cff8d58a
L
9272 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9273 BFD_RELOC_X86_64_PLT32 },
40fb9820 9274 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9275 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9276 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9277 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9278 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9279 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9280 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9281 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9282 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9283 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9284 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9285 BFD_RELOC_X86_64_TLSGD },
40fb9820 9286 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9287 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9288 _dummy_first_bfd_reloc_code_real },
40fb9820 9289 OPERAND_TYPE_NONE },
cff8d58a
L
9290 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9291 BFD_RELOC_X86_64_TLSLD },
40fb9820 9292 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9293 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9294 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9295 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9296 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9297 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9298 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9299 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9300 _dummy_first_bfd_reloc_code_real },
40fb9820 9301 OPERAND_TYPE_NONE },
cff8d58a
L
9302 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9303 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9304 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9305 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9306 _dummy_first_bfd_reloc_code_real },
40fb9820 9307 OPERAND_TYPE_NONE },
cff8d58a
L
9308 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9309 _dummy_first_bfd_reloc_code_real },
40fb9820 9310 OPERAND_TYPE_NONE },
cff8d58a
L
9311 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9312 BFD_RELOC_X86_64_GOT32 },
40fb9820 9313 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9314 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9315 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9316 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9317 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9318 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9319 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9320 };
9321 char *cp;
9322 unsigned int j;
9323
d382c579 9324#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9325 if (!IS_ELF)
9326 return NULL;
d382c579 9327#endif
718ddfc0 9328
f3c180ae 9329 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9330 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9331 return NULL;
9332
47465058 9333 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9334 {
cff8d58a 9335 int len = gotrel[j].len;
28f81592 9336 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9337 {
4fa24527 9338 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9339 {
28f81592
AM
9340 int first, second;
9341 char *tmpbuf, *past_reloc;
f3c180ae 9342
91d6fa6a 9343 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9344
3956db08
JB
9345 if (types)
9346 {
9347 if (flag_code != CODE_64BIT)
40fb9820
L
9348 {
9349 types->bitfield.imm32 = 1;
9350 types->bitfield.disp32 = 1;
9351 }
3956db08
JB
9352 else
9353 *types = gotrel[j].types64;
9354 }
9355
8fd4256d 9356 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9357 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9358
28f81592 9359 /* The length of the first part of our input line. */
f3c180ae 9360 first = cp - input_line_pointer;
28f81592
AM
9361
9362 /* The second part goes from after the reloc token until
67c11a9b 9363 (and including) an end_of_line char or comma. */
28f81592 9364 past_reloc = cp + 1 + len;
67c11a9b
AM
9365 cp = past_reloc;
9366 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9367 ++cp;
9368 second = cp + 1 - past_reloc;
28f81592
AM
9369
9370 /* Allocate and copy string. The trailing NUL shouldn't
9371 be necessary, but be safe. */
add39d23 9372 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9373 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9374 if (second != 0 && *past_reloc != ' ')
9375 /* Replace the relocation token with ' ', so that
9376 errors like foo@GOTOFF1 will be detected. */
9377 tmpbuf[first++] = ' ';
af89796a
L
9378 else
9379 /* Increment length by 1 if the relocation token is
9380 removed. */
9381 len++;
9382 if (adjust)
9383 *adjust = len;
0787a12d
AM
9384 memcpy (tmpbuf + first, past_reloc, second);
9385 tmpbuf[first + second] = '\0';
f3c180ae
AM
9386 return tmpbuf;
9387 }
9388
4fa24527
JB
9389 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9390 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9391 return NULL;
9392 }
9393 }
9394
9395 /* Might be a symbol version string. Don't as_bad here. */
9396 return NULL;
9397}
4e4f7c87 9398#endif
f3c180ae 9399
a988325c
NC
9400#ifdef TE_PE
9401#ifdef lex_got
9402#undef lex_got
9403#endif
9404/* Parse operands of the form
9405 <symbol>@SECREL32+<nnn>
9406
9407 If we find one, set up the correct relocation in RELOC and copy the
9408 input string, minus the `@SECREL32' into a malloc'd buffer for
9409 parsing by the calling routine. Return this buffer, and if ADJUST
9410 is non-null set it to the length of the string we removed from the
34bca508
L
9411 input line. Otherwise return NULL.
9412
a988325c
NC
9413 This function is copied from the ELF version above adjusted for PE targets. */
9414
9415static char *
9416lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9417 int *adjust ATTRIBUTE_UNUSED,
d258b828 9418 i386_operand_type *types)
a988325c
NC
9419{
9420 static const struct
9421 {
9422 const char *str;
9423 int len;
9424 const enum bfd_reloc_code_real rel[2];
9425 const i386_operand_type types64;
9426 }
9427 gotrel[] =
9428 {
9429 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9430 BFD_RELOC_32_SECREL },
9431 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9432 };
9433
9434 char *cp;
9435 unsigned j;
9436
9437 for (cp = input_line_pointer; *cp != '@'; cp++)
9438 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9439 return NULL;
9440
9441 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9442 {
9443 int len = gotrel[j].len;
9444
9445 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9446 {
9447 if (gotrel[j].rel[object_64bit] != 0)
9448 {
9449 int first, second;
9450 char *tmpbuf, *past_reloc;
9451
9452 *rel = gotrel[j].rel[object_64bit];
9453 if (adjust)
9454 *adjust = len;
9455
9456 if (types)
9457 {
9458 if (flag_code != CODE_64BIT)
9459 {
9460 types->bitfield.imm32 = 1;
9461 types->bitfield.disp32 = 1;
9462 }
9463 else
9464 *types = gotrel[j].types64;
9465 }
9466
9467 /* The length of the first part of our input line. */
9468 first = cp - input_line_pointer;
9469
9470 /* The second part goes from after the reloc token until
9471 (and including) an end_of_line char or comma. */
9472 past_reloc = cp + 1 + len;
9473 cp = past_reloc;
9474 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9475 ++cp;
9476 second = cp + 1 - past_reloc;
9477
9478 /* Allocate and copy string. The trailing NUL shouldn't
9479 be necessary, but be safe. */
add39d23 9480 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9481 memcpy (tmpbuf, input_line_pointer, first);
9482 if (second != 0 && *past_reloc != ' ')
9483 /* Replace the relocation token with ' ', so that
9484 errors like foo@SECLREL321 will be detected. */
9485 tmpbuf[first++] = ' ';
9486 memcpy (tmpbuf + first, past_reloc, second);
9487 tmpbuf[first + second] = '\0';
9488 return tmpbuf;
9489 }
9490
9491 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9492 gotrel[j].str, 1 << (5 + object_64bit));
9493 return NULL;
9494 }
9495 }
9496
9497 /* Might be a symbol version string. Don't as_bad here. */
9498 return NULL;
9499}
9500
9501#endif /* TE_PE */
9502
62ebcb5c 9503bfd_reloc_code_real_type
e3bb37b5 9504x86_cons (expressionS *exp, int size)
f3c180ae 9505{
62ebcb5c
AM
9506 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9507
ee86248c
JB
9508 intel_syntax = -intel_syntax;
9509
3c7b9c2c 9510 exp->X_md = 0;
4fa24527 9511 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9512 {
9513 /* Handle @GOTOFF and the like in an expression. */
9514 char *save;
9515 char *gotfree_input_line;
4a57f2cf 9516 int adjust = 0;
f3c180ae
AM
9517
9518 save = input_line_pointer;
d258b828 9519 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9520 if (gotfree_input_line)
9521 input_line_pointer = gotfree_input_line;
9522
9523 expression (exp);
9524
9525 if (gotfree_input_line)
9526 {
9527 /* expression () has merrily parsed up to the end of line,
9528 or a comma - in the wrong buffer. Transfer how far
9529 input_line_pointer has moved to the right buffer. */
9530 input_line_pointer = (save
9531 + (input_line_pointer - gotfree_input_line)
9532 + adjust);
9533 free (gotfree_input_line);
3992d3b7
AM
9534 if (exp->X_op == O_constant
9535 || exp->X_op == O_absent
9536 || exp->X_op == O_illegal
0398aac5 9537 || exp->X_op == O_register
3992d3b7
AM
9538 || exp->X_op == O_big)
9539 {
9540 char c = *input_line_pointer;
9541 *input_line_pointer = 0;
9542 as_bad (_("missing or invalid expression `%s'"), save);
9543 *input_line_pointer = c;
9544 }
b9519cfe
L
9545 else if ((got_reloc == BFD_RELOC_386_PLT32
9546 || got_reloc == BFD_RELOC_X86_64_PLT32)
9547 && exp->X_op != O_symbol)
9548 {
9549 char c = *input_line_pointer;
9550 *input_line_pointer = 0;
9551 as_bad (_("invalid PLT expression `%s'"), save);
9552 *input_line_pointer = c;
9553 }
f3c180ae
AM
9554 }
9555 }
9556 else
9557 expression (exp);
ee86248c
JB
9558
9559 intel_syntax = -intel_syntax;
9560
9561 if (intel_syntax)
9562 i386_intel_simplify (exp);
62ebcb5c
AM
9563
9564 return got_reloc;
f3c180ae 9565}
f3c180ae 9566
9f32dd5b
L
9567static void
9568signed_cons (int size)
6482c264 9569{
d182319b
JB
9570 if (flag_code == CODE_64BIT)
9571 cons_sign = 1;
9572 cons (size);
9573 cons_sign = -1;
6482c264
NC
9574}
9575
d182319b 9576#ifdef TE_PE
6482c264 9577static void
7016a5d5 9578pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9579{
9580 expressionS exp;
9581
9582 do
9583 {
9584 expression (&exp);
9585 if (exp.X_op == O_symbol)
9586 exp.X_op = O_secrel;
9587
9588 emit_expr (&exp, 4);
9589 }
9590 while (*input_line_pointer++ == ',');
9591
9592 input_line_pointer--;
9593 demand_empty_rest_of_line ();
9594}
6482c264
NC
9595#endif
9596
43234a1e
L
9597/* Handle Vector operations. */
9598
9599static char *
9600check_VecOperations (char *op_string, char *op_end)
9601{
9602 const reg_entry *mask;
9603 const char *saved;
9604 char *end_op;
9605
9606 while (*op_string
9607 && (op_end == NULL || op_string < op_end))
9608 {
9609 saved = op_string;
9610 if (*op_string == '{')
9611 {
9612 op_string++;
9613
9614 /* Check broadcasts. */
9615 if (strncmp (op_string, "1to", 3) == 0)
9616 {
9617 int bcst_type;
9618
9619 if (i.broadcast)
9620 goto duplicated_vec_op;
9621
9622 op_string += 3;
9623 if (*op_string == '8')
8e6e0792 9624 bcst_type = 8;
b28d1bda 9625 else if (*op_string == '4')
8e6e0792 9626 bcst_type = 4;
b28d1bda 9627 else if (*op_string == '2')
8e6e0792 9628 bcst_type = 2;
43234a1e
L
9629 else if (*op_string == '1'
9630 && *(op_string+1) == '6')
9631 {
8e6e0792 9632 bcst_type = 16;
43234a1e
L
9633 op_string++;
9634 }
9635 else
9636 {
9637 as_bad (_("Unsupported broadcast: `%s'"), saved);
9638 return NULL;
9639 }
9640 op_string++;
9641
9642 broadcast_op.type = bcst_type;
9643 broadcast_op.operand = this_operand;
1f75763a 9644 broadcast_op.bytes = 0;
43234a1e
L
9645 i.broadcast = &broadcast_op;
9646 }
9647 /* Check masking operation. */
9648 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9649 {
9650 /* k0 can't be used for write mask. */
f74a6307 9651 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9652 {
6d2cd6b2
JB
9653 as_bad (_("`%s%s' can't be used for write mask"),
9654 register_prefix, mask->reg_name);
43234a1e
L
9655 return NULL;
9656 }
9657
9658 if (!i.mask)
9659 {
9660 mask_op.mask = mask;
9661 mask_op.zeroing = 0;
9662 mask_op.operand = this_operand;
9663 i.mask = &mask_op;
9664 }
9665 else
9666 {
9667 if (i.mask->mask)
9668 goto duplicated_vec_op;
9669
9670 i.mask->mask = mask;
9671
9672 /* Only "{z}" is allowed here. No need to check
9673 zeroing mask explicitly. */
9674 if (i.mask->operand != this_operand)
9675 {
9676 as_bad (_("invalid write mask `%s'"), saved);
9677 return NULL;
9678 }
9679 }
9680
9681 op_string = end_op;
9682 }
9683 /* Check zeroing-flag for masking operation. */
9684 else if (*op_string == 'z')
9685 {
9686 if (!i.mask)
9687 {
9688 mask_op.mask = NULL;
9689 mask_op.zeroing = 1;
9690 mask_op.operand = this_operand;
9691 i.mask = &mask_op;
9692 }
9693 else
9694 {
9695 if (i.mask->zeroing)
9696 {
9697 duplicated_vec_op:
9698 as_bad (_("duplicated `%s'"), saved);
9699 return NULL;
9700 }
9701
9702 i.mask->zeroing = 1;
9703
9704 /* Only "{%k}" is allowed here. No need to check mask
9705 register explicitly. */
9706 if (i.mask->operand != this_operand)
9707 {
9708 as_bad (_("invalid zeroing-masking `%s'"),
9709 saved);
9710 return NULL;
9711 }
9712 }
9713
9714 op_string++;
9715 }
9716 else
9717 goto unknown_vec_op;
9718
9719 if (*op_string != '}')
9720 {
9721 as_bad (_("missing `}' in `%s'"), saved);
9722 return NULL;
9723 }
9724 op_string++;
0ba3a731
L
9725
9726 /* Strip whitespace since the addition of pseudo prefixes
9727 changed how the scrubber treats '{'. */
9728 if (is_space_char (*op_string))
9729 ++op_string;
9730
43234a1e
L
9731 continue;
9732 }
9733 unknown_vec_op:
9734 /* We don't know this one. */
9735 as_bad (_("unknown vector operation: `%s'"), saved);
9736 return NULL;
9737 }
9738
6d2cd6b2
JB
9739 if (i.mask && i.mask->zeroing && !i.mask->mask)
9740 {
9741 as_bad (_("zeroing-masking only allowed with write mask"));
9742 return NULL;
9743 }
9744
43234a1e
L
9745 return op_string;
9746}
9747
252b5132 9748static int
70e41ade 9749i386_immediate (char *imm_start)
252b5132
RH
9750{
9751 char *save_input_line_pointer;
f3c180ae 9752 char *gotfree_input_line;
252b5132 9753 segT exp_seg = 0;
47926f60 9754 expressionS *exp;
40fb9820
L
9755 i386_operand_type types;
9756
0dfbf9d7 9757 operand_type_set (&types, ~0);
252b5132
RH
9758
9759 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9760 {
31b2323c
L
9761 as_bad (_("at most %d immediate operands are allowed"),
9762 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9763 return 0;
9764 }
9765
9766 exp = &im_expressions[i.imm_operands++];
520dc8e8 9767 i.op[this_operand].imms = exp;
252b5132
RH
9768
9769 if (is_space_char (*imm_start))
9770 ++imm_start;
9771
9772 save_input_line_pointer = input_line_pointer;
9773 input_line_pointer = imm_start;
9774
d258b828 9775 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9776 if (gotfree_input_line)
9777 input_line_pointer = gotfree_input_line;
252b5132
RH
9778
9779 exp_seg = expression (exp);
9780
83183c0c 9781 SKIP_WHITESPACE ();
43234a1e
L
9782
9783 /* Handle vector operations. */
9784 if (*input_line_pointer == '{')
9785 {
9786 input_line_pointer = check_VecOperations (input_line_pointer,
9787 NULL);
9788 if (input_line_pointer == NULL)
9789 return 0;
9790 }
9791
252b5132 9792 if (*input_line_pointer)
f3c180ae 9793 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9794
9795 input_line_pointer = save_input_line_pointer;
f3c180ae 9796 if (gotfree_input_line)
ee86248c
JB
9797 {
9798 free (gotfree_input_line);
9799
9800 if (exp->X_op == O_constant || exp->X_op == O_register)
9801 exp->X_op = O_illegal;
9802 }
9803
9804 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9805}
252b5132 9806
ee86248c
JB
9807static int
9808i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9809 i386_operand_type types, const char *imm_start)
9810{
9811 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9812 {
313c53d1
L
9813 if (imm_start)
9814 as_bad (_("missing or invalid immediate expression `%s'"),
9815 imm_start);
3992d3b7 9816 return 0;
252b5132 9817 }
3e73aa7c 9818 else if (exp->X_op == O_constant)
252b5132 9819 {
47926f60 9820 /* Size it properly later. */
40fb9820 9821 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9822 /* If not 64bit, sign extend val. */
9823 if (flag_code != CODE_64BIT
4eed87de
AM
9824 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9825 exp->X_add_number
9826 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9827 }
4c63da97 9828#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9829 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9830 && exp_seg != absolute_section
47926f60 9831 && exp_seg != text_section
24eab124
AM
9832 && exp_seg != data_section
9833 && exp_seg != bss_section
9834 && exp_seg != undefined_section
f86103b7 9835 && !bfd_is_com_section (exp_seg))
252b5132 9836 {
d0b47220 9837 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9838 return 0;
9839 }
9840#endif
a841bdf5 9841 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9842 {
313c53d1
L
9843 if (imm_start)
9844 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9845 return 0;
9846 }
252b5132
RH
9847 else
9848 {
9849 /* This is an address. The size of the address will be
24eab124 9850 determined later, depending on destination register,
3e73aa7c 9851 suffix, or the default for the section. */
40fb9820
L
9852 i.types[this_operand].bitfield.imm8 = 1;
9853 i.types[this_operand].bitfield.imm16 = 1;
9854 i.types[this_operand].bitfield.imm32 = 1;
9855 i.types[this_operand].bitfield.imm32s = 1;
9856 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9857 i.types[this_operand] = operand_type_and (i.types[this_operand],
9858 types);
252b5132
RH
9859 }
9860
9861 return 1;
9862}
9863
551c1ca1 9864static char *
e3bb37b5 9865i386_scale (char *scale)
252b5132 9866{
551c1ca1
AM
9867 offsetT val;
9868 char *save = input_line_pointer;
252b5132 9869
551c1ca1
AM
9870 input_line_pointer = scale;
9871 val = get_absolute_expression ();
9872
9873 switch (val)
252b5132 9874 {
551c1ca1 9875 case 1:
252b5132
RH
9876 i.log2_scale_factor = 0;
9877 break;
551c1ca1 9878 case 2:
252b5132
RH
9879 i.log2_scale_factor = 1;
9880 break;
551c1ca1 9881 case 4:
252b5132
RH
9882 i.log2_scale_factor = 2;
9883 break;
551c1ca1 9884 case 8:
252b5132
RH
9885 i.log2_scale_factor = 3;
9886 break;
9887 default:
a724f0f4
JB
9888 {
9889 char sep = *input_line_pointer;
9890
9891 *input_line_pointer = '\0';
9892 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9893 scale);
9894 *input_line_pointer = sep;
9895 input_line_pointer = save;
9896 return NULL;
9897 }
252b5132 9898 }
29b0f896 9899 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9900 {
9901 as_warn (_("scale factor of %d without an index register"),
24eab124 9902 1 << i.log2_scale_factor);
252b5132 9903 i.log2_scale_factor = 0;
252b5132 9904 }
551c1ca1
AM
9905 scale = input_line_pointer;
9906 input_line_pointer = save;
9907 return scale;
252b5132
RH
9908}
9909
252b5132 9910static int
e3bb37b5 9911i386_displacement (char *disp_start, char *disp_end)
252b5132 9912{
29b0f896 9913 expressionS *exp;
252b5132
RH
9914 segT exp_seg = 0;
9915 char *save_input_line_pointer;
f3c180ae 9916 char *gotfree_input_line;
40fb9820
L
9917 int override;
9918 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9919 int ret;
252b5132 9920
31b2323c
L
9921 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9922 {
9923 as_bad (_("at most %d displacement operands are allowed"),
9924 MAX_MEMORY_OPERANDS);
9925 return 0;
9926 }
9927
0dfbf9d7 9928 operand_type_set (&bigdisp, 0);
6f2f06be 9929 if (i.jumpabsolute
48bcea9f 9930 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9931 || (current_templates->start->opcode_modifier.jump != JUMP
9932 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9933 {
48bcea9f 9934 i386_addressing_mode ();
e05278af 9935 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9936 if (flag_code == CODE_64BIT)
9937 {
9938 if (!override)
9939 {
9940 bigdisp.bitfield.disp32s = 1;
9941 bigdisp.bitfield.disp64 = 1;
9942 }
48bcea9f
JB
9943 else
9944 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9945 }
9946 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9947 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9948 else
9949 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9950 }
9951 else
9952 {
376cd056
JB
9953 /* For PC-relative branches, the width of the displacement may be
9954 dependent upon data size, but is never dependent upon address size.
