Cure recent x86 warts.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
b77a7acd 2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001
47926f60 3 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
47926f60
KH
22/* Intel 80386 machine specific gas.
23 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 24 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132
RH
27
28#include <ctype.h>
29
30#include "as.h"
31#include "subsegs.h"
316e2c05 32#include "dwarf2dbg.h"
252b5132
RH
33#include "opcode/i386.h"
34
252b5132
RH
35#ifndef REGISTER_WARNINGS
36#define REGISTER_WARNINGS 1
37#endif
38
c3332e24 39#ifndef INFER_ADDR_PREFIX
eecb386c 40#define INFER_ADDR_PREFIX 1
c3332e24
AM
41#endif
42
252b5132
RH
43#ifndef SCALE1_WHEN_NO_INDEX
44/* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48#define SCALE1_WHEN_NO_INDEX 1
49#endif
50
51#define true 1
52#define false 0
53
54static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
55static int fits_in_signed_byte PARAMS ((offsetT));
56static int fits_in_unsigned_byte PARAMS ((offsetT));
57static int fits_in_unsigned_word PARAMS ((offsetT));
58static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
59static int fits_in_unsigned_long PARAMS ((offsetT));
60static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
61static int smallest_imm_type PARAMS ((offsetT));
62static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 63static int add_prefix PARAMS ((unsigned int));
3e73aa7c 64static void set_code_flag PARAMS ((int));
47926f60 65static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 66static void set_intel_syntax PARAMS ((int));
e413e4e9 67static void set_cpu_arch PARAMS ((int));
252b5132
RH
68
69#ifdef BFD_ASSEMBLER
70static bfd_reloc_code_real_type reloc
3e73aa7c 71 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
72#endif
73
3e73aa7c
JH
74#ifndef DEFAULT_ARCH
75#define DEFAULT_ARCH "i386"
76#endif
77static char *default_arch = DEFAULT_ARCH;
78
252b5132 79/* 'md_assemble ()' gathers together information and puts it into a
47926f60 80 i386_insn. */
252b5132 81
520dc8e8
AM
82union i386_op
83 {
84 expressionS *disps;
85 expressionS *imms;
86 const reg_entry *regs;
87 };
88
252b5132
RH
89struct _i386_insn
90 {
47926f60 91 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
92 template tm;
93
94 /* SUFFIX holds the instruction mnemonic suffix if given.
95 (e.g. 'l' for 'movl') */
96 char suffix;
97
47926f60 98 /* OPERANDS gives the number of given operands. */
252b5132
RH
99 unsigned int operands;
100
101 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
102 of given register, displacement, memory operands and immediate
47926f60 103 operands. */
252b5132
RH
104 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
105
106 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 107 use OP[i] for the corresponding operand. */
252b5132
RH
108 unsigned int types[MAX_OPERANDS];
109
520dc8e8
AM
110 /* Displacement expression, immediate expression, or register for each
111 operand. */
112 union i386_op op[MAX_OPERANDS];
252b5132 113
3e73aa7c
JH
114 /* Flags for operands. */
115 unsigned int flags[MAX_OPERANDS];
116#define Operand_PCrel 1
117
252b5132
RH
118 /* Relocation type for operand */
119#ifdef BFD_ASSEMBLER
120 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
121#else
122 int disp_reloc[MAX_OPERANDS];
123#endif
124
252b5132
RH
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 132 explicit segment overrides are given. */
ce8a8b2f 133 const seg_entry *seg[2];
252b5132
RH
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
3e73aa7c 144 rex_byte rex;
252b5132
RH
145 sib_byte sib;
146 };
147
148typedef struct _i386_insn i386_insn;
149
150/* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152#ifdef LEX_AT
153const char extra_symbol_chars[] = "*%-(@";
154#else
155const char extra_symbol_chars[] = "*%-(";
156#endif
157
158/* This array holds the chars that always start a comment. If the
ce8a8b2f 159 pre-processor is disabled, these aren't very useful. */
60bcf0fa 160#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
161/* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163const char comment_chars[] = "#/";
164#define PREFIX_SEPARATOR '\\'
165#else
166const char comment_chars[] = "#";
167#define PREFIX_SEPARATOR '/'
168#endif
169
170/* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 174 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
252b5132 177 '/' isn't otherwise defined. */
60bcf0fa 178#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
179const char line_comment_chars[] = "";
180#else
181const char line_comment_chars[] = "/";
182#endif
183
63a0b638 184const char line_separator_chars[] = ";";
252b5132 185
ce8a8b2f
AM
186/* Chars that can be used to separate mant from exp in floating point
187 nums. */
252b5132
RH
188const char EXP_CHARS[] = "eE";
189
ce8a8b2f
AM
190/* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
252b5132
RH
193const char FLT_CHARS[] = "fFdDxX";
194
ce8a8b2f 195/* Tables for lexical analysis. */
252b5132
RH
196static char mnemonic_chars[256];
197static char register_chars[256];
198static char operand_chars[256];
199static char identifier_chars[256];
200static char digit_chars[256];
201
ce8a8b2f 202/* Lexical macros. */
252b5132
RH
203#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204#define is_operand_char(x) (operand_chars[(unsigned char) x])
205#define is_register_char(x) (register_chars[(unsigned char) x])
206#define is_space_char(x) ((x) == ' ')
207#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208#define is_digit_char(x) (digit_chars[(unsigned char) x])
209
ce8a8b2f 210/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
211static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213/* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
47926f60 216 assembler instruction). */
252b5132 217static char save_stack[32];
ce8a8b2f 218static char *save_stack_p;
252b5132
RH
219#define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221#define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
47926f60 224/* The instruction we're assembling. */
252b5132
RH
225static i386_insn i;
226
227/* Possible templates for current insn. */
228static const templates *current_templates;
229
47926f60 230/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
231static expressionS disp_expressions[2], im_expressions[2];
232
47926f60
KH
233/* Current operand we are working on. */
234static int this_operand;
252b5132 235
3e73aa7c
JH
236/* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243
244static enum flag_code flag_code;
245static int use_rela_relocations = 0;
246
247/* The names used to print error messages. */
b77a7acd 248static const char *flag_code_names[] =
3e73aa7c
JH
249 {
250 "32",
251 "16",
252 "64"
253 };
252b5132 254
47926f60
KH
255/* 1 for intel syntax,
256 0 if att syntax. */
257static int intel_syntax = 0;
252b5132 258
47926f60
KH
259/* 1 if register prefix % not required. */
260static int allow_naked_reg = 0;
252b5132 261
47926f60
KH
262/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
263 leave, push, and pop instructions so that gcc has the same stack
264 frame as in 32 bit mode. */
265static char stackop_size = '\0';
eecb386c 266
47926f60
KH
267/* Non-zero to quieten some warnings. */
268static int quiet_warnings = 0;
a38cf1db 269
47926f60
KH
270/* CPU name. */
271static const char *cpu_arch_name = NULL;
a38cf1db 272
47926f60 273/* CPU feature flags. */
3e73aa7c 274static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 275
252b5132
RH
276/* Interface to relax_segment.
277 There are 2 relax states for 386 jump insns: one for conditional &
a217f122
AM
278 one for unconditional jumps. This is because these two types of
279 jumps add different sizes to frags when we're figuring out what
252b5132
RH
280 sort of jump to choose to reach a given label. */
281
47926f60 282/* Types. */
ce8a8b2f
AM
283#define COND_JUMP 1
284#define UNCOND_JUMP 2
47926f60 285/* Sizes. */
252b5132
RH
286#define CODE16 1
287#define SMALL 0
288#define SMALL16 (SMALL|CODE16)
289#define BIG 2
290#define BIG16 (BIG|CODE16)
291
292#ifndef INLINE
293#ifdef __GNUC__
294#define INLINE __inline__
295#else
296#define INLINE
297#endif
298#endif
299
300#define ENCODE_RELAX_STATE(type,size) \
bc805888 301 ((relax_substateT) ((type<<2) | (size)))
252b5132
RH
302#define SIZE_FROM_RELAX_STATE(s) \
303 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
304
305/* This table is used by relax_frag to promote short jumps to long
306 ones where necessary. SMALL (short) jumps may be promoted to BIG
307 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
308 don't allow a short jump in a 32 bit code segment to be promoted to
309 a 16 bit offset jump because it's slower (requires data size
310 prefix), and doesn't work, unless the destination is in the bottom
311 64k of the code segment (The top 16 bits of eip are zeroed). */
312
313const relax_typeS md_relax_table[] =
314{
24eab124
AM
315 /* The fields are:
316 1) most positive reach of this state,
317 2) most negative reach of this state,
318 3) how many bytes this mode will add to the size of the current frag
ce8a8b2f 319 4) which index into the table to try if we can't fit into this one. */
252b5132
RH
320 {1, 1, 0, 0},
321 {1, 1, 0, 0},
322 {1, 1, 0, 0},
323 {1, 1, 0, 0},
324
325 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
326 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
327 /* dword conditionals adds 4 bytes to frag:
328 1 extra opcode byte, 3 extra displacement bytes. */
329 {0, 0, 4, 0},
330 /* word conditionals add 2 bytes to frag:
331 1 extra opcode byte, 1 extra displacement byte. */
332 {0, 0, 2, 0},
333
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0}
342
343};
344
e413e4e9
AM
345static const arch_entry cpu_arch[] = {
346 {"i8086", Cpu086 },
347 {"i186", Cpu086|Cpu186 },
348 {"i286", Cpu086|Cpu186|Cpu286 },
349 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
350 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
351 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
352 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
353 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
354 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 355 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
356 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
357 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 358 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
359 {NULL, 0 }
360};
361
252b5132
RH
362void
363i386_align_code (fragP, count)
364 fragS *fragP;
365 int count;
366{
ce8a8b2f
AM
367 /* Various efficient no-op patterns for aligning code labels.
368 Note: Don't try to assemble the instructions in the comments.
369 0L and 0w are not legal. */
252b5132
RH
370 static const char f32_1[] =
371 {0x90}; /* nop */
372 static const char f32_2[] =
373 {0x89,0xf6}; /* movl %esi,%esi */
374 static const char f32_3[] =
375 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
376 static const char f32_4[] =
377 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
378 static const char f32_5[] =
379 {0x90, /* nop */
380 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
381 static const char f32_6[] =
382 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
383 static const char f32_7[] =
384 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
385 static const char f32_8[] =
386 {0x90, /* nop */
387 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
388 static const char f32_9[] =
389 {0x89,0xf6, /* movl %esi,%esi */
390 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
391 static const char f32_10[] =
392 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
393 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
394 static const char f32_11[] =
395 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
396 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
397 static const char f32_12[] =
398 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
399 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
400 static const char f32_13[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
402 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
403 static const char f32_14[] =
404 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_15[] =
407 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
408 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
409 static const char f16_3[] =
410 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
411 static const char f16_4[] =
412 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
413 static const char f16_5[] =
414 {0x90, /* nop */
415 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
416 static const char f16_6[] =
417 {0x89,0xf6, /* mov %si,%si */
418 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
419 static const char f16_7[] =
420 {0x8d,0x74,0x00, /* lea 0(%si),%si */
421 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
422 static const char f16_8[] =
423 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
424 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
425 static const char *const f32_patt[] = {
426 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
427 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
428 };
429 static const char *const f16_patt[] = {
c3332e24 430 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
431 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
432 };
433
3e73aa7c
JH
434 /* ??? We can't use these fillers for x86_64, since they often kills the
435 upper halves. Solve later. */
436 if (flag_code == CODE_64BIT)
437 count = 1;
438
252b5132
RH
439 if (count > 0 && count <= 15)
440 {
3e73aa7c 441 if (flag_code == CODE_16BIT)
252b5132 442 {
47926f60
KH
443 memcpy (fragP->fr_literal + fragP->fr_fix,
444 f16_patt[count - 1], count);
445 if (count > 8)
446 /* Adjust jump offset. */
252b5132
RH
447 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
448 }
449 else
47926f60
KH
450 memcpy (fragP->fr_literal + fragP->fr_fix,
451 f32_patt[count - 1], count);
252b5132
RH
452 fragP->fr_var = count;
453 }
454}
455
456static char *output_invalid PARAMS ((int c));
457static int i386_operand PARAMS ((char *operand_string));
458static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
459static const reg_entry *parse_register PARAMS ((char *reg_string,
460 char **end_op));
461
462#ifndef I386COFF
463static void s_bss PARAMS ((int));
464#endif
465
ce8a8b2f 466symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
467
468static INLINE unsigned int
469mode_from_disp_size (t)
470 unsigned int t;
471{
3e73aa7c 472 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
473}
474
475static INLINE int
476fits_in_signed_byte (num)
847f7ad4 477 offsetT num;
252b5132
RH
478{
479 return (num >= -128) && (num <= 127);
47926f60 480}
252b5132
RH
481
482static INLINE int
483fits_in_unsigned_byte (num)
847f7ad4 484 offsetT num;
252b5132
RH
485{
486 return (num & 0xff) == num;
47926f60 487}
252b5132
RH
488
489static INLINE int
490fits_in_unsigned_word (num)
847f7ad4 491 offsetT num;
252b5132
RH
492{
493 return (num & 0xffff) == num;
47926f60 494}
252b5132
RH
495
496static INLINE int
497fits_in_signed_word (num)
847f7ad4 498 offsetT num;
252b5132
RH
499{
500 return (-32768 <= num) && (num <= 32767);
47926f60 501}
3e73aa7c
JH
502static INLINE int
503fits_in_signed_long (num)
504 offsetT num ATTRIBUTE_UNUSED;
505{
506#ifndef BFD64
507 return 1;
508#else
509 return (!(((offsetT) -1 << 31) & num)
510 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
511#endif
512} /* fits_in_signed_long() */
513static INLINE int
514fits_in_unsigned_long (num)
515 offsetT num ATTRIBUTE_UNUSED;
516{
517#ifndef BFD64
518 return 1;
519#else
520 return (num & (((offsetT) 2 << 31) - 1)) == num;
521#endif
522} /* fits_in_unsigned_long() */
252b5132
RH
523
524static int
525smallest_imm_type (num)
847f7ad4 526 offsetT num;
252b5132 527{
3e73aa7c
JH
528 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
529 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
530 {
531 /* This code is disabled on the 486 because all the Imm1 forms
532 in the opcode table are slower on the i486. They're the
533 versions with the implicitly specified single-position
534 displacement, which has another syntax if you really want to
535 use that form. */
536 if (num == 1)
3e73aa7c 537 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 538 }
252b5132 539 return (fits_in_signed_byte (num)
3e73aa7c 540 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 541 : fits_in_unsigned_byte (num)
3e73aa7c 542 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 543 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
544 ? (Imm16 | Imm32 | Imm32S | Imm64)
545 : fits_in_signed_long (num)
546 ? (Imm32 | Imm32S | Imm64)
547 : fits_in_unsigned_long (num)
548 ? (Imm32 | Imm64)
549 : Imm64);
47926f60 550}
252b5132 551
847f7ad4
AM
552static offsetT
553offset_in_range (val, size)
554 offsetT val;
555 int size;
556{
508866be 557 addressT mask;
ba2adb93 558
847f7ad4
AM
559 switch (size)
560 {
508866be
L
561 case 1: mask = ((addressT) 1 << 8) - 1; break;
562 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 563 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
564#ifdef BFD64
565 case 8: mask = ((addressT) 2 << 63) - 1; break;
566#endif
47926f60 567 default: abort ();
847f7ad4
AM
568 }
569
ba2adb93 570 /* If BFD64, sign extend val. */
3e73aa7c
JH
571 if (!use_rela_relocations)
572 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
573 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 574
47926f60 575 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
576 {
577 char buf1[40], buf2[40];
578
579 sprint_value (buf1, val);
580 sprint_value (buf2, val & mask);
581 as_warn (_("%s shortened to %s"), buf1, buf2);
582 }
583 return val & mask;
584}
585
252b5132
RH
586/* Returns 0 if attempting to add a prefix where one from the same
587 class already exists, 1 if non rep/repne added, 2 if rep/repne
588 added. */
589static int
590add_prefix (prefix)
591 unsigned int prefix;
592{
593 int ret = 1;
594 int q;
595
3e73aa7c
JH
596 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
597 q = REX_PREFIX;
598 else
599 switch (prefix)
600 {
601 default:
602 abort ();
603
604 case CS_PREFIX_OPCODE:
605 case DS_PREFIX_OPCODE:
606 case ES_PREFIX_OPCODE:
607 case FS_PREFIX_OPCODE:
608 case GS_PREFIX_OPCODE:
609 case SS_PREFIX_OPCODE:
610 q = SEG_PREFIX;
611 break;
252b5132 612
3e73aa7c
JH
613 case REPNE_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 ret = 2;
616 /* fall thru */
617 case LOCK_PREFIX_OPCODE:
618 q = LOCKREP_PREFIX;
619 break;
252b5132 620
3e73aa7c
JH
621 case FWAIT_OPCODE:
622 q = WAIT_PREFIX;
623 break;
252b5132 624
3e73aa7c
JH
625 case ADDR_PREFIX_OPCODE:
626 q = ADDR_PREFIX;
627 break;
252b5132 628
3e73aa7c
JH
629 case DATA_PREFIX_OPCODE:
630 q = DATA_PREFIX;
631 break;
632 }
252b5132
RH
633
634 if (i.prefix[q])
635 {
636 as_bad (_("same type of prefix used twice"));
637 return 0;
638 }
639
640 i.prefixes += 1;
641 i.prefix[q] = prefix;
642 return ret;
643}
644
645static void
3e73aa7c
JH
646set_code_flag (value)
647 int value;
eecb386c 648{
3e73aa7c
JH
649 flag_code = value;
650 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
651 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
652 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
653 {
654 as_bad (_("64bit mode not supported on this CPU."));
655 }
656 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
657 {
658 as_bad (_("32bit mode not supported on this CPU."));
659 }
eecb386c
AM
660 stackop_size = '\0';
661}
662
663static void
3e73aa7c
JH
664set_16bit_gcc_code_flag (new_code_flag)
665 int new_code_flag;
252b5132 666{
3e73aa7c
JH
667 flag_code = new_code_flag;
668 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
669 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
670 stackop_size = 'l';
252b5132
RH
671}
672
673static void
674set_intel_syntax (syntax_flag)
eecb386c 675 int syntax_flag;
252b5132
RH
676{
677 /* Find out if register prefixing is specified. */
678 int ask_naked_reg = 0;
679
680 SKIP_WHITESPACE ();
681 if (! is_end_of_line[(unsigned char) *input_line_pointer])
682 {
683 char *string = input_line_pointer;
684 int e = get_symbol_end ();
685
47926f60 686 if (strcmp (string, "prefix") == 0)
252b5132 687 ask_naked_reg = 1;
47926f60 688 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
689 ask_naked_reg = -1;
690 else
d0b47220 691 as_bad (_("bad argument to syntax directive."));
252b5132
RH
692 *input_line_pointer = e;
693 }
694 demand_empty_rest_of_line ();
c3332e24 695
252b5132
RH
696 intel_syntax = syntax_flag;
697
698 if (ask_naked_reg == 0)
699 {
700#ifdef BFD_ASSEMBLER
701 allow_naked_reg = (intel_syntax
24eab124 702 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 703#else
47926f60
KH
704 /* Conservative default. */
705 allow_naked_reg = 0;
252b5132
RH
706#endif
707 }
708 else
709 allow_naked_reg = (ask_naked_reg < 0);
710}
711
e413e4e9
AM
712static void
713set_cpu_arch (dummy)
47926f60 714 int dummy ATTRIBUTE_UNUSED;
e413e4e9 715{
47926f60 716 SKIP_WHITESPACE ();
e413e4e9
AM
717
718 if (! is_end_of_line[(unsigned char) *input_line_pointer])
719 {
720 char *string = input_line_pointer;
721 int e = get_symbol_end ();
722 int i;
723
724 for (i = 0; cpu_arch[i].name; i++)
725 {
726 if (strcmp (string, cpu_arch[i].name) == 0)
727 {
728 cpu_arch_name = cpu_arch[i].name;
3e73aa7c 729 cpu_arch_flags = cpu_arch[i].flags | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
e413e4e9
AM
730 break;
731 }
732 }
733 if (!cpu_arch[i].name)
734 as_bad (_("no such architecture: `%s'"), string);
735
736 *input_line_pointer = e;
737 }
738 else
739 as_bad (_("missing cpu architecture"));
740
741 demand_empty_rest_of_line ();
742}
743
252b5132
RH
744const pseudo_typeS md_pseudo_table[] =
745{
252b5132
RH
746#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
747 {"align", s_align_bytes, 0},
748#else
749 {"align", s_align_ptwo, 0},
e413e4e9
AM
750#endif
751 {"arch", set_cpu_arch, 0},
752#ifndef I386COFF
753 {"bss", s_bss, 0},
252b5132
RH
754#endif
755 {"ffloat", float_cons, 'f'},
756 {"dfloat", float_cons, 'd'},
757 {"tfloat", float_cons, 'x'},
758 {"value", cons, 2},
759 {"noopt", s_ignore, 0},
760 {"optim", s_ignore, 0},
3e73aa7c
JH
761 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
