* lib/insight-support.exp (_gdbtk_export_target_info): Add
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132
RH
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 64static int add_prefix PARAMS ((unsigned int));
3e73aa7c 65static void set_code_flag PARAMS ((int));
47926f60 66static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 67static void set_intel_syntax PARAMS ((int));
e413e4e9 68static void set_cpu_arch PARAMS ((int));
252b5132
RH
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
3e73aa7c 72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
f3c180ae
AM
73#define RELOC_ENUM enum bfd_reloc_code_real
74#else
75#define RELOC_ENUM int
252b5132
RH
76#endif
77
3e73aa7c
JH
78#ifndef DEFAULT_ARCH
79#define DEFAULT_ARCH "i386"
80#endif
81static char *default_arch = DEFAULT_ARCH;
82
252b5132 83/* 'md_assemble ()' gathers together information and puts it into a
47926f60 84 i386_insn. */
252b5132 85
520dc8e8
AM
86union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
252b5132
RH
93struct _i386_insn
94 {
47926f60 95 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
47926f60 102 /* OPERANDS gives the number of given operands. */
252b5132
RH
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
47926f60 107 operands. */
252b5132
RH
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 111 use OP[i] for the corresponding operand. */
252b5132
RH
112 unsigned int types[MAX_OPERANDS];
113
520dc8e8
AM
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
252b5132 117
3e73aa7c
JH
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120#define Operand_PCrel 1
121
252b5132 122 /* Relocation type for operand */
f3c180ae 123 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 124
252b5132
RH
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 132 explicit segment overrides are given. */
ce8a8b2f 133 const seg_entry *seg[2];
252b5132
RH
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
3e73aa7c 144 rex_byte rex;
252b5132
RH
145 sib_byte sib;
146 };
147
148typedef struct _i386_insn i386_insn;
149
150/* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152#ifdef LEX_AT
153const char extra_symbol_chars[] = "*%-(@";
154#else
155const char extra_symbol_chars[] = "*%-(";
156#endif
157
158/* This array holds the chars that always start a comment. If the
ce8a8b2f 159 pre-processor is disabled, these aren't very useful. */
5bae9b28 160#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
161/* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163const char comment_chars[] = "#/";
164#define PREFIX_SEPARATOR '\\'
165#else
166const char comment_chars[] = "#";
167#define PREFIX_SEPARATOR '/'
168#endif
169
170/* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 174 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
252b5132 177 '/' isn't otherwise defined. */
5bae9b28 178#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
179const char line_comment_chars[] = "";
180#else
181const char line_comment_chars[] = "/";
182#endif
183
63a0b638 184const char line_separator_chars[] = ";";
252b5132 185
ce8a8b2f
AM
186/* Chars that can be used to separate mant from exp in floating point
187 nums. */
252b5132
RH
188const char EXP_CHARS[] = "eE";
189
ce8a8b2f
AM
190/* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
252b5132
RH
193const char FLT_CHARS[] = "fFdDxX";
194
ce8a8b2f 195/* Tables for lexical analysis. */
252b5132
RH
196static char mnemonic_chars[256];
197static char register_chars[256];
198static char operand_chars[256];
199static char identifier_chars[256];
200static char digit_chars[256];
201
ce8a8b2f 202/* Lexical macros. */
252b5132
RH
203#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204#define is_operand_char(x) (operand_chars[(unsigned char) x])
205#define is_register_char(x) (register_chars[(unsigned char) x])
206#define is_space_char(x) ((x) == ' ')
207#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208#define is_digit_char(x) (digit_chars[(unsigned char) x])
209
ce8a8b2f 210/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
211static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213/* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
47926f60 216 assembler instruction). */
252b5132 217static char save_stack[32];
ce8a8b2f 218static char *save_stack_p;
252b5132
RH
219#define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221#define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
47926f60 224/* The instruction we're assembling. */
252b5132
RH
225static i386_insn i;
226
227/* Possible templates for current insn. */
228static const templates *current_templates;
229
47926f60 230/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
231static expressionS disp_expressions[2], im_expressions[2];
232
47926f60
KH
233/* Current operand we are working on. */
234static int this_operand;
252b5132 235
3e73aa7c
JH
236/* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
f3c180ae 243#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
b77a7acd 249static const char *flag_code_names[] =
3e73aa7c
JH
250 {
251 "32",
252 "16",
253 "64"
254 };
252b5132 255
47926f60
KH
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
252b5132 259
47926f60
KH
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
252b5132 262
47926f60
KH
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
eecb386c 267
47926f60
KH
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
a38cf1db 270
47926f60
KH
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
a38cf1db 273
47926f60 274/* CPU feature flags. */
3e73aa7c 275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 276
fddf5b5b
AM
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
252b5132 281/* Interface to relax_segment.
fddf5b5b
AM
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
252b5132 285
47926f60 286/* Types. */
93c2a809
AM
287#define UNCOND_JUMP 0
288#define COND_JUMP 1
289#define COND_JUMP86 2
fddf5b5b 290
47926f60 291/* Sizes. */
252b5132
RH
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
fddf5b5b
AM
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
24eab124
AM
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
93c2a809 326 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 327 4) which index into the table to try if we can't fit into this one. */
252b5132 328
fddf5b5b 329 /* UNCOND_JUMP states. */
93c2a809
AM
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
331 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
332 /* dword jmp adds 4 bytes to frag:
333 0 extra opcode bytes, 4 displacement bytes. */
252b5132 334 {0, 0, 4, 0},
93c2a809
AM
335 /* word jmp adds 2 byte2 to frag:
336 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
337 {0, 0, 2, 0},
338
93c2a809
AM
339 /* COND_JUMP states. */
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
341 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
342 /* dword conditionals adds 5 bytes to frag:
343 1 extra opcode byte, 4 displacement bytes. */
344 {0, 0, 5, 0},
fddf5b5b 345 /* word conditionals add 3 bytes to frag:
93c2a809
AM
346 1 extra opcode byte, 2 displacement bytes. */
347 {0, 0, 3, 0},
348
349 /* COND_JUMP86 states. */
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
351 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
352 /* dword conditionals adds 5 bytes to frag:
353 1 extra opcode byte, 4 displacement bytes. */
354 {0, 0, 5, 0},
355 /* word conditionals add 4 bytes to frag:
356 1 displacement byte and a 3 byte long branch insn. */
357 {0, 0, 4, 0}
252b5132
RH
358};
359
e413e4e9
AM
360static const arch_entry cpu_arch[] = {
361 {"i8086", Cpu086 },
362 {"i186", Cpu086|Cpu186 },
363 {"i286", Cpu086|Cpu186|Cpu286 },
364 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
365 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
366 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
367 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
368 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
369 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 370 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
371 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
372 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 373 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
374 {NULL, 0 }
375};
376
252b5132
RH
377void
378i386_align_code (fragP, count)
379 fragS *fragP;
380 int count;
381{
ce8a8b2f
AM
382 /* Various efficient no-op patterns for aligning code labels.
383 Note: Don't try to assemble the instructions in the comments.
384 0L and 0w are not legal. */
252b5132
RH
385 static const char f32_1[] =
386 {0x90}; /* nop */
387 static const char f32_2[] =
388 {0x89,0xf6}; /* movl %esi,%esi */
389 static const char f32_3[] =
390 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
391 static const char f32_4[] =
392 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
393 static const char f32_5[] =
394 {0x90, /* nop */
395 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_6[] =
397 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
398 static const char f32_7[] =
399 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
400 static const char f32_8[] =
401 {0x90, /* nop */
402 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_9[] =
404 {0x89,0xf6, /* movl %esi,%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_10[] =
407 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_11[] =
410 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_12[] =
413 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
414 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
415 static const char f32_13[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
418 static const char f32_14[] =
419 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_15[] =
422 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
423 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
424 static const char f16_3[] =
425 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
426 static const char f16_4[] =
427 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
428 static const char f16_5[] =
429 {0x90, /* nop */
430 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_6[] =
432 {0x89,0xf6, /* mov %si,%si */
433 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
434 static const char f16_7[] =
435 {0x8d,0x74,0x00, /* lea 0(%si),%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_8[] =
438 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char *const f32_patt[] = {
441 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
442 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
443 };
444 static const char *const f16_patt[] = {
c3332e24 445 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
446 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
447 };
448
3e73aa7c
JH
449 /* ??? We can't use these fillers for x86_64, since they often kills the
450 upper halves. Solve later. */
451 if (flag_code == CODE_64BIT)
452 count = 1;
453
252b5132
RH
454 if (count > 0 && count <= 15)
455 {
3e73aa7c 456 if (flag_code == CODE_16BIT)
252b5132 457 {
47926f60
KH
458 memcpy (fragP->fr_literal + fragP->fr_fix,
459 f16_patt[count - 1], count);
460 if (count > 8)
461 /* Adjust jump offset. */
252b5132
RH
462 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
463 }
464 else
47926f60
KH
465 memcpy (fragP->fr_literal + fragP->fr_fix,
466 f32_patt[count - 1], count);
252b5132
RH
467 fragP->fr_var = count;
468 }
469}
470
471static char *output_invalid PARAMS ((int c));
472static int i386_operand PARAMS ((char *operand_string));
473static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
474static const reg_entry *parse_register PARAMS ((char *reg_string,
475 char **end_op));
476
477#ifndef I386COFF
478static void s_bss PARAMS ((int));
479#endif
480
ce8a8b2f 481symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
482
483static INLINE unsigned int
484mode_from_disp_size (t)
485 unsigned int t;
486{
3e73aa7c 487 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
488}
489
490static INLINE int
491fits_in_signed_byte (num)
847f7ad4 492 offsetT num;
252b5132
RH
493{
494 return (num >= -128) && (num <= 127);
47926f60 495}
252b5132
RH
496
497static INLINE int
498fits_in_unsigned_byte (num)
847f7ad4 499 offsetT num;
252b5132
RH
500{
501 return (num & 0xff) == num;
47926f60 502}
252b5132
RH
503
504static INLINE int
505fits_in_unsigned_word (num)
847f7ad4 506 offsetT num;
252b5132
RH
507{
508 return (num & 0xffff) == num;
47926f60 509}
252b5132
RH
510
511static INLINE int
512fits_in_signed_word (num)
847f7ad4 513 offsetT num;
252b5132
RH
514{
515 return (-32768 <= num) && (num <= 32767);
47926f60 516}
3e73aa7c
JH
517static INLINE int
518fits_in_signed_long (num)
519 offsetT num ATTRIBUTE_UNUSED;
520{
521#ifndef BFD64
522 return 1;
523#else
524 return (!(((offsetT) -1 << 31) & num)
525 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
526#endif
527} /* fits_in_signed_long() */
528static INLINE int
529fits_in_unsigned_long (num)
530 offsetT num ATTRIBUTE_UNUSED;
531{
532#ifndef BFD64
533 return 1;
534#else
535 return (num & (((offsetT) 2 << 31) - 1)) == num;
536#endif
537} /* fits_in_unsigned_long() */
252b5132
RH
538
539static int
540smallest_imm_type (num)
847f7ad4 541 offsetT num;
252b5132 542{
3e73aa7c
JH
543 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
544 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
545 {
546 /* This code is disabled on the 486 because all the Imm1 forms
547 in the opcode table are slower on the i486. They're the
548 versions with the implicitly specified single-position
549 displacement, which has another syntax if you really want to
550 use that form. */
551 if (num == 1)
3e73aa7c 552 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 553 }
252b5132 554 return (fits_in_signed_byte (num)
3e73aa7c 555 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 556 : fits_in_unsigned_byte (num)
3e73aa7c 557 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 558 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
559 ? (Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_signed_long (num)
561 ? (Imm32 | Imm32S | Imm64)
562 : fits_in_unsigned_long (num)
563 ? (Imm32 | Imm64)
564 : Imm64);
47926f60 565}
252b5132 566
847f7ad4
AM
567static offsetT
568offset_in_range (val, size)
569 offsetT val;
570 int size;
571{
508866be 572 addressT mask;
ba2adb93 573
847f7ad4
AM
574 switch (size)
575 {
508866be
L
576 case 1: mask = ((addressT) 1 << 8) - 1; break;
577 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 578 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
579#ifdef BFD64
580 case 8: mask = ((addressT) 2 << 63) - 1; break;
581#endif
47926f60 582 default: abort ();
847f7ad4
AM
583 }
584
ba2adb93 585 /* If BFD64, sign extend val. */
3e73aa7c
JH
586 if (!use_rela_relocations)
587 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
588 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 589
47926f60 590 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
591 {
592 char buf1[40], buf2[40];
593
594 sprint_value (buf1, val);
595 sprint_value (buf2, val & mask);
596 as_warn (_("%s shortened to %s"), buf1, buf2);
597 }
598 return val & mask;
599}
600
252b5132
RH
601/* Returns 0 if attempting to add a prefix where one from the same
602 class already exists, 1 if non rep/repne added, 2 if rep/repne
603 added. */
604static int
605add_prefix (prefix)
606 unsigned int prefix;
607{
608 int ret = 1;
609 int q;
610
3e73aa7c
JH
611 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
612 q = REX_PREFIX;
613 else
614 switch (prefix)
615 {
616 default:
617 abort ();
618
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 q = SEG_PREFIX;
626 break;
252b5132 627
3e73aa7c
JH
628 case REPNE_PREFIX_OPCODE:
629 case REPE_PREFIX_OPCODE:
630 ret = 2;
631 /* fall thru */
632 case LOCK_PREFIX_OPCODE:
633 q = LOCKREP_PREFIX;
634 break;
252b5132 635
3e73aa7c
JH
636 case FWAIT_OPCODE:
637 q = WAIT_PREFIX;
638 break;
252b5132 639
3e73aa7c
JH
640 case ADDR_PREFIX_OPCODE:
641 q = ADDR_PREFIX;
642 break;
252b5132 643
3e73aa7c
JH
644 case DATA_PREFIX_OPCODE:
645 q = DATA_PREFIX;
646 break;
647 }
252b5132
RH
648
649 if (i.prefix[q])
650 {
651 as_bad (_("same type of prefix used twice"));
652 return 0;
653 }
654
655 i.prefixes += 1;
656 i.prefix[q] = prefix;
657 return ret;
658}
659
660static void
3e73aa7c 661set_code_flag (value)
e5cb08ac 662 int value;
eecb386c 663{
3e73aa7c
JH
664 flag_code = value;
665 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
666 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
667 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
668 {
669 as_bad (_("64bit mode not supported on this CPU."));
670 }
671 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
672 {
673 as_bad (_("32bit mode not supported on this CPU."));
674 }
eecb386c
AM
675 stackop_size = '\0';
676}
677
678static void
3e73aa7c
JH
679set_16bit_gcc_code_flag (new_code_flag)
680 int new_code_flag;
252b5132 681{
3e73aa7c
JH
682 flag_code = new_code_flag;
683 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
684 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
685 stackop_size = 'l';
252b5132
RH
686}
687
688static void
689set_intel_syntax (syntax_flag)
eecb386c 690 int syntax_flag;
252b5132
RH
691{
692 /* Find out if register prefixing is specified. */
693 int ask_naked_reg = 0;
694
695 SKIP_WHITESPACE ();
696 if (! is_end_of_line[(unsigned char) *input_line_pointer])
697 {
698 char *string = input_line_pointer;
699 int e = get_symbol_end ();
700
47926f60 701 if (strcmp (string, "prefix") == 0)
252b5132 702 ask_naked_reg = 1;
47926f60 703 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
704 ask_naked_reg = -1;
705 else
d0b47220 706 as_bad (_("bad argument to syntax directive."));
252b5132
RH
707 *input_line_pointer = e;
708 }
709 demand_empty_rest_of_line ();
c3332e24 710
252b5132
RH
711 intel_syntax = syntax_flag;
712
713 if (ask_naked_reg == 0)
714 {
715#ifdef BFD_ASSEMBLER
716 allow_naked_reg = (intel_syntax
24eab124 717 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 718#else
47926f60
KH
719 /* Conservative default. */
720 allow_naked_reg = 0;
252b5132
RH
721#endif
722 }
723 else
724 allow_naked_reg = (ask_naked_reg < 0);
725}
726
e413e4e9
AM
727static void
728set_cpu_arch (dummy)
47926f60 729 int dummy ATTRIBUTE_UNUSED;
e413e4e9 730{
47926f60 731 SKIP_WHITESPACE ();
e413e4e9
AM
732
733 if (! is_end_of_line[(unsigned char) *input_line_pointer])
734 {
735 char *string = input_line_pointer;
736 int e = get_symbol_end ();
737 int i;
738
739 for (i = 0; cpu_arch[i].name; i++)
740 {
741 if (strcmp (string, cpu_arch[i].name) == 0)
742 {
743 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
744 cpu_arch_flags = (cpu_arch[i].flags
745 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
746 break;
747 }
748 }
749 if (!cpu_arch[i].name)
750 as_bad (_("no such architecture: `%s'"), string);
751
752 *input_line_pointer = e;
753 }
754 else
755 as_bad (_("missing cpu architecture"));
756
fddf5b5b
AM
757 no_cond_jump_promotion = 0;
758 if (*input_line_pointer == ','
759 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
760 {
761 char *string = ++input_line_pointer;
762 int e = get_symbol_end ();
763
764 if (strcmp (string, "nojumps") == 0)
765 no_cond_jump_promotion = 1;
766 else if (strcmp (string, "jumps") == 0)
767 ;
768 else
769 as_bad (_("no such architecture modifier: `%s'"), string);
770
771 *input_line_pointer = e;
772 }
773
e413e4e9
AM
774 demand_empty_rest_of_line ();
775}
776
252b5132
RH
777const pseudo_typeS md_pseudo_table[] =
778{
252b5132
RH
779#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
780 {"align", s_align_bytes, 0},
781#else
782 {"align", s_align_ptwo, 0},
e413e4e9
AM
783#endif
784 {"arch", set_cpu_arch, 0},
785#ifndef I386COFF
786 {"bss", s_bss, 0},
252b5132
RH
787#endif
788 {"ffloat", float_cons, 'f'},
789 {"dfloat", float_cons, 'd'},
790 {"tfloat", float_cons, 'x'},
791 {"value", cons, 2},
792 {"noopt", s_ignore, 0},
793 {"optim", s_ignore, 0},
3e73aa7c
JH
794 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
795 {"code16", set_code_flag, CODE_16BIT},
796 {"code32", set_code_flag, CODE_32BIT},
797 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
798 {"intel_syntax", set_intel_syntax, 1},
799 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
800 {"file", dwarf2_directive_file, 0},
801 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
802 {0, 0, 0}
803};
804
47926f60 805/* For interface with expression (). */
252b5132
RH
806extern char *input_line_pointer;
807
47926f60 808/* Hash table for instruction mnemonic lookup. */
252b5132 809static struct hash_control *op_hash;
47926f60
KH
810
811/* Hash table for register lookup. */
252b5132
RH
812static struct hash_control *reg_hash;
813\f
b9d79e03
JH
814#ifdef BFD_ASSEMBLER
815unsigned long
816i386_mach ()
817{
818 if (!strcmp (default_arch, "x86_64"))
819 return bfd_mach_x86_64;
820 else if (!strcmp (default_arch, "i386"))
821 return bfd_mach_i386_i386;
822 else
823 as_fatal (_("Unknown architecture"));
824}
825#endif
826\f
252b5132
RH
827void
828md_begin ()
829{
830 const char *hash_err;
831
47926f60 832 /* Initialize op_hash hash table. */
252b5132
RH
833 op_hash = hash_new ();
834
835 {
836 register const template *optab;
837 register templates *core_optab;
838
47926f60
KH
839 /* Setup for loop. */
840 optab = i386_optab;
252b5132
RH
841 core_optab = (templates *) xmalloc (sizeof (templates));
842 core_optab->start = optab;
843
844 while (1)
845 {
846 ++optab;
847 if (optab->name == NULL
848 || strcmp (optab->name, (optab - 1)->name) != 0)
849 {
850 /* different name --> ship out current template list;
47926f60 851 add to hash table; & begin anew. */
252b5132
RH
852 core_optab->end = optab;
853 hash_err = hash_insert (op_hash,
854 (optab - 1)->name,
855 (PTR) core_optab);
856 if (hash_err)
857 {
252b5132
RH
858 as_fatal (_("Internal Error: Can't hash %s: %s"),
859 (optab - 1)->name,
860 hash_err);
861 }
862 if (optab->name == NULL)
863 break;
864 core_optab = (templates *) xmalloc (sizeof (templates));
865 core_optab->start = optab;
866 }
867 }
868 }
869
47926f60 870 /* Initialize reg_hash hash table. */
252b5132
RH
871 reg_hash = hash_new ();
872 {
873 register const reg_entry *regtab;
874
875 for (regtab = i386_regtab;
876 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
877 regtab++)
878 {