9955 Also make sure to not unintentionally match against a non-PC-relative
9956 branch template. */
9957 static templates aux_templates;
9958 const insn_template *t = current_templates->start;
9959 bfd_boolean has_intel64 = FALSE;
9960
9961 aux_templates.start = t;
9962 while (++t < current_templates->end)
9963 {
9964 if (t->opcode_modifier.jump
9965 != current_templates->start->opcode_modifier.jump)
9966 break;
9967 if (t->opcode_modifier.intel64)
9968 has_intel64 = TRUE;
9969 }
9970 if (t < current_templates->end)
9971 {
9972 aux_templates.end = t;
9973 current_templates = &aux_templates;
9974 }
9975
e05278af 9976 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9977 if (flag_code == CODE_64BIT)
9978 {
376cd056
JB
9979 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9980 && (!intel64 || !has_intel64))
40fb9820
L
9981 bigdisp.bitfield.disp16 = 1;
9982 else
48bcea9f 9983 bigdisp.bitfield.disp32s = 1;
40fb9820
L
9984 }
9985 else
e05278af
JB
9986 {
9987 if (!override)
9988 override = (i.suffix == (flag_code != CODE_16BIT
9989 ? WORD_MNEM_SUFFIX
9990 : LONG_MNEM_SUFFIX));
40fb9820
L
9991 bigdisp.bitfield.disp32 = 1;
9992 if ((flag_code == CODE_16BIT) ^ override)
9993 {
9994 bigdisp.bitfield.disp32 = 0;
9995 bigdisp.bitfield.disp16 = 1;
9996 }
e05278af 9997 }
e05278af 9998 }
c6fb90c8
L
9999 i.types[this_operand] = operand_type_or (i.types[this_operand],
10000 bigdisp);
252b5132
RH
10001
10002 exp = &disp_expressions[i.disp_operands];
520dc8e8 10003 i.op[this_operand].disps = exp;
252b5132
RH
10004 i.disp_operands++;
10005 save_input_line_pointer = input_line_pointer;
10006 input_line_pointer = disp_start;
10007 END_STRING_AND_SAVE (disp_end);
10008
10009#ifndef GCC_ASM_O_HACK
10010#define GCC_ASM_O_HACK 0
10011#endif
10012#if GCC_ASM_O_HACK
10013 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10014 if (i.types[this_operand].bitfield.baseIndex
24eab124 10015 && displacement_string_end[-1] == '+')
252b5132
RH
10016 {
10017 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10018 constraint within gcc asm statements.
10019 For instance:
10020
10021 #define _set_tssldt_desc(n,addr,limit,type) \
10022 __asm__ __volatile__ ( \
10023 "movw %w2,%0\n\t" \
10024 "movw %w1,2+%0\n\t" \
10025 "rorl $16,%1\n\t" \
10026 "movb %b1,4+%0\n\t" \
10027 "movb %4,5+%0\n\t" \
10028 "movb $0,6+%0\n\t" \
10029 "movb %h1,7+%0\n\t" \
10030 "rorl $16,%1" \
10031 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10032
10033 This works great except that the output assembler ends
10034 up looking a bit weird if it turns out that there is
10035 no offset. You end up producing code that looks like:
10036
10037 #APP
10038 movw $235,(%eax)
10039 movw %dx,2+(%eax)
10040 rorl $16,%edx
10041 movb %dl,4+(%eax)
10042 movb $137,5+(%eax)
10043 movb $0,6+(%eax)
10044 movb %dh,7+(%eax)
10045 rorl $16,%edx
10046 #NO_APP
10047
47926f60 10048 So here we provide the missing zero. */
24eab124
AM
10049
10050 *displacement_string_end = '0';
252b5132
RH
10051 }
10052#endif
d258b828 10053 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10054 if (gotfree_input_line)
10055 input_line_pointer = gotfree_input_line;
252b5132 10056
24eab124 10057 exp_seg = expression (exp);
252b5132 10058
636c26b0
AM
10059 SKIP_WHITESPACE ();
10060 if (*input_line_pointer)
10061 as_bad (_("junk `%s' after expression"), input_line_pointer);
10062#if GCC_ASM_O_HACK
10063 RESTORE_END_STRING (disp_end + 1);
10064#endif
636c26b0 10065 input_line_pointer = save_input_line_pointer;
636c26b0 10066 if (gotfree_input_line)
ee86248c
JB
10067 {
10068 free (gotfree_input_line);
10069
10070 if (exp->X_op == O_constant || exp->X_op == O_register)
10071 exp->X_op = O_illegal;
10072 }
10073
10074 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10075
10076 RESTORE_END_STRING (disp_end);
10077
10078 return ret;
10079}
10080
10081static int
10082i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10083 i386_operand_type types, const char *disp_start)
10084{
10085 i386_operand_type bigdisp;
10086 int ret = 1;
636c26b0 10087
24eab124
AM
10088 /* We do this to make sure that the section symbol is in
10089 the symbol table. We will ultimately change the relocation
47926f60 10090 to be relative to the beginning of the section. */
1ae12ab7 10091 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10092 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10093 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10094 {
636c26b0 10095 if (exp->X_op != O_symbol)
3992d3b7 10096 goto inv_disp;
636c26b0 10097
e5cb08ac 10098 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10099 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10100 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10101 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10102 exp->X_op = O_subtract;
10103 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10104 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10105 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10106 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10107 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10108 else
29b0f896 10109 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10110 }
252b5132 10111
3992d3b7
AM
10112 else if (exp->X_op == O_absent
10113 || exp->X_op == O_illegal
ee86248c 10114 || exp->X_op == O_big)
2daf4fd8 10115 {
3992d3b7
AM
10116 inv_disp:
10117 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10118 disp_start);
3992d3b7 10119 ret = 0;
2daf4fd8
AM
10120 }
10121
0e1147d9
L
10122 else if (flag_code == CODE_64BIT
10123 && !i.prefix[ADDR_PREFIX]
10124 && exp->X_op == O_constant)
10125 {
10126 /* Since displacement is signed extended to 64bit, don't allow
10127 disp32 and turn off disp32s if they are out of range. */
10128 i.types[this_operand].bitfield.disp32 = 0;
10129 if (!fits_in_signed_long (exp->X_add_number))
10130 {
10131 i.types[this_operand].bitfield.disp32s = 0;
10132 if (i.types[this_operand].bitfield.baseindex)
10133 {
10134 as_bad (_("0x%lx out range of signed 32bit displacement"),
10135 (long) exp->X_add_number);
10136 ret = 0;
10137 }
10138 }
10139 }
10140
4c63da97 10141#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10142 else if (exp->X_op != O_constant
10143 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10144 && exp_seg != absolute_section
10145 && exp_seg != text_section
10146 && exp_seg != data_section
10147 && exp_seg != bss_section
10148 && exp_seg != undefined_section
10149 && !bfd_is_com_section (exp_seg))
24eab124 10150 {
d0b47220 10151 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10152 ret = 0;
24eab124 10153 }
252b5132 10154#endif
3956db08 10155
48bcea9f
JB
10156 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10157 /* Constants get taken care of by optimize_disp(). */
10158 && exp->X_op != O_constant)
10159 i.types[this_operand].bitfield.disp8 = 1;
10160
40fb9820
L
10161 /* Check if this is a displacement only operand. */
10162 bigdisp = i.types[this_operand];
10163 bigdisp.bitfield.disp8 = 0;
10164 bigdisp.bitfield.disp16 = 0;
10165 bigdisp.bitfield.disp32 = 0;
10166 bigdisp.bitfield.disp32s = 0;
10167 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10168 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10169 i.types[this_operand] = operand_type_and (i.types[this_operand],
10170 types);
3956db08 10171
3992d3b7 10172 return ret;
252b5132
RH
10173}
10174
2abc2bec
JB
10175/* Return the active addressing mode, taking address override and
10176 registers forming the address into consideration. Update the
10177 address override prefix if necessary. */
47926f60 10178
2abc2bec
JB
10179static enum flag_code
10180i386_addressing_mode (void)
252b5132 10181{
be05d201
L
10182 enum flag_code addr_mode;
10183
10184 if (i.prefix[ADDR_PREFIX])
10185 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10186 else
10187 {
10188 addr_mode = flag_code;
10189
24eab124 10190#if INFER_ADDR_PREFIX
be05d201
L
10191 if (i.mem_operands == 0)
10192 {
10193 /* Infer address prefix from the first memory operand. */
10194 const reg_entry *addr_reg = i.base_reg;
10195
10196 if (addr_reg == NULL)
10197 addr_reg = i.index_reg;
eecb386c 10198
be05d201
L
10199 if (addr_reg)
10200 {
e968fc9b 10201 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10202 addr_mode = CODE_32BIT;
10203 else if (flag_code != CODE_64BIT
dc821c5f 10204 && addr_reg->reg_type.bitfield.word)
be05d201
L
10205 addr_mode = CODE_16BIT;
10206
10207 if (addr_mode != flag_code)
10208 {
10209 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10210 i.prefixes += 1;
10211 /* Change the size of any displacement too. At most one
10212 of Disp16 or Disp32 is set.
10213 FIXME. There doesn't seem to be any real need for
10214 separate Disp16 and Disp32 flags. The same goes for
10215 Imm16 and Imm32. Removing them would probably clean
10216 up the code quite a lot. */
10217 if (flag_code != CODE_64BIT
10218 && (i.types[this_operand].bitfield.disp16
10219 || i.types[this_operand].bitfield.disp32))
10220 i.types[this_operand]
10221 = operand_type_xor (i.types[this_operand], disp16_32);
10222 }
10223 }
10224 }
24eab124 10225#endif
be05d201
L
10226 }
10227
2abc2bec
JB
10228 return addr_mode;
10229}
10230
10231/* Make sure the memory operand we've been dealt is valid.
