x86/Intel: extend MOVDIRI testing
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
252b5132 371 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 372 addressing modes of this insn are encoded. */
252b5132 373 modrm_byte rm;
3e73aa7c 374 rex_byte rex;
43234a1e 375 rex_byte vrex;
252b5132 376 sib_byte sib;
c0f3af97 377 vex_prefix vex;
b6169b20 378
43234a1e
L
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
86fa6981
L
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
64c49ab3
JB
396 dir_encoding_store,
397 dir_encoding_swap
86fa6981 398 } dir_encoding;
891edac4 399
a501d77e
L
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
f8a5c266 407
6b6b6807
L
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
b6f8c7c4
L
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
86fa6981
L
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
d5de92cf
L
423 /* REP prefix. */
424 const char *rep_prefix;
425
165de32a
L
426 /* HLE prefix. */
427 const char *hle_prefix;
42164a71 428
7e8b059b
L
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
04ef582a
L
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
891edac4 435 /* Error message. */
a65babc9 436 enum i386_error error;
252b5132
RH
437 };
438
439typedef struct _i386_insn i386_insn;
440
43234a1e
L
441/* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443struct RC_name
444{
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448};
449
450static const struct RC_name RC_NamesTable[] =
451{
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457};
458
252b5132
RH
459/* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 461const char extra_symbol_chars[] = "*%-([{}"
252b5132 462#ifdef LEX_AT
32137342
NC
463 "@"
464#endif
465#ifdef LEX_QM
466 "?"
252b5132 467#endif
32137342 468 ;
252b5132 469
29b0f896
AM
470#if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 472 && !defined (TE_GNU) \
29b0f896 473 && !defined (TE_LINUX) \
8d63c93e 474 && !defined (TE_NACL) \
29b0f896 475 && !defined (TE_FreeBSD) \
5b806d27 476 && !defined (TE_DragonFly) \
29b0f896 477 && !defined (TE_NetBSD)))
252b5132 478/* This array holds the chars that always start a comment. If the
b3b91714
AM
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481const char *i386_comment_chars = "#/";
482#define SVR4_COMMENT_CHARS 1
252b5132 483#define PREFIX_SEPARATOR '\\'
252b5132 484
b3b91714
AM
485#else
486const char *i386_comment_chars = "#";
487#define PREFIX_SEPARATOR '/'
488#endif
489
252b5132
RH
490/* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 494 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
252b5132 497 '/' isn't otherwise defined. */
b3b91714 498const char line_comment_chars[] = "#/";
252b5132 499
63a0b638 500const char line_separator_chars[] = ";";
252b5132 501
ce8a8b2f
AM
502/* Chars that can be used to separate mant from exp in floating point
503 nums. */
252b5132
RH
504const char EXP_CHARS[] = "eE";
505
ce8a8b2f
AM
506/* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
252b5132
RH
509const char FLT_CHARS[] = "fFdDxX";
510
ce8a8b2f 511/* Tables for lexical analysis. */
252b5132
RH
512static char mnemonic_chars[256];
513static char register_chars[256];
514static char operand_chars[256];
515static char identifier_chars[256];
516static char digit_chars[256];
517
ce8a8b2f 518/* Lexical macros. */
252b5132
RH
519#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520#define is_operand_char(x) (operand_chars[(unsigned char) x])
521#define is_register_char(x) (register_chars[(unsigned char) x])
522#define is_space_char(x) ((x) == ' ')
523#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524#define is_digit_char(x) (digit_chars[(unsigned char) x])
525
0234cb7c 526/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
527static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529/* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
47926f60 532 assembler instruction). */
252b5132 533static char save_stack[32];
ce8a8b2f 534static char *save_stack_p;
252b5132
RH
535#define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537#define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
47926f60 540/* The instruction we're assembling. */
252b5132
RH
541static i386_insn i;
542
543/* Possible templates for current insn. */
544static const templates *current_templates;
545
31b2323c
L
546/* Per instruction expressionS buffers: max displacements & immediates. */
547static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 549
47926f60 550/* Current operand we are working on. */
ee86248c 551static int this_operand = -1;
252b5132 552
3e73aa7c
JH
553/* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561static enum flag_code flag_code;
4fa24527 562static unsigned int object_64bit;
862be3fb 563static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
564static int use_rela_relocations = 0;
565
7af8ed2d
NC
566#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
351f65ca
L
570/* The ELF ABI to use. */
571enum x86_elf_abi
572{
573 I386_ABI,
7f56bc95
L
574 X86_64_ABI,
575 X86_64_X32_ABI
351f65ca
L
576};
577
578static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 579#endif
351f65ca 580
167ad85b
TG
581#if defined (TE_PE) || defined (TE_PEP)
582/* Use big object file format. */
583static int use_big_obj = 0;
584#endif
585
8dcea932
L
586#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587/* 1 if generating code for a shared library. */
588static int shared = 0;
589#endif
590
47926f60
KH
591/* 1 for intel syntax,
592 0 if att syntax. */
593static int intel_syntax = 0;
252b5132 594
e89c5eaa
L
595/* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597static int intel64;
598
1efbbeb4
L
599/* 1 for intel mnemonic,
600 0 if att mnemonic. */
601static int intel_mnemonic = !SYSV386_COMPAT;
602
a60de03c
JB
603/* 1 if pseudo registers are permitted. */
604static int allow_pseudo_reg = 0;
605
47926f60
KH
606/* 1 if register prefix % not required. */
607static int allow_naked_reg = 0;
252b5132 608
33eaf5de 609/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612static int add_bnd_prefix = 0;
613
ba104c83 614/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
615static int allow_index_reg = 0;
616
d022bddd
IT
617/* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619static int omit_lock_prefix = 0;
620
e4e00185
AS
621/* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623static int avoid_fence = 0;
624
0cb4071e
L
625/* 1 if the assembler should generate relax relocations. */
626
627static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
7bab8ab5 630static enum check_kind
daf50ae7 631 {
7bab8ab5
JB
632 check_none = 0,
633 check_warning,
634 check_error
daf50ae7 635 }
7bab8ab5 636sse_check, operand_check = check_warning;
daf50ae7 637
b6f8c7c4
L
638/* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643static int optimize = 0;
644
645/* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652static int optimize_for_space = 0;
653
2ca3ace5
L
654/* Register prefix used for error message. */
655static const char *register_prefix = "%";
656
47926f60
KH
657/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660static char stackop_size = '\0';
eecb386c 661
12b55ccc
L
662/* Non-zero to optimize code alignment. */
663int optimize_align_code = 1;
664
47926f60
KH
665/* Non-zero to quieten some warnings. */
666static int quiet_warnings = 0;
a38cf1db 667
47926f60
KH
668/* CPU name. */
669static const char *cpu_arch_name = NULL;
6305a203 670static char *cpu_sub_arch_name = NULL;
a38cf1db 671
47926f60 672/* CPU feature flags. */
40fb9820
L
673static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
ccc9c027
L
675/* If we have selected a cpu we are generating instructions for. */
676static int cpu_arch_tune_set = 0;
677
9103f4f4 678/* Cpu we are generating instructions for. */
fbf3f584 679enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
680
681/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 682static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 683
ccc9c027 684/* CPU instruction set architecture used. */
fbf3f584 685enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 686
9103f4f4 687/* CPU feature flags of instruction set architecture used. */
fbf3f584 688i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 689
fddf5b5b
AM
690/* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692static unsigned int no_cond_jump_promotion = 0;
693
c0f3af97
L
694/* Encode SSE instructions with VEX prefix. */
695static unsigned int sse2avx;
696
539f890d
L
697/* Encode scalar AVX instructions with specific vector length. */
698static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
03751133
L
704/* Encode VEX WIG instructions with specific vex.w. */
705static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
43234a1e
L
711/* Encode scalar EVEX LIG instructions with specific vector length. */
712static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719/* Encode EVEX WIG instructions with specific evex.w. */
720static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
d3d3c6db
IT
726/* Value to encode in EVEX RC bits, for SAE-only instructions. */
727static enum rc_type evexrcig = rne;
728
29b0f896 729/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 730static symbolS *GOT_symbol;
29b0f896 731
a4447b93
RH
732/* The dwarf2 return column, adjusted for 32 or 64 bit. */
733unsigned int x86_dwarf2_return_column;
734
735/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736int x86_cie_data_alignment;
737
252b5132 738/* Interface to relax_segment.
fddf5b5b
AM
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
252b5132 742
47926f60 743/* Types. */
93c2a809
AM
744#define UNCOND_JUMP 0
745#define COND_JUMP 1
746#define COND_JUMP86 2
fddf5b5b 747
47926f60 748/* Sizes. */
252b5132
RH
749#define CODE16 1
750#define SMALL 0
29b0f896 751#define SMALL16 (SMALL | CODE16)
252b5132 752#define BIG 2
29b0f896 753#define BIG16 (BIG | CODE16)
252b5132
RH
754
755#ifndef INLINE
756#ifdef __GNUC__
757#define INLINE __inline__
758#else
759#define INLINE
760#endif
761#endif
762
fddf5b5b
AM
763#define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765#define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767#define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
769
770/* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778const relax_typeS md_relax_table[] =
779{
24eab124
AM
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
93c2a809 783 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 784 4) which index into the table to try if we can't fit into this one. */
252b5132 785
fddf5b5b 786 /* UNCOND_JUMP states. */
93c2a809
AM
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
252b5132 791 {0, 0, 4, 0},
93c2a809
AM
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
794 {0, 0, 2, 0},
795
93c2a809
AM
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
fddf5b5b 802 /* word conditionals add 3 bytes to frag:
93c2a809
AM
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
252b5132
RH
815};
816
9103f4f4
L
817static const arch_entry cpu_arch[] =
818{
89507696
JB
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
8a2c8fef 821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 822 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 824 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 826 CPU_NONE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 828 CPU_I186_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 830 CPU_I286_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 832 CPU_I386_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 834 CPU_I486_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 836 CPU_I586_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_I686_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 840 CPU_I586_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 842 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 844 CPU_P2_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 846 CPU_P3_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 848 CPU_P4_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 852 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 854 CPU_CORE_FLAGS, 1 },
8a2c8fef 855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 856 CPU_CORE_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 858 CPU_CORE2_FLAGS, 1 },
8a2c8fef 859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 860 CPU_CORE2_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 862 CPU_COREI7_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 864 CPU_L1OM_FLAGS, 0 },
7a9068fe 865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 866 CPU_K1OM_FLAGS, 0 },
81486035 867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 868 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 870 CPU_K6_FLAGS, 0 },
8a2c8fef 871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 872 CPU_K6_2_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 874 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 876 CPU_K8_FLAGS, 1 },
8a2c8fef 877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 878 CPU_K8_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 880 CPU_K8_FLAGS, 0 },
8a2c8fef 881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 882 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 886 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 888 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 890 CPU_BDVER4_FLAGS, 0 },
029f3522 891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 892 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
7b458c12 895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 896 CPU_BTVER1_FLAGS, 0 },
7b458c12 897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 898 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_8087_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_287_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_387_FLAGS, 0 },
1848e567
L
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
d871f3f4
L
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_MMX_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSE_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE2_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE3_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX_FLAGS, 0 },
6c30d220 929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX2_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512F_FLAGS, 0 },
43234a1e 933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512CD_FLAGS, 0 },
43234a1e 935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512ER_FLAGS, 0 },
43234a1e 937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_VMX_FLAGS, 0 },
8729a6f6 947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_SMX_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_AES_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_F16C_FLAGS, 0 },
6c30d220 971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_BMI2_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_FMA_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_FMA4_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_XOP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_LWP_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_MOVBE_FLAGS, 0 },
60aa667e 983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_CX16_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_EPT_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_LZCNT_FLAGS, 0 },
42164a71 989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_HLE_FLAGS, 0 },
42164a71 991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_RTM_FLAGS, 0 },
6c30d220 993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_CLFLUSH_FLAGS, 0 },
22109423 997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_NOP_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_SVME_FLAGS, 1 },
8a2c8fef 1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_SVME_FLAGS, 0 },
8a2c8fef 1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ABM_FLAGS, 0 },
87973e9f 1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_BMI_FLAGS, 0 },
2a2a0f38 1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_TBM_FLAGS, 0 },
e2e1fcde 1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_ADX_FLAGS, 0 },
e2e1fcde 1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_SMAP_FLAGS, 0 },
7e8b059b 1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_MPX_FLAGS, 0 },
a0046408 1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SHA_FLAGS, 0 },
963f3586 1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_SE1_FLAGS, 0 },
c5e7287a 1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_CLZERO_FLAGS, 0 },
9916071f 1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_MWAITX_FLAGS, 0 },
8eab4136 1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_OSPKE_FLAGS, 0 },
8bc52696 1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1099};
1100
1101static const noarch_entry cpu_noarch[] =
1102{
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1141};
1142
704209c0 1143#ifdef I386COFF
a6c24e68
NC
1144/* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147static symbolS *
1148pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149{
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
7ab9ffdd 1154 if (needs_align
a6c24e68
NC
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
7ab9ffdd 1158
a6c24e68
NC
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176}
1177
704209c0 1178static void
a6c24e68
NC
1179pe_lcomm (int needs_align)
1180{
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182}
704209c0 1183#endif
a6c24e68 1184
29b0f896
AM
1185const pseudo_typeS md_pseudo_table[] =
1186{
1187#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189#else
1190 {"align", s_align_ptwo, 0},
1191#endif
1192 {"arch", set_cpu_arch, 0},
1193#ifndef I386COFF
1194 {"bss", s_bss, 0},
a6c24e68
NC
1195#else
1196 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1197#endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
d182319b 1202 {"slong", signed_cons, 4},
29b0f896
AM
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1208#ifdef BFD64
29b0f896 1209 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1210#endif
29b0f896
AM
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
3b22753a
L
1219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
07a53e5c 1221#else
68d20676 1222 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1225#endif
6482c264
NC
1226#ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228#endif
29b0f896
AM
1229 {0, 0, 0}
1230};
1231
1232/* For interface with expression (). */
1233extern char *input_line_pointer;
1234
1235/* Hash table for instruction mnemonic lookup. */
1236static struct hash_control *op_hash;
1237
1238/* Hash table for register lookup. */
1239static struct hash_control *reg_hash;
1240\f
ce8a8b2f
AM
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
62a02d25
L
1244static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1252static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1256static const unsigned char f16_3[] =
3ae729d5 1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1258static const unsigned char f16_4[] =
3ae729d5
L
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1266/* 32-bit NOPs patterns. */
1267static const unsigned char *const f32_patt[] = {
3ae729d5 1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1269};
1270/* 16-bit NOPs patterns. */
1271static const unsigned char *const f16_patt[] = {
3ae729d5 1272 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1273};
1274/* nopl (%[re]ax) */
1275static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277/* nopl 0(%[re]ax) */
1278static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280/* nopl 0(%[re]ax,%[re]ax,1) */
1281static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283/* nopw 0(%[re]ax,%[re]ax,1) */
1284static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286/* nopl 0L(%[re]ax) */
1287static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289/* nopl 0L(%[re]ax,%[re]ax,1) */
1290static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292/* nopw 0L(%[re]ax,%[re]ax,1) */
1293static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1298/* data16 nopw %cs:0L(%eax,%eax,1) */
1299static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1301/* 32-bit and 64-bit NOPs patterns. */
1302static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1304 alt_9, alt_10, alt_11
62a02d25
L
1305};
1306
1307/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310static void
1311i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314{
3ae729d5
L
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
3076e594
NC
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
62a02d25 1331 {
3ae729d5
L
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
62a02d25
L
1334 }
1335
3ae729d5
L
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
62a02d25
L
1357}
1358
3ae729d5
L
1359static INLINE int
1360fits_in_imm7 (offsetT num)
1361{
1362 return (num & 0x7f) == num;
1363}
1364
1365static INLINE int
1366fits_in_imm31 (offsetT num)
1367{
1368 return (num & 0x7fffffff) == num;
1369}
62a02d25
L
1370
1371/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374void
3ae729d5 1375i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1376{
3ae729d5 1377 const unsigned char *const *patt = NULL;
62a02d25 1378 int max_single_nop_size;
3ae729d5
L
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
62a02d25 1381
3ae729d5 1382 switch (fragP->fr_type)
62a02d25 1383 {
3ae729d5
L
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
62a02d25
L
1388 return;
1389 }
1390
ccc9c027
L
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
4eed87de 1393
76bc74dc
L
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
22109423 1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1400 be used.
ccc9c027
L
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
3ae729d5
L
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
252b5132 1411 }
33fef721 1412 else
ccc9c027 1413 {
fbf3f584 1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1423 patt = alt_patt;
ccc9c027
L
1424 else
1425 patt = f32_patt;
1426 break;
ccc9c027
L
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
ef05d495 1429 case PROCESSOR_CORE:
76bc74dc 1430 case PROCESSOR_CORE2:
bd5295b2 1431 case PROCESSOR_COREI7:
3632d14b 1432 case PROCESSOR_L1OM:
7a9068fe 1433 case PROCESSOR_K1OM:
76bc74dc 1434 case PROCESSOR_GENERIC64:
ccc9c027
L
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
4eed87de 1438 case PROCESSOR_AMDFAM10:
8aedb9fe 1439 case PROCESSOR_BD:
029f3522 1440 case PROCESSOR_ZNVER:
7b458c12 1441 case PROCESSOR_BT:
80b8656c 1442 patt = alt_patt;
ccc9c027 1443 break;
76bc74dc 1444 case PROCESSOR_I386:
ccc9c027
L
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
2dde1948 1447 case PROCESSOR_PENTIUMPRO:
81486035 1448 case PROCESSOR_IAMCU:
ccc9c027
L
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
4eed87de 1452 }
ccc9c027
L
1453 }
1454 else
1455 {
fbf3f584 1456 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1457 {
1458 case PROCESSOR_UNKNOWN:
e6a14101 1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
76bc74dc 1464 case PROCESSOR_I386:
ccc9c027
L
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
81486035 1467 case PROCESSOR_IAMCU:
ccc9c027
L
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
4eed87de 1471 case PROCESSOR_AMDFAM10:
8aedb9fe 1472 case PROCESSOR_BD:
029f3522 1473 case PROCESSOR_ZNVER:
7b458c12 1474 case PROCESSOR_BT:
ccc9c027
L
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1479 patt = alt_patt;
ccc9c027
L
1480 else
1481 patt = f32_patt;
1482 break;
76bc74dc
L
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
ef05d495 1487 case PROCESSOR_CORE2:
bd5295b2 1488 case PROCESSOR_COREI7:
3632d14b 1489 case PROCESSOR_L1OM:
7a9068fe 1490 case PROCESSOR_K1OM:
22109423 1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1492 patt = alt_patt;
ccc9c027
L
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
80b8656c 1497 patt = alt_patt;
ccc9c027 1498 break;
4eed87de 1499 }
ccc9c027
L
1500 }
1501
76bc74dc
L
1502 if (patt == f32_patt)
1503 {
3ae729d5
L
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
76bc74dc
L
1507 }
1508 else
1509 {
3ae729d5
L
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
76bc74dc 1572 }
ccc9c027 1573 }
3ae729d5
L
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
252b5132
RH
1577}
1578
c6fb90c8 1579static INLINE int
0dfbf9d7 1580operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1581{
0dfbf9d7 1582 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1583 {
1584 case 3:
0dfbf9d7 1585 if (x->array[2])
c6fb90c8 1586 return 0;
1a0670f3 1587 /* Fall through. */
c6fb90c8 1588 case 2:
0dfbf9d7 1589 if (x->array[1])
c6fb90c8 1590 return 0;
1a0670f3 1591 /* Fall through. */
c6fb90c8 1592 case 1:
0dfbf9d7 1593 return !x->array[0];
c6fb90c8
L
1594 default:
1595 abort ();
1596 }
40fb9820
L
1597}
1598
c6fb90c8 1599static INLINE void
0dfbf9d7 1600operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1601{
0dfbf9d7 1602 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1603 {
1604 case 3:
0dfbf9d7 1605 x->array[2] = v;
1a0670f3 1606 /* Fall through. */
c6fb90c8 1607 case 2:
0dfbf9d7 1608 x->array[1] = v;
1a0670f3 1609 /* Fall through. */
c6fb90c8 1610 case 1:
0dfbf9d7 1611 x->array[0] = v;
1a0670f3 1612 /* Fall through. */
c6fb90c8
L
1613 break;
1614 default:
1615 abort ();
1616 }
bab6aec1
JB
1617
1618 x->bitfield.class = ClassNone;
75e5731b 1619 x->bitfield.instance = InstanceNone;
c6fb90c8 1620}
40fb9820 1621
c6fb90c8 1622static INLINE int
0dfbf9d7
L
1623operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
c6fb90c8 1625{
0dfbf9d7 1626 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1627 {
1628 case 3:
0dfbf9d7 1629 if (x->array[2] != y->array[2])
c6fb90c8 1630 return 0;
1a0670f3 1631 /* Fall through. */
c6fb90c8 1632 case 2:
0dfbf9d7 1633 if (x->array[1] != y->array[1])
c6fb90c8 1634 return 0;
1a0670f3 1635 /* Fall through. */
c6fb90c8 1636 case 1:
0dfbf9d7 1637 return x->array[0] == y->array[0];
c6fb90c8
L
1638 break;
1639 default:
1640 abort ();
1641 }
1642}
40fb9820 1643
0dfbf9d7
L
1644static INLINE int
1645cpu_flags_all_zero (const union i386_cpu_flags *x)
1646{
1647 switch (ARRAY_SIZE(x->array))
1648 {
53467f57
IT
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
0dfbf9d7
L
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1a0670f3 1656 /* Fall through. */
0dfbf9d7
L
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1a0670f3 1660 /* Fall through. */
0dfbf9d7
L
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666}
1667
0dfbf9d7
L
1668static INLINE int
1669cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671{
1672 switch (ARRAY_SIZE(x->array))
1673 {
53467f57
IT
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
0dfbf9d7
L
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1a0670f3 1681 /* Fall through. */
0dfbf9d7
L
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1a0670f3 1685 /* Fall through. */
0dfbf9d7
L
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692}
c6fb90c8
L
1693
1694static INLINE int
1695cpu_flags_check_cpu64 (i386_cpu_flags f)
1696{
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1699}
1700
c6fb90c8
L
1701static INLINE i386_cpu_flags
1702cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1703{
c6fb90c8
L
1704 switch (ARRAY_SIZE (x.array))
1705 {
53467f57
IT
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
c6fb90c8
L
1709 case 3:
1710 x.array [2] &= y.array [2];
1a0670f3 1711 /* Fall through. */
c6fb90c8
L
1712 case 2:
1713 x.array [1] &= y.array [1];
1a0670f3 1714 /* Fall through. */
c6fb90c8
L
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722}
40fb9820 1723
c6fb90c8
L
1724static INLINE i386_cpu_flags
1725cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1726{
c6fb90c8 1727 switch (ARRAY_SIZE (x.array))
40fb9820 1728 {
53467f57
IT
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
c6fb90c8
L
1732 case 3:
1733 x.array [2] |= y.array [2];
1a0670f3 1734 /* Fall through. */
c6fb90c8
L
1735 case 2:
1736 x.array [1] |= y.array [1];
1a0670f3 1737 /* Fall through. */
c6fb90c8
L
1738 case 1:
1739 x.array [0] |= y.array [0];
40fb9820
L
1740 break;
1741 default:
1742 abort ();
1743 }
40fb9820
L
1744 return x;
1745}
1746
309d3373
JB
1747static INLINE i386_cpu_flags
1748cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749{
1750 switch (ARRAY_SIZE (x.array))
1751 {
53467f57
IT
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
309d3373
JB
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1a0670f3 1757 /* Fall through. */
309d3373
JB
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1a0670f3 1760 /* Fall through. */
309d3373
JB
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768}
1769
c0f3af97
L
1770#define CPU_FLAGS_ARCH_MATCH 0x1
1771#define CPU_FLAGS_64BIT_MATCH 0x2
1772
c0f3af97 1773#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1775
1776/* Return CPU flags match bits. */
3629bb00 1777
40fb9820 1778static int
d3ce72d0 1779cpu_flags_match (const insn_template *t)
40fb9820 1780{
c0f3af97
L
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
0dfbf9d7 1787 if (cpu_flags_all_zero (&x))
c0f3af97
L
1788 {
1789 /* This instruction is available on all archs. */
db12e14e 1790 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1791 }
3629bb00
L
1792 else
1793 {
c0f3af97 1794 /* This instruction is available only on some archs. */
3629bb00
L
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
ab592e75
JB
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
3629bb00 1802 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
a5ff0eb2
L
1805 if (x.bitfield.cpuavx)
1806 {
929f69fa 1807 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1814 }
929f69fa
JB
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
a5ff0eb2 1824 else
db12e14e 1825 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1826 }
3629bb00 1827 }
c0f3af97 1828 return match;
40fb9820
L
1829}
1830
c6fb90c8
L
1831static INLINE i386_operand_type
1832operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1833{
bab6aec1
JB
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
75e5731b
JB
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
bab6aec1 1838
c6fb90c8
L
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1a0670f3 1843 /* Fall through. */
c6fb90c8
L
1844 case 2:
1845 x.array [1] &= y.array [1];
1a0670f3 1846 /* Fall through. */
c6fb90c8
L
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
40fb9820
L
1854}
1855
73053c1f
JB
1856static INLINE i386_operand_type
1857operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858{
bab6aec1 1859 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1860 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1861
73053c1f
JB
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877}
1878
c6fb90c8
L
1879static INLINE i386_operand_type
1880operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1881{
bab6aec1
JB
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1888
c6fb90c8 1889 switch (ARRAY_SIZE (x.array))
40fb9820 1890 {
c6fb90c8
L
1891 case 3:
1892 x.array [2] |= y.array [2];
1a0670f3 1893 /* Fall through. */
c6fb90c8
L
1894 case 2:
1895 x.array [1] |= y.array [1];
1a0670f3 1896 /* Fall through. */
c6fb90c8
L
1897 case 1:
1898 x.array [0] |= y.array [0];
40fb9820
L
1899 break;
1900 default:
1901 abort ();
1902 }
c6fb90c8
L
1903 return x;
1904}
40fb9820 1905
c6fb90c8
L
1906static INLINE i386_operand_type
1907operand_type_xor (i386_operand_type x, i386_operand_type y)
1908{
bab6aec1 1909 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1910 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1911
c6fb90c8
L
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1a0670f3 1916 /* Fall through. */
c6fb90c8
L
1917 case 2:
1918 x.array [1] ^= y.array [1];
1a0670f3 1919 /* Fall through. */
c6fb90c8
L
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
40fb9820
L
1926 return x;
1927}
1928
40fb9820
L
1929static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
1933static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 1935static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1936static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1937static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947enum operand_type
1948{
1949 reg,
40fb9820
L
1950 imm,
1951 disp,
1952 anymem
1953};
1954
c6fb90c8 1955static INLINE int
40fb9820
L
1956operand_type_check (i386_operand_type t, enum operand_type c)
1957{
1958 switch (c)
1959 {
1960 case reg:
bab6aec1 1961 return t.bitfield.class == Reg;
40fb9820 1962
40fb9820
L
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
2cfe26b6
AM
1989
1990 return 0;
40fb9820
L
1991}
1992
7a54636a
L
1993/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1995
1996static INLINE int
7a54636a
L
1997match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
5c07affc 1999{
3ac21baa
JB
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2010}
2011
dd40ce22
L
2012/* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2014
2015static INLINE int
dd40ce22
L
2016match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
1b54b8d7 2018{
3ac21baa
JB
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2025}
2026
7a54636a
L
2027/* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
5c07affc
L
2029
2030static INLINE int
dd40ce22
L
2031match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
5c07affc 2033{
7a54636a 2034 return (match_operand_size (t, wanted, given)
3ac21baa 2035 && !((i.types[given].bitfield.unspecified
af508cb9 2036 && !i.broadcast
3ac21baa
JB
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
d6793fa1
JB
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
3528c362 2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2045 && !t->opcode_modifier.broadcast
3ac21baa
JB
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
5c07affc
L
2054}
2055
3ac21baa
JB
2056/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
5c07affc 2060
3ac21baa
JB
2061#define MATCH_STRAIGHT 1
2062#define MATCH_REVERSE 2
2063
2064static INLINE unsigned int
d3ce72d0 2065operand_size_match (const insn_template *t)
5c07affc 2066{
3ac21baa 2067 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2068
0cfa3eb3 2069 /* Don't check non-absolute jump instructions. */
5c07affc 2070 if (t->opcode_modifier.jump
0cfa3eb3 2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
3528c362
JB
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
601e8564 2079 && t->opcode_modifier.anysize)
5c07affc
L
2080 continue;
2081
bab6aec1 2082 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2083 && !match_operand_size (t, j, j))
5c07affc
L
2084 {
2085 match = 0;
2086 break;
2087 }
2088
3528c362 2089 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2090 && !match_simd_size (t, j, j))
1b54b8d7
JB
2091 {
2092 match = 0;
2093 break;
2094 }
2095
75e5731b 2096 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2098 {
2099 match = 0;
2100 break;
2101 }
2102
c48dadc9 2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
3ac21baa 2110 if (!t->opcode_modifier.d)
891edac4
L
2111 {
2112mismatch:
3ac21baa
JB
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
891edac4 2116 }
5c07affc
L
2117
2118 /* Check reverse. */
f5eb1d70 2119 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2120
f5eb1d70 2121 for (j = 0; j < i.operands; j++)
5c07affc 2122 {
f5eb1d70
JB
2123 unsigned int given = i.operands - j - 1;
2124
bab6aec1 2125 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2126 && !match_operand_size (t, j, given))
891edac4 2127 goto mismatch;
5c07affc 2128
3528c362 2129 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2130 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2131 goto mismatch;
2132
75e5731b 2133 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2136 goto mismatch;
2137
f5eb1d70 2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2139 goto mismatch;
5c07affc
L
2140 }
2141
3ac21baa 2142 return match | MATCH_REVERSE;
5c07affc
L
2143}
2144
c6fb90c8 2145static INLINE int
40fb9820
L
2146operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148{
2149 i386_operand_type temp = overlap;
2150
7d5e4556 2151 temp.bitfield.unspecified = 0;
5c07affc
L
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
c0f3af97 2159 temp.bitfield.ymmword = 0;
43234a1e 2160 temp.bitfield.zmmword = 0;
0dfbf9d7 2161 if (operand_type_all_zero (&temp))
891edac4 2162 goto mismatch;
40fb9820 2163
6f2f06be 2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2165 return 1;
2166
2167mismatch:
a65babc9 2168 i.error = operand_type_mismatch;
891edac4 2169 return 0;
40fb9820
L
2170}
2171
7d5e4556 2172/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
40fb9820 2176
c6fb90c8 2177static INLINE int
dc821c5f 2178operand_type_register_match (i386_operand_type g0,
40fb9820 2179 i386_operand_type t0,
40fb9820
L
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182{
bab6aec1 2183 if (g0.bitfield.class != Reg
3528c362 2184 && g0.bitfield.class != RegSIMD
10c17abd
JB
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
3528c362 2187 || t0.bitfield.class != RegSIMD))
40fb9820
L
2188 return 1;
2189
bab6aec1 2190 if (g1.bitfield.class != Reg
3528c362 2191 && g1.bitfield.class != RegSIMD
10c17abd
JB
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
3528c362 2194 || t1.bitfield.class != RegSIMD))
40fb9820
L
2195 return 1;
2196
dc821c5f
JB
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2204 return 1;
2205
dc821c5f
JB
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2213 return 1;
2214
a65babc9 2215 i.error = register_type_mismatch;
891edac4
L
2216
2217 return 0;
40fb9820
L
2218}
2219
4c692bc7
JB
2220static INLINE unsigned int
2221register_number (const reg_entry *r)
2222{
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
200cbe0f
L
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
4c692bc7
JB
2231 return nr;
2232}
2233
252b5132 2234static INLINE unsigned int
40fb9820 2235mode_from_disp_size (i386_operand_type t)
252b5132 2236{
b5014f7a 2237 if (t.bitfield.disp8)
40fb9820
L
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
252b5132
RH
2245}
2246
2247static INLINE int
65879393 2248fits_in_signed_byte (addressT num)
252b5132 2249{
65879393 2250 return num + 0x80 <= 0xff;
47926f60 2251}
252b5132
RH
2252
2253static INLINE int
65879393 2254fits_in_unsigned_byte (addressT num)
252b5132 2255{
65879393 2256 return num <= 0xff;
47926f60 2257}
252b5132
RH
2258
2259static INLINE int
65879393 2260fits_in_unsigned_word (addressT num)
252b5132 2261{
65879393 2262 return num <= 0xffff;
47926f60 2263}
252b5132
RH
2264
2265static INLINE int
65879393 2266fits_in_signed_word (addressT num)
252b5132 2267{
65879393 2268 return num + 0x8000 <= 0xffff;
47926f60 2269}
2a962e6d 2270
3e73aa7c 2271static INLINE int
65879393 2272fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2273{
2274#ifndef BFD64
2275 return 1;
2276#else
65879393 2277 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2278#endif
2279} /* fits_in_signed_long() */
2a962e6d 2280
3e73aa7c 2281static INLINE int
65879393 2282fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2283{
2284#ifndef BFD64
2285 return 1;
2286#else
65879393 2287 return num <= 0xffffffff;
3e73aa7c
JH
2288#endif
2289} /* fits_in_unsigned_long() */
252b5132 2290
43234a1e 2291static INLINE int
b5014f7a 2292fits_in_disp8 (offsetT num)
43234a1e
L
2293{
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308}
2309
a683cc34
SP
2310static INLINE int
2311fits_in_imm4 (offsetT num)
2312{
2313 return (num & 0xf) == num;
2314}
2315
40fb9820 2316static i386_operand_type
e3bb37b5 2317smallest_imm_type (offsetT num)
252b5132 2318{
40fb9820 2319 i386_operand_type t;
7ab9ffdd 2320
0dfbf9d7 2321 operand_type_set (&t, 0);
40fb9820
L
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
40fb9820
L
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
47926f60 2368}
252b5132 2369
847f7ad4 2370static offsetT
e3bb37b5 2371offset_in_range (offsetT val, int size)
847f7ad4 2372{
508866be 2373 addressT mask;
ba2adb93 2374
847f7ad4
AM
2375 switch (size)
2376 {
508866be
L
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2380#ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382#endif
47926f60 2383 default: abort ();
847f7ad4
AM
2384 }
2385
9de868bf
L
2386#ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2392#endif
ba2adb93 2393
47926f60 2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403}
2404
c32fa91d
L
2405enum PREFIX_GROUP
2406{
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
04ef582a 2410 PREFIX_DS,
c32fa91d
L
2411 PREFIX_OTHER
2412};
2413
2414/* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2421 */
2422
2423static enum PREFIX_GROUP
e3bb37b5 2424add_prefix (unsigned int prefix)
252b5132 2425{
c32fa91d 2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2427 unsigned int q;
252b5132 2428
29b0f896
AM
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
b1905489 2431 {
161a04f6 2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2436 ret = PREFIX_EXIST;
b1905489
JB
2437 q = REX_PREFIX;
2438 }
3e73aa7c 2439 else
b1905489
JB
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
b1905489 2446 case DS_PREFIX_OPCODE:
04ef582a
L
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
b1905489
JB
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
c32fa91d
L
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
b1905489 2463 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
b1905489
JB
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
c32fa91d 2481 ret = PREFIX_EXIST;
b1905489 2482 }
252b5132 2483
b1905489 2484 if (ret)
252b5132 2485 {
b1905489
JB
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
252b5132 2489 }
b1905489
JB
2490 else
2491 as_bad (_("same type of prefix used twice"));
252b5132 2492
252b5132
RH
2493 return ret;
2494}
2495
2496static void
78f12dd3 2497update_code_flag (int value, int check)
eecb386c 2498{
78f12dd3
L
2499 PRINTF_LIKE ((*as_error));
2500
1e9cc1c2 2501 flag_code = (enum flag_code) value;
40fb9820
L
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2513 {
78f12dd3
L
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2520 }
40fb9820 2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2522 {
78f12dd3
L
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2529 }
eecb386c
AM
2530 stackop_size = '\0';
2531}
2532
78f12dd3
L
2533static void
2534set_code_flag (int value)
2535{
2536 update_code_flag (value, 0);
2537}
2538
eecb386c 2539static void
e3bb37b5 2540set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2541{
1e9cc1c2 2542 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2547 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2548}
2549
2550static void
e3bb37b5 2551set_intel_syntax (int syntax_flag)
252b5132
RH
2552{
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
29b0f896 2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2558 {
d02603dc
NC
2559 char *string;
2560 int e = get_symbol_name (&string);
252b5132 2561
47926f60 2562 if (strcmp (string, "prefix") == 0)
252b5132 2563 ask_naked_reg = 1;
47926f60 2564 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2565 ask_naked_reg = -1;
2566 else
d0b47220 2567 as_bad (_("bad argument to syntax directive."));
d02603dc 2568 (void) restore_line_pointer (e);
252b5132
RH
2569 }
2570 demand_empty_rest_of_line ();
c3332e24 2571
252b5132
RH
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
f86103b7
AM
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2579
ee86248c 2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2581
e4a3b5a4 2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2584 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2585}
2586
1efbbeb4
L
2587static void
2588set_intel_mnemonic (int mnemonic_flag)
2589{
e1d4d893 2590 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2591}
2592
db51cc60
L
2593static void
2594set_allow_index_reg (int flag)
2595{
2596 allow_index_reg = flag;
2597}
2598
cb19c032 2599static void
7bab8ab5 2600set_check (int what)
cb19c032 2601{
7bab8ab5
JB
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
cb19c032
L
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
d02603dc
NC
2620 char *string;
2621 int e = get_symbol_name (&string);
cb19c032
L
2622
2623 if (strcmp (string, "none") == 0)
7bab8ab5 2624 *kind = check_none;
cb19c032 2625 else if (strcmp (string, "warning") == 0)
7bab8ab5 2626 *kind = check_warning;
cb19c032 2627 else if (strcmp (string, "error") == 0)
7bab8ab5 2628 *kind = check_error;
cb19c032 2629 else
7bab8ab5 2630 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2631 (void) restore_line_pointer (e);
cb19c032
L
2632 }
2633 else
7bab8ab5 2634 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2635
2636 demand_empty_rest_of_line ();
2637}
2638
8a9036a4
L
2639static void
2640check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2642{
2643#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
81486035
L
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
3632d14b 2664 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2666 || new_flag.bitfield.cpul1om)
8a9036a4 2667 return;
76ba9986 2668
7a9068fe
L
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
8a9036a4
L
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675#endif
2676}
2677
e413e4e9 2678static void
e3bb37b5 2679set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2680{
47926f60 2681 SKIP_WHITESPACE ();
e413e4e9 2682
29b0f896 2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2684 {
d02603dc
NC
2685 char *string;
2686 int e = get_symbol_name (&string);
91d6fa6a 2687 unsigned int j;
40fb9820 2688 i386_cpu_flags flags;
e413e4e9 2689
91d6fa6a 2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2691 {
91d6fa6a 2692 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2693 {
91d6fa6a 2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2695
5c6af06e
JB
2696 if (*string != '.')
