2005-04-01 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
aef6203b 3 2000, 2001, 2002, 2003, 2004, 2005
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896
AM
326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327symbolS *GOT_symbol;
328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132
RH
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025#endif
a4447b93
RH
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
252b5132
RH
1037}
1038
1039void
1040i386_print_statistics (file)
1041 FILE *file;
1042{
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045}
1046\f
252b5132
RH
1047#ifdef DEBUG386
1048
ce8a8b2f 1049/* Debugging routines for md_assemble. */
252b5132
RH
1050static void pi PARAMS ((char *, i386_insn *));
1051static void pte PARAMS ((template *));
1052static void pt PARAMS ((unsigned int));
1053static void pe PARAMS ((expressionS *));
1054static void ps PARAMS ((symbolS *));
1055
1056static void
1057pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060{
09f131f2 1061 unsigned int i;
252b5132
RH
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
09f131f2
JH
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1070 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
3f4438ab 1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1086 if (x->types[i] & Imm)
520dc8e8 1087 pe (x->op[i].imms);
252b5132 1088 if (x->types[i] & Disp)
520dc8e8 1089 pe (x->op[i].disps);
252b5132
RH
1090 }
1091}
1092
1093static void
1094pte (t)
1095 template *t;
1096{
09f131f2 1097 unsigned int i;
252b5132 1098 fprintf (stdout, " %d operands ", t->operands);
47926f60 1099 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113}
1114
1115static void
1116pe (e)
1117 expressionS *e;
1118{
24eab124 1119 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134}
1135
1136static void
1137ps (s)
1138 symbolS *s;
1139{
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144}
1145
1146struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
29b0f896 1152static const type_names[] =
252b5132
RH
1153{
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
09f131f2 1157 { Reg64, "r64" },
252b5132
RH
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
09f131f2
JH
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
252b5132
RH
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
09f131f2
JH
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
252b5132
RH
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
3f4438ab 1183 { RegXMM, "rXMM" },
252b5132
RH
1184 { EsSeg, "es" },
1185 { 0, "" }
1186};
1187
1188static void
1189pt (t)
1190 unsigned int t;
1191{
29b0f896 1192 const struct type_name *ty;
252b5132 1193
09f131f2
JH
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1197 fflush (stdout);
1198}
1199
1200#endif /* DEBUG386 */
1201\f
29b0f896
AM
1202static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1204
1205static bfd_reloc_code_real_type
3e73aa7c 1206reloc (size, pcrel, sign, other)
252b5132
RH
1207 int size;
1208 int pcrel;
3e73aa7c 1209 int sign;
252b5132
RH
1210 bfd_reloc_code_real_type other;
1211{
47926f60
KH
1212 if (other != NO_RELOC)
1213 return other;
252b5132
RH
1214
1215 if (pcrel)
1216 {
3e73aa7c 1217 if (!sign)
e5cb08ac 1218 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
d0b47220 1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1226 }
1227 else
1228 {
3e73aa7c 1229 if (sign)
e5cb08ac 1230 switch (size)
3e73aa7c
JH
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
252b5132
RH
1244 }
1245
bfb32b52 1246 abort ();
252b5132
RH
1247 return BFD_RELOC_NONE;
1248}
1249
47926f60
KH
1250/* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
252b5132 1255int
c0c949c7 1256tc_i386_fix_adjustable (fixP)
31312f95 1257 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1258{
6d249963 1259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
a161fe53
AM
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
252b5132 1268 return 0;
31312f95 1269
8d01d9a9
AJ
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
ce8a8b2f 1276 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
31312f95 1299#endif
252b5132
RH
1300 return 1;
1301}
252b5132 1302
29b0f896 1303static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1304
1305static int
252b5132 1306intel_float_operand (mnemonic)
29b0f896 1307 const char *mnemonic;
252b5132 1308{
9306ca4a
JB
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
252b5132 1355
9306ca4a 1356 return 1;
252b5132
RH
1357}
1358
1359/* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363void
1364md_assemble (line)
1365 char *line;
1366{
252b5132 1367 int j;
252b5132
RH
1368 char mnemonic[MAX_MNEM_SIZE];
1369
47926f60 1370 /* Initialize globals. */
252b5132
RH
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1373 i.reloc[j] = NO_RELOC;
252b5132
RH
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1376 save_stack_p = save_stack;
252b5132
RH
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1380 start of a (possibly prefixed) mnemonic. */
252b5132 1381
29b0f896
AM
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
252b5132 1385
29b0f896
AM
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
252b5132 1413
29b0f896
AM
1414 if (!match_template ())
1415 return;
252b5132 1416
cd61ebfe
AM
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
cd61ebfe 1442 }
24eab124 1443
29b0f896
AM
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
252b5132 1447
29b0f896
AM
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
5dd0794d 1452 return;
29b0f896 1453 }
5dd0794d 1454
29b0f896
AM
1455 if (!process_suffix ())
1456 return;
e413e4e9 1457
29b0f896
AM
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
252b5132 1462
29b0f896
AM
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
252b5132 1471
29b0f896
AM
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
02fc3089
L
1474 expressionS *exp;
1475
ca164297
L
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
67c1ffbe 1478 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
a4622f40 1484 for (x = 0; x < i.operands; x++)
ca164297
L
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
29b0f896
AM
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1495
29b0f896 1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1497
29b0f896
AM
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
252b5132 1505
29b0f896
AM
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
252b5132 1517
29b0f896
AM
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
252b5132 1524
29b0f896
AM
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
252b5132 1534
29b0f896
AM
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
252b5132 1537
29b0f896
AM
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
773f551c 1541
29b0f896
AM
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
726c5dcd 1550
29b0f896
AM
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1557 {
29b0f896
AM
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
0477af35 1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1561 i.op[x].regs->reg_name);
773f551c 1562
29b0f896
AM
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
773f551c 1568 }
29b0f896
AM
1569 }
1570 }
773f551c 1571
29b0f896
AM
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577}
1578
1579static char *
1580parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583{
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
5c6af06e
JB
1587 int supported;
1588 const template *t;
29b0f896
AM
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
45288df1 1592
29b0f896
AM
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1600 {
29b0f896
AM
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
45288df1 1623
29b0f896
AM
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
47926f60 1626
29b0f896
AM
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
45288df1 1642 }
29b0f896
AM
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
45288df1 1658
29b0f896
AM
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
29b0f896
AM
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
252b5132 1683
29b0f896
AM
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
9306ca4a 1688 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
252b5132 1703
29b0f896
AM
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
252b5132 1735
29b0f896 1736 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
29b0f896 1755 {
5c6af06e
JB
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
252b5132 1765
29b0f896
AM
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
252b5132 1774
29b0f896
AM
1775 return l;
1776}
252b5132 1777
29b0f896
AM
1778static char *
1779parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782{
1783 char *token_start;
3138f287 1784
29b0f896
AM
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
252b5132 1787
29b0f896
AM
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
7f3f1ea2 1883
29b0f896
AM
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896}
7f3f1ea2 1897
29b0f896
AM
1898static void
1899swap_operands ()
1900{
1901 union i386_op temp_op;
1902 unsigned int temp_type;
f86103b7 1903 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1904 int xchg1 = 0;
1905 int xchg2 = 0;
252b5132 1906
29b0f896
AM
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934}
252b5132 1935
29b0f896
AM
1936/* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938static void
1939optimize_imm ()
1940{
1941 char guess_suffix = 0;
1942 int op;
252b5132 1943
29b0f896
AM
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
252b5132 1954 {
29b0f896
AM
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
252b5132 1964 }
29b0f896
AM
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
252b5132 1973 {
29b0f896
AM
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
252b5132 1977 {
29b0f896
AM
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
252b5132 1987 }
252b5132 1988
29b0f896
AM
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1996 {
29b0f896
AM
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2009
29b0f896
AM
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
252b5132 2015
29b0f896
AM
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
20f0a1fc 2029 i.types[op] = Imm32;
29b0f896
AM
2030 break;
2031 case WORD_MNEM_SUFFIX:
20f0a1fc 2032 i.types[op] = Imm16;
29b0f896
AM
2033 break;
2034 case BYTE_MNEM_SUFFIX:
20f0a1fc 2035 i.types[op] = Imm8 | Imm8S;
29b0f896 2036 break;
252b5132 2037 }
29b0f896 2038 break;
252b5132 2039 }
29b0f896
AM
2040 }
2041}
47926f60 2042
29b0f896
AM
2043/* Try to use the smallest displacement type too. */
2044static void
2045optimize_disp ()
2046{
2047 int op;
3e73aa7c 2048
29b0f896
AM
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2051 {
29b0f896
AM
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
252b5132 2055 {
29b0f896
AM
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2062 }
29b0f896 2063 else if (i.types[op] & Disp32)
252b5132 2064 {
29b0f896
AM
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2070 }
29b0f896 2071 if (flag_code == CODE_64BIT)
252b5132 2072 {
29b0f896
AM
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
252b5132 2077 }
29b0f896
AM
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
252b5132 2081 }
29b0f896
AM
2082}
2083
2084static int
2085match_template ()
2086{
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093#define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
20f0a1fc
NC
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
9306ca4a
JB
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
29b0f896
AM
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
9306ca4a 2144 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
252b5132 2155
29b0f896
AM
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
252b5132 2229
29b0f896
AM
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263}
2264
2265static int
2266check_string ()
2267{
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295}
2296
2297static int
543613e9 2298process_suffix (void)
29b0f896
AM
2299{
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
543613e9 2321
29b0f896
AM
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
9306ca4a
JB
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2363 {
2364 i.suffix = stackop_size;
2365 }
9306ca4a
JB
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
252b5132 2391
9306ca4a 2392 if (!i.suffix)
29b0f896 2393 {
9306ca4a
JB
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
29b0f896 2420 }
252b5132 2421
9306ca4a
JB
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
29b0f896
AM
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
0f3f3d8b 2435
29b0f896
AM
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2447
29b0f896
AM
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
252b5132 2450
29b0f896
AM
2451 if (!add_prefix (prefix))
2452 return 0;
24eab124 2453 }
252b5132 2454
29b0f896
AM
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2457 && flag_code == CODE_64BIT
29b0f896 2458 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2459 i.rex |= REX_MODE64;
3e73aa7c 2460
29b0f896
AM
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
29b0f896 2465 }
7ecd2f8b 2466
29b0f896
AM
2467 return 1;
2468}
3e73aa7c 2469
29b0f896 2470static int
543613e9 2471check_byte_reg (void)
29b0f896
AM
2472{
2473 int op;
543613e9 2474
29b0f896
AM
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
65ec77d2 2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
2493 {
2494 /* Prohibit these changes in the 64bit mode, since the
2495 lowering is more complicated. */
2496 if (flag_code == CODE_64BIT
2497 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2498 {
0f3f3d8b 2499 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2500 i.op[op].regs->reg_name,
2501 i.suffix);
2502 return 0;
2503 }
2504#if REGISTER_WARNINGS
2505 if (!quiet_warnings
2506 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2507 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2508 (i.op[op].regs + (i.types[op] & Reg16
2509 ? REGNAM_AL - REGNAM_AX
2510 : REGNAM_AL - REGNAM_EAX))->reg_name,
2511 i.op[op].regs->reg_name,
2512 i.suffix);
2513#endif
2514 continue;
2515 }
2516 /* Any other register is bad. */
2517 if (i.types[op] & (Reg | RegMMX | RegXMM
2518 | SReg2 | SReg3
2519 | Control | Debug | Test
2520 | FloatReg | FloatAcc))
2521 {
2522 as_bad (_("`%%%s' not allowed with `%s%c'"),
2523 i.op[op].regs->reg_name,
2524 i.tm.name,
2525 i.suffix);
2526 return 0;
2527 }
2528 }
2529 return 1;
2530}
2531
2532static int
2533check_long_reg ()
2534{
2535 int op;
2536
2537 for (op = i.operands; --op >= 0;)
2538 /* Reject eight bit registers, except where the template requires
2539 them. (eg. movzb) */
2540 if ((i.types[op] & Reg8) != 0
2541 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2542 {
2543 as_bad (_("`%%%s' not allowed with `%s%c'"),
2544 i.op[op].regs->reg_name,
2545 i.tm.name,
2546 i.suffix);
2547 return 0;
2548 }
2549 /* Warn if the e prefix on a general reg is missing. */
2550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2551 && (i.types[op] & Reg16) != 0
2552 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2553 {
2554 /* Prohibit these changes in the 64bit mode, since the
2555 lowering is more complicated. */
2556 if (flag_code == CODE_64BIT)
252b5132 2557 {
0f3f3d8b 2558 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2559 i.op[op].regs->reg_name,
2560 i.suffix);
2561 return 0;
252b5132 2562 }
29b0f896
AM
2563#if REGISTER_WARNINGS
2564 else
2565 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2566 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2567 i.op[op].regs->reg_name,
2568 i.suffix);
2569#endif
252b5132 2570 }
29b0f896
AM
2571 /* Warn if the r prefix on a general reg is missing. */
2572 else if ((i.types[op] & Reg64) != 0
2573 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2574 {
0f3f3d8b 2575 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2576 i.op[op].regs->reg_name,
2577 i.suffix);
2578 return 0;
2579 }
2580 return 1;
2581}
252b5132 2582
29b0f896
AM
2583static int
2584check_qword_reg ()
2585{
2586 int op;
252b5132 2587
29b0f896
AM
2588 for (op = i.operands; --op >= 0; )
2589 /* Reject eight bit registers, except where the template requires
2590 them. (eg. movzb) */
2591 if ((i.types[op] & Reg8) != 0
2592 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2593 {
2594 as_bad (_("`%%%s' not allowed with `%s%c'"),
2595 i.op[op].regs->reg_name,
2596 i.tm.name,
2597 i.suffix);
2598 return 0;
2599 }
2600 /* Warn if the e prefix on a general reg is missing. */
2601 else if (((i.types[op] & Reg16) != 0
2602 || (i.types[op] & Reg32) != 0)
2603 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2604 {
2605 /* Prohibit these changes in the 64bit mode, since the
2606 lowering is more complicated. */
0f3f3d8b 2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
252b5132 2611 }
29b0f896
AM
2612 return 1;
2613}
252b5132 2614
29b0f896
AM
2615static int
2616check_word_reg ()
2617{
2618 int op;
2619 for (op = i.operands; --op >= 0;)
2620 /* Reject eight bit registers, except where the template requires
2621 them. (eg. movzb) */
2622 if ((i.types[op] & Reg8) != 0
2623 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2624 {
2625 as_bad (_("`%%%s' not allowed with `%s%c'"),
2626 i.op[op].regs->reg_name,
2627 i.tm.name,
2628 i.suffix);
2629 return 0;
2630 }
2631 /* Warn if the e prefix on a general reg is present. */
2632 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2633 && (i.types[op] & Reg32) != 0
2634 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2635 {
29b0f896
AM
2636 /* Prohibit these changes in the 64bit mode, since the
2637 lowering is more complicated. */
2638 if (flag_code == CODE_64BIT)
252b5132 2639 {
0f3f3d8b 2640 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2641 i.op[op].regs->reg_name,
2642 i.suffix);
2643 return 0;
252b5132 2644 }
29b0f896
AM
2645 else
2646#if REGISTER_WARNINGS
2647 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2648 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2649 i.op[op].regs->reg_name,
2650 i.suffix);
2651#endif
2652 }
2653 return 1;
2654}
252b5132 2655
29b0f896
AM
2656static int
2657finalize_imm ()
2658{
2659 unsigned int overlap0, overlap1, overlap2;
2660
2661 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2662 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2663 && overlap0 != Imm8 && overlap0 != Imm8S
2664 && overlap0 != Imm16 && overlap0 != Imm32S
2665 && overlap0 != Imm32 && overlap0 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2678 || overlap0 == (Imm16 | Imm32)
2679 || overlap0 == (Imm16 | Imm32S))
2680 {
2681 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap0 != Imm8 && overlap0 != Imm8S
2685 && overlap0 != Imm16 && overlap0 != Imm32S
2686 && overlap0 != Imm32 && overlap0 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2689 return 0;
2690 }
2691 }
2692 i.types[0] = overlap0;
2693
2694 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2695 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2696 && overlap1 != Imm8 && overlap1 != Imm8S
2697 && overlap1 != Imm16 && overlap1 != Imm32S
2698 && overlap1 != Imm32 && overlap1 != Imm64)
2699 {
2700 if (i.suffix)
2701 {
2702 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2703 ? Imm8 | Imm8S
2704 : (i.suffix == WORD_MNEM_SUFFIX
2705 ? Imm16
2706 : (i.suffix == QWORD_MNEM_SUFFIX
2707 ? Imm64 | Imm32S
2708 : Imm32)));
2709 }
2710 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2711 || overlap1 == (Imm16 | Imm32)
2712 || overlap1 == (Imm16 | Imm32S))
2713 {
2714 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2715 ? Imm16 : Imm32S);
2716 }
2717 if (overlap1 != Imm8 && overlap1 != Imm8S
2718 && overlap1 != Imm16 && overlap1 != Imm32S
2719 && overlap1 != Imm32 && overlap1 != Imm64)
2720 {
2721 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2722 return 0;
2723 }
2724 }
2725 i.types[1] = overlap1;
2726
2727 overlap2 = i.types[2] & i.tm.operand_types[2];
2728 assert ((overlap2 & Imm) == 0);
2729 i.types[2] = overlap2;
2730
2731 return 1;
2732}
2733
2734static int
2735process_operands ()
2736{
2737 /* Default segment register this instruction will use for memory
2738 accesses. 0 means unknown. This is only for optimizing out
2739 unnecessary segment overrides. */
2740 const seg_entry *default_seg = 0;
2741
2742 /* The imul $imm, %reg instruction is converted into
2743 imul $imm, %reg, %reg, and the clr %reg instruction
2744 is converted into xor %reg, %reg. */
2745 if (i.tm.opcode_modifier & regKludge)
2746 {
2747 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2748 /* Pretend we saw the extra register operand. */
2749 assert (i.op[first_reg_op + 1].regs == 0);
2750 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2751 i.types[first_reg_op + 1] = i.types[first_reg_op];
2752 i.reg_operands = 2;
2753 }
2754
2755 if (i.tm.opcode_modifier & ShortForm)
2756 {
2757 /* The register or float register operand is in operand 0 or 1. */
2758 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2759 /* Register goes in low 3 bits of opcode. */
2760 i.tm.base_opcode |= i.op[op].regs->reg_num;
2761 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2762 i.rex |= REX_EXTZ;
2763 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2764 {
2765 /* Warn about some common errors, but press on regardless.