10232 Return 1 on success, 0 on a failure. */
10233
10234static int
10235i386_index_check (const char *operand_string)
10236{
10237 const char *kind = "base/index";
10238 enum flag_code addr_mode = i386_addressing_mode ();
10239
fc0763e6 10240 if (current_templates->start->opcode_modifier.isstring
c3949f43 10241 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10242 && (current_templates->end[-1].opcode_modifier.isstring
10243 || i.mem_operands))
10244 {
10245 /* Memory operands of string insns are special in that they only allow
10246 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10247 const reg_entry *expected_reg;
10248 static const char *di_si[][2] =
10249 {
10250 { "esi", "edi" },
10251 { "si", "di" },
10252 { "rsi", "rdi" }
10253 };
10254 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10255
10256 kind = "string address";
10257
8325cc63 10258 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10259 {
51c8edf6
JB
10260 int es_op = current_templates->end[-1].opcode_modifier.isstring
10261 - IS_STRING_ES_OP0;
10262 int op = 0;
fc0763e6 10263
51c8edf6 10264 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10265 || ((!i.mem_operands != !intel_syntax)
10266 && current_templates->end[-1].operand_types[1]
10267 .bitfield.baseindex))
51c8edf6
JB
10268 op = 1;
10269 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10270 }
10271 else
be05d201 10272 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10273
be05d201
L
10274 if (i.base_reg != expected_reg
10275 || i.index_reg
fc0763e6 10276 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10277 {
be05d201
L
10278 /* The second memory operand must have the same size as
10279 the first one. */
10280 if (i.mem_operands
10281 && i.base_reg
10282 && !((addr_mode == CODE_64BIT
dc821c5f 10283 && i.base_reg->reg_type.bitfield.qword)
be05d201 10284 || (addr_mode == CODE_32BIT
dc821c5f
JB
10285 ? i.base_reg->reg_type.bitfield.dword
10286 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10287 goto bad_address;
10288
fc0763e6
JB
10289 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10290 operand_string,
10291 intel_syntax ? '[' : '(',
10292 register_prefix,
be05d201 10293 expected_reg->reg_name,
fc0763e6 10294 intel_syntax ? ']' : ')');
be05d201 10295 return 1;
fc0763e6 10296 }
be05d201
L
10297 else
10298 return 1;
10299
10300bad_address:
10301 as_bad (_("`%s' is not a valid %s expression"),
10302 operand_string, kind);
10303 return 0;
3e73aa7c
JH
10304 }
10305 else
10306 {
be05d201
L
10307 if (addr_mode != CODE_16BIT)
10308 {
10309 /* 32-bit/64-bit checks. */
10310 if ((i.base_reg
e968fc9b
JB
10311 && ((addr_mode == CODE_64BIT
10312 ? !i.base_reg->reg_type.bitfield.qword
10313 : !i.base_reg->reg_type.bitfield.dword)
10314 || (i.index_reg && i.base_reg->reg_num == RegIP)
10315 || i.base_reg->reg_num == RegIZ))
be05d201 10316 || (i.index_reg
1b54b8d7
JB
10317 && !i.index_reg->reg_type.bitfield.xmmword
10318 && !i.index_reg->reg_type.bitfield.ymmword
10319 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10320 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10321 ? !i.index_reg->reg_type.bitfield.qword
10322 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10323 || !i.index_reg->reg_type.bitfield.baseindex)))
10324 goto bad_address;
8178be5b
JB
10325
10326 /* bndmk, bndldx, and bndstx have special restrictions. */
10327 if (current_templates->start->base_opcode == 0xf30f1b
10328 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10329 {
10330 /* They cannot use RIP-relative addressing. */
e968fc9b 10331 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10332 {
10333 as_bad (_("`%s' cannot be used here"), operand_string);
10334 return 0;
10335 }
10336
10337 /* bndldx and bndstx ignore their scale factor. */
10338 if (current_templates->start->base_opcode != 0xf30f1b
10339 && i.log2_scale_factor)
10340 as_warn (_("register scaling is being ignored here"));
10341 }
be05d201
L
10342 }
10343 else
3e73aa7c 10344 {
be05d201 10345 /* 16-bit checks. */
3e73aa7c 10346 if ((i.base_reg
dc821c5f 10347 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10348 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10349 || (i.index_reg
dc821c5f 10350 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10351 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10352 || !(i.base_reg
10353 && i.base_reg->reg_num < 6
10354 && i.index_reg->reg_num >= 6
10355 && i.log2_scale_factor == 0))))
be05d201 10356 goto bad_address;
3e73aa7c
JH
10357 }
10358 }
be05d201 10359 return 1;
24eab124 10360}
252b5132 10361
43234a1e
L
10362/* Handle vector immediates. */
10363
10364static int
10365RC_SAE_immediate (const char *imm_start)
10366{
10367 unsigned int match_found, j;
10368 const char *pstr = imm_start;
10369 expressionS *exp;
10370
10371 if (*pstr != '{')
10372 return 0;
10373
10374 pstr++;
10375 match_found = 0;
10376 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10377 {
10378 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10379 {
10380 if (!i.rounding)
10381 {
10382 rc_op.type = RC_NamesTable[j].type;
10383 rc_op.operand = this_operand;
10384 i.rounding = &rc_op;
10385 }
10386 else
10387 {
10388 as_bad (_("duplicated `%s'"), imm_start);
10389 return 0;
10390 }
10391 pstr += RC_NamesTable[j].len;
10392 match_found = 1;
10393 break;
10394 }
10395 }
10396 if (!match_found)
10397 return 0;
10398
10399 if (*pstr++ != '}')
10400 {
10401 as_bad (_("Missing '}': '%s'"), imm_start);
10402 return 0;
10403 }
10404 /* RC/SAE immediate string should contain nothing more. */;
10405 if (*pstr != 0)
10406 {
10407 as_bad (_("Junk after '}': '%s'"), imm_start);
10408 return 0;
10409 }
10410
10411 exp = &im_expressions[i.imm_operands++];
10412 i.op[this_operand].imms = exp;
10413
10414 exp->X_op = O_constant;
10415 exp->X_add_number = 0;
10416 exp->X_add_symbol = (symbolS *) 0;
10417 exp->X_op_symbol = (symbolS *) 0;
10418
10419 i.types[this_operand].bitfield.imm8 = 1;
10420 return 1;
10421}
10422
8325cc63
JB
10423/* Only string instructions can have a second memory operand, so
10424 reduce current_templates to just those if it contains any. */
10425static int
10426maybe_adjust_templates (void)
10427{
10428 const insn_template *t;
10429
10430 gas_assert (i.mem_operands == 1);
10431
10432 for (t = current_templates->start; t < current_templates->end; ++t)
10433 if (t->opcode_modifier.isstring)
10434 break;
10435
10436 if (t < current_templates->end)
10437 {
10438 static templates aux_templates;
10439 bfd_boolean recheck;
10440
10441 aux_templates.start = t;
10442 for (; t < current_templates->end; ++t)
10443 if (!t->opcode_modifier.isstring)
10444 break;
10445 aux_templates.end = t;
10446
10447 /* Determine whether to re-check the first memory operand. */
10448 recheck = (aux_templates.start != current_templates->start
10449 || t != current_templates->end);
10450
10451 current_templates = &aux_templates;
10452
10453 if (recheck)
10454 {
10455 i.mem_operands = 0;
10456 if (i.memop1_string != NULL
10457 && i386_index_check (i.memop1_string) == 0)
10458 return 0;
10459 i.mem_operands = 1;
10460 }
10461 }
10462
10463 return 1;
10464}
10465
fc0763e6 10466/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10467 on error. */
252b5132 10468
252b5132 10469static int
a7619375 10470i386_att_operand (char *operand_string)
252b5132 10471{
af6bdddf
AM
10472 const reg_entry *r;
10473 char *end_op;
24eab124 10474 char *op_string = operand_string;
252b5132 10475
24eab124 10476 if (is_space_char (*op_string))
252b5132
RH
10477 ++op_string;
10478
24eab124 10479 /* We check for an absolute prefix (differentiating,
47926f60 10480 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10481 if (*op_string == ABSOLUTE_PREFIX)
10482 {
10483 ++op_string;
10484 if (is_space_char (*op_string))
10485 ++op_string;
6f2f06be 10486 i.jumpabsolute = TRUE;
24eab124 10487 }
252b5132 10488
47926f60 10489 /* Check if operand is a register. */
4d1bb795 10490 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10491 {
40fb9820
L
10492 i386_operand_type temp;
10493
24eab124
AM
10494 /* Check for a segment override by searching for ':' after a
10495 segment register. */
10496 op_string = end_op;
10497 if (is_space_char (*op_string))
10498 ++op_string;
00cee14f 10499 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10500 {
10501 switch (r->reg_num)
10502 {
10503 case 0:
10504 i.seg[i.mem_operands] = &es;
10505 break;
10506 case 1:
10507 i.seg[i.mem_operands] = &cs;
10508 break;
10509 case 2:
10510 i.seg[i.mem_operands] = &ss;
10511 break;
10512 case 3:
10513 i.seg[i.mem_operands] = &ds;
10514 break;
10515 case 4:
10516 i.seg[i.mem_operands] = &fs;
10517 break;
10518 case 5:
10519 i.seg[i.mem_operands] = &gs;
10520 break;
10521 }
252b5132 10522
24eab124 10523 /* Skip the ':' and whitespace. */
252b5132
RH
10524 ++op_string;
10525 if (is_space_char (*op_string))
24eab124 10526 ++op_string;
252b5132 10527
24eab124
AM
10528 if (!is_digit_char (*op_string)
10529 && !is_identifier_char (*op_string)
10530 && *op_string != '('
10531 && *op_string != ABSOLUTE_PREFIX)
10532 {
10533 as_bad (_("bad memory operand `%s'"), op_string);
10534 return 0;
10535 }
47926f60 10536 /* Handle case of %es:*foo. */
24eab124
AM
10537 if (*op_string == ABSOLUTE_PREFIX)
10538 {
10539 ++op_string;
10540 if (is_space_char (*op_string))
10541 ++op_string;
6f2f06be 10542 i.jumpabsolute = TRUE;
24eab124
AM
10543 }
10544 goto do_memory_reference;
10545 }
43234a1e
L
10546
10547 /* Handle vector operations. */
10548 if (*op_string == '{')
10549 {
10550 op_string = check_VecOperations (op_string, NULL);
10551 if (op_string == NULL)
10552 return 0;
10553 }
10554
24eab124
AM
10555 if (*op_string)
10556 {
d0b47220 10557 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10558 return 0;
10559 }
40fb9820
L
10560 temp = r->reg_type;
10561 temp.bitfield.baseindex = 0;
c6fb90c8
L
10562 i.types[this_operand] = operand_type_or (i.types[this_operand],
10563 temp);
7d5e4556 10564 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10565 i.op[this_operand].regs = r;
24eab124
AM
10566 i.reg_operands++;
10567 }
af6bdddf
AM
10568 else if (*op_string == REGISTER_PREFIX)
10569 {
10570 as_bad (_("bad register name `%s'"), op_string);
10571 return 0;
10572 }
24eab124 10573 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10574 {
24eab124 10575 ++op_string;
6f2f06be 10576 if (i.jumpabsolute)
24eab124 10577 {
d0b47220 10578 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10579 return 0;
10580 }
10581 if (!i386_immediate (op_string))
10582 return 0;
10583 }
43234a1e
L
10584 else if (RC_SAE_immediate (operand_string))
10585 {
10586 /* If it is a RC or SAE immediate, do nothing. */
10587 ;
10588 }
24eab124
AM
10589 else if (is_digit_char (*op_string)
10590 || is_identifier_char (*op_string)
d02603dc 10591 || *op_string == '"'
e5cb08ac 10592 || *op_string == '(')
24eab124 10593 {
47926f60 10594 /* This is a memory reference of some sort. */
af6bdddf 10595 char *base_string;
252b5132 10596
47926f60 10597 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10598 char *displacement_string_start;
10599 char *displacement_string_end;
43234a1e 10600 char *vop_start;
252b5132 10601
24eab124 10602 do_memory_reference:
8325cc63
JB
10603 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10604 return 0;
24eab124 10605 if ((i.mem_operands == 1
40fb9820 10606 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10607 || i.mem_operands == 2)
10608 {
10609 as_bad (_("too many memory references for `%s'"),
10610 current_templates->start->name);
10611 return 0;
10612 }
252b5132 10613
24eab124
AM
10614 /* Check for base index form. We detect the base index form by
10615 looking for an ')' at the end of the operand, searching
10616 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10617 after the '('. */
af6bdddf 10618 base_string = op_string + strlen (op_string);
c3332e24 10619
43234a1e
L
10620 /* Handle vector operations. */
10621 vop_start = strchr (op_string, '{');
10622 if (vop_start && vop_start < base_string)
10623 {
10624 if (check_VecOperations (vop_start, base_string) == NULL)
10625 return 0;
10626 base_string = vop_start;
10627 }
10628
af6bdddf
AM
10629 --base_string;
10630 if (is_space_char (*base_string))
10631 --base_string;
252b5132 10632
47926f60 10633 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10634 displacement_string_start = op_string;
10635 displacement_string_end = base_string + 1;
252b5132 10636
24eab124
AM
10637 if (*base_string == ')')
10638 {
af6bdddf 10639 char *temp_string;
24eab124
AM
10640 unsigned int parens_balanced = 1;
10641 /* We've already checked that the number of left & right ()'s are
47926f60 10642 equal, so this loop will not be infinite. */
24eab124
AM
10643 do
10644 {
10645 base_string--;
10646 if (*base_string == ')')
10647 parens_balanced++;
10648 if (*base_string == '(')
10649 parens_balanced--;
10650 }
10651 while (parens_balanced);
c3332e24 10652
af6bdddf 10653 temp_string = base_string;
c3332e24 10654
24eab124 10655 /* Skip past '(' and whitespace. */
252b5132
RH
10656 ++base_string;
10657 if (is_space_char (*base_string))
24eab124 10658 ++base_string;
252b5132 10659
af6bdddf 10660 if (*base_string == ','
4eed87de
AM
10661 || ((i.base_reg = parse_register (base_string, &end_op))
10662 != NULL))
252b5132 10663 {
af6bdddf 10664 displacement_string_end = temp_string;
252b5132 10665
40fb9820 10666 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10667
af6bdddf 10668 if (i.base_reg)
24eab124 10669 {
24eab124
AM
10670 base_string = end_op;
10671 if (is_space_char (*base_string))
10672 ++base_string;
af6bdddf
AM
10673 }
10674
10675 /* There may be an index reg or scale factor here. */
10676 if (*base_string == ',')
10677 {
10678 ++base_string;
10679 if (is_space_char (*base_string))
10680 ++base_string;
10681
4eed87de
AM
10682 if ((i.index_reg = parse_register (base_string, &end_op))
10683 != NULL)
24eab124 10684 {
af6bdddf 10685 base_string = end_op;
24eab124
AM
10686 if (is_space_char (*base_string))
10687 ++base_string;
af6bdddf
AM
10688 if (*base_string == ',')
10689 {
10690 ++base_string;
10691 if (is_space_char (*base_string))
10692 ++base_string;
10693 }
e5cb08ac 10694 else if (*base_string != ')')
af6bdddf 10695 {
4eed87de
AM
10696 as_bad (_("expecting `,' or `)' "
10697 "after index register in `%s'"),
af6bdddf
AM
10698 operand_string);
10699 return 0;
10700 }
24eab124 10701 }
af6bdddf 10702 else if (*base_string == REGISTER_PREFIX)
24eab124 10703 {
f76bf5e0
L
10704 end_op = strchr (base_string, ',');
10705 if (end_op)
10706 *end_op = '\0';
af6bdddf 10707 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10708 return 0;
10709 }
252b5132 10710
47926f60 10711 /* Check for scale factor. */
551c1ca1 10712 if (*base_string != ')')
af6bdddf 10713 {
551c1ca1
AM
10714 char *end_scale = i386_scale (base_string);
10715
10716 if (!end_scale)
af6bdddf 10717 return 0;
24eab124 10718
551c1ca1 10719 base_string = end_scale;
af6bdddf
AM
10720 if (is_space_char (*base_string))
10721 ++base_string;
10722 if (*base_string != ')')
10723 {
4eed87de
AM
10724 as_bad (_("expecting `)' "
10725 "after scale factor in `%s'"),
af6bdddf
AM
10726 operand_string);
10727 return 0;
10728 }
10729 }
10730 else if (!i.index_reg)
24eab124 10731 {
4eed87de
AM
10732 as_bad (_("expecting index register or scale factor "
10733 "after `,'; got '%c'"),
af6bdddf 10734 *base_string);
24eab124
AM
10735 return 0;
10736 }
10737 }
af6bdddf 10738 else if (*base_string != ')')
24eab124 10739 {
4eed87de
AM
10740 as_bad (_("expecting `,' or `)' "
10741 "after base register in `%s'"),
af6bdddf 10742 operand_string);
24eab124
AM
10743 return 0;
10744 }
c3332e24 10745 }
af6bdddf 10746 else if (*base_string == REGISTER_PREFIX)
c3332e24 10747 {
f76bf5e0
L
10748 end_op = strchr (base_string, ',');
10749 if (end_op)
10750 *end_op = '\0';
af6bdddf 10751 as_bad (_("bad register name `%s'"), base_string);
24eab124 10752 return 0;
c3332e24 10753 }
24eab124
AM
10754 }
10755
10756 /* If there's an expression beginning the operand, parse it,
10757 assuming displacement_string_start and
10758 displacement_string_end are meaningful. */
10759 if (displacement_string_start != displacement_string_end)
10760 {
10761 if (!i386_displacement (displacement_string_start,
10762 displacement_string_end))
10763 return 0;
10764 }
10765
10766 /* Special case for (%dx) while doing input/output op. */
10767 if (i.base_reg
75e5731b
JB
10768 && i.base_reg->reg_type.bitfield.instance == RegD
10769 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10770 && i.index_reg == 0
10771 && i.log2_scale_factor == 0
10772 && i.seg[i.mem_operands] == 0
40fb9820 10773 && !operand_type_check (i.types[this_operand], disp))
24eab124 10774 {
2fb5be8d 10775 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10776 return 1;
10777 }
10778
eecb386c
AM
10779 if (i386_index_check (operand_string) == 0)
10780 return 0;
c48dadc9 10781 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10782 if (i.mem_operands == 0)
10783 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10784 i.mem_operands++;
10785 }
10786 else
ce8a8b2f
AM
10787 {
10788 /* It's not a memory operand; argh! */
24eab124
AM
10789 as_bad (_("invalid char %s beginning operand %d `%s'"),
10790 output_invalid (*op_string),
10791 this_operand + 1,
10792 op_string);
10793 return 0;
10794 }
47926f60 10795 return 1; /* Normal return. */
252b5132
RH
10796}
10797\f
fa94de6b
RM
10798/* Calculate the maximum variable size (i.e., excluding fr_fix)
10799 that an rs_machine_dependent frag may reach. */
10800
10801unsigned int
10802i386_frag_max_var (fragS *frag)
10803{
10804 /* The only relaxable frags are for jumps.