2697 {
91d6fa6a 2698 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2699 cpu_sub_arch_name = NULL;
91d6fa6a 2700 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
91d6fa6a
NC
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
5c6af06e
JB
2718 break;
2719 }
40fb9820 2720
293f5f65
L
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
81486035 2723
5b64d091 2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2725 {
6305a203
L
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
91d6fa6a 2730 cpu_arch[j].name,
1bf57e9f 2731 (const char *) NULL);
6305a203
L
2732 free (name);
2733 }
2734 else
91d6fa6a 2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2736 cpu_arch_flags = flags;
a586129e 2737 cpu_arch_isa_flags = flags;
5c6af06e 2738 }
0089dace
L
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
d02603dc 2743 (void) restore_line_pointer (e);
5c6af06e
JB
2744 demand_empty_rest_of_line ();
2745 return;
e413e4e9
AM
2746 }
2747 }
293f5f65
L
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
33eaf5de 2751 /* Disable an ISA extension. */
293f5f65
L
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
91d6fa6a 2779 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
fddf5b5b
AM
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
29b0f896 2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2790 {
d02603dc
NC
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
fddf5b5b
AM
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
d02603dc 2804 (void) restore_line_pointer (e);
fddf5b5b
AM
2805 }
2806
e413e4e9
AM
2807 demand_empty_rest_of_line ();
2808}
2809
8a9036a4
L
2810enum bfd_architecture
2811i386_arch (void)
2812{
3632d14b 2813 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
7a9068fe
L
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
81486035
L
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
8a9036a4
L
2834 else
2835 return bfd_arch_i386;
2836}
2837
b9d79e03 2838unsigned long
7016a5d5 2839i386_mach (void)
b9d79e03 2840{
351f65ca 2841 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2842 {
3632d14b 2843 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2844 {
351f65ca
L
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
8a9036a4
L
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
7a9068fe
L
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
351f65ca 2857 else if (default_arch[6] == '\0')
8a9036a4 2858 return bfd_mach_x86_64;
351f65ca
L
2859 else
2860 return bfd_mach_x64_32;
8a9036a4 2861 }
5197d474
L
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
81486035
L
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
b9d79e03 2874 else
2b5d6a91 2875 as_fatal (_("unknown architecture"));
b9d79e03 2876}
b9d79e03 2877\f
252b5132 2878void
7016a5d5 2879md_begin (void)
252b5132
RH
2880{
2881 const char *hash_err;
2882
86fa6981
L
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
47926f60 2886 /* Initialize op_hash hash table. */
252b5132
RH
2887 op_hash = hash_new ();
2888
2889 {
d3ce72d0 2890 const insn_template *optab;
29b0f896 2891 templates *core_optab;
252b5132 2892
47926f60
KH
2893 /* Setup for loop. */
2894 optab = i386_optab;
add39d23 2895 core_optab = XNEW (templates);
252b5132
RH
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
47926f60 2905 add to hash table; & begin anew. */
252b5132
RH
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
5a49b8ac 2909 (void *) core_optab);
252b5132
RH
2910 if (hash_err)
2911 {
b37df7c4 2912 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
add39d23 2918 core_optab = XNEW (templates);
252b5132
RH
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
47926f60 2924 /* Initialize reg_hash hash table. */
252b5132
RH
2925 reg_hash = hash_new ();
2926 {
29b0f896 2927 const reg_entry *regtab;
c3fe08fa 2928 unsigned int regtab_size = i386_regtab_size;
252b5132 2929
c3fe08fa 2930 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2931 {
5a49b8ac 2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2933 if (hash_err)
b37df7c4 2934 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2935 regtab->reg_name,
2936 hash_err);
252b5132
RH
2937 }
2938 }
2939
47926f60 2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2941 {
29b0f896
AM
2942 int c;
2943 char *p;
252b5132
RH
2944
2945 for (c = 0; c < 256; c++)
2946 {
3882b010 2947 if (ISDIGIT (c))
252b5132
RH
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
3882b010 2954 else if (ISLOWER (c))
252b5132
RH
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
3882b010 2960 else if (ISUPPER (c))
252b5132 2961 {
3882b010 2962 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
43234a1e 2966 else if (c == '{' || c == '}')
86fa6981
L
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
252b5132 2971
3882b010 2972 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981#ifdef LEX_AT
2982 identifier_chars['@'] = '@';
32137342
NC
2983#endif
2984#ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
252b5132 2987#endif
252b5132 2988 digit_chars['-'] = '-';
c0f3af97 2989 mnemonic_chars['_'] = '_';
791fe849 2990 mnemonic_chars['-'] = '-';
0003779b 2991 mnemonic_chars['.'] = '.';
252b5132
RH
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
a4447b93
RH
2999 if (flag_code == CODE_64BIT)
3000 {
ca19b261
KT
3001#if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004#else
a4447b93 3005 x86_dwarf2_return_column = 16;
ca19b261 3006#endif
61ff971f 3007 x86_cie_data_alignment = -8;
a4447b93
RH
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
252b5132
RH
3014}
3015
3016void
e3bb37b5 3017i386_print_statistics (FILE *file)
252b5132
RH
3018{
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021}
3022\f
252b5132
RH
3023#ifdef DEBUG386
3024
ce8a8b2f 3025/* Debugging routines for md_assemble. */
d3ce72d0 3026static void pte (insn_template *);
40fb9820 3027static void pt (i386_operand_type);
e3bb37b5
L
3028static void pe (expressionS *);
3029static void ps (symbolS *);
252b5132
RH
3030
3031static void
2c703856 3032pi (const char *line, i386_insn *x)
252b5132 3033{
09137c09 3034 unsigned int j;
252b5132
RH
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
09f131f2
JH
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3043 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
09137c09 3051 for (j = 0; j < x->operands; j++)
252b5132 3052 {
09137c09
SP
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
252b5132 3055 fprintf (stdout, "\n");
bab6aec1 3056 if (x->types[j].bitfield.class == Reg
3528c362
JB
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
00cee14f 3059 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
252b5132
RH
3068 }
3069}
3070
3071static void
d3ce72d0 3072pte (insn_template *t)
252b5132 3073{
09137c09 3074 unsigned int j;
252b5132 3075 fprintf (stdout, " %d operands ", t->operands);
47926f60 3076 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3079 if (t->opcode_modifier.d)
252b5132 3080 fprintf (stdout, "D");
40fb9820 3081 if (t->opcode_modifier.w)
252b5132
RH
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
09137c09 3084 for (j = 0; j < t->operands; j++)
252b5132 3085 {
09137c09
SP
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
252b5132
RH
3088 fprintf (stdout, "\n");
3089 }
3090}
3091
3092static void
e3bb37b5 3093pe (expressionS *e)
252b5132 3094{
24eab124 3095 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110}
3111
3112static void
e3bb37b5 3113ps (symbolS *s)
252b5132
RH
3114{
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119}
3120
7b81dfbb 3121static struct type_name
252b5132 3122 {
40fb9820
L
3123 i386_operand_type mask;
3124 const char *name;
252b5132 3125 }
7b81dfbb 3126const type_names[] =
252b5132 3127{
40fb9820
L
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3156 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3159 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3162};
3163
3164static void
40fb9820 3165pt (i386_operand_type t)
252b5132 3166{
40fb9820 3167 unsigned int j;
c6fb90c8 3168 i386_operand_type a;
252b5132 3169
40fb9820 3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
2c703856 3173 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
252b5132
RH
3176 fflush (stdout);
3177}
3178
3179#endif /* DEBUG386 */
3180\f
252b5132 3181static bfd_reloc_code_real_type
3956db08 3182reloc (unsigned int size,
64e74474
AM
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
252b5132 3186{
47926f60 3187 if (other != NO_RELOC)
3956db08 3188 {
91d6fa6a 3189 reloc_howto_type *rel;
3956db08
JB
3190
3191 if (size == 8)
3192 switch (other)
3193 {
64e74474
AM
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
553d1284
L
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
64e74474
AM
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3956db08 3217 }
e05278af 3218
8ce3d284 3219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
1ab668bf 3223 other = BFD_RELOC_SIZE64;
8fd4256d 3224 if (pcrel)
1ab668bf
AM
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
8fd4256d 3229 }
8ce3d284 3230#endif
8fd4256d 3231
e05278af 3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3234 sign = -1;
3235
91d6fa6a
NC
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3956db08 3238 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3239 else if (size != bfd_get_reloc_size (rel))
3956db08 3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3241 bfd_get_reloc_size (rel),
3956db08 3242 size);
91d6fa6a 3243 else if (pcrel && !rel->pc_relative)
3956db08 3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3246 && !sign)
91d6fa6a 3247 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3248 && sign > 0))
3956db08
JB
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
252b5132
RH
3254
3255 if (pcrel)
3256 {
3e73aa7c 3257 if (!sign)
3956db08 3258 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
d258b828 3263 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3264 case 8: return BFD_RELOC_64_PCREL;
252b5132 3265 }
3956db08 3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3267 }
3268 else
3269 {
3956db08 3270 if (sign > 0)
e5cb08ac 3271 switch (size)
3e73aa7c
JH
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3956db08
JB
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3285 }
3286
0cc9e1d3 3287 return NO_RELOC;
252b5132
RH
3288}
3289
47926f60
KH
3290/* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
252b5132 3295int
e3bb37b5 3296tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3297{
6d249963 3298#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3299 if (!IS_ELF)
31312f95
AM
3300 return 1;
3301
a161fe53
AM
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
252b5132 3307 return 0;
31312f95 3308
8d01d9a9
AJ
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
8fd4256d
L
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
31312f95 3351#endif
252b5132
RH
3352 return 1;
3353}
252b5132 3354
b4cac588 3355static int
e3bb37b5 3356intel_float_operand (const char *mnemonic)
252b5132 3357{
9306ca4a
JB
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
252b5132 3404
9306ca4a 3405 return 1;
252b5132
RH
3406}
3407
c0f3af97
L
3408/* Build the VEX prefix. */
3409
3410static void
d3ce72d0 3411build_vex_prefix (const insn_template *t)
c0f3af97
L
3412{
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
03751133 3416 unsigned int w;
c0f3af97
L
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
43234a1e
L
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
c0f3af97
L
3425 else
3426 register_specifier = 0xf;
3427
79f0fa25
L
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
86fa6981 3432 && i.dir_encoding == dir_encoding_default
fa99fab2 3433 && i.operands == i.reg_operands
dbbc8b7e 3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3435 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
9c2799c2 3450 gas_assert (i.rm.mode == 3);
fa99fab2
L
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
dbbc8b7e
JB
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
fa99fab2
L
3462 }
3463
79dec6b7
JB
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
539f890d
L
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
10c17abd
JB
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
539f890d 3505 else
10c17abd 3506 {
56522fc5 3507 unsigned int op;
10c17abd 3508
c7213af9
L
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
10c17abd 3511 vector_length = 0;
56522fc5 3512 for (op = t->operands; op--;)
10c17abd
JB
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
c0f3af97
L
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
03751133
L
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
931d03b7 3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3547
c0f3af97 3548 /* Use 2-byte VEX prefix if possible. */
03751133
L
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
86fa6981 3551 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
03751133 3570 unsigned int m;
c0f3af97 3571
f88c9eb0 3572 i.vex.length = 3;
f88c9eb0 3573
7f399153 3574 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3575 {
7f399153
L
3576 case VEX0F:
3577 m = 0x1;
80de6e00 3578 i.vex.bytes[0] = 0xc4;
7f399153
L
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
80de6e00 3582 i.vex.bytes[0] = 0xc4;
7f399153
L
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
80de6e00 3586 i.vex.bytes[0] = 0xc4;
7f399153
L
3587 break;
3588 case XOP08:
5dd85c99
SP
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
7f399153
L
3591 break;
3592 case XOP09:
f88c9eb0
SP
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
7f399153
L
3595 break;
3596 case XOP0A:
f88c9eb0
SP
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
7f399153
L
3599 break;
3600 default:
3601 abort ();
f88c9eb0 3602 }
c0f3af97 3603
c0f3af97
L
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
c0f3af97
L
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613}
3614
e771e7c9
JB
3615static INLINE bfd_boolean
3616is_evex_encoding (const insn_template *t)
3617{
7091c612 3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3620 || t->opcode_modifier.sae;
e771e7c9
JB
3621}
3622
7a8655d2
JB
3623static INLINE bfd_boolean
3624is_any_vex_encoding (const insn_template *t)
3625{
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628}
3629
43234a1e
L
3630/* Build the EVEX prefix. */
3631
3632static void
3633build_evex_prefix (void)
3634{
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
6865c043
L
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
931d03b7 3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
e771e7c9
JB
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
56522fc5 3761 unsigned int op;
e771e7c9 3762
c7213af9
L
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
e771e7c9 3765 vec_length = 0;
56522fc5 3766 for (op = i.operands; op--;)
e771e7c9
JB
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
c7213af9
L
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
e771e7c9 3776 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
e771e7c9 3781 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
625cbd7a
JB
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
4a1b91ea 3788 switch (i.broadcast->bytes)
625cbd7a
JB
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
c7213af9 3800 abort ();
625cbd7a 3801 }
c7213af9 3802 break;
625cbd7a 3803 }
e771e7c9 3804 }
c7213af9 3805
56522fc5 3806 if (op >= MAX_OPERANDS)
c7213af9 3807 abort ();
e771e7c9
JB
3808 }
3809
43234a1e
L
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
d3d3c6db 3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843}
3844
65da13b5
L
3845static void
3846process_immext (void)
3847{
3848 expressionS *exp;
3849
c0f3af97 3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
c1e679ec 3855 AVX instructions also use this encoding, for some of
c0f3af97 3856 3 argument instructions. */
65da13b5 3857
43234a1e 3858 gas_assert (i.imm_operands <= 1
7ab9ffdd 3859 && (i.operands <= 2
7a8655d2 3860 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3861 && i.operands <= 4)));
65da13b5
L
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870}
3871
42164a71
L
3872
3873static int
3874check_hle (void)
3875{
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
82c2def5 3880 case HLEPrefixNone:
165de32a
L
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
42164a71 3883 return 0;
82c2def5 3884 case HLEPrefixLock:
42164a71
L
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
165de32a 3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3888 return 0;
82c2def5 3889 case HLEPrefixAny:
42164a71 3890 return 1;
82c2def5 3891 case HLEPrefixRelease:
42164a71
L
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
8dc0818e 3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906}
3907
b6f8c7c4
L
3908/* Try the shortest encoding by shortening operand size. */
3909
3910static void
3911optimize_encoding (void)
3912{
a0a1771e 3913 unsigned int j;
b6f8c7c4
L
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
d3d50934
L
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
b6f8c7c4
L
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
507916b8 3954 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
507916b8 3964 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 3982 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
507916b8 3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
507916b8 4004 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
507916b8 4009 i.tm.base_opcode = 0xb8;
b6f8c7c4 4010 i.tm.extension_opcode = None;
507916b8 4011 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
5641ec01
JB
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
99112332 4040 else if (i.reg_operands == 3
b6f8c7c4
L
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
7a69eac3 4044 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4045 && !i.rounding
e771e7c9 4046 && is_evex_encoding (&i.tm)
80c34c38 4047 && (i.vec_encoding != vex_encoding_evex
dd22218c 4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4050 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4051 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
8305403a
L
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4066 && i.tm.extension_opcode == None))
4067 {
99112332 4068 /* Optimize: -O1:
8305403a
L
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
b6f8c7c4
L
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4102 */
e771e7c9 4103 if (is_evex_encoding (&i.tm))
b6f8c7c4 4104 {
7b1d7ca1 4105 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
7b1d7ca1 4111 else if (optimize > 1)
dd22218c
L
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
b6f8c7c4 4115 }
f74a6307 4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
b6f8c7c4
L
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
392a5972 4131 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4132 && !i.types[0].bitfield.zmmword
392a5972 4133 && !i.types[1].bitfield.zmmword
97ed31ae 4134 && !i.mask
a0a1771e 4135 && !i.broadcast
97ed31ae 4136 && is_evex_encoding (&i.tm)
392a5972
L
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4168 */
a0a1771e 4169 for (j = 0; j < i.operands; j++)
392a5972
L
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
a0a1771e 4202 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
a0a1771e
JB
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4208 }
b6f8c7c4
L
4209}
4210
252b5132
RH
4211/* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215void
65da13b5 4216md_assemble (char *line)
252b5132 4217{
40fb9820 4218 unsigned int j;
83b16ac6 4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4220 const insn_template *t;
252b5132 4221
47926f60 4222 /* Initialize globals. */
252b5132
RH
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4225 i.reloc[j] = NO_RELOC;
252b5132
RH
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4228 save_stack_p = save_stack;
252b5132
RH
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4232 start of a (possibly prefixed) mnemonic. */
252b5132 4233
29b0f896
AM
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
83b16ac6 4237 mnem_suffix = i.suffix;
252b5132 4238
29b0f896 4239 line = parse_operands (line, mnemonic);
ee86248c 4240 this_operand = -1;
8325cc63
JB
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
29b0f896
AM
4243 if (line == NULL)
4244 return;
252b5132 4245
29b0f896
AM
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
050dfa73 4252 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4253 if (intel_syntax
4254 && i.operands > 1
29b0f896 4255 && (strcmp (mnemonic, "bound") != 0)
30123838 4256 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4259 swap_operands ();
4260
ec56d5c0
JB
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
29b0f896
AM
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
b300c311
L
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
a501d77e 4274 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
29b0f896
AM
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
252b5132 4282
83b16ac6 4283 if (!(t = match_template (mnem_suffix)))
29b0f896 4284 return;
252b5132 4285
7bab8ab5 4286 if (sse_check != check_none
81f8a913 4287 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4288 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4289 && (i.tm.cpu_flags.bitfield.cpusse
4290 || i.tm.cpu_flags.bitfield.cpusse2
4291 || i.tm.cpu_flags.bitfield.cpusse3
4292 || i.tm.cpu_flags.bitfield.cpussse3
4293 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4294 || i.tm.cpu_flags.bitfield.cpusse4_2
4295 || i.tm.cpu_flags.bitfield.cpupclmul
4296 || i.tm.cpu_flags.bitfield.cpuaes
4297 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4298 {
7bab8ab5 4299 (sse_check == check_warning
daf50ae7
L
4300 ? as_warn
4301 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4302 }
4303
321fd21e
L
4304 /* Zap movzx and movsx suffix. The suffix has been set from
4305 "word ptr" or "byte ptr" on the source operand in Intel syntax
4306 or extracted from mnemonic in AT&T syntax. But we'll use
4307 the destination register to choose the suffix for encoding. */
4308 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4309 {
321fd21e
L
4310 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4311 there is no suffix, the default will be byte extension. */
4312 if (i.reg_operands != 2
4313 && !i.suffix
7ab9ffdd 4314 && intel_syntax)
321fd21e
L
4315 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4316
4317 i.suffix = 0;
cd61ebfe 4318 }
24eab124 4319
40fb9820 4320 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4321 if (!add_prefix (FWAIT_OPCODE))
4322 return;
252b5132 4323
d5de92cf
L
4324 /* Check if REP prefix is OK. */
4325 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4326 {
4327 as_bad (_("invalid instruction `%s' after `%s'"),
4328 i.tm.name, i.rep_prefix);
4329 return;
4330 }
4331
c1ba0266
L
4332 /* Check for lock without a lockable instruction. Destination operand
4333 must be memory unless it is xchg (0x86). */
c32fa91d
L
4334 if (i.prefix[LOCK_PREFIX]
4335 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4336 || i.mem_operands == 0
4337 || (i.tm.base_opcode != 0x86
8dc0818e 4338 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4339 {
4340 as_bad (_("expecting lockable instruction after `lock'"));
4341 return;
4342 }
4343
7a8655d2
JB
4344 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4345 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4346 {
4347 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4348 return;
4349 }
4350
42164a71 4351 /* Check if HLE prefix is OK. */
165de32a 4352 if (i.hle_prefix && !check_hle ())
42164a71
L
4353 return;
4354
7e8b059b
L
4355 /* Check BND prefix. */
4356 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4357 as_bad (_("expecting valid branch instruction after `bnd'"));
4358
04ef582a 4359 /* Check NOTRACK prefix. */
9fef80d6
L
4360 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4361 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4362
327e8c42
JB
4363 if (i.tm.cpu_flags.bitfield.cpumpx)
4364 {
4365 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4366 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4367 else if (flag_code != CODE_16BIT
4368 ? i.prefix[ADDR_PREFIX]
4369 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4370 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4371 }
7e8b059b
L
4372
4373 /* Insert BND prefix. */
76d3a78a
JB
4374 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4375 {
4376 if (!i.prefix[BND_PREFIX])
4377 add_prefix (BND_PREFIX_OPCODE);
4378 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4379 {
4380 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4381 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4382 }
4383 }
7e8b059b 4384
29b0f896 4385 /* Check string instruction segment overrides. */
51c8edf6 4386 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4387 {
51c8edf6 4388 gas_assert (i.mem_operands);
29b0f896 4389 if (!check_string ())
5dd0794d 4390 return;
fc0763e6 4391 i.disp_operands = 0;
29b0f896 4392 }
5dd0794d 4393
b6f8c7c4
L
4394 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4395 optimize_encoding ();
4396
29b0f896
AM
4397 if (!process_suffix ())
4398 return;
e413e4e9 4399
bc0844ae
L
4400 /* Update operand types. */
4401 for (j = 0; j < i.operands; j++)
4402 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4403
29b0f896
AM
4404 /* Make still unresolved immediate matches conform to size of immediate
4405 given in i.suffix. */
4406 if (!finalize_imm ())
4407 return;
252b5132 4408
40fb9820 4409 if (i.types[0].bitfield.imm1)
29b0f896 4410 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4411
9afe6eb8
L
4412 /* We only need to check those implicit registers for instructions
4413 with 3 operands or less. */
4414 if (i.operands <= 3)
4415 for (j = 0; j < i.operands; j++)
75e5731b
JB
4416 if (i.types[j].bitfield.instance != InstanceNone
4417 && !i.types[j].bitfield.xmmword)
9afe6eb8 4418 i.reg_operands--;
40fb9820 4419
c0f3af97
L
4420 /* ImmExt should be processed after SSE2AVX. */
4421 if (!i.tm.opcode_modifier.sse2avx
4422 && i.tm.opcode_modifier.immext)
65da13b5 4423 process_immext ();
252b5132 4424
29b0f896
AM
4425 /* For insns with operands there are more diddles to do to the opcode. */
4426 if (i.operands)
4427 {
4428 if (!process_operands ())
4429 return;
4430 }
40fb9820 4431 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4432 {
4433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4434 as_warn (_("translating to `%sp'"), i.tm.name);
4435 }
252b5132 4436
7a8655d2 4437 if (is_any_vex_encoding (&i.tm))
9e5e5283 4438 {
c1dc7af5 4439 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4440 {
c1dc7af5 4441 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4442 i.tm.name);
4443 return;
4444 }
c0f3af97 4445
9e5e5283
L
4446 if (i.tm.opcode_modifier.vex)
4447 build_vex_prefix (t);
4448 else
4449 build_evex_prefix ();
4450 }
43234a1e 4451
5dd85c99
SP
4452 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4453 instructions may define INT_OPCODE as well, so avoid this corner
4454 case for those instructions that use MODRM. */
4455 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4456 && !i.tm.opcode_modifier.modrm
4457 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4458 {
4459 i.tm.base_opcode = INT3_OPCODE;
4460 i.imm_operands = 0;
4461 }
252b5132 4462
0cfa3eb3
JB
4463 if ((i.tm.opcode_modifier.jump == JUMP
4464 || i.tm.opcode_modifier.jump == JUMP_BYTE
4465 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4466 && i.op[0].disps->X_op == O_constant)
4467 {
4468 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4469 the absolute address given by the constant. Since ix86 jumps and
4470 calls are pc relative, we need to generate a reloc. */
4471 i.op[0].disps->X_add_symbol = &abs_symbol;
4472 i.op[0].disps->X_op = O_symbol;
4473 }
252b5132 4474
40fb9820 4475 if (i.tm.opcode_modifier.rex64)
161a04f6 4476 i.rex |= REX_W;
252b5132 4477
29b0f896
AM
4478 /* For 8 bit registers we need an empty rex prefix. Also if the
4479 instruction already has a prefix, we need to convert old
4480 registers to new ones. */
773f551c 4481
bab6aec1 4482 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4483 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4484 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4485 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4486 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4488 && i.rex != 0))
4489 {
4490 int x;
726c5dcd 4491
29b0f896
AM
4492 i.rex |= REX_OPCODE;
4493 for (x = 0; x < 2; x++)
4494 {
4495 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4496 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4497 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4498 {
29b0f896
AM
4499 /* In case it is "hi" register, give up. */
4500 if (i.op[x].regs->reg_num > 3)
a540244d 4501 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4502 "instruction requiring REX prefix."),
a540244d 4503 register_prefix, i.op[x].regs->reg_name);
773f551c 4504
29b0f896
AM
4505 /* Otherwise it is equivalent to the extended register.
4506 Since the encoding doesn't change this is merely
4507 cosmetic cleanup for debug output. */
4508
4509 i.op[x].regs = i.op[x].regs + 8;
773f551c 4510 }
29b0f896
AM
4511 }
4512 }
773f551c 4513
6b6b6807
L
4514 if (i.rex == 0 && i.rex_encoding)
4515 {
4516 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4517 that uses legacy register. If it is "hi" register, don't add
4518 the REX_OPCODE byte. */
4519 int x;
4520 for (x = 0; x < 2; x++)
bab6aec1 4521 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4522 && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0
4524 && i.op[x].regs->reg_num > 3)
4525 {
4526 i.rex_encoding = FALSE;
4527 break;
4528 }
4529
4530 if (i.rex_encoding)
4531 i.rex = REX_OPCODE;
4532 }
4533
7ab9ffdd 4534 if (i.rex != 0)
29b0f896
AM
4535 add_prefix (REX_OPCODE | i.rex);
4536
4537 /* We are ready to output the insn. */
4538 output_insn ();
4539}
4540
4541static char *
e3bb37b5 4542parse_insn (char *line, char *mnemonic)
29b0f896
AM
4543{
4544 char *l = line;
4545 char *token_start = l;
4546 char *mnem_p;
5c6af06e 4547 int supported;
d3ce72d0 4548 const insn_template *t;
b6169b20 4549 char *dot_p = NULL;
29b0f896 4550
29b0f896
AM
4551 while (1)
4552 {
4553 mnem_p = mnemonic;
4554 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4555 {
b6169b20
L
4556 if (*mnem_p == '.')
4557 dot_p = mnem_p;
29b0f896
AM
4558 mnem_p++;
4559 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4560 {
29b0f896
AM
4561 as_bad (_("no such instruction: `%s'"), token_start);
4562 return NULL;
4563 }
4564 l++;
4565 }
4566 if (!is_space_char (*l)
4567 && *l != END_OF_INSN
e44823cf
JB
4568 && (intel_syntax
4569 || (*l != PREFIX_SEPARATOR
4570 && *l != ',')))
29b0f896
AM
4571 {
4572 as_bad (_("invalid character %s in mnemonic"),
4573 output_invalid (*l));
4574 return NULL;
4575 }
4576 if (token_start == l)
4577 {
e44823cf 4578 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4579 as_bad (_("expecting prefix; got nothing"));
4580 else
4581 as_bad (_("expecting mnemonic; got nothing"));
4582 return NULL;
4583 }
45288df1 4584
29b0f896 4585 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4586 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4587
29b0f896
AM
4588 if (*l != END_OF_INSN
4589 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4590 && current_templates
40fb9820 4591 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4592 {
c6fb90c8 4593 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4594 {
4595 as_bad ((flag_code != CODE_64BIT
4596 ? _("`%s' is only supported in 64-bit mode")
4597 : _("`%s' is not supported in 64-bit mode")),
4598 current_templates->start->name);
4599 return NULL;
4600 }
29b0f896
AM
4601 /* If we are in 16-bit mode, do not allow addr16 or data16.
4602 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4603 if ((current_templates->start->opcode_modifier.size == SIZE16
4604 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4605 && flag_code != CODE_64BIT
673fe0f0 4606 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4607 ^ (flag_code == CODE_16BIT)))
4608 {
4609 as_bad (_("redundant %s prefix"),
4610 current_templates->start->name);
4611 return NULL;
45288df1 4612 }
86fa6981 4613 if (current_templates->start->opcode_length == 0)
29b0f896 4614 {
86fa6981
L
4615 /* Handle pseudo prefixes. */
4616 switch (current_templates->start->base_opcode)
4617 {
4618 case 0x0:
4619 /* {disp8} */
4620 i.disp_encoding = disp_encoding_8bit;
4621 break;
4622 case 0x1:
4623 /* {disp32} */
4624 i.disp_encoding = disp_encoding_32bit;
4625 break;
4626 case 0x2:
4627 /* {load} */
4628 i.dir_encoding = dir_encoding_load;
4629 break;
4630 case 0x3:
4631 /* {store} */
4632 i.dir_encoding = dir_encoding_store;
4633 break;
4634 case 0x4:
4635 /* {vex2} */
4636 i.vec_encoding = vex_encoding_vex2;
4637 break;
4638 case 0x5:
4639 /* {vex3} */
4640 i.vec_encoding = vex_encoding_vex3;
4641 break;
4642 case 0x6:
4643 /* {evex} */
4644 i.vec_encoding = vex_encoding_evex;
4645 break;
6b6b6807
L
4646 case 0x7:
4647 /* {rex} */
4648 i.rex_encoding = TRUE;
4649 break;
b6f8c7c4
L
4650 case 0x8:
4651 /* {nooptimize} */
4652 i.no_optimize = TRUE;
4653 break;
86fa6981
L
4654 default:
4655 abort ();
4656 }
4657 }
4658 else
4659 {
4660 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4661 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4662 {
4e9ac44a
L
4663 case PREFIX_EXIST:
4664 return NULL;
4665 case PREFIX_DS:
d777820b 4666 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4667 i.notrack_prefix = current_templates->start->name;
4668 break;
4669 case PREFIX_REP:
4670 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4671 i.hle_prefix = current_templates->start->name;
4672 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4673 i.bnd_prefix = current_templates->start->name;
4674 else
4675 i.rep_prefix = current_templates->start->name;
4676 break;
4677 default:
4678 break;
86fa6981 4679 }
29b0f896
AM
4680 }
4681 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4682 token_start = ++l;
4683 }
4684 else
4685 break;
4686 }
45288df1 4687
30a55f88 4688 if (!current_templates)
b6169b20 4689 {
07d5e953
JB
4690 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4691 Check if we should swap operand or force 32bit displacement in
f8a5c266 4692 encoding. */
30a55f88 4693 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4694 i.dir_encoding = dir_encoding_swap;
8d63c93e 4695 else if (mnem_p - 3 == dot_p
a501d77e
L
4696 && dot_p[1] == 'd'
4697 && dot_p[2] == '8')
4698 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4699 else if (mnem_p - 4 == dot_p
f8a5c266
L
4700 && dot_p[1] == 'd'
4701 && dot_p[2] == '3'
4702 && dot_p[3] == '2')
a501d77e 4703 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4704 else
4705 goto check_suffix;
4706 mnem_p = dot_p;
4707 *dot_p = '\0';
d3ce72d0 4708 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4709 }
4710
29b0f896
AM
4711 if (!current_templates)
4712 {
b6169b20 4713check_suffix:
1c529385 4714 if (mnem_p > mnemonic)
29b0f896 4715 {
1c529385
LH
4716 /* See if we can get a match by trimming off a suffix. */
4717 switch (mnem_p[-1])
29b0f896 4718 {
1c529385
LH
4719 case WORD_MNEM_SUFFIX:
4720 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4721 i.suffix = SHORT_MNEM_SUFFIX;
4722 else
1c529385
LH
4723 /* Fall through. */
4724 case BYTE_MNEM_SUFFIX:
4725 case QWORD_MNEM_SUFFIX:
4726 i.suffix = mnem_p[-1];
29b0f896 4727 mnem_p[-1] = '\0';
d3ce72d0 4728 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4729 mnemonic);
4730 break;
4731 case SHORT_MNEM_SUFFIX:
4732 case LONG_MNEM_SUFFIX:
4733 if (!intel_syntax)
4734 {
4735 i.suffix = mnem_p[-1];
4736 mnem_p[-1] = '\0';
4737 current_templates = (const templates *) hash_find (op_hash,
4738 mnemonic);
4739 }
4740 break;
4741
4742 /* Intel Syntax. */
4743 case 'd':
4744 if (intel_syntax)
4745 {
4746 if (intel_float_operand (mnemonic) == 1)
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 i.suffix = LONG_MNEM_SUFFIX;
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 }
4754 break;
29b0f896 4755 }
29b0f896 4756 }
1c529385 4757
29b0f896
AM
4758 if (!current_templates)
4759 {
4760 as_bad (_("no such instruction: `%s'"), token_start);
4761 return NULL;
4762 }
4763 }
252b5132 4764
0cfa3eb3
JB
4765 if (current_templates->start->opcode_modifier.jump == JUMP
4766 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4767 {
4768 /* Check for a branch hint. We allow ",pt" and ",pn" for
4769 predict taken and predict not taken respectively.
4770 I'm not sure that branch hints actually do anything on loop
4771 and jcxz insns (JumpByte) for current Pentium4 chips. They
4772 may work in the future and it doesn't hurt to accept them
4773 now. */
4774 if (l[0] == ',' && l[1] == 'p')
4775 {
4776 if (l[2] == 't')
4777 {
4778 if (!add_prefix (DS_PREFIX_OPCODE))
4779 return NULL;
4780 l += 3;
4781 }
4782 else if (l[2] == 'n')
4783 {
4784 if (!add_prefix (CS_PREFIX_OPCODE))
4785 return NULL;
4786 l += 3;
4787 }
4788 }
4789 }
4790 /* Any other comma loses. */
4791 if (*l == ',')
4792 {
4793 as_bad (_("invalid character %s in mnemonic"),
4794 output_invalid (*l));
4795 return NULL;
4796 }
252b5132 4797
29b0f896 4798 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4799 supported = 0;
4800 for (t = current_templates->start; t < current_templates->end; ++t)
4801 {
c0f3af97
L
4802 supported |= cpu_flags_match (t);
4803 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4804 {
4805 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4806 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4807
548d0ee6
JB
4808 return l;
4809 }
29b0f896 4810 }
3629bb00 4811
548d0ee6
JB
4812 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4813 as_bad (flag_code == CODE_64BIT
4814 ? _("`%s' is not supported in 64-bit mode")
4815 : _("`%s' is only supported in 64-bit mode"),
4816 current_templates->start->name);
4817 else
4818 as_bad (_("`%s' is not supported on `%s%s'"),
4819 current_templates->start->name,
4820 cpu_arch_name ? cpu_arch_name : default_arch,
4821 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4822
548d0ee6 4823 return NULL;
29b0f896 4824}
252b5132 4825
29b0f896 4826static char *
e3bb37b5 4827parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4828{
4829 char *token_start;
3138f287 4830
29b0f896
AM
4831 /* 1 if operand is pending after ','. */
4832 unsigned int expecting_operand = 0;
252b5132 4833
29b0f896
AM
4834 /* Non-zero if operand parens not balanced. */
4835 unsigned int paren_not_balanced;
4836
4837 while (*l != END_OF_INSN)
4838 {
4839 /* Skip optional white space before operand. */
4840 if (is_space_char (*l))
4841 ++l;
d02603dc 4842 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4843 {
4844 as_bad (_("invalid character %s before operand %d"),
4845 output_invalid (*l),
4846 i.operands + 1);
4847 return NULL;
4848 }
d02603dc 4849 token_start = l; /* After white space. */
29b0f896
AM
4850 paren_not_balanced = 0;
4851 while (paren_not_balanced || *l != ',')
4852 {
4853 if (*l == END_OF_INSN)
4854 {
4855 if (paren_not_balanced)
4856 {
4857 if (!intel_syntax)
4858 as_bad (_("unbalanced parenthesis in operand %d."),
4859 i.operands + 1);
4860 else
4861 as_bad (_("unbalanced brackets in operand %d."),
4862 i.operands + 1);
4863 return NULL;
4864 }
4865 else
4866 break; /* we are done */
4867 }
d02603dc 4868 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4869 {
4870 as_bad (_("invalid character %s in operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 if (!intel_syntax)
4876 {
4877 if (*l == '(')
4878 ++paren_not_balanced;
4879 if (*l == ')')
4880 --paren_not_balanced;
4881 }
4882 else
4883 {
4884 if (*l == '[')
4885 ++paren_not_balanced;
4886 if (*l == ']')
4887 --paren_not_balanced;
4888 }
4889 l++;
4890 }
4891 if (l != token_start)
4892 { /* Yes, we've read in another operand. */
4893 unsigned int operand_ok;
4894 this_operand = i.operands++;
4895 if (i.operands > MAX_OPERANDS)
4896 {
4897 as_bad (_("spurious operands; (%d operands/instruction max)"),
4898 MAX_OPERANDS);
4899 return NULL;
4900 }
9d46ce34 4901 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4902 /* Now parse operand adding info to 'i' as we go along. */
4903 END_STRING_AND_SAVE (l);
4904
1286ab78
L
4905 if (i.mem_operands > 1)
4906 {
4907 as_bad (_("too many memory references for `%s'"),
4908 mnemonic);
4909 return 0;
4910 }
4911
29b0f896
AM
4912 if (intel_syntax)
4913 operand_ok =
4914 i386_intel_operand (token_start,
4915 intel_float_operand (mnemonic));
4916 else
a7619375 4917 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4918
4919 RESTORE_END_STRING (l);
4920 if (!operand_ok)
4921 return NULL;
4922 }
4923 else
4924 {
4925 if (expecting_operand)
4926 {
4927 expecting_operand_after_comma:
4928 as_bad (_("expecting operand after ','; got nothing"));
4929 return NULL;
4930 }
4931 if (*l == ',')
4932 {
4933 as_bad (_("expecting operand before ','; got nothing"));
4934 return NULL;
4935 }
4936 }
7f3f1ea2 4937
29b0f896
AM
4938 /* Now *l must be either ',' or END_OF_INSN. */
4939 if (*l == ',')
4940 {
4941 if (*++l == END_OF_INSN)
4942 {
4943 /* Just skip it, if it's \n complain. */
4944 goto expecting_operand_after_comma;
4945 }
4946 expecting_operand = 1;
4947 }
4948 }
4949 return l;
4950}
7f3f1ea2 4951
050dfa73 4952static void
4d456e3d 4953swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4954{
4955 union i386_op temp_op;
40fb9820 4956 i386_operand_type temp_type;
c48dadc9 4957 unsigned int temp_flags;
050dfa73 4958 enum bfd_reloc_code_real temp_reloc;
4eed87de 4959
050dfa73
MM
4960 temp_type = i.types[xchg2];
4961 i.types[xchg2] = i.types[xchg1];
4962 i.types[xchg1] = temp_type;
c48dadc9
JB
4963
4964 temp_flags = i.flags[xchg2];
4965 i.flags[xchg2] = i.flags[xchg1];
4966 i.flags[xchg1] = temp_flags;
4967
050dfa73
MM
4968 temp_op = i.op[xchg2];
4969 i.op[xchg2] = i.op[xchg1];
4970 i.op[xchg1] = temp_op;
c48dadc9 4971
050dfa73
MM
4972 temp_reloc = i.reloc[xchg2];
4973 i.reloc[xchg2] = i.reloc[xchg1];
4974 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4975
4976 if (i.mask)
4977 {
4978 if (i.mask->operand == xchg1)
4979 i.mask->operand = xchg2;
4980 else if (i.mask->operand == xchg2)
4981 i.mask->operand = xchg1;
4982 }
4983 if (i.broadcast)
4984 {
4985 if (i.broadcast->operand == xchg1)
4986 i.broadcast->operand = xchg2;
4987 else if (i.broadcast->operand == xchg2)
4988 i.broadcast->operand = xchg1;
4989 }
4990 if (i.rounding)
4991 {
4992 if (i.rounding->operand == xchg1)
4993 i.rounding->operand = xchg2;
4994 else if (i.rounding->operand == xchg2)
4995 i.rounding->operand = xchg1;
4996 }
050dfa73
MM
4997}
4998
29b0f896 4999static void
e3bb37b5 5000swap_operands (void)
29b0f896 5001{
b7c61d9a 5002 switch (i.operands)
050dfa73 5003 {
c0f3af97 5004 case 5:
b7c61d9a 5005 case 4:
4d456e3d 5006 swap_2_operands (1, i.operands - 2);
1a0670f3 5007 /* Fall through. */
b7c61d9a
L
5008 case 3:
5009 case 2:
4d456e3d 5010 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5011 break;
5012 default:
5013 abort ();
29b0f896 5014 }
29b0f896
AM
5015
5016 if (i.mem_operands == 2)
5017 {
5018 const seg_entry *temp_seg;
5019 temp_seg = i.seg[0];
5020 i.seg[0] = i.seg[1];
5021 i.seg[1] = temp_seg;
5022 }
5023}
252b5132 5024
29b0f896
AM
5025/* Try to ensure constant immediates are represented in the smallest
5026 opcode possible. */
5027static void
e3bb37b5 5028optimize_imm (void)
29b0f896
AM
5029{
5030 char guess_suffix = 0;
5031 int op;
252b5132 5032
29b0f896
AM
5033 if (i.suffix)
5034 guess_suffix = i.suffix;
5035 else if (i.reg_operands)
5036 {
5037 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5038 We can't do this properly yet, i.e. excluding special register
5039 instances, but the following works for instructions with
5040 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5041 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5042 if (i.types[op].bitfield.class != Reg)
5043 continue;
5044 else if (i.types[op].bitfield.byte)
7ab9ffdd 5045 {
40fb9820
L
5046 guess_suffix = BYTE_MNEM_SUFFIX;
5047 break;
5048 }
bab6aec1 5049 else if (i.types[op].bitfield.word)
252b5132 5050 {
40fb9820
L
5051 guess_suffix = WORD_MNEM_SUFFIX;
5052 break;
5053 }
bab6aec1 5054 else if (i.types[op].bitfield.dword)
40fb9820
L
5055 {
5056 guess_suffix = LONG_MNEM_SUFFIX;
5057 break;
5058 }
bab6aec1 5059 else if (i.types[op].bitfield.qword)
40fb9820
L
5060 {
5061 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5062 break;
252b5132 5063 }
29b0f896
AM
5064 }
5065 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5066 guess_suffix = WORD_MNEM_SUFFIX;
5067
5068 for (op = i.operands; --op >= 0;)
40fb9820 5069 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5070 {
5071 switch (i.op[op].imms->X_op)
252b5132 5072 {
29b0f896
AM
5073 case O_constant:
5074 /* If a suffix is given, this operand may be shortened. */
5075 switch (guess_suffix)
252b5132 5076 {
29b0f896 5077 case LONG_MNEM_SUFFIX:
40fb9820
L
5078 i.types[op].bitfield.imm32 = 1;
5079 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5080 break;
5081 case WORD_MNEM_SUFFIX:
40fb9820
L
5082 i.types[op].bitfield.imm16 = 1;
5083 i.types[op].bitfield.imm32 = 1;
5084 i.types[op].bitfield.imm32s = 1;
5085 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5086 break;
5087 case BYTE_MNEM_SUFFIX:
40fb9820
L
5088 i.types[op].bitfield.imm8 = 1;
5089 i.types[op].bitfield.imm8s = 1;
5090 i.types[op].bitfield.imm16 = 1;
5091 i.types[op].bitfield.imm32 = 1;
5092 i.types[op].bitfield.imm32s = 1;
5093 i.types[op].bitfield.imm64 = 1;
29b0f896 5094 break;
252b5132 5095 }
252b5132 5096
29b0f896
AM
5097 /* If this operand is at most 16 bits, convert it
5098 to a signed 16 bit number before trying to see
5099 whether it will fit in an even smaller size.