762 {"code16", set_code_flag, CODE_16BIT},
763 {"code32", set_code_flag, CODE_32BIT},
764 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
765 {"intel_syntax", set_intel_syntax, 1},
766 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
767 {"file", dwarf2_directive_file, 0},
768 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
769 {0, 0, 0}
770};
771
47926f60 772/* For interface with expression (). */
252b5132
RH
773extern char *input_line_pointer;
774
47926f60 775/* Hash table for instruction mnemonic lookup. */
252b5132 776static struct hash_control *op_hash;
47926f60
KH
777
778/* Hash table for register lookup. */
252b5132
RH
779static struct hash_control *reg_hash;
780\f
252b5132
RH
781void
782md_begin ()
783{
784 const char *hash_err;
785
47926f60 786 /* Initialize op_hash hash table. */
252b5132
RH
787 op_hash = hash_new ();
788
789 {
790 register const template *optab;
791 register templates *core_optab;
792
47926f60
KH
793 /* Setup for loop. */
794 optab = i386_optab;
252b5132
RH
795 core_optab = (templates *) xmalloc (sizeof (templates));
796 core_optab->start = optab;
797
798 while (1)
799 {
800 ++optab;
801 if (optab->name == NULL
802 || strcmp (optab->name, (optab - 1)->name) != 0)
803 {
804 /* different name --> ship out current template list;
47926f60 805 add to hash table; & begin anew. */
252b5132
RH
806 core_optab->end = optab;
807 hash_err = hash_insert (op_hash,
808 (optab - 1)->name,
809 (PTR) core_optab);
810 if (hash_err)
811 {
252b5132
RH
812 as_fatal (_("Internal Error: Can't hash %s: %s"),
813 (optab - 1)->name,
814 hash_err);
815 }
816 if (optab->name == NULL)
817 break;
818 core_optab = (templates *) xmalloc (sizeof (templates));
819 core_optab->start = optab;
820 }
821 }
822 }
823
47926f60 824 /* Initialize reg_hash hash table. */
252b5132
RH
825 reg_hash = hash_new ();
826 {
827 register const reg_entry *regtab;
828
829 for (regtab = i386_regtab;
830 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
831 regtab++)
832 {
833 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
834 if (hash_err)
3e73aa7c
JH
835 as_fatal (_("Internal Error: Can't hash %s: %s"),
836 regtab->reg_name,
837 hash_err);
252b5132
RH
838 }
839 }
840
47926f60 841 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
842 {
843 register int c;
844 register char *p;
845
846 for (c = 0; c < 256; c++)
847 {
848 if (isdigit (c))
849 {
850 digit_chars[c] = c;
851 mnemonic_chars[c] = c;
852 register_chars[c] = c;
853 operand_chars[c] = c;
854 }
855 else if (islower (c))
856 {
857 mnemonic_chars[c] = c;
858 register_chars[c] = c;
859 operand_chars[c] = c;
860 }
861 else if (isupper (c))
862 {
863 mnemonic_chars[c] = tolower (c);
864 register_chars[c] = mnemonic_chars[c];
865 operand_chars[c] = c;
866 }
867
868 if (isalpha (c) || isdigit (c))
869 identifier_chars[c] = c;
870 else if (c >= 128)
871 {
872 identifier_chars[c] = c;
873 operand_chars[c] = c;
874 }
875 }
876
877#ifdef LEX_AT
878 identifier_chars['@'] = '@';
879#endif
252b5132
RH
880 digit_chars['-'] = '-';
881 identifier_chars['_'] = '_';
882 identifier_chars['.'] = '.';
883
884 for (p = operand_special_chars; *p != '\0'; p++)
885 operand_chars[(unsigned char) *p] = *p;
886 }
887
888#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
889 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
890 {
891 record_alignment (text_section, 2);
892 record_alignment (data_section, 2);
893 record_alignment (bss_section, 2);
894 }
895#endif
896}
897
898void
899i386_print_statistics (file)
900 FILE *file;
901{
902 hash_print_statistics (file, "i386 opcode", op_hash);
903 hash_print_statistics (file, "i386 register", reg_hash);
904}
905\f
252b5132
RH
906#ifdef DEBUG386
907
ce8a8b2f 908/* Debugging routines for md_assemble. */
252b5132
RH
909static void pi PARAMS ((char *, i386_insn *));
910static void pte PARAMS ((template *));
911static void pt PARAMS ((unsigned int));
912static void pe PARAMS ((expressionS *));
913static void ps PARAMS ((symbolS *));
914
915static void
916pi (line, x)
917 char *line;
918 i386_insn *x;
919{
09f131f2 920 unsigned int i;
252b5132
RH
921
922 fprintf (stdout, "%s: template ", line);
923 pte (&x->tm);
09f131f2
JH
924 fprintf (stdout, " address: base %s index %s scale %x\n",
925 x->base_reg ? x->base_reg->reg_name : "none",
926 x->index_reg ? x->index_reg->reg_name : "none",
927 x->log2_scale_factor);
928 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 929 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
930 fprintf (stdout, " sib: base %x index %x scale %x\n",
931 x->sib.base, x->sib.index, x->sib.scale);
932 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
933 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
934 for (i = 0; i < x->operands; i++)
935 {
936 fprintf (stdout, " #%d: ", i + 1);
937 pt (x->types[i]);
938 fprintf (stdout, "\n");
939 if (x->types[i]
3f4438ab 940 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 941 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 942 if (x->types[i] & Imm)
520dc8e8 943 pe (x->op[i].imms);
252b5132 944 if (x->types[i] & Disp)
520dc8e8 945 pe (x->op[i].disps);
252b5132
RH
946 }
947}
948
949static void
950pte (t)
951 template *t;
952{
09f131f2 953 unsigned int i;
252b5132 954 fprintf (stdout, " %d operands ", t->operands);
47926f60 955 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
956 if (t->extension_opcode != None)
957 fprintf (stdout, "ext %x ", t->extension_opcode);
958 if (t->opcode_modifier & D)
959 fprintf (stdout, "D");
960 if (t->opcode_modifier & W)
961 fprintf (stdout, "W");
962 fprintf (stdout, "\n");
963 for (i = 0; i < t->operands; i++)
964 {
965 fprintf (stdout, " #%d type ", i + 1);
966 pt (t->operand_types[i]);
967 fprintf (stdout, "\n");
968 }
969}
970
971static void
972pe (e)
973 expressionS *e;
974{
24eab124 975 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
976 fprintf (stdout, " add_number %ld (%lx)\n",
977 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
978 if (e->X_add_symbol)
979 {
980 fprintf (stdout, " add_symbol ");
981 ps (e->X_add_symbol);
982 fprintf (stdout, "\n");
983 }
984 if (e->X_op_symbol)
985 {
986 fprintf (stdout, " op_symbol ");
987 ps (e->X_op_symbol);
988 fprintf (stdout, "\n");
989 }
990}
991
992static void
993ps (s)
994 symbolS *s;
995{
996 fprintf (stdout, "%s type %s%s",
997 S_GET_NAME (s),
998 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
999 segment_name (S_GET_SEGMENT (s)));
1000}
1001
1002struct type_name
1003 {
1004 unsigned int mask;
1005 char *tname;
1006 }
1007
1008type_names[] =
1009{
1010 { Reg8, "r8" },
1011 { Reg16, "r16" },
1012 { Reg32, "r32" },
09f131f2 1013 { Reg64, "r64" },
252b5132
RH
1014 { Imm8, "i8" },
1015 { Imm8S, "i8s" },
1016 { Imm16, "i16" },
1017 { Imm32, "i32" },
09f131f2
JH
1018 { Imm32S, "i32s" },
1019 { Imm64, "i64" },
252b5132
RH
1020 { Imm1, "i1" },
1021 { BaseIndex, "BaseIndex" },
1022 { Disp8, "d8" },
1023 { Disp16, "d16" },
1024 { Disp32, "d32" },
09f131f2
JH
1025 { Disp32S, "d32s" },
1026 { Disp64, "d64" },
252b5132
RH
1027 { InOutPortReg, "InOutPortReg" },
1028 { ShiftCount, "ShiftCount" },
1029 { Control, "control reg" },
1030 { Test, "test reg" },
1031 { Debug, "debug reg" },
1032 { FloatReg, "FReg" },
1033 { FloatAcc, "FAcc" },
1034 { SReg2, "SReg2" },
1035 { SReg3, "SReg3" },
1036 { Acc, "Acc" },
1037 { JumpAbsolute, "Jump Absolute" },
1038 { RegMMX, "rMMX" },
3f4438ab 1039 { RegXMM, "rXMM" },
252b5132
RH
1040 { EsSeg, "es" },
1041 { 0, "" }
1042};
1043
1044static void
1045pt (t)
1046 unsigned int t;
1047{
1048 register struct type_name *ty;
1049
09f131f2
JH
1050 for (ty = type_names; ty->mask; ty++)
1051 if (t & ty->mask)
1052 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1053 fflush (stdout);
1054}
1055
1056#endif /* DEBUG386 */
1057\f
1058int
1059tc_i386_force_relocation (fixp)
1060 struct fix *fixp;
1061{
1062#ifdef BFD_ASSEMBLER
1063 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1064 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1065 return 1;
1066 return 0;
1067#else
ce8a8b2f 1068 /* For COFF. */
f6af82bd 1069 return fixp->fx_r_type == 7;
252b5132
RH
1070#endif
1071}
1072
1073#ifdef BFD_ASSEMBLER
252b5132
RH
1074
1075static bfd_reloc_code_real_type
3e73aa7c 1076reloc (size, pcrel, sign, other)
252b5132
RH
1077 int size;
1078 int pcrel;
3e73aa7c 1079 int sign;
252b5132
RH
1080 bfd_reloc_code_real_type other;
1081{
47926f60
KH
1082 if (other != NO_RELOC)
1083 return other;
252b5132
RH
1084
1085 if (pcrel)
1086 {
3e73aa7c
JH
1087 if (!sign)
1088 as_bad(_("There are no unsigned pc-relative relocations"));
252b5132
RH
1089 switch (size)
1090 {
1091 case 1: return BFD_RELOC_8_PCREL;
1092 case 2: return BFD_RELOC_16_PCREL;
1093 case 4: return BFD_RELOC_32_PCREL;
1094 }
d0b47220 1095 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1096 }
1097 else
1098 {
3e73aa7c
JH
1099 if (sign)
1100 switch (size)
1101 {
1102 case 4: return BFD_RELOC_X86_64_32S;
1103 }
1104 else
1105 switch (size)
1106 {
1107 case 1: return BFD_RELOC_8;
1108 case 2: return BFD_RELOC_16;
1109 case 4: return BFD_RELOC_32;
1110 case 8: return BFD_RELOC_64;
1111 }
1112 as_bad (_("can not do %s %d byte relocation"),
1113 sign ? "signed" : "unsigned", size);
252b5132
RH
1114 }
1115
3e73aa7c 1116 abort();
252b5132
RH
1117 return BFD_RELOC_NONE;
1118}
1119
47926f60
KH
1120/* Here we decide which fixups can be adjusted to make them relative to
1121 the beginning of the section instead of the symbol. Basically we need
1122 to make sure that the dynamic relocations are done correctly, so in
1123 some cases we force the original symbol to be used. */
1124
252b5132 1125int
c0c949c7 1126tc_i386_fix_adjustable (fixP)
47926f60 1127 fixS *fixP;
252b5132 1128{
6d249963 1129#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1130 /* Prevent all adjustments to global symbols, or else dynamic
1131 linking will not work correctly. */
b98ef147
AM
1132 if (S_IS_EXTERNAL (fixP->fx_addsy)
1133 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1134 return 0;
1135#endif
ce8a8b2f 1136 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1137 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1138 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1139 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1140 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1141 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
252b5132
RH
1142 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1143 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1144 return 0;
1145 return 1;
1146}
1147#else
ec56dfb4
L
1148#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1149#define BFD_RELOC_16 0
1150#define BFD_RELOC_32 0
1151#define BFD_RELOC_16_PCREL 0
1152#define BFD_RELOC_32_PCREL 0
1153#define BFD_RELOC_386_PLT32 0
1154#define BFD_RELOC_386_GOT32 0
1155#define BFD_RELOC_386_GOTOFF 0
1156#define BFD_RELOC_X86_64_PLT32 0
1157#define BFD_RELOC_X86_64_GOT32 0
1158#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1159#endif
1160
47926f60 1161static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1162
1163static int
252b5132
RH
1164intel_float_operand (mnemonic)
1165 char *mnemonic;
1166{
47926f60 1167 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1168 return 2;
252b5132
RH
1169
1170 if (mnemonic[0] == 'f')
1171 return 1;
1172
1173 return 0;
1174}
1175
1176/* This is the guts of the machine-dependent assembler. LINE points to a
1177 machine dependent instruction. This function is supposed to emit
1178 the frags/bytes it assembles to. */
1179
1180void
1181md_assemble (line)
1182 char *line;
1183{
47926f60 1184 /* Points to template once we've found it. */
252b5132
RH
1185 const template *t;
1186
1187 /* Count the size of the instruction generated. */
1188 int insn_size = 0;
1189
1190 int j;
1191
1192 char mnemonic[MAX_MNEM_SIZE];
1193
47926f60 1194 /* Initialize globals. */
252b5132
RH
1195 memset (&i, '\0', sizeof (i));
1196 for (j = 0; j < MAX_OPERANDS; j++)
1197 i.disp_reloc[j] = NO_RELOC;
1198 memset (disp_expressions, '\0', sizeof (disp_expressions));
1199 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1200 save_stack_p = save_stack;
252b5132
RH
1201
1202 /* First parse an instruction mnemonic & call i386_operand for the operands.
1203 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1204 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1205 {
1206 char *l = line;
1207 char *token_start = l;
1208 char *mnem_p;
1209
47926f60 1210 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1211 const char *expecting_string_instruction = NULL;
1212
1213 while (1)
1214 {
1215 mnem_p = mnemonic;
1216 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1217 {
1218 mnem_p++;
1219 if (mnem_p >= mnemonic + sizeof (mnemonic))
1220 {
e413e4e9 1221 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1222 return;
1223 }
1224 l++;
1225 }
1226 if (!is_space_char (*l)
1227 && *l != END_OF_INSN
1228 && *l != PREFIX_SEPARATOR)
1229 {
1230 as_bad (_("invalid character %s in mnemonic"),
1231 output_invalid (*l));
1232 return;
1233 }
1234 if (token_start == l)
1235 {
1236 if (*l == PREFIX_SEPARATOR)
1237 as_bad (_("expecting prefix; got nothing"));
1238 else
1239 as_bad (_("expecting mnemonic; got nothing"));
1240 return;
1241 }
1242
1243 /* Look up instruction (or prefix) via hash table. */
1244 current_templates = hash_find (op_hash, mnemonic);
1245
1246 if (*l != END_OF_INSN
1247 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1248 && current_templates
1249 && (current_templates->start->opcode_modifier & IsPrefix))
1250 {
1251 /* If we are in 16-bit mode, do not allow addr16 or data16.
1252 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1253 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1254 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1255 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1256 {
1257 as_bad (_("redundant %s prefix"),
1258 current_templates->start->name);
1259 return;
1260 }
1261 /* Add prefix, checking for repeated prefixes. */
1262 switch (add_prefix (current_templates->start->base_opcode))
1263 {
1264 case 0:
1265 return;
1266 case 2:
47926f60 1267 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1268 break;
1269 }
1270 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1271 token_start = ++l;
1272 }
1273 else
1274 break;
1275 }
1276
1277 if (!current_templates)
1278 {
24eab124 1279 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1280 switch (mnem_p[-1])
1281 {
252b5132
RH
1282 case WORD_MNEM_SUFFIX:
1283 case BYTE_MNEM_SUFFIX:
3e73aa7c 1284 case QWORD_MNEM_SUFFIX:
252b5132
RH
1285 i.suffix = mnem_p[-1];
1286 mnem_p[-1] = '\0';
1287 current_templates = hash_find (op_hash, mnemonic);
24eab124 1288 break;
f16b83df
JH
1289 case SHORT_MNEM_SUFFIX:
1290 case LONG_MNEM_SUFFIX:
1291 if (!intel_syntax)
1292 {
1293 i.suffix = mnem_p[-1];
1294 mnem_p[-1] = '\0';
1295 current_templates = hash_find (op_hash, mnemonic);
1296 }
1297 break;
24eab124 1298
ce8a8b2f 1299 /* Intel Syntax. */
f16b83df 1300 case 'd':
24eab124
AM
1301 if (intel_syntax)
1302 {
f16b83df
JH
1303 if (intel_float_operand (mnemonic))
1304 i.suffix = SHORT_MNEM_SUFFIX;
1305 else
1306 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1307 mnem_p[-1] = '\0';
1308 current_templates = hash_find (op_hash, mnemonic);
24eab124 1309 }
f16b83df 1310 break;
252b5132
RH
1311 }
1312 if (!current_templates)
1313 {
e413e4e9 1314 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1315 return;
1316 }
1317 }
1318
e413e4e9
AM
1319 /* Check if instruction is supported on specified architecture. */
1320 if (cpu_arch_flags != 0)
1321 {
3e73aa7c
JH
1322 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1323 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1324 {
1325 as_warn (_("`%s' is not supported on `%s'"),
1326 current_templates->start->name, cpu_arch_name);
1327 }
3e73aa7c 1328 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1329 {
1330 as_warn (_("use .code16 to ensure correct addressing mode"));
1331 }
1332 }
1333
ce8a8b2f 1334 /* Check for rep/repne without a string instruction. */
252b5132
RH
1335 if (expecting_string_instruction
1336 && !(current_templates->start->opcode_modifier & IsString))
1337 {
1338 as_bad (_("expecting string instruction after `%s'"),
1339 expecting_string_instruction);
1340 return;
1341 }
1342
47926f60 1343 /* There may be operands to parse. */
252b5132
RH
1344 if (*l != END_OF_INSN)
1345 {
47926f60 1346 /* 1 if operand is pending after ','. */
252b5132
RH
1347 unsigned int expecting_operand = 0;
1348
47926f60 1349 /* Non-zero if operand parens not balanced. */
252b5132
RH
1350 unsigned int paren_not_balanced;
1351
1352 do
1353 {
ce8a8b2f 1354 /* Skip optional white space before operand. */
252b5132
RH
1355 if (is_space_char (*l))
1356 ++l;
1357 if (!is_operand_char (*l) && *l != END_OF_INSN)
1358 {
1359 as_bad (_("invalid character %s before operand %d"),
1360 output_invalid (*l),
1361 i.operands + 1);
1362 return;
1363 }
1364 token_start = l; /* after white space */
1365 paren_not_balanced = 0;
1366 while (paren_not_balanced || *l != ',')
1367 {
1368 if (*l == END_OF_INSN)
1369 {
1370 if (paren_not_balanced)
1371 {
24eab124 1372 if (!intel_syntax)
252b5132
RH
1373 as_bad (_("unbalanced parenthesis in operand %d."),
1374 i.operands + 1);
24eab124 1375 else
252b5132
RH
1376 as_bad (_("unbalanced brackets in operand %d."),
1377 i.operands + 1);
1378 return;
1379 }
1380 else
1381 break; /* we are done */
1382 }
1383 else if (!is_operand_char (*l) && !is_space_char (*l))
1384 {
1385 as_bad (_("invalid character %s in operand %d"),
1386 output_invalid (*l),
1387 i.operands + 1);
1388 return;
1389 }
24eab124
AM
1390 if (!intel_syntax)
1391 {
252b5132
RH
1392 if (*l == '(')
1393 ++paren_not_balanced;
1394 if (*l == ')')
1395 --paren_not_balanced;
24eab124
AM
1396 }
1397 else
1398 {
252b5132
RH
1399 if (*l == '[')
1400 ++paren_not_balanced;
1401 if (*l == ']')
1402 --paren_not_balanced;
24eab124 1403 }
252b5132
RH
1404 l++;
1405 }
1406 if (l != token_start)
47926f60 1407 { /* Yes, we've read in another operand. */
252b5132
RH
1408 unsigned int operand_ok;
1409 this_operand = i.operands++;
1410 if (i.operands > MAX_OPERANDS)
1411 {
1412 as_bad (_("spurious operands; (%d operands/instruction max)"),
1413 MAX_OPERANDS);
1414 return;
1415 }
47926f60 1416 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1417 END_STRING_AND_SAVE (l);
1418
24eab124 1419 if (intel_syntax)
47926f60
KH
1420 operand_ok =
1421 i386_intel_operand (token_start,
1422 intel_float_operand (mnemonic));
24eab124
AM
1423 else
1424 operand_ok = i386_operand (token_start);
252b5132 1425
ce8a8b2f 1426 RESTORE_END_STRING (l);
252b5132
RH
1427 if (!operand_ok)
1428 return;
1429 }
1430 else
1431 {
1432 if (expecting_operand)
1433 {
1434 expecting_operand_after_comma:
1435 as_bad (_("expecting operand after ','; got nothing"));
1436 return;
1437 }
1438 if (*l == ',')
1439 {
1440 as_bad (_("expecting operand before ','; got nothing"));
1441 return;
1442 }
1443 }
1444
ce8a8b2f 1445 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1446 if (*l == ',')
1447 {
1448 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1449 {
1450 /* Just skip it, if it's \n complain. */
252b5132
RH
1451 goto expecting_operand_after_comma;
1452 }
1453 expecting_operand = 1;
1454 }
1455 }
ce8a8b2f 1456 while (*l != END_OF_INSN);
252b5132
RH
1457 }
1458 }
1459
1460 /* Now we've parsed the mnemonic into a set of templates, and have the
1461 operands at hand.
1462
1463 Next, we find a template that matches the given insn,
1464 making sure the overlap of the given operands types is consistent
47926f60 1465 with the template operand types. */
252b5132
RH
1466
1467#define MATCH(overlap, given, template) \
3138f287
AM
1468 ((overlap & ~JumpAbsolute) \
1469 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1470
1471 /* If given types r0 and r1 are registers they must be of the same type
1472 unless the expected operand type register overlap is null.
1473 Note that Acc in a template matches every size of reg. */
1474#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1475 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1476 ((g0) & Reg) == ((g1) & Reg) || \
1477 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1478
1479 {
1480 register unsigned int overlap0, overlap1;
252b5132
RH
1481 unsigned int overlap2;
1482 unsigned int found_reverse_match;
1483 int suffix_check;
1484
cc5ca5ce
AM
1485 /* All intel opcodes have reversed operands except for "bound" and
1486 "enter". We also don't reverse intersegment "jmp" and "call"
1487 instructions with 2 immediate operands so that the immediate segment
1488 precedes the offset, as it does when in AT&T mode. "enter" and the
1489 intersegment "jmp" and "call" instructions are the only ones that
1490 have two immediate operands. */
520dc8e8 1491 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1492 && (strcmp (mnemonic, "bound") != 0)
1493 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1494 {
520dc8e8 1495 union i386_op temp_op;
24eab124 1496 unsigned int temp_type;
76a0ddac 1497#ifdef BFD_ASSEMBLER
3e73aa7c 1498 enum bfd_reloc_code_real temp_reloc;
76a0ddac 1499#else
3e73aa7c 1500 int temp_reloc;
76a0ddac 1501#endif
24eab124 1502 int xchg1 = 0;
ab9da554 1503 int xchg2 = 0;
252b5132 1504
24eab124
AM
1505 if (i.operands == 2)
1506 {
1507 xchg1 = 0;
1508 xchg2 = 1;
1509 }
1510 else if (i.operands == 3)
1511 {
1512 xchg1 = 0;
1513 xchg2 = 2;
1514 }
520dc8e8
AM
1515 temp_type = i.types[xchg2];
1516 i.types[xchg2] = i.types[xchg1];
1517 i.types[xchg1] = temp_type;
1518 temp_op = i.op[xchg2];
1519 i.op[xchg2] = i.op[xchg1];
1520 i.op[xchg1] = temp_op;
3e73aa7c 1521 temp_reloc = i.disp_reloc[xchg2];
76a0ddac 1522 i.disp_reloc[xchg2] = i.disp_reloc[xchg1];
3e73aa7c 1523 i.disp_reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1524
1525 if (i.mem_operands == 2)
1526 {
1527 const seg_entry *temp_seg;
1528 temp_seg = i.seg[0];
1529 i.seg[0] = i.seg[1];
1530 i.seg[1] = temp_seg;
1531 }
24eab124 1532 }
773f551c
AM
1533
1534 if (i.imm_operands)
1535 {
1536 /* Try to ensure constant immediates are represented in the smallest
1537 opcode possible. */
1538 char guess_suffix = 0;
1539 int op;
1540
1541 if (i.suffix)
1542 guess_suffix = i.suffix;
1543 else if (i.reg_operands)
1544 {
1545 /* Figure out a suffix from the last register operand specified.