10805 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10806 gas_assert (frag->fr_type == rs_machine_dependent);
10807 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10808}
10809
b084df0b
L
10810#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10811static int
8dcea932 10812elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10813{
10814 /* STT_GNU_IFUNC symbol must go through PLT. */
10815 if ((symbol_get_bfdsym (fr_symbol)->flags
10816 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10817 return 0;
10818
10819 if (!S_IS_EXTERNAL (fr_symbol))
10820 /* Symbol may be weak or local. */
10821 return !S_IS_WEAK (fr_symbol);
10822
8dcea932
L
10823 /* Global symbols with non-default visibility can't be preempted. */
10824 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10825 return 1;
10826
10827 if (fr_var != NO_RELOC)
10828 switch ((enum bfd_reloc_code_real) fr_var)
10829 {
10830 case BFD_RELOC_386_PLT32:
10831 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10832 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10833 return 0;
10834 default:
10835 abort ();
10836 }
10837
b084df0b
L
10838 /* Global symbols with default visibility in a shared library may be
10839 preempted by another definition. */
8dcea932 10840 return !shared;
b084df0b
L
10841}
10842#endif
10843
e379e5f3
L
10844/* Return the next non-empty frag. */
10845
10846static fragS *
10847i386_next_non_empty_frag (fragS *fragP)
10848{
10849 /* There may be a frag with a ".fill 0" when there is no room in
10850 the current frag for frag_grow in output_insn. */
10851 for (fragP = fragP->fr_next;
10852 (fragP != NULL
10853 && fragP->fr_type == rs_fill
10854 && fragP->fr_fix == 0);
10855 fragP = fragP->fr_next)
10856 ;
10857 return fragP;
10858}
10859
10860/* Return the next jcc frag after BRANCH_PADDING. */
10861
10862static fragS *
10863i386_next_jcc_frag (fragS *fragP)
10864{
10865 if (!fragP)
10866 return NULL;
10867
10868 if (fragP->fr_type == rs_machine_dependent
10869 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10870 == BRANCH_PADDING))
10871 {
10872 fragP = i386_next_non_empty_frag (fragP);
10873 if (fragP->fr_type != rs_machine_dependent)
10874 return NULL;
10875 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10876 return fragP;
10877 }
10878
10879 return NULL;
10880}
10881
10882/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10883
10884static void
10885i386_classify_machine_dependent_frag (fragS *fragP)
10886{
10887 fragS *cmp_fragP;
10888 fragS *pad_fragP;
10889 fragS *branch_fragP;
10890 fragS *next_fragP;
10891 unsigned int max_prefix_length;
10892
10893 if (fragP->tc_frag_data.classified)
10894 return;
10895
10896 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10897 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10898 for (next_fragP = fragP;
10899 next_fragP != NULL;
10900 next_fragP = next_fragP->fr_next)
10901 {
10902 next_fragP->tc_frag_data.classified = 1;
10903 if (next_fragP->fr_type == rs_machine_dependent)
10904 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10905 {
10906 case BRANCH_PADDING:
10907 /* The BRANCH_PADDING frag must be followed by a branch
10908 frag. */
10909 branch_fragP = i386_next_non_empty_frag (next_fragP);
10910 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10911 break;
10912 case FUSED_JCC_PADDING:
10913 /* Check if this is a fused jcc:
10914 FUSED_JCC_PADDING
10915 CMP like instruction
10916 BRANCH_PADDING
10917 COND_JUMP
10918 */
10919 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10920 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10921 branch_fragP = i386_next_jcc_frag (pad_fragP);
10922 if (branch_fragP)
10923 {
10924 /* The BRANCH_PADDING frag is merged with the
10925 FUSED_JCC_PADDING frag. */
10926 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10927 /* CMP like instruction size. */
10928 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10929 frag_wane (pad_fragP);
10930 /* Skip to branch_fragP. */
10931 next_fragP = branch_fragP;
10932 }
10933 else if (next_fragP->tc_frag_data.max_prefix_length)
10934 {
10935 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10936 a fused jcc. */
10937 next_fragP->fr_subtype
10938 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10939 next_fragP->tc_frag_data.max_bytes
10940 = next_fragP->tc_frag_data.max_prefix_length;
10941 /* This will be updated in the BRANCH_PREFIX scan. */
10942 next_fragP->tc_frag_data.max_prefix_length = 0;
10943 }
10944 else
10945 frag_wane (next_fragP);
10946 break;
10947 }
10948 }
10949
10950 /* Stop if there is no BRANCH_PREFIX. */
10951 if (!align_branch_prefix_size)
10952 return;
10953
10954 /* Scan for BRANCH_PREFIX. */
10955 for (; fragP != NULL; fragP = fragP->fr_next)
10956 {
10957 if (fragP->fr_type != rs_machine_dependent
10958 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10959 != BRANCH_PREFIX))
10960 continue;
10961
10962 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10963 COND_JUMP_PREFIX. */
10964 max_prefix_length = 0;
10965 for (next_fragP = fragP;
10966 next_fragP != NULL;
10967 next_fragP = next_fragP->fr_next)
10968 {
10969 if (next_fragP->fr_type == rs_fill)
10970 /* Skip rs_fill frags. */
10971 continue;
10972 else if (next_fragP->fr_type != rs_machine_dependent)
10973 /* Stop for all other frags. */
10974 break;
10975
10976 /* rs_machine_dependent frags. */
10977 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10978 == BRANCH_PREFIX)
10979 {
10980 /* Count BRANCH_PREFIX frags. */
10981 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10982 {
10983 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10984 frag_wane (next_fragP);
10985 }
10986 else
10987 max_prefix_length
10988 += next_fragP->tc_frag_data.max_bytes;
10989 }
10990 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10991 == BRANCH_PADDING)
10992 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10993 == FUSED_JCC_PADDING))
10994 {
10995 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10996 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10997 break;
10998 }
10999 else
11000 /* Stop for other rs_machine_dependent frags. */
11001 break;
11002 }
11003
11004 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11005
11006 /* Skip to the next frag. */
11007 fragP = next_fragP;
11008 }
11009}
11010
11011/* Compute padding size for
11012
11013 FUSED_JCC_PADDING
11014 CMP like instruction
11015 BRANCH_PADDING
11016 COND_JUMP/UNCOND_JUMP
11017
11018 or
11019
11020 BRANCH_PADDING
11021 COND_JUMP/UNCOND_JUMP
11022 */
11023
11024static int
11025i386_branch_padding_size (fragS *fragP, offsetT address)
11026{
11027 unsigned int offset, size, padding_size;
11028 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11029
11030 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11031 if (!address)
11032 address = fragP->fr_address;
11033 address += fragP->fr_fix;
11034
11035 /* CMP like instrunction size. */
11036 size = fragP->tc_frag_data.cmp_size;
11037
11038 /* The base size of the branch frag. */
11039 size += branch_fragP->fr_fix;
11040
11041 /* Add opcode and displacement bytes for the rs_machine_dependent
11042 branch frag. */
11043 if (branch_fragP->fr_type == rs_machine_dependent)
11044 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11045
11046 /* Check if branch is within boundary and doesn't end at the last
11047 byte. */
11048 offset = address & ((1U << align_branch_power) - 1);
11049 if ((offset + size) >= (1U << align_branch_power))
11050 /* Padding needed to avoid crossing boundary. */
11051 padding_size = (1U << align_branch_power) - offset;
11052 else
11053 /* No padding needed. */
11054 padding_size = 0;
11055
11056 /* The return value may be saved in tc_frag_data.length which is
11057 unsigned byte. */
11058 if (!fits_in_unsigned_byte (padding_size))
11059 abort ();
11060
11061 return padding_size;
11062}
11063
11064/* i386_generic_table_relax_frag()
11065
11066 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11067 grow/shrink padding to align branch frags. Hand others to
11068 relax_frag(). */
11069
11070long
11071i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11072{
11073 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11074 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11075 {
11076 long padding_size = i386_branch_padding_size (fragP, 0);
11077 long grow = padding_size - fragP->tc_frag_data.length;
11078
11079 /* When the BRANCH_PREFIX frag is used, the computed address
11080 must match the actual address and there should be no padding. */
11081 if (fragP->tc_frag_data.padding_address
11082 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11083 || padding_size))
11084 abort ();
11085
11086 /* Update the padding size. */
11087 if (grow)
11088 fragP->tc_frag_data.length = padding_size;
11089
11090 return grow;
11091 }
11092 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11093 {
11094 fragS *padding_fragP, *next_fragP;
11095 long padding_size, left_size, last_size;
11096
11097 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11098 if (!padding_fragP)
11099 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11100 return (fragP->tc_frag_data.length
11101 - fragP->tc_frag_data.last_length);
11102
11103 /* Compute the relative address of the padding frag in the very
11104 first time where the BRANCH_PREFIX frag sizes are zero. */
11105 if (!fragP->tc_frag_data.padding_address)
11106 fragP->tc_frag_data.padding_address
11107 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11108
11109 /* First update the last length from the previous interation. */
11110 left_size = fragP->tc_frag_data.prefix_length;
11111 for (next_fragP = fragP;
11112 next_fragP != padding_fragP;
11113 next_fragP = next_fragP->fr_next)
11114 if (next_fragP->fr_type == rs_machine_dependent
11115 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11116 == BRANCH_PREFIX))
11117 {
11118 if (left_size)
11119 {
11120 int max = next_fragP->tc_frag_data.max_bytes;
11121 if (max)
11122 {
11123 int size;
11124 if (max > left_size)
11125 size = left_size;
11126 else
11127 size = max;
11128 left_size -= size;
11129 next_fragP->tc_frag_data.last_length = size;
11130 }
11131 }
11132 else
11133 next_fragP->tc_frag_data.last_length = 0;
11134 }
11135
11136 /* Check the padding size for the padding frag. */
11137 padding_size = i386_branch_padding_size
11138 (padding_fragP, (fragP->fr_address
11139 + fragP->tc_frag_data.padding_address));
11140
11141 last_size = fragP->tc_frag_data.prefix_length;
11142 /* Check if there is change from the last interation. */
11143 if (padding_size == last_size)
11144 {
11145 /* Update the expected address of the padding frag. */
11146 padding_fragP->tc_frag_data.padding_address
11147 = (fragP->fr_address + padding_size
11148 + fragP->tc_frag_data.padding_address);
11149 return 0;
11150 }
11151
11152 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11153 {
11154 /* No padding if there is no sufficient room. Clear the
11155 expected address of the padding frag. */
11156 padding_fragP->tc_frag_data.padding_address = 0;
11157 padding_size = 0;
11158 }
11159 else
11160 /* Store the expected address of the padding frag. */
11161 padding_fragP->tc_frag_data.padding_address
11162 = (fragP->fr_address + padding_size
11163 + fragP->tc_frag_data.padding_address);
11164
11165 fragP->tc_frag_data.prefix_length = padding_size;
11166
11167 /* Update the length for the current interation. */
11168 left_size = padding_size;
11169 for (next_fragP = fragP;
11170 next_fragP != padding_fragP;
11171 next_fragP = next_fragP->fr_next)
11172 if (next_fragP->fr_type == rs_machine_dependent
11173 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11174 == BRANCH_PREFIX))
11175 {
11176 if (left_size)
11177 {
11178 int max = next_fragP->tc_frag_data.max_bytes;
11179 if (max)
11180 {
11181 int size;
11182 if (max > left_size)
11183 size = left_size;
11184 else
11185 size = max;
11186 left_size -= size;
11187 next_fragP->tc_frag_data.length = size;
11188 }
11189 }
11190 else
11191 next_fragP->tc_frag_data.length = 0;
11192 }
11193
11194 return (fragP->tc_frag_data.length
11195 - fragP->tc_frag_data.last_length);
11196 }
11197 return relax_frag (segment, fragP, stretch);
11198}
11199
ee7fcc42
AM
11200/* md_estimate_size_before_relax()
11201
11202 Called just before relax() for rs_machine_dependent frags. The x86
11203 assembler uses these frags to handle variable size jump
11204 instructions.
11205
11206 Any symbol that is now undefined will not become defined.
11207 Return the correct fr_subtype in the frag.
11208 Return the initial "guess for variable size of frag" to caller.
11209 The guess is actually the growth beyond the fixed part. Whatever
11210 we do to grow the fixed or variable part contributes to our
11211 returned value. */
11212
252b5132 11213int
7016a5d5 11214md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11215{
e379e5f3
L
11216 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11217 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11218 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11219 {
11220 i386_classify_machine_dependent_frag (fragP);
11221 return fragP->tc_frag_data.length;
11222 }
11223
252b5132 11224 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11225 check for un-relaxable symbols. On an ELF system, we can't relax
11226 an externally visible symbol, because it may be overridden by a
11227 shared library. */
11228 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11229#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11230 || (IS_ELF
8dcea932
L
11231 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11232 fragP->fr_var))
fbeb56a4
DK
11233#endif
11234#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11235 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11236 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11237#endif
11238 )
252b5132 11239 {
b98ef147
AM
11240 /* Symbol is undefined in this segment, or we need to keep a
11241 reloc so that weak symbols can be overridden. */
11242 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11243 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11244 unsigned char *opcode;
11245 int old_fr_fix;
f6af82bd 11246
ee7fcc42 11247 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11248 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11249 else if (size == 2)
f6af82bd 11250 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11251#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11252 else if (need_plt32_p (fragP->fr_symbol))
11253 reloc_type = BFD_RELOC_X86_64_PLT32;
11254#endif
f6af82bd
AM
11255 else
11256 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11257
ee7fcc42
AM
11258 old_fr_fix = fragP->fr_fix;
11259 opcode = (unsigned char *) fragP->fr_opcode;
11260
fddf5b5b 11261 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11262 {
fddf5b5b
AM
11263 case UNCOND_JUMP:
11264 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11265 opcode[0] = 0xe9;
252b5132 11266 fragP->fr_fix += size;
062cd5e7
AS
11267 fix_new (fragP, old_fr_fix, size,
11268 fragP->fr_symbol,
11269 fragP->fr_offset, 1,
11270 reloc_type);
252b5132
RH
11271 break;
11272
fddf5b5b 11273 case COND_JUMP86:
412167cb
AM
11274 if (size == 2
11275 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11276 {
11277 /* Negate the condition, and branch past an
11278 unconditional jump. */
11279 opcode[0] ^= 1;
11280 opcode[1] = 3;
11281 /* Insert an unconditional jump. */
11282 opcode[2] = 0xe9;
11283 /* We added two extra opcode bytes, and have a two byte
11284 offset. */
11285 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11286 fix_new (fragP, old_fr_fix + 2, 2,
11287 fragP->fr_symbol,
11288 fragP->fr_offset, 1,
11289 reloc_type);
fddf5b5b
AM
11290 break;
11291 }
11292 /* Fall through. */
11293
11294 case COND_JUMP:
412167cb
AM
11295 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11296 {
3e02c1cc
AM
11297 fixS *fixP;
11298
412167cb 11299 fragP->fr_fix += 1;
3e02c1cc
AM
11300 fixP = fix_new (fragP, old_fr_fix, 1,
11301 fragP->fr_symbol,
11302 fragP->fr_offset, 1,
11303 BFD_RELOC_8_PCREL);
11304 fixP->fx_signed = 1;
412167cb
AM
11305 break;
11306 }
93c2a809 11307
24eab124 11308 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11309 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11310 opcode[1] = opcode[0] + 0x10;
f6af82bd 11311 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11312 /* We've added an opcode byte. */
11313 fragP->fr_fix += 1 + size;
062cd5e7
AS
11314 fix_new (fragP, old_fr_fix + 1, size,
11315 fragP->fr_symbol,
11316 fragP->fr_offset, 1,
11317 reloc_type);
252b5132 11318 break;
fddf5b5b
AM
11319
11320 default:
11321 BAD_CASE (fragP->fr_subtype);
11322 break;
252b5132
RH
11323 }
11324 frag_wane (fragP);
ee7fcc42 11325 return fragP->fr_fix - old_fr_fix;
252b5132 11326 }
93c2a809 11327
93c2a809
AM
11328 /* Guess size depending on current relax state. Initially the relax
11329 state will correspond to a short jump and we return 1, because
11330 the variable part of the frag (the branch offset) is one byte
11331 long. However, we can relax a section more than once and in that
11332 case we must either set fr_subtype back to the unrelaxed state,
11333 or return the value for the appropriate branch. */
11334 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11335}
11336
47926f60
KH
11337/* Called after relax() is finished.
11338
11339 In: Address of frag.
11340 fr_type == rs_machine_dependent.
11341 fr_subtype is what the address relaxed to.