5100 This allows a 16-bit operand such as $0xffe0 to
5101 be recognised as within Imm8S range. */
40fb9820 5102 if ((i.types[op].bitfield.imm16)
29b0f896 5103 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5104 {
29b0f896
AM
5105 i.op[op].imms->X_add_number =
5106 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5107 }
a28def75
L
5108#ifdef BFD64
5109 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5110 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5111 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5112 == 0))
5113 {
5114 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5115 ^ ((offsetT) 1 << 31))
5116 - ((offsetT) 1 << 31));
5117 }
a28def75 5118#endif
40fb9820 5119 i.types[op]
c6fb90c8
L
5120 = operand_type_or (i.types[op],
5121 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5122
29b0f896
AM
5123 /* We must avoid matching of Imm32 templates when 64bit
5124 only immediate is available. */
5125 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5126 i.types[op].bitfield.imm32 = 0;
29b0f896 5127 break;
252b5132 5128
29b0f896
AM
5129 case O_absent:
5130 case O_register:
5131 abort ();
5132
5133 /* Symbols and expressions. */
5134 default:
9cd96992
JB
5135 /* Convert symbolic operand to proper sizes for matching, but don't
5136 prevent matching a set of insns that only supports sizes other
5137 than those matching the insn suffix. */
5138 {
40fb9820 5139 i386_operand_type mask, allowed;
d3ce72d0 5140 const insn_template *t;
9cd96992 5141
0dfbf9d7
L
5142 operand_type_set (&mask, 0);
5143 operand_type_set (&allowed, 0);
40fb9820 5144
4eed87de
AM
5145 for (t = current_templates->start;
5146 t < current_templates->end;
5147 ++t)
bab6aec1
JB
5148 {
5149 allowed = operand_type_or (allowed, t->operand_types[op]);
5150 allowed = operand_type_and (allowed, anyimm);
5151 }
9cd96992
JB
5152 switch (guess_suffix)
5153 {
5154 case QWORD_MNEM_SUFFIX:
40fb9820
L
5155 mask.bitfield.imm64 = 1;
5156 mask.bitfield.imm32s = 1;
9cd96992
JB
5157 break;
5158 case LONG_MNEM_SUFFIX:
40fb9820 5159 mask.bitfield.imm32 = 1;
9cd96992
JB
5160 break;
5161 case WORD_MNEM_SUFFIX:
40fb9820 5162 mask.bitfield.imm16 = 1;
9cd96992
JB
5163 break;
5164 case BYTE_MNEM_SUFFIX:
40fb9820 5165 mask.bitfield.imm8 = 1;
9cd96992
JB
5166 break;
5167 default:
9cd96992
JB
5168 break;
5169 }
c6fb90c8 5170 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5171 if (!operand_type_all_zero (&allowed))
c6fb90c8 5172 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5173 }
29b0f896 5174 break;
252b5132 5175 }
29b0f896
AM
5176 }
5177}
47926f60 5178
29b0f896
AM
5179/* Try to use the smallest displacement type too. */
5180static void
e3bb37b5 5181optimize_disp (void)
29b0f896
AM
5182{
5183 int op;
3e73aa7c 5184
29b0f896 5185 for (op = i.operands; --op >= 0;)
40fb9820 5186 if (operand_type_check (i.types[op], disp))
252b5132 5187 {
b300c311 5188 if (i.op[op].disps->X_op == O_constant)
252b5132 5189 {
91d6fa6a 5190 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5191
40fb9820 5192 if (i.types[op].bitfield.disp16
91d6fa6a 5193 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5194 {
5195 /* If this operand is at most 16 bits, convert
5196 to a signed 16 bit number and don't use 64bit
5197 displacement. */
91d6fa6a 5198 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5199 i.types[op].bitfield.disp64 = 0;
b300c311 5200 }
a28def75
L
5201#ifdef BFD64
5202 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5203 if (i.types[op].bitfield.disp32
91d6fa6a 5204 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5205 {
5206 /* If this operand is at most 32 bits, convert
5207 to a signed 32 bit number and don't use 64bit
5208 displacement. */
91d6fa6a
NC
5209 op_disp &= (((offsetT) 2 << 31) - 1);
5210 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5211 i.types[op].bitfield.disp64 = 0;
b300c311 5212 }
a28def75 5213#endif
91d6fa6a 5214 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5215 {
40fb9820
L
5216 i.types[op].bitfield.disp8 = 0;
5217 i.types[op].bitfield.disp16 = 0;
5218 i.types[op].bitfield.disp32 = 0;
5219 i.types[op].bitfield.disp32s = 0;
5220 i.types[op].bitfield.disp64 = 0;
b300c311
L
5221 i.op[op].disps = 0;
5222 i.disp_operands--;
5223 }
5224 else if (flag_code == CODE_64BIT)
5225 {
91d6fa6a 5226 if (fits_in_signed_long (op_disp))
28a9d8f5 5227 {
40fb9820
L
5228 i.types[op].bitfield.disp64 = 0;
5229 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5230 }
0e1147d9 5231 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5232 && fits_in_unsigned_long (op_disp))
40fb9820 5233 i.types[op].bitfield.disp32 = 1;
b300c311 5234 }
40fb9820
L
5235 if ((i.types[op].bitfield.disp32
5236 || i.types[op].bitfield.disp32s
5237 || i.types[op].bitfield.disp16)
b5014f7a 5238 && fits_in_disp8 (op_disp))
40fb9820 5239 i.types[op].bitfield.disp8 = 1;
252b5132 5240 }
67a4f2b7
AO
5241 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5242 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5243 {
5244 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5245 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5246 i.types[op].bitfield.disp8 = 0;
5247 i.types[op].bitfield.disp16 = 0;
5248 i.types[op].bitfield.disp32 = 0;
5249 i.types[op].bitfield.disp32s = 0;
5250 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5251 }
5252 else
b300c311 5253 /* We only support 64bit displacement on constants. */
40fb9820 5254 i.types[op].bitfield.disp64 = 0;
252b5132 5255 }
29b0f896
AM
5256}
5257
4a1b91ea
L
5258/* Return 1 if there is a match in broadcast bytes between operand
5259 GIVEN and instruction template T. */
5260
5261static INLINE int
5262match_broadcast_size (const insn_template *t, unsigned int given)
5263{
5264 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5265 && i.types[given].bitfield.byte)
5266 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5267 && i.types[given].bitfield.word)
5268 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5269 && i.types[given].bitfield.dword)
5270 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5271 && i.types[given].bitfield.qword));
5272}
5273
6c30d220
L
5274/* Check if operands are valid for the instruction. */
5275
5276static int
5277check_VecOperands (const insn_template *t)
5278{
43234a1e 5279 unsigned int op;
e2195274
JB
5280 i386_cpu_flags cpu;
5281 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5282
5283 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5284 any one operand are implicity requiring AVX512VL support if the actual
5285 operand size is YMMword or XMMword. Since this function runs after
5286 template matching, there's no need to check for YMMword/XMMword in
5287 the template. */
5288 cpu = cpu_flags_and (t->cpu_flags, avx512);
5289 if (!cpu_flags_all_zero (&cpu)
5290 && !t->cpu_flags.bitfield.cpuavx512vl
5291 && !cpu_arch_flags.bitfield.cpuavx512vl)
5292 {
5293 for (op = 0; op < t->operands; ++op)
5294 {
5295 if (t->operand_types[op].bitfield.zmmword
5296 && (i.types[op].bitfield.ymmword
5297 || i.types[op].bitfield.xmmword))
5298 {
5299 i.error = unsupported;
5300 return 1;
5301 }
5302 }
5303 }
43234a1e 5304
6c30d220
L
5305 /* Without VSIB byte, we can't have a vector register for index. */
5306 if (!t->opcode_modifier.vecsib
5307 && i.index_reg
1b54b8d7
JB
5308 && (i.index_reg->reg_type.bitfield.xmmword
5309 || i.index_reg->reg_type.bitfield.ymmword
5310 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5311 {
5312 i.error = unsupported_vector_index_register;
5313 return 1;
5314 }
5315
ad8ecc81
MZ
5316 /* Check if default mask is allowed. */
5317 if (t->opcode_modifier.nodefmask
5318 && (!i.mask || i.mask->mask->reg_num == 0))
5319 {
5320 i.error = no_default_mask;
5321 return 1;
5322 }
5323
7bab8ab5
JB
5324 /* For VSIB byte, we need a vector register for index, and all vector
5325 registers must be distinct. */
5326 if (t->opcode_modifier.vecsib)
5327 {
5328 if (!i.index_reg
6c30d220 5329 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5330 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5331 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5332 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5333 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5334 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5335 {
5336 i.error = invalid_vsib_address;
5337 return 1;
5338 }
5339
43234a1e
L
5340 gas_assert (i.reg_operands == 2 || i.mask);
5341 if (i.reg_operands == 2 && !i.mask)
5342 {
3528c362 5343 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5344 gas_assert (i.types[0].bitfield.xmmword
5345 || i.types[0].bitfield.ymmword);
3528c362 5346 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5347 gas_assert (i.types[2].bitfield.xmmword
5348 || i.types[2].bitfield.ymmword);
43234a1e
L
5349 if (operand_check == check_none)
5350 return 0;
5351 if (register_number (i.op[0].regs)
5352 != register_number (i.index_reg)
5353 && register_number (i.op[2].regs)
5354 != register_number (i.index_reg)
5355 && register_number (i.op[0].regs)
5356 != register_number (i.op[2].regs))
5357 return 0;
5358 if (operand_check == check_error)
5359 {
5360 i.error = invalid_vector_register_set;
5361 return 1;
5362 }
5363 as_warn (_("mask, index, and destination registers should be distinct"));
5364 }
8444f82a
MZ
5365 else if (i.reg_operands == 1 && i.mask)
5366 {
3528c362 5367 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5368 && (i.types[1].bitfield.xmmword
5369 || i.types[1].bitfield.ymmword
5370 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5371 && (register_number (i.op[1].regs)
5372 == register_number (i.index_reg)))
5373 {
5374 if (operand_check == check_error)
5375 {
5376 i.error = invalid_vector_register_set;
5377 return 1;
5378 }
5379 if (operand_check != check_none)
5380 as_warn (_("index and destination registers should be distinct"));
5381 }
5382 }
43234a1e 5383 }
7bab8ab5 5384
43234a1e
L
5385 /* Check if broadcast is supported by the instruction and is applied
5386 to the memory operand. */
5387 if (i.broadcast)
5388 {
8e6e0792 5389 i386_operand_type type, overlap;
43234a1e
L
5390
5391 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5392 and its broadcast bytes match the memory operand. */
32546502 5393 op = i.broadcast->operand;
8e6e0792 5394 if (!t->opcode_modifier.broadcast
c48dadc9 5395 || !(i.flags[op] & Operand_Mem)
c39e5b26 5396 || (!i.types[op].bitfield.unspecified
4a1b91ea 5397 && !match_broadcast_size (t, op)))
43234a1e
L
5398 {
5399 bad_broadcast:
5400 i.error = unsupported_broadcast;
5401 return 1;
5402 }
8e6e0792 5403
4a1b91ea
L
5404 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5405 * i.broadcast->type);
8e6e0792 5406 operand_type_set (&type, 0);
4a1b91ea 5407 switch (i.broadcast->bytes)
8e6e0792 5408 {
4a1b91ea
L
5409 case 2:
5410 type.bitfield.word = 1;
5411 break;
5412 case 4:
5413 type.bitfield.dword = 1;
5414 break;
8e6e0792
JB
5415 case 8:
5416 type.bitfield.qword = 1;
5417 break;
5418 case 16:
5419 type.bitfield.xmmword = 1;
5420 break;
5421 case 32:
5422 type.bitfield.ymmword = 1;
5423 break;
5424 case 64:
5425 type.bitfield.zmmword = 1;
5426 break;
5427 default:
5428 goto bad_broadcast;
5429 }
5430
5431 overlap = operand_type_and (type, t->operand_types[op]);
5432 if (operand_type_all_zero (&overlap))
5433 goto bad_broadcast;
5434
5435 if (t->opcode_modifier.checkregsize)
5436 {
5437 unsigned int j;
5438
e2195274 5439 type.bitfield.baseindex = 1;
8e6e0792
JB
5440 for (j = 0; j < i.operands; ++j)
5441 {
5442 if (j != op
5443 && !operand_type_register_match(i.types[j],
5444 t->operand_types[j],
5445 type,
5446 t->operand_types[op]))
5447 goto bad_broadcast;
5448 }
5449 }
43234a1e
L
5450 }
5451 /* If broadcast is supported in this instruction, we need to check if
5452 operand of one-element size isn't specified without broadcast. */
5453 else if (t->opcode_modifier.broadcast && i.mem_operands)
5454 {
5455 /* Find memory operand. */
5456 for (op = 0; op < i.operands; op++)
8dc0818e 5457 if (i.flags[op] & Operand_Mem)
43234a1e
L
5458 break;
5459 gas_assert (op < i.operands);
5460 /* Check size of the memory operand. */
4a1b91ea 5461 if (match_broadcast_size (t, op))
43234a1e
L
5462 {
5463 i.error = broadcast_needed;
5464 return 1;
5465 }
5466 }
c39e5b26
JB
5467 else
5468 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5469
5470 /* Check if requested masking is supported. */
ae2387fe 5471 if (i.mask)
43234a1e 5472 {
ae2387fe
JB
5473 switch (t->opcode_modifier.masking)
5474 {
5475 case BOTH_MASKING:
5476 break;
5477 case MERGING_MASKING:
5478 if (i.mask->zeroing)
5479 {
5480 case 0:
5481 i.error = unsupported_masking;
5482 return 1;
5483 }
5484 break;
5485 case DYNAMIC_MASKING:
5486 /* Memory destinations allow only merging masking. */
5487 if (i.mask->zeroing && i.mem_operands)
5488 {
5489 /* Find memory operand. */
5490 for (op = 0; op < i.operands; op++)
c48dadc9 5491 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5492 break;
5493 gas_assert (op < i.operands);
5494 if (op == i.operands - 1)
5495 {
5496 i.error = unsupported_masking;
5497 return 1;
5498 }
5499 }
5500 break;
5501 default:
5502 abort ();
5503 }
43234a1e
L
5504 }
5505
5506 /* Check if masking is applied to dest operand. */
5507 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5508 {
5509 i.error = mask_not_on_destination;
5510 return 1;
5511 }
5512
43234a1e
L
5513 /* Check RC/SAE. */
5514 if (i.rounding)
5515 {
a80195f1
JB
5516 if (!t->opcode_modifier.sae
5517 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5518 {
5519 i.error = unsupported_rc_sae;
5520 return 1;
5521 }
5522 /* If the instruction has several immediate operands and one of
5523 them is rounding, the rounding operand should be the last
5524 immediate operand. */
5525 if (i.imm_operands > 1
5526 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5527 {
43234a1e 5528 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5529 return 1;
5530 }
6c30d220
L
5531 }
5532
43234a1e 5533 /* Check vector Disp8 operand. */
b5014f7a
JB
5534 if (t->opcode_modifier.disp8memshift
5535 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5536 {
5537 if (i.broadcast)
4a1b91ea 5538 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5539 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5540 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5541 else
5542 {
5543 const i386_operand_type *type = NULL;
5544
5545 i.memshift = 0;
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
7091c612 5548 {
4174bfff
JB
5549 if (t->opcode_modifier.evex == EVEXLIG)
5550 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5551 else if (t->operand_types[op].bitfield.xmmword
5552 + t->operand_types[op].bitfield.ymmword
5553 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5554 type = &t->operand_types[op];
5555 else if (!i.types[op].bitfield.unspecified)
5556 type = &i.types[op];
5557 }
3528c362 5558 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5559 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5560 {
5561 if (i.types[op].bitfield.zmmword)
5562 i.memshift = 6;
5563 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5564 i.memshift = 5;
5565 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5566 i.memshift = 4;
5567 }
5568
5569 if (type)
5570 {
5571 if (type->bitfield.zmmword)
5572 i.memshift = 6;
5573 else if (type->bitfield.ymmword)
5574 i.memshift = 5;
5575 else if (type->bitfield.xmmword)
5576 i.memshift = 4;
5577 }
5578
5579 /* For the check in fits_in_disp8(). */
5580 if (i.memshift == 0)
5581 i.memshift = -1;
5582 }
43234a1e
L
5583
5584 for (op = 0; op < i.operands; op++)
5585 if (operand_type_check (i.types[op], disp)
5586 && i.op[op].disps->X_op == O_constant)
5587 {
b5014f7a 5588 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5589 {
b5014f7a
JB
5590 i.types[op].bitfield.disp8 = 1;
5591 return 0;
43234a1e 5592 }
b5014f7a 5593 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5594 }
5595 }
b5014f7a
JB
5596
5597 i.memshift = 0;
43234a1e 5598
6c30d220
L
5599 return 0;
5600}
5601
43f3e2ee 5602/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5603 operand types. */
5604
5605static int
5606VEX_check_operands (const insn_template *t)
5607{
86fa6981 5608 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5609 {
86fa6981 5610 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5611 if (!is_evex_encoding (t))
86fa6981
L
5612 {
5613 i.error = unsupported;
5614 return 1;
5615 }
5616 return 0;
43234a1e
L
5617 }
5618
a683cc34 5619 if (!t->opcode_modifier.vex)
86fa6981
L
5620 {
5621 /* This instruction template doesn't have VEX prefix. */
5622 if (i.vec_encoding != vex_encoding_default)
5623 {
5624 i.error = unsupported;
5625 return 1;
5626 }
5627 return 0;
5628 }
a683cc34 5629
9d3bf266
JB
5630 /* Check the special Imm4 cases; must be the first operand. */
5631 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5632 {
5633 if (i.op[0].imms->X_op != O_constant
5634 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5635 {
a65babc9 5636 i.error = bad_imm4;
891edac4
L
5637 return 1;
5638 }
a683cc34 5639
9d3bf266
JB
5640 /* Turn off Imm<N> so that update_imm won't complain. */
5641 operand_type_set (&i.types[0], 0);
a683cc34
SP
5642 }
5643
5644 return 0;
5645}
5646
d3ce72d0 5647static const insn_template *
83b16ac6 5648match_template (char mnem_suffix)
29b0f896
AM
5649{
5650 /* Points to template once we've found it. */
d3ce72d0 5651 const insn_template *t;
40fb9820 5652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5653 i386_operand_type overlap4;
29b0f896 5654 unsigned int found_reverse_match;
dc2be329 5655 i386_opcode_modifier suffix_check;
40fb9820 5656 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5657 int addr_prefix_disp;
a5c311ca 5658 unsigned int j;
3ac21baa 5659 unsigned int found_cpu_match, size_match;
45664ddb 5660 unsigned int check_register;
5614d22c 5661 enum i386_error specific_error = 0;
29b0f896 5662
c0f3af97
L
5663#if MAX_OPERANDS != 5
5664# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5665#endif
5666
29b0f896 5667 found_reverse_match = 0;
539e75ad 5668 addr_prefix_disp = -1;
40fb9820 5669
dc2be329 5670 /* Prepare for mnemonic suffix check. */
40fb9820 5671 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5672 switch (mnem_suffix)
5673 {
5674 case BYTE_MNEM_SUFFIX:
5675 suffix_check.no_bsuf = 1;
5676 break;
5677 case WORD_MNEM_SUFFIX:
5678 suffix_check.no_wsuf = 1;
5679 break;
5680 case SHORT_MNEM_SUFFIX:
5681 suffix_check.no_ssuf = 1;
5682 break;
5683 case LONG_MNEM_SUFFIX:
5684 suffix_check.no_lsuf = 1;
5685 break;
5686 case QWORD_MNEM_SUFFIX:
5687 suffix_check.no_qsuf = 1;
5688 break;
5689 default:
5690 /* NB: In Intel syntax, normally we can check for memory operand
5691 size when there is no mnemonic suffix. But jmp and call have
5692 2 different encodings with Dword memory operand size, one with
5693 No_ldSuf and the other without. i.suffix is set to
5694 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5695 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5696 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5697 }
5698
01559ecc
L
5699 /* Must have right number of operands. */
5700 i.error = number_of_operands_mismatch;
5701
45aa61fe 5702 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5703 {
539e75ad 5704 addr_prefix_disp = -1;
dbbc8b7e 5705 found_reverse_match = 0;
539e75ad 5706
29b0f896
AM
5707 if (i.operands != t->operands)
5708 continue;
5709
50aecf8c 5710 /* Check processor support. */
a65babc9 5711 i.error = unsupported;
c0f3af97
L
5712 found_cpu_match = (cpu_flags_match (t)
5713 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5714 if (!found_cpu_match)
5715 continue;
5716
e1d4d893 5717 /* Check AT&T mnemonic. */
a65babc9 5718 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5719 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5720 continue;
5721
e92bae62 5722 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5723 i.error = unsupported_syntax;
5c07affc 5724 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5725 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5726 || (intel64 && t->opcode_modifier.amd64)
5727 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5728 continue;
5729
dc2be329 5730 /* Check the suffix. */
a65babc9 5731 i.error = invalid_instruction_suffix;
dc2be329
L
5732 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5738 continue;
29b0f896 5739
3ac21baa
JB
5740 size_match = operand_size_match (t);
5741 if (!size_match)
7d5e4556 5742 continue;
539e75ad 5743
6f2f06be
JB
5744 /* This is intentionally not
5745
0cfa3eb3 5746 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5747
5748 as the case of a missing * on the operand is accepted (perhaps with
5749 a warning, issued further down). */
0cfa3eb3 5750 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5751 {
5752 i.error = operand_type_mismatch;
5753 continue;
5754 }
5755
5c07affc
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 operand_types[j] = t->operand_types[j];
5758
45aa61fe
AM
5759 /* In general, don't allow 64-bit operands in 32-bit mode. */
5760 if (i.suffix == QWORD_MNEM_SUFFIX
5761 && flag_code != CODE_64BIT
5762 && (intel_syntax
40fb9820 5763 ? (!t->opcode_modifier.ignoresize
625cbd7a 5764 && !t->opcode_modifier.broadcast
45aa61fe
AM
5765 && !intel_float_operand (t->name))
5766 : intel_float_operand (t->name) != 2)
3528c362
JB
5767 && ((operand_types[0].bitfield.class != RegMMX
5768 && operand_types[0].bitfield.class != RegSIMD)
5769 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5770 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5771 && (t->base_opcode != 0x0fc7
5772 || t->extension_opcode != 1 /* cmpxchg8b */))
5773 continue;
5774
192dc9c6
JB
5775 /* In general, don't allow 32-bit operands on pre-386. */
5776 else if (i.suffix == LONG_MNEM_SUFFIX
5777 && !cpu_arch_flags.bitfield.cpui386
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
3528c362
JB
5782 && ((operand_types[0].bitfield.class != RegMMX
5783 && operand_types[0].bitfield.class != RegSIMD)
5784 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5785 && operand_types[t->operands > 1].bitfield.class
5786 != RegSIMD)))
192dc9c6
JB
5787 continue;
5788
29b0f896 5789 /* Do not verify operands when there are none. */
50aecf8c 5790 else
29b0f896 5791 {
c6fb90c8 5792 if (!t->operands)
2dbab7d5
L
5793 /* We've found a match; break out of loop. */
5794 break;
29b0f896 5795 }
252b5132 5796
539e75ad
L
5797 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5798 into Disp32/Disp16/Disp32 operand. */
5799 if (i.prefix[ADDR_PREFIX] != 0)
5800 {
40fb9820 5801 /* There should be only one Disp operand. */
539e75ad
L
5802 switch (flag_code)
5803 {
5804 case CODE_16BIT:
40fb9820
L
5805 for (j = 0; j < MAX_OPERANDS; j++)
5806 {
5807 if (operand_types[j].bitfield.disp16)
5808 {
5809 addr_prefix_disp = j;
5810 operand_types[j].bitfield.disp32 = 1;
5811 operand_types[j].bitfield.disp16 = 0;
5812 break;
5813 }
5814 }
539e75ad
L
5815 break;
5816 case CODE_32BIT:
40fb9820
L
5817 for (j = 0; j < MAX_OPERANDS; j++)
5818 {
5819 if (operand_types[j].bitfield.disp32)
5820 {
5821 addr_prefix_disp = j;
5822 operand_types[j].bitfield.disp32 = 0;
5823 operand_types[j].bitfield.disp16 = 1;
5824 break;
5825 }
5826 }
539e75ad
L
5827 break;
5828 case CODE_64BIT:
40fb9820
L
5829 for (j = 0; j < MAX_OPERANDS; j++)
5830 {
5831 if (operand_types[j].bitfield.disp64)
5832 {
5833 addr_prefix_disp = j;
5834 operand_types[j].bitfield.disp64 = 0;
5835 operand_types[j].bitfield.disp32 = 1;
5836 break;
5837 }
5838 }
539e75ad
L
5839 break;
5840 }
539e75ad
L
5841 }
5842
02a86693
L
5843 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5844 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5845 continue;
5846
56ffb741 5847 /* We check register size if needed. */
e2195274
JB
5848 if (t->opcode_modifier.checkregsize)
5849 {
5850 check_register = (1 << t->operands) - 1;
5851 if (i.broadcast)
5852 check_register &= ~(1 << i.broadcast->operand);
5853 }
5854 else
5855 check_register = 0;
5856
c6fb90c8 5857 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5858 switch (t->operands)
5859 {
5860 case 1:
40fb9820 5861 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5862 continue;
5863 break;
5864 case 2:
33eaf5de 5865 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5866 only in 32bit mode and we can use opcode 0x90. In 64bit
5867 mode, we can't use 0x90 for xchg %eax, %eax since it should
5868 zero-extend %eax to %rax. */
5869 if (flag_code == CODE_64BIT
5870 && t->base_opcode == 0x90
75e5731b
JB
5871 && i.types[0].bitfield.instance == Accum
5872 && i.types[0].bitfield.dword
5873 && i.types[1].bitfield.instance == Accum
5874 && i.types[1].bitfield.dword)
8b38ad71 5875 continue;
1212781b
JB
5876 /* xrelease mov %eax, <disp> is another special case. It must not
5877 match the accumulator-only encoding of mov. */
5878 if (flag_code != CODE_64BIT
5879 && i.hle_prefix
5880 && t->base_opcode == 0xa0
75e5731b 5881 && i.types[0].bitfield.instance == Accum
8dc0818e 5882 && (i.flags[1] & Operand_Mem))
1212781b 5883 continue;
f5eb1d70
JB
5884 /* Fall through. */
5885
5886 case 3:
3ac21baa
JB
5887 if (!(size_match & MATCH_STRAIGHT))
5888 goto check_reverse;
64c49ab3
JB
5889 /* Reverse direction of operands if swapping is possible in the first
5890 place (operands need to be symmetric) and
5891 - the load form is requested, and the template is a store form,
5892 - the store form is requested, and the template is a load form,
5893 - the non-default (swapped) form is requested. */
5894 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5895 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5896 && !operand_type_all_zero (&overlap1))
5897 switch (i.dir_encoding)
5898 {
5899 case dir_encoding_load:
5900 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5901 || t->opcode_modifier.regmem)
64c49ab3
JB
5902 goto check_reverse;
5903 break;
5904
5905 case dir_encoding_store:
5906 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5907 && !t->opcode_modifier.regmem)
64c49ab3
JB
5908 goto check_reverse;
5909 break;
5910
5911 case dir_encoding_swap:
5912 goto check_reverse;
5913
5914 case dir_encoding_default:
5915 break;
5916 }
86fa6981 5917 /* If we want store form, we skip the current load. */
64c49ab3
JB
5918 if ((i.dir_encoding == dir_encoding_store
5919 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5920 && i.mem_operands == 0
5921 && t->opcode_modifier.load)
fa99fab2 5922 continue;
1a0670f3 5923 /* Fall through. */
f48ff2ae 5924 case 4:
c0f3af97 5925 case 5:
c6fb90c8 5926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5927 if (!operand_type_match (overlap0, i.types[0])
5928 || !operand_type_match (overlap1, i.types[1])
e2195274 5929 || ((check_register & 3) == 3
dc821c5f 5930 && !operand_type_register_match (i.types[0],
40fb9820 5931 operand_types[0],
dc821c5f 5932 i.types[1],
40fb9820 5933 operand_types[1])))
29b0f896
AM
5934 {
5935 /* Check if other direction is valid ... */
38e314eb 5936 if (!t->opcode_modifier.d)
29b0f896
AM
5937 continue;
5938
b6169b20 5939check_reverse:
3ac21baa
JB
5940 if (!(size_match & MATCH_REVERSE))
5941 continue;
29b0f896 5942 /* Try reversing direction of operands. */
f5eb1d70
JB
5943 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5944 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5945 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5946 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5947 || (check_register
dc821c5f 5948 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5949 operand_types[i.operands - 1],
5950 i.types[i.operands - 1],
45664ddb 5951 operand_types[0])))
29b0f896
AM
5952 {
5953 /* Does not match either direction. */
5954 continue;
5955 }
38e314eb 5956 /* found_reverse_match holds which of D or FloatR
29b0f896 5957 we've found. */
38e314eb
JB
5958 if (!t->opcode_modifier.d)
5959 found_reverse_match = 0;
5960 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5961 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5962 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5963 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
5964 || operand_types[0].bitfield.class == RegMMX
5965 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
5966 || is_any_vex_encoding(t))
5967 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5968 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5969 else
38e314eb 5970 found_reverse_match = Opcode_D;
40fb9820 5971 if (t->opcode_modifier.floatr)
8a2ed489 5972 found_reverse_match |= Opcode_FloatR;
29b0f896 5973 }
f48ff2ae 5974 else
29b0f896 5975 {
f48ff2ae 5976 /* Found a forward 2 operand match here. */
d1cbb4db
L
5977 switch (t->operands)
5978 {
c0f3af97
L
5979 case 5:
5980 overlap4 = operand_type_and (i.types[4],
5981 operand_types[4]);
1a0670f3 5982 /* Fall through. */
d1cbb4db 5983 case 4:
c6fb90c8
L
5984 overlap3 = operand_type_and (i.types[3],
5985 operand_types[3]);
1a0670f3 5986 /* Fall through. */
d1cbb4db 5987 case 3:
c6fb90c8
L
5988 overlap2 = operand_type_and (i.types[2],
5989 operand_types[2]);
d1cbb4db
L
5990 break;
5991 }
29b0f896 5992
f48ff2ae
L
5993 switch (t->operands)
5994 {
c0f3af97
L
5995 case 5:
5996 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5997 || !operand_type_register_match (i.types[3],
c0f3af97 5998 operand_types[3],
c0f3af97
L
5999 i.types[4],
6000 operand_types[4]))
6001 continue;
1a0670f3 6002 /* Fall through. */
f48ff2ae 6003 case 4:
40fb9820 6004 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6005 || ((check_register & 0xa) == 0xa
6006 && !operand_type_register_match (i.types[1],
f7768225
JB
6007 operand_types[1],
6008 i.types[3],
e2195274
JB
6009 operand_types[3]))
6010 || ((check_register & 0xc) == 0xc
6011 && !operand_type_register_match (i.types[2],
6012 operand_types[2],
6013 i.types[3],
6014 operand_types[3])))
f48ff2ae 6015 continue;
1a0670f3 6016 /* Fall through. */
f48ff2ae
L
6017 case 3:
6018 /* Here we make use of the fact that there are no
23e42951 6019 reverse match 3 operand instructions. */
40fb9820 6020 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6021 || ((check_register & 5) == 5
6022 && !operand_type_register_match (i.types[0],
23e42951
JB
6023 operand_types[0],
6024 i.types[2],
e2195274
JB
6025 operand_types[2]))
6026 || ((check_register & 6) == 6
6027 && !operand_type_register_match (i.types[1],
6028 operand_types[1],
6029 i.types[2],
6030 operand_types[2])))
f48ff2ae
L
6031 continue;
6032 break;
6033 }
29b0f896 6034 }
f48ff2ae 6035 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6036 slip through to break. */
6037 }
3629bb00 6038 if (!found_cpu_match)
dbbc8b7e 6039 continue;
c0f3af97 6040
5614d22c
JB
6041 /* Check if vector and VEX operands are valid. */
6042 if (check_VecOperands (t) || VEX_check_operands (t))
6043 {
6044 specific_error = i.error;
6045 continue;
6046 }
a683cc34 6047
29b0f896
AM
6048 /* We've found a match; break out of loop. */
6049 break;
6050 }
6051
6052 if (t == current_templates->end)
6053 {
6054 /* We found no match. */
a65babc9 6055 const char *err_msg;
5614d22c 6056 switch (specific_error ? specific_error : i.error)
a65babc9
L
6057 {
6058 default:
6059 abort ();
86e026a4 6060 case operand_size_mismatch:
a65babc9
L
6061 err_msg = _("operand size mismatch");
6062 break;
6063 case operand_type_mismatch:
6064 err_msg = _("operand type mismatch");
6065 break;
6066 case register_type_mismatch:
6067 err_msg = _("register type mismatch");
6068 break;
6069 case number_of_operands_mismatch:
6070 err_msg = _("number of operands mismatch");
6071 break;
6072 case invalid_instruction_suffix:
6073 err_msg = _("invalid instruction suffix");
6074 break;
6075 case bad_imm4:
4a2608e3 6076 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6077 break;
a65babc9
L
6078 case unsupported_with_intel_mnemonic:
6079 err_msg = _("unsupported with Intel mnemonic");
6080 break;
6081 case unsupported_syntax:
6082 err_msg = _("unsupported syntax");
6083 break;
6084 case unsupported:
35262a23 6085 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6086 current_templates->start->name);
6087 return NULL;
6c30d220
L
6088 case invalid_vsib_address:
6089 err_msg = _("invalid VSIB address");
6090 break;
7bab8ab5
JB
6091 case invalid_vector_register_set:
6092 err_msg = _("mask, index, and destination registers must be distinct");
6093 break;
6c30d220
L
6094 case unsupported_vector_index_register:
6095 err_msg = _("unsupported vector index register");
6096 break;
43234a1e
L
6097 case unsupported_broadcast:
6098 err_msg = _("unsupported broadcast");
6099 break;
43234a1e
L
6100 case broadcast_needed:
6101 err_msg = _("broadcast is needed for operand of such type");
6102 break;
6103 case unsupported_masking:
6104 err_msg = _("unsupported masking");
6105 break;
6106 case mask_not_on_destination:
6107 err_msg = _("mask not on destination operand");
6108 break;
6109 case no_default_mask:
6110 err_msg = _("default mask isn't allowed");
6111 break;
6112 case unsupported_rc_sae:
6113 err_msg = _("unsupported static rounding/sae");
6114 break;
6115 case rc_sae_operand_not_last_imm:
6116 if (intel_syntax)
6117 err_msg = _("RC/SAE operand must precede immediate operands");
6118 else
6119 err_msg = _("RC/SAE operand must follow immediate operands");
6120 break;
6121 case invalid_register_operand:
6122 err_msg = _("invalid register operand");
6123 break;
a65babc9
L
6124 }
6125 as_bad (_("%s for `%s'"), err_msg,
891edac4 6126 current_templates->start->name);
fa99fab2 6127 return NULL;
29b0f896 6128 }
252b5132 6129
29b0f896
AM
6130 if (!quiet_warnings)
6131 {
6132 if (!intel_syntax
0cfa3eb3 6133 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6134 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6135
40fb9820
L
6136 if (t->opcode_modifier.isprefix
6137 && t->opcode_modifier.ignoresize)
29b0f896
AM
6138 {
6139 /* Warn them that a data or address size prefix doesn't
6140 affect assembly of the next line of code. */
6141 as_warn (_("stand-alone `%s' prefix"), t->name);
6142 }
6143 }
6144
6145 /* Copy the template we found. */
6146 i.tm = *t;
539e75ad
L
6147
6148 if (addr_prefix_disp != -1)
6149 i.tm.operand_types[addr_prefix_disp]
6150 = operand_types[addr_prefix_disp];
6151
29b0f896
AM
6152 if (found_reverse_match)
6153 {
dfd69174
JB
6154 /* If we found a reverse match we must alter the opcode direction
6155 bit and clear/flip the regmem modifier one. found_reverse_match
6156 holds bits to change (different for int & float insns). */
29b0f896
AM
6157
6158 i.tm.base_opcode ^= found_reverse_match;
6159
f5eb1d70
JB
6160 i.tm.operand_types[0] = operand_types[i.operands - 1];
6161 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6162
6163 /* Certain SIMD insns have their load forms specified in the opcode
6164 table, and hence we need to _set_ RegMem instead of clearing it.
6165 We need to avoid setting the bit though on insns like KMOVW. */
6166 i.tm.opcode_modifier.regmem
6167 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6168 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6169 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6170 }
6171
fa99fab2 6172 return t;
29b0f896
AM
6173}
6174
6175static int
e3bb37b5 6176check_string (void)
29b0f896 6177{
51c8edf6
JB
6178 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6179 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6180
51c8edf6 6181 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6182 {
51c8edf6
JB
6183 as_bad (_("`%s' operand %u must use `%ses' segment"),
6184 i.tm.name,
6185 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6186 register_prefix);
6187 return 0;
29b0f896 6188 }
51c8edf6
JB
6189
6190 /* There's only ever one segment override allowed per instruction.
