x86-64: optimize certain commutative VEX-encoded insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1918static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1919
1920enum operand_type
1921{
1922 reg,
40fb9820
L
1923 imm,
1924 disp,
1925 anymem
1926};
1927
c6fb90c8 1928static INLINE int
40fb9820
L
1929operand_type_check (i386_operand_type t, enum operand_type c)
1930{
1931 switch (c)
1932 {
1933 case reg:
dc821c5f 1934 return t.bitfield.reg;
40fb9820 1935
40fb9820
L
1936 case imm:
1937 return (t.bitfield.imm8
1938 || t.bitfield.imm8s
1939 || t.bitfield.imm16
1940 || t.bitfield.imm32
1941 || t.bitfield.imm32s
1942 || t.bitfield.imm64);
1943
1944 case disp:
1945 return (t.bitfield.disp8
1946 || t.bitfield.disp16
1947 || t.bitfield.disp32
1948 || t.bitfield.disp32s
1949 || t.bitfield.disp64);
1950
1951 case anymem:
1952 return (t.bitfield.disp8
1953 || t.bitfield.disp16
1954 || t.bitfield.disp32
1955 || t.bitfield.disp32s
1956 || t.bitfield.disp64
1957 || t.bitfield.baseindex);
1958
1959 default:
1960 abort ();
1961 }
2cfe26b6
AM
1962
1963 return 0;
40fb9820
L
1964}
1965
7a54636a
L
1966/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1967 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1968
1969static INLINE int
7a54636a
L
1970match_operand_size (const insn_template *t, unsigned int wanted,
1971 unsigned int given)
5c07affc 1972{
3ac21baa
JB
1973 return !((i.types[given].bitfield.byte
1974 && !t->operand_types[wanted].bitfield.byte)
1975 || (i.types[given].bitfield.word
1976 && !t->operand_types[wanted].bitfield.word)
1977 || (i.types[given].bitfield.dword
1978 && !t->operand_types[wanted].bitfield.dword)
1979 || (i.types[given].bitfield.qword
1980 && !t->operand_types[wanted].bitfield.qword)
1981 || (i.types[given].bitfield.tbyte
1982 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1983}
1984
dd40ce22
L
1985/* Return 1 if there is no conflict in SIMD register between operand
1986 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1987
1988static INLINE int
dd40ce22
L
1989match_simd_size (const insn_template *t, unsigned int wanted,
1990 unsigned int given)
1b54b8d7 1991{
3ac21baa
JB
1992 return !((i.types[given].bitfield.xmmword
1993 && !t->operand_types[wanted].bitfield.xmmword)
1994 || (i.types[given].bitfield.ymmword
1995 && !t->operand_types[wanted].bitfield.ymmword)
1996 || (i.types[given].bitfield.zmmword
1997 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1998}
1999
7a54636a
L
2000/* Return 1 if there is no conflict in any size between operand GIVEN
2001 and opeand WANTED for instruction template T. */
5c07affc
L
2002
2003static INLINE int
dd40ce22
L
2004match_mem_size (const insn_template *t, unsigned int wanted,
2005 unsigned int given)
5c07affc 2006{
7a54636a 2007 return (match_operand_size (t, wanted, given)
3ac21baa 2008 && !((i.types[given].bitfield.unspecified
af508cb9 2009 && !i.broadcast
3ac21baa
JB
2010 && !t->operand_types[wanted].bitfield.unspecified)
2011 || (i.types[given].bitfield.fword
2012 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2013 /* For scalar opcode templates to allow register and memory
2014 operands at the same time, some special casing is needed
d6793fa1
JB
2015 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2016 down-conversion vpmov*. */
3ac21baa 2017 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2018 && !t->opcode_modifier.broadcast
3ac21baa
JB
2019 && (t->operand_types[wanted].bitfield.byte
2020 || t->operand_types[wanted].bitfield.word
2021 || t->operand_types[wanted].bitfield.dword
2022 || t->operand_types[wanted].bitfield.qword))
2023 ? (i.types[given].bitfield.xmmword
2024 || i.types[given].bitfield.ymmword
2025 || i.types[given].bitfield.zmmword)
2026 : !match_simd_size(t, wanted, given))));
5c07affc
L
2027}
2028
3ac21baa
JB
2029/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2030 operands for instruction template T, and it has MATCH_REVERSE set if there
2031 is no size conflict on any operands for the template with operands reversed
2032 (and the template allows for reversing in the first place). */
5c07affc 2033
3ac21baa
JB
2034#define MATCH_STRAIGHT 1
2035#define MATCH_REVERSE 2
2036
2037static INLINE unsigned int
d3ce72d0 2038operand_size_match (const insn_template *t)
5c07affc 2039{
3ac21baa 2040 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2041
2042 /* Don't check jump instructions. */
2043 if (t->opcode_modifier.jump
2044 || t->opcode_modifier.jumpbyte
2045 || t->opcode_modifier.jumpdword
2046 || t->opcode_modifier.jumpintersegment)
2047 return match;
2048
2049 /* Check memory and accumulator operand size. */
2050 for (j = 0; j < i.operands; j++)
2051 {
1b54b8d7
JB
2052 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2053 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2054 continue;
2055
1b54b8d7 2056 if (t->operand_types[j].bitfield.reg
7a54636a 2057 && !match_operand_size (t, j, j))
5c07affc
L
2058 {
2059 match = 0;
2060 break;
2061 }
2062
1b54b8d7 2063 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2064 && !match_simd_size (t, j, j))
1b54b8d7
JB
2065 {
2066 match = 0;
2067 break;
2068 }
2069
2070 if (t->operand_types[j].bitfield.acc
7a54636a 2071 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2072 {
2073 match = 0;
2074 break;
2075 }
2076
c48dadc9 2077 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2078 {
2079 match = 0;
2080 break;
2081 }
2082 }
2083
3ac21baa 2084 if (!t->opcode_modifier.d)
891edac4
L
2085 {
2086mismatch:
3ac21baa
JB
2087 if (!match)
2088 i.error = operand_size_mismatch;
2089 return match;
891edac4 2090 }
5c07affc
L
2091
2092 /* Check reverse. */
f5eb1d70 2093 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2094
f5eb1d70 2095 for (j = 0; j < i.operands; j++)
5c07affc 2096 {
f5eb1d70
JB
2097 unsigned int given = i.operands - j - 1;
2098
dbbc8b7e 2099 if (t->operand_types[j].bitfield.reg
f5eb1d70 2100 && !match_operand_size (t, j, given))
891edac4 2101 goto mismatch;
5c07affc 2102
dbbc8b7e 2103 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2104 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2105 goto mismatch;
2106
2107 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2108 && (!match_operand_size (t, j, given)
2109 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2110 goto mismatch;
2111
f5eb1d70 2112 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2113 goto mismatch;
5c07affc
L
2114 }
2115
3ac21baa 2116 return match | MATCH_REVERSE;
5c07affc
L
2117}
2118
c6fb90c8 2119static INLINE int
40fb9820
L
2120operand_type_match (i386_operand_type overlap,
2121 i386_operand_type given)
2122{
2123 i386_operand_type temp = overlap;
2124
2125 temp.bitfield.jumpabsolute = 0;
7d5e4556 2126 temp.bitfield.unspecified = 0;
5c07affc
L
2127 temp.bitfield.byte = 0;
2128 temp.bitfield.word = 0;
2129 temp.bitfield.dword = 0;
2130 temp.bitfield.fword = 0;
2131 temp.bitfield.qword = 0;
2132 temp.bitfield.tbyte = 0;
2133 temp.bitfield.xmmword = 0;
c0f3af97 2134 temp.bitfield.ymmword = 0;
43234a1e 2135 temp.bitfield.zmmword = 0;
0dfbf9d7 2136 if (operand_type_all_zero (&temp))
891edac4 2137 goto mismatch;
40fb9820 2138
891edac4
L
2139 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2140 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2141 return 1;
2142
2143mismatch:
a65babc9 2144 i.error = operand_type_mismatch;
891edac4 2145 return 0;
40fb9820
L
2146}
2147
7d5e4556 2148/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2149 unless the expected operand type register overlap is null.
2150 Memory operand size of certain SIMD instructions is also being checked
2151 here. */
40fb9820 2152
c6fb90c8 2153static INLINE int
dc821c5f 2154operand_type_register_match (i386_operand_type g0,
40fb9820 2155 i386_operand_type t0,
40fb9820
L
2156 i386_operand_type g1,
2157 i386_operand_type t1)
2158{
10c17abd
JB
2159 if (!g0.bitfield.reg
2160 && !g0.bitfield.regsimd
2161 && (!operand_type_check (g0, anymem)
2162 || g0.bitfield.unspecified
2163 || !t0.bitfield.regsimd))
40fb9820
L
2164 return 1;
2165
10c17abd
JB
2166 if (!g1.bitfield.reg
2167 && !g1.bitfield.regsimd
2168 && (!operand_type_check (g1, anymem)
2169 || g1.bitfield.unspecified
2170 || !t1.bitfield.regsimd))
40fb9820
L
2171 return 1;
2172
dc821c5f
JB
2173 if (g0.bitfield.byte == g1.bitfield.byte
2174 && g0.bitfield.word == g1.bitfield.word
2175 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2176 && g0.bitfield.qword == g1.bitfield.qword
2177 && g0.bitfield.xmmword == g1.bitfield.xmmword
2178 && g0.bitfield.ymmword == g1.bitfield.ymmword
2179 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2180 return 1;
2181
dc821c5f
JB
2182 if (!(t0.bitfield.byte & t1.bitfield.byte)
2183 && !(t0.bitfield.word & t1.bitfield.word)
2184 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2185 && !(t0.bitfield.qword & t1.bitfield.qword)
2186 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2187 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2188 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2189 return 1;
2190
a65babc9 2191 i.error = register_type_mismatch;
891edac4
L
2192
2193 return 0;
40fb9820
L
2194}
2195
4c692bc7
JB
2196static INLINE unsigned int
2197register_number (const reg_entry *r)
2198{
2199 unsigned int nr = r->reg_num;
2200
2201 if (r->reg_flags & RegRex)
2202 nr += 8;
2203
200cbe0f
L
2204 if (r->reg_flags & RegVRex)
2205 nr += 16;
2206
4c692bc7
JB
2207 return nr;
2208}
2209
252b5132 2210static INLINE unsigned int
40fb9820 2211mode_from_disp_size (i386_operand_type t)
252b5132 2212{
b5014f7a 2213 if (t.bitfield.disp8)
40fb9820
L
2214 return 1;
2215 else if (t.bitfield.disp16
2216 || t.bitfield.disp32
2217 || t.bitfield.disp32s)
2218 return 2;
2219 else
2220 return 0;
252b5132
RH
2221}
2222
2223static INLINE int
65879393 2224fits_in_signed_byte (addressT num)
252b5132 2225{
65879393 2226 return num + 0x80 <= 0xff;
47926f60 2227}
252b5132
RH
2228
2229static INLINE int
65879393 2230fits_in_unsigned_byte (addressT num)
252b5132 2231{
65879393 2232 return num <= 0xff;
47926f60 2233}
252b5132
RH
2234
2235static INLINE int
65879393 2236fits_in_unsigned_word (addressT num)
252b5132 2237{
65879393 2238 return num <= 0xffff;
47926f60 2239}
252b5132
RH
2240
2241static INLINE int
65879393 2242fits_in_signed_word (addressT num)
252b5132 2243{
65879393 2244 return num + 0x8000 <= 0xffff;
47926f60 2245}
2a962e6d 2246
3e73aa7c 2247static INLINE int
65879393 2248fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2249{
2250#ifndef BFD64
2251 return 1;
2252#else
65879393 2253 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2254#endif
2255} /* fits_in_signed_long() */
2a962e6d 2256
3e73aa7c 2257static INLINE int
65879393 2258fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2259{
2260#ifndef BFD64
2261 return 1;
2262#else
65879393 2263 return num <= 0xffffffff;
3e73aa7c
JH
2264#endif
2265} /* fits_in_unsigned_long() */
252b5132 2266
43234a1e 2267static INLINE int
b5014f7a 2268fits_in_disp8 (offsetT num)
43234a1e
L
2269{
2270 int shift = i.memshift;
2271 unsigned int mask;
2272
2273 if (shift == -1)
2274 abort ();
2275
2276 mask = (1 << shift) - 1;
2277
2278 /* Return 0 if NUM isn't properly aligned. */
2279 if ((num & mask))
2280 return 0;
2281
2282 /* Check if NUM will fit in 8bit after shift. */
2283 return fits_in_signed_byte (num >> shift);
2284}
2285
a683cc34
SP
2286static INLINE int
2287fits_in_imm4 (offsetT num)
2288{
2289 return (num & 0xf) == num;
2290}
2291
40fb9820 2292static i386_operand_type
e3bb37b5 2293smallest_imm_type (offsetT num)
252b5132 2294{
40fb9820 2295 i386_operand_type t;
7ab9ffdd 2296
0dfbf9d7 2297 operand_type_set (&t, 0);
40fb9820
L
2298 t.bitfield.imm64 = 1;
2299
2300 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2301 {
2302 /* This code is disabled on the 486 because all the Imm1 forms
2303 in the opcode table are slower on the i486. They're the
2304 versions with the implicitly specified single-position
2305 displacement, which has another syntax if you really want to
2306 use that form. */
40fb9820
L
2307 t.bitfield.imm1 = 1;
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm8s = 1;
2310 t.bitfield.imm16 = 1;
2311 t.bitfield.imm32 = 1;
2312 t.bitfield.imm32s = 1;
2313 }
2314 else if (fits_in_signed_byte (num))
2315 {
2316 t.bitfield.imm8 = 1;
2317 t.bitfield.imm8s = 1;
2318 t.bitfield.imm16 = 1;
2319 t.bitfield.imm32 = 1;
2320 t.bitfield.imm32s = 1;
2321 }
2322 else if (fits_in_unsigned_byte (num))
2323 {
2324 t.bitfield.imm8 = 1;
2325 t.bitfield.imm16 = 1;
2326 t.bitfield.imm32 = 1;
2327 t.bitfield.imm32s = 1;
2328 }
2329 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2330 {
2331 t.bitfield.imm16 = 1;
2332 t.bitfield.imm32 = 1;
2333 t.bitfield.imm32s = 1;
2334 }
2335 else if (fits_in_signed_long (num))
2336 {
2337 t.bitfield.imm32 = 1;
2338 t.bitfield.imm32s = 1;
2339 }
2340 else if (fits_in_unsigned_long (num))
2341 t.bitfield.imm32 = 1;
2342
2343 return t;
47926f60 2344}
252b5132 2345
847f7ad4 2346static offsetT
e3bb37b5 2347offset_in_range (offsetT val, int size)
847f7ad4 2348{
508866be 2349 addressT mask;
ba2adb93 2350
847f7ad4
AM
2351 switch (size)
2352 {
508866be
L
2353 case 1: mask = ((addressT) 1 << 8) - 1; break;
2354 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2355 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2356#ifdef BFD64
2357 case 8: mask = ((addressT) 2 << 63) - 1; break;
2358#endif
47926f60 2359 default: abort ();
847f7ad4
AM
2360 }
2361
9de868bf
L
2362#ifdef BFD64
2363 /* If BFD64, sign extend val for 32bit address mode. */
2364 if (flag_code != CODE_64BIT
2365 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2366 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2367 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2368#endif
ba2adb93 2369
47926f60 2370 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2371 {
2372 char buf1[40], buf2[40];
2373
2374 sprint_value (buf1, val);
2375 sprint_value (buf2, val & mask);
2376 as_warn (_("%s shortened to %s"), buf1, buf2);
2377 }
2378 return val & mask;
2379}
2380
c32fa91d
L
2381enum PREFIX_GROUP
2382{
2383 PREFIX_EXIST = 0,
2384 PREFIX_LOCK,
2385 PREFIX_REP,
04ef582a 2386 PREFIX_DS,
c32fa91d
L
2387 PREFIX_OTHER
2388};
2389
2390/* Returns
2391 a. PREFIX_EXIST if attempting to add a prefix where one from the
2392 same class already exists.
2393 b. PREFIX_LOCK if lock prefix is added.
2394 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2395 d. PREFIX_DS if ds prefix is added.
2396 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2397 */
2398
2399static enum PREFIX_GROUP
e3bb37b5 2400add_prefix (unsigned int prefix)
252b5132 2401{
c32fa91d 2402 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2403 unsigned int q;
252b5132 2404
29b0f896
AM
2405 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2406 && flag_code == CODE_64BIT)
b1905489 2407 {
161a04f6 2408 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2409 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2411 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2412 ret = PREFIX_EXIST;
b1905489
JB
2413 q = REX_PREFIX;
2414 }
3e73aa7c 2415 else
b1905489
JB
2416 {
2417 switch (prefix)
2418 {
2419 default:
2420 abort ();
2421
b1905489 2422 case DS_PREFIX_OPCODE:
04ef582a
L
2423 ret = PREFIX_DS;
2424 /* Fall through. */
2425 case CS_PREFIX_OPCODE:
b1905489
JB
2426 case ES_PREFIX_OPCODE:
2427 case FS_PREFIX_OPCODE:
2428 case GS_PREFIX_OPCODE:
2429 case SS_PREFIX_OPCODE:
2430 q = SEG_PREFIX;
2431 break;
2432
2433 case REPNE_PREFIX_OPCODE:
2434 case REPE_PREFIX_OPCODE:
c32fa91d
L
2435 q = REP_PREFIX;
2436 ret = PREFIX_REP;
2437 break;
2438
b1905489 2439 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2440 q = LOCK_PREFIX;
2441 ret = PREFIX_LOCK;
b1905489
JB
2442 break;
2443
2444 case FWAIT_OPCODE:
2445 q = WAIT_PREFIX;
2446 break;
2447
2448 case ADDR_PREFIX_OPCODE:
2449 q = ADDR_PREFIX;
2450 break;
2451
2452 case DATA_PREFIX_OPCODE:
2453 q = DATA_PREFIX;
2454 break;
2455 }
2456 if (i.prefix[q] != 0)
c32fa91d 2457 ret = PREFIX_EXIST;
b1905489 2458 }
252b5132 2459
b1905489 2460 if (ret)
252b5132 2461 {
b1905489
JB
2462 if (!i.prefix[q])
2463 ++i.prefixes;
2464 i.prefix[q] |= prefix;
252b5132 2465 }
b1905489
JB
2466 else
2467 as_bad (_("same type of prefix used twice"));
252b5132 2468
252b5132
RH
2469 return ret;
2470}
2471
2472static void
78f12dd3 2473update_code_flag (int value, int check)
eecb386c 2474{
78f12dd3
L
2475 PRINTF_LIKE ((*as_error));
2476
1e9cc1c2 2477 flag_code = (enum flag_code) value;
40fb9820
L
2478 if (flag_code == CODE_64BIT)
2479 {
2480 cpu_arch_flags.bitfield.cpu64 = 1;
2481 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2482 }
2483 else
2484 {
2485 cpu_arch_flags.bitfield.cpu64 = 0;
2486 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2487 }
2488 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2489 {
78f12dd3
L
2490 if (check)
2491 as_error = as_fatal;
2492 else
2493 as_error = as_bad;
2494 (*as_error) (_("64bit mode not supported on `%s'."),
2495 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2496 }
40fb9820 2497 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2498 {
78f12dd3
L
2499 if (check)
2500 as_error = as_fatal;
2501 else
2502 as_error = as_bad;
2503 (*as_error) (_("32bit mode not supported on `%s'."),
2504 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2505 }
eecb386c
AM
2506 stackop_size = '\0';
2507}
2508
78f12dd3
L
2509static void
2510set_code_flag (int value)
2511{
2512 update_code_flag (value, 0);
2513}
2514
eecb386c 2515static void
e3bb37b5 2516set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2517{
1e9cc1c2 2518 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2519 if (flag_code != CODE_16BIT)
2520 abort ();
2521 cpu_arch_flags.bitfield.cpu64 = 0;
2522 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2523 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2524}
2525
2526static void
e3bb37b5 2527set_intel_syntax (int syntax_flag)
252b5132
RH
2528{
2529 /* Find out if register prefixing is specified. */
2530 int ask_naked_reg = 0;
2531
2532 SKIP_WHITESPACE ();
29b0f896 2533 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2534 {
d02603dc
NC
2535 char *string;
2536 int e = get_symbol_name (&string);
252b5132 2537
47926f60 2538 if (strcmp (string, "prefix") == 0)
252b5132 2539 ask_naked_reg = 1;
47926f60 2540 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2541 ask_naked_reg = -1;
2542 else
d0b47220 2543 as_bad (_("bad argument to syntax directive."));
d02603dc 2544 (void) restore_line_pointer (e);
252b5132
RH
2545 }
2546 demand_empty_rest_of_line ();
c3332e24 2547
252b5132
RH
2548 intel_syntax = syntax_flag;
2549
2550 if (ask_naked_reg == 0)
f86103b7
AM
2551 allow_naked_reg = (intel_syntax
2552 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2553 else
2554 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2555
ee86248c 2556 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2557
e4a3b5a4 2558 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2559 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2560 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2561}
2562
1efbbeb4
L
2563static void
2564set_intel_mnemonic (int mnemonic_flag)
2565{
e1d4d893 2566 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2567}
2568
db51cc60
L
2569static void
2570set_allow_index_reg (int flag)
2571{
2572 allow_index_reg = flag;
2573}
2574
cb19c032 2575static void
7bab8ab5 2576set_check (int what)
cb19c032 2577{
7bab8ab5
JB
2578 enum check_kind *kind;
2579 const char *str;
2580
2581 if (what)
2582 {
2583 kind = &operand_check;
2584 str = "operand";
2585 }
2586 else
2587 {
2588 kind = &sse_check;
2589 str = "sse";
2590 }
2591
cb19c032
L
2592 SKIP_WHITESPACE ();
2593
2594 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2595 {
d02603dc
NC
2596 char *string;
2597 int e = get_symbol_name (&string);
cb19c032
L
2598
2599 if (strcmp (string, "none") == 0)
7bab8ab5 2600 *kind = check_none;
cb19c032 2601 else if (strcmp (string, "warning") == 0)
7bab8ab5 2602 *kind = check_warning;
cb19c032 2603 else if (strcmp (string, "error") == 0)
7bab8ab5 2604 *kind = check_error;
cb19c032 2605 else
7bab8ab5 2606 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2607 (void) restore_line_pointer (e);
cb19c032
L
2608 }
2609 else
7bab8ab5 2610 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2611
2612 demand_empty_rest_of_line ();
2613}
2614
8a9036a4
L
2615static void
2616check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2617 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2618{
2619#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2620 static const char *arch;
2621
2622 /* Intel LIOM is only supported on ELF. */
2623 if (!IS_ELF)
2624 return;
2625
2626 if (!arch)
2627 {
2628 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2629 use default_arch. */
2630 arch = cpu_arch_name;
2631 if (!arch)
2632 arch = default_arch;
2633 }
2634
81486035
L
2635 /* If we are targeting Intel MCU, we must enable it. */
2636 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2637 || new_flag.bitfield.cpuiamcu)
2638 return;
2639
3632d14b 2640 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2641 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2642 || new_flag.bitfield.cpul1om)
8a9036a4 2643 return;
76ba9986 2644
7a9068fe
L
2645 /* If we are targeting Intel K1OM, we must enable it. */
2646 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2647 || new_flag.bitfield.cpuk1om)
2648 return;
2649
8a9036a4
L
2650 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2651#endif
2652}
2653
e413e4e9 2654static void
e3bb37b5 2655set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2656{
47926f60 2657 SKIP_WHITESPACE ();
e413e4e9 2658
29b0f896 2659 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2660 {
d02603dc
NC
2661 char *string;
2662 int e = get_symbol_name (&string);
91d6fa6a 2663 unsigned int j;
40fb9820 2664 i386_cpu_flags flags;
e413e4e9 2665
91d6fa6a 2666 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2667 {
91d6fa6a 2668 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2669 {
91d6fa6a 2670 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2671
5c6af06e
JB
2672 if (*string != '.')
2673 {
91d6fa6a 2674 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2675 cpu_sub_arch_name = NULL;
91d6fa6a 2676 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2677 if (flag_code == CODE_64BIT)
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 1;
2680 cpu_arch_flags.bitfield.cpuno64 = 0;
2681 }
2682 else
2683 {
2684 cpu_arch_flags.bitfield.cpu64 = 0;
2685 cpu_arch_flags.bitfield.cpuno64 = 1;
2686 }
91d6fa6a
NC
2687 cpu_arch_isa = cpu_arch[j].type;
2688 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2689 if (!cpu_arch_tune_set)
2690 {
2691 cpu_arch_tune = cpu_arch_isa;
2692 cpu_arch_tune_flags = cpu_arch_isa_flags;
2693 }
5c6af06e
JB
2694 break;
2695 }
40fb9820 2696
293f5f65
L
2697 flags = cpu_flags_or (cpu_arch_flags,
2698 cpu_arch[j].flags);
81486035 2699
5b64d091 2700 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2701 {
6305a203
L
2702 if (cpu_sub_arch_name)
2703 {
2704 char *name = cpu_sub_arch_name;
2705 cpu_sub_arch_name = concat (name,
91d6fa6a 2706 cpu_arch[j].name,
1bf57e9f 2707 (const char *) NULL);
6305a203
L
2708 free (name);
2709 }
2710 else
91d6fa6a 2711 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2712 cpu_arch_flags = flags;
a586129e 2713 cpu_arch_isa_flags = flags;
5c6af06e 2714 }
0089dace
L
2715 else
2716 cpu_arch_isa_flags
2717 = cpu_flags_or (cpu_arch_isa_flags,
2718 cpu_arch[j].flags);
d02603dc 2719 (void) restore_line_pointer (e);
5c6af06e
JB
2720 demand_empty_rest_of_line ();
2721 return;
e413e4e9
AM
2722 }
2723 }
293f5f65
L
2724
2725 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2726 {
33eaf5de 2727 /* Disable an ISA extension. */
293f5f65
L
2728 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2729 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2730 {
2731 flags = cpu_flags_and_not (cpu_arch_flags,
2732 cpu_noarch[j].flags);
2733 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2734 {
2735 if (cpu_sub_arch_name)
2736 {
2737 char *name = cpu_sub_arch_name;
2738 cpu_sub_arch_name = concat (name, string,
2739 (const char *) NULL);
2740 free (name);
2741 }
2742 else
2743 cpu_sub_arch_name = xstrdup (string);
2744 cpu_arch_flags = flags;
2745 cpu_arch_isa_flags = flags;
2746 }
2747 (void) restore_line_pointer (e);
2748 demand_empty_rest_of_line ();
2749 return;
2750 }
2751
2752 j = ARRAY_SIZE (cpu_arch);
2753 }
2754
91d6fa6a 2755 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2756 as_bad (_("no such architecture: `%s'"), string);
2757
2758 *input_line_pointer = e;
2759 }
2760 else
2761 as_bad (_("missing cpu architecture"));
2762
fddf5b5b
AM
2763 no_cond_jump_promotion = 0;
2764 if (*input_line_pointer == ','
29b0f896 2765 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2766 {
d02603dc
NC
2767 char *string;
2768 char e;
2769
2770 ++input_line_pointer;
2771 e = get_symbol_name (&string);
fddf5b5b
AM
2772
2773 if (strcmp (string, "nojumps") == 0)
2774 no_cond_jump_promotion = 1;
2775 else if (strcmp (string, "jumps") == 0)
2776 ;
2777 else
2778 as_bad (_("no such architecture modifier: `%s'"), string);
2779
d02603dc 2780 (void) restore_line_pointer (e);
fddf5b5b
AM
2781 }
2782
e413e4e9
AM
2783 demand_empty_rest_of_line ();
2784}
2785
8a9036a4
L
2786enum bfd_architecture
2787i386_arch (void)
2788{
3632d14b 2789 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || flag_code != CODE_64BIT)
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_arch_l1om;
2795 }
7a9068fe
L
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || flag_code != CODE_64BIT)
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_arch_k1om;
2802 }
81486035
L
2803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || flag_code == CODE_64BIT)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_arch_iamcu;
2809 }
8a9036a4
L
2810 else
2811 return bfd_arch_i386;
2812}
2813
b9d79e03 2814unsigned long
7016a5d5 2815i386_mach (void)
b9d79e03 2816{
351f65ca 2817 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2818 {
3632d14b 2819 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2820 {
351f65ca
L
2821 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2822 || default_arch[6] != '\0')
8a9036a4
L
2823 as_fatal (_("Intel L1OM is 64bit ELF only"));
2824 return bfd_mach_l1om;
2825 }
7a9068fe
L
2826 else if (cpu_arch_isa == PROCESSOR_K1OM)
2827 {
2828 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2829 || default_arch[6] != '\0')
2830 as_fatal (_("Intel K1OM is 64bit ELF only"));
2831 return bfd_mach_k1om;
2832 }
351f65ca 2833 else if (default_arch[6] == '\0')
8a9036a4 2834 return bfd_mach_x86_64;
351f65ca
L
2835 else
2836 return bfd_mach_x64_32;
8a9036a4 2837 }
5197d474
L
2838 else if (!strcmp (default_arch, "i386")
2839 || !strcmp (default_arch, "iamcu"))
81486035
L
2840 {
2841 if (cpu_arch_isa == PROCESSOR_IAMCU)
2842 {
2843 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2844 as_fatal (_("Intel MCU is 32bit ELF only"));
2845 return bfd_mach_i386_iamcu;
2846 }
2847 else
2848 return bfd_mach_i386_i386;
2849 }
b9d79e03 2850 else
2b5d6a91 2851 as_fatal (_("unknown architecture"));
b9d79e03 2852}
b9d79e03 2853\f
252b5132 2854void
7016a5d5 2855md_begin (void)
252b5132
RH
2856{
2857 const char *hash_err;
2858
86fa6981
L
2859 /* Support pseudo prefixes like {disp32}. */
2860 lex_type ['{'] = LEX_BEGIN_NAME;
2861
47926f60 2862 /* Initialize op_hash hash table. */
252b5132
RH
2863 op_hash = hash_new ();
2864
2865 {
d3ce72d0 2866 const insn_template *optab;
29b0f896 2867 templates *core_optab;
252b5132 2868
47926f60
KH
2869 /* Setup for loop. */
2870 optab = i386_optab;
add39d23 2871 core_optab = XNEW (templates);
252b5132
RH
2872 core_optab->start = optab;
2873
2874 while (1)
2875 {
2876 ++optab;
2877 if (optab->name == NULL
2878 || strcmp (optab->name, (optab - 1)->name) != 0)
2879 {
2880 /* different name --> ship out current template list;
47926f60 2881 add to hash table; & begin anew. */
252b5132
RH
2882 core_optab->end = optab;
2883 hash_err = hash_insert (op_hash,
2884 (optab - 1)->name,
5a49b8ac 2885 (void *) core_optab);
252b5132
RH
2886 if (hash_err)
2887 {
b37df7c4 2888 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2889 (optab - 1)->name,
2890 hash_err);
2891 }
2892 if (optab->name == NULL)
2893 break;
add39d23 2894 core_optab = XNEW (templates);
252b5132
RH
2895 core_optab->start = optab;
2896 }
2897 }
2898 }
2899
47926f60 2900 /* Initialize reg_hash hash table. */
252b5132
RH
2901 reg_hash = hash_new ();
2902 {
29b0f896 2903 const reg_entry *regtab;
c3fe08fa 2904 unsigned int regtab_size = i386_regtab_size;
252b5132 2905
c3fe08fa 2906 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2907 {
5a49b8ac 2908 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2909 if (hash_err)
b37df7c4 2910 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2911 regtab->reg_name,
2912 hash_err);
252b5132
RH
2913 }
2914 }
2915
47926f60 2916 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2917 {
29b0f896
AM
2918 int c;
2919 char *p;
252b5132
RH
2920
2921 for (c = 0; c < 256; c++)
2922 {
3882b010 2923 if (ISDIGIT (c))
252b5132
RH
2924 {
2925 digit_chars[c] = c;
2926 mnemonic_chars[c] = c;
2927 register_chars[c] = c;
2928 operand_chars[c] = c;
2929 }
3882b010 2930 else if (ISLOWER (c))
252b5132
RH
2931 {
2932 mnemonic_chars[c] = c;
2933 register_chars[c] = c;
2934 operand_chars[c] = c;
2935 }
3882b010 2936 else if (ISUPPER (c))
252b5132 2937 {
3882b010 2938 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2939 register_chars[c] = mnemonic_chars[c];
2940 operand_chars[c] = c;
2941 }
43234a1e 2942 else if (c == '{' || c == '}')
86fa6981
L
2943 {
2944 mnemonic_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
252b5132 2947
3882b010 2948 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2949 identifier_chars[c] = c;
2950 else if (c >= 128)
2951 {
2952 identifier_chars[c] = c;
2953 operand_chars[c] = c;
2954 }
2955 }
2956
2957#ifdef LEX_AT
2958 identifier_chars['@'] = '@';
32137342
NC
2959#endif
2960#ifdef LEX_QM
2961 identifier_chars['?'] = '?';
2962 operand_chars['?'] = '?';
252b5132 2963#endif
252b5132 2964 digit_chars['-'] = '-';
c0f3af97 2965 mnemonic_chars['_'] = '_';
791fe849 2966 mnemonic_chars['-'] = '-';
0003779b 2967 mnemonic_chars['.'] = '.';
252b5132
RH
2968 identifier_chars['_'] = '_';
2969 identifier_chars['.'] = '.';
2970
2971 for (p = operand_special_chars; *p != '\0'; p++)
2972 operand_chars[(unsigned char) *p] = *p;
2973 }
2974
a4447b93
RH
2975 if (flag_code == CODE_64BIT)
2976 {
ca19b261
KT
2977#if defined (OBJ_COFF) && defined (TE_PE)
2978 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2979 ? 32 : 16);
2980#else
a4447b93 2981 x86_dwarf2_return_column = 16;
ca19b261 2982#endif
61ff971f 2983 x86_cie_data_alignment = -8;
a4447b93
RH
2984 }
2985 else
2986 {
2987 x86_dwarf2_return_column = 8;
2988 x86_cie_data_alignment = -4;
2989 }
252b5132
RH
2990}
2991
2992void
e3bb37b5 2993i386_print_statistics (FILE *file)
252b5132
RH
2994{
2995 hash_print_statistics (file, "i386 opcode", op_hash);
2996 hash_print_statistics (file, "i386 register", reg_hash);
2997}
2998\f
252b5132
RH
2999#ifdef DEBUG386
3000
ce8a8b2f 3001/* Debugging routines for md_assemble. */
d3ce72d0 3002static void pte (insn_template *);
40fb9820 3003static void pt (i386_operand_type);
e3bb37b5
L
3004static void pe (expressionS *);
3005static void ps (symbolS *);
252b5132
RH
3006
3007static void
2c703856 3008pi (const char *line, i386_insn *x)
252b5132 3009{
09137c09 3010 unsigned int j;
252b5132
RH
3011
3012 fprintf (stdout, "%s: template ", line);
3013 pte (&x->tm);
09f131f2
JH
3014 fprintf (stdout, " address: base %s index %s scale %x\n",
3015 x->base_reg ? x->base_reg->reg_name : "none",
3016 x->index_reg ? x->index_reg->reg_name : "none",
3017 x->log2_scale_factor);
3018 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3019 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3020 fprintf (stdout, " sib: base %x index %x scale %x\n",
3021 x->sib.base, x->sib.index, x->sib.scale);
3022 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3023 (x->rex & REX_W) != 0,
3024 (x->rex & REX_R) != 0,
3025 (x->rex & REX_X) != 0,
3026 (x->rex & REX_B) != 0);
09137c09 3027 for (j = 0; j < x->operands; j++)
252b5132 3028 {
09137c09
SP
3029 fprintf (stdout, " #%d: ", j + 1);
3030 pt (x->types[j]);
252b5132 3031 fprintf (stdout, "\n");
dc821c5f 3032 if (x->types[j].bitfield.reg
09137c09 3033 || x->types[j].bitfield.regmmx
1b54b8d7 3034 || x->types[j].bitfield.regsimd
09137c09
SP
3035 || x->types[j].bitfield.sreg2
3036 || x->types[j].bitfield.sreg3
3037 || x->types[j].bitfield.control
3038 || x->types[j].bitfield.debug
3039 || x->types[j].bitfield.test)
3040 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3041 if (operand_type_check (x->types[j], imm))
3042 pe (x->op[j].imms);
3043 if (operand_type_check (x->types[j], disp))
3044 pe (x->op[j].disps);
252b5132
RH
3045 }
3046}
3047
3048static void
d3ce72d0 3049pte (insn_template *t)
252b5132 3050{
09137c09 3051 unsigned int j;
252b5132 3052 fprintf (stdout, " %d operands ", t->operands);
47926f60 3053 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3054 if (t->extension_opcode != None)
3055 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3056 if (t->opcode_modifier.d)
252b5132 3057 fprintf (stdout, "D");
40fb9820 3058 if (t->opcode_modifier.w)
252b5132
RH
3059 fprintf (stdout, "W");
3060 fprintf (stdout, "\n");
09137c09 3061 for (j = 0; j < t->operands; j++)
252b5132 3062 {
09137c09
SP
3063 fprintf (stdout, " #%d type ", j + 1);
3064 pt (t->operand_types[j]);
252b5132
RH
3065 fprintf (stdout, "\n");
3066 }
3067}
3068
3069static void
e3bb37b5 3070pe (expressionS *e)
252b5132 3071{
24eab124 3072 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3073 fprintf (stdout, " add_number %ld (%lx)\n",
3074 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3075 if (e->X_add_symbol)
3076 {
3077 fprintf (stdout, " add_symbol ");
3078 ps (e->X_add_symbol);
3079 fprintf (stdout, "\n");
3080 }
3081 if (e->X_op_symbol)
3082 {
3083 fprintf (stdout, " op_symbol ");
3084 ps (e->X_op_symbol);
3085 fprintf (stdout, "\n");
3086 }
3087}
3088
3089static void
e3bb37b5 3090ps (symbolS *s)
252b5132
RH
3091{
3092 fprintf (stdout, "%s type %s%s",
3093 S_GET_NAME (s),
3094 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3095 segment_name (S_GET_SEGMENT (s)));
3096}
3097
7b81dfbb 3098static struct type_name
252b5132 3099 {
40fb9820
L
3100 i386_operand_type mask;
3101 const char *name;
252b5132 3102 }
7b81dfbb 3103const type_names[] =
252b5132 3104{
40fb9820
L
3105 { OPERAND_TYPE_REG8, "r8" },
3106 { OPERAND_TYPE_REG16, "r16" },
3107 { OPERAND_TYPE_REG32, "r32" },
3108 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3109 { OPERAND_TYPE_ACC8, "acc8" },
3110 { OPERAND_TYPE_ACC16, "acc16" },
3111 { OPERAND_TYPE_ACC32, "acc32" },
3112 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3113 { OPERAND_TYPE_IMM8, "i8" },
3114 { OPERAND_TYPE_IMM8, "i8s" },
3115 { OPERAND_TYPE_IMM16, "i16" },
3116 { OPERAND_TYPE_IMM32, "i32" },
3117 { OPERAND_TYPE_IMM32S, "i32s" },
3118 { OPERAND_TYPE_IMM64, "i64" },
3119 { OPERAND_TYPE_IMM1, "i1" },
3120 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3121 { OPERAND_TYPE_DISP8, "d8" },
3122 { OPERAND_TYPE_DISP16, "d16" },
3123 { OPERAND_TYPE_DISP32, "d32" },
3124 { OPERAND_TYPE_DISP32S, "d32s" },
3125 { OPERAND_TYPE_DISP64, "d64" },
3126 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3127 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3128 { OPERAND_TYPE_CONTROL, "control reg" },
3129 { OPERAND_TYPE_TEST, "test reg" },
3130 { OPERAND_TYPE_DEBUG, "debug reg" },
3131 { OPERAND_TYPE_FLOATREG, "FReg" },
3132 { OPERAND_TYPE_FLOATACC, "FAcc" },
3133 { OPERAND_TYPE_SREG2, "SReg2" },
3134 { OPERAND_TYPE_SREG3, "SReg3" },
40fb9820
L
3135 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3136 { OPERAND_TYPE_REGMMX, "rMMX" },
3137 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3138 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3139 { OPERAND_TYPE_REGZMM, "rZMM" },
3140 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3141 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3142};
3143
3144static void
40fb9820 3145pt (i386_operand_type t)
252b5132 3146{
40fb9820 3147 unsigned int j;
c6fb90c8 3148 i386_operand_type a;
252b5132 3149
40fb9820 3150 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3151 {
3152 a = operand_type_and (t, type_names[j].mask);
2c703856 3153 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3154 fprintf (stdout, "%s, ", type_names[j].name);
3155 }
252b5132
RH
3156 fflush (stdout);
3157}
3158
3159#endif /* DEBUG386 */
3160\f
252b5132 3161static bfd_reloc_code_real_type
3956db08 3162reloc (unsigned int size,
64e74474
AM
3163 int pcrel,
3164 int sign,
3165 bfd_reloc_code_real_type other)
252b5132 3166{
47926f60 3167 if (other != NO_RELOC)
3956db08 3168 {
91d6fa6a 3169 reloc_howto_type *rel;
3956db08
JB
3170
3171 if (size == 8)
3172 switch (other)
3173 {
64e74474
AM
3174 case BFD_RELOC_X86_64_GOT32:
3175 return BFD_RELOC_X86_64_GOT64;
3176 break;
553d1284
L
3177 case BFD_RELOC_X86_64_GOTPLT64:
3178 return BFD_RELOC_X86_64_GOTPLT64;
3179 break;
64e74474
AM
3180 case BFD_RELOC_X86_64_PLTOFF64:
3181 return BFD_RELOC_X86_64_PLTOFF64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPC32:
3184 other = BFD_RELOC_X86_64_GOTPC64;
3185 break;
3186 case BFD_RELOC_X86_64_GOTPCREL:
3187 other = BFD_RELOC_X86_64_GOTPCREL64;
3188 break;
3189 case BFD_RELOC_X86_64_TPOFF32:
3190 other = BFD_RELOC_X86_64_TPOFF64;
3191 break;
3192 case BFD_RELOC_X86_64_DTPOFF32:
3193 other = BFD_RELOC_X86_64_DTPOFF64;
3194 break;
3195 default:
3196 break;
3956db08 3197 }
e05278af 3198
8ce3d284 3199#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3200 if (other == BFD_RELOC_SIZE32)
3201 {
3202 if (size == 8)
1ab668bf 3203 other = BFD_RELOC_SIZE64;
8fd4256d 3204 if (pcrel)
1ab668bf
AM
3205 {
3206 as_bad (_("there are no pc-relative size relocations"));
3207 return NO_RELOC;
3208 }
8fd4256d 3209 }
8ce3d284 3210#endif
8fd4256d 3211
e05278af 3212 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3213 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3214 sign = -1;
3215
91d6fa6a
NC
3216 rel = bfd_reloc_type_lookup (stdoutput, other);
3217 if (!rel)
3956db08 3218 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3219 else if (size != bfd_get_reloc_size (rel))
3956db08 3220 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3221 bfd_get_reloc_size (rel),
3956db08 3222 size);
91d6fa6a 3223 else if (pcrel && !rel->pc_relative)
3956db08 3224 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3225 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3226 && !sign)
91d6fa6a 3227 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3228 && sign > 0))
3956db08
JB
3229 as_bad (_("relocated field and relocation type differ in signedness"));
3230 else
3231 return other;
3232 return NO_RELOC;
3233 }
252b5132
RH
3234
3235 if (pcrel)
3236 {
3e73aa7c 3237 if (!sign)
3956db08 3238 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3239 switch (size)
3240 {
3241 case 1: return BFD_RELOC_8_PCREL;
3242 case 2: return BFD_RELOC_16_PCREL;
d258b828 3243 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3244 case 8: return BFD_RELOC_64_PCREL;
252b5132 3245 }
3956db08 3246 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3247 }
3248 else
3249 {
3956db08 3250 if (sign > 0)
e5cb08ac 3251 switch (size)
3e73aa7c
JH
3252 {
3253 case 4: return BFD_RELOC_X86_64_32S;
3254 }
3255 else
3256 switch (size)
3257 {
3258 case 1: return BFD_RELOC_8;
3259 case 2: return BFD_RELOC_16;
3260 case 4: return BFD_RELOC_32;
3261 case 8: return BFD_RELOC_64;
3262 }
3956db08
JB
3263 as_bad (_("cannot do %s %u byte relocation"),
3264 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3265 }
3266