879 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
880 if (hash_err)
3e73aa7c
JH
881 as_fatal (_("Internal Error: Can't hash %s: %s"),
882 regtab->reg_name,
883 hash_err);
252b5132
RH
884 }
885 }
886
47926f60 887 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
888 {
889 register int c;
890 register char *p;
891
892 for (c = 0; c < 256; c++)
893 {
894 if (isdigit (c))
895 {
896 digit_chars[c] = c;
897 mnemonic_chars[c] = c;
898 register_chars[c] = c;
899 operand_chars[c] = c;
900 }
901 else if (islower (c))
902 {
903 mnemonic_chars[c] = c;
904 register_chars[c] = c;
905 operand_chars[c] = c;
906 }
907 else if (isupper (c))
908 {
909 mnemonic_chars[c] = tolower (c);
910 register_chars[c] = mnemonic_chars[c];
911 operand_chars[c] = c;
912 }
913
914 if (isalpha (c) || isdigit (c))
915 identifier_chars[c] = c;
916 else if (c >= 128)
917 {
918 identifier_chars[c] = c;
919 operand_chars[c] = c;
920 }
921 }
922
923#ifdef LEX_AT
924 identifier_chars['@'] = '@';
925#endif
252b5132
RH
926 digit_chars['-'] = '-';
927 identifier_chars['_'] = '_';
928 identifier_chars['.'] = '.';
929
930 for (p = operand_special_chars; *p != '\0'; p++)
931 operand_chars[(unsigned char) *p] = *p;
932 }
933
934#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
936 {
937 record_alignment (text_section, 2);
938 record_alignment (data_section, 2);
939 record_alignment (bss_section, 2);
940 }
941#endif
942}
943
944void
945i386_print_statistics (file)
946 FILE *file;
947{
948 hash_print_statistics (file, "i386 opcode", op_hash);
949 hash_print_statistics (file, "i386 register", reg_hash);
950}
951\f
252b5132
RH
952#ifdef DEBUG386
953
ce8a8b2f 954/* Debugging routines for md_assemble. */
252b5132
RH
955static void pi PARAMS ((char *, i386_insn *));
956static void pte PARAMS ((template *));
957static void pt PARAMS ((unsigned int));
958static void pe PARAMS ((expressionS *));
959static void ps PARAMS ((symbolS *));
960
961static void
962pi (line, x)
963 char *line;
964 i386_insn *x;
965{
09f131f2 966 unsigned int i;
252b5132
RH
967
968 fprintf (stdout, "%s: template ", line);
969 pte (&x->tm);
09f131f2
JH
970 fprintf (stdout, " address: base %s index %s scale %x\n",
971 x->base_reg ? x->base_reg->reg_name : "none",
972 x->index_reg ? x->index_reg->reg_name : "none",
973 x->log2_scale_factor);
974 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 975 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
976 fprintf (stdout, " sib: base %x index %x scale %x\n",
977 x->sib.base, x->sib.index, x->sib.scale);
978 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
979 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
980 for (i = 0; i < x->operands; i++)
981 {
982 fprintf (stdout, " #%d: ", i + 1);
983 pt (x->types[i]);
984 fprintf (stdout, "\n");
985 if (x->types[i]
3f4438ab 986 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 987 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 988 if (x->types[i] & Imm)
520dc8e8 989 pe (x->op[i].imms);
252b5132 990 if (x->types[i] & Disp)
520dc8e8 991 pe (x->op[i].disps);
252b5132
RH
992 }
993}
994
995static void
996pte (t)
997 template *t;
998{
09f131f2 999 unsigned int i;
252b5132 1000 fprintf (stdout, " %d operands ", t->operands);
47926f60 1001 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1002 if (t->extension_opcode != None)
1003 fprintf (stdout, "ext %x ", t->extension_opcode);
1004 if (t->opcode_modifier & D)
1005 fprintf (stdout, "D");
1006 if (t->opcode_modifier & W)
1007 fprintf (stdout, "W");
1008 fprintf (stdout, "\n");
1009 for (i = 0; i < t->operands; i++)
1010 {
1011 fprintf (stdout, " #%d type ", i + 1);
1012 pt (t->operand_types[i]);
1013 fprintf (stdout, "\n");
1014 }
1015}
1016
1017static void
1018pe (e)
1019 expressionS *e;
1020{
24eab124 1021 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1022 fprintf (stdout, " add_number %ld (%lx)\n",
1023 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1024 if (e->X_add_symbol)
1025 {
1026 fprintf (stdout, " add_symbol ");
1027 ps (e->X_add_symbol);
1028 fprintf (stdout, "\n");
1029 }
1030 if (e->X_op_symbol)
1031 {
1032 fprintf (stdout, " op_symbol ");
1033 ps (e->X_op_symbol);
1034 fprintf (stdout, "\n");
1035 }
1036}
1037
1038static void
1039ps (s)
1040 symbolS *s;
1041{
1042 fprintf (stdout, "%s type %s%s",
1043 S_GET_NAME (s),
1044 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1045 segment_name (S_GET_SEGMENT (s)));
1046}
1047
1048struct type_name
1049 {
1050 unsigned int mask;
1051 char *tname;
1052 }
1053
1054type_names[] =
1055{
1056 { Reg8, "r8" },
1057 { Reg16, "r16" },
1058 { Reg32, "r32" },
09f131f2 1059 { Reg64, "r64" },
252b5132
RH
1060 { Imm8, "i8" },
1061 { Imm8S, "i8s" },
1062 { Imm16, "i16" },
1063 { Imm32, "i32" },
09f131f2
JH
1064 { Imm32S, "i32s" },
1065 { Imm64, "i64" },
252b5132
RH
1066 { Imm1, "i1" },
1067 { BaseIndex, "BaseIndex" },
1068 { Disp8, "d8" },
1069 { Disp16, "d16" },
1070 { Disp32, "d32" },
09f131f2
JH
1071 { Disp32S, "d32s" },
1072 { Disp64, "d64" },
252b5132
RH
1073 { InOutPortReg, "InOutPortReg" },
1074 { ShiftCount, "ShiftCount" },
1075 { Control, "control reg" },
1076 { Test, "test reg" },
1077 { Debug, "debug reg" },
1078 { FloatReg, "FReg" },
1079 { FloatAcc, "FAcc" },
1080 { SReg2, "SReg2" },
1081 { SReg3, "SReg3" },
1082 { Acc, "Acc" },
1083 { JumpAbsolute, "Jump Absolute" },
1084 { RegMMX, "rMMX" },
3f4438ab 1085 { RegXMM, "rXMM" },
252b5132
RH
1086 { EsSeg, "es" },
1087 { 0, "" }
1088};
1089
1090static void
1091pt (t)
1092 unsigned int t;
1093{
1094 register struct type_name *ty;
1095
09f131f2
JH
1096 for (ty = type_names; ty->mask; ty++)
1097 if (t & ty->mask)
1098 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1099 fflush (stdout);
1100}
1101
1102#endif /* DEBUG386 */
1103\f
1104int
1105tc_i386_force_relocation (fixp)
1106 struct fix *fixp;
1107{
1108#ifdef BFD_ASSEMBLER
1109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1110 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1111 return 1;
1112 return 0;
1113#else
ce8a8b2f 1114 /* For COFF. */
f6af82bd 1115 return fixp->fx_r_type == 7;
252b5132
RH
1116#endif
1117}
1118
1119#ifdef BFD_ASSEMBLER
252b5132
RH
1120
1121static bfd_reloc_code_real_type
3e73aa7c 1122reloc (size, pcrel, sign, other)
252b5132
RH
1123 int size;
1124 int pcrel;
3e73aa7c 1125 int sign;
252b5132
RH
1126 bfd_reloc_code_real_type other;
1127{
47926f60
KH
1128 if (other != NO_RELOC)
1129 return other;
252b5132
RH
1130
1131 if (pcrel)
1132 {
3e73aa7c 1133 if (!sign)
e5cb08ac 1134 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1135 switch (size)
1136 {
1137 case 1: return BFD_RELOC_8_PCREL;
1138 case 2: return BFD_RELOC_16_PCREL;
1139 case 4: return BFD_RELOC_32_PCREL;
1140 }
d0b47220 1141 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1142 }
1143 else
1144 {
3e73aa7c 1145 if (sign)
e5cb08ac 1146 switch (size)
3e73aa7c
JH
1147 {
1148 case 4: return BFD_RELOC_X86_64_32S;
1149 }
1150 else
1151 switch (size)
1152 {
1153 case 1: return BFD_RELOC_8;
1154 case 2: return BFD_RELOC_16;
1155 case 4: return BFD_RELOC_32;
1156 case 8: return BFD_RELOC_64;
1157 }
1158 as_bad (_("can not do %s %d byte relocation"),
1159 sign ? "signed" : "unsigned", size);
252b5132
RH
1160 }
1161
bfb32b52 1162 abort ();
252b5132
RH
1163 return BFD_RELOC_NONE;
1164}
1165
47926f60
KH
1166/* Here we decide which fixups can be adjusted to make them relative to
1167 the beginning of the section instead of the symbol. Basically we need
1168 to make sure that the dynamic relocations are done correctly, so in
1169 some cases we force the original symbol to be used. */
1170
252b5132 1171int
c0c949c7 1172tc_i386_fix_adjustable (fixP)
47926f60 1173 fixS *fixP;
252b5132 1174{
6d249963 1175#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1176 /* Prevent all adjustments to global symbols, or else dynamic
1177 linking will not work correctly. */
b98ef147
AM
1178 if (S_IS_EXTERNAL (fixP->fx_addsy)
1179 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1180 return 0;
1181#endif
ce8a8b2f 1182 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1183 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1184 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1185 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1188 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1190 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1191 return 0;
1192 return 1;
1193}
1194#else
ec56dfb4
L
1195#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1196#define BFD_RELOC_16 0
1197#define BFD_RELOC_32 0
1198#define BFD_RELOC_16_PCREL 0
1199#define BFD_RELOC_32_PCREL 0
1200#define BFD_RELOC_386_PLT32 0
1201#define BFD_RELOC_386_GOT32 0
1202#define BFD_RELOC_386_GOTOFF 0
1203#define BFD_RELOC_X86_64_PLT32 0
1204#define BFD_RELOC_X86_64_GOT32 0
1205#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1206#endif
1207
47926f60 1208static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1209
1210static int
252b5132
RH
1211intel_float_operand (mnemonic)
1212 char *mnemonic;
1213{
47926f60 1214 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1215 return 2;
252b5132
RH
1216
1217 if (mnemonic[0] == 'f')
1218 return 1;
1219
1220 return 0;
1221}
1222
1223/* This is the guts of the machine-dependent assembler. LINE points to a
1224 machine dependent instruction. This function is supposed to emit
1225 the frags/bytes it assembles to. */
1226
1227void
1228md_assemble (line)
1229 char *line;
1230{
47926f60 1231 /* Points to template once we've found it. */
252b5132
RH
1232 const template *t;
1233
252b5132
RH
1234 int j;
1235
1236 char mnemonic[MAX_MNEM_SIZE];
1237
47926f60 1238 /* Initialize globals. */
252b5132
RH
1239 memset (&i, '\0', sizeof (i));
1240 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1241 i.reloc[j] = NO_RELOC;
252b5132
RH
1242 memset (disp_expressions, '\0', sizeof (disp_expressions));
1243 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1244 save_stack_p = save_stack;
252b5132
RH
1245
1246 /* First parse an instruction mnemonic & call i386_operand for the operands.
1247 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1248 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1249 {
1250 char *l = line;
1251 char *token_start = l;
1252 char *mnem_p;
1253
47926f60 1254 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1255 const char *expecting_string_instruction = NULL;
1256
1257 while (1)
1258 {
1259 mnem_p = mnemonic;
1260 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1261 {
1262 mnem_p++;
1263 if (mnem_p >= mnemonic + sizeof (mnemonic))
1264 {
e413e4e9 1265 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1266 return;
1267 }
1268 l++;
1269 }
1270 if (!is_space_char (*l)
1271 && *l != END_OF_INSN
5dd0794d
AM
1272 && *l != PREFIX_SEPARATOR
1273 && *l != ',')
252b5132
RH
1274 {
1275 as_bad (_("invalid character %s in mnemonic"),
1276 output_invalid (*l));
1277 return;
1278 }
1279 if (token_start == l)
1280 {
1281 if (*l == PREFIX_SEPARATOR)
1282 as_bad (_("expecting prefix; got nothing"));
1283 else
1284 as_bad (_("expecting mnemonic; got nothing"));
1285 return;
1286 }
1287
1288 /* Look up instruction (or prefix) via hash table. */
1289 current_templates = hash_find (op_hash, mnemonic);
1290
1291 if (*l != END_OF_INSN
1292 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1293 && current_templates
1294 && (current_templates->start->opcode_modifier & IsPrefix))
1295 {
1296 /* If we are in 16-bit mode, do not allow addr16 or data16.
1297 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1298 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1299 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1300 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1301 {
1302 as_bad (_("redundant %s prefix"),
1303 current_templates->start->name);
1304 return;
1305 }
1306 /* Add prefix, checking for repeated prefixes. */
1307 switch (add_prefix (current_templates->start->base_opcode))
1308 {
1309 case 0:
1310 return;
1311 case 2:
47926f60 1312 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1313 break;
1314 }
1315 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1316 token_start = ++l;
1317 }
1318 else
1319 break;
1320 }
1321
1322 if (!current_templates)
1323 {
24eab124 1324 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1325 switch (mnem_p[-1])
1326 {
252b5132
RH
1327 case WORD_MNEM_SUFFIX:
1328 case BYTE_MNEM_SUFFIX:
3e73aa7c 1329 case QWORD_MNEM_SUFFIX:
252b5132
RH
1330 i.suffix = mnem_p[-1];
1331 mnem_p[-1] = '\0';
1332 current_templates = hash_find (op_hash, mnemonic);
24eab124 1333 break;
f16b83df
JH
1334 case SHORT_MNEM_SUFFIX:
1335 case LONG_MNEM_SUFFIX:
1336 if (!intel_syntax)
1337 {
1338 i.suffix = mnem_p[-1];
1339 mnem_p[-1] = '\0';
1340 current_templates = hash_find (op_hash, mnemonic);
1341 }
1342 break;
24eab124 1343
ce8a8b2f 1344 /* Intel Syntax. */
f16b83df 1345 case 'd':
24eab124
AM
1346 if (intel_syntax)
1347 {
f16b83df
JH
1348 if (intel_float_operand (mnemonic))
1349 i.suffix = SHORT_MNEM_SUFFIX;
1350 else
1351 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1352 mnem_p[-1] = '\0';
1353 current_templates = hash_find (op_hash, mnemonic);
24eab124 1354 }
f16b83df 1355 break;
252b5132
RH
1356 }
1357 if (!current_templates)
1358 {
e413e4e9 1359 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1360 return;
1361 }
1362 }
1363
5dd0794d
AM
1364 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1365 {
1366 /* Check for a branch hint. We allow ",pt" and ",pn" for
1367 predict taken and predict not taken respectively.
1368 I'm not sure that branch hints actually do anything on loop
1369 and jcxz insns (JumpByte) for current Pentium4 chips. They
1370 may work in the future and it doesn't hurt to accept them
1371 now. */
1372 if (l[0] == ',' && l[1] == 'p')
1373 {
1374 if (l[2] == 't')
1375 {
1376 if (! add_prefix (DS_PREFIX_OPCODE))
1377 return;
1378 l += 3;
1379 }
1380 else if (l[2] == 'n')
1381 {
1382 if (! add_prefix (CS_PREFIX_OPCODE))
1383 return;
1384 l += 3;
1385 }
1386 }
1387 }
1388 /* Any other comma loses. */
1389 if (*l == ',')
1390 {
1391 as_bad (_("invalid character %s in mnemonic"),
1392 output_invalid (*l));
1393 return;
1394 }
1395
e413e4e9
AM
1396 /* Check if instruction is supported on specified architecture. */
1397 if (cpu_arch_flags != 0)
1398 {
3e73aa7c
JH
1399 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1400 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1401 {
1402 as_warn (_("`%s' is not supported on `%s'"),
1403 current_templates->start->name, cpu_arch_name);
1404 }
3e73aa7c 1405 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1406 {
1407 as_warn (_("use .code16 to ensure correct addressing mode"));
1408 }
1409 }
1410
ce8a8b2f 1411 /* Check for rep/repne without a string instruction. */
252b5132
RH
1412 if (expecting_string_instruction
1413 && !(current_templates->start->opcode_modifier & IsString))
1414 {
1415 as_bad (_("expecting string instruction after `%s'"),
1416 expecting_string_instruction);
1417 return;
1418 }
1419
47926f60 1420 /* There may be operands to parse. */
252b5132
RH
1421 if (*l != END_OF_INSN)
1422 {
47926f60 1423 /* 1 if operand is pending after ','. */
252b5132
RH
1424 unsigned int expecting_operand = 0;
1425
47926f60 1426 /* Non-zero if operand parens not balanced. */
252b5132
RH
1427 unsigned int paren_not_balanced;
1428
1429 do
1430 {
ce8a8b2f 1431 /* Skip optional white space before operand. */
252b5132
RH
1432 if (is_space_char (*l))
1433 ++l;
1434 if (!is_operand_char (*l) && *l != END_OF_INSN)
1435 {
1436 as_bad (_("invalid character %s before operand %d"),
1437 output_invalid (*l),
1438 i.operands + 1);
1439 return;
1440 }
1441 token_start = l; /* after white space */
1442 paren_not_balanced = 0;
1443 while (paren_not_balanced || *l != ',')
1444 {
1445 if (*l == END_OF_INSN)
1446 {
1447 if (paren_not_balanced)
1448 {
24eab124 1449 if (!intel_syntax)
252b5132
RH
1450 as_bad (_("unbalanced parenthesis in operand %d."),
1451 i.operands + 1);
24eab124 1452 else
252b5132
RH
1453 as_bad (_("unbalanced brackets in operand %d."),
1454 i.operands + 1);
1455 return;
1456 }
1457 else
1458 break; /* we are done */
1459 }
1460 else if (!is_operand_char (*l) && !is_space_char (*l))
1461 {
1462 as_bad (_("invalid character %s in operand %d"),
1463 output_invalid (*l),
1464 i.operands + 1);
1465 return;
1466 }
24eab124
AM
1467 if (!intel_syntax)
1468 {
252b5132
RH
1469 if (*l == '(')
1470 ++paren_not_balanced;
1471 if (*l == ')')
1472 --paren_not_balanced;
24eab124
AM
1473 }
1474 else
1475 {
252b5132
RH
1476 if (*l == '[')
1477 ++paren_not_balanced;
1478 if (*l == ']')
1479 --paren_not_balanced;
24eab124 1480 }
252b5132
RH
1481 l++;
1482 }
1483 if (l != token_start)
47926f60 1484 { /* Yes, we've read in another operand. */
252b5132
RH
1485 unsigned int operand_ok;
1486 this_operand = i.operands++;
1487 if (i.operands > MAX_OPERANDS)
1488 {
1489 as_bad (_("spurious operands; (%d operands/instruction max)"),
1490 MAX_OPERANDS);
1491 return;
1492 }
47926f60 1493 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1494 END_STRING_AND_SAVE (l);
1495
24eab124 1496 if (intel_syntax)
47926f60
KH
1497 operand_ok =
1498 i386_intel_operand (token_start,
1499 intel_float_operand (mnemonic));
24eab124
AM
1500 else
1501 operand_ok = i386_operand (token_start);
252b5132 1502
ce8a8b2f 1503 RESTORE_END_STRING (l);
252b5132
RH
1504 if (!operand_ok)
1505 return;
1506 }
1507 else
1508 {
1509 if (expecting_operand)
1510 {
1511 expecting_operand_after_comma:
1512 as_bad (_("expecting operand after ','; got nothing"));
1513 return;
1514 }
1515 if (*l == ',')
1516 {
1517 as_bad (_("expecting operand before ','; got nothing"));
1518 return;
1519 }
1520 }
1521
ce8a8b2f 1522 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1523 if (*l == ',')
1524 {
1525 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1526 {
1527 /* Just skip it, if it's \n complain. */
252b5132
RH
1528 goto expecting_operand_after_comma;
1529 }
1530 expecting_operand = 1;
1531 }
1532 }
ce8a8b2f 1533 while (*l != END_OF_INSN);
252b5132
RH
1534 }
1535 }
1536
1537 /* Now we've parsed the mnemonic into a set of templates, and have the
1538 operands at hand.
1539
1540 Next, we find a template that matches the given insn,
1541 making sure the overlap of the given operands types is consistent
47926f60 1542 with the template operand types. */
252b5132
RH
1543
1544#define MATCH(overlap, given, template) \
3138f287
AM
1545 ((overlap & ~JumpAbsolute) \
1546 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1547
1548 /* If given types r0 and r1 are registers they must be of the same type
1549 unless the expected operand type register overlap is null.
1550 Note that Acc in a template matches every size of reg. */
1551#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1552 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1553 ((g0) & Reg) == ((g1) & Reg) || \
1554 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1555
1556 {
1557 register unsigned int overlap0, overlap1;
252b5132
RH
1558 unsigned int overlap2;
1559 unsigned int found_reverse_match;
1560 int suffix_check;
1561
cc5ca5ce
AM
1562 /* All intel opcodes have reversed operands except for "bound" and
1563 "enter". We also don't reverse intersegment "jmp" and "call"
1564 instructions with 2 immediate operands so that the immediate segment
1565 precedes the offset, as it does when in AT&T mode. "enter" and the
1566 intersegment "jmp" and "call" instructions are the only ones that
1567 have two immediate operands. */
520dc8e8 1568 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1569 && (strcmp (mnemonic, "bound") != 0)
1570 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1571 {
520dc8e8 1572 union i386_op temp_op;
24eab124 1573 unsigned int temp_type;
f3c180ae 1574 RELOC_ENUM temp_reloc;
24eab124 1575 int xchg1 = 0;
ab9da554 1576 int xchg2 = 0;
252b5132 1577
24eab124
AM
1578 if (i.operands == 2)
1579 {
1580 xchg1 = 0;
1581 xchg2 = 1;
1582 }
1583 else if (i.operands == 3)
1584 {
1585 xchg1 = 0;
1586 xchg2 = 2;
1587 }
520dc8e8
AM
1588 temp_type = i.types[xchg2];
1589 i.types[xchg2] = i.types[xchg1];
1590 i.types[xchg1] = temp_type;
1591 temp_op = i.op[xchg2];
1592 i.op[xchg2] = i.op[xchg1];
1593 i.op[xchg1] = temp_op;
1ae12ab7
AM
1594 temp_reloc = i.reloc[xchg2];
1595 i.reloc[xchg2] = i.reloc[xchg1];
1596 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1597
1598 if (i.mem_operands == 2)
1599 {
1600 const seg_entry *temp_seg;
1601 temp_seg = i.seg[0];
1602 i.seg[0] = i.seg[1];
1603 i.seg[1] = temp_seg;
1604 }
24eab124 1605 }
773f551c
AM
1606
1607 if (i.imm_operands)
1608 {
1609 /* Try to ensure constant immediates are represented in the smallest
1610 opcode possible. */
1611 char guess_suffix = 0;
1612 int op;
1613
1614 if (i.suffix)
1615 guess_suffix = i.suffix;
1616 else if (i.reg_operands)
1617 {
1618 /* Figure out a suffix from the last register operand specified.
1619 We can't do this properly yet, ie. excluding InOutPortReg,
1620 but the following works for instructions with immediates.
1621 In any case, we can't set i.suffix yet. */
47926f60 1622 for (op = i.operands; --op >= 0;)
773f551c
AM
1623 if (i.types[op] & Reg)
1624 {
1625 if (i.types[op] & Reg8)
1626 guess_suffix = BYTE_MNEM_SUFFIX;
1627 else if (i.types[op] & Reg16)
1628 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1629 else if (i.types[op] & Reg32)
1630 guess_suffix = LONG_MNEM_SUFFIX;
1631 else if (i.types[op] & Reg64)
1632 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1633 break;
1634 }
1635 }
3e73aa7c 1636 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1637 guess_suffix = WORD_MNEM_SUFFIX;
1638
47926f60 1639 for (op = i.operands; --op >= 0;)
3e73aa7c 1640 if (i.types[op] & Imm)
773f551c 1641 {
3e73aa7c 1642 switch (i.op[op].imms->X_op)
e5cb08ac 1643 {
3e73aa7c
JH
1644 case O_constant:
1645 /* If a suffix is given, this operand may be shortened. */
1646 switch (guess_suffix)
1647 {
1648 case LONG_MNEM_SUFFIX:
1649 i.types[op] |= Imm32 | Imm64;
1650 break;
1651 case WORD_MNEM_SUFFIX:
1652 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1653 break;
1654 case BYTE_MNEM_SUFFIX:
1655 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1656 break;
1657 }
773f551c 1658
e5cb08ac
KH
1659 /* If this operand is at most 16 bits, convert it
1660 to a signed 16 bit number before trying to see
1661 whether it will fit in an even smaller size.