6191 This instruction possibly has a legal segment override on the
6192 second operand, so copy the segment to where non-string
6193 instructions store it, allowing common code. */
6194 i.seg[op] = i.seg[1];
6195
29b0f896
AM
6196 return 1;
6197}
6198
6199static int
543613e9 6200process_suffix (void)
29b0f896
AM
6201{
6202 /* If matched instruction specifies an explicit instruction mnemonic
6203 suffix, use it. */
673fe0f0 6204 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6205 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6206 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6207 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6208 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6209 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6210 else if (i.reg_operands
6211 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6212 {
6213 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6214 based on GPR operands. */
29b0f896
AM
6215 if (!i.suffix)
6216 {
6217 /* We take i.suffix from the last register operand specified,
6218 Destination register type is more significant than source
381d071f
L
6219 register type. crc32 in SSE4.2 prefers source register
6220 type. */
bab6aec1
JB
6221 if (i.tm.base_opcode == 0xf20f38f0
6222 && i.types[0].bitfield.class == Reg)
381d071f 6223 {
556059dd
JB
6224 if (i.types[0].bitfield.byte)
6225 i.suffix = BYTE_MNEM_SUFFIX;
6226 else if (i.types[0].bitfield.word)
40fb9820 6227 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6228 else if (i.types[0].bitfield.dword)
40fb9820 6229 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6230 else if (i.types[0].bitfield.qword)
40fb9820 6231 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6232 }
6233
6234 if (!i.suffix)
6235 {
6236 int op;
6237
556059dd 6238 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6239 {
6240 /* We have to know the operand size for crc32. */
6241 as_bad (_("ambiguous memory operand size for `%s`"),
6242 i.tm.name);
6243 return 0;
6244 }
6245
381d071f 6246 for (op = i.operands; --op >= 0;)
75e5731b
JB
6247 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6248 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6249 {
bab6aec1 6250 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6251 continue;
6252 if (i.types[op].bitfield.byte)
6253 i.suffix = BYTE_MNEM_SUFFIX;
6254 else if (i.types[op].bitfield.word)
6255 i.suffix = WORD_MNEM_SUFFIX;
6256 else if (i.types[op].bitfield.dword)
6257 i.suffix = LONG_MNEM_SUFFIX;
6258 else if (i.types[op].bitfield.qword)
6259 i.suffix = QWORD_MNEM_SUFFIX;
6260 else
6261 continue;
6262 break;
381d071f
L
6263 }
6264 }
29b0f896
AM
6265 }
6266 else if (i.suffix == BYTE_MNEM_SUFFIX)
6267 {
2eb952a4
L
6268 if (intel_syntax
6269 && i.tm.opcode_modifier.ignoresize
6270 && i.tm.opcode_modifier.no_bsuf)
6271 i.suffix = 0;
6272 else if (!check_byte_reg ())
29b0f896
AM
6273 return 0;
6274 }
6275 else if (i.suffix == LONG_MNEM_SUFFIX)
6276 {
2eb952a4
L
6277 if (intel_syntax
6278 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6279 && i.tm.opcode_modifier.no_lsuf
6280 && !i.tm.opcode_modifier.todword
6281 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6282 i.suffix = 0;
6283 else if (!check_long_reg ())
29b0f896
AM
6284 return 0;
6285 }
6286 else if (i.suffix == QWORD_MNEM_SUFFIX)
6287 {
955e1e6a
L
6288 if (intel_syntax
6289 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6290 && i.tm.opcode_modifier.no_qsuf
6291 && !i.tm.opcode_modifier.todword
6292 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6293 i.suffix = 0;
6294 else if (!check_qword_reg ())
29b0f896
AM
6295 return 0;
6296 }
6297 else if (i.suffix == WORD_MNEM_SUFFIX)
6298 {
2eb952a4
L
6299 if (intel_syntax
6300 && i.tm.opcode_modifier.ignoresize
6301 && i.tm.opcode_modifier.no_wsuf)
6302 i.suffix = 0;
6303 else if (!check_word_reg ())
29b0f896
AM
6304 return 0;
6305 }
40fb9820 6306 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6307 /* Do nothing if the instruction is going to ignore the prefix. */
6308 ;
6309 else
6310 abort ();
6311 }
40fb9820 6312 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6313 && !i.suffix
6314 /* exclude fldenv/frstor/fsave/fstenv */
3036c899
JB
6315 && i.tm.opcode_modifier.no_ssuf
6316 /* exclude sysret */
6317 && i.tm.base_opcode != 0x0f07)
29b0f896 6318 {
13e600d0
JB
6319 i.suffix = stackop_size;
6320 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6321 {
6322 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6323 .code16gcc directive to support 16-bit mode with
6324 32-bit address. For IRET without a suffix, generate
6325 16-bit IRET (opcode 0xcf) to return from an interrupt
6326 handler. */
13e600d0
JB
6327 if (i.tm.base_opcode == 0xcf)
6328 {
6329 i.suffix = WORD_MNEM_SUFFIX;
6330 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6331 }
6332 /* Warn about changed behavior for segment register push/pop. */
6333 else if ((i.tm.base_opcode | 1) == 0x07)
6334 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6335 i.tm.name);
06f74c5c 6336 }
29b0f896 6337 }
9306ca4a
JB
6338 else if (intel_syntax
6339 && !i.suffix
0cfa3eb3
JB
6340 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6341 || i.tm.opcode_modifier.jump == JUMP_BYTE
6342 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6343 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6344 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6345 {
6346 switch (flag_code)
6347 {
6348 case CODE_64BIT:
40fb9820 6349 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6350 {
6351 i.suffix = QWORD_MNEM_SUFFIX;
6352 break;
6353 }
1a0670f3 6354 /* Fall through. */
9306ca4a 6355 case CODE_32BIT:
40fb9820 6356 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6357 i.suffix = LONG_MNEM_SUFFIX;
6358 break;
6359 case CODE_16BIT:
40fb9820 6360 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6361 i.suffix = WORD_MNEM_SUFFIX;
6362 break;
6363 }
6364 }
252b5132 6365
9306ca4a 6366 if (!i.suffix)
29b0f896 6367 {
9306ca4a
JB
6368 if (!intel_syntax)
6369 {
40fb9820 6370 if (i.tm.opcode_modifier.w)
9306ca4a 6371 {
4eed87de
AM
6372 as_bad (_("no instruction mnemonic suffix given and "
6373 "no register operands; can't size instruction"));
9306ca4a
JB
6374 return 0;
6375 }
6376 }
6377 else
6378 {
40fb9820 6379 unsigned int suffixes;
7ab9ffdd 6380
40fb9820
L
6381 suffixes = !i.tm.opcode_modifier.no_bsuf;
6382 if (!i.tm.opcode_modifier.no_wsuf)
6383 suffixes |= 1 << 1;
6384 if (!i.tm.opcode_modifier.no_lsuf)
6385 suffixes |= 1 << 2;
fc4adea1 6386 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6387 suffixes |= 1 << 3;
6388 if (!i.tm.opcode_modifier.no_ssuf)
6389 suffixes |= 1 << 4;
c2b9da16 6390 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6391 suffixes |= 1 << 5;
6392
6393 /* There are more than suffix matches. */
6394 if (i.tm.opcode_modifier.w
9306ca4a 6395 || ((suffixes & (suffixes - 1))
40fb9820
L
6396 && !i.tm.opcode_modifier.defaultsize
6397 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6398 {
6399 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6400 return 0;
6401 }
6402 }
29b0f896 6403 }
252b5132 6404
d2224064
JB
6405 /* Change the opcode based on the operand size given by i.suffix. */
6406 switch (i.suffix)
29b0f896 6407 {
d2224064
JB
6408 /* Size floating point instruction. */
6409 case LONG_MNEM_SUFFIX:
6410 if (i.tm.opcode_modifier.floatmf)
6411 {
6412 i.tm.base_opcode ^= 4;
6413 break;
6414 }
6415 /* fall through */
6416 case WORD_MNEM_SUFFIX:
6417 case QWORD_MNEM_SUFFIX:
29b0f896 6418 /* It's not a byte, select word/dword operation. */
40fb9820 6419 if (i.tm.opcode_modifier.w)
29b0f896 6420 {
40fb9820 6421 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6422 i.tm.base_opcode |= 8;
6423 else
6424 i.tm.base_opcode |= 1;
6425 }
d2224064
JB
6426 /* fall through */
6427 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6428 /* Now select between word & dword operations via the operand
6429 size prefix, except for instructions that will ignore this
6430 prefix anyway. */
75c0a438 6431 if (i.reg_operands > 0
bab6aec1 6432 && i.types[0].bitfield.class == Reg
75c0a438 6433 && i.tm.opcode_modifier.addrprefixopreg
474da251 6434 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6435 || i.operands == 1))
cb712a9e 6436 {
ca61edf2
L
6437 /* The address size override prefix changes the size of the
6438 first operand. */
40fb9820 6439 if ((flag_code == CODE_32BIT
75c0a438 6440 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6441 || (flag_code != CODE_32BIT
75c0a438 6442 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6443 if (!add_prefix (ADDR_PREFIX_OPCODE))
6444 return 0;
6445 }
6446 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6447 && !i.tm.opcode_modifier.ignoresize
6448 && !i.tm.opcode_modifier.floatmf
a38d7118 6449 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6450 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6451 || (flag_code == CODE_64BIT
0cfa3eb3 6452 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6453 {
6454 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6455
0cfa3eb3 6456 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6457 prefix = ADDR_PREFIX_OPCODE;
252b5132 6458
29b0f896
AM
6459 if (!add_prefix (prefix))
6460 return 0;
24eab124 6461 }
252b5132 6462
29b0f896
AM
6463 /* Set mode64 for an operand. */
6464 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6465 && flag_code == CODE_64BIT
d2224064 6466 && !i.tm.opcode_modifier.norex64
46e883c5 6467 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6468 need rex64. */
6469 && ! (i.operands == 2
6470 && i.tm.base_opcode == 0x90
6471 && i.tm.extension_opcode == None
75e5731b
JB
6472 && i.types[0].bitfield.instance == Accum
6473 && i.types[0].bitfield.qword
6474 && i.types[1].bitfield.instance == Accum
6475 && i.types[1].bitfield.qword))
d2224064 6476 i.rex |= REX_W;
3e73aa7c 6477
d2224064 6478 break;
29b0f896 6479 }
7ecd2f8b 6480
c0a30a9f
L
6481 if (i.reg_operands != 0
6482 && i.operands > 1
6483 && i.tm.opcode_modifier.addrprefixopreg
474da251 6484 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6485 {
6486 /* Check invalid register operand when the address size override
6487 prefix changes the size of register operands. */
6488 unsigned int op;
6489 enum { need_word, need_dword, need_qword } need;
6490
6491 if (flag_code == CODE_32BIT)
6492 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6493 else
6494 {
6495 if (i.prefix[ADDR_PREFIX])
6496 need = need_dword;
6497 else
6498 need = flag_code == CODE_64BIT ? need_qword : need_word;
6499 }
6500
6501 for (op = 0; op < i.operands; op++)
bab6aec1 6502 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6503 && ((need == need_word
6504 && !i.op[op].regs->reg_type.bitfield.word)
6505 || (need == need_dword
6506 && !i.op[op].regs->reg_type.bitfield.dword)
6507 || (need == need_qword
6508 && !i.op[op].regs->reg_type.bitfield.qword)))
6509 {
6510 as_bad (_("invalid register operand size for `%s'"),
6511 i.tm.name);
6512 return 0;
6513 }
6514 }
6515
29b0f896
AM
6516 return 1;
6517}
3e73aa7c 6518
29b0f896 6519static int
543613e9 6520check_byte_reg (void)
29b0f896
AM
6521{
6522 int op;
543613e9 6523
29b0f896
AM
6524 for (op = i.operands; --op >= 0;)
6525 {
dc821c5f 6526 /* Skip non-register operands. */
bab6aec1 6527 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6528 continue;
6529
29b0f896
AM
6530 /* If this is an eight bit register, it's OK. If it's the 16 or
6531 32 bit version of an eight bit register, we will just use the
6532 low portion, and that's OK too. */
dc821c5f 6533 if (i.types[op].bitfield.byte)
29b0f896
AM
6534 continue;
6535
5a819eb9 6536 /* I/O port address operands are OK too. */
75e5731b
JB
6537 if (i.tm.operand_types[op].bitfield.instance == RegD
6538 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6539 continue;
6540
9344ff29
L
6541 /* crc32 doesn't generate this warning. */
6542 if (i.tm.base_opcode == 0xf20f38f0)
6543 continue;
6544
dc821c5f
JB
6545 if ((i.types[op].bitfield.word
6546 || i.types[op].bitfield.dword
6547 || i.types[op].bitfield.qword)
5a819eb9
JB
6548 && i.op[op].regs->reg_num < 4
6549 /* Prohibit these changes in 64bit mode, since the lowering
6550 would be more complicated. */
6551 && flag_code != CODE_64BIT)
29b0f896 6552 {
29b0f896 6553#if REGISTER_WARNINGS
5a819eb9 6554 if (!quiet_warnings)
a540244d
L
6555 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6556 register_prefix,
dc821c5f 6557 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6558 ? REGNAM_AL - REGNAM_AX
6559 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6560 register_prefix,
29b0f896
AM
6561 i.op[op].regs->reg_name,
6562 i.suffix);
6563#endif
6564 continue;
6565 }
6566 /* Any other register is bad. */
bab6aec1 6567 if (i.types[op].bitfield.class == Reg
3528c362
JB
6568 || i.types[op].bitfield.class == RegMMX
6569 || i.types[op].bitfield.class == RegSIMD
00cee14f 6570 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6571 || i.types[op].bitfield.class == RegCR
6572 || i.types[op].bitfield.class == RegDR
6573 || i.types[op].bitfield.class == RegTR)
29b0f896 6574 {
a540244d
L
6575 as_bad (_("`%s%s' not allowed with `%s%c'"),
6576 register_prefix,
29b0f896
AM
6577 i.op[op].regs->reg_name,
6578 i.tm.name,
6579 i.suffix);
6580 return 0;
6581 }
6582 }
6583 return 1;
6584}
6585
6586static int
e3bb37b5 6587check_long_reg (void)
29b0f896
AM
6588{
6589 int op;
6590
6591 for (op = i.operands; --op >= 0;)
dc821c5f 6592 /* Skip non-register operands. */
bab6aec1 6593 if (i.types[op].bitfield.class != Reg)
dc821c5f 6594 continue;
29b0f896
AM
6595 /* Reject eight bit registers, except where the template requires
6596 them. (eg. movzb) */
dc821c5f 6597 else if (i.types[op].bitfield.byte
bab6aec1 6598 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6599 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6600 && (i.tm.operand_types[op].bitfield.word
6601 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6602 {
a540244d
L
6603 as_bad (_("`%s%s' not allowed with `%s%c'"),
6604 register_prefix,
29b0f896
AM
6605 i.op[op].regs->reg_name,
6606 i.tm.name,
6607 i.suffix);
6608 return 0;
6609 }
e4630f71 6610 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6611 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6612 && i.types[op].bitfield.word
bab6aec1 6613 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6614 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6615 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6616 {
6617 /* Prohibit these changes in the 64bit mode, since the
6618 lowering is more complicated. */
6619 if (flag_code == CODE_64BIT)
252b5132 6620 {
2b5d6a91 6621 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6622 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6623 i.suffix);
6624 return 0;
252b5132 6625 }
29b0f896 6626#if REGISTER_WARNINGS
cecf1424
JB
6627 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6628 register_prefix,
6629 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6630 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6631#endif
252b5132 6632 }
e4630f71 6633 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6634 else if (i.types[op].bitfield.qword
bab6aec1 6635 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6636 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6637 && i.tm.operand_types[op].bitfield.dword)
252b5132 6638 {
34828aad 6639 if (intel_syntax
ca61edf2 6640 && i.tm.opcode_modifier.toqword
3528c362 6641 && i.types[0].bitfield.class != RegSIMD)
34828aad 6642 {
ca61edf2 6643 /* Convert to QWORD. We want REX byte. */
34828aad
L
6644 i.suffix = QWORD_MNEM_SUFFIX;
6645 }
6646 else
6647 {
2b5d6a91 6648 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6649 register_prefix, i.op[op].regs->reg_name,
6650 i.suffix);
6651 return 0;
6652 }
29b0f896
AM
6653 }
6654 return 1;
6655}
252b5132 6656
29b0f896 6657static int
e3bb37b5 6658check_qword_reg (void)
29b0f896
AM
6659{
6660 int op;
252b5132 6661
29b0f896 6662 for (op = i.operands; --op >= 0; )
dc821c5f 6663 /* Skip non-register operands. */
bab6aec1 6664 if (i.types[op].bitfield.class != Reg)
dc821c5f 6665 continue;
29b0f896
AM
6666 /* Reject eight bit registers, except where the template requires
6667 them. (eg. movzb) */
dc821c5f 6668 else if (i.types[op].bitfield.byte
bab6aec1 6669 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6670 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6671 && (i.tm.operand_types[op].bitfield.word
6672 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6673 {
a540244d
L
6674 as_bad (_("`%s%s' not allowed with `%s%c'"),
6675 register_prefix,
29b0f896
AM
6676 i.op[op].regs->reg_name,
6677 i.tm.name,
6678 i.suffix);
6679 return 0;
6680 }
e4630f71 6681 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6682 else if ((i.types[op].bitfield.word
6683 || i.types[op].bitfield.dword)
bab6aec1 6684 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6685 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6686 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6687 {
6688 /* Prohibit these changes in the 64bit mode, since the
6689 lowering is more complicated. */
34828aad 6690 if (intel_syntax
ca61edf2 6691 && i.tm.opcode_modifier.todword
3528c362 6692 && i.types[0].bitfield.class != RegSIMD)
34828aad 6693 {
ca61edf2 6694 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6695 i.suffix = LONG_MNEM_SUFFIX;
6696 }
6697 else
6698 {
2b5d6a91 6699 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6700 register_prefix, i.op[op].regs->reg_name,
6701 i.suffix);
6702 return 0;
6703 }
252b5132 6704 }
29b0f896
AM
6705 return 1;
6706}
252b5132 6707
29b0f896 6708static int
e3bb37b5 6709check_word_reg (void)
29b0f896
AM
6710{
6711 int op;
6712 for (op = i.operands; --op >= 0;)
dc821c5f 6713 /* Skip non-register operands. */
bab6aec1 6714 if (i.types[op].bitfield.class != Reg)
dc821c5f 6715 continue;
29b0f896
AM
6716 /* Reject eight bit registers, except where the template requires
6717 them. (eg. movzb) */
dc821c5f 6718 else if (i.types[op].bitfield.byte
bab6aec1 6719 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6720 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6721 && (i.tm.operand_types[op].bitfield.word
6722 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6723 {
a540244d
L
6724 as_bad (_("`%s%s' not allowed with `%s%c'"),
6725 register_prefix,
29b0f896
AM
6726 i.op[op].regs->reg_name,
6727 i.tm.name,
6728 i.suffix);
6729 return 0;
6730 }
e4630f71 6731 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6732 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6733 && (i.types[op].bitfield.dword
6734 || i.types[op].bitfield.qword)
bab6aec1 6735 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6736 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6737 && i.tm.operand_types[op].bitfield.word)
252b5132 6738 {
29b0f896
AM
6739 /* Prohibit these changes in the 64bit mode, since the
6740 lowering is more complicated. */
6741 if (flag_code == CODE_64BIT)
252b5132 6742 {
2b5d6a91 6743 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6744 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6745 i.suffix);
6746 return 0;
252b5132 6747 }
29b0f896 6748#if REGISTER_WARNINGS
cecf1424
JB
6749 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6750 register_prefix,
6751 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6752 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6753#endif
6754 }
6755 return 1;
6756}
252b5132 6757
29b0f896 6758static int
40fb9820 6759update_imm (unsigned int j)
29b0f896 6760{
bc0844ae 6761 i386_operand_type overlap = i.types[j];
40fb9820
L
6762 if ((overlap.bitfield.imm8
6763 || overlap.bitfield.imm8s
6764 || overlap.bitfield.imm16
6765 || overlap.bitfield.imm32
6766 || overlap.bitfield.imm32s
6767 || overlap.bitfield.imm64)
0dfbf9d7
L
6768 && !operand_type_equal (&overlap, &imm8)
6769 && !operand_type_equal (&overlap, &imm8s)
6770 && !operand_type_equal (&overlap, &imm16)
6771 && !operand_type_equal (&overlap, &imm32)
6772 && !operand_type_equal (&overlap, &imm32s)
6773 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6774 {
6775 if (i.suffix)
6776 {
40fb9820
L
6777 i386_operand_type temp;
6778
0dfbf9d7 6779 operand_type_set (&temp, 0);
7ab9ffdd 6780 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6781 {
6782 temp.bitfield.imm8 = overlap.bitfield.imm8;
6783 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6784 }
6785 else if (i.suffix == WORD_MNEM_SUFFIX)
6786 temp.bitfield.imm16 = overlap.bitfield.imm16;
6787 else if (i.suffix == QWORD_MNEM_SUFFIX)
6788 {
6789 temp.bitfield.imm64 = overlap.bitfield.imm64;
6790 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6791 }
6792 else
6793 temp.bitfield.imm32 = overlap.bitfield.imm32;
6794 overlap = temp;
29b0f896 6795 }
0dfbf9d7
L
6796 else if (operand_type_equal (&overlap, &imm16_32_32s)
6797 || operand_type_equal (&overlap, &imm16_32)
6798 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6799 {
40fb9820 6800 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6801 overlap = imm16;
40fb9820 6802 else
65da13b5 6803 overlap = imm32s;
29b0f896 6804 }
0dfbf9d7
L
6805 if (!operand_type_equal (&overlap, &imm8)
6806 && !operand_type_equal (&overlap, &imm8s)
6807 && !operand_type_equal (&overlap, &imm16)
6808 && !operand_type_equal (&overlap, &imm32)
6809 && !operand_type_equal (&overlap, &imm32s)
6810 && !operand_type_equal (&overlap, &imm64))
29b0f896 6811 {
4eed87de
AM
6812 as_bad (_("no instruction mnemonic suffix given; "
6813 "can't determine immediate size"));
29b0f896
AM
6814 return 0;
6815 }
6816 }
40fb9820 6817 i.types[j] = overlap;
29b0f896 6818
40fb9820
L
6819 return 1;
6820}
6821
6822static int
6823finalize_imm (void)
6824{
bc0844ae 6825 unsigned int j, n;
29b0f896 6826
bc0844ae
L
6827 /* Update the first 2 immediate operands. */
6828 n = i.operands > 2 ? 2 : i.operands;
6829 if (n)
6830 {
6831 for (j = 0; j < n; j++)
6832 if (update_imm (j) == 0)
6833 return 0;
40fb9820 6834
bc0844ae
L
6835 /* The 3rd operand can't be immediate operand. */
6836 gas_assert (operand_type_check (i.types[2], imm) == 0);
6837 }
29b0f896
AM
6838
6839 return 1;
6840}
6841
6842static int
e3bb37b5 6843process_operands (void)
29b0f896
AM
6844{
6845 /* Default segment register this instruction will use for memory
6846 accesses. 0 means unknown. This is only for optimizing out
6847 unnecessary segment overrides. */
6848 const seg_entry *default_seg = 0;
6849
2426c15f 6850 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6851 {
91d6fa6a
NC
6852 unsigned int dupl = i.operands;
6853 unsigned int dest = dupl - 1;
9fcfb3d7
L
6854 unsigned int j;
6855
c0f3af97 6856 /* The destination must be an xmm register. */
9c2799c2 6857 gas_assert (i.reg_operands
91d6fa6a 6858 && MAX_OPERANDS > dupl
7ab9ffdd 6859 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6860
75e5731b 6861 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6862 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6863 {
8cd7925b 6864 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6865 {
6866 /* Keep xmm0 for instructions with VEX prefix and 3
6867 sources. */
75e5731b 6868 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6869 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6870 goto duplicate;
6871 }
e2ec9d29 6872 else
c0f3af97
L
6873 {
6874 /* We remove the first xmm0 and keep the number of
6875 operands unchanged, which in fact duplicates the
6876 destination. */
6877 for (j = 1; j < i.operands; j++)
6878 {
6879 i.op[j - 1] = i.op[j];
6880 i.types[j - 1] = i.types[j];
6881 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6882 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6883 }
6884 }
6885 }
6886 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6887 {
91d6fa6a 6888 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6889 && (i.tm.opcode_modifier.vexsources
6890 == VEX3SOURCES));
c0f3af97
L
6891
6892 /* Add the implicit xmm0 for instructions with VEX prefix
6893 and 3 sources. */
6894 for (j = i.operands; j > 0; j--)
6895 {
6896 i.op[j] = i.op[j - 1];
6897 i.types[j] = i.types[j - 1];
6898 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6899 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6900 }
6901 i.op[0].regs
6902 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6903 i.types[0] = regxmm;
c0f3af97
L
6904 i.tm.operand_types[0] = regxmm;
6905
6906 i.operands += 2;
6907 i.reg_operands += 2;
6908 i.tm.operands += 2;
6909
91d6fa6a 6910 dupl++;
c0f3af97 6911 dest++;
91d6fa6a
NC
6912 i.op[dupl] = i.op[dest];
6913 i.types[dupl] = i.types[dest];
6914 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6915 i.flags[dupl] = i.flags[dest];
e2ec9d29 6916 }
c0f3af97
L
6917 else
6918 {
6919duplicate:
6920 i.operands++;
6921 i.reg_operands++;
6922 i.tm.operands++;
6923
91d6fa6a
NC
6924 i.op[dupl] = i.op[dest];
6925 i.types[dupl] = i.types[dest];
6926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6927 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6928 }
6929
6930 if (i.tm.opcode_modifier.immext)
6931 process_immext ();
6932 }
75e5731b 6933 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6934 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6935 {
6936 unsigned int j;
6937
9fcfb3d7
L
6938 for (j = 1; j < i.operands; j++)
6939 {
6940 i.op[j - 1] = i.op[j];
6941 i.types[j - 1] = i.types[j];
6942
6943 /* We need to adjust fields in i.tm since they are used by
6944 build_modrm_byte. */
6945 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6946
6947 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6948 }
6949
e2ec9d29
L
6950 i.operands--;
6951 i.reg_operands--;
e2ec9d29
L
6952 i.tm.operands--;
6953 }
920d2ddc
IT
6954 else if (i.tm.opcode_modifier.implicitquadgroup)
6955 {
a477a8c4
JB
6956 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6957
920d2ddc 6958 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 6959 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
6960 regnum = register_number (i.op[1].regs);
6961 first_reg_in_group = regnum & ~3;
6962 last_reg_in_group = first_reg_in_group + 3;
6963 if (regnum != first_reg_in_group)
6964 as_warn (_("source register `%s%s' implicitly denotes"
6965 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6966 register_prefix, i.op[1].regs->reg_name,
6967 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6968 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6969 i.tm.name);
6970 }
e2ec9d29
L
6971 else if (i.tm.opcode_modifier.regkludge)
6972 {
6973 /* The imul $imm, %reg instruction is converted into
6974 imul $imm, %reg, %reg, and the clr %reg instruction
6975 is converted into xor %reg, %reg. */
6976
6977 unsigned int first_reg_op;
6978
6979 if (operand_type_check (i.types[0], reg))
6980 first_reg_op = 0;
6981 else
6982 first_reg_op = 1;
6983 /* Pretend we saw the extra register operand. */
9c2799c2 6984 gas_assert (i.reg_operands == 1
7ab9ffdd 6985 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6986 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6987 i.types[first_reg_op + 1] = i.types[first_reg_op];
6988 i.operands++;
6989 i.reg_operands++;
29b0f896
AM
6990 }
6991
85b80b0f 6992 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6993 {
6994 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6995 must be put into the modrm byte). Now, we make the modrm and
6996 index base bytes based on all the info we've collected. */
29b0f896
AM
6997
6998 default_seg = build_modrm_byte ();
6999 }
00cee14f 7000 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7001 {
7002 if (flag_code != CODE_64BIT
7003 ? i.tm.base_opcode == POP_SEG_SHORT
7004 && i.op[0].regs->reg_num == 1
7005 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7006 && i.op[0].regs->reg_num < 4)
7007 {
7008 as_bad (_("you can't `%s %s%s'"),
7009 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7010 return 0;
7011 }
7012 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7013 {
7014 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7015 i.tm.opcode_length = 2;
7016 }
7017 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7018 }
8a2ed489 7019 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7020 {
7021 default_seg = &ds;
7022 }
40fb9820 7023 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7024 {
7025 /* For the string instructions that allow a segment override
7026 on one of their operands, the default segment is ds. */
7027 default_seg = &ds;
7028 }
85b80b0f
JB
7029 else if (i.tm.opcode_modifier.shortform)
7030 {
7031 /* The register or float register operand is in operand
7032 0 or 1. */
bab6aec1 7033 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7034
7035 /* Register goes in low 3 bits of opcode. */
7036 i.tm.base_opcode |= i.op[op].regs->reg_num;
7037 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7038 i.rex |= REX_B;
7039 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7040 {
7041 /* Warn about some common errors, but press on regardless.
7042 The first case can be generated by gcc (<= 2.8.1). */
7043 if (i.operands == 2)
7044 {
7045 /* Reversed arguments on faddp, fsubp, etc. */
7046 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7047 register_prefix, i.op[!intel_syntax].regs->reg_name,
7048 register_prefix, i.op[intel_syntax].regs->reg_name);
7049 }
7050 else
7051 {
7052 /* Extraneous `l' suffix on fp insn. */
7053 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7054 register_prefix, i.op[0].regs->reg_name);
7055 }
7056 }
7057 }
29b0f896 7058
75178d9d
L
7059 if (i.tm.base_opcode == 0x8d /* lea */
7060 && i.seg[0]
7061 && !quiet_warnings)
30123838 7062 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7063
7064 /* If a segment was explicitly specified, and the specified segment
7065 is not the default, use an opcode prefix to select it. If we
7066 never figured out what the default segment is, then default_seg
7067 will be zero at this point, and the specified segment prefix will
7068 always be used. */
29b0f896
AM
7069 if ((i.seg[0]) && (i.seg[0] != default_seg))
7070 {
7071 if (!add_prefix (i.seg[0]->seg_prefix))
7072 return 0;
7073 }
7074 return 1;
7075}
7076
7077static const seg_entry *
e3bb37b5 7078build_modrm_byte (void)
29b0f896
AM
7079{
7080 const seg_entry *default_seg = 0;
c0f3af97 7081 unsigned int source, dest;
8cd7925b 7082 int vex_3_sources;
c0f3af97 7083
8cd7925b 7084 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7085 if (vex_3_sources)
7086 {
91d6fa6a 7087 unsigned int nds, reg_slot;
4c2c6516 7088 expressionS *exp;
c0f3af97 7089
6b8d3588 7090 dest = i.operands - 1;
c0f3af97 7091 nds = dest - 1;
922d8de8 7092
a683cc34 7093 /* There are 2 kinds of instructions:
bed3d976 7094 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7095 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7096 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7097 ZMM register.
bed3d976 7098 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7099 plus 1 memory operand, with VexXDS. */
922d8de8 7100 gas_assert ((i.reg_operands == 4
bed3d976
JB
7101 || (i.reg_operands == 3 && i.mem_operands == 1))
7102 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7103 && i.tm.opcode_modifier.vexw
3528c362 7104 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7105
48db9223
JB
7106 /* If VexW1 is set, the first non-immediate operand is the source and
7107 the second non-immediate one is encoded in the immediate operand. */
7108 if (i.tm.opcode_modifier.vexw == VEXW1)
7109 {
7110 source = i.imm_operands;
7111 reg_slot = i.imm_operands + 1;
7112 }
7113 else
7114 {
7115 source = i.imm_operands + 1;
7116 reg_slot = i.imm_operands;
7117 }
7118
a683cc34 7119 if (i.imm_operands == 0)
bed3d976
JB
7120 {
7121 /* When there is no immediate operand, generate an 8bit
7122 immediate operand to encode the first operand. */
7123 exp = &im_expressions[i.imm_operands++];
7124 i.op[i.operands].imms = exp;
7125 i.types[i.operands] = imm8;
7126 i.operands++;
7127
3528c362 7128 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7129 exp->X_op = O_constant;
7130 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7131 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7132 }
922d8de8 7133 else
bed3d976 7134 {
9d3bf266
JB
7135 gas_assert (i.imm_operands == 1);
7136 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7137 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7138
9d3bf266
JB
7139 /* Turn on Imm8 again so that output_imm will generate it. */
7140 i.types[0].bitfield.imm8 = 1;
bed3d976 7141
3528c362 7142 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7143 i.op[0].imms->X_add_number
bed3d976 7144 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7145 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7146 }
a683cc34 7147
3528c362 7148 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7149 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7150 }
7151 else
7152 source = dest = 0;
29b0f896
AM
7153
7154 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7155 implicit registers do not count. If there are 3 register
7156 operands, it must be a instruction with VexNDS. For a
7157 instruction with VexNDD, the destination register is encoded
7158 in VEX prefix. If there are 4 register operands, it must be
7159 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7160 if (i.mem_operands == 0
7161 && ((i.reg_operands == 2
2426c15f 7162 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7163 || (i.reg_operands == 3
2426c15f 7164 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7165 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7166 {
cab737b9
L
7167 switch (i.operands)
7168 {
7169 case 2:
7170 source = 0;
7171 break;
7172 case 3:
c81128dc
L
7173 /* When there are 3 operands, one of them may be immediate,
7174 which may be the first or the last operand. Otherwise,
c0f3af97
L
7175 the first operand must be shift count register (cl) or it
7176 is an instruction with VexNDS. */
9c2799c2 7177 gas_assert (i.imm_operands == 1
7ab9ffdd 7178 || (i.imm_operands == 0
2426c15f 7179 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7180 || (i.types[0].bitfield.instance == RegC
7181 && i.types[0].bitfield.byte))));
40fb9820 7182 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7183 || (i.types[0].bitfield.instance == RegC
7184 && i.types[0].bitfield.byte))
40fb9820
L
7185 source = 1;
7186 else
7187 source = 0;
cab737b9
L
7188 break;
7189 case 4:
368d64cc
L
7190 /* When there are 4 operands, the first two must be 8bit
7191 immediate operands. The source operand will be the 3rd
c0f3af97
L
7192 one.