1546 We can't do this properly yet, ie. excluding InOutPortReg,
1547 but the following works for instructions with immediates.
1548 In any case, we can't set i.suffix yet. */
47926f60 1549 for (op = i.operands; --op >= 0;)
773f551c
AM
1550 if (i.types[op] & Reg)
1551 {
1552 if (i.types[op] & Reg8)
1553 guess_suffix = BYTE_MNEM_SUFFIX;
1554 else if (i.types[op] & Reg16)
1555 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1556 else if (i.types[op] & Reg32)
1557 guess_suffix = LONG_MNEM_SUFFIX;
1558 else if (i.types[op] & Reg64)
1559 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1560 break;
1561 }
1562 }
3e73aa7c 1563 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1564 guess_suffix = WORD_MNEM_SUFFIX;
1565
47926f60 1566 for (op = i.operands; --op >= 0;)
3e73aa7c 1567 if (i.types[op] & Imm)
773f551c 1568 {
3e73aa7c
JH
1569 switch (i.op[op].imms->X_op)
1570 {
1571 case O_constant:
1572 /* If a suffix is given, this operand may be shortened. */
1573 switch (guess_suffix)
1574 {
1575 case LONG_MNEM_SUFFIX:
1576 i.types[op] |= Imm32 | Imm64;
1577 break;
1578 case WORD_MNEM_SUFFIX:
1579 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1580 break;
1581 case BYTE_MNEM_SUFFIX:
1582 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1583 break;
1584 }
773f551c 1585
3e73aa7c
JH
1586 /* If this operand is at most 16 bits, convert it to a
1587 signed 16 bit number before trying to see whether it will
1588 fit in an even smaller size. This allows a 16-bit operand
1589 such as $0xffe0 to be recognised as within Imm8S range. */
1590 if ((i.types[op] & Imm16)
1591 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1592 {
1593 i.op[op].imms->X_add_number =
1594 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1595 }
1596 if ((i.types[op] & Imm32)
1597 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1598 {
1599 i.op[op].imms->X_add_number =
1600 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1601 }
1602 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1603 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1604 if (guess_suffix == QWORD_MNEM_SUFFIX)
1605 i.types[op] &= ~Imm32;
1606 break;
1607 case O_absent:
1608 case O_register:
1609 abort();
1610 /* Symbols and expressions. */
1611 default:
1612 /* Convert symbolic operand to proper sizes for matching. */
1613 switch (guess_suffix)
1614 {
1615 case QWORD_MNEM_SUFFIX:
1616 i.types[op] = Imm64 | Imm32S;
1617 break;
1618 case LONG_MNEM_SUFFIX:
1619 i.types[op] = Imm32 | Imm64;
1620 break;
1621 case WORD_MNEM_SUFFIX:
1622 i.types[op] = Imm16 | Imm32 | Imm64;
1623 break;
1624 break;
1625 case BYTE_MNEM_SUFFIX:
1626 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1627 break;
1628 break;
1629 }
1630 break;
773f551c 1631 }
773f551c
AM
1632 }
1633 }
1634
45288df1
AM
1635 if (i.disp_operands)
1636 {
1637 /* Try to use the smallest displacement type too. */
1638 int op;
1639
47926f60 1640 for (op = i.operands; --op >= 0;)
45288df1
AM
1641 if ((i.types[op] & Disp)
1642 && i.op[op].imms->X_op == O_constant)
1643 {
1644 offsetT disp = i.op[op].disps->X_add_number;
1645
1646 if (i.types[op] & Disp16)
1647 {
1648 /* We know this operand is at most 16 bits, so
1649 convert to a signed 16 bit number before trying
1650 to see whether it will fit in an even smaller
1651 size. */
47926f60 1652
45288df1
AM
1653 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1654 }
3e73aa7c
JH
1655 else if (i.types[op] & Disp32)
1656 {
1657 /* We know this operand is at most 32 bits, so convert to a
1658 signed 32 bit number before trying to see whether it will
1659 fit in an even smaller size. */
1660 disp &= (((offsetT) 2 << 31) - 1);
1661 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1662 }
1663 if (flag_code == CODE_64BIT)
1664 {
1665 if (fits_in_signed_long (disp))
1666 i.types[op] |= Disp32S;
1667 if (fits_in_unsigned_long (disp))
1668 i.types[op] |= Disp32;
1669 }
1670 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1671 && fits_in_signed_byte (disp))
45288df1
AM
1672 i.types[op] |= Disp8;
1673 }
1674 }
1675
252b5132
RH
1676 overlap0 = 0;
1677 overlap1 = 0;
1678 overlap2 = 0;
1679 found_reverse_match = 0;
1680 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1681 ? No_bSuf
1682 : (i.suffix == WORD_MNEM_SUFFIX
1683 ? No_wSuf
1684 : (i.suffix == SHORT_MNEM_SUFFIX
1685 ? No_sSuf
1686 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1687 ? No_lSuf
3e73aa7c
JH
1688 : (i.suffix == QWORD_MNEM_SUFFIX
1689 ? No_qSuf
1690 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1691
1692 for (t = current_templates->start;
1693 t < current_templates->end;
1694 t++)
1695 {
47926f60 1696 /* Must have right number of operands. */
252b5132
RH
1697 if (i.operands != t->operands)
1698 continue;
1699
7f3f1ea2
AM
1700 /* Check the suffix, except for some instructions in intel mode. */
1701 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1702 && !(intel_syntax
1703 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1704 && !(intel_syntax
1705 && t->base_opcode == 0xd9
ce8a8b2f
AM
1706 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1707 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1708 continue;
252b5132
RH
1709
1710 else if (!t->operands)
47926f60
KH
1711 /* 0 operands always matches. */
1712 break;
252b5132
RH
1713
1714 overlap0 = i.types[0] & t->operand_types[0];
1715 switch (t->operands)
1716 {
1717 case 1:
1718 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1719 continue;
1720 break;
1721 case 2:
1722 case 3:
1723 overlap1 = i.types[1] & t->operand_types[1];
1724 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1725 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1726 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1727 t->operand_types[0],
1728 overlap1, i.types[1],
1729 t->operand_types[1]))
1730 {
47926f60 1731 /* Check if other direction is valid ... */
252b5132
RH
1732 if ((t->opcode_modifier & (D|FloatD)) == 0)
1733 continue;
1734
47926f60 1735 /* Try reversing direction of operands. */
252b5132
RH
1736 overlap0 = i.types[0] & t->operand_types[1];
1737 overlap1 = i.types[1] & t->operand_types[0];
1738 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1739 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1740 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1741 t->operand_types[1],
1742 overlap1, i.types[1],
1743 t->operand_types[0]))
1744 {
47926f60 1745 /* Does not match either direction. */
252b5132
RH
1746 continue;
1747 }
1748 /* found_reverse_match holds which of D or FloatDR
1749 we've found. */
1750 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1751 }
47926f60 1752 /* Found a forward 2 operand match here. */
3e73aa7c 1753 else if (t->operands == 3)
252b5132
RH
1754 {
1755 /* Here we make use of the fact that there are no
1756 reverse match 3 operand instructions, and all 3
1757 operand instructions only need to be checked for
1758 register consistency between operands 2 and 3. */
1759 overlap2 = i.types[2] & t->operand_types[2];
1760 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1761 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1762 t->operand_types[1],
1763 overlap2, i.types[2],
24eab124 1764 t->operand_types[2]))
252b5132 1765
24eab124 1766 continue;
252b5132 1767 }
47926f60 1768 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1769 slip through to break. */
252b5132 1770 }
3e73aa7c
JH
1771 if (t->cpu_flags & ~cpu_arch_flags)
1772 {
1773 found_reverse_match = 0;
1774 continue;
1775 }
47926f60
KH
1776 /* We've found a match; break out of loop. */
1777 break;
ce8a8b2f 1778 }
252b5132 1779 if (t == current_templates->end)
47926f60
KH
1780 {
1781 /* We found no match. */
252b5132
RH
1782 as_bad (_("suffix or operands invalid for `%s'"),
1783 current_templates->start->name);
1784 return;
1785 }
1786
a38cf1db 1787 if (!quiet_warnings)
3138f287 1788 {
a38cf1db
AM
1789 if (!intel_syntax
1790 && ((i.types[0] & JumpAbsolute)
1791 != (t->operand_types[0] & JumpAbsolute)))
1792 {
1793 as_warn (_("indirect %s without `*'"), t->name);
1794 }
3138f287 1795
a38cf1db
AM
1796 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1797 == (IsPrefix|IgnoreSize))
1798 {
1799 /* Warn them that a data or address size prefix doesn't
1800 affect assembly of the next line of code. */
1801 as_warn (_("stand-alone `%s' prefix"), t->name);
1802 }
252b5132
RH
1803 }
1804
1805 /* Copy the template we found. */
1806 i.tm = *t;
1807 if (found_reverse_match)
1808 {
7f3f1ea2
AM
1809 /* If we found a reverse match we must alter the opcode
1810 direction bit. found_reverse_match holds bits to change
1811 (different for int & float insns). */
1812
1813 i.tm.base_opcode ^= found_reverse_match;
1814
252b5132
RH
1815 i.tm.operand_types[0] = t->operand_types[1];
1816 i.tm.operand_types[1] = t->operand_types[0];
1817 }
1818
d0b47220
AM
1819 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1820 if (SYSV386_COMPAT
7f3f1ea2
AM
1821 && intel_syntax
1822 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1823 i.tm.base_opcode ^= FloatR;
252b5132
RH
1824
1825 if (i.tm.opcode_modifier & FWait)
1826 if (! add_prefix (FWAIT_OPCODE))
1827 return;
1828
ce8a8b2f 1829 /* Check string instruction segment overrides. */
252b5132
RH
1830 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1831 {
1832 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1833 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1834 {
1835 if (i.seg[0] != NULL && i.seg[0] != &es)
1836 {
1837 as_bad (_("`%s' operand %d must use `%%es' segment"),
1838 i.tm.name,
1839 mem_op + 1);
1840 return;
1841 }
1842 /* There's only ever one segment override allowed per instruction.
1843 This instruction possibly has a legal segment override on the
1844 second operand, so copy the segment to where non-string
1845 instructions store it, allowing common code. */
1846 i.seg[0] = i.seg[1];
1847 }
1848 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1849 {
1850 if (i.seg[1] != NULL && i.seg[1] != &es)
1851 {
1852 as_bad (_("`%s' operand %d must use `%%es' segment"),
1853 i.tm.name,
1854 mem_op + 2);
1855 return;
1856 }
1857 }
1858 }
1859
3e73aa7c
JH
1860 if (i.reg_operands && flag_code < CODE_64BIT)
1861 {
1862 int op;
1863 for (op = i.operands; --op >= 0; )
1864 if ((i.types[op] & Reg)
1865 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1866 {
1867 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1868 i.op[op].regs->reg_name);
1869 return;
1870 }
3e73aa7c
JH
1871 }
1872
252b5132
RH
1873 /* If matched instruction specifies an explicit instruction mnemonic
1874 suffix, use it. */
3e73aa7c 1875 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1876 {
1877 if (i.tm.opcode_modifier & Size16)
1878 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1879 else if (i.tm.opcode_modifier & Size64)
1880 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1881 else
add0c677 1882 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1883 }
1884 else if (i.reg_operands)
1885 {
1886 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1887 based on register operands. */
252b5132
RH
1888 if (!i.suffix)
1889 {
1890 /* We take i.suffix from the last register operand specified,
1891 Destination register type is more significant than source
1892 register type. */
1893 int op;
47926f60 1894 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1895 if ((i.types[op] & Reg)
1896 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1897 {
1898 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1899 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1900 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1901 LONG_MNEM_SUFFIX);
252b5132
RH
1902 break;
1903 }
1904 }
1905 else if (i.suffix == BYTE_MNEM_SUFFIX)
1906 {
1907 int op;
47926f60 1908 for (op = i.operands; --op >= 0;)
252b5132
RH
1909 {
1910 /* If this is an eight bit register, it's OK. If it's
1911 the 16 or 32 bit version of an eight bit register,
47926f60 1912 we will just use the low portion, and that's OK too. */
252b5132
RH
1913 if (i.types[op] & Reg8)
1914 continue;
1915
47926f60 1916 /* movzx and movsx should not generate this warning. */
24eab124
AM
1917 if (intel_syntax
1918 && (i.tm.base_opcode == 0xfb7
1919 || i.tm.base_opcode == 0xfb6
3e73aa7c 1920 || i.tm.base_opcode == 0x63
24eab124
AM
1921 || i.tm.base_opcode == 0xfbe
1922 || i.tm.base_opcode == 0xfbf))
1923 continue;
252b5132 1924
520dc8e8 1925 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
1926#if 0
1927 /* Check that the template allows eight bit regs
1928 This kills insns such as `orb $1,%edx', which
1929 maybe should be allowed. */
1930 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1931#endif
1932 )
1933 {
3e73aa7c
JH
1934 /* Prohibit these changes in the 64bit mode, since
1935 the lowering is more complicated. */
1936 if (flag_code == CODE_64BIT
1937 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1938 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1939 i.op[op].regs->reg_name,
1940 i.suffix);
252b5132 1941#if REGISTER_WARNINGS
a38cf1db
AM
1942 if (!quiet_warnings
1943 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 1944 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
520dc8e8
AM
1945 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1946 i.op[op].regs->reg_name,
252b5132
RH
1947 i.suffix);
1948#endif
1949 continue;
1950 }
ce8a8b2f 1951 /* Any other register is bad. */
3f4438ab
AM
1952 if (i.types[op] & (Reg | RegMMX | RegXMM
1953 | SReg2 | SReg3
1954 | Control | Debug | Test
1955 | FloatReg | FloatAcc))
252b5132
RH
1956 {
1957 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 1958 i.op[op].regs->reg_name,
252b5132
RH
1959 i.tm.name,
1960 i.suffix);
1961 return;
1962 }
1963 }
1964 }
add0c677 1965 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
1966 {
1967 int op;
47926f60
KH
1968
1969 for (op = i.operands; --op >= 0;)
252b5132
RH
1970 /* Reject eight bit registers, except where the template
1971 requires them. (eg. movzb) */
1972 if ((i.types[op] & Reg8) != 0
47926f60 1973 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
1974 {
1975 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 1976 i.op[op].regs->reg_name,
252b5132
RH
1977 i.tm.name,
1978 i.suffix);
1979 return;
1980 }
252b5132 1981 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 1982 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 1983 && (i.types[op] & Reg16) != 0
252b5132
RH
1984 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1985 {
3e73aa7c
JH
1986 /* Prohibit these changes in the 64bit mode, since
1987 the lowering is more complicated. */
1988 if (flag_code == CODE_64BIT)
1989 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1990 i.op[op].regs->reg_name,
1991 i.suffix);
1992#if REGISTER_WARNINGS
1993 else
1994 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1995 (i.op[op].regs + 8)->reg_name,
1996 i.op[op].regs->reg_name,
1997 i.suffix);
252b5132 1998#endif
3e73aa7c
JH
1999 }
2000 /* Warn if the r prefix on a general reg is missing. */
2001 else if ((i.types[op] & Reg64) != 0
2002 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2003 {
2004 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2005 i.op[op].regs->reg_name,
2006 i.suffix);
2007 }
2008 }
2009 else if (i.suffix == QWORD_MNEM_SUFFIX)
2010 {
2011 int op;
3e73aa7c
JH
2012
2013 for (op = i.operands; --op >= 0; )
2014 /* Reject eight bit registers, except where the template
2015 requires them. (eg. movzb) */
2016 if ((i.types[op] & Reg8) != 0
2017 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2018 {
2019 as_bad (_("`%%%s' not allowed with `%s%c'"),
2020 i.op[op].regs->reg_name,
2021 i.tm.name,
2022 i.suffix);
2023 return;
2024 }
2025 /* Warn if the e prefix on a general reg is missing. */
2026 else if (((i.types[op] & Reg16) != 0
2027 || (i.types[op] & Reg32) != 0)
2028 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2029 {
2030 /* Prohibit these changes in the 64bit mode, since
2031 the lowering is more complicated. */
2032 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2033 i.op[op].regs->reg_name,
2034 i.suffix);
2035 }
252b5132
RH
2036 }
2037 else if (i.suffix == WORD_MNEM_SUFFIX)
2038 {
2039 int op;
47926f60 2040 for (op = i.operands; --op >= 0;)
252b5132
RH
2041 /* Reject eight bit registers, except where the template
2042 requires them. (eg. movzb) */
2043 if ((i.types[op] & Reg8) != 0
2044 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2045 {
2046 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2047 i.op[op].regs->reg_name,
252b5132
RH
2048 i.tm.name,
2049 i.suffix);
2050 return;
2051 }
252b5132 2052 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2053 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2054 && (i.types[op] & Reg32) != 0
252b5132
RH
2055 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2056 {
3e73aa7c
JH
2057 /* Prohibit these changes in the 64bit mode, since
2058 the lowering is more complicated. */
2059 if (flag_code == CODE_64BIT)
2060 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2061 i.op[op].regs->reg_name,
2062 i.suffix);
2063 else
2064#if REGISTER_WARNINGS
2065 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2066 (i.op[op].regs - 8)->reg_name,
2067 i.op[op].regs->reg_name,
2068 i.suffix);
252b5132 2069#endif
3e73aa7c 2070 }
252b5132 2071 }
fa2255cb
DN
2072 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2073 /* Do nothing if the instruction is going to ignore the prefix. */
2074 ;
252b5132 2075 else
47926f60 2076 abort ();
252b5132 2077 }
eecb386c
AM
2078 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2079 {
2080 i.suffix = stackop_size;
2081 }
252b5132
RH
2082 /* Make still unresolved immediate matches conform to size of immediate
2083 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2084 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2085 && overlap0 != Imm8 && overlap0 != Imm8S
3e73aa7c 2086 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2087 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2088 {
2089 if (i.suffix)
2090 {
24eab124 2091 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2092 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2093 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2094 }
3e73aa7c
JH
2095 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2096 || overlap0 == (Imm16 | Imm32)
2097 || overlap0 == (Imm16 | Imm32S))
252b5132 2098 {
24eab124 2099 overlap0 =
3e73aa7c 2100 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2101 }
3e73aa7c
JH
2102 if (overlap0 != Imm8 && overlap0 != Imm8S
2103 && overlap0 != Imm16 && overlap0 != Imm32S
2104 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2105 {
2106 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2107 return;
2108 }
2109 }
3e73aa7c 2110 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2111 && overlap1 != Imm8 && overlap1 != Imm8S
3e73aa7c 2112 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2113 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2114 {
2115 if (i.suffix)
2116 {
24eab124 2117 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2118 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2119 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2120 }
3e73aa7c
JH
2121 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2122 || overlap1 == (Imm16 | Imm32)
2123 || overlap1 == (Imm16 | Imm32S))
252b5132 2124 {
24eab124 2125 overlap1 =
3e73aa7c 2126 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2127 }
3e73aa7c
JH
2128 if (overlap1 != Imm8 && overlap1 != Imm8S
2129 && overlap1 != Imm16 && overlap1 != Imm32S
2130 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2131 {
3e73aa7c 2132 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2133 return;
2134 }
2135 }
2136 assert ((overlap2 & Imm) == 0);
2137
2138 i.types[0] = overlap0;
2139 if (overlap0 & ImplicitRegister)
2140 i.reg_operands--;
2141 if (overlap0 & Imm1)
ce8a8b2f 2142 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2143
2144 i.types[1] = overlap1;
2145 if (overlap1 & ImplicitRegister)
2146 i.reg_operands--;
2147
2148 i.types[2] = overlap2;
2149 if (overlap2 & ImplicitRegister)
2150 i.reg_operands--;
2151
2152 /* Finalize opcode. First, we change the opcode based on the operand
2153 size given by i.suffix: We need not change things for byte insns. */
2154
2155 if (!i.suffix && (i.tm.opcode_modifier & W))
2156 {
2157 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2158 return;
2159 }
2160
ce8a8b2f 2161 /* For movzx and movsx, need to check the register type. */
252b5132 2162 if (intel_syntax
24eab124 2163 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2164 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2165 {
2166 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2167
520dc8e8 2168 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2169 if (!add_prefix (prefix))
2170 return;
2171 }
252b5132
RH
2172
2173 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2174 {
2175 /* It's not a byte, select word/dword operation. */
2176 if (i.tm.opcode_modifier & W)
2177 {
2178 if (i.tm.opcode_modifier & ShortForm)
2179 i.tm.base_opcode |= 8;
2180 else
2181 i.tm.base_opcode |= 1;
2182 }
2183 /* Now select between word & dword operations via the operand
2184 size prefix, except for instructions that will ignore this
2185 prefix anyway. */
3e73aa7c
JH
2186 if (i.suffix != QWORD_MNEM_SUFFIX
2187 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2188 && !(i.tm.opcode_modifier & IgnoreSize))
2189 {
2190 unsigned int prefix = DATA_PREFIX_OPCODE;
2191 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2192 prefix = ADDR_PREFIX_OPCODE;
2193
2194 if (! add_prefix (prefix))
2195 return;
2196 }
3e73aa7c
JH
2197
2198 /* Set mode64 for an operand. */
2199 if (i.suffix == QWORD_MNEM_SUFFIX
2200 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2201 {
3e73aa7c 2202 i.rex.mode64 = 1;
b96d3a20
JH
2203 if (flag_code < CODE_64BIT)
2204 {
2205 as_bad (_("64bit operations available only in 64bit modes."));
2206 return;
2207 }
2208 }
3e73aa7c 2209
252b5132 2210 /* Size floating point instruction. */
f16b83df 2211 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2212 {
2213 if (i.tm.opcode_modifier & FloatMF)
2214 i.tm.base_opcode ^= 4;
2215 }
252b5132
RH
2216 }
2217
3f4438ab 2218 if (i.tm.opcode_modifier & ImmExt)
252b5132 2219 {
3f4438ab
AM
2220 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2221 opcode suffix which is coded in the same place as an 8-bit
2222 immediate field would be. Here we fake an 8-bit immediate
2223 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2224
2225 expressionS *exp;
2226
47926f60 2227 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2228
2229 exp = &im_expressions[i.imm_operands++];
520dc8e8 2230 i.op[i.operands].imms = exp;
252b5132
RH
2231 i.types[i.operands++] = Imm8;
2232 exp->X_op = O_constant;
2233 exp->X_add_number = i.tm.extension_opcode;
2234 i.tm.extension_opcode = None;
2235 }
2236
47926f60 2237 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2238 if (i.operands)
2239 {
24eab124 2240 /* Default segment register this instruction will use
252b5132
RH
2241 for memory accesses. 0 means unknown.