11342
11343 Out: Any fixSs and constants are set up.
11344 Caller will turn frag into a ".space 0". */
11345
252b5132 11346void
7016a5d5
TG
11347md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11348 fragS *fragP)
252b5132 11349{
29b0f896 11350 unsigned char *opcode;
252b5132 11351 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11352 offsetT target_address;
11353 offsetT opcode_address;
252b5132 11354 unsigned int extension = 0;
847f7ad4 11355 offsetT displacement_from_opcode_start;
252b5132 11356
e379e5f3
L
11357 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11358 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11359 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11360 {
11361 /* Generate nop padding. */
11362 unsigned int size = fragP->tc_frag_data.length;
11363 if (size)
11364 {
11365 if (size > fragP->tc_frag_data.max_bytes)
11366 abort ();
11367
11368 if (flag_debug)
11369 {
11370 const char *msg;
11371 const char *branch = "branch";
11372 const char *prefix = "";
11373 fragS *padding_fragP;
11374 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11375 == BRANCH_PREFIX)
11376 {
11377 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11378 switch (fragP->tc_frag_data.default_prefix)
11379 {
11380 default:
11381 abort ();
11382 break;
11383 case CS_PREFIX_OPCODE:
11384 prefix = " cs";
11385 break;
11386 case DS_PREFIX_OPCODE:
11387 prefix = " ds";
11388 break;
11389 case ES_PREFIX_OPCODE:
11390 prefix = " es";
11391 break;
11392 case FS_PREFIX_OPCODE:
11393 prefix = " fs";
11394 break;
11395 case GS_PREFIX_OPCODE:
11396 prefix = " gs";
11397 break;
11398 case SS_PREFIX_OPCODE:
11399 prefix = " ss";
11400 break;
11401 }
11402 if (padding_fragP)
11403 msg = _("%s:%u: add %d%s at 0x%llx to align "
11404 "%s within %d-byte boundary\n");
11405 else
11406 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11407 "align %s within %d-byte boundary\n");
11408 }
11409 else
11410 {
11411 padding_fragP = fragP;
11412 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11413 "%s within %d-byte boundary\n");
11414 }
11415
11416 if (padding_fragP)
11417 switch (padding_fragP->tc_frag_data.branch_type)
11418 {
11419 case align_branch_jcc:
11420 branch = "jcc";
11421 break;
11422 case align_branch_fused:
11423 branch = "fused jcc";
11424 break;
11425 case align_branch_jmp:
11426 branch = "jmp";
11427 break;
11428 case align_branch_call:
11429 branch = "call";
11430 break;
11431 case align_branch_indirect:
11432 branch = "indiret branch";
11433 break;
11434 case align_branch_ret:
11435 branch = "ret";
11436 break;
11437 default:
11438 break;
11439 }
11440
11441 fprintf (stdout, msg,
11442 fragP->fr_file, fragP->fr_line, size, prefix,
11443 (long long) fragP->fr_address, branch,
11444 1 << align_branch_power);
11445 }
11446 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11447 memset (fragP->fr_opcode,
11448 fragP->tc_frag_data.default_prefix, size);
11449 else
11450 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11451 size, 0);
11452 fragP->fr_fix += size;
11453 }
11454 return;
11455 }
11456
252b5132
RH
11457 opcode = (unsigned char *) fragP->fr_opcode;
11458
47926f60 11459 /* Address we want to reach in file space. */
252b5132 11460 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11461
47926f60 11462 /* Address opcode resides at in file space. */
252b5132
RH
11463 opcode_address = fragP->fr_address + fragP->fr_fix;
11464
47926f60 11465 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11466 displacement_from_opcode_start = target_address - opcode_address;
11467
fddf5b5b 11468 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11469 {
47926f60
KH
11470 /* Don't have to change opcode. */
11471 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11472 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11473 }
11474 else
11475 {
11476 if (no_cond_jump_promotion
11477 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11478 as_warn_where (fragP->fr_file, fragP->fr_line,
11479 _("long jump required"));
252b5132 11480
fddf5b5b
AM
11481 switch (fragP->fr_subtype)
11482 {
11483 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11484 extension = 4; /* 1 opcode + 4 displacement */
11485 opcode[0] = 0xe9;
11486 where_to_put_displacement = &opcode[1];
11487 break;
252b5132 11488
fddf5b5b
AM
11489 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11490 extension = 2; /* 1 opcode + 2 displacement */
11491 opcode[0] = 0xe9;
11492 where_to_put_displacement = &opcode[1];
11493 break;
252b5132 11494
fddf5b5b
AM
11495 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11496 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11497 extension = 5; /* 2 opcode + 4 displacement */
11498 opcode[1] = opcode[0] + 0x10;
11499 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11500 where_to_put_displacement = &opcode[2];
11501 break;
252b5132 11502
fddf5b5b
AM
11503 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11504 extension = 3; /* 2 opcode + 2 displacement */
11505 opcode[1] = opcode[0] + 0x10;
11506 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11507 where_to_put_displacement = &opcode[2];
11508 break;
252b5132 11509
fddf5b5b
AM
11510 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11511 extension = 4;
11512 opcode[0] ^= 1;
11513 opcode[1] = 3;
11514 opcode[2] = 0xe9;
11515 where_to_put_displacement = &opcode[3];
11516 break;
11517
11518 default:
11519 BAD_CASE (fragP->fr_subtype);
11520 break;
11521 }
252b5132 11522 }
fddf5b5b 11523
7b81dfbb
AJ
11524 /* If size if less then four we are sure that the operand fits,
11525 but if it's 4, then it could be that the displacement is larger
11526 then -/+ 2GB. */
11527 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11528 && object_64bit
11529 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11530 + ((addressT) 1 << 31))
11531 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11532 {
11533 as_bad_where (fragP->fr_file, fragP->fr_line,
11534 _("jump target out of range"));
11535 /* Make us emit 0. */
11536 displacement_from_opcode_start = extension;
11537 }
47926f60 11538 /* Now put displacement after opcode. */
252b5132
RH
11539 md_number_to_chars ((char *) where_to_put_displacement,
11540 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11541 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11542 fragP->fr_fix += extension;
11543}
11544\f
7016a5d5 11545/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11546 by our caller that we have all the info we need to fix it up.
11547
7016a5d5
TG
11548 Parameter valP is the pointer to the value of the bits.
11549
252b5132
RH
11550 On the 386, immediates, displacements, and data pointers are all in
11551 the same (little-endian) format, so we don't need to care about which
11552 we are handling. */
11553
94f592af 11554void
7016a5d5 11555md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11556{
94f592af 11557 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11558 valueT value = *valP;
252b5132 11559
f86103b7 11560#if !defined (TE_Mach)
93382f6d
AM
11561 if (fixP->fx_pcrel)
11562 {
11563 switch (fixP->fx_r_type)
11564 {
5865bb77
ILT
11565 default:
11566 break;
11567
d6ab8113
JB
11568 case BFD_RELOC_64:
11569 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11570 break;
93382f6d 11571 case BFD_RELOC_32:
ae8887b5 11572 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11573 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11574 break;
11575 case BFD_RELOC_16:
11576 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11577 break;
11578 case BFD_RELOC_8:
11579 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11580 break;
11581 }
11582 }
252b5132 11583
a161fe53 11584 if (fixP->fx_addsy != NULL
31312f95 11585 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11586 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11587 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11588 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11589 && !use_rela_relocations)
252b5132 11590 {
31312f95
AM
11591 /* This is a hack. There should be a better way to handle this.
11592 This covers for the fact that bfd_install_relocation will
11593 subtract the current location (for partial_inplace, PC relative
11594 relocations); see more below. */
252b5132 11595#ifndef OBJ_AOUT
718ddfc0 11596 if (IS_ELF
252b5132
RH
11597#ifdef TE_PE
11598 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11599#endif
11600 )
11601 value += fixP->fx_where + fixP->fx_frag->fr_address;
11602#endif
11603#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11604 if (IS_ELF)
252b5132 11605 {
6539b54b 11606 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11607
6539b54b 11608 if ((sym_seg == seg
2f66722d 11609 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11610 && sym_seg != absolute_section))
af65af87 11611 && !generic_force_reloc (fixP))
2f66722d
AM
11612 {
11613 /* Yes, we add the values in twice. This is because
6539b54b
AM
11614 bfd_install_relocation subtracts them out again. I think
11615 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11616 it. FIXME. */
11617 value += fixP->fx_where + fixP->fx_frag->fr_address;
11618 }
252b5132
RH
11619 }
11620#endif
11621#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11622 /* For some reason, the PE format does not store a
11623 section address offset for a PC relative symbol. */
11624 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11625 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11626 value += md_pcrel_from (fixP);
11627#endif
11628 }
fbeb56a4 11629#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11630 if (fixP->fx_addsy != NULL
11631 && S_IS_WEAK (fixP->fx_addsy)
11632 /* PR 16858: Do not modify weak function references. */
11633 && ! fixP->fx_pcrel)
fbeb56a4 11634 {
296a8689
NC
11635#if !defined (TE_PEP)
11636 /* For x86 PE weak function symbols are neither PC-relative
11637 nor do they set S_IS_FUNCTION. So the only reliable way
11638 to detect them is to check the flags of their containing
11639 section. */
11640 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11641 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11642 ;
11643 else
11644#endif
fbeb56a4
DK
11645 value -= S_GET_VALUE (fixP->fx_addsy);
11646 }
11647#endif
252b5132
RH
11648
11649 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11650 and we must not disappoint it. */
252b5132 11651#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11652 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11653 switch (fixP->fx_r_type)
11654 {
11655 case BFD_RELOC_386_PLT32:
3e73aa7c 11656 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11657 /* Make the jump instruction point to the address of the operand.
11658 At runtime we merely add the offset to the actual PLT entry.
11659 NB: Subtract the offset size only for jump instructions. */
11660 if (fixP->fx_pcrel)
11661 value = -4;
47926f60 11662 break;
31312f95 11663
13ae64f3
JJ
11664 case BFD_RELOC_386_TLS_GD:
11665 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11666 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11667 case BFD_RELOC_386_TLS_IE:
11668 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11669 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11670 case BFD_RELOC_X86_64_TLSGD:
11671 case BFD_RELOC_X86_64_TLSLD:
11672 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11673 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11674 value = 0; /* Fully resolved at runtime. No addend. */
11675 /* Fallthrough */
11676 case BFD_RELOC_386_TLS_LE:
11677 case BFD_RELOC_386_TLS_LDO_32:
11678 case BFD_RELOC_386_TLS_LE_32:
11679 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11680 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11681 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11682 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11683 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11684 break;
11685
67a4f2b7
AO
11686 case BFD_RELOC_386_TLS_DESC_CALL:
11687 case BFD_RELOC_X86_64_TLSDESC_CALL:
11688 value = 0; /* Fully resolved at runtime. No addend. */
11689 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11690 fixP->fx_done = 0;
11691 return;
11692
47926f60
KH
11693 case BFD_RELOC_VTABLE_INHERIT:
11694 case BFD_RELOC_VTABLE_ENTRY:
11695 fixP->fx_done = 0;
94f592af 11696 return;
47926f60
KH
11697
11698 default:
11699 break;
11700 }
11701#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11702 *valP = value;
f86103b7 11703#endif /* !defined (TE_Mach) */
3e73aa7c 11704
3e73aa7c 11705 /* Are we finished with this relocation now? */
c6682705 11706 if (fixP->fx_addsy == NULL)
3e73aa7c 11707 fixP->fx_done = 1;
fbeb56a4
DK
11708#if defined (OBJ_COFF) && defined (TE_PE)
11709 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11710 {
11711 fixP->fx_done = 0;
11712 /* Remember value for tc_gen_reloc. */
11713 fixP->fx_addnumber = value;
11714 /* Clear out the frag for now. */
11715 value = 0;
11716 }
11717#endif
3e73aa7c
JH
11718 else if (use_rela_relocations)
11719 {
11720 fixP->fx_no_overflow = 1;
062cd5e7
AS
11721 /* Remember value for tc_gen_reloc. */
11722 fixP->fx_addnumber = value;
3e73aa7c
JH
11723 value = 0;
11724 }
f86103b7 11725
94f592af 11726 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11727}
252b5132 11728\f
6d4af3c2 11729const char *
499ac353 11730md_atof (int type, char *litP, int *sizeP)
252b5132 11731{
499ac353
NC
11732 /* This outputs the LITTLENUMs in REVERSE order;
11733 in accord with the bigendian 386. */
11734 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11735}
11736\f
2d545b82 11737static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11738
252b5132 11739static char *
e3bb37b5 11740output_invalid (int c)
252b5132 11741{
3882b010 11742 if (ISPRINT (c))
f9f21a03
L
11743 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11744 "'%c'", c);
252b5132 11745 else
f9f21a03 11746 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11747 "(0x%x)", (unsigned char) c);
252b5132
RH
11748 return output_invalid_buf;
11749}
11750
af6bdddf 11751/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11752
11753static const reg_entry *
4d1bb795 11754parse_real_register (char *reg_string, char **end_op)
252b5132 11755{
af6bdddf
AM
11756 char *s = reg_string;
11757 char *p;
252b5132
RH
11758 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11759 const reg_entry *r;
11760
11761 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11762 if (*s == REGISTER_PREFIX)
11763 ++s;
11764
11765 if (is_space_char (*s))
11766 ++s;
11767
11768 p = reg_name_given;
af6bdddf 11769 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11770 {
11771 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11772 return (const reg_entry *) NULL;
11773 s++;
252b5132
RH
11774 }
11775
6588847e
DN
11776 /* For naked regs, make sure that we are not dealing with an identifier.