1662 This allows a 16-bit operand such as $0xffe0 to
1663 be recognised as within Imm8S range. */
3e73aa7c 1664 if ((i.types[op] & Imm16)
e5cb08ac 1665 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1666 {
1667 i.op[op].imms->X_add_number =
1668 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1669 }
1670 if ((i.types[op] & Imm32)
1671 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1672 {
1673 i.op[op].imms->X_add_number =
1674 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1675 }
1676 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1677 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1678 if (guess_suffix == QWORD_MNEM_SUFFIX)
1679 i.types[op] &= ~Imm32;
1680 break;
1681 case O_absent:
1682 case O_register:
bfb32b52 1683 abort ();
3e73aa7c
JH
1684 /* Symbols and expressions. */
1685 default:
1686 /* Convert symbolic operand to proper sizes for matching. */
1687 switch (guess_suffix)
1688 {
1689 case QWORD_MNEM_SUFFIX:
1690 i.types[op] = Imm64 | Imm32S;
1691 break;
1692 case LONG_MNEM_SUFFIX:
1693 i.types[op] = Imm32 | Imm64;
1694 break;
1695 case WORD_MNEM_SUFFIX:
1696 i.types[op] = Imm16 | Imm32 | Imm64;
1697 break;
1698 break;
1699 case BYTE_MNEM_SUFFIX:
1700 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1701 break;
1702 break;
1703 }
1704 break;
773f551c 1705 }
773f551c
AM
1706 }
1707 }
1708
45288df1
AM
1709 if (i.disp_operands)
1710 {
1711 /* Try to use the smallest displacement type too. */
1712 int op;
1713
47926f60 1714 for (op = i.operands; --op >= 0;)
45288df1 1715 if ((i.types[op] & Disp)
1ae12ab7 1716 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1717 {
1718 offsetT disp = i.op[op].disps->X_add_number;
1719
1720 if (i.types[op] & Disp16)
1721 {
1722 /* We know this operand is at most 16 bits, so
1723 convert to a signed 16 bit number before trying
1724 to see whether it will fit in an even smaller
1725 size. */
47926f60 1726
45288df1
AM
1727 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1728 }
3e73aa7c
JH
1729 else if (i.types[op] & Disp32)
1730 {
1731 /* We know this operand is at most 32 bits, so convert to a
1732 signed 32 bit number before trying to see whether it will
1733 fit in an even smaller size. */
1734 disp &= (((offsetT) 2 << 31) - 1);
1735 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1736 }
1737 if (flag_code == CODE_64BIT)
1738 {
1739 if (fits_in_signed_long (disp))
1740 i.types[op] |= Disp32S;
1741 if (fits_in_unsigned_long (disp))
1742 i.types[op] |= Disp32;
1743 }
1744 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1745 && fits_in_signed_byte (disp))
45288df1
AM
1746 i.types[op] |= Disp8;
1747 }
1748 }
1749
252b5132
RH
1750 overlap0 = 0;
1751 overlap1 = 0;
1752 overlap2 = 0;
1753 found_reverse_match = 0;
1754 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1755 ? No_bSuf
1756 : (i.suffix == WORD_MNEM_SUFFIX
1757 ? No_wSuf
1758 : (i.suffix == SHORT_MNEM_SUFFIX
1759 ? No_sSuf
1760 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1761 ? No_lSuf
3e73aa7c
JH
1762 : (i.suffix == QWORD_MNEM_SUFFIX
1763 ? No_qSuf
1764 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1765
1766 for (t = current_templates->start;
1767 t < current_templates->end;
1768 t++)
1769 {
47926f60 1770 /* Must have right number of operands. */
252b5132
RH
1771 if (i.operands != t->operands)
1772 continue;
1773
7f3f1ea2
AM
1774 /* Check the suffix, except for some instructions in intel mode. */
1775 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1776 && !(intel_syntax
1777 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1778 && !(intel_syntax
1779 && t->base_opcode == 0xd9
ce8a8b2f
AM
1780 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1781 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1782 continue;
252b5132 1783
e2914f48 1784 /* Do not verify operands when there are none. */
252b5132 1785 else if (!t->operands)
e2914f48
JH
1786 {
1787 if (t->cpu_flags & ~cpu_arch_flags)
1788 continue;
1789 /* We've found a match; break out of loop. */
1790 break;
e5cb08ac 1791 }
252b5132
RH
1792
1793 overlap0 = i.types[0] & t->operand_types[0];
1794 switch (t->operands)
1795 {
1796 case 1:
1797 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1798 continue;
1799 break;
1800 case 2:
1801 case 3:
1802 overlap1 = i.types[1] & t->operand_types[1];
1803 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1804 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1805 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1806 t->operand_types[0],
1807 overlap1, i.types[1],
1808 t->operand_types[1]))
1809 {
47926f60 1810 /* Check if other direction is valid ... */
252b5132
RH
1811 if ((t->opcode_modifier & (D|FloatD)) == 0)
1812 continue;
1813
47926f60 1814 /* Try reversing direction of operands. */
252b5132
RH
1815 overlap0 = i.types[0] & t->operand_types[1];
1816 overlap1 = i.types[1] & t->operand_types[0];
1817 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1818 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1819 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1820 t->operand_types[1],
1821 overlap1, i.types[1],
1822 t->operand_types[0]))
1823 {
47926f60 1824 /* Does not match either direction. */
252b5132
RH
1825 continue;
1826 }
1827 /* found_reverse_match holds which of D or FloatDR
1828 we've found. */
1829 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1830 }
47926f60 1831 /* Found a forward 2 operand match here. */
3e73aa7c 1832 else if (t->operands == 3)
252b5132
RH
1833 {
1834 /* Here we make use of the fact that there are no
1835 reverse match 3 operand instructions, and all 3
1836 operand instructions only need to be checked for
1837 register consistency between operands 2 and 3. */
1838 overlap2 = i.types[2] & t->operand_types[2];
1839 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1840 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1841 t->operand_types[1],
1842 overlap2, i.types[2],
24eab124 1843 t->operand_types[2]))
252b5132 1844
24eab124 1845 continue;
252b5132 1846 }
47926f60 1847 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1848 slip through to break. */
252b5132 1849 }
3e73aa7c
JH
1850 if (t->cpu_flags & ~cpu_arch_flags)
1851 {
1852 found_reverse_match = 0;
1853 continue;
1854 }
47926f60
KH
1855 /* We've found a match; break out of loop. */
1856 break;
ce8a8b2f 1857 }
252b5132 1858 if (t == current_templates->end)
47926f60
KH
1859 {
1860 /* We found no match. */
252b5132
RH
1861 as_bad (_("suffix or operands invalid for `%s'"),
1862 current_templates->start->name);
1863 return;
1864 }
1865
a38cf1db 1866 if (!quiet_warnings)
3138f287 1867 {
a38cf1db
AM
1868 if (!intel_syntax
1869 && ((i.types[0] & JumpAbsolute)
1870 != (t->operand_types[0] & JumpAbsolute)))
1871 {
1872 as_warn (_("indirect %s without `*'"), t->name);
1873 }
3138f287 1874
a38cf1db
AM
1875 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1876 == (IsPrefix|IgnoreSize))
1877 {
1878 /* Warn them that a data or address size prefix doesn't
1879 affect assembly of the next line of code. */
1880 as_warn (_("stand-alone `%s' prefix"), t->name);
1881 }
252b5132
RH
1882 }
1883
1884 /* Copy the template we found. */
1885 i.tm = *t;
1886 if (found_reverse_match)
1887 {
7f3f1ea2
AM
1888 /* If we found a reverse match we must alter the opcode
1889 direction bit. found_reverse_match holds bits to change
1890 (different for int & float insns). */
1891
1892 i.tm.base_opcode ^= found_reverse_match;
1893
252b5132
RH
1894 i.tm.operand_types[0] = t->operand_types[1];
1895 i.tm.operand_types[1] = t->operand_types[0];
1896 }
1897
d0b47220 1898 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1899 if (SYSV386_COMPAT
1900 && intel_syntax
1901 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1902 i.tm.base_opcode ^= FloatR;
252b5132
RH
1903
1904 if (i.tm.opcode_modifier & FWait)
1905 if (! add_prefix (FWAIT_OPCODE))
1906 return;
1907
ce8a8b2f 1908 /* Check string instruction segment overrides. */
252b5132
RH
1909 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1910 {
1911 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1912 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1913 {
1914 if (i.seg[0] != NULL && i.seg[0] != &es)
1915 {
1916 as_bad (_("`%s' operand %d must use `%%es' segment"),
1917 i.tm.name,
1918 mem_op + 1);
1919 return;
1920 }
1921 /* There's only ever one segment override allowed per instruction.
1922 This instruction possibly has a legal segment override on the
1923 second operand, so copy the segment to where non-string
1924 instructions store it, allowing common code. */
1925 i.seg[0] = i.seg[1];
1926 }
1927 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1928 {
1929 if (i.seg[1] != NULL && i.seg[1] != &es)
1930 {
1931 as_bad (_("`%s' operand %d must use `%%es' segment"),
1932 i.tm.name,
1933 mem_op + 2);
1934 return;
1935 }
1936 }
1937 }
1938
3e73aa7c
JH
1939 if (i.reg_operands && flag_code < CODE_64BIT)
1940 {
1941 int op;
e5cb08ac 1942 for (op = i.operands; --op >= 0;)
3e73aa7c
JH
1943 if ((i.types[op] & Reg)
1944 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1945 {
1946 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1947 i.op[op].regs->reg_name);
1948 return;
1949 }
3e73aa7c
JH
1950 }
1951
252b5132
RH
1952 /* If matched instruction specifies an explicit instruction mnemonic
1953 suffix, use it. */
3e73aa7c 1954 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1955 {
1956 if (i.tm.opcode_modifier & Size16)
1957 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1958 else if (i.tm.opcode_modifier & Size64)
1959 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1960 else
add0c677 1961 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1962 }
1963 else if (i.reg_operands)
1964 {
1965 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1966 based on register operands. */
252b5132
RH
1967 if (!i.suffix)
1968 {
1969 /* We take i.suffix from the last register operand specified,
1970 Destination register type is more significant than source
1971 register type. */
1972 int op;
47926f60 1973 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1974 if ((i.types[op] & Reg)
1975 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1976 {
1977 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1978 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1979 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1980 LONG_MNEM_SUFFIX);
252b5132
RH
1981 break;
1982 }
1983 }
1984 else if (i.suffix == BYTE_MNEM_SUFFIX)
1985 {
1986 int op;
47926f60 1987 for (op = i.operands; --op >= 0;)
252b5132
RH
1988 {
1989 /* If this is an eight bit register, it's OK. If it's
1990 the 16 or 32 bit version of an eight bit register,
47926f60 1991 we will just use the low portion, and that's OK too. */
252b5132
RH
1992 if (i.types[op] & Reg8)
1993 continue;
1994
47926f60 1995 /* movzx and movsx should not generate this warning. */
24eab124
AM
1996 if (intel_syntax
1997 && (i.tm.base_opcode == 0xfb7
1998 || i.tm.base_opcode == 0xfb6
3e73aa7c 1999 || i.tm.base_opcode == 0x63
24eab124
AM
2000 || i.tm.base_opcode == 0xfbe
2001 || i.tm.base_opcode == 0xfbf))
2002 continue;
252b5132 2003
520dc8e8 2004 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
2005#if 0
2006 /* Check that the template allows eight bit regs
2007 This kills insns such as `orb $1,%edx', which
2008 maybe should be allowed. */
2009 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2010#endif
2011 )
2012 {
3e73aa7c
JH
2013 /* Prohibit these changes in the 64bit mode, since
2014 the lowering is more complicated. */
2015 if (flag_code == CODE_64BIT
2016 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2017 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2018 i.op[op].regs->reg_name,
2019 i.suffix);
252b5132 2020#if REGISTER_WARNINGS
a38cf1db
AM
2021 if (!quiet_warnings
2022 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 2023 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de
AM
2024 (i.op[op].regs
2025 + (i.types[op] & Reg16
2026 ? REGNAM_AL - REGNAM_AX
2027 : REGNAM_AL - REGNAM_EAX))->reg_name,
520dc8e8 2028 i.op[op].regs->reg_name,
252b5132
RH
2029 i.suffix);
2030#endif
2031 continue;
2032 }
ce8a8b2f 2033 /* Any other register is bad. */
3f4438ab
AM
2034 if (i.types[op] & (Reg | RegMMX | RegXMM
2035 | SReg2 | SReg3
2036 | Control | Debug | Test
2037 | FloatReg | FloatAcc))
252b5132
RH
2038 {
2039 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2040 i.op[op].regs->reg_name,
252b5132
RH
2041 i.tm.name,
2042 i.suffix);
2043 return;
2044 }
2045 }
2046 }
add0c677 2047 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2048 {
2049 int op;
47926f60
KH
2050
2051 for (op = i.operands; --op >= 0;)
252b5132
RH
2052 /* Reject eight bit registers, except where the template
2053 requires them. (eg. movzb) */
2054 if ((i.types[op] & Reg8) != 0
47926f60 2055 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2056 {
2057 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2058 i.op[op].regs->reg_name,
252b5132
RH
2059 i.tm.name,
2060 i.suffix);
2061 return;
2062 }
252b5132 2063 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2064 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2065 && (i.types[op] & Reg16) != 0
252b5132
RH
2066 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2067 {
3e73aa7c
JH
2068 /* Prohibit these changes in the 64bit mode, since
2069 the lowering is more complicated. */
2070 if (flag_code == CODE_64BIT)
2071 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2072 i.op[op].regs->reg_name,
2073 i.suffix);
2074#if REGISTER_WARNINGS
2075 else
2076 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2077 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3e73aa7c
JH
2078 i.op[op].regs->reg_name,
2079 i.suffix);
252b5132 2080#endif
3e73aa7c
JH
2081 }
2082 /* Warn if the r prefix on a general reg is missing. */
2083 else if ((i.types[op] & Reg64) != 0
2084 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2085 {
2086 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2087 i.op[op].regs->reg_name,
2088 i.suffix);
2089 }
2090 }
2091 else if (i.suffix == QWORD_MNEM_SUFFIX)
2092 {
2093 int op;
3e73aa7c
JH
2094
2095 for (op = i.operands; --op >= 0; )
2096 /* Reject eight bit registers, except where the template
2097 requires them. (eg. movzb) */
2098 if ((i.types[op] & Reg8) != 0
2099 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2100 {
2101 as_bad (_("`%%%s' not allowed with `%s%c'"),
2102 i.op[op].regs->reg_name,
2103 i.tm.name,
2104 i.suffix);
2105 return;
2106 }
2107 /* Warn if the e prefix on a general reg is missing. */
2108 else if (((i.types[op] & Reg16) != 0
2109 || (i.types[op] & Reg32) != 0)
2110 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2111 {
2112 /* Prohibit these changes in the 64bit mode, since
2113 the lowering is more complicated. */
2114 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2115 i.op[op].regs->reg_name,
2116 i.suffix);
2117 }
252b5132
RH
2118 }
2119 else if (i.suffix == WORD_MNEM_SUFFIX)
2120 {
2121 int op;
47926f60 2122 for (op = i.operands; --op >= 0;)
252b5132
RH
2123 /* Reject eight bit registers, except where the template
2124 requires them. (eg. movzb) */
2125 if ((i.types[op] & Reg8) != 0
2126 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2127 {
2128 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2129 i.op[op].regs->reg_name,
252b5132
RH
2130 i.tm.name,
2131 i.suffix);
2132 return;
2133 }
252b5132 2134 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2135 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2136 && (i.types[op] & Reg32) != 0
252b5132
RH
2137 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2138 {
3e73aa7c
JH
2139 /* Prohibit these changes in the 64bit mode, since
2140 the lowering is more complicated. */
2141 if (flag_code == CODE_64BIT)
2142 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2143 i.op[op].regs->reg_name,
2144 i.suffix);
2145 else
2146#if REGISTER_WARNINGS
2147 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2148 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3e73aa7c
JH
2149 i.op[op].regs->reg_name,
2150 i.suffix);
252b5132 2151#endif
3e73aa7c 2152 }
252b5132 2153 }
fa2255cb
DN
2154 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2155 /* Do nothing if the instruction is going to ignore the prefix. */
2156 ;
252b5132 2157 else
47926f60 2158 abort ();
252b5132 2159 }
eecb386c
AM
2160 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2161 {
2162 i.suffix = stackop_size;
2163 }
252b5132
RH
2164 /* Make still unresolved immediate matches conform to size of immediate
2165 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2166 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2167 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2168 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2169 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2170 {
2171 if (i.suffix)
2172 {
24eab124 2173 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2174 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2175 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2176 }
3e73aa7c
JH
2177 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2178 || overlap0 == (Imm16 | Imm32)
2179 || overlap0 == (Imm16 | Imm32S))
252b5132 2180 {
24eab124 2181 overlap0 =
3e73aa7c 2182 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2183 }
3e73aa7c
JH
2184 if (overlap0 != Imm8 && overlap0 != Imm8S
2185 && overlap0 != Imm16 && overlap0 != Imm32S
2186 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2187 {
2188 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2189 return;
2190 }
2191 }
3e73aa7c 2192 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2193 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2194 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2195 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2196 {
2197 if (i.suffix)
2198 {
24eab124 2199 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2200 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2201 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2202 }
3e73aa7c
JH
2203 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2204 || overlap1 == (Imm16 | Imm32)
2205 || overlap1 == (Imm16 | Imm32S))
252b5132 2206 {
24eab124 2207 overlap1 =
3e73aa7c 2208 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2209 }
3e73aa7c
JH
2210 if (overlap1 != Imm8 && overlap1 != Imm8S
2211 && overlap1 != Imm16 && overlap1 != Imm32S
2212 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2213 {
3e73aa7c 2214 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2215 return;
2216 }
2217 }
2218 assert ((overlap2 & Imm) == 0);
2219
2220 i.types[0] = overlap0;
2221 if (overlap0 & ImplicitRegister)
2222 i.reg_operands--;
2223 if (overlap0 & Imm1)
ce8a8b2f 2224 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2225
2226 i.types[1] = overlap1;
2227 if (overlap1 & ImplicitRegister)
2228 i.reg_operands--;
2229
2230 i.types[2] = overlap2;
2231 if (overlap2 & ImplicitRegister)
2232 i.reg_operands--;
2233
2234 /* Finalize opcode. First, we change the opcode based on the operand
2235 size given by i.suffix: We need not change things for byte insns. */
2236
2237 if (!i.suffix && (i.tm.opcode_modifier & W))
2238 {
2239 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2240 return;
2241 }
2242
ce8a8b2f 2243 /* For movzx and movsx, need to check the register type. */
252b5132 2244 if (intel_syntax
24eab124 2245 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2246 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2249
520dc8e8 2250 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2251 if (!add_prefix (prefix))
2252 return;
2253 }
252b5132
RH
2254
2255 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2256 {
2257 /* It's not a byte, select word/dword operation. */
2258 if (i.tm.opcode_modifier & W)
2259 {
2260 if (i.tm.opcode_modifier & ShortForm)
2261 i.tm.base_opcode |= 8;
2262 else
2263 i.tm.base_opcode |= 1;
2264 }
2265 /* Now select between word & dword operations via the operand
2266 size prefix, except for instructions that will ignore this
2267 prefix anyway. */
3e73aa7c
JH
2268 if (i.suffix != QWORD_MNEM_SUFFIX
2269 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2270 && !(i.tm.opcode_modifier & IgnoreSize))
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
2275
2276 if (! add_prefix (prefix))
2277 return;
2278 }
3e73aa7c
JH
2279
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2283 {
3e73aa7c 2284 i.rex.mode64 = 1;
b96d3a20
JH
2285 if (flag_code < CODE_64BIT)
2286 {
e5cb08ac
KH
2287 as_bad (_("64bit operations available only in 64bit modes."));
2288 return;
b96d3a20
JH
2289 }
2290 }
3e73aa7c 2291
252b5132 2292 /* Size floating point instruction. */
f16b83df 2293 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2294 {
2295 if (i.tm.opcode_modifier & FloatMF)
2296 i.tm.base_opcode ^= 4;
2297 }
252b5132
RH
2298 }
2299
3f4438ab 2300 if (i.tm.opcode_modifier & ImmExt)
252b5132 2301 {
3f4438ab
AM
2302 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2303 opcode suffix which is coded in the same place as an 8-bit
2304 immediate field would be. Here we fake an 8-bit immediate
2305 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2306
2307 expressionS *exp;
2308
47926f60 2309 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2310
2311 exp = &im_expressions[i.imm_operands++];
520dc8e8 2312 i.op[i.operands].imms = exp;
252b5132
RH
2313 i.types[i.operands++] = Imm8;
2314 exp->X_op = O_constant;
2315 exp->X_add_number = i.tm.extension_opcode;
2316 i.tm.extension_opcode = None;
2317 }
2318
47926f60 2319 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2320 if (i.operands)
2321 {
24eab124 2322 /* Default segment register this instruction will use
252b5132
RH
2323 for memory accesses. 0 means unknown.
2324 This is only for optimizing out unnecessary segment overrides. */
2325 const seg_entry *default_seg = 0;
2326
252b5132
RH
2327 /* The imul $imm, %reg instruction is converted into
2328 imul $imm, %reg, %reg, and the clr %reg instruction
2329 is converted into xor %reg, %reg. */
2330 if (i.tm.opcode_modifier & regKludge)
2331 {
2332 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2333 /* Pretend we saw the extra register operand. */
2334 assert (i.op[first_reg_op + 1].regs == 0);
2335 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2336 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2337 i.reg_operands = 2;
2338 }
2339
2340 if (i.tm.opcode_modifier & ShortForm)
2341 {
47926f60 2342 /* The register or float register operand is in operand 0 or 1. */
252b5132 2343 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2344 /* Register goes in low 3 bits of opcode. */
520dc8e8 2345 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2346 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2347 i.rex.extZ = 1;
a38cf1db 2348 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2349 {
2350 /* Warn about some common errors, but press on regardless.