2766 The first case can be generated by gcc (<= 2.8.1). */
2767 if (i.operands == 2)
2768 {
2769 /* Reversed arguments on faddp, fsubp, etc. */
2770 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2771 i.op[1].regs->reg_name,
2772 i.op[0].regs->reg_name);
2773 }
2774 else
2775 {
2776 /* Extraneous `l' suffix on fp insn. */
2777 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2778 i.op[0].regs->reg_name);
2779 }
2780 }
2781 }
2782 else if (i.tm.opcode_modifier & Modrm)
2783 {
2784 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2785 must be put into the modrm byte). Now, we make the modrm and
2786 index base bytes based on all the info we've collected. */
29b0f896
AM
2787
2788 default_seg = build_modrm_byte ();
2789 }
2790 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2791 {
2792 if (i.tm.base_opcode == POP_SEG_SHORT
2793 && i.op[0].regs->reg_num == 1)
2794 {
2795 as_bad (_("you can't `pop %%cs'"));
2796 return 0;
2797 }
2798 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2799 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2800 i.rex |= REX_EXTZ;
2801 }
2802 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2803 {
2804 default_seg = &ds;
2805 }
2806 else if ((i.tm.opcode_modifier & IsString) != 0)
2807 {
2808 /* For the string instructions that allow a segment override
2809 on one of their operands, the default segment is ds. */
2810 default_seg = &ds;
2811 }
2812
52271982
AM
2813 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2814 as_warn (_("segment override on `lea' is ineffectual"));
2815
2816 /* If a segment was explicitly specified, and the specified segment
2817 is not the default, use an opcode prefix to select it. If we
2818 never figured out what the default segment is, then default_seg
2819 will be zero at this point, and the specified segment prefix will
2820 always be used. */
29b0f896
AM
2821 if ((i.seg[0]) && (i.seg[0] != default_seg))
2822 {
2823 if (!add_prefix (i.seg[0]->seg_prefix))
2824 return 0;
2825 }
2826 return 1;
2827}
2828
2829static const seg_entry *
2830build_modrm_byte ()
2831{
2832 const seg_entry *default_seg = 0;
2833
2834 /* i.reg_operands MUST be the number of real register operands;
2835 implicit registers do not count. */
2836 if (i.reg_operands == 2)
2837 {
2838 unsigned int source, dest;
2839 source = ((i.types[0]
2840 & (Reg | RegMMX | RegXMM
2841 | SReg2 | SReg3
2842 | Control | Debug | Test))
2843 ? 0 : 1);
2844 dest = source + 1;
2845
2846 i.rm.mode = 3;
2847 /* One of the register operands will be encoded in the i.tm.reg
2848 field, the other in the combined i.tm.mode and i.tm.regmem
2849 fields. If no form of this instruction supports a memory
2850 destination operand, then we assume the source operand may
2851 sometimes be a memory operand and so we need to store the
2852 destination in the i.rm.reg field. */
2853 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2854 {
2855 i.rm.reg = i.op[dest].regs->reg_num;
2856 i.rm.regmem = i.op[source].regs->reg_num;
2857 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2858 i.rex |= REX_EXTX;
2859 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2860 i.rex |= REX_EXTZ;
2861 }
2862 else
2863 {
2864 i.rm.reg = i.op[source].regs->reg_num;
2865 i.rm.regmem = i.op[dest].regs->reg_num;
2866 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTX;
2870 }
c4a530c5
JB
2871 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2872 {
2873 if (!((i.types[0] | i.types[1]) & Control))
2874 abort ();
2875 i.rex &= ~(REX_EXTX | REX_EXTZ);
2876 add_prefix (LOCK_PREFIX_OPCODE);
2877 }
29b0f896
AM
2878 }
2879 else
2880 { /* If it's not 2 reg operands... */
2881 if (i.mem_operands)
2882 {
2883 unsigned int fake_zero_displacement = 0;
2884 unsigned int op = ((i.types[0] & AnyMem)
2885 ? 0
2886 : (i.types[1] & AnyMem) ? 1 : 2);
2887
2888 default_seg = &ds;
2889
2890 if (i.base_reg == 0)
2891 {
2892 i.rm.mode = 0;
2893 if (!i.disp_operands)
2894 fake_zero_displacement = 1;
2895 if (i.index_reg == 0)
2896 {
2897 /* Operand is just <disp> */
20f0a1fc 2898 if (flag_code == CODE_64BIT)
29b0f896
AM
2899 {
2900 /* 64bit mode overwrites the 32bit absolute
2901 addressing by RIP relative addressing and
2902 absolute addressing is encoded by one of the
2903 redundant SIB forms. */
2904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2905 i.sib.base = NO_BASE_REGISTER;
2906 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2907 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2908 }
2909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2910 {
2911 i.rm.regmem = NO_BASE_REGISTER_16;
2912 i.types[op] = Disp16;
2913 }
2914 else
2915 {
2916 i.rm.regmem = NO_BASE_REGISTER;
2917 i.types[op] = Disp32;
29b0f896
AM
2918 }
2919 }
2920 else /* !i.base_reg && i.index_reg */
2921 {
2922 i.sib.index = i.index_reg->reg_num;
2923 i.sib.base = NO_BASE_REGISTER;
2924 i.sib.scale = i.log2_scale_factor;
2925 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2926 i.types[op] &= ~Disp;
2927 if (flag_code != CODE_64BIT)
2928 i.types[op] |= Disp32; /* Must be 32 bit */
2929 else
2930 i.types[op] |= Disp32S;
2931 if ((i.index_reg->reg_flags & RegRex) != 0)
2932 i.rex |= REX_EXTY;
2933 }
2934 }
2935 /* RIP addressing for 64bit mode. */
2936 else if (i.base_reg->reg_type == BaseIndex)
2937 {
2938 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2939 i.types[op] &= ~ Disp;
29b0f896
AM
2940 i.types[op] |= Disp32S;
2941 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2942 if (! i.disp_operands)
2943 fake_zero_displacement = 1;
29b0f896
AM
2944 }
2945 else if (i.base_reg->reg_type & Reg16)
2946 {
2947 switch (i.base_reg->reg_num)
2948 {
2949 case 3: /* (%bx) */
2950 if (i.index_reg == 0)
2951 i.rm.regmem = 7;
2952 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2953 i.rm.regmem = i.index_reg->reg_num - 6;
2954 break;
2955 case 5: /* (%bp) */
2956 default_seg = &ss;
2957 if (i.index_reg == 0)
2958 {
2959 i.rm.regmem = 6;
2960 if ((i.types[op] & Disp) == 0)
2961 {
2962 /* fake (%bp) into 0(%bp) */
2963 i.types[op] |= Disp8;
252b5132 2964 fake_zero_displacement = 1;
29b0f896
AM
2965 }
2966 }
2967 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2968 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2969 break;
2970 default: /* (%si) -> 4 or (%di) -> 5 */
2971 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2972 }
2973 i.rm.mode = mode_from_disp_size (i.types[op]);
2974 }
2975 else /* i.base_reg and 32/64 bit mode */
2976 {
2977 if (flag_code == CODE_64BIT
2978 && (i.types[op] & Disp))
20f0a1fc
NC
2979 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2980
29b0f896
AM
2981 i.rm.regmem = i.base_reg->reg_num;
2982 if ((i.base_reg->reg_flags & RegRex) != 0)
2983 i.rex |= REX_EXTZ;
2984 i.sib.base = i.base_reg->reg_num;
2985 /* x86-64 ignores REX prefix bit here to avoid decoder
2986 complications. */
2987 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2988 {
2989 default_seg = &ss;
2990 if (i.disp_operands == 0)
2991 {
2992 fake_zero_displacement = 1;
2993 i.types[op] |= Disp8;
2994 }
2995 }
2996 else if (i.base_reg->reg_num == ESP_REG_NUM)
2997 {
2998 default_seg = &ss;
2999 }
3000 i.sib.scale = i.log2_scale_factor;
3001 if (i.index_reg == 0)
3002 {
3003 /* <disp>(%esp) becomes two byte modrm with no index
3004 register. We've already stored the code for esp
3005 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3006 Any base register besides %esp will not use the
3007 extra modrm byte. */
3008 i.sib.index = NO_INDEX_REGISTER;
3009#if !SCALE1_WHEN_NO_INDEX
3010 /* Another case where we force the second modrm byte. */
3011 if (i.log2_scale_factor)
3012 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3013#endif
29b0f896
AM
3014 }
3015 else
3016 {
3017 i.sib.index = i.index_reg->reg_num;
3018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3019 if ((i.index_reg->reg_flags & RegRex) != 0)
3020 i.rex |= REX_EXTY;
3021 }
3022 i.rm.mode = mode_from_disp_size (i.types[op]);
3023 }
252b5132 3024
29b0f896
AM
3025 if (fake_zero_displacement)
3026 {
3027 /* Fakes a zero displacement assuming that i.types[op]
3028 holds the correct displacement size. */
3029 expressionS *exp;
3030
3031 assert (i.op[op].disps == 0);
3032 exp = &disp_expressions[i.disp_operands++];
3033 i.op[op].disps = exp;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = 0;
3036 exp->X_add_symbol = (symbolS *) 0;
3037 exp->X_op_symbol = (symbolS *) 0;
3038 }
3039 }
252b5132 3040
29b0f896
AM
3041 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3042 (if any) based on i.tm.extension_opcode. Again, we must be
3043 careful to make sure that segment/control/debug/test/MMX
3044 registers are coded into the i.rm.reg field. */
3045 if (i.reg_operands)
3046 {
3047 unsigned int op =
3048 ((i.types[0]
3049 & (Reg | RegMMX | RegXMM
3050 | SReg2 | SReg3
3051 | Control | Debug | Test))
3052 ? 0
3053 : ((i.types[1]
3054 & (Reg | RegMMX | RegXMM
3055 | SReg2 | SReg3
3056 | Control | Debug | Test))
3057 ? 1
3058 : 2));
3059 /* If there is an extension opcode to put here, the register
3060 number must be put into the regmem field. */
3061 if (i.tm.extension_opcode != None)
3062 {
3063 i.rm.regmem = i.op[op].regs->reg_num;
3064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3065 i.rex |= REX_EXTZ;
3066 }
3067 else
3068 {
3069 i.rm.reg = i.op[op].regs->reg_num;
3070 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3071 i.rex |= REX_EXTX;
3072 }
252b5132 3073
29b0f896
AM
3074 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3075 must set it to 3 to indicate this is a register operand
3076 in the regmem field. */
3077 if (!i.mem_operands)
3078 i.rm.mode = 3;
3079 }
252b5132 3080
29b0f896
AM
3081 /* Fill in i.rm.reg field with extension opcode (if any). */
3082 if (i.tm.extension_opcode != None)
3083 i.rm.reg = i.tm.extension_opcode;
3084 }
3085 return default_seg;
3086}
252b5132 3087
29b0f896
AM
3088static void
3089output_branch ()
3090{
3091 char *p;
3092 int code16;
3093 int prefix;
3094 relax_substateT subtype;
3095 symbolS *sym;
3096 offsetT off;
3097
3098 code16 = 0;
3099 if (flag_code == CODE_16BIT)
3100 code16 = CODE16;
3101
3102 prefix = 0;
3103 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3104 {
29b0f896
AM
3105 prefix = 1;
3106 i.prefixes -= 1;
3107 code16 ^= CODE16;
252b5132 3108 }
29b0f896
AM
3109 /* Pentium4 branch hints. */
3110 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3111 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3112 {
29b0f896
AM
3113 prefix++;
3114 i.prefixes--;
3115 }
3116 if (i.prefix[REX_PREFIX] != 0)
3117 {
3118 prefix++;
3119 i.prefixes--;
2f66722d
AM
3120 }
3121
29b0f896
AM
3122 if (i.prefixes != 0 && !intel_syntax)
3123 as_warn (_("skipping prefixes on this instruction"));
3124
3125 /* It's always a symbol; End frag & setup for relax.