11777 This prevents confusing an identifier like `eax_var' with register
11778 `eax'. */
11779 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11780 return (const reg_entry *) NULL;
11781
af6bdddf 11782 *end_op = s;
252b5132
RH
11783
11784 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11785
5f47d35b 11786 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11787 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11788 {
0e0eea78
JB
11789 if (!cpu_arch_flags.bitfield.cpu8087
11790 && !cpu_arch_flags.bitfield.cpu287
11791 && !cpu_arch_flags.bitfield.cpu387)
11792 return (const reg_entry *) NULL;
11793
5f47d35b
AM
11794 if (is_space_char (*s))
11795 ++s;
11796 if (*s == '(')
11797 {
af6bdddf 11798 ++s;
5f47d35b
AM
11799 if (is_space_char (*s))
11800 ++s;
11801 if (*s >= '0' && *s <= '7')
11802 {
db557034 11803 int fpr = *s - '0';
af6bdddf 11804 ++s;
5f47d35b
AM
11805 if (is_space_char (*s))
11806 ++s;
11807 if (*s == ')')
11808 {
11809 *end_op = s + 1;
1e9cc1c2 11810 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11811 know (r);
11812 return r + fpr;
5f47d35b 11813 }
5f47d35b 11814 }
47926f60 11815 /* We have "%st(" then garbage. */
5f47d35b
AM
11816 return (const reg_entry *) NULL;
11817 }
11818 }
11819
a60de03c
JB
11820 if (r == NULL || allow_pseudo_reg)
11821 return r;
11822
0dfbf9d7 11823 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11824 return (const reg_entry *) NULL;
11825
dc821c5f 11826 if ((r->reg_type.bitfield.dword
00cee14f 11827 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11828 || r->reg_type.bitfield.class == RegCR
11829 || r->reg_type.bitfield.class == RegDR
11830 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11831 && !cpu_arch_flags.bitfield.cpui386)
11832 return (const reg_entry *) NULL;
11833
3528c362 11834 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11835 return (const reg_entry *) NULL;
11836
6e041cf4
JB
11837 if (!cpu_arch_flags.bitfield.cpuavx512f)
11838 {
f74a6307
JB
11839 if (r->reg_type.bitfield.zmmword
11840 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11841 return (const reg_entry *) NULL;
40f12533 11842
6e041cf4
JB
11843 if (!cpu_arch_flags.bitfield.cpuavx)
11844 {
11845 if (r->reg_type.bitfield.ymmword)
11846 return (const reg_entry *) NULL;
1848e567 11847
6e041cf4
JB
11848 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11849 return (const reg_entry *) NULL;
11850 }
11851 }
43234a1e 11852
f74a6307 11853 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11854 return (const reg_entry *) NULL;
11855
db51cc60 11856 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11857 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11858 return (const reg_entry *) NULL;
11859
1d3f8286
JB
11860 /* Upper 16 vector registers are only available with VREX in 64bit
11861 mode, and require EVEX encoding. */
11862 if (r->reg_flags & RegVRex)
43234a1e 11863 {
e951d5ca 11864 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11865 || flag_code != CODE_64BIT)
11866 return (const reg_entry *) NULL;
1d3f8286
JB
11867
11868 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11869 }
11870
4787f4a5 11871 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11872 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11873 && flag_code != CODE_64BIT)
20f0a1fc 11874 return (const reg_entry *) NULL;
1ae00879 11875
00cee14f
JB
11876 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11877 && !intel_syntax)
b7240065
JB
11878 return (const reg_entry *) NULL;
11879
252b5132
RH
11880 return r;
11881}
4d1bb795
JB
11882
11883/* REG_STRING starts *before* REGISTER_PREFIX. */
11884
11885static const reg_entry *
11886parse_register (char *reg_string, char **end_op)
11887{
11888 const reg_entry *r;
11889
11890 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11891 r = parse_real_register (reg_string, end_op);
11892 else
11893 r = NULL;
11894 if (!r)
11895 {
11896 char *save = input_line_pointer;
11897 char c;
11898 symbolS *symbolP;
11899
11900 input_line_pointer = reg_string;
d02603dc 11901 c = get_symbol_name (&reg_string);
4d1bb795
JB
11902 symbolP = symbol_find (reg_string);
11903 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11904 {
11905 const expressionS *e = symbol_get_value_expression (symbolP);
11906
0398aac5 11907 know (e->X_op == O_register);
4eed87de 11908 know (e->X_add_number >= 0
c3fe08fa 11909 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11910 r = i386_regtab + e->X_add_number;
d3bb6b49 11911 if ((r->reg_flags & RegVRex))
86fa6981 11912 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11913 *end_op = input_line_pointer;
11914 }
11915 *input_line_pointer = c;
11916 input_line_pointer = save;
11917 }
11918 return r;
11919}
11920
11921int
11922i386_parse_name (char *name, expressionS *e, char *nextcharP)
11923{
11924 const reg_entry *r;
11925 char *end = input_line_pointer;
11926
11927 *end = *nextcharP;
11928 r = parse_register (name, &input_line_pointer);
11929 if (r && end <= input_line_pointer)
11930 {
11931 *nextcharP = *input_line_pointer;
11932 *input_line_pointer = 0;
11933 e->X_op = O_register;
11934 e->X_add_number = r - i386_regtab;
11935 return 1;
11936 }
11937 input_line_pointer = end;
11938 *end = 0;
ee86248c 11939 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11940}
11941
11942void
11943md_operand (expressionS *e)
11944{
ee86248c
JB
11945 char *end;
11946 const reg_entry *r;
4d1bb795 11947
ee86248c
JB
11948 switch (*input_line_pointer)
11949 {
11950 case REGISTER_PREFIX:
11951 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11952 if (r)
11953 {
11954 e->X_op = O_register;
11955 e->X_add_number = r - i386_regtab;
11956 input_line_pointer = end;
11957 }
ee86248c
JB
11958 break;
11959
11960 case '[':
9c2799c2 11961 gas_assert (intel_syntax);
ee86248c
JB
11962 end = input_line_pointer++;
11963 expression (e);
11964 if (*input_line_pointer == ']')
11965 {
11966 ++input_line_pointer;
11967 e->X_op_symbol = make_expr_symbol (e);
11968 e->X_add_symbol = NULL;
11969 e->X_add_number = 0;
11970 e->X_op = O_index;
11971 }
11972 else
11973 {
11974 e->X_op = O_absent;
11975 input_line_pointer = end;
11976 }
11977 break;
4d1bb795
JB
11978 }
11979}
11980
252b5132 11981\f
4cc782b5 11982#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11983const char *md_shortopts = "kVQ:sqnO::";
252b5132 11984#else
b6f8c7c4 11985const char *md_shortopts = "qnO::";
252b5132 11986#endif
6e0b89ee 11987
3e73aa7c 11988#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11989#define OPTION_64 (OPTION_MD_BASE + 1)
11990#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11991#define OPTION_MARCH (OPTION_MD_BASE + 3)
11992#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11993#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11994#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11995#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11996#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11997#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11998#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11999#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12000#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12001#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12002#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12003#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12004#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12005#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12006#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12007#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12008#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12009#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12010#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12011#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12012#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12013#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12014#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12015#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12016#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12017#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12018#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12019
99ad8390
NC
12020struct option md_longopts[] =
12021{
3e73aa7c 12022 {"32", no_argument, NULL, OPTION_32},
321098a5 12023#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12024 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12025 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12026#endif
12027#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12028 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12029 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12030 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12031#endif
b3b91714 12032 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12033 {"march", required_argument, NULL, OPTION_MARCH},
12034 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12035 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12036 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12037 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12038 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12039 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12040 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12041 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12042 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12043 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12044 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12045 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12046 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12047# if defined (TE_PE) || defined (TE_PEP)
12048 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12049#endif
d1982f93 12050 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12051 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12052 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12053 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12054 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12055 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12056 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12057 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12058 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12059 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12060 {NULL, no_argument, NULL, 0}
12061};
12062size_t md_longopts_size = sizeof (md_longopts);
12063
12064int
17b9d67d 12065md_parse_option (int c, const char *arg)
252b5132 12066{
91d6fa6a 12067 unsigned int j;
e379e5f3 12068 char *arch, *next, *saved, *type;
9103f4f4 12069
252b5132
RH
12070 switch (c)
12071 {
12b55ccc
L
12072 case 'n':
12073 optimize_align_code = 0;
12074 break;
12075
a38cf1db
AM
12076 case 'q':
12077 quiet_warnings = 1;
252b5132
RH
12078 break;
12079
12080#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12081 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12082 should be emitted or not. FIXME: Not implemented. */
12083 case 'Q':
d4693039
JB
12084 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12085 return 0;
252b5132
RH
12086 break;
12087
12088 /* -V: SVR4 argument to print version ID. */
12089 case 'V':
12090 print_version_id ();
12091 break;
12092
a38cf1db
AM
12093 /* -k: Ignore for FreeBSD compatibility. */
12094 case 'k':
252b5132 12095 break;
4cc782b5
ILT
12096
12097 case 's':
12098 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12099 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12100 break;
8dcea932
L
12101
12102 case OPTION_MSHARED:
12103 shared = 1;
12104 break;
b4a3a7b4
L
12105
12106 case OPTION_X86_USED_NOTE:
12107 if (strcasecmp (arg, "yes") == 0)
12108 x86_used_note = 1;
12109 else if (strcasecmp (arg, "no") == 0)
12110 x86_used_note = 0;
12111 else
12112 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12113 break;
12114
12115
99ad8390 12116#endif
321098a5 12117#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12118 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12119 case OPTION_64:
12120 {
12121 const char **list, **l;
12122
3e73aa7c
JH
12123 list = bfd_target_list ();
12124 for (l = list; *l != NULL; l++)
8620418b 12125 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12126 || strcmp (*l, "coff-x86-64") == 0
12127 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12128 || strcmp (*l, "pei-x86-64") == 0
12129 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12130 {
12131 default_arch = "x86_64";
12132 break;
12133 }
3e73aa7c 12134 if (*l == NULL)
2b5d6a91 12135 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12136 free (list);
12137 }
12138 break;
12139#endif
252b5132 12140
351f65ca 12141#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12142 case OPTION_X32:
351f65ca
L
12143 if (IS_ELF)
12144 {
12145 const char **list, **l;
12146
12147 list = bfd_target_list ();
12148 for (l = list; *l != NULL; l++)
12149 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12150 {
12151 default_arch = "x86_64:32";
12152 break;
12153 }
12154 if (*l == NULL)
2b5d6a91 12155 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12156 free (list);
12157 }
12158 else
12159 as_fatal (_("32bit x86_64 is only supported for ELF"));
12160 break;
12161#endif
12162
6e0b89ee
AM
12163 case OPTION_32:
12164 default_arch = "i386";
12165 break;
12166
b3b91714
AM
12167 case OPTION_DIVIDE:
12168#ifdef SVR4_COMMENT_CHARS
12169 {
12170 char *n, *t;
12171 const char *s;
12172
add39d23 12173 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12174 t = n;
12175 for (s = i386_comment_chars; *s != '\0'; s++)
12176 if (*s != '/')
12177 *t++ = *s;
12178 *t = '\0';
12179 i386_comment_chars = n;
12180 }
12181#endif
12182 break;
12183
9103f4f4 12184 case OPTION_MARCH:
293f5f65
L
12185 saved = xstrdup (arg);
12186 arch = saved;
12187 /* Allow -march=+nosse. */
12188 if (*arch == '+')
12189 arch++;
6305a203 12190 do
9103f4f4 12191 {
6305a203 12192 if (*arch == '.')
2b5d6a91 12193 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12194 next = strchr (arch, '+');
12195 if (next)
12196 *next++ = '\0';
91d6fa6a 12197 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12198 {
91d6fa6a 12199 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12200 {
6305a203 12201 /* Processor. */
1ded5609
JB
12202 if (! cpu_arch[j].flags.bitfield.cpui386)
12203 continue;
12204
91d6fa6a 12205 cpu_arch_name = cpu_arch[j].name;
6305a203 12206 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12207 cpu_arch_flags = cpu_arch[j].flags;
12208 cpu_arch_isa = cpu_arch[j].type;
12209 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12210 if (!cpu_arch_tune_set)
12211 {
12212 cpu_arch_tune = cpu_arch_isa;
12213 cpu_arch_tune_flags = cpu_arch_isa_flags;
12214 }
12215 break;
12216 }
91d6fa6a
NC
12217 else if (*cpu_arch [j].name == '.'
12218 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12219 {
33eaf5de 12220 /* ISA extension. */
6305a203 12221 i386_cpu_flags flags;
309d3373 12222
293f5f65
L
12223 flags = cpu_flags_or (cpu_arch_flags,
12224 cpu_arch[j].flags);
81486035 12225
5b64d091 12226 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12227 {
12228 if (cpu_sub_arch_name)
12229 {
12230 char *name = cpu_sub_arch_name;
12231 cpu_sub_arch_name = concat (name,
91d6fa6a 12232 cpu_arch[j].name,
1bf57e9f 12233 (const char *) NULL);
6305a203
L
12234 free (name);
12235 }
12236 else
91d6fa6a 12237 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12238 cpu_arch_flags = flags;
a586129e 12239 cpu_arch_isa_flags = flags;
6305a203 12240 }
0089dace
L
12241 else
12242 cpu_arch_isa_flags
12243 = cpu_flags_or (cpu_arch_isa_flags,
12244 cpu_arch[j].flags);
6305a203 12245 break;
ccc9c027 12246 }
9103f4f4 12247 }
6305a203 12248
293f5f65
L
12249 if (j >= ARRAY_SIZE (cpu_arch))
12250 {
33eaf5de 12251 /* Disable an ISA extension. */
293f5f65
L
12252 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12253 if (strcmp (arch, cpu_noarch [j].name) == 0)
12254 {
12255 i386_cpu_flags flags;
12256
12257 flags = cpu_flags_and_not (cpu_arch_flags,
12258 cpu_noarch[j].flags);
12259 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12260 {
12261 if (cpu_sub_arch_name)
12262 {
12263 char *name = cpu_sub_arch_name;
12264 cpu_sub_arch_name = concat (arch,
12265 (const char *) NULL);
12266 free (name);
12267 }
12268 else
12269 cpu_sub_arch_name = xstrdup (arch);
12270 cpu_arch_flags = flags;
12271 cpu_arch_isa_flags = flags;
12272 }
12273 break;
12274 }
12275
12276 if (j >= ARRAY_SIZE (cpu_noarch))
12277 j = ARRAY_SIZE (cpu_arch);
12278 }
12279
91d6fa6a 12280 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12281 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12282
12283 arch = next;
9103f4f4 12284 }
293f5f65
L
12285 while (next != NULL);
12286 free (saved);
9103f4f4
L
12287 break;
12288
12289 case OPTION_MTUNE:
12290 if (*arg == '.')
2b5d6a91 12291 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12292 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12293 {
91d6fa6a 12294 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12295 {
ccc9c027 12296 cpu_arch_tune_set = 1;
91d6fa6a
NC
12297 cpu_arch_tune = cpu_arch [j].type;
12298 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12299 break;
12300 }
12301 }
91d6fa6a 12302 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12303 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12304 break;
12305
1efbbeb4
L
12306 case OPTION_MMNEMONIC:
12307 if (strcasecmp (arg, "att") == 0)
12308 intel_mnemonic = 0;
12309 else if (strcasecmp (arg, "intel") == 0)
12310 intel_mnemonic = 1;
12311 else
2b5d6a91 12312 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12313 break;
12314
12315 case OPTION_MSYNTAX:
12316 if (strcasecmp (arg, "att") == 0)
12317 intel_syntax = 0;