2242 This is only for optimizing out unnecessary segment overrides. */
2243 const seg_entry *default_seg = 0;
2244
252b5132
RH
2245 /* The imul $imm, %reg instruction is converted into
2246 imul $imm, %reg, %reg, and the clr %reg instruction
2247 is converted into xor %reg, %reg. */
2248 if (i.tm.opcode_modifier & regKludge)
2249 {
2250 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2251 /* Pretend we saw the extra register operand. */
2252 assert (i.op[first_reg_op + 1].regs == 0);
2253 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2254 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2255 i.reg_operands = 2;
2256 }
2257
2258 if (i.tm.opcode_modifier & ShortForm)
2259 {
47926f60 2260 /* The register or float register operand is in operand 0 or 1. */
252b5132 2261 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2262 /* Register goes in low 3 bits of opcode. */
520dc8e8 2263 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c
JH
2264 if (i.op[op].regs->reg_flags & RegRex)
2265 i.rex.extZ=1;
a38cf1db 2266 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2267 {
2268 /* Warn about some common errors, but press on regardless.
2269 The first case can be generated by gcc (<= 2.8.1). */
2270 if (i.operands == 2)
2271 {
47926f60 2272 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2273 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2274 i.op[1].regs->reg_name,
2275 i.op[0].regs->reg_name);
252b5132
RH
2276 }
2277 else
2278 {
47926f60 2279 /* Extraneous `l' suffix on fp insn. */
252b5132 2280 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2281 i.op[0].regs->reg_name);
252b5132
RH
2282 }
2283 }
2284 }
2285 else if (i.tm.opcode_modifier & Modrm)
2286 {
2287 /* The opcode is completed (modulo i.tm.extension_opcode which
2288 must be put into the modrm byte).
2289 Now, we make the modrm & index base bytes based on all the
47926f60 2290 info we've collected. */
252b5132
RH
2291
2292 /* i.reg_operands MUST be the number of real register operands;
47926f60 2293 implicit registers do not count. */
252b5132
RH
2294 if (i.reg_operands == 2)
2295 {
2296 unsigned int source, dest;
2297 source = ((i.types[0]
3f4438ab
AM
2298 & (Reg | RegMMX | RegXMM
2299 | SReg2 | SReg3
2300 | Control | Debug | Test))
252b5132
RH
2301 ? 0 : 1);
2302 dest = source + 1;
2303
252b5132 2304 i.rm.mode = 3;
3f4438ab
AM
2305 /* One of the register operands will be encoded in the
2306 i.tm.reg field, the other in the combined i.tm.mode
2307 and i.tm.regmem fields. If no form of this
2308 instruction supports a memory destination operand,
2309 then we assume the source operand may sometimes be
2310 a memory operand and so we need to store the
2311 destination in the i.rm.reg field. */
2312 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2313 {
520dc8e8
AM
2314 i.rm.reg = i.op[dest].regs->reg_num;
2315 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c
JH
2316 if (i.op[dest].regs->reg_flags & RegRex)
2317 i.rex.extX=1;
2318 if (i.op[source].regs->reg_flags & RegRex)
2319 i.rex.extZ=1;
252b5132
RH
2320 }
2321 else
2322 {
520dc8e8
AM
2323 i.rm.reg = i.op[source].regs->reg_num;
2324 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c
JH
2325 if (i.op[dest].regs->reg_flags & RegRex)
2326 i.rex.extZ=1;
2327 if (i.op[source].regs->reg_flags & RegRex)
2328 i.rex.extX=1;
252b5132
RH
2329 }
2330 }
2331 else
47926f60 2332 { /* If it's not 2 reg operands... */
252b5132
RH
2333 if (i.mem_operands)
2334 {
2335 unsigned int fake_zero_displacement = 0;
2336 unsigned int op = ((i.types[0] & AnyMem)
2337 ? 0
2338 : (i.types[1] & AnyMem) ? 1 : 2);
2339
2340 default_seg = &ds;
2341
2342 if (! i.base_reg)
2343 {
2344 i.rm.mode = 0;
2345 if (! i.disp_operands)
2346 fake_zero_displacement = 1;
2347 if (! i.index_reg)
2348 {
47926f60 2349 /* Operand is just <disp> */
3e73aa7c 2350 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2351 {
2352 i.rm.regmem = NO_BASE_REGISTER_16;
2353 i.types[op] &= ~Disp;
2354 i.types[op] |= Disp16;
2355 }
3e73aa7c 2356 else if (flag_code != CODE_64BIT)
252b5132
RH
2357 {
2358 i.rm.regmem = NO_BASE_REGISTER;
2359 i.types[op] &= ~Disp;
2360 i.types[op] |= Disp32;
2361 }
3e73aa7c
JH
2362 else
2363 {
2364 /* 64bit mode overwrites the 32bit absolute addressing
2365 by RIP relative addressing and absolute addressing
2366 is encoded by one of the redundant SIB forms. */
2367
2368 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2369 i.sib.base = NO_BASE_REGISTER;
2370 i.sib.index = NO_INDEX_REGISTER;
2371 i.types[op] &= ~Disp;
2372 i.types[op] |= Disp32S;
2373 }
252b5132 2374 }
47926f60 2375 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2376 {
2377 i.sib.index = i.index_reg->reg_num;
2378 i.sib.base = NO_BASE_REGISTER;
2379 i.sib.scale = i.log2_scale_factor;
2380 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2381 i.types[op] &= ~Disp;
3e73aa7c
JH
2382 if (flag_code != CODE_64BIT)
2383 i.types[op] |= Disp32; /* Must be 32 bit */
2384 else
2385 i.types[op] |= Disp32S;
2386 if (i.index_reg->reg_flags & RegRex)
2387 i.rex.extY=1;
252b5132
RH
2388 }
2389 }
3e73aa7c
JH
2390 /* RIP addressing for 64bit mode. */
2391 else if (i.base_reg->reg_type == BaseIndex)
2392 {
2393 i.rm.regmem = NO_BASE_REGISTER;
2394 i.types[op] &= ~Disp;
2395 i.types[op] |= Disp32S;
2396 i.flags[op] = Operand_PCrel;
2397 }
252b5132
RH
2398 else if (i.base_reg->reg_type & Reg16)
2399 {
2400 switch (i.base_reg->reg_num)
2401 {
47926f60 2402 case 3: /* (%bx) */
252b5132
RH
2403 if (! i.index_reg)
2404 i.rm.regmem = 7;
47926f60 2405 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2406 i.rm.regmem = i.index_reg->reg_num - 6;
2407 break;
47926f60 2408 case 5: /* (%bp) */
252b5132
RH
2409 default_seg = &ss;
2410 if (! i.index_reg)
2411 {
2412 i.rm.regmem = 6;
2413 if ((i.types[op] & Disp) == 0)
2414 {
47926f60 2415 /* fake (%bp) into 0(%bp) */
252b5132
RH
2416 i.types[op] |= Disp8;
2417 fake_zero_displacement = 1;
2418 }
2419 }
47926f60 2420 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2421 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2422 break;
47926f60 2423 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2424 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2425 }
2426 i.rm.mode = mode_from_disp_size (i.types[op]);
2427 }
3e73aa7c 2428 else /* i.base_reg and 32/64 bit mode */
252b5132 2429 {
3e73aa7c
JH
2430 if (flag_code == CODE_64BIT
2431 && (i.types[op] & Disp))
2432 {
2433 if (i.types[op] & Disp8)
2434 i.types[op] = Disp8 | Disp32S;
2435 else
2436 i.types[op] = Disp32S;
2437 }
252b5132 2438 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c
JH
2439 if (i.base_reg->reg_flags & RegRex)
2440 i.rex.extZ=1;
252b5132 2441 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2442 /* x86-64 ignores REX prefix bit here to avoid
2443 decoder complications. */
2444 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2445 {
2446 default_seg = &ss;
2447 if (i.disp_operands == 0)
2448 {
2449 fake_zero_displacement = 1;
2450 i.types[op] |= Disp8;
2451 }
2452 }
2453 else if (i.base_reg->reg_num == ESP_REG_NUM)
2454 {
2455 default_seg = &ss;
2456 }
2457 i.sib.scale = i.log2_scale_factor;
2458 if (! i.index_reg)
2459 {
2460 /* <disp>(%esp) becomes two byte modrm
2461 with no index register. We've already
2462 stored the code for esp in i.rm.regmem
2463 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2464 base register besides %esp will not use
2465 the extra modrm byte. */
2466 i.sib.index = NO_INDEX_REGISTER;
2467#if ! SCALE1_WHEN_NO_INDEX
2468 /* Another case where we force the second
2469 modrm byte. */
2470 if (i.log2_scale_factor)
2471 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2472#endif
2473 }
2474 else
2475 {
2476 i.sib.index = i.index_reg->reg_num;
2477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c
JH
2478 if (i.index_reg->reg_flags & RegRex)
2479 i.rex.extY=1;
252b5132
RH
2480 }
2481 i.rm.mode = mode_from_disp_size (i.types[op]);
2482 }
2483
2484 if (fake_zero_displacement)
2485 {
2486 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2487 holds the correct displacement size. */
b4cac588
AM
2488 expressionS *exp;
2489
520dc8e8 2490 assert (i.op[op].disps == 0);
252b5132 2491 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2492 i.op[op].disps = exp;
252b5132
RH
2493 exp->X_op = O_constant;
2494 exp->X_add_number = 0;
2495 exp->X_add_symbol = (symbolS *) 0;
2496 exp->X_op_symbol = (symbolS *) 0;
2497 }
2498 }
2499
2500 /* Fill in i.rm.reg or i.rm.regmem field with register
2501 operand (if any) based on i.tm.extension_opcode.
2502 Again, we must be careful to make sure that
2503 segment/control/debug/test/MMX registers are coded
47926f60 2504 into the i.rm.reg field. */
252b5132
RH
2505 if (i.reg_operands)
2506 {
2507 unsigned int op =
2508 ((i.types[0]
3f4438ab
AM
2509 & (Reg | RegMMX | RegXMM
2510 | SReg2 | SReg3
2511 | Control | Debug | Test))
252b5132
RH
2512 ? 0
2513 : ((i.types[1]
3f4438ab
AM
2514 & (Reg | RegMMX | RegXMM
2515 | SReg2 | SReg3
2516 | Control | Debug | Test))
252b5132
RH
2517 ? 1
2518 : 2));
2519 /* If there is an extension opcode to put here, the
47926f60 2520 register number must be put into the regmem field. */
252b5132 2521 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2522 {
2523 i.rm.regmem = i.op[op].regs->reg_num;
2524 if (i.op[op].regs->reg_flags & RegRex)
2525 i.rex.extZ=1;
2526 }
252b5132 2527 else
3e73aa7c
JH
2528 {
2529 i.rm.reg = i.op[op].regs->reg_num;
2530 if (i.op[op].regs->reg_flags & RegRex)
2531 i.rex.extX=1;
2532 }
252b5132
RH
2533
2534 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2535 we must set it to 3 to indicate this is a register
2536 operand in the regmem field. */
2537 if (!i.mem_operands)
2538 i.rm.mode = 3;
2539 }
2540
47926f60 2541 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2542 if (i.tm.extension_opcode != None)
2543 i.rm.reg = i.tm.extension_opcode;
2544 }
2545 }
2546 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2547 {
47926f60
KH
2548 if (i.tm.base_opcode == POP_SEG_SHORT
2549 && i.op[0].regs->reg_num == 1)
252b5132
RH
2550 {
2551 as_bad (_("you can't `pop %%cs'"));
2552 return;
2553 }
520dc8e8 2554 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2555 if (i.op[0].regs->reg_flags & RegRex)
2556 i.rex.extZ = 1;
252b5132
RH
2557 }
2558 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2559 {
2560 default_seg = &ds;
2561 }
2562 else if ((i.tm.opcode_modifier & IsString) != 0)
2563 {
2564 /* For the string instructions that allow a segment override
2565 on one of their operands, the default segment is ds. */
2566 default_seg = &ds;
2567 }
2568
2569 /* If a segment was explicitly specified,
2570 and the specified segment is not the default,
2571 use an opcode prefix to select it.
2572 If we never figured out what the default segment is,
2573 then default_seg will be zero at this point,
2574 and the specified segment prefix will always be used. */
2575 if ((i.seg[0]) && (i.seg[0] != default_seg))
2576 {
2577 if (! add_prefix (i.seg[0]->seg_prefix))
2578 return;
2579 }
2580 }
a38cf1db 2581 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2582 {
24eab124
AM
2583 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2584 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2585 }
2586 }
2587
47926f60 2588 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2589 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2590 {
2591 i.tm.base_opcode = INT3_OPCODE;
2592 i.imm_operands = 0;
2593 }
2594
2f66722d 2595 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2596 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2597 {
2598 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2599 the absolute address given by the constant. Since ix86 jumps and
2600 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2601 i.op[0].disps->X_add_symbol = &abs_symbol;
2602 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2603 }
2604
3e73aa7c
JH
2605 if (i.tm.opcode_modifier & Rex64)
2606 i.rex.mode64 = 1;
2607
2608 /* For 8bit registers we would need an empty rex prefix.
2609 Also in the case instruction is already having prefix,
2610 we need to convert old registers to new ones. */
2611
2612 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2613 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2614 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2615 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2616 {
2617 int x;
2618 i.rex.empty=1;
2619 for (x = 0; x < 2; x++)
2620 {
2621 /* Look for 8bit operand that does use old registers. */
2622 if (i.types[x] & Reg8
2623 && !(i.op[x].regs->reg_flags & RegRex64))
2624 {
2625 /* In case it is "hi" register, give up. */
2626 if (i.op[x].regs->reg_num > 3)
2627 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2628 i.op[x].regs->reg_name);
2629
2630 /* Otherwise it is equivalent to the extended register.
2631 Since the encoding don't change this is merely cosmetical
2632 cleanup for debug output. */
2633
2634 i.op[x].regs = i.op[x].regs + 8;
2635 }
2636 }
2637 }
2638
2639 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2640 add_prefix (0x40
2641 | (i.rex.mode64 ? 8 : 0)
2642 | (i.rex.extX ? 4 : 0)
2643 | (i.rex.extY ? 2 : 0)
2644 | (i.rex.extZ ? 1 : 0));
2645
47926f60 2646 /* We are ready to output the insn. */
252b5132
RH
2647 {
2648 register char *p;
2649
47926f60 2650 /* Output jumps. */
252b5132
RH
2651 if (i.tm.opcode_modifier & Jump)
2652 {
a217f122
AM
2653 int size;
2654 int code16;
2655 int prefix;
252b5132 2656
a217f122 2657 code16 = 0;
3e73aa7c 2658 if (flag_code == CODE_16BIT)
a217f122
AM
2659 code16 = CODE16;
2660
2661 prefix = 0;
2662 if (i.prefix[DATA_PREFIX])
252b5132 2663 {
a217f122 2664 prefix = 1;
252b5132 2665 i.prefixes -= 1;
a217f122 2666 code16 ^= CODE16;
252b5132 2667 }
3e73aa7c
JH
2668 if (i.prefix[REX_PREFIX])
2669 {
2670 prefix++;
2671 i.prefixes --;
2672 }
252b5132 2673
a217f122
AM
2674 size = 4;
2675 if (code16)
2676 size = 2;
2677
2678 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2679 as_warn (_("skipping prefixes on this instruction"));
2680
2f66722d
AM
2681 /* It's always a symbol; End frag & setup for relax.
2682 Make sure there is enough room in this frag for the largest
2683 instruction we may generate in md_convert_frag. This is 2
2684 bytes for the opcode and room for the prefix and largest
2685 displacement. */
2686 frag_grow (prefix + 2 + size);
2687 insn_size += prefix + 1;
2688 /* Prefix and 1 opcode byte go in fr_fix. */
2689 p = frag_more (prefix + 1);
3e73aa7c 2690 if (i.prefix[DATA_PREFIX])
2f66722d 2691 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2692 if (i.prefix[REX_PREFIX])
2693 *p++ = i.prefix[REX_PREFIX];
2f66722d 2694 *p = i.tm.base_opcode;
ee7fcc42
AM
2695 /* 1 possible extra opcode + displacement go in var part.
2696 Pass reloc in fr_var. */
2f66722d
AM
2697 frag_var (rs_machine_dependent,
2698 1 + size,
ee7fcc42 2699 i.disp_reloc[0],
2f66722d
AM
2700 ((unsigned char) *p == JUMP_PC_RELATIVE
2701 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2702 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
520dc8e8
AM
2703 i.op[0].disps->X_add_symbol,
2704 i.op[0].disps->X_add_number,
2f66722d 2705 p);
252b5132
RH
2706 }
2707 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2708 {
a217f122 2709 int size;
252b5132 2710
a217f122 2711 if (i.tm.opcode_modifier & JumpByte)
252b5132 2712 {
a217f122
AM
2713 /* This is a loop or jecxz type instruction. */
2714 size = 1;
252b5132
RH
2715 if (i.prefix[ADDR_PREFIX])
2716 {
2717 insn_size += 1;
2718 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2719 i.prefixes -= 1;
2720 }
2721 }
2722 else
2723 {
a217f122
AM
2724 int code16;
2725
2726 code16 = 0;
3e73aa7c 2727 if (flag_code == CODE_16BIT)
a217f122 2728 code16 = CODE16;
252b5132
RH
2729
2730 if (i.prefix[DATA_PREFIX])
2731 {
2732 insn_size += 1;
2733 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2734 i.prefixes -= 1;
a217f122 2735 code16 ^= CODE16;
252b5132 2736 }
252b5132 2737
a217f122 2738 size = 4;
252b5132
RH
2739 if (code16)
2740 size = 2;
2741 }
2742
3e73aa7c
JH
2743 if (i.prefix[REX_PREFIX])
2744 {
2745 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2746 insn_size++;
2747 i.prefixes -= 1;
2748 }
2749
a217f122 2750 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2751 as_warn (_("skipping prefixes on this instruction"));
2752
2753 if (fits_in_unsigned_byte (i.tm.base_opcode))
2754 {
2755 insn_size += 1 + size;
2756 p = frag_more (1 + size);
2757 }
2758 else
2759 {
47926f60 2760 /* Opcode can be at most two bytes. */
a217f122 2761 insn_size += 2 + size;
252b5132
RH
2762 p = frag_more (2 + size);
2763 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2764 }
2765 *p++ = i.tm.base_opcode & 0xff;
2766
2f66722d 2767 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 2768 i.op[0].disps, 1, reloc (size, 1, 1, i.disp_reloc[0]));
252b5132
RH
2769 }
2770 else if (i.tm.opcode_modifier & JumpInterSegment)
2771 {
2772 int size;
a217f122
AM
2773 int prefix;
2774 int code16;
252b5132 2775
a217f122 2776 code16 = 0;
3e73aa7c 2777 if (flag_code == CODE_16BIT)
a217f122
AM
2778 code16 = CODE16;
2779
2780 prefix = 0;
2781 if (i.prefix[DATA_PREFIX])
252b5132 2782 {
a217f122 2783 prefix = 1;
252b5132 2784 i.prefixes -= 1;
a217f122 2785 code16 ^= CODE16;
252b5132 2786 }
3e73aa7c
JH
2787 if (i.prefix[REX_PREFIX])
2788 {
2789 prefix++;
2790 i.prefixes -= 1;
2791 }
252b5132
RH
2792
2793 size = 4;
252b5132 2794 if (code16)
f6af82bd 2795 size = 2;
252b5132 2796
a217f122 2797 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2798 as_warn (_("skipping prefixes on this instruction"));
2799
47926f60
KH
2800 /* 1 opcode; 2 segment; offset */
2801 insn_size += prefix + 1 + 2 + size;
252b5132 2802 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2803
2804 if (i.prefix[DATA_PREFIX])
252b5132 2805 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2806
2807 if (i.prefix[REX_PREFIX])
2808 *p++ = i.prefix[REX_PREFIX];
2809
252b5132 2810 *p++ = i.tm.base_opcode;
520dc8e8 2811 if (i.op[1].imms->X_op == O_constant)
252b5132 2812 {
847f7ad4 2813 offsetT n = i.op[1].imms->X_add_number;
252b5132 2814
773f551c
AM
2815 if (size == 2
2816 && !fits_in_unsigned_word (n)
2817 && !fits_in_signed_word (n))
252b5132
RH
2818 {
2819 as_bad (_("16-bit jump out of range"));
2820 return;
2821 }
847f7ad4 2822 md_number_to_chars (p, n, size);
252b5132
RH
2823 }
2824 else
2825 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 2826 i.op[1].imms, 0, reloc (size, 0, 0, i.disp_reloc[0]));
520dc8e8 2827 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2828 as_bad (_("can't handle non absolute segment in `%s'"),
2829 i.tm.name);
520dc8e8 2830 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2831 }
2832 else
2833 {
47926f60 2834 /* Output normal instructions here. */
252b5132
RH
2835 unsigned char *q;
2836
7bc70a8e
JH
2837 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2838 byte for the SSE instructions to specify prefix they require. */
2839 if (i.tm.base_opcode & 0xff0000)
2840 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2841
47926f60 2842 /* The prefix bytes. */
252b5132
RH
2843 for (q = i.prefix;
2844 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2845 q++)
2846 {
2847 if (*q)
2848 {
2849 insn_size += 1;
2850 p = frag_more (1);
2851 md_number_to_chars (p, (valueT) *q, 1);
2852 }
2853 }
2854
47926f60 2855 /* Now the opcode; be careful about word order here! */
252b5132
RH
2856 if (fits_in_unsigned_byte (i.tm.base_opcode))
2857 {
2858 insn_size += 1;
2859 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2860 }
7bc70a8e 2861 else
252b5132
RH
2862 {
2863 insn_size += 2;
2864 p = frag_more (2);
47926f60 2865 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2866 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2867 *p = i.tm.base_opcode & 0xff;
2868 }
252b5132
RH
2869
2870 /* Now the modrm byte and sib byte (if present). */
2871 if (i.tm.opcode_modifier & Modrm)
2872 {
2873 insn_size += 1;
2874 p = frag_more (1);
2875 md_number_to_chars (p,
2876 (valueT) (i.rm.regmem << 0
2877 | i.rm.reg << 3
2878 | i.rm.mode << 6),
2879 1);
2880 /* If i.rm.regmem == ESP (4)
2881 && i.rm.mode != (Register mode)
2882 && not 16 bit
2883 ==> need second modrm byte. */
2884 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2885 && i.rm.mode != 3
2886 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2887 {
2888 insn_size += 1;
2889 p = frag_more (1);
2890 md_number_to_chars (p,
2891 (valueT) (i.sib.base << 0
2892 | i.sib.index << 3
2893 | i.sib.scale << 6),
2894 1);
2895 }
2896 }
2897
2898 if (i.disp_operands)
2899 {
2900 register unsigned int n;
2901
2902 for (n = 0; n < i.operands; n++)
2903 {
520dc8e8 2904 if (i.types[n] & Disp)
252b5132 2905 {
520dc8e8 2906 if (i.op[n].disps->X_op == O_constant)
252b5132 2907 {
847f7ad4
AM
2908 int size;
2909 offsetT val;
b4cac588 2910
847f7ad4 2911 size = 4;
3e73aa7c 2912 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2913 {
b4cac588 2914 size = 2;
b4cac588 2915 if (i.types[n] & Disp8)
847f7ad4 2916 size = 1;
3e73aa7c
JH
2917 if (i.types[n] & Disp64)
2918 size = 8;
252b5132 2919 }
847f7ad4
AM
2920 val = offset_in_range (i.op[n].disps->X_add_number,
2921 size);
b4cac588
AM
2922 insn_size += size;
2923 p = frag_more (size);
847f7ad4 2924 md_number_to_chars (p, val, size);
252b5132 2925 }
252b5132 2926 else
520dc8e8
AM
2927 {
2928 int size = 4;
3e73aa7c
JH
2929 int sign = 0;
2930 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2931
2932 /* The PC relative address is computed relative
2933 to the instruction boundary, so in case immediate
2934 fields follows, we need to adjust the value. */
2935 if (pcrel && i.imm_operands)
2936 {
2937 int imm_size = 4;
2938 register unsigned int n1;
2939
2940 for (n1 = 0; n1 < i.operands; n1++)
2941 if (i.types[n1] & Imm)
2942 {
2943 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
2944 {
2945 imm_size = 2;
2946 if (i.types[n1] & (Imm8 | Imm8S))
2947 imm_size = 1;
2948 if (i.types[n1] & Imm64)
2949 imm_size = 8;
2950 }
2951 break;
2952 }
2953 /* We should find the immediate. */
2954 if (n1 == i.operands)
2955 abort();
2956 i.op[n].disps->X_add_number -= imm_size;
2957 }
520dc8e8 2958
3e73aa7c
JH
2959 if (i.types[n] & Disp32S)
2960 sign = 1;
2961
2962 if (i.types[n] & (Disp16 | Disp64))
2963 {
2964 size = 2;
2965 if (i.types[n] & Disp64)
2966 size = 8;
2967 }
520dc8e8
AM
2968
2969 insn_size += size;
2970 p = frag_more (size);
2971 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c
JH
2972 i.op[n].disps, pcrel,
2973 reloc (size, pcrel, sign, i.disp_reloc[n]));
252b5132
RH
2974 }
2975 }
2976 }
ce8a8b2f 2977 }
252b5132 2978
47926f60 2979 /* Output immediate. */
252b5132
RH
2980 if (i.imm_operands)
2981 {
2982 register unsigned int n;
2983
2984 for (n = 0; n < i.operands; n++)
2985 {
520dc8e8 2986 if (i.types[n] & Imm)
252b5132 2987 {
520dc8e8 2988 if (i.op[n].imms->X_op == O_constant)
252b5132 2989 {
847f7ad4
AM
2990 int size;
2991 offsetT val;
b4cac588 2992
847f7ad4 2993 size = 4;
3e73aa7c 2994 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 2995 {
b4cac588 2996 size = 2;
b4cac588 2997 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 2998 size = 1;
3e73aa7c
JH
2999 else if (i.types[n] & Imm64)
3000 size = 8;
252b5132 3001 }
847f7ad4
AM
3002 val = offset_in_range (i.op[n].imms->X_add_number,
3003 size);
b4cac588
AM
3004 insn_size += size;
3005 p = frag_more (size);
847f7ad4 3006 md_number_to_chars (p, val, size);
252b5132
RH
3007 }
3008 else
ce8a8b2f
AM
3009 {
3010 /* Not absolute_section.