0cc9e1d3 3267 return NO_RELOC;
252b5132
RH
3268}
3269
47926f60
KH
3270/* Here we decide which fixups can be adjusted to make them relative to
3271 the beginning of the section instead of the symbol. Basically we need
3272 to make sure that the dynamic relocations are done correctly, so in
3273 some cases we force the original symbol to be used. */
3274
252b5132 3275int
e3bb37b5 3276tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3277{
6d249963 3278#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3279 if (!IS_ELF)
31312f95
AM
3280 return 1;
3281
a161fe53
AM
3282 /* Don't adjust pc-relative references to merge sections in 64-bit
3283 mode. */
3284 if (use_rela_relocations
3285 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3286 && fixP->fx_pcrel)
252b5132 3287 return 0;
31312f95 3288
8d01d9a9
AJ
3289 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3290 and changed later by validate_fix. */
3291 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3292 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3293 return 0;
3294
8fd4256d
L
3295 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3296 for size relocations. */
3297 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3298 || fixP->fx_r_type == BFD_RELOC_SIZE64
3299 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3300 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3301 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3302 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3310 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3311 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3312 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3315 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3321 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3325 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3326 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3327 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3328 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3329 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3330 return 0;
31312f95 3331#endif
252b5132
RH
3332 return 1;
3333}
252b5132 3334
b4cac588 3335static int
e3bb37b5 3336intel_float_operand (const char *mnemonic)
252b5132 3337{
9306ca4a
JB
3338 /* Note that the value returned is meaningful only for opcodes with (memory)
3339 operands, hence the code here is free to improperly handle opcodes that
3340 have no operands (for better performance and smaller code). */
3341
3342 if (mnemonic[0] != 'f')
3343 return 0; /* non-math */
3344
3345 switch (mnemonic[1])
3346 {
3347 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3348 the fs segment override prefix not currently handled because no
3349 call path can make opcodes without operands get here */
3350 case 'i':
3351 return 2 /* integer op */;
3352 case 'l':
3353 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3354 return 3; /* fldcw/fldenv */
3355 break;
3356 case 'n':
3357 if (mnemonic[2] != 'o' /* fnop */)
3358 return 3; /* non-waiting control op */
3359 break;
3360 case 'r':
3361 if (mnemonic[2] == 's')
3362 return 3; /* frstor/frstpm */
3363 break;
3364 case 's':
3365 if (mnemonic[2] == 'a')
3366 return 3; /* fsave */
3367 if (mnemonic[2] == 't')
3368 {
3369 switch (mnemonic[3])
3370 {
3371 case 'c': /* fstcw */
3372 case 'd': /* fstdw */
3373 case 'e': /* fstenv */
3374 case 's': /* fsts[gw] */
3375 return 3;
3376 }
3377 }
3378 break;
3379 case 'x':
3380 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3381 return 0; /* fxsave/fxrstor are not really math ops */
3382 break;
3383 }
252b5132 3384
9306ca4a 3385 return 1;
252b5132
RH
3386}
3387
c0f3af97
L
3388/* Build the VEX prefix. */
3389
3390static void
d3ce72d0 3391build_vex_prefix (const insn_template *t)
c0f3af97
L
3392{
3393 unsigned int register_specifier;
3394 unsigned int implied_prefix;
3395 unsigned int vector_length;
03751133 3396 unsigned int w;
c0f3af97
L
3397
3398 /* Check register specifier. */
3399 if (i.vex.register_specifier)
43234a1e
L
3400 {
3401 register_specifier =
3402 ~register_number (i.vex.register_specifier) & 0xf;
3403 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3404 }
c0f3af97
L
3405 else
3406 register_specifier = 0xf;
3407
79f0fa25
L
3408 /* Use 2-byte VEX prefix by swapping destination and source operand
3409 if there are more than 1 register operand. */
3410 if (i.reg_operands > 1
3411 && i.vec_encoding != vex_encoding_vex3
86fa6981 3412 && i.dir_encoding == dir_encoding_default
fa99fab2 3413 && i.operands == i.reg_operands
dbbc8b7e 3414 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3415 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3416 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3417 && i.rex == REX_B)
3418 {
3419 unsigned int xchg = i.operands - 1;
3420 union i386_op temp_op;
3421 i386_operand_type temp_type;
3422
3423 temp_type = i.types[xchg];
3424 i.types[xchg] = i.types[0];
3425 i.types[0] = temp_type;
3426 temp_op = i.op[xchg];
3427 i.op[xchg] = i.op[0];
3428 i.op[0] = temp_op;
3429
9c2799c2 3430 gas_assert (i.rm.mode == 3);
fa99fab2
L
3431
3432 i.rex = REX_R;
3433 xchg = i.rm.regmem;
3434 i.rm.regmem = i.rm.reg;
3435 i.rm.reg = xchg;
3436
dbbc8b7e
JB
3437 if (i.tm.opcode_modifier.d)
3438 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3439 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3440 else /* Use the next insn. */
3441 i.tm = t[1];
fa99fab2
L
3442 }
3443
79dec6b7
JB
3444 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3445 are no memory operands and at least 3 register ones. */
3446 if (i.reg_operands >= 3
3447 && i.vec_encoding != vex_encoding_vex3
3448 && i.reg_operands == i.operands - i.imm_operands
3449 && i.tm.opcode_modifier.vex
3450 && i.tm.opcode_modifier.commutative
3451 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3452 && i.rex == REX_B
3453 && i.vex.register_specifier
3454 && !(i.vex.register_specifier->reg_flags & RegRex))
3455 {
3456 unsigned int xchg = i.operands - i.reg_operands;
3457 union i386_op temp_op;
3458 i386_operand_type temp_type;
3459
3460 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3461 gas_assert (!i.tm.opcode_modifier.sae);
3462 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3463 &i.types[i.operands - 3]));
3464 gas_assert (i.rm.mode == 3);
3465
3466 temp_type = i.types[xchg];
3467 i.types[xchg] = i.types[xchg + 1];
3468 i.types[xchg + 1] = temp_type;
3469 temp_op = i.op[xchg];
3470 i.op[xchg] = i.op[xchg + 1];
3471 i.op[xchg + 1] = temp_op;
3472
3473 i.rex = 0;
3474 xchg = i.rm.regmem | 8;
3475 i.rm.regmem = ~register_specifier & 0xf;
3476 gas_assert (!(i.rm.regmem & 8));
3477 i.vex.register_specifier += xchg - i.rm.regmem;
3478 register_specifier = ~xchg & 0xf;
3479 }
3480
539f890d
L
3481 if (i.tm.opcode_modifier.vex == VEXScalar)
3482 vector_length = avxscalar;
10c17abd
JB
3483 else if (i.tm.opcode_modifier.vex == VEX256)
3484 vector_length = 1;
539f890d 3485 else
10c17abd 3486 {
56522fc5 3487 unsigned int op;
10c17abd 3488
c7213af9
L
3489 /* Determine vector length from the last multi-length vector
3490 operand. */
10c17abd 3491 vector_length = 0;
56522fc5 3492 for (op = t->operands; op--;)
10c17abd
JB
3493 if (t->operand_types[op].bitfield.xmmword
3494 && t->operand_types[op].bitfield.ymmword
3495 && i.types[op].bitfield.ymmword)
3496 {
3497 vector_length = 1;
3498 break;
3499 }
3500 }
c0f3af97
L
3501
3502 switch ((i.tm.base_opcode >> 8) & 0xff)
3503 {
3504 case 0:
3505 implied_prefix = 0;
3506 break;
3507 case DATA_PREFIX_OPCODE:
3508 implied_prefix = 1;
3509 break;
3510 case REPE_PREFIX_OPCODE:
3511 implied_prefix = 2;
3512 break;
3513 case REPNE_PREFIX_OPCODE:
3514 implied_prefix = 3;
3515 break;
3516 default:
3517 abort ();
3518 }
3519
03751133
L
3520 /* Check the REX.W bit and VEXW. */
3521 if (i.tm.opcode_modifier.vexw == VEXWIG)
3522 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3523 else if (i.tm.opcode_modifier.vexw)
3524 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3525 else
931d03b7 3526 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3527
c0f3af97 3528 /* Use 2-byte VEX prefix if possible. */
03751133
L
3529 if (w == 0
3530 && i.vec_encoding != vex_encoding_vex3
86fa6981 3531 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3532 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3533 {
3534 /* 2-byte VEX prefix. */
3535 unsigned int r;
3536
3537 i.vex.length = 2;
3538 i.vex.bytes[0] = 0xc5;
3539
3540 /* Check the REX.R bit. */
3541 r = (i.rex & REX_R) ? 0 : 1;
3542 i.vex.bytes[1] = (r << 7
3543 | register_specifier << 3
3544 | vector_length << 2
3545 | implied_prefix);
3546 }
3547 else
3548 {
3549 /* 3-byte VEX prefix. */
03751133 3550 unsigned int m;
c0f3af97 3551
f88c9eb0 3552 i.vex.length = 3;
f88c9eb0 3553
7f399153 3554 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3555 {
7f399153
L
3556 case VEX0F:
3557 m = 0x1;
80de6e00 3558 i.vex.bytes[0] = 0xc4;
7f399153
L
3559 break;
3560 case VEX0F38:
3561 m = 0x2;
80de6e00 3562 i.vex.bytes[0] = 0xc4;
7f399153
L
3563 break;
3564 case VEX0F3A:
3565 m = 0x3;
80de6e00 3566 i.vex.bytes[0] = 0xc4;
7f399153
L
3567 break;
3568 case XOP08:
5dd85c99
SP
3569 m = 0x8;
3570 i.vex.bytes[0] = 0x8f;
7f399153
L
3571 break;
3572 case XOP09:
f88c9eb0
SP
3573 m = 0x9;
3574 i.vex.bytes[0] = 0x8f;
7f399153
L
3575 break;
3576 case XOP0A:
f88c9eb0
SP
3577 m = 0xa;
3578 i.vex.bytes[0] = 0x8f;
7f399153
L
3579 break;
3580 default:
3581 abort ();
f88c9eb0 3582 }
c0f3af97 3583
c0f3af97
L
3584 /* The high 3 bits of the second VEX byte are 1's compliment
3585 of RXB bits from REX. */
3586 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3587
c0f3af97
L
3588 i.vex.bytes[2] = (w << 7
3589 | register_specifier << 3
3590 | vector_length << 2
3591 | implied_prefix);
3592 }
3593}
3594
e771e7c9
JB
3595static INLINE bfd_boolean
3596is_evex_encoding (const insn_template *t)
3597{
7091c612 3598 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3599 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3600 || t->opcode_modifier.sae;
e771e7c9
JB
3601}
3602
7a8655d2
JB
3603static INLINE bfd_boolean
3604is_any_vex_encoding (const insn_template *t)
3605{
3606 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3607 || is_evex_encoding (t);
3608}
3609
43234a1e
L
3610/* Build the EVEX prefix. */
3611
3612static void
3613build_evex_prefix (void)
3614{
3615 unsigned int register_specifier;
3616 unsigned int implied_prefix;
3617 unsigned int m, w;
3618 rex_byte vrex_used = 0;
3619
3620 /* Check register specifier. */
3621 if (i.vex.register_specifier)
3622 {
3623 gas_assert ((i.vrex & REX_X) == 0);
3624
3625 register_specifier = i.vex.register_specifier->reg_num;
3626 if ((i.vex.register_specifier->reg_flags & RegRex))
3627 register_specifier += 8;
3628 /* The upper 16 registers are encoded in the fourth byte of the
3629 EVEX prefix. */
3630 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3631 i.vex.bytes[3] = 0x8;
3632 register_specifier = ~register_specifier & 0xf;
3633 }
3634 else
3635 {
3636 register_specifier = 0xf;
3637
3638 /* Encode upper 16 vector index register in the fourth byte of
3639 the EVEX prefix. */
3640 if (!(i.vrex & REX_X))
3641 i.vex.bytes[3] = 0x8;
3642 else
3643 vrex_used |= REX_X;
3644 }
3645
3646 switch ((i.tm.base_opcode >> 8) & 0xff)
3647 {
3648 case 0:
3649 implied_prefix = 0;
3650 break;
3651 case DATA_PREFIX_OPCODE:
3652 implied_prefix = 1;
3653 break;
3654 case REPE_PREFIX_OPCODE:
3655 implied_prefix = 2;
3656 break;
3657 case REPNE_PREFIX_OPCODE:
3658 implied_prefix = 3;
3659 break;
3660 default:
3661 abort ();
3662 }
3663
3664 /* 4 byte EVEX prefix. */
3665 i.vex.length = 4;
3666 i.vex.bytes[0] = 0x62;
3667
3668 /* mmmm bits. */
3669 switch (i.tm.opcode_modifier.vexopcode)
3670 {
3671 case VEX0F:
3672 m = 1;
3673 break;
3674 case VEX0F38:
3675 m = 2;
3676 break;
3677 case VEX0F3A:
3678 m = 3;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684
3685 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3686 bits from REX. */
3687 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3688
3689 /* The fifth bit of the second EVEX byte is 1's compliment of the
3690 REX_R bit in VREX. */
3691 if (!(i.vrex & REX_R))
3692 i.vex.bytes[1] |= 0x10;
3693 else
3694 vrex_used |= REX_R;
3695
3696 if ((i.reg_operands + i.imm_operands) == i.operands)
3697 {
3698 /* When all operands are registers, the REX_X bit in REX is not
3699 used. We reuse it to encode the upper 16 registers, which is
3700 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3701 as 1's compliment. */
3702 if ((i.vrex & REX_B))
3703 {
3704 vrex_used |= REX_B;
3705 i.vex.bytes[1] &= ~0x40;
3706 }
3707 }
3708
3709 /* EVEX instructions shouldn't need the REX prefix. */
3710 i.vrex &= ~vrex_used;
3711 gas_assert (i.vrex == 0);
3712
6865c043
L
3713 /* Check the REX.W bit and VEXW. */
3714 if (i.tm.opcode_modifier.vexw == VEXWIG)
3715 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3716 else if (i.tm.opcode_modifier.vexw)
3717 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3718 else
931d03b7 3719 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3720
3721 /* Encode the U bit. */
3722 implied_prefix |= 0x4;
3723
3724 /* The third byte of the EVEX prefix. */
3725 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3726
3727 /* The fourth byte of the EVEX prefix. */
3728 /* The zeroing-masking bit. */
3729 if (i.mask && i.mask->zeroing)
3730 i.vex.bytes[3] |= 0x80;
3731
3732 /* Don't always set the broadcast bit if there is no RC. */
3733 if (!i.rounding)
3734 {
3735 /* Encode the vector length. */
3736 unsigned int vec_length;
3737
e771e7c9
JB
3738 if (!i.tm.opcode_modifier.evex
3739 || i.tm.opcode_modifier.evex == EVEXDYN)
3740 {
56522fc5 3741 unsigned int op;
e771e7c9 3742
c7213af9
L
3743 /* Determine vector length from the last multi-length vector
3744 operand. */
e771e7c9 3745 vec_length = 0;
56522fc5 3746 for (op = i.operands; op--;)
e771e7c9
JB
3747 if (i.tm.operand_types[op].bitfield.xmmword
3748 + i.tm.operand_types[op].bitfield.ymmword
3749 + i.tm.operand_types[op].bitfield.zmmword > 1)
3750 {
3751 if (i.types[op].bitfield.zmmword)
c7213af9
L
3752 {
3753 i.tm.opcode_modifier.evex = EVEX512;
3754 break;
3755 }
e771e7c9 3756 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3757 {
3758 i.tm.opcode_modifier.evex = EVEX256;
3759 break;
3760 }
e771e7c9 3761 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3762 {
3763 i.tm.opcode_modifier.evex = EVEX128;
3764 break;
3765 }
625cbd7a
JB
3766 else if (i.broadcast && (int) op == i.broadcast->operand)
3767 {
4a1b91ea 3768 switch (i.broadcast->bytes)
625cbd7a
JB
3769 {
3770 case 64:
3771 i.tm.opcode_modifier.evex = EVEX512;
3772 break;
3773 case 32:
3774 i.tm.opcode_modifier.evex = EVEX256;
3775 break;
3776 case 16:
3777 i.tm.opcode_modifier.evex = EVEX128;
3778 break;
3779 default:
c7213af9 3780 abort ();
625cbd7a 3781 }
c7213af9 3782 break;
625cbd7a 3783 }
e771e7c9 3784 }
c7213af9 3785
56522fc5 3786 if (op >= MAX_OPERANDS)
c7213af9 3787 abort ();
e771e7c9
JB
3788 }
3789
43234a1e
L
3790 switch (i.tm.opcode_modifier.evex)
3791 {
3792 case EVEXLIG: /* LL' is ignored */
3793 vec_length = evexlig << 5;
3794 break;
3795 case EVEX128:
3796 vec_length = 0 << 5;
3797 break;
3798 case EVEX256:
3799 vec_length = 1 << 5;
3800 break;
3801 case EVEX512:
3802 vec_length = 2 << 5;
3803 break;
3804 default:
3805 abort ();
3806 break;
3807 }
3808 i.vex.bytes[3] |= vec_length;
3809 /* Encode the broadcast bit. */
3810 if (i.broadcast)
3811 i.vex.bytes[3] |= 0x10;
3812 }
3813 else
3814 {
3815 if (i.rounding->type != saeonly)
3816 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3817 else
d3d3c6db 3818 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3819 }
3820
3821 if (i.mask && i.mask->mask)
3822 i.vex.bytes[3] |= i.mask->mask->reg_num;
3823}
3824
65da13b5
L
3825static void
3826process_immext (void)
3827{
3828 expressionS *exp;
3829
4c692bc7
JB
3830 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3831 && i.operands > 0)
65da13b5 3832 {
4c692bc7
JB
3833 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3834 with an opcode suffix which is coded in the same place as an
3835 8-bit immediate field would be.
3836 Here we check those operands and remove them afterwards. */
65da13b5
L
3837 unsigned int x;
3838
3839 for (x = 0; x < i.operands; x++)
4c692bc7 3840 if (register_number (i.op[x].regs) != x)
65da13b5 3841 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3842 register_prefix, i.op[x].regs->reg_name, x + 1,
3843 i.tm.name);
3844
3845 i.operands = 0;
65da13b5
L
3846 }
3847
9916071f
AP
3848 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3849 {
3850 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3851 suffix which is coded in the same place as an 8-bit immediate
3852 field would be.
3853 Here we check those operands and remove them afterwards. */
3854 unsigned int x;
3855
3856 if (i.operands != 3)
3857 abort();
3858
3859 for (x = 0; x < 2; x++)
3860 if (register_number (i.op[x].regs) != x)
3861 goto bad_register_operand;
3862
3863 /* Check for third operand for mwaitx/monitorx insn. */
3864 if (register_number (i.op[x].regs)
3865 != (x + (i.tm.extension_opcode == 0xfb)))
3866 {
3867bad_register_operand:
3868 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3869 register_prefix, i.op[x].regs->reg_name, x+1,
3870 i.tm.name);
3871 }
3872
3873 i.operands = 0;
3874 }
3875
c0f3af97 3876 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3877 which is coded in the same place as an 8-bit immediate field
3878 would be. Here we fake an 8-bit immediate operand from the
3879 opcode suffix stored in tm.extension_opcode.
3880
c1e679ec 3881 AVX instructions also use this encoding, for some of
c0f3af97 3882 3 argument instructions. */
65da13b5 3883
43234a1e 3884 gas_assert (i.imm_operands <= 1
7ab9ffdd 3885 && (i.operands <= 2
7a8655d2 3886 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3887 && i.operands <= 4)));
65da13b5
L
3888
3889 exp = &im_expressions[i.imm_operands++];
3890 i.op[i.operands].imms = exp;
3891 i.types[i.operands] = imm8;
3892 i.operands++;
3893 exp->X_op = O_constant;
3894 exp->X_add_number = i.tm.extension_opcode;
3895 i.tm.extension_opcode = None;
3896}
3897
42164a71
L
3898
3899static int
3900check_hle (void)
3901{
3902 switch (i.tm.opcode_modifier.hleprefixok)
3903 {
3904 default:
3905 abort ();
82c2def5 3906 case HLEPrefixNone:
165de32a
L
3907 as_bad (_("invalid instruction `%s' after `%s'"),
3908 i.tm.name, i.hle_prefix);
42164a71 3909 return 0;
82c2def5 3910 case HLEPrefixLock:
42164a71
L
3911 if (i.prefix[LOCK_PREFIX])
3912 return 1;
165de32a 3913 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3914 return 0;
82c2def5 3915 case HLEPrefixAny:
42164a71 3916 return 1;
82c2def5 3917 case HLEPrefixRelease:
42164a71
L
3918 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3919 {
3920 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3921 i.tm.name);
3922 return 0;
3923 }
3924 if (i.mem_operands == 0
3925 || !operand_type_check (i.types[i.operands - 1], anymem))
3926 {
3927 as_bad (_("memory destination needed for instruction `%s'"
3928 " after `xrelease'"), i.tm.name);
3929 return 0;
3930 }
3931 return 1;
3932 }
3933}
3934
b6f8c7c4
L
3935/* Try the shortest encoding by shortening operand size. */
3936
3937static void
3938optimize_encoding (void)
3939{
a0a1771e 3940 unsigned int j;
b6f8c7c4
L
3941
3942 if (optimize_for_space
3943 && i.reg_operands == 1
3944 && i.imm_operands == 1
3945 && !i.types[1].bitfield.byte
3946 && i.op[0].imms->X_op == O_constant
3947 && fits_in_imm7 (i.op[0].imms->X_add_number)
3948 && ((i.tm.base_opcode == 0xa8
3949 && i.tm.extension_opcode == None)
3950 || (i.tm.base_opcode == 0xf6
3951 && i.tm.extension_opcode == 0x0)))
3952 {
3953 /* Optimize: -Os:
3954 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3955 */
3956 unsigned int base_regnum = i.op[1].regs->reg_num;
3957 if (flag_code == CODE_64BIT || base_regnum < 4)
3958 {
3959 i.types[1].bitfield.byte = 1;
3960 /* Ignore the suffix. */
3961 i.suffix = 0;
3962 if (base_regnum >= 4
3963 && !(i.op[1].regs->reg_flags & RegRex))
3964 {
3965 /* Handle SP, BP, SI and DI registers. */
3966 if (i.types[1].bitfield.word)
3967 j = 16;
3968 else if (i.types[1].bitfield.dword)
3969 j = 32;
3970 else
3971 j = 48;
3972 i.op[1].regs -= j;
3973 }
3974 }
3975 }
3976 else if (flag_code == CODE_64BIT
d3d50934
L
3977 && ((i.types[1].bitfield.qword
3978 && i.reg_operands == 1
b6f8c7c4
L
3979 && i.imm_operands == 1
3980 && i.op[0].imms->X_op == O_constant
3981 && ((i.tm.base_opcode == 0xb0
3982 && i.tm.extension_opcode == None
3983 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3984 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3985 && (((i.tm.base_opcode == 0x24
3986 || i.tm.base_opcode == 0xa8)
3987 && i.tm.extension_opcode == None)
3988 || (i.tm.base_opcode == 0x80
3989 && i.tm.extension_opcode == 0x4)
3990 || ((i.tm.base_opcode == 0xf6
3991 || i.tm.base_opcode == 0xc6)
b8364fa7
JB
3992 && i.tm.extension_opcode == 0x0)))
3993 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3994 && i.tm.base_opcode == 0x83
3995 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3996 || (i.types[0].bitfield.qword
3997 && ((i.reg_operands == 2
3998 && i.op[0].regs == i.op[1].regs
3999 && ((i.tm.base_opcode == 0x30
4000 || i.tm.base_opcode == 0x28)
4001 && i.tm.extension_opcode == None))
4002 || (i.reg_operands == 1
4003 && i.operands == 1
4004 && i.tm.base_opcode == 0x30
4005 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4006 {
4007 /* Optimize: -O:
4008 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4009 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4010 testq $imm31, %r64 -> testl $imm31, %r32
4011 xorq %r64, %r64 -> xorl %r32, %r32
4012 subq %r64, %r64 -> subl %r32, %r32
4013 movq $imm31, %r64 -> movl $imm31, %r32
4014 movq $imm32, %r64 -> movl $imm32, %r32
4015 */
4016 i.tm.opcode_modifier.norex64 = 1;
4017 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4018 {
4019 /* Handle
4020 movq $imm31, %r64 -> movl $imm31, %r32
4021 movq $imm32, %r64 -> movl $imm32, %r32
4022 */
4023 i.tm.operand_types[0].bitfield.imm32 = 1;
4024 i.tm.operand_types[0].bitfield.imm32s = 0;
4025 i.tm.operand_types[0].bitfield.imm64 = 0;
4026 i.types[0].bitfield.imm32 = 1;
4027 i.types[0].bitfield.imm32s = 0;
4028 i.types[0].bitfield.imm64 = 0;
4029 i.types[1].bitfield.dword = 1;
4030 i.types[1].bitfield.qword = 0;
4031 if (i.tm.base_opcode == 0xc6)
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 */
4036 i.tm.base_opcode = 0xb0;
4037 i.tm.extension_opcode = None;
4038 i.tm.opcode_modifier.shortform = 1;
4039 i.tm.opcode_modifier.modrm = 0;
4040 }
4041 }
4042 }
99112332 4043 else if (i.reg_operands == 3
b6f8c7c4
L
4044 && i.op[0].regs == i.op[1].regs
4045 && !i.types[2].bitfield.xmmword
4046 && (i.tm.opcode_modifier.vex
7a69eac3 4047 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4048 && !i.rounding
e771e7c9 4049 && is_evex_encoding (&i.tm)
80c34c38 4050 && (i.vec_encoding != vex_encoding_evex
dd22218c 4051 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4052 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4053 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4054 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4055 && ((i.tm.base_opcode == 0x55
4056 || i.tm.base_opcode == 0x6655
4057 || i.tm.base_opcode == 0x66df
4058 || i.tm.base_opcode == 0x57
4059 || i.tm.base_opcode == 0x6657
8305403a
L
4060 || i.tm.base_opcode == 0x66ef
4061 || i.tm.base_opcode == 0x66f8
4062 || i.tm.base_opcode == 0x66f9
4063 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4064 || i.tm.base_opcode == 0x66fb
4065 || i.tm.base_opcode == 0x42
4066 || i.tm.base_opcode == 0x6642
4067 || i.tm.base_opcode == 0x47
4068 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4069 && i.tm.extension_opcode == None))
4070 {
99112332 4071 /* Optimize: -O1:
8305403a
L
4072 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4073 vpsubq and vpsubw:
b6f8c7c4
L
4074 EVEX VOP %zmmM, %zmmM, %zmmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4077 EVEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4079 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandn and vpxor:
4083 VEX VOP %ymmM, %ymmM, %ymmN
4084 -> VEX VOP %xmmM, %xmmM, %xmmN
4085 VOP, one of vpandnd and vpandnq:
4086 EVEX VOP %zmmM, %zmmM, %zmmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4089 EVEX VOP %ymmM, %ymmM, %ymmN
4090 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4091 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4092 VOP, one of vpxord and vpxorq:
4093 EVEX VOP %zmmM, %zmmM, %zmmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4096 EVEX VOP %ymmM, %ymmM, %ymmN
4097 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4098 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4099 VOP, one of kxord and kxorq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kxorw %kM, %kM, %kN
4102 VOP, one of kandnd and kandnq:
4103 VEX VOP %kM, %kM, %kN
4104 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4105 */
e771e7c9 4106 if (is_evex_encoding (&i.tm))
b6f8c7c4 4107 {
7b1d7ca1 4108 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4109 {
4110 i.tm.opcode_modifier.vex = VEX128;
4111 i.tm.opcode_modifier.vexw = VEXW0;
4112 i.tm.opcode_modifier.evex = 0;
4113 }
7b1d7ca1 4114 else if (optimize > 1)
dd22218c
L
4115 i.tm.opcode_modifier.evex = EVEX128;
4116 else
4117 return;
b6f8c7c4 4118 }
1424ad86
JB
4119 else if (i.tm.operand_types[0].bitfield.regmask)
4120 {
4121 i.tm.base_opcode &= 0xff;
4122 i.tm.opcode_modifier.vexw = VEXW0;
4123 }
b6f8c7c4
L
4124 else
4125 i.tm.opcode_modifier.vex = VEX128;
4126
4127 if (i.tm.opcode_modifier.vex)
4128 for (j = 0; j < 3; j++)
4129 {
4130 i.types[j].bitfield.xmmword = 1;
4131 i.types[j].bitfield.ymmword = 0;
4132 }
4133 }
392a5972 4134 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4135 && !i.types[0].bitfield.zmmword
392a5972 4136 && !i.types[1].bitfield.zmmword
97ed31ae 4137 && !i.mask
a0a1771e 4138 && !i.broadcast
97ed31ae 4139 && is_evex_encoding (&i.tm)
392a5972
L
4140 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4141 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4142 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4143 || (i.tm.base_opcode & ~4) == 0x66db
4144 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4145 && i.tm.extension_opcode == None)
4146 {
4147 /* Optimize: -O1:
4148 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4149 vmovdqu32 and vmovdqu64:
4150 EVEX VOP %xmmM, %xmmN
4151 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4152 EVEX VOP %ymmM, %ymmN
4153 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4154 EVEX VOP %xmmM, mem
4155 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4156 EVEX VOP %ymmM, mem
4157 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4158 EVEX VOP mem, %xmmN
4159 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4160 EVEX VOP mem, %ymmN
4161 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4162 VOP, one of vpand, vpandn, vpor, vpxor:
4163 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4164 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4165 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4166 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4167 EVEX VOP{d,q} mem, %xmmM, %xmmN
4168 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4169 EVEX VOP{d,q} mem, %ymmM, %ymmN
4170 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4171 */
a0a1771e 4172 for (j = 0; j < i.operands; j++)
392a5972
L
4173 if (operand_type_check (i.types[j], disp)
4174 && i.op[j].disps->X_op == O_constant)
4175 {
4176 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4177 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4178 bytes, we choose EVEX Disp8 over VEX Disp32. */
4179 int evex_disp8, vex_disp8;
4180 unsigned int memshift = i.memshift;
4181 offsetT n = i.op[j].disps->X_add_number;
4182
4183 evex_disp8 = fits_in_disp8 (n);
4184 i.memshift = 0;
4185 vex_disp8 = fits_in_disp8 (n);
4186 if (evex_disp8 != vex_disp8)
4187 {
4188 i.memshift = memshift;
4189 return;
4190 }
4191
4192 i.types[j].bitfield.disp8 = vex_disp8;
4193 break;
4194 }
4195 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4196 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4197 i.tm.opcode_modifier.vex
4198 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4199 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4200 /* VPAND, VPOR, and VPXOR are commutative. */
4201 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4202 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4203 i.tm.opcode_modifier.evex = 0;
4204 i.tm.opcode_modifier.masking = 0;
a0a1771e 4205 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4206 i.tm.opcode_modifier.disp8memshift = 0;
4207 i.memshift = 0;
a0a1771e
JB
4208 if (j < i.operands)
4209 i.types[j].bitfield.disp8
4210 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4211 }
b6f8c7c4
L
4212}
4213
252b5132
RH
4214/* This is the guts of the machine-dependent assembler. LINE points to a
4215 machine dependent instruction. This function is supposed to emit
4216 the frags/bytes it assembles to. */
4217
4218void
65da13b5 4219md_assemble (char *line)
252b5132 4220{
40fb9820 4221 unsigned int j;
83b16ac6 4222 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4223 const insn_template *t;
252b5132 4224
47926f60 4225 /* Initialize globals. */
252b5132
RH
4226 memset (&i, '\0', sizeof (i));
4227 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4228 i.reloc[j] = NO_RELOC;
252b5132
RH
4229 memset (disp_expressions, '\0', sizeof (disp_expressions));
4230 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4231 save_stack_p = save_stack;
252b5132
RH
4232
4233 /* First parse an instruction mnemonic & call i386_operand for the operands.
4234 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4235 start of a (possibly prefixed) mnemonic. */
252b5132 4236
29b0f896
AM
4237 line = parse_insn (line, mnemonic);
4238 if (line == NULL)
4239 return;
83b16ac6 4240 mnem_suffix = i.suffix;
252b5132 4241
29b0f896 4242 line = parse_operands (line, mnemonic);
ee86248c 4243 this_operand = -1;
8325cc63
JB
4244 xfree (i.memop1_string);
4245 i.memop1_string = NULL;
29b0f896
AM
4246 if (line == NULL)
4247 return;
252b5132 4248
29b0f896
AM
4249 /* Now we've parsed the mnemonic into a set of templates, and have the
4250 operands at hand. */
4251
4252 /* All intel opcodes have reversed operands except for "bound" and
4253 "enter". We also don't reverse intersegment "jmp" and "call"
4254 instructions with 2 immediate operands so that the immediate segment
050dfa73 4255 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4256 if (intel_syntax
4257 && i.operands > 1
29b0f896 4258 && (strcmp (mnemonic, "bound") != 0)
30123838 4259 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4260 && !(operand_type_check (i.types[0], imm)
4261 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4262 swap_operands ();
4263
ec56d5c0
JB
4264 /* The order of the immediates should be reversed
4265 for 2 immediates extrq and insertq instructions */
4266 if (i.imm_operands == 2
4267 && (strcmp (mnemonic, "extrq") == 0
4268 || strcmp (mnemonic, "insertq") == 0))
4269 swap_2_operands (0, 1);
4270
29b0f896
AM
4271 if (i.imm_operands)
4272 optimize_imm ();
4273
b300c311
L
4274 /* Don't optimize displacement for movabs since it only takes 64bit
4275 displacement. */
4276 if (i.disp_operands
a501d77e 4277 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4278 && (flag_code != CODE_64BIT
4279 || strcmp (mnemonic, "movabs") != 0))
4280 optimize_disp ();
29b0f896
AM
4281
4282 /* Next, we find a template that matches the given insn,
4283 making sure the overlap of the given operands types is consistent
4284 with the template operand types. */
252b5132 4285
83b16ac6 4286 if (!(t = match_template (mnem_suffix)))
29b0f896 4287 return;
252b5132 4288
7bab8ab5 4289 if (sse_check != check_none
81f8a913 4290 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4291 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4292 && (i.tm.cpu_flags.bitfield.cpusse
4293 || i.tm.cpu_flags.bitfield.cpusse2
4294 || i.tm.cpu_flags.bitfield.cpusse3
4295 || i.tm.cpu_flags.bitfield.cpussse3
4296 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4297 || i.tm.cpu_flags.bitfield.cpusse4_2
4298 || i.tm.cpu_flags.bitfield.cpupclmul
4299 || i.tm.cpu_flags.bitfield.cpuaes
4300 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4301 {
7bab8ab5 4302 (sse_check == check_warning
daf50ae7
L
4303 ? as_warn
4304 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4305 }
4306
321fd21e
L
4307 /* Zap movzx and movsx suffix. The suffix has been set from
4308 "word ptr" or "byte ptr" on the source operand in Intel syntax
4309 or extracted from mnemonic in AT&T syntax. But we'll use
4310 the destination register to choose the suffix for encoding. */
4311 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4312 {
321fd21e
L
4313 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4314 there is no suffix, the default will be byte extension. */
4315 if (i.reg_operands != 2
4316 && !i.suffix
7ab9ffdd 4317 && intel_syntax)
321fd21e
L
4318 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4319
4320 i.suffix = 0;
cd61ebfe 4321 }
24eab124 4322
40fb9820 4323 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4324 if (!add_prefix (FWAIT_OPCODE))
4325 return;
252b5132 4326
d5de92cf
L
4327 /* Check if REP prefix is OK. */
4328 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4329 {
4330 as_bad (_("invalid instruction `%s' after `%s'"),
4331 i.tm.name, i.rep_prefix);
4332 return;
4333 }
4334
c1ba0266
L
4335 /* Check for lock without a lockable instruction. Destination operand
4336 must be memory unless it is xchg (0x86). */
c32fa91d
L
4337 if (i.prefix[LOCK_PREFIX]
4338 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4339 || i.mem_operands == 0
4340 || (i.tm.base_opcode != 0x86
4341 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4342 {
4343 as_bad (_("expecting lockable instruction after `lock'"));
4344 return;
4345 }
4346
7a8655d2
JB
4347 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4348 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4349 {
4350 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4351 return;
4352 }
4353
42164a71 4354 /* Check if HLE prefix is OK. */
165de32a 4355 if (i.hle_prefix && !check_hle ())
42164a71
L
4356 return;
4357
7e8b059b
L
4358 /* Check BND prefix. */
4359 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4360 as_bad (_("expecting valid branch instruction after `bnd'"));
4361
04ef582a 4362 /* Check NOTRACK prefix. */
9fef80d6
L
4363 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4364 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4365
327e8c42
JB
4366 if (i.tm.cpu_flags.bitfield.cpumpx)
4367 {
4368 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4369 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4370 else if (flag_code != CODE_16BIT
4371 ? i.prefix[ADDR_PREFIX]
4372 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4373 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4374 }
7e8b059b
L
4375
4376 /* Insert BND prefix. */
76d3a78a
JB
4377 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4378 {
4379 if (!i.prefix[BND_PREFIX])
4380 add_prefix (BND_PREFIX_OPCODE);
4381 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4382 {
4383 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4384 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4385 }
4386 }
7e8b059b 4387
29b0f896 4388 /* Check string instruction segment overrides. */
40fb9820 4389 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4390 {
4391 if (!check_string ())
5dd0794d 4392 return;
fc0763e6 4393 i.disp_operands = 0;
29b0f896 4394 }
5dd0794d 4395
b6f8c7c4
L
4396 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4397 optimize_encoding ();
4398
29b0f896
AM
4399 if (!process_suffix ())
4400 return;
e413e4e9 4401
bc0844ae
L
4402 /* Update operand types. */
4403 for (j = 0; j < i.operands; j++)
4404 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4405
29b0f896
AM
4406 /* Make still unresolved immediate matches conform to size of immediate
4407 given in i.suffix. */
4408 if (!finalize_imm ())
4409 return;
252b5132 4410
40fb9820 4411 if (i.types[0].bitfield.imm1)
29b0f896 4412 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4413
9afe6eb8
L
4414 /* We only need to check those implicit registers for instructions
4415 with 3 operands or less. */
4416 if (i.operands <= 3)
4417 for (j = 0; j < i.operands; j++)
4418 if (i.types[j].bitfield.inoutportreg
4419 || i.types[j].bitfield.shiftcount
1b54b8d7 4420 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4421 i.reg_operands--;
40fb9820 4422
c0f3af97
L
4423 /* ImmExt should be processed after SSE2AVX. */
4424 if (!i.tm.opcode_modifier.sse2avx
4425 && i.tm.opcode_modifier.immext)
65da13b5 4426 process_immext ();
252b5132 4427
29b0f896
AM
4428 /* For insns with operands there are more diddles to do to the opcode. */
4429 if (i.operands)
4430 {
4431 if (!process_operands ())
4432 return;
4433 }
40fb9820 4434 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4435 {
4436 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4437 as_warn (_("translating to `%sp'"), i.tm.name);
4438 }
252b5132 4439
7a8655d2 4440 if (is_any_vex_encoding (&i.tm))
9e5e5283 4441 {
c1dc7af5 4442 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4443 {
c1dc7af5 4444 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4445 i.tm.name);
4446 return;
4447 }
c0f3af97 4448
9e5e5283
L
4449 if (i.tm.opcode_modifier.vex)
4450 build_vex_prefix (t);
4451 else
4452 build_evex_prefix ();
4453 }
43234a1e 4454
5dd85c99
SP
4455 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4456 instructions may define INT_OPCODE as well, so avoid this corner
4457 case for those instructions that use MODRM. */
4458 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4459 && !i.tm.opcode_modifier.modrm
4460 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4461 {
4462 i.tm.base_opcode = INT3_OPCODE;
4463 i.imm_operands = 0;
4464 }
252b5132 4465
40fb9820
L
4466 if ((i.tm.opcode_modifier.jump
4467 || i.tm.opcode_modifier.jumpbyte
4468 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4469 && i.op[0].disps->X_op == O_constant)
4470 {
4471 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4472 the absolute address given by the constant. Since ix86 jumps and
4473 calls are pc relative, we need to generate a reloc. */
4474 i.op[0].disps->X_add_symbol = &abs_symbol;
4475 i.op[0].disps->X_op = O_symbol;
4476 }
252b5132 4477
40fb9820 4478 if (i.tm.opcode_modifier.rex64)
161a04f6 4479 i.rex |= REX_W;
252b5132 4480
29b0f896
AM
4481 /* For 8 bit registers we need an empty rex prefix. Also if the
4482 instruction already has a prefix, we need to convert old
4483 registers to new ones. */
773f551c 4484
dc821c5f 4485 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4486 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4487 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4488 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4489 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4490 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4491 && i.rex != 0))
4492 {
4493 int x;
726c5dcd 4494
29b0f896
AM
4495 i.rex |= REX_OPCODE;
4496 for (x = 0; x < 2; x++)
4497 {
4498 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4499 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4500 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4501 {
29b0f896
AM
4502 /* In case it is "hi" register, give up. */
4503 if (i.op[x].regs->reg_num > 3)
a540244d 4504 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4505 "instruction requiring REX prefix."),
a540244d 4506 register_prefix, i.op[x].regs->reg_name);
773f551c 4507
29b0f896
AM
4508 /* Otherwise it is equivalent to the extended register.