3126 Make sure there is enough room in this frag for the largest
3127 instruction we may generate in md_convert_frag. This is 2
3128 bytes for the opcode and room for the prefix and largest
3129 displacement. */
3130 frag_grow (prefix + 2 + 4);
3131 /* Prefix and 1 opcode byte go in fr_fix. */
3132 p = frag_more (prefix + 1);
3133 if (i.prefix[DATA_PREFIX] != 0)
3134 *p++ = DATA_PREFIX_OPCODE;
3135 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3136 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3137 *p++ = i.prefix[SEG_PREFIX];
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140 *p = i.tm.base_opcode;
3141
3142 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3143 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3144 else if ((cpu_arch_flags & Cpu386) != 0)
3145 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3146 else
3147 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3148 subtype |= code16;
3e73aa7c 3149
29b0f896
AM
3150 sym = i.op[0].disps->X_add_symbol;
3151 off = i.op[0].disps->X_add_number;
3e73aa7c 3152
29b0f896
AM
3153 if (i.op[0].disps->X_op != O_constant
3154 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3155 {
29b0f896
AM
3156 /* Handle complex expressions. */
3157 sym = make_expr_symbol (i.op[0].disps);
3158 off = 0;
3159 }
3e73aa7c 3160
29b0f896
AM
3161 /* 1 possible extra opcode + 4 byte displacement go in var part.
3162 Pass reloc in fr_var. */
3163 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3164}
3e73aa7c 3165
29b0f896
AM
3166static void
3167output_jump ()
3168{
3169 char *p;
3170 int size;
3e02c1cc 3171 fixS *fixP;
29b0f896
AM
3172
3173 if (i.tm.opcode_modifier & JumpByte)
3174 {
3175 /* This is a loop or jecxz type instruction. */
3176 size = 1;
3177 if (i.prefix[ADDR_PREFIX] != 0)
3178 {
3179 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3180 i.prefixes -= 1;
3181 }
3182 /* Pentium4 branch hints. */
3183 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3184 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3185 {
3186 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3187 i.prefixes--;
3e73aa7c
JH
3188 }
3189 }
29b0f896
AM
3190 else
3191 {
3192 int code16;
3e73aa7c 3193
29b0f896
AM
3194 code16 = 0;
3195 if (flag_code == CODE_16BIT)
3196 code16 = CODE16;
3e73aa7c 3197
29b0f896
AM
3198 if (i.prefix[DATA_PREFIX] != 0)
3199 {
3200 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3201 i.prefixes -= 1;
3202 code16 ^= CODE16;
3203 }
252b5132 3204
29b0f896
AM
3205 size = 4;
3206 if (code16)
3207 size = 2;
3208 }
9fcc94b6 3209
29b0f896
AM
3210 if (i.prefix[REX_PREFIX] != 0)
3211 {
3212 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3213 i.prefixes -= 1;
3214 }
252b5132 3215
29b0f896
AM
3216 if (i.prefixes != 0 && !intel_syntax)
3217 as_warn (_("skipping prefixes on this instruction"));
e0890092 3218
29b0f896
AM
3219 p = frag_more (1 + size);
3220 *p++ = i.tm.base_opcode;
e0890092 3221
3e02c1cc
AM
3222 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3223 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3224
3225 /* All jumps handled here are signed, but don't use a signed limit
3226 check for 32 and 16 bit jumps as we want to allow wrap around at
3227 4G and 64k respectively. */
3228 if (size == 1)
3229 fixP->fx_signed = 1;
29b0f896 3230}
e0890092 3231
29b0f896
AM
3232static void
3233output_interseg_jump ()
3234{
3235 char *p;
3236 int size;
3237 int prefix;
3238 int code16;
252b5132 3239
29b0f896
AM
3240 code16 = 0;
3241 if (flag_code == CODE_16BIT)
3242 code16 = CODE16;
a217f122 3243
29b0f896
AM
3244 prefix = 0;
3245 if (i.prefix[DATA_PREFIX] != 0)
3246 {
3247 prefix = 1;
3248 i.prefixes -= 1;
3249 code16 ^= CODE16;
3250 }
3251 if (i.prefix[REX_PREFIX] != 0)
3252 {
3253 prefix++;
3254 i.prefixes -= 1;
3255 }
252b5132 3256
29b0f896
AM
3257 size = 4;
3258 if (code16)
3259 size = 2;
252b5132 3260
29b0f896
AM
3261 if (i.prefixes != 0 && !intel_syntax)
3262 as_warn (_("skipping prefixes on this instruction"));
252b5132 3263
29b0f896
AM
3264 /* 1 opcode; 2 segment; offset */
3265 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3266
29b0f896
AM
3267 if (i.prefix[DATA_PREFIX] != 0)
3268 *p++ = DATA_PREFIX_OPCODE;
252b5132 3269
29b0f896
AM
3270 if (i.prefix[REX_PREFIX] != 0)
3271 *p++ = i.prefix[REX_PREFIX];
252b5132 3272
29b0f896
AM
3273 *p++ = i.tm.base_opcode;
3274 if (i.op[1].imms->X_op == O_constant)
3275 {
3276 offsetT n = i.op[1].imms->X_add_number;
252b5132 3277
29b0f896
AM
3278 if (size == 2
3279 && !fits_in_unsigned_word (n)
3280 && !fits_in_signed_word (n))
3281 {
3282 as_bad (_("16-bit jump out of range"));
3283 return;
3284 }
3285 md_number_to_chars (p, n, size);
3286 }
3287 else
3288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3289 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3290 if (i.op[0].imms->X_op != O_constant)
3291 as_bad (_("can't handle non absolute segment in `%s'"),
3292 i.tm.name);
3293 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3294}
a217f122 3295
29b0f896
AM
3296static void
3297output_insn ()
3298{
2bbd9c25
JJ
3299 fragS *insn_start_frag;
3300 offsetT insn_start_off;
3301
29b0f896
AM
3302 /* Tie dwarf2 debug info to the address at the start of the insn.
3303 We can't do this after the insn has been output as the current
3304 frag may have been closed off. eg. by frag_var. */
3305 dwarf2_emit_insn (0);
3306
2bbd9c25
JJ
3307 insn_start_frag = frag_now;
3308 insn_start_off = frag_now_fix ();
3309
29b0f896
AM
3310 /* Output jumps. */
3311 if (i.tm.opcode_modifier & Jump)
3312 output_branch ();
3313 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3314 output_jump ();
3315 else if (i.tm.opcode_modifier & JumpInterSegment)
3316 output_interseg_jump ();
3317 else
3318 {
3319 /* Output normal instructions here. */
3320 char *p;
3321 unsigned char *q;
252b5132 3322
0f10071e
ML
3323 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3324 have 3 bytes. We may use one more higher byte to specify a prefix
3325 the instruction requires. */
3326 if ((i.tm.cpu_flags & CpuPadLock) != 0
3327 && (i.tm.base_opcode & 0xff000000) != 0)
3328 {
3329 unsigned int prefix;
3330 prefix = (i.tm.base_opcode >> 24) & 0xff;
3331
3332 if (prefix != REPE_PREFIX_OPCODE
3333 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3334 add_prefix (prefix);
3335 }
3336 else
3337 if ((i.tm.cpu_flags & CpuPadLock) == 0
3338 && (i.tm.base_opcode & 0xff0000) != 0)
3339 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3340
29b0f896
AM
3341 /* The prefix bytes. */
3342 for (q = i.prefix;
3343 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3344 q++)
3345 {
3346 if (*q)
3347 {
3348 p = frag_more (1);
3349 md_number_to_chars (p, (valueT) *q, 1);
3350 }
3351 }
252b5132 3352
29b0f896
AM
3353 /* Now the opcode; be careful about word order here! */
3354 if (fits_in_unsigned_byte (i.tm.base_opcode))
3355 {
3356 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3357 }
3358 else
3359 {
0f10071e
ML
3360 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3361 {
3362 p = frag_more (3);
3363 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3364 }
3365 else
3366 p = frag_more (2);
3367
29b0f896
AM
3368 /* Put out high byte first: can't use md_number_to_chars! */
3369 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3370 *p = i.tm.base_opcode & 0xff;
3371 }
3e73aa7c 3372
29b0f896
AM
3373 /* Now the modrm byte and sib byte (if present). */
3374 if (i.tm.opcode_modifier & Modrm)
3375 {
3376 p = frag_more (1);
3377 md_number_to_chars (p,
3378 (valueT) (i.rm.regmem << 0
3379 | i.rm.reg << 3
3380 | i.rm.mode << 6),
3381 1);
3382 /* If i.rm.regmem == ESP (4)
3383 && i.rm.mode != (Register mode)
3384 && not 16 bit
3385 ==> need second modrm byte. */
3386 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3387 && i.rm.mode != 3
3388 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3389 {
3390 p = frag_more (1);
3391 md_number_to_chars (p,
3392 (valueT) (i.sib.base << 0
3393 | i.sib.index << 3
3394 | i.sib.scale << 6),
3395 1);
3396 }
3397 }
3e73aa7c 3398
29b0f896 3399 if (i.disp_operands)
2bbd9c25 3400 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3401
29b0f896 3402 if (i.imm_operands)
2bbd9c25 3403 output_imm (insn_start_frag, insn_start_off);
29b0f896 3404 }
252b5132 3405
29b0f896
AM
3406#ifdef DEBUG386
3407 if (flag_debug)
3408 {
3409 pi (line, &i);
3410 }
3411#endif /* DEBUG386 */
3412}
252b5132 3413
29b0f896 3414static void
2bbd9c25
JJ
3415output_disp (insn_start_frag, insn_start_off)
3416 fragS *insn_start_frag;
3417 offsetT insn_start_off;
29b0f896
AM
3418{
3419 char *p;
3420 unsigned int n;
252b5132 3421
29b0f896
AM
3422 for (n = 0; n < i.operands; n++)
3423 {
3424 if (i.types[n] & Disp)
3425 {
3426 if (i.op[n].disps->X_op == O_constant)
3427 {
3428 int size;
3429 offsetT val;
252b5132 3430
29b0f896
AM
3431 size = 4;
3432 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3433 {
3434 size = 2;
3435 if (i.types[n] & Disp8)
3436 size = 1;
3437 if (i.types[n] & Disp64)
3438 size = 8;
3439 }
3440 val = offset_in_range (i.op[n].disps->X_add_number,
3441 size);
3442 p = frag_more (size);
3443 md_number_to_chars (p, val, size);
3444 }
3445 else
3446 {
f86103b7 3447 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3448 int size = 4;
3449 int sign = 0;
3450 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3451
3452 /* The PC relative address is computed relative
3453 to the instruction boundary, so in case immediate
3454 fields follows, we need to adjust the value. */
3455 if (pcrel && i.imm_operands)
3456 {
3457 int imm_size = 4;
3458 unsigned int n1;
252b5132 3459
29b0f896
AM
3460 for (n1 = 0; n1 < i.operands; n1++)
3461 if (i.types[n1] & Imm)
252b5132 3462 {
29b0f896 3463 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3464 {
29b0f896
AM
3465 imm_size = 2;
3466 if (i.types[n1] & (Imm8 | Imm8S))
3467 imm_size = 1;
3468 if (i.types[n1] & Imm64)
3469 imm_size = 8;
252b5132 3470 }
29b0f896 3471 break;
252b5132 3472 }
29b0f896
AM
3473 /* We should find the immediate. */
3474 if (n1 == i.operands)
3475 abort ();
3476 i.op[n].disps->X_add_number -= imm_size;
3477 }
520dc8e8 3478
29b0f896
AM
3479 if (i.types[n] & Disp32S)
3480 sign = 1;
3e73aa7c 3481
29b0f896
AM
3482 if (i.types[n] & (Disp16 | Disp64))
3483 {
3484 size = 2;
3485 if (i.types[n] & Disp64)
3486 size = 8;
3487 }
520dc8e8 3488
29b0f896 3489 p = frag_more (size);
2bbd9c25 3490 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3491 if (reloc_type == BFD_RELOC_32
3492 && GOT_symbol
3493 && GOT_symbol == i.op[n].disps->X_add_symbol
3494 && (i.op[n].disps->X_op == O_symbol
3495 || (i.op[n].disps->X_op == O_add
3496 && ((symbol_get_value_expression
3497 (i.op[n].disps->X_op_symbol)->X_op)
3498 == O_subtract))))
3499 {
3500 offsetT add;
3501
3502 if (insn_start_frag == frag_now)
3503 add = (p - frag_now->fr_literal) - insn_start_off;
3504 else
3505 {
3506 fragS *fr;
3507
3508 add = insn_start_frag->fr_fix - insn_start_off;
3509 for (fr = insn_start_frag->fr_next;
3510 fr && fr != frag_now; fr = fr->fr_next)
3511 add += fr->fr_fix;
3512 add += p - frag_now->fr_literal;
3513 }
3514
3515 /* We don't support dynamic linking on x86-64 yet. */
3516 if (flag_code == CODE_64BIT)
3517 abort ();
3518 reloc_type = BFD_RELOC_386_GOTPC;
3519 i.op[n].disps->X_add_number += add;
3520 }
062cd5e7 3521 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3522 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3523 }
3524 }
3525 }
3526}
252b5132 3527
29b0f896 3528static void
2bbd9c25
JJ
3529output_imm (insn_start_frag, insn_start_off)
3530 fragS *insn_start_frag;
3531 offsetT insn_start_off;
29b0f896
AM
3532{
3533 char *p;
3534 unsigned int n;
252b5132 3535
29b0f896
AM
3536 for (n = 0; n < i.operands; n++)
3537 {
3538 if (i.types[n] & Imm)
3539 {
3540 if (i.op[n].imms->X_op == O_constant)
3541 {
3542 int size;
3543 offsetT val;
b4cac588 3544
29b0f896
AM
3545 size = 4;
3546 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3547 {
3548 size = 2;
3549 if (i.types[n] & (Imm8 | Imm8S))
3550 size = 1;
3551 else if (i.types[n] & Imm64)
3552 size = 8;
3553 }
3554 val = offset_in_range (i.op[n].imms->X_add_number,
3555 size);
3556 p = frag_more (size);
3557 md_number_to_chars (p, val, size);
3558 }
3559 else
3560 {
3561 /* Not absolute_section.