3011 Need a 32-bit fixup (don't support 8bit
520dc8e8 3012 non-absolute imms). Try to support other
47926f60 3013 sizes ... */
f6af82bd
AM
3014#ifdef BFD_ASSEMBLER
3015 enum bfd_reloc_code_real reloc_type;
3016#else
3017 int reloc_type;
3018#endif
520dc8e8 3019 int size = 4;
3e73aa7c 3020 int sign = 0;
252b5132 3021
3e73aa7c
JH
3022 if ((i.types[n] & (Imm32S))
3023 && i.suffix == QWORD_MNEM_SUFFIX)
3024 sign = 1;
3025 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3026 {
3027 size = 2;
3028 if (i.types[n] & (Imm8 | Imm8S))
3029 size = 1;
3030 if (i.types[n] & Imm64)
3031 size = 8;
3032 }
520dc8e8 3033
252b5132
RH
3034 insn_size += size;
3035 p = frag_more (size);
3e73aa7c 3036 reloc_type = reloc (size, 0, sign, i.disp_reloc[0]);
252b5132 3037#ifdef BFD_ASSEMBLER
f6af82bd 3038 if (reloc_type == BFD_RELOC_32
252b5132 3039 && GOT_symbol
520dc8e8
AM
3040 && GOT_symbol == i.op[n].imms->X_add_symbol
3041 && (i.op[n].imms->X_op == O_symbol
3042 || (i.op[n].imms->X_op == O_add
49309057 3043 && ((symbol_get_value_expression
520dc8e8 3044 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3045 == O_subtract))))
3046 {
3e73aa7c
JH
3047 /* We don't support dynamic linking on x86-64 yet. */
3048 if (flag_code == CODE_64BIT)
3049 abort();
f6af82bd 3050 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3051 i.op[n].imms->X_add_number += 3;
252b5132
RH
3052 }
3053#endif
3054 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3055 i.op[n].imms, 0, reloc_type);
252b5132
RH
3056 }
3057 }
3058 }
ce8a8b2f 3059 }
252b5132
RH
3060 }
3061
e346e481
RH
3062 dwarf2_emit_insn (insn_size);
3063
252b5132
RH
3064#ifdef DEBUG386
3065 if (flag_debug)
3066 {
3067 pi (line, &i);
3068 }
47926f60 3069#endif /* DEBUG386 */
252b5132
RH
3070 }
3071}
3072\f
252b5132
RH
3073static int i386_immediate PARAMS ((char *));
3074
3075static int
3076i386_immediate (imm_start)
3077 char *imm_start;
3078{
3079 char *save_input_line_pointer;
3080 segT exp_seg = 0;
47926f60 3081 expressionS *exp;
252b5132
RH
3082
3083 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3084 {
d0b47220 3085 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3086 return 0;
3087 }
3088
3089 exp = &im_expressions[i.imm_operands++];
520dc8e8 3090 i.op[this_operand].imms = exp;
252b5132
RH
3091
3092 if (is_space_char (*imm_start))
3093 ++imm_start;
3094
3095 save_input_line_pointer = input_line_pointer;
3096 input_line_pointer = imm_start;
3097
3098#ifndef LEX_AT
24eab124 3099 {
47926f60
KH
3100 /* We can have operands of the form
3101 <symbol>@GOTOFF+<nnn>
3102 Take the easy way out here and copy everything
3103 into a temporary buffer... */
24eab124
AM
3104 register char *cp;
3105
3106 cp = strchr (input_line_pointer, '@');
3107 if (cp != NULL)
3108 {
3109 char *tmpbuf;
3110 int len = 0;
3111 int first;
3112
47926f60 3113 /* GOT relocations are not supported in 16 bit mode. */
3e73aa7c 3114 if (flag_code == CODE_16BIT)
24eab124
AM
3115 as_bad (_("GOT relocations not supported in 16 bit mode"));
3116
3117 if (GOT_symbol == NULL)
3118 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3119
3120 if (strncmp (cp + 1, "PLT", 3) == 0)
3121 {
3e73aa7c
JH
3122 if (flag_code == CODE_64BIT)
3123 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3124 else
3125 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
24eab124
AM
3126 len = 3;
3127 }
3128 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3129 {
3e73aa7c
JH
3130 if (flag_code == CODE_64BIT)
3131 as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
24eab124
AM
3132 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3133 len = 6;
3134 }
b77a7acd 3135 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
24eab124 3136 {
3e73aa7c 3137 if (flag_code == CODE_64BIT)
b77a7acd 3138 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3e73aa7c 3139 else
b77a7acd
AJ
3140 as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
3141 len = 8;
3e73aa7c 3142 }
b77a7acd 3143 else if (strncmp (cp + 1, "GOT", 3) == 0)
3e73aa7c
JH
3144 {
3145 if (flag_code == CODE_64BIT)
b77a7acd 3146 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3e73aa7c 3147 else
b77a7acd 3148 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
24eab124
AM
3149 len = 3;
3150 }
3151 else
d0b47220 3152 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
3153
3154 /* Replace the relocation token with ' ', so that errors like
3155 foo@GOTOFF1 will be detected. */
3156 first = cp - input_line_pointer;
47926f60 3157 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
3158 memcpy (tmpbuf, input_line_pointer, first);
3159 tmpbuf[first] = ' ';
3160 strcpy (tmpbuf + first + 1, cp + 1 + len);
3161 input_line_pointer = tmpbuf;
3162 }
3163 }
252b5132
RH
3164#endif
3165
3166 exp_seg = expression (exp);
3167
83183c0c 3168 SKIP_WHITESPACE ();
252b5132 3169 if (*input_line_pointer)
d0b47220 3170 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
252b5132
RH
3171
3172 input_line_pointer = save_input_line_pointer;
3173
2daf4fd8 3174 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3175 {
47926f60 3176 /* Missing or bad expr becomes absolute 0. */
d0b47220 3177 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3178 imm_start);
252b5132
RH
3179 exp->X_op = O_constant;
3180 exp->X_add_number = 0;
3181 exp->X_add_symbol = (symbolS *) 0;
3182 exp->X_op_symbol = (symbolS *) 0;
252b5132 3183 }
3e73aa7c 3184 else if (exp->X_op == O_constant)
252b5132 3185 {
47926f60 3186 /* Size it properly later. */
3e73aa7c
JH
3187 i.types[this_operand] |= Imm64;
3188 /* If BFD64, sign extend val. */
3189 if (!use_rela_relocations)
3190 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3191 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3192 }
4c63da97 3193#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3194 else if (1
4c63da97 3195#ifdef BFD_ASSEMBLER
47926f60 3196 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3197#endif
47926f60 3198 && exp_seg != text_section
24eab124
AM
3199 && exp_seg != data_section
3200 && exp_seg != bss_section
3201 && exp_seg != undefined_section
252b5132 3202#ifdef BFD_ASSEMBLER
24eab124 3203 && !bfd_is_com_section (exp_seg)
252b5132 3204#endif
24eab124 3205 )
252b5132 3206 {
4c63da97 3207#ifdef BFD_ASSEMBLER
d0b47220 3208 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3209#else
d0b47220 3210 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3211#endif
252b5132
RH
3212 return 0;
3213 }
3214#endif
3215 else
3216 {
3217 /* This is an address. The size of the address will be
24eab124 3218 determined later, depending on destination register,
3e73aa7c
JH
3219 suffix, or the default for the section. */
3220 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3221 }
3222
3223 return 1;
3224}
3225
3226static int i386_scale PARAMS ((char *));
3227
3228static int
3229i386_scale (scale)
3230 char *scale;
3231{
3232 if (!isdigit (*scale))
3233 goto bad_scale;
3234
3235 switch (*scale)
3236 {
3237 case '0':
3238 case '1':
3239 i.log2_scale_factor = 0;
3240 break;
3241 case '2':
3242 i.log2_scale_factor = 1;
3243 break;
3244 case '4':
3245 i.log2_scale_factor = 2;
3246 break;
3247 case '8':
3248 i.log2_scale_factor = 3;
3249 break;
3250 default:
3251 bad_scale:
3252 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3253 scale);
252b5132
RH
3254 return 0;
3255 }
3256 if (i.log2_scale_factor != 0 && ! i.index_reg)
3257 {
3258 as_warn (_("scale factor of %d without an index register"),
24eab124 3259 1 << i.log2_scale_factor);
252b5132
RH
3260#if SCALE1_WHEN_NO_INDEX
3261 i.log2_scale_factor = 0;
3262#endif
3263 }
3264 return 1;
3265}
3266
3267static int i386_displacement PARAMS ((char *, char *));
3268
3269static int
3270i386_displacement (disp_start, disp_end)
3271 char *disp_start;
3272 char *disp_end;
3273{
3274 register expressionS *exp;
3275 segT exp_seg = 0;
3276 char *save_input_line_pointer;
3277 int bigdisp = Disp32;
3278
3e73aa7c 3279 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3280 bigdisp = Disp16;
3e73aa7c
JH
3281 if (flag_code == CODE_64BIT)
3282 bigdisp = Disp64;
252b5132
RH
3283 i.types[this_operand] |= bigdisp;
3284
3285 exp = &disp_expressions[i.disp_operands];
520dc8e8 3286 i.op[this_operand].disps = exp;
252b5132
RH
3287 i.disp_operands++;
3288 save_input_line_pointer = input_line_pointer;
3289 input_line_pointer = disp_start;
3290 END_STRING_AND_SAVE (disp_end);
3291
3292#ifndef GCC_ASM_O_HACK
3293#define GCC_ASM_O_HACK 0
3294#endif
3295#if GCC_ASM_O_HACK
3296 END_STRING_AND_SAVE (disp_end + 1);
3297 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3298 && displacement_string_end[-1] == '+')
252b5132
RH
3299 {
3300 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3301 constraint within gcc asm statements.
3302 For instance:
3303
3304 #define _set_tssldt_desc(n,addr,limit,type) \
3305 __asm__ __volatile__ ( \
3306 "movw %w2,%0\n\t" \
3307 "movw %w1,2+%0\n\t" \
3308 "rorl $16,%1\n\t" \
3309 "movb %b1,4+%0\n\t" \
3310 "movb %4,5+%0\n\t" \
3311 "movb $0,6+%0\n\t" \
3312 "movb %h1,7+%0\n\t" \
3313 "rorl $16,%1" \
3314 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3315
3316 This works great except that the output assembler ends
3317 up looking a bit weird if it turns out that there is
3318 no offset. You end up producing code that looks like:
3319
3320 #APP
3321 movw $235,(%eax)
3322 movw %dx,2+(%eax)
3323 rorl $16,%edx
3324 movb %dl,4+(%eax)
3325 movb $137,5+(%eax)
3326 movb $0,6+(%eax)
3327 movb %dh,7+(%eax)
3328 rorl $16,%edx
3329 #NO_APP
3330
47926f60 3331 So here we provide the missing zero. */
24eab124
AM
3332
3333 *displacement_string_end = '0';
252b5132
RH
3334 }
3335#endif
3336#ifndef LEX_AT
24eab124 3337 {
47926f60
KH
3338 /* We can have operands of the form
3339 <symbol>@GOTOFF+<nnn>
3340 Take the easy way out here and copy everything
3341 into a temporary buffer... */
24eab124
AM
3342 register char *cp;
3343
3344 cp = strchr (input_line_pointer, '@');
3345 if (cp != NULL)
3346 {
3347 char *tmpbuf;
3348 int len = 0;
3349 int first;
3350
47926f60 3351 /* GOT relocations are not supported in 16 bit mode. */
3e73aa7c 3352 if (flag_code == CODE_16BIT)
24eab124
AM
3353 as_bad (_("GOT relocations not supported in 16 bit mode"));
3354
3355 if (GOT_symbol == NULL)
3356 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3357
3358 if (strncmp (cp + 1, "PLT", 3) == 0)
3359 {
3e73aa7c
JH
3360 if (flag_code == CODE_64BIT)
3361 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3362 else
3363 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
24eab124
AM
3364 len = 3;
3365 }
3366 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3367 {
3e73aa7c
JH
3368 if (flag_code == CODE_64BIT)
3369 as_bad ("GOTOFF relocation is not supported in 64bit mode.");
24eab124
AM
3370 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3371 len = 6;
3372 }
b77a7acd
AJ
3373 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3374 {
3375 if (flag_code != CODE_64BIT)
3376 as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
3377 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3378 len = 8;
3379 }
24eab124
AM
3380 else if (strncmp (cp + 1, "GOT", 3) == 0)
3381 {
3e73aa7c
JH
3382 if (flag_code == CODE_64BIT)
3383 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3384 else
3385 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
3386 len = 3;
3387 }
24eab124 3388 else
d0b47220 3389 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
3390
3391 /* Replace the relocation token with ' ', so that errors like
3392 foo@GOTOFF1 will be detected. */
3393 first = cp - input_line_pointer;
47926f60 3394 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
3395 memcpy (tmpbuf, input_line_pointer, first);
3396 tmpbuf[first] = ' ';
3397 strcpy (tmpbuf + first + 1, cp + 1 + len);
3398 input_line_pointer = tmpbuf;
3399 }
3400 }
252b5132
RH
3401#endif
3402
24eab124 3403 exp_seg = expression (exp);
252b5132
RH
3404
3405#ifdef BFD_ASSEMBLER
24eab124
AM
3406 /* We do this to make sure that the section symbol is in
3407 the symbol table. We will ultimately change the relocation
47926f60 3408 to be relative to the beginning of the section. */
3e73aa7c
JH
3409 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF
3410 || i.disp_reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124
AM
3411 {
3412 if (S_IS_LOCAL(exp->X_add_symbol)
3413 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3414 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3415 assert (exp->X_op == O_symbol);
3416 exp->X_op = O_subtract;
3417 exp->X_op_symbol = GOT_symbol;
3418 i.disp_reloc[this_operand] = BFD_RELOC_32;
3419 }
252b5132
RH
3420#endif
3421
24eab124
AM
3422 SKIP_WHITESPACE ();
3423 if (*input_line_pointer)
d0b47220 3424 as_bad (_("ignoring junk `%s' after expression"),
24eab124 3425 input_line_pointer);
252b5132 3426#if GCC_ASM_O_HACK
24eab124 3427 RESTORE_END_STRING (disp_end + 1);
252b5132 3428#endif
24eab124
AM
3429 RESTORE_END_STRING (disp_end);
3430 input_line_pointer = save_input_line_pointer;
3431
2daf4fd8
AM
3432 if (exp->X_op == O_absent || exp->X_op == O_big)
3433 {
47926f60 3434 /* Missing or bad expr becomes absolute 0. */
d0b47220 3435 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3436 disp_start);
3437 exp->X_op = O_constant;
3438 exp->X_add_number = 0;
3439 exp->X_add_symbol = (symbolS *) 0;
3440 exp->X_op_symbol = (symbolS *) 0;
3441 }
3442
4c63da97 3443#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3444 if (exp->X_op != O_constant
4c63da97 3445#ifdef BFD_ASSEMBLER
45288df1 3446 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3447#endif
45288df1
AM
3448 && exp_seg != text_section
3449 && exp_seg != data_section
3450 && exp_seg != bss_section
3451 && exp_seg != undefined_section)
24eab124 3452 {
4c63da97 3453#ifdef BFD_ASSEMBLER
d0b47220 3454 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3455#else
d0b47220 3456 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3457#endif
24eab124
AM
3458 return 0;
3459 }
252b5132 3460#endif
3e73aa7c
JH
3461 else if (flag_code == CODE_64BIT)
3462 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3463 return 1;
3464}
3465
eecb386c 3466static int i386_index_check PARAMS((const char *));
252b5132 3467
eecb386c 3468/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3469 Return 1 on success, 0 on a failure. */
3470
252b5132 3471static int
eecb386c
AM
3472i386_index_check (operand_string)
3473 const char *operand_string;
252b5132 3474{
3e73aa7c 3475 int ok;
24eab124 3476#if INFER_ADDR_PREFIX
eecb386c
AM
3477 int fudged = 0;
3478
24eab124
AM
3479 tryprefix:
3480#endif
3e73aa7c
JH
3481 ok = 1;
3482 if (flag_code == CODE_64BIT)
3483 {
3484 /* 64bit checks. */
3485 if ((i.base_reg
3486 && ((i.base_reg->reg_type & Reg64) == 0)
3487 && (i.base_reg->reg_type != BaseIndex
3488 || i.index_reg))
3489 || (i.index_reg
3490 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3491 != (Reg64|BaseIndex))))
3492 ok = 0;
3493 }
3494 else
3495 {
3496 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3497 {
3498 /* 16bit checks. */
3499 if ((i.base_reg
3500 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3501 != (Reg16|BaseIndex)))
3502 || (i.index_reg
3503 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3504 != (Reg16|BaseIndex))
3505 || ! (i.base_reg
3506 && i.base_reg->reg_num < 6
3507 && i.index_reg->reg_num >= 6
3508 && i.log2_scale_factor == 0))))
3509 ok = 0;
3510 }
3511 else
3512 {
3513 /* 32bit checks. */
3514 if ((i.base_reg
3515 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3516 || (i.index_reg
3517 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3518 != (Reg32|BaseIndex))))
3519 ok = 0;
3520 }
3521 }
3522 if (!ok)
24eab124
AM
3523 {
3524#if INFER_ADDR_PREFIX
3e73aa7c
JH
3525 if (flag_code != CODE_64BIT
3526 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3527 {
3528 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3529 i.prefixes += 1;