4509 Since the encoding doesn't change this is merely
4510 cosmetic cleanup for debug output. */
4511
4512 i.op[x].regs = i.op[x].regs + 8;
773f551c 4513 }
29b0f896
AM
4514 }
4515 }
773f551c 4516
6b6b6807
L
4517 if (i.rex == 0 && i.rex_encoding)
4518 {
4519 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4520 that uses legacy register. If it is "hi" register, don't add
4521 the REX_OPCODE byte. */
4522 int x;
4523 for (x = 0; x < 2; x++)
4524 if (i.types[x].bitfield.reg
4525 && i.types[x].bitfield.byte
4526 && (i.op[x].regs->reg_flags & RegRex64) == 0
4527 && i.op[x].regs->reg_num > 3)
4528 {
4529 i.rex_encoding = FALSE;
4530 break;
4531 }
4532
4533 if (i.rex_encoding)
4534 i.rex = REX_OPCODE;
4535 }
4536
7ab9ffdd 4537 if (i.rex != 0)
29b0f896
AM
4538 add_prefix (REX_OPCODE | i.rex);
4539
4540 /* We are ready to output the insn. */
4541 output_insn ();
4542}
4543
4544static char *
e3bb37b5 4545parse_insn (char *line, char *mnemonic)
29b0f896
AM
4546{
4547 char *l = line;
4548 char *token_start = l;
4549 char *mnem_p;
5c6af06e 4550 int supported;
d3ce72d0 4551 const insn_template *t;
b6169b20 4552 char *dot_p = NULL;
29b0f896 4553
29b0f896
AM
4554 while (1)
4555 {
4556 mnem_p = mnemonic;
4557 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4558 {
b6169b20
L
4559 if (*mnem_p == '.')
4560 dot_p = mnem_p;
29b0f896
AM
4561 mnem_p++;
4562 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4563 {
29b0f896
AM
4564 as_bad (_("no such instruction: `%s'"), token_start);
4565 return NULL;
4566 }
4567 l++;
4568 }
4569 if (!is_space_char (*l)
4570 && *l != END_OF_INSN
e44823cf
JB
4571 && (intel_syntax
4572 || (*l != PREFIX_SEPARATOR
4573 && *l != ',')))
29b0f896
AM
4574 {
4575 as_bad (_("invalid character %s in mnemonic"),
4576 output_invalid (*l));
4577 return NULL;
4578 }
4579 if (token_start == l)
4580 {
e44823cf 4581 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4582 as_bad (_("expecting prefix; got nothing"));
4583 else
4584 as_bad (_("expecting mnemonic; got nothing"));
4585 return NULL;
4586 }
45288df1 4587
29b0f896 4588 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4589 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4590
29b0f896
AM
4591 if (*l != END_OF_INSN
4592 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4593 && current_templates
40fb9820 4594 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4595 {
c6fb90c8 4596 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4597 {
4598 as_bad ((flag_code != CODE_64BIT
4599 ? _("`%s' is only supported in 64-bit mode")
4600 : _("`%s' is not supported in 64-bit mode")),
4601 current_templates->start->name);
4602 return NULL;
4603 }
29b0f896
AM
4604 /* If we are in 16-bit mode, do not allow addr16 or data16.
4605 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4606 if ((current_templates->start->opcode_modifier.size == SIZE16
4607 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4608 && flag_code != CODE_64BIT
673fe0f0 4609 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4610 ^ (flag_code == CODE_16BIT)))
4611 {
4612 as_bad (_("redundant %s prefix"),
4613 current_templates->start->name);
4614 return NULL;
45288df1 4615 }
86fa6981 4616 if (current_templates->start->opcode_length == 0)
29b0f896 4617 {
86fa6981
L
4618 /* Handle pseudo prefixes. */
4619 switch (current_templates->start->base_opcode)
4620 {
4621 case 0x0:
4622 /* {disp8} */
4623 i.disp_encoding = disp_encoding_8bit;
4624 break;
4625 case 0x1:
4626 /* {disp32} */
4627 i.disp_encoding = disp_encoding_32bit;
4628 break;
4629 case 0x2:
4630 /* {load} */
4631 i.dir_encoding = dir_encoding_load;
4632 break;
4633 case 0x3:
4634 /* {store} */
4635 i.dir_encoding = dir_encoding_store;
4636 break;
4637 case 0x4:
4638 /* {vex2} */
4639 i.vec_encoding = vex_encoding_vex2;
4640 break;
4641 case 0x5:
4642 /* {vex3} */
4643 i.vec_encoding = vex_encoding_vex3;
4644 break;
4645 case 0x6:
4646 /* {evex} */
4647 i.vec_encoding = vex_encoding_evex;
4648 break;
6b6b6807
L
4649 case 0x7:
4650 /* {rex} */
4651 i.rex_encoding = TRUE;
4652 break;
b6f8c7c4
L
4653 case 0x8:
4654 /* {nooptimize} */
4655 i.no_optimize = TRUE;
4656 break;
86fa6981
L
4657 default:
4658 abort ();
4659 }
4660 }
4661 else
4662 {
4663 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4664 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4665 {
4e9ac44a
L
4666 case PREFIX_EXIST:
4667 return NULL;
4668 case PREFIX_DS:
d777820b 4669 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4670 i.notrack_prefix = current_templates->start->name;
4671 break;
4672 case PREFIX_REP:
4673 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4674 i.hle_prefix = current_templates->start->name;
4675 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4676 i.bnd_prefix = current_templates->start->name;
4677 else
4678 i.rep_prefix = current_templates->start->name;
4679 break;
4680 default:
4681 break;
86fa6981 4682 }
29b0f896
AM
4683 }
4684 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4685 token_start = ++l;
4686 }
4687 else
4688 break;
4689 }
45288df1 4690
30a55f88 4691 if (!current_templates)
b6169b20 4692 {
07d5e953
JB
4693 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4694 Check if we should swap operand or force 32bit displacement in
f8a5c266 4695 encoding. */
30a55f88 4696 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4697 i.dir_encoding = dir_encoding_swap;
8d63c93e 4698 else if (mnem_p - 3 == dot_p
a501d77e
L
4699 && dot_p[1] == 'd'
4700 && dot_p[2] == '8')
4701 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4702 else if (mnem_p - 4 == dot_p
f8a5c266
L
4703 && dot_p[1] == 'd'
4704 && dot_p[2] == '3'
4705 && dot_p[3] == '2')
a501d77e 4706 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4707 else
4708 goto check_suffix;
4709 mnem_p = dot_p;
4710 *dot_p = '\0';
d3ce72d0 4711 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4712 }
4713
29b0f896
AM
4714 if (!current_templates)
4715 {
b6169b20 4716check_suffix:
1c529385 4717 if (mnem_p > mnemonic)
29b0f896 4718 {
1c529385
LH
4719 /* See if we can get a match by trimming off a suffix. */
4720 switch (mnem_p[-1])
29b0f896 4721 {
1c529385
LH
4722 case WORD_MNEM_SUFFIX:
4723 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4724 i.suffix = SHORT_MNEM_SUFFIX;
4725 else
1c529385
LH
4726 /* Fall through. */
4727 case BYTE_MNEM_SUFFIX:
4728 case QWORD_MNEM_SUFFIX:
4729 i.suffix = mnem_p[-1];
29b0f896 4730 mnem_p[-1] = '\0';
d3ce72d0 4731 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4732 mnemonic);
4733 break;
4734 case SHORT_MNEM_SUFFIX:
4735 case LONG_MNEM_SUFFIX:
4736 if (!intel_syntax)
4737 {
4738 i.suffix = mnem_p[-1];
4739 mnem_p[-1] = '\0';
4740 current_templates = (const templates *) hash_find (op_hash,
4741 mnemonic);
4742 }
4743 break;
4744
4745 /* Intel Syntax. */
4746 case 'd':
4747 if (intel_syntax)
4748 {
4749 if (intel_float_operand (mnemonic) == 1)
4750 i.suffix = SHORT_MNEM_SUFFIX;
4751 else
4752 i.suffix = LONG_MNEM_SUFFIX;
4753 mnem_p[-1] = '\0';
4754 current_templates = (const templates *) hash_find (op_hash,
4755 mnemonic);
4756 }
4757 break;
29b0f896 4758 }
29b0f896 4759 }
1c529385 4760
29b0f896
AM
4761 if (!current_templates)
4762 {
4763 as_bad (_("no such instruction: `%s'"), token_start);
4764 return NULL;
4765 }
4766 }
252b5132 4767
40fb9820
L
4768 if (current_templates->start->opcode_modifier.jump
4769 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4770 {
4771 /* Check for a branch hint. We allow ",pt" and ",pn" for
4772 predict taken and predict not taken respectively.
4773 I'm not sure that branch hints actually do anything on loop
4774 and jcxz insns (JumpByte) for current Pentium4 chips. They
4775 may work in the future and it doesn't hurt to accept them
4776 now. */
4777 if (l[0] == ',' && l[1] == 'p')
4778 {
4779 if (l[2] == 't')
4780 {
4781 if (!add_prefix (DS_PREFIX_OPCODE))
4782 return NULL;
4783 l += 3;
4784 }
4785 else if (l[2] == 'n')
4786 {
4787 if (!add_prefix (CS_PREFIX_OPCODE))
4788 return NULL;
4789 l += 3;
4790 }
4791 }
4792 }
4793 /* Any other comma loses. */
4794 if (*l == ',')
4795 {
4796 as_bad (_("invalid character %s in mnemonic"),
4797 output_invalid (*l));
4798 return NULL;
4799 }
252b5132 4800
29b0f896 4801 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4802 supported = 0;
4803 for (t = current_templates->start; t < current_templates->end; ++t)
4804 {
c0f3af97
L
4805 supported |= cpu_flags_match (t);
4806 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4807 {
4808 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4809 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4810
548d0ee6
JB
4811 return l;
4812 }
29b0f896 4813 }
3629bb00 4814
548d0ee6
JB
4815 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4816 as_bad (flag_code == CODE_64BIT
4817 ? _("`%s' is not supported in 64-bit mode")
4818 : _("`%s' is only supported in 64-bit mode"),
4819 current_templates->start->name);
4820 else
4821 as_bad (_("`%s' is not supported on `%s%s'"),
4822 current_templates->start->name,
4823 cpu_arch_name ? cpu_arch_name : default_arch,
4824 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4825
548d0ee6 4826 return NULL;
29b0f896 4827}
252b5132 4828
29b0f896 4829static char *
e3bb37b5 4830parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4831{
4832 char *token_start;
3138f287 4833
29b0f896
AM
4834 /* 1 if operand is pending after ','. */
4835 unsigned int expecting_operand = 0;
252b5132 4836
29b0f896
AM
4837 /* Non-zero if operand parens not balanced. */
4838 unsigned int paren_not_balanced;
4839
4840 while (*l != END_OF_INSN)
4841 {
4842 /* Skip optional white space before operand. */
4843 if (is_space_char (*l))
4844 ++l;
d02603dc 4845 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4846 {
4847 as_bad (_("invalid character %s before operand %d"),
4848 output_invalid (*l),
4849 i.operands + 1);
4850 return NULL;
4851 }
d02603dc 4852 token_start = l; /* After white space. */
29b0f896
AM
4853 paren_not_balanced = 0;
4854 while (paren_not_balanced || *l != ',')
4855 {
4856 if (*l == END_OF_INSN)
4857 {
4858 if (paren_not_balanced)
4859 {
4860 if (!intel_syntax)
4861 as_bad (_("unbalanced parenthesis in operand %d."),
4862 i.operands + 1);
4863 else
4864 as_bad (_("unbalanced brackets in operand %d."),
4865 i.operands + 1);
4866 return NULL;
4867 }
4868 else
4869 break; /* we are done */
4870 }
d02603dc 4871 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4872 {
4873 as_bad (_("invalid character %s in operand %d"),
4874 output_invalid (*l),
4875 i.operands + 1);
4876 return NULL;
4877 }
4878 if (!intel_syntax)
4879 {
4880 if (*l == '(')
4881 ++paren_not_balanced;
4882 if (*l == ')')
4883 --paren_not_balanced;
4884 }
4885 else
4886 {
4887 if (*l == '[')
4888 ++paren_not_balanced;
4889 if (*l == ']')
4890 --paren_not_balanced;
4891 }
4892 l++;
4893 }
4894 if (l != token_start)
4895 { /* Yes, we've read in another operand. */
4896 unsigned int operand_ok;
4897 this_operand = i.operands++;
4898 if (i.operands > MAX_OPERANDS)
4899 {
4900 as_bad (_("spurious operands; (%d operands/instruction max)"),
4901 MAX_OPERANDS);
4902 return NULL;
4903 }
9d46ce34 4904 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4905 /* Now parse operand adding info to 'i' as we go along. */
4906 END_STRING_AND_SAVE (l);
4907
1286ab78
L
4908 if (i.mem_operands > 1)
4909 {
4910 as_bad (_("too many memory references for `%s'"),
4911 mnemonic);
4912 return 0;
4913 }
4914
29b0f896
AM
4915 if (intel_syntax)
4916 operand_ok =
4917 i386_intel_operand (token_start,
4918 intel_float_operand (mnemonic));
4919 else
a7619375 4920 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4921
4922 RESTORE_END_STRING (l);
4923 if (!operand_ok)
4924 return NULL;
4925 }
4926 else
4927 {
4928 if (expecting_operand)
4929 {
4930 expecting_operand_after_comma:
4931 as_bad (_("expecting operand after ','; got nothing"));
4932 return NULL;
4933 }
4934 if (*l == ',')
4935 {
4936 as_bad (_("expecting operand before ','; got nothing"));
4937 return NULL;
4938 }
4939 }
7f3f1ea2 4940
29b0f896
AM
4941 /* Now *l must be either ',' or END_OF_INSN. */
4942 if (*l == ',')
4943 {
4944 if (*++l == END_OF_INSN)
4945 {
4946 /* Just skip it, if it's \n complain. */
4947 goto expecting_operand_after_comma;
4948 }
4949 expecting_operand = 1;
4950 }
4951 }
4952 return l;
4953}
7f3f1ea2 4954
050dfa73 4955static void
4d456e3d 4956swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4957{
4958 union i386_op temp_op;
40fb9820 4959 i386_operand_type temp_type;
c48dadc9 4960 unsigned int temp_flags;
050dfa73 4961 enum bfd_reloc_code_real temp_reloc;
4eed87de 4962
050dfa73
MM
4963 temp_type = i.types[xchg2];
4964 i.types[xchg2] = i.types[xchg1];
4965 i.types[xchg1] = temp_type;
c48dadc9
JB
4966
4967 temp_flags = i.flags[xchg2];
4968 i.flags[xchg2] = i.flags[xchg1];
4969 i.flags[xchg1] = temp_flags;
4970
050dfa73
MM
4971 temp_op = i.op[xchg2];
4972 i.op[xchg2] = i.op[xchg1];
4973 i.op[xchg1] = temp_op;
c48dadc9 4974
050dfa73
MM
4975 temp_reloc = i.reloc[xchg2];
4976 i.reloc[xchg2] = i.reloc[xchg1];
4977 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4978
4979 if (i.mask)
4980 {
4981 if (i.mask->operand == xchg1)
4982 i.mask->operand = xchg2;
4983 else if (i.mask->operand == xchg2)
4984 i.mask->operand = xchg1;
4985 }
4986 if (i.broadcast)
4987 {
4988 if (i.broadcast->operand == xchg1)
4989 i.broadcast->operand = xchg2;
4990 else if (i.broadcast->operand == xchg2)
4991 i.broadcast->operand = xchg1;
4992 }
4993 if (i.rounding)
4994 {
4995 if (i.rounding->operand == xchg1)
4996 i.rounding->operand = xchg2;
4997 else if (i.rounding->operand == xchg2)
4998 i.rounding->operand = xchg1;
4999 }
050dfa73
MM
5000}
5001
29b0f896 5002static void
e3bb37b5 5003swap_operands (void)
29b0f896 5004{
b7c61d9a 5005 switch (i.operands)
050dfa73 5006 {
c0f3af97 5007 case 5:
b7c61d9a 5008 case 4:
4d456e3d 5009 swap_2_operands (1, i.operands - 2);
1a0670f3 5010 /* Fall through. */
b7c61d9a
L
5011 case 3:
5012 case 2:
4d456e3d 5013 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5014 break;
5015 default:
5016 abort ();
29b0f896 5017 }
29b0f896
AM
5018
5019 if (i.mem_operands == 2)
5020 {
5021 const seg_entry *temp_seg;
5022 temp_seg = i.seg[0];
5023 i.seg[0] = i.seg[1];
5024 i.seg[1] = temp_seg;
5025 }
5026}
252b5132 5027
29b0f896
AM
5028/* Try to ensure constant immediates are represented in the smallest
5029 opcode possible. */
5030static void
e3bb37b5 5031optimize_imm (void)
29b0f896
AM
5032{
5033 char guess_suffix = 0;
5034 int op;
252b5132 5035
29b0f896
AM
5036 if (i.suffix)
5037 guess_suffix = i.suffix;
5038 else if (i.reg_operands)
5039 {
5040 /* Figure out a suffix from the last register operand specified.
5041 We can't do this properly yet, ie. excluding InOutPortReg,
5042 but the following works for instructions with immediates.
5043 In any case, we can't set i.suffix yet. */
5044 for (op = i.operands; --op >= 0;)
dc821c5f 5045 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5046 {
40fb9820
L
5047 guess_suffix = BYTE_MNEM_SUFFIX;
5048 break;
5049 }
dc821c5f 5050 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5051 {
40fb9820
L
5052 guess_suffix = WORD_MNEM_SUFFIX;
5053 break;
5054 }
dc821c5f 5055 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5056 {
5057 guess_suffix = LONG_MNEM_SUFFIX;
5058 break;
5059 }
dc821c5f 5060 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5061 {
5062 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5063 break;
252b5132 5064 }
29b0f896
AM
5065 }
5066 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5067 guess_suffix = WORD_MNEM_SUFFIX;
5068
5069 for (op = i.operands; --op >= 0;)
40fb9820 5070 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5071 {
5072 switch (i.op[op].imms->X_op)
252b5132 5073 {
29b0f896
AM
5074 case O_constant:
5075 /* If a suffix is given, this operand may be shortened. */
5076 switch (guess_suffix)
252b5132 5077 {
29b0f896 5078 case LONG_MNEM_SUFFIX:
40fb9820
L
5079 i.types[op].bitfield.imm32 = 1;
5080 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5081 break;
5082 case WORD_MNEM_SUFFIX:
40fb9820
L
5083 i.types[op].bitfield.imm16 = 1;
5084 i.types[op].bitfield.imm32 = 1;
5085 i.types[op].bitfield.imm32s = 1;
5086 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5087 break;
5088 case BYTE_MNEM_SUFFIX:
40fb9820
L
5089 i.types[op].bitfield.imm8 = 1;
5090 i.types[op].bitfield.imm8s = 1;
5091 i.types[op].bitfield.imm16 = 1;
5092 i.types[op].bitfield.imm32 = 1;
5093 i.types[op].bitfield.imm32s = 1;
5094 i.types[op].bitfield.imm64 = 1;
29b0f896 5095 break;
252b5132 5096 }
252b5132 5097
29b0f896
AM
5098 /* If this operand is at most 16 bits, convert it
5099 to a signed 16 bit number before trying to see
5100 whether it will fit in an even smaller size.
5101 This allows a 16-bit operand such as $0xffe0 to
5102 be recognised as within Imm8S range. */
40fb9820 5103 if ((i.types[op].bitfield.imm16)
29b0f896 5104 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5105 {
29b0f896
AM
5106 i.op[op].imms->X_add_number =
5107 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5108 }
a28def75
L
5109#ifdef BFD64
5110 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5111 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5112 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5113 == 0))
5114 {
5115 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5116 ^ ((offsetT) 1 << 31))
5117 - ((offsetT) 1 << 31));
5118 }
a28def75 5119#endif
40fb9820 5120 i.types[op]
c6fb90c8
L
5121 = operand_type_or (i.types[op],
5122 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5123
29b0f896
AM
5124 /* We must avoid matching of Imm32 templates when 64bit
5125 only immediate is available. */
5126 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5127 i.types[op].bitfield.imm32 = 0;
29b0f896 5128 break;
252b5132 5129
29b0f896
AM
5130 case O_absent:
5131 case O_register:
5132 abort ();
5133
5134 /* Symbols and expressions. */
5135 default:
9cd96992
JB
5136 /* Convert symbolic operand to proper sizes for matching, but don't
5137 prevent matching a set of insns that only supports sizes other
5138 than those matching the insn suffix. */
5139 {
40fb9820 5140 i386_operand_type mask, allowed;
d3ce72d0 5141 const insn_template *t;
9cd96992 5142
0dfbf9d7
L
5143 operand_type_set (&mask, 0);
5144 operand_type_set (&allowed, 0);
40fb9820 5145
4eed87de
AM
5146 for (t = current_templates->start;
5147 t < current_templates->end;
5148 ++t)
c6fb90c8
L
5149 allowed = operand_type_or (allowed,
5150 t->operand_types[op]);
9cd96992
JB
5151 switch (guess_suffix)
5152 {
5153 case QWORD_MNEM_SUFFIX:
40fb9820
L
5154 mask.bitfield.imm64 = 1;
5155 mask.bitfield.imm32s = 1;
9cd96992
JB
5156 break;
5157 case LONG_MNEM_SUFFIX:
40fb9820 5158 mask.bitfield.imm32 = 1;
9cd96992
JB
5159 break;
5160 case WORD_MNEM_SUFFIX:
40fb9820 5161 mask.bitfield.imm16 = 1;
9cd96992
JB
5162 break;
5163 case BYTE_MNEM_SUFFIX:
40fb9820 5164 mask.bitfield.imm8 = 1;
9cd96992
JB
5165 break;
5166 default:
9cd96992
JB
5167 break;
5168 }
c6fb90c8 5169 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5170 if (!operand_type_all_zero (&allowed))
c6fb90c8 5171 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5172 }
29b0f896 5173 break;
252b5132 5174 }
29b0f896
AM
5175 }
5176}
47926f60 5177
29b0f896
AM
5178/* Try to use the smallest displacement type too. */
5179static void
e3bb37b5 5180optimize_disp (void)
29b0f896
AM
5181{
5182 int op;
3e73aa7c 5183
29b0f896 5184 for (op = i.operands; --op >= 0;)
40fb9820 5185 if (operand_type_check (i.types[op], disp))
252b5132 5186 {
b300c311 5187 if (i.op[op].disps->X_op == O_constant)
252b5132 5188 {
91d6fa6a 5189 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5190
40fb9820 5191 if (i.types[op].bitfield.disp16
91d6fa6a 5192 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5193 {
5194 /* If this operand is at most 16 bits, convert
5195 to a signed 16 bit number and don't use 64bit
5196 displacement. */
91d6fa6a 5197 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5198 i.types[op].bitfield.disp64 = 0;
b300c311 5199 }
a28def75
L
5200#ifdef BFD64
5201 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5202 if (i.types[op].bitfield.disp32
91d6fa6a 5203 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5204 {
5205 /* If this operand is at most 32 bits, convert
5206 to a signed 32 bit number and don't use 64bit
5207 displacement. */
91d6fa6a
NC
5208 op_disp &= (((offsetT) 2 << 31) - 1);
5209 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5210 i.types[op].bitfield.disp64 = 0;
b300c311 5211 }
a28def75 5212#endif
91d6fa6a 5213 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5214 {
40fb9820
L
5215 i.types[op].bitfield.disp8 = 0;
5216 i.types[op].bitfield.disp16 = 0;
5217 i.types[op].bitfield.disp32 = 0;
5218 i.types[op].bitfield.disp32s = 0;
5219 i.types[op].bitfield.disp64 = 0;
b300c311
L
5220 i.op[op].disps = 0;
5221 i.disp_operands--;
5222 }
5223 else if (flag_code == CODE_64BIT)
5224 {
91d6fa6a 5225 if (fits_in_signed_long (op_disp))
28a9d8f5 5226 {
40fb9820
L
5227 i.types[op].bitfield.disp64 = 0;
5228 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5229 }
0e1147d9 5230 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5231 && fits_in_unsigned_long (op_disp))
40fb9820 5232 i.types[op].bitfield.disp32 = 1;
b300c311 5233 }
40fb9820
L
5234 if ((i.types[op].bitfield.disp32
5235 || i.types[op].bitfield.disp32s
5236 || i.types[op].bitfield.disp16)
b5014f7a 5237 && fits_in_disp8 (op_disp))
40fb9820 5238 i.types[op].bitfield.disp8 = 1;
252b5132 5239 }
67a4f2b7
AO
5240 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5241 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5242 {
5243 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5244 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5245 i.types[op].bitfield.disp8 = 0;
5246 i.types[op].bitfield.disp16 = 0;
5247 i.types[op].bitfield.disp32 = 0;
5248 i.types[op].bitfield.disp32s = 0;
5249 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5250 }
5251 else
b300c311 5252 /* We only support 64bit displacement on constants. */
40fb9820 5253 i.types[op].bitfield.disp64 = 0;
252b5132 5254 }
29b0f896
AM
5255}
5256
4a1b91ea
L
5257/* Return 1 if there is a match in broadcast bytes between operand
5258 GIVEN and instruction template T. */
5259
5260static INLINE int
5261match_broadcast_size (const insn_template *t, unsigned int given)
5262{
5263 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5264 && i.types[given].bitfield.byte)
5265 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5266 && i.types[given].bitfield.word)
5267 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5268 && i.types[given].bitfield.dword)
5269 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5270 && i.types[given].bitfield.qword));
5271}
5272
6c30d220
L
5273/* Check if operands are valid for the instruction. */
5274
5275static int
5276check_VecOperands (const insn_template *t)
5277{
43234a1e 5278 unsigned int op;
e2195274
JB
5279 i386_cpu_flags cpu;
5280 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5281
5282 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5283 any one operand are implicity requiring AVX512VL support if the actual
5284 operand size is YMMword or XMMword. Since this function runs after
5285 template matching, there's no need to check for YMMword/XMMword in
5286 the template. */
5287 cpu = cpu_flags_and (t->cpu_flags, avx512);
5288 if (!cpu_flags_all_zero (&cpu)
5289 && !t->cpu_flags.bitfield.cpuavx512vl
5290 && !cpu_arch_flags.bitfield.cpuavx512vl)
5291 {
5292 for (op = 0; op < t->operands; ++op)
5293 {
5294 if (t->operand_types[op].bitfield.zmmword
5295 && (i.types[op].bitfield.ymmword
5296 || i.types[op].bitfield.xmmword))
5297 {
5298 i.error = unsupported;
5299 return 1;
5300 }
5301 }
5302 }
43234a1e 5303
6c30d220
L
5304 /* Without VSIB byte, we can't have a vector register for index. */
5305 if (!t->opcode_modifier.vecsib
5306 && i.index_reg
1b54b8d7
JB
5307 && (i.index_reg->reg_type.bitfield.xmmword
5308 || i.index_reg->reg_type.bitfield.ymmword
5309 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5310 {
5311 i.error = unsupported_vector_index_register;
5312 return 1;
5313 }
5314
ad8ecc81
MZ
5315 /* Check if default mask is allowed. */
5316 if (t->opcode_modifier.nodefmask
5317 && (!i.mask || i.mask->mask->reg_num == 0))
5318 {
5319 i.error = no_default_mask;
5320 return 1;
5321 }
5322
7bab8ab5
JB
5323 /* For VSIB byte, we need a vector register for index, and all vector
5324 registers must be distinct. */
5325 if (t->opcode_modifier.vecsib)
5326 {
5327 if (!i.index_reg
6c30d220 5328 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5329 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5330 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5331 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5332 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5333 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5334 {
5335 i.error = invalid_vsib_address;
5336 return 1;
5337 }
5338
43234a1e
L
5339 gas_assert (i.reg_operands == 2 || i.mask);
5340 if (i.reg_operands == 2 && !i.mask)
5341 {
1b54b8d7
JB
5342 gas_assert (i.types[0].bitfield.regsimd);
5343 gas_assert (i.types[0].bitfield.xmmword
5344 || i.types[0].bitfield.ymmword);
5345 gas_assert (i.types[2].bitfield.regsimd);
5346 gas_assert (i.types[2].bitfield.xmmword
5347 || i.types[2].bitfield.ymmword);
43234a1e
L
5348 if (operand_check == check_none)
5349 return 0;
5350 if (register_number (i.op[0].regs)
5351 != register_number (i.index_reg)
5352 && register_number (i.op[2].regs)
5353 != register_number (i.index_reg)
5354 && register_number (i.op[0].regs)
5355 != register_number (i.op[2].regs))
5356 return 0;
5357 if (operand_check == check_error)
5358 {
5359 i.error = invalid_vector_register_set;
5360 return 1;
5361 }
5362 as_warn (_("mask, index, and destination registers should be distinct"));
5363 }
8444f82a
MZ
5364 else if (i.reg_operands == 1 && i.mask)
5365 {
1b54b8d7
JB
5366 if (i.types[1].bitfield.regsimd
5367 && (i.types[1].bitfield.xmmword
5368 || i.types[1].bitfield.ymmword
5369 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5370 && (register_number (i.op[1].regs)
5371 == register_number (i.index_reg)))
5372 {
5373 if (operand_check == check_error)
5374 {
5375 i.error = invalid_vector_register_set;
5376 return 1;
5377 }
5378 if (operand_check != check_none)
5379 as_warn (_("index and destination registers should be distinct"));
5380 }
5381 }
43234a1e 5382 }
7bab8ab5 5383
43234a1e
L
5384 /* Check if broadcast is supported by the instruction and is applied
5385 to the memory operand. */
5386 if (i.broadcast)
5387 {
8e6e0792 5388 i386_operand_type type, overlap;
43234a1e
L
5389
5390 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5391 and its broadcast bytes match the memory operand. */
32546502 5392 op = i.broadcast->operand;
8e6e0792 5393 if (!t->opcode_modifier.broadcast
c48dadc9 5394 || !(i.flags[op] & Operand_Mem)
c39e5b26 5395 || (!i.types[op].bitfield.unspecified
4a1b91ea 5396 && !match_broadcast_size (t, op)))
43234a1e
L
5397 {
5398 bad_broadcast:
5399 i.error = unsupported_broadcast;
5400 return 1;
5401 }
8e6e0792 5402
4a1b91ea
L
5403 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5404 * i.broadcast->type);
8e6e0792 5405 operand_type_set (&type, 0);
4a1b91ea 5406 switch (i.broadcast->bytes)
8e6e0792 5407 {
4a1b91ea
L
5408 case 2:
5409 type.bitfield.word = 1;
5410 break;
5411 case 4:
5412 type.bitfield.dword = 1;
5413 break;
8e6e0792
JB
5414 case 8:
5415 type.bitfield.qword = 1;
5416 break;
5417 case 16:
5418 type.bitfield.xmmword = 1;
5419 break;
5420 case 32:
5421 type.bitfield.ymmword = 1;
5422 break;
5423 case 64:
5424 type.bitfield.zmmword = 1;
5425 break;
5426 default:
5427 goto bad_broadcast;
5428 }
5429
5430 overlap = operand_type_and (type, t->operand_types[op]);
5431 if (operand_type_all_zero (&overlap))
5432 goto bad_broadcast;
5433
5434 if (t->opcode_modifier.checkregsize)
5435 {
5436 unsigned int j;
5437
e2195274 5438 type.bitfield.baseindex = 1;
8e6e0792
JB
5439 for (j = 0; j < i.operands; ++j)
5440 {
5441 if (j != op
5442 && !operand_type_register_match(i.types[j],
5443 t->operand_types[j],
5444 type,
5445 t->operand_types[op]))
5446 goto bad_broadcast;
5447 }
5448 }
43234a1e
L
5449 }
5450 /* If broadcast is supported in this instruction, we need to check if
5451 operand of one-element size isn't specified without broadcast. */
5452 else if (t->opcode_modifier.broadcast && i.mem_operands)
5453 {
5454 /* Find memory operand. */
5455 for (op = 0; op < i.operands; op++)
5456 if (operand_type_check (i.types[op], anymem))
5457 break;
5458 gas_assert (op < i.operands);
5459 /* Check size of the memory operand. */
4a1b91ea 5460 if (match_broadcast_size (t, op))
43234a1e
L
5461 {
5462 i.error = broadcast_needed;
5463 return 1;
5464 }
5465 }
c39e5b26
JB
5466 else
5467 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5468
5469 /* Check if requested masking is supported. */
ae2387fe 5470 if (i.mask)
43234a1e 5471 {
ae2387fe
JB
5472 switch (t->opcode_modifier.masking)
5473 {
5474 case BOTH_MASKING:
5475 break;
5476 case MERGING_MASKING:
5477 if (i.mask->zeroing)
5478 {
5479 case 0:
5480 i.error = unsupported_masking;
5481 return 1;
5482 }
5483 break;
5484 case DYNAMIC_MASKING:
5485 /* Memory destinations allow only merging masking. */
5486 if (i.mask->zeroing && i.mem_operands)
5487 {
5488 /* Find memory operand. */
5489 for (op = 0; op < i.operands; op++)
c48dadc9 5490 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5491 break;
5492 gas_assert (op < i.operands);
5493 if (op == i.operands - 1)
5494 {
5495 i.error = unsupported_masking;
5496 return 1;
5497 }
5498 }
5499 break;
5500 default:
5501 abort ();
5502 }
43234a1e
L
5503 }
5504
5505 /* Check if masking is applied to dest operand. */
5506 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5507 {
5508 i.error = mask_not_on_destination;
5509 return 1;
5510 }
5511
43234a1e
L
5512 /* Check RC/SAE. */
5513 if (i.rounding)
5514 {
a80195f1
JB
5515 if (!t->opcode_modifier.sae
5516 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5517 {
5518 i.error = unsupported_rc_sae;
5519 return 1;
5520 }
5521 /* If the instruction has several immediate operands and one of
5522 them is rounding, the rounding operand should be the last
5523 immediate operand. */
5524 if (i.imm_operands > 1
5525 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5526 {
43234a1e 5527 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5528 return 1;
5529 }
6c30d220
L
5530 }
5531
43234a1e 5532 /* Check vector Disp8 operand. */
b5014f7a
JB
5533 if (t->opcode_modifier.disp8memshift
5534 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5535 {
5536 if (i.broadcast)
4a1b91ea 5537 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5538 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5539 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5540 else
5541 {
5542 const i386_operand_type *type = NULL;
5543
5544 i.memshift = 0;
5545 for (op = 0; op < i.operands; op++)
5546 if (operand_type_check (i.types[op], anymem))
5547 {
4174bfff
JB
5548 if (t->opcode_modifier.evex == EVEXLIG)
5549 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5550 else if (t->operand_types[op].bitfield.xmmword
5551 + t->operand_types[op].bitfield.ymmword
5552 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5553 type = &t->operand_types[op];
5554 else if (!i.types[op].bitfield.unspecified)
5555 type = &i.types[op];
5556 }
4174bfff
JB
5557 else if (i.types[op].bitfield.regsimd
5558 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5559 {
5560 if (i.types[op].bitfield.zmmword)
5561 i.memshift = 6;
5562 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5563 i.memshift = 5;
5564 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5565 i.memshift = 4;
5566 }
5567
5568 if (type)
5569 {
5570 if (type->bitfield.zmmword)
5571 i.memshift = 6;
5572 else if (type->bitfield.ymmword)
5573 i.memshift = 5;
5574 else if (type->bitfield.xmmword)
5575 i.memshift = 4;
5576 }
5577
5578 /* For the check in fits_in_disp8(). */
5579 if (i.memshift == 0)
5580 i.memshift = -1;
5581 }
43234a1e
L
5582
5583 for (op = 0; op < i.operands; op++)
5584 if (operand_type_check (i.types[op], disp)
5585 && i.op[op].disps->X_op == O_constant)
5586 {
b5014f7a 5587 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5588 {
b5014f7a
JB
5589 i.types[op].bitfield.disp8 = 1;
5590 return 0;
43234a1e 5591 }
b5014f7a 5592 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5593 }
5594 }
b5014f7a
JB
5595
5596 i.memshift = 0;
43234a1e 5597
6c30d220
L
5598 return 0;
5599}
5600
43f3e2ee 5601/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5602 operand types. */
5603
5604static int
5605VEX_check_operands (const insn_template *t)
5606{
86fa6981 5607 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5608 {
86fa6981 5609 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5610 if (!is_evex_encoding (t))
86fa6981
L
5611 {
5612 i.error = unsupported;
5613 return 1;
5614 }
5615 return 0;
43234a1e
L
5616 }
5617
a683cc34 5618 if (!t->opcode_modifier.vex)
86fa6981
L
5619 {
5620 /* This instruction template doesn't have VEX prefix. */
5621 if (i.vec_encoding != vex_encoding_default)
5622 {
5623 i.error = unsupported;
5624 return 1;
5625 }
5626 return 0;
5627 }
a683cc34
SP
5628
5629 /* Only check VEX_Imm4, which must be the first operand. */
5630 if (t->operand_types[0].bitfield.vec_imm4)
5631 {
5632 if (i.op[0].imms->X_op != O_constant
5633 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5634 {
a65babc9 5635 i.error = bad_imm4;
891edac4
L
5636 return 1;
5637 }
a683cc34
SP
5638
5639 /* Turn off Imm8 so that update_imm won't complain. */
5640 i.types[0] = vec_imm4;
5641 }
5642
5643 return 0;
5644}
5645
d3ce72d0 5646static const insn_template *
83b16ac6 5647match_template (char mnem_suffix)
29b0f896
AM
5648{
5649 /* Points to template once we've found it. */
d3ce72d0 5650 const insn_template *t;
40fb9820 5651 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5652 i386_operand_type overlap4;
29b0f896 5653 unsigned int found_reverse_match;
83b16ac6 5654 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5655 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5656 int addr_prefix_disp;
a5c311ca 5657 unsigned int j;
3ac21baa 5658 unsigned int found_cpu_match, size_match;
45664ddb 5659 unsigned int check_register;
5614d22c 5660 enum i386_error specific_error = 0;
29b0f896 5661
c0f3af97
L
5662#if MAX_OPERANDS != 5
5663# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5664#endif
5665
29b0f896 5666 found_reverse_match = 0;
539e75ad 5667 addr_prefix_disp = -1;
40fb9820
L
5668
5669 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5670 if (intel_syntax && i.broadcast)
5671 /* nothing */;
5672 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5673 suffix_check.no_bsuf = 1;
5674 else if (i.suffix == WORD_MNEM_SUFFIX)
5675 suffix_check.no_wsuf = 1;
5676 else if (i.suffix == SHORT_MNEM_SUFFIX)
5677 suffix_check.no_ssuf = 1;
5678 else if (i.suffix == LONG_MNEM_SUFFIX)
5679 suffix_check.no_lsuf = 1;
5680 else if (i.suffix == QWORD_MNEM_SUFFIX)
5681 suffix_check.no_qsuf = 1;
5682 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5683 suffix_check.no_ldsuf = 1;
29b0f896 5684
83b16ac6
JB
5685 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5686 if (intel_syntax)
5687 {
5688 switch (mnem_suffix)
5689 {
5690 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5691 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5692 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5693 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5694 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5695 }
5696 }
5697
01559ecc
L
5698 /* Must have right number of operands. */
5699 i.error = number_of_operands_mismatch;
5700
45aa61fe 5701 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5702 {
539e75ad 5703 addr_prefix_disp = -1;
dbbc8b7e 5704 found_reverse_match = 0;
539e75ad 5705
29b0f896
AM
5706 if (i.operands != t->operands)
5707 continue;
5708
50aecf8c 5709 /* Check processor support. */
a65babc9 5710 i.error = unsupported;
c0f3af97
L
5711 found_cpu_match = (cpu_flags_match (t)
5712 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5713 if (!found_cpu_match)
5714 continue;
5715
e1d4d893 5716 /* Check AT&T mnemonic. */
a65babc9 5717 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5718 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5719 continue;
5720
e92bae62 5721 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5722 i.error = unsupported_syntax;
5c07affc 5723 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5724 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5725 || (intel64 && t->opcode_modifier.amd64)
5726 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5727 continue;
5728
20592a94 5729 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5730 i.error = invalid_instruction_suffix;
567e4e96
L
5731 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5732 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5738 continue;
83b16ac6
JB
5739 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5740 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5741 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5742 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5743 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5744 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5745 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5746 continue;
29b0f896 5747
3ac21baa
JB
5748 size_match = operand_size_match (t);
5749 if (!size_match)
7d5e4556 5750 continue;
539e75ad 5751
5c07affc
L
5752 for (j = 0; j < MAX_OPERANDS; j++)
5753 operand_types[j] = t->operand_types[j];
5754
45aa61fe
AM
5755 /* In general, don't allow 64-bit operands in 32-bit mode. */
5756 if (i.suffix == QWORD_MNEM_SUFFIX
5757 && flag_code != CODE_64BIT
5758 && (intel_syntax
40fb9820 5759 ? (!t->opcode_modifier.ignoresize
625cbd7a 5760 && !t->opcode_modifier.broadcast
45aa61fe
AM
5761 && !intel_float_operand (t->name))
5762 : intel_float_operand (t->name) != 2)
40fb9820 5763 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5764 && !operand_types[0].bitfield.regsimd)
40fb9820 5765 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5766 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5767 && (t->base_opcode != 0x0fc7
5768 || t->extension_opcode != 1 /* cmpxchg8b */))
5769 continue;
5770
192dc9c6
JB
5771 /* In general, don't allow 32-bit operands on pre-386. */
5772 else if (i.suffix == LONG_MNEM_SUFFIX
5773 && !cpu_arch_flags.bitfield.cpui386
5774 && (intel_syntax
5775 ? (!t->opcode_modifier.ignoresize
5776 && !intel_float_operand (t->name))
5777 : intel_float_operand (t->name) != 2)
5778 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5779 && !operand_types[0].bitfield.regsimd)
192dc9c6 5780 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5781 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5782 continue;
5783
29b0f896 5784 /* Do not verify operands when there are none. */
50aecf8c 5785 else
29b0f896 5786 {
c6fb90c8 5787 if (!t->operands)
2dbab7d5
L
5788 /* We've found a match; break out of loop. */
5789 break;
29b0f896 5790 }
252b5132 5791
539e75ad
L
5792 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5793 into Disp32/Disp16/Disp32 operand. */
5794 if (i.prefix[ADDR_PREFIX] != 0)
5795 {
40fb9820 5796 /* There should be only one Disp operand. */
539e75ad
L
5797 switch (flag_code)
5798 {
5799 case CODE_16BIT:
40fb9820
L
5800 for (j = 0; j < MAX_OPERANDS; j++)
5801 {
5802 if (operand_types[j].bitfield.disp16)