7193
7194 For instructions with VexNDS, if the first operand
7195 an imm8, the source operand is the 2nd one. If the last
7196 operand is imm8, the source operand is the first one. */
9c2799c2 7197 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7198 && i.types[0].bitfield.imm8
7199 && i.types[1].bitfield.imm8)
2426c15f 7200 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7201 && i.imm_operands == 1
7202 && (i.types[0].bitfield.imm8
43234a1e
L
7203 || i.types[i.operands - 1].bitfield.imm8
7204 || i.rounding)));
9f2670f2
L
7205 if (i.imm_operands == 2)
7206 source = 2;
7207 else
c0f3af97
L
7208 {
7209 if (i.types[0].bitfield.imm8)
7210 source = 1;
7211 else
7212 source = 0;
7213 }
c0f3af97
L
7214 break;
7215 case 5:
e771e7c9 7216 if (is_evex_encoding (&i.tm))
43234a1e
L
7217 {
7218 /* For EVEX instructions, when there are 5 operands, the
7219 first one must be immediate operand. If the second one
7220 is immediate operand, the source operand is the 3th
7221 one. If the last one is immediate operand, the source
7222 operand is the 2nd one. */
7223 gas_assert (i.imm_operands == 2
7224 && i.tm.opcode_modifier.sae
7225 && operand_type_check (i.types[0], imm));
7226 if (operand_type_check (i.types[1], imm))
7227 source = 2;
7228 else if (operand_type_check (i.types[4], imm))
7229 source = 1;
7230 else
7231 abort ();
7232 }
cab737b9
L
7233 break;
7234 default:
7235 abort ();
7236 }
7237
c0f3af97
L
7238 if (!vex_3_sources)
7239 {
7240 dest = source + 1;
7241
43234a1e
L
7242 /* RC/SAE operand could be between DEST and SRC. That happens
7243 when one operand is GPR and the other one is XMM/YMM/ZMM
7244 register. */
7245 if (i.rounding && i.rounding->operand == (int) dest)
7246 dest++;
7247
2426c15f 7248 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7249 {
43234a1e 7250 /* For instructions with VexNDS, the register-only source
c5d0745b 7251 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7252 register. It is encoded in VEX prefix. */
f12dc422
L
7253
7254 i386_operand_type op;
7255 unsigned int vvvv;
7256
7257 /* Check register-only source operand when two source
7258 operands are swapped. */
7259 if (!i.tm.operand_types[source].bitfield.baseindex
7260 && i.tm.operand_types[dest].bitfield.baseindex)
7261 {
7262 vvvv = source;
7263 source = dest;
7264 }
7265 else
7266 vvvv = dest;
7267
7268 op = i.tm.operand_types[vvvv];
c0f3af97 7269 if ((dest + 1) >= i.operands
bab6aec1 7270 || ((op.bitfield.class != Reg
dc821c5f 7271 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7272 && op.bitfield.class != RegSIMD
43234a1e 7273 && !operand_type_equal (&op, &regmask)))
c0f3af97 7274 abort ();
f12dc422 7275 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7276 dest++;
7277 }
7278 }
29b0f896
AM
7279
7280 i.rm.mode = 3;
dfd69174
JB
7281 /* One of the register operands will be encoded in the i.rm.reg
7282 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7283 fields. If no form of this instruction supports a memory
7284 destination operand, then we assume the source operand may
7285 sometimes be a memory operand and so we need to store the
7286 destination in the i.rm.reg field. */
dfd69174 7287 if (!i.tm.opcode_modifier.regmem
40fb9820 7288 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7289 {
7290 i.rm.reg = i.op[dest].regs->reg_num;
7291 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7292 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7293 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7294 i.has_regmmx = TRUE;
3528c362
JB
7295 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7296 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7297 {
7298 if (i.types[dest].bitfield.zmmword
7299 || i.types[source].bitfield.zmmword)
7300 i.has_regzmm = TRUE;
7301 else if (i.types[dest].bitfield.ymmword
7302 || i.types[source].bitfield.ymmword)
7303 i.has_regymm = TRUE;
7304 else
7305 i.has_regxmm = TRUE;
7306 }
29b0f896 7307 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7308 i.rex |= REX_R;
43234a1e
L
7309 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_R;
29b0f896 7311 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7312 i.rex |= REX_B;
43234a1e
L
7313 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7314 i.vrex |= REX_B;
29b0f896
AM
7315 }
7316 else
7317 {
7318 i.rm.reg = i.op[source].regs->reg_num;
7319 i.rm.regmem = i.op[dest].regs->reg_num;
7320 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7321 i.rex |= REX_B;
43234a1e
L
7322 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_B;
29b0f896 7324 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7325 i.rex |= REX_R;
43234a1e
L
7326 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_R;
29b0f896 7328 }
e0c7f900 7329 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7330 {
4a5c67ed 7331 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7332 abort ();
e0c7f900 7333 i.rex &= ~REX_R;
c4a530c5
JB
7334 add_prefix (LOCK_PREFIX_OPCODE);
7335 }
29b0f896
AM
7336 }
7337 else
7338 { /* If it's not 2 reg operands... */
c0f3af97
L
7339 unsigned int mem;
7340
29b0f896
AM
7341 if (i.mem_operands)
7342 {
7343 unsigned int fake_zero_displacement = 0;
99018f42 7344 unsigned int op;
4eed87de 7345
7ab9ffdd 7346 for (op = 0; op < i.operands; op++)
8dc0818e 7347 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7348 break;
7ab9ffdd 7349 gas_assert (op < i.operands);
29b0f896 7350
6c30d220
L
7351 if (i.tm.opcode_modifier.vecsib)
7352 {
e968fc9b 7353 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7354 abort ();
7355
7356 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7357 if (!i.base_reg)
7358 {
7359 i.sib.base = NO_BASE_REGISTER;
7360 i.sib.scale = i.log2_scale_factor;
7361 i.types[op].bitfield.disp8 = 0;
7362 i.types[op].bitfield.disp16 = 0;
7363 i.types[op].bitfield.disp64 = 0;
43083a50 7364 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7365 {
7366 /* Must be 32 bit */
7367 i.types[op].bitfield.disp32 = 1;
7368 i.types[op].bitfield.disp32s = 0;
7369 }
7370 else
7371 {
7372 i.types[op].bitfield.disp32 = 0;
7373 i.types[op].bitfield.disp32s = 1;
7374 }
7375 }
7376 i.sib.index = i.index_reg->reg_num;
7377 if ((i.index_reg->reg_flags & RegRex) != 0)
7378 i.rex |= REX_X;
43234a1e
L
7379 if ((i.index_reg->reg_flags & RegVRex) != 0)
7380 i.vrex |= REX_X;
6c30d220
L
7381 }
7382
29b0f896
AM
7383 default_seg = &ds;
7384
7385 if (i.base_reg == 0)
7386 {
7387 i.rm.mode = 0;
7388 if (!i.disp_operands)
9bb129e8 7389 fake_zero_displacement = 1;
29b0f896
AM
7390 if (i.index_reg == 0)
7391 {
73053c1f
JB
7392 i386_operand_type newdisp;
7393
6c30d220 7394 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7395 /* Operand is just <disp> */
20f0a1fc 7396 if (flag_code == CODE_64BIT)
29b0f896
AM
7397 {
7398 /* 64bit mode overwrites the 32bit absolute
7399 addressing by RIP relative addressing and
7400 absolute addressing is encoded by one of the
7401 redundant SIB forms. */
7402 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7403 i.sib.base = NO_BASE_REGISTER;
7404 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7405 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7406 }
fc225355
L
7407 else if ((flag_code == CODE_16BIT)
7408 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7409 {
7410 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7411 newdisp = disp16;
20f0a1fc
NC
7412 }
7413 else
7414 {
7415 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7416 newdisp = disp32;
29b0f896 7417 }
73053c1f
JB
7418 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7419 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7420 }
6c30d220 7421 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7422 {
6c30d220 7423 /* !i.base_reg && i.index_reg */
e968fc9b 7424 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7425 i.sib.index = NO_INDEX_REGISTER;
7426 else
7427 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7428 i.sib.base = NO_BASE_REGISTER;
7429 i.sib.scale = i.log2_scale_factor;
7430 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7431 i.types[op].bitfield.disp8 = 0;
7432 i.types[op].bitfield.disp16 = 0;
7433 i.types[op].bitfield.disp64 = 0;
43083a50 7434 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7435 {
7436 /* Must be 32 bit */
7437 i.types[op].bitfield.disp32 = 1;
7438 i.types[op].bitfield.disp32s = 0;
7439 }
29b0f896 7440 else
40fb9820
L
7441 {
7442 i.types[op].bitfield.disp32 = 0;
7443 i.types[op].bitfield.disp32s = 1;
7444 }
29b0f896 7445 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7446 i.rex |= REX_X;
29b0f896
AM
7447 }
7448 }
7449 /* RIP addressing for 64bit mode. */
e968fc9b 7450 else if (i.base_reg->reg_num == RegIP)
29b0f896 7451 {
6c30d220 7452 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7453 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7454 i.types[op].bitfield.disp8 = 0;
7455 i.types[op].bitfield.disp16 = 0;
7456 i.types[op].bitfield.disp32 = 0;
7457 i.types[op].bitfield.disp32s = 1;
7458 i.types[op].bitfield.disp64 = 0;
71903a11 7459 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7460 if (! i.disp_operands)
7461 fake_zero_displacement = 1;
29b0f896 7462 }
dc821c5f 7463 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7464 {
6c30d220 7465 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7466 switch (i.base_reg->reg_num)
7467 {
7468 case 3: /* (%bx) */
7469 if (i.index_reg == 0)
7470 i.rm.regmem = 7;
7471 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7472 i.rm.regmem = i.index_reg->reg_num - 6;
7473 break;
7474 case 5: /* (%bp) */
7475 default_seg = &ss;
7476 if (i.index_reg == 0)
7477 {
7478 i.rm.regmem = 6;
40fb9820 7479 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7480 {
7481 /* fake (%bp) into 0(%bp) */
b5014f7a 7482 i.types[op].bitfield.disp8 = 1;
252b5132 7483 fake_zero_displacement = 1;
29b0f896
AM
7484 }
7485 }
7486 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7487 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7488 break;
7489 default: /* (%si) -> 4 or (%di) -> 5 */
7490 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7491 }
7492 i.rm.mode = mode_from_disp_size (i.types[op]);
7493 }
7494 else /* i.base_reg and 32/64 bit mode */
7495 {
7496 if (flag_code == CODE_64BIT
40fb9820
L
7497 && operand_type_check (i.types[op], disp))
7498 {
73053c1f
JB
7499 i.types[op].bitfield.disp16 = 0;
7500 i.types[op].bitfield.disp64 = 0;
40fb9820 7501 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7502 {
7503 i.types[op].bitfield.disp32 = 0;
7504 i.types[op].bitfield.disp32s = 1;
7505 }
40fb9820 7506 else
73053c1f
JB
7507 {
7508 i.types[op].bitfield.disp32 = 1;
7509 i.types[op].bitfield.disp32s = 0;
7510 }
40fb9820 7511 }
20f0a1fc 7512
6c30d220
L
7513 if (!i.tm.opcode_modifier.vecsib)
7514 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7515 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7516 i.rex |= REX_B;
29b0f896
AM
7517 i.sib.base = i.base_reg->reg_num;
7518 /* x86-64 ignores REX prefix bit here to avoid decoder
7519 complications. */
848930b2
JB
7520 if (!(i.base_reg->reg_flags & RegRex)
7521 && (i.base_reg->reg_num == EBP_REG_NUM
7522 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7523 default_seg = &ss;
848930b2 7524 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7525 {
848930b2 7526 fake_zero_displacement = 1;
b5014f7a 7527 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7528 }
7529 i.sib.scale = i.log2_scale_factor;
7530 if (i.index_reg == 0)
7531 {
6c30d220 7532 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7533 /* <disp>(%esp) becomes two byte modrm with no index
7534 register. We've already stored the code for esp
7535 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7536 Any base register besides %esp will not use the
7537 extra modrm byte. */
7538 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7539 }
6c30d220 7540 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7541 {
e968fc9b 7542 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7543 i.sib.index = NO_INDEX_REGISTER;
7544 else
7545 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7546 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7547 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7548 i.rex |= REX_X;
29b0f896 7549 }
67a4f2b7
AO
7550
7551 if (i.disp_operands
7552 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7553 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7554 i.rm.mode = 0;
7555 else
a501d77e
L
7556 {
7557 if (!fake_zero_displacement
7558 && !i.disp_operands
7559 && i.disp_encoding)
7560 {
7561 fake_zero_displacement = 1;
7562 if (i.disp_encoding == disp_encoding_8bit)
7563 i.types[op].bitfield.disp8 = 1;
7564 else
7565 i.types[op].bitfield.disp32 = 1;
7566 }
7567 i.rm.mode = mode_from_disp_size (i.types[op]);
7568 }
29b0f896 7569 }
252b5132 7570
29b0f896
AM
7571 if (fake_zero_displacement)
7572 {
7573 /* Fakes a zero displacement assuming that i.types[op]
7574 holds the correct displacement size. */
7575 expressionS *exp;
7576
9c2799c2 7577 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7578 exp = &disp_expressions[i.disp_operands++];
7579 i.op[op].disps = exp;
7580 exp->X_op = O_constant;
7581 exp->X_add_number = 0;
7582 exp->X_add_symbol = (symbolS *) 0;
7583 exp->X_op_symbol = (symbolS *) 0;
7584 }
c0f3af97
L
7585
7586 mem = op;
29b0f896 7587 }
c0f3af97
L
7588 else
7589 mem = ~0;
252b5132 7590
8c43a48b 7591 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7592 {
7593 if (operand_type_check (i.types[0], imm))
7594 i.vex.register_specifier = NULL;
7595 else
7596 {
7597 /* VEX.vvvv encodes one of the sources when the first
7598 operand is not an immediate. */
1ef99a7b 7599 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7600 i.vex.register_specifier = i.op[0].regs;
7601 else
7602 i.vex.register_specifier = i.op[1].regs;
7603 }
7604
7605 /* Destination is a XMM register encoded in the ModRM.reg
7606 and VEX.R bit. */
7607 i.rm.reg = i.op[2].regs->reg_num;
7608 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7609 i.rex |= REX_R;
7610
7611 /* ModRM.rm and VEX.B encodes the other source. */
7612 if (!i.mem_operands)
7613 {
7614 i.rm.mode = 3;
7615
1ef99a7b 7616 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7617 i.rm.regmem = i.op[1].regs->reg_num;
7618 else
7619 i.rm.regmem = i.op[0].regs->reg_num;
7620
7621 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7622 i.rex |= REX_B;
7623 }
7624 }
2426c15f 7625 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7626 {
7627 i.vex.register_specifier = i.op[2].regs;
7628 if (!i.mem_operands)
7629 {
7630 i.rm.mode = 3;
7631 i.rm.regmem = i.op[1].regs->reg_num;
7632 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7633 i.rex |= REX_B;
7634 }
7635 }
29b0f896
AM
7636 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7637 (if any) based on i.tm.extension_opcode. Again, we must be
7638 careful to make sure that segment/control/debug/test/MMX
7639 registers are coded into the i.rm.reg field. */
f88c9eb0 7640 else if (i.reg_operands)
29b0f896 7641 {
99018f42 7642 unsigned int op;
7ab9ffdd
L
7643 unsigned int vex_reg = ~0;
7644
7645 for (op = 0; op < i.operands; op++)
b4a3a7b4 7646 {
bab6aec1 7647 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7648 || i.types[op].bitfield.class == RegBND
7649 || i.types[op].bitfield.class == RegMask
00cee14f 7650 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7651 || i.types[op].bitfield.class == RegCR
7652 || i.types[op].bitfield.class == RegDR
7653 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7654 break;
3528c362 7655 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7656 {
7657 if (i.types[op].bitfield.zmmword)
7658 i.has_regzmm = TRUE;
7659 else if (i.types[op].bitfield.ymmword)
7660 i.has_regymm = TRUE;
7661 else
7662 i.has_regxmm = TRUE;
7663 break;
7664 }
3528c362 7665 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7666 {
7667 i.has_regmmx = TRUE;
7668 break;
7669 }
7670 }
c0209578 7671
7ab9ffdd
L
7672 if (vex_3_sources)
7673 op = dest;
2426c15f 7674 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7675 {
7676 /* For instructions with VexNDS, the register-only
7677 source operand is encoded in VEX prefix. */
7678 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7679
7ab9ffdd 7680 if (op > mem)
c0f3af97 7681 {
7ab9ffdd
L
7682 vex_reg = op++;
7683 gas_assert (op < i.operands);
c0f3af97
L
7684 }
7685 else
c0f3af97 7686 {
f12dc422
L
7687 /* Check register-only source operand when two source
7688 operands are swapped. */
7689 if (!i.tm.operand_types[op].bitfield.baseindex
7690 && i.tm.operand_types[op + 1].bitfield.baseindex)
7691 {
7692 vex_reg = op;
7693 op += 2;
7694 gas_assert (mem == (vex_reg + 1)
7695 && op < i.operands);
7696 }
7697 else
7698 {
7699 vex_reg = op + 1;
7700 gas_assert (vex_reg < i.operands);
7701 }
c0f3af97 7702 }
7ab9ffdd 7703 }
2426c15f 7704 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7705 {
f12dc422 7706 /* For instructions with VexNDD, the register destination
7ab9ffdd 7707 is encoded in VEX prefix. */
f12dc422
L
7708 if (i.mem_operands == 0)
7709 {
7710 /* There is no memory operand. */
7711 gas_assert ((op + 2) == i.operands);
7712 vex_reg = op + 1;
7713 }
7714 else
8d63c93e 7715 {
ed438a93
JB
7716 /* There are only 2 non-immediate operands. */
7717 gas_assert (op < i.imm_operands + 2
7718 && i.operands == i.imm_operands + 2);
7719 vex_reg = i.imm_operands + 1;
f12dc422 7720 }
7ab9ffdd
L
7721 }
7722 else
7723 gas_assert (op < i.operands);
99018f42 7724
7ab9ffdd
L
7725 if (vex_reg != (unsigned int) ~0)
7726 {
f12dc422 7727 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7728
bab6aec1 7729 if ((type->bitfield.class != Reg
dc821c5f 7730 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7731 && type->bitfield.class != RegSIMD
43234a1e 7732 && !operand_type_equal (type, &regmask))
7ab9ffdd 7733 abort ();
f88c9eb0 7734
7ab9ffdd
L
7735 i.vex.register_specifier = i.op[vex_reg].regs;
7736 }
7737
1b9f0c97
L
7738 /* Don't set OP operand twice. */
7739 if (vex_reg != op)
7ab9ffdd 7740 {
1b9f0c97
L
7741 /* If there is an extension opcode to put here, the
7742 register number must be put into the regmem field. */
7743 if (i.tm.extension_opcode != None)
7744 {
7745 i.rm.regmem = i.op[op].regs->reg_num;
7746 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7747 i.rex |= REX_B;
43234a1e
L
7748 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7749 i.vrex |= REX_B;
1b9f0c97
L
7750 }
7751 else
7752 {
7753 i.rm.reg = i.op[op].regs->reg_num;
7754 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7755 i.rex |= REX_R;
43234a1e
L
7756 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7757 i.vrex |= REX_R;
1b9f0c97 7758 }
7ab9ffdd 7759 }
252b5132 7760
29b0f896
AM
7761 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7762 must set it to 3 to indicate this is a register operand
7763 in the regmem field. */
7764 if (!i.mem_operands)
7765 i.rm.mode = 3;
7766 }
252b5132 7767
29b0f896 7768 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7769 if (i.tm.extension_opcode != None)
29b0f896
AM
7770 i.rm.reg = i.tm.extension_opcode;
7771 }
7772 return default_seg;
7773}
252b5132 7774
29b0f896 7775static void
e3bb37b5 7776output_branch (void)
29b0f896
AM
7777{
7778 char *p;
f8a5c266 7779 int size;
29b0f896
AM
7780 int code16;
7781 int prefix;
7782 relax_substateT subtype;
7783 symbolS *sym;
7784 offsetT off;
7785
f8a5c266 7786 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7787 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7788
7789 prefix = 0;
7790 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7791 {
29b0f896
AM
7792 prefix = 1;
7793 i.prefixes -= 1;
7794 code16 ^= CODE16;
252b5132 7795 }
29b0f896
AM
7796 /* Pentium4 branch hints. */
7797 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7798 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7799 {
29b0f896
AM
7800 prefix++;
7801 i.prefixes--;
7802 }
7803 if (i.prefix[REX_PREFIX] != 0)
7804 {
7805 prefix++;
7806 i.prefixes--;
2f66722d
AM
7807 }
7808
7e8b059b
L
7809 /* BND prefixed jump. */
7810 if (i.prefix[BND_PREFIX] != 0)
7811 {
7812 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7813 i.prefixes -= 1;
7814 }
7815
29b0f896
AM
7816 if (i.prefixes != 0 && !intel_syntax)
7817 as_warn (_("skipping prefixes on this instruction"));
7818
7819 /* It's always a symbol; End frag & setup for relax.
7820 Make sure there is enough room in this frag for the largest
7821 instruction we may generate in md_convert_frag. This is 2
7822 bytes for the opcode and room for the prefix and largest
7823 displacement. */
7824 frag_grow (prefix + 2 + 4);
7825 /* Prefix and 1 opcode byte go in fr_fix. */
7826 p = frag_more (prefix + 1);
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 *p++ = DATA_PREFIX_OPCODE;
7829 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7830 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7831 *p++ = i.prefix[SEG_PREFIX];
7832 if (i.prefix[REX_PREFIX] != 0)
7833 *p++ = i.prefix[REX_PREFIX];
7834 *p = i.tm.base_opcode;
7835
7836 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7837 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7838 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7839 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7840 else
f8a5c266 7841 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7842 subtype |= code16;
3e73aa7c 7843
29b0f896
AM
7844 sym = i.op[0].disps->X_add_symbol;
7845 off = i.op[0].disps->X_add_number;
3e73aa7c 7846
29b0f896
AM
7847 if (i.op[0].disps->X_op != O_constant
7848 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7849 {
29b0f896
AM
7850 /* Handle complex expressions. */
7851 sym = make_expr_symbol (i.op[0].disps);
7852 off = 0;
7853 }
3e73aa7c 7854
29b0f896
AM
7855 /* 1 possible extra opcode + 4 byte displacement go in var part.
7856 Pass reloc in fr_var. */
d258b828 7857 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7858}
3e73aa7c 7859
bd7ab16b
L
7860#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7861/* Return TRUE iff PLT32 relocation should be used for branching to
7862 symbol S. */
7863
7864static bfd_boolean
7865need_plt32_p (symbolS *s)
7866{
7867 /* PLT32 relocation is ELF only. */
7868 if (!IS_ELF)
7869 return FALSE;
7870
a5def729
RO
7871#ifdef TE_SOLARIS
7872 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7873 krtld support it. */
7874 return FALSE;
7875#endif
7876
bd7ab16b
L
7877 /* Since there is no need to prepare for PLT branch on x86-64, we
7878 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7879 be used as a marker for 32-bit PC-relative branches. */
7880 if (!object_64bit)
7881 return FALSE;
7882
7883 /* Weak or undefined symbol need PLT32 relocation. */
7884 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7885 return TRUE;
7886
7887 /* Non-global symbol doesn't need PLT32 relocation. */
7888 if (! S_IS_EXTERNAL (s))
7889 return FALSE;
7890
7891 /* Other global symbols need PLT32 relocation. NB: Symbol with
7892 non-default visibilities are treated as normal global symbol
7893 so that PLT32 relocation can be used as a marker for 32-bit
7894 PC-relative branches. It is useful for linker relaxation. */
7895 return TRUE;
7896}
7897#endif
7898
29b0f896 7899static void
e3bb37b5 7900output_jump (void)
29b0f896
AM
7901{
7902 char *p;
7903 int size;
3e02c1cc 7904 fixS *fixP;
bd7ab16b 7905 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7906
0cfa3eb3 7907 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7908 {
7909 /* This is a loop or jecxz type instruction. */
7910 size = 1;
7911 if (i.prefix[ADDR_PREFIX] != 0)
7912 {
7913 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7914 i.prefixes -= 1;
7915 }
7916 /* Pentium4 branch hints. */
7917 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7918 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7919 {
7920 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7921 i.prefixes--;
3e73aa7c
JH
7922 }
7923 }
29b0f896
AM
7924 else
7925 {
7926 int code16;
3e73aa7c 7927
29b0f896
AM
7928 code16 = 0;
7929 if (flag_code == CODE_16BIT)
7930 code16 = CODE16;
3e73aa7c 7931
29b0f896
AM
7932 if (i.prefix[DATA_PREFIX] != 0)
7933 {
7934 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7935 i.prefixes -= 1;
7936 code16 ^= CODE16;
7937 }
252b5132 7938
29b0f896
AM
7939 size = 4;
7940 if (code16)
7941 size = 2;
7942 }
9fcc94b6 7943
29b0f896
AM
7944 if (i.prefix[REX_PREFIX] != 0)
7945 {
7946 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7947 i.prefixes -= 1;
7948 }
252b5132 7949
7e8b059b
L
7950 /* BND prefixed jump. */
7951 if (i.prefix[BND_PREFIX] != 0)
7952 {
7953 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7954 i.prefixes -= 1;
7955 }
7956
29b0f896
AM
7957 if (i.prefixes != 0 && !intel_syntax)
7958 as_warn (_("skipping prefixes on this instruction"));
e0890092 7959
42164a71
L
7960 p = frag_more (i.tm.opcode_length + size);
7961 switch (i.tm.opcode_length)
7962 {
7963 case 2:
7964 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7965 /* Fall through. */
42164a71
L
7966 case 1:
7967 *p++ = i.tm.base_opcode;
7968 break;
7969 default:
7970 abort ();
7971 }
e0890092 7972
bd7ab16b
L
7973#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7974 if (size == 4
7975 && jump_reloc == NO_RELOC
7976 && need_plt32_p (i.op[0].disps->X_add_symbol))
7977 jump_reloc = BFD_RELOC_X86_64_PLT32;
7978#endif
7979
7980 jump_reloc = reloc (size, 1, 1, jump_reloc);
7981
3e02c1cc 7982 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7983 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7984
7985 /* All jumps handled here are signed, but don't use a signed limit
7986 check for 32 and 16 bit jumps as we want to allow wrap around at
7987 4G and 64k respectively. */
7988 if (size == 1)
7989 fixP->fx_signed = 1;
29b0f896 7990}
e0890092 7991
29b0f896 7992static void
e3bb37b5 7993output_interseg_jump (void)
29b0f896
AM
7994{
7995 char *p;
7996 int size;
7997 int prefix;
7998 int code16;
252b5132 7999
29b0f896
AM
8000 code16 = 0;
8001 if (flag_code == CODE_16BIT)
8002 code16 = CODE16;
a217f122 8003
29b0f896
AM
8004 prefix = 0;
8005 if (i.prefix[DATA_PREFIX] != 0)
8006 {
8007 prefix = 1;
8008 i.prefixes -= 1;
8009 code16 ^= CODE16;
8010 }
8011 if (i.prefix[REX_PREFIX] != 0)
8012 {
8013 prefix++;
8014 i.prefixes -= 1;
8015 }
252b5132 8016
29b0f896
AM
8017 size = 4;
8018 if (code16)
8019 size = 2;
252b5132 8020
29b0f896
AM
8021 if (i.prefixes != 0 && !intel_syntax)
8022 as_warn (_("skipping prefixes on this instruction"));
252b5132 8023
29b0f896
AM
8024 /* 1 opcode; 2 segment; offset */
8025 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8026
29b0f896
AM
8027 if (i.prefix[DATA_PREFIX] != 0)
8028 *p++ = DATA_PREFIX_OPCODE;
252b5132 8029
29b0f896
AM
8030 if (i.prefix[REX_PREFIX] != 0)
8031 *p++ = i.prefix[REX_PREFIX];
252b5132 8032
29b0f896
AM
8033 *p++ = i.tm.base_opcode;
8034 if (i.op[1].imms->X_op == O_constant)
8035 {
8036 offsetT n = i.op[1].imms->X_add_number;
252b5132 8037
29b0f896
AM
8038 if (size == 2
8039 && !fits_in_unsigned_word (n)
8040 && !fits_in_signed_word (n))
8041 {
8042 as_bad (_("16-bit jump out of range"));
8043 return;
8044 }
8045 md_number_to_chars (p, n, size);
8046 }
8047 else
8048 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8049 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8050 if (i.op[0].imms->X_op != O_constant)
8051 as_bad (_("can't handle non absolute segment in `%s'"),
8052 i.tm.name);
8053 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8054}
a217f122 8055
b4a3a7b4
L
8056#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8057void
8058x86_cleanup (void)
8059{
8060 char *p;
8061 asection *seg = now_seg;
8062 subsegT subseg = now_subseg;
8063 asection *sec;
8064 unsigned int alignment, align_size_1;
8065 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8066 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8067 unsigned int padding;
8068
8069 if (!IS_ELF || !x86_used_note)
8070 return;
8071
b4a3a7b4
L
8072 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8073
8074 /* The .note.gnu.property section layout:
8075
8076 Field Length Contents
8077 ---- ---- ----
8078 n_namsz 4 4
8079 n_descsz 4 The note descriptor size
8080 n_type 4 NT_GNU_PROPERTY_TYPE_0
8081 n_name 4 "GNU"
8082 n_desc n_descsz The program property array
8083 .... .... ....
8084 */
8085
8086 /* Create the .note.gnu.property section. */
8087 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8088 bfd_set_section_flags (sec,
b4a3a7b4
L
8089 (SEC_ALLOC
8090 | SEC_LOAD
8091 | SEC_DATA
8092 | SEC_HAS_CONTENTS
8093 | SEC_READONLY));
8094
8095 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8096 {
8097 align_size_1 = 7;
8098 alignment = 3;
8099 }
8100 else
8101 {
8102 align_size_1 = 3;
8103 alignment = 2;
8104 }
8105
fd361982 8106 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8107 elf_section_type (sec) = SHT_NOTE;
8108
8109 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8110 + 4-byte data */
8111 isa_1_descsz_raw = 4 + 4 + 4;
8112 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8113 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8114
8115 feature_2_descsz_raw = isa_1_descsz;
8116 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8117 + 4-byte data */
8118 feature_2_descsz_raw += 4 + 4 + 4;
8119 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8120 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8121 & ~align_size_1);
8122
8123 descsz = feature_2_descsz;
8124 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8125 p = frag_more (4 + 4 + 4 + 4 + descsz);
8126
8127 /* Write n_namsz. */
8128 md_number_to_chars (p, (valueT) 4, 4);
8129
8130 /* Write n_descsz. */
8131 md_number_to_chars (p + 4, (valueT) descsz, 4);
8132
8133 /* Write n_type. */
8134 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8135
8136 /* Write n_name. */
8137 memcpy (p + 4 * 3, "GNU", 4);
8138
8139 /* Write 4-byte type. */
8140 md_number_to_chars (p + 4 * 4,
8141 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8142
8143 /* Write 4-byte data size. */
8144 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8145
8146 /* Write 4-byte data. */
8147 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8148
8149 /* Zero out paddings. */
8150 padding = isa_1_descsz - isa_1_descsz_raw;
8151 if (padding)
8152 memset (p + 4 * 7, 0, padding);
8153
8154 /* Write 4-byte type. */
8155 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8156 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8157
8158 /* Write 4-byte data size. */
8159 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8160
8161 /* Write 4-byte data. */
8162 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8163 (valueT) x86_feature_2_used, 4);
8164
8165 /* Zero out paddings. */
8166 padding = feature_2_descsz - feature_2_descsz_raw;
8167 if (padding)
8168 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8169
8170 /* We probably can't restore the current segment, for there likely
8171 isn't one yet... */
8172 if (seg && subseg)
8173 subseg_set (seg, subseg);
8174}
8175#endif
8176
9c33702b
JB
8177static unsigned int
8178encoding_length (const fragS *start_frag, offsetT start_off,
8179 const char *frag_now_ptr)
8180{
8181 unsigned int len = 0;
8182
8183 if (start_frag != frag_now)
8184 {
8185 const fragS *fr = start_frag;
8186
8187 do {
8188 len += fr->fr_fix;
8189 fr = fr->fr_next;
8190 } while (fr && fr != frag_now);
8191 }
8192
8193 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8194}
8195
29b0f896 8196static void
e3bb37b5 8197output_insn (void)
29b0f896 8198{
2bbd9c25
JJ
8199 fragS *insn_start_frag;
8200 offsetT insn_start_off;
8201
b4a3a7b4
L
8202#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8203 if (IS_ELF && x86_used_note)
8204 {
8205 if (i.tm.cpu_flags.bitfield.cpucmov)
8206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8207 if (i.tm.cpu_flags.bitfield.cpusse)
8208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8209 if (i.tm.cpu_flags.bitfield.cpusse2)
8210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8211 if (i.tm.cpu_flags.bitfield.cpusse3)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8213 if (i.tm.cpu_flags.bitfield.cpussse3)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8215 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8217 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8219 if (i.tm.cpu_flags.bitfield.cpuavx)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8221 if (i.tm.cpu_flags.bitfield.cpuavx2)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8223 if (i.tm.cpu_flags.bitfield.cpufma)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8225 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8227 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8229 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8253 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8255
8256 if (i.tm.cpu_flags.bitfield.cpu8087
8257 || i.tm.cpu_flags.bitfield.cpu287
8258 || i.tm.cpu_flags.bitfield.cpu387
8259 || i.tm.cpu_flags.bitfield.cpu687
8260 || i.tm.cpu_flags.bitfield.cpufisttp)
8261 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8262 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8263 Xfence instructions. */
8264 if (i.tm.base_opcode != 0xf18
8265 && i.tm.base_opcode != 0xf0d
c3949f43 8266 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8267 && (i.has_regmmx
8268 || i.tm.cpu_flags.bitfield.cpummx
8269 || i.tm.cpu_flags.bitfield.cpua3dnow
8270 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8271 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8272 if (i.has_regxmm)
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8274 if (i.has_regymm)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8276 if (i.has_regzmm)
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8278 if (i.tm.cpu_flags.bitfield.cpufxsr)
8279 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8280 if (i.tm.cpu_flags.bitfield.cpuxsave)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8282 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8283 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8284 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8286 }
8287#endif
8288
29b0f896
AM
8289 /* Tie dwarf2 debug info to the address at the start of the insn.
8290 We can't do this after the insn has been output as the current
8291 frag may have been closed off. eg. by frag_var. */
8292 dwarf2_emit_insn (0);
8293
2bbd9c25
JJ
8294 insn_start_frag = frag_now;
8295 insn_start_off = frag_now_fix ();
8296
29b0f896 8297 /* Output jumps. */
0cfa3eb3 8298 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8299 output_branch ();
0cfa3eb3
JB
8300 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8301 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8302 output_jump ();
0cfa3eb3 8303 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8304 output_interseg_jump ();
8305 else
8306 {
8307 /* Output normal instructions here. */
8308 char *p;
8309 unsigned char *q;
47465058 8310 unsigned int j;
331d2d0d 8311 unsigned int prefix;
4dffcebc 8312
e4e00185 8313 if (avoid_fence
c3949f43
JB
8314 && (i.tm.base_opcode == 0xfaee8
8315 || i.tm.base_opcode == 0xfaef0
8316 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8317 {
8318 /* Encode lfence, mfence, and sfence as
8319 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8320 offsetT val = 0x240483f0ULL;
8321 p = frag_more (5);
8322 md_number_to_chars (p, val, 5);
8323 return;
8324 }
8325
d022bddd
IT
8326 /* Some processors fail on LOCK prefix. This options makes
8327 assembler ignore LOCK prefix and serves as a workaround. */
8328 if (omit_lock_prefix)
8329 {
8330 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8331 return;
8332 i.prefix[LOCK_PREFIX] = 0;
8333 }
8334
43234a1e
L
8335 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8336 don't need the explicit prefix. */
8337 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8338 {
c0f3af97 8339 switch (i.tm.opcode_length)
bc4bd9ab 8340 {
c0f3af97
L
8341 case 3:
8342 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8343 {
c0f3af97 8344 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8345 if (!i.tm.cpu_flags.bitfield.cpupadlock
8346 || prefix != REPE_PREFIX_OPCODE
8347 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8348 add_prefix (prefix);
c0f3af97
L
8349 }
8350 break;
8351 case 2:
8352 if ((i.tm.base_opcode & 0xff0000) != 0)
8353 {
8354 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8355 add_prefix (prefix);
4dffcebc 8356 }
c0f3af97
L
8357 break;
8358 case 1:
8359 break;
390c91cf
L
8360 case 0:
8361 /* Check for pseudo prefixes. */
8362 as_bad_where (insn_start_frag->fr_file,
8363 insn_start_frag->fr_line,
8364 _("pseudo prefix without instruction"));
8365 return;
c0f3af97
L
8366 default:
8367 abort ();
bc4bd9ab 8368 }
c0f3af97 8369
6d19a37a 8370#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8371 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8372 R_X86_64_GOTTPOFF relocation so that linker can safely
8373 perform IE->LE optimization. */
8374 if (x86_elf_abi == X86_64_X32_ABI
8375 && i.operands == 2
8376 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8377 && i.prefix[REX_PREFIX] == 0)
8378 add_prefix (REX_OPCODE);
6d19a37a 8379#endif
cf61b747 8380
c0f3af97
L
8381 /* The prefix bytes. */
8382 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8383 if (*q)
8384 FRAG_APPEND_1_CHAR (*q);
0f10071e 8385 }
ae5c1c7b 8386 else
c0f3af97
L
8387 {
8388 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8389 if (*q)
8390 switch (j)
8391 {
8392 case REX_PREFIX:
8393 /* REX byte is encoded in VEX prefix. */
8394 break;
8395 case SEG_PREFIX:
8396 case ADDR_PREFIX:
8397 FRAG_APPEND_1_CHAR (*q);
8398 break;
8399 default:
8400 /* There should be no other prefixes for instructions
8401 with VEX prefix. */
8402 abort ();
8403 }
8404
43234a1e
L
8405 /* For EVEX instructions i.vrex should become 0 after
8406 build_evex_prefix. For VEX instructions upper 16 registers
8407 aren't available, so VREX should be 0. */
8408 if (i.vrex)
8409 abort ();
c0f3af97
L
8410 /* Now the VEX prefix. */
8411 p = frag_more (i.vex.length);
8412 for (j = 0; j < i.vex.length; j++)
8413 p[j] = i.vex.bytes[j];
8414 }
252b5132 8415
29b0f896 8416 /* Now the opcode; be careful about word order here! */
4dffcebc 8417 if (i.tm.opcode_length == 1)
29b0f896
AM
8418 {
8419 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8420 }
8421 else
8422 {
4dffcebc 8423 switch (i.tm.opcode_length)
331d2d0d 8424 {
43234a1e
L
8425 case 4:
8426 p = frag_more (4);
8427 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8428 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8429 break;
4dffcebc 8430 case 3:
331d2d0d
L
8431 p = frag_more (3);
8432 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8433 break;
8434 case 2:
8435 p = frag_more (2);
8436 break;
8437 default:
8438 abort ();
8439 break;
331d2d0d 8440 }
0f10071e 8441
29b0f896
AM
8442 /* Put out high byte first: can't use md_number_to_chars! */
8443 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8444 *p = i.tm.base_opcode & 0xff;
8445 }
3e73aa7c 8446
29b0f896 8447 /* Now the modrm byte and sib byte (if present). */
40fb9820 8448 if (i.tm.opcode_modifier.modrm)
29b0f896 8449 {
4a3523fa
L
8450 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8451 | i.rm.reg << 3
8452 | i.rm.mode << 6));
29b0f896
AM
8453 /* If i.rm.regmem == ESP (4)
8454 && i.rm.mode != (Register mode)
8455 && not 16 bit
8456 ==> need second modrm byte. */
8457 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8458 && i.rm.mode != 3
dc821c5f 8459 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8460 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8461 | i.sib.index << 3
8462 | i.sib.scale << 6));
29b0f896 8463 }
3e73aa7c 8464
29b0f896 8465 if (i.disp_operands)
2bbd9c25 8466 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8467
29b0f896 8468 if (i.imm_operands)
2bbd9c25 8469 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8470
8471 /*
8472 * frag_now_fix () returning plain abs_section_offset when we're in the
8473 * absolute section, and abs_section_offset not getting updated as data
8474 * gets added to the frag breaks the logic below.
8475 */
8476 if (now_seg != absolute_section)
8477 {
8478 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8479 if (j > 15)
8480 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8481 j);
8482 }
29b0f896 8483 }
252b5132 8484
29b0f896
AM
8485#ifdef DEBUG386
8486 if (flag_debug)
8487 {
7b81dfbb 8488 pi ("" /*line*/, &i);
29b0f896
AM
8489 }
8490#endif /* DEBUG386 */
8491}
252b5132 8492
e205caa7
L
8493/* Return the size of the displacement operand N. */
8494
8495static int
8496disp_size (unsigned int n)
8497{
8498 int size = 4;
43234a1e 8499
b5014f7a 8500 if (i.types[n].bitfield.disp64)
40fb9820
L
8501 size = 8;
8502 else if (i.types[n].bitfield.disp8)
8503 size = 1;
8504 else if (i.types[n].bitfield.disp16)
8505 size = 2;
e205caa7
L
8506 return size;
8507}
8508
8509/* Return the size of the immediate operand N. */
8510
8511static int
8512imm_size (unsigned int n)
8513{
8514 int size = 4;
40fb9820
L
8515 if (i.types[n].bitfield.imm64)
8516 size = 8;
8517 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8518 size = 1;
8519 else if (i.types[n].bitfield.imm16)
8520 size = 2;
e205caa7
L
8521 return size;
8522}
8523
29b0f896 8524static void
64e74474 8525output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8526{
8527 char *p;
8528 unsigned int n;
252b5132 8529
29b0f896
AM
8530 for (n = 0; n < i.operands; n++)
8531 {
b5014f7a 8532 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8533 {
8534 if (i.op[n].disps->X_op == O_constant)
8535 {
e205caa7 8536 int size = disp_size (n);
43234a1e 8537 offsetT val = i.op[n].disps->X_add_number;
252b5132 8538
629cfaf1
JB
8539 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8540 size);
29b0f896
AM
8541 p = frag_more (size);
8542 md_number_to_chars (p, val, size);
8543 }
8544 else
8545 {
f86103b7 8546 enum bfd_reloc_code_real reloc_type;
e205caa7 8547 int size = disp_size (n);
40fb9820 8548 int sign = i.types[n].bitfield.disp32s;
29b0f896 8549 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8550 fixS *fixP;
29b0f896 8551
e205caa7 8552 /* We can't have 8 bit displacement here. */
9c2799c2 8553 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8554
29b0f896
AM
8555 /* The PC relative address is computed relative
8556 to the instruction boundary, so in case immediate
8557 fields follows, we need to adjust the value. */
8558 if (pcrel && i.imm_operands)
8559 {
29b0f896 8560 unsigned int n1;
e205caa7 8561 int sz = 0;
252b5132 8562
29b0f896 8563 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8564 if (operand_type_check (i.types[n1], imm))
252b5132 8565 {
e205caa7
L
8566 /* Only one immediate is allowed for PC
8567 relative address. */
9c2799c2 8568 gas_assert (sz == 0);
e205caa7
L
8569 sz = imm_size (n1);
8570 i.op[n].disps->X_add_number -= sz;
252b5132 8571 }
29b0f896 8572 /* We should find the immediate. */
9c2799c2 8573 gas_assert (sz != 0);
29b0f896 8574 }
520dc8e8 8575
29b0f896 8576 p = frag_more (size);
d258b828 8577 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8578 if (GOT_symbol
2bbd9c25 8579 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8580 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8581 || reloc_type == BFD_RELOC_X86_64_32S
8582 || (reloc_type == BFD_RELOC_64
8583 && object_64bit))
d6ab8113
JB
8584 && (i.op[n].disps->X_op == O_symbol
8585 || (i.op[n].disps->X_op == O_add
8586 && ((symbol_get_value_expression
8587 (i.op[n].disps->X_op_symbol)->X_op)
8588 == O_subtract))))
8589 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8590 {
4fa24527 8591 if (!object_64bit)
7b81dfbb
AJ
8592 {
8593 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8594 i.op[n].imms->X_add_number +=
8595 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8596 }
8597 else if (reloc_type == BFD_RELOC_64)
8598 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8599 else
7b81dfbb
AJ
8600 /* Don't do the adjustment for x86-64, as there
8601 the pcrel addressing is relative to the _next_
8602 insn, and that is taken care of in other code. */
d6ab8113 8603 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8604 }
02a86693
L
8605 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8606 size, i.op[n].disps, pcrel,
8607 reloc_type);
8608 /* Check for "call/jmp *mem", "mov mem, %reg",
8609 "test %reg, mem" and "binop mem, %reg" where binop
8610 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8611 instructions without data prefix. Always generate
8612 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8613 if (i.prefix[DATA_PREFIX] == 0
8614 && (generate_relax_relocations
8615 || (!object_64bit
8616 && i.rm.mode == 0
8617 && i.rm.regmem == 5))
0cb4071e
L
8618 && (i.rm.mode == 2
8619 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8620 && ((i.operands == 1
8621 && i.tm.base_opcode == 0xff
8622 && (i.rm.reg == 2 || i.rm.reg == 4))
8623 || (i.operands == 2
8624 && (i.tm.base_opcode == 0x8b
8625 || i.tm.base_opcode == 0x85
8626 || (i.tm.base_opcode & 0xc7) == 0x03))))
8627 {
8628 if (object_64bit)
8629 {
8630 fixP->fx_tcbit = i.rex != 0;
8631 if (i.base_reg
e968fc9b 8632 && (i.base_reg->reg_num == RegIP))
02a86693
L
8633 fixP->fx_tcbit2 = 1;
8634 }
8635 else
8636 fixP->fx_tcbit2 = 1;
8637 }
29b0f896
AM
8638 }
8639 }
8640 }
8641}
252b5132 8642
29b0f896 8643static void
64e74474 8644output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8645{
8646 char *p;
8647 unsigned int n;
252b5132 8648
29b0f896
AM
8649 for (n = 0; n < i.operands; n++)
8650 {
43234a1e
L
8651 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8652 if (i.rounding && (int) n == i.rounding->operand)
8653 continue;
8654
40fb9820 8655 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8656 {
8657 if (i.op[n].imms->X_op == O_constant)
8658 {
e205caa7 8659 int size = imm_size (n);
29b0f896 8660 offsetT val;
b4cac588 8661
29b0f896
AM
8662 val = offset_in_range (i.op[n].imms->X_add_number,
8663 size);
8664 p = frag_more (size);
8665 md_number_to_chars (p, val, size);
8666 }
8667 else
8668 {
8669 /* Not absolute_section.