2351 The first case can be generated by gcc (<= 2.8.1). */
2352 if (i.operands == 2)
2353 {
47926f60 2354 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2355 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2356 i.op[1].regs->reg_name,
2357 i.op[0].regs->reg_name);
252b5132
RH
2358 }
2359 else
2360 {
47926f60 2361 /* Extraneous `l' suffix on fp insn. */
252b5132 2362 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2363 i.op[0].regs->reg_name);
252b5132
RH
2364 }
2365 }
2366 }
2367 else if (i.tm.opcode_modifier & Modrm)
2368 {
2369 /* The opcode is completed (modulo i.tm.extension_opcode which
2370 must be put into the modrm byte).
2371 Now, we make the modrm & index base bytes based on all the
47926f60 2372 info we've collected. */
252b5132
RH
2373
2374 /* i.reg_operands MUST be the number of real register operands;
47926f60 2375 implicit registers do not count. */
252b5132
RH
2376 if (i.reg_operands == 2)
2377 {
2378 unsigned int source, dest;
2379 source = ((i.types[0]
3f4438ab
AM
2380 & (Reg | RegMMX | RegXMM
2381 | SReg2 | SReg3
2382 | Control | Debug | Test))
252b5132
RH
2383 ? 0 : 1);
2384 dest = source + 1;
2385
252b5132 2386 i.rm.mode = 3;
3f4438ab
AM
2387 /* One of the register operands will be encoded in the
2388 i.tm.reg field, the other in the combined i.tm.mode
2389 and i.tm.regmem fields. If no form of this
2390 instruction supports a memory destination operand,
2391 then we assume the source operand may sometimes be
2392 a memory operand and so we need to store the
2393 destination in the i.rm.reg field. */
2394 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2395 {
520dc8e8
AM
2396 i.rm.reg = i.op[dest].regs->reg_num;
2397 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2398 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2399 i.rex.extX = 1;
3e73aa7c 2400 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2401 i.rex.extZ = 1;
252b5132
RH
2402 }
2403 else
2404 {
520dc8e8
AM
2405 i.rm.reg = i.op[source].regs->reg_num;
2406 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2407 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2408 i.rex.extZ = 1;
3e73aa7c 2409 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2410 i.rex.extX = 1;
252b5132
RH
2411 }
2412 }
2413 else
47926f60 2414 { /* If it's not 2 reg operands... */
252b5132
RH
2415 if (i.mem_operands)
2416 {
2417 unsigned int fake_zero_displacement = 0;
2418 unsigned int op = ((i.types[0] & AnyMem)
2419 ? 0
2420 : (i.types[1] & AnyMem) ? 1 : 2);
2421
2422 default_seg = &ds;
2423
2424 if (! i.base_reg)
2425 {
2426 i.rm.mode = 0;
2427 if (! i.disp_operands)
2428 fake_zero_displacement = 1;
2429 if (! i.index_reg)
2430 {
47926f60 2431 /* Operand is just <disp> */
3e73aa7c 2432 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2433 {
2434 i.rm.regmem = NO_BASE_REGISTER_16;
2435 i.types[op] &= ~Disp;
2436 i.types[op] |= Disp16;
2437 }
3e73aa7c 2438 else if (flag_code != CODE_64BIT)
252b5132
RH
2439 {
2440 i.rm.regmem = NO_BASE_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32;
2443 }
3e73aa7c
JH
2444 else
2445 {
e5cb08ac
KH
2446 /* 64bit mode overwrites the 32bit
2447 absolute addressing by RIP relative
2448 addressing and absolute addressing
2449 is encoded by one of the redundant
2450 SIB forms. */
3e73aa7c
JH
2451
2452 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2453 i.sib.base = NO_BASE_REGISTER;
2454 i.sib.index = NO_INDEX_REGISTER;
2455 i.types[op] &= ~Disp;
2456 i.types[op] |= Disp32S;
2457 }
252b5132 2458 }
47926f60 2459 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2460 {
2461 i.sib.index = i.index_reg->reg_num;
2462 i.sib.base = NO_BASE_REGISTER;
2463 i.sib.scale = i.log2_scale_factor;
2464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2465 i.types[op] &= ~Disp;
3e73aa7c
JH
2466 if (flag_code != CODE_64BIT)
2467 i.types[op] |= Disp32; /* Must be 32 bit */
2468 else
2469 i.types[op] |= Disp32S;
2470 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2471 i.rex.extY = 1;
252b5132
RH
2472 }
2473 }
3e73aa7c
JH
2474 /* RIP addressing for 64bit mode. */
2475 else if (i.base_reg->reg_type == BaseIndex)
2476 {
2477 i.rm.regmem = NO_BASE_REGISTER;
2478 i.types[op] &= ~Disp;
2479 i.types[op] |= Disp32S;
2480 i.flags[op] = Operand_PCrel;
2481 }
252b5132
RH
2482 else if (i.base_reg->reg_type & Reg16)
2483 {
2484 switch (i.base_reg->reg_num)
2485 {
47926f60 2486 case 3: /* (%bx) */
252b5132
RH
2487 if (! i.index_reg)
2488 i.rm.regmem = 7;
47926f60 2489 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2490 i.rm.regmem = i.index_reg->reg_num - 6;
2491 break;
47926f60 2492 case 5: /* (%bp) */
252b5132
RH
2493 default_seg = &ss;
2494 if (! i.index_reg)
2495 {
2496 i.rm.regmem = 6;
2497 if ((i.types[op] & Disp) == 0)
2498 {
47926f60 2499 /* fake (%bp) into 0(%bp) */
252b5132
RH
2500 i.types[op] |= Disp8;
2501 fake_zero_displacement = 1;
2502 }
2503 }
47926f60 2504 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2505 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2506 break;
47926f60 2507 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2508 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2509 }
2510 i.rm.mode = mode_from_disp_size (i.types[op]);
2511 }
3e73aa7c 2512 else /* i.base_reg and 32/64 bit mode */
252b5132 2513 {
3e73aa7c
JH
2514 if (flag_code == CODE_64BIT
2515 && (i.types[op] & Disp))
2516 {
2517 if (i.types[op] & Disp8)
2518 i.types[op] = Disp8 | Disp32S;
2519 else
2520 i.types[op] = Disp32S;
2521 }
252b5132 2522 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2523 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2524 i.rex.extZ = 1;
252b5132 2525 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2526 /* x86-64 ignores REX prefix bit here to avoid
2527 decoder complications. */
2528 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2529 {
2530 default_seg = &ss;
2531 if (i.disp_operands == 0)
2532 {
2533 fake_zero_displacement = 1;
2534 i.types[op] |= Disp8;
2535 }
2536 }
2537 else if (i.base_reg->reg_num == ESP_REG_NUM)
2538 {
2539 default_seg = &ss;
2540 }
2541 i.sib.scale = i.log2_scale_factor;
2542 if (! i.index_reg)
2543 {
2544 /* <disp>(%esp) becomes two byte modrm
2545 with no index register. We've already
2546 stored the code for esp in i.rm.regmem
2547 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2548 base register besides %esp will not use
2549 the extra modrm byte. */
2550 i.sib.index = NO_INDEX_REGISTER;
2551#if ! SCALE1_WHEN_NO_INDEX
2552 /* Another case where we force the second
2553 modrm byte. */
2554 if (i.log2_scale_factor)
2555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2556#endif
2557 }
2558 else
2559 {
2560 i.sib.index = i.index_reg->reg_num;
2561 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2562 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2563 i.rex.extY = 1;
252b5132
RH
2564 }
2565 i.rm.mode = mode_from_disp_size (i.types[op]);
2566 }
2567
2568 if (fake_zero_displacement)
2569 {
2570 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2571 holds the correct displacement size. */
b4cac588
AM
2572 expressionS *exp;
2573
520dc8e8 2574 assert (i.op[op].disps == 0);
252b5132 2575 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2576 i.op[op].disps = exp;
252b5132
RH
2577 exp->X_op = O_constant;
2578 exp->X_add_number = 0;
2579 exp->X_add_symbol = (symbolS *) 0;
2580 exp->X_op_symbol = (symbolS *) 0;
2581 }
2582 }
2583
2584 /* Fill in i.rm.reg or i.rm.regmem field with register
2585 operand (if any) based on i.tm.extension_opcode.
2586 Again, we must be careful to make sure that
2587 segment/control/debug/test/MMX registers are coded
47926f60 2588 into the i.rm.reg field. */
252b5132
RH
2589 if (i.reg_operands)
2590 {
2591 unsigned int op =
2592 ((i.types[0]
3f4438ab
AM
2593 & (Reg | RegMMX | RegXMM
2594 | SReg2 | SReg3
2595 | Control | Debug | Test))
252b5132
RH
2596 ? 0
2597 : ((i.types[1]
3f4438ab
AM
2598 & (Reg | RegMMX | RegXMM
2599 | SReg2 | SReg3
2600 | Control | Debug | Test))
252b5132
RH
2601 ? 1
2602 : 2));
2603 /* If there is an extension opcode to put here, the
47926f60 2604 register number must be put into the regmem field. */
252b5132 2605 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2606 {
2607 i.rm.regmem = i.op[op].regs->reg_num;
2608 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2609 i.rex.extZ = 1;
3e73aa7c 2610 }
252b5132 2611 else
3e73aa7c
JH
2612 {
2613 i.rm.reg = i.op[op].regs->reg_num;
2614 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2615 i.rex.extX = 1;
3e73aa7c 2616 }
252b5132
RH
2617
2618 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2619 we must set it to 3 to indicate this is a register
2620 operand in the regmem field. */
2621 if (!i.mem_operands)
2622 i.rm.mode = 3;
2623 }
2624
47926f60 2625 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2626 if (i.tm.extension_opcode != None)
2627 i.rm.reg = i.tm.extension_opcode;
2628 }
2629 }
2630 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2631 {
47926f60
KH
2632 if (i.tm.base_opcode == POP_SEG_SHORT
2633 && i.op[0].regs->reg_num == 1)
252b5132
RH
2634 {
2635 as_bad (_("you can't `pop %%cs'"));
2636 return;
2637 }
520dc8e8 2638 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2639 if (i.op[0].regs->reg_flags & RegRex)
2640 i.rex.extZ = 1;
252b5132
RH
2641 }
2642 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2643 {
2644 default_seg = &ds;
2645 }
2646 else if ((i.tm.opcode_modifier & IsString) != 0)
2647 {
2648 /* For the string instructions that allow a segment override
2649 on one of their operands, the default segment is ds. */
2650 default_seg = &ds;
2651 }
2652
2653 /* If a segment was explicitly specified,
2654 and the specified segment is not the default,
2655 use an opcode prefix to select it.
2656 If we never figured out what the default segment is,
2657 then default_seg will be zero at this point,
2658 and the specified segment prefix will always be used. */
2659 if ((i.seg[0]) && (i.seg[0] != default_seg))
2660 {
2661 if (! add_prefix (i.seg[0]->seg_prefix))
2662 return;
2663 }
2664 }
a38cf1db 2665 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2666 {
24eab124
AM
2667 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2668 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2669 }
2670 }
2671
47926f60 2672 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2673 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2674 {
2675 i.tm.base_opcode = INT3_OPCODE;
2676 i.imm_operands = 0;
2677 }
2678
2f66722d 2679 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2680 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2681 {
2682 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2683 the absolute address given by the constant. Since ix86 jumps and
2684 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2685 i.op[0].disps->X_add_symbol = &abs_symbol;
2686 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2687 }
2688
3e73aa7c
JH
2689 if (i.tm.opcode_modifier & Rex64)
2690 i.rex.mode64 = 1;
2691
2692 /* For 8bit registers we would need an empty rex prefix.
2693 Also in the case instruction is already having prefix,
2694 we need to convert old registers to new ones. */
2695
2696 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2697 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2698 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2700 {
2701 int x;
e5cb08ac 2702 i.rex.empty = 1;
3e73aa7c
JH
2703 for (x = 0; x < 2; x++)
2704 {
2705 /* Look for 8bit operand that does use old registers. */
2706 if (i.types[x] & Reg8
2707 && !(i.op[x].regs->reg_flags & RegRex64))
2708 {
2709 /* In case it is "hi" register, give up. */
2710 if (i.op[x].regs->reg_num > 3)
2711 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2712 i.op[x].regs->reg_name);
2713
2714 /* Otherwise it is equivalent to the extended register.
2715 Since the encoding don't change this is merely cosmetical
2716 cleanup for debug output. */
2717
2718 i.op[x].regs = i.op[x].regs + 8;
2719 }
2720 }
2721 }
2722
2723 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2724 add_prefix (0x40
2725 | (i.rex.mode64 ? 8 : 0)
2726 | (i.rex.extX ? 4 : 0)
2727 | (i.rex.extY ? 2 : 0)
2728 | (i.rex.extZ ? 1 : 0));
2729
47926f60 2730 /* We are ready to output the insn. */
252b5132
RH
2731 {
2732 register char *p;
2733
9fcc94b6
AM
2734 /* Tie dwarf2 debug info to the address at the start of the insn.
2735 We can't do this after the insn has been output as the current
2736 frag may have been closed off. eg. by frag_var. */
2737 dwarf2_emit_insn (0);
2738
47926f60 2739 /* Output jumps. */
252b5132
RH
2740 if (i.tm.opcode_modifier & Jump)
2741 {
a217f122
AM
2742 int code16;
2743 int prefix;
e0890092
AM
2744 relax_substateT subtype;
2745 symbolS *sym;
2746 offsetT off;
252b5132 2747
a217f122 2748 code16 = 0;
3e73aa7c 2749 if (flag_code == CODE_16BIT)
a217f122
AM
2750 code16 = CODE16;
2751
2752 prefix = 0;
2753 if (i.prefix[DATA_PREFIX])
252b5132 2754 {
a217f122 2755 prefix = 1;
252b5132 2756 i.prefixes -= 1;
a217f122 2757 code16 ^= CODE16;
252b5132 2758 }
cb9401fc
AM
2759 /* Pentium4 branch hints. */
2760 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2761 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2762 {
2763 prefix++;
2764 i.prefixes--;
2765 }
3e73aa7c
JH
2766 if (i.prefix[REX_PREFIX])
2767 {
2768 prefix++;
e5cb08ac 2769 i.prefixes--;
3e73aa7c 2770 }
252b5132 2771
a217f122 2772 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2773 as_warn (_("skipping prefixes on this instruction"));
2774
2f66722d
AM
2775 /* It's always a symbol; End frag & setup for relax.
2776 Make sure there is enough room in this frag for the largest
2777 instruction we may generate in md_convert_frag. This is 2
2778 bytes for the opcode and room for the prefix and largest
2779 displacement. */
fddf5b5b 2780 frag_grow (prefix + 2 + 4);
2f66722d
AM
2781 /* Prefix and 1 opcode byte go in fr_fix. */
2782 p = frag_more (prefix + 1);
3e73aa7c 2783 if (i.prefix[DATA_PREFIX])
2f66722d 2784 *p++ = DATA_PREFIX_OPCODE;
cb9401fc
AM
2785 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2786 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2787 *p++ = i.prefix[SEG_PREFIX];
3e73aa7c
JH
2788 if (i.prefix[REX_PREFIX])
2789 *p++ = i.prefix[REX_PREFIX];
2f66722d 2790 *p = i.tm.base_opcode;
e0890092
AM
2791
2792 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2793 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2794 else if ((cpu_arch_flags & Cpu386) != 0)
2795 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2796 else
2797 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2798 subtype |= code16;
2799
2800 sym = i.op[0].disps->X_add_symbol;
2801 off = i.op[0].disps->X_add_number;
2802
2803 if (i.op[0].disps->X_op != O_constant
2804 && i.op[0].disps->X_op != O_symbol)
2805 {
2806 /* Handle complex expressions. */
2807 sym = make_expr_symbol (i.op[0].disps);
2808 off = 0;
2809 }
2810
2811 /* 1 possible extra opcode + 4 byte displacement go in var part.
ee7fcc42 2812 Pass reloc in fr_var. */
e0890092 2813 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
252b5132
RH
2814 }
2815 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2816 {
a217f122 2817 int size;
252b5132 2818
a217f122 2819 if (i.tm.opcode_modifier & JumpByte)
252b5132 2820 {
a217f122
AM
2821 /* This is a loop or jecxz type instruction. */
2822 size = 1;
252b5132
RH
2823 if (i.prefix[ADDR_PREFIX])
2824 {
252b5132
RH
2825 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2826 i.prefixes -= 1;
2827 }
cb9401fc
AM
2828 /* Pentium4 branch hints. */
2829 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2830 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2831 {
2832 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2833 i.prefixes--;
2834 }
252b5132
RH
2835 }
2836 else
2837 {
a217f122
AM
2838 int code16;
2839
2840 code16 = 0;
3e73aa7c 2841 if (flag_code == CODE_16BIT)
a217f122 2842 code16 = CODE16;
252b5132
RH
2843
2844 if (i.prefix[DATA_PREFIX])
2845 {
252b5132
RH
2846 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2847 i.prefixes -= 1;
a217f122 2848 code16 ^= CODE16;
252b5132 2849 }
252b5132 2850
a217f122 2851 size = 4;
252b5132
RH
2852 if (code16)
2853 size = 2;
2854 }
2855
3e73aa7c
JH
2856 if (i.prefix[REX_PREFIX])
2857 {
2858 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3e73aa7c
JH
2859 i.prefixes -= 1;
2860 }
2861
a217f122 2862 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2863 as_warn (_("skipping prefixes on this instruction"));
2864
cb9401fc
AM
2865 p = frag_more (1 + size);
2866 *p++ = i.tm.base_opcode;
252b5132 2867
2f66722d 2868 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2869 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2870 }
2871 else if (i.tm.opcode_modifier & JumpInterSegment)
2872 {
2873 int size;
a217f122
AM
2874 int prefix;
2875 int code16;
252b5132 2876
a217f122 2877 code16 = 0;
3e73aa7c 2878 if (flag_code == CODE_16BIT)
a217f122
AM
2879 code16 = CODE16;
2880
2881 prefix = 0;
2882 if (i.prefix[DATA_PREFIX])
252b5132 2883 {
a217f122 2884 prefix = 1;
252b5132 2885 i.prefixes -= 1;
a217f122 2886 code16 ^= CODE16;
252b5132 2887 }
3e73aa7c
JH
2888 if (i.prefix[REX_PREFIX])
2889 {
2890 prefix++;
2891 i.prefixes -= 1;
2892 }
252b5132
RH
2893
2894 size = 4;
252b5132 2895 if (code16)
f6af82bd 2896 size = 2;
252b5132 2897
a217f122 2898 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2899 as_warn (_("skipping prefixes on this instruction"));
2900
47926f60 2901 /* 1 opcode; 2 segment; offset */
252b5132 2902 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2903
2904 if (i.prefix[DATA_PREFIX])
252b5132 2905 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2906
2907 if (i.prefix[REX_PREFIX])
2908 *p++ = i.prefix[REX_PREFIX];
2909
252b5132 2910 *p++ = i.tm.base_opcode;
520dc8e8 2911 if (i.op[1].imms->X_op == O_constant)
252b5132 2912 {
847f7ad4 2913 offsetT n = i.op[1].imms->X_add_number;
252b5132 2914
773f551c
AM
2915 if (size == 2
2916 && !fits_in_unsigned_word (n)
2917 && !fits_in_signed_word (n))
252b5132
RH
2918 {
2919 as_bad (_("16-bit jump out of range"));
2920 return;
2921 }
847f7ad4 2922 md_number_to_chars (p, n, size);
252b5132
RH
2923 }
2924 else
2925 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2926 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2927 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2928 as_bad (_("can't handle non absolute segment in `%s'"),
2929 i.tm.name);
520dc8e8 2930 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2931 }
2932 else
2933 {
47926f60 2934 /* Output normal instructions here. */
252b5132
RH
2935 unsigned char *q;
2936
7bc70a8e
JH
2937 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2938 byte for the SSE instructions to specify prefix they require. */
2939 if (i.tm.base_opcode & 0xff0000)
2940 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2941
47926f60 2942 /* The prefix bytes. */
252b5132
RH
2943 for (q = i.prefix;
2944 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2945 q++)
2946 {
2947 if (*q)
2948 {
252b5132
RH
2949 p = frag_more (1);
2950 md_number_to_chars (p, (valueT) *q, 1);
2951 }
2952 }
2953
47926f60 2954 /* Now the opcode; be careful about word order here! */
252b5132
RH
2955 if (fits_in_unsigned_byte (i.tm.base_opcode))
2956 {
252b5132
RH
2957 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2958 }
7bc70a8e 2959 else
252b5132 2960 {
252b5132 2961 p = frag_more (2);
47926f60 2962 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2963 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2964 *p = i.tm.base_opcode & 0xff;
2965 }
252b5132
RH
2966
2967 /* Now the modrm byte and sib byte (if present). */
2968 if (i.tm.opcode_modifier & Modrm)
2969 {
252b5132
RH
2970 p = frag_more (1);
2971 md_number_to_chars (p,
2972 (valueT) (i.rm.regmem << 0
2973 | i.rm.reg << 3
2974 | i.rm.mode << 6),
2975 1);
2976 /* If i.rm.regmem == ESP (4)
2977 && i.rm.mode != (Register mode)
2978 && not 16 bit
2979 ==> need second modrm byte. */
2980 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2981 && i.rm.mode != 3
2982 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2983 {
252b5132
RH
2984 p = frag_more (1);
2985 md_number_to_chars (p,
2986 (valueT) (i.sib.base << 0
2987 | i.sib.index << 3
2988 | i.sib.scale << 6),
2989 1);
2990 }
2991 }
2992
2993 if (i.disp_operands)
2994 {
2995 register unsigned int n;
2996
2997 for (n = 0; n < i.operands; n++)
2998 {
520dc8e8 2999 if (i.types[n] & Disp)
252b5132 3000 {
520dc8e8 3001 if (i.op[n].disps->X_op == O_constant)
252b5132 3002 {
847f7ad4
AM
3003 int size;
3004 offsetT val;
b4cac588 3005
847f7ad4 3006 size = 4;
3e73aa7c 3007 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 3008 {
b4cac588 3009 size = 2;
b4cac588 3010 if (i.types[n] & Disp8)
847f7ad4 3011 size = 1;
3e73aa7c
JH
3012 if (i.types[n] & Disp64)
3013 size = 8;
252b5132 3014 }
847f7ad4
AM
3015 val = offset_in_range (i.op[n].disps->X_add_number,
3016 size);
b4cac588 3017 p = frag_more (size);
847f7ad4 3018 md_number_to_chars (p, val, size);
252b5132 3019 }
252b5132 3020 else
520dc8e8
AM
3021 {
3022 int size = 4;
3e73aa7c
JH
3023 int sign = 0;
3024 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3025
3026 /* The PC relative address is computed relative
3027 to the instruction boundary, so in case immediate
3028 fields follows, we need to adjust the value. */
3029 if (pcrel && i.imm_operands)
3030 {
3031 int imm_size = 4;
3032 register unsigned int n1;
3033
3034 for (n1 = 0; n1 < i.operands; n1++)
3035 if (i.types[n1] & Imm)
3036 {
3037 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3038 {
3039 imm_size = 2;
3040 if (i.types[n1] & (Imm8 | Imm8S))
3041 imm_size = 1;
3042 if (i.types[n1] & Imm64)
3043 imm_size = 8;
3044 }
3045 break;
3046 }
3047 /* We should find the immediate. */
3048 if (n1 == i.operands)
bfb32b52 3049 abort ();
3e73aa7c
JH
3050 i.op[n].disps->X_add_number -= imm_size;
3051 }
520dc8e8 3052
3e73aa7c
JH
3053 if (i.types[n] & Disp32S)
3054 sign = 1;
3055
e5cb08ac 3056 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3057 {
3058 size = 2;
3059 if (i.types[n] & Disp64)
3060 size = 8;
3061 }
520dc8e8 3062
520dc8e8
AM
3063 p = frag_more (size);
3064 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3065 i.op[n].disps, pcrel,
1ae12ab7 3066 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3067 }
3068 }
3069 }
ce8a8b2f 3070 }
252b5132 3071
47926f60 3072 /* Output immediate. */
252b5132
RH
3073 if (i.imm_operands)
3074 {
3075 register unsigned int n;
3076
3077 for (n = 0; n < i.operands; n++)
3078 {
520dc8e8 3079 if (i.types[n] & Imm)
252b5132 3080 {
520dc8e8 3081 if (i.op[n].imms->X_op == O_constant)
252b5132 3082 {
847f7ad4
AM
3083 int size;
3084 offsetT val;
b4cac588 3085
847f7ad4 3086 size = 4;
3e73aa7c 3087 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3088 {
b4cac588 3089 size = 2;
b4cac588 3090 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3091 size = 1;
3e73aa7c
JH
3092 else if (i.types[n] & Imm64)
3093 size = 8;
252b5132 3094 }
847f7ad4
AM
3095 val = offset_in_range (i.op[n].imms->X_add_number,
3096 size);
b4cac588 3097 p = frag_more (size);
847f7ad4 3098 md_number_to_chars (p, val, size);
252b5132
RH
3099 }
3100 else
ce8a8b2f
AM
3101 {
3102 /* Not absolute_section.