5803 {
5804 addr_prefix_disp = j;
5805 operand_types[j].bitfield.disp32 = 1;
5806 operand_types[j].bitfield.disp16 = 0;
5807 break;
5808 }
5809 }
539e75ad
L
5810 break;
5811 case CODE_32BIT:
40fb9820
L
5812 for (j = 0; j < MAX_OPERANDS; j++)
5813 {
5814 if (operand_types[j].bitfield.disp32)
5815 {
5816 addr_prefix_disp = j;
5817 operand_types[j].bitfield.disp32 = 0;
5818 operand_types[j].bitfield.disp16 = 1;
5819 break;
5820 }
5821 }
539e75ad
L
5822 break;
5823 case CODE_64BIT:
40fb9820
L
5824 for (j = 0; j < MAX_OPERANDS; j++)
5825 {
5826 if (operand_types[j].bitfield.disp64)
5827 {
5828 addr_prefix_disp = j;
5829 operand_types[j].bitfield.disp64 = 0;
5830 operand_types[j].bitfield.disp32 = 1;
5831 break;
5832 }
5833 }
539e75ad
L
5834 break;
5835 }
539e75ad
L
5836 }
5837
02a86693
L
5838 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5839 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5840 continue;
5841
56ffb741 5842 /* We check register size if needed. */
e2195274
JB
5843 if (t->opcode_modifier.checkregsize)
5844 {
5845 check_register = (1 << t->operands) - 1;
5846 if (i.broadcast)
5847 check_register &= ~(1 << i.broadcast->operand);
5848 }
5849 else
5850 check_register = 0;
5851
c6fb90c8 5852 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5853 switch (t->operands)
5854 {
5855 case 1:
40fb9820 5856 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5857 continue;
5858 break;
5859 case 2:
33eaf5de 5860 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5861 only in 32bit mode and we can use opcode 0x90. In 64bit
5862 mode, we can't use 0x90 for xchg %eax, %eax since it should
5863 zero-extend %eax to %rax. */
5864 if (flag_code == CODE_64BIT
5865 && t->base_opcode == 0x90
2c703856
JB
5866 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5867 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5868 continue;
1212781b
JB
5869 /* xrelease mov %eax, <disp> is another special case. It must not
5870 match the accumulator-only encoding of mov. */
5871 if (flag_code != CODE_64BIT
5872 && i.hle_prefix
5873 && t->base_opcode == 0xa0
5874 && i.types[0].bitfield.acc
5875 && operand_type_check (i.types[1], anymem))
5876 continue;
f5eb1d70
JB
5877 /* Fall through. */
5878
5879 case 3:
3ac21baa
JB
5880 if (!(size_match & MATCH_STRAIGHT))
5881 goto check_reverse;
64c49ab3
JB
5882 /* Reverse direction of operands if swapping is possible in the first
5883 place (operands need to be symmetric) and
5884 - the load form is requested, and the template is a store form,
5885 - the store form is requested, and the template is a load form,
5886 - the non-default (swapped) form is requested. */
5887 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5888 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5889 && !operand_type_all_zero (&overlap1))
5890 switch (i.dir_encoding)
5891 {
5892 case dir_encoding_load:
5893 if (operand_type_check (operand_types[i.operands - 1], anymem)
5894 || operand_types[i.operands - 1].bitfield.regmem)
5895 goto check_reverse;
5896 break;
5897
5898 case dir_encoding_store:
5899 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5900 && !operand_types[i.operands - 1].bitfield.regmem)
5901 goto check_reverse;
5902 break;
5903
5904 case dir_encoding_swap:
5905 goto check_reverse;
5906
5907 case dir_encoding_default:
5908 break;
5909 }
86fa6981 5910 /* If we want store form, we skip the current load. */
64c49ab3
JB
5911 if ((i.dir_encoding == dir_encoding_store
5912 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5913 && i.mem_operands == 0
5914 && t->opcode_modifier.load)
fa99fab2 5915 continue;
1a0670f3 5916 /* Fall through. */
f48ff2ae 5917 case 4:
c0f3af97 5918 case 5:
c6fb90c8 5919 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5920 if (!operand_type_match (overlap0, i.types[0])
5921 || !operand_type_match (overlap1, i.types[1])
e2195274 5922 || ((check_register & 3) == 3
dc821c5f 5923 && !operand_type_register_match (i.types[0],
40fb9820 5924 operand_types[0],
dc821c5f 5925 i.types[1],
40fb9820 5926 operand_types[1])))
29b0f896
AM
5927 {
5928 /* Check if other direction is valid ... */
38e314eb 5929 if (!t->opcode_modifier.d)
29b0f896
AM
5930 continue;
5931
b6169b20 5932check_reverse:
3ac21baa
JB
5933 if (!(size_match & MATCH_REVERSE))
5934 continue;
29b0f896 5935 /* Try reversing direction of operands. */
f5eb1d70
JB
5936 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5937 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5938 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5939 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5940 || (check_register
dc821c5f 5941 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5942 operand_types[i.operands - 1],
5943 i.types[i.operands - 1],
45664ddb 5944 operand_types[0])))
29b0f896
AM
5945 {
5946 /* Does not match either direction. */
5947 continue;
5948 }
38e314eb 5949 /* found_reverse_match holds which of D or FloatR
29b0f896 5950 we've found. */
38e314eb
JB
5951 if (!t->opcode_modifier.d)
5952 found_reverse_match = 0;
5953 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5954 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5955 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5956 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5957 || operand_types[0].bitfield.regmmx
f5eb1d70 5958 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5959 || is_any_vex_encoding(t))
5960 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5961 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5962 else
38e314eb 5963 found_reverse_match = Opcode_D;
40fb9820 5964 if (t->opcode_modifier.floatr)
8a2ed489 5965 found_reverse_match |= Opcode_FloatR;
29b0f896 5966 }
f48ff2ae 5967 else
29b0f896 5968 {
f48ff2ae 5969 /* Found a forward 2 operand match here. */
d1cbb4db
L
5970 switch (t->operands)
5971 {
c0f3af97
L
5972 case 5:
5973 overlap4 = operand_type_and (i.types[4],
5974 operand_types[4]);
1a0670f3 5975 /* Fall through. */
d1cbb4db 5976 case 4:
c6fb90c8
L
5977 overlap3 = operand_type_and (i.types[3],
5978 operand_types[3]);
1a0670f3 5979 /* Fall through. */
d1cbb4db 5980 case 3:
c6fb90c8
L
5981 overlap2 = operand_type_and (i.types[2],
5982 operand_types[2]);
d1cbb4db
L
5983 break;
5984 }
29b0f896 5985
f48ff2ae
L
5986 switch (t->operands)
5987 {
c0f3af97
L
5988 case 5:
5989 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5990 || !operand_type_register_match (i.types[3],
c0f3af97 5991 operand_types[3],
c0f3af97
L
5992 i.types[4],
5993 operand_types[4]))
5994 continue;
1a0670f3 5995 /* Fall through. */
f48ff2ae 5996 case 4:
40fb9820 5997 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5998 || ((check_register & 0xa) == 0xa
5999 && !operand_type_register_match (i.types[1],
f7768225
JB
6000 operand_types[1],
6001 i.types[3],
e2195274
JB
6002 operand_types[3]))
6003 || ((check_register & 0xc) == 0xc
6004 && !operand_type_register_match (i.types[2],
6005 operand_types[2],
6006 i.types[3],
6007 operand_types[3])))
f48ff2ae 6008 continue;
1a0670f3 6009 /* Fall through. */
f48ff2ae
L
6010 case 3:
6011 /* Here we make use of the fact that there are no
23e42951 6012 reverse match 3 operand instructions. */
40fb9820 6013 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6014 || ((check_register & 5) == 5
6015 && !operand_type_register_match (i.types[0],
23e42951
JB
6016 operand_types[0],
6017 i.types[2],
e2195274
JB
6018 operand_types[2]))
6019 || ((check_register & 6) == 6
6020 && !operand_type_register_match (i.types[1],
6021 operand_types[1],
6022 i.types[2],
6023 operand_types[2])))
f48ff2ae
L
6024 continue;
6025 break;
6026 }
29b0f896 6027 }
f48ff2ae 6028 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6029 slip through to break. */
6030 }
3629bb00 6031 if (!found_cpu_match)
dbbc8b7e 6032 continue;
c0f3af97 6033
5614d22c
JB
6034 /* Check if vector and VEX operands are valid. */
6035 if (check_VecOperands (t) || VEX_check_operands (t))
6036 {
6037 specific_error = i.error;
6038 continue;
6039 }
a683cc34 6040
29b0f896
AM
6041 /* We've found a match; break out of loop. */
6042 break;
6043 }
6044
6045 if (t == current_templates->end)
6046 {
6047 /* We found no match. */
a65babc9 6048 const char *err_msg;
5614d22c 6049 switch (specific_error ? specific_error : i.error)
a65babc9
L
6050 {
6051 default:
6052 abort ();
86e026a4 6053 case operand_size_mismatch:
a65babc9
L
6054 err_msg = _("operand size mismatch");
6055 break;
6056 case operand_type_mismatch:
6057 err_msg = _("operand type mismatch");
6058 break;
6059 case register_type_mismatch:
6060 err_msg = _("register type mismatch");
6061 break;
6062 case number_of_operands_mismatch:
6063 err_msg = _("number of operands mismatch");
6064 break;
6065 case invalid_instruction_suffix:
6066 err_msg = _("invalid instruction suffix");
6067 break;
6068 case bad_imm4:
4a2608e3 6069 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6070 break;
a65babc9
L
6071 case unsupported_with_intel_mnemonic:
6072 err_msg = _("unsupported with Intel mnemonic");
6073 break;
6074 case unsupported_syntax:
6075 err_msg = _("unsupported syntax");
6076 break;
6077 case unsupported:
35262a23 6078 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6079 current_templates->start->name);
6080 return NULL;
6c30d220
L
6081 case invalid_vsib_address:
6082 err_msg = _("invalid VSIB address");
6083 break;
7bab8ab5
JB
6084 case invalid_vector_register_set:
6085 err_msg = _("mask, index, and destination registers must be distinct");
6086 break;
6c30d220
L
6087 case unsupported_vector_index_register:
6088 err_msg = _("unsupported vector index register");
6089 break;
43234a1e
L
6090 case unsupported_broadcast:
6091 err_msg = _("unsupported broadcast");
6092 break;
43234a1e
L
6093 case broadcast_needed:
6094 err_msg = _("broadcast is needed for operand of such type");
6095 break;
6096 case unsupported_masking:
6097 err_msg = _("unsupported masking");
6098 break;
6099 case mask_not_on_destination:
6100 err_msg = _("mask not on destination operand");
6101 break;
6102 case no_default_mask:
6103 err_msg = _("default mask isn't allowed");
6104 break;
6105 case unsupported_rc_sae:
6106 err_msg = _("unsupported static rounding/sae");
6107 break;
6108 case rc_sae_operand_not_last_imm:
6109 if (intel_syntax)
6110 err_msg = _("RC/SAE operand must precede immediate operands");
6111 else
6112 err_msg = _("RC/SAE operand must follow immediate operands");
6113 break;
6114 case invalid_register_operand:
6115 err_msg = _("invalid register operand");
6116 break;
a65babc9
L
6117 }
6118 as_bad (_("%s for `%s'"), err_msg,
891edac4 6119 current_templates->start->name);
fa99fab2 6120 return NULL;
29b0f896 6121 }
252b5132 6122
29b0f896
AM
6123 if (!quiet_warnings)
6124 {
6125 if (!intel_syntax
40fb9820
L
6126 && (i.types[0].bitfield.jumpabsolute
6127 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6128 {
6129 as_warn (_("indirect %s without `*'"), t->name);
6130 }
6131
40fb9820
L
6132 if (t->opcode_modifier.isprefix
6133 && t->opcode_modifier.ignoresize)
29b0f896
AM
6134 {
6135 /* Warn them that a data or address size prefix doesn't
6136 affect assembly of the next line of code. */
6137 as_warn (_("stand-alone `%s' prefix"), t->name);
6138 }
6139 }
6140
6141 /* Copy the template we found. */
6142 i.tm = *t;
539e75ad
L
6143
6144 if (addr_prefix_disp != -1)
6145 i.tm.operand_types[addr_prefix_disp]
6146 = operand_types[addr_prefix_disp];
6147
29b0f896
AM
6148 if (found_reverse_match)
6149 {
6150 /* If we found a reverse match we must alter the opcode
6151 direction bit. found_reverse_match holds bits to change
6152 (different for int & float insns). */
6153
6154 i.tm.base_opcode ^= found_reverse_match;
6155
f5eb1d70
JB
6156 i.tm.operand_types[0] = operand_types[i.operands - 1];
6157 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6158 }
6159
fa99fab2 6160 return t;
29b0f896
AM
6161}
6162
6163static int
e3bb37b5 6164check_string (void)
29b0f896 6165{
40fb9820
L
6166 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6167 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6168 {
6169 if (i.seg[0] != NULL && i.seg[0] != &es)
6170 {
a87af027 6171 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6172 i.tm.name,
a87af027
JB
6173 mem_op + 1,
6174 register_prefix);
29b0f896
AM
6175 return 0;
6176 }
6177 /* There's only ever one segment override allowed per instruction.
6178 This instruction possibly has a legal segment override on the
6179 second operand, so copy the segment to where non-string
6180 instructions store it, allowing common code. */
6181 i.seg[0] = i.seg[1];
6182 }
40fb9820 6183 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6184 {
6185 if (i.seg[1] != NULL && i.seg[1] != &es)
6186 {
a87af027 6187 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6188 i.tm.name,
a87af027
JB
6189 mem_op + 2,
6190 register_prefix);
29b0f896
AM
6191 return 0;
6192 }
6193 }
6194 return 1;
6195}
6196
6197static int
543613e9 6198process_suffix (void)
29b0f896
AM
6199{
6200 /* If matched instruction specifies an explicit instruction mnemonic
6201 suffix, use it. */
673fe0f0 6202 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6203 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6204 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6205 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6206 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6207 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6208 else if (i.reg_operands)
6209 {
6210 /* If there's no instruction mnemonic suffix we try to invent one
6211 based on register operands. */
6212 if (!i.suffix)
6213 {
6214 /* We take i.suffix from the last register operand specified,
6215 Destination register type is more significant than source
381d071f
L
6216 register type. crc32 in SSE4.2 prefers source register
6217 type. */
556059dd 6218 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6219 {
556059dd
JB
6220 if (i.types[0].bitfield.byte)
6221 i.suffix = BYTE_MNEM_SUFFIX;
6222 else if (i.types[0].bitfield.word)
40fb9820 6223 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6224 else if (i.types[0].bitfield.dword)
40fb9820 6225 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6226 else if (i.types[0].bitfield.qword)
40fb9820 6227 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6228 }
6229
6230 if (!i.suffix)
6231 {
6232 int op;
6233
556059dd 6234 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6235 {
6236 /* We have to know the operand size for crc32. */
6237 as_bad (_("ambiguous memory operand size for `%s`"),
6238 i.tm.name);
6239 return 0;
6240 }
6241
381d071f 6242 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6243 if (!i.tm.operand_types[op].bitfield.inoutportreg
6244 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6245 {
8819ada6
JB
6246 if (!i.types[op].bitfield.reg)
6247 continue;
6248 if (i.types[op].bitfield.byte)
6249 i.suffix = BYTE_MNEM_SUFFIX;
6250 else if (i.types[op].bitfield.word)
6251 i.suffix = WORD_MNEM_SUFFIX;
6252 else if (i.types[op].bitfield.dword)
6253 i.suffix = LONG_MNEM_SUFFIX;
6254 else if (i.types[op].bitfield.qword)
6255 i.suffix = QWORD_MNEM_SUFFIX;
6256 else
6257 continue;
6258 break;
381d071f
L
6259 }
6260 }
29b0f896
AM
6261 }
6262 else if (i.suffix == BYTE_MNEM_SUFFIX)
6263 {
2eb952a4
L
6264 if (intel_syntax
6265 && i.tm.opcode_modifier.ignoresize
6266 && i.tm.opcode_modifier.no_bsuf)
6267 i.suffix = 0;
6268 else if (!check_byte_reg ())
29b0f896
AM
6269 return 0;
6270 }
6271 else if (i.suffix == LONG_MNEM_SUFFIX)
6272 {
2eb952a4
L
6273 if (intel_syntax
6274 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6275 && i.tm.opcode_modifier.no_lsuf
6276 && !i.tm.opcode_modifier.todword
6277 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6278 i.suffix = 0;
6279 else if (!check_long_reg ())
29b0f896
AM
6280 return 0;
6281 }
6282 else if (i.suffix == QWORD_MNEM_SUFFIX)
6283 {
955e1e6a
L
6284 if (intel_syntax
6285 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6286 && i.tm.opcode_modifier.no_qsuf
6287 && !i.tm.opcode_modifier.todword
6288 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6289 i.suffix = 0;
6290 else if (!check_qword_reg ())
29b0f896
AM
6291 return 0;
6292 }
6293 else if (i.suffix == WORD_MNEM_SUFFIX)
6294 {
2eb952a4
L
6295 if (intel_syntax
6296 && i.tm.opcode_modifier.ignoresize
6297 && i.tm.opcode_modifier.no_wsuf)
6298 i.suffix = 0;
6299 else if (!check_word_reg ())
29b0f896
AM
6300 return 0;
6301 }
40fb9820 6302 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6303 /* Do nothing if the instruction is going to ignore the prefix. */
6304 ;
6305 else
6306 abort ();
6307 }
40fb9820 6308 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6309 && !i.suffix
6310 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6311 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6312 {
06f74c5c
L
6313 if (stackop_size == LONG_MNEM_SUFFIX
6314 && i.tm.base_opcode == 0xcf)
6315 {
6316 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6317 .code16gcc directive to support 16-bit mode with
6318 32-bit address. For IRET without a suffix, generate
6319 16-bit IRET (opcode 0xcf) to return from an interrupt
6320 handler. */
6321 i.suffix = WORD_MNEM_SUFFIX;
6322 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6323 }
6324 else
6325 i.suffix = stackop_size;
29b0f896 6326 }
9306ca4a
JB
6327 else if (intel_syntax
6328 && !i.suffix
40fb9820
L
6329 && (i.tm.operand_types[0].bitfield.jumpabsolute
6330 || i.tm.opcode_modifier.jumpbyte
6331 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6332 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6333 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6334 {
6335 switch (flag_code)
6336 {
6337 case CODE_64BIT:
40fb9820 6338 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6339 {
6340 i.suffix = QWORD_MNEM_SUFFIX;
6341 break;
6342 }
1a0670f3 6343 /* Fall through. */
9306ca4a 6344 case CODE_32BIT:
40fb9820 6345 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6346 i.suffix = LONG_MNEM_SUFFIX;
6347 break;
6348 case CODE_16BIT:
40fb9820 6349 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6350 i.suffix = WORD_MNEM_SUFFIX;
6351 break;
6352 }
6353 }
252b5132 6354
9306ca4a 6355 if (!i.suffix)
29b0f896 6356 {
9306ca4a
JB
6357 if (!intel_syntax)
6358 {
40fb9820 6359 if (i.tm.opcode_modifier.w)
9306ca4a 6360 {
4eed87de
AM
6361 as_bad (_("no instruction mnemonic suffix given and "
6362 "no register operands; can't size instruction"));
9306ca4a
JB
6363 return 0;
6364 }
6365 }
6366 else
6367 {
40fb9820 6368 unsigned int suffixes;
7ab9ffdd 6369
40fb9820
L
6370 suffixes = !i.tm.opcode_modifier.no_bsuf;
6371 if (!i.tm.opcode_modifier.no_wsuf)
6372 suffixes |= 1 << 1;
6373 if (!i.tm.opcode_modifier.no_lsuf)
6374 suffixes |= 1 << 2;
fc4adea1 6375 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6376 suffixes |= 1 << 3;
6377 if (!i.tm.opcode_modifier.no_ssuf)
6378 suffixes |= 1 << 4;
c2b9da16 6379 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6380 suffixes |= 1 << 5;
6381
6382 /* There are more than suffix matches. */
6383 if (i.tm.opcode_modifier.w
9306ca4a 6384 || ((suffixes & (suffixes - 1))
40fb9820
L
6385 && !i.tm.opcode_modifier.defaultsize
6386 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6387 {
6388 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6389 return 0;
6390 }
6391 }
29b0f896 6392 }
252b5132 6393
d2224064
JB
6394 /* Change the opcode based on the operand size given by i.suffix. */
6395 switch (i.suffix)
29b0f896 6396 {
d2224064
JB
6397 /* Size floating point instruction. */
6398 case LONG_MNEM_SUFFIX:
6399 if (i.tm.opcode_modifier.floatmf)
6400 {
6401 i.tm.base_opcode ^= 4;
6402 break;
6403 }
6404 /* fall through */
6405 case WORD_MNEM_SUFFIX:
6406 case QWORD_MNEM_SUFFIX:
29b0f896 6407 /* It's not a byte, select word/dword operation. */
40fb9820 6408 if (i.tm.opcode_modifier.w)
29b0f896 6409 {
40fb9820 6410 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6411 i.tm.base_opcode |= 8;
6412 else
6413 i.tm.base_opcode |= 1;
6414 }
d2224064
JB
6415 /* fall through */
6416 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6417 /* Now select between word & dword operations via the operand
6418 size prefix, except for instructions that will ignore this
6419 prefix anyway. */
75c0a438
L
6420 if (i.reg_operands > 0
6421 && i.types[0].bitfield.reg
6422 && i.tm.opcode_modifier.addrprefixopreg
6423 && (i.tm.opcode_modifier.immext
6424 || i.operands == 1))
cb712a9e 6425 {
ca61edf2
L
6426 /* The address size override prefix changes the size of the
6427 first operand. */
40fb9820 6428 if ((flag_code == CODE_32BIT
75c0a438 6429 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6430 || (flag_code != CODE_32BIT
75c0a438 6431 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6432 if (!add_prefix (ADDR_PREFIX_OPCODE))
6433 return 0;
6434 }
6435 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6436 && !i.tm.opcode_modifier.ignoresize
6437 && !i.tm.opcode_modifier.floatmf
a38d7118 6438 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6439 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6440 || (flag_code == CODE_64BIT
40fb9820 6441 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6442 {
6443 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6444
40fb9820 6445 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6446 prefix = ADDR_PREFIX_OPCODE;
252b5132 6447
29b0f896
AM
6448 if (!add_prefix (prefix))
6449 return 0;
24eab124 6450 }
252b5132 6451
29b0f896
AM
6452 /* Set mode64 for an operand. */
6453 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6454 && flag_code == CODE_64BIT
d2224064 6455 && !i.tm.opcode_modifier.norex64
46e883c5 6456 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6457 need rex64. */
6458 && ! (i.operands == 2
6459 && i.tm.base_opcode == 0x90
6460 && i.tm.extension_opcode == None
2c703856
JB
6461 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6462 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6463 i.rex |= REX_W;
3e73aa7c 6464
d2224064 6465 break;
29b0f896 6466 }
7ecd2f8b 6467
c0a30a9f
L
6468 if (i.reg_operands != 0
6469 && i.operands > 1
6470 && i.tm.opcode_modifier.addrprefixopreg
6471 && !i.tm.opcode_modifier.immext)
6472 {
6473 /* Check invalid register operand when the address size override
6474 prefix changes the size of register operands. */
6475 unsigned int op;
6476 enum { need_word, need_dword, need_qword } need;
6477
6478 if (flag_code == CODE_32BIT)
6479 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6480 else
6481 {
6482 if (i.prefix[ADDR_PREFIX])
6483 need = need_dword;
6484 else
6485 need = flag_code == CODE_64BIT ? need_qword : need_word;
6486 }
6487
6488 for (op = 0; op < i.operands; op++)
6489 if (i.types[op].bitfield.reg
6490 && ((need == need_word
6491 && !i.op[op].regs->reg_type.bitfield.word)
6492 || (need == need_dword
6493 && !i.op[op].regs->reg_type.bitfield.dword)
6494 || (need == need_qword
6495 && !i.op[op].regs->reg_type.bitfield.qword)))
6496 {
6497 as_bad (_("invalid register operand size for `%s'"),
6498 i.tm.name);
6499 return 0;
6500 }
6501 }
6502
29b0f896
AM
6503 return 1;
6504}
3e73aa7c 6505
29b0f896 6506static int
543613e9 6507check_byte_reg (void)
29b0f896
AM
6508{
6509 int op;
543613e9 6510
29b0f896
AM
6511 for (op = i.operands; --op >= 0;)
6512 {
dc821c5f
JB
6513 /* Skip non-register operands. */
6514 if (!i.types[op].bitfield.reg)
6515 continue;
6516
29b0f896
AM
6517 /* If this is an eight bit register, it's OK. If it's the 16 or
6518 32 bit version of an eight bit register, we will just use the
6519 low portion, and that's OK too. */
dc821c5f 6520 if (i.types[op].bitfield.byte)
29b0f896
AM
6521 continue;
6522
5a819eb9
JB
6523 /* I/O port address operands are OK too. */
6524 if (i.tm.operand_types[op].bitfield.inoutportreg)
6525 continue;
6526
9344ff29
L
6527 /* crc32 doesn't generate this warning. */
6528 if (i.tm.base_opcode == 0xf20f38f0)
6529 continue;
6530
dc821c5f
JB
6531 if ((i.types[op].bitfield.word
6532 || i.types[op].bitfield.dword
6533 || i.types[op].bitfield.qword)
5a819eb9
JB
6534 && i.op[op].regs->reg_num < 4
6535 /* Prohibit these changes in 64bit mode, since the lowering
6536 would be more complicated. */
6537 && flag_code != CODE_64BIT)
29b0f896 6538 {
29b0f896 6539#if REGISTER_WARNINGS
5a819eb9 6540 if (!quiet_warnings)
a540244d
L
6541 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6542 register_prefix,
dc821c5f 6543 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6544 ? REGNAM_AL - REGNAM_AX
6545 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6546 register_prefix,
29b0f896
AM
6547 i.op[op].regs->reg_name,
6548 i.suffix);
6549#endif
6550 continue;
6551 }
6552 /* Any other register is bad. */
dc821c5f 6553 if (i.types[op].bitfield.reg
40fb9820 6554 || i.types[op].bitfield.regmmx
1b54b8d7 6555 || i.types[op].bitfield.regsimd
40fb9820
L
6556 || i.types[op].bitfield.sreg2
6557 || i.types[op].bitfield.sreg3
6558 || i.types[op].bitfield.control
6559 || i.types[op].bitfield.debug
ca0d63fe 6560 || i.types[op].bitfield.test)
29b0f896 6561 {
a540244d
L
6562 as_bad (_("`%s%s' not allowed with `%s%c'"),
6563 register_prefix,
29b0f896
AM
6564 i.op[op].regs->reg_name,
6565 i.tm.name,
6566 i.suffix);
6567 return 0;
6568 }
6569 }
6570 return 1;
6571}
6572
6573static int
e3bb37b5 6574check_long_reg (void)
29b0f896
AM
6575{
6576 int op;
6577
6578 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6579 /* Skip non-register operands. */
6580 if (!i.types[op].bitfield.reg)
6581 continue;
29b0f896
AM
6582 /* Reject eight bit registers, except where the template requires
6583 them. (eg. movzb) */
dc821c5f
JB
6584 else if (i.types[op].bitfield.byte
6585 && (i.tm.operand_types[op].bitfield.reg
6586 || i.tm.operand_types[op].bitfield.acc)
6587 && (i.tm.operand_types[op].bitfield.word
6588 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6589 {
a540244d
L
6590 as_bad (_("`%s%s' not allowed with `%s%c'"),
6591 register_prefix,
29b0f896
AM
6592 i.op[op].regs->reg_name,
6593 i.tm.name,
6594 i.suffix);
6595 return 0;
6596 }
e4630f71 6597 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6598 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6599 && i.types[op].bitfield.word
6600 && (i.tm.operand_types[op].bitfield.reg
6601 || i.tm.operand_types[op].bitfield.acc)
6602 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6603 {
6604 /* Prohibit these changes in the 64bit mode, since the
6605 lowering is more complicated. */
6606 if (flag_code == CODE_64BIT)
252b5132 6607 {
2b5d6a91 6608 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6609 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6610 i.suffix);
6611 return 0;
252b5132 6612 }
29b0f896 6613#if REGISTER_WARNINGS
cecf1424
JB
6614 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6615 register_prefix,
6616 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6617 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6618#endif
252b5132 6619 }
e4630f71 6620 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6621 else if (i.types[op].bitfield.qword
6622 && (i.tm.operand_types[op].bitfield.reg
6623 || i.tm.operand_types[op].bitfield.acc)
6624 && i.tm.operand_types[op].bitfield.dword)
252b5132 6625 {
34828aad 6626 if (intel_syntax
ca61edf2 6627 && i.tm.opcode_modifier.toqword
1b54b8d7 6628 && !i.types[0].bitfield.regsimd)
34828aad 6629 {
ca61edf2 6630 /* Convert to QWORD. We want REX byte. */
34828aad
L
6631 i.suffix = QWORD_MNEM_SUFFIX;
6632 }
6633 else
6634 {
2b5d6a91 6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6636 register_prefix, i.op[op].regs->reg_name,
6637 i.suffix);
6638 return 0;
6639 }
29b0f896
AM
6640 }
6641 return 1;
6642}
252b5132 6643
29b0f896 6644static int
e3bb37b5 6645check_qword_reg (void)
29b0f896
AM
6646{
6647 int op;
252b5132 6648
29b0f896 6649 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6650 /* Skip non-register operands. */
6651 if (!i.types[op].bitfield.reg)
6652 continue;
29b0f896
AM
6653 /* Reject eight bit registers, except where the template requires
6654 them. (eg. movzb) */
dc821c5f
JB
6655 else if (i.types[op].bitfield.byte
6656 && (i.tm.operand_types[op].bitfield.reg
6657 || i.tm.operand_types[op].bitfield.acc)
6658 && (i.tm.operand_types[op].bitfield.word
6659 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6660 {
a540244d
L
6661 as_bad (_("`%s%s' not allowed with `%s%c'"),
6662 register_prefix,
29b0f896
AM
6663 i.op[op].regs->reg_name,
6664 i.tm.name,
6665 i.suffix);
6666 return 0;
6667 }
e4630f71 6668 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6669 else if ((i.types[op].bitfield.word
6670 || i.types[op].bitfield.dword)
6671 && (i.tm.operand_types[op].bitfield.reg
6672 || i.tm.operand_types[op].bitfield.acc)
6673 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6674 {
6675 /* Prohibit these changes in the 64bit mode, since the
6676 lowering is more complicated. */
34828aad 6677 if (intel_syntax
ca61edf2 6678 && i.tm.opcode_modifier.todword
1b54b8d7 6679 && !i.types[0].bitfield.regsimd)
34828aad 6680 {
ca61edf2 6681 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6682 i.suffix = LONG_MNEM_SUFFIX;
6683 }
6684 else
6685 {
2b5d6a91 6686 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6687 register_prefix, i.op[op].regs->reg_name,
6688 i.suffix);
6689 return 0;
6690 }
252b5132 6691 }
29b0f896
AM
6692 return 1;
6693}
252b5132 6694
29b0f896 6695static int
e3bb37b5 6696check_word_reg (void)
29b0f896
AM
6697{
6698 int op;
6699 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6700 /* Skip non-register operands. */
6701 if (!i.types[op].bitfield.reg)
6702 continue;
29b0f896
AM
6703 /* Reject eight bit registers, except where the template requires
6704 them. (eg. movzb) */
dc821c5f
JB
6705 else if (i.types[op].bitfield.byte
6706 && (i.tm.operand_types[op].bitfield.reg
6707 || i.tm.operand_types[op].bitfield.acc)
6708 && (i.tm.operand_types[op].bitfield.word
6709 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6710 {
a540244d
L
6711 as_bad (_("`%s%s' not allowed with `%s%c'"),
6712 register_prefix,
29b0f896
AM
6713 i.op[op].regs->reg_name,
6714 i.tm.name,
6715 i.suffix);
6716 return 0;
6717 }
e4630f71 6718 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6719 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6720 && (i.types[op].bitfield.dword
6721 || i.types[op].bitfield.qword)
6722 && (i.tm.operand_types[op].bitfield.reg
6723 || i.tm.operand_types[op].bitfield.acc)
6724 && i.tm.operand_types[op].bitfield.word)
252b5132 6725 {
29b0f896
AM
6726 /* Prohibit these changes in the 64bit mode, since the
6727 lowering is more complicated. */
6728 if (flag_code == CODE_64BIT)
252b5132 6729 {
2b5d6a91 6730 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6731 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6732 i.suffix);
6733 return 0;
252b5132 6734 }
29b0f896 6735#if REGISTER_WARNINGS
cecf1424
JB
6736 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6737 register_prefix,
6738 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6739 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6740#endif
6741 }
6742 return 1;
6743}
252b5132 6744
29b0f896 6745static int
40fb9820 6746update_imm (unsigned int j)
29b0f896 6747{
bc0844ae 6748 i386_operand_type overlap = i.types[j];
40fb9820
L
6749 if ((overlap.bitfield.imm8
6750 || overlap.bitfield.imm8s
6751 || overlap.bitfield.imm16
6752 || overlap.bitfield.imm32
6753 || overlap.bitfield.imm32s
6754 || overlap.bitfield.imm64)
0dfbf9d7
L
6755 && !operand_type_equal (&overlap, &imm8)
6756 && !operand_type_equal (&overlap, &imm8s)
6757 && !operand_type_equal (&overlap, &imm16)
6758 && !operand_type_equal (&overlap, &imm32)
6759 && !operand_type_equal (&overlap, &imm32s)
6760 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6761 {
6762 if (i.suffix)
6763 {
40fb9820
L
6764 i386_operand_type temp;
6765
0dfbf9d7 6766 operand_type_set (&temp, 0);
7ab9ffdd 6767 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6768 {
6769 temp.bitfield.imm8 = overlap.bitfield.imm8;
6770 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6771 }
6772 else if (i.suffix == WORD_MNEM_SUFFIX)
6773 temp.bitfield.imm16 = overlap.bitfield.imm16;
6774 else if (i.suffix == QWORD_MNEM_SUFFIX)
6775 {
6776 temp.bitfield.imm64 = overlap.bitfield.imm64;
6777 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6778 }
6779 else
6780 temp.bitfield.imm32 = overlap.bitfield.imm32;
6781 overlap = temp;
29b0f896 6782 }
0dfbf9d7
L
6783 else if (operand_type_equal (&overlap, &imm16_32_32s)
6784 || operand_type_equal (&overlap, &imm16_32)
6785 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6786 {
40fb9820 6787 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6788 overlap = imm16;
40fb9820 6789 else
65da13b5 6790 overlap = imm32s;
29b0f896 6791 }
0dfbf9d7
L
6792 if (!operand_type_equal (&overlap, &imm8)
6793 && !operand_type_equal (&overlap, &imm8s)
6794 && !operand_type_equal (&overlap, &imm16)
6795 && !operand_type_equal (&overlap, &imm32)
6796 && !operand_type_equal (&overlap, &imm32s)
6797 && !operand_type_equal (&overlap, &imm64))
29b0f896 6798 {
4eed87de
AM
6799 as_bad (_("no instruction mnemonic suffix given; "
6800 "can't determine immediate size"));
29b0f896
AM
6801 return 0;
6802 }
6803 }
40fb9820 6804 i.types[j] = overlap;
29b0f896 6805
40fb9820
L
6806 return 1;
6807}
6808
6809static int
6810finalize_imm (void)
6811{
bc0844ae 6812 unsigned int j, n;
29b0f896 6813
bc0844ae
L
6814 /* Update the first 2 immediate operands. */
6815 n = i.operands > 2 ? 2 : i.operands;
6816 if (n)
6817 {
6818 for (j = 0; j < n; j++)
6819 if (update_imm (j) == 0)
6820 return 0;
40fb9820 6821
bc0844ae
L
6822 /* The 3rd operand can't be immediate operand. */
6823 gas_assert (operand_type_check (i.types[2], imm) == 0);
6824 }
29b0f896
AM
6825
6826 return 1;
6827}
6828
6829static int
e3bb37b5 6830process_operands (void)
29b0f896
AM
6831{
6832 /* Default segment register this instruction will use for memory
6833 accesses. 0 means unknown. This is only for optimizing out
6834 unnecessary segment overrides. */
6835 const seg_entry *default_seg = 0;
6836
2426c15f 6837 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6838 {
91d6fa6a
NC
6839 unsigned int dupl = i.operands;
6840 unsigned int dest = dupl - 1;
9fcfb3d7
L
6841 unsigned int j;
6842
c0f3af97 6843 /* The destination must be an xmm register. */
9c2799c2 6844 gas_assert (i.reg_operands
91d6fa6a 6845 && MAX_OPERANDS > dupl
7ab9ffdd 6846 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6847
1b54b8d7
JB
6848 if (i.tm.operand_types[0].bitfield.acc
6849 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6850 {
8cd7925b 6851 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6852 {
6853 /* Keep xmm0 for instructions with VEX prefix and 3
6854 sources. */
1b54b8d7
JB
6855 i.tm.operand_types[0].bitfield.acc = 0;
6856 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6857 goto duplicate;
6858 }
e2ec9d29 6859 else
c0f3af97
L
6860 {
6861 /* We remove the first xmm0 and keep the number of
6862 operands unchanged, which in fact duplicates the
6863 destination. */
6864 for (j = 1; j < i.operands; j++)
6865 {
6866 i.op[j - 1] = i.op[j];
6867 i.types[j - 1] = i.types[j];
6868 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6869 }
6870 }
6871 }
6872 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6873 {
91d6fa6a 6874 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6875 && (i.tm.opcode_modifier.vexsources
6876 == VEX3SOURCES));
c0f3af97
L
6877
6878 /* Add the implicit xmm0 for instructions with VEX prefix
6879 and 3 sources. */
6880 for (j = i.operands; j > 0; j--)
6881 {
6882 i.op[j] = i.op[j - 1];
6883 i.types[j] = i.types[j - 1];
6884 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6885 }
6886 i.op[0].regs
6887 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6888 i.types[0] = regxmm;
c0f3af97
L
6889 i.tm.operand_types[0] = regxmm;
6890
6891 i.operands += 2;
6892 i.reg_operands += 2;
6893 i.tm.operands += 2;
6894
91d6fa6a 6895 dupl++;
c0f3af97 6896 dest++;
91d6fa6a
NC
6897 i.op[dupl] = i.op[dest];
6898 i.types[dupl] = i.types[dest];
6899 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6900 }
c0f3af97
L
6901 else
6902 {
6903duplicate:
6904 i.operands++;
6905 i.reg_operands++;
6906 i.tm.operands++;
6907
91d6fa6a
NC
6908 i.op[dupl] = i.op[dest];
6909 i.types[dupl] = i.types[dest];
6910 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6911 }
6912
6913 if (i.tm.opcode_modifier.immext)
6914 process_immext ();
6915 }
1b54b8d7
JB
6916 else if (i.tm.operand_types[0].bitfield.acc
6917 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6918 {
6919 unsigned int j;
6920
9fcfb3d7
L
6921 for (j = 1; j < i.operands; j++)
6922 {
6923 i.op[j - 1] = i.op[j];
6924 i.types[j - 1] = i.types[j];
6925
6926 /* We need to adjust fields in i.tm since they are used by
6927 build_modrm_byte. */
6928 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6929 }
6930
e2ec9d29
L
6931 i.operands--;
6932 i.reg_operands--;
e2ec9d29
L
6933 i.tm.operands--;
6934 }
920d2ddc
IT
6935 else if (i.tm.opcode_modifier.implicitquadgroup)
6936 {
a477a8c4
JB
6937 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6938
920d2ddc 6939 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6940 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6941 regnum = register_number (i.op[1].regs);
6942 first_reg_in_group = regnum & ~3;
6943 last_reg_in_group = first_reg_in_group + 3;
6944 if (regnum != first_reg_in_group)
6945 as_warn (_("source register `%s%s' implicitly denotes"
6946 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6947 register_prefix, i.op[1].regs->reg_name,
6948 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6949 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6950 i.tm.name);
6951 }
e2ec9d29
L
6952 else if (i.tm.opcode_modifier.regkludge)
6953 {
6954 /* The imul $imm, %reg instruction is converted into
6955 imul $imm, %reg, %reg, and the clr %reg instruction
6956 is converted into xor %reg, %reg. */
6957
6958 unsigned int first_reg_op;
6959
6960 if (operand_type_check (i.types[0], reg))
6961 first_reg_op = 0;
6962 else
6963 first_reg_op = 1;
6964 /* Pretend we saw the extra register operand. */
9c2799c2 6965 gas_assert (i.reg_operands == 1
7ab9ffdd 6966 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6967 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6968 i.types[first_reg_op + 1] = i.types[first_reg_op];
6969 i.operands++;
6970 i.reg_operands++;
29b0f896
AM
6971 }
6972
40fb9820 6973 if (i.tm.opcode_modifier.shortform)
29b0f896 6974 {
40fb9820
L
6975 if (i.types[0].bitfield.sreg2
6976 || i.types[0].bitfield.sreg3)
29b0f896 6977 {
4eed87de
AM
6978 if (i.tm.base_opcode == POP_SEG_SHORT
6979 && i.op[0].regs->reg_num == 1)
29b0f896 6980 {
a87af027 6981 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6982 return 0;
29b0f896 6983 }
4eed87de
AM
6984 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6985 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6986 i.rex |= REX_B;
4eed87de
AM
6987 }
6988 else
6989 {
7ab9ffdd 6990 /* The register or float register operand is in operand
85f10a01 6991 0 or 1. */
40fb9820 6992 unsigned int op;
7ab9ffdd 6993
ca0d63fe 6994 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6995 || operand_type_check (i.types[0], reg))
6996 op = 0;
6997 else
6998 op = 1;
4eed87de
AM
6999 /* Register goes in low 3 bits of opcode. */
7000 i.tm.base_opcode |= i.op[op].regs->reg_num;
7001 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 7002 i.rex |= REX_B;
40fb9820 7003 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 7004 {
4eed87de
AM
7005 /* Warn about some common errors, but press on regardless.