3562 Need a 32-bit fixup (don't support 8bit
3563 non-absolute imms). Try to support other
3564 sizes ... */
f86103b7 3565 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3566 int size = 4;
3567 int sign = 0;
3568
3569 if ((i.types[n] & (Imm32S))
3570 && i.suffix == QWORD_MNEM_SUFFIX)
3571 sign = 1;
3572 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3573 {
3574 size = 2;
3575 if (i.types[n] & (Imm8 | Imm8S))
3576 size = 1;
3577 if (i.types[n] & Imm64)
3578 size = 8;
3579 }
520dc8e8 3580
29b0f896
AM
3581 p = frag_more (size);
3582 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3583
2bbd9c25
JJ
3584 /* This is tough to explain. We end up with this one if we
3585 * have operands that look like
3586 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3587 * obtain the absolute address of the GOT, and it is strongly
3588 * preferable from a performance point of view to avoid using
3589 * a runtime relocation for this. The actual sequence of
3590 * instructions often look something like:
3591 *
3592 * call .L66
3593 * .L66:
3594 * popl %ebx
3595 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3596 *
3597 * The call and pop essentially return the absolute address
3598 * of the label .L66 and store it in %ebx. The linker itself
3599 * will ultimately change the first operand of the addl so
3600 * that %ebx points to the GOT, but to keep things simple, the
3601 * .o file must have this operand set so that it generates not
3602 * the absolute address of .L66, but the absolute address of
3603 * itself. This allows the linker itself simply treat a GOTPC
3604 * relocation as asking for a pcrel offset to the GOT to be
3605 * added in, and the addend of the relocation is stored in the
3606 * operand field for the instruction itself.
3607 *
3608 * Our job here is to fix the operand so that it would add
3609 * the correct offset so that %ebx would point to itself. The
3610 * thing that is tricky is that .-.L66 will point to the
3611 * beginning of the instruction, so we need to further modify
3612 * the operand so that it will point to itself. There are
3613 * other cases where you have something like:
3614 *
3615 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3616 *
3617 * and here no correction would be required. Internally in
3618 * the assembler we treat operands of this form as not being
3619 * pcrel since the '.' is explicitly mentioned, and I wonder
3620 * whether it would simplify matters to do it this way. Who
3621 * knows. In earlier versions of the PIC patches, the
3622 * pcrel_adjust field was used to store the correction, but
3623 * since the expression is not pcrel, I felt it would be
3624 * confusing to do it this way. */
3625
29b0f896
AM
3626 if (reloc_type == BFD_RELOC_32
3627 && GOT_symbol
3628 && GOT_symbol == i.op[n].imms->X_add_symbol
3629 && (i.op[n].imms->X_op == O_symbol
3630 || (i.op[n].imms->X_op == O_add
3631 && ((symbol_get_value_expression
3632 (i.op[n].imms->X_op_symbol)->X_op)
3633 == O_subtract))))
3634 {
2bbd9c25
JJ
3635 offsetT add;
3636
3637 if (insn_start_frag == frag_now)
3638 add = (p - frag_now->fr_literal) - insn_start_off;
3639 else
3640 {
3641 fragS *fr;
3642
3643 add = insn_start_frag->fr_fix - insn_start_off;
3644 for (fr = insn_start_frag->fr_next;
3645 fr && fr != frag_now; fr = fr->fr_next)
3646 add += fr->fr_fix;
3647 add += p - frag_now->fr_literal;
3648 }
3649
29b0f896
AM
3650 /* We don't support dynamic linking on x86-64 yet. */
3651 if (flag_code == CODE_64BIT)
3652 abort ();
3653 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3654 i.op[n].imms->X_add_number += add;
29b0f896 3655 }
29b0f896
AM
3656 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3657 i.op[n].imms, 0, reloc_type);
3658 }
3659 }
3660 }
252b5132
RH
3661}
3662\f
f3c180ae 3663#ifndef LEX_AT
f86103b7 3664static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3665
3666/* Parse operands of the form
3667 <symbol>@GOTOFF+<nnn>
3668 and similar .plt or .got references.
3669
3670 If we find one, set up the correct relocation in RELOC and copy the
3671 input string, minus the `@GOTOFF' into a malloc'd buffer for
3672 parsing by the calling routine. Return this buffer, and if ADJUST
3673 is non-null set it to the length of the string we removed from the
3674 input line. Otherwise return NULL. */
3675static char *
3676lex_got (reloc, adjust)
f86103b7 3677 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3678 int *adjust;
3679{
3680 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3681 static const struct {
3682 const char *str;
f86103b7 3683 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3684 } gotrel[] = {
13ae64f3
JJ
3685 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3686 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3687 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3688 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3689 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3690 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3691 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3692 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3693 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3694 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3695 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3696 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3697 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3698 };
3699 char *cp;
3700 unsigned int j;
3701
3702 for (cp = input_line_pointer; *cp != '@'; cp++)
3703 if (is_end_of_line[(unsigned char) *cp])
3704 return NULL;
3705
3706 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3707 {
3708 int len;
3709
3710 len = strlen (gotrel[j].str);
28f81592 3711 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3712 {
3713 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3714 {
28f81592
AM
3715 int first, second;
3716 char *tmpbuf, *past_reloc;
f3c180ae
AM
3717
3718 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3719 if (adjust)
3720 *adjust = len;
f3c180ae
AM
3721
3722 if (GOT_symbol == NULL)
3723 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3724
3725 /* Replace the relocation token with ' ', so that
3726 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3727
3728 /* The length of the first part of our input line. */
f3c180ae 3729 first = cp - input_line_pointer;
28f81592
AM
3730
3731 /* The second part goes from after the reloc token until
3732 (and including) an end_of_line char. Don't use strlen
3733 here as the end_of_line char may not be a NUL. */
3734 past_reloc = cp + 1 + len;
3735 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3736 ;
3737 second = cp - past_reloc;
3738
3739 /* Allocate and copy string. The trailing NUL shouldn't
3740 be necessary, but be safe. */
3741 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3742 memcpy (tmpbuf, input_line_pointer, first);
3743 tmpbuf[first] = ' ';
28f81592
AM
3744 memcpy (tmpbuf + first + 1, past_reloc, second);
3745 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3746 return tmpbuf;
3747 }
3748
3749 as_bad (_("@%s reloc is not supported in %s bit mode"),
3750 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3751 return NULL;
3752 }
3753 }
3754
3755 /* Might be a symbol version string. Don't as_bad here. */
3756 return NULL;
3757}
3758
3759/* x86_cons_fix_new is called via the expression parsing code when a
3760 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3761static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3762
3763void
3764x86_cons_fix_new (frag, off, len, exp)
3765 fragS *frag;
3766 unsigned int off;
3767 unsigned int len;
3768 expressionS *exp;
3769{
f86103b7 3770 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3771 got_reloc = NO_RELOC;
3772 fix_new_exp (frag, off, len, exp, 0, r);
3773}
3774
3775void
3776x86_cons (exp, size)
3777 expressionS *exp;
3778 int size;
3779{
3780 if (size == 4)
3781 {
3782 /* Handle @GOTOFF and the like in an expression. */
3783 char *save;
3784 char *gotfree_input_line;
3785 int adjust;
3786
3787 save = input_line_pointer;
3788 gotfree_input_line = lex_got (&got_reloc, &adjust);
3789 if (gotfree_input_line)
3790 input_line_pointer = gotfree_input_line;
3791
3792 expression (exp);
3793
3794 if (gotfree_input_line)
3795 {
3796 /* expression () has merrily parsed up to the end of line,
3797 or a comma - in the wrong buffer. Transfer how far
3798 input_line_pointer has moved to the right buffer. */
3799 input_line_pointer = (save
3800 + (input_line_pointer - gotfree_input_line)
3801 + adjust);
3802 free (gotfree_input_line);
3803 }
3804 }
3805 else
3806 expression (exp);
3807}
3808#endif
3809
6482c264
NC
3810#ifdef TE_PE
3811
6482c264
NC
3812void
3813x86_pe_cons_fix_new (frag, off, len, exp)
3814 fragS *frag;
3815 unsigned int off;
3816 unsigned int len;
3817 expressionS *exp;
3818{
3819 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3820
3821 if (exp->X_op == O_secrel)
3822 {
3823 exp->X_op = O_symbol;
3824 r = BFD_RELOC_32_SECREL;
3825 }
3826
3827 fix_new_exp (frag, off, len, exp, 0, r);
3828}
3829
3830static void
3831pe_directive_secrel (dummy)
3832 int dummy ATTRIBUTE_UNUSED;
3833{
3834 expressionS exp;
3835
3836 do
3837 {
3838 expression (&exp);
3839 if (exp.X_op == O_symbol)
3840 exp.X_op = O_secrel;
3841
3842 emit_expr (&exp, 4);
3843 }
3844 while (*input_line_pointer++ == ',');
3845
3846 input_line_pointer--;
3847 demand_empty_rest_of_line ();
3848}
3849
3850#endif
3851
252b5132
RH
3852static int i386_immediate PARAMS ((char *));
3853
3854static int
3855i386_immediate (imm_start)
3856 char *imm_start;
3857{
3858 char *save_input_line_pointer;
f3c180ae
AM
3859#ifndef LEX_AT
3860 char *gotfree_input_line;
3861#endif
252b5132 3862 segT exp_seg = 0;
47926f60 3863 expressionS *exp;
252b5132
RH
3864
3865 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3866 {
d0b47220 3867 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3868 return 0;
3869 }
3870
3871 exp = &im_expressions[i.imm_operands++];
520dc8e8 3872 i.op[this_operand].imms = exp;
252b5132
RH
3873
3874 if (is_space_char (*imm_start))
3875 ++imm_start;
3876
3877 save_input_line_pointer = input_line_pointer;
3878 input_line_pointer = imm_start;
3879
3880#ifndef LEX_AT
f3c180ae
AM
3881 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3882 if (gotfree_input_line)
3883 input_line_pointer = gotfree_input_line;
252b5132
RH
3884#endif
3885
3886 exp_seg = expression (exp);
3887
83183c0c 3888 SKIP_WHITESPACE ();
252b5132 3889 if (*input_line_pointer)
f3c180ae 3890 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3891
3892 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3893#ifndef LEX_AT
3894 if (gotfree_input_line)
3895 free (gotfree_input_line);
3896#endif
252b5132 3897
2daf4fd8 3898 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3899 {
47926f60 3900 /* Missing or bad expr becomes absolute 0. */
d0b47220 3901 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3902 imm_start);
252b5132
RH
3903 exp->X_op = O_constant;
3904 exp->X_add_number = 0;
3905 exp->X_add_symbol = (symbolS *) 0;
3906 exp->X_op_symbol = (symbolS *) 0;
252b5132 3907 }
3e73aa7c 3908 else if (exp->X_op == O_constant)
252b5132 3909 {
47926f60 3910 /* Size it properly later. */
3e73aa7c
JH
3911 i.types[this_operand] |= Imm64;
3912 /* If BFD64, sign extend val. */
3913 if (!use_rela_relocations)
3914 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3915 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3916 }
4c63da97 3917#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3918 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3919 && exp_seg != absolute_section
47926f60 3920 && exp_seg != text_section
24eab124
AM
3921 && exp_seg != data_section
3922 && exp_seg != bss_section
3923 && exp_seg != undefined_section
f86103b7 3924 && !bfd_is_com_section (exp_seg))
252b5132 3925 {
d0b47220 3926 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3927 return 0;
3928 }
3929#endif
3930 else
3931 {
3932 /* This is an address. The size of the address will be
24eab124 3933 determined later, depending on destination register,
3e73aa7c
JH
3934 suffix, or the default for the section. */
3935 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3936 }
3937
3938 return 1;
3939}
3940
551c1ca1 3941static char *i386_scale PARAMS ((char *));
252b5132 3942
551c1ca1 3943static char *
252b5132
RH
3944i386_scale (scale)
3945 char *scale;
3946{
551c1ca1
AM
3947 offsetT val;
3948 char *save = input_line_pointer;
252b5132 3949
551c1ca1
AM
3950 input_line_pointer = scale;
3951 val = get_absolute_expression ();
3952
3953 switch (val)
252b5132 3954 {
551c1ca1 3955 case 1:
252b5132
RH
3956 i.log2_scale_factor = 0;
3957 break;
551c1ca1 3958 case 2:
252b5132
RH
3959 i.log2_scale_factor = 1;
3960 break;
551c1ca1 3961 case 4:
252b5132
RH
3962 i.log2_scale_factor = 2;
3963 break;
551c1ca1 3964 case 8:
252b5132
RH
3965 i.log2_scale_factor = 3;
3966 break;
3967 default:
a724f0f4
JB
3968 {
3969 char sep = *input_line_pointer;
3970
3971 *input_line_pointer = '\0';
3972 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3973 scale);
3974 *input_line_pointer = sep;
3975 input_line_pointer = save;
3976 return NULL;
3977 }
252b5132 3978 }
29b0f896 3979 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3980 {
3981 as_warn (_("scale factor of %d without an index register"),
24eab124 3982 1 << i.log2_scale_factor);
252b5132
RH
3983#if SCALE1_WHEN_NO_INDEX
3984 i.log2_scale_factor = 0;
3985#endif
3986 }
551c1ca1
AM
3987 scale = input_line_pointer;
3988 input_line_pointer = save;
3989 return scale;
252b5132
RH
3990}
3991
3992static int i386_displacement PARAMS ((char *, char *));
3993
3994static int
3995i386_displacement (disp_start, disp_end)
3996 char *disp_start;
3997 char *disp_end;
3998{
29b0f896 3999 expressionS *exp;
252b5132
RH
4000 segT exp_seg = 0;
4001 char *save_input_line_pointer;
f3c180ae
AM
4002#ifndef LEX_AT
4003 char *gotfree_input_line;
4004#endif
252b5132
RH
4005 int bigdisp = Disp32;
4006
3e73aa7c 4007 if (flag_code == CODE_64BIT)
7ecd2f8b 4008 {
29b0f896
AM
4009 if (i.prefix[ADDR_PREFIX] == 0)
4010 bigdisp = Disp64;
7ecd2f8b
JH
4011 }
4012 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4013 bigdisp = Disp16;
252b5132
RH
4014 i.types[this_operand] |= bigdisp;
4015
4016 exp = &disp_expressions[i.disp_operands];
520dc8e8 4017 i.op[this_operand].disps = exp;
252b5132
RH
4018 i.disp_operands++;
4019 save_input_line_pointer = input_line_pointer;
4020 input_line_pointer = disp_start;
4021 END_STRING_AND_SAVE (disp_end);
4022
4023#ifndef GCC_ASM_O_HACK
4024#define GCC_ASM_O_HACK 0
4025#endif
4026#if GCC_ASM_O_HACK
4027 END_STRING_AND_SAVE (disp_end + 1);
4028 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4029 && displacement_string_end[-1] == '+')
252b5132
RH
4030 {
4031 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4032 constraint within gcc asm statements.