3103 Need a 32-bit fixup (don't support 8bit
520dc8e8 3104 non-absolute imms). Try to support other
47926f60 3105 sizes ... */
f3c180ae 3106 RELOC_ENUM reloc_type;
520dc8e8 3107 int size = 4;
3e73aa7c 3108 int sign = 0;
252b5132 3109
3e73aa7c
JH
3110 if ((i.types[n] & (Imm32S))
3111 && i.suffix == QWORD_MNEM_SUFFIX)
3112 sign = 1;
3113 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3114 {
3115 size = 2;
3116 if (i.types[n] & (Imm8 | Imm8S))
3117 size = 1;
3118 if (i.types[n] & Imm64)
3119 size = 8;
3120 }
520dc8e8 3121
252b5132 3122 p = frag_more (size);
1ae12ab7 3123 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3124#ifdef BFD_ASSEMBLER
f6af82bd 3125 if (reloc_type == BFD_RELOC_32
252b5132 3126 && GOT_symbol
520dc8e8
AM
3127 && GOT_symbol == i.op[n].imms->X_add_symbol
3128 && (i.op[n].imms->X_op == O_symbol
3129 || (i.op[n].imms->X_op == O_add
49309057 3130 && ((symbol_get_value_expression
520dc8e8 3131 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3132 == O_subtract))))
3133 {
3e73aa7c
JH
3134 /* We don't support dynamic linking on x86-64 yet. */
3135 if (flag_code == CODE_64BIT)
bfb32b52 3136 abort ();
f6af82bd 3137 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3138 i.op[n].imms->X_add_number += 3;
252b5132
RH
3139 }
3140#endif
3141 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3142 i.op[n].imms, 0, reloc_type);
252b5132
RH
3143 }
3144 }
3145 }
ce8a8b2f 3146 }
252b5132
RH
3147 }
3148
3149#ifdef DEBUG386
3150 if (flag_debug)
3151 {
3152 pi (line, &i);
3153 }
47926f60 3154#endif /* DEBUG386 */
252b5132
RH
3155 }
3156}
3157\f
f3c180ae
AM
3158#ifndef LEX_AT
3159static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3160
3161/* Parse operands of the form
3162 <symbol>@GOTOFF+<nnn>
3163 and similar .plt or .got references.
3164
3165 If we find one, set up the correct relocation in RELOC and copy the
3166 input string, minus the `@GOTOFF' into a malloc'd buffer for
3167 parsing by the calling routine. Return this buffer, and if ADJUST
3168 is non-null set it to the length of the string we removed from the
3169 input line. Otherwise return NULL. */
3170static char *
3171lex_got (reloc, adjust)
3172 RELOC_ENUM *reloc;
3173 int *adjust;
3174{
3175 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3176 static const struct {
3177 const char *str;
3178 const RELOC_ENUM rel[NUM_FLAG_CODE];
3179 } gotrel[] = {
3180 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3181 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3182 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3183 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3184 };
3185 char *cp;
3186 unsigned int j;
3187
3188 for (cp = input_line_pointer; *cp != '@'; cp++)
3189 if (is_end_of_line[(unsigned char) *cp])
3190 return NULL;
3191
3192 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3193 {
3194 int len;
3195
3196 len = strlen (gotrel[j].str);
28f81592 3197 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3198 {
3199 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3200 {
28f81592
AM
3201 int first, second;
3202 char *tmpbuf, *past_reloc;
f3c180ae
AM
3203
3204 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3205 if (adjust)
3206 *adjust = len;
f3c180ae
AM
3207
3208 if (GOT_symbol == NULL)
3209 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3210
3211 /* Replace the relocation token with ' ', so that
3212 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3213
3214 /* The length of the first part of our input line. */
f3c180ae 3215 first = cp - input_line_pointer;
28f81592
AM
3216
3217 /* The second part goes from after the reloc token until
3218 (and including) an end_of_line char. Don't use strlen
3219 here as the end_of_line char may not be a NUL. */
3220 past_reloc = cp + 1 + len;
3221 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3222 ;
3223 second = cp - past_reloc;
3224
3225 /* Allocate and copy string. The trailing NUL shouldn't
3226 be necessary, but be safe. */
3227 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3228 memcpy (tmpbuf, input_line_pointer, first);
3229 tmpbuf[first] = ' ';
28f81592
AM
3230 memcpy (tmpbuf + first + 1, past_reloc, second);
3231 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3232 return tmpbuf;
3233 }
3234
3235 as_bad (_("@%s reloc is not supported in %s bit mode"),
3236 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3237 return NULL;
3238 }
3239 }
3240
3241 /* Might be a symbol version string. Don't as_bad here. */
3242 return NULL;
3243}
3244
3245/* x86_cons_fix_new is called via the expression parsing code when a
3246 reloc is needed. We use this hook to get the correct .got reloc. */
3247static RELOC_ENUM got_reloc = NO_RELOC;
3248
3249void
3250x86_cons_fix_new (frag, off, len, exp)
3251 fragS *frag;
3252 unsigned int off;
3253 unsigned int len;
3254 expressionS *exp;
3255{
3256 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3257 got_reloc = NO_RELOC;
3258 fix_new_exp (frag, off, len, exp, 0, r);
3259}
3260
3261void
3262x86_cons (exp, size)
3263 expressionS *exp;
3264 int size;
3265{
3266 if (size == 4)
3267 {
3268 /* Handle @GOTOFF and the like in an expression. */
3269 char *save;
3270 char *gotfree_input_line;
3271 int adjust;
3272
3273 save = input_line_pointer;
3274 gotfree_input_line = lex_got (&got_reloc, &adjust);
3275 if (gotfree_input_line)
3276 input_line_pointer = gotfree_input_line;
3277
3278 expression (exp);
3279
3280 if (gotfree_input_line)
3281 {
3282 /* expression () has merrily parsed up to the end of line,
3283 or a comma - in the wrong buffer. Transfer how far
3284 input_line_pointer has moved to the right buffer. */
3285 input_line_pointer = (save
3286 + (input_line_pointer - gotfree_input_line)
3287 + adjust);
3288 free (gotfree_input_line);
3289 }
3290 }
3291 else
3292 expression (exp);
3293}
3294#endif
3295
252b5132
RH
3296static int i386_immediate PARAMS ((char *));
3297
3298static int
3299i386_immediate (imm_start)
3300 char *imm_start;
3301{
3302 char *save_input_line_pointer;
f3c180ae
AM
3303#ifndef LEX_AT
3304 char *gotfree_input_line;
3305#endif
252b5132 3306 segT exp_seg = 0;
47926f60 3307 expressionS *exp;
252b5132
RH
3308
3309 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3310 {
d0b47220 3311 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3312 return 0;
3313 }
3314
3315 exp = &im_expressions[i.imm_operands++];
520dc8e8 3316 i.op[this_operand].imms = exp;
252b5132
RH
3317
3318 if (is_space_char (*imm_start))
3319 ++imm_start;
3320
3321 save_input_line_pointer = input_line_pointer;
3322 input_line_pointer = imm_start;
3323
3324#ifndef LEX_AT
f3c180ae
AM
3325 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3326 if (gotfree_input_line)
3327 input_line_pointer = gotfree_input_line;
252b5132
RH
3328#endif
3329
3330 exp_seg = expression (exp);
3331
83183c0c 3332 SKIP_WHITESPACE ();
252b5132 3333 if (*input_line_pointer)
f3c180ae 3334 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3335
3336 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3337#ifndef LEX_AT
3338 if (gotfree_input_line)
3339 free (gotfree_input_line);
3340#endif
252b5132 3341
2daf4fd8 3342 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3343 {
47926f60 3344 /* Missing or bad expr becomes absolute 0. */
d0b47220 3345 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3346 imm_start);
252b5132
RH
3347 exp->X_op = O_constant;
3348 exp->X_add_number = 0;
3349 exp->X_add_symbol = (symbolS *) 0;
3350 exp->X_op_symbol = (symbolS *) 0;
252b5132 3351 }
3e73aa7c 3352 else if (exp->X_op == O_constant)
252b5132 3353 {
47926f60 3354 /* Size it properly later. */
3e73aa7c
JH
3355 i.types[this_operand] |= Imm64;
3356 /* If BFD64, sign extend val. */
3357 if (!use_rela_relocations)
3358 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3359 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3360 }
4c63da97 3361#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3362 else if (1
4c63da97 3363#ifdef BFD_ASSEMBLER
47926f60 3364 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3365#endif
47926f60 3366 && exp_seg != text_section
24eab124
AM
3367 && exp_seg != data_section
3368 && exp_seg != bss_section
3369 && exp_seg != undefined_section
252b5132 3370#ifdef BFD_ASSEMBLER
24eab124 3371 && !bfd_is_com_section (exp_seg)
252b5132 3372#endif
24eab124 3373 )
252b5132 3374 {
4c63da97 3375#ifdef BFD_ASSEMBLER
d0b47220 3376 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3377#else
d0b47220 3378 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3379#endif
252b5132
RH
3380 return 0;
3381 }
3382#endif
3383 else
3384 {
3385 /* This is an address. The size of the address will be
24eab124 3386 determined later, depending on destination register,
3e73aa7c
JH
3387 suffix, or the default for the section. */
3388 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3389 }
3390
3391 return 1;
3392}
3393
551c1ca1 3394static char *i386_scale PARAMS ((char *));
252b5132 3395
551c1ca1 3396static char *
252b5132
RH
3397i386_scale (scale)
3398 char *scale;
3399{
551c1ca1
AM
3400 offsetT val;
3401 char *save = input_line_pointer;
252b5132 3402
551c1ca1
AM
3403 input_line_pointer = scale;
3404 val = get_absolute_expression ();
3405
3406 switch (val)
252b5132 3407 {
551c1ca1
AM
3408 case 0:
3409 case 1:
252b5132
RH
3410 i.log2_scale_factor = 0;
3411 break;
551c1ca1 3412 case 2:
252b5132
RH
3413 i.log2_scale_factor = 1;
3414 break;
551c1ca1 3415 case 4:
252b5132
RH
3416 i.log2_scale_factor = 2;
3417 break;
551c1ca1 3418 case 8:
252b5132
RH
3419 i.log2_scale_factor = 3;
3420 break;
3421 default:
252b5132 3422 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3423 scale);
551c1ca1
AM
3424 input_line_pointer = save;
3425 return NULL;
252b5132
RH
3426 }
3427 if (i.log2_scale_factor != 0 && ! i.index_reg)
3428 {
3429 as_warn (_("scale factor of %d without an index register"),
24eab124 3430 1 << i.log2_scale_factor);
252b5132
RH
3431#if SCALE1_WHEN_NO_INDEX
3432 i.log2_scale_factor = 0;
3433#endif
3434 }
551c1ca1
AM
3435 scale = input_line_pointer;
3436 input_line_pointer = save;
3437 return scale;
252b5132
RH
3438}
3439
3440static int i386_displacement PARAMS ((char *, char *));
3441
3442static int
3443i386_displacement (disp_start, disp_end)
3444 char *disp_start;
3445 char *disp_end;
3446{
3447 register expressionS *exp;
3448 segT exp_seg = 0;
3449 char *save_input_line_pointer;
f3c180ae
AM
3450#ifndef LEX_AT
3451 char *gotfree_input_line;
3452#endif
252b5132
RH
3453 int bigdisp = Disp32;
3454
3e73aa7c 3455 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3456 bigdisp = Disp16;
3e73aa7c
JH
3457 if (flag_code == CODE_64BIT)
3458 bigdisp = Disp64;
252b5132
RH
3459 i.types[this_operand] |= bigdisp;
3460
3461 exp = &disp_expressions[i.disp_operands];
520dc8e8 3462 i.op[this_operand].disps = exp;
252b5132
RH
3463 i.disp_operands++;
3464 save_input_line_pointer = input_line_pointer;
3465 input_line_pointer = disp_start;
3466 END_STRING_AND_SAVE (disp_end);
3467
3468#ifndef GCC_ASM_O_HACK
3469#define GCC_ASM_O_HACK 0
3470#endif
3471#if GCC_ASM_O_HACK
3472 END_STRING_AND_SAVE (disp_end + 1);
3473 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3474 && displacement_string_end[-1] == '+')
252b5132
RH
3475 {
3476 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3477 constraint within gcc asm statements.
3478 For instance:
3479
3480 #define _set_tssldt_desc(n,addr,limit,type) \
3481 __asm__ __volatile__ ( \
3482 "movw %w2,%0\n\t" \
3483 "movw %w1,2+%0\n\t" \
3484 "rorl $16,%1\n\t" \
3485 "movb %b1,4+%0\n\t" \
3486 "movb %4,5+%0\n\t" \
3487 "movb $0,6+%0\n\t" \
3488 "movb %h1,7+%0\n\t" \
3489 "rorl $16,%1" \
3490 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3491
3492 This works great except that the output assembler ends
3493 up looking a bit weird if it turns out that there is
3494 no offset. You end up producing code that looks like:
3495
3496 #APP
3497 movw $235,(%eax)
3498 movw %dx,2+(%eax)
3499 rorl $16,%edx
3500 movb %dl,4+(%eax)
3501 movb $137,5+(%eax)
3502 movb $0,6+(%eax)
3503 movb %dh,7+(%eax)
3504 rorl $16,%edx
3505 #NO_APP
3506
47926f60 3507 So here we provide the missing zero. */
24eab124
AM
3508
3509 *displacement_string_end = '0';
252b5132
RH
3510 }
3511#endif
3512#ifndef LEX_AT
f3c180ae
AM
3513 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3514 if (gotfree_input_line)
3515 input_line_pointer = gotfree_input_line;
252b5132
RH
3516#endif
3517
24eab124 3518 exp_seg = expression (exp);
252b5132 3519
636c26b0
AM
3520 SKIP_WHITESPACE ();
3521 if (*input_line_pointer)
3522 as_bad (_("junk `%s' after expression"), input_line_pointer);
3523#if GCC_ASM_O_HACK
3524 RESTORE_END_STRING (disp_end + 1);
3525#endif
3526 RESTORE_END_STRING (disp_end);
3527 input_line_pointer = save_input_line_pointer;
3528#ifndef LEX_AT
3529 if (gotfree_input_line)
3530 free (gotfree_input_line);
3531#endif
3532
252b5132 3533#ifdef BFD_ASSEMBLER
24eab124
AM
3534 /* We do this to make sure that the section symbol is in
3535 the symbol table. We will ultimately change the relocation
47926f60 3536 to be relative to the beginning of the section. */
1ae12ab7
AM
3537 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3538 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3539 {
636c26b0
AM
3540 if (exp->X_op != O_symbol)
3541 {
3542 as_bad (_("bad expression used with @%s"),
3543 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3544 ? "GOTPCREL"
3545 : "GOTOFF"));
3546 return 0;
3547 }
3548
e5cb08ac 3549 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3550 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3551 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3552 exp->X_op = O_subtract;
3553 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3554 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3555 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3556 else
1ae12ab7 3557 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3558 }
252b5132
RH
3559#endif
3560
2daf4fd8
AM
3561 if (exp->X_op == O_absent || exp->X_op == O_big)
3562 {
47926f60 3563 /* Missing or bad expr becomes absolute 0. */
d0b47220 3564 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3565 disp_start);
3566 exp->X_op = O_constant;
3567 exp->X_add_number = 0;
3568 exp->X_add_symbol = (symbolS *) 0;
3569 exp->X_op_symbol = (symbolS *) 0;
3570 }
3571
4c63da97 3572#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3573 if (exp->X_op != O_constant
4c63da97 3574#ifdef BFD_ASSEMBLER
45288df1 3575 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3576#endif
45288df1
AM
3577 && exp_seg != text_section
3578 && exp_seg != data_section
3579 && exp_seg != bss_section
3580 && exp_seg != undefined_section)
24eab124 3581 {
4c63da97 3582#ifdef BFD_ASSEMBLER
d0b47220 3583 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3584#else
d0b47220 3585 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3586#endif
24eab124
AM
3587 return 0;
3588 }
252b5132 3589#endif
3e73aa7c
JH
3590 else if (flag_code == CODE_64BIT)
3591 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3592 return 1;
3593}
3594
e5cb08ac 3595static int i386_index_check PARAMS ((const char *));
252b5132 3596
eecb386c 3597/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3598 Return 1 on success, 0 on a failure. */
3599
252b5132 3600static int
eecb386c
AM
3601i386_index_check (operand_string)
3602 const char *operand_string;
252b5132 3603{
3e73aa7c 3604 int ok;
24eab124 3605#if INFER_ADDR_PREFIX
eecb386c
AM
3606 int fudged = 0;
3607
24eab124
AM
3608 tryprefix:
3609#endif
3e73aa7c
JH
3610 ok = 1;
3611 if (flag_code == CODE_64BIT)
3612 {
3613 /* 64bit checks. */
3614 if ((i.base_reg
3615 && ((i.base_reg->reg_type & Reg64) == 0)
3616 && (i.base_reg->reg_type != BaseIndex
3617 || i.index_reg))
3618 || (i.index_reg
3619 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3620 != (Reg64|BaseIndex))))
3621 ok = 0;
3622 }
3623 else
3624 {
3625 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3626 {
3627 /* 16bit checks. */
3628 if ((i.base_reg
3629 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3630 != (Reg16|BaseIndex)))
3631 || (i.index_reg
3632 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3633 != (Reg16|BaseIndex))
3634 || ! (i.base_reg
3635 && i.base_reg->reg_num < 6
3636 && i.index_reg->reg_num >= 6
3637 && i.log2_scale_factor == 0))))
3638 ok = 0;
3639 }
3640 else
e5cb08ac 3641 {
3e73aa7c
JH
3642 /* 32bit checks. */
3643 if ((i.base_reg
3644 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3645 || (i.index_reg
3646 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3647 != (Reg32|BaseIndex))))
e5cb08ac 3648 ok = 0;
3e73aa7c
JH
3649 }
3650 }
3651 if (!ok)
24eab124
AM
3652 {
3653#if INFER_ADDR_PREFIX
3e73aa7c
JH
3654 if (flag_code != CODE_64BIT
3655 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3656 {
3657 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3658 i.prefixes += 1;