b23bac36
AM
3530 /* Change the size of any displacement too. At most one of
3531 Disp16 or Disp32 is set.
3532 FIXME. There doesn't seem to be any real need for separate
3533 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3534 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3535 if (i.types[this_operand] & (Disp16|Disp32))
3536 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3537 fudged = 1;
24eab124
AM
3538 goto tryprefix;
3539 }
eecb386c
AM
3540 if (fudged)
3541 as_bad (_("`%s' is not a valid base/index expression"),
3542 operand_string);
3543 else
c388dee8 3544#endif
eecb386c
AM
3545 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3546 operand_string,
3e73aa7c 3547 flag_code_names[flag_code]);
eecb386c 3548 return 0;
24eab124
AM
3549 }
3550 return 1;
3551}
252b5132 3552
252b5132 3553/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3554 on error. */
252b5132 3555
252b5132
RH
3556static int
3557i386_operand (operand_string)
3558 char *operand_string;
3559{
af6bdddf
AM
3560 const reg_entry *r;
3561 char *end_op;
24eab124 3562 char *op_string = operand_string;
252b5132 3563
24eab124 3564 if (is_space_char (*op_string))
252b5132
RH
3565 ++op_string;
3566
24eab124 3567 /* We check for an absolute prefix (differentiating,
47926f60 3568 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3569 if (*op_string == ABSOLUTE_PREFIX)
3570 {
3571 ++op_string;
3572 if (is_space_char (*op_string))
3573 ++op_string;
3574 i.types[this_operand] |= JumpAbsolute;
3575 }
252b5132 3576
47926f60 3577 /* Check if operand is a register. */
af6bdddf
AM
3578 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3579 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3580 {
24eab124
AM
3581 /* Check for a segment override by searching for ':' after a
3582 segment register. */
3583 op_string = end_op;
3584 if (is_space_char (*op_string))
3585 ++op_string;
3586 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3587 {
3588 switch (r->reg_num)
3589 {
3590 case 0:
3591 i.seg[i.mem_operands] = &es;
3592 break;
3593 case 1:
3594 i.seg[i.mem_operands] = &cs;
3595 break;
3596 case 2:
3597 i.seg[i.mem_operands] = &ss;
3598 break;
3599 case 3:
3600 i.seg[i.mem_operands] = &ds;
3601 break;
3602 case 4:
3603 i.seg[i.mem_operands] = &fs;
3604 break;
3605 case 5:
3606 i.seg[i.mem_operands] = &gs;
3607 break;
3608 }
252b5132 3609
24eab124 3610 /* Skip the ':' and whitespace. */
252b5132
RH
3611 ++op_string;
3612 if (is_space_char (*op_string))
24eab124 3613 ++op_string;
252b5132 3614
24eab124
AM
3615 if (!is_digit_char (*op_string)
3616 && !is_identifier_char (*op_string)
3617 && *op_string != '('
3618 && *op_string != ABSOLUTE_PREFIX)
3619 {
3620 as_bad (_("bad memory operand `%s'"), op_string);
3621 return 0;
3622 }
47926f60 3623 /* Handle case of %es:*foo. */
24eab124
AM
3624 if (*op_string == ABSOLUTE_PREFIX)
3625 {
3626 ++op_string;
3627 if (is_space_char (*op_string))
3628 ++op_string;
3629 i.types[this_operand] |= JumpAbsolute;
3630 }
3631 goto do_memory_reference;
3632 }
3633 if (*op_string)
3634 {
d0b47220 3635 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3636 return 0;
3637 }
3638 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3639 i.op[this_operand].regs = r;
24eab124
AM
3640 i.reg_operands++;
3641 }
af6bdddf
AM
3642 else if (*op_string == REGISTER_PREFIX)
3643 {
3644 as_bad (_("bad register name `%s'"), op_string);
3645 return 0;
3646 }
24eab124 3647 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3648 {
24eab124
AM
3649 ++op_string;
3650 if (i.types[this_operand] & JumpAbsolute)
3651 {
d0b47220 3652 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3653 return 0;
3654 }
3655 if (!i386_immediate (op_string))
3656 return 0;
3657 }
3658 else if (is_digit_char (*op_string)
3659 || is_identifier_char (*op_string)
3660 || *op_string == '(' )
3661 {
47926f60 3662 /* This is a memory reference of some sort. */
af6bdddf 3663 char *base_string;
252b5132 3664
47926f60 3665 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3666 char *displacement_string_start;
3667 char *displacement_string_end;
252b5132 3668
24eab124 3669 do_memory_reference:
24eab124
AM
3670 if ((i.mem_operands == 1
3671 && (current_templates->start->opcode_modifier & IsString) == 0)
3672 || i.mem_operands == 2)
3673 {
3674 as_bad (_("too many memory references for `%s'"),
3675 current_templates->start->name);
3676 return 0;
3677 }
252b5132 3678
24eab124
AM
3679 /* Check for base index form. We detect the base index form by
3680 looking for an ')' at the end of the operand, searching
3681 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3682 after the '('. */
af6bdddf 3683 base_string = op_string + strlen (op_string);
c3332e24 3684
af6bdddf
AM
3685 --base_string;
3686 if (is_space_char (*base_string))
3687 --base_string;
252b5132 3688
47926f60 3689 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3690 displacement_string_start = op_string;
3691 displacement_string_end = base_string + 1;
252b5132 3692
24eab124
AM
3693 if (*base_string == ')')
3694 {
af6bdddf 3695 char *temp_string;
24eab124
AM
3696 unsigned int parens_balanced = 1;
3697 /* We've already checked that the number of left & right ()'s are
47926f60 3698 equal, so this loop will not be infinite. */
24eab124
AM
3699 do
3700 {
3701 base_string--;
3702 if (*base_string == ')')
3703 parens_balanced++;
3704 if (*base_string == '(')
3705 parens_balanced--;
3706 }
3707 while (parens_balanced);
c3332e24 3708
af6bdddf 3709 temp_string = base_string;
c3332e24 3710
24eab124 3711 /* Skip past '(' and whitespace. */
252b5132
RH
3712 ++base_string;
3713 if (is_space_char (*base_string))
24eab124 3714 ++base_string;
252b5132 3715
af6bdddf
AM
3716 if (*base_string == ','
3717 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3718 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3719 {
af6bdddf 3720 displacement_string_end = temp_string;
252b5132 3721
af6bdddf 3722 i.types[this_operand] |= BaseIndex;
252b5132 3723
af6bdddf 3724 if (i.base_reg)
24eab124 3725 {
24eab124
AM
3726 base_string = end_op;
3727 if (is_space_char (*base_string))
3728 ++base_string;
af6bdddf
AM
3729 }
3730
3731 /* There may be an index reg or scale factor here. */
3732 if (*base_string == ',')
3733 {
3734 ++base_string;
3735 if (is_space_char (*base_string))
3736 ++base_string;
3737
3738 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3739 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3740 {
af6bdddf 3741 base_string = end_op;
24eab124
AM
3742 if (is_space_char (*base_string))
3743 ++base_string;
af6bdddf
AM
3744 if (*base_string == ',')
3745 {
3746 ++base_string;
3747 if (is_space_char (*base_string))
3748 ++base_string;
3749 }
3750 else if (*base_string != ')' )
3751 {
3752 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3753 operand_string);
3754 return 0;
3755 }
24eab124 3756 }
af6bdddf 3757 else if (*base_string == REGISTER_PREFIX)
24eab124 3758 {
af6bdddf 3759 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3760 return 0;
3761 }
252b5132 3762
47926f60 3763 /* Check for scale factor. */
af6bdddf
AM
3764 if (isdigit ((unsigned char) *base_string))
3765 {
3766 if (!i386_scale (base_string))
3767 return 0;
24eab124 3768
af6bdddf
AM
3769 ++base_string;
3770 if (is_space_char (*base_string))
3771 ++base_string;
3772 if (*base_string != ')')
3773 {
3774 as_bad (_("expecting `)' after scale factor in `%s'"),
3775 operand_string);
3776 return 0;
3777 }
3778 }
3779 else if (!i.index_reg)
24eab124 3780 {
af6bdddf
AM
3781 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3782 *base_string);
24eab124
AM
3783 return 0;
3784 }
3785 }
af6bdddf 3786 else if (*base_string != ')')
24eab124 3787 {
af6bdddf
AM
3788 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3789 operand_string);
24eab124
AM
3790 return 0;
3791 }
c3332e24 3792 }
af6bdddf 3793 else if (*base_string == REGISTER_PREFIX)
c3332e24 3794 {
af6bdddf 3795 as_bad (_("bad register name `%s'"), base_string);
24eab124 3796 return 0;
c3332e24 3797 }
24eab124
AM
3798 }
3799
3800 /* If there's an expression beginning the operand, parse it,
3801 assuming displacement_string_start and
3802 displacement_string_end are meaningful. */
3803 if (displacement_string_start != displacement_string_end)
3804 {
3805 if (!i386_displacement (displacement_string_start,
3806 displacement_string_end))
3807 return 0;
3808 }
3809
3810 /* Special case for (%dx) while doing input/output op. */
3811 if (i.base_reg
3812 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3813 && i.index_reg == 0
3814 && i.log2_scale_factor == 0
3815 && i.seg[i.mem_operands] == 0
3816 && (i.types[this_operand] & Disp) == 0)
3817 {
3818 i.types[this_operand] = InOutPortReg;
3819 return 1;
3820 }
3821
eecb386c
AM
3822 if (i386_index_check (operand_string) == 0)
3823 return 0;
24eab124
AM
3824 i.mem_operands++;
3825 }
3826 else
ce8a8b2f
AM
3827 {
3828 /* It's not a memory operand; argh! */
24eab124
AM
3829 as_bad (_("invalid char %s beginning operand %d `%s'"),
3830 output_invalid (*op_string),
3831 this_operand + 1,
3832 op_string);
3833 return 0;
3834 }
47926f60 3835 return 1; /* Normal return. */
252b5132
RH
3836}
3837\f
ee7fcc42
AM
3838/* md_estimate_size_before_relax()
3839
3840 Called just before relax() for rs_machine_dependent frags. The x86
3841 assembler uses these frags to handle variable size jump
3842 instructions.
3843
3844 Any symbol that is now undefined will not become defined.
3845 Return the correct fr_subtype in the frag.
3846 Return the initial "guess for variable size of frag" to caller.
3847 The guess is actually the growth beyond the fixed part. Whatever
3848 we do to grow the fixed or variable part contributes to our
3849 returned value. */
3850
252b5132
RH
3851int
3852md_estimate_size_before_relax (fragP, segment)
3853 register fragS *fragP;
3854 register segT segment;
3855{
252b5132 3856 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3857 check for un-relaxable symbols. On an ELF system, we can't relax
3858 an externally visible symbol, because it may be overridden by a
3859 shared library. */
3860 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3861#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3862 || S_IS_EXTERNAL (fragP->fr_symbol)
3863 || S_IS_WEAK (fragP->fr_symbol)
3864#endif
3865 )
252b5132 3866 {
b98ef147
AM
3867 /* Symbol is undefined in this segment, or we need to keep a
3868 reloc so that weak symbols can be overridden. */
3869 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f6af82bd
AM
3870#ifdef BFD_ASSEMBLER
3871 enum bfd_reloc_code_real reloc_type;
3872#else
3873 int reloc_type;
3874#endif
ee7fcc42
AM
3875 unsigned char *opcode;
3876 int old_fr_fix;
f6af82bd 3877
ee7fcc42
AM
3878 if (fragP->fr_var != NO_RELOC)
3879 reloc_type = fragP->fr_var;
b98ef147 3880 else if (size == 2)
f6af82bd
AM
3881 reloc_type = BFD_RELOC_16_PCREL;
3882 else
3883 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3884
ee7fcc42
AM
3885 old_fr_fix = fragP->fr_fix;
3886 opcode = (unsigned char *) fragP->fr_opcode;
3887
252b5132
RH
3888 switch (opcode[0])
3889 {
47926f60
KH
3890 case JUMP_PC_RELATIVE:
3891 /* Make jmp (0xeb) a dword displacement jump. */
47926f60 3892 opcode[0] = 0xe9;
252b5132
RH
3893 fragP->fr_fix += size;
3894 fix_new (fragP, old_fr_fix, size,
3895 fragP->fr_symbol,
3896 fragP->fr_offset, 1,
f6af82bd 3897 reloc_type);
252b5132
RH
3898 break;
3899
3900 default:
24eab124 3901 /* This changes the byte-displacement jump 0x7N
f6af82bd 3902 to the dword-displacement jump 0x0f,0x8N. */
252b5132 3903 opcode[1] = opcode[0] + 0x10;
f6af82bd 3904 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
3905 /* We've added an opcode byte. */
3906 fragP->fr_fix += 1 + size;
252b5132
RH
3907 fix_new (fragP, old_fr_fix + 1, size,
3908 fragP->fr_symbol,
3909 fragP->fr_offset, 1,
f6af82bd 3910 reloc_type);
252b5132
RH
3911 break;
3912 }
3913 frag_wane (fragP);
ee7fcc42 3914 return fragP->fr_fix - old_fr_fix;
252b5132 3915 }
47926f60
KH
3916 /* Guess a short jump. */
3917 return 1;
ee7fcc42
AM
3918}
3919
47926f60
KH
3920/* Called after relax() is finished.
3921
3922 In: Address of frag.
3923 fr_type == rs_machine_dependent.
3924 fr_subtype is what the address relaxed to.
3925
3926 Out: Any fixSs and constants are set up.
3927 Caller will turn frag into a ".space 0". */
3928
252b5132
RH
3929#ifndef BFD_ASSEMBLER
3930void
3931md_convert_frag (headers, sec, fragP)
a04b544b
ILT
3932 object_headers *headers ATTRIBUTE_UNUSED;
3933 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3934 register fragS *fragP;
3935#else
3936void
3937md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
3938 bfd *abfd ATTRIBUTE_UNUSED;
3939 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3940 register fragS *fragP;
3941#endif
3942{
3943 register unsigned char *opcode;
3944 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
3945 offsetT target_address;
3946 offsetT opcode_address;
252b5132 3947 unsigned int extension = 0;
847f7ad4 3948 offsetT displacement_from_opcode_start;
252b5132
RH
3949
3950 opcode = (unsigned char *) fragP->fr_opcode;
3951
47926f60 3952 /* Address we want to reach in file space. */
252b5132 3953 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
47926f60
KH
3954#ifdef BFD_ASSEMBLER
3955 /* Not needed otherwise? */
49309057 3956 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
3957#endif
3958
47926f60 3959 /* Address opcode resides at in file space. */
252b5132
RH
3960 opcode_address = fragP->fr_address + fragP->fr_fix;
3961
47926f60 3962 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
3963 displacement_from_opcode_start = target_address - opcode_address;
3964
3965 switch (fragP->fr_subtype)
3966 {
3967 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3968 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3969 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3970 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
47926f60
KH
3971 /* Don't have to change opcode. */
3972 extension = 1; /* 1 opcode + 1 displacement */
252b5132
RH
3973 where_to_put_displacement = &opcode[1];
3974 break;
3975
3976 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
47926f60 3977 extension = 5; /* 2 opcode + 4 displacement */
252b5132
RH
3978 opcode[1] = opcode[0] + 0x10;
3979 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3980 where_to_put_displacement = &opcode[2];
3981 break;
3982
3983 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
47926f60 3984 extension = 4; /* 1 opcode + 4 displacement */
252b5132
RH
3985 opcode[0] = 0xe9;
3986 where_to_put_displacement = &opcode[1];
3987 break;
3988
3989 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
47926f60 3990 extension = 3; /* 2 opcode + 2 displacement */
252b5132
RH
3991 opcode[1] = opcode[0] + 0x10;
3992 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3993 where_to_put_displacement = &opcode[2];
3994 break;
3995
3996 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
47926f60 3997 extension = 2; /* 1 opcode + 2 displacement */
252b5132
RH
3998 opcode[0] = 0xe9;
3999 where_to_put_displacement = &opcode[1];
4000 break;
4001
4002 default:
4003 BAD_CASE (fragP->fr_subtype);
4004 break;
4005 }
47926f60 4006 /* Now put displacement after opcode. */
252b5132
RH
4007 md_number_to_chars ((char *) where_to_put_displacement,
4008 (valueT) (displacement_from_opcode_start - extension),
4009 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4010 fragP->fr_fix += extension;
4011}
4012\f
47926f60
KH
4013/* Size of byte displacement jmp. */
4014int md_short_jump_size = 2;
4015
4016/* Size of dword displacement jmp. */
4017int md_long_jump_size = 5;
252b5132 4018
47926f60
KH
4019/* Size of relocation record. */
4020const int md_reloc_size = 8;
252b5132
RH
4021
4022void
4023md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4024 char *ptr;
4025 addressT from_addr, to_addr;
ab9da554
ILT
4026 fragS *frag ATTRIBUTE_UNUSED;
4027 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4028{
847f7ad4 4029 offsetT offset;
252b5132
RH
4030
4031 offset = to_addr - (from_addr + 2);
47926f60
KH
4032 /* Opcode for byte-disp jump. */
4033 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4034 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4035}
4036
4037void
4038md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4039 char *ptr;
4040 addressT from_addr, to_addr;
a38cf1db
AM
4041 fragS *frag ATTRIBUTE_UNUSED;
4042 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4043{
847f7ad4 4044 offsetT offset;
252b5132 4045
a38cf1db
AM
4046 offset = to_addr - (from_addr + 5);
4047 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4048 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4049}
4050\f
4051/* Apply a fixup (fixS) to segment data, once it has been determined
4052 by our caller that we have all the info we need to fix it up.
4053
4054 On the 386, immediates, displacements, and data pointers are all in
4055 the same (little-endian) format, so we don't need to care about which
4056 we are handling. */
4057
4058int
4059md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4060 /* The fix we're to put in. */
4061 fixS *fixP;
4062
4063 /* Pointer to the value of the bits. */
4064 valueT *valp;
4065
4066 /* Segment fix is from. */
4067 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4068{
4069 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4070 valueT value = *valp;
4071
e1b283bb 4072#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4073 if (fixP->fx_pcrel)
4074 {
4075 switch (fixP->fx_r_type)
4076 {
5865bb77
ILT
4077 default:
4078 break;
4079
93382f6d
AM
4080 case BFD_RELOC_32:
4081 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4082 break;
4083 case BFD_RELOC_16:
4084 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4085 break;
4086 case BFD_RELOC_8:
4087 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4088 break;
4089 }
4090 }
252b5132 4091
0723899b
ILT
4092 /* This is a hack. There should be a better way to handle this.
4093 This covers for the fact that bfd_install_relocation will
4094 subtract the current location (for partial_inplace, PC relative
4095 relocations); see more below. */
93382f6d
AM
4096 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4097 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4098 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4099 && fixP->fx_addsy)
252b5132
RH
4100 {
4101#ifndef OBJ_AOUT
4102 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4103#ifdef TE_PE
4104 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4105#endif
4106 )
4107 value += fixP->fx_where + fixP->fx_frag->fr_address;
4108#endif
4109#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4110 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4111 {
2f66722d
AM
4112 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4113
4114 if ((fseg == seg
4115 || (symbol_section_p (fixP->fx_addsy)
4116 && fseg != absolute_section))
4117 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4118 && ! S_IS_WEAK (fixP->fx_addsy)
4119 && S_IS_DEFINED (fixP->fx_addsy)
4120 && ! S_IS_COMMON (fixP->fx_addsy))
4121 {
4122 /* Yes, we add the values in twice. This is because
4123 bfd_perform_relocation subtracts them out again. I think
4124 bfd_perform_relocation is broken, but I don't dare change
4125 it. FIXME. */
4126 value += fixP->fx_where + fixP->fx_frag->fr_address;
4127 }
252b5132
RH
4128 }
4129#endif
4130#if defined (OBJ_COFF) && defined (TE_PE)
4131 /* For some reason, the PE format does not store a section
24eab124 4132 address offset for a PC relative symbol. */
252b5132
RH
4133 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4134 value += md_pcrel_from (fixP);
4135#endif
4136 }
4137
4138 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4139 and we must not dissappoint it. */
252b5132
RH
4140#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4141 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4142 && fixP->fx_addsy)
47926f60
KH
4143 switch (fixP->fx_r_type)
4144 {
4145 case BFD_RELOC_386_PLT32:
3e73aa7c 4146 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4147 /* Make the jump instruction point to the address of the operand. At
4148 runtime we merely add the offset to the actual PLT entry. */
4149 value = -4;
4150 break;
4151 case BFD_RELOC_386_GOTPC:
4152
4153/* This is tough to explain. We end up with this one if we have
252b5132
RH
4154 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4155 * here is to obtain the absolute address of the GOT, and it is strongly
4156 * preferable from a performance point of view to avoid using a runtime
c3332e24 4157 * relocation for this. The actual sequence of instructions often look
252b5132 4158 * something like:
c3332e24 4159 *
24eab124 4160 * call .L66
252b5132 4161 * .L66:
24eab124
AM
4162 * popl %ebx
4163 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4164 *
24eab124 4165 * The call and pop essentially return the absolute address of
252b5132
RH
4166 * the label .L66 and store it in %ebx. The linker itself will
4167 * ultimately change the first operand of the addl so that %ebx points to
4168 * the GOT, but to keep things simple, the .o file must have this operand
4169 * set so that it generates not the absolute address of .L66, but the
4170 * absolute address of itself. This allows the linker itself simply
4171 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4172 * added in, and the addend of the relocation is stored in the operand
4173 * field for the instruction itself.
c3332e24 4174 *
24eab124 4175 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4176 * offset so that %ebx would point to itself. The thing that is tricky is
4177 * that .-.L66 will point to the beginning of the instruction, so we need
4178 * to further modify the operand so that it will point to itself.