4033 For instance:
4034
4035 #define _set_tssldt_desc(n,addr,limit,type) \
4036 __asm__ __volatile__ ( \
4037 "movw %w2,%0\n\t" \
4038 "movw %w1,2+%0\n\t" \
4039 "rorl $16,%1\n\t" \
4040 "movb %b1,4+%0\n\t" \
4041 "movb %4,5+%0\n\t" \
4042 "movb $0,6+%0\n\t" \
4043 "movb %h1,7+%0\n\t" \
4044 "rorl $16,%1" \
4045 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4046
4047 This works great except that the output assembler ends
4048 up looking a bit weird if it turns out that there is
4049 no offset. You end up producing code that looks like:
4050
4051 #APP
4052 movw $235,(%eax)
4053 movw %dx,2+(%eax)
4054 rorl $16,%edx
4055 movb %dl,4+(%eax)
4056 movb $137,5+(%eax)
4057 movb $0,6+(%eax)
4058 movb %dh,7+(%eax)
4059 rorl $16,%edx
4060 #NO_APP
4061
47926f60 4062 So here we provide the missing zero. */
24eab124
AM
4063
4064 *displacement_string_end = '0';
252b5132
RH
4065 }
4066#endif
4067#ifndef LEX_AT
f3c180ae
AM
4068 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4069 if (gotfree_input_line)
4070 input_line_pointer = gotfree_input_line;
252b5132
RH
4071#endif
4072
24eab124 4073 exp_seg = expression (exp);
252b5132 4074
636c26b0
AM
4075 SKIP_WHITESPACE ();
4076 if (*input_line_pointer)
4077 as_bad (_("junk `%s' after expression"), input_line_pointer);
4078#if GCC_ASM_O_HACK
4079 RESTORE_END_STRING (disp_end + 1);
4080#endif
4081 RESTORE_END_STRING (disp_end);
4082 input_line_pointer = save_input_line_pointer;
4083#ifndef LEX_AT
4084 if (gotfree_input_line)
4085 free (gotfree_input_line);
4086#endif
4087
24eab124
AM
4088 /* We do this to make sure that the section symbol is in
4089 the symbol table. We will ultimately change the relocation
47926f60 4090 to be relative to the beginning of the section. */
1ae12ab7
AM
4091 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4092 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4093 {
636c26b0
AM
4094 if (exp->X_op != O_symbol)
4095 {
4096 as_bad (_("bad expression used with @%s"),
4097 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4098 ? "GOTPCREL"
4099 : "GOTOFF"));
4100 return 0;
4101 }
4102
e5cb08ac 4103 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4104 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4105 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4106 exp->X_op = O_subtract;
4107 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4108 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4109 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4110 else
29b0f896 4111 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4112 }
252b5132 4113
2daf4fd8
AM
4114 if (exp->X_op == O_absent || exp->X_op == O_big)
4115 {
47926f60 4116 /* Missing or bad expr becomes absolute 0. */
d0b47220 4117 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4118 disp_start);
4119 exp->X_op = O_constant;
4120 exp->X_add_number = 0;
4121 exp->X_add_symbol = (symbolS *) 0;
4122 exp->X_op_symbol = (symbolS *) 0;
4123 }
4124
4c63da97 4125#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4126 if (exp->X_op != O_constant
45288df1 4127 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4128 && exp_seg != absolute_section
45288df1
AM
4129 && exp_seg != text_section
4130 && exp_seg != data_section
4131 && exp_seg != bss_section
31312f95 4132 && exp_seg != undefined_section
f86103b7 4133 && !bfd_is_com_section (exp_seg))
24eab124 4134 {
d0b47220 4135 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4136 return 0;
4137 }
252b5132 4138#endif
3e73aa7c
JH
4139 else if (flag_code == CODE_64BIT)
4140 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4141 return 1;
4142}
4143
e5cb08ac 4144static int i386_index_check PARAMS ((const char *));
252b5132 4145
eecb386c 4146/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4147 Return 1 on success, 0 on a failure. */
4148
252b5132 4149static int
eecb386c
AM
4150i386_index_check (operand_string)
4151 const char *operand_string;
252b5132 4152{
3e73aa7c 4153 int ok;
24eab124 4154#if INFER_ADDR_PREFIX
eecb386c
AM
4155 int fudged = 0;
4156
24eab124
AM
4157 tryprefix:
4158#endif
3e73aa7c 4159 ok = 1;
20f0a1fc
NC
4160 if (flag_code == CODE_64BIT)
4161 {
4162 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4163
4164 if ((i.base_reg
4165 && ((i.base_reg->reg_type & RegXX) == 0)
4166 && (i.base_reg->reg_type != BaseIndex
4167 || i.index_reg))
4168 || (i.index_reg
4169 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4170 != (RegXX | BaseIndex))))
4171 ok = 0;
3e73aa7c
JH
4172 }
4173 else
4174 {
4175 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4176 {
4177 /* 16bit checks. */
4178 if ((i.base_reg
29b0f896
AM
4179 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4180 != (Reg16 | BaseIndex)))
3e73aa7c 4181 || (i.index_reg
29b0f896
AM
4182 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4183 != (Reg16 | BaseIndex))
4184 || !(i.base_reg
4185 && i.base_reg->reg_num < 6
4186 && i.index_reg->reg_num >= 6
4187 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4188 ok = 0;
4189 }
4190 else
e5cb08ac 4191 {
3e73aa7c
JH
4192 /* 32bit checks. */
4193 if ((i.base_reg
4194 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4195 || (i.index_reg
29b0f896
AM
4196 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4197 != (Reg32 | BaseIndex))))
e5cb08ac 4198 ok = 0;
3e73aa7c
JH
4199 }
4200 }
4201 if (!ok)
24eab124
AM
4202 {
4203#if INFER_ADDR_PREFIX
20f0a1fc 4204 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4205 {
4206 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4207 i.prefixes += 1;
b23bac36
AM
4208 /* Change the size of any displacement too. At most one of
4209 Disp16 or Disp32 is set.
4210 FIXME. There doesn't seem to be any real need for separate
4211 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4212 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4213 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4214 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4215 fudged = 1;
24eab124
AM
4216 goto tryprefix;
4217 }
eecb386c
AM
4218 if (fudged)
4219 as_bad (_("`%s' is not a valid base/index expression"),
4220 operand_string);
4221 else
c388dee8 4222#endif
eecb386c
AM
4223 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4224 operand_string,
3e73aa7c 4225 flag_code_names[flag_code]);
24eab124 4226 }
20f0a1fc 4227 return ok;
24eab124 4228}
252b5132 4229
252b5132 4230/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4231 on error. */
252b5132 4232
252b5132
RH
4233static int
4234i386_operand (operand_string)
4235 char *operand_string;
4236{
af6bdddf
AM
4237 const reg_entry *r;
4238 char *end_op;
24eab124 4239 char *op_string = operand_string;
252b5132 4240
24eab124 4241 if (is_space_char (*op_string))
252b5132
RH
4242 ++op_string;
4243
24eab124 4244 /* We check for an absolute prefix (differentiating,
47926f60 4245 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4246 if (*op_string == ABSOLUTE_PREFIX)
4247 {
4248 ++op_string;
4249 if (is_space_char (*op_string))
4250 ++op_string;
4251 i.types[this_operand] |= JumpAbsolute;
4252 }
252b5132 4253
47926f60 4254 /* Check if operand is a register. */
af6bdddf
AM
4255 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4256 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4257 {
24eab124
AM
4258 /* Check for a segment override by searching for ':' after a
4259 segment register. */
4260 op_string = end_op;
4261 if (is_space_char (*op_string))
4262 ++op_string;
4263 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4264 {
4265 switch (r->reg_num)
4266 {
4267 case 0:
4268 i.seg[i.mem_operands] = &es;
4269 break;
4270 case 1:
4271 i.seg[i.mem_operands] = &cs;
4272 break;
4273 case 2:
4274 i.seg[i.mem_operands] = &ss;
4275 break;
4276 case 3:
4277 i.seg[i.mem_operands] = &ds;
4278 break;
4279 case 4:
4280 i.seg[i.mem_operands] = &fs;
4281 break;
4282 case 5:
4283 i.seg[i.mem_operands] = &gs;
4284 break;
4285 }
252b5132 4286
24eab124 4287 /* Skip the ':' and whitespace. */
252b5132
RH
4288 ++op_string;
4289 if (is_space_char (*op_string))
24eab124 4290 ++op_string;
252b5132 4291
24eab124
AM
4292 if (!is_digit_char (*op_string)
4293 && !is_identifier_char (*op_string)
4294 && *op_string != '('
4295 && *op_string != ABSOLUTE_PREFIX)
4296 {
4297 as_bad (_("bad memory operand `%s'"), op_string);
4298 return 0;
4299 }
47926f60 4300 /* Handle case of %es:*foo. */
24eab124
AM
4301 if (*op_string == ABSOLUTE_PREFIX)
4302 {
4303 ++op_string;
4304 if (is_space_char (*op_string))
4305 ++op_string;
4306 i.types[this_operand] |= JumpAbsolute;
4307 }
4308 goto do_memory_reference;
4309 }
4310 if (*op_string)
4311 {
d0b47220 4312 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4313 return 0;
4314 }
4315 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4316 i.op[this_operand].regs = r;
24eab124
AM
4317 i.reg_operands++;
4318 }
af6bdddf
AM
4319 else if (*op_string == REGISTER_PREFIX)
4320 {
4321 as_bad (_("bad register name `%s'"), op_string);
4322 return 0;
4323 }
24eab124 4324 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4325 {
24eab124
AM
4326 ++op_string;
4327 if (i.types[this_operand] & JumpAbsolute)
4328 {
d0b47220 4329 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4330 return 0;
4331 }
4332 if (!i386_immediate (op_string))
4333 return 0;
4334 }
4335 else if (is_digit_char (*op_string)
4336 || is_identifier_char (*op_string)
e5cb08ac 4337 || *op_string == '(')
24eab124 4338 {
47926f60 4339 /* This is a memory reference of some sort. */
af6bdddf 4340 char *base_string;
252b5132 4341
47926f60 4342 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4343 char *displacement_string_start;
4344 char *displacement_string_end;
252b5132 4345
24eab124 4346 do_memory_reference:
24eab124
AM
4347 if ((i.mem_operands == 1
4348 && (current_templates->start->opcode_modifier & IsString) == 0)
4349 || i.mem_operands == 2)
4350 {
4351 as_bad (_("too many memory references for `%s'"),
4352 current_templates->start->name);
4353 return 0;
4354 }
252b5132 4355
24eab124
AM
4356 /* Check for base index form. We detect the base index form by
4357 looking for an ')' at the end of the operand, searching
4358 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4359 after the '('. */
af6bdddf 4360 base_string = op_string + strlen (op_string);
c3332e24 4361
af6bdddf
AM
4362 --base_string;
4363 if (is_space_char (*base_string))
4364 --base_string;
252b5132 4365
47926f60 4366 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4367 displacement_string_start = op_string;
4368 displacement_string_end = base_string + 1;
252b5132 4369
24eab124
AM
4370 if (*base_string == ')')
4371 {
af6bdddf 4372 char *temp_string;
24eab124
AM
4373 unsigned int parens_balanced = 1;
4374 /* We've already checked that the number of left & right ()'s are
47926f60 4375 equal, so this loop will not be infinite. */
24eab124
AM
4376 do
4377 {
4378 base_string--;
4379 if (*base_string == ')')
4380 parens_balanced++;
4381 if (*base_string == '(')
4382 parens_balanced--;
4383 }
4384 while (parens_balanced);
c3332e24 4385
af6bdddf 4386 temp_string = base_string;
c3332e24 4387
24eab124 4388 /* Skip past '(' and whitespace. */
252b5132
RH
4389 ++base_string;
4390 if (is_space_char (*base_string))
24eab124 4391 ++base_string;
252b5132 4392
af6bdddf
AM
4393 if (*base_string == ','
4394 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4395 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4396 {
af6bdddf 4397 displacement_string_end = temp_string;
252b5132 4398
af6bdddf 4399 i.types[this_operand] |= BaseIndex;
252b5132 4400
af6bdddf 4401 if (i.base_reg)
24eab124 4402 {
24eab124
AM
4403 base_string = end_op;
4404 if (is_space_char (*base_string))
4405 ++base_string;
af6bdddf
AM
4406 }
4407
4408 /* There may be an index reg or scale factor here. */
4409 if (*base_string == ',')
4410 {
4411 ++base_string;
4412 if (is_space_char (*base_string))
4413 ++base_string;
4414
4415 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4416 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4417 {
af6bdddf 4418 base_string = end_op;
24eab124
AM
4419 if (is_space_char (*base_string))
4420 ++base_string;
af6bdddf
AM
4421 if (*base_string == ',')
4422 {
4423 ++base_string;
4424 if (is_space_char (*base_string))
4425 ++base_string;
4426 }
e5cb08ac 4427 else if (*base_string != ')')
af6bdddf
AM
4428 {
4429 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4430 operand_string);
4431 return 0;
4432 }
24eab124 4433 }
af6bdddf 4434 else if (*base_string == REGISTER_PREFIX)
24eab124 4435 {
af6bdddf 4436 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4437 return 0;
4438 }
252b5132 4439
47926f60 4440 /* Check for scale factor. */
551c1ca1 4441 if (*base_string != ')')
af6bdddf 4442 {
551c1ca1
AM
4443 char *end_scale = i386_scale (base_string);
4444
4445 if (!end_scale)
af6bdddf 4446 return 0;
24eab124 4447
551c1ca1 4448 base_string = end_scale;
af6bdddf
AM
4449 if (is_space_char (*base_string))
4450 ++base_string;
4451 if (*base_string != ')')
4452 {
4453 as_bad (_("expecting `)' after scale factor in `%s'"),
4454 operand_string);
4455 return 0;
4456 }
4457 }
4458 else if (!i.index_reg)
24eab124 4459 {
af6bdddf
AM
4460 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4461 *base_string);
24eab124
AM
4462 return 0;
4463 }
4464 }
af6bdddf 4465 else if (*base_string != ')')
24eab124 4466 {
af6bdddf
AM
4467 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4468 operand_string);
24eab124
AM
4469 return 0;
4470 }
c3332e24 4471 }
af6bdddf 4472 else if (*base_string == REGISTER_PREFIX)
c3332e24 4473 {
af6bdddf 4474 as_bad (_("bad register name `%s'"), base_string);
24eab124 4475 return 0;
c3332e24 4476 }
24eab124
AM
4477 }
4478
4479 /* If there's an expression beginning the operand, parse it,
4480 assuming displacement_string_start and
4481 displacement_string_end are meaningful. */
4482 if (displacement_string_start != displacement_string_end)
4483 {
4484 if (!i386_displacement (displacement_string_start,
4485 displacement_string_end))
4486 return 0;
4487 }
4488
4489 /* Special case for (%dx) while doing input/output op. */
4490 if (i.base_reg
4491 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4492 && i.index_reg == 0
4493 && i.log2_scale_factor == 0
4494 && i.seg[i.mem_operands] == 0
4495 && (i.types[this_operand] & Disp) == 0)
4496 {
4497 i.types[this_operand] = InOutPortReg;
4498 return 1;
4499 }
4500
eecb386c
AM
4501 if (i386_index_check (operand_string) == 0)
4502 return 0;
24eab124
AM
4503 i.mem_operands++;
4504 }
4505 else
ce8a8b2f
AM
4506 {
4507 /* It's not a memory operand; argh! */
24eab124
AM
4508 as_bad (_("invalid char %s beginning operand %d `%s'"),
4509 output_invalid (*op_string),
4510 this_operand + 1,
4511 op_string);
4512 return 0;
4513 }
47926f60 4514 return 1; /* Normal return. */
252b5132
RH
4515}
4516\f
ee7fcc42
AM
4517/* md_estimate_size_before_relax()
4518
4519 Called just before relax() for rs_machine_dependent frags. The x86
4520 assembler uses these frags to handle variable size jump
4521 instructions.