8670 Need a 32-bit fixup (don't support 8bit
8671 non-absolute imms). Try to support other
8672 sizes ... */
f86103b7 8673 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8674 int size = imm_size (n);
8675 int sign;
29b0f896 8676
40fb9820 8677 if (i.types[n].bitfield.imm32s
a7d61044 8678 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8679 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8680 sign = 1;
e205caa7
L
8681 else
8682 sign = 0;
520dc8e8 8683
29b0f896 8684 p = frag_more (size);
d258b828 8685 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8686
2bbd9c25
JJ
8687 /* This is tough to explain. We end up with this one if we
8688 * have operands that look like
8689 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8690 * obtain the absolute address of the GOT, and it is strongly
8691 * preferable from a performance point of view to avoid using
8692 * a runtime relocation for this. The actual sequence of
8693 * instructions often look something like:
8694 *
8695 * call .L66
8696 * .L66:
8697 * popl %ebx
8698 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8699 *
8700 * The call and pop essentially return the absolute address
8701 * of the label .L66 and store it in %ebx. The linker itself
8702 * will ultimately change the first operand of the addl so
8703 * that %ebx points to the GOT, but to keep things simple, the
8704 * .o file must have this operand set so that it generates not
8705 * the absolute address of .L66, but the absolute address of
8706 * itself. This allows the linker itself simply treat a GOTPC
8707 * relocation as asking for a pcrel offset to the GOT to be
8708 * added in, and the addend of the relocation is stored in the
8709 * operand field for the instruction itself.
8710 *
8711 * Our job here is to fix the operand so that it would add
8712 * the correct offset so that %ebx would point to itself. The
8713 * thing that is tricky is that .-.L66 will point to the
8714 * beginning of the instruction, so we need to further modify
8715 * the operand so that it will point to itself. There are
8716 * other cases where you have something like:
8717 *
8718 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8719 *
8720 * and here no correction would be required. Internally in
8721 * the assembler we treat operands of this form as not being
8722 * pcrel since the '.' is explicitly mentioned, and I wonder
8723 * whether it would simplify matters to do it this way. Who
8724 * knows. In earlier versions of the PIC patches, the
8725 * pcrel_adjust field was used to store the correction, but
8726 * since the expression is not pcrel, I felt it would be
8727 * confusing to do it this way. */
8728
d6ab8113 8729 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8730 || reloc_type == BFD_RELOC_X86_64_32S
8731 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8732 && GOT_symbol
8733 && GOT_symbol == i.op[n].imms->X_add_symbol
8734 && (i.op[n].imms->X_op == O_symbol
8735 || (i.op[n].imms->X_op == O_add
8736 && ((symbol_get_value_expression
8737 (i.op[n].imms->X_op_symbol)->X_op)
8738 == O_subtract))))
8739 {
4fa24527 8740 if (!object_64bit)
d6ab8113 8741 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8742 else if (size == 4)
d6ab8113 8743 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8744 else if (size == 8)
8745 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8746 i.op[n].imms->X_add_number +=
8747 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8748 }
29b0f896
AM
8749 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8750 i.op[n].imms, 0, reloc_type);
8751 }
8752 }
8753 }
252b5132
RH
8754}
8755\f
d182319b
JB
8756/* x86_cons_fix_new is called via the expression parsing code when a
8757 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8758static int cons_sign = -1;
8759
8760void
e3bb37b5 8761x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8762 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8763{
d258b828 8764 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8765
8766#ifdef TE_PE
8767 if (exp->X_op == O_secrel)
8768 {
8769 exp->X_op = O_symbol;
8770 r = BFD_RELOC_32_SECREL;
8771 }
8772#endif
8773
8774 fix_new_exp (frag, off, len, exp, 0, r);
8775}
8776
357d1bd8
L
8777/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8778 purpose of the `.dc.a' internal pseudo-op. */
8779
8780int
8781x86_address_bytes (void)
8782{
8783 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8784 return 4;
8785 return stdoutput->arch_info->bits_per_address / 8;
8786}
8787
d382c579
TG
8788#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8789 || defined (LEX_AT)
d258b828 8790# define lex_got(reloc, adjust, types) NULL
718ddfc0 8791#else
f3c180ae
AM
8792/* Parse operands of the form
8793 <symbol>@GOTOFF+<nnn>
8794 and similar .plt or .got references.
8795
8796 If we find one, set up the correct relocation in RELOC and copy the
8797 input string, minus the `@GOTOFF' into a malloc'd buffer for
8798 parsing by the calling routine. Return this buffer, and if ADJUST
8799 is non-null set it to the length of the string we removed from the
8800 input line. Otherwise return NULL. */
8801static char *
91d6fa6a 8802lex_got (enum bfd_reloc_code_real *rel,
64e74474 8803 int *adjust,
d258b828 8804 i386_operand_type *types)
f3c180ae 8805{
7b81dfbb
AJ
8806 /* Some of the relocations depend on the size of what field is to
8807 be relocated. But in our callers i386_immediate and i386_displacement
8808 we don't yet know the operand size (this will be set by insn
8809 matching). Hence we record the word32 relocation here,
8810 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8811 static const struct {
8812 const char *str;
cff8d58a 8813 int len;
4fa24527 8814 const enum bfd_reloc_code_real rel[2];
40fb9820 8815 const i386_operand_type types64;
f3c180ae 8816 } gotrel[] = {
8ce3d284 8817#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8818 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8819 BFD_RELOC_SIZE32 },
8820 OPERAND_TYPE_IMM32_64 },
8ce3d284 8821#endif
cff8d58a
L
8822 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8823 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8824 OPERAND_TYPE_IMM64 },
cff8d58a
L
8825 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8826 BFD_RELOC_X86_64_PLT32 },
40fb9820 8827 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8828 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8830 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8831 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8832 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8833 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8834 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8835 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8836 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8837 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8838 BFD_RELOC_X86_64_TLSGD },
40fb9820 8839 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8840 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8841 _dummy_first_bfd_reloc_code_real },
40fb9820 8842 OPERAND_TYPE_NONE },
cff8d58a
L
8843 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8844 BFD_RELOC_X86_64_TLSLD },
40fb9820 8845 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8846 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8847 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8848 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8849 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8850 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8851 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8852 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8853 _dummy_first_bfd_reloc_code_real },
40fb9820 8854 OPERAND_TYPE_NONE },
cff8d58a
L
8855 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8856 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8857 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8858 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8859 _dummy_first_bfd_reloc_code_real },
40fb9820 8860 OPERAND_TYPE_NONE },
cff8d58a
L
8861 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8862 _dummy_first_bfd_reloc_code_real },
40fb9820 8863 OPERAND_TYPE_NONE },
cff8d58a
L
8864 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8865 BFD_RELOC_X86_64_GOT32 },
40fb9820 8866 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8867 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8868 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8869 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8870 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8871 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8872 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8873 };
8874 char *cp;
8875 unsigned int j;
8876
d382c579 8877#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8878 if (!IS_ELF)
8879 return NULL;
d382c579 8880#endif
718ddfc0 8881
f3c180ae 8882 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8883 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8884 return NULL;
8885
47465058 8886 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8887 {
cff8d58a 8888 int len = gotrel[j].len;
28f81592 8889 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8890 {
4fa24527 8891 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8892 {
28f81592
AM
8893 int first, second;
8894 char *tmpbuf, *past_reloc;
f3c180ae 8895
91d6fa6a 8896 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8897
3956db08
JB
8898 if (types)
8899 {
8900 if (flag_code != CODE_64BIT)
40fb9820
L
8901 {
8902 types->bitfield.imm32 = 1;
8903 types->bitfield.disp32 = 1;
8904 }
3956db08
JB
8905 else
8906 *types = gotrel[j].types64;
8907 }
8908
8fd4256d 8909 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8910 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8911
28f81592 8912 /* The length of the first part of our input line. */
f3c180ae 8913 first = cp - input_line_pointer;
28f81592
AM
8914
8915 /* The second part goes from after the reloc token until
67c11a9b 8916 (and including) an end_of_line char or comma. */
28f81592 8917 past_reloc = cp + 1 + len;
67c11a9b
AM
8918 cp = past_reloc;
8919 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8920 ++cp;
8921 second = cp + 1 - past_reloc;
28f81592
AM
8922
8923 /* Allocate and copy string. The trailing NUL shouldn't
8924 be necessary, but be safe. */
add39d23 8925 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8926 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8927 if (second != 0 && *past_reloc != ' ')
8928 /* Replace the relocation token with ' ', so that
8929 errors like foo@GOTOFF1 will be detected. */
8930 tmpbuf[first++] = ' ';
af89796a
L
8931 else
8932 /* Increment length by 1 if the relocation token is
8933 removed. */
8934 len++;
8935 if (adjust)
8936 *adjust = len;
0787a12d
AM
8937 memcpy (tmpbuf + first, past_reloc, second);
8938 tmpbuf[first + second] = '\0';
f3c180ae
AM
8939 return tmpbuf;
8940 }
8941
4fa24527
JB
8942 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8943 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8944 return NULL;
8945 }
8946 }
8947
8948 /* Might be a symbol version string. Don't as_bad here. */
8949 return NULL;
8950}
4e4f7c87 8951#endif
f3c180ae 8952
a988325c
NC
8953#ifdef TE_PE
8954#ifdef lex_got
8955#undef lex_got
8956#endif
8957/* Parse operands of the form
8958 <symbol>@SECREL32+<nnn>
8959
8960 If we find one, set up the correct relocation in RELOC and copy the
8961 input string, minus the `@SECREL32' into a malloc'd buffer for
8962 parsing by the calling routine. Return this buffer, and if ADJUST
8963 is non-null set it to the length of the string we removed from the
34bca508
L
8964 input line. Otherwise return NULL.
8965
a988325c
NC
8966 This function is copied from the ELF version above adjusted for PE targets. */
8967
8968static char *
8969lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8970 int *adjust ATTRIBUTE_UNUSED,
d258b828 8971 i386_operand_type *types)
a988325c
NC
8972{
8973 static const struct
8974 {
8975 const char *str;
8976 int len;
8977 const enum bfd_reloc_code_real rel[2];
8978 const i386_operand_type types64;
8979 }
8980 gotrel[] =
8981 {
8982 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8983 BFD_RELOC_32_SECREL },
8984 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8985 };
8986
8987 char *cp;
8988 unsigned j;
8989
8990 for (cp = input_line_pointer; *cp != '@'; cp++)
8991 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8992 return NULL;
8993
8994 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8995 {
8996 int len = gotrel[j].len;
8997
8998 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8999 {
9000 if (gotrel[j].rel[object_64bit] != 0)
9001 {
9002 int first, second;
9003 char *tmpbuf, *past_reloc;
9004
9005 *rel = gotrel[j].rel[object_64bit];
9006 if (adjust)
9007 *adjust = len;
9008
9009 if (types)
9010 {
9011 if (flag_code != CODE_64BIT)
9012 {
9013 types->bitfield.imm32 = 1;
9014 types->bitfield.disp32 = 1;
9015 }
9016 else
9017 *types = gotrel[j].types64;
9018 }
9019
9020 /* The length of the first part of our input line. */
9021 first = cp - input_line_pointer;
9022
9023 /* The second part goes from after the reloc token until
9024 (and including) an end_of_line char or comma. */
9025 past_reloc = cp + 1 + len;
9026 cp = past_reloc;
9027 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9028 ++cp;
9029 second = cp + 1 - past_reloc;
9030
9031 /* Allocate and copy string. The trailing NUL shouldn't
9032 be necessary, but be safe. */
add39d23 9033 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9034 memcpy (tmpbuf, input_line_pointer, first);
9035 if (second != 0 && *past_reloc != ' ')
9036 /* Replace the relocation token with ' ', so that
9037 errors like foo@SECLREL321 will be detected. */
9038 tmpbuf[first++] = ' ';
9039 memcpy (tmpbuf + first, past_reloc, second);
9040 tmpbuf[first + second] = '\0';
9041 return tmpbuf;
9042 }
9043
9044 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9045 gotrel[j].str, 1 << (5 + object_64bit));
9046 return NULL;
9047 }
9048 }
9049
9050 /* Might be a symbol version string. Don't as_bad here. */
9051 return NULL;
9052}
9053
9054#endif /* TE_PE */
9055
62ebcb5c 9056bfd_reloc_code_real_type
e3bb37b5 9057x86_cons (expressionS *exp, int size)
f3c180ae 9058{
62ebcb5c
AM
9059 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9060
ee86248c
JB
9061 intel_syntax = -intel_syntax;
9062
3c7b9c2c 9063 exp->X_md = 0;
4fa24527 9064 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9065 {
9066 /* Handle @GOTOFF and the like in an expression. */
9067 char *save;
9068 char *gotfree_input_line;
4a57f2cf 9069 int adjust = 0;
f3c180ae
AM
9070
9071 save = input_line_pointer;
d258b828 9072 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9073 if (gotfree_input_line)
9074 input_line_pointer = gotfree_input_line;
9075
9076 expression (exp);
9077
9078 if (gotfree_input_line)
9079 {
9080 /* expression () has merrily parsed up to the end of line,
9081 or a comma - in the wrong buffer. Transfer how far
9082 input_line_pointer has moved to the right buffer. */
9083 input_line_pointer = (save
9084 + (input_line_pointer - gotfree_input_line)
9085 + adjust);
9086 free (gotfree_input_line);
3992d3b7
AM
9087 if (exp->X_op == O_constant
9088 || exp->X_op == O_absent
9089 || exp->X_op == O_illegal
0398aac5 9090 || exp->X_op == O_register
3992d3b7
AM
9091 || exp->X_op == O_big)
9092 {
9093 char c = *input_line_pointer;
9094 *input_line_pointer = 0;
9095 as_bad (_("missing or invalid expression `%s'"), save);
9096 *input_line_pointer = c;
9097 }
b9519cfe
L
9098 else if ((got_reloc == BFD_RELOC_386_PLT32
9099 || got_reloc == BFD_RELOC_X86_64_PLT32)
9100 && exp->X_op != O_symbol)
9101 {
9102 char c = *input_line_pointer;
9103 *input_line_pointer = 0;
9104 as_bad (_("invalid PLT expression `%s'"), save);
9105 *input_line_pointer = c;
9106 }
f3c180ae
AM
9107 }
9108 }
9109 else
9110 expression (exp);
ee86248c
JB
9111
9112 intel_syntax = -intel_syntax;
9113
9114 if (intel_syntax)
9115 i386_intel_simplify (exp);
62ebcb5c
AM
9116
9117 return got_reloc;
f3c180ae 9118}
f3c180ae 9119
9f32dd5b
L
9120static void
9121signed_cons (int size)
6482c264 9122{
d182319b
JB
9123 if (flag_code == CODE_64BIT)
9124 cons_sign = 1;
9125 cons (size);
9126 cons_sign = -1;
6482c264
NC
9127}
9128
d182319b 9129#ifdef TE_PE
6482c264 9130static void
7016a5d5 9131pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9132{
9133 expressionS exp;
9134
9135 do
9136 {
9137 expression (&exp);
9138 if (exp.X_op == O_symbol)
9139 exp.X_op = O_secrel;
9140
9141 emit_expr (&exp, 4);
9142 }
9143 while (*input_line_pointer++ == ',');
9144
9145 input_line_pointer--;
9146 demand_empty_rest_of_line ();
9147}
6482c264
NC
9148#endif
9149
43234a1e
L
9150/* Handle Vector operations. */
9151
9152static char *
9153check_VecOperations (char *op_string, char *op_end)
9154{
9155 const reg_entry *mask;
9156 const char *saved;
9157 char *end_op;
9158
9159 while (*op_string
9160 && (op_end == NULL || op_string < op_end))
9161 {
9162 saved = op_string;
9163 if (*op_string == '{')
9164 {
9165 op_string++;
9166
9167 /* Check broadcasts. */
9168 if (strncmp (op_string, "1to", 3) == 0)
9169 {
9170 int bcst_type;
9171
9172 if (i.broadcast)
9173 goto duplicated_vec_op;
9174
9175 op_string += 3;
9176 if (*op_string == '8')
8e6e0792 9177 bcst_type = 8;
b28d1bda 9178 else if (*op_string == '4')
8e6e0792 9179 bcst_type = 4;
b28d1bda 9180 else if (*op_string == '2')
8e6e0792 9181 bcst_type = 2;
43234a1e
L
9182 else if (*op_string == '1'
9183 && *(op_string+1) == '6')
9184 {
8e6e0792 9185 bcst_type = 16;
43234a1e
L
9186 op_string++;
9187 }
9188 else
9189 {
9190 as_bad (_("Unsupported broadcast: `%s'"), saved);
9191 return NULL;
9192 }
9193 op_string++;
9194
9195 broadcast_op.type = bcst_type;
9196 broadcast_op.operand = this_operand;
1f75763a 9197 broadcast_op.bytes = 0;
43234a1e
L
9198 i.broadcast = &broadcast_op;
9199 }
9200 /* Check masking operation. */
9201 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9202 {
9203 /* k0 can't be used for write mask. */
f74a6307 9204 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9205 {
6d2cd6b2
JB
9206 as_bad (_("`%s%s' can't be used for write mask"),
9207 register_prefix, mask->reg_name);
43234a1e
L
9208 return NULL;
9209 }
9210
9211 if (!i.mask)
9212 {
9213 mask_op.mask = mask;
9214 mask_op.zeroing = 0;
9215 mask_op.operand = this_operand;
9216 i.mask = &mask_op;
9217 }
9218 else
9219 {
9220 if (i.mask->mask)
9221 goto duplicated_vec_op;
9222
9223 i.mask->mask = mask;
9224
9225 /* Only "{z}" is allowed here. No need to check
9226 zeroing mask explicitly. */
9227 if (i.mask->operand != this_operand)
9228 {
9229 as_bad (_("invalid write mask `%s'"), saved);
9230 return NULL;
9231 }
9232 }
9233
9234 op_string = end_op;
9235 }
9236 /* Check zeroing-flag for masking operation. */
9237 else if (*op_string == 'z')
9238 {
9239 if (!i.mask)
9240 {
9241 mask_op.mask = NULL;
9242 mask_op.zeroing = 1;
9243 mask_op.operand = this_operand;
9244 i.mask = &mask_op;
9245 }
9246 else
9247 {
9248 if (i.mask->zeroing)
9249 {
9250 duplicated_vec_op:
9251 as_bad (_("duplicated `%s'"), saved);
9252 return NULL;
9253 }
9254
9255 i.mask->zeroing = 1;
9256
9257 /* Only "{%k}" is allowed here. No need to check mask
9258 register explicitly. */
9259 if (i.mask->operand != this_operand)
9260 {
9261 as_bad (_("invalid zeroing-masking `%s'"),
9262 saved);
9263 return NULL;
9264 }
9265 }
9266
9267 op_string++;
9268 }
9269 else
9270 goto unknown_vec_op;
9271
9272 if (*op_string != '}')
9273 {
9274 as_bad (_("missing `}' in `%s'"), saved);
9275 return NULL;
9276 }
9277 op_string++;
0ba3a731
L
9278
9279 /* Strip whitespace since the addition of pseudo prefixes
9280 changed how the scrubber treats '{'. */
9281 if (is_space_char (*op_string))
9282 ++op_string;
9283
43234a1e
L
9284 continue;
9285 }
9286 unknown_vec_op:
9287 /* We don't know this one. */
9288 as_bad (_("unknown vector operation: `%s'"), saved);
9289 return NULL;
9290 }
9291
6d2cd6b2
JB
9292 if (i.mask && i.mask->zeroing && !i.mask->mask)
9293 {
9294 as_bad (_("zeroing-masking only allowed with write mask"));
9295 return NULL;
9296 }
9297
43234a1e
L
9298 return op_string;
9299}
9300
252b5132 9301static int
70e41ade 9302i386_immediate (char *imm_start)
252b5132
RH
9303{
9304 char *save_input_line_pointer;
f3c180ae 9305 char *gotfree_input_line;
252b5132 9306 segT exp_seg = 0;
47926f60 9307 expressionS *exp;
40fb9820
L
9308 i386_operand_type types;
9309
0dfbf9d7 9310 operand_type_set (&types, ~0);
252b5132
RH
9311
9312 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9313 {
31b2323c
L
9314 as_bad (_("at most %d immediate operands are allowed"),
9315 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9316 return 0;
9317 }
9318
9319 exp = &im_expressions[i.imm_operands++];
520dc8e8 9320 i.op[this_operand].imms = exp;
252b5132
RH
9321
9322 if (is_space_char (*imm_start))
9323 ++imm_start;
9324
9325 save_input_line_pointer = input_line_pointer;
9326 input_line_pointer = imm_start;
9327
d258b828 9328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9329 if (gotfree_input_line)
9330 input_line_pointer = gotfree_input_line;
252b5132
RH
9331
9332 exp_seg = expression (exp);
9333
83183c0c 9334 SKIP_WHITESPACE ();
43234a1e
L
9335
9336 /* Handle vector operations. */
9337 if (*input_line_pointer == '{')
9338 {
9339 input_line_pointer = check_VecOperations (input_line_pointer,
9340 NULL);
9341 if (input_line_pointer == NULL)
9342 return 0;
9343 }
9344
252b5132 9345 if (*input_line_pointer)
f3c180ae 9346 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9347
9348 input_line_pointer = save_input_line_pointer;
f3c180ae 9349 if (gotfree_input_line)
ee86248c
JB
9350 {
9351 free (gotfree_input_line);
9352
9353 if (exp->X_op == O_constant || exp->X_op == O_register)
9354 exp->X_op = O_illegal;
9355 }
9356
9357 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9358}
252b5132 9359
ee86248c
JB
9360static int
9361i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9362 i386_operand_type types, const char *imm_start)
9363{
9364 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9365 {
313c53d1
L
9366 if (imm_start)
9367 as_bad (_("missing or invalid immediate expression `%s'"),
9368 imm_start);
3992d3b7 9369 return 0;
252b5132 9370 }
3e73aa7c 9371 else if (exp->X_op == O_constant)
252b5132 9372 {
47926f60 9373 /* Size it properly later. */
40fb9820 9374 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9375 /* If not 64bit, sign extend val. */
9376 if (flag_code != CODE_64BIT
4eed87de
AM
9377 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9378 exp->X_add_number
9379 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9380 }
4c63da97 9381#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9382 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9383 && exp_seg != absolute_section
47926f60 9384 && exp_seg != text_section
24eab124
AM
9385 && exp_seg != data_section
9386 && exp_seg != bss_section
9387 && exp_seg != undefined_section
f86103b7 9388 && !bfd_is_com_section (exp_seg))
252b5132 9389 {
d0b47220 9390 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9391 return 0;
9392 }
9393#endif
a841bdf5 9394 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9395 {
313c53d1
L
9396 if (imm_start)
9397 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9398 return 0;
9399 }
252b5132
RH
9400 else
9401 {
9402 /* This is an address. The size of the address will be
24eab124 9403 determined later, depending on destination register,
3e73aa7c 9404 suffix, or the default for the section. */
40fb9820
L
9405 i.types[this_operand].bitfield.imm8 = 1;
9406 i.types[this_operand].bitfield.imm16 = 1;
9407 i.types[this_operand].bitfield.imm32 = 1;
9408 i.types[this_operand].bitfield.imm32s = 1;
9409 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9410 i.types[this_operand] = operand_type_and (i.types[this_operand],
9411 types);
252b5132
RH
9412 }
9413
9414 return 1;
9415}
9416
551c1ca1 9417static char *
e3bb37b5 9418i386_scale (char *scale)
252b5132 9419{
551c1ca1
AM
9420 offsetT val;
9421 char *save = input_line_pointer;
252b5132 9422
551c1ca1
AM
9423 input_line_pointer = scale;
9424 val = get_absolute_expression ();
9425
9426 switch (val)
252b5132 9427 {
551c1ca1 9428 case 1:
252b5132
RH
9429 i.log2_scale_factor = 0;
9430 break;
551c1ca1 9431 case 2:
252b5132
RH
9432 i.log2_scale_factor = 1;
9433 break;
551c1ca1 9434 case 4:
252b5132
RH
9435 i.log2_scale_factor = 2;
9436 break;
551c1ca1 9437 case 8:
252b5132
RH
9438 i.log2_scale_factor = 3;
9439 break;
9440 default:
a724f0f4
JB
9441 {
9442 char sep = *input_line_pointer;
9443
9444 *input_line_pointer = '\0';
9445 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9446 scale);
9447 *input_line_pointer = sep;
9448 input_line_pointer = save;
9449 return NULL;
9450 }
252b5132 9451 }
29b0f896 9452 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9453 {
9454 as_warn (_("scale factor of %d without an index register"),
24eab124 9455 1 << i.log2_scale_factor);
252b5132 9456 i.log2_scale_factor = 0;
252b5132 9457 }
551c1ca1
AM
9458 scale = input_line_pointer;
9459 input_line_pointer = save;
9460 return scale;
252b5132
RH
9461}
9462
252b5132 9463static int
e3bb37b5 9464i386_displacement (char *disp_start, char *disp_end)
252b5132 9465{
29b0f896 9466 expressionS *exp;
252b5132
RH
9467 segT exp_seg = 0;
9468 char *save_input_line_pointer;
f3c180ae 9469 char *gotfree_input_line;
40fb9820
L
9470 int override;
9471 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9472 int ret;
252b5132 9473
31b2323c
L
9474 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9475 {
9476 as_bad (_("at most %d displacement operands are allowed"),
9477 MAX_MEMORY_OPERANDS);
9478 return 0;
9479 }
9480
0dfbf9d7 9481 operand_type_set (&bigdisp, 0);
6f2f06be 9482 if (i.jumpabsolute
0cfa3eb3
JB
9483 || (current_templates->start->opcode_modifier.jump != JUMP
9484 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9485 {
40fb9820 9486 bigdisp.bitfield.disp32 = 1;
e05278af 9487 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9488 if (flag_code == CODE_64BIT)
9489 {
9490 if (!override)
9491 {
9492 bigdisp.bitfield.disp32s = 1;
9493 bigdisp.bitfield.disp64 = 1;
9494 }
9495 }
9496 else if ((flag_code == CODE_16BIT) ^ override)
9497 {
9498 bigdisp.bitfield.disp32 = 0;
9499 bigdisp.bitfield.disp16 = 1;
9500 }
e05278af
JB
9501 }
9502 else
9503 {
9504 /* For PC-relative branches, the width of the displacement
9505 is dependent upon data size, not address size. */
e05278af 9506 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9507 if (flag_code == CODE_64BIT)
9508 {
9509 if (override || i.suffix == WORD_MNEM_SUFFIX)
9510 bigdisp.bitfield.disp16 = 1;
9511 else
9512 {
9513 bigdisp.bitfield.disp32 = 1;
9514 bigdisp.bitfield.disp32s = 1;
9515 }
9516 }
9517 else
e05278af
JB
9518 {
9519 if (!override)
9520 override = (i.suffix == (flag_code != CODE_16BIT
9521 ? WORD_MNEM_SUFFIX
9522 : LONG_MNEM_SUFFIX));
40fb9820
L
9523 bigdisp.bitfield.disp32 = 1;
9524 if ((flag_code == CODE_16BIT) ^ override)
9525 {
9526 bigdisp.bitfield.disp32 = 0;
9527 bigdisp.bitfield.disp16 = 1;
9528 }
e05278af 9529 }
e05278af 9530 }
c6fb90c8
L
9531 i.types[this_operand] = operand_type_or (i.types[this_operand],
9532 bigdisp);
252b5132
RH
9533
9534 exp = &disp_expressions[i.disp_operands];
520dc8e8 9535 i.op[this_operand].disps = exp;
252b5132
RH
9536 i.disp_operands++;
9537 save_input_line_pointer = input_line_pointer;
9538 input_line_pointer = disp_start;
9539 END_STRING_AND_SAVE (disp_end);
9540
9541#ifndef GCC_ASM_O_HACK
9542#define GCC_ASM_O_HACK 0
9543#endif
9544#if GCC_ASM_O_HACK
9545 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9546 if (i.types[this_operand].bitfield.baseIndex
24eab124 9547 && displacement_string_end[-1] == '+')
252b5132
RH
9548 {
9549 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9550 constraint within gcc asm statements.
9551 For instance:
9552
9553 #define _set_tssldt_desc(n,addr,limit,type) \
9554 __asm__ __volatile__ ( \
9555 "movw %w2,%0\n\t" \
9556 "movw %w1,2+%0\n\t" \
9557 "rorl $16,%1\n\t" \
9558 "movb %b1,4+%0\n\t" \
9559 "movb %4,5+%0\n\t" \
9560 "movb $0,6+%0\n\t" \
9561 "movb %h1,7+%0\n\t" \
9562 "rorl $16,%1" \
9563 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9564
9565 This works great except that the output assembler ends
9566 up looking a bit weird if it turns out that there is
9567 no offset. You end up producing code that looks like:
9568
9569 #APP
9570 movw $235,(%eax)
9571 movw %dx,2+(%eax)
9572 rorl $16,%edx
9573 movb %dl,4+(%eax)
9574 movb $137,5+(%eax)
9575 movb $0,6+(%eax)
9576 movb %dh,7+(%eax)
9577 rorl $16,%edx
9578 #NO_APP
9579
47926f60 9580 So here we provide the missing zero. */
24eab124
AM
9581
9582 *displacement_string_end = '0';
252b5132
RH
9583 }
9584#endif
d258b828 9585 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9586 if (gotfree_input_line)
9587 input_line_pointer = gotfree_input_line;
252b5132 9588
24eab124 9589 exp_seg = expression (exp);
252b5132 9590
636c26b0
AM
9591 SKIP_WHITESPACE ();
9592 if (*input_line_pointer)
9593 as_bad (_("junk `%s' after expression"), input_line_pointer);
9594#if GCC_ASM_O_HACK
9595 RESTORE_END_STRING (disp_end + 1);
9596#endif
636c26b0 9597 input_line_pointer = save_input_line_pointer;
636c26b0 9598 if (gotfree_input_line)
ee86248c
JB
9599 {
9600 free (gotfree_input_line);
9601
9602 if (exp->X_op == O_constant || exp->X_op == O_register)
9603 exp->X_op = O_illegal;
9604 }
9605
9606 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9607
9608 RESTORE_END_STRING (disp_end);
9609
9610 return ret;
9611}
9612
9613static int
9614i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9615 i386_operand_type types, const char *disp_start)
9616{
9617 i386_operand_type bigdisp;
9618 int ret = 1;
636c26b0 9619
24eab124
AM
9620 /* We do this to make sure that the section symbol is in
9621 the symbol table. We will ultimately change the relocation
47926f60 9622 to be relative to the beginning of the section. */
1ae12ab7 9623 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9624 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9625 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9626 {
636c26b0 9627 if (exp->X_op != O_symbol)
3992d3b7 9628 goto inv_disp;
636c26b0 9629
e5cb08ac 9630 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9631 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9632 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9633 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9634 exp->X_op = O_subtract;
9635 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9636 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9637 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9638 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9639 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9640 else
29b0f896 9641 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9642 }
252b5132 9643
3992d3b7
AM
9644 else if (exp->X_op == O_absent
9645 || exp->X_op == O_illegal
ee86248c 9646 || exp->X_op == O_big)
2daf4fd8 9647 {
3992d3b7
AM
9648 inv_disp:
9649 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9650 disp_start);
3992d3b7 9651 ret = 0;
2daf4fd8
AM
9652 }
9653
0e1147d9
L
9654 else if (flag_code == CODE_64BIT
9655 && !i.prefix[ADDR_PREFIX]
9656 && exp->X_op == O_constant)
9657 {
9658 /* Since displacement is signed extended to 64bit, don't allow
9659 disp32 and turn off disp32s if they are out of range. */
9660 i.types[this_operand].bitfield.disp32 = 0;
9661 if (!fits_in_signed_long (exp->X_add_number))
9662 {
9663 i.types[this_operand].bitfield.disp32s = 0;
9664 if (i.types[this_operand].bitfield.baseindex)
9665 {
9666 as_bad (_("0x%lx out range of signed 32bit displacement"),
9667 (long) exp->X_add_number);
9668 ret = 0;
9669 }
9670 }
9671 }
9672
4c63da97 9673#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9674 else if (exp->X_op != O_constant
9675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9676 && exp_seg != absolute_section
9677 && exp_seg != text_section
9678 && exp_seg != data_section
9679 && exp_seg != bss_section
9680 && exp_seg != undefined_section
9681 && !bfd_is_com_section (exp_seg))
24eab124 9682 {
d0b47220 9683 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9684 ret = 0;
24eab124 9685 }
252b5132 9686#endif
3956db08 9687
40fb9820
L
9688 /* Check if this is a displacement only operand. */
9689 bigdisp = i.types[this_operand];
9690 bigdisp.bitfield.disp8 = 0;
9691 bigdisp.bitfield.disp16 = 0;
9692 bigdisp.bitfield.disp32 = 0;
9693 bigdisp.bitfield.disp32s = 0;
9694 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9695 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9696 i.types[this_operand] = operand_type_and (i.types[this_operand],
9697 types);
3956db08 9698
3992d3b7 9699 return ret;
252b5132
RH
9700}
9701
2abc2bec
JB
9702/* Return the active addressing mode, taking address override and
9703 registers forming the address into consideration. Update the
9704 address override prefix if necessary. */
47926f60 9705
2abc2bec
JB
9706static enum flag_code
9707i386_addressing_mode (void)
252b5132 9708{
be05d201
L
9709 enum flag_code addr_mode;
9710
9711 if (i.prefix[ADDR_PREFIX])
9712 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9713 else
9714 {
9715 addr_mode = flag_code;
9716
24eab124 9717#if INFER_ADDR_PREFIX
be05d201
L
9718 if (i.mem_operands == 0)
9719 {
9720 /* Infer address prefix from the first memory operand. */
9721 const reg_entry *addr_reg = i.base_reg;
9722
9723 if (addr_reg == NULL)
9724 addr_reg = i.index_reg;
eecb386c 9725
be05d201
L
9726 if (addr_reg)
9727 {
e968fc9b 9728 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9729 addr_mode = CODE_32BIT;
9730 else if (flag_code != CODE_64BIT
dc821c5f 9731 && addr_reg->reg_type.bitfield.word)
be05d201
L
9732 addr_mode = CODE_16BIT;
9733
9734 if (addr_mode != flag_code)
9735 {
9736 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9737 i.prefixes += 1;
9738 /* Change the size of any displacement too. At most one
9739 of Disp16 or Disp32 is set.
9740 FIXME. There doesn't seem to be any real need for
9741 separate Disp16 and Disp32 flags. The same goes for
9742 Imm16 and Imm32. Removing them would probably clean
9743 up the code quite a lot. */
9744 if (flag_code != CODE_64BIT
9745 && (i.types[this_operand].bitfield.disp16
9746 || i.types[this_operand].bitfield.disp32))
9747 i.types[this_operand]
9748 = operand_type_xor (i.types[this_operand], disp16_32);
9749 }
9750 }
9751 }
24eab124 9752#endif
be05d201
L
9753 }
9754
2abc2bec
JB
9755 return addr_mode;
9756}
9757
9758/* Make sure the memory operand we've been dealt is valid.