7006 The first case can be generated by gcc (<= 2.8.1). */
7007 if (i.operands == 2)
7008 {
7009 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 7010 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
7011 register_prefix, i.op[!intel_syntax].regs->reg_name,
7012 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
7013 }
7014 else
7015 {
7016 /* Extraneous `l' suffix on fp insn. */
a540244d
L
7017 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7018 register_prefix, i.op[0].regs->reg_name);
4eed87de 7019 }
29b0f896
AM
7020 }
7021 }
7022 }
40fb9820 7023 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7024 {
7025 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7026 must be put into the modrm byte). Now, we make the modrm and
7027 index base bytes based on all the info we've collected. */
29b0f896
AM
7028
7029 default_seg = build_modrm_byte ();
7030 }
8a2ed489 7031 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7032 {
7033 default_seg = &ds;
7034 }
40fb9820 7035 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7036 {
7037 /* For the string instructions that allow a segment override
7038 on one of their operands, the default segment is ds. */
7039 default_seg = &ds;
7040 }
7041
75178d9d
L
7042 if (i.tm.base_opcode == 0x8d /* lea */
7043 && i.seg[0]
7044 && !quiet_warnings)
30123838 7045 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7046
7047 /* If a segment was explicitly specified, and the specified segment
7048 is not the default, use an opcode prefix to select it. If we
7049 never figured out what the default segment is, then default_seg
7050 will be zero at this point, and the specified segment prefix will
7051 always be used. */
29b0f896
AM
7052 if ((i.seg[0]) && (i.seg[0] != default_seg))
7053 {
7054 if (!add_prefix (i.seg[0]->seg_prefix))
7055 return 0;
7056 }
7057 return 1;
7058}
7059
7060static const seg_entry *
e3bb37b5 7061build_modrm_byte (void)
29b0f896
AM
7062{
7063 const seg_entry *default_seg = 0;
c0f3af97 7064 unsigned int source, dest;
8cd7925b 7065 int vex_3_sources;
c0f3af97 7066
8cd7925b 7067 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7068 if (vex_3_sources)
7069 {
91d6fa6a 7070 unsigned int nds, reg_slot;
4c2c6516 7071 expressionS *exp;
c0f3af97 7072
6b8d3588 7073 dest = i.operands - 1;
c0f3af97 7074 nds = dest - 1;
922d8de8 7075
a683cc34 7076 /* There are 2 kinds of instructions:
bed3d976
JB
7077 1. 5 operands: 4 register operands or 3 register operands
7078 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7079 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7080 ZMM register.
bed3d976 7081 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7082 plus 1 memory operand, with VexXDS. */
922d8de8 7083 gas_assert ((i.reg_operands == 4
bed3d976
JB
7084 || (i.reg_operands == 3 && i.mem_operands == 1))
7085 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7086 && i.tm.opcode_modifier.vexw
7087 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7088
48db9223
JB
7089 /* If VexW1 is set, the first non-immediate operand is the source and
7090 the second non-immediate one is encoded in the immediate operand. */
7091 if (i.tm.opcode_modifier.vexw == VEXW1)
7092 {
7093 source = i.imm_operands;
7094 reg_slot = i.imm_operands + 1;
7095 }
7096 else
7097 {
7098 source = i.imm_operands + 1;
7099 reg_slot = i.imm_operands;
7100 }
7101
a683cc34 7102 if (i.imm_operands == 0)
bed3d976
JB
7103 {
7104 /* When there is no immediate operand, generate an 8bit
7105 immediate operand to encode the first operand. */
7106 exp = &im_expressions[i.imm_operands++];
7107 i.op[i.operands].imms = exp;
7108 i.types[i.operands] = imm8;
7109 i.operands++;
7110
7111 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7112 exp->X_op = O_constant;
7113 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7114 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7115 }
922d8de8 7116 else
bed3d976
JB
7117 {
7118 unsigned int imm_slot;
a683cc34 7119
2f1bada2
JB
7120 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7121
bed3d976
JB
7122 if (i.tm.opcode_modifier.immext)
7123 {
7124 /* When ImmExt is set, the immediate byte is the last
7125 operand. */
7126 imm_slot = i.operands - 1;
7127 source--;
7128 reg_slot--;
7129 }
7130 else
7131 {
7132 imm_slot = 0;
7133
7134 /* Turn on Imm8 so that output_imm will generate it. */
7135 i.types[imm_slot].bitfield.imm8 = 1;
7136 }
7137
7138 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7139 i.op[imm_slot].imms->X_add_number
7140 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7141 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7142 }
a683cc34 7143
10c17abd 7144 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7145 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7146 }
7147 else
7148 source = dest = 0;
29b0f896
AM
7149
7150 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7151 implicit registers do not count. If there are 3 register
7152 operands, it must be a instruction with VexNDS. For a
7153 instruction with VexNDD, the destination register is encoded
7154 in VEX prefix. If there are 4 register operands, it must be
7155 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7156 if (i.mem_operands == 0
7157 && ((i.reg_operands == 2
2426c15f 7158 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7159 || (i.reg_operands == 3
2426c15f 7160 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7161 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7162 {
cab737b9
L
7163 switch (i.operands)
7164 {
7165 case 2:
7166 source = 0;
7167 break;
7168 case 3:
c81128dc
L
7169 /* When there are 3 operands, one of them may be immediate,
7170 which may be the first or the last operand. Otherwise,
c0f3af97
L
7171 the first operand must be shift count register (cl) or it
7172 is an instruction with VexNDS. */
9c2799c2 7173 gas_assert (i.imm_operands == 1
7ab9ffdd 7174 || (i.imm_operands == 0
2426c15f 7175 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7176 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7177 if (operand_type_check (i.types[0], imm)
7178 || i.types[0].bitfield.shiftcount)
7179 source = 1;
7180 else
7181 source = 0;
cab737b9
L
7182 break;
7183 case 4:
368d64cc
L
7184 /* When there are 4 operands, the first two must be 8bit
7185 immediate operands. The source operand will be the 3rd
c0f3af97
L
7186 one.
7187
7188 For instructions with VexNDS, if the first operand
7189 an imm8, the source operand is the 2nd one. If the last
7190 operand is imm8, the source operand is the first one. */
9c2799c2 7191 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7192 && i.types[0].bitfield.imm8
7193 && i.types[1].bitfield.imm8)
2426c15f 7194 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7195 && i.imm_operands == 1
7196 && (i.types[0].bitfield.imm8
43234a1e
L
7197 || i.types[i.operands - 1].bitfield.imm8
7198 || i.rounding)));
9f2670f2
L
7199 if (i.imm_operands == 2)
7200 source = 2;
7201 else
c0f3af97
L
7202 {
7203 if (i.types[0].bitfield.imm8)
7204 source = 1;
7205 else
7206 source = 0;
7207 }
c0f3af97
L
7208 break;
7209 case 5:
e771e7c9 7210 if (is_evex_encoding (&i.tm))
43234a1e
L
7211 {
7212 /* For EVEX instructions, when there are 5 operands, the
7213 first one must be immediate operand. If the second one
7214 is immediate operand, the source operand is the 3th
7215 one. If the last one is immediate operand, the source
7216 operand is the 2nd one. */
7217 gas_assert (i.imm_operands == 2
7218 && i.tm.opcode_modifier.sae
7219 && operand_type_check (i.types[0], imm));
7220 if (operand_type_check (i.types[1], imm))
7221 source = 2;
7222 else if (operand_type_check (i.types[4], imm))
7223 source = 1;
7224 else
7225 abort ();
7226 }
cab737b9
L
7227 break;
7228 default:
7229 abort ();
7230 }
7231
c0f3af97
L
7232 if (!vex_3_sources)
7233 {
7234 dest = source + 1;
7235
43234a1e
L
7236 /* RC/SAE operand could be between DEST and SRC. That happens
7237 when one operand is GPR and the other one is XMM/YMM/ZMM
7238 register. */
7239 if (i.rounding && i.rounding->operand == (int) dest)
7240 dest++;
7241
2426c15f 7242 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7243 {
43234a1e 7244 /* For instructions with VexNDS, the register-only source
c5d0745b 7245 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7246 register. It is encoded in VEX prefix. We need to
7247 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7248
7249 i386_operand_type op;
7250 unsigned int vvvv;
7251
7252 /* Check register-only source operand when two source
7253 operands are swapped. */
7254 if (!i.tm.operand_types[source].bitfield.baseindex
7255 && i.tm.operand_types[dest].bitfield.baseindex)
7256 {
7257 vvvv = source;
7258 source = dest;
7259 }
7260 else
7261 vvvv = dest;
7262
7263 op = i.tm.operand_types[vvvv];
fa99fab2 7264 op.bitfield.regmem = 0;
c0f3af97 7265 if ((dest + 1) >= i.operands
dc821c5f
JB
7266 || ((!op.bitfield.reg
7267 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7268 && !op.bitfield.regsimd
43234a1e 7269 && !operand_type_equal (&op, &regmask)))
c0f3af97 7270 abort ();
f12dc422 7271 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7272 dest++;
7273 }
7274 }
29b0f896
AM
7275
7276 i.rm.mode = 3;
7277 /* One of the register operands will be encoded in the i.tm.reg
7278 field, the other in the combined i.tm.mode and i.tm.regmem
7279 fields. If no form of this instruction supports a memory
7280 destination operand, then we assume the source operand may
7281 sometimes be a memory operand and so we need to store the
7282 destination in the i.rm.reg field. */
40fb9820
L
7283 if (!i.tm.operand_types[dest].bitfield.regmem
7284 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7285 {
7286 i.rm.reg = i.op[dest].regs->reg_num;
7287 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7288 if (i.op[dest].regs->reg_type.bitfield.regmmx
7289 || i.op[source].regs->reg_type.bitfield.regmmx)
7290 i.has_regmmx = TRUE;
7291 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7292 || i.op[source].regs->reg_type.bitfield.regsimd)
7293 {
7294 if (i.types[dest].bitfield.zmmword
7295 || i.types[source].bitfield.zmmword)
7296 i.has_regzmm = TRUE;
7297 else if (i.types[dest].bitfield.ymmword
7298 || i.types[source].bitfield.ymmword)
7299 i.has_regymm = TRUE;
7300 else
7301 i.has_regxmm = TRUE;
7302 }
29b0f896 7303 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7304 i.rex |= REX_R;
43234a1e
L
7305 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7306 i.vrex |= REX_R;
29b0f896 7307 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7308 i.rex |= REX_B;
43234a1e
L
7309 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_B;
29b0f896
AM
7311 }
7312 else
7313 {
7314 i.rm.reg = i.op[source].regs->reg_num;
7315 i.rm.regmem = i.op[dest].regs->reg_num;
7316 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7317 i.rex |= REX_B;
43234a1e
L
7318 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7319 i.vrex |= REX_B;
29b0f896 7320 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7321 i.rex |= REX_R;
43234a1e
L
7322 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_R;
29b0f896 7324 }
e0c7f900 7325 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7326 {
e0c7f900 7327 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7328 abort ();
e0c7f900 7329 i.rex &= ~REX_R;
c4a530c5
JB
7330 add_prefix (LOCK_PREFIX_OPCODE);
7331 }
29b0f896
AM
7332 }
7333 else
7334 { /* If it's not 2 reg operands... */
c0f3af97
L
7335 unsigned int mem;
7336
29b0f896
AM
7337 if (i.mem_operands)
7338 {
7339 unsigned int fake_zero_displacement = 0;
99018f42 7340 unsigned int op;
4eed87de 7341
7ab9ffdd
L
7342 for (op = 0; op < i.operands; op++)
7343 if (operand_type_check (i.types[op], anymem))
7344 break;
7ab9ffdd 7345 gas_assert (op < i.operands);
29b0f896 7346
6c30d220
L
7347 if (i.tm.opcode_modifier.vecsib)
7348 {
e968fc9b 7349 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7350 abort ();
7351
7352 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7353 if (!i.base_reg)
7354 {
7355 i.sib.base = NO_BASE_REGISTER;
7356 i.sib.scale = i.log2_scale_factor;
7357 i.types[op].bitfield.disp8 = 0;
7358 i.types[op].bitfield.disp16 = 0;
7359 i.types[op].bitfield.disp64 = 0;
43083a50 7360 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7361 {
7362 /* Must be 32 bit */
7363 i.types[op].bitfield.disp32 = 1;
7364 i.types[op].bitfield.disp32s = 0;
7365 }
7366 else
7367 {
7368 i.types[op].bitfield.disp32 = 0;
7369 i.types[op].bitfield.disp32s = 1;
7370 }
7371 }
7372 i.sib.index = i.index_reg->reg_num;
7373 if ((i.index_reg->reg_flags & RegRex) != 0)
7374 i.rex |= REX_X;
43234a1e
L
7375 if ((i.index_reg->reg_flags & RegVRex) != 0)
7376 i.vrex |= REX_X;
6c30d220
L
7377 }
7378
29b0f896
AM
7379 default_seg = &ds;
7380
7381 if (i.base_reg == 0)
7382 {
7383 i.rm.mode = 0;
7384 if (!i.disp_operands)
9bb129e8 7385 fake_zero_displacement = 1;
29b0f896
AM
7386 if (i.index_reg == 0)
7387 {
73053c1f
JB
7388 i386_operand_type newdisp;
7389
6c30d220 7390 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7391 /* Operand is just <disp> */
20f0a1fc 7392 if (flag_code == CODE_64BIT)
29b0f896
AM
7393 {
7394 /* 64bit mode overwrites the 32bit absolute
7395 addressing by RIP relative addressing and
7396 absolute addressing is encoded by one of the
7397 redundant SIB forms. */
7398 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7399 i.sib.base = NO_BASE_REGISTER;
7400 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7401 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7402 }
fc225355
L
7403 else if ((flag_code == CODE_16BIT)
7404 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7405 {
7406 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7407 newdisp = disp16;
20f0a1fc
NC
7408 }
7409 else
7410 {
7411 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7412 newdisp = disp32;
29b0f896 7413 }
73053c1f
JB
7414 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7415 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7416 }
6c30d220 7417 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7418 {
6c30d220 7419 /* !i.base_reg && i.index_reg */
e968fc9b 7420 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7421 i.sib.index = NO_INDEX_REGISTER;
7422 else
7423 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7424 i.sib.base = NO_BASE_REGISTER;
7425 i.sib.scale = i.log2_scale_factor;
7426 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7427 i.types[op].bitfield.disp8 = 0;
7428 i.types[op].bitfield.disp16 = 0;
7429 i.types[op].bitfield.disp64 = 0;
43083a50 7430 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7431 {
7432 /* Must be 32 bit */
7433 i.types[op].bitfield.disp32 = 1;
7434 i.types[op].bitfield.disp32s = 0;
7435 }
29b0f896 7436 else
40fb9820
L
7437 {
7438 i.types[op].bitfield.disp32 = 0;
7439 i.types[op].bitfield.disp32s = 1;
7440 }
29b0f896 7441 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7442 i.rex |= REX_X;
29b0f896
AM
7443 }
7444 }
7445 /* RIP addressing for 64bit mode. */
e968fc9b 7446 else if (i.base_reg->reg_num == RegIP)
29b0f896 7447 {
6c30d220 7448 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7449 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp32 = 0;
7453 i.types[op].bitfield.disp32s = 1;
7454 i.types[op].bitfield.disp64 = 0;
71903a11 7455 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7456 if (! i.disp_operands)
7457 fake_zero_displacement = 1;
29b0f896 7458 }
dc821c5f 7459 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7460 {
6c30d220 7461 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7462 switch (i.base_reg->reg_num)
7463 {
7464 case 3: /* (%bx) */
7465 if (i.index_reg == 0)
7466 i.rm.regmem = 7;
7467 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7468 i.rm.regmem = i.index_reg->reg_num - 6;
7469 break;
7470 case 5: /* (%bp) */
7471 default_seg = &ss;
7472 if (i.index_reg == 0)
7473 {
7474 i.rm.regmem = 6;
40fb9820 7475 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7476 {
7477 /* fake (%bp) into 0(%bp) */
b5014f7a 7478 i.types[op].bitfield.disp8 = 1;
252b5132 7479 fake_zero_displacement = 1;
29b0f896
AM
7480 }
7481 }
7482 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7483 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7484 break;
7485 default: /* (%si) -> 4 or (%di) -> 5 */
7486 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7487 }
7488 i.rm.mode = mode_from_disp_size (i.types[op]);
7489 }
7490 else /* i.base_reg and 32/64 bit mode */
7491 {
7492 if (flag_code == CODE_64BIT
40fb9820
L
7493 && operand_type_check (i.types[op], disp))
7494 {
73053c1f
JB
7495 i.types[op].bitfield.disp16 = 0;
7496 i.types[op].bitfield.disp64 = 0;
40fb9820 7497 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7498 {
7499 i.types[op].bitfield.disp32 = 0;
7500 i.types[op].bitfield.disp32s = 1;
7501 }
40fb9820 7502 else
73053c1f
JB
7503 {
7504 i.types[op].bitfield.disp32 = 1;
7505 i.types[op].bitfield.disp32s = 0;
7506 }
40fb9820 7507 }
20f0a1fc 7508
6c30d220
L
7509 if (!i.tm.opcode_modifier.vecsib)
7510 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7511 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7512 i.rex |= REX_B;
29b0f896
AM
7513 i.sib.base = i.base_reg->reg_num;
7514 /* x86-64 ignores REX prefix bit here to avoid decoder
7515 complications. */
848930b2
JB
7516 if (!(i.base_reg->reg_flags & RegRex)
7517 && (i.base_reg->reg_num == EBP_REG_NUM
7518 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7519 default_seg = &ss;
848930b2 7520 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7521 {
848930b2 7522 fake_zero_displacement = 1;
b5014f7a 7523 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7524 }
7525 i.sib.scale = i.log2_scale_factor;
7526 if (i.index_reg == 0)
7527 {
6c30d220 7528 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7529 /* <disp>(%esp) becomes two byte modrm with no index
7530 register. We've already stored the code for esp
7531 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7532 Any base register besides %esp will not use the
7533 extra modrm byte. */
7534 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7535 }
6c30d220 7536 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7537 {
e968fc9b 7538 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7539 i.sib.index = NO_INDEX_REGISTER;
7540 else
7541 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7542 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7543 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7544 i.rex |= REX_X;
29b0f896 7545 }
67a4f2b7
AO
7546
7547 if (i.disp_operands
7548 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7549 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7550 i.rm.mode = 0;
7551 else
a501d77e
L
7552 {
7553 if (!fake_zero_displacement
7554 && !i.disp_operands
7555 && i.disp_encoding)
7556 {
7557 fake_zero_displacement = 1;
7558 if (i.disp_encoding == disp_encoding_8bit)
7559 i.types[op].bitfield.disp8 = 1;
7560 else
7561 i.types[op].bitfield.disp32 = 1;
7562 }
7563 i.rm.mode = mode_from_disp_size (i.types[op]);
7564 }
29b0f896 7565 }
252b5132 7566
29b0f896
AM
7567 if (fake_zero_displacement)
7568 {
7569 /* Fakes a zero displacement assuming that i.types[op]
7570 holds the correct displacement size. */
7571 expressionS *exp;
7572
9c2799c2 7573 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7574 exp = &disp_expressions[i.disp_operands++];
7575 i.op[op].disps = exp;
7576 exp->X_op = O_constant;
7577 exp->X_add_number = 0;
7578 exp->X_add_symbol = (symbolS *) 0;
7579 exp->X_op_symbol = (symbolS *) 0;
7580 }
c0f3af97
L
7581
7582 mem = op;
29b0f896 7583 }
c0f3af97
L
7584 else
7585 mem = ~0;
252b5132 7586
8c43a48b 7587 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7588 {
7589 if (operand_type_check (i.types[0], imm))
7590 i.vex.register_specifier = NULL;
7591 else
7592 {
7593 /* VEX.vvvv encodes one of the sources when the first
7594 operand is not an immediate. */
1ef99a7b 7595 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7596 i.vex.register_specifier = i.op[0].regs;
7597 else
7598 i.vex.register_specifier = i.op[1].regs;
7599 }
7600
7601 /* Destination is a XMM register encoded in the ModRM.reg
7602 and VEX.R bit. */
7603 i.rm.reg = i.op[2].regs->reg_num;
7604 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7605 i.rex |= REX_R;
7606
7607 /* ModRM.rm and VEX.B encodes the other source. */
7608 if (!i.mem_operands)
7609 {
7610 i.rm.mode = 3;
7611
1ef99a7b 7612 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7613 i.rm.regmem = i.op[1].regs->reg_num;
7614 else
7615 i.rm.regmem = i.op[0].regs->reg_num;
7616
7617 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7618 i.rex |= REX_B;
7619 }
7620 }
2426c15f 7621 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7622 {
7623 i.vex.register_specifier = i.op[2].regs;
7624 if (!i.mem_operands)
7625 {
7626 i.rm.mode = 3;
7627 i.rm.regmem = i.op[1].regs->reg_num;
7628 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7629 i.rex |= REX_B;
7630 }
7631 }
29b0f896
AM
7632 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7633 (if any) based on i.tm.extension_opcode. Again, we must be
7634 careful to make sure that segment/control/debug/test/MMX
7635 registers are coded into the i.rm.reg field. */
f88c9eb0 7636 else if (i.reg_operands)
29b0f896 7637 {
99018f42 7638 unsigned int op;
7ab9ffdd
L
7639 unsigned int vex_reg = ~0;
7640
7641 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7642 {
7643 if (i.types[op].bitfield.reg
7644 || i.types[op].bitfield.regbnd
7645 || i.types[op].bitfield.regmask
7646 || i.types[op].bitfield.sreg2
7647 || i.types[op].bitfield.sreg3
7648 || i.types[op].bitfield.control
7649 || i.types[op].bitfield.debug
7650 || i.types[op].bitfield.test)
7651 break;
7652 if (i.types[op].bitfield.regsimd)
7653 {
7654 if (i.types[op].bitfield.zmmword)
7655 i.has_regzmm = TRUE;
7656 else if (i.types[op].bitfield.ymmword)
7657 i.has_regymm = TRUE;
7658 else
7659 i.has_regxmm = TRUE;
7660 break;
7661 }
7662 if (i.types[op].bitfield.regmmx)
7663 {
7664 i.has_regmmx = TRUE;
7665 break;
7666 }
7667 }
c0209578 7668
7ab9ffdd
L
7669 if (vex_3_sources)
7670 op = dest;
2426c15f 7671 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7672 {
7673 /* For instructions with VexNDS, the register-only
7674 source operand is encoded in VEX prefix. */
7675 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7676
7ab9ffdd 7677 if (op > mem)
c0f3af97 7678 {
7ab9ffdd
L
7679 vex_reg = op++;
7680 gas_assert (op < i.operands);
c0f3af97
L
7681 }
7682 else
c0f3af97 7683 {
f12dc422
L
7684 /* Check register-only source operand when two source
7685 operands are swapped. */
7686 if (!i.tm.operand_types[op].bitfield.baseindex
7687 && i.tm.operand_types[op + 1].bitfield.baseindex)
7688 {
7689 vex_reg = op;
7690 op += 2;
7691 gas_assert (mem == (vex_reg + 1)
7692 && op < i.operands);
7693 }
7694 else
7695 {
7696 vex_reg = op + 1;
7697 gas_assert (vex_reg < i.operands);
7698 }
c0f3af97 7699 }
7ab9ffdd 7700 }
2426c15f 7701 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7702 {
f12dc422 7703 /* For instructions with VexNDD, the register destination
7ab9ffdd 7704 is encoded in VEX prefix. */
f12dc422
L
7705 if (i.mem_operands == 0)
7706 {
7707 /* There is no memory operand. */
7708 gas_assert ((op + 2) == i.operands);
7709 vex_reg = op + 1;
7710 }
7711 else
8d63c93e 7712 {
ed438a93
JB
7713 /* There are only 2 non-immediate operands. */
7714 gas_assert (op < i.imm_operands + 2
7715 && i.operands == i.imm_operands + 2);
7716 vex_reg = i.imm_operands + 1;
f12dc422 7717 }
7ab9ffdd
L
7718 }
7719 else
7720 gas_assert (op < i.operands);
99018f42 7721
7ab9ffdd
L
7722 if (vex_reg != (unsigned int) ~0)
7723 {
f12dc422 7724 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7725
dc821c5f
JB
7726 if ((!type->bitfield.reg
7727 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7728 && !type->bitfield.regsimd
43234a1e 7729 && !operand_type_equal (type, &regmask))
7ab9ffdd 7730 abort ();
f88c9eb0 7731
7ab9ffdd
L
7732 i.vex.register_specifier = i.op[vex_reg].regs;
7733 }
7734
1b9f0c97
L
7735 /* Don't set OP operand twice. */
7736 if (vex_reg != op)
7ab9ffdd 7737 {
1b9f0c97
L
7738 /* If there is an extension opcode to put here, the
7739 register number must be put into the regmem field. */
7740 if (i.tm.extension_opcode != None)
7741 {
7742 i.rm.regmem = i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
43234a1e
L
7745 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7746 i.vrex |= REX_B;
1b9f0c97
L
7747 }
7748 else
7749 {
7750 i.rm.reg = i.op[op].regs->reg_num;
7751 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7752 i.rex |= REX_R;
43234a1e
L
7753 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7754 i.vrex |= REX_R;
1b9f0c97 7755 }
7ab9ffdd 7756 }
252b5132 7757
29b0f896
AM
7758 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7759 must set it to 3 to indicate this is a register operand
7760 in the regmem field. */
7761 if (!i.mem_operands)
7762 i.rm.mode = 3;
7763 }
252b5132 7764
29b0f896 7765 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7766 if (i.tm.extension_opcode != None)
29b0f896
AM
7767 i.rm.reg = i.tm.extension_opcode;
7768 }
7769 return default_seg;
7770}
252b5132 7771
29b0f896 7772static void
e3bb37b5 7773output_branch (void)
29b0f896
AM
7774{
7775 char *p;
f8a5c266 7776 int size;
29b0f896
AM
7777 int code16;
7778 int prefix;
7779 relax_substateT subtype;
7780 symbolS *sym;
7781 offsetT off;
7782
f8a5c266 7783 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7784 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7785
7786 prefix = 0;
7787 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7788 {
29b0f896
AM
7789 prefix = 1;
7790 i.prefixes -= 1;
7791 code16 ^= CODE16;
252b5132 7792 }
29b0f896
AM
7793 /* Pentium4 branch hints. */
7794 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7795 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7796 {
29b0f896
AM
7797 prefix++;
7798 i.prefixes--;
7799 }
7800 if (i.prefix[REX_PREFIX] != 0)
7801 {
7802 prefix++;
7803 i.prefixes--;
2f66722d
AM
7804 }
7805
7e8b059b
L
7806 /* BND prefixed jump. */
7807 if (i.prefix[BND_PREFIX] != 0)
7808 {
7809 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7810 i.prefixes -= 1;
7811 }
7812
29b0f896
AM
7813 if (i.prefixes != 0 && !intel_syntax)
7814 as_warn (_("skipping prefixes on this instruction"));
7815
7816 /* It's always a symbol; End frag & setup for relax.
7817 Make sure there is enough room in this frag for the largest
7818 instruction we may generate in md_convert_frag. This is 2
7819 bytes for the opcode and room for the prefix and largest
7820 displacement. */
7821 frag_grow (prefix + 2 + 4);
7822 /* Prefix and 1 opcode byte go in fr_fix. */
7823 p = frag_more (prefix + 1);
7824 if (i.prefix[DATA_PREFIX] != 0)
7825 *p++ = DATA_PREFIX_OPCODE;
7826 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7827 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7828 *p++ = i.prefix[SEG_PREFIX];
7829 if (i.prefix[REX_PREFIX] != 0)
7830 *p++ = i.prefix[REX_PREFIX];
7831 *p = i.tm.base_opcode;
7832
7833 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7834 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7835 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7836 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7837 else
f8a5c266 7838 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7839 subtype |= code16;
3e73aa7c 7840
29b0f896
AM
7841 sym = i.op[0].disps->X_add_symbol;
7842 off = i.op[0].disps->X_add_number;
3e73aa7c 7843
29b0f896
AM
7844 if (i.op[0].disps->X_op != O_constant
7845 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7846 {
29b0f896
AM
7847 /* Handle complex expressions. */
7848 sym = make_expr_symbol (i.op[0].disps);
7849 off = 0;
7850 }
3e73aa7c 7851
29b0f896
AM
7852 /* 1 possible extra opcode + 4 byte displacement go in var part.
7853 Pass reloc in fr_var. */
d258b828 7854 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7855}
3e73aa7c 7856
bd7ab16b
L
7857#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7858/* Return TRUE iff PLT32 relocation should be used for branching to
7859 symbol S. */
7860
7861static bfd_boolean
7862need_plt32_p (symbolS *s)
7863{
7864 /* PLT32 relocation is ELF only. */
7865 if (!IS_ELF)
7866 return FALSE;
7867
a5def729
RO
7868#ifdef TE_SOLARIS
7869 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7870 krtld support it. */
7871 return FALSE;
7872#endif
7873
bd7ab16b
L
7874 /* Since there is no need to prepare for PLT branch on x86-64, we
7875 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7876 be used as a marker for 32-bit PC-relative branches. */
7877 if (!object_64bit)
7878 return FALSE;
7879
7880 /* Weak or undefined symbol need PLT32 relocation. */
7881 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7882 return TRUE;
7883
7884 /* Non-global symbol doesn't need PLT32 relocation. */
7885 if (! S_IS_EXTERNAL (s))
7886 return FALSE;
7887
7888 /* Other global symbols need PLT32 relocation. NB: Symbol with
7889 non-default visibilities are treated as normal global symbol
7890 so that PLT32 relocation can be used as a marker for 32-bit
7891 PC-relative branches. It is useful for linker relaxation. */
7892 return TRUE;
7893}
7894#endif
7895
29b0f896 7896static void
e3bb37b5 7897output_jump (void)
29b0f896
AM
7898{
7899 char *p;
7900 int size;
3e02c1cc 7901 fixS *fixP;
bd7ab16b 7902 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7903
40fb9820 7904 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7905 {
7906 /* This is a loop or jecxz type instruction. */
7907 size = 1;
7908 if (i.prefix[ADDR_PREFIX] != 0)
7909 {
7910 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7911 i.prefixes -= 1;
7912 }
7913 /* Pentium4 branch hints. */
7914 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7915 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7916 {
7917 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7918 i.prefixes--;
3e73aa7c
JH
7919 }
7920 }
29b0f896
AM
7921 else
7922 {
7923 int code16;
3e73aa7c 7924
29b0f896
AM
7925 code16 = 0;
7926 if (flag_code == CODE_16BIT)
7927 code16 = CODE16;
3e73aa7c 7928
29b0f896
AM
7929 if (i.prefix[DATA_PREFIX] != 0)
7930 {
7931 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7932 i.prefixes -= 1;
7933 code16 ^= CODE16;
7934 }
252b5132 7935
29b0f896
AM
7936 size = 4;
7937 if (code16)
7938 size = 2;
7939 }
9fcc94b6 7940
29b0f896
AM
7941 if (i.prefix[REX_PREFIX] != 0)
7942 {
7943 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7944 i.prefixes -= 1;
7945 }
252b5132 7946
7e8b059b
L
7947 /* BND prefixed jump. */
7948 if (i.prefix[BND_PREFIX] != 0)
7949 {
7950 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7951 i.prefixes -= 1;
7952 }
7953
29b0f896
AM
7954 if (i.prefixes != 0 && !intel_syntax)
7955 as_warn (_("skipping prefixes on this instruction"));
e0890092 7956
42164a71
L
7957 p = frag_more (i.tm.opcode_length + size);
7958 switch (i.tm.opcode_length)
7959 {
7960 case 2:
7961 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7962 /* Fall through. */
42164a71
L
7963 case 1:
7964 *p++ = i.tm.base_opcode;
7965 break;
7966 default:
7967 abort ();
7968 }
e0890092 7969
bd7ab16b
L
7970#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7971 if (size == 4
7972 && jump_reloc == NO_RELOC
7973 && need_plt32_p (i.op[0].disps->X_add_symbol))
7974 jump_reloc = BFD_RELOC_X86_64_PLT32;
7975#endif
7976
7977 jump_reloc = reloc (size, 1, 1, jump_reloc);
7978
3e02c1cc 7979 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7980 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7981
7982 /* All jumps handled here are signed, but don't use a signed limit
7983 check for 32 and 16 bit jumps as we want to allow wrap around at
7984 4G and 64k respectively. */
7985 if (size == 1)
7986 fixP->fx_signed = 1;
29b0f896 7987}
e0890092 7988
29b0f896 7989static void
e3bb37b5 7990output_interseg_jump (void)
29b0f896
AM
7991{
7992 char *p;
7993 int size;
7994 int prefix;
7995 int code16;
252b5132 7996
29b0f896
AM
7997 code16 = 0;
7998 if (flag_code == CODE_16BIT)
7999 code16 = CODE16;
a217f122 8000
29b0f896
AM
8001 prefix = 0;
8002 if (i.prefix[DATA_PREFIX] != 0)
8003 {
8004 prefix = 1;
8005 i.prefixes -= 1;
8006 code16 ^= CODE16;
8007 }
8008 if (i.prefix[REX_PREFIX] != 0)
8009 {
8010 prefix++;
8011 i.prefixes -= 1;
8012 }
252b5132 8013
29b0f896
AM
8014 size = 4;
8015 if (code16)
8016 size = 2;
252b5132 8017
29b0f896
AM
8018 if (i.prefixes != 0 && !intel_syntax)
8019 as_warn (_("skipping prefixes on this instruction"));
252b5132 8020
29b0f896
AM
8021 /* 1 opcode; 2 segment; offset */
8022 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8023
29b0f896
AM
8024 if (i.prefix[DATA_PREFIX] != 0)
8025 *p++ = DATA_PREFIX_OPCODE;
252b5132 8026
29b0f896
AM
8027 if (i.prefix[REX_PREFIX] != 0)
8028 *p++ = i.prefix[REX_PREFIX];
252b5132 8029
29b0f896
AM
8030 *p++ = i.tm.base_opcode;
8031 if (i.op[1].imms->X_op == O_constant)
8032 {
8033 offsetT n = i.op[1].imms->X_add_number;
252b5132 8034
29b0f896
AM
8035 if (size == 2
8036 && !fits_in_unsigned_word (n)
8037 && !fits_in_signed_word (n))
8038 {
8039 as_bad (_("16-bit jump out of range"));
8040 return;
8041 }
8042 md_number_to_chars (p, n, size);
8043 }
8044 else
8045 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8046 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8047 if (i.op[0].imms->X_op != O_constant)
8048 as_bad (_("can't handle non absolute segment in `%s'"),
8049 i.tm.name);
8050 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8051}
a217f122 8052
b4a3a7b4
L
8053#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8054void
8055x86_cleanup (void)
8056{
8057 char *p;
8058 asection *seg = now_seg;
8059 subsegT subseg = now_subseg;
8060 asection *sec;
8061 unsigned int alignment, align_size_1;
8062 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8063 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8064 unsigned int padding;
8065
8066 if (!IS_ELF || !x86_used_note)
8067 return;
8068
b4a3a7b4
L
8069 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8070
8071 /* The .note.gnu.property section layout:
8072
8073 Field Length Contents
8074 ---- ---- ----
8075 n_namsz 4 4
8076 n_descsz 4 The note descriptor size
8077 n_type 4 NT_GNU_PROPERTY_TYPE_0
8078 n_name 4 "GNU"
8079 n_desc n_descsz The program property array
8080 .... .... ....
8081 */
8082
8083 /* Create the .note.gnu.property section. */
8084 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8085 bfd_set_section_flags (stdoutput, sec,
8086 (SEC_ALLOC
8087 | SEC_LOAD
8088 | SEC_DATA
8089 | SEC_HAS_CONTENTS
8090 | SEC_READONLY));
8091
8092 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8093 {
8094 align_size_1 = 7;
8095 alignment = 3;
8096 }
8097 else
8098 {
8099 align_size_1 = 3;
8100 alignment = 2;
8101 }
8102
8103 bfd_set_section_alignment (stdoutput, sec, alignment);
8104 elf_section_type (sec) = SHT_NOTE;
8105
8106 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8107 + 4-byte data */
8108 isa_1_descsz_raw = 4 + 4 + 4;
8109 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8110 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8111
8112 feature_2_descsz_raw = isa_1_descsz;
8113 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8114 + 4-byte data */
8115 feature_2_descsz_raw += 4 + 4 + 4;
8116 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8117 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8118 & ~align_size_1);
8119
8120 descsz = feature_2_descsz;
8121 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8122 p = frag_more (4 + 4 + 4 + 4 + descsz);
8123
8124 /* Write n_namsz. */
8125 md_number_to_chars (p, (valueT) 4, 4);
8126
8127 /* Write n_descsz. */
8128 md_number_to_chars (p + 4, (valueT) descsz, 4);
8129
8130 /* Write n_type. */
8131 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8132
8133 /* Write n_name. */
8134 memcpy (p + 4 * 3, "GNU", 4);
8135
8136 /* Write 4-byte type. */
8137 md_number_to_chars (p + 4 * 4,
8138 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8139
8140 /* Write 4-byte data size. */
8141 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8142
8143 /* Write 4-byte data. */
8144 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8145
8146 /* Zero out paddings. */
8147 padding = isa_1_descsz - isa_1_descsz_raw;
8148 if (padding)
8149 memset (p + 4 * 7, 0, padding);
8150
8151 /* Write 4-byte type. */
8152 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8153 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8154
8155 /* Write 4-byte data size. */
8156 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8157
8158 /* Write 4-byte data. */
8159 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8160 (valueT) x86_feature_2_used, 4);
8161
8162 /* Zero out paddings. */
8163 padding = feature_2_descsz - feature_2_descsz_raw;
8164 if (padding)
8165 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8166
8167 /* We probably can't restore the current segment, for there likely
8168 isn't one yet... */
8169 if (seg && subseg)
8170 subseg_set (seg, subseg);
8171}
8172#endif
8173
9c33702b
JB
8174static unsigned int
8175encoding_length (const fragS *start_frag, offsetT start_off,
8176 const char *frag_now_ptr)
8177{
8178 unsigned int len = 0;
8179
8180 if (start_frag != frag_now)
8181 {
8182 const fragS *fr = start_frag;
8183
8184 do {
8185 len += fr->fr_fix;
8186 fr = fr->fr_next;
8187 } while (fr && fr != frag_now);
8188 }
8189
8190 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8191}
8192
29b0f896 8193static void
e3bb37b5 8194output_insn (void)
29b0f896 8195{
2bbd9c25
JJ
8196 fragS *insn_start_frag;
8197 offsetT insn_start_off;
8198
b4a3a7b4
L
8199#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8200 if (IS_ELF && x86_used_note)
8201 {
8202 if (i.tm.cpu_flags.bitfield.cpucmov)
8203 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8204 if (i.tm.cpu_flags.bitfield.cpusse)
8205 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8206 if (i.tm.cpu_flags.bitfield.cpusse2)
8207 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8208 if (i.tm.cpu_flags.bitfield.cpusse3)
8209 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8210 if (i.tm.cpu_flags.bitfield.cpussse3)
8211 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8212 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8213 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8214 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8215 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8216 if (i.tm.cpu_flags.bitfield.cpuavx)
8217 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8218 if (i.tm.cpu_flags.bitfield.cpuavx2)
8219 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8220 if (i.tm.cpu_flags.bitfield.cpufma)
8221 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8222 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8223 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8224 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8225 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8226 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8228 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8230 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8232 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8234 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8236 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8238 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8240 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8242 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8244 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8250 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8252
8253 if (i.tm.cpu_flags.bitfield.cpu8087
8254 || i.tm.cpu_flags.bitfield.cpu287
8255 || i.tm.cpu_flags.bitfield.cpu387
8256 || i.tm.cpu_flags.bitfield.cpu687
8257 || i.tm.cpu_flags.bitfield.cpufisttp)
8258 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8259 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8260 Xfence instructions. */
8261 if (i.tm.base_opcode != 0xf18
8262 && i.tm.base_opcode != 0xf0d
8263 && i.tm.base_opcode != 0xfae
8264 && (i.has_regmmx
8265 || i.tm.cpu_flags.bitfield.cpummx
8266 || i.tm.cpu_flags.bitfield.cpua3dnow
8267 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8268 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8269 if (i.has_regxmm)
8270 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8271 if (i.has_regymm)
8272 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8273 if (i.has_regzmm)
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8275 if (i.tm.cpu_flags.bitfield.cpufxsr)
8276 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8277 if (i.tm.cpu_flags.bitfield.cpuxsave)
8278 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8279 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8280 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8281 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8282 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8283 }
8284#endif
8285
29b0f896
AM
8286 /* Tie dwarf2 debug info to the address at the start of the insn.