b23bac36
AM
3659 /* Change the size of any displacement too. At most one of
3660 Disp16 or Disp32 is set.
3661 FIXME. There doesn't seem to be any real need for separate
3662 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3663 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3664 if (i.types[this_operand] & (Disp16|Disp32))
3665 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3666 fudged = 1;
24eab124
AM
3667 goto tryprefix;
3668 }
eecb386c
AM
3669 if (fudged)
3670 as_bad (_("`%s' is not a valid base/index expression"),
3671 operand_string);
3672 else
c388dee8 3673#endif
eecb386c
AM
3674 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3675 operand_string,
3e73aa7c 3676 flag_code_names[flag_code]);
eecb386c 3677 return 0;
24eab124
AM
3678 }
3679 return 1;
3680}
252b5132 3681
252b5132 3682/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3683 on error. */
252b5132 3684
252b5132
RH
3685static int
3686i386_operand (operand_string)
3687 char *operand_string;
3688{
af6bdddf
AM
3689 const reg_entry *r;
3690 char *end_op;
24eab124 3691 char *op_string = operand_string;
252b5132 3692
24eab124 3693 if (is_space_char (*op_string))
252b5132
RH
3694 ++op_string;
3695
24eab124 3696 /* We check for an absolute prefix (differentiating,
47926f60 3697 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3698 if (*op_string == ABSOLUTE_PREFIX)
3699 {
3700 ++op_string;
3701 if (is_space_char (*op_string))
3702 ++op_string;
3703 i.types[this_operand] |= JumpAbsolute;
3704 }
252b5132 3705
47926f60 3706 /* Check if operand is a register. */
af6bdddf
AM
3707 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3708 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3709 {
24eab124
AM
3710 /* Check for a segment override by searching for ':' after a
3711 segment register. */
3712 op_string = end_op;
3713 if (is_space_char (*op_string))
3714 ++op_string;
3715 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3716 {
3717 switch (r->reg_num)
3718 {
3719 case 0:
3720 i.seg[i.mem_operands] = &es;
3721 break;
3722 case 1:
3723 i.seg[i.mem_operands] = &cs;
3724 break;
3725 case 2:
3726 i.seg[i.mem_operands] = &ss;
3727 break;
3728 case 3:
3729 i.seg[i.mem_operands] = &ds;
3730 break;
3731 case 4:
3732 i.seg[i.mem_operands] = &fs;
3733 break;
3734 case 5:
3735 i.seg[i.mem_operands] = &gs;
3736 break;
3737 }
252b5132 3738
24eab124 3739 /* Skip the ':' and whitespace. */
252b5132
RH
3740 ++op_string;
3741 if (is_space_char (*op_string))
24eab124 3742 ++op_string;
252b5132 3743
24eab124
AM
3744 if (!is_digit_char (*op_string)
3745 && !is_identifier_char (*op_string)
3746 && *op_string != '('
3747 && *op_string != ABSOLUTE_PREFIX)
3748 {
3749 as_bad (_("bad memory operand `%s'"), op_string);
3750 return 0;
3751 }
47926f60 3752 /* Handle case of %es:*foo. */
24eab124
AM
3753 if (*op_string == ABSOLUTE_PREFIX)
3754 {
3755 ++op_string;
3756 if (is_space_char (*op_string))
3757 ++op_string;
3758 i.types[this_operand] |= JumpAbsolute;
3759 }
3760 goto do_memory_reference;
3761 }
3762 if (*op_string)
3763 {
d0b47220 3764 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3765 return 0;
3766 }
3767 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3768 i.op[this_operand].regs = r;
24eab124
AM
3769 i.reg_operands++;
3770 }
af6bdddf
AM
3771 else if (*op_string == REGISTER_PREFIX)
3772 {
3773 as_bad (_("bad register name `%s'"), op_string);
3774 return 0;
3775 }
24eab124 3776 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3777 {
24eab124
AM
3778 ++op_string;
3779 if (i.types[this_operand] & JumpAbsolute)
3780 {
d0b47220 3781 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3782 return 0;
3783 }
3784 if (!i386_immediate (op_string))
3785 return 0;
3786 }
3787 else if (is_digit_char (*op_string)
3788 || is_identifier_char (*op_string)
e5cb08ac 3789 || *op_string == '(')
24eab124 3790 {
47926f60 3791 /* This is a memory reference of some sort. */
af6bdddf 3792 char *base_string;
252b5132 3793
47926f60 3794 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3795 char *displacement_string_start;
3796 char *displacement_string_end;
252b5132 3797
24eab124 3798 do_memory_reference:
24eab124
AM
3799 if ((i.mem_operands == 1
3800 && (current_templates->start->opcode_modifier & IsString) == 0)
3801 || i.mem_operands == 2)
3802 {
3803 as_bad (_("too many memory references for `%s'"),
3804 current_templates->start->name);
3805 return 0;
3806 }
252b5132 3807
24eab124
AM
3808 /* Check for base index form. We detect the base index form by
3809 looking for an ')' at the end of the operand, searching
3810 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3811 after the '('. */
af6bdddf 3812 base_string = op_string + strlen (op_string);
c3332e24 3813
af6bdddf
AM
3814 --base_string;
3815 if (is_space_char (*base_string))
3816 --base_string;
252b5132 3817
47926f60 3818 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3819 displacement_string_start = op_string;
3820 displacement_string_end = base_string + 1;
252b5132 3821
24eab124
AM
3822 if (*base_string == ')')
3823 {
af6bdddf 3824 char *temp_string;
24eab124
AM
3825 unsigned int parens_balanced = 1;
3826 /* We've already checked that the number of left & right ()'s are
47926f60 3827 equal, so this loop will not be infinite. */
24eab124
AM
3828 do
3829 {
3830 base_string--;
3831 if (*base_string == ')')
3832 parens_balanced++;
3833 if (*base_string == '(')
3834 parens_balanced--;
3835 }
3836 while (parens_balanced);
c3332e24 3837
af6bdddf 3838 temp_string = base_string;
c3332e24 3839
24eab124 3840 /* Skip past '(' and whitespace. */
252b5132
RH
3841 ++base_string;
3842 if (is_space_char (*base_string))
24eab124 3843 ++base_string;
252b5132 3844
af6bdddf
AM
3845 if (*base_string == ','
3846 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3847 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3848 {
af6bdddf 3849 displacement_string_end = temp_string;
252b5132 3850
af6bdddf 3851 i.types[this_operand] |= BaseIndex;
252b5132 3852
af6bdddf 3853 if (i.base_reg)
24eab124 3854 {
24eab124
AM
3855 base_string = end_op;
3856 if (is_space_char (*base_string))
3857 ++base_string;
af6bdddf
AM
3858 }
3859
3860 /* There may be an index reg or scale factor here. */
3861 if (*base_string == ',')
3862 {
3863 ++base_string;
3864 if (is_space_char (*base_string))
3865 ++base_string;
3866
3867 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3868 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3869 {
af6bdddf 3870 base_string = end_op;
24eab124
AM
3871 if (is_space_char (*base_string))
3872 ++base_string;
af6bdddf
AM
3873 if (*base_string == ',')
3874 {
3875 ++base_string;
3876 if (is_space_char (*base_string))
3877 ++base_string;
3878 }
e5cb08ac 3879 else if (*base_string != ')')
af6bdddf
AM
3880 {
3881 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3882 operand_string);
3883 return 0;
3884 }
24eab124 3885 }
af6bdddf 3886 else if (*base_string == REGISTER_PREFIX)
24eab124 3887 {
af6bdddf 3888 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3889 return 0;
3890 }
252b5132 3891
47926f60 3892 /* Check for scale factor. */
551c1ca1 3893 if (*base_string != ')')
af6bdddf 3894 {
551c1ca1
AM
3895 char *end_scale = i386_scale (base_string);
3896
3897 if (!end_scale)
af6bdddf 3898 return 0;
24eab124 3899
551c1ca1 3900 base_string = end_scale;
af6bdddf
AM
3901 if (is_space_char (*base_string))
3902 ++base_string;
3903 if (*base_string != ')')
3904 {
3905 as_bad (_("expecting `)' after scale factor in `%s'"),
3906 operand_string);
3907 return 0;
3908 }
3909 }
3910 else if (!i.index_reg)
24eab124 3911 {
af6bdddf
AM
3912 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3913 *base_string);
24eab124
AM
3914 return 0;
3915 }
3916 }
af6bdddf 3917 else if (*base_string != ')')
24eab124 3918 {
af6bdddf
AM
3919 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3920 operand_string);
24eab124
AM
3921 return 0;
3922 }
c3332e24 3923 }
af6bdddf 3924 else if (*base_string == REGISTER_PREFIX)
c3332e24 3925 {
af6bdddf 3926 as_bad (_("bad register name `%s'"), base_string);
24eab124 3927 return 0;
c3332e24 3928 }
24eab124
AM
3929 }
3930
3931 /* If there's an expression beginning the operand, parse it,
3932 assuming displacement_string_start and
3933 displacement_string_end are meaningful. */
3934 if (displacement_string_start != displacement_string_end)
3935 {
3936 if (!i386_displacement (displacement_string_start,
3937 displacement_string_end))
3938 return 0;
3939 }
3940
3941 /* Special case for (%dx) while doing input/output op. */
3942 if (i.base_reg
3943 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3944 && i.index_reg == 0
3945 && i.log2_scale_factor == 0
3946 && i.seg[i.mem_operands] == 0
3947 && (i.types[this_operand] & Disp) == 0)
3948 {
3949 i.types[this_operand] = InOutPortReg;
3950 return 1;
3951 }
3952
eecb386c
AM
3953 if (i386_index_check (operand_string) == 0)
3954 return 0;
24eab124
AM
3955 i.mem_operands++;
3956 }
3957 else
ce8a8b2f
AM
3958 {
3959 /* It's not a memory operand; argh! */
24eab124
AM
3960 as_bad (_("invalid char %s beginning operand %d `%s'"),
3961 output_invalid (*op_string),
3962 this_operand + 1,
3963 op_string);
3964 return 0;
3965 }
47926f60 3966 return 1; /* Normal return. */
252b5132
RH
3967}
3968\f
ee7fcc42
AM
3969/* md_estimate_size_before_relax()
3970
3971 Called just before relax() for rs_machine_dependent frags. The x86
3972 assembler uses these frags to handle variable size jump
3973 instructions.
3974
3975 Any symbol that is now undefined will not become defined.
3976 Return the correct fr_subtype in the frag.
3977 Return the initial "guess for variable size of frag" to caller.
3978 The guess is actually the growth beyond the fixed part. Whatever
3979 we do to grow the fixed or variable part contributes to our
3980 returned value. */
3981
252b5132
RH
3982int
3983md_estimate_size_before_relax (fragP, segment)
3984 register fragS *fragP;
3985 register segT segment;
3986{
252b5132 3987 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3988 check for un-relaxable symbols. On an ELF system, we can't relax
3989 an externally visible symbol, because it may be overridden by a
3990 shared library. */
3991 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3992#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3993 || S_IS_EXTERNAL (fragP->fr_symbol)
3994 || S_IS_WEAK (fragP->fr_symbol)
3995#endif
3996 )
252b5132 3997 {
b98ef147
AM
3998 /* Symbol is undefined in this segment, or we need to keep a
3999 reloc so that weak symbols can be overridden. */
4000 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 4001 RELOC_ENUM reloc_type;
ee7fcc42
AM
4002 unsigned char *opcode;
4003 int old_fr_fix;
f6af82bd 4004
ee7fcc42
AM
4005 if (fragP->fr_var != NO_RELOC)
4006 reloc_type = fragP->fr_var;
b98ef147 4007 else if (size == 2)
f6af82bd
AM
4008 reloc_type = BFD_RELOC_16_PCREL;
4009 else
4010 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4011
ee7fcc42
AM
4012 old_fr_fix = fragP->fr_fix;
4013 opcode = (unsigned char *) fragP->fr_opcode;
4014
fddf5b5b 4015 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4016 {
fddf5b5b
AM
4017 case UNCOND_JUMP:
4018 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4019 opcode[0] = 0xe9;
252b5132
RH
4020 fragP->fr_fix += size;
4021 fix_new (fragP, old_fr_fix, size,
4022 fragP->fr_symbol,
4023 fragP->fr_offset, 1,
f6af82bd 4024 reloc_type);
252b5132
RH
4025 break;
4026
fddf5b5b
AM
4027 case COND_JUMP86:
4028 if (no_cond_jump_promotion)
93c2a809
AM
4029 goto relax_guess;
4030
fddf5b5b
AM
4031 if (size == 2)
4032 {
4033 /* Negate the condition, and branch past an
4034 unconditional jump. */
4035 opcode[0] ^= 1;
4036 opcode[1] = 3;
4037 /* Insert an unconditional jump. */
4038 opcode[2] = 0xe9;
4039 /* We added two extra opcode bytes, and have a two byte
4040 offset. */
4041 fragP->fr_fix += 2 + 2;
4042 fix_new (fragP, old_fr_fix + 2, 2,
4043 fragP->fr_symbol,
4044 fragP->fr_offset, 1,
4045 reloc_type);
4046 break;
4047 }
4048 /* Fall through. */
4049
4050 case COND_JUMP:
4051 if (no_cond_jump_promotion)
93c2a809
AM
4052 goto relax_guess;
4053
24eab124 4054 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4055 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4056 opcode[1] = opcode[0] + 0x10;
f6af82bd 4057 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4058 /* We've added an opcode byte. */
4059 fragP->fr_fix += 1 + size;
252b5132
RH
4060 fix_new (fragP, old_fr_fix + 1, size,
4061 fragP->fr_symbol,
4062 fragP->fr_offset, 1,
f6af82bd 4063 reloc_type);
252b5132 4064 break;
fddf5b5b
AM
4065
4066 default:
4067 BAD_CASE (fragP->fr_subtype);
4068 break;
252b5132
RH
4069 }
4070 frag_wane (fragP);
ee7fcc42 4071 return fragP->fr_fix - old_fr_fix;
252b5132 4072 }
93c2a809
AM
4073
4074 relax_guess:
4075 /* Guess size depending on current relax state. Initially the relax
4076 state will correspond to a short jump and we return 1, because
4077 the variable part of the frag (the branch offset) is one byte
4078 long. However, we can relax a section more than once and in that
4079 case we must either set fr_subtype back to the unrelaxed state,
4080 or return the value for the appropriate branch. */
4081 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4082}
4083
47926f60
KH
4084/* Called after relax() is finished.
4085
4086 In: Address of frag.
4087 fr_type == rs_machine_dependent.
4088 fr_subtype is what the address relaxed to.
4089
4090 Out: Any fixSs and constants are set up.
4091 Caller will turn frag into a ".space 0". */
4092
252b5132
RH
4093#ifndef BFD_ASSEMBLER
4094void
4095md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4096 object_headers *headers ATTRIBUTE_UNUSED;
4097 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4098 register fragS *fragP;
4099#else
4100void
4101md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4102 bfd *abfd ATTRIBUTE_UNUSED;
4103 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4104 register fragS *fragP;
4105#endif
4106{
4107 register unsigned char *opcode;
4108 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4109 offsetT target_address;
4110 offsetT opcode_address;
252b5132 4111 unsigned int extension = 0;
847f7ad4 4112 offsetT displacement_from_opcode_start;
252b5132
RH
4113
4114 opcode = (unsigned char *) fragP->fr_opcode;
4115
47926f60 4116 /* Address we want to reach in file space. */
252b5132 4117 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4118
47926f60 4119 /* Address opcode resides at in file space. */
252b5132
RH
4120 opcode_address = fragP->fr_address + fragP->fr_fix;
4121
47926f60 4122 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4123 displacement_from_opcode_start = target_address - opcode_address;
4124
fddf5b5b 4125 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4126 {
47926f60
KH
4127 /* Don't have to change opcode. */
4128 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4129 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4130 }
4131 else
4132 {
4133 if (no_cond_jump_promotion
4134 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4135 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4136
fddf5b5b
AM
4137 switch (fragP->fr_subtype)
4138 {
4139 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4140 extension = 4; /* 1 opcode + 4 displacement */
4141 opcode[0] = 0xe9;
4142 where_to_put_displacement = &opcode[1];
4143 break;
252b5132 4144
fddf5b5b
AM
4145 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4146 extension = 2; /* 1 opcode + 2 displacement */
4147 opcode[0] = 0xe9;
4148 where_to_put_displacement = &opcode[1];
4149 break;
252b5132 4150
fddf5b5b
AM
4151 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4152 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4153 extension = 5; /* 2 opcode + 4 displacement */
4154 opcode[1] = opcode[0] + 0x10;
4155 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4156 where_to_put_displacement = &opcode[2];
4157 break;
252b5132 4158
fddf5b5b
AM
4159 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4160 extension = 3; /* 2 opcode + 2 displacement */
4161 opcode[1] = opcode[0] + 0x10;
4162 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4163 where_to_put_displacement = &opcode[2];
4164 break;
252b5132 4165
fddf5b5b
AM
4166 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4167 extension = 4;
4168 opcode[0] ^= 1;
4169 opcode[1] = 3;
4170 opcode[2] = 0xe9;
4171 where_to_put_displacement = &opcode[3];
4172 break;
4173
4174 default:
4175 BAD_CASE (fragP->fr_subtype);
4176 break;
4177 }
252b5132 4178 }
fddf5b5b 4179
47926f60 4180 /* Now put displacement after opcode. */
252b5132
RH
4181 md_number_to_chars ((char *) where_to_put_displacement,
4182 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4183 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4184 fragP->fr_fix += extension;
4185}
4186\f
47926f60
KH
4187/* Size of byte displacement jmp. */
4188int md_short_jump_size = 2;
4189
4190/* Size of dword displacement jmp. */
4191int md_long_jump_size = 5;
252b5132 4192
47926f60
KH
4193/* Size of relocation record. */
4194const int md_reloc_size = 8;
252b5132
RH
4195
4196void
4197md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4198 char *ptr;
4199 addressT from_addr, to_addr;
ab9da554
ILT
4200 fragS *frag ATTRIBUTE_UNUSED;
4201 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4202{
847f7ad4 4203 offsetT offset;
252b5132
RH
4204
4205 offset = to_addr - (from_addr + 2);
47926f60
KH
4206 /* Opcode for byte-disp jump. */
4207 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4208 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4209}
4210
4211void
4212md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4213 char *ptr;
4214 addressT from_addr, to_addr;
a38cf1db
AM
4215 fragS *frag ATTRIBUTE_UNUSED;
4216 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4217{
847f7ad4 4218 offsetT offset;
252b5132 4219
a38cf1db
AM
4220 offset = to_addr - (from_addr + 5);
4221 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4222 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4223}
4224\f
4225/* Apply a fixup (fixS) to segment data, once it has been determined
4226 by our caller that we have all the info we need to fix it up.
4227
4228 On the 386, immediates, displacements, and data pointers are all in
4229 the same (little-endian) format, so we don't need to care about which
4230 we are handling. */
4231
4232int
4233md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4234 /* The fix we're to put in. */
4235 fixS *fixP;
4236
4237 /* Pointer to the value of the bits. */
4238 valueT *valp;
4239
4240 /* Segment fix is from. */
4241 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4242{
4243 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4244 valueT value = *valp;
4245
e1b283bb 4246#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4247 if (fixP->fx_pcrel)
4248 {
4249 switch (fixP->fx_r_type)
4250 {
5865bb77
ILT
4251 default:
4252 break;
4253
93382f6d
AM
4254 case BFD_RELOC_32:
4255 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4256 break;
4257 case BFD_RELOC_16:
4258 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4259 break;
4260 case BFD_RELOC_8:
4261 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4262 break;
4263 }
4264 }
252b5132 4265
0723899b
ILT
4266 /* This is a hack. There should be a better way to handle this.
4267 This covers for the fact that bfd_install_relocation will
4268 subtract the current location (for partial_inplace, PC relative
4269 relocations); see more below. */
93382f6d
AM
4270 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4271 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4272 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4273 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4274 {
4275#ifndef OBJ_AOUT
4276 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4277#ifdef TE_PE
4278 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4279#endif
4280 )
4281 value += fixP->fx_where + fixP->fx_frag->fr_address;
4282#endif
4283#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4284 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4285 {
2f66722d
AM
4286 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4287
4288 if ((fseg == seg
4289 || (symbol_section_p (fixP->fx_addsy)
4290 && fseg != absolute_section))
4291 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4292 && ! S_IS_WEAK (fixP->fx_addsy)
4293 && S_IS_DEFINED (fixP->fx_addsy)
4294 && ! S_IS_COMMON (fixP->fx_addsy))
4295 {
4296 /* Yes, we add the values in twice. This is because
4297 bfd_perform_relocation subtracts them out again. I think
4298 bfd_perform_relocation is broken, but I don't dare change
4299 it. FIXME. */
4300 value += fixP->fx_where + fixP->fx_frag->fr_address;
4301 }
252b5132
RH
4302 }
4303#endif
4304#if defined (OBJ_COFF) && defined (TE_PE)
4305 /* For some reason, the PE format does not store a section
24eab124 4306 address offset for a PC relative symbol. */
252b5132
RH
4307 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4308 value += md_pcrel_from (fixP);
4309#endif
4310 }
4311
4312 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4313 and we must not dissappoint it. */
252b5132
RH
4314#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4315 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4316 && fixP->fx_addsy)
47926f60
KH
4317 switch (fixP->fx_r_type)
4318 {
4319 case BFD_RELOC_386_PLT32:
3e73aa7c 4320 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4321 /* Make the jump instruction point to the address of the operand. At
4322 runtime we merely add the offset to the actual PLT entry. */
4323 value = -4;
4324 break;
4325 case BFD_RELOC_386_GOTPC:
4326
4327/* This is tough to explain. We end up with this one if we have
252b5132
RH
4328 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4329 * here is to obtain the absolute address of the GOT, and it is strongly
4330 * preferable from a performance point of view to avoid using a runtime
c3332e24 4331 * relocation for this. The actual sequence of instructions often look
252b5132 4332 * something like:
c3332e24 4333 *
24eab124 4334 * call .L66
252b5132 4335 * .L66:
24eab124
AM
4336 * popl %ebx
4337 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4338 *
24eab124 4339 * The call and pop essentially return the absolute address of
252b5132
RH
4340 * the label .L66 and store it in %ebx. The linker itself will
4341 * ultimately change the first operand of the addl so that %ebx points to
4342 * the GOT, but to keep things simple, the .o file must have this operand
4343 * set so that it generates not the absolute address of .L66, but the
4344 * absolute address of itself. This allows the linker itself simply
4345 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4346 * added in, and the addend of the relocation is stored in the operand
4347 * field for the instruction itself.
c3332e24 4348 *
24eab124 4349 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4350 * offset so that %ebx would point to itself. The thing that is tricky is
4351 * that .-.L66 will point to the beginning of the instruction, so we need
4352 * to further modify the operand so that it will point to itself.