4522
4523 Any symbol that is now undefined will not become defined.
4524 Return the correct fr_subtype in the frag.
4525 Return the initial "guess for variable size of frag" to caller.
4526 The guess is actually the growth beyond the fixed part. Whatever
4527 we do to grow the fixed or variable part contributes to our
4528 returned value. */
4529
252b5132
RH
4530int
4531md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4532 fragS *fragP;
4533 segT segment;
252b5132 4534{
252b5132 4535 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4536 check for un-relaxable symbols. On an ELF system, we can't relax
4537 an externally visible symbol, because it may be overridden by a
4538 shared library. */
4539 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4540#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4541 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4542 && (S_IS_EXTERNAL (fragP->fr_symbol)
4543 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4544#endif
4545 )
252b5132 4546 {
b98ef147
AM
4547 /* Symbol is undefined in this segment, or we need to keep a
4548 reloc so that weak symbols can be overridden. */
4549 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4550 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4551 unsigned char *opcode;
4552 int old_fr_fix;
f6af82bd 4553
ee7fcc42
AM
4554 if (fragP->fr_var != NO_RELOC)
4555 reloc_type = fragP->fr_var;
b98ef147 4556 else if (size == 2)
f6af82bd
AM
4557 reloc_type = BFD_RELOC_16_PCREL;
4558 else
4559 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4560
ee7fcc42
AM
4561 old_fr_fix = fragP->fr_fix;
4562 opcode = (unsigned char *) fragP->fr_opcode;
4563
fddf5b5b 4564 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4565 {
fddf5b5b
AM
4566 case UNCOND_JUMP:
4567 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4568 opcode[0] = 0xe9;
252b5132 4569 fragP->fr_fix += size;
062cd5e7
AS
4570 fix_new (fragP, old_fr_fix, size,
4571 fragP->fr_symbol,
4572 fragP->fr_offset, 1,
4573 reloc_type);
252b5132
RH
4574 break;
4575
fddf5b5b 4576 case COND_JUMP86:
412167cb
AM
4577 if (size == 2
4578 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4579 {
4580 /* Negate the condition, and branch past an
4581 unconditional jump. */
4582 opcode[0] ^= 1;
4583 opcode[1] = 3;
4584 /* Insert an unconditional jump. */
4585 opcode[2] = 0xe9;
4586 /* We added two extra opcode bytes, and have a two byte
4587 offset. */
4588 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4589 fix_new (fragP, old_fr_fix + 2, 2,
4590 fragP->fr_symbol,
4591 fragP->fr_offset, 1,
4592 reloc_type);
fddf5b5b
AM
4593 break;
4594 }
4595 /* Fall through. */
4596
4597 case COND_JUMP:
412167cb
AM
4598 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4599 {
3e02c1cc
AM
4600 fixS *fixP;
4601
412167cb 4602 fragP->fr_fix += 1;
3e02c1cc
AM
4603 fixP = fix_new (fragP, old_fr_fix, 1,
4604 fragP->fr_symbol,
4605 fragP->fr_offset, 1,
4606 BFD_RELOC_8_PCREL);
4607 fixP->fx_signed = 1;
412167cb
AM
4608 break;
4609 }
93c2a809 4610
24eab124 4611 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4612 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4613 opcode[1] = opcode[0] + 0x10;
f6af82bd 4614 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4615 /* We've added an opcode byte. */
4616 fragP->fr_fix += 1 + size;
062cd5e7
AS
4617 fix_new (fragP, old_fr_fix + 1, size,
4618 fragP->fr_symbol,
4619 fragP->fr_offset, 1,
4620 reloc_type);
252b5132 4621 break;
fddf5b5b
AM
4622
4623 default:
4624 BAD_CASE (fragP->fr_subtype);
4625 break;
252b5132
RH
4626 }
4627 frag_wane (fragP);
ee7fcc42 4628 return fragP->fr_fix - old_fr_fix;
252b5132 4629 }
93c2a809 4630
93c2a809
AM
4631 /* Guess size depending on current relax state. Initially the relax
4632 state will correspond to a short jump and we return 1, because
4633 the variable part of the frag (the branch offset) is one byte
4634 long. However, we can relax a section more than once and in that
4635 case we must either set fr_subtype back to the unrelaxed state,
4636 or return the value for the appropriate branch. */
4637 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4638}
4639
47926f60
KH
4640/* Called after relax() is finished.
4641
4642 In: Address of frag.
4643 fr_type == rs_machine_dependent.
4644 fr_subtype is what the address relaxed to.
4645
4646 Out: Any fixSs and constants are set up.
4647 Caller will turn frag into a ".space 0". */
4648
252b5132
RH
4649void
4650md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4651 bfd *abfd ATTRIBUTE_UNUSED;
4652 segT sec ATTRIBUTE_UNUSED;
29b0f896 4653 fragS *fragP;
252b5132 4654{
29b0f896 4655 unsigned char *opcode;
252b5132 4656 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4657 offsetT target_address;
4658 offsetT opcode_address;
252b5132 4659 unsigned int extension = 0;
847f7ad4 4660 offsetT displacement_from_opcode_start;
252b5132
RH
4661
4662 opcode = (unsigned char *) fragP->fr_opcode;
4663
47926f60 4664 /* Address we want to reach in file space. */
252b5132 4665 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4666
47926f60 4667 /* Address opcode resides at in file space. */
252b5132
RH
4668 opcode_address = fragP->fr_address + fragP->fr_fix;
4669
47926f60 4670 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4671 displacement_from_opcode_start = target_address - opcode_address;
4672
fddf5b5b 4673 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4674 {
47926f60
KH
4675 /* Don't have to change opcode. */
4676 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4677 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4678 }
4679 else
4680 {
4681 if (no_cond_jump_promotion
4682 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4683 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4684
fddf5b5b
AM
4685 switch (fragP->fr_subtype)
4686 {
4687 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4688 extension = 4; /* 1 opcode + 4 displacement */
4689 opcode[0] = 0xe9;
4690 where_to_put_displacement = &opcode[1];
4691 break;
252b5132 4692
fddf5b5b
AM
4693 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4694 extension = 2; /* 1 opcode + 2 displacement */
4695 opcode[0] = 0xe9;
4696 where_to_put_displacement = &opcode[1];
4697 break;
252b5132 4698
fddf5b5b
AM
4699 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4700 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4701 extension = 5; /* 2 opcode + 4 displacement */
4702 opcode[1] = opcode[0] + 0x10;
4703 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4704 where_to_put_displacement = &opcode[2];
4705 break;
252b5132 4706
fddf5b5b
AM
4707 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4708 extension = 3; /* 2 opcode + 2 displacement */
4709 opcode[1] = opcode[0] + 0x10;
4710 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4711 where_to_put_displacement = &opcode[2];
4712 break;
252b5132 4713
fddf5b5b
AM
4714 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4715 extension = 4;
4716 opcode[0] ^= 1;
4717 opcode[1] = 3;
4718 opcode[2] = 0xe9;
4719 where_to_put_displacement = &opcode[3];
4720 break;
4721
4722 default:
4723 BAD_CASE (fragP->fr_subtype);
4724 break;
4725 }
252b5132 4726 }
fddf5b5b 4727
47926f60 4728 /* Now put displacement after opcode. */
252b5132
RH
4729 md_number_to_chars ((char *) where_to_put_displacement,
4730 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4731 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4732 fragP->fr_fix += extension;
4733}
4734\f
47926f60
KH
4735/* Size of byte displacement jmp. */
4736int md_short_jump_size = 2;
4737
4738/* Size of dword displacement jmp. */
4739int md_long_jump_size = 5;
252b5132 4740
47926f60
KH
4741/* Size of relocation record. */
4742const int md_reloc_size = 8;
252b5132
RH
4743
4744void
4745md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4746 char *ptr;
4747 addressT from_addr, to_addr;
ab9da554
ILT
4748 fragS *frag ATTRIBUTE_UNUSED;
4749 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4750{
847f7ad4 4751 offsetT offset;
252b5132
RH
4752
4753 offset = to_addr - (from_addr + 2);
47926f60
KH
4754 /* Opcode for byte-disp jump. */
4755 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4756 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4757}
4758
4759void
4760md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4761 char *ptr;
4762 addressT from_addr, to_addr;
a38cf1db
AM
4763 fragS *frag ATTRIBUTE_UNUSED;
4764 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4765{
847f7ad4 4766 offsetT offset;
252b5132 4767
a38cf1db
AM
4768 offset = to_addr - (from_addr + 5);
4769 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4770 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4771}
4772\f
4773/* Apply a fixup (fixS) to segment data, once it has been determined
4774 by our caller that we have all the info we need to fix it up.
4775
4776 On the 386, immediates, displacements, and data pointers are all in
4777 the same (little-endian) format, so we don't need to care about which
4778 we are handling. */
4779
94f592af
NC
4780void
4781md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4782 /* The fix we're to put in. */
4783 fixS *fixP;
47926f60 4784 /* Pointer to the value of the bits. */
c6682705 4785 valueT *valP;
47926f60
KH
4786 /* Segment fix is from. */
4787 segT seg ATTRIBUTE_UNUSED;
252b5132 4788{
94f592af 4789 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4790 valueT value = *valP;
252b5132 4791
f86103b7 4792#if !defined (TE_Mach)
93382f6d
AM
4793 if (fixP->fx_pcrel)
4794 {
4795 switch (fixP->fx_r_type)
4796 {
5865bb77
ILT
4797 default:
4798 break;
4799
93382f6d 4800 case BFD_RELOC_32:
ae8887b5 4801 case BFD_RELOC_X86_64_32S:
93382f6d
AM
4802 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4803 break;
4804 case BFD_RELOC_16:
4805 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4806 break;
4807 case BFD_RELOC_8:
4808 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4809 break;
4810 }
4811 }
252b5132 4812
a161fe53 4813 if (fixP->fx_addsy != NULL
31312f95
AM
4814 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4815 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4816 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4817 && !use_rela_relocations)
252b5132 4818 {
31312f95
AM
4819 /* This is a hack. There should be a better way to handle this.