8287 We can't do this after the insn has been output as the current
8288 frag may have been closed off. eg. by frag_var. */
8289 dwarf2_emit_insn (0);
8290
2bbd9c25
JJ
8291 insn_start_frag = frag_now;
8292 insn_start_off = frag_now_fix ();
8293
29b0f896 8294 /* Output jumps. */
40fb9820 8295 if (i.tm.opcode_modifier.jump)
29b0f896 8296 output_branch ();
40fb9820
L
8297 else if (i.tm.opcode_modifier.jumpbyte
8298 || i.tm.opcode_modifier.jumpdword)
29b0f896 8299 output_jump ();
40fb9820 8300 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8301 output_interseg_jump ();
8302 else
8303 {
8304 /* Output normal instructions here. */
8305 char *p;
8306 unsigned char *q;
47465058 8307 unsigned int j;
331d2d0d 8308 unsigned int prefix;
4dffcebc 8309
e4e00185
AS
8310 if (avoid_fence
8311 && i.tm.base_opcode == 0xfae
8312 && i.operands == 1
8313 && i.imm_operands == 1
8314 && (i.op[0].imms->X_add_number == 0xe8
8315 || i.op[0].imms->X_add_number == 0xf0
8316 || i.op[0].imms->X_add_number == 0xf8))
8317 {
8318 /* Encode lfence, mfence, and sfence as
8319 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8320 offsetT val = 0x240483f0ULL;
8321 p = frag_more (5);
8322 md_number_to_chars (p, val, 5);
8323 return;
8324 }
8325
d022bddd
IT
8326 /* Some processors fail on LOCK prefix. This options makes
8327 assembler ignore LOCK prefix and serves as a workaround. */
8328 if (omit_lock_prefix)
8329 {
8330 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8331 return;
8332 i.prefix[LOCK_PREFIX] = 0;
8333 }
8334
43234a1e
L
8335 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8336 don't need the explicit prefix. */
8337 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8338 {
c0f3af97 8339 switch (i.tm.opcode_length)
bc4bd9ab 8340 {
c0f3af97
L
8341 case 3:
8342 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8343 {
c0f3af97 8344 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8345 add_prefix (prefix);
c0f3af97
L
8346 }
8347 break;
8348 case 2:
8349 if ((i.tm.base_opcode & 0xff0000) != 0)
8350 {
8351 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8352 if (!i.tm.cpu_flags.bitfield.cpupadlock
8353 || prefix != REPE_PREFIX_OPCODE
8354 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8355 add_prefix (prefix);
8356 }
c0f3af97
L
8357 break;
8358 case 1:
8359 break;
390c91cf
L
8360 case 0:
8361 /* Check for pseudo prefixes. */
8362 as_bad_where (insn_start_frag->fr_file,
8363 insn_start_frag->fr_line,
8364 _("pseudo prefix without instruction"));
8365 return;
c0f3af97
L
8366 default:
8367 abort ();
bc4bd9ab 8368 }
c0f3af97 8369
6d19a37a 8370#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8371 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8372 R_X86_64_GOTTPOFF relocation so that linker can safely
8373 perform IE->LE optimization. */
8374 if (x86_elf_abi == X86_64_X32_ABI
8375 && i.operands == 2
8376 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8377 && i.prefix[REX_PREFIX] == 0)
8378 add_prefix (REX_OPCODE);
6d19a37a 8379#endif
cf61b747 8380
c0f3af97
L
8381 /* The prefix bytes. */
8382 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8383 if (*q)
8384 FRAG_APPEND_1_CHAR (*q);
0f10071e 8385 }
ae5c1c7b 8386 else
c0f3af97
L
8387 {
8388 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8389 if (*q)
8390 switch (j)
8391 {
8392 case REX_PREFIX:
8393 /* REX byte is encoded in VEX prefix. */
8394 break;
8395 case SEG_PREFIX:
8396 case ADDR_PREFIX:
8397 FRAG_APPEND_1_CHAR (*q);
8398 break;
8399 default:
8400 /* There should be no other prefixes for instructions
8401 with VEX prefix. */
8402 abort ();
8403 }
8404
43234a1e
L
8405 /* For EVEX instructions i.vrex should become 0 after
8406 build_evex_prefix. For VEX instructions upper 16 registers
8407 aren't available, so VREX should be 0. */
8408 if (i.vrex)
8409 abort ();
c0f3af97
L
8410 /* Now the VEX prefix. */
8411 p = frag_more (i.vex.length);
8412 for (j = 0; j < i.vex.length; j++)
8413 p[j] = i.vex.bytes[j];
8414 }
252b5132 8415
29b0f896 8416 /* Now the opcode; be careful about word order here! */
4dffcebc 8417 if (i.tm.opcode_length == 1)
29b0f896
AM
8418 {
8419 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8420 }
8421 else
8422 {
4dffcebc 8423 switch (i.tm.opcode_length)
331d2d0d 8424 {
43234a1e
L
8425 case 4:
8426 p = frag_more (4);
8427 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8428 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8429 break;
4dffcebc 8430 case 3:
331d2d0d
L
8431 p = frag_more (3);
8432 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8433 break;
8434 case 2:
8435 p = frag_more (2);
8436 break;
8437 default:
8438 abort ();
8439 break;
331d2d0d 8440 }
0f10071e 8441
29b0f896
AM
8442 /* Put out high byte first: can't use md_number_to_chars! */
8443 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8444 *p = i.tm.base_opcode & 0xff;
8445 }
3e73aa7c 8446
29b0f896 8447 /* Now the modrm byte and sib byte (if present). */
40fb9820 8448 if (i.tm.opcode_modifier.modrm)
29b0f896 8449 {
4a3523fa
L
8450 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8451 | i.rm.reg << 3
8452 | i.rm.mode << 6));
29b0f896
AM
8453 /* If i.rm.regmem == ESP (4)
8454 && i.rm.mode != (Register mode)
8455 && not 16 bit
8456 ==> need second modrm byte. */
8457 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8458 && i.rm.mode != 3
dc821c5f 8459 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8460 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8461 | i.sib.index << 3
8462 | i.sib.scale << 6));
29b0f896 8463 }
3e73aa7c 8464
29b0f896 8465 if (i.disp_operands)
2bbd9c25 8466 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8467
29b0f896 8468 if (i.imm_operands)
2bbd9c25 8469 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8470
8471 /*
8472 * frag_now_fix () returning plain abs_section_offset when we're in the
8473 * absolute section, and abs_section_offset not getting updated as data
8474 * gets added to the frag breaks the logic below.
8475 */
8476 if (now_seg != absolute_section)
8477 {
8478 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8479 if (j > 15)
8480 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8481 j);
8482 }
29b0f896 8483 }
252b5132 8484
29b0f896
AM
8485#ifdef DEBUG386
8486 if (flag_debug)
8487 {
7b81dfbb 8488 pi ("" /*line*/, &i);
29b0f896
AM
8489 }
8490#endif /* DEBUG386 */
8491}
252b5132 8492
e205caa7
L
8493/* Return the size of the displacement operand N. */
8494
8495static int
8496disp_size (unsigned int n)
8497{
8498 int size = 4;
43234a1e 8499
b5014f7a 8500 if (i.types[n].bitfield.disp64)
40fb9820
L
8501 size = 8;
8502 else if (i.types[n].bitfield.disp8)
8503 size = 1;
8504 else if (i.types[n].bitfield.disp16)
8505 size = 2;
e205caa7
L
8506 return size;
8507}
8508
8509/* Return the size of the immediate operand N. */
8510
8511static int
8512imm_size (unsigned int n)
8513{
8514 int size = 4;
40fb9820
L
8515 if (i.types[n].bitfield.imm64)
8516 size = 8;
8517 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8518 size = 1;
8519 else if (i.types[n].bitfield.imm16)
8520 size = 2;
e205caa7
L
8521 return size;
8522}
8523
29b0f896 8524static void
64e74474 8525output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8526{
8527 char *p;
8528 unsigned int n;
252b5132 8529
29b0f896
AM
8530 for (n = 0; n < i.operands; n++)
8531 {
b5014f7a 8532 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8533 {
8534 if (i.op[n].disps->X_op == O_constant)
8535 {
e205caa7 8536 int size = disp_size (n);
43234a1e 8537 offsetT val = i.op[n].disps->X_add_number;
252b5132 8538
629cfaf1
JB
8539 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8540 size);
29b0f896
AM
8541 p = frag_more (size);
8542 md_number_to_chars (p, val, size);
8543 }
8544 else
8545 {
f86103b7 8546 enum bfd_reloc_code_real reloc_type;
e205caa7 8547 int size = disp_size (n);
40fb9820 8548 int sign = i.types[n].bitfield.disp32s;
29b0f896 8549 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8550 fixS *fixP;
29b0f896 8551
e205caa7 8552 /* We can't have 8 bit displacement here. */
9c2799c2 8553 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8554
29b0f896
AM
8555 /* The PC relative address is computed relative
8556 to the instruction boundary, so in case immediate
8557 fields follows, we need to adjust the value. */
8558 if (pcrel && i.imm_operands)
8559 {
29b0f896 8560 unsigned int n1;
e205caa7 8561 int sz = 0;
252b5132 8562
29b0f896 8563 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8564 if (operand_type_check (i.types[n1], imm))
252b5132 8565 {
e205caa7
L
8566 /* Only one immediate is allowed for PC
8567 relative address. */
9c2799c2 8568 gas_assert (sz == 0);
e205caa7
L
8569 sz = imm_size (n1);
8570 i.op[n].disps->X_add_number -= sz;
252b5132 8571 }
29b0f896 8572 /* We should find the immediate. */
9c2799c2 8573 gas_assert (sz != 0);
29b0f896 8574 }
520dc8e8 8575
29b0f896 8576 p = frag_more (size);
d258b828 8577 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8578 if (GOT_symbol
2bbd9c25 8579 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8580 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8581 || reloc_type == BFD_RELOC_X86_64_32S
8582 || (reloc_type == BFD_RELOC_64
8583 && object_64bit))
d6ab8113
JB
8584 && (i.op[n].disps->X_op == O_symbol
8585 || (i.op[n].disps->X_op == O_add
8586 && ((symbol_get_value_expression
8587 (i.op[n].disps->X_op_symbol)->X_op)
8588 == O_subtract))))
8589 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8590 {
4fa24527 8591 if (!object_64bit)
7b81dfbb
AJ
8592 {
8593 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8594 i.op[n].imms->X_add_number +=
8595 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8596 }
8597 else if (reloc_type == BFD_RELOC_64)
8598 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8599 else
7b81dfbb
AJ
8600 /* Don't do the adjustment for x86-64, as there
8601 the pcrel addressing is relative to the _next_
8602 insn, and that is taken care of in other code. */
d6ab8113 8603 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8604 }
02a86693
L
8605 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8606 size, i.op[n].disps, pcrel,
8607 reloc_type);
8608 /* Check for "call/jmp *mem", "mov mem, %reg",
8609 "test %reg, mem" and "binop mem, %reg" where binop
8610 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8611 instructions without data prefix. Always generate
8612 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8613 if (i.prefix[DATA_PREFIX] == 0
8614 && (generate_relax_relocations
8615 || (!object_64bit
8616 && i.rm.mode == 0
8617 && i.rm.regmem == 5))
0cb4071e
L
8618 && (i.rm.mode == 2
8619 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8620 && ((i.operands == 1
8621 && i.tm.base_opcode == 0xff
8622 && (i.rm.reg == 2 || i.rm.reg == 4))
8623 || (i.operands == 2
8624 && (i.tm.base_opcode == 0x8b
8625 || i.tm.base_opcode == 0x85
8626 || (i.tm.base_opcode & 0xc7) == 0x03))))
8627 {
8628 if (object_64bit)
8629 {
8630 fixP->fx_tcbit = i.rex != 0;
8631 if (i.base_reg
e968fc9b 8632 && (i.base_reg->reg_num == RegIP))
02a86693
L
8633 fixP->fx_tcbit2 = 1;
8634 }
8635 else
8636 fixP->fx_tcbit2 = 1;
8637 }
29b0f896
AM
8638 }
8639 }
8640 }
8641}
252b5132 8642
29b0f896 8643static void
64e74474 8644output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8645{
8646 char *p;
8647 unsigned int n;
252b5132 8648
29b0f896
AM
8649 for (n = 0; n < i.operands; n++)
8650 {
43234a1e
L
8651 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8652 if (i.rounding && (int) n == i.rounding->operand)
8653 continue;
8654
40fb9820 8655 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8656 {
8657 if (i.op[n].imms->X_op == O_constant)
8658 {
e205caa7 8659 int size = imm_size (n);
29b0f896 8660 offsetT val;
b4cac588 8661
29b0f896
AM
8662 val = offset_in_range (i.op[n].imms->X_add_number,
8663 size);
8664 p = frag_more (size);
8665 md_number_to_chars (p, val, size);
8666 }
8667 else
8668 {
8669 /* Not absolute_section.
8670 Need a 32-bit fixup (don't support 8bit
8671 non-absolute imms). Try to support other
8672 sizes ... */
f86103b7 8673 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8674 int size = imm_size (n);
8675 int sign;
29b0f896 8676
40fb9820 8677 if (i.types[n].bitfield.imm32s
a7d61044 8678 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8679 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8680 sign = 1;
e205caa7
L
8681 else
8682 sign = 0;
520dc8e8 8683
29b0f896 8684 p = frag_more (size);
d258b828 8685 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8686
2bbd9c25
JJ
8687 /* This is tough to explain. We end up with this one if we
8688 * have operands that look like
8689 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8690 * obtain the absolute address of the GOT, and it is strongly
8691 * preferable from a performance point of view to avoid using
8692 * a runtime relocation for this. The actual sequence of
8693 * instructions often look something like:
8694 *
8695 * call .L66
8696 * .L66:
8697 * popl %ebx
8698 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8699 *
8700 * The call and pop essentially return the absolute address
8701 * of the label .L66 and store it in %ebx. The linker itself
8702 * will ultimately change the first operand of the addl so
8703 * that %ebx points to the GOT, but to keep things simple, the
8704 * .o file must have this operand set so that it generates not
8705 * the absolute address of .L66, but the absolute address of
8706 * itself. This allows the linker itself simply treat a GOTPC
8707 * relocation as asking for a pcrel offset to the GOT to be
8708 * added in, and the addend of the relocation is stored in the
8709 * operand field for the instruction itself.
8710 *
8711 * Our job here is to fix the operand so that it would add
8712 * the correct offset so that %ebx would point to itself. The
8713 * thing that is tricky is that .-.L66 will point to the
8714 * beginning of the instruction, so we need to further modify
8715 * the operand so that it will point to itself. There are
8716 * other cases where you have something like:
8717 *
8718 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8719 *
8720 * and here no correction would be required. Internally in
8721 * the assembler we treat operands of this form as not being
8722 * pcrel since the '.' is explicitly mentioned, and I wonder
8723 * whether it would simplify matters to do it this way. Who
8724 * knows. In earlier versions of the PIC patches, the
8725 * pcrel_adjust field was used to store the correction, but
8726 * since the expression is not pcrel, I felt it would be
8727 * confusing to do it this way. */
8728
d6ab8113 8729 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8730 || reloc_type == BFD_RELOC_X86_64_32S
8731 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8732 && GOT_symbol
8733 && GOT_symbol == i.op[n].imms->X_add_symbol
8734 && (i.op[n].imms->X_op == O_symbol
8735 || (i.op[n].imms->X_op == O_add
8736 && ((symbol_get_value_expression
8737 (i.op[n].imms->X_op_symbol)->X_op)
8738 == O_subtract))))
8739 {
4fa24527 8740 if (!object_64bit)
d6ab8113 8741 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8742 else if (size == 4)
d6ab8113 8743 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8744 else if (size == 8)
8745 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8746 i.op[n].imms->X_add_number +=
8747 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8748 }
29b0f896
AM
8749 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8750 i.op[n].imms, 0, reloc_type);
8751 }
8752 }
8753 }
252b5132
RH
8754}
8755\f
d182319b
JB
8756/* x86_cons_fix_new is called via the expression parsing code when a
8757 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8758static int cons_sign = -1;
8759
8760void
e3bb37b5 8761x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8762 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8763{
d258b828 8764 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8765
8766#ifdef TE_PE
8767 if (exp->X_op == O_secrel)
8768 {
8769 exp->X_op = O_symbol;
8770 r = BFD_RELOC_32_SECREL;
8771 }
8772#endif
8773
8774 fix_new_exp (frag, off, len, exp, 0, r);
8775}
8776
357d1bd8
L
8777/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8778 purpose of the `.dc.a' internal pseudo-op. */
8779
8780int
8781x86_address_bytes (void)
8782{
8783 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8784 return 4;
8785 return stdoutput->arch_info->bits_per_address / 8;
8786}
8787
d382c579
TG
8788#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8789 || defined (LEX_AT)
d258b828 8790# define lex_got(reloc, adjust, types) NULL
718ddfc0 8791#else
f3c180ae
AM
8792/* Parse operands of the form
8793 <symbol>@GOTOFF+<nnn>
8794 and similar .plt or .got references.
8795
8796 If we find one, set up the correct relocation in RELOC and copy the
8797 input string, minus the `@GOTOFF' into a malloc'd buffer for
8798 parsing by the calling routine. Return this buffer, and if ADJUST
8799 is non-null set it to the length of the string we removed from the
8800 input line. Otherwise return NULL. */
8801static char *
91d6fa6a 8802lex_got (enum bfd_reloc_code_real *rel,
64e74474 8803 int *adjust,
d258b828 8804 i386_operand_type *types)
f3c180ae 8805{
7b81dfbb
AJ
8806 /* Some of the relocations depend on the size of what field is to
8807 be relocated. But in our callers i386_immediate and i386_displacement
8808 we don't yet know the operand size (this will be set by insn
8809 matching). Hence we record the word32 relocation here,
8810 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8811 static const struct {
8812 const char *str;
cff8d58a 8813 int len;
4fa24527 8814 const enum bfd_reloc_code_real rel[2];
40fb9820 8815 const i386_operand_type types64;
f3c180ae 8816 } gotrel[] = {
8ce3d284 8817#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8818 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8819 BFD_RELOC_SIZE32 },
8820 OPERAND_TYPE_IMM32_64 },
8ce3d284 8821#endif
cff8d58a
L
8822 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8823 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8824 OPERAND_TYPE_IMM64 },
cff8d58a
L
8825 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8826 BFD_RELOC_X86_64_PLT32 },
40fb9820 8827 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8828 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8830 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8831 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8832 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8833 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8834 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8835 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8836 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8837 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8838 BFD_RELOC_X86_64_TLSGD },
40fb9820 8839 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8840 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8841 _dummy_first_bfd_reloc_code_real },
40fb9820 8842 OPERAND_TYPE_NONE },
cff8d58a
L
8843 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8844 BFD_RELOC_X86_64_TLSLD },
40fb9820 8845 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8846 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8847 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8848 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8849 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8850 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8851 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8852 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8853 _dummy_first_bfd_reloc_code_real },
40fb9820 8854 OPERAND_TYPE_NONE },
cff8d58a
L
8855 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8856 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8857 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8858 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8859 _dummy_first_bfd_reloc_code_real },
40fb9820 8860 OPERAND_TYPE_NONE },
cff8d58a
L
8861 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8862 _dummy_first_bfd_reloc_code_real },
40fb9820 8863 OPERAND_TYPE_NONE },
cff8d58a
L
8864 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8865 BFD_RELOC_X86_64_GOT32 },
40fb9820 8866 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8867 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8868 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8869 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8870 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8871 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8872 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8873 };
8874 char *cp;
8875 unsigned int j;
8876
d382c579 8877#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8878 if (!IS_ELF)
8879 return NULL;
d382c579 8880#endif
718ddfc0 8881
f3c180ae 8882 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8883 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8884 return NULL;
8885
47465058 8886 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8887 {
cff8d58a 8888 int len = gotrel[j].len;
28f81592 8889 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8890 {
4fa24527 8891 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8892 {
28f81592
AM
8893 int first, second;
8894 char *tmpbuf, *past_reloc;
f3c180ae 8895
91d6fa6a 8896 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8897
3956db08
JB
8898 if (types)
8899 {
8900 if (flag_code != CODE_64BIT)
40fb9820
L
8901 {
8902 types->bitfield.imm32 = 1;
8903 types->bitfield.disp32 = 1;
8904 }
3956db08
JB
8905 else
8906 *types = gotrel[j].types64;
8907 }
8908
8fd4256d 8909 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8910 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8911
28f81592 8912 /* The length of the first part of our input line. */
f3c180ae 8913 first = cp - input_line_pointer;
28f81592
AM
8914
8915 /* The second part goes from after the reloc token until
67c11a9b 8916 (and including) an end_of_line char or comma. */
28f81592 8917 past_reloc = cp + 1 + len;
67c11a9b
AM
8918 cp = past_reloc;
8919 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8920 ++cp;
8921 second = cp + 1 - past_reloc;
28f81592
AM
8922
8923 /* Allocate and copy string. The trailing NUL shouldn't
8924 be necessary, but be safe. */
add39d23 8925 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8926 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8927 if (second != 0 && *past_reloc != ' ')
8928 /* Replace the relocation token with ' ', so that
8929 errors like foo@GOTOFF1 will be detected. */
8930 tmpbuf[first++] = ' ';
af89796a
L
8931 else
8932 /* Increment length by 1 if the relocation token is
8933 removed. */
8934 len++;
8935 if (adjust)
8936 *adjust = len;
0787a12d
AM
8937 memcpy (tmpbuf + first, past_reloc, second);
8938 tmpbuf[first + second] = '\0';
f3c180ae
AM
8939 return tmpbuf;
8940 }
8941
4fa24527
JB
8942 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8943 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8944 return NULL;
8945 }
8946 }
8947
8948 /* Might be a symbol version string. Don't as_bad here. */
8949 return NULL;
8950}
4e4f7c87 8951#endif
f3c180ae 8952
a988325c
NC
8953#ifdef TE_PE
8954#ifdef lex_got
8955#undef lex_got
8956#endif
8957/* Parse operands of the form
8958 <symbol>@SECREL32+<nnn>
8959
8960 If we find one, set up the correct relocation in RELOC and copy the
8961 input string, minus the `@SECREL32' into a malloc'd buffer for
8962 parsing by the calling routine. Return this buffer, and if ADJUST
8963 is non-null set it to the length of the string we removed from the
34bca508
L
8964 input line. Otherwise return NULL.
8965
a988325c
NC
8966 This function is copied from the ELF version above adjusted for PE targets. */
8967
8968static char *
8969lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8970 int *adjust ATTRIBUTE_UNUSED,
d258b828 8971 i386_operand_type *types)
a988325c
NC
8972{
8973 static const struct
8974 {
8975 const char *str;
8976 int len;
8977 const enum bfd_reloc_code_real rel[2];
8978 const i386_operand_type types64;
8979 }
8980 gotrel[] =
8981 {
8982 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8983 BFD_RELOC_32_SECREL },
8984 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8985 };
8986
8987 char *cp;
8988 unsigned j;
8989
8990 for (cp = input_line_pointer; *cp != '@'; cp++)
8991 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8992 return NULL;
8993
8994 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8995 {
8996 int len = gotrel[j].len;
8997
8998 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8999 {
9000 if (gotrel[j].rel[object_64bit] != 0)
9001 {
9002 int first, second;
9003 char *tmpbuf, *past_reloc;
9004
9005 *rel = gotrel[j].rel[object_64bit];
9006 if (adjust)
9007 *adjust = len;
9008
9009 if (types)
9010 {
9011 if (flag_code != CODE_64BIT)
9012 {
9013 types->bitfield.imm32 = 1;
9014 types->bitfield.disp32 = 1;
9015 }
9016 else
9017 *types = gotrel[j].types64;
9018 }
9019
9020 /* The length of the first part of our input line. */
9021 first = cp - input_line_pointer;
9022
9023 /* The second part goes from after the reloc token until
9024 (and including) an end_of_line char or comma. */
9025 past_reloc = cp + 1 + len;
9026 cp = past_reloc;
9027 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9028 ++cp;
9029 second = cp + 1 - past_reloc;
9030
9031 /* Allocate and copy string. The trailing NUL shouldn't
9032 be necessary, but be safe. */
add39d23 9033 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9034 memcpy (tmpbuf, input_line_pointer, first);
9035 if (second != 0 && *past_reloc != ' ')
9036 /* Replace the relocation token with ' ', so that
9037 errors like foo@SECLREL321 will be detected. */
9038 tmpbuf[first++] = ' ';
9039 memcpy (tmpbuf + first, past_reloc, second);
9040 tmpbuf[first + second] = '\0';
9041 return tmpbuf;
9042 }
9043
9044 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9045 gotrel[j].str, 1 << (5 + object_64bit));
9046 return NULL;
9047 }
9048 }
9049
9050 /* Might be a symbol version string. Don't as_bad here. */
9051 return NULL;
9052}
9053
9054#endif /* TE_PE */
9055
62ebcb5c 9056bfd_reloc_code_real_type
e3bb37b5 9057x86_cons (expressionS *exp, int size)
f3c180ae 9058{
62ebcb5c
AM
9059 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9060
ee86248c
JB
9061 intel_syntax = -intel_syntax;
9062
3c7b9c2c 9063 exp->X_md = 0;
4fa24527 9064 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9065 {
9066 /* Handle @GOTOFF and the like in an expression. */
9067 char *save;
9068 char *gotfree_input_line;
4a57f2cf 9069 int adjust = 0;
f3c180ae
AM
9070
9071 save = input_line_pointer;
d258b828 9072 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9073 if (gotfree_input_line)
9074 input_line_pointer = gotfree_input_line;
9075
9076 expression (exp);
9077
9078 if (gotfree_input_line)
9079 {
9080 /* expression () has merrily parsed up to the end of line,
9081 or a comma - in the wrong buffer. Transfer how far
9082 input_line_pointer has moved to the right buffer. */
9083 input_line_pointer = (save
9084 + (input_line_pointer - gotfree_input_line)
9085 + adjust);
9086 free (gotfree_input_line);
3992d3b7
AM
9087 if (exp->X_op == O_constant
9088 || exp->X_op == O_absent
9089 || exp->X_op == O_illegal
0398aac5 9090 || exp->X_op == O_register
3992d3b7
AM
9091 || exp->X_op == O_big)
9092 {
9093 char c = *input_line_pointer;
9094 *input_line_pointer = 0;
9095 as_bad (_("missing or invalid expression `%s'"), save);
9096 *input_line_pointer = c;
9097 }
b9519cfe
L
9098 else if ((got_reloc == BFD_RELOC_386_PLT32
9099 || got_reloc == BFD_RELOC_X86_64_PLT32)
9100 && exp->X_op != O_symbol)
9101 {
9102 char c = *input_line_pointer;
9103 *input_line_pointer = 0;
9104 as_bad (_("invalid PLT expression `%s'"), save);
9105 *input_line_pointer = c;
9106 }
f3c180ae
AM
9107 }
9108 }
9109 else
9110 expression (exp);
ee86248c
JB
9111
9112 intel_syntax = -intel_syntax;
9113
9114 if (intel_syntax)
9115 i386_intel_simplify (exp);
62ebcb5c
AM
9116
9117 return got_reloc;
f3c180ae 9118}
f3c180ae 9119
9f32dd5b
L
9120static void
9121signed_cons (int size)
6482c264 9122{
d182319b
JB
9123 if (flag_code == CODE_64BIT)
9124 cons_sign = 1;
9125 cons (size);
9126 cons_sign = -1;
6482c264
NC
9127}
9128
d182319b 9129#ifdef TE_PE
6482c264 9130static void
7016a5d5 9131pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9132{
9133 expressionS exp;
9134
9135 do
9136 {
9137 expression (&exp);
9138 if (exp.X_op == O_symbol)
9139 exp.X_op = O_secrel;
9140
9141 emit_expr (&exp, 4);
9142 }
9143 while (*input_line_pointer++ == ',');
9144
9145 input_line_pointer--;
9146 demand_empty_rest_of_line ();
9147}
6482c264
NC
9148#endif
9149
43234a1e
L
9150/* Handle Vector operations. */
9151
9152static char *
9153check_VecOperations (char *op_string, char *op_end)
9154{
9155 const reg_entry *mask;
9156 const char *saved;
9157 char *end_op;
9158
9159 while (*op_string
9160 && (op_end == NULL || op_string < op_end))
9161 {
9162 saved = op_string;
9163 if (*op_string == '{')
9164 {
9165 op_string++;
9166
9167 /* Check broadcasts. */
9168 if (strncmp (op_string, "1to", 3) == 0)
9169 {
9170 int bcst_type;
9171
9172 if (i.broadcast)
9173 goto duplicated_vec_op;
9174
9175 op_string += 3;
9176 if (*op_string == '8')
8e6e0792 9177 bcst_type = 8;
b28d1bda 9178 else if (*op_string == '4')
8e6e0792 9179 bcst_type = 4;
b28d1bda 9180 else if (*op_string == '2')
8e6e0792 9181 bcst_type = 2;
43234a1e
L
9182 else if (*op_string == '1'
9183 && *(op_string+1) == '6')
9184 {
8e6e0792 9185 bcst_type = 16;
43234a1e
L
9186 op_string++;
9187 }
9188 else
9189 {
9190 as_bad (_("Unsupported broadcast: `%s'"), saved);
9191 return NULL;
9192 }
9193 op_string++;
9194
9195 broadcast_op.type = bcst_type;
9196 broadcast_op.operand = this_operand;
1f75763a 9197 broadcast_op.bytes = 0;
43234a1e
L
9198 i.broadcast = &broadcast_op;
9199 }
9200 /* Check masking operation. */
9201 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9202 {
9203 /* k0 can't be used for write mask. */
6d2cd6b2 9204 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9205 {
6d2cd6b2
JB
9206 as_bad (_("`%s%s' can't be used for write mask"),
9207 register_prefix, mask->reg_name);
43234a1e
L
9208 return NULL;
9209 }
9210
9211 if (!i.mask)
9212 {
9213 mask_op.mask = mask;
9214 mask_op.zeroing = 0;
9215 mask_op.operand = this_operand;
9216 i.mask = &mask_op;
9217 }
9218 else
9219 {
9220 if (i.mask->mask)
9221 goto duplicated_vec_op;
9222
9223 i.mask->mask = mask;
9224
9225 /* Only "{z}" is allowed here. No need to check
9226 zeroing mask explicitly. */
9227 if (i.mask->operand != this_operand)
9228 {
9229 as_bad (_("invalid write mask `%s'"), saved);
9230 return NULL;
9231 }
9232 }
9233
9234 op_string = end_op;
9235 }
9236 /* Check zeroing-flag for masking operation. */
9237 else if (*op_string == 'z')
9238 {
9239 if (!i.mask)
9240 {
9241 mask_op.mask = NULL;
9242 mask_op.zeroing = 1;
9243 mask_op.operand = this_operand;
9244 i.mask = &mask_op;
9245 }
9246 else
9247 {
9248 if (i.mask->zeroing)
9249 {
9250 duplicated_vec_op:
9251 as_bad (_("duplicated `%s'"), saved);
9252 return NULL;
9253 }
9254
9255 i.mask->zeroing = 1;
9256
9257 /* Only "{%k}" is allowed here. No need to check mask
9258 register explicitly. */
9259 if (i.mask->operand != this_operand)
9260 {
9261 as_bad (_("invalid zeroing-masking `%s'"),
9262 saved);
9263 return NULL;
9264 }
9265 }
9266
9267 op_string++;
9268 }
9269 else
9270 goto unknown_vec_op;
9271
9272 if (*op_string != '}')
9273 {
9274 as_bad (_("missing `}' in `%s'"), saved);
9275 return NULL;
9276 }
9277 op_string++;
0ba3a731
L
9278
9279 /* Strip whitespace since the addition of pseudo prefixes
9280 changed how the scrubber treats '{'. */
9281 if (is_space_char (*op_string))
9282 ++op_string;
9283
43234a1e
L
9284 continue;
9285 }
9286 unknown_vec_op:
9287 /* We don't know this one. */
9288 as_bad (_("unknown vector operation: `%s'"), saved);
9289 return NULL;
9290 }
9291
6d2cd6b2
JB
9292 if (i.mask && i.mask->zeroing && !i.mask->mask)
9293 {
9294 as_bad (_("zeroing-masking only allowed with write mask"));
9295 return NULL;
9296 }
9297
43234a1e
L
9298 return op_string;
9299}
9300
252b5132 9301static int
70e41ade 9302i386_immediate (char *imm_start)
252b5132
RH
9303{
9304 char *save_input_line_pointer;
f3c180ae 9305 char *gotfree_input_line;
252b5132 9306 segT exp_seg = 0;
47926f60 9307 expressionS *exp;
40fb9820
L
9308 i386_operand_type types;
9309
0dfbf9d7 9310 operand_type_set (&types, ~0);
252b5132
RH
9311
9312 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9313 {
31b2323c
L
9314 as_bad (_("at most %d immediate operands are allowed"),
9315 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9316 return 0;
9317 }
9318
9319 exp = &im_expressions[i.imm_operands++];
520dc8e8 9320 i.op[this_operand].imms = exp;
252b5132
RH
9321
9322 if (is_space_char (*imm_start))
9323 ++imm_start;
9324
9325 save_input_line_pointer = input_line_pointer;
9326 input_line_pointer = imm_start;
9327
d258b828 9328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9329 if (gotfree_input_line)
9330 input_line_pointer = gotfree_input_line;
252b5132
RH
9331
9332 exp_seg = expression (exp);
9333
83183c0c 9334 SKIP_WHITESPACE ();
43234a1e
L
9335
9336 /* Handle vector operations. */
9337 if (*input_line_pointer == '{')
9338 {
9339 input_line_pointer = check_VecOperations (input_line_pointer,
9340 NULL);
9341 if (input_line_pointer == NULL)
9342 return 0;
9343 }
9344
252b5132 9345 if (*input_line_pointer)
f3c180ae 9346 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9347
9348 input_line_pointer = save_input_line_pointer;
f3c180ae 9349 if (gotfree_input_line)
ee86248c
JB
9350 {
9351 free (gotfree_input_line);
9352
9353 if (exp->X_op == O_constant || exp->X_op == O_register)
9354 exp->X_op = O_illegal;
9355 }
9356
9357 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9358}
252b5132 9359
ee86248c
JB
9360static int
9361i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9362 i386_operand_type types, const char *imm_start)
9363{
9364 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9365 {
313c53d1
L
9366 if (imm_start)
9367 as_bad (_("missing or invalid immediate expression `%s'"),
9368 imm_start);
3992d3b7 9369 return 0;
252b5132 9370 }
3e73aa7c 9371 else if (exp->X_op == O_constant)
252b5132 9372 {
47926f60 9373 /* Size it properly later. */
40fb9820 9374 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9375 /* If not 64bit, sign extend val. */
9376 if (flag_code != CODE_64BIT
4eed87de
AM
9377 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9378 exp->X_add_number
9379 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9380 }
4c63da97 9381#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9382 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9383 && exp_seg != absolute_section
47926f60 9384 && exp_seg != text_section
24eab124
AM
9385 && exp_seg != data_section
9386 && exp_seg != bss_section
9387 && exp_seg != undefined_section
f86103b7 9388 && !bfd_is_com_section (exp_seg))
252b5132 9389 {
d0b47220 9390 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9391 return 0;
9392 }
9393#endif
a841bdf5 9394 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9395 {
313c53d1
L
9396 if (imm_start)
9397 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9398 return 0;
9399 }
252b5132
RH
9400 else
9401 {
9402 /* This is an address. The size of the address will be
24eab124 9403 determined later, depending on destination register,
3e73aa7c 9404 suffix, or the default for the section. */
40fb9820
L
9405 i.types[this_operand].bitfield.imm8 = 1;
9406 i.types[this_operand].bitfield.imm16 = 1;
9407 i.types[this_operand].bitfield.imm32 = 1;
9408 i.types[this_operand].bitfield.imm32s = 1;
9409 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9410 i.types[this_operand] = operand_type_and (i.types[this_operand],
9411 types);
252b5132
RH
9412 }
9413
9414 return 1;
9415}
9416
551c1ca1 9417static char *
e3bb37b5 9418i386_scale (char *scale)
252b5132 9419{
551c1ca1
AM
9420 offsetT val;
9421 char *save = input_line_pointer;
252b5132 9422
551c1ca1
AM
9423 input_line_pointer = scale;
9424 val = get_absolute_expression ();
9425
9426 switch (val)
252b5132 9427 {
551c1ca1 9428 case 1:
252b5132
RH
9429 i.log2_scale_factor = 0;
9430 break;
551c1ca1 9431 case 2:
252b5132
RH
9432 i.log2_scale_factor = 1;
9433 break;
551c1ca1 9434 case 4:
252b5132
RH
9435 i.log2_scale_factor = 2;
9436 break;
551c1ca1 9437 case 8:
252b5132
RH
9438 i.log2_scale_factor = 3;
9439 break;
9440 default:
a724f0f4
JB
9441 {
9442 char sep = *input_line_pointer;
9443
9444 *input_line_pointer = '\0';
9445 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9446 scale);
9447 *input_line_pointer = sep;
9448 input_line_pointer = save;
9449 return NULL;
9450 }
252b5132 9451 }
29b0f896 9452 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9453 {
9454 as_warn (_("scale factor of %d without an index register"),
24eab124 9455 1 << i.log2_scale_factor);
252b5132 9456 i.log2_scale_factor = 0;
252b5132 9457 }
551c1ca1
AM
9458 scale = input_line_pointer;
9459 input_line_pointer = save;
9460 return scale;
252b5132
RH
9461}
9462
252b5132 9463static int
e3bb37b5 9464i386_displacement (char *disp_start, char *disp_end)
252b5132 9465{
29b0f896 9466 expressionS *exp;
252b5132
RH
9467 segT exp_seg = 0;
9468 char *save_input_line_pointer;
f3c180ae 9469 char *gotfree_input_line;
40fb9820
L
9470 int override;
9471 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9472 int ret;
252b5132 9473
31b2323c
L
9474 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9475 {
9476 as_bad (_("at most %d displacement operands are allowed"),
9477 MAX_MEMORY_OPERANDS);
9478 return 0;
9479 }
9480
0dfbf9d7 9481 operand_type_set (&bigdisp, 0);
40fb9820
L
9482 if ((i.types[this_operand].bitfield.jumpabsolute)
9483 || (!current_templates->start->opcode_modifier.jump
9484 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9485 {
40fb9820 9486 bigdisp.bitfield.disp32 = 1;
e05278af 9487 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9488 if (flag_code == CODE_64BIT)
9489 {
9490 if (!override)
9491 {
9492 bigdisp.bitfield.disp32s = 1;
9493 bigdisp.bitfield.disp64 = 1;
9494 }
9495 }
9496 else if ((flag_code == CODE_16BIT) ^ override)
9497 {
9498 bigdisp.bitfield.disp32 = 0;
9499 bigdisp.bitfield.disp16 = 1;
9500 }
e05278af
JB
9501 }
9502 else
9503 {
9504 /* For PC-relative branches, the width of the displacement
9505 is dependent upon data size, not address size. */
e05278af 9506 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9507 if (flag_code == CODE_64BIT)
9508 {
9509 if (override || i.suffix == WORD_MNEM_SUFFIX)
9510 bigdisp.bitfield.disp16 = 1;
9511 else
9512 {
9513 bigdisp.bitfield.disp32 = 1;
9514 bigdisp.bitfield.disp32s = 1;
9515 }
9516 }
9517 else
e05278af
JB
9518 {
9519 if (!override)
9520 override = (i.suffix == (flag_code != CODE_16BIT
9521 ? WORD_MNEM_SUFFIX
9522 : LONG_MNEM_SUFFIX));
40fb9820
L
9523 bigdisp.bitfield.disp32 = 1;
9524 if ((flag_code == CODE_16BIT) ^ override)
9525 {
9526 bigdisp.bitfield.disp32 = 0;
9527 bigdisp.bitfield.disp16 = 1;
9528 }
e05278af 9529 }
e05278af 9530 }
c6fb90c8
L
9531 i.types[this_operand] = operand_type_or (i.types[this_operand],
9532 bigdisp);
252b5132
RH
9533
9534 exp = &disp_expressions[i.disp_operands];
520dc8e8 9535 i.op[this_operand].disps = exp;
252b5132
RH
9536 i.disp_operands++;
9537 save_input_line_pointer = input_line_pointer;
9538 input_line_pointer = disp_start;
9539 END_STRING_AND_SAVE (disp_end);
9540
9541#ifndef GCC_ASM_O_HACK
9542#define GCC_ASM_O_HACK 0
9543#endif
9544#if GCC_ASM_O_HACK
9545 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9546 if (i.types[this_operand].bitfield.baseIndex
24eab124 9547 && displacement_string_end[-1] == '+')
252b5132
RH
9548 {
9549 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9550 constraint within gcc asm statements.
9551 For instance:
9552
9553 #define _set_tssldt_desc(n,addr,limit,type) \
9554 __asm__ __volatile__ ( \
9555 "movw %w2,%0\n\t" \
9556 "movw %w1,2+%0\n\t" \
9557 "rorl $16,%1\n\t" \
9558 "movb %b1,4+%0\n\t" \
9559 "movb %4,5+%0\n\t" \
9560 "movb $0,6+%0\n\t" \
9561 "movb %h1,7+%0\n\t" \
9562 "rorl $16,%1" \
9563 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9564
9565 This works great except that the output assembler ends
9566 up looking a bit weird if it turns out that there is
9567 no offset. You end up producing code that looks like:
9568
9569 #APP
9570 movw $235,(%eax)
9571 movw %dx,2+(%eax)
9572 rorl $16,%edx
9573 movb %dl,4+(%eax)
9574 movb $137,5+(%eax)
9575 movb $0,6+(%eax)
9576 movb %dh,7+(%eax)
9577 rorl $16,%edx
9578 #NO_APP
9579
47926f60 9580 So here we provide the missing zero. */
24eab124
AM
9581
9582 *displacement_string_end = '0';
252b5132
RH
9583 }
9584#endif
d258b828 9585 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9586 if (gotfree_input_line)
9587 input_line_pointer = gotfree_input_line;
252b5132 9588
24eab124 9589 exp_seg = expression (exp);
252b5132 9590
636c26b0
AM
9591 SKIP_WHITESPACE ();
9592 if (*input_line_pointer)
9593 as_bad (_("junk `%s' after expression"), input_line_pointer);
9594#if GCC_ASM_O_HACK
9595 RESTORE_END_STRING (disp_end + 1);
9596#endif
636c26b0 9597 input_line_pointer = save_input_line_pointer;
636c26b0 9598 if (gotfree_input_line)
ee86248c
JB
9599 {
9600 free (gotfree_input_line);
9601
9602 if (exp->X_op == O_constant || exp->X_op == O_register)
9603 exp->X_op = O_illegal;
9604 }
9605
9606 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9607
9608 RESTORE_END_STRING (disp_end);
9609
9610 return ret;
9611}
9612
9613static int
9614i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9615 i386_operand_type types, const char *disp_start)
9616{
9617 i386_operand_type bigdisp;
9618 int ret = 1;
636c26b0 9619
24eab124
AM
9620 /* We do this to make sure that the section symbol is in
9621 the symbol table. We will ultimately change the relocation
47926f60 9622 to be relative to the beginning of the section. */
1ae12ab7 9623 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9624 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9625 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9626 {
636c26b0 9627 if (exp->X_op != O_symbol)
3992d3b7 9628 goto inv_disp;
636c26b0 9629
e5cb08ac 9630 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9631 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9632 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9633 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9634 exp->X_op = O_subtract;
9635 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9636 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9637 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9638 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9639 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9640 else
29b0f896 9641 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9642 }
252b5132 9643
3992d3b7
AM
9644 else if (exp->X_op == O_absent
9645 || exp->X_op == O_illegal
ee86248c 9646 || exp->X_op == O_big)
2daf4fd8 9647 {
3992d3b7
AM
9648 inv_disp:
9649 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9650 disp_start);
3992d3b7 9651 ret = 0;
2daf4fd8
AM
9652 }
9653
0e1147d9
L
9654 else if (flag_code == CODE_64BIT
9655 && !i.prefix[ADDR_PREFIX]
9656 && exp->X_op == O_constant)
9657 {
9658 /* Since displacement is signed extended to 64bit, don't allow
9659 disp32 and turn off disp32s if they are out of range. */
9660 i.types[this_operand].bitfield.disp32 = 0;
9661 if (!fits_in_signed_long (exp->X_add_number))
9662 {
9663 i.types[this_operand].bitfield.disp32s = 0;
9664 if (i.types[this_operand].bitfield.baseindex)
9665 {
9666 as_bad (_("0x%lx out range of signed 32bit displacement"),
9667 (long) exp->X_add_number);
9668 ret = 0;
9669 }
9670 }
9671 }
9672
4c63da97 9673#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9674 else if (exp->X_op != O_constant
9675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9676 && exp_seg != absolute_section
9677 && exp_seg != text_section
9678 && exp_seg != data_section
9679 && exp_seg != bss_section
9680 && exp_seg != undefined_section
9681 && !bfd_is_com_section (exp_seg))
24eab124 9682 {
d0b47220 9683 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9684 ret = 0;
24eab124 9685 }
252b5132 9686#endif
3956db08 9687
40fb9820
L
9688 /* Check if this is a displacement only operand. */
9689 bigdisp = i.types[this_operand];
9690 bigdisp.bitfield.disp8 = 0;
9691 bigdisp.bitfield.disp16 = 0;
9692 bigdisp.bitfield.disp32 = 0;
9693 bigdisp.bitfield.disp32s = 0;
9694 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9695 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9696 i.types[this_operand] = operand_type_and (i.types[this_operand],
9697 types);
3956db08 9698
3992d3b7 9699 return ret;
252b5132
RH
9700}
9701
2abc2bec
JB
9702/* Return the active addressing mode, taking address override and
9703 registers forming the address into consideration. Update the
9704 address override prefix if necessary. */
47926f60 9705
2abc2bec
JB
9706static enum flag_code
9707i386_addressing_mode (void)
252b5132 9708{
be05d201
L
9709 enum flag_code addr_mode;
9710
9711 if (i.prefix[ADDR_PREFIX])
9712 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9713 else
9714 {
9715 addr_mode = flag_code;
9716
24eab124 9717#if INFER_ADDR_PREFIX
be05d201
L
9718 if (i.mem_operands == 0)
9719 {
9720 /* Infer address prefix from the first memory operand. */
9721 const reg_entry *addr_reg = i.base_reg;
9722
9723 if (addr_reg == NULL)
9724 addr_reg = i.index_reg;
eecb386c 9725
be05d201
L
9726 if (addr_reg)
9727 {
e968fc9b 9728 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9729 addr_mode = CODE_32BIT;
9730 else if (flag_code != CODE_64BIT
dc821c5f 9731 && addr_reg->reg_type.bitfield.word)
be05d201
L
9732 addr_mode = CODE_16BIT;
9733
9734 if (addr_mode != flag_code)
9735 {
9736 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9737 i.prefixes += 1;
9738 /* Change the size of any displacement too. At most one
9739 of Disp16 or Disp32 is set.