12318 else if (strcasecmp (arg, "intel") == 0)
12319 intel_syntax = 1;
12320 else
2b5d6a91 12321 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12322 break;
12323
12324 case OPTION_MINDEX_REG:
12325 allow_index_reg = 1;
12326 break;
12327
12328 case OPTION_MNAKED_REG:
12329 allow_naked_reg = 1;
12330 break;
12331
c0f3af97
L
12332 case OPTION_MSSE2AVX:
12333 sse2avx = 1;
12334 break;
12335
daf50ae7
L
12336 case OPTION_MSSE_CHECK:
12337 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12338 sse_check = check_error;
daf50ae7 12339 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12340 sse_check = check_warning;
daf50ae7 12341 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12342 sse_check = check_none;
daf50ae7 12343 else
2b5d6a91 12344 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12345 break;
12346
7bab8ab5
JB
12347 case OPTION_MOPERAND_CHECK:
12348 if (strcasecmp (arg, "error") == 0)
12349 operand_check = check_error;
12350 else if (strcasecmp (arg, "warning") == 0)
12351 operand_check = check_warning;
12352 else if (strcasecmp (arg, "none") == 0)
12353 operand_check = check_none;
12354 else
12355 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12356 break;
12357
539f890d
L
12358 case OPTION_MAVXSCALAR:
12359 if (strcasecmp (arg, "128") == 0)
12360 avxscalar = vex128;
12361 else if (strcasecmp (arg, "256") == 0)
12362 avxscalar = vex256;
12363 else
2b5d6a91 12364 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12365 break;
12366
03751133
L
12367 case OPTION_MVEXWIG:
12368 if (strcmp (arg, "0") == 0)
40c9c8de 12369 vexwig = vexw0;
03751133 12370 else if (strcmp (arg, "1") == 0)
40c9c8de 12371 vexwig = vexw1;
03751133
L
12372 else
12373 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12374 break;
12375
7e8b059b
L
12376 case OPTION_MADD_BND_PREFIX:
12377 add_bnd_prefix = 1;
12378 break;
12379
43234a1e
L
12380 case OPTION_MEVEXLIG:
12381 if (strcmp (arg, "128") == 0)
12382 evexlig = evexl128;
12383 else if (strcmp (arg, "256") == 0)
12384 evexlig = evexl256;
12385 else if (strcmp (arg, "512") == 0)
12386 evexlig = evexl512;
12387 else
12388 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12389 break;
12390
d3d3c6db
IT
12391 case OPTION_MEVEXRCIG:
12392 if (strcmp (arg, "rne") == 0)
12393 evexrcig = rne;
12394 else if (strcmp (arg, "rd") == 0)
12395 evexrcig = rd;
12396 else if (strcmp (arg, "ru") == 0)
12397 evexrcig = ru;
12398 else if (strcmp (arg, "rz") == 0)
12399 evexrcig = rz;
12400 else
12401 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12402 break;
12403
43234a1e
L
12404 case OPTION_MEVEXWIG:
12405 if (strcmp (arg, "0") == 0)
12406 evexwig = evexw0;
12407 else if (strcmp (arg, "1") == 0)
12408 evexwig = evexw1;
12409 else
12410 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12411 break;
12412
167ad85b
TG
12413# if defined (TE_PE) || defined (TE_PEP)
12414 case OPTION_MBIG_OBJ:
12415 use_big_obj = 1;
12416 break;
12417#endif
12418
d1982f93 12419 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12420 if (strcasecmp (arg, "yes") == 0)
12421 omit_lock_prefix = 1;
12422 else if (strcasecmp (arg, "no") == 0)
12423 omit_lock_prefix = 0;
12424 else
12425 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12426 break;
12427
e4e00185
AS
12428 case OPTION_MFENCE_AS_LOCK_ADD:
12429 if (strcasecmp (arg, "yes") == 0)
12430 avoid_fence = 1;
12431 else if (strcasecmp (arg, "no") == 0)
12432 avoid_fence = 0;
12433 else
12434 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12435 break;
12436
0cb4071e
L
12437 case OPTION_MRELAX_RELOCATIONS:
12438 if (strcasecmp (arg, "yes") == 0)
12439 generate_relax_relocations = 1;
12440 else if (strcasecmp (arg, "no") == 0)
12441 generate_relax_relocations = 0;
12442 else
12443 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12444 break;
12445
e379e5f3
L
12446 case OPTION_MALIGN_BRANCH_BOUNDARY:
12447 {
12448 char *end;
12449 long int align = strtoul (arg, &end, 0);
12450 if (*end == '\0')
12451 {
12452 if (align == 0)
12453 {
12454 align_branch_power = 0;
12455 break;
12456 }
12457 else if (align >= 16)
12458 {
12459 int align_power;
12460 for (align_power = 0;
12461 (align & 1) == 0;
12462 align >>= 1, align_power++)
12463 continue;
12464 /* Limit alignment power to 31. */
12465 if (align == 1 && align_power < 32)
12466 {
12467 align_branch_power = align_power;
12468 break;
12469 }
12470 }
12471 }
12472 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12473 }
12474 break;
12475
12476 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12477 {
12478 char *end;
12479 int align = strtoul (arg, &end, 0);
12480 /* Some processors only support 5 prefixes. */
12481 if (*end == '\0' && align >= 0 && align < 6)
12482 {
12483 align_branch_prefix_size = align;
12484 break;
12485 }
12486 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12487 arg);
12488 }
12489 break;
12490
12491 case OPTION_MALIGN_BRANCH:
12492 align_branch = 0;
12493 saved = xstrdup (arg);
12494 type = saved;
12495 do
12496 {
12497 next = strchr (type, '+');
12498 if (next)
12499 *next++ = '\0';
12500 if (strcasecmp (type, "jcc") == 0)
12501 align_branch |= align_branch_jcc_bit;
12502 else if (strcasecmp (type, "fused") == 0)
12503 align_branch |= align_branch_fused_bit;
12504 else if (strcasecmp (type, "jmp") == 0)
12505 align_branch |= align_branch_jmp_bit;
12506 else if (strcasecmp (type, "call") == 0)
12507 align_branch |= align_branch_call_bit;
12508 else if (strcasecmp (type, "ret") == 0)
12509 align_branch |= align_branch_ret_bit;
12510 else if (strcasecmp (type, "indirect") == 0)
12511 align_branch |= align_branch_indirect_bit;
12512 else
12513 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12514 type = next;
12515 }
12516 while (next != NULL);
12517 free (saved);
12518 break;
12519
76cf450b
L
12520 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12521 align_branch_power = 5;
12522 align_branch_prefix_size = 5;
12523 align_branch = (align_branch_jcc_bit
12524 | align_branch_fused_bit
12525 | align_branch_jmp_bit);
12526 break;
12527
5db04b09 12528 case OPTION_MAMD64:
e89c5eaa 12529 intel64 = 0;
5db04b09
L
12530 break;
12531
12532 case OPTION_MINTEL64:
e89c5eaa 12533 intel64 = 1;
5db04b09
L
12534 break;
12535
b6f8c7c4
L
12536 case 'O':
12537 if (arg == NULL)
12538 {
12539 optimize = 1;
12540 /* Turn off -Os. */
12541 optimize_for_space = 0;
12542 }
12543 else if (*arg == 's')
12544 {
12545 optimize_for_space = 1;
12546 /* Turn on all encoding optimizations. */
41fd2579 12547 optimize = INT_MAX;
b6f8c7c4
L
12548 }
12549 else
12550 {
12551 optimize = atoi (arg);
12552 /* Turn off -Os. */
12553 optimize_for_space = 0;
12554 }
12555 break;
12556
252b5132
RH
12557 default:
12558 return 0;
12559 }
12560 return 1;
12561}
12562
8a2c8fef
L
12563#define MESSAGE_TEMPLATE \
12564" "
12565
293f5f65
L
12566static char *
12567output_message (FILE *stream, char *p, char *message, char *start,
12568 int *left_p, const char *name, int len)
12569{
12570 int size = sizeof (MESSAGE_TEMPLATE);
12571 int left = *left_p;
12572
12573 /* Reserve 2 spaces for ", " or ",\0" */
12574 left -= len + 2;
12575
12576 /* Check if there is any room. */
12577 if (left >= 0)
12578 {
12579 if (p != start)
12580 {
12581 *p++ = ',';
12582 *p++ = ' ';
12583 }
12584 p = mempcpy (p, name, len);
12585 }
12586 else
12587 {
12588 /* Output the current message now and start a new one. */
12589 *p++ = ',';
12590 *p = '\0';
12591 fprintf (stream, "%s\n", message);
12592 p = start;
12593 left = size - (start - message) - len - 2;
12594
12595 gas_assert (left >= 0);
12596
12597 p = mempcpy (p, name, len);
12598 }
12599
12600 *left_p = left;
12601 return p;
12602}
12603
8a2c8fef 12604static void
1ded5609 12605show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12606{
12607 static char message[] = MESSAGE_TEMPLATE;
12608 char *start = message + 27;
12609 char *p;
12610 int size = sizeof (MESSAGE_TEMPLATE);
12611 int left;
12612 const char *name;
12613 int len;
12614 unsigned int j;
12615
12616 p = start;
12617 left = size - (start - message);
12618 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12619 {
12620 /* Should it be skipped? */
12621 if (cpu_arch [j].skip)
12622 continue;
12623
12624 name = cpu_arch [j].name;
12625 len = cpu_arch [j].len;
12626 if (*name == '.')
12627 {
12628 /* It is an extension. Skip if we aren't asked to show it. */
12629 if (ext)
12630 {
12631 name++;
12632 len--;
12633 }
12634 else
12635 continue;
12636 }
12637 else if (ext)
12638 {
12639 /* It is an processor. Skip if we show only extension. */
12640 continue;
12641 }
1ded5609
JB
12642 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12643 {
12644 /* It is an impossible processor - skip. */
12645 continue;
12646 }
8a2c8fef 12647
293f5f65 12648 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12649 }
12650
293f5f65
L
12651 /* Display disabled extensions. */
12652 if (ext)
12653 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12654 {
12655 name = cpu_noarch [j].name;
12656 len = cpu_noarch [j].len;
12657 p = output_message (stream, p, message, start, &left, name,
12658 len);
12659 }
12660
8a2c8fef
L
12661 *p = '\0';
12662 fprintf (stream, "%s\n", message);
12663}
12664
252b5132 12665void
8a2c8fef 12666md_show_usage (FILE *stream)
252b5132 12667{
4cc782b5
ILT
12668#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12669 fprintf (stream, _("\
d4693039 12670 -Qy, -Qn ignored\n\
a38cf1db 12671 -V print assembler version number\n\
b3b91714
AM
12672 -k ignored\n"));
12673#endif
12674 fprintf (stream, _("\
12b55ccc 12675 -n Do not optimize code alignment\n\
b3b91714
AM
12676 -q quieten some warnings\n"));
12677#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12678 fprintf (stream, _("\
a38cf1db 12679 -s ignored\n"));
b3b91714 12680#endif
d7f449c0
L
12681#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12682 || defined (TE_PE) || defined (TE_PEP))
751d281c 12683 fprintf (stream, _("\
570561f7 12684 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12685#endif
b3b91714
AM
12686#ifdef SVR4_COMMENT_CHARS
12687 fprintf (stream, _("\
12688 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12689#else
12690 fprintf (stream, _("\
b3b91714 12691 --divide ignored\n"));
4cc782b5 12692#endif
9103f4f4 12693 fprintf (stream, _("\
6305a203 12694 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12695 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12696 show_arch (stream, 0, 1);
8a2c8fef
L
12697 fprintf (stream, _("\
12698 EXTENSION is combination of:\n"));
1ded5609 12699 show_arch (stream, 1, 0);
6305a203 12700 fprintf (stream, _("\
8a2c8fef 12701 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12702 show_arch (stream, 0, 0);
ba104c83 12703 fprintf (stream, _("\
c0f3af97
L
12704 -msse2avx encode SSE instructions with VEX prefix\n"));
12705 fprintf (stream, _("\
7c5c05ef 12706 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12707 check SSE instructions\n"));
12708 fprintf (stream, _("\
7c5c05ef 12709 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12710 check operand combinations for validity\n"));
12711 fprintf (stream, _("\
7c5c05ef
L
12712 -mavxscalar=[128|256] (default: 128)\n\
12713 encode scalar AVX instructions with specific vector\n\
539f890d
L
12714 length\n"));
12715 fprintf (stream, _("\
03751133
L
12716 -mvexwig=[0|1] (default: 0)\n\
12717 encode VEX instructions with specific VEX.W value\n\
12718 for VEX.W bit ignored instructions\n"));
12719 fprintf (stream, _("\
7c5c05ef
L
12720 -mevexlig=[128|256|512] (default: 128)\n\
12721 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12722 length\n"));
12723 fprintf (stream, _("\
7c5c05ef
L
12724 -mevexwig=[0|1] (default: 0)\n\
12725 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12726 for EVEX.W bit ignored instructions\n"));
12727 fprintf (stream, _("\
7c5c05ef 12728 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12729 encode EVEX instructions with specific EVEX.RC value\n\
12730 for SAE-only ignored instructions\n"));
12731 fprintf (stream, _("\
7c5c05ef
L
12732 -mmnemonic=[att|intel] "));
12733 if (SYSV386_COMPAT)
12734 fprintf (stream, _("(default: att)\n"));
12735 else
12736 fprintf (stream, _("(default: intel)\n"));
12737 fprintf (stream, _("\
12738 use AT&T/Intel mnemonic\n"));
ba104c83 12739 fprintf (stream, _("\
7c5c05ef
L
12740 -msyntax=[att|intel] (default: att)\n\
12741 use AT&T/Intel syntax\n"));
ba104c83
L
12742 fprintf (stream, _("\
12743 -mindex-reg support pseudo index registers\n"));
12744 fprintf (stream, _("\
12745 -mnaked-reg don't require `%%' prefix for registers\n"));
12746 fprintf (stream, _("\
7e8b059b 12747 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12748#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12749 fprintf (stream, _("\
12750 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12751 fprintf (stream, _("\
12752 -mx86-used-note=[no|yes] "));
12753 if (DEFAULT_X86_USED_NOTE)
12754 fprintf (stream, _("(default: yes)\n"));
12755 else
12756 fprintf (stream, _("(default: no)\n"));
12757 fprintf (stream, _("\
12758 generate x86 used ISA and feature properties\n"));
12759#endif
12760#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12761 fprintf (stream, _("\
12762 -mbig-obj generate big object files\n"));
12763#endif
d022bddd 12764 fprintf (stream, _("\
7c5c05ef 12765 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12766 strip all lock prefixes\n"));
5db04b09 12767 fprintf (stream, _("\
7c5c05ef 12768 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12769 encode lfence, mfence and sfence as\n\
12770 lock addl $0x0, (%%{re}sp)\n"));
12771 fprintf (stream, _("\
7c5c05ef
L
12772 -mrelax-relocations=[no|yes] "));
12773 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12774 fprintf (stream, _("(default: yes)\n"));
12775 else
12776 fprintf (stream, _("(default: no)\n"));
12777 fprintf (stream, _("\
0cb4071e
L
12778 generate relax relocations\n"));
12779 fprintf (stream, _("\
e379e5f3
L
12780 -malign-branch-boundary=NUM (default: 0)\n\
12781 align branches within NUM byte boundary\n"));
12782 fprintf (stream, _("\
12783 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12784 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12785 indirect\n\
12786 specify types of branches to align\n"));
12787 fprintf (stream, _("\
12788 -malign-branch-prefix-size=NUM (default: 5)\n\
12789 align branches with NUM prefixes per instruction\n"));
12790 fprintf (stream, _("\
76cf450b
L
12791 -mbranches-within-32B-boundaries\n\
12792 align branches within 32 byte boundary\n"));
12793 fprintf (stream, _("\
7c5c05ef 12794 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12795 fprintf (stream, _("\
12796 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12797}
12798
3e73aa7c 12799#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12800 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12801 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12802
12803/* Pick the target format to use. */
12804
47926f60 12805const char *
e3bb37b5 12806i386_target_format (void)
252b5132 12807{
351f65ca
L
12808 if (!strncmp (default_arch, "x86_64", 6))
12809 {
12810 update_code_flag (CODE_64BIT, 1);
12811 if (default_arch[6] == '\0')
7f56bc95 12812 x86_elf_abi = X86_64_ABI;
351f65ca 12813 else
7f56bc95 12814 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12815 }
3e73aa7c 12816 else if (!strcmp (default_arch, "i386"))
78f12dd3 12817 update_code_flag (CODE_32BIT, 1);
5197d474
L
12818 else if (!strcmp (default_arch, "iamcu"))
12819 {
12820 update_code_flag (CODE_32BIT, 1);
12821 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12822 {
12823 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12824 cpu_arch_name = "iamcu";
12825 cpu_sub_arch_name = NULL;
12826 cpu_arch_flags = iamcu_flags;
12827 cpu_arch_isa = PROCESSOR_IAMCU;
12828 cpu_arch_isa_flags = iamcu_flags;
12829 if (!cpu_arch_tune_set)
12830 {
12831 cpu_arch_tune = cpu_arch_isa;
12832 cpu_arch_tune_flags = cpu_arch_isa_flags;
12833 }
12834 }
8d471ec1 12835 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12836 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12837 cpu_arch_name);
12838 }
3e73aa7c 12839 else
2b5d6a91 12840 as_fatal (_("unknown architecture"));
89507696
JB
12841
12842 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12843 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12844 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12845 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12846
252b5132
RH
12847 switch (OUTPUT_FLAVOR)
12848 {
9384f2ff 12849#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12850 case bfd_target_aout_flavour:
47926f60 12851 return AOUT_TARGET_FORMAT;
4c63da97 12852#endif
9384f2ff
AM
12853#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12854# if defined (TE_PE) || defined (TE_PEP)
12855 case bfd_target_coff_flavour:
167ad85b
TG
12856 if (flag_code == CODE_64BIT)
12857 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12858 else
12859 return "pe-i386";
9384f2ff 12860# elif defined (TE_GO32)
0561d57c
JK
12861 case bfd_target_coff_flavour:
12862 return "coff-go32";
9384f2ff 12863# else
252b5132
RH
12864 case bfd_target_coff_flavour:
12865 return "coff-i386";
9384f2ff 12866# endif
4c63da97 12867#endif
3e73aa7c 12868#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12869 case bfd_target_elf_flavour:
3e73aa7c 12870 {
351f65ca
L
12871 const char *format;
12872
12873 switch (x86_elf_abi)
4fa24527 12874 {
351f65ca
L
12875 default:
12876 format = ELF_TARGET_FORMAT;
e379e5f3
L
12877#ifndef TE_SOLARIS
12878 tls_get_addr = "___tls_get_addr";
12879#endif
351f65ca 12880 break;
7f56bc95 12881 case X86_64_ABI:
351f65ca 12882 use_rela_relocations = 1;
4fa24527 12883 object_64bit = 1;
e379e5f3
L
12884#ifndef TE_SOLARIS
12885 tls_get_addr = "__tls_get_addr";
12886#endif