4179 * There are other cases where you have something like:
c3332e24 4180 *
24eab124 4181 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4182 *
252b5132 4183 * and here no correction would be required. Internally in the assembler
c3332e24 4184 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4185 * explicitly mentioned, and I wonder whether it would simplify matters
4186 * to do it this way. Who knows. In earlier versions of the PIC patches,
4187 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4188 * expression is not pcrel, I felt it would be confusing to do it this
4189 * way. */
4190
4191 value -= 1;
4192 break;
4193 case BFD_RELOC_386_GOT32:
3e73aa7c 4194 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4195 value = 0; /* Fully resolved at runtime. No addend. */
4196 break;
4197 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4198 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4199 break;
4200
4201 case BFD_RELOC_VTABLE_INHERIT:
4202 case BFD_RELOC_VTABLE_ENTRY:
4203 fixP->fx_done = 0;
4204 return 1;
4205
4206 default:
4207 break;
4208 }
4209#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4210 *valp = value;
47926f60 4211#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4212
4213#ifndef BFD_ASSEMBLER
252b5132 4214 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4215#else
4216 /* Are we finished with this relocation now? */
4217 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4218 fixP->fx_done = 1;
4219 else if (use_rela_relocations)
4220 {
4221 fixP->fx_no_overflow = 1;
4222 value = 0;
4223 }
4224 md_number_to_chars (p, value, fixP->fx_size);
4225#endif
252b5132
RH
4226
4227 return 1;
4228}
252b5132 4229\f
252b5132
RH
4230#define MAX_LITTLENUMS 6
4231
47926f60
KH
4232/* Turn the string pointed to by litP into a floating point constant
4233 of type TYPE, and emit the appropriate bytes. The number of
4234 LITTLENUMS emitted is stored in *SIZEP. An error message is
4235 returned, or NULL on OK. */
4236
252b5132
RH
4237char *
4238md_atof (type, litP, sizeP)
2ab9b79e 4239 int type;
252b5132
RH
4240 char *litP;
4241 int *sizeP;
4242{
4243 int prec;
4244 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4245 LITTLENUM_TYPE *wordP;
4246 char *t;
4247
4248 switch (type)
4249 {
4250 case 'f':
4251 case 'F':
4252 prec = 2;
4253 break;
4254
4255 case 'd':
4256 case 'D':
4257 prec = 4;
4258 break;
4259
4260 case 'x':
4261 case 'X':
4262 prec = 5;
4263 break;
4264
4265 default:
4266 *sizeP = 0;
4267 return _("Bad call to md_atof ()");
4268 }
4269 t = atof_ieee (input_line_pointer, type, words);
4270 if (t)
4271 input_line_pointer = t;
4272
4273 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4274 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4275 the bigendian 386. */
4276 for (wordP = words + prec - 1; prec--;)
4277 {
4278 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4279 litP += sizeof (LITTLENUM_TYPE);
4280 }
4281 return 0;
4282}
4283\f
4284char output_invalid_buf[8];
4285
252b5132
RH
4286static char *
4287output_invalid (c)
4288 int c;
4289{
4290 if (isprint (c))
4291 sprintf (output_invalid_buf, "'%c'", c);
4292 else
4293 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4294 return output_invalid_buf;
4295}
4296
af6bdddf 4297/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4298
4299static const reg_entry *
4300parse_register (reg_string, end_op)
4301 char *reg_string;
4302 char **end_op;
4303{
af6bdddf
AM
4304 char *s = reg_string;
4305 char *p;
252b5132
RH
4306 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4307 const reg_entry *r;
4308
4309 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4310 if (*s == REGISTER_PREFIX)
4311 ++s;
4312
4313 if (is_space_char (*s))
4314 ++s;
4315
4316 p = reg_name_given;
af6bdddf 4317 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4318 {
4319 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4320 return (const reg_entry *) NULL;
4321 s++;
252b5132
RH
4322 }
4323
6588847e
DN
4324 /* For naked regs, make sure that we are not dealing with an identifier.
4325 This prevents confusing an identifier like `eax_var' with register
4326 `eax'. */
4327 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4328 return (const reg_entry *) NULL;
4329
af6bdddf 4330 *end_op = s;
252b5132
RH
4331
4332 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4333
5f47d35b 4334 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4335 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4336 {
5f47d35b
AM
4337 if (is_space_char (*s))
4338 ++s;
4339 if (*s == '(')
4340 {
af6bdddf 4341 ++s;
5f47d35b
AM
4342 if (is_space_char (*s))
4343 ++s;
4344 if (*s >= '0' && *s <= '7')
4345 {
4346 r = &i386_float_regtab[*s - '0'];
af6bdddf 4347 ++s;
5f47d35b
AM
4348 if (is_space_char (*s))
4349 ++s;
4350 if (*s == ')')
4351 {
4352 *end_op = s + 1;
4353 return r;
4354 }
5f47d35b 4355 }
47926f60 4356 /* We have "%st(" then garbage. */
5f47d35b
AM
4357 return (const reg_entry *) NULL;
4358 }
4359 }
4360
252b5132
RH
4361 return r;
4362}
4363\f
4cc782b5 4364#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4365const char *md_shortopts = "kVQ:sq";
252b5132 4366#else
65172ab8 4367const char *md_shortopts = "q";
252b5132 4368#endif
6e0b89ee 4369
252b5132 4370struct option md_longopts[] = {
3e73aa7c
JH
4371#define OPTION_32 (OPTION_MD_BASE + 0)
4372 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4373#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4374#define OPTION_64 (OPTION_MD_BASE + 1)
4375 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4376#endif
252b5132
RH
4377 {NULL, no_argument, NULL, 0}
4378};
4379size_t md_longopts_size = sizeof (md_longopts);
4380
4381int
4382md_parse_option (c, arg)
4383 int c;
ab9da554 4384 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4385{
4386 switch (c)
4387 {
a38cf1db
AM
4388 case 'q':
4389 quiet_warnings = 1;
252b5132
RH
4390 break;
4391
4392#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4393 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4394 should be emitted or not. FIXME: Not implemented. */
4395 case 'Q':
252b5132
RH
4396 break;
4397
4398 /* -V: SVR4 argument to print version ID. */
4399 case 'V':
4400 print_version_id ();
4401 break;
4402
a38cf1db
AM
4403 /* -k: Ignore for FreeBSD compatibility. */
4404 case 'k':
252b5132 4405 break;
4cc782b5
ILT
4406
4407 case 's':
4408 /* -s: On i386 Solaris, this tells the native assembler to use
4409 .stab instead of .stab.excl. We always use .stab anyhow. */
4410 break;
6e0b89ee 4411
3e73aa7c
JH
4412 case OPTION_64:
4413 {
4414 const char **list, **l;
4415
3e73aa7c
JH
4416 list = bfd_target_list ();
4417 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4418 if (strcmp (*l, "elf64-x86-64") == 0)
4419 {
4420 default_arch = "x86_64";
4421 break;
4422 }
3e73aa7c 4423 if (*l == NULL)
6e0b89ee 4424 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4425 free (list);
4426 }
4427 break;
4428#endif
252b5132 4429
6e0b89ee
AM
4430 case OPTION_32:
4431 default_arch = "i386";
4432 break;
4433
252b5132
RH
4434 default:
4435 return 0;
4436 }
4437 return 1;
4438}
4439
4440void
4441md_show_usage (stream)
4442 FILE *stream;
4443{
4cc782b5
ILT
4444#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4445 fprintf (stream, _("\
a38cf1db
AM
4446 -Q ignored\n\
4447 -V print assembler version number\n\
4448 -k ignored\n\
4449 -q quieten some warnings\n\
4450 -s ignored\n"));
4451#else
4452 fprintf (stream, _("\
4453 -q quieten some warnings\n"));
4cc782b5 4454#endif
252b5132
RH
4455}
4456
4457#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4458#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4459 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4460
4461/* Pick the target format to use. */
4462
47926f60 4463const char *
252b5132
RH
4464i386_target_format ()
4465{
3e73aa7c
JH
4466 if (!strcmp (default_arch, "x86_64"))
4467 set_code_flag (CODE_64BIT);
4468 else if (!strcmp (default_arch, "i386"))
4469 set_code_flag (CODE_32BIT);
4470 else
4471 as_fatal (_("Unknown architecture"));
252b5132
RH
4472 switch (OUTPUT_FLAVOR)
4473 {
4c63da97
AM
4474#ifdef OBJ_MAYBE_AOUT
4475 case bfd_target_aout_flavour:
47926f60 4476 return AOUT_TARGET_FORMAT;
4c63da97
AM
4477#endif
4478#ifdef OBJ_MAYBE_COFF
252b5132
RH
4479 case bfd_target_coff_flavour:
4480 return "coff-i386";
4c63da97 4481#endif
3e73aa7c 4482#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4483 case bfd_target_elf_flavour:
3e73aa7c
JH
4484 {
4485 if (flag_code == CODE_64BIT)
4486 use_rela_relocations = 1;
4487 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4488 }
4c63da97 4489#endif
252b5132
RH
4490 default:
4491 abort ();
4492 return NULL;
4493 }
4494}
4495
47926f60
KH
4496#endif /* OBJ_MAYBE_ more than one */
4497#endif /* BFD_ASSEMBLER */
252b5132 4498\f
252b5132
RH
4499symbolS *
4500md_undefined_symbol (name)
4501 char *name;
4502{
18dc2407
ILT
4503 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4504 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4505 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4506 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4507 {
4508 if (!GOT_symbol)
4509 {
4510 if (symbol_find (name))
4511 as_bad (_("GOT already in symbol table"));
4512 GOT_symbol = symbol_new (name, undefined_section,
4513 (valueT) 0, &zero_address_frag);
4514 };
4515 return GOT_symbol;
4516 }
252b5132
RH
4517 return 0;
4518}
4519
4520/* Round up a section size to the appropriate boundary. */
47926f60 4521
252b5132
RH
4522valueT
4523md_section_align (segment, size)
ab9da554 4524 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4525 valueT size;
4526{
252b5132 4527#ifdef BFD_ASSEMBLER
4c63da97
AM
4528#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4529 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4530 {
4531 /* For a.out, force the section size to be aligned. If we don't do
4532 this, BFD will align it for us, but it will not write out the
4533 final bytes of the section. This may be a bug in BFD, but it is
4534 easier to fix it here since that is how the other a.out targets
4535 work. */
4536 int align;
4537
4538 align = bfd_get_section_alignment (stdoutput, segment);
4539 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4540 }
252b5132
RH
4541#endif
4542#endif
4543
4544 return size;
4545}
4546
4547/* On the i386, PC-relative offsets are relative to the start of the
4548 next instruction. That is, the address of the offset, plus its
4549 size, since the offset is always the last part of the insn. */
4550
4551long
4552md_pcrel_from (fixP)
4553 fixS *fixP;
4554{
4555 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4556}
4557
4558#ifndef I386COFF
4559
4560static void
4561s_bss (ignore)
ab9da554 4562 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4563{
4564 register int temp;
4565
4566 temp = get_absolute_expression ();
4567 subseg_set (bss_section, (subsegT) temp);
4568 demand_empty_rest_of_line ();
4569}
4570
4571#endif
4572
252b5132
RH
4573#ifdef BFD_ASSEMBLER
4574
4575void
4576i386_validate_fix (fixp)
4577 fixS *fixp;
4578{
4579 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4580 {
3e73aa7c
JH
4581 /* GOTOFF relocation are nonsense in 64bit mode. */
4582 if (flag_code == CODE_64BIT)
4583 abort();
252b5132
RH
4584 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4585 fixp->fx_subsy = 0;
4586 }
4587}
4588
252b5132
RH
4589arelent *
4590tc_gen_reloc (section, fixp)
ab9da554 4591 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4592 fixS *fixp;
4593{
4594 arelent *rel;
4595 bfd_reloc_code_real_type code;
4596
4597 switch (fixp->fx_r_type)
4598 {
3e73aa7c
JH
4599 case BFD_RELOC_X86_64_PLT32:
4600 case BFD_RELOC_X86_64_GOT32:
4601 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4602 case BFD_RELOC_386_PLT32:
4603 case BFD_RELOC_386_GOT32:
4604 case BFD_RELOC_386_GOTOFF:
4605 case BFD_RELOC_386_GOTPC:
3e73aa7c 4606 case BFD_RELOC_X86_64_32S:
252b5132
RH
4607 case BFD_RELOC_RVA:
4608 case BFD_RELOC_VTABLE_ENTRY:
4609 case BFD_RELOC_VTABLE_INHERIT:
4610 code = fixp->fx_r_type;
4611 break;
4612 default:
93382f6d 4613 if (fixp->fx_pcrel)
252b5132 4614 {
93382f6d
AM
4615 switch (fixp->fx_size)
4616 {
4617 default:
d0b47220 4618 as_bad (_("can not do %d byte pc-relative relocation"),
93382f6d
AM
4619 fixp->fx_size);
4620 code = BFD_RELOC_32_PCREL;
4621 break;
4622 case 1: code = BFD_RELOC_8_PCREL; break;
4623 case 2: code = BFD_RELOC_16_PCREL; break;
4624 case 4: code = BFD_RELOC_32_PCREL; break;
4625 }
4626 }
4627 else
4628 {
4629 switch (fixp->fx_size)
4630 {
4631 default:
d0b47220 4632 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
93382f6d
AM
4633 code = BFD_RELOC_32;
4634 break;
4635 case 1: code = BFD_RELOC_8; break;
4636 case 2: code = BFD_RELOC_16; break;
4637 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4638 case 8: code = BFD_RELOC_64; break;
93382f6d 4639 }
252b5132
RH
4640 }
4641 break;
4642 }
252b5132
RH
4643
4644 if (code == BFD_RELOC_32
4645 && GOT_symbol
4646 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4647 {
4648 /* We don't support GOTPC on 64bit targets. */
4649 if (flag_code == CODE_64BIT)
4650 abort();
4651 code = BFD_RELOC_386_GOTPC;
4652 }
252b5132
RH
4653
4654 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4655 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4656 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4657
4658 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4659 if (!use_rela_relocations)
4660 {
4661 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4662 vtable entry to be used in the relocation's section offset. */
4663 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4664 rel->address = fixp->fx_offset;
252b5132 4665
3e73aa7c
JH
4666 if (fixp->fx_pcrel)
4667 rel->addend = fixp->fx_addnumber;
4668 else
4669 rel->addend = 0;
4670 }
4671 /* Use the rela in 64bit mode. */
252b5132 4672 else
3e73aa7c
JH
4673 {
4674 rel->addend = fixp->fx_offset;
4675#ifdef OBJ_ELF
4676 /* Ohhh, this is ugly. The problem is that if this is a local global
4677 symbol, the relocation will entirely be performed at link time, not
4678 at assembly time. bfd_perform_reloc doesn't know about this sort
4679 of thing, and as a result we need to fake it out here. */
4680 if ((S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))
4681 && !S_IS_COMMON(fixp->fx_addsy))
4682 rel->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
4683#endif
4684 if (fixp->fx_pcrel)
4685 rel->addend -= fixp->fx_size;
4686 }
4687
252b5132
RH
4688
4689 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4690 if (rel->howto == NULL)
4691 {
4692 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4693 _("cannot represent relocation type %s"),
252b5132
RH
4694 bfd_get_reloc_code_name (code));
4695 /* Set howto to a garbage value so that we can keep going. */
4696 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4697 assert (rel->howto != NULL);
4698 }
4699
4700 return rel;
4701}
4702
47926f60 4703#else /* ! BFD_ASSEMBLER */
252b5132
RH
4704
4705#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4706void
4707tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4708 char *where;
4709 fixS *fixP;
4710 relax_addressT segment_address_in_file;
4711{
47926f60
KH
4712 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4713 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4714
47926f60 4715 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4716 long r_symbolnum;
4717
4718 know (fixP->fx_addsy != NULL);
4719
4720 md_number_to_chars (where,
4721 (valueT) (fixP->fx_frag->fr_address
4722 + fixP->fx_where - segment_address_in_file),
4723 4);
4724
4725 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4726 ? S_GET_TYPE (fixP->fx_addsy)
4727 : fixP->fx_addsy->sy_number);
4728
4729 where[6] = (r_symbolnum >> 16) & 0x0ff;
4730 where[5] = (r_symbolnum >> 8) & 0x0ff;
4731 where[4] = r_symbolnum & 0x0ff;
4732 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4733 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4734 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4735}
4736
47926f60 4737#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4738
4739#if defined (I386COFF)
4740
4741short
4742tc_coff_fix2rtype (fixP)
4743 fixS *fixP;
4744{
4745 if (fixP->fx_r_type == R_IMAGEBASE)
4746 return R_IMAGEBASE;
4747
4748 return (fixP->fx_pcrel ?
4749 (fixP->fx_size == 1 ? R_PCRBYTE :
4750 fixP->fx_size == 2 ? R_PCRWORD :
4751 R_PCRLONG) :
4752 (fixP->fx_size == 1 ? R_RELBYTE :
4753 fixP->fx_size == 2 ? R_RELWORD :
4754 R_DIR32));
4755}
4756
4757int
4758tc_coff_sizemachdep (frag)
4759 fragS *frag;
4760{
4761 if (frag->fr_next)
4762 return (frag->fr_next->fr_address - frag->fr_address);
4763 else
4764 return 0;
4765}
4766
47926f60 4767#endif /* I386COFF */
252b5132 4768
47926f60 4769#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4770\f
4771/* Parse operands using Intel syntax. This implements a recursive descent
4772 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4773 Programmer's Guide.
4774
4775 FIXME: We do not recognize the full operand grammar defined in the MASM
4776 documentation. In particular, all the structure/union and
4777 high-level macro operands are missing.
4778
4779 Uppercase words are terminals, lower case words are non-terminals.
4780 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4781 bars '|' denote choices. Most grammar productions are implemented in
4782 functions called 'intel_<production>'.
4783
4784 Initial production is 'expr'.
4785
64a0c779
DN
4786 addOp + | -
4787
4788 alpha [a-zA-Z]
4789
4790 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4791
4792 constant digits [[ radixOverride ]]
4793
4794 dataType BYTE | WORD | DWORD | QWORD | XWORD
4795
4796 digits decdigit
b77a7acd
AJ
4797 | digits decdigit
4798 | digits hexdigit
64a0c779
DN
4799
4800 decdigit [0-9]
4801
4802 e05 e05 addOp e06
b77a7acd 4803 | e06
64a0c779
DN
4804
4805 e06 e06 mulOp e09
b77a7acd 4806 | e09
64a0c779
DN
4807
4808 e09 OFFSET e10
4809 | e09 PTR e10
4810 | e09 : e10
4811 | e10
4812
4813 e10 e10 [ expr ]
b77a7acd 4814 | e11
64a0c779
DN
4815
4816 e11 ( expr )
b77a7acd 4817 | [ expr ]
64a0c779
DN
4818 | constant
4819 | dataType
4820 | id
4821 | $
4822 | register
4823
4824 => expr SHORT e05
b77a7acd 4825 | e05
64a0c779
DN
4826
4827 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 4828 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
4829
4830 hexdigit a | b | c | d | e | f
b77a7acd 4831 | A | B | C | D | E | F
64a0c779
DN
4832
4833 id alpha
b77a7acd 4834 | id alpha
64a0c779
DN
4835 | id decdigit
4836
4837 mulOp * | / | MOD
4838
4839 quote " | '
4840
4841 register specialRegister
b77a7acd 4842 | gpRegister
64a0c779
DN
4843 | byteRegister
4844
4845 segmentRegister CS | DS | ES | FS | GS | SS
4846
4847 specialRegister CR0 | CR2 | CR3
b77a7acd 4848 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
4849 | TR3 | TR4 | TR5 | TR6 | TR7
4850
64a0c779
DN
4851 We simplify the grammar in obvious places (e.g., register parsing is
4852 done by calling parse_register) and eliminate immediate left recursion
4853 to implement a recursive-descent parser.
4854
4855 expr SHORT e05
b77a7acd 4856 | e05
64a0c779
DN
4857
4858 e05 e06 e05'
4859
4860 e05' addOp e06 e05'
b77a7acd 4861 | Empty
64a0c779
DN
4862
4863 e06 e09 e06'
4864
4865 e06' mulOp e09 e06'
b77a7acd 4866 | Empty
64a0c779
DN
4867
4868 e09 OFFSET e10 e09'
b77a7acd 4869 | e10 e09'
64a0c779
DN
4870
4871 e09' PTR e10 e09'
b77a7acd 4872 | : e10 e09'
64a0c779
DN
4873 | Empty
4874
4875 e10 e11 e10'
4876
4877 e10' [ expr ] e10'
b77a7acd 4878 | Empty
64a0c779
DN
4879
4880 e11 ( expr )
b77a7acd 4881 | [ expr ]
64a0c779
DN
4882 | BYTE
4883 | WORD
4884 | DWORD
4885 | QWORD
4886 | XWORD
4887 | .