9759 Return 1 on success, 0 on a failure. */
9760
9761static int
9762i386_index_check (const char *operand_string)
9763{
9764 const char *kind = "base/index";
9765 enum flag_code addr_mode = i386_addressing_mode ();
9766
fc0763e6 9767 if (current_templates->start->opcode_modifier.isstring
c3949f43 9768 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9769 && (current_templates->end[-1].opcode_modifier.isstring
9770 || i.mem_operands))
9771 {
9772 /* Memory operands of string insns are special in that they only allow
9773 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9774 const reg_entry *expected_reg;
9775 static const char *di_si[][2] =
9776 {
9777 { "esi", "edi" },
9778 { "si", "di" },
9779 { "rsi", "rdi" }
9780 };
9781 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9782
9783 kind = "string address";
9784
8325cc63 9785 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 9786 {
51c8edf6
JB
9787 int es_op = current_templates->end[-1].opcode_modifier.isstring
9788 - IS_STRING_ES_OP0;
9789 int op = 0;
fc0763e6 9790
51c8edf6 9791 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
9792 || ((!i.mem_operands != !intel_syntax)
9793 && current_templates->end[-1].operand_types[1]
9794 .bitfield.baseindex))
51c8edf6
JB
9795 op = 1;
9796 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
9797 }
9798 else
be05d201 9799 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9800
be05d201
L
9801 if (i.base_reg != expected_reg
9802 || i.index_reg
fc0763e6 9803 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9804 {
be05d201
L
9805 /* The second memory operand must have the same size as
9806 the first one. */
9807 if (i.mem_operands
9808 && i.base_reg
9809 && !((addr_mode == CODE_64BIT
dc821c5f 9810 && i.base_reg->reg_type.bitfield.qword)
be05d201 9811 || (addr_mode == CODE_32BIT
dc821c5f
JB
9812 ? i.base_reg->reg_type.bitfield.dword
9813 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9814 goto bad_address;
9815
fc0763e6
JB
9816 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9817 operand_string,
9818 intel_syntax ? '[' : '(',
9819 register_prefix,
be05d201 9820 expected_reg->reg_name,
fc0763e6 9821 intel_syntax ? ']' : ')');
be05d201 9822 return 1;
fc0763e6 9823 }
be05d201
L
9824 else
9825 return 1;
9826
9827bad_address:
9828 as_bad (_("`%s' is not a valid %s expression"),
9829 operand_string, kind);
9830 return 0;
3e73aa7c
JH
9831 }
9832 else
9833 {
be05d201
L
9834 if (addr_mode != CODE_16BIT)
9835 {
9836 /* 32-bit/64-bit checks. */
9837 if ((i.base_reg
e968fc9b
JB
9838 && ((addr_mode == CODE_64BIT
9839 ? !i.base_reg->reg_type.bitfield.qword
9840 : !i.base_reg->reg_type.bitfield.dword)
9841 || (i.index_reg && i.base_reg->reg_num == RegIP)
9842 || i.base_reg->reg_num == RegIZ))
be05d201 9843 || (i.index_reg
1b54b8d7
JB
9844 && !i.index_reg->reg_type.bitfield.xmmword
9845 && !i.index_reg->reg_type.bitfield.ymmword
9846 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9847 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9848 ? !i.index_reg->reg_type.bitfield.qword
9849 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9850 || !i.index_reg->reg_type.bitfield.baseindex)))
9851 goto bad_address;
8178be5b
JB
9852
9853 /* bndmk, bndldx, and bndstx have special restrictions. */
9854 if (current_templates->start->base_opcode == 0xf30f1b
9855 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9856 {
9857 /* They cannot use RIP-relative addressing. */
e968fc9b 9858 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9859 {
9860 as_bad (_("`%s' cannot be used here"), operand_string);
9861 return 0;
9862 }
9863
9864 /* bndldx and bndstx ignore their scale factor. */
9865 if (current_templates->start->base_opcode != 0xf30f1b
9866 && i.log2_scale_factor)
9867 as_warn (_("register scaling is being ignored here"));
9868 }
be05d201
L
9869 }
9870 else
3e73aa7c 9871 {
be05d201 9872 /* 16-bit checks. */
3e73aa7c 9873 if ((i.base_reg
dc821c5f 9874 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9875 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9876 || (i.index_reg
dc821c5f 9877 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9878 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9879 || !(i.base_reg
9880 && i.base_reg->reg_num < 6
9881 && i.index_reg->reg_num >= 6
9882 && i.log2_scale_factor == 0))))
be05d201 9883 goto bad_address;
3e73aa7c
JH
9884 }
9885 }
be05d201 9886 return 1;
24eab124 9887}
252b5132 9888
43234a1e
L
9889/* Handle vector immediates. */
9890
9891static int
9892RC_SAE_immediate (const char *imm_start)
9893{
9894 unsigned int match_found, j;
9895 const char *pstr = imm_start;
9896 expressionS *exp;
9897
9898 if (*pstr != '{')
9899 return 0;
9900
9901 pstr++;
9902 match_found = 0;
9903 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9904 {
9905 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9906 {
9907 if (!i.rounding)
9908 {
9909 rc_op.type = RC_NamesTable[j].type;
9910 rc_op.operand = this_operand;
9911 i.rounding = &rc_op;
9912 }
9913 else
9914 {
9915 as_bad (_("duplicated `%s'"), imm_start);
9916 return 0;
9917 }
9918 pstr += RC_NamesTable[j].len;
9919 match_found = 1;
9920 break;
9921 }
9922 }
9923 if (!match_found)
9924 return 0;
9925
9926 if (*pstr++ != '}')
9927 {
9928 as_bad (_("Missing '}': '%s'"), imm_start);
9929 return 0;
9930 }
9931 /* RC/SAE immediate string should contain nothing more. */;
9932 if (*pstr != 0)
9933 {
9934 as_bad (_("Junk after '}': '%s'"), imm_start);
9935 return 0;
9936 }
9937
9938 exp = &im_expressions[i.imm_operands++];
9939 i.op[this_operand].imms = exp;
9940
9941 exp->X_op = O_constant;
9942 exp->X_add_number = 0;
9943 exp->X_add_symbol = (symbolS *) 0;
9944 exp->X_op_symbol = (symbolS *) 0;
9945
9946 i.types[this_operand].bitfield.imm8 = 1;
9947 return 1;
9948}
9949
8325cc63
JB
9950/* Only string instructions can have a second memory operand, so
9951 reduce current_templates to just those if it contains any. */
9952static int
9953maybe_adjust_templates (void)
9954{
9955 const insn_template *t;
9956
9957 gas_assert (i.mem_operands == 1);
9958
9959 for (t = current_templates->start; t < current_templates->end; ++t)
9960 if (t->opcode_modifier.isstring)
9961 break;
9962
9963 if (t < current_templates->end)
9964 {
9965 static templates aux_templates;
9966 bfd_boolean recheck;
9967
9968 aux_templates.start = t;
9969 for (; t < current_templates->end; ++t)
9970 if (!t->opcode_modifier.isstring)
9971 break;
9972 aux_templates.end = t;
9973
9974 /* Determine whether to re-check the first memory operand. */
9975 recheck = (aux_templates.start != current_templates->start
9976 || t != current_templates->end);
9977
9978 current_templates = &aux_templates;
9979
9980 if (recheck)
9981 {
9982 i.mem_operands = 0;
9983 if (i.memop1_string != NULL
9984 && i386_index_check (i.memop1_string) == 0)
9985 return 0;
9986 i.mem_operands = 1;
9987 }
9988 }
9989
9990 return 1;
9991}
9992
fc0763e6 9993/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9994 on error. */
252b5132 9995
252b5132 9996static int
a7619375 9997i386_att_operand (char *operand_string)
252b5132 9998{
af6bdddf
AM
9999 const reg_entry *r;
10000 char *end_op;
24eab124 10001 char *op_string = operand_string;
252b5132 10002
24eab124 10003 if (is_space_char (*op_string))
252b5132
RH
10004 ++op_string;
10005
24eab124 10006 /* We check for an absolute prefix (differentiating,
47926f60 10007 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10008 if (*op_string == ABSOLUTE_PREFIX)
10009 {
10010 ++op_string;
10011 if (is_space_char (*op_string))
10012 ++op_string;
6f2f06be 10013 i.jumpabsolute = TRUE;
24eab124 10014 }
252b5132 10015
47926f60 10016 /* Check if operand is a register. */
4d1bb795 10017 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10018 {
40fb9820
L
10019 i386_operand_type temp;
10020
24eab124
AM
10021 /* Check for a segment override by searching for ':' after a
10022 segment register. */
10023 op_string = end_op;
10024 if (is_space_char (*op_string))
10025 ++op_string;
00cee14f 10026 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10027 {
10028 switch (r->reg_num)
10029 {
10030 case 0:
10031 i.seg[i.mem_operands] = &es;
10032 break;
10033 case 1:
10034 i.seg[i.mem_operands] = &cs;
10035 break;
10036 case 2:
10037 i.seg[i.mem_operands] = &ss;
10038 break;
10039 case 3:
10040 i.seg[i.mem_operands] = &ds;
10041 break;
10042 case 4:
10043 i.seg[i.mem_operands] = &fs;
10044 break;
10045 case 5:
10046 i.seg[i.mem_operands] = &gs;
10047 break;
10048 }
252b5132 10049
24eab124 10050 /* Skip the ':' and whitespace. */
252b5132
RH
10051 ++op_string;
10052 if (is_space_char (*op_string))
24eab124 10053 ++op_string;
252b5132 10054
24eab124
AM
10055 if (!is_digit_char (*op_string)
10056 && !is_identifier_char (*op_string)
10057 && *op_string != '('
10058 && *op_string != ABSOLUTE_PREFIX)
10059 {
10060 as_bad (_("bad memory operand `%s'"), op_string);
10061 return 0;
10062 }
47926f60 10063 /* Handle case of %es:*foo. */
24eab124
AM
10064 if (*op_string == ABSOLUTE_PREFIX)
10065 {
10066 ++op_string;
10067 if (is_space_char (*op_string))
10068 ++op_string;
6f2f06be 10069 i.jumpabsolute = TRUE;
24eab124
AM
10070 }
10071 goto do_memory_reference;
10072 }
43234a1e
L
10073
10074 /* Handle vector operations. */
10075 if (*op_string == '{')
10076 {
10077 op_string = check_VecOperations (op_string, NULL);
10078 if (op_string == NULL)
10079 return 0;
10080 }
10081
24eab124
AM
10082 if (*op_string)
10083 {
d0b47220 10084 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10085 return 0;
10086 }
40fb9820
L
10087 temp = r->reg_type;
10088 temp.bitfield.baseindex = 0;
c6fb90c8
L
10089 i.types[this_operand] = operand_type_or (i.types[this_operand],
10090 temp);
7d5e4556 10091 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10092 i.op[this_operand].regs = r;
24eab124
AM
10093 i.reg_operands++;
10094 }
af6bdddf
AM
10095 else if (*op_string == REGISTER_PREFIX)
10096 {
10097 as_bad (_("bad register name `%s'"), op_string);
10098 return 0;
10099 }
24eab124 10100 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10101 {
24eab124 10102 ++op_string;
6f2f06be 10103 if (i.jumpabsolute)
24eab124 10104 {
d0b47220 10105 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10106 return 0;
10107 }
10108 if (!i386_immediate (op_string))
10109 return 0;
10110 }
43234a1e
L
10111 else if (RC_SAE_immediate (operand_string))
10112 {
10113 /* If it is a RC or SAE immediate, do nothing. */
10114 ;
10115 }
24eab124
AM
10116 else if (is_digit_char (*op_string)
10117 || is_identifier_char (*op_string)
d02603dc 10118 || *op_string == '"'
e5cb08ac 10119 || *op_string == '(')
24eab124 10120 {
47926f60 10121 /* This is a memory reference of some sort. */
af6bdddf 10122 char *base_string;
252b5132 10123
47926f60 10124 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10125 char *displacement_string_start;
10126 char *displacement_string_end;
43234a1e 10127 char *vop_start;
252b5132 10128
24eab124 10129 do_memory_reference:
8325cc63
JB
10130 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10131 return 0;
24eab124 10132 if ((i.mem_operands == 1
40fb9820 10133 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10134 || i.mem_operands == 2)
10135 {
10136 as_bad (_("too many memory references for `%s'"),
10137 current_templates->start->name);
10138 return 0;
10139 }
252b5132 10140
24eab124
AM
10141 /* Check for base index form. We detect the base index form by
10142 looking for an ')' at the end of the operand, searching
10143 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10144 after the '('. */
af6bdddf 10145 base_string = op_string + strlen (op_string);
c3332e24 10146
43234a1e
L
10147 /* Handle vector operations. */
10148 vop_start = strchr (op_string, '{');
10149 if (vop_start && vop_start < base_string)
10150 {
10151 if (check_VecOperations (vop_start, base_string) == NULL)
10152 return 0;
10153 base_string = vop_start;
10154 }
10155
af6bdddf
AM
10156 --base_string;
10157 if (is_space_char (*base_string))
10158 --base_string;
252b5132 10159
47926f60 10160 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10161 displacement_string_start = op_string;
10162 displacement_string_end = base_string + 1;
252b5132 10163
24eab124
AM
10164 if (*base_string == ')')
10165 {
af6bdddf 10166 char *temp_string;
24eab124
AM
10167 unsigned int parens_balanced = 1;
10168 /* We've already checked that the number of left & right ()'s are
47926f60 10169 equal, so this loop will not be infinite. */
24eab124
AM
10170 do
10171 {
10172 base_string--;
10173 if (*base_string == ')')
10174 parens_balanced++;
10175 if (*base_string == '(')
10176 parens_balanced--;
10177 }
10178 while (parens_balanced);
c3332e24 10179
af6bdddf 10180 temp_string = base_string;
c3332e24 10181
24eab124 10182 /* Skip past '(' and whitespace. */
252b5132
RH
10183 ++base_string;
10184 if (is_space_char (*base_string))
24eab124 10185 ++base_string;
252b5132 10186
af6bdddf 10187 if (*base_string == ','
4eed87de
AM
10188 || ((i.base_reg = parse_register (base_string, &end_op))
10189 != NULL))
252b5132 10190 {
af6bdddf 10191 displacement_string_end = temp_string;
252b5132 10192
40fb9820 10193 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10194
af6bdddf 10195 if (i.base_reg)
24eab124 10196 {
24eab124
AM
10197 base_string = end_op;
10198 if (is_space_char (*base_string))
10199 ++base_string;
af6bdddf
AM
10200 }
10201
10202 /* There may be an index reg or scale factor here. */
10203 if (*base_string == ',')
10204 {
10205 ++base_string;
10206 if (is_space_char (*base_string))
10207 ++base_string;
10208
4eed87de
AM
10209 if ((i.index_reg = parse_register (base_string, &end_op))
10210 != NULL)
24eab124 10211 {
af6bdddf 10212 base_string = end_op;
24eab124
AM
10213 if (is_space_char (*base_string))
10214 ++base_string;
af6bdddf
AM
10215 if (*base_string == ',')
10216 {
10217 ++base_string;
10218 if (is_space_char (*base_string))
10219 ++base_string;
10220 }
e5cb08ac 10221 else if (*base_string != ')')
af6bdddf 10222 {
4eed87de
AM
10223 as_bad (_("expecting `,' or `)' "
10224 "after index register in `%s'"),
af6bdddf
AM
10225 operand_string);
10226 return 0;
10227 }
24eab124 10228 }
af6bdddf 10229 else if (*base_string == REGISTER_PREFIX)
24eab124 10230 {
f76bf5e0
L
10231 end_op = strchr (base_string, ',');
10232 if (end_op)
10233 *end_op = '\0';
af6bdddf 10234 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10235 return 0;
10236 }
252b5132 10237
47926f60 10238 /* Check for scale factor. */
551c1ca1 10239 if (*base_string != ')')
af6bdddf 10240 {
551c1ca1
AM
10241 char *end_scale = i386_scale (base_string);
10242
10243 if (!end_scale)
af6bdddf 10244 return 0;
24eab124 10245
551c1ca1 10246 base_string = end_scale;
af6bdddf
AM
10247 if (is_space_char (*base_string))
10248 ++base_string;
10249 if (*base_string != ')')
10250 {
4eed87de
AM
10251 as_bad (_("expecting `)' "
10252 "after scale factor in `%s'"),
af6bdddf
AM
10253 operand_string);
10254 return 0;
10255 }
10256 }
10257 else if (!i.index_reg)
24eab124 10258 {
4eed87de
AM
10259 as_bad (_("expecting index register or scale factor "
10260 "after `,'; got '%c'"),
af6bdddf 10261 *base_string);
24eab124
AM
10262 return 0;
10263 }
10264 }
af6bdddf 10265 else if (*base_string != ')')
24eab124 10266 {
4eed87de
AM
10267 as_bad (_("expecting `,' or `)' "
10268 "after base register in `%s'"),
af6bdddf 10269 operand_string);
24eab124
AM
10270 return 0;
10271 }
c3332e24 10272 }
af6bdddf 10273 else if (*base_string == REGISTER_PREFIX)
c3332e24 10274 {
f76bf5e0
L
10275 end_op = strchr (base_string, ',');
10276 if (end_op)
10277 *end_op = '\0';
af6bdddf 10278 as_bad (_("bad register name `%s'"), base_string);
24eab124 10279 return 0;
c3332e24 10280 }
24eab124
AM
10281 }
10282
10283 /* If there's an expression beginning the operand, parse it,
10284 assuming displacement_string_start and
10285 displacement_string_end are meaningful. */
10286 if (displacement_string_start != displacement_string_end)
10287 {
10288 if (!i386_displacement (displacement_string_start,
10289 displacement_string_end))
10290 return 0;
10291 }
10292
10293 /* Special case for (%dx) while doing input/output op. */
10294 if (i.base_reg
75e5731b
JB
10295 && i.base_reg->reg_type.bitfield.instance == RegD
10296 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10297 && i.index_reg == 0
10298 && i.log2_scale_factor == 0
10299 && i.seg[i.mem_operands] == 0
40fb9820 10300 && !operand_type_check (i.types[this_operand], disp))
24eab124 10301 {
2fb5be8d 10302 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10303 return 1;
10304 }
10305
eecb386c
AM
10306 if (i386_index_check (operand_string) == 0)
10307 return 0;
c48dadc9 10308 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10309 if (i.mem_operands == 0)
10310 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10311 i.mem_operands++;
10312 }
10313 else
ce8a8b2f
AM
10314 {
10315 /* It's not a memory operand; argh! */
24eab124
AM
10316 as_bad (_("invalid char %s beginning operand %d `%s'"),
10317 output_invalid (*op_string),
10318 this_operand + 1,
10319 op_string);
10320 return 0;
10321 }
47926f60 10322 return 1; /* Normal return. */
252b5132
RH
10323}
10324\f
fa94de6b
RM
10325/* Calculate the maximum variable size (i.e., excluding fr_fix)
10326 that an rs_machine_dependent frag may reach. */
10327
10328unsigned int
10329i386_frag_max_var (fragS *frag)
10330{
10331 /* The only relaxable frags are for jumps.
10332 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10333 gas_assert (frag->fr_type == rs_machine_dependent);
10334 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10335}
10336
b084df0b
L
10337#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10338static int
8dcea932 10339elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10340{
10341 /* STT_GNU_IFUNC symbol must go through PLT. */
10342 if ((symbol_get_bfdsym (fr_symbol)->flags
10343 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10344 return 0;
10345
10346 if (!S_IS_EXTERNAL (fr_symbol))
10347 /* Symbol may be weak or local. */
10348 return !S_IS_WEAK (fr_symbol);
10349
8dcea932
L
10350 /* Global symbols with non-default visibility can't be preempted. */
10351 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10352 return 1;
10353
10354 if (fr_var != NO_RELOC)
10355 switch ((enum bfd_reloc_code_real) fr_var)
10356 {
10357 case BFD_RELOC_386_PLT32:
10358 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10359 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10360 return 0;
10361 default:
10362 abort ();
10363 }
10364
b084df0b
L
10365 /* Global symbols with default visibility in a shared library may be
10366 preempted by another definition. */
8dcea932 10367 return !shared;
b084df0b
L
10368}
10369#endif
10370
ee7fcc42
AM
10371/* md_estimate_size_before_relax()
10372
10373 Called just before relax() for rs_machine_dependent frags. The x86
10374 assembler uses these frags to handle variable size jump
10375 instructions.
10376
10377 Any symbol that is now undefined will not become defined.
10378 Return the correct fr_subtype in the frag.
10379 Return the initial "guess for variable size of frag" to caller.
10380 The guess is actually the growth beyond the fixed part. Whatever
10381 we do to grow the fixed or variable part contributes to our
10382 returned value. */
10383
252b5132 10384int
7016a5d5 10385md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10386{
252b5132 10387 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10388 check for un-relaxable symbols. On an ELF system, we can't relax
10389 an externally visible symbol, because it may be overridden by a
10390 shared library. */
10391 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10392#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10393 || (IS_ELF
8dcea932
L
10394 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10395 fragP->fr_var))
fbeb56a4
DK
10396#endif
10397#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10398 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10399 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10400#endif
10401 )
252b5132 10402 {
b98ef147
AM
10403 /* Symbol is undefined in this segment, or we need to keep a
10404 reloc so that weak symbols can be overridden. */
10405 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10406 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10407 unsigned char *opcode;
10408 int old_fr_fix;
f6af82bd 10409
ee7fcc42 10410 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10411 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10412 else if (size == 2)
f6af82bd 10413 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10414#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10415 else if (need_plt32_p (fragP->fr_symbol))
10416 reloc_type = BFD_RELOC_X86_64_PLT32;
10417#endif
f6af82bd
AM
10418 else
10419 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10420
ee7fcc42
AM
10421 old_fr_fix = fragP->fr_fix;
10422 opcode = (unsigned char *) fragP->fr_opcode;
10423
fddf5b5b 10424 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10425 {
fddf5b5b
AM
10426 case UNCOND_JUMP:
10427 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10428 opcode[0] = 0xe9;
252b5132 10429 fragP->fr_fix += size;
062cd5e7
AS
10430 fix_new (fragP, old_fr_fix, size,
10431 fragP->fr_symbol,
10432 fragP->fr_offset, 1,
10433 reloc_type);
252b5132
RH
10434 break;
10435
fddf5b5b 10436 case COND_JUMP86:
412167cb
AM
10437 if (size == 2
10438 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10439 {
10440 /* Negate the condition, and branch past an
10441 unconditional jump. */
10442 opcode[0] ^= 1;
10443 opcode[1] = 3;
10444 /* Insert an unconditional jump. */
10445 opcode[2] = 0xe9;
10446 /* We added two extra opcode bytes, and have a two byte
10447 offset. */
10448 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10449 fix_new (fragP, old_fr_fix + 2, 2,
10450 fragP->fr_symbol,
10451 fragP->fr_offset, 1,
10452 reloc_type);
fddf5b5b
AM
10453 break;
10454 }
10455 /* Fall through. */
10456
10457 case COND_JUMP:
412167cb
AM
10458 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10459 {
3e02c1cc
AM
10460 fixS *fixP;
10461
412167cb 10462 fragP->fr_fix += 1;
3e02c1cc
AM
10463 fixP = fix_new (fragP, old_fr_fix, 1,
10464 fragP->fr_symbol,
10465 fragP->fr_offset, 1,
10466 BFD_RELOC_8_PCREL);
10467 fixP->fx_signed = 1;
412167cb
AM
10468 break;
10469 }
93c2a809 10470
24eab124 10471 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10472 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10473 opcode[1] = opcode[0] + 0x10;
f6af82bd 10474 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10475 /* We've added an opcode byte. */
10476 fragP->fr_fix += 1 + size;
062cd5e7
AS
10477 fix_new (fragP, old_fr_fix + 1, size,
10478 fragP->fr_symbol,
10479 fragP->fr_offset, 1,
10480 reloc_type);
252b5132 10481 break;
fddf5b5b
AM
10482
10483 default:
10484 BAD_CASE (fragP->fr_subtype);
10485 break;
252b5132
RH
10486 }
10487 frag_wane (fragP);
ee7fcc42 10488 return fragP->fr_fix - old_fr_fix;
252b5132 10489 }
93c2a809 10490
93c2a809
AM
10491 /* Guess size depending on current relax state. Initially the relax
10492 state will correspond to a short jump and we return 1, because
10493 the variable part of the frag (the branch offset) is one byte
10494 long. However, we can relax a section more than once and in that
10495 case we must either set fr_subtype back to the unrelaxed state,
10496 or return the value for the appropriate branch. */
10497 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10498}
10499
47926f60
KH
10500/* Called after relax() is finished.
10501
10502 In: Address of frag.
10503 fr_type == rs_machine_dependent.
10504 fr_subtype is what the address relaxed to.
10505
10506 Out: Any fixSs and constants are set up.
10507 Caller will turn frag into a ".space 0". */
10508
252b5132 10509void
7016a5d5
TG
10510md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10511 fragS *fragP)
252b5132 10512{
29b0f896 10513 unsigned char *opcode;
252b5132 10514 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10515 offsetT target_address;
10516 offsetT opcode_address;
252b5132 10517 unsigned int extension = 0;
847f7ad4 10518 offsetT displacement_from_opcode_start;
252b5132
RH
10519
10520 opcode = (unsigned char *) fragP->fr_opcode;
10521
47926f60 10522 /* Address we want to reach in file space. */
252b5132 10523 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10524
47926f60 10525 /* Address opcode resides at in file space. */
252b5132
RH
10526 opcode_address = fragP->fr_address + fragP->fr_fix;
10527
47926f60 10528 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10529 displacement_from_opcode_start = target_address - opcode_address;
10530
fddf5b5b 10531 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10532 {
47926f60
KH
10533 /* Don't have to change opcode. */
10534 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10535 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10536 }
10537 else
10538 {
10539 if (no_cond_jump_promotion
10540 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10541 as_warn_where (fragP->fr_file, fragP->fr_line,
10542 _("long jump required"));
252b5132 10543
fddf5b5b
AM
10544 switch (fragP->fr_subtype)
10545 {
10546 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10547 extension = 4; /* 1 opcode + 4 displacement */
10548 opcode[0] = 0xe9;
10549 where_to_put_displacement = &opcode[1];
10550 break;
252b5132 10551
fddf5b5b
AM
10552 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10553 extension = 2; /* 1 opcode + 2 displacement */
10554 opcode[0] = 0xe9;
10555 where_to_put_displacement = &opcode[1];
10556 break;
252b5132 10557
fddf5b5b
AM
10558 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10559 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10560 extension = 5; /* 2 opcode + 4 displacement */
10561 opcode[1] = opcode[0] + 0x10;
10562 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10563 where_to_put_displacement = &opcode[2];
10564 break;
252b5132 10565
fddf5b5b
AM
10566 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10567 extension = 3; /* 2 opcode + 2 displacement */
10568 opcode[1] = opcode[0] + 0x10;
10569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10570 where_to_put_displacement = &opcode[2];
10571 break;
252b5132 10572
fddf5b5b
AM
10573 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10574 extension = 4;
10575 opcode[0] ^= 1;
10576 opcode[1] = 3;
10577 opcode[2] = 0xe9;
10578 where_to_put_displacement = &opcode[3];
10579 break;
10580
10581 default:
10582 BAD_CASE (fragP->fr_subtype);
10583 break;
10584 }
252b5132 10585 }
fddf5b5b 10586
7b81dfbb
AJ
10587 /* If size if less then four we are sure that the operand fits,
10588 but if it's 4, then it could be that the displacement is larger
10589 then -/+ 2GB. */
10590 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10591 && object_64bit
10592 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10593 + ((addressT) 1 << 31))
10594 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10595 {
10596 as_bad_where (fragP->fr_file, fragP->fr_line,
10597 _("jump target out of range"));
10598 /* Make us emit 0. */
10599 displacement_from_opcode_start = extension;
10600 }
47926f60 10601 /* Now put displacement after opcode. */
252b5132
RH
10602 md_number_to_chars ((char *) where_to_put_displacement,
10603 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10604 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10605 fragP->fr_fix += extension;
10606}
10607\f
7016a5d5 10608/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10609 by our caller that we have all the info we need to fix it up.
10610
7016a5d5
TG
10611 Parameter valP is the pointer to the value of the bits.
10612
252b5132
RH
10613 On the 386, immediates, displacements, and data pointers are all in
10614 the same (little-endian) format, so we don't need to care about which
10615 we are handling. */
10616
94f592af 10617void
7016a5d5 10618md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10619{
94f592af 10620 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10621 valueT value = *valP;
252b5132 10622
f86103b7 10623#if !defined (TE_Mach)
93382f6d
AM
10624 if (fixP->fx_pcrel)
10625 {
10626 switch (fixP->fx_r_type)
10627 {
5865bb77
ILT
10628 default:
10629 break;
10630
d6ab8113
JB
10631 case BFD_RELOC_64:
10632 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10633 break;
93382f6d 10634 case BFD_RELOC_32:
ae8887b5 10635 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10636 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10637 break;
10638 case BFD_RELOC_16:
10639 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10640 break;
10641 case BFD_RELOC_8:
10642 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10643 break;
10644 }
10645 }
252b5132 10646
a161fe53 10647 if (fixP->fx_addsy != NULL
31312f95 10648 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10649 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10650 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10651 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10652 && !use_rela_relocations)
252b5132 10653 {
31312f95
AM
10654 /* This is a hack. There should be a better way to handle this.
10655 This covers for the fact that bfd_install_relocation will
10656 subtract the current location (for partial_inplace, PC relative
10657 relocations); see more below. */
252b5132 10658#ifndef OBJ_AOUT
718ddfc0 10659 if (IS_ELF
252b5132
RH
10660#ifdef TE_PE
10661 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10662#endif
10663 )
10664 value += fixP->fx_where + fixP->fx_frag->fr_address;
10665#endif
10666#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10667 if (IS_ELF)
252b5132 10668 {
6539b54b 10669 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10670
6539b54b 10671 if ((sym_seg == seg
2f66722d 10672 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10673 && sym_seg != absolute_section))
af65af87 10674 && !generic_force_reloc (fixP))
2f66722d
AM
10675 {
10676 /* Yes, we add the values in twice. This is because
6539b54b
AM
10677 bfd_install_relocation subtracts them out again. I think
10678 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10679 it. FIXME. */
10680 value += fixP->fx_where + fixP->fx_frag->fr_address;
10681 }
252b5132
RH
10682 }
10683#endif
10684#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10685 /* For some reason, the PE format does not store a
10686 section address offset for a PC relative symbol. */
10687 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10688 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10689 value += md_pcrel_from (fixP);
10690#endif
10691 }
fbeb56a4 10692#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10693 if (fixP->fx_addsy != NULL
10694 && S_IS_WEAK (fixP->fx_addsy)
10695 /* PR 16858: Do not modify weak function references. */
10696 && ! fixP->fx_pcrel)
fbeb56a4 10697 {
296a8689
NC
10698#if !defined (TE_PEP)
10699 /* For x86 PE weak function symbols are neither PC-relative
10700 nor do they set S_IS_FUNCTION. So the only reliable way
10701 to detect them is to check the flags of their containing
10702 section. */
10703 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10704 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10705 ;
10706 else
10707#endif
fbeb56a4
DK
10708 value -= S_GET_VALUE (fixP->fx_addsy);
10709 }
10710#endif
252b5132
RH
10711
10712 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10713 and we must not disappoint it. */
252b5132 10714#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10715 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10716 switch (fixP->fx_r_type)
10717 {
10718 case BFD_RELOC_386_PLT32:
3e73aa7c 10719 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10720 /* Make the jump instruction point to the address of the operand.
10721 At runtime we merely add the offset to the actual PLT entry.
10722 NB: Subtract the offset size only for jump instructions. */
10723 if (fixP->fx_pcrel)
10724 value = -4;
47926f60 10725 break;
31312f95 10726
13ae64f3
JJ
10727 case BFD_RELOC_386_TLS_GD:
10728 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10729 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10730 case BFD_RELOC_386_TLS_IE:
10731 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10732 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10733 case BFD_RELOC_X86_64_TLSGD:
10734 case BFD_RELOC_X86_64_TLSLD:
10735 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10736 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10737 value = 0; /* Fully resolved at runtime. No addend. */
10738 /* Fallthrough */
10739 case BFD_RELOC_386_TLS_LE:
10740 case BFD_RELOC_386_TLS_LDO_32:
10741 case BFD_RELOC_386_TLS_LE_32:
10742 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10743 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10744 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10745 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10746 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10747 break;
10748
67a4f2b7
AO
10749 case BFD_RELOC_386_TLS_DESC_CALL:
10750 case BFD_RELOC_X86_64_TLSDESC_CALL:
10751 value = 0; /* Fully resolved at runtime. No addend. */
10752 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10753 fixP->fx_done = 0;
10754 return;
10755
47926f60
KH
10756 case BFD_RELOC_VTABLE_INHERIT:
10757 case BFD_RELOC_VTABLE_ENTRY:
10758 fixP->fx_done = 0;
94f592af 10759 return;
47926f60
KH
10760
10761 default:
10762 break;
10763 }
10764#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10765 *valP = value;
f86103b7 10766#endif /* !defined (TE_Mach) */
3e73aa7c 10767
3e73aa7c 10768 /* Are we finished with this relocation now? */
c6682705 10769 if (fixP->fx_addsy == NULL)
3e73aa7c 10770 fixP->fx_done = 1;
fbeb56a4
DK
10771#if defined (OBJ_COFF) && defined (TE_PE)
10772 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10773 {
10774 fixP->fx_done = 0;
10775 /* Remember value for tc_gen_reloc. */
10776 fixP->fx_addnumber = value;
10777 /* Clear out the frag for now. */
10778 value = 0;
10779 }
10780#endif
3e73aa7c
JH
10781 else if (use_rela_relocations)
10782 {
10783 fixP->fx_no_overflow = 1;
062cd5e7
AS
10784 /* Remember value for tc_gen_reloc. */
10785 fixP->fx_addnumber = value;
3e73aa7c
JH
10786 value = 0;
10787 }
f86103b7 10788
94f592af 10789 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10790}
252b5132 10791\f
6d4af3c2 10792const char *
499ac353 10793md_atof (int type, char *litP, int *sizeP)
252b5132 10794{
499ac353
NC
10795 /* This outputs the LITTLENUMs in REVERSE order;
10796 in accord with the bigendian 386. */
10797 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10798}
10799\f
2d545b82 10800static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10801
252b5132 10802static char *
e3bb37b5 10803output_invalid (int c)
252b5132 10804{
3882b010 10805 if (ISPRINT (c))
f9f21a03
L
10806 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10807 "'%c'", c);
252b5132 10808 else
f9f21a03 10809 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10810 "(0x%x)", (unsigned char) c);
252b5132
RH
10811 return output_invalid_buf;
10812}
10813
af6bdddf 10814/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10815
10816static const reg_entry *
4d1bb795 10817parse_real_register (char *reg_string, char **end_op)
252b5132 10818{
af6bdddf
AM
10819 char *s = reg_string;
10820 char *p;
252b5132
RH
10821 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10822 const reg_entry *r;
10823
10824 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10825 if (*s == REGISTER_PREFIX)
10826 ++s;
10827
10828 if (is_space_char (*s))
10829 ++s;
10830
10831 p = reg_name_given;
af6bdddf 10832 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10833 {
10834 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10835 return (const reg_entry *) NULL;
10836 s++;
252b5132
RH
10837 }
10838
6588847e
DN
10839 /* For naked regs, make sure that we are not dealing with an identifier.
10840 This prevents confusing an identifier like `eax_var' with register
10841 `eax'. */
10842 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10843 return (const reg_entry *) NULL;
10844
af6bdddf 10845 *end_op = s;
252b5132
RH
10846
10847 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10848
5f47d35b 10849 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10850 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10851 {
0e0eea78
JB
10852 if (!cpu_arch_flags.bitfield.cpu8087
10853 && !cpu_arch_flags.bitfield.cpu287
10854 && !cpu_arch_flags.bitfield.cpu387)
10855 return (const reg_entry *) NULL;
10856
5f47d35b
AM
10857 if (is_space_char (*s))
10858 ++s;
10859 if (*s == '(')
10860 {
af6bdddf 10861 ++s;
5f47d35b
AM
10862 if (is_space_char (*s))
10863 ++s;
10864 if (*s >= '0' && *s <= '7')
10865 {
db557034 10866 int fpr = *s - '0';
af6bdddf 10867 ++s;
5f47d35b
AM
10868 if (is_space_char (*s))
10869 ++s;
10870 if (*s == ')')
10871 {
10872 *end_op = s + 1;
1e9cc1c2 10873 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10874 know (r);
10875 return r + fpr;
5f47d35b 10876 }
5f47d35b 10877 }
47926f60 10878 /* We have "%st(" then garbage. */
5f47d35b
AM
10879 return (const reg_entry *) NULL;
10880 }
10881 }
10882
a60de03c
JB
10883 if (r == NULL || allow_pseudo_reg)
10884 return r;
10885
0dfbf9d7 10886 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10887 return (const reg_entry *) NULL;
10888
dc821c5f 10889 if ((r->reg_type.bitfield.dword
00cee14f 10890 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
10891 || r->reg_type.bitfield.class == RegCR
10892 || r->reg_type.bitfield.class == RegDR
10893 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
10894 && !cpu_arch_flags.bitfield.cpui386)
10895 return (const reg_entry *) NULL;
10896
3528c362 10897 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10898 return (const reg_entry *) NULL;
10899
6e041cf4
JB
10900 if (!cpu_arch_flags.bitfield.cpuavx512f)
10901 {
f74a6307
JB
10902 if (r->reg_type.bitfield.zmmword
10903 || r->reg_type.bitfield.class == RegMask)
6e041cf4 10904 return (const reg_entry *) NULL;
40f12533 10905
6e041cf4
JB
10906 if (!cpu_arch_flags.bitfield.cpuavx)
10907 {
10908 if (r->reg_type.bitfield.ymmword)
10909 return (const reg_entry *) NULL;
1848e567 10910
6e041cf4
JB
10911 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10912 return (const reg_entry *) NULL;
10913 }
10914 }
43234a1e 10915
f74a6307 10916 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
10917 return (const reg_entry *) NULL;
10918
db51cc60 10919 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10920 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10921 return (const reg_entry *) NULL;
10922
1d3f8286
JB
10923 /* Upper 16 vector registers are only available with VREX in 64bit
10924 mode, and require EVEX encoding. */
10925 if (r->reg_flags & RegVRex)
43234a1e 10926 {
e951d5ca 10927 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10928 || flag_code != CODE_64BIT)
10929 return (const reg_entry *) NULL;
1d3f8286
JB
10930
10931 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10932 }
10933
4787f4a5 10934 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 10935 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 10936 && flag_code != CODE_64BIT)
20f0a1fc 10937 return (const reg_entry *) NULL;
1ae00879 10938
00cee14f
JB
10939 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10940 && !intel_syntax)
b7240065
JB
10941 return (const reg_entry *) NULL;
10942
252b5132
RH
10943 return r;
10944}
4d1bb795
JB
10945
10946/* REG_STRING starts *before* REGISTER_PREFIX. */
10947
10948static const reg_entry *
10949parse_register (char *reg_string, char **end_op)
10950{
10951 const reg_entry *r;
10952
10953 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10954 r = parse_real_register (reg_string, end_op);
10955 else
10956 r = NULL;
10957 if (!r)
10958 {
10959 char *save = input_line_pointer;
10960 char c;
10961 symbolS *symbolP;
10962
10963 input_line_pointer = reg_string;
d02603dc 10964 c = get_symbol_name (&reg_string);
4d1bb795
JB
10965 symbolP = symbol_find (reg_string);
10966 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10967 {
10968 const expressionS *e = symbol_get_value_expression (symbolP);
10969
0398aac5 10970 know (e->X_op == O_register);
4eed87de 10971 know (e->X_add_number >= 0
c3fe08fa 10972 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10973 r = i386_regtab + e->X_add_number;
d3bb6b49 10974 if ((r->reg_flags & RegVRex))
86fa6981 10975 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10976 *end_op = input_line_pointer;
10977 }
10978 *input_line_pointer = c;
10979 input_line_pointer = save;
10980 }
10981 return r;
10982}
10983
10984int
10985i386_parse_name (char *name, expressionS *e, char *nextcharP)
10986{
10987 const reg_entry *r;
10988 char *end = input_line_pointer;
10989
10990 *end = *nextcharP;
10991 r = parse_register (name, &input_line_pointer);
10992 if (r && end <= input_line_pointer)
10993 {
10994 *nextcharP = *input_line_pointer;
10995 *input_line_pointer = 0;
10996 e->X_op = O_register;
10997 e->X_add_number = r - i386_regtab;
10998 return 1;
10999 }
11000 input_line_pointer = end;
11001 *end = 0;
ee86248c 11002 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11003}
11004
11005void
11006md_operand (expressionS *e)
11007{
ee86248c
JB
11008 char *end;
11009 const reg_entry *r;
4d1bb795 11010
ee86248c
JB
11011 switch (*input_line_pointer)
11012 {
11013 case REGISTER_PREFIX:
11014 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11015 if (r)
11016 {
11017 e->X_op = O_register;
11018 e->X_add_number = r - i386_regtab;
11019 input_line_pointer = end;
11020 }
ee86248c
JB
11021 break;
11022
11023 case '[':
9c2799c2 11024 gas_assert (intel_syntax);
ee86248c
JB
11025 end = input_line_pointer++;
11026 expression (e);
11027 if (*input_line_pointer == ']')
11028 {
11029 ++input_line_pointer;
11030 e->X_op_symbol = make_expr_symbol (e);
11031 e->X_add_symbol = NULL;
11032 e->X_add_number = 0;
11033 e->X_op = O_index;
11034 }
11035 else
11036 {
11037 e->X_op = O_absent;
11038 input_line_pointer = end;
11039 }
11040 break;
4d1bb795
JB
11041 }
11042}
11043
252b5132 11044\f
4cc782b5 11045#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11046const char *md_shortopts = "kVQ:sqnO::";
252b5132 11047#else
b6f8c7c4 11048const char *md_shortopts = "qnO::";
252b5132 11049#endif
6e0b89ee 11050
3e73aa7c 11051#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11052#define OPTION_64 (OPTION_MD_BASE + 1)
11053#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11054#define OPTION_MARCH (OPTION_MD_BASE + 3)
11055#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11056#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11057#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11058#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11059#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11060#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11061#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11062#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11063#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11064#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11065#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11066#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11067#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11068#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11069#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11070#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11071#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11072#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11073#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11074#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11075#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11076#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11077#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11078
99ad8390
NC
11079struct option md_longopts[] =
11080{
3e73aa7c 11081 {"32", no_argument, NULL, OPTION_32},
321098a5 11082#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11083 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11084 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11085#endif
11086#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11087 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11088 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11089 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11090#endif
b3b91714 11091 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11092 {"march", required_argument, NULL, OPTION_MARCH},
11093 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11094 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11095 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11096 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11097 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11098 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11099 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11100 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11101 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11102 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11103 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11104 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11105 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11106# if defined (TE_PE) || defined (TE_PEP)
11107 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11108#endif
d1982f93 11109 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11110 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11111 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11112 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11113 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11114 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11115 {NULL, no_argument, NULL, 0}
11116};
11117size_t md_longopts_size = sizeof (md_longopts);
11118
11119int
17b9d67d 11120md_parse_option (int c, const char *arg)
252b5132 11121{
91d6fa6a 11122 unsigned int j;
293f5f65 11123 char *arch, *next, *saved;
9103f4f4 11124
252b5132
RH
11125 switch (c)
11126 {
12b55ccc
L
11127 case 'n':
11128 optimize_align_code = 0;
11129 break;
11130
a38cf1db
AM
11131 case 'q':
11132 quiet_warnings = 1;
252b5132
RH
11133 break;
11134
11135#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11136 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11137 should be emitted or not. FIXME: Not implemented. */
11138 case 'Q':
d4693039
JB
11139 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11140 return 0;
252b5132
RH
11141 break;
11142
11143 /* -V: SVR4 argument to print version ID. */
11144 case 'V':
11145 print_version_id ();
11146 break;
11147
a38cf1db
AM
11148 /* -k: Ignore for FreeBSD compatibility. */
11149 case 'k':
252b5132 11150 break;
4cc782b5
ILT
11151
11152 case 's':
11153 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11154 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11155 break;
8dcea932
L
11156
11157 case OPTION_MSHARED:
11158 shared = 1;
11159 break;
b4a3a7b4
L
11160
11161 case OPTION_X86_USED_NOTE:
11162 if (strcasecmp (arg, "yes") == 0)
11163 x86_used_note = 1;
11164 else if (strcasecmp (arg, "no") == 0)
11165 x86_used_note = 0;
11166 else
11167 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11168 break;
11169
11170
99ad8390 11171#endif
321098a5 11172#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11173 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11174 case OPTION_64:
11175 {
11176 const char **list, **l;
11177
3e73aa7c
JH
11178 list = bfd_target_list ();
11179 for (l = list; *l != NULL; l++)
8620418b 11180 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11181 || strcmp (*l, "coff-x86-64") == 0
11182 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11183 || strcmp (*l, "pei-x86-64") == 0
11184 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11185 {
11186 default_arch = "x86_64";
11187 break;
11188 }
3e73aa7c 11189 if (*l == NULL)
2b5d6a91 11190 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11191 free (list);
11192 }
11193 break;
11194#endif
252b5132 11195
351f65ca 11196#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11197 case OPTION_X32:
351f65ca
L
11198 if (IS_ELF)
11199 {
11200 const char **list, **l;
11201
11202 list = bfd_target_list ();
11203 for (l = list; *l != NULL; l++)
11204 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11205 {
11206 default_arch = "x86_64:32";
11207 break;
11208 }
11209 if (*l == NULL)
2b5d6a91 11210 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11211 free (list);
11212 }
11213 else
11214 as_fatal (_("32bit x86_64 is only supported for ELF"));
11215 break;
11216#endif
11217
6e0b89ee
AM
11218 case OPTION_32:
11219 default_arch = "i386";
11220 break;
11221
b3b91714
AM
11222 case OPTION_DIVIDE:
11223#ifdef SVR4_COMMENT_CHARS
11224 {
11225 char *n, *t;
11226 const char *s;
11227
add39d23 11228 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11229 t = n;
11230 for (s = i386_comment_chars; *s != '\0'; s++)
11231 if (*s != '/')
11232 *t++ = *s;
11233 *t = '\0';
11234 i386_comment_chars = n;
11235 }
11236#endif
11237 break;
11238
9103f4f4 11239 case OPTION_MARCH:
293f5f65
L
11240 saved = xstrdup (arg);
11241 arch = saved;
11242 /* Allow -march=+nosse. */
11243 if (*arch == '+')
11244 arch++;
6305a203 11245 do
9103f4f4 11246 {
6305a203 11247 if (*arch == '.')