4820 This covers for the fact that bfd_install_relocation will
4821 subtract the current location (for partial_inplace, PC relative
4822 relocations); see more below. */
252b5132
RH
4823#ifndef OBJ_AOUT
4824 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4825#ifdef TE_PE
4826 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4827#endif
4828 )
4829 value += fixP->fx_where + fixP->fx_frag->fr_address;
4830#endif
4831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4832 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4833 {
6539b54b 4834 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4835
6539b54b 4836 if ((sym_seg == seg
2f66722d 4837 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4838 && sym_seg != absolute_section))
ae6063d4 4839 && !generic_force_reloc (fixP))
2f66722d
AM
4840 {
4841 /* Yes, we add the values in twice. This is because
6539b54b
AM
4842 bfd_install_relocation subtracts them out again. I think
4843 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4844 it. FIXME. */
4845 value += fixP->fx_where + fixP->fx_frag->fr_address;
4846 }
252b5132
RH
4847 }
4848#endif
4849#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4850 /* For some reason, the PE format does not store a
4851 section address offset for a PC relative symbol. */
4852 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4853#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4854 || S_IS_WEAK (fixP->fx_addsy)
4855#endif
4856 )
252b5132
RH
4857 value += md_pcrel_from (fixP);
4858#endif
4859 }
4860
4861 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4862 and we must not disappoint it. */
252b5132
RH
4863#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4864 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4865 && fixP->fx_addsy)
47926f60
KH
4866 switch (fixP->fx_r_type)
4867 {
4868 case BFD_RELOC_386_PLT32:
3e73aa7c 4869 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4870 /* Make the jump instruction point to the address of the operand. At
4871 runtime we merely add the offset to the actual PLT entry. */
4872 value = -4;
4873 break;
31312f95 4874
13ae64f3
JJ
4875 case BFD_RELOC_386_TLS_GD:
4876 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4877 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4878 case BFD_RELOC_386_TLS_IE:
4879 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4880 case BFD_RELOC_X86_64_TLSGD:
4881 case BFD_RELOC_X86_64_TLSLD:
4882 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4883 value = 0; /* Fully resolved at runtime. No addend. */
4884 /* Fallthrough */
4885 case BFD_RELOC_386_TLS_LE:
4886 case BFD_RELOC_386_TLS_LDO_32:
4887 case BFD_RELOC_386_TLS_LE_32:
4888 case BFD_RELOC_X86_64_DTPOFF32:
4889 case BFD_RELOC_X86_64_TPOFF32:
4890 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4891 break;
4892
4893 case BFD_RELOC_386_GOT32:
4894 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4895 value = 0; /* Fully resolved at runtime. No addend. */
4896 break;
47926f60
KH
4897
4898 case BFD_RELOC_VTABLE_INHERIT:
4899 case BFD_RELOC_VTABLE_ENTRY:
4900 fixP->fx_done = 0;
94f592af 4901 return;
47926f60
KH
4902
4903 default:
4904 break;
4905 }
4906#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4907 *valP = value;
f86103b7 4908#endif /* !defined (TE_Mach) */
3e73aa7c 4909
3e73aa7c 4910 /* Are we finished with this relocation now? */
c6682705 4911 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4912 fixP->fx_done = 1;
4913 else if (use_rela_relocations)
4914 {
4915 fixP->fx_no_overflow = 1;
062cd5e7
AS
4916 /* Remember value for tc_gen_reloc. */
4917 fixP->fx_addnumber = value;
3e73aa7c
JH
4918 value = 0;
4919 }
f86103b7 4920
94f592af 4921 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4922}
252b5132 4923\f
252b5132
RH
4924#define MAX_LITTLENUMS 6
4925
47926f60
KH
4926/* Turn the string pointed to by litP into a floating point constant
4927 of type TYPE, and emit the appropriate bytes. The number of
4928 LITTLENUMS emitted is stored in *SIZEP. An error message is
4929 returned, or NULL on OK. */
4930
252b5132
RH
4931char *
4932md_atof (type, litP, sizeP)
2ab9b79e 4933 int type;
252b5132
RH
4934 char *litP;
4935 int *sizeP;
4936{
4937 int prec;
4938 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4939 LITTLENUM_TYPE *wordP;
4940 char *t;
4941
4942 switch (type)
4943 {
4944 case 'f':
4945 case 'F':
4946 prec = 2;
4947 break;
4948
4949 case 'd':
4950 case 'D':
4951 prec = 4;
4952 break;
4953
4954 case 'x':
4955 case 'X':
4956 prec = 5;
4957 break;
4958
4959 default:
4960 *sizeP = 0;
4961 return _("Bad call to md_atof ()");
4962 }
4963 t = atof_ieee (input_line_pointer, type, words);
4964 if (t)
4965 input_line_pointer = t;
4966
4967 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4968 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4969 the bigendian 386. */
4970 for (wordP = words + prec - 1; prec--;)
4971 {
4972 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4973 litP += sizeof (LITTLENUM_TYPE);
4974 }
4975 return 0;
4976}
4977\f
4978char output_invalid_buf[8];
4979
252b5132
RH
4980static char *
4981output_invalid (c)
4982 int c;
4983{
3882b010 4984 if (ISPRINT (c))
252b5132
RH
4985 sprintf (output_invalid_buf, "'%c'", c);
4986 else
4987 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4988 return output_invalid_buf;
4989}
4990
af6bdddf 4991/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4992
4993static const reg_entry *
4994parse_register (reg_string, end_op)
4995 char *reg_string;
4996 char **end_op;
4997{
af6bdddf
AM
4998 char *s = reg_string;
4999 char *p;
252b5132
RH
5000 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5001 const reg_entry *r;
5002
5003 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5004 if (*s == REGISTER_PREFIX)
5005 ++s;
5006
5007 if (is_space_char (*s))
5008 ++s;
5009
5010 p = reg_name_given;
af6bdddf 5011 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5012 {
5013 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5014 return (const reg_entry *) NULL;
5015 s++;
252b5132
RH
5016 }
5017
6588847e
DN
5018 /* For naked regs, make sure that we are not dealing with an identifier.
5019 This prevents confusing an identifier like `eax_var' with register
5020 `eax'. */
5021 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5022 return (const reg_entry *) NULL;
5023
af6bdddf 5024 *end_op = s;
252b5132
RH
5025
5026 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5027
5f47d35b 5028 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5029 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5030 {
5f47d35b
AM
5031 if (is_space_char (*s))
5032 ++s;
5033 if (*s == '(')
5034 {
af6bdddf 5035 ++s;
5f47d35b
AM
5036 if (is_space_char (*s))
5037 ++s;
5038 if (*s >= '0' && *s <= '7')
5039 {
5040 r = &i386_float_regtab[*s - '0'];
af6bdddf 5041 ++s;
5f47d35b
AM
5042 if (is_space_char (*s))
5043 ++s;
5044 if (*s == ')')
5045 {
5046 *end_op = s + 1;
5047 return r;
5048 }
5f47d35b 5049 }
47926f60 5050 /* We have "%st(" then garbage. */
5f47d35b
AM
5051 return (const reg_entry *) NULL;
5052 }
5053 }
5054
1ae00879 5055 if (r != NULL
20f0a1fc 5056 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5057 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5058 && flag_code != CODE_64BIT)
20f0a1fc 5059 return (const reg_entry *) NULL;
1ae00879 5060
252b5132
RH
5061 return r;
5062}
5063\f
4cc782b5 5064#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5065const char *md_shortopts = "kVQ:sqn";
252b5132 5066#else
12b55ccc 5067const char *md_shortopts = "qn";
252b5132 5068#endif
6e0b89ee 5069
252b5132 5070struct option md_longopts[] = {
3e73aa7c
JH
5071#define OPTION_32 (OPTION_MD_BASE + 0)
5072 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5073#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5074#define OPTION_64 (OPTION_MD_BASE + 1)
5075 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5076#endif
252b5132
RH
5077 {NULL, no_argument, NULL, 0}
5078};
5079size_t md_longopts_size = sizeof (md_longopts);
5080
5081int
5082md_parse_option (c, arg)
5083 int c;
ab9da554 5084 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5085{
5086 switch (c)
5087 {
12b55ccc
L
5088 case 'n':
5089 optimize_align_code = 0;
5090 break;
5091
a38cf1db
AM
5092 case 'q':
5093 quiet_warnings = 1;
252b5132
RH
5094 break;
5095
5096#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5097 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5098 should be emitted or not. FIXME: Not implemented. */
5099 case 'Q':
252b5132
RH
5100 break;
5101
5102 /* -V: SVR4 argument to print version ID. */
5103 case 'V':
5104 print_version_id ();
5105 break;
5106
a38cf1db
AM
5107 /* -k: Ignore for FreeBSD compatibility. */
5108 case 'k':
252b5132 5109 break;
4cc782b5
ILT
5110
5111 case 's':
5112 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5113 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5114 break;
6e0b89ee 5115
3e73aa7c
JH
5116 case OPTION_64:
5117 {
5118 const char **list, **l;
5119
3e73aa7c
JH
5120 list = bfd_target_list ();
5121 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5122 if (strcmp (*l, "elf64-x86-64") == 0)
5123 {
5124 default_arch = "x86_64";
5125 break;
5126 }
3e73aa7c 5127 if (*l == NULL)
6e0b89ee 5128 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5129 free (list);
5130 }
5131 break;
5132#endif
252b5132 5133
6e0b89ee
AM
5134 case OPTION_32:
5135 default_arch = "i386";
5136 break;
5137
252b5132
RH
5138 default:
5139 return 0;
5140 }
5141 return 1;
5142}
5143
5144void
5145md_show_usage (stream)
5146 FILE *stream;
5147{
4cc782b5
ILT
5148#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5149 fprintf (stream, _("\
a38cf1db
AM
5150 -Q ignored\n\
5151 -V print assembler version number\n\
5152 -k ignored\n\
12b55ccc 5153 -n Do not optimize code alignment\n\
a38cf1db
AM
5154 -q quieten some warnings\n\
5155 -s ignored\n"));
5156#else
5157 fprintf (stream, _("\
12b55ccc 5158 -n Do not optimize code alignment\n\
a38cf1db 5159 -q quieten some warnings\n"));
4cc782b5 5160#endif
252b5132
RH
5161}
5162
3e73aa7c
JH
5163#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5164 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5165
5166/* Pick the target format to use. */
5167
47926f60 5168const char *
252b5132
RH
5169i386_target_format ()
5170{
3e73aa7c
JH
5171 if (!strcmp (default_arch, "x86_64"))
5172 set_code_flag (CODE_64BIT);
5173 else if (!strcmp (default_arch, "i386"))
5174 set_code_flag (CODE_32BIT);
5175 else
5176 as_fatal (_("Unknown architecture"));
252b5132
RH
5177 switch (OUTPUT_FLAVOR)
5178 {
4c63da97
AM
5179#ifdef OBJ_MAYBE_AOUT
5180 case bfd_target_aout_flavour:
47926f60 5181 return AOUT_TARGET_FORMAT;
4c63da97
AM
5182#endif
5183#ifdef OBJ_MAYBE_COFF
252b5132
RH
5184 case bfd_target_coff_flavour:
5185 return "coff-i386";
4c63da97 5186#endif
3e73aa7c 5187#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5188 case bfd_target_elf_flavour:
3e73aa7c 5189 {
e5cb08ac
KH
5190 if (flag_code == CODE_64BIT)
5191 use_rela_relocations = 1;
4ada7262 5192 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5193 }
4c63da97 5194#endif
252b5132
RH
5195 default:
5196 abort ();
5197 return NULL;
5198 }
5199}
5200
47926f60 5201#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5202
5203#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5204void i386_elf_emit_arch_note ()
5205{
5206 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5207 && cpu_arch_name != NULL)
5208 {
5209 char *p;
5210 asection *seg = now_seg;
5211 subsegT subseg = now_subseg;
5212 Elf_Internal_Note i_note;
5213 Elf_External_Note e_note;
5214 asection *note_secp;
5215 int len;
5216
5217 /* Create the .note section. */
5218 note_secp = subseg_new (".note", 0);
5219 bfd_set_section_flags (stdoutput,
5220 note_secp,
5221 SEC_HAS_CONTENTS | SEC_READONLY);
5222
5223 /* Process the arch string. */
5224 len = strlen (cpu_arch_name);
5225
5226 i_note.namesz = len + 1;
5227 i_note.descsz = 0;
5228 i_note.type = NT_ARCH;
5229 p = frag_more (sizeof (e_note.namesz));
5230 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5231 p = frag_more (sizeof (e_note.descsz));
5232 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5233 p = frag_more (sizeof (e_note.type));
5234 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5235 p = frag_more (len + 1);
5236 strcpy (p, cpu_arch_name);
5237
5238 frag_align (2, 0, 0);
5239
5240 subseg_set (seg, subseg);
5241 }
5242}
5243#endif
252b5132 5244\f
252b5132
RH
5245symbolS *
5246md_undefined_symbol (name)
5247 char *name;
5248{
18dc2407
ILT
5249 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5250 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5251 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5252 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5253 {
5254 if (!GOT_symbol)
5255 {
5256 if (symbol_find (name))
5257 as_bad (_("GOT already in symbol table"));
5258 GOT_symbol = symbol_new (name, undefined_section,
5259 (valueT) 0, &zero_address_frag);
5260 };
5261 return GOT_symbol;
5262 }
252b5132
RH
5263 return 0;
5264}
5265
5266/* Round up a section size to the appropriate boundary. */
47926f60 5267
252b5132
RH
5268valueT
5269md_section_align (segment, size)
ab9da554 5270 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5271 valueT size;
5272{
4c63da97
AM
5273#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5274 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5275 {
5276 /* For a.out, force the section size to be aligned. If we don't do
5277 this, BFD will align it for us, but it will not write out the
5278 final bytes of the section. This may be a bug in BFD, but it is
5279 easier to fix it here since that is how the other a.out targets
5280 work. */
5281 int align;
5282
5283 align = bfd_get_section_alignment (stdoutput, segment);
5284 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5285 }
252b5132
RH
5286#endif
5287
5288 return size;
5289}
5290
5291/* On the i386, PC-relative offsets are relative to the start of the
5292 next instruction. That is, the address of the offset, plus its
5293 size, since the offset is always the last part of the insn. */
5294
5295long
5296md_pcrel_from (fixP)
5297 fixS *fixP;
5298{
5299 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5300}
5301
5302#ifndef I386COFF
5303
5304static void
5305s_bss (ignore)
ab9da554 5306 int ignore ATTRIBUTE_UNUSED;
252b5132 5307{
29b0f896 5308 int temp;
252b5132 5309
8a75718c
JB
5310#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5311 if (IS_ELF)
5312 obj_elf_section_change_hook ();
5313#endif
252b5132
RH
5314 temp = get_absolute_expression ();
5315 subseg_set (bss_section, (subsegT) temp);
5316 demand_empty_rest_of_line ();
5317}
5318
5319#endif
5320
252b5132
RH
5321void
5322i386_validate_fix (fixp)
5323 fixS *fixp;
5324{
5325 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5326 {
3e73aa7c 5327 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5328 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5329 {
5330 if (flag_code != CODE_64BIT)
5331 abort ();
5332 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5333 }
5334 else
5335 {
5336 if (flag_code == CODE_64BIT)
5337 abort ();
5338 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5339 }
252b5132
RH
5340 fixp->fx_subsy = 0;
5341 }
5342}
5343
252b5132
RH
5344arelent *
5345tc_gen_reloc (section, fixp)
ab9da554 5346 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5347 fixS *fixp;
5348{
5349 arelent *rel;
5350 bfd_reloc_code_real_type code;
5351
5352 switch (fixp->fx_r_type)
5353 {
3e73aa7c
JH
5354 case BFD_RELOC_X86_64_PLT32:
5355 case BFD_RELOC_X86_64_GOT32:
5356 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5357 case BFD_RELOC_386_PLT32:
5358 case BFD_RELOC_386_GOT32:
5359 case BFD_RELOC_386_GOTOFF:
5360 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5361 case BFD_RELOC_386_TLS_GD:
5362 case BFD_RELOC_386_TLS_LDM:
5363 case BFD_RELOC_386_TLS_LDO_32:
5364 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5365 case BFD_RELOC_386_TLS_IE:
5366 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5367 case BFD_RELOC_386_TLS_LE_32:
5368 case BFD_RELOC_386_TLS_LE:
bffbf940
JJ
5369 case BFD_RELOC_X86_64_TLSGD:
5370 case BFD_RELOC_X86_64_TLSLD:
5371 case BFD_RELOC_X86_64_DTPOFF32:
5372 case BFD_RELOC_X86_64_GOTTPOFF:
5373 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5374 case BFD_RELOC_RVA:
5375 case BFD_RELOC_VTABLE_ENTRY:
5376 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5377#ifdef TE_PE
5378 case BFD_RELOC_32_SECREL:
5379#endif
252b5132
RH
5380 code = fixp->fx_r_type;
5381 break;
5382 default:
93382f6d 5383 if (fixp->fx_pcrel)
252b5132 5384 {
93382f6d
AM
5385 switch (fixp->fx_size)
5386 {
5387 default:
b091f402
AM
5388 as_bad_where (fixp->fx_file, fixp->fx_line,
5389 _("can not do %d byte pc-relative relocation"),
5390 fixp->fx_size);
93382f6d
AM
5391 code = BFD_RELOC_32_PCREL;
5392 break;
5393 case 1: code = BFD_RELOC_8_PCREL; break;
5394 case 2: code = BFD_RELOC_16_PCREL; break;
5395 case 4: code = BFD_RELOC_32_PCREL; break;
5396 }
5397 }
5398 else
5399 {
5400 switch (fixp->fx_size)
5401 {
5402 default:
b091f402
AM
5403 as_bad_where (fixp->fx_file, fixp->fx_line,
5404 _("can not do %d byte relocation"),
5405 fixp->fx_size);
93382f6d
AM
5406 code = BFD_RELOC_32;
5407 break;
5408 case 1: code = BFD_RELOC_8; break;
5409 case 2: code = BFD_RELOC_16; break;
5410 case 4: code = BFD_RELOC_32; break;
937149dd 5411#ifdef BFD64
3e73aa7c 5412 case 8: code = BFD_RELOC_64; break;
937149dd 5413#endif
93382f6d 5414 }
252b5132
RH
5415 }
5416 break;
5417 }
252b5132
RH
5418
5419 if (code == BFD_RELOC_32
5420 && GOT_symbol
5421 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5422 {
5423 /* We don't support GOTPC on 64bit targets. */
5424 if (flag_code == CODE_64BIT)
bfb32b52 5425 abort ();
3e73aa7c
JH
5426 code = BFD_RELOC_386_GOTPC;
5427 }
252b5132
RH
5428
5429 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5430 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5431 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5432
5433 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5434
3e73aa7c
JH
5435 if (!use_rela_relocations)
5436 {
5437 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5438 vtable entry to be used in the relocation's section offset. */
5439 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5440 rel->address = fixp->fx_offset;
252b5132 5441
c6682705 5442 rel->addend = 0;
3e73aa7c
JH
5443 }
5444 /* Use the rela in 64bit mode. */
252b5132 5445 else
3e73aa7c 5446 {
062cd5e7
AS
5447 if (!fixp->fx_pcrel)
5448 rel->addend = fixp->fx_offset;
5449 else
5450 switch (code)
5451 {
5452 case BFD_RELOC_X86_64_PLT32:
5453 case BFD_RELOC_X86_64_GOT32:
5454 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5455 case BFD_RELOC_X86_64_TLSGD:
5456 case BFD_RELOC_X86_64_TLSLD:
5457 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5458 rel->addend = fixp->fx_offset - fixp->fx_size;
5459 break;
5460 default:
5461 rel->addend = (section->vma
5462 - fixp->fx_size
5463 + fixp->fx_addnumber
5464 + md_pcrel_from (fixp));
5465 break;
5466 }
3e73aa7c
JH
5467 }
5468
252b5132
RH
5469 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5470 if (rel->howto == NULL)
5471 {
5472 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5473 _("cannot represent relocation type %s"),
252b5132
RH
5474 bfd_get_reloc_code_name (code));
5475 /* Set howto to a garbage value so that we can keep going. */
5476 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5477 assert (rel->howto != NULL);
5478 }
5479
5480 return rel;
5481}
5482
64a0c779
DN
5483\f
5484/* Parse operands using Intel syntax. This implements a recursive descent
5485 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5486 Programmer's Guide.