351f65ca
L
12887 format = ELF_TARGET_FORMAT64;
12888 break;
7f56bc95 12889 case X86_64_X32_ABI:
4fa24527 12890 use_rela_relocations = 1;
351f65ca 12891 object_64bit = 1;
e379e5f3
L
12892#ifndef TE_SOLARIS
12893 tls_get_addr = "__tls_get_addr";
12894#endif
862be3fb 12895 disallow_64bit_reloc = 1;
351f65ca
L
12896 format = ELF_TARGET_FORMAT32;
12897 break;
4fa24527 12898 }
3632d14b 12899 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12900 {
7f56bc95 12901 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12902 as_fatal (_("Intel L1OM is 64bit only"));
12903 return ELF_TARGET_L1OM_FORMAT;
12904 }
b49f93f6 12905 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12906 {
12907 if (x86_elf_abi != X86_64_ABI)
12908 as_fatal (_("Intel K1OM is 64bit only"));
12909 return ELF_TARGET_K1OM_FORMAT;
12910 }
81486035
L
12911 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12912 {
12913 if (x86_elf_abi != I386_ABI)
12914 as_fatal (_("Intel MCU is 32bit only"));
12915 return ELF_TARGET_IAMCU_FORMAT;
12916 }
8a9036a4 12917 else
351f65ca 12918 return format;
3e73aa7c 12919 }
e57f8c65
TG
12920#endif
12921#if defined (OBJ_MACH_O)
12922 case bfd_target_mach_o_flavour:
d382c579
TG
12923 if (flag_code == CODE_64BIT)
12924 {
12925 use_rela_relocations = 1;
12926 object_64bit = 1;
12927 return "mach-o-x86-64";
12928 }
12929 else
12930 return "mach-o-i386";
4c63da97 12931#endif
252b5132
RH
12932 default:
12933 abort ();
12934 return NULL;
12935 }
12936}
12937
47926f60 12938#endif /* OBJ_MAYBE_ more than one */
252b5132 12939\f
252b5132 12940symbolS *
7016a5d5 12941md_undefined_symbol (char *name)
252b5132 12942{
18dc2407
ILT
12943 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12944 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12945 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12946 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12947 {
12948 if (!GOT_symbol)
12949 {
12950 if (symbol_find (name))
12951 as_bad (_("GOT already in symbol table"));
12952 GOT_symbol = symbol_new (name, undefined_section,
12953 (valueT) 0, &zero_address_frag);
12954 };
12955 return GOT_symbol;
12956 }
252b5132
RH
12957 return 0;
12958}
12959
12960/* Round up a section size to the appropriate boundary. */
47926f60 12961
252b5132 12962valueT
7016a5d5 12963md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12964{
4c63da97
AM
12965#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12966 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12967 {
12968 /* For a.out, force the section size to be aligned. If we don't do
12969 this, BFD will align it for us, but it will not write out the
12970 final bytes of the section. This may be a bug in BFD, but it is
12971 easier to fix it here since that is how the other a.out targets
12972 work. */
12973 int align;
12974
fd361982 12975 align = bfd_section_alignment (segment);
8d3842cd 12976 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12977 }
252b5132
RH
12978#endif
12979
12980 return size;
12981}
12982
12983/* On the i386, PC-relative offsets are relative to the start of the
12984 next instruction. That is, the address of the offset, plus its
12985 size, since the offset is always the last part of the insn. */
12986
12987long
e3bb37b5 12988md_pcrel_from (fixS *fixP)
252b5132
RH
12989{
12990 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12991}
12992
12993#ifndef I386COFF
12994
12995static void
e3bb37b5 12996s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 12997{
29b0f896 12998 int temp;
252b5132 12999
8a75718c
JB
13000#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13001 if (IS_ELF)
13002 obj_elf_section_change_hook ();
13003#endif
252b5132
RH
13004 temp = get_absolute_expression ();
13005 subseg_set (bss_section, (subsegT) temp);
13006 demand_empty_rest_of_line ();
13007}
13008
13009#endif
13010
e379e5f3
L
13011/* Remember constant directive. */
13012
13013void
13014i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13015{
13016 if (last_insn.kind != last_insn_directive
13017 && (bfd_section_flags (now_seg) & SEC_CODE))
13018 {
13019 last_insn.seg = now_seg;
13020 last_insn.kind = last_insn_directive;
13021 last_insn.name = "constant directive";
13022 last_insn.file = as_where (&last_insn.line);
13023 }
13024}
13025
252b5132 13026void
e3bb37b5 13027i386_validate_fix (fixS *fixp)
252b5132 13028{
02a86693 13029 if (fixp->fx_subsy)
252b5132 13030 {
02a86693 13031 if (fixp->fx_subsy == GOT_symbol)
23df1078 13032 {
02a86693
L
13033 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13034 {
13035 if (!object_64bit)
13036 abort ();
13037#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13038 if (fixp->fx_tcbit2)
56ceb5b5
L
13039 fixp->fx_r_type = (fixp->fx_tcbit
13040 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13041 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13042 else
13043#endif
13044 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13045 }
d6ab8113 13046 else
02a86693
L
13047 {
13048 if (!object_64bit)
13049 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13050 else
13051 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13052 }
13053 fixp->fx_subsy = 0;
23df1078 13054 }
252b5132 13055 }
02a86693
L
13056#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13057 else if (!object_64bit)
13058 {
13059 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13060 && fixp->fx_tcbit2)
13061 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13062 }
13063#endif
252b5132
RH
13064}
13065
252b5132 13066arelent *
7016a5d5 13067tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13068{
13069 arelent *rel;
13070 bfd_reloc_code_real_type code;
13071
13072 switch (fixp->fx_r_type)
13073 {
8ce3d284 13074#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13075 case BFD_RELOC_SIZE32:
13076 case BFD_RELOC_SIZE64:
13077 if (S_IS_DEFINED (fixp->fx_addsy)
13078 && !S_IS_EXTERNAL (fixp->fx_addsy))
13079 {
13080 /* Resolve size relocation against local symbol to size of
13081 the symbol plus addend. */
13082 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13083 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13084 && !fits_in_unsigned_long (value))
13085 as_bad_where (fixp->fx_file, fixp->fx_line,
13086 _("symbol size computation overflow"));
13087 fixp->fx_addsy = NULL;
13088 fixp->fx_subsy = NULL;
13089 md_apply_fix (fixp, (valueT *) &value, NULL);
13090 return NULL;
13091 }
8ce3d284 13092#endif
1a0670f3 13093 /* Fall through. */
8fd4256d 13094
3e73aa7c
JH
13095 case BFD_RELOC_X86_64_PLT32:
13096 case BFD_RELOC_X86_64_GOT32:
13097 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13098 case BFD_RELOC_X86_64_GOTPCRELX:
13099 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13100 case BFD_RELOC_386_PLT32:
13101 case BFD_RELOC_386_GOT32:
02a86693 13102 case BFD_RELOC_386_GOT32X:
252b5132
RH
13103 case BFD_RELOC_386_GOTOFF:
13104 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13105 case BFD_RELOC_386_TLS_GD:
13106 case BFD_RELOC_386_TLS_LDM:
13107 case BFD_RELOC_386_TLS_LDO_32:
13108 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13109 case BFD_RELOC_386_TLS_IE:
13110 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13111 case BFD_RELOC_386_TLS_LE_32:
13112 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13113 case BFD_RELOC_386_TLS_GOTDESC:
13114 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13115 case BFD_RELOC_X86_64_TLSGD:
13116 case BFD_RELOC_X86_64_TLSLD:
13117 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13118 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13119 case BFD_RELOC_X86_64_GOTTPOFF:
13120 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13121 case BFD_RELOC_X86_64_TPOFF64:
13122 case BFD_RELOC_X86_64_GOTOFF64:
13123 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13124 case BFD_RELOC_X86_64_GOT64:
13125 case BFD_RELOC_X86_64_GOTPCREL64:
13126 case BFD_RELOC_X86_64_GOTPC64:
13127 case BFD_RELOC_X86_64_GOTPLT64:
13128 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13129 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13130 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13131 case BFD_RELOC_RVA:
13132 case BFD_RELOC_VTABLE_ENTRY:
13133 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13134#ifdef TE_PE
13135 case BFD_RELOC_32_SECREL:
13136#endif
252b5132
RH
13137 code = fixp->fx_r_type;
13138 break;
dbbaec26
L
13139 case BFD_RELOC_X86_64_32S:
13140 if (!fixp->fx_pcrel)
13141 {
13142 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13143 code = fixp->fx_r_type;
13144 break;
13145 }
1a0670f3 13146 /* Fall through. */
252b5132 13147 default:
93382f6d 13148 if (fixp->fx_pcrel)
252b5132 13149 {
93382f6d
AM
13150 switch (fixp->fx_size)
13151 {
13152 default:
b091f402
AM
13153 as_bad_where (fixp->fx_file, fixp->fx_line,
13154 _("can not do %d byte pc-relative relocation"),
13155 fixp->fx_size);
93382f6d
AM
13156 code = BFD_RELOC_32_PCREL;
13157 break;
13158 case 1: code = BFD_RELOC_8_PCREL; break;
13159 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13160 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13161#ifdef BFD64
13162 case 8: code = BFD_RELOC_64_PCREL; break;
13163#endif
93382f6d
AM
13164 }
13165 }
13166 else
13167 {
13168 switch (fixp->fx_size)
13169 {
13170 default:
b091f402
AM
13171 as_bad_where (fixp->fx_file, fixp->fx_line,
13172 _("can not do %d byte relocation"),
13173 fixp->fx_size);
93382f6d
AM
13174 code = BFD_RELOC_32;
13175 break;
13176 case 1: code = BFD_RELOC_8; break;
13177 case 2: code = BFD_RELOC_16; break;
13178 case 4: code = BFD_RELOC_32; break;
937149dd 13179#ifdef BFD64
3e73aa7c 13180 case 8: code = BFD_RELOC_64; break;
937149dd 13181#endif
93382f6d 13182 }
252b5132
RH
13183 }
13184 break;
13185 }
252b5132 13186
d182319b
JB
13187 if ((code == BFD_RELOC_32
13188 || code == BFD_RELOC_32_PCREL
13189 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13190 && GOT_symbol
13191 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13192 {
4fa24527 13193 if (!object_64bit)
d6ab8113
JB
13194 code = BFD_RELOC_386_GOTPC;
13195 else
13196 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13197 }
7b81dfbb
AJ
13198 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13199 && GOT_symbol
13200 && fixp->fx_addsy == GOT_symbol)
13201 {
13202 code = BFD_RELOC_X86_64_GOTPC64;
13203 }
252b5132 13204
add39d23
TS
13205 rel = XNEW (arelent);
13206 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13207 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13208
13209 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13210
3e73aa7c
JH
13211 if (!use_rela_relocations)
13212 {
13213 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13214 vtable entry to be used in the relocation's section offset. */
13215 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13216 rel->address = fixp->fx_offset;
fbeb56a4
DK
13217#if defined (OBJ_COFF) && defined (TE_PE)
13218 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13219 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13220 else
13221#endif
c6682705 13222 rel->addend = 0;
3e73aa7c
JH
13223 }
13224 /* Use the rela in 64bit mode. */
252b5132 13225 else
3e73aa7c 13226 {
862be3fb
L
13227 if (disallow_64bit_reloc)
13228 switch (code)
13229 {
862be3fb
L
13230 case BFD_RELOC_X86_64_DTPOFF64:
13231 case BFD_RELOC_X86_64_TPOFF64:
13232 case BFD_RELOC_64_PCREL:
13233 case BFD_RELOC_X86_64_GOTOFF64:
13234 case BFD_RELOC_X86_64_GOT64:
13235 case BFD_RELOC_X86_64_GOTPCREL64:
13236 case BFD_RELOC_X86_64_GOTPC64:
13237 case BFD_RELOC_X86_64_GOTPLT64:
13238 case BFD_RELOC_X86_64_PLTOFF64:
13239 as_bad_where (fixp->fx_file, fixp->fx_line,
13240 _("cannot represent relocation type %s in x32 mode"),
13241 bfd_get_reloc_code_name (code));
13242 break;
13243 default:
13244 break;
13245 }
13246
062cd5e7
AS
13247 if (!fixp->fx_pcrel)
13248 rel->addend = fixp->fx_offset;
13249 else
13250 switch (code)
13251 {
13252 case BFD_RELOC_X86_64_PLT32:
13253 case BFD_RELOC_X86_64_GOT32:
13254 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13255 case BFD_RELOC_X86_64_GOTPCRELX:
13256 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13257 case BFD_RELOC_X86_64_TLSGD:
13258 case BFD_RELOC_X86_64_TLSLD:
13259 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13260 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13261 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13262 rel->addend = fixp->fx_offset - fixp->fx_size;
13263 break;
13264 default:
13265 rel->addend = (section->vma
13266 - fixp->fx_size
13267 + fixp->fx_addnumber
13268 + md_pcrel_from (fixp));
13269 break;
13270 }
3e73aa7c
JH
13271 }
13272
252b5132
RH
13273 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13274 if (rel->howto == NULL)
13275 {
13276 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13277 _("cannot represent relocation type %s"),
252b5132
RH
13278 bfd_get_reloc_code_name (code));
13279 /* Set howto to a garbage value so that we can keep going. */
13280 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13281 gas_assert (rel->howto != NULL);
252b5132
RH
13282 }
13283
13284 return rel;
13285}
13286
ee86248c 13287#include "tc-i386-intel.c"
54cfded0 13288
a60de03c
JB
13289void
13290tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13291{
a60de03c
JB
13292 int saved_naked_reg;
13293 char saved_register_dot;
54cfded0 13294
a60de03c
JB
13295 saved_naked_reg = allow_naked_reg;
13296 allow_naked_reg = 1;
13297 saved_register_dot = register_chars['.'];
13298 register_chars['.'] = '.';
13299 allow_pseudo_reg = 1;
13300 expression_and_evaluate (exp);
13301 allow_pseudo_reg = 0;
13302 register_chars['.'] = saved_register_dot;
13303 allow_naked_reg = saved_naked_reg;
13304
e96d56a1 13305 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13306 {
a60de03c
JB
13307 if ((addressT) exp->X_add_number < i386_regtab_size)
13308 {
13309 exp->X_op = O_constant;
13310 exp->X_add_number = i386_regtab[exp->X_add_number]
13311 .dw2_regnum[flag_code >> 1];
13312 }
13313 else
13314 exp->X_op = O_illegal;
54cfded0 13315 }
54cfded0
AM
13316}
13317
13318void
13319tc_x86_frame_initial_instructions (void)
13320{
a60de03c
JB
13321 static unsigned int sp_regno[2];
13322
13323 if (!sp_regno[flag_code >> 1])
13324 {
13325 char *saved_input = input_line_pointer;
13326 char sp[][4] = {"esp", "rsp"};
13327 expressionS exp;
a4447b93 13328
a60de03c
JB
13329 input_line_pointer = sp[flag_code >> 1];
13330 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13331 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13332 sp_regno[flag_code >> 1] = exp.X_add_number;
13333 input_line_pointer = saved_input;
13334 }
a4447b93 13335
61ff971f
L
13336 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13337 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13338}
d2b2c203 13339
d7921315
L
13340int
13341x86_dwarf2_addr_size (void)
13342{
13343#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13344 if (x86_elf_abi == X86_64_X32_ABI)
13345 return 4;
13346#endif
13347 return bfd_arch_bits_per_address (stdoutput) / 8;
13348}
13349
d2b2c203
DJ
13350int
13351i386_elf_section_type (const char *str, size_t len)
13352{
13353 if (flag_code == CODE_64BIT
13354 && len == sizeof ("unwind") - 1
13355 && strncmp (str, "unwind", 6) == 0)
13356 return SHT_X86_64_UNWIND;
13357
13358 return -1;
13359}
bb41ade5 13360
ad5fec3b
EB
13361#ifdef TE_SOLARIS
13362void
13363i386_solaris_fix_up_eh_frame (segT sec)
13364{
13365 if (flag_code == CODE_64BIT)
13366 elf_section_type (sec) = SHT_X86_64_UNWIND;
13367}
13368#endif
13369
bb41ade5
AM
13370#ifdef TE_PE
13371void
13372tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13373{
91d6fa6a 13374 expressionS exp;
bb41ade5 13375
91d6fa6a
NC
13376 exp.X_op = O_secrel;
13377 exp.X_add_symbol = symbol;
13378 exp.X_add_number = 0;
13379 emit_expr (&exp, size);
bb41ade5
AM
13380}
13381#endif
3b22753a
L
13382
13383#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13384/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13385
01e1a5bc 13386bfd_vma
6d4af3c2 13387x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13388{
13389 if (flag_code == CODE_64BIT)
13390 {
13391 if (letter == 'l')
13392 return SHF_X86_64_LARGE;
13393
8f3bae45 13394 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13395 }
3b22753a 13396 else
8f3bae45 13397 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13398 return -1;
13399}
13400
01e1a5bc 13401bfd_vma
3b22753a
L
13402x86_64_section_word (char *str, size_t len)
13403{
8620418b 13404 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13405 return SHF_X86_64_LARGE;
13406
13407 return -1;
13408}
13409
13410static void
13411handle_large_common (int small ATTRIBUTE_UNUSED)
13412{
13413 if (flag_code != CODE_64BIT)
13414 {
13415 s_comm_internal (0, elf_common_parse);
13416 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13417 }
13418 else
13419 {
13420 static segT lbss_section;
13421 asection *saved_com_section_ptr = elf_com_section_ptr;
13422 asection *saved_bss_section = bss_section;
13423
13424 if (lbss_section == NULL)
13425 {
13426 flagword applicable;
13427 segT seg = now_seg;
13428 subsegT subseg = now_subseg;
13429
13430 /* The .lbss section is for local .largecomm symbols. */
13431 lbss_section = subseg_new (".lbss", 0);
13432 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13433 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13434 seg_info (lbss_section)->bss = 1;
13435
13436 subseg_set (seg, subseg);
13437 }
13438
13439 elf_com_section_ptr = &_bfd_elf_large_com_section;
13440 bss_section = lbss_section;
13441
13442 s_comm_internal (0, elf_common_parse);
13443
13444 elf_com_section_ptr = saved_com_section_ptr;
13445 bss_section = saved_bss_section;
13446 }
13447}
13448#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.284608 seconds and 4 git commands to generate.