4353 * There are other cases where you have something like:
c3332e24 4354 *
24eab124 4355 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4356 *
252b5132 4357 * and here no correction would be required. Internally in the assembler
c3332e24 4358 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4359 * explicitly mentioned, and I wonder whether it would simplify matters
4360 * to do it this way. Who knows. In earlier versions of the PIC patches,
4361 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4362 * expression is not pcrel, I felt it would be confusing to do it this
4363 * way. */
4364
4365 value -= 1;
4366 break;
4367 case BFD_RELOC_386_GOT32:
3e73aa7c 4368 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4369 value = 0; /* Fully resolved at runtime. No addend. */
4370 break;
4371 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4372 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4373 break;
4374
4375 case BFD_RELOC_VTABLE_INHERIT:
4376 case BFD_RELOC_VTABLE_ENTRY:
4377 fixP->fx_done = 0;
4378 return 1;
4379
4380 default:
4381 break;
4382 }
4383#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4384 *valp = value;
47926f60 4385#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4386
4387#ifndef BFD_ASSEMBLER
252b5132 4388 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4389#else
4390 /* Are we finished with this relocation now? */
4391 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4392 fixP->fx_done = 1;
4393 else if (use_rela_relocations)
4394 {
4395 fixP->fx_no_overflow = 1;
4396 value = 0;
4397 }
4398 md_number_to_chars (p, value, fixP->fx_size);
4399#endif
252b5132
RH
4400
4401 return 1;
4402}
252b5132 4403\f
252b5132
RH
4404#define MAX_LITTLENUMS 6
4405
47926f60
KH
4406/* Turn the string pointed to by litP into a floating point constant
4407 of type TYPE, and emit the appropriate bytes. The number of
4408 LITTLENUMS emitted is stored in *SIZEP. An error message is
4409 returned, or NULL on OK. */
4410
252b5132
RH
4411char *
4412md_atof (type, litP, sizeP)
2ab9b79e 4413 int type;
252b5132
RH
4414 char *litP;
4415 int *sizeP;
4416{
4417 int prec;
4418 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4419 LITTLENUM_TYPE *wordP;
4420 char *t;
4421
4422 switch (type)
4423 {
4424 case 'f':
4425 case 'F':
4426 prec = 2;
4427 break;
4428
4429 case 'd':
4430 case 'D':
4431 prec = 4;
4432 break;
4433
4434 case 'x':
4435 case 'X':
4436 prec = 5;
4437 break;
4438
4439 default:
4440 *sizeP = 0;
4441 return _("Bad call to md_atof ()");
4442 }
4443 t = atof_ieee (input_line_pointer, type, words);
4444 if (t)
4445 input_line_pointer = t;
4446
4447 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4448 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4449 the bigendian 386. */
4450 for (wordP = words + prec - 1; prec--;)
4451 {
4452 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4453 litP += sizeof (LITTLENUM_TYPE);
4454 }
4455 return 0;
4456}
4457\f
4458char output_invalid_buf[8];
4459
252b5132
RH
4460static char *
4461output_invalid (c)
4462 int c;
4463{
4464 if (isprint (c))
4465 sprintf (output_invalid_buf, "'%c'", c);
4466 else
4467 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4468 return output_invalid_buf;
4469}
4470
af6bdddf 4471/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4472
4473static const reg_entry *
4474parse_register (reg_string, end_op)
4475 char *reg_string;
4476 char **end_op;
4477{
af6bdddf
AM
4478 char *s = reg_string;
4479 char *p;
252b5132
RH
4480 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4481 const reg_entry *r;
4482
4483 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4484 if (*s == REGISTER_PREFIX)
4485 ++s;
4486
4487 if (is_space_char (*s))
4488 ++s;
4489
4490 p = reg_name_given;
af6bdddf 4491 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4492 {
4493 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4494 return (const reg_entry *) NULL;
4495 s++;
252b5132
RH
4496 }
4497
6588847e
DN
4498 /* For naked regs, make sure that we are not dealing with an identifier.
4499 This prevents confusing an identifier like `eax_var' with register
4500 `eax'. */
4501 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4502 return (const reg_entry *) NULL;
4503
af6bdddf 4504 *end_op = s;
252b5132
RH
4505
4506 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4507
5f47d35b 4508 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4509 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4510 {
5f47d35b
AM
4511 if (is_space_char (*s))
4512 ++s;
4513 if (*s == '(')
4514 {
af6bdddf 4515 ++s;
5f47d35b
AM
4516 if (is_space_char (*s))
4517 ++s;
4518 if (*s >= '0' && *s <= '7')
4519 {
4520 r = &i386_float_regtab[*s - '0'];
af6bdddf 4521 ++s;
5f47d35b
AM
4522 if (is_space_char (*s))
4523 ++s;
4524 if (*s == ')')
4525 {
4526 *end_op = s + 1;
4527 return r;
4528 }
5f47d35b 4529 }
47926f60 4530 /* We have "%st(" then garbage. */
5f47d35b
AM
4531 return (const reg_entry *) NULL;
4532 }
4533 }
4534
252b5132
RH
4535 return r;
4536}
4537\f
4cc782b5 4538#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4539const char *md_shortopts = "kVQ:sq";
252b5132 4540#else
65172ab8 4541const char *md_shortopts = "q";
252b5132 4542#endif
6e0b89ee 4543
252b5132 4544struct option md_longopts[] = {
3e73aa7c
JH
4545#define OPTION_32 (OPTION_MD_BASE + 0)
4546 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4547#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4548#define OPTION_64 (OPTION_MD_BASE + 1)
4549 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4550#endif
252b5132
RH
4551 {NULL, no_argument, NULL, 0}
4552};
4553size_t md_longopts_size = sizeof (md_longopts);
4554
4555int
4556md_parse_option (c, arg)
4557 int c;
ab9da554 4558 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4559{
4560 switch (c)
4561 {
a38cf1db
AM
4562 case 'q':
4563 quiet_warnings = 1;
252b5132
RH
4564 break;
4565
4566#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4567 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4568 should be emitted or not. FIXME: Not implemented. */
4569 case 'Q':
252b5132
RH
4570 break;
4571
4572 /* -V: SVR4 argument to print version ID. */
4573 case 'V':
4574 print_version_id ();
4575 break;
4576
a38cf1db
AM
4577 /* -k: Ignore for FreeBSD compatibility. */
4578 case 'k':
252b5132 4579 break;
4cc782b5
ILT
4580
4581 case 's':
4582 /* -s: On i386 Solaris, this tells the native assembler to use
4583 .stab instead of .stab.excl. We always use .stab anyhow. */
4584 break;
6e0b89ee 4585
3e73aa7c
JH
4586 case OPTION_64:
4587 {
4588 const char **list, **l;
4589
3e73aa7c
JH
4590 list = bfd_target_list ();
4591 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4592 if (strcmp (*l, "elf64-x86-64") == 0)
4593 {
4594 default_arch = "x86_64";
4595 break;
4596 }
3e73aa7c 4597 if (*l == NULL)
6e0b89ee 4598 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4599 free (list);
4600 }
4601 break;
4602#endif
252b5132 4603
6e0b89ee
AM
4604 case OPTION_32:
4605 default_arch = "i386";
4606 break;
4607
252b5132
RH
4608 default:
4609 return 0;
4610 }
4611 return 1;
4612}
4613
4614void
4615md_show_usage (stream)
4616 FILE *stream;
4617{
4cc782b5
ILT
4618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4619 fprintf (stream, _("\
a38cf1db
AM
4620 -Q ignored\n\
4621 -V print assembler version number\n\
4622 -k ignored\n\
4623 -q quieten some warnings\n\
4624 -s ignored\n"));
4625#else
4626 fprintf (stream, _("\
4627 -q quieten some warnings\n"));
4cc782b5 4628#endif
252b5132
RH
4629}
4630
4631#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4632#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4633 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4634
4635/* Pick the target format to use. */
4636
47926f60 4637const char *
252b5132
RH
4638i386_target_format ()
4639{
3e73aa7c
JH
4640 if (!strcmp (default_arch, "x86_64"))
4641 set_code_flag (CODE_64BIT);
4642 else if (!strcmp (default_arch, "i386"))
4643 set_code_flag (CODE_32BIT);
4644 else
4645 as_fatal (_("Unknown architecture"));
252b5132
RH
4646 switch (OUTPUT_FLAVOR)
4647 {
4c63da97
AM
4648#ifdef OBJ_MAYBE_AOUT
4649 case bfd_target_aout_flavour:
47926f60 4650 return AOUT_TARGET_FORMAT;
4c63da97
AM
4651#endif
4652#ifdef OBJ_MAYBE_COFF
252b5132
RH
4653 case bfd_target_coff_flavour:
4654 return "coff-i386";
4c63da97 4655#endif
3e73aa7c 4656#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4657 case bfd_target_elf_flavour:
3e73aa7c 4658 {
e5cb08ac
KH
4659 if (flag_code == CODE_64BIT)
4660 use_rela_relocations = 1;
4661 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4662 }
4c63da97 4663#endif
252b5132
RH
4664 default:
4665 abort ();
4666 return NULL;
4667 }
4668}
4669
47926f60
KH
4670#endif /* OBJ_MAYBE_ more than one */
4671#endif /* BFD_ASSEMBLER */
252b5132 4672\f
252b5132
RH
4673symbolS *
4674md_undefined_symbol (name)
4675 char *name;
4676{
18dc2407
ILT
4677 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4678 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4679 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4680 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4681 {
4682 if (!GOT_symbol)
4683 {
4684 if (symbol_find (name))
4685 as_bad (_("GOT already in symbol table"));
4686 GOT_symbol = symbol_new (name, undefined_section,
4687 (valueT) 0, &zero_address_frag);
4688 };
4689 return GOT_symbol;
4690 }
252b5132
RH
4691 return 0;
4692}
4693
4694/* Round up a section size to the appropriate boundary. */
47926f60 4695
252b5132
RH
4696valueT
4697md_section_align (segment, size)
ab9da554 4698 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4699 valueT size;
4700{
252b5132 4701#ifdef BFD_ASSEMBLER
4c63da97
AM
4702#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4703 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4704 {
4705 /* For a.out, force the section size to be aligned. If we don't do
4706 this, BFD will align it for us, but it will not write out the
4707 final bytes of the section. This may be a bug in BFD, but it is
4708 easier to fix it here since that is how the other a.out targets
4709 work. */
4710 int align;
4711
4712 align = bfd_get_section_alignment (stdoutput, segment);
4713 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4714 }
252b5132
RH
4715#endif
4716#endif
4717
4718 return size;
4719}
4720
4721/* On the i386, PC-relative offsets are relative to the start of the
4722 next instruction. That is, the address of the offset, plus its
4723 size, since the offset is always the last part of the insn. */
4724
4725long
4726md_pcrel_from (fixP)
4727 fixS *fixP;
4728{
4729 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4730}
4731
4732#ifndef I386COFF
4733
4734static void
4735s_bss (ignore)
ab9da554 4736 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4737{
4738 register int temp;
4739
4740 temp = get_absolute_expression ();
4741 subseg_set (bss_section, (subsegT) temp);
4742 demand_empty_rest_of_line ();
4743}
4744
4745#endif
4746
252b5132
RH
4747#ifdef BFD_ASSEMBLER
4748
4749void
4750i386_validate_fix (fixp)
4751 fixS *fixp;
4752{
4753 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4754 {
3e73aa7c 4755 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4756 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4757 {
4758 if (flag_code != CODE_64BIT)
4759 abort ();
4760 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4761 }
4762 else
4763 {
4764 if (flag_code == CODE_64BIT)
4765 abort ();
4766 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4767 }
252b5132
RH
4768 fixp->fx_subsy = 0;
4769 }
4770}
4771
252b5132
RH
4772arelent *
4773tc_gen_reloc (section, fixp)
ab9da554 4774 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4775 fixS *fixp;
4776{
4777 arelent *rel;
4778 bfd_reloc_code_real_type code;
4779
4780 switch (fixp->fx_r_type)
4781 {
3e73aa7c
JH
4782 case BFD_RELOC_X86_64_PLT32:
4783 case BFD_RELOC_X86_64_GOT32:
4784 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4785 case BFD_RELOC_386_PLT32:
4786 case BFD_RELOC_386_GOT32:
4787 case BFD_RELOC_386_GOTOFF:
4788 case BFD_RELOC_386_GOTPC:
3e73aa7c 4789 case BFD_RELOC_X86_64_32S:
252b5132
RH
4790 case BFD_RELOC_RVA:
4791 case BFD_RELOC_VTABLE_ENTRY:
4792 case BFD_RELOC_VTABLE_INHERIT:
4793 code = fixp->fx_r_type;
4794 break;
4795 default:
93382f6d 4796 if (fixp->fx_pcrel)
252b5132 4797 {
93382f6d
AM
4798 switch (fixp->fx_size)
4799 {
4800 default:
b091f402
AM
4801 as_bad_where (fixp->fx_file, fixp->fx_line,
4802 _("can not do %d byte pc-relative relocation"),
4803 fixp->fx_size);
93382f6d
AM
4804 code = BFD_RELOC_32_PCREL;
4805 break;
4806 case 1: code = BFD_RELOC_8_PCREL; break;
4807 case 2: code = BFD_RELOC_16_PCREL; break;
4808 case 4: code = BFD_RELOC_32_PCREL; break;
4809 }
4810 }
4811 else
4812 {
4813 switch (fixp->fx_size)
4814 {
4815 default:
b091f402
AM
4816 as_bad_where (fixp->fx_file, fixp->fx_line,
4817 _("can not do %d byte relocation"),
4818 fixp->fx_size);
93382f6d
AM
4819 code = BFD_RELOC_32;
4820 break;
4821 case 1: code = BFD_RELOC_8; break;
4822 case 2: code = BFD_RELOC_16; break;
4823 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4824 case 8: code = BFD_RELOC_64; break;
93382f6d 4825 }
252b5132
RH
4826 }
4827 break;
4828 }
252b5132
RH
4829
4830 if (code == BFD_RELOC_32
4831 && GOT_symbol
4832 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4833 {
4834 /* We don't support GOTPC on 64bit targets. */
4835 if (flag_code == CODE_64BIT)
bfb32b52 4836 abort ();
3e73aa7c
JH
4837 code = BFD_RELOC_386_GOTPC;
4838 }
252b5132
RH
4839
4840 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4841 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4842 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4843
4844 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4845 if (!use_rela_relocations)
4846 {
4847 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4848 vtable entry to be used in the relocation's section offset. */
4849 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4850 rel->address = fixp->fx_offset;
252b5132 4851
3e73aa7c
JH
4852 if (fixp->fx_pcrel)
4853 rel->addend = fixp->fx_addnumber;
4854 else
4855 rel->addend = 0;
4856 }
4857 /* Use the rela in 64bit mode. */
252b5132 4858 else
3e73aa7c
JH
4859 {
4860 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4861 if (fixp->fx_pcrel)
4862 rel->addend -= fixp->fx_size;
4863 }
4864
252b5132
RH
4865 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4866 if (rel->howto == NULL)
4867 {
4868 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4869 _("cannot represent relocation type %s"),
252b5132
RH
4870 bfd_get_reloc_code_name (code));
4871 /* Set howto to a garbage value so that we can keep going. */
4872 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4873 assert (rel->howto != NULL);
4874 }
4875
4876 return rel;
4877}
4878
47926f60 4879#else /* ! BFD_ASSEMBLER */
252b5132
RH
4880
4881#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4882void
4883tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4884 char *where;
4885 fixS *fixP;
4886 relax_addressT segment_address_in_file;
4887{
47926f60
KH
4888 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4889 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4890
47926f60 4891 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4892 long r_symbolnum;
4893
4894 know (fixP->fx_addsy != NULL);
4895
4896 md_number_to_chars (where,
4897 (valueT) (fixP->fx_frag->fr_address
4898 + fixP->fx_where - segment_address_in_file),
4899 4);
4900
4901 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4902 ? S_GET_TYPE (fixP->fx_addsy)
4903 : fixP->fx_addsy->sy_number);
4904
4905 where[6] = (r_symbolnum >> 16) & 0x0ff;
4906 where[5] = (r_symbolnum >> 8) & 0x0ff;
4907 where[4] = r_symbolnum & 0x0ff;
4908 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4909 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4910 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4911}
4912
47926f60 4913#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4914
4915#if defined (I386COFF)
4916
4917short
4918tc_coff_fix2rtype (fixP)
4919 fixS *fixP;
4920{
4921 if (fixP->fx_r_type == R_IMAGEBASE)
4922 return R_IMAGEBASE;
4923
4924 return (fixP->fx_pcrel ?
4925 (fixP->fx_size == 1 ? R_PCRBYTE :
4926 fixP->fx_size == 2 ? R_PCRWORD :
4927 R_PCRLONG) :
4928 (fixP->fx_size == 1 ? R_RELBYTE :
4929 fixP->fx_size == 2 ? R_RELWORD :
4930 R_DIR32));
4931}
4932
4933int
4934tc_coff_sizemachdep (frag)
4935 fragS *frag;
4936{
4937 if (frag->fr_next)
4938 return (frag->fr_next->fr_address - frag->fr_address);
4939 else
4940 return 0;
4941}
4942
47926f60 4943#endif /* I386COFF */
252b5132 4944
47926f60 4945#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4946\f
4947/* Parse operands using Intel syntax. This implements a recursive descent
4948 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4949 Programmer's Guide.
4950
4951 FIXME: We do not recognize the full operand grammar defined in the MASM
4952 documentation. In particular, all the structure/union and
4953 high-level macro operands are missing.
4954
4955 Uppercase words are terminals, lower case words are non-terminals.
4956 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4957 bars '|' denote choices. Most grammar productions are implemented in
4958 functions called 'intel_<production>'.
4959
4960 Initial production is 'expr'.
4961
64a0c779
DN
4962 addOp + | -
4963
4964 alpha [a-zA-Z]
4965
4966 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4967
4968 constant digits [[ radixOverride ]]
4969
4970 dataType BYTE | WORD | DWORD | QWORD | XWORD
4971
4972 digits decdigit
b77a7acd
AJ
4973 | digits decdigit
4974 | digits hexdigit
64a0c779
DN
4975
4976 decdigit [0-9]
4977
4978 e05 e05 addOp e06
b77a7acd 4979 | e06
64a0c779
DN
4980
4981 e06 e06 mulOp e09
b77a7acd 4982 | e09
64a0c779
DN
4983
4984 e09 OFFSET e10
4985 | e09 PTR e10
4986 | e09 : e10
4987 | e10
4988
4989 e10 e10 [ expr ]
b77a7acd 4990 | e11
64a0c779
DN
4991
4992 e11 ( expr )
b77a7acd 4993 | [ expr ]
64a0c779
DN
4994 | constant
4995 | dataType
4996 | id
4997 | $
4998 | register
4999
5000 => expr SHORT e05
b77a7acd 5001 | e05
64a0c779
DN
5002
5003 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5004 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5005
5006 hexdigit a | b | c | d | e | f
b77a7acd 5007 | A | B | C | D | E | F
64a0c779
DN
5008
5009 id alpha
b77a7acd 5010 | id alpha
64a0c779
DN
5011 | id decdigit
5012
5013 mulOp * | / | MOD
5014
5015 quote " | '
5016
5017 register specialRegister
b77a7acd 5018 | gpRegister
64a0c779
DN
5019 | byteRegister
5020
5021 segmentRegister CS | DS | ES | FS | GS | SS
5022
5023 specialRegister CR0 | CR2 | CR3
b77a7acd 5024 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5025 | TR3 | TR4 | TR5 | TR6 | TR7
5026
64a0c779
DN
5027 We simplify the grammar in obvious places (e.g., register parsing is
5028 done by calling parse_register) and eliminate immediate left recursion
5029 to implement a recursive-descent parser.
5030
5031 expr SHORT e05
b77a7acd 5032 | e05
64a0c779
DN
5033
5034 e05 e06 e05'
5035
5036 e05' addOp e06 e05'
b77a7acd 5037 | Empty
64a0c779
DN
5038
5039 e06 e09 e06'
5040
5041 e06' mulOp e09 e06'
b77a7acd 5042 | Empty
64a0c779
DN
5043
5044 e09 OFFSET e10 e09'
b77a7acd 5045 | e10 e09'
64a0c779
DN
5046
5047 e09' PTR e10 e09'
b77a7acd 5048 | : e10 e09'
64a0c779
DN
5049 | Empty
5050
5051 e10 e11 e10'
5052
5053 e10' [ expr ] e10'
b77a7acd 5054 | Empty
64a0c779
DN
5055
5056 e11 ( expr )
b77a7acd 5057 | [ expr ]
64a0c779
DN
5058 | BYTE
5059 | WORD
5060 | DWORD
5061 | QWORD
5062 | XWORD
5063 | .