2b5d6a91 11248 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11249 next = strchr (arch, '+');
11250 if (next)
11251 *next++ = '\0';
91d6fa6a 11252 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11253 {
91d6fa6a 11254 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11255 {
6305a203 11256 /* Processor. */
1ded5609
JB
11257 if (! cpu_arch[j].flags.bitfield.cpui386)
11258 continue;
11259
91d6fa6a 11260 cpu_arch_name = cpu_arch[j].name;
6305a203 11261 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11262 cpu_arch_flags = cpu_arch[j].flags;
11263 cpu_arch_isa = cpu_arch[j].type;
11264 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11265 if (!cpu_arch_tune_set)
11266 {
11267 cpu_arch_tune = cpu_arch_isa;
11268 cpu_arch_tune_flags = cpu_arch_isa_flags;
11269 }
11270 break;
11271 }
91d6fa6a
NC
11272 else if (*cpu_arch [j].name == '.'
11273 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11274 {
33eaf5de 11275 /* ISA extension. */
6305a203 11276 i386_cpu_flags flags;
309d3373 11277
293f5f65
L
11278 flags = cpu_flags_or (cpu_arch_flags,
11279 cpu_arch[j].flags);
81486035 11280
5b64d091 11281 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11282 {
11283 if (cpu_sub_arch_name)
11284 {
11285 char *name = cpu_sub_arch_name;
11286 cpu_sub_arch_name = concat (name,
91d6fa6a 11287 cpu_arch[j].name,
1bf57e9f 11288 (const char *) NULL);
6305a203
L
11289 free (name);
11290 }
11291 else
91d6fa6a 11292 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11293 cpu_arch_flags = flags;
a586129e 11294 cpu_arch_isa_flags = flags;
6305a203 11295 }
0089dace
L
11296 else
11297 cpu_arch_isa_flags
11298 = cpu_flags_or (cpu_arch_isa_flags,
11299 cpu_arch[j].flags);
6305a203 11300 break;
ccc9c027 11301 }
9103f4f4 11302 }
6305a203 11303
293f5f65
L
11304 if (j >= ARRAY_SIZE (cpu_arch))
11305 {
33eaf5de 11306 /* Disable an ISA extension. */
293f5f65
L
11307 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11308 if (strcmp (arch, cpu_noarch [j].name) == 0)
11309 {
11310 i386_cpu_flags flags;
11311
11312 flags = cpu_flags_and_not (cpu_arch_flags,
11313 cpu_noarch[j].flags);
11314 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11315 {
11316 if (cpu_sub_arch_name)
11317 {
11318 char *name = cpu_sub_arch_name;
11319 cpu_sub_arch_name = concat (arch,
11320 (const char *) NULL);
11321 free (name);
11322 }
11323 else
11324 cpu_sub_arch_name = xstrdup (arch);
11325 cpu_arch_flags = flags;
11326 cpu_arch_isa_flags = flags;
11327 }
11328 break;
11329 }
11330
11331 if (j >= ARRAY_SIZE (cpu_noarch))
11332 j = ARRAY_SIZE (cpu_arch);
11333 }
11334
91d6fa6a 11335 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11336 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11337
11338 arch = next;
9103f4f4 11339 }
293f5f65
L
11340 while (next != NULL);
11341 free (saved);
9103f4f4
L
11342 break;
11343
11344 case OPTION_MTUNE:
11345 if (*arg == '.')
2b5d6a91 11346 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11347 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11348 {
91d6fa6a 11349 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11350 {
ccc9c027 11351 cpu_arch_tune_set = 1;
91d6fa6a
NC
11352 cpu_arch_tune = cpu_arch [j].type;
11353 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11354 break;
11355 }
11356 }
91d6fa6a 11357 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11358 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11359 break;
11360
1efbbeb4
L
11361 case OPTION_MMNEMONIC:
11362 if (strcasecmp (arg, "att") == 0)
11363 intel_mnemonic = 0;
11364 else if (strcasecmp (arg, "intel") == 0)
11365 intel_mnemonic = 1;
11366 else
2b5d6a91 11367 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11368 break;
11369
11370 case OPTION_MSYNTAX:
11371 if (strcasecmp (arg, "att") == 0)
11372 intel_syntax = 0;
11373 else if (strcasecmp (arg, "intel") == 0)
11374 intel_syntax = 1;
11375 else
2b5d6a91 11376 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11377 break;
11378
11379 case OPTION_MINDEX_REG:
11380 allow_index_reg = 1;
11381 break;
11382
11383 case OPTION_MNAKED_REG:
11384 allow_naked_reg = 1;
11385 break;
11386
c0f3af97
L
11387 case OPTION_MSSE2AVX:
11388 sse2avx = 1;
11389 break;
11390
daf50ae7
L
11391 case OPTION_MSSE_CHECK:
11392 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11393 sse_check = check_error;
daf50ae7 11394 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11395 sse_check = check_warning;
daf50ae7 11396 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11397 sse_check = check_none;
daf50ae7 11398 else
2b5d6a91 11399 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11400 break;
11401
7bab8ab5
JB
11402 case OPTION_MOPERAND_CHECK:
11403 if (strcasecmp (arg, "error") == 0)
11404 operand_check = check_error;
11405 else if (strcasecmp (arg, "warning") == 0)
11406 operand_check = check_warning;
11407 else if (strcasecmp (arg, "none") == 0)
11408 operand_check = check_none;
11409 else
11410 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11411 break;
11412
539f890d
L
11413 case OPTION_MAVXSCALAR:
11414 if (strcasecmp (arg, "128") == 0)
11415 avxscalar = vex128;
11416 else if (strcasecmp (arg, "256") == 0)
11417 avxscalar = vex256;
11418 else
2b5d6a91 11419 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11420 break;
11421
03751133
L
11422 case OPTION_MVEXWIG:
11423 if (strcmp (arg, "0") == 0)
40c9c8de 11424 vexwig = vexw0;
03751133 11425 else if (strcmp (arg, "1") == 0)
40c9c8de 11426 vexwig = vexw1;
03751133
L
11427 else
11428 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11429 break;
11430
7e8b059b
L
11431 case OPTION_MADD_BND_PREFIX:
11432 add_bnd_prefix = 1;
11433 break;
11434
43234a1e
L
11435 case OPTION_MEVEXLIG:
11436 if (strcmp (arg, "128") == 0)
11437 evexlig = evexl128;
11438 else if (strcmp (arg, "256") == 0)
11439 evexlig = evexl256;
11440 else if (strcmp (arg, "512") == 0)
11441 evexlig = evexl512;
11442 else
11443 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11444 break;
11445
d3d3c6db
IT
11446 case OPTION_MEVEXRCIG:
11447 if (strcmp (arg, "rne") == 0)
11448 evexrcig = rne;
11449 else if (strcmp (arg, "rd") == 0)
11450 evexrcig = rd;
11451 else if (strcmp (arg, "ru") == 0)
11452 evexrcig = ru;
11453 else if (strcmp (arg, "rz") == 0)
11454 evexrcig = rz;
11455 else
11456 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11457 break;
11458
43234a1e
L
11459 case OPTION_MEVEXWIG:
11460 if (strcmp (arg, "0") == 0)
11461 evexwig = evexw0;
11462 else if (strcmp (arg, "1") == 0)
11463 evexwig = evexw1;
11464 else
11465 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11466 break;
11467
167ad85b
TG
11468# if defined (TE_PE) || defined (TE_PEP)
11469 case OPTION_MBIG_OBJ:
11470 use_big_obj = 1;
11471 break;
11472#endif
11473
d1982f93 11474 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11475 if (strcasecmp (arg, "yes") == 0)
11476 omit_lock_prefix = 1;
11477 else if (strcasecmp (arg, "no") == 0)
11478 omit_lock_prefix = 0;
11479 else
11480 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11481 break;
11482
e4e00185
AS
11483 case OPTION_MFENCE_AS_LOCK_ADD:
11484 if (strcasecmp (arg, "yes") == 0)
11485 avoid_fence = 1;
11486 else if (strcasecmp (arg, "no") == 0)
11487 avoid_fence = 0;
11488 else
11489 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11490 break;
11491
0cb4071e
L
11492 case OPTION_MRELAX_RELOCATIONS:
11493 if (strcasecmp (arg, "yes") == 0)
11494 generate_relax_relocations = 1;
11495 else if (strcasecmp (arg, "no") == 0)
11496 generate_relax_relocations = 0;
11497 else
11498 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11499 break;
11500
5db04b09 11501 case OPTION_MAMD64:
e89c5eaa 11502 intel64 = 0;
5db04b09
L
11503 break;
11504
11505 case OPTION_MINTEL64:
e89c5eaa 11506 intel64 = 1;
5db04b09
L
11507 break;
11508
b6f8c7c4
L
11509 case 'O':
11510 if (arg == NULL)
11511 {
11512 optimize = 1;
11513 /* Turn off -Os. */
11514 optimize_for_space = 0;
11515 }
11516 else if (*arg == 's')
11517 {
11518 optimize_for_space = 1;
11519 /* Turn on all encoding optimizations. */
41fd2579 11520 optimize = INT_MAX;
b6f8c7c4
L
11521 }
11522 else
11523 {
11524 optimize = atoi (arg);
11525 /* Turn off -Os. */
11526 optimize_for_space = 0;
11527 }
11528 break;
11529
252b5132
RH
11530 default:
11531 return 0;
11532 }
11533 return 1;
11534}
11535
8a2c8fef
L
11536#define MESSAGE_TEMPLATE \
11537" "
11538
293f5f65
L
11539static char *
11540output_message (FILE *stream, char *p, char *message, char *start,
11541 int *left_p, const char *name, int len)
11542{
11543 int size = sizeof (MESSAGE_TEMPLATE);
11544 int left = *left_p;
11545
11546 /* Reserve 2 spaces for ", " or ",\0" */
11547 left -= len + 2;
11548
11549 /* Check if there is any room. */
11550 if (left >= 0)
11551 {
11552 if (p != start)
11553 {
11554 *p++ = ',';
11555 *p++ = ' ';
11556 }
11557 p = mempcpy (p, name, len);
11558 }
11559 else
11560 {
11561 /* Output the current message now and start a new one. */
11562 *p++ = ',';
11563 *p = '\0';
11564 fprintf (stream, "%s\n", message);
11565 p = start;
11566 left = size - (start - message) - len - 2;
11567
11568 gas_assert (left >= 0);
11569
11570 p = mempcpy (p, name, len);
11571 }
11572
11573 *left_p = left;
11574 return p;
11575}
11576
8a2c8fef 11577static void
1ded5609 11578show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11579{
11580 static char message[] = MESSAGE_TEMPLATE;
11581 char *start = message + 27;
11582 char *p;
11583 int size = sizeof (MESSAGE_TEMPLATE);
11584 int left;
11585 const char *name;
11586 int len;
11587 unsigned int j;
11588
11589 p = start;
11590 left = size - (start - message);
11591 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11592 {
11593 /* Should it be skipped? */
11594 if (cpu_arch [j].skip)
11595 continue;
11596
11597 name = cpu_arch [j].name;
11598 len = cpu_arch [j].len;
11599 if (*name == '.')
11600 {
11601 /* It is an extension. Skip if we aren't asked to show it. */
11602 if (ext)
11603 {
11604 name++;
11605 len--;
11606 }
11607 else
11608 continue;
11609 }
11610 else if (ext)
11611 {
11612 /* It is an processor. Skip if we show only extension. */
11613 continue;
11614 }
1ded5609
JB
11615 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11616 {
11617 /* It is an impossible processor - skip. */
11618 continue;
11619 }
8a2c8fef 11620
293f5f65 11621 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11622 }
11623
293f5f65
L
11624 /* Display disabled extensions. */
11625 if (ext)
11626 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11627 {
11628 name = cpu_noarch [j].name;
11629 len = cpu_noarch [j].len;
11630 p = output_message (stream, p, message, start, &left, name,
11631 len);
11632 }
11633
8a2c8fef
L
11634 *p = '\0';
11635 fprintf (stream, "%s\n", message);
11636}
11637
252b5132 11638void
8a2c8fef 11639md_show_usage (FILE *stream)
252b5132 11640{
4cc782b5
ILT
11641#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11642 fprintf (stream, _("\
d4693039 11643 -Qy, -Qn ignored\n\
a38cf1db 11644 -V print assembler version number\n\
b3b91714
AM
11645 -k ignored\n"));
11646#endif
11647 fprintf (stream, _("\
12b55ccc 11648 -n Do not optimize code alignment\n\
b3b91714
AM
11649 -q quieten some warnings\n"));
11650#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11651 fprintf (stream, _("\
a38cf1db 11652 -s ignored\n"));
b3b91714 11653#endif
d7f449c0
L
11654#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11655 || defined (TE_PE) || defined (TE_PEP))
751d281c 11656 fprintf (stream, _("\
570561f7 11657 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11658#endif
b3b91714
AM
11659#ifdef SVR4_COMMENT_CHARS
11660 fprintf (stream, _("\
11661 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11662#else
11663 fprintf (stream, _("\
b3b91714 11664 --divide ignored\n"));
4cc782b5 11665#endif
9103f4f4 11666 fprintf (stream, _("\
6305a203 11667 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11668 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11669 show_arch (stream, 0, 1);
8a2c8fef
L
11670 fprintf (stream, _("\
11671 EXTENSION is combination of:\n"));
1ded5609 11672 show_arch (stream, 1, 0);
6305a203 11673 fprintf (stream, _("\
8a2c8fef 11674 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11675 show_arch (stream, 0, 0);
ba104c83 11676 fprintf (stream, _("\
c0f3af97
L
11677 -msse2avx encode SSE instructions with VEX prefix\n"));
11678 fprintf (stream, _("\
7c5c05ef 11679 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11680 check SSE instructions\n"));
11681 fprintf (stream, _("\
7c5c05ef 11682 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11683 check operand combinations for validity\n"));
11684 fprintf (stream, _("\
7c5c05ef
L
11685 -mavxscalar=[128|256] (default: 128)\n\
11686 encode scalar AVX instructions with specific vector\n\
539f890d
L
11687 length\n"));
11688 fprintf (stream, _("\
03751133
L
11689 -mvexwig=[0|1] (default: 0)\n\
11690 encode VEX instructions with specific VEX.W value\n\
11691 for VEX.W bit ignored instructions\n"));
11692 fprintf (stream, _("\
7c5c05ef
L
11693 -mevexlig=[128|256|512] (default: 128)\n\
11694 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11695 length\n"));
11696 fprintf (stream, _("\
7c5c05ef
L
11697 -mevexwig=[0|1] (default: 0)\n\
11698 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11699 for EVEX.W bit ignored instructions\n"));
11700 fprintf (stream, _("\
7c5c05ef 11701 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11702 encode EVEX instructions with specific EVEX.RC value\n\
11703 for SAE-only ignored instructions\n"));
11704 fprintf (stream, _("\
7c5c05ef
L
11705 -mmnemonic=[att|intel] "));
11706 if (SYSV386_COMPAT)
11707 fprintf (stream, _("(default: att)\n"));
11708 else
11709 fprintf (stream, _("(default: intel)\n"));
11710 fprintf (stream, _("\
11711 use AT&T/Intel mnemonic\n"));
ba104c83 11712 fprintf (stream, _("\
7c5c05ef
L
11713 -msyntax=[att|intel] (default: att)\n\
11714 use AT&T/Intel syntax\n"));
ba104c83
L
11715 fprintf (stream, _("\
11716 -mindex-reg support pseudo index registers\n"));
11717 fprintf (stream, _("\
11718 -mnaked-reg don't require `%%' prefix for registers\n"));
11719 fprintf (stream, _("\
7e8b059b 11720 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11721#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11722 fprintf (stream, _("\
11723 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11724 fprintf (stream, _("\
11725 -mx86-used-note=[no|yes] "));
11726 if (DEFAULT_X86_USED_NOTE)
11727 fprintf (stream, _("(default: yes)\n"));
11728 else
11729 fprintf (stream, _("(default: no)\n"));
11730 fprintf (stream, _("\
11731 generate x86 used ISA and feature properties\n"));
11732#endif
11733#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11734 fprintf (stream, _("\
11735 -mbig-obj generate big object files\n"));
11736#endif
d022bddd 11737 fprintf (stream, _("\
7c5c05ef 11738 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11739 strip all lock prefixes\n"));
5db04b09 11740 fprintf (stream, _("\
7c5c05ef 11741 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11742 encode lfence, mfence and sfence as\n\
11743 lock addl $0x0, (%%{re}sp)\n"));
11744 fprintf (stream, _("\
7c5c05ef
L
11745 -mrelax-relocations=[no|yes] "));
11746 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11747 fprintf (stream, _("(default: yes)\n"));
11748 else
11749 fprintf (stream, _("(default: no)\n"));
11750 fprintf (stream, _("\
0cb4071e
L
11751 generate relax relocations\n"));
11752 fprintf (stream, _("\
7c5c05ef 11753 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11754 fprintf (stream, _("\
11755 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11756}
11757
3e73aa7c 11758#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11759 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11760 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11761
11762/* Pick the target format to use. */
11763
47926f60 11764const char *
e3bb37b5 11765i386_target_format (void)
252b5132 11766{
351f65ca
L
11767 if (!strncmp (default_arch, "x86_64", 6))
11768 {
11769 update_code_flag (CODE_64BIT, 1);
11770 if (default_arch[6] == '\0')
7f56bc95 11771 x86_elf_abi = X86_64_ABI;
351f65ca 11772 else
7f56bc95 11773 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11774 }
3e73aa7c 11775 else if (!strcmp (default_arch, "i386"))
78f12dd3 11776 update_code_flag (CODE_32BIT, 1);
5197d474
L
11777 else if (!strcmp (default_arch, "iamcu"))
11778 {
11779 update_code_flag (CODE_32BIT, 1);
11780 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11781 {
11782 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11783 cpu_arch_name = "iamcu";
11784 cpu_sub_arch_name = NULL;
11785 cpu_arch_flags = iamcu_flags;
11786 cpu_arch_isa = PROCESSOR_IAMCU;
11787 cpu_arch_isa_flags = iamcu_flags;
11788 if (!cpu_arch_tune_set)
11789 {
11790 cpu_arch_tune = cpu_arch_isa;
11791 cpu_arch_tune_flags = cpu_arch_isa_flags;
11792 }
11793 }
8d471ec1 11794 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11795 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11796 cpu_arch_name);
11797 }
3e73aa7c 11798 else
2b5d6a91 11799 as_fatal (_("unknown architecture"));
89507696
JB
11800
11801 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11802 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11803 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11804 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11805
252b5132
RH
11806 switch (OUTPUT_FLAVOR)
11807 {
9384f2ff 11808#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11809 case bfd_target_aout_flavour:
47926f60 11810 return AOUT_TARGET_FORMAT;
4c63da97 11811#endif
9384f2ff
AM
11812#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11813# if defined (TE_PE) || defined (TE_PEP)
11814 case bfd_target_coff_flavour:
167ad85b
TG
11815 if (flag_code == CODE_64BIT)
11816 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11817 else
11818 return "pe-i386";
9384f2ff 11819# elif defined (TE_GO32)
0561d57c
JK
11820 case bfd_target_coff_flavour:
11821 return "coff-go32";
9384f2ff 11822# else
252b5132
RH
11823 case bfd_target_coff_flavour:
11824 return "coff-i386";
9384f2ff 11825# endif
4c63da97 11826#endif
3e73aa7c 11827#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11828 case bfd_target_elf_flavour:
3e73aa7c 11829 {
351f65ca
L
11830 const char *format;
11831
11832 switch (x86_elf_abi)
4fa24527 11833 {
351f65ca
L
11834 default:
11835 format = ELF_TARGET_FORMAT;
11836 break;
7f56bc95 11837 case X86_64_ABI:
351f65ca 11838 use_rela_relocations = 1;
4fa24527 11839 object_64bit = 1;
351f65ca
L
11840 format = ELF_TARGET_FORMAT64;
11841 break;
7f56bc95 11842 case X86_64_X32_ABI:
4fa24527 11843 use_rela_relocations = 1;
351f65ca 11844 object_64bit = 1;
862be3fb 11845 disallow_64bit_reloc = 1;
351f65ca
L
11846 format = ELF_TARGET_FORMAT32;
11847 break;
4fa24527 11848 }
3632d14b 11849 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11850 {
7f56bc95 11851 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11852 as_fatal (_("Intel L1OM is 64bit only"));
11853 return ELF_TARGET_L1OM_FORMAT;
11854 }
b49f93f6 11855 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11856 {
11857 if (x86_elf_abi != X86_64_ABI)
11858 as_fatal (_("Intel K1OM is 64bit only"));
11859 return ELF_TARGET_K1OM_FORMAT;
11860 }
81486035
L
11861 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11862 {
11863 if (x86_elf_abi != I386_ABI)
11864 as_fatal (_("Intel MCU is 32bit only"));
11865 return ELF_TARGET_IAMCU_FORMAT;
11866 }
8a9036a4 11867 else
351f65ca 11868 return format;
3e73aa7c 11869 }
e57f8c65
TG
11870#endif
11871#if defined (OBJ_MACH_O)
11872 case bfd_target_mach_o_flavour:
d382c579
TG
11873 if (flag_code == CODE_64BIT)
11874 {
11875 use_rela_relocations = 1;
11876 object_64bit = 1;
11877 return "mach-o-x86-64";
11878 }
11879 else
11880 return "mach-o-i386";
4c63da97 11881#endif
252b5132
RH
11882 default:
11883 abort ();
11884 return NULL;
11885 }
11886}
11887
47926f60 11888#endif /* OBJ_MAYBE_ more than one */
252b5132 11889\f
252b5132 11890symbolS *
7016a5d5 11891md_undefined_symbol (char *name)
252b5132 11892{
18dc2407
ILT
11893 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11894 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11895 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11896 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11897 {
11898 if (!GOT_symbol)
11899 {
11900 if (symbol_find (name))
11901 as_bad (_("GOT already in symbol table"));
11902 GOT_symbol = symbol_new (name, undefined_section,
11903 (valueT) 0, &zero_address_frag);
11904 };
11905 return GOT_symbol;
11906 }
252b5132
RH
11907 return 0;
11908}
11909
11910/* Round up a section size to the appropriate boundary. */
47926f60 11911
252b5132 11912valueT
7016a5d5 11913md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11914{
4c63da97
AM
11915#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11916 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11917 {
11918 /* For a.out, force the section size to be aligned. If we don't do
11919 this, BFD will align it for us, but it will not write out the
11920 final bytes of the section. This may be a bug in BFD, but it is
11921 easier to fix it here since that is how the other a.out targets
11922 work. */
11923 int align;
11924
fd361982 11925 align = bfd_section_alignment (segment);
8d3842cd 11926 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11927 }
252b5132
RH
11928#endif
11929
11930 return size;
11931}
11932
11933/* On the i386, PC-relative offsets are relative to the start of the
11934 next instruction. That is, the address of the offset, plus its
11935 size, since the offset is always the last part of the insn. */
11936
11937long
e3bb37b5 11938md_pcrel_from (fixS *fixP)
252b5132
RH
11939{
11940 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11941}
11942
11943#ifndef I386COFF
11944
11945static void
e3bb37b5 11946s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11947{
29b0f896 11948 int temp;
252b5132 11949
8a75718c
JB
11950#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11951 if (IS_ELF)
11952 obj_elf_section_change_hook ();
11953#endif
252b5132
RH
11954 temp = get_absolute_expression ();
11955 subseg_set (bss_section, (subsegT) temp);
11956 demand_empty_rest_of_line ();
11957}
11958
11959#endif
11960
252b5132 11961void
e3bb37b5 11962i386_validate_fix (fixS *fixp)
252b5132 11963{
02a86693 11964 if (fixp->fx_subsy)
252b5132 11965 {
02a86693 11966 if (fixp->fx_subsy == GOT_symbol)
23df1078 11967 {
02a86693
L
11968 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11969 {
11970 if (!object_64bit)
11971 abort ();
11972#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11973 if (fixp->fx_tcbit2)
56ceb5b5
L
11974 fixp->fx_r_type = (fixp->fx_tcbit
11975 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11976 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11977 else
11978#endif
11979 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11980 }
d6ab8113 11981 else
02a86693
L
11982 {
11983 if (!object_64bit)
11984 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11985 else
11986 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11987 }
11988 fixp->fx_subsy = 0;
23df1078 11989 }
252b5132 11990 }
02a86693
L
11991#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11992 else if (!object_64bit)
11993 {
11994 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11995 && fixp->fx_tcbit2)
11996 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11997 }
11998#endif
252b5132
RH
11999}
12000
252b5132 12001arelent *
7016a5d5 12002tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12003{
12004 arelent *rel;
12005 bfd_reloc_code_real_type code;
12006
12007 switch (fixp->fx_r_type)
12008 {
8ce3d284 12009#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12010 case BFD_RELOC_SIZE32:
12011 case BFD_RELOC_SIZE64:
12012 if (S_IS_DEFINED (fixp->fx_addsy)
12013 && !S_IS_EXTERNAL (fixp->fx_addsy))
12014 {
12015 /* Resolve size relocation against local symbol to size of
12016 the symbol plus addend. */
12017 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12018 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12019 && !fits_in_unsigned_long (value))
12020 as_bad_where (fixp->fx_file, fixp->fx_line,
12021 _("symbol size computation overflow"));
12022 fixp->fx_addsy = NULL;
12023 fixp->fx_subsy = NULL;
12024 md_apply_fix (fixp, (valueT *) &value, NULL);
12025 return NULL;
12026 }
8ce3d284 12027#endif
1a0670f3 12028 /* Fall through. */
8fd4256d 12029
3e73aa7c
JH
12030 case BFD_RELOC_X86_64_PLT32:
12031 case BFD_RELOC_X86_64_GOT32:
12032 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12033 case BFD_RELOC_X86_64_GOTPCRELX:
12034 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12035 case BFD_RELOC_386_PLT32:
12036 case BFD_RELOC_386_GOT32:
02a86693 12037 case BFD_RELOC_386_GOT32X:
252b5132
RH
12038 case BFD_RELOC_386_GOTOFF:
12039 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12040 case BFD_RELOC_386_TLS_GD:
12041 case BFD_RELOC_386_TLS_LDM:
12042 case BFD_RELOC_386_TLS_LDO_32:
12043 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12044 case BFD_RELOC_386_TLS_IE:
12045 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12046 case BFD_RELOC_386_TLS_LE_32:
12047 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12048 case BFD_RELOC_386_TLS_GOTDESC:
12049 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12050 case BFD_RELOC_X86_64_TLSGD:
12051 case BFD_RELOC_X86_64_TLSLD:
12052 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12053 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12054 case BFD_RELOC_X86_64_GOTTPOFF:
12055 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12056 case BFD_RELOC_X86_64_TPOFF64:
12057 case BFD_RELOC_X86_64_GOTOFF64:
12058 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12059 case BFD_RELOC_X86_64_GOT64:
12060 case BFD_RELOC_X86_64_GOTPCREL64:
12061 case BFD_RELOC_X86_64_GOTPC64:
12062 case BFD_RELOC_X86_64_GOTPLT64:
12063 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12064 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12065 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12066 case BFD_RELOC_RVA:
12067 case BFD_RELOC_VTABLE_ENTRY:
12068 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12069#ifdef TE_PE
12070 case BFD_RELOC_32_SECREL:
12071#endif
252b5132
RH
12072 code = fixp->fx_r_type;
12073 break;
dbbaec26
L
12074 case BFD_RELOC_X86_64_32S:
12075 if (!fixp->fx_pcrel)
12076 {
12077 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12078 code = fixp->fx_r_type;
12079 break;
12080 }
1a0670f3 12081 /* Fall through. */
252b5132 12082 default:
93382f6d 12083 if (fixp->fx_pcrel)
252b5132 12084 {
93382f6d
AM
12085 switch (fixp->fx_size)
12086 {
12087 default:
b091f402
AM
12088 as_bad_where (fixp->fx_file, fixp->fx_line,
12089 _("can not do %d byte pc-relative relocation"),
12090 fixp->fx_size);
93382f6d
AM
12091 code = BFD_RELOC_32_PCREL;
12092 break;
12093 case 1: code = BFD_RELOC_8_PCREL; break;
12094 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12095 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12096#ifdef BFD64
12097 case 8: code = BFD_RELOC_64_PCREL; break;
12098#endif
93382f6d
AM
12099 }
12100 }
12101 else
12102 {
12103 switch (fixp->fx_size)
12104 {
12105 default:
b091f402
AM
12106 as_bad_where (fixp->fx_file, fixp->fx_line,
12107 _("can not do %d byte relocation"),
12108 fixp->fx_size);
93382f6d
AM
12109 code = BFD_RELOC_32;
12110 break;
12111 case 1: code = BFD_RELOC_8; break;
12112 case 2: code = BFD_RELOC_16; break;
12113 case 4: code = BFD_RELOC_32; break;
937149dd 12114#ifdef BFD64
3e73aa7c 12115 case 8: code = BFD_RELOC_64; break;
937149dd 12116#endif
93382f6d 12117 }
252b5132
RH
12118 }
12119 break;
12120 }
252b5132 12121
d182319b
JB
12122 if ((code == BFD_RELOC_32
12123 || code == BFD_RELOC_32_PCREL
12124 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12125 && GOT_symbol
12126 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12127 {
4fa24527 12128 if (!object_64bit)
d6ab8113
JB
12129 code = BFD_RELOC_386_GOTPC;
12130 else
12131 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12132 }
7b81dfbb
AJ
12133 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12134 && GOT_symbol
12135 && fixp->fx_addsy == GOT_symbol)
12136 {
12137 code = BFD_RELOC_X86_64_GOTPC64;
12138 }
252b5132 12139
add39d23
TS
12140 rel = XNEW (arelent);
12141 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12142 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12143
12144 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12145
3e73aa7c
JH
12146 if (!use_rela_relocations)
12147 {
12148 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12149 vtable entry to be used in the relocation's section offset. */
12150 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12151 rel->address = fixp->fx_offset;
fbeb56a4
DK
12152#if defined (OBJ_COFF) && defined (TE_PE)
12153 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12154 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12155 else
12156#endif
c6682705 12157 rel->addend = 0;
3e73aa7c
JH
12158 }
12159 /* Use the rela in 64bit mode. */
252b5132 12160 else
3e73aa7c 12161 {
862be3fb
L
12162 if (disallow_64bit_reloc)
12163 switch (code)
12164 {
862be3fb
L
12165 case BFD_RELOC_X86_64_DTPOFF64:
12166 case BFD_RELOC_X86_64_TPOFF64:
12167 case BFD_RELOC_64_PCREL:
12168 case BFD_RELOC_X86_64_GOTOFF64:
12169 case BFD_RELOC_X86_64_GOT64:
12170 case BFD_RELOC_X86_64_GOTPCREL64:
12171 case BFD_RELOC_X86_64_GOTPC64:
12172 case BFD_RELOC_X86_64_GOTPLT64:
12173 case BFD_RELOC_X86_64_PLTOFF64:
12174 as_bad_where (fixp->fx_file, fixp->fx_line,
12175 _("cannot represent relocation type %s in x32 mode"),
12176 bfd_get_reloc_code_name (code));
12177 break;
12178 default:
12179 break;
12180 }
12181
062cd5e7
AS
12182 if (!fixp->fx_pcrel)
12183 rel->addend = fixp->fx_offset;
12184 else
12185 switch (code)
12186 {
12187 case BFD_RELOC_X86_64_PLT32:
12188 case BFD_RELOC_X86_64_GOT32:
12189 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12190 case BFD_RELOC_X86_64_GOTPCRELX:
12191 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12192 case BFD_RELOC_X86_64_TLSGD:
12193 case BFD_RELOC_X86_64_TLSLD:
12194 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12195 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12196 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12197 rel->addend = fixp->fx_offset - fixp->fx_size;
12198 break;
12199 default:
12200 rel->addend = (section->vma
12201 - fixp->fx_size
12202 + fixp->fx_addnumber
12203 + md_pcrel_from (fixp));
12204 break;
12205 }
3e73aa7c
JH
12206 }
12207
252b5132
RH
12208 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12209 if (rel->howto == NULL)
12210 {
12211 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12212 _("cannot represent relocation type %s"),
252b5132
RH
12213 bfd_get_reloc_code_name (code));
12214 /* Set howto to a garbage value so that we can keep going. */
12215 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12216 gas_assert (rel->howto != NULL);
252b5132
RH
12217 }
12218
12219 return rel;
12220}
12221
ee86248c 12222#include "tc-i386-intel.c"
54cfded0 12223
a60de03c
JB
12224void
12225tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12226{
a60de03c
JB
12227 int saved_naked_reg;
12228 char saved_register_dot;
54cfded0 12229
a60de03c
JB
12230 saved_naked_reg = allow_naked_reg;
12231 allow_naked_reg = 1;
12232 saved_register_dot = register_chars['.'];
12233 register_chars['.'] = '.';
12234 allow_pseudo_reg = 1;
12235 expression_and_evaluate (exp);
12236 allow_pseudo_reg = 0;
12237 register_chars['.'] = saved_register_dot;
12238 allow_naked_reg = saved_naked_reg;
12239
e96d56a1 12240 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12241 {
a60de03c
JB
12242 if ((addressT) exp->X_add_number < i386_regtab_size)
12243 {
12244 exp->X_op = O_constant;
12245 exp->X_add_number = i386_regtab[exp->X_add_number]
12246 .dw2_regnum[flag_code >> 1];
12247 }
12248 else
12249 exp->X_op = O_illegal;
54cfded0 12250 }
54cfded0
AM
12251}
12252
12253void
12254tc_x86_frame_initial_instructions (void)
12255{
a60de03c
JB
12256 static unsigned int sp_regno[2];
12257
12258 if (!sp_regno[flag_code >> 1])
12259 {
12260 char *saved_input = input_line_pointer;
12261 char sp[][4] = {"esp", "rsp"};
12262 expressionS exp;
a4447b93 12263
a60de03c
JB
12264 input_line_pointer = sp[flag_code >> 1];
12265 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12266 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12267 sp_regno[flag_code >> 1] = exp.X_add_number;
12268 input_line_pointer = saved_input;
12269 }
a4447b93 12270
61ff971f
L
12271 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12272 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12273}
d2b2c203 12274
d7921315
L
12275int
12276x86_dwarf2_addr_size (void)
12277{
12278#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12279 if (x86_elf_abi == X86_64_X32_ABI)
12280 return 4;
12281#endif
12282 return bfd_arch_bits_per_address (stdoutput) / 8;
12283}
12284
d2b2c203
DJ
12285int
12286i386_elf_section_type (const char *str, size_t len)
12287{
12288 if (flag_code == CODE_64BIT
12289 && len == sizeof ("unwind") - 1
12290 && strncmp (str, "unwind", 6) == 0)
12291 return SHT_X86_64_UNWIND;
12292
12293 return -1;
12294}
bb41ade5 12295
ad5fec3b
EB
12296#ifdef TE_SOLARIS
12297void
12298i386_solaris_fix_up_eh_frame (segT sec)
12299{
12300 if (flag_code == CODE_64BIT)
12301 elf_section_type (sec) = SHT_X86_64_UNWIND;
12302}
12303#endif
12304
bb41ade5
AM
12305#ifdef TE_PE
12306void
12307tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12308{
91d6fa6a 12309 expressionS exp;
bb41ade5 12310
91d6fa6a
NC
12311 exp.X_op = O_secrel;
12312 exp.X_add_symbol = symbol;
12313 exp.X_add_number = 0;
12314 emit_expr (&exp, size);
bb41ade5
AM
12315}
12316#endif
3b22753a
L
12317
12318#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12319/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12320
01e1a5bc 12321bfd_vma
6d4af3c2 12322x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12323{
12324 if (flag_code == CODE_64BIT)
12325 {
12326 if (letter == 'l')
12327 return SHF_X86_64_LARGE;
12328
8f3bae45 12329 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12330 }
3b22753a 12331 else
8f3bae45 12332 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12333 return -1;
12334}
12335
01e1a5bc 12336bfd_vma
3b22753a
L
12337x86_64_section_word (char *str, size_t len)
12338{
8620418b 12339 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12340 return SHF_X86_64_LARGE;
12341
12342 return -1;
12343}
12344
12345static void
12346handle_large_common (int small ATTRIBUTE_UNUSED)
12347{
12348 if (flag_code != CODE_64BIT)
12349 {
12350 s_comm_internal (0, elf_common_parse);
12351 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12352 }
12353 else
12354 {
12355 static segT lbss_section;
12356 asection *saved_com_section_ptr = elf_com_section_ptr;
12357 asection *saved_bss_section = bss_section;
12358
12359 if (lbss_section == NULL)
12360 {
12361 flagword applicable;
12362 segT seg = now_seg;
12363 subsegT subseg = now_subseg;
12364
12365 /* The .lbss section is for local .largecomm symbols. */
12366 lbss_section = subseg_new (".lbss", 0);
12367 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12368 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12369 seg_info (lbss_section)->bss = 1;
12370
12371 subseg_set (seg, subseg);
12372 }
12373
12374 elf_com_section_ptr = &_bfd_elf_large_com_section;
12375 bss_section = lbss_section;
12376
12377 s_comm_internal (0, elf_common_parse);
12378
12379 elf_com_section_ptr = saved_com_section_ptr;
12380 bss_section = saved_bss_section;
12381 }
12382}
12383#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.30961 seconds and 4 git commands to generate.