9740 FIXME. There doesn't seem to be any real need for
9741 separate Disp16 and Disp32 flags. The same goes for
9742 Imm16 and Imm32. Removing them would probably clean
9743 up the code quite a lot. */
9744 if (flag_code != CODE_64BIT
9745 && (i.types[this_operand].bitfield.disp16
9746 || i.types[this_operand].bitfield.disp32))
9747 i.types[this_operand]
9748 = operand_type_xor (i.types[this_operand], disp16_32);
9749 }
9750 }
9751 }
24eab124 9752#endif
be05d201
L
9753 }
9754
2abc2bec
JB
9755 return addr_mode;
9756}
9757
9758/* Make sure the memory operand we've been dealt is valid.
9759 Return 1 on success, 0 on a failure. */
9760
9761static int
9762i386_index_check (const char *operand_string)
9763{
9764 const char *kind = "base/index";
9765 enum flag_code addr_mode = i386_addressing_mode ();
9766
fc0763e6
JB
9767 if (current_templates->start->opcode_modifier.isstring
9768 && !current_templates->start->opcode_modifier.immext
9769 && (current_templates->end[-1].opcode_modifier.isstring
9770 || i.mem_operands))
9771 {
9772 /* Memory operands of string insns are special in that they only allow
9773 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9774 const reg_entry *expected_reg;
9775 static const char *di_si[][2] =
9776 {
9777 { "esi", "edi" },
9778 { "si", "di" },
9779 { "rsi", "rdi" }
9780 };
9781 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9782
9783 kind = "string address";
9784
8325cc63 9785 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9786 {
9787 i386_operand_type type = current_templates->end[-1].operand_types[0];
9788
9789 if (!type.bitfield.baseindex
9790 || ((!i.mem_operands != !intel_syntax)
9791 && current_templates->end[-1].operand_types[1]
9792 .bitfield.baseindex))
9793 type = current_templates->end[-1].operand_types[1];
be05d201
L
9794 expected_reg = hash_find (reg_hash,
9795 di_si[addr_mode][type.bitfield.esseg]);
9796
fc0763e6
JB
9797 }
9798 else
be05d201 9799 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9800
be05d201
L
9801 if (i.base_reg != expected_reg
9802 || i.index_reg
fc0763e6 9803 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9804 {
be05d201
L
9805 /* The second memory operand must have the same size as
9806 the first one. */
9807 if (i.mem_operands
9808 && i.base_reg
9809 && !((addr_mode == CODE_64BIT
dc821c5f 9810 && i.base_reg->reg_type.bitfield.qword)
be05d201 9811 || (addr_mode == CODE_32BIT
dc821c5f
JB
9812 ? i.base_reg->reg_type.bitfield.dword
9813 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9814 goto bad_address;
9815
fc0763e6
JB
9816 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9817 operand_string,
9818 intel_syntax ? '[' : '(',
9819 register_prefix,
be05d201 9820 expected_reg->reg_name,
fc0763e6 9821 intel_syntax ? ']' : ')');
be05d201 9822 return 1;
fc0763e6 9823 }
be05d201
L
9824 else
9825 return 1;
9826
9827bad_address:
9828 as_bad (_("`%s' is not a valid %s expression"),
9829 operand_string, kind);
9830 return 0;
3e73aa7c
JH
9831 }
9832 else
9833 {
be05d201
L
9834 if (addr_mode != CODE_16BIT)
9835 {
9836 /* 32-bit/64-bit checks. */
9837 if ((i.base_reg
e968fc9b
JB
9838 && ((addr_mode == CODE_64BIT
9839 ? !i.base_reg->reg_type.bitfield.qword
9840 : !i.base_reg->reg_type.bitfield.dword)
9841 || (i.index_reg && i.base_reg->reg_num == RegIP)
9842 || i.base_reg->reg_num == RegIZ))
be05d201 9843 || (i.index_reg
1b54b8d7
JB
9844 && !i.index_reg->reg_type.bitfield.xmmword
9845 && !i.index_reg->reg_type.bitfield.ymmword
9846 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9847 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9848 ? !i.index_reg->reg_type.bitfield.qword
9849 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9850 || !i.index_reg->reg_type.bitfield.baseindex)))
9851 goto bad_address;
8178be5b
JB
9852
9853 /* bndmk, bndldx, and bndstx have special restrictions. */
9854 if (current_templates->start->base_opcode == 0xf30f1b
9855 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9856 {
9857 /* They cannot use RIP-relative addressing. */
e968fc9b 9858 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9859 {
9860 as_bad (_("`%s' cannot be used here"), operand_string);
9861 return 0;
9862 }
9863
9864 /* bndldx and bndstx ignore their scale factor. */
9865 if (current_templates->start->base_opcode != 0xf30f1b
9866 && i.log2_scale_factor)
9867 as_warn (_("register scaling is being ignored here"));
9868 }
be05d201
L
9869 }
9870 else
3e73aa7c 9871 {
be05d201 9872 /* 16-bit checks. */
3e73aa7c 9873 if ((i.base_reg
dc821c5f 9874 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9875 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9876 || (i.index_reg
dc821c5f 9877 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9878 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9879 || !(i.base_reg
9880 && i.base_reg->reg_num < 6
9881 && i.index_reg->reg_num >= 6
9882 && i.log2_scale_factor == 0))))
be05d201 9883 goto bad_address;
3e73aa7c
JH
9884 }
9885 }
be05d201 9886 return 1;
24eab124 9887}
252b5132 9888
43234a1e
L
9889/* Handle vector immediates. */
9890
9891static int
9892RC_SAE_immediate (const char *imm_start)
9893{
9894 unsigned int match_found, j;
9895 const char *pstr = imm_start;
9896 expressionS *exp;
9897
9898 if (*pstr != '{')
9899 return 0;
9900
9901 pstr++;
9902 match_found = 0;
9903 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9904 {
9905 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9906 {
9907 if (!i.rounding)
9908 {
9909 rc_op.type = RC_NamesTable[j].type;
9910 rc_op.operand = this_operand;
9911 i.rounding = &rc_op;
9912 }
9913 else
9914 {
9915 as_bad (_("duplicated `%s'"), imm_start);
9916 return 0;
9917 }
9918 pstr += RC_NamesTable[j].len;
9919 match_found = 1;
9920 break;
9921 }
9922 }
9923 if (!match_found)
9924 return 0;
9925
9926 if (*pstr++ != '}')
9927 {
9928 as_bad (_("Missing '}': '%s'"), imm_start);
9929 return 0;
9930 }
9931 /* RC/SAE immediate string should contain nothing more. */;
9932 if (*pstr != 0)
9933 {
9934 as_bad (_("Junk after '}': '%s'"), imm_start);
9935 return 0;
9936 }
9937
9938 exp = &im_expressions[i.imm_operands++];
9939 i.op[this_operand].imms = exp;
9940
9941 exp->X_op = O_constant;
9942 exp->X_add_number = 0;
9943 exp->X_add_symbol = (symbolS *) 0;
9944 exp->X_op_symbol = (symbolS *) 0;
9945
9946 i.types[this_operand].bitfield.imm8 = 1;
9947 return 1;
9948}
9949
8325cc63
JB
9950/* Only string instructions can have a second memory operand, so
9951 reduce current_templates to just those if it contains any. */
9952static int
9953maybe_adjust_templates (void)
9954{
9955 const insn_template *t;
9956
9957 gas_assert (i.mem_operands == 1);
9958
9959 for (t = current_templates->start; t < current_templates->end; ++t)
9960 if (t->opcode_modifier.isstring)
9961 break;
9962
9963 if (t < current_templates->end)
9964 {
9965 static templates aux_templates;
9966 bfd_boolean recheck;
9967
9968 aux_templates.start = t;
9969 for (; t < current_templates->end; ++t)
9970 if (!t->opcode_modifier.isstring)
9971 break;
9972 aux_templates.end = t;
9973
9974 /* Determine whether to re-check the first memory operand. */
9975 recheck = (aux_templates.start != current_templates->start
9976 || t != current_templates->end);
9977
9978 current_templates = &aux_templates;
9979
9980 if (recheck)
9981 {
9982 i.mem_operands = 0;
9983 if (i.memop1_string != NULL
9984 && i386_index_check (i.memop1_string) == 0)
9985 return 0;
9986 i.mem_operands = 1;
9987 }
9988 }
9989
9990 return 1;
9991}
9992
fc0763e6 9993/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9994 on error. */
252b5132 9995
252b5132 9996static int
a7619375 9997i386_att_operand (char *operand_string)
252b5132 9998{
af6bdddf
AM
9999 const reg_entry *r;
10000 char *end_op;
24eab124 10001 char *op_string = operand_string;
252b5132 10002
24eab124 10003 if (is_space_char (*op_string))
252b5132
RH
10004 ++op_string;
10005
24eab124 10006 /* We check for an absolute prefix (differentiating,
47926f60 10007 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10008 if (*op_string == ABSOLUTE_PREFIX)
10009 {
10010 ++op_string;
10011 if (is_space_char (*op_string))
10012 ++op_string;
40fb9820 10013 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10014 }
252b5132 10015
47926f60 10016 /* Check if operand is a register. */
4d1bb795 10017 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10018 {
40fb9820
L
10019 i386_operand_type temp;
10020
24eab124
AM
10021 /* Check for a segment override by searching for ':' after a
10022 segment register. */
10023 op_string = end_op;
10024 if (is_space_char (*op_string))
10025 ++op_string;
40fb9820
L
10026 if (*op_string == ':'
10027 && (r->reg_type.bitfield.sreg2
10028 || r->reg_type.bitfield.sreg3))
24eab124
AM
10029 {
10030 switch (r->reg_num)
10031 {
10032 case 0:
10033 i.seg[i.mem_operands] = &es;
10034 break;
10035 case 1:
10036 i.seg[i.mem_operands] = &cs;
10037 break;
10038 case 2:
10039 i.seg[i.mem_operands] = &ss;
10040 break;
10041 case 3:
10042 i.seg[i.mem_operands] = &ds;
10043 break;
10044 case 4:
10045 i.seg[i.mem_operands] = &fs;
10046 break;
10047 case 5:
10048 i.seg[i.mem_operands] = &gs;
10049 break;
10050 }
252b5132 10051
24eab124 10052 /* Skip the ':' and whitespace. */
252b5132
RH
10053 ++op_string;
10054 if (is_space_char (*op_string))
24eab124 10055 ++op_string;
252b5132 10056
24eab124
AM
10057 if (!is_digit_char (*op_string)
10058 && !is_identifier_char (*op_string)
10059 && *op_string != '('
10060 && *op_string != ABSOLUTE_PREFIX)
10061 {
10062 as_bad (_("bad memory operand `%s'"), op_string);
10063 return 0;
10064 }
47926f60 10065 /* Handle case of %es:*foo. */
24eab124
AM
10066 if (*op_string == ABSOLUTE_PREFIX)
10067 {
10068 ++op_string;
10069 if (is_space_char (*op_string))
10070 ++op_string;
40fb9820 10071 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10072 }
10073 goto do_memory_reference;
10074 }
43234a1e
L
10075
10076 /* Handle vector operations. */
10077 if (*op_string == '{')
10078 {
10079 op_string = check_VecOperations (op_string, NULL);
10080 if (op_string == NULL)
10081 return 0;
10082 }
10083
24eab124
AM
10084 if (*op_string)
10085 {
d0b47220 10086 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10087 return 0;
10088 }
40fb9820
L
10089 temp = r->reg_type;
10090 temp.bitfield.baseindex = 0;
c6fb90c8
L
10091 i.types[this_operand] = operand_type_or (i.types[this_operand],
10092 temp);
7d5e4556 10093 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10094 i.op[this_operand].regs = r;
24eab124
AM
10095 i.reg_operands++;
10096 }
af6bdddf
AM
10097 else if (*op_string == REGISTER_PREFIX)
10098 {
10099 as_bad (_("bad register name `%s'"), op_string);
10100 return 0;
10101 }
24eab124 10102 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10103 {
24eab124 10104 ++op_string;
40fb9820 10105 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10106 {
d0b47220 10107 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10108 return 0;
10109 }
10110 if (!i386_immediate (op_string))
10111 return 0;
10112 }
43234a1e
L
10113 else if (RC_SAE_immediate (operand_string))
10114 {
10115 /* If it is a RC or SAE immediate, do nothing. */
10116 ;
10117 }
24eab124
AM
10118 else if (is_digit_char (*op_string)
10119 || is_identifier_char (*op_string)
d02603dc 10120 || *op_string == '"'
e5cb08ac 10121 || *op_string == '(')
24eab124 10122 {
47926f60 10123 /* This is a memory reference of some sort. */
af6bdddf 10124 char *base_string;
252b5132 10125
47926f60 10126 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10127 char *displacement_string_start;
10128 char *displacement_string_end;
43234a1e 10129 char *vop_start;
252b5132 10130
24eab124 10131 do_memory_reference:
8325cc63
JB
10132 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10133 return 0;
24eab124 10134 if ((i.mem_operands == 1
40fb9820 10135 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10136 || i.mem_operands == 2)
10137 {
10138 as_bad (_("too many memory references for `%s'"),
10139 current_templates->start->name);
10140 return 0;
10141 }
252b5132 10142
24eab124
AM
10143 /* Check for base index form. We detect the base index form by
10144 looking for an ')' at the end of the operand, searching
10145 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10146 after the '('. */
af6bdddf 10147 base_string = op_string + strlen (op_string);
c3332e24 10148
43234a1e
L
10149 /* Handle vector operations. */
10150 vop_start = strchr (op_string, '{');
10151 if (vop_start && vop_start < base_string)
10152 {
10153 if (check_VecOperations (vop_start, base_string) == NULL)
10154 return 0;
10155 base_string = vop_start;
10156 }
10157
af6bdddf
AM
10158 --base_string;
10159 if (is_space_char (*base_string))
10160 --base_string;
252b5132 10161
47926f60 10162 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10163 displacement_string_start = op_string;
10164 displacement_string_end = base_string + 1;
252b5132 10165
24eab124
AM
10166 if (*base_string == ')')
10167 {
af6bdddf 10168 char *temp_string;
24eab124
AM
10169 unsigned int parens_balanced = 1;
10170 /* We've already checked that the number of left & right ()'s are
47926f60 10171 equal, so this loop will not be infinite. */
24eab124
AM
10172 do
10173 {
10174 base_string--;
10175 if (*base_string == ')')
10176 parens_balanced++;
10177 if (*base_string == '(')
10178 parens_balanced--;
10179 }
10180 while (parens_balanced);
c3332e24 10181
af6bdddf 10182 temp_string = base_string;
c3332e24 10183
24eab124 10184 /* Skip past '(' and whitespace. */
252b5132
RH
10185 ++base_string;
10186 if (is_space_char (*base_string))
24eab124 10187 ++base_string;
252b5132 10188
af6bdddf 10189 if (*base_string == ','
4eed87de
AM
10190 || ((i.base_reg = parse_register (base_string, &end_op))
10191 != NULL))
252b5132 10192 {
af6bdddf 10193 displacement_string_end = temp_string;
252b5132 10194
40fb9820 10195 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10196
af6bdddf 10197 if (i.base_reg)
24eab124 10198 {
24eab124
AM
10199 base_string = end_op;
10200 if (is_space_char (*base_string))
10201 ++base_string;
af6bdddf
AM
10202 }
10203
10204 /* There may be an index reg or scale factor here. */
10205 if (*base_string == ',')
10206 {
10207 ++base_string;
10208 if (is_space_char (*base_string))
10209 ++base_string;
10210
4eed87de
AM
10211 if ((i.index_reg = parse_register (base_string, &end_op))
10212 != NULL)
24eab124 10213 {
af6bdddf 10214 base_string = end_op;
24eab124
AM
10215 if (is_space_char (*base_string))
10216 ++base_string;
af6bdddf
AM
10217 if (*base_string == ',')
10218 {
10219 ++base_string;
10220 if (is_space_char (*base_string))
10221 ++base_string;
10222 }
e5cb08ac 10223 else if (*base_string != ')')
af6bdddf 10224 {
4eed87de
AM
10225 as_bad (_("expecting `,' or `)' "
10226 "after index register in `%s'"),
af6bdddf
AM
10227 operand_string);
10228 return 0;
10229 }
24eab124 10230 }
af6bdddf 10231 else if (*base_string == REGISTER_PREFIX)
24eab124 10232 {
f76bf5e0
L
10233 end_op = strchr (base_string, ',');
10234 if (end_op)
10235 *end_op = '\0';
af6bdddf 10236 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10237 return 0;
10238 }
252b5132 10239
47926f60 10240 /* Check for scale factor. */
551c1ca1 10241 if (*base_string != ')')
af6bdddf 10242 {
551c1ca1
AM
10243 char *end_scale = i386_scale (base_string);
10244
10245 if (!end_scale)
af6bdddf 10246 return 0;
24eab124 10247
551c1ca1 10248 base_string = end_scale;
af6bdddf
AM
10249 if (is_space_char (*base_string))
10250 ++base_string;
10251 if (*base_string != ')')
10252 {
4eed87de
AM
10253 as_bad (_("expecting `)' "
10254 "after scale factor in `%s'"),
af6bdddf
AM
10255 operand_string);
10256 return 0;
10257 }
10258 }
10259 else if (!i.index_reg)
24eab124 10260 {
4eed87de
AM
10261 as_bad (_("expecting index register or scale factor "
10262 "after `,'; got '%c'"),
af6bdddf 10263 *base_string);
24eab124
AM
10264 return 0;
10265 }
10266 }
af6bdddf 10267 else if (*base_string != ')')
24eab124 10268 {
4eed87de
AM
10269 as_bad (_("expecting `,' or `)' "
10270 "after base register in `%s'"),
af6bdddf 10271 operand_string);
24eab124
AM
10272 return 0;
10273 }
c3332e24 10274 }
af6bdddf 10275 else if (*base_string == REGISTER_PREFIX)
c3332e24 10276 {
f76bf5e0
L
10277 end_op = strchr (base_string, ',');
10278 if (end_op)
10279 *end_op = '\0';
af6bdddf 10280 as_bad (_("bad register name `%s'"), base_string);
24eab124 10281 return 0;
c3332e24 10282 }
24eab124
AM
10283 }
10284
10285 /* If there's an expression beginning the operand, parse it,
10286 assuming displacement_string_start and
10287 displacement_string_end are meaningful. */
10288 if (displacement_string_start != displacement_string_end)
10289 {
10290 if (!i386_displacement (displacement_string_start,
10291 displacement_string_end))
10292 return 0;
10293 }
10294
10295 /* Special case for (%dx) while doing input/output op. */
10296 if (i.base_reg
2fb5be8d 10297 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10298 && i.index_reg == 0
10299 && i.log2_scale_factor == 0
10300 && i.seg[i.mem_operands] == 0
40fb9820 10301 && !operand_type_check (i.types[this_operand], disp))
24eab124 10302 {
2fb5be8d 10303 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10304 return 1;
10305 }
10306
eecb386c
AM
10307 if (i386_index_check (operand_string) == 0)
10308 return 0;
c48dadc9 10309 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10310 if (i.mem_operands == 0)
10311 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10312 i.mem_operands++;
10313 }
10314 else
ce8a8b2f
AM
10315 {
10316 /* It's not a memory operand; argh! */
24eab124
AM
10317 as_bad (_("invalid char %s beginning operand %d `%s'"),
10318 output_invalid (*op_string),
10319 this_operand + 1,
10320 op_string);
10321 return 0;
10322 }
47926f60 10323 return 1; /* Normal return. */
252b5132
RH
10324}
10325\f
fa94de6b
RM
10326/* Calculate the maximum variable size (i.e., excluding fr_fix)
10327 that an rs_machine_dependent frag may reach. */
10328
10329unsigned int
10330i386_frag_max_var (fragS *frag)
10331{
10332 /* The only relaxable frags are for jumps.
10333 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10334 gas_assert (frag->fr_type == rs_machine_dependent);
10335 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10336}
10337
b084df0b
L
10338#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10339static int
8dcea932 10340elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10341{
10342 /* STT_GNU_IFUNC symbol must go through PLT. */
10343 if ((symbol_get_bfdsym (fr_symbol)->flags
10344 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10345 return 0;
10346
10347 if (!S_IS_EXTERNAL (fr_symbol))
10348 /* Symbol may be weak or local. */
10349 return !S_IS_WEAK (fr_symbol);
10350
8dcea932
L
10351 /* Global symbols with non-default visibility can't be preempted. */
10352 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10353 return 1;
10354
10355 if (fr_var != NO_RELOC)
10356 switch ((enum bfd_reloc_code_real) fr_var)
10357 {
10358 case BFD_RELOC_386_PLT32:
10359 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10360 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10361 return 0;
10362 default:
10363 abort ();
10364 }
10365
b084df0b
L
10366 /* Global symbols with default visibility in a shared library may be
10367 preempted by another definition. */
8dcea932 10368 return !shared;
b084df0b
L
10369}
10370#endif
10371
ee7fcc42
AM
10372/* md_estimate_size_before_relax()
10373
10374 Called just before relax() for rs_machine_dependent frags. The x86
10375 assembler uses these frags to handle variable size jump
10376 instructions.
10377
10378 Any symbol that is now undefined will not become defined.
10379 Return the correct fr_subtype in the frag.
10380 Return the initial "guess for variable size of frag" to caller.
10381 The guess is actually the growth beyond the fixed part. Whatever
10382 we do to grow the fixed or variable part contributes to our
10383 returned value. */
10384
252b5132 10385int
7016a5d5 10386md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10387{
252b5132 10388 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10389 check for un-relaxable symbols. On an ELF system, we can't relax
10390 an externally visible symbol, because it may be overridden by a
10391 shared library. */
10392 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10393#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10394 || (IS_ELF
8dcea932
L
10395 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10396 fragP->fr_var))
fbeb56a4
DK
10397#endif
10398#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10399 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10400 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10401#endif
10402 )
252b5132 10403 {
b98ef147
AM
10404 /* Symbol is undefined in this segment, or we need to keep a
10405 reloc so that weak symbols can be overridden. */
10406 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10407 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10408 unsigned char *opcode;
10409 int old_fr_fix;
f6af82bd 10410
ee7fcc42 10411 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10412 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10413 else if (size == 2)
f6af82bd 10414 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10415#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10416 else if (need_plt32_p (fragP->fr_symbol))
10417 reloc_type = BFD_RELOC_X86_64_PLT32;
10418#endif
f6af82bd
AM
10419 else
10420 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10421
ee7fcc42
AM
10422 old_fr_fix = fragP->fr_fix;
10423 opcode = (unsigned char *) fragP->fr_opcode;
10424
fddf5b5b 10425 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10426 {
fddf5b5b
AM
10427 case UNCOND_JUMP:
10428 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10429 opcode[0] = 0xe9;
252b5132 10430 fragP->fr_fix += size;
062cd5e7
AS
10431 fix_new (fragP, old_fr_fix, size,
10432 fragP->fr_symbol,
10433 fragP->fr_offset, 1,
10434 reloc_type);
252b5132
RH
10435 break;
10436
fddf5b5b 10437 case COND_JUMP86:
412167cb
AM
10438 if (size == 2
10439 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10440 {
10441 /* Negate the condition, and branch past an
10442 unconditional jump. */
10443 opcode[0] ^= 1;
10444 opcode[1] = 3;
10445 /* Insert an unconditional jump. */
10446 opcode[2] = 0xe9;
10447 /* We added two extra opcode bytes, and have a two byte
10448 offset. */
10449 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10450 fix_new (fragP, old_fr_fix + 2, 2,
10451 fragP->fr_symbol,
10452 fragP->fr_offset, 1,
10453 reloc_type);
fddf5b5b
AM
10454 break;
10455 }
10456 /* Fall through. */
10457
10458 case COND_JUMP:
412167cb
AM
10459 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10460 {
3e02c1cc
AM
10461 fixS *fixP;
10462
412167cb 10463 fragP->fr_fix += 1;
3e02c1cc
AM
10464 fixP = fix_new (fragP, old_fr_fix, 1,
10465 fragP->fr_symbol,
10466 fragP->fr_offset, 1,
10467 BFD_RELOC_8_PCREL);
10468 fixP->fx_signed = 1;
412167cb
AM
10469 break;
10470 }
93c2a809 10471
24eab124 10472 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10473 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10474 opcode[1] = opcode[0] + 0x10;
f6af82bd 10475 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10476 /* We've added an opcode byte. */
10477 fragP->fr_fix += 1 + size;
062cd5e7
AS
10478 fix_new (fragP, old_fr_fix + 1, size,
10479 fragP->fr_symbol,
10480 fragP->fr_offset, 1,
10481 reloc_type);
252b5132 10482 break;
fddf5b5b
AM
10483
10484 default:
10485 BAD_CASE (fragP->fr_subtype);
10486 break;
252b5132
RH
10487 }
10488 frag_wane (fragP);
ee7fcc42 10489 return fragP->fr_fix - old_fr_fix;
252b5132 10490 }
93c2a809 10491
93c2a809
AM
10492 /* Guess size depending on current relax state. Initially the relax
10493 state will correspond to a short jump and we return 1, because
10494 the variable part of the frag (the branch offset) is one byte
10495 long. However, we can relax a section more than once and in that
10496 case we must either set fr_subtype back to the unrelaxed state,
10497 or return the value for the appropriate branch. */
10498 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10499}
10500
47926f60
KH
10501/* Called after relax() is finished.
10502
10503 In: Address of frag.
10504 fr_type == rs_machine_dependent.
10505 fr_subtype is what the address relaxed to.
10506
10507 Out: Any fixSs and constants are set up.
10508 Caller will turn frag into a ".space 0". */
10509
252b5132 10510void
7016a5d5
TG
10511md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10512 fragS *fragP)
252b5132 10513{
29b0f896 10514 unsigned char *opcode;
252b5132 10515 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10516 offsetT target_address;
10517 offsetT opcode_address;
252b5132 10518 unsigned int extension = 0;
847f7ad4 10519 offsetT displacement_from_opcode_start;
252b5132
RH
10520
10521 opcode = (unsigned char *) fragP->fr_opcode;
10522
47926f60 10523 /* Address we want to reach in file space. */
252b5132 10524 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10525
47926f60 10526 /* Address opcode resides at in file space. */
252b5132
RH
10527 opcode_address = fragP->fr_address + fragP->fr_fix;
10528
47926f60 10529 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10530 displacement_from_opcode_start = target_address - opcode_address;
10531
fddf5b5b 10532 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10533 {
47926f60
KH
10534 /* Don't have to change opcode. */
10535 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10536 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10537 }
10538 else
10539 {
10540 if (no_cond_jump_promotion
10541 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10542 as_warn_where (fragP->fr_file, fragP->fr_line,
10543 _("long jump required"));
252b5132 10544
fddf5b5b
AM
10545 switch (fragP->fr_subtype)
10546 {
10547 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10548 extension = 4; /* 1 opcode + 4 displacement */
10549 opcode[0] = 0xe9;
10550 where_to_put_displacement = &opcode[1];
10551 break;
252b5132 10552
fddf5b5b
AM
10553 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10554 extension = 2; /* 1 opcode + 2 displacement */
10555 opcode[0] = 0xe9;
10556 where_to_put_displacement = &opcode[1];
10557 break;
252b5132 10558
fddf5b5b
AM
10559 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10560 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10561 extension = 5; /* 2 opcode + 4 displacement */
10562 opcode[1] = opcode[0] + 0x10;
10563 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10564 where_to_put_displacement = &opcode[2];
10565 break;
252b5132 10566
fddf5b5b
AM
10567 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10568 extension = 3; /* 2 opcode + 2 displacement */
10569 opcode[1] = opcode[0] + 0x10;
10570 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10571 where_to_put_displacement = &opcode[2];
10572 break;
252b5132 10573
fddf5b5b
AM
10574 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10575 extension = 4;
10576 opcode[0] ^= 1;
10577 opcode[1] = 3;
10578 opcode[2] = 0xe9;
10579 where_to_put_displacement = &opcode[3];
10580 break;
10581
10582 default:
10583 BAD_CASE (fragP->fr_subtype);
10584 break;
10585 }
252b5132 10586 }
fddf5b5b 10587
7b81dfbb
AJ
10588 /* If size if less then four we are sure that the operand fits,
10589 but if it's 4, then it could be that the displacement is larger
10590 then -/+ 2GB. */
10591 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10592 && object_64bit
10593 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10594 + ((addressT) 1 << 31))
10595 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10596 {
10597 as_bad_where (fragP->fr_file, fragP->fr_line,
10598 _("jump target out of range"));
10599 /* Make us emit 0. */
10600 displacement_from_opcode_start = extension;
10601 }
47926f60 10602 /* Now put displacement after opcode. */
252b5132
RH
10603 md_number_to_chars ((char *) where_to_put_displacement,
10604 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10605 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10606 fragP->fr_fix += extension;
10607}
10608\f
7016a5d5 10609/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10610 by our caller that we have all the info we need to fix it up.
10611
7016a5d5
TG
10612 Parameter valP is the pointer to the value of the bits.
10613
252b5132
RH
10614 On the 386, immediates, displacements, and data pointers are all in
10615 the same (little-endian) format, so we don't need to care about which
10616 we are handling. */
10617
94f592af 10618void
7016a5d5 10619md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10620{
94f592af 10621 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10622 valueT value = *valP;
252b5132 10623
f86103b7 10624#if !defined (TE_Mach)
93382f6d
AM
10625 if (fixP->fx_pcrel)
10626 {
10627 switch (fixP->fx_r_type)
10628 {
5865bb77
ILT
10629 default:
10630 break;
10631
d6ab8113
JB
10632 case BFD_RELOC_64:
10633 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10634 break;
93382f6d 10635 case BFD_RELOC_32:
ae8887b5 10636 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10637 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10638 break;
10639 case BFD_RELOC_16:
10640 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10641 break;
10642 case BFD_RELOC_8:
10643 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10644 break;
10645 }
10646 }
252b5132 10647
a161fe53 10648 if (fixP->fx_addsy != NULL
31312f95 10649 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10650 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10651 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10652 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10653 && !use_rela_relocations)
252b5132 10654 {
31312f95
AM
10655 /* This is a hack. There should be a better way to handle this.
10656 This covers for the fact that bfd_install_relocation will
10657 subtract the current location (for partial_inplace, PC relative
10658 relocations); see more below. */
252b5132 10659#ifndef OBJ_AOUT
718ddfc0 10660 if (IS_ELF
252b5132
RH
10661#ifdef TE_PE
10662 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10663#endif
10664 )
10665 value += fixP->fx_where + fixP->fx_frag->fr_address;
10666#endif
10667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10668 if (IS_ELF)
252b5132 10669 {
6539b54b 10670 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10671
6539b54b 10672 if ((sym_seg == seg
2f66722d 10673 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10674 && sym_seg != absolute_section))
af65af87 10675 && !generic_force_reloc (fixP))
2f66722d
AM
10676 {
10677 /* Yes, we add the values in twice. This is because
6539b54b
AM
10678 bfd_install_relocation subtracts them out again. I think
10679 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10680 it. FIXME. */
10681 value += fixP->fx_where + fixP->fx_frag->fr_address;
10682 }
252b5132
RH
10683 }
10684#endif
10685#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10686 /* For some reason, the PE format does not store a
10687 section address offset for a PC relative symbol. */
10688 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10689 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10690 value += md_pcrel_from (fixP);
10691#endif
10692 }
fbeb56a4 10693#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10694 if (fixP->fx_addsy != NULL
10695 && S_IS_WEAK (fixP->fx_addsy)
10696 /* PR 16858: Do not modify weak function references. */
10697 && ! fixP->fx_pcrel)
fbeb56a4 10698 {
296a8689
NC
10699#if !defined (TE_PEP)
10700 /* For x86 PE weak function symbols are neither PC-relative
10701 nor do they set S_IS_FUNCTION. So the only reliable way
10702 to detect them is to check the flags of their containing
10703 section. */
10704 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10705 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10706 ;
10707 else
10708#endif
fbeb56a4
DK
10709 value -= S_GET_VALUE (fixP->fx_addsy);
10710 }
10711#endif
252b5132
RH
10712
10713 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10714 and we must not disappoint it. */
252b5132 10715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10716 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10717 switch (fixP->fx_r_type)
10718 {
10719 case BFD_RELOC_386_PLT32:
3e73aa7c 10720 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10721 /* Make the jump instruction point to the address of the operand.
10722 At runtime we merely add the offset to the actual PLT entry.
10723 NB: Subtract the offset size only for jump instructions. */
10724 if (fixP->fx_pcrel)
10725 value = -4;
47926f60 10726 break;
31312f95 10727
13ae64f3
JJ
10728 case BFD_RELOC_386_TLS_GD:
10729 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10730 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10731 case BFD_RELOC_386_TLS_IE:
10732 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10733 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10734 case BFD_RELOC_X86_64_TLSGD:
10735 case BFD_RELOC_X86_64_TLSLD:
10736 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10737 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10738 value = 0; /* Fully resolved at runtime. No addend. */
10739 /* Fallthrough */
10740 case BFD_RELOC_386_TLS_LE:
10741 case BFD_RELOC_386_TLS_LDO_32:
10742 case BFD_RELOC_386_TLS_LE_32:
10743 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10744 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10745 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10746 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10747 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10748 break;
10749
67a4f2b7
AO
10750 case BFD_RELOC_386_TLS_DESC_CALL:
10751 case BFD_RELOC_X86_64_TLSDESC_CALL:
10752 value = 0; /* Fully resolved at runtime. No addend. */
10753 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10754 fixP->fx_done = 0;
10755 return;
10756
47926f60
KH
10757 case BFD_RELOC_VTABLE_INHERIT:
10758 case BFD_RELOC_VTABLE_ENTRY:
10759 fixP->fx_done = 0;
94f592af 10760 return;
47926f60
KH
10761
10762 default:
10763 break;
10764 }
10765#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10766 *valP = value;
f86103b7 10767#endif /* !defined (TE_Mach) */
3e73aa7c 10768
3e73aa7c 10769 /* Are we finished with this relocation now? */
c6682705 10770 if (fixP->fx_addsy == NULL)
3e73aa7c 10771 fixP->fx_done = 1;
fbeb56a4
DK
10772#if defined (OBJ_COFF) && defined (TE_PE)
10773 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10774 {
10775 fixP->fx_done = 0;
10776 /* Remember value for tc_gen_reloc. */
10777 fixP->fx_addnumber = value;
10778 /* Clear out the frag for now. */
10779 value = 0;
10780 }
10781#endif
3e73aa7c
JH
10782 else if (use_rela_relocations)
10783 {
10784 fixP->fx_no_overflow = 1;
062cd5e7
AS
10785 /* Remember value for tc_gen_reloc. */
10786 fixP->fx_addnumber = value;
3e73aa7c
JH
10787 value = 0;
10788 }
f86103b7 10789
94f592af 10790 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10791}
252b5132 10792\f
6d4af3c2 10793const char *
499ac353 10794md_atof (int type, char *litP, int *sizeP)
252b5132 10795{
499ac353
NC
10796 /* This outputs the LITTLENUMs in REVERSE order;
10797 in accord with the bigendian 386. */
10798 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10799}
10800\f
2d545b82 10801static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10802
252b5132 10803static char *
e3bb37b5 10804output_invalid (int c)
252b5132 10805{
3882b010 10806 if (ISPRINT (c))
f9f21a03
L
10807 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10808 "'%c'", c);
252b5132 10809 else
f9f21a03 10810 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10811 "(0x%x)", (unsigned char) c);
252b5132
RH
10812 return output_invalid_buf;
10813}
10814
af6bdddf 10815/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10816
10817static const reg_entry *
4d1bb795 10818parse_real_register (char *reg_string, char **end_op)
252b5132 10819{
af6bdddf
AM
10820 char *s = reg_string;
10821 char *p;
252b5132
RH
10822 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10823 const reg_entry *r;
10824
10825 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10826 if (*s == REGISTER_PREFIX)
10827 ++s;
10828
10829 if (is_space_char (*s))
10830 ++s;
10831
10832 p = reg_name_given;
af6bdddf 10833 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10834 {
10835 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10836 return (const reg_entry *) NULL;
10837 s++;
252b5132
RH
10838 }
10839
6588847e
DN
10840 /* For naked regs, make sure that we are not dealing with an identifier.