5064 | $
5065 | register
5066 | id
5067 | constant */
5068
5069/* Parsing structure for the intel syntax parser. Used to implement the
5070 semantic actions for the operand grammar. */
5071struct intel_parser_s
5072 {
5073 char *op_string; /* The string being parsed. */
5074 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5075 int op_modifier; /* Operand modifier. */
64a0c779
DN
5076 int is_mem; /* 1 if operand is memory reference. */
5077 const reg_entry *reg; /* Last register reference found. */
5078 char *disp; /* Displacement string being built. */
5079 };
5080
5081static struct intel_parser_s intel_parser;
5082
5083/* Token structure for parsing intel syntax. */
5084struct intel_token
5085 {
5086 int code; /* Token code. */
5087 const reg_entry *reg; /* Register entry for register tokens. */
5088 char *str; /* String representation. */
5089 };
5090
5091static struct intel_token cur_token, prev_token;
5092
50705ef4
AM
5093/* Token codes for the intel parser. Since T_SHORT is already used
5094 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5095#define T_NIL -1
5096#define T_CONST 1
5097#define T_REG 2
5098#define T_BYTE 3
5099#define T_WORD 4
5100#define T_DWORD 5
5101#define T_QWORD 6
5102#define T_XWORD 7
50705ef4 5103#undef T_SHORT
64a0c779
DN
5104#define T_SHORT 8
5105#define T_OFFSET 9
5106#define T_PTR 10
5107#define T_ID 11
5108
5109/* Prototypes for intel parser functions. */
5110static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5111static void intel_get_token PARAMS ((void));
5112static void intel_putback_token PARAMS ((void));
5113static int intel_expr PARAMS ((void));
5114static int intel_e05 PARAMS ((void));
5115static int intel_e05_1 PARAMS ((void));
5116static int intel_e06 PARAMS ((void));
5117static int intel_e06_1 PARAMS ((void));
5118static int intel_e09 PARAMS ((void));
5119static int intel_e09_1 PARAMS ((void));
5120static int intel_e10 PARAMS ((void));
5121static int intel_e10_1 PARAMS ((void));
5122static int intel_e11 PARAMS ((void));
64a0c779 5123
64a0c779
DN
5124static int
5125i386_intel_operand (operand_string, got_a_float)
5126 char *operand_string;
5127 int got_a_float;
5128{
5129 int ret;
5130 char *p;
5131
5132 /* Initialize token holders. */
5133 cur_token.code = prev_token.code = T_NIL;
5134 cur_token.reg = prev_token.reg = NULL;
5135 cur_token.str = prev_token.str = NULL;
5136
5137 /* Initialize parser structure. */
e5cb08ac 5138 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5139 if (p == NULL)
5140 abort ();
5141 strcpy (intel_parser.op_string, operand_string);
5142 intel_parser.got_a_float = got_a_float;
5143 intel_parser.op_modifier = -1;
5144 intel_parser.is_mem = 0;
5145 intel_parser.reg = NULL;
e5cb08ac 5146 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5147 if (intel_parser.disp == NULL)
5148 abort ();
5149 intel_parser.disp[0] = '\0';
5150
5151 /* Read the first token and start the parser. */
5152 intel_get_token ();
5153 ret = intel_expr ();
5154
5155 if (ret)
5156 {
5157 /* If we found a memory reference, hand it over to i386_displacement
5158 to fill in the rest of the operand fields. */
5159 if (intel_parser.is_mem)
5160 {
5161 if ((i.mem_operands == 1
5162 && (current_templates->start->opcode_modifier & IsString) == 0)
5163 || i.mem_operands == 2)
5164 {
5165 as_bad (_("too many memory references for '%s'"),
5166 current_templates->start->name);
5167 ret = 0;
5168 }
5169 else
5170 {
5171 char *s = intel_parser.disp;
5172 i.mem_operands++;
5173
5174 /* Add the displacement expression. */
5175 if (*s != '\0')
5176 ret = i386_displacement (s, s + strlen (s))
5177 && i386_index_check (s);
5178 }
5179 }
5180
5181 /* Constant and OFFSET expressions are handled by i386_immediate. */
5182 else if (intel_parser.op_modifier == OFFSET_FLAT
5183 || intel_parser.reg == NULL)
5184 ret = i386_immediate (intel_parser.disp);
5185 }
5186
5187 free (p);
5188 free (intel_parser.disp);
5189
5190 return ret;
5191}
5192
64a0c779 5193/* expr SHORT e05
b77a7acd 5194 | e05 */
64a0c779
DN
5195static int
5196intel_expr ()
5197{
5198 /* expr SHORT e05 */
5199 if (cur_token.code == T_SHORT)
5200 {
5201 intel_parser.op_modifier = SHORT;
5202 intel_match_token (T_SHORT);
5203
5204 return (intel_e05 ());
5205 }
5206
5207 /* expr e05 */
5208 else
5209 return intel_e05 ();
5210}
5211
64a0c779
DN
5212/* e05 e06 e05'
5213
4a1805b1 5214 e05' addOp e06 e05'
64a0c779
DN
5215 | Empty */
5216static int
5217intel_e05 ()
5218{
5219 return (intel_e06 () && intel_e05_1 ());
5220}
5221
5222static int
5223intel_e05_1 ()
5224{
5225 /* e05' addOp e06 e05' */
5226 if (cur_token.code == '+' || cur_token.code == '-')
5227 {
5228 strcat (intel_parser.disp, cur_token.str);
5229 intel_match_token (cur_token.code);
5230
5231 return (intel_e06 () && intel_e05_1 ());
5232 }
5233
5234 /* e05' Empty */
5235 else
5236 return 1;
4a1805b1 5237}
64a0c779
DN
5238
5239/* e06 e09 e06'
5240
5241 e06' mulOp e09 e06'
b77a7acd 5242 | Empty */
64a0c779
DN
5243static int
5244intel_e06 ()
5245{
5246 return (intel_e09 () && intel_e06_1 ());
5247}
5248
5249static int
5250intel_e06_1 ()
5251{
5252 /* e06' mulOp e09 e06' */
5253 if (cur_token.code == '*' || cur_token.code == '/')
5254 {
5255 strcat (intel_parser.disp, cur_token.str);
5256 intel_match_token (cur_token.code);
5257
5258 return (intel_e09 () && intel_e06_1 ());
5259 }
4a1805b1 5260
64a0c779 5261 /* e06' Empty */
4a1805b1 5262 else
64a0c779
DN
5263 return 1;
5264}
5265
64a0c779 5266/* e09 OFFSET e10 e09'
b77a7acd 5267 | e10 e09'
64a0c779
DN
5268
5269 e09' PTR e10 e09'
b77a7acd 5270 | : e10 e09'
64a0c779
DN
5271 | Empty */
5272static int
5273intel_e09 ()
5274{
5275 /* e09 OFFSET e10 e09' */
5276 if (cur_token.code == T_OFFSET)
5277 {
5278 intel_parser.is_mem = 0;
5279 intel_parser.op_modifier = OFFSET_FLAT;
5280 intel_match_token (T_OFFSET);
5281
5282 return (intel_e10 () && intel_e09_1 ());
5283 }
5284
5285 /* e09 e10 e09' */
5286 else
5287 return (intel_e10 () && intel_e09_1 ());
5288}
5289
5290static int
5291intel_e09_1 ()
5292{
5293 /* e09' PTR e10 e09' */
5294 if (cur_token.code == T_PTR)
5295 {
5296 if (prev_token.code == T_BYTE)
5297 i.suffix = BYTE_MNEM_SUFFIX;
5298
5299 else if (prev_token.code == T_WORD)
5300 {
5301 if (intel_parser.got_a_float == 2) /* "fi..." */
5302 i.suffix = SHORT_MNEM_SUFFIX;
5303 else
5304 i.suffix = WORD_MNEM_SUFFIX;
5305 }
5306
5307 else if (prev_token.code == T_DWORD)
5308 {
5309 if (intel_parser.got_a_float == 1) /* "f..." */
5310 i.suffix = SHORT_MNEM_SUFFIX;
5311 else
5312 i.suffix = LONG_MNEM_SUFFIX;
5313 }
5314
5315 else if (prev_token.code == T_QWORD)
f16b83df
JH
5316 {
5317 if (intel_parser.got_a_float == 1) /* "f..." */
5318 i.suffix = LONG_MNEM_SUFFIX;
5319 else
3e73aa7c 5320 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5321 }
64a0c779
DN
5322
5323 else if (prev_token.code == T_XWORD)
5324 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5325
5326 else
5327 {
5328 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5329 return 0;
5330 }
5331
5332 intel_match_token (T_PTR);
5333
5334 return (intel_e10 () && intel_e09_1 ());
5335 }
5336
5337 /* e09 : e10 e09' */
5338 else if (cur_token.code == ':')
5339 {
21d6c4af
DN
5340 /* Mark as a memory operand only if it's not already known to be an
5341 offset expression. */
5342 if (intel_parser.op_modifier != OFFSET_FLAT)
5343 intel_parser.is_mem = 1;
64a0c779
DN
5344
5345 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5346 }
5347
5348 /* e09' Empty */
5349 else
5350 return 1;
5351}
5352
5353/* e10 e11 e10'
5354
5355 e10' [ expr ] e10'
b77a7acd 5356 | Empty */
64a0c779
DN
5357static int
5358intel_e10 ()
5359{
5360 return (intel_e11 () && intel_e10_1 ());
5361}
5362
5363static int
5364intel_e10_1 ()
5365{
5366 /* e10' [ expr ] e10' */
5367 if (cur_token.code == '[')
5368 {
5369 intel_match_token ('[');
21d6c4af
DN
5370
5371 /* Mark as a memory operand only if it's not already known to be an
5372 offset expression. If it's an offset expression, we need to keep
5373 the brace in. */
5374 if (intel_parser.op_modifier != OFFSET_FLAT)
5375 intel_parser.is_mem = 1;
5376 else
5377 strcat (intel_parser.disp, "[");
4a1805b1 5378
64a0c779 5379 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5380 if (*intel_parser.disp != '\0'
5381 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5382 strcat (intel_parser.disp, "+");
5383
21d6c4af
DN
5384 if (intel_expr () && intel_match_token (']'))
5385 {
5386 /* Preserve brackets when the operand is an offset expression. */
5387 if (intel_parser.op_modifier == OFFSET_FLAT)
5388 strcat (intel_parser.disp, "]");
5389
5390 return intel_e10_1 ();
5391 }
5392 else
5393 return 0;
64a0c779
DN
5394 }
5395
5396 /* e10' Empty */
5397 else
5398 return 1;
5399}
5400
64a0c779 5401/* e11 ( expr )
b77a7acd 5402 | [ expr ]
64a0c779
DN
5403 | BYTE
5404 | WORD
5405 | DWORD
5406 | QWORD
5407 | XWORD
4a1805b1 5408 | $
64a0c779
DN
5409 | .
5410 | register
5411 | id
5412 | constant */
5413static int
5414intel_e11 ()
5415{
5416 /* e11 ( expr ) */
5417 if (cur_token.code == '(')
5418 {
5419 intel_match_token ('(');
5420 strcat (intel_parser.disp, "(");
5421
5422 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5423 {
5424 strcat (intel_parser.disp, ")");
5425 return 1;
5426 }
64a0c779
DN
5427 else
5428 return 0;
5429 }
5430
5431 /* e11 [ expr ] */
5432 else if (cur_token.code == '[')
5433 {
5434 intel_match_token ('[');
21d6c4af
DN
5435
5436 /* Mark as a memory operand only if it's not already known to be an
5437 offset expression. If it's an offset expression, we need to keep
5438 the brace in. */
5439 if (intel_parser.op_modifier != OFFSET_FLAT)
5440 intel_parser.is_mem = 1;
5441 else
5442 strcat (intel_parser.disp, "[");
4a1805b1 5443
64a0c779
DN
5444 /* Operands for jump/call inside brackets denote absolute addresses. */
5445 if (current_templates->start->opcode_modifier & Jump
5446 || current_templates->start->opcode_modifier & JumpDword
5447 || current_templates->start->opcode_modifier & JumpByte
5448 || current_templates->start->opcode_modifier & JumpInterSegment)
5449 i.types[this_operand] |= JumpAbsolute;
5450
5451 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5452 if (*intel_parser.disp != '\0'
5453 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5454 strcat (intel_parser.disp, "+");
5455
21d6c4af
DN
5456 if (intel_expr () && intel_match_token (']'))
5457 {
5458 /* Preserve brackets when the operand is an offset expression. */
5459 if (intel_parser.op_modifier == OFFSET_FLAT)
5460 strcat (intel_parser.disp, "]");
5461
5462 return 1;
5463 }
5464 else
5465 return 0;
64a0c779
DN
5466 }
5467
4a1805b1 5468 /* e11 BYTE
64a0c779
DN
5469 | WORD
5470 | DWORD
5471 | QWORD
5472 | XWORD */
5473 else if (cur_token.code == T_BYTE
5474 || cur_token.code == T_WORD
5475 || cur_token.code == T_DWORD
5476 || cur_token.code == T_QWORD
5477 || cur_token.code == T_XWORD)
5478 {
5479 intel_match_token (cur_token.code);
5480
5481 return 1;
5482 }
5483
5484 /* e11 $
5485 | . */
5486 else if (cur_token.code == '$' || cur_token.code == '.')
5487 {
5488 strcat (intel_parser.disp, cur_token.str);
5489 intel_match_token (cur_token.code);
21d6c4af
DN
5490
5491 /* Mark as a memory operand only if it's not already known to be an
5492 offset expression. */
5493 if (intel_parser.op_modifier != OFFSET_FLAT)
5494 intel_parser.is_mem = 1;
64a0c779
DN
5495
5496 return 1;
5497 }
5498
5499 /* e11 register */
5500 else if (cur_token.code == T_REG)
5501 {
5502 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5503
5504 intel_match_token (T_REG);
5505
5506 /* Check for segment change. */
5507 if (cur_token.code == ':')
5508 {
5509 if (reg->reg_type & (SReg2 | SReg3))
5510 {
5511 switch (reg->reg_num)
5512 {
5513 case 0:
5514 i.seg[i.mem_operands] = &es;
5515 break;
5516 case 1:
5517 i.seg[i.mem_operands] = &cs;
5518 break;
5519 case 2:
5520 i.seg[i.mem_operands] = &ss;
5521 break;
5522 case 3:
5523 i.seg[i.mem_operands] = &ds;
5524 break;
5525 case 4:
5526 i.seg[i.mem_operands] = &fs;
5527 break;
5528 case 5:
5529 i.seg[i.mem_operands] = &gs;
5530 break;
5531 }
5532 }
5533 else
5534 {
5535 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5536 return 0;
5537 }
5538 }
5539
5540 /* Not a segment register. Check for register scaling. */
5541 else if (cur_token.code == '*')
5542 {
5543 if (!intel_parser.is_mem)
5544 {
5545 as_bad (_("Register scaling only allowed in memory operands."));
5546 return 0;
5547 }
5548
4a1805b1 5549 /* What follows must be a valid scale. */
64a0c779
DN
5550 if (intel_match_token ('*')
5551 && strchr ("01248", *cur_token.str))
5552 {
5553 i.index_reg = reg;
5554 i.types[this_operand] |= BaseIndex;
5555
5556 /* Set the scale after setting the register (otherwise,
5557 i386_scale will complain) */
5558 i386_scale (cur_token.str);
5559 intel_match_token (T_CONST);
5560 }
5561 else
5562 {
5563 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5564 cur_token.str);
5565 return 0;
5566 }
5567 }
5568
5569 /* No scaling. If this is a memory operand, the register is either a
5570 base register (first occurrence) or an index register (second
5571 occurrence). */
5572 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5573 {
5574 if (i.base_reg && i.index_reg)
5575 {
5576 as_bad (_("Too many register references in memory operand.\n"));
5577 return 0;
5578 }
5579
5580 if (i.base_reg == NULL)
5581 i.base_reg = reg;
5582 else
5583 i.index_reg = reg;
5584
5585 i.types[this_operand] |= BaseIndex;
5586 }
5587
5588 /* Offset modifier. Add the register to the displacement string to be
5589 parsed as an immediate expression after we're done. */
5590 else if (intel_parser.op_modifier == OFFSET_FLAT)
5591 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5592
64a0c779
DN
5593 /* It's neither base nor index nor offset. */
5594 else
5595 {
5596 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5597 i.op[this_operand].regs = reg;
5598 i.reg_operands++;
5599 }
5600
5601 /* Since registers are not part of the displacement string (except
5602 when we're parsing offset operands), we may need to remove any
5603 preceding '+' from the displacement string. */
5604 if (*intel_parser.disp != '\0'
5605 && intel_parser.op_modifier != OFFSET_FLAT)
5606 {
5607 char *s = intel_parser.disp;
5608 s += strlen (s) - 1;
5609 if (*s == '+')
5610 *s = '\0';
5611 }
5612
5613 return 1;
5614 }
4a1805b1 5615
64a0c779
DN
5616 /* e11 id */
5617 else if (cur_token.code == T_ID)
5618 {
5619 /* Add the identifier to the displacement string. */
5620 strcat (intel_parser.disp, cur_token.str);
5621 intel_match_token (T_ID);
5622
5623 /* The identifier represents a memory reference only if it's not
5624 preceded by an offset modifier. */
21d6c4af 5625 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5626 intel_parser.is_mem = 1;
5627
5628 return 1;
5629 }
5630
5631 /* e11 constant */
5632 else if (cur_token.code == T_CONST
e5cb08ac 5633 || cur_token.code == '-'
64a0c779
DN
5634 || cur_token.code == '+')
5635 {
5636 char *save_str;
5637
5638 /* Allow constants that start with `+' or `-'. */
5639 if (cur_token.code == '-' || cur_token.code == '+')
5640 {
5641 strcat (intel_parser.disp, cur_token.str);
5642 intel_match_token (cur_token.code);
5643 if (cur_token.code != T_CONST)
5644 {
5645 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5646 cur_token.str);
5647 return 0;
5648 }
5649 }
5650
e5cb08ac 5651 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5652 if (save_str == NULL)
bc805888 5653 abort ();
64a0c779
DN
5654 strcpy (save_str, cur_token.str);
5655
5656 /* Get the next token to check for register scaling. */
5657 intel_match_token (cur_token.code);
5658
5659 /* Check if this constant is a scaling factor for an index register. */
5660 if (cur_token.code == '*')
5661 {
5662 if (intel_match_token ('*') && cur_token.code == T_REG)
5663 {
5664 if (!intel_parser.is_mem)
5665 {
5666 as_bad (_("Register scaling only allowed in memory operands."));
5667 return 0;
5668 }
5669
4a1805b1 5670 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5671 a valid scale. */
5672 if (strchr ("01248", *save_str))
5673 {
5674 i.index_reg = cur_token.reg;
5675 i.types[this_operand] |= BaseIndex;
5676
5677 /* Set the scale after setting the register (otherwise,
5678 i386_scale will complain) */
5679 i386_scale (save_str);
5680 intel_match_token (T_REG);
5681
5682 /* Since registers are not part of the displacement
5683 string, we may need to remove any preceding '+' from
5684 the displacement string. */
5685 if (*intel_parser.disp != '\0')
5686 {
5687 char *s = intel_parser.disp;
5688 s += strlen (s) - 1;
5689 if (*s == '+')
5690 *s = '\0';
5691 }
5692
5693 free (save_str);
5694
5695 return 1;
5696 }
5697 else
5698 return 0;
5699 }
5700
5701 /* The constant was not used for register scaling. Since we have
5702 already consumed the token following `*' we now need to put it
5703 back in the stream. */
5704 else
5705 intel_putback_token ();
5706 }
5707
5708 /* Add the constant to the displacement string. */
5709 strcat (intel_parser.disp, save_str);
5710 free (save_str);
5711
5712 return 1;
5713 }
5714
64a0c779
DN
5715 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5716 return 0;
5717}
5718
64a0c779
DN
5719/* Match the given token against cur_token. If they match, read the next
5720 token from the operand string. */
5721static int
5722intel_match_token (code)
e5cb08ac 5723 int code;
64a0c779
DN
5724{
5725 if (cur_token.code == code)
5726 {
5727 intel_get_token ();
5728 return 1;
5729 }
5730 else
5731 {
5732 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5733 return 0;
5734 }
5735}
5736
64a0c779
DN
5737/* Read a new token from intel_parser.op_string and store it in cur_token. */
5738static void
5739intel_get_token ()
5740{
5741 char *end_op;
5742 const reg_entry *reg;
5743 struct intel_token new_token;
5744
5745 new_token.code = T_NIL;
5746 new_token.reg = NULL;
5747 new_token.str = NULL;
5748
4a1805b1 5749 /* Free the memory allocated to the previous token and move
64a0c779
DN
5750 cur_token to prev_token. */
5751 if (prev_token.str)
5752 free (prev_token.str);
5753
5754 prev_token = cur_token;
5755
5756 /* Skip whitespace. */
5757 while (is_space_char (*intel_parser.op_string))
5758 intel_parser.op_string++;
5759
5760 /* Return an empty token if we find nothing else on the line. */
5761 if (*intel_parser.op_string == '\0')
5762 {
5763 cur_token = new_token;
5764 return;
5765 }
5766
5767 /* The new token cannot be larger than the remainder of the operand
5768 string. */
e5cb08ac 5769 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5770 if (new_token.str == NULL)
bc805888 5771 abort ();
64a0c779
DN
5772 new_token.str[0] = '\0';
5773
5774 if (strchr ("0123456789", *intel_parser.op_string))
5775 {
5776 char *p = new_token.str;
5777 char *q = intel_parser.op_string;
5778 new_token.code = T_CONST;
5779
5780 /* Allow any kind of identifier char to encompass floating point and
5781 hexadecimal numbers. */
5782 while (is_identifier_char (*q))
5783 *p++ = *q++;
5784 *p = '\0';
5785
5786 /* Recognize special symbol names [0-9][bf]. */
5787 if (strlen (intel_parser.op_string) == 2
4a1805b1 5788 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5789 || intel_parser.op_string[1] == 'f'))
5790 new_token.code = T_ID;
5791 }
5792
5793 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5794 {
5795 new_token.code = *intel_parser.op_string;
5796 new_token.str[0] = *intel_parser.op_string;
5797 new_token.str[1] = '\0';
5798 }
5799
5800 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5801 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5802 {
5803 new_token.code = T_REG;
5804 new_token.reg = reg;
5805
5806 if (*intel_parser.op_string == REGISTER_PREFIX)
5807 {
5808 new_token.str[0] = REGISTER_PREFIX;
5809 new_token.str[1] = '\0';
5810 }
5811
5812 strcat (new_token.str, reg->reg_name);
5813 }
5814
5815 else if (is_identifier_char (*intel_parser.op_string))
5816 {
5817 char *p = new_token.str;
5818 char *q = intel_parser.op_string;
5819
5820 /* A '.' or '$' followed by an identifier char is an identifier.
5821 Otherwise, it's operator '.' followed by an expression. */
5822 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5823 {
5824 new_token.code = *q;
5825 new_token.str[0] = *q;
5826 new_token.str[1] = '\0';
5827 }
5828 else
5829 {
5830 while (is_identifier_char (*q) || *q == '@')
5831 *p++ = *q++;
5832 *p = '\0';
5833
5834 if (strcasecmp (new_token.str, "BYTE") == 0)
5835 new_token.code = T_BYTE;
5836
5837 else if (strcasecmp (new_token.str, "WORD") == 0)
5838 new_token.code = T_WORD;
5839
5840 else if (strcasecmp (new_token.str, "DWORD") == 0)
5841 new_token.code = T_DWORD;
5842
5843 else if (strcasecmp (new_token.str, "QWORD") == 0)
5844 new_token.code = T_QWORD;
5845
5846 else if (strcasecmp (new_token.str, "XWORD") == 0)
5847 new_token.code = T_XWORD;
5848
5849 else if (strcasecmp (new_token.str, "PTR") == 0)
5850 new_token.code = T_PTR;
5851
5852 else if (strcasecmp (new_token.str, "SHORT") == 0)
5853 new_token.code = T_SHORT;
5854
5855 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5856 {
5857 new_token.code = T_OFFSET;
5858
5859 /* ??? This is not mentioned in the MASM grammar but gcc
5860 makes use of it with -mintel-syntax. OFFSET may be
5861 followed by FLAT: */
5862 if (strncasecmp (q, " FLAT:", 6) == 0)
5863 strcat (new_token.str, " FLAT:");
5864 }
5865
5866 /* ??? This is not mentioned in the MASM grammar. */
5867 else if (strcasecmp (new_token.str, "FLAT") == 0)
5868 new_token.code = T_OFFSET;
5869
5870 else
5871 new_token.code = T_ID;
5872 }
5873 }
5874
5875 else
5876 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5877
5878 intel_parser.op_string += strlen (new_token.str);
5879 cur_token = new_token;
5880}
5881
64a0c779
DN
5882/* Put cur_token back into the token stream and make cur_token point to
5883 prev_token. */
5884static void
5885intel_putback_token ()
5886{
5887 intel_parser.op_string -= strlen (cur_token.str);
5888 free (cur_token.str);
5889 cur_token = prev_token;
4a1805b1 5890
64a0c779
DN
5891 /* Forget prev_token. */
5892 prev_token.code = T_NIL;
5893 prev_token.reg = NULL;
5894 prev_token.str = NULL;
5895}
This page took 0.442944 seconds and 4 git commands to generate.