4888 | $
4889 | register
4890 | id
4891 | constant */
4892
4893/* Parsing structure for the intel syntax parser. Used to implement the
4894 semantic actions for the operand grammar. */
4895struct intel_parser_s
4896 {
4897 char *op_string; /* The string being parsed. */
4898 int got_a_float; /* Whether the operand is a float. */
4a1805b1 4899 int op_modifier; /* Operand modifier. */
64a0c779
DN
4900 int is_mem; /* 1 if operand is memory reference. */
4901 const reg_entry *reg; /* Last register reference found. */
4902 char *disp; /* Displacement string being built. */
4903 };
4904
4905static struct intel_parser_s intel_parser;
4906
4907/* Token structure for parsing intel syntax. */
4908struct intel_token
4909 {
4910 int code; /* Token code. */
4911 const reg_entry *reg; /* Register entry for register tokens. */
4912 char *str; /* String representation. */
4913 };
4914
4915static struct intel_token cur_token, prev_token;
4916
50705ef4
AM
4917
4918/* Token codes for the intel parser. Since T_SHORT is already used
4919 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
4920#define T_NIL -1
4921#define T_CONST 1
4922#define T_REG 2
4923#define T_BYTE 3
4924#define T_WORD 4
4925#define T_DWORD 5
4926#define T_QWORD 6
4927#define T_XWORD 7
50705ef4 4928#undef T_SHORT
64a0c779
DN
4929#define T_SHORT 8
4930#define T_OFFSET 9
4931#define T_PTR 10
4932#define T_ID 11
4933
4934/* Prototypes for intel parser functions. */
4935static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
4936static void intel_get_token PARAMS ((void));
4937static void intel_putback_token PARAMS ((void));
4938static int intel_expr PARAMS ((void));
4939static int intel_e05 PARAMS ((void));
4940static int intel_e05_1 PARAMS ((void));
4941static int intel_e06 PARAMS ((void));
4942static int intel_e06_1 PARAMS ((void));
4943static int intel_e09 PARAMS ((void));
4944static int intel_e09_1 PARAMS ((void));
4945static int intel_e10 PARAMS ((void));
4946static int intel_e10_1 PARAMS ((void));
4947static int intel_e11 PARAMS ((void));
64a0c779 4948
64a0c779
DN
4949static int
4950i386_intel_operand (operand_string, got_a_float)
4951 char *operand_string;
4952 int got_a_float;
4953{
4954 int ret;
4955 char *p;
4956
4957 /* Initialize token holders. */
4958 cur_token.code = prev_token.code = T_NIL;
4959 cur_token.reg = prev_token.reg = NULL;
4960 cur_token.str = prev_token.str = NULL;
4961
4962 /* Initialize parser structure. */
4963 p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
4964 if (p == NULL)
4965 abort ();
4966 strcpy (intel_parser.op_string, operand_string);
4967 intel_parser.got_a_float = got_a_float;
4968 intel_parser.op_modifier = -1;
4969 intel_parser.is_mem = 0;
4970 intel_parser.reg = NULL;
4971 intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
4972 if (intel_parser.disp == NULL)
4973 abort ();
4974 intel_parser.disp[0] = '\0';
4975
4976 /* Read the first token and start the parser. */
4977 intel_get_token ();
4978 ret = intel_expr ();
4979
4980 if (ret)
4981 {
4982 /* If we found a memory reference, hand it over to i386_displacement
4983 to fill in the rest of the operand fields. */
4984 if (intel_parser.is_mem)
4985 {
4986 if ((i.mem_operands == 1
4987 && (current_templates->start->opcode_modifier & IsString) == 0)
4988 || i.mem_operands == 2)
4989 {
4990 as_bad (_("too many memory references for '%s'"),
4991 current_templates->start->name);
4992 ret = 0;
4993 }
4994 else
4995 {
4996 char *s = intel_parser.disp;
4997 i.mem_operands++;
4998
4999 /* Add the displacement expression. */
5000 if (*s != '\0')
5001 ret = i386_displacement (s, s + strlen (s))
5002 && i386_index_check (s);
5003 }
5004 }
5005
5006 /* Constant and OFFSET expressions are handled by i386_immediate. */
5007 else if (intel_parser.op_modifier == OFFSET_FLAT
5008 || intel_parser.reg == NULL)
5009 ret = i386_immediate (intel_parser.disp);
5010 }
5011
5012 free (p);
5013 free (intel_parser.disp);
5014
5015 return ret;
5016}
5017
64a0c779 5018/* expr SHORT e05
b77a7acd 5019 | e05 */
64a0c779
DN
5020static int
5021intel_expr ()
5022{
5023 /* expr SHORT e05 */
5024 if (cur_token.code == T_SHORT)
5025 {
5026 intel_parser.op_modifier = SHORT;
5027 intel_match_token (T_SHORT);
5028
5029 return (intel_e05 ());
5030 }
5031
5032 /* expr e05 */
5033 else
5034 return intel_e05 ();
5035}
5036
64a0c779
DN
5037/* e05 e06 e05'
5038
4a1805b1 5039 e05' addOp e06 e05'
64a0c779
DN
5040 | Empty */
5041static int
5042intel_e05 ()
5043{
5044 return (intel_e06 () && intel_e05_1 ());
5045}
5046
5047static int
5048intel_e05_1 ()
5049{
5050 /* e05' addOp e06 e05' */
5051 if (cur_token.code == '+' || cur_token.code == '-')
5052 {
5053 strcat (intel_parser.disp, cur_token.str);
5054 intel_match_token (cur_token.code);
5055
5056 return (intel_e06 () && intel_e05_1 ());
5057 }
5058
5059 /* e05' Empty */
5060 else
5061 return 1;
4a1805b1 5062}
64a0c779
DN
5063
5064/* e06 e09 e06'
5065
5066 e06' mulOp e09 e06'
b77a7acd 5067 | Empty */
64a0c779
DN
5068static int
5069intel_e06 ()
5070{
5071 return (intel_e09 () && intel_e06_1 ());
5072}
5073
5074static int
5075intel_e06_1 ()
5076{
5077 /* e06' mulOp e09 e06' */
5078 if (cur_token.code == '*' || cur_token.code == '/')
5079 {
5080 strcat (intel_parser.disp, cur_token.str);
5081 intel_match_token (cur_token.code);
5082
5083 return (intel_e09 () && intel_e06_1 ());
5084 }
4a1805b1 5085
64a0c779 5086 /* e06' Empty */
4a1805b1 5087 else
64a0c779
DN
5088 return 1;
5089}
5090
64a0c779 5091/* e09 OFFSET e10 e09'
b77a7acd 5092 | e10 e09'
64a0c779
DN
5093
5094 e09' PTR e10 e09'
b77a7acd 5095 | : e10 e09'
64a0c779
DN
5096 | Empty */
5097static int
5098intel_e09 ()
5099{
5100 /* e09 OFFSET e10 e09' */
5101 if (cur_token.code == T_OFFSET)
5102 {
5103 intel_parser.is_mem = 0;
5104 intel_parser.op_modifier = OFFSET_FLAT;
5105 intel_match_token (T_OFFSET);
5106
5107 return (intel_e10 () && intel_e09_1 ());
5108 }
5109
5110 /* e09 e10 e09' */
5111 else
5112 return (intel_e10 () && intel_e09_1 ());
5113}
5114
5115static int
5116intel_e09_1 ()
5117{
5118 /* e09' PTR e10 e09' */
5119 if (cur_token.code == T_PTR)
5120 {
5121 if (prev_token.code == T_BYTE)
5122 i.suffix = BYTE_MNEM_SUFFIX;
5123
5124 else if (prev_token.code == T_WORD)
5125 {
5126 if (intel_parser.got_a_float == 2) /* "fi..." */
5127 i.suffix = SHORT_MNEM_SUFFIX;
5128 else
5129 i.suffix = WORD_MNEM_SUFFIX;
5130 }
5131
5132 else if (prev_token.code == T_DWORD)
5133 {
5134 if (intel_parser.got_a_float == 1) /* "f..." */
5135 i.suffix = SHORT_MNEM_SUFFIX;
5136 else
5137 i.suffix = LONG_MNEM_SUFFIX;
5138 }
5139
5140 else if (prev_token.code == T_QWORD)
f16b83df
JH
5141 {
5142 if (intel_parser.got_a_float == 1) /* "f..." */
5143 i.suffix = LONG_MNEM_SUFFIX;
5144 else
3e73aa7c 5145 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5146 }
64a0c779
DN
5147
5148 else if (prev_token.code == T_XWORD)
5149 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5150
5151 else
5152 {
5153 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5154 return 0;
5155 }
5156
5157 intel_match_token (T_PTR);
5158
5159 return (intel_e10 () && intel_e09_1 ());
5160 }
5161
5162 /* e09 : e10 e09' */
5163 else if (cur_token.code == ':')
5164 {
21d6c4af
DN
5165 /* Mark as a memory operand only if it's not already known to be an
5166 offset expression. */
5167 if (intel_parser.op_modifier != OFFSET_FLAT)
5168 intel_parser.is_mem = 1;
64a0c779
DN
5169
5170 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5171 }
5172
5173 /* e09' Empty */
5174 else
5175 return 1;
5176}
5177
5178/* e10 e11 e10'
5179
5180 e10' [ expr ] e10'
b77a7acd 5181 | Empty */
64a0c779
DN
5182static int
5183intel_e10 ()
5184{
5185 return (intel_e11 () && intel_e10_1 ());
5186}
5187
5188static int
5189intel_e10_1 ()
5190{
5191 /* e10' [ expr ] e10' */
5192 if (cur_token.code == '[')
5193 {
5194 intel_match_token ('[');
21d6c4af
DN
5195
5196 /* Mark as a memory operand only if it's not already known to be an
5197 offset expression. If it's an offset expression, we need to keep
5198 the brace in. */
5199 if (intel_parser.op_modifier != OFFSET_FLAT)
5200 intel_parser.is_mem = 1;
5201 else
5202 strcat (intel_parser.disp, "[");
4a1805b1 5203
64a0c779 5204 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5205 if (*intel_parser.disp != '\0'
5206 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5207 strcat (intel_parser.disp, "+");
5208
21d6c4af
DN
5209 if (intel_expr () && intel_match_token (']'))
5210 {
5211 /* Preserve brackets when the operand is an offset expression. */
5212 if (intel_parser.op_modifier == OFFSET_FLAT)
5213 strcat (intel_parser.disp, "]");
5214
5215 return intel_e10_1 ();
5216 }
5217 else
5218 return 0;
64a0c779
DN
5219 }
5220
5221 /* e10' Empty */
5222 else
5223 return 1;
5224}
5225
64a0c779 5226/* e11 ( expr )
b77a7acd 5227 | [ expr ]
64a0c779
DN
5228 | BYTE
5229 | WORD
5230 | DWORD
5231 | QWORD
5232 | XWORD
4a1805b1 5233 | $
64a0c779
DN
5234 | .
5235 | register
5236 | id
5237 | constant */
5238static int
5239intel_e11 ()
5240{
5241 /* e11 ( expr ) */
5242 if (cur_token.code == '(')
5243 {
5244 intel_match_token ('(');
5245 strcat (intel_parser.disp, "(");
5246
5247 if (intel_expr () && intel_match_token (')'))
5248 {
5249 strcat (intel_parser.disp, ")");
5250 return 1;
5251 }
5252 else
5253 return 0;
5254 }
5255
5256 /* e11 [ expr ] */
5257 else if (cur_token.code == '[')
5258 {
5259 intel_match_token ('[');
21d6c4af
DN
5260
5261 /* Mark as a memory operand only if it's not already known to be an
5262 offset expression. If it's an offset expression, we need to keep
5263 the brace in. */
5264 if (intel_parser.op_modifier != OFFSET_FLAT)
5265 intel_parser.is_mem = 1;
5266 else
5267 strcat (intel_parser.disp, "[");
4a1805b1 5268
64a0c779
DN
5269 /* Operands for jump/call inside brackets denote absolute addresses. */
5270 if (current_templates->start->opcode_modifier & Jump
5271 || current_templates->start->opcode_modifier & JumpDword
5272 || current_templates->start->opcode_modifier & JumpByte
5273 || current_templates->start->opcode_modifier & JumpInterSegment)
5274 i.types[this_operand] |= JumpAbsolute;
5275
5276 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5277 if (*intel_parser.disp != '\0'
5278 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5279 strcat (intel_parser.disp, "+");
5280
21d6c4af
DN
5281 if (intel_expr () && intel_match_token (']'))
5282 {
5283 /* Preserve brackets when the operand is an offset expression. */
5284 if (intel_parser.op_modifier == OFFSET_FLAT)
5285 strcat (intel_parser.disp, "]");
5286
5287 return 1;
5288 }
5289 else
5290 return 0;
64a0c779
DN
5291 }
5292
4a1805b1 5293 /* e11 BYTE
64a0c779
DN
5294 | WORD
5295 | DWORD
5296 | QWORD
5297 | XWORD */
5298 else if (cur_token.code == T_BYTE
5299 || cur_token.code == T_WORD
5300 || cur_token.code == T_DWORD
5301 || cur_token.code == T_QWORD
5302 || cur_token.code == T_XWORD)
5303 {
5304 intel_match_token (cur_token.code);
5305
5306 return 1;
5307 }
5308
5309 /* e11 $
5310 | . */
5311 else if (cur_token.code == '$' || cur_token.code == '.')
5312 {
5313 strcat (intel_parser.disp, cur_token.str);
5314 intel_match_token (cur_token.code);
21d6c4af
DN
5315
5316 /* Mark as a memory operand only if it's not already known to be an
5317 offset expression. */
5318 if (intel_parser.op_modifier != OFFSET_FLAT)
5319 intel_parser.is_mem = 1;
64a0c779
DN
5320
5321 return 1;
5322 }
5323
5324 /* e11 register */
5325 else if (cur_token.code == T_REG)
5326 {
5327 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5328
5329 intel_match_token (T_REG);
5330
5331 /* Check for segment change. */
5332 if (cur_token.code == ':')
5333 {
5334 if (reg->reg_type & (SReg2 | SReg3))
5335 {
5336 switch (reg->reg_num)
5337 {
5338 case 0:
5339 i.seg[i.mem_operands] = &es;
5340 break;
5341 case 1:
5342 i.seg[i.mem_operands] = &cs;
5343 break;
5344 case 2:
5345 i.seg[i.mem_operands] = &ss;
5346 break;
5347 case 3:
5348 i.seg[i.mem_operands] = &ds;
5349 break;
5350 case 4:
5351 i.seg[i.mem_operands] = &fs;
5352 break;
5353 case 5:
5354 i.seg[i.mem_operands] = &gs;
5355 break;
5356 }
5357 }
5358 else
5359 {
5360 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5361 return 0;
5362 }
5363 }
5364
5365 /* Not a segment register. Check for register scaling. */
5366 else if (cur_token.code == '*')
5367 {
5368 if (!intel_parser.is_mem)
5369 {
5370 as_bad (_("Register scaling only allowed in memory operands."));
5371 return 0;
5372 }
5373
4a1805b1 5374 /* What follows must be a valid scale. */
64a0c779
DN
5375 if (intel_match_token ('*')
5376 && strchr ("01248", *cur_token.str))
5377 {
5378 i.index_reg = reg;
5379 i.types[this_operand] |= BaseIndex;
5380
5381 /* Set the scale after setting the register (otherwise,
5382 i386_scale will complain) */
5383 i386_scale (cur_token.str);
5384 intel_match_token (T_CONST);
5385 }
5386 else
5387 {
5388 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5389 cur_token.str);
5390 return 0;
5391 }
5392 }
5393
5394 /* No scaling. If this is a memory operand, the register is either a
5395 base register (first occurrence) or an index register (second
5396 occurrence). */
5397 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5398 {
5399 if (i.base_reg && i.index_reg)
5400 {
5401 as_bad (_("Too many register references in memory operand.\n"));
5402 return 0;
5403 }
5404
5405 if (i.base_reg == NULL)
5406 i.base_reg = reg;
5407 else
5408 i.index_reg = reg;
5409
5410 i.types[this_operand] |= BaseIndex;
5411 }
5412
5413 /* Offset modifier. Add the register to the displacement string to be
5414 parsed as an immediate expression after we're done. */
5415 else if (intel_parser.op_modifier == OFFSET_FLAT)
5416 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5417
64a0c779
DN
5418 /* It's neither base nor index nor offset. */
5419 else
5420 {
5421 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5422 i.op[this_operand].regs = reg;
5423 i.reg_operands++;
5424 }
5425
5426 /* Since registers are not part of the displacement string (except
5427 when we're parsing offset operands), we may need to remove any
5428 preceding '+' from the displacement string. */
5429 if (*intel_parser.disp != '\0'
5430 && intel_parser.op_modifier != OFFSET_FLAT)
5431 {
5432 char *s = intel_parser.disp;
5433 s += strlen (s) - 1;
5434 if (*s == '+')
5435 *s = '\0';
5436 }
5437
5438 return 1;
5439 }
4a1805b1 5440
64a0c779
DN
5441 /* e11 id */
5442 else if (cur_token.code == T_ID)
5443 {
5444 /* Add the identifier to the displacement string. */
5445 strcat (intel_parser.disp, cur_token.str);
5446 intel_match_token (T_ID);
5447
5448 /* The identifier represents a memory reference only if it's not
5449 preceded by an offset modifier. */
21d6c4af 5450 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5451 intel_parser.is_mem = 1;
5452
5453 return 1;
5454 }
5455
5456 /* e11 constant */
5457 else if (cur_token.code == T_CONST
5458 || cur_token.code == '-'
5459 || cur_token.code == '+')
5460 {
5461 char *save_str;
5462
5463 /* Allow constants that start with `+' or `-'. */
5464 if (cur_token.code == '-' || cur_token.code == '+')
5465 {
5466 strcat (intel_parser.disp, cur_token.str);
5467 intel_match_token (cur_token.code);
5468 if (cur_token.code != T_CONST)
5469 {
5470 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5471 cur_token.str);
5472 return 0;
5473 }
5474 }
5475
5476 save_str = (char *)malloc (strlen (cur_token.str) + 1);
5477 if (save_str == NULL)
bc805888 5478 abort ();
64a0c779
DN
5479 strcpy (save_str, cur_token.str);
5480
5481 /* Get the next token to check for register scaling. */
5482 intel_match_token (cur_token.code);
5483
5484 /* Check if this constant is a scaling factor for an index register. */
5485 if (cur_token.code == '*')
5486 {
5487 if (intel_match_token ('*') && cur_token.code == T_REG)
5488 {
5489 if (!intel_parser.is_mem)
5490 {
5491 as_bad (_("Register scaling only allowed in memory operands."));
5492 return 0;
5493 }
5494
4a1805b1 5495 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5496 a valid scale. */
5497 if (strchr ("01248", *save_str))
5498 {
5499 i.index_reg = cur_token.reg;
5500 i.types[this_operand] |= BaseIndex;
5501
5502 /* Set the scale after setting the register (otherwise,
5503 i386_scale will complain) */
5504 i386_scale (save_str);
5505 intel_match_token (T_REG);
5506
5507 /* Since registers are not part of the displacement
5508 string, we may need to remove any preceding '+' from
5509 the displacement string. */
5510 if (*intel_parser.disp != '\0')
5511 {
5512 char *s = intel_parser.disp;
5513 s += strlen (s) - 1;
5514 if (*s == '+')
5515 *s = '\0';
5516 }
5517
5518 free (save_str);
5519
5520 return 1;
5521 }
5522 else
5523 return 0;
5524 }
5525
5526 /* The constant was not used for register scaling. Since we have
5527 already consumed the token following `*' we now need to put it
5528 back in the stream. */
5529 else
5530 intel_putback_token ();
5531 }
5532
5533 /* Add the constant to the displacement string. */
5534 strcat (intel_parser.disp, save_str);
5535 free (save_str);
5536
5537 return 1;
5538 }
5539
64a0c779
DN
5540 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5541 return 0;
5542}
5543
64a0c779
DN
5544/* Match the given token against cur_token. If they match, read the next
5545 token from the operand string. */
5546static int
5547intel_match_token (code)
5548 int code;
5549{
5550 if (cur_token.code == code)
5551 {
5552 intel_get_token ();
5553 return 1;
5554 }
5555 else
5556 {
5557 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5558 return 0;
5559 }
5560}
5561
64a0c779
DN
5562/* Read a new token from intel_parser.op_string and store it in cur_token. */
5563static void
5564intel_get_token ()
5565{
5566 char *end_op;
5567 const reg_entry *reg;
5568 struct intel_token new_token;
5569
5570 new_token.code = T_NIL;
5571 new_token.reg = NULL;
5572 new_token.str = NULL;
5573
4a1805b1 5574 /* Free the memory allocated to the previous token and move
64a0c779
DN
5575 cur_token to prev_token. */
5576 if (prev_token.str)
5577 free (prev_token.str);
5578
5579 prev_token = cur_token;
5580
5581 /* Skip whitespace. */
5582 while (is_space_char (*intel_parser.op_string))
5583 intel_parser.op_string++;
5584
5585 /* Return an empty token if we find nothing else on the line. */
5586 if (*intel_parser.op_string == '\0')
5587 {
5588 cur_token = new_token;
5589 return;
5590 }
5591
5592 /* The new token cannot be larger than the remainder of the operand
5593 string. */
5594 new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
5595 if (new_token.str == NULL)
bc805888 5596 abort ();
64a0c779
DN
5597 new_token.str[0] = '\0';
5598
5599 if (strchr ("0123456789", *intel_parser.op_string))
5600 {
5601 char *p = new_token.str;
5602 char *q = intel_parser.op_string;
5603 new_token.code = T_CONST;
5604
5605 /* Allow any kind of identifier char to encompass floating point and
5606 hexadecimal numbers. */
5607 while (is_identifier_char (*q))
5608 *p++ = *q++;
5609 *p = '\0';
5610
5611 /* Recognize special symbol names [0-9][bf]. */
5612 if (strlen (intel_parser.op_string) == 2
4a1805b1 5613 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5614 || intel_parser.op_string[1] == 'f'))
5615 new_token.code = T_ID;
5616 }
5617
5618 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5619 {
5620 new_token.code = *intel_parser.op_string;
5621 new_token.str[0] = *intel_parser.op_string;
5622 new_token.str[1] = '\0';
5623 }
5624
5625 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5626 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5627 {
5628 new_token.code = T_REG;
5629 new_token.reg = reg;
5630
5631 if (*intel_parser.op_string == REGISTER_PREFIX)
5632 {
5633 new_token.str[0] = REGISTER_PREFIX;
5634 new_token.str[1] = '\0';
5635 }
5636
5637 strcat (new_token.str, reg->reg_name);
5638 }
5639
5640 else if (is_identifier_char (*intel_parser.op_string))
5641 {
5642 char *p = new_token.str;
5643 char *q = intel_parser.op_string;
5644
5645 /* A '.' or '$' followed by an identifier char is an identifier.
5646 Otherwise, it's operator '.' followed by an expression. */
5647 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5648 {
5649 new_token.code = *q;
5650 new_token.str[0] = *q;
5651 new_token.str[1] = '\0';
5652 }
5653 else
5654 {
5655 while (is_identifier_char (*q) || *q == '@')
5656 *p++ = *q++;
5657 *p = '\0';
5658
5659 if (strcasecmp (new_token.str, "BYTE") == 0)
5660 new_token.code = T_BYTE;
5661
5662 else if (strcasecmp (new_token.str, "WORD") == 0)
5663 new_token.code = T_WORD;
5664
5665 else if (strcasecmp (new_token.str, "DWORD") == 0)
5666 new_token.code = T_DWORD;
5667
5668 else if (strcasecmp (new_token.str, "QWORD") == 0)
5669 new_token.code = T_QWORD;
5670
5671 else if (strcasecmp (new_token.str, "XWORD") == 0)
5672 new_token.code = T_XWORD;
5673
5674 else if (strcasecmp (new_token.str, "PTR") == 0)
5675 new_token.code = T_PTR;
5676
5677 else if (strcasecmp (new_token.str, "SHORT") == 0)
5678 new_token.code = T_SHORT;
5679
5680 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5681 {
5682 new_token.code = T_OFFSET;
5683
5684 /* ??? This is not mentioned in the MASM grammar but gcc
5685 makes use of it with -mintel-syntax. OFFSET may be
5686 followed by FLAT: */
5687 if (strncasecmp (q, " FLAT:", 6) == 0)
5688 strcat (new_token.str, " FLAT:");
5689 }
5690
5691 /* ??? This is not mentioned in the MASM grammar. */
5692 else if (strcasecmp (new_token.str, "FLAT") == 0)
5693 new_token.code = T_OFFSET;
5694
5695 else
5696 new_token.code = T_ID;
5697 }
5698 }
5699
5700 else
5701 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5702
5703 intel_parser.op_string += strlen (new_token.str);
5704 cur_token = new_token;
5705}
5706
64a0c779
DN
5707/* Put cur_token back into the token stream and make cur_token point to
5708 prev_token. */
5709static void
5710intel_putback_token ()
5711{
5712 intel_parser.op_string -= strlen (cur_token.str);
5713 free (cur_token.str);
5714 cur_token = prev_token;
4a1805b1 5715
64a0c779
DN
5716 /* Forget prev_token. */
5717 prev_token.code = T_NIL;
5718 prev_token.reg = NULL;
5719 prev_token.str = NULL;
5720}
This page took 0.364057 seconds and 4 git commands to generate.