10841 This prevents confusing an identifier like `eax_var' with register
10842 `eax'. */
10843 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10844 return (const reg_entry *) NULL;
10845
af6bdddf 10846 *end_op = s;
252b5132
RH
10847
10848 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10849
5f47d35b 10850 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10851 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10852 {
0e0eea78
JB
10853 if (!cpu_arch_flags.bitfield.cpu8087
10854 && !cpu_arch_flags.bitfield.cpu287
10855 && !cpu_arch_flags.bitfield.cpu387)
10856 return (const reg_entry *) NULL;
10857
5f47d35b
AM
10858 if (is_space_char (*s))
10859 ++s;
10860 if (*s == '(')
10861 {
af6bdddf 10862 ++s;
5f47d35b
AM
10863 if (is_space_char (*s))
10864 ++s;
10865 if (*s >= '0' && *s <= '7')
10866 {
db557034 10867 int fpr = *s - '0';
af6bdddf 10868 ++s;
5f47d35b
AM
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s == ')')
10872 {
10873 *end_op = s + 1;
1e9cc1c2 10874 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10875 know (r);
10876 return r + fpr;
5f47d35b 10877 }
5f47d35b 10878 }
47926f60 10879 /* We have "%st(" then garbage. */
5f47d35b
AM
10880 return (const reg_entry *) NULL;
10881 }
10882 }
10883
a60de03c
JB
10884 if (r == NULL || allow_pseudo_reg)
10885 return r;
10886
0dfbf9d7 10887 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10888 return (const reg_entry *) NULL;
10889
dc821c5f 10890 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10891 || r->reg_type.bitfield.sreg3
10892 || r->reg_type.bitfield.control
10893 || r->reg_type.bitfield.debug
10894 || r->reg_type.bitfield.test)
10895 && !cpu_arch_flags.bitfield.cpui386)
10896 return (const reg_entry *) NULL;
10897
6e041cf4 10898 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10899 return (const reg_entry *) NULL;
10900
6e041cf4
JB
10901 if (!cpu_arch_flags.bitfield.cpuavx512f)
10902 {
10903 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10904 return (const reg_entry *) NULL;
40f12533 10905
6e041cf4
JB
10906 if (!cpu_arch_flags.bitfield.cpuavx)
10907 {
10908 if (r->reg_type.bitfield.ymmword)
10909 return (const reg_entry *) NULL;
1848e567 10910
6e041cf4
JB
10911 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10912 return (const reg_entry *) NULL;
10913 }
10914 }
43234a1e 10915
1adf7f56
JB
10916 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10917 return (const reg_entry *) NULL;
10918
db51cc60 10919 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10920 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10921 return (const reg_entry *) NULL;
10922
1d3f8286
JB
10923 /* Upper 16 vector registers are only available with VREX in 64bit
10924 mode, and require EVEX encoding. */
10925 if (r->reg_flags & RegVRex)
43234a1e 10926 {
e951d5ca 10927 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10928 || flag_code != CODE_64BIT)
10929 return (const reg_entry *) NULL;
1d3f8286
JB
10930
10931 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10932 }
10933
4787f4a5
JB
10934 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10935 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10936 && flag_code != CODE_64BIT)
20f0a1fc 10937 return (const reg_entry *) NULL;
1ae00879 10938
b7240065
JB
10939 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10940 return (const reg_entry *) NULL;
10941
252b5132
RH
10942 return r;
10943}
4d1bb795
JB
10944
10945/* REG_STRING starts *before* REGISTER_PREFIX. */
10946
10947static const reg_entry *
10948parse_register (char *reg_string, char **end_op)
10949{
10950 const reg_entry *r;
10951
10952 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10953 r = parse_real_register (reg_string, end_op);
10954 else
10955 r = NULL;
10956 if (!r)
10957 {
10958 char *save = input_line_pointer;
10959 char c;
10960 symbolS *symbolP;
10961
10962 input_line_pointer = reg_string;
d02603dc 10963 c = get_symbol_name (&reg_string);
4d1bb795
JB
10964 symbolP = symbol_find (reg_string);
10965 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10966 {
10967 const expressionS *e = symbol_get_value_expression (symbolP);
10968
0398aac5 10969 know (e->X_op == O_register);
4eed87de 10970 know (e->X_add_number >= 0
c3fe08fa 10971 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10972 r = i386_regtab + e->X_add_number;
d3bb6b49 10973 if ((r->reg_flags & RegVRex))
86fa6981 10974 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10975 *end_op = input_line_pointer;
10976 }
10977 *input_line_pointer = c;
10978 input_line_pointer = save;
10979 }
10980 return r;
10981}
10982
10983int
10984i386_parse_name (char *name, expressionS *e, char *nextcharP)
10985{
10986 const reg_entry *r;
10987 char *end = input_line_pointer;
10988
10989 *end = *nextcharP;
10990 r = parse_register (name, &input_line_pointer);
10991 if (r && end <= input_line_pointer)
10992 {
10993 *nextcharP = *input_line_pointer;
10994 *input_line_pointer = 0;
10995 e->X_op = O_register;
10996 e->X_add_number = r - i386_regtab;
10997 return 1;
10998 }
10999 input_line_pointer = end;
11000 *end = 0;
ee86248c 11001 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11002}
11003
11004void
11005md_operand (expressionS *e)
11006{
ee86248c
JB
11007 char *end;
11008 const reg_entry *r;
4d1bb795 11009
ee86248c
JB
11010 switch (*input_line_pointer)
11011 {
11012 case REGISTER_PREFIX:
11013 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11014 if (r)
11015 {
11016 e->X_op = O_register;
11017 e->X_add_number = r - i386_regtab;
11018 input_line_pointer = end;
11019 }
ee86248c
JB
11020 break;
11021
11022 case '[':
9c2799c2 11023 gas_assert (intel_syntax);
ee86248c
JB
11024 end = input_line_pointer++;
11025 expression (e);
11026 if (*input_line_pointer == ']')
11027 {
11028 ++input_line_pointer;
11029 e->X_op_symbol = make_expr_symbol (e);
11030 e->X_add_symbol = NULL;
11031 e->X_add_number = 0;
11032 e->X_op = O_index;
11033 }
11034 else
11035 {
11036 e->X_op = O_absent;
11037 input_line_pointer = end;
11038 }
11039 break;
4d1bb795
JB
11040 }
11041}
11042
252b5132 11043\f
4cc782b5 11044#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11045const char *md_shortopts = "kVQ:sqnO::";
252b5132 11046#else
b6f8c7c4 11047const char *md_shortopts = "qnO::";
252b5132 11048#endif
6e0b89ee 11049
3e73aa7c 11050#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11051#define OPTION_64 (OPTION_MD_BASE + 1)
11052#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11053#define OPTION_MARCH (OPTION_MD_BASE + 3)
11054#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11055#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11056#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11057#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11058#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11059#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11060#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11061#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11062#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11063#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11064#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11065#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11066#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11067#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11068#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11069#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11070#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11071#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11072#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11073#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11074#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11075#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11076#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11077
99ad8390
NC
11078struct option md_longopts[] =
11079{
3e73aa7c 11080 {"32", no_argument, NULL, OPTION_32},
321098a5 11081#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11082 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11083 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11084#endif
11085#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11086 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11087 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11088 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11089#endif
b3b91714 11090 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11091 {"march", required_argument, NULL, OPTION_MARCH},
11092 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11093 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11094 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11095 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11096 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11097 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11098 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11099 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11100 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11101 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11102 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11103 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11104 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11105# if defined (TE_PE) || defined (TE_PEP)
11106 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11107#endif
d1982f93 11108 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11109 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11110 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11111 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11112 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11113 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11114 {NULL, no_argument, NULL, 0}
11115};
11116size_t md_longopts_size = sizeof (md_longopts);
11117
11118int
17b9d67d 11119md_parse_option (int c, const char *arg)
252b5132 11120{
91d6fa6a 11121 unsigned int j;
293f5f65 11122 char *arch, *next, *saved;
9103f4f4 11123
252b5132
RH
11124 switch (c)
11125 {
12b55ccc
L
11126 case 'n':
11127 optimize_align_code = 0;
11128 break;
11129
a38cf1db
AM
11130 case 'q':
11131 quiet_warnings = 1;
252b5132
RH
11132 break;
11133
11134#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11135 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11136 should be emitted or not. FIXME: Not implemented. */
11137 case 'Q':
252b5132
RH
11138 break;
11139
11140 /* -V: SVR4 argument to print version ID. */
11141 case 'V':
11142 print_version_id ();
11143 break;
11144
a38cf1db
AM
11145 /* -k: Ignore for FreeBSD compatibility. */
11146 case 'k':
252b5132 11147 break;
4cc782b5
ILT
11148
11149 case 's':
11150 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11151 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11152 break;
8dcea932
L
11153
11154 case OPTION_MSHARED:
11155 shared = 1;
11156 break;
b4a3a7b4
L
11157
11158 case OPTION_X86_USED_NOTE:
11159 if (strcasecmp (arg, "yes") == 0)
11160 x86_used_note = 1;
11161 else if (strcasecmp (arg, "no") == 0)
11162 x86_used_note = 0;
11163 else
11164 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11165 break;
11166
11167
99ad8390 11168#endif
321098a5 11169#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11170 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11171 case OPTION_64:
11172 {
11173 const char **list, **l;
11174
3e73aa7c
JH
11175 list = bfd_target_list ();
11176 for (l = list; *l != NULL; l++)
8620418b 11177 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11178 || strcmp (*l, "coff-x86-64") == 0
11179 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11180 || strcmp (*l, "pei-x86-64") == 0
11181 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11182 {
11183 default_arch = "x86_64";
11184 break;
11185 }
3e73aa7c 11186 if (*l == NULL)
2b5d6a91 11187 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11188 free (list);
11189 }
11190 break;
11191#endif
252b5132 11192
351f65ca 11193#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11194 case OPTION_X32:
351f65ca
L
11195 if (IS_ELF)
11196 {
11197 const char **list, **l;
11198
11199 list = bfd_target_list ();
11200 for (l = list; *l != NULL; l++)
11201 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11202 {
11203 default_arch = "x86_64:32";
11204 break;
11205 }
11206 if (*l == NULL)
2b5d6a91 11207 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11208 free (list);
11209 }
11210 else
11211 as_fatal (_("32bit x86_64 is only supported for ELF"));
11212 break;
11213#endif
11214
6e0b89ee
AM
11215 case OPTION_32:
11216 default_arch = "i386";
11217 break;
11218
b3b91714
AM
11219 case OPTION_DIVIDE:
11220#ifdef SVR4_COMMENT_CHARS
11221 {
11222 char *n, *t;
11223 const char *s;
11224
add39d23 11225 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11226 t = n;
11227 for (s = i386_comment_chars; *s != '\0'; s++)
11228 if (*s != '/')
11229 *t++ = *s;
11230 *t = '\0';
11231 i386_comment_chars = n;
11232 }
11233#endif
11234 break;
11235
9103f4f4 11236 case OPTION_MARCH:
293f5f65
L
11237 saved = xstrdup (arg);
11238 arch = saved;
11239 /* Allow -march=+nosse. */
11240 if (*arch == '+')
11241 arch++;
6305a203 11242 do
9103f4f4 11243 {
6305a203 11244 if (*arch == '.')
2b5d6a91 11245 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11246 next = strchr (arch, '+');
11247 if (next)
11248 *next++ = '\0';
91d6fa6a 11249 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11250 {
91d6fa6a 11251 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11252 {
6305a203 11253 /* Processor. */
1ded5609
JB
11254 if (! cpu_arch[j].flags.bitfield.cpui386)
11255 continue;
11256
91d6fa6a 11257 cpu_arch_name = cpu_arch[j].name;
6305a203 11258 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11259 cpu_arch_flags = cpu_arch[j].flags;
11260 cpu_arch_isa = cpu_arch[j].type;
11261 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11262 if (!cpu_arch_tune_set)
11263 {
11264 cpu_arch_tune = cpu_arch_isa;
11265 cpu_arch_tune_flags = cpu_arch_isa_flags;
11266 }
11267 break;
11268 }
91d6fa6a
NC
11269 else if (*cpu_arch [j].name == '.'
11270 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11271 {
33eaf5de 11272 /* ISA extension. */
6305a203 11273 i386_cpu_flags flags;
309d3373 11274
293f5f65
L
11275 flags = cpu_flags_or (cpu_arch_flags,
11276 cpu_arch[j].flags);
81486035 11277
5b64d091 11278 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11279 {
11280 if (cpu_sub_arch_name)
11281 {
11282 char *name = cpu_sub_arch_name;
11283 cpu_sub_arch_name = concat (name,
91d6fa6a 11284 cpu_arch[j].name,
1bf57e9f 11285 (const char *) NULL);
6305a203
L
11286 free (name);
11287 }
11288 else
91d6fa6a 11289 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11290 cpu_arch_flags = flags;
a586129e 11291 cpu_arch_isa_flags = flags;
6305a203 11292 }
0089dace
L
11293 else
11294 cpu_arch_isa_flags
11295 = cpu_flags_or (cpu_arch_isa_flags,
11296 cpu_arch[j].flags);
6305a203 11297 break;
ccc9c027 11298 }
9103f4f4 11299 }
6305a203 11300
293f5f65
L
11301 if (j >= ARRAY_SIZE (cpu_arch))
11302 {
33eaf5de 11303 /* Disable an ISA extension. */
293f5f65
L
11304 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11305 if (strcmp (arch, cpu_noarch [j].name) == 0)
11306 {
11307 i386_cpu_flags flags;
11308
11309 flags = cpu_flags_and_not (cpu_arch_flags,
11310 cpu_noarch[j].flags);
11311 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11312 {
11313 if (cpu_sub_arch_name)
11314 {
11315 char *name = cpu_sub_arch_name;
11316 cpu_sub_arch_name = concat (arch,
11317 (const char *) NULL);
11318 free (name);
11319 }
11320 else
11321 cpu_sub_arch_name = xstrdup (arch);
11322 cpu_arch_flags = flags;
11323 cpu_arch_isa_flags = flags;
11324 }
11325 break;
11326 }
11327
11328 if (j >= ARRAY_SIZE (cpu_noarch))
11329 j = ARRAY_SIZE (cpu_arch);
11330 }
11331
91d6fa6a 11332 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11333 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11334
11335 arch = next;
9103f4f4 11336 }
293f5f65
L
11337 while (next != NULL);
11338 free (saved);
9103f4f4
L
11339 break;
11340
11341 case OPTION_MTUNE:
11342 if (*arg == '.')
2b5d6a91 11343 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11344 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11345 {
91d6fa6a 11346 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11347 {
ccc9c027 11348 cpu_arch_tune_set = 1;
91d6fa6a
NC
11349 cpu_arch_tune = cpu_arch [j].type;
11350 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11351 break;
11352 }
11353 }
91d6fa6a 11354 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11355 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11356 break;
11357
1efbbeb4
L
11358 case OPTION_MMNEMONIC:
11359 if (strcasecmp (arg, "att") == 0)
11360 intel_mnemonic = 0;
11361 else if (strcasecmp (arg, "intel") == 0)
11362 intel_mnemonic = 1;
11363 else
2b5d6a91 11364 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11365 break;
11366
11367 case OPTION_MSYNTAX:
11368 if (strcasecmp (arg, "att") == 0)
11369 intel_syntax = 0;
11370 else if (strcasecmp (arg, "intel") == 0)
11371 intel_syntax = 1;
11372 else
2b5d6a91 11373 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11374 break;
11375
11376 case OPTION_MINDEX_REG:
11377 allow_index_reg = 1;
11378 break;
11379
11380 case OPTION_MNAKED_REG:
11381 allow_naked_reg = 1;
11382 break;
11383
c0f3af97
L
11384 case OPTION_MSSE2AVX:
11385 sse2avx = 1;
11386 break;
11387
daf50ae7
L
11388 case OPTION_MSSE_CHECK:
11389 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11390 sse_check = check_error;
daf50ae7 11391 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11392 sse_check = check_warning;
daf50ae7 11393 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11394 sse_check = check_none;
daf50ae7 11395 else
2b5d6a91 11396 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11397 break;
11398
7bab8ab5
JB
11399 case OPTION_MOPERAND_CHECK:
11400 if (strcasecmp (arg, "error") == 0)
11401 operand_check = check_error;
11402 else if (strcasecmp (arg, "warning") == 0)
11403 operand_check = check_warning;
11404 else if (strcasecmp (arg, "none") == 0)
11405 operand_check = check_none;
11406 else
11407 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11408 break;
11409
539f890d
L
11410 case OPTION_MAVXSCALAR:
11411 if (strcasecmp (arg, "128") == 0)
11412 avxscalar = vex128;
11413 else if (strcasecmp (arg, "256") == 0)
11414 avxscalar = vex256;
11415 else
2b5d6a91 11416 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11417 break;
11418
03751133
L
11419 case OPTION_MVEXWIG:
11420 if (strcmp (arg, "0") == 0)
11421 vexwig = evexw0;
11422 else if (strcmp (arg, "1") == 0)
11423 vexwig = evexw1;
11424 else
11425 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11426 break;
11427
7e8b059b
L
11428 case OPTION_MADD_BND_PREFIX:
11429 add_bnd_prefix = 1;
11430 break;
11431
43234a1e
L
11432 case OPTION_MEVEXLIG:
11433 if (strcmp (arg, "128") == 0)
11434 evexlig = evexl128;
11435 else if (strcmp (arg, "256") == 0)
11436 evexlig = evexl256;
11437 else if (strcmp (arg, "512") == 0)
11438 evexlig = evexl512;
11439 else
11440 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11441 break;
11442
d3d3c6db
IT
11443 case OPTION_MEVEXRCIG:
11444 if (strcmp (arg, "rne") == 0)
11445 evexrcig = rne;
11446 else if (strcmp (arg, "rd") == 0)
11447 evexrcig = rd;
11448 else if (strcmp (arg, "ru") == 0)
11449 evexrcig = ru;
11450 else if (strcmp (arg, "rz") == 0)
11451 evexrcig = rz;
11452 else
11453 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11454 break;
11455
43234a1e
L
11456 case OPTION_MEVEXWIG:
11457 if (strcmp (arg, "0") == 0)
11458 evexwig = evexw0;
11459 else if (strcmp (arg, "1") == 0)
11460 evexwig = evexw1;
11461 else
11462 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11463 break;
11464
167ad85b
TG
11465# if defined (TE_PE) || defined (TE_PEP)
11466 case OPTION_MBIG_OBJ:
11467 use_big_obj = 1;
11468 break;
11469#endif
11470
d1982f93 11471 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11472 if (strcasecmp (arg, "yes") == 0)
11473 omit_lock_prefix = 1;
11474 else if (strcasecmp (arg, "no") == 0)
11475 omit_lock_prefix = 0;
11476 else
11477 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11478 break;
11479
e4e00185
AS
11480 case OPTION_MFENCE_AS_LOCK_ADD:
11481 if (strcasecmp (arg, "yes") == 0)
11482 avoid_fence = 1;
11483 else if (strcasecmp (arg, "no") == 0)
11484 avoid_fence = 0;
11485 else
11486 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11487 break;
11488
0cb4071e
L
11489 case OPTION_MRELAX_RELOCATIONS:
11490 if (strcasecmp (arg, "yes") == 0)
11491 generate_relax_relocations = 1;
11492 else if (strcasecmp (arg, "no") == 0)
11493 generate_relax_relocations = 0;
11494 else
11495 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11496 break;
11497
5db04b09 11498 case OPTION_MAMD64:
e89c5eaa 11499 intel64 = 0;
5db04b09
L
11500 break;
11501
11502 case OPTION_MINTEL64:
e89c5eaa 11503 intel64 = 1;
5db04b09
L
11504 break;
11505
b6f8c7c4
L
11506 case 'O':
11507 if (arg == NULL)
11508 {
11509 optimize = 1;
11510 /* Turn off -Os. */
11511 optimize_for_space = 0;
11512 }
11513 else if (*arg == 's')
11514 {
11515 optimize_for_space = 1;
11516 /* Turn on all encoding optimizations. */
41fd2579 11517 optimize = INT_MAX;
b6f8c7c4
L
11518 }
11519 else
11520 {
11521 optimize = atoi (arg);
11522 /* Turn off -Os. */
11523 optimize_for_space = 0;
11524 }
11525 break;
11526
252b5132
RH
11527 default:
11528 return 0;
11529 }
11530 return 1;
11531}
11532
8a2c8fef
L
11533#define MESSAGE_TEMPLATE \
11534" "
11535
293f5f65
L
11536static char *
11537output_message (FILE *stream, char *p, char *message, char *start,
11538 int *left_p, const char *name, int len)
11539{
11540 int size = sizeof (MESSAGE_TEMPLATE);
11541 int left = *left_p;
11542
11543 /* Reserve 2 spaces for ", " or ",\0" */
11544 left -= len + 2;
11545
11546 /* Check if there is any room. */
11547 if (left >= 0)
11548 {
11549 if (p != start)
11550 {
11551 *p++ = ',';
11552 *p++ = ' ';
11553 }
11554 p = mempcpy (p, name, len);
11555 }
11556 else
11557 {
11558 /* Output the current message now and start a new one. */
11559 *p++ = ',';
11560 *p = '\0';
11561 fprintf (stream, "%s\n", message);
11562 p = start;
11563 left = size - (start - message) - len - 2;
11564
11565 gas_assert (left >= 0);
11566
11567 p = mempcpy (p, name, len);
11568 }
11569
11570 *left_p = left;
11571 return p;
11572}
11573
8a2c8fef 11574static void
1ded5609 11575show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11576{
11577 static char message[] = MESSAGE_TEMPLATE;
11578 char *start = message + 27;
11579 char *p;
11580 int size = sizeof (MESSAGE_TEMPLATE);
11581 int left;
11582 const char *name;
11583 int len;
11584 unsigned int j;
11585
11586 p = start;
11587 left = size - (start - message);
11588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11589 {
11590 /* Should it be skipped? */
11591 if (cpu_arch [j].skip)
11592 continue;
11593
11594 name = cpu_arch [j].name;
11595 len = cpu_arch [j].len;
11596 if (*name == '.')
11597 {
11598 /* It is an extension. Skip if we aren't asked to show it. */
11599 if (ext)
11600 {
11601 name++;
11602 len--;
11603 }
11604 else
11605 continue;
11606 }
11607 else if (ext)
11608 {
11609 /* It is an processor. Skip if we show only extension. */
11610 continue;
11611 }
1ded5609
JB
11612 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11613 {
11614 /* It is an impossible processor - skip. */
11615 continue;
11616 }
8a2c8fef 11617
293f5f65 11618 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11619 }
11620
293f5f65
L
11621 /* Display disabled extensions. */
11622 if (ext)
11623 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11624 {
11625 name = cpu_noarch [j].name;
11626 len = cpu_noarch [j].len;
11627 p = output_message (stream, p, message, start, &left, name,
11628 len);
11629 }
11630
8a2c8fef
L
11631 *p = '\0';
11632 fprintf (stream, "%s\n", message);
11633}
11634
252b5132 11635void
8a2c8fef 11636md_show_usage (FILE *stream)
252b5132 11637{
4cc782b5
ILT
11638#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11639 fprintf (stream, _("\
a38cf1db
AM
11640 -Q ignored\n\
11641 -V print assembler version number\n\
b3b91714
AM
11642 -k ignored\n"));
11643#endif
11644 fprintf (stream, _("\
12b55ccc 11645 -n Do not optimize code alignment\n\
b3b91714
AM
11646 -q quieten some warnings\n"));
11647#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11648 fprintf (stream, _("\
a38cf1db 11649 -s ignored\n"));
b3b91714 11650#endif
d7f449c0
L
11651#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11652 || defined (TE_PE) || defined (TE_PEP))
751d281c 11653 fprintf (stream, _("\
570561f7 11654 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11655#endif
b3b91714
AM
11656#ifdef SVR4_COMMENT_CHARS
11657 fprintf (stream, _("\
11658 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11659#else
11660 fprintf (stream, _("\
b3b91714 11661 --divide ignored\n"));
4cc782b5 11662#endif
9103f4f4 11663 fprintf (stream, _("\
6305a203 11664 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11665 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11666 show_arch (stream, 0, 1);
8a2c8fef
L
11667 fprintf (stream, _("\
11668 EXTENSION is combination of:\n"));
1ded5609 11669 show_arch (stream, 1, 0);
6305a203 11670 fprintf (stream, _("\
8a2c8fef 11671 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11672 show_arch (stream, 0, 0);
ba104c83 11673 fprintf (stream, _("\
c0f3af97
L
11674 -msse2avx encode SSE instructions with VEX prefix\n"));
11675 fprintf (stream, _("\
7c5c05ef 11676 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11677 check SSE instructions\n"));
11678 fprintf (stream, _("\
7c5c05ef 11679 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11680 check operand combinations for validity\n"));
11681 fprintf (stream, _("\
7c5c05ef
L
11682 -mavxscalar=[128|256] (default: 128)\n\
11683 encode scalar AVX instructions with specific vector\n\
539f890d
L
11684 length\n"));
11685 fprintf (stream, _("\
03751133
L
11686 -mvexwig=[0|1] (default: 0)\n\
11687 encode VEX instructions with specific VEX.W value\n\
11688 for VEX.W bit ignored instructions\n"));
11689 fprintf (stream, _("\
7c5c05ef
L
11690 -mevexlig=[128|256|512] (default: 128)\n\
11691 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11692 length\n"));
11693 fprintf (stream, _("\
7c5c05ef
L
11694 -mevexwig=[0|1] (default: 0)\n\
11695 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11696 for EVEX.W bit ignored instructions\n"));
11697 fprintf (stream, _("\
7c5c05ef 11698 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11699 encode EVEX instructions with specific EVEX.RC value\n\
11700 for SAE-only ignored instructions\n"));
11701 fprintf (stream, _("\
7c5c05ef
L
11702 -mmnemonic=[att|intel] "));
11703 if (SYSV386_COMPAT)
11704 fprintf (stream, _("(default: att)\n"));
11705 else
11706 fprintf (stream, _("(default: intel)\n"));
11707 fprintf (stream, _("\
11708 use AT&T/Intel mnemonic\n"));
ba104c83 11709 fprintf (stream, _("\
7c5c05ef
L
11710 -msyntax=[att|intel] (default: att)\n\
11711 use AT&T/Intel syntax\n"));
ba104c83
L
11712 fprintf (stream, _("\
11713 -mindex-reg support pseudo index registers\n"));
11714 fprintf (stream, _("\
11715 -mnaked-reg don't require `%%' prefix for registers\n"));
11716 fprintf (stream, _("\
7e8b059b 11717 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11718#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11719 fprintf (stream, _("\
11720 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11721 fprintf (stream, _("\
11722 -mx86-used-note=[no|yes] "));
11723 if (DEFAULT_X86_USED_NOTE)
11724 fprintf (stream, _("(default: yes)\n"));
11725 else
11726 fprintf (stream, _("(default: no)\n"));
11727 fprintf (stream, _("\
11728 generate x86 used ISA and feature properties\n"));
11729#endif
11730#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11731 fprintf (stream, _("\
11732 -mbig-obj generate big object files\n"));
11733#endif
d022bddd 11734 fprintf (stream, _("\
7c5c05ef 11735 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11736 strip all lock prefixes\n"));
5db04b09 11737 fprintf (stream, _("\
7c5c05ef 11738 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11739 encode lfence, mfence and sfence as\n\
11740 lock addl $0x0, (%%{re}sp)\n"));
11741 fprintf (stream, _("\
7c5c05ef
L
11742 -mrelax-relocations=[no|yes] "));
11743 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11744 fprintf (stream, _("(default: yes)\n"));
11745 else
11746 fprintf (stream, _("(default: no)\n"));
11747 fprintf (stream, _("\
0cb4071e
L
11748 generate relax relocations\n"));
11749 fprintf (stream, _("\
7c5c05ef 11750 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11751 fprintf (stream, _("\
11752 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11753}
11754
3e73aa7c 11755#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11756 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11757 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11758
11759/* Pick the target format to use. */
11760
47926f60 11761const char *
e3bb37b5 11762i386_target_format (void)
252b5132 11763{
351f65ca
L
11764 if (!strncmp (default_arch, "x86_64", 6))
11765 {
11766 update_code_flag (CODE_64BIT, 1);
11767 if (default_arch[6] == '\0')
7f56bc95 11768 x86_elf_abi = X86_64_ABI;
351f65ca 11769 else
7f56bc95 11770 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11771 }
3e73aa7c 11772 else if (!strcmp (default_arch, "i386"))
78f12dd3 11773 update_code_flag (CODE_32BIT, 1);
5197d474
L
11774 else if (!strcmp (default_arch, "iamcu"))
11775 {
11776 update_code_flag (CODE_32BIT, 1);
11777 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11778 {
11779 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11780 cpu_arch_name = "iamcu";
11781 cpu_sub_arch_name = NULL;
11782 cpu_arch_flags = iamcu_flags;
11783 cpu_arch_isa = PROCESSOR_IAMCU;
11784 cpu_arch_isa_flags = iamcu_flags;
11785 if (!cpu_arch_tune_set)
11786 {
11787 cpu_arch_tune = cpu_arch_isa;
11788 cpu_arch_tune_flags = cpu_arch_isa_flags;
11789 }
11790 }
8d471ec1 11791 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11792 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11793 cpu_arch_name);
11794 }
3e73aa7c 11795 else
2b5d6a91 11796 as_fatal (_("unknown architecture"));
89507696
JB
11797
11798 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11799 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11800 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11801 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11802
252b5132
RH
11803 switch (OUTPUT_FLAVOR)
11804 {
9384f2ff 11805#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11806 case bfd_target_aout_flavour:
47926f60 11807 return AOUT_TARGET_FORMAT;
4c63da97 11808#endif
9384f2ff
AM
11809#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11810# if defined (TE_PE) || defined (TE_PEP)
11811 case bfd_target_coff_flavour:
167ad85b
TG
11812 if (flag_code == CODE_64BIT)
11813 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11814 else
11815 return "pe-i386";
9384f2ff 11816# elif defined (TE_GO32)
0561d57c
JK
11817 case bfd_target_coff_flavour:
11818 return "coff-go32";
9384f2ff 11819# else
252b5132
RH
11820 case bfd_target_coff_flavour:
11821 return "coff-i386";
9384f2ff 11822# endif
4c63da97 11823#endif
3e73aa7c 11824#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11825 case bfd_target_elf_flavour:
3e73aa7c 11826 {
351f65ca
L
11827 const char *format;
11828
11829 switch (x86_elf_abi)
4fa24527 11830 {
351f65ca
L
11831 default:
11832 format = ELF_TARGET_FORMAT;
11833 break;
7f56bc95 11834 case X86_64_ABI:
351f65ca 11835 use_rela_relocations = 1;
4fa24527 11836 object_64bit = 1;
351f65ca
L
11837 format = ELF_TARGET_FORMAT64;
11838 break;
7f56bc95 11839 case X86_64_X32_ABI:
4fa24527 11840 use_rela_relocations = 1;
351f65ca 11841 object_64bit = 1;
862be3fb 11842 disallow_64bit_reloc = 1;
351f65ca
L
11843 format = ELF_TARGET_FORMAT32;
11844 break;
4fa24527 11845 }
3632d14b 11846 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11847 {
7f56bc95 11848 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11849 as_fatal (_("Intel L1OM is 64bit only"));
11850 return ELF_TARGET_L1OM_FORMAT;
11851 }
b49f93f6 11852 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11853 {
11854 if (x86_elf_abi != X86_64_ABI)
11855 as_fatal (_("Intel K1OM is 64bit only"));
11856 return ELF_TARGET_K1OM_FORMAT;
11857 }
81486035
L
11858 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11859 {
11860 if (x86_elf_abi != I386_ABI)
11861 as_fatal (_("Intel MCU is 32bit only"));
11862 return ELF_TARGET_IAMCU_FORMAT;
11863 }
8a9036a4 11864 else
351f65ca 11865 return format;
3e73aa7c 11866 }
e57f8c65
TG
11867#endif
11868#if defined (OBJ_MACH_O)
11869 case bfd_target_mach_o_flavour:
d382c579
TG
11870 if (flag_code == CODE_64BIT)
11871 {
11872 use_rela_relocations = 1;
11873 object_64bit = 1;
11874 return "mach-o-x86-64";
11875 }
11876 else
11877 return "mach-o-i386";
4c63da97 11878#endif
252b5132
RH
11879 default:
11880 abort ();
11881 return NULL;
11882 }
11883}
11884
47926f60 11885#endif /* OBJ_MAYBE_ more than one */
252b5132 11886\f
252b5132 11887symbolS *
7016a5d5 11888md_undefined_symbol (char *name)
252b5132 11889{
18dc2407
ILT
11890 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11891 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11892 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11893 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11894 {
11895 if (!GOT_symbol)
11896 {
11897 if (symbol_find (name))
11898 as_bad (_("GOT already in symbol table"));
11899 GOT_symbol = symbol_new (name, undefined_section,
11900 (valueT) 0, &zero_address_frag);
11901 };
11902 return GOT_symbol;
11903 }
252b5132
RH
11904 return 0;
11905}
11906
11907/* Round up a section size to the appropriate boundary. */
47926f60 11908
252b5132 11909valueT
7016a5d5 11910md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11911{
4c63da97
AM
11912#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11913 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11914 {
11915 /* For a.out, force the section size to be aligned. If we don't do
11916 this, BFD will align it for us, but it will not write out the
11917 final bytes of the section. This may be a bug in BFD, but it is
11918 easier to fix it here since that is how the other a.out targets
11919 work. */
11920 int align;
11921
11922 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11923 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11924 }
252b5132
RH
11925#endif
11926
11927 return size;
11928}
11929
11930/* On the i386, PC-relative offsets are relative to the start of the
11931 next instruction. That is, the address of the offset, plus its
11932 size, since the offset is always the last part of the insn. */
11933
11934long
e3bb37b5 11935md_pcrel_from (fixS *fixP)
252b5132
RH
11936{
11937 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11938}
11939
11940#ifndef I386COFF
11941
11942static void
e3bb37b5 11943s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11944{
29b0f896 11945 int temp;
252b5132 11946
8a75718c
JB
11947#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11948 if (IS_ELF)
11949 obj_elf_section_change_hook ();
11950#endif
252b5132
RH
11951 temp = get_absolute_expression ();
11952 subseg_set (bss_section, (subsegT) temp);
11953 demand_empty_rest_of_line ();
11954}
11955
11956#endif
11957
252b5132 11958void
e3bb37b5 11959i386_validate_fix (fixS *fixp)
252b5132 11960{
02a86693 11961 if (fixp->fx_subsy)
252b5132 11962 {
02a86693 11963 if (fixp->fx_subsy == GOT_symbol)
23df1078 11964 {
02a86693
L
11965 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11966 {
11967 if (!object_64bit)
11968 abort ();
11969#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11970 if (fixp->fx_tcbit2)
56ceb5b5
L
11971 fixp->fx_r_type = (fixp->fx_tcbit
11972 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11973 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11974 else
11975#endif
11976 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11977 }
d6ab8113 11978 else
02a86693
L
11979 {
11980 if (!object_64bit)
11981 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11982 else
11983 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11984 }
11985 fixp->fx_subsy = 0;
23df1078 11986 }
252b5132 11987 }
02a86693
L
11988#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11989 else if (!object_64bit)
11990 {
11991 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11992 && fixp->fx_tcbit2)
11993 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11994 }
11995#endif
252b5132
RH
11996}
11997
252b5132 11998arelent *
7016a5d5 11999tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12000{
12001 arelent *rel;
12002 bfd_reloc_code_real_type code;
12003
12004 switch (fixp->fx_r_type)
12005 {
8ce3d284 12006#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12007 case BFD_RELOC_SIZE32:
12008 case BFD_RELOC_SIZE64:
12009 if (S_IS_DEFINED (fixp->fx_addsy)
12010 && !S_IS_EXTERNAL (fixp->fx_addsy))
12011 {
12012 /* Resolve size relocation against local symbol to size of
12013 the symbol plus addend. */
12014 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12015 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12016 && !fits_in_unsigned_long (value))
12017 as_bad_where (fixp->fx_file, fixp->fx_line,
12018 _("symbol size computation overflow"));
12019 fixp->fx_addsy = NULL;
12020 fixp->fx_subsy = NULL;
12021 md_apply_fix (fixp, (valueT *) &value, NULL);
12022 return NULL;
12023 }
8ce3d284 12024#endif
1a0670f3 12025 /* Fall through. */
8fd4256d 12026
3e73aa7c
JH
12027 case BFD_RELOC_X86_64_PLT32:
12028 case BFD_RELOC_X86_64_GOT32:
12029 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12030 case BFD_RELOC_X86_64_GOTPCRELX:
12031 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12032 case BFD_RELOC_386_PLT32:
12033 case BFD_RELOC_386_GOT32:
02a86693 12034 case BFD_RELOC_386_GOT32X:
252b5132
RH
12035 case BFD_RELOC_386_GOTOFF:
12036 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12037 case BFD_RELOC_386_TLS_GD:
12038 case BFD_RELOC_386_TLS_LDM:
12039 case BFD_RELOC_386_TLS_LDO_32:
12040 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12041 case BFD_RELOC_386_TLS_IE:
12042 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12043 case BFD_RELOC_386_TLS_LE_32:
12044 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12045 case BFD_RELOC_386_TLS_GOTDESC:
12046 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12047 case BFD_RELOC_X86_64_TLSGD:
12048 case BFD_RELOC_X86_64_TLSLD:
12049 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12050 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12051 case BFD_RELOC_X86_64_GOTTPOFF:
12052 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12053 case BFD_RELOC_X86_64_TPOFF64:
12054 case BFD_RELOC_X86_64_GOTOFF64:
12055 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12056 case BFD_RELOC_X86_64_GOT64:
12057 case BFD_RELOC_X86_64_GOTPCREL64:
12058 case BFD_RELOC_X86_64_GOTPC64:
12059 case BFD_RELOC_X86_64_GOTPLT64:
12060 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12061 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12062 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12063 case BFD_RELOC_RVA:
12064 case BFD_RELOC_VTABLE_ENTRY:
12065 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12066#ifdef TE_PE
12067 case BFD_RELOC_32_SECREL:
12068#endif
252b5132
RH
12069 code = fixp->fx_r_type;
12070 break;
dbbaec26
L
12071 case BFD_RELOC_X86_64_32S:
12072 if (!fixp->fx_pcrel)
12073 {
12074 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12075 code = fixp->fx_r_type;
12076 break;
12077 }
1a0670f3 12078 /* Fall through. */
252b5132 12079 default:
93382f6d 12080 if (fixp->fx_pcrel)
252b5132 12081 {
93382f6d
AM
12082 switch (fixp->fx_size)
12083 {
12084 default:
b091f402
AM
12085 as_bad_where (fixp->fx_file, fixp->fx_line,
12086 _("can not do %d byte pc-relative relocation"),
12087 fixp->fx_size);
93382f6d
AM
12088 code = BFD_RELOC_32_PCREL;
12089 break;
12090 case 1: code = BFD_RELOC_8_PCREL; break;
12091 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12092 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12093#ifdef BFD64
12094 case 8: code = BFD_RELOC_64_PCREL; break;
12095#endif
93382f6d
AM
12096 }
12097 }
12098 else
12099 {
12100 switch (fixp->fx_size)
12101 {
12102 default:
b091f402
AM
12103 as_bad_where (fixp->fx_file, fixp->fx_line,
12104 _("can not do %d byte relocation"),
12105 fixp->fx_size);
93382f6d
AM
12106 code = BFD_RELOC_32;
12107 break;
12108 case 1: code = BFD_RELOC_8; break;
12109 case 2: code = BFD_RELOC_16; break;
12110 case 4: code = BFD_RELOC_32; break;
937149dd 12111#ifdef BFD64
3e73aa7c 12112 case 8: code = BFD_RELOC_64; break;
937149dd 12113#endif
93382f6d 12114 }
252b5132
RH
12115 }
12116 break;
12117 }
252b5132 12118
d182319b
JB
12119 if ((code == BFD_RELOC_32
12120 || code == BFD_RELOC_32_PCREL
12121 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12122 && GOT_symbol
12123 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12124 {
4fa24527 12125 if (!object_64bit)
d6ab8113
JB
12126 code = BFD_RELOC_386_GOTPC;
12127 else
12128 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12129 }
7b81dfbb
AJ
12130 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12131 && GOT_symbol
12132 && fixp->fx_addsy == GOT_symbol)
12133 {
12134 code = BFD_RELOC_X86_64_GOTPC64;
12135 }
252b5132 12136
add39d23
TS
12137 rel = XNEW (arelent);
12138 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12139 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12140
12141 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12142
3e73aa7c
JH
12143 if (!use_rela_relocations)
12144 {
12145 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12146 vtable entry to be used in the relocation's section offset. */
12147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12148 rel->address = fixp->fx_offset;
fbeb56a4
DK
12149#if defined (OBJ_COFF) && defined (TE_PE)
12150 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12151 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12152 else
12153#endif
c6682705 12154 rel->addend = 0;
3e73aa7c
JH
12155 }
12156 /* Use the rela in 64bit mode. */
252b5132 12157 else
3e73aa7c 12158 {
862be3fb
L
12159 if (disallow_64bit_reloc)
12160 switch (code)
12161 {
862be3fb
L
12162 case BFD_RELOC_X86_64_DTPOFF64:
12163 case BFD_RELOC_X86_64_TPOFF64:
12164 case BFD_RELOC_64_PCREL:
12165 case BFD_RELOC_X86_64_GOTOFF64:
12166 case BFD_RELOC_X86_64_GOT64:
12167 case BFD_RELOC_X86_64_GOTPCREL64:
12168 case BFD_RELOC_X86_64_GOTPC64:
12169 case BFD_RELOC_X86_64_GOTPLT64:
12170 case BFD_RELOC_X86_64_PLTOFF64:
12171 as_bad_where (fixp->fx_file, fixp->fx_line,
12172 _("cannot represent relocation type %s in x32 mode"),
12173 bfd_get_reloc_code_name (code));
12174 break;
12175 default:
12176 break;
12177 }
12178
062cd5e7
AS
12179 if (!fixp->fx_pcrel)
12180 rel->addend = fixp->fx_offset;
12181 else
12182 switch (code)
12183 {
12184 case BFD_RELOC_X86_64_PLT32:
12185 case BFD_RELOC_X86_64_GOT32:
12186 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12187 case BFD_RELOC_X86_64_GOTPCRELX:
12188 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12189 case BFD_RELOC_X86_64_TLSGD:
12190 case BFD_RELOC_X86_64_TLSLD:
12191 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12192 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12193 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12194 rel->addend = fixp->fx_offset - fixp->fx_size;
12195 break;
12196 default:
12197 rel->addend = (section->vma
12198 - fixp->fx_size
12199 + fixp->fx_addnumber
12200 + md_pcrel_from (fixp));
12201 break;
12202 }
3e73aa7c
JH
12203 }
12204
252b5132
RH
12205 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12206 if (rel->howto == NULL)
12207 {
12208 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12209 _("cannot represent relocation type %s"),
252b5132
RH
12210 bfd_get_reloc_code_name (code));
12211 /* Set howto to a garbage value so that we can keep going. */
12212 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12213 gas_assert (rel->howto != NULL);
252b5132
RH
12214 }
12215
12216 return rel;
12217}
12218
ee86248c 12219#include "tc-i386-intel.c"
54cfded0 12220
a60de03c
JB
12221void
12222tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12223{
a60de03c
JB
12224 int saved_naked_reg;
12225 char saved_register_dot;
54cfded0 12226
a60de03c
JB
12227 saved_naked_reg = allow_naked_reg;
12228 allow_naked_reg = 1;
12229 saved_register_dot = register_chars['.'];
12230 register_chars['.'] = '.';
12231 allow_pseudo_reg = 1;
12232 expression_and_evaluate (exp);
12233 allow_pseudo_reg = 0;
12234 register_chars['.'] = saved_register_dot;
12235 allow_naked_reg = saved_naked_reg;
12236
e96d56a1 12237 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12238 {
a60de03c
JB
12239 if ((addressT) exp->X_add_number < i386_regtab_size)
12240 {
12241 exp->X_op = O_constant;
12242 exp->X_add_number = i386_regtab[exp->X_add_number]
12243 .dw2_regnum[flag_code >> 1];
12244 }
12245 else
12246 exp->X_op = O_illegal;
54cfded0 12247 }
54cfded0
AM
12248}
12249
12250void
12251tc_x86_frame_initial_instructions (void)
12252{
a60de03c
JB
12253 static unsigned int sp_regno[2];
12254
12255 if (!sp_regno[flag_code >> 1])
12256 {
12257 char *saved_input = input_line_pointer;
12258 char sp[][4] = {"esp", "rsp"};
12259 expressionS exp;
a4447b93 12260
a60de03c
JB
12261 input_line_pointer = sp[flag_code >> 1];
12262 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12263 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12264 sp_regno[flag_code >> 1] = exp.X_add_number;
12265 input_line_pointer = saved_input;
12266 }
a4447b93 12267
61ff971f
L
12268 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12269 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12270}
d2b2c203 12271
d7921315
L
12272int
12273x86_dwarf2_addr_size (void)
12274{
12275#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12276 if (x86_elf_abi == X86_64_X32_ABI)
12277 return 4;
12278#endif
12279 return bfd_arch_bits_per_address (stdoutput) / 8;
12280}
12281
d2b2c203
DJ
12282int
12283i386_elf_section_type (const char *str, size_t len)
12284{
12285 if (flag_code == CODE_64BIT
12286 && len == sizeof ("unwind") - 1
12287 && strncmp (str, "unwind", 6) == 0)
12288 return SHT_X86_64_UNWIND;
12289
12290 return -1;
12291}
bb41ade5 12292
ad5fec3b
EB
12293#ifdef TE_SOLARIS
12294void
12295i386_solaris_fix_up_eh_frame (segT sec)
12296{
12297 if (flag_code == CODE_64BIT)
12298 elf_section_type (sec) = SHT_X86_64_UNWIND;
12299}
12300#endif
12301
bb41ade5
AM
12302#ifdef TE_PE
12303void
12304tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12305{
91d6fa6a 12306 expressionS exp;
bb41ade5 12307
91d6fa6a
NC
12308 exp.X_op = O_secrel;
12309 exp.X_add_symbol = symbol;
12310 exp.X_add_number = 0;
12311 emit_expr (&exp, size);
bb41ade5
AM
12312}
12313#endif
3b22753a
L
12314
12315#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12316/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12317
01e1a5bc 12318bfd_vma
6d4af3c2 12319x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12320{
12321 if (flag_code == CODE_64BIT)
12322 {
12323 if (letter == 'l')
12324 return SHF_X86_64_LARGE;
12325
8f3bae45 12326 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12327 }
3b22753a 12328 else
8f3bae45 12329 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12330 return -1;
12331}
12332
01e1a5bc 12333bfd_vma
3b22753a
L
12334x86_64_section_word (char *str, size_t len)
12335{
8620418b 12336 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12337 return SHF_X86_64_LARGE;
12338
12339 return -1;
12340}
12341
12342static void
12343handle_large_common (int small ATTRIBUTE_UNUSED)
12344{
12345 if (flag_code != CODE_64BIT)
12346 {
12347 s_comm_internal (0, elf_common_parse);
12348 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12349 }
12350 else
12351 {
12352 static segT lbss_section;
12353 asection *saved_com_section_ptr = elf_com_section_ptr;
12354 asection *saved_bss_section = bss_section;
12355
12356 if (lbss_section == NULL)
12357 {
12358 flagword applicable;
12359 segT seg = now_seg;
12360 subsegT subseg = now_subseg;
12361
12362 /* The .lbss section is for local .largecomm symbols. */
12363 lbss_section = subseg_new (".lbss", 0);
12364 applicable = bfd_applicable_section_flags (stdoutput);
12365 bfd_set_section_flags (stdoutput, lbss_section,
12366 applicable & SEC_ALLOC);
12367 seg_info (lbss_section)->bss = 1;
12368
12369 subseg_set (seg, subseg);
12370 }
12371
12372 elf_com_section_ptr = &_bfd_elf_large_com_section;
12373 bss_section = lbss_section;
12374
12375 s_comm_internal (0, elf_common_parse);
12376
12377 elf_com_section_ptr = saved_com_section_ptr;
12378 bss_section = saved_bss_section;
12379 }
12380}
12381#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.142226 seconds and 4 git commands to generate.