5487
5488 FIXME: We do not recognize the full operand grammar defined in the MASM
5489 documentation. In particular, all the structure/union and
5490 high-level macro operands are missing.
5491
5492 Uppercase words are terminals, lower case words are non-terminals.
5493 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5494 bars '|' denote choices. Most grammar productions are implemented in
5495 functions called 'intel_<production>'.
5496
5497 Initial production is 'expr'.
5498
9306ca4a 5499 addOp + | -
64a0c779
DN
5500
5501 alpha [a-zA-Z]
5502
9306ca4a
JB
5503 binOp & | AND | \| | OR | ^ | XOR
5504
64a0c779
DN
5505 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5506
5507 constant digits [[ radixOverride ]]
5508
9306ca4a 5509 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5510
5511 digits decdigit
b77a7acd
AJ
5512 | digits decdigit
5513 | digits hexdigit
64a0c779
DN
5514
5515 decdigit [0-9]
5516
9306ca4a
JB
5517 e04 e04 addOp e05
5518 | e05
5519
5520 e05 e05 binOp e06
b77a7acd 5521 | e06
64a0c779
DN
5522
5523 e06 e06 mulOp e09
b77a7acd 5524 | e09
64a0c779
DN
5525
5526 e09 OFFSET e10
a724f0f4
JB
5527 | SHORT e10
5528 | + e10
5529 | - e10
9306ca4a
JB
5530 | ~ e10
5531 | NOT e10
64a0c779
DN
5532 | e09 PTR e10
5533 | e09 : e10
5534 | e10
5535
5536 e10 e10 [ expr ]
b77a7acd 5537 | e11
64a0c779
DN
5538
5539 e11 ( expr )
b77a7acd 5540 | [ expr ]
64a0c779
DN
5541 | constant
5542 | dataType
5543 | id
5544 | $
5545 | register
5546
a724f0f4 5547 => expr expr cmpOp e04
9306ca4a 5548 | e04
64a0c779
DN
5549
5550 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5551 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5552
5553 hexdigit a | b | c | d | e | f
b77a7acd 5554 | A | B | C | D | E | F
64a0c779
DN
5555
5556 id alpha
b77a7acd 5557 | id alpha
64a0c779
DN
5558 | id decdigit
5559
9306ca4a 5560 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5561
5562 quote " | '
5563
5564 register specialRegister
b77a7acd 5565 | gpRegister
64a0c779
DN
5566 | byteRegister
5567
5568 segmentRegister CS | DS | ES | FS | GS | SS
5569
9306ca4a 5570 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5571 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5572 | TR3 | TR4 | TR5 | TR6 | TR7
5573
64a0c779
DN
5574 We simplify the grammar in obvious places (e.g., register parsing is
5575 done by calling parse_register) and eliminate immediate left recursion
5576 to implement a recursive-descent parser.
5577
a724f0f4
JB
5578 expr e04 expr'
5579
5580 expr' cmpOp e04 expr'
5581 | Empty
9306ca4a
JB
5582
5583 e04 e05 e04'
5584
5585 e04' addOp e05 e04'
5586 | Empty
64a0c779
DN
5587
5588 e05 e06 e05'
5589
9306ca4a 5590 e05' binOp e06 e05'
b77a7acd 5591 | Empty
64a0c779
DN
5592
5593 e06 e09 e06'
5594
5595 e06' mulOp e09 e06'
b77a7acd 5596 | Empty
64a0c779
DN
5597
5598 e09 OFFSET e10 e09'
a724f0f4
JB
5599 | SHORT e10'
5600 | + e10'
5601 | - e10'
5602 | ~ e10'
5603 | NOT e10'
b77a7acd 5604 | e10 e09'
64a0c779
DN
5605
5606 e09' PTR e10 e09'
b77a7acd 5607 | : e10 e09'
64a0c779
DN
5608 | Empty
5609
5610 e10 e11 e10'
5611
5612 e10' [ expr ] e10'
b77a7acd 5613 | Empty
64a0c779
DN
5614
5615 e11 ( expr )
b77a7acd 5616 | [ expr ]
64a0c779
DN
5617 | BYTE
5618 | WORD
5619 | DWORD
9306ca4a 5620 | FWORD
64a0c779 5621 | QWORD
9306ca4a
JB
5622 | TBYTE
5623 | OWORD
5624 | XMMWORD
64a0c779
DN
5625 | .
5626 | $
5627 | register
5628 | id
5629 | constant */
5630
5631/* Parsing structure for the intel syntax parser. Used to implement the
5632 semantic actions for the operand grammar. */
5633struct intel_parser_s
5634 {
5635 char *op_string; /* The string being parsed. */
5636 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5637 int op_modifier; /* Operand modifier. */
64a0c779 5638 int is_mem; /* 1 if operand is memory reference. */
a724f0f4
JB
5639 int in_offset; /* >=1 if parsing operand of offset. */
5640 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
5641 const reg_entry *reg; /* Last register reference found. */
5642 char *disp; /* Displacement string being built. */
a724f0f4 5643 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
5644 };
5645
5646static struct intel_parser_s intel_parser;
5647
5648/* Token structure for parsing intel syntax. */
5649struct intel_token
5650 {
5651 int code; /* Token code. */
5652 const reg_entry *reg; /* Register entry for register tokens. */
5653 char *str; /* String representation. */
5654 };
5655
5656static struct intel_token cur_token, prev_token;
5657
50705ef4
AM
5658/* Token codes for the intel parser. Since T_SHORT is already used
5659 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5660#define T_NIL -1
5661#define T_CONST 1
5662#define T_REG 2
5663#define T_BYTE 3
5664#define T_WORD 4
9306ca4a
JB
5665#define T_DWORD 5
5666#define T_FWORD 6
5667#define T_QWORD 7
5668#define T_TBYTE 8
5669#define T_XMMWORD 9
50705ef4 5670#undef T_SHORT
9306ca4a
JB
5671#define T_SHORT 10
5672#define T_OFFSET 11
5673#define T_PTR 12
5674#define T_ID 13
5675#define T_SHL 14
5676#define T_SHR 15
64a0c779
DN
5677
5678/* Prototypes for intel parser functions. */
5679static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5680static void intel_get_token PARAMS ((void));
5681static void intel_putback_token PARAMS ((void));
5682static int intel_expr PARAMS ((void));
9306ca4a 5683static int intel_e04 PARAMS ((void));
cce0cbdc 5684static int intel_e05 PARAMS ((void));
cce0cbdc 5685static int intel_e06 PARAMS ((void));
cce0cbdc 5686static int intel_e09 PARAMS ((void));
a724f0f4 5687static int intel_bracket_expr PARAMS ((void));
cce0cbdc 5688static int intel_e10 PARAMS ((void));
cce0cbdc 5689static int intel_e11 PARAMS ((void));
64a0c779 5690
64a0c779
DN
5691static int
5692i386_intel_operand (operand_string, got_a_float)
5693 char *operand_string;
5694 int got_a_float;
5695{
5696 int ret;
5697 char *p;
5698
a724f0f4
JB
5699 p = intel_parser.op_string = xstrdup (operand_string);
5700 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5701
5702 for (;;)
64a0c779 5703 {
a724f0f4
JB
5704 /* Initialize token holders. */
5705 cur_token.code = prev_token.code = T_NIL;
5706 cur_token.reg = prev_token.reg = NULL;
5707 cur_token.str = prev_token.str = NULL;
5708
5709 /* Initialize parser structure. */
5710 intel_parser.got_a_float = got_a_float;
5711 intel_parser.op_modifier = 0;
5712 intel_parser.is_mem = 0;
5713 intel_parser.in_offset = 0;
5714 intel_parser.in_bracket = 0;
5715 intel_parser.reg = NULL;
5716 intel_parser.disp[0] = '\0';
5717 intel_parser.next_operand = NULL;
5718
5719 /* Read the first token and start the parser. */
5720 intel_get_token ();
5721 ret = intel_expr ();
5722
5723 if (!ret)
5724 break;
5725
9306ca4a
JB
5726 if (cur_token.code != T_NIL)
5727 {
5728 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5729 current_templates->start->name, cur_token.str);
5730 ret = 0;
5731 }
64a0c779
DN
5732 /* If we found a memory reference, hand it over to i386_displacement
5733 to fill in the rest of the operand fields. */
9306ca4a 5734 else if (intel_parser.is_mem)
64a0c779
DN
5735 {
5736 if ((i.mem_operands == 1
5737 && (current_templates->start->opcode_modifier & IsString) == 0)
5738 || i.mem_operands == 2)
5739 {
5740 as_bad (_("too many memory references for '%s'"),
5741 current_templates->start->name);
5742 ret = 0;
5743 }
5744 else
5745 {
5746 char *s = intel_parser.disp;
5747 i.mem_operands++;
5748
a724f0f4
JB
5749 if (!quiet_warnings && intel_parser.is_mem < 0)
5750 /* See the comments in intel_bracket_expr. */
5751 as_warn (_("Treating `%s' as memory reference"), operand_string);
5752
64a0c779
DN
5753 /* Add the displacement expression. */
5754 if (*s != '\0')
a4622f40
AM
5755 ret = i386_displacement (s, s + strlen (s));
5756 if (ret)
a724f0f4
JB
5757 {
5758 /* Swap base and index in 16-bit memory operands like
5759 [si+bx]. Since i386_index_check is also used in AT&T
5760 mode we have to do that here. */
5761 if (i.base_reg
5762 && i.index_reg
5763 && (i.base_reg->reg_type & Reg16)
5764 && (i.index_reg->reg_type & Reg16)
5765 && i.base_reg->reg_num >= 6
5766 && i.index_reg->reg_num < 6)
5767 {
5768 const reg_entry *base = i.index_reg;
5769
5770 i.index_reg = i.base_reg;
5771 i.base_reg = base;
5772 }
5773 ret = i386_index_check (operand_string);
5774 }
64a0c779
DN
5775 }
5776 }
5777
5778 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 5779 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
5780 || intel_parser.reg == NULL)
5781 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
5782
5783 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5784 ret = 0;
5785 if (!ret || !intel_parser.next_operand)
5786 break;
5787 intel_parser.op_string = intel_parser.next_operand;
5788 this_operand = i.operands++;
64a0c779
DN
5789 }
5790
5791 free (p);
5792 free (intel_parser.disp);
5793
5794 return ret;
5795}
5796
a724f0f4
JB
5797#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5798
5799/* expr e04 expr'
5800
5801 expr' cmpOp e04 expr'
5802 | Empty */
64a0c779
DN
5803static int
5804intel_expr ()
5805{
a724f0f4
JB
5806 /* XXX Implement the comparison operators. */
5807 return intel_e04 ();
9306ca4a
JB
5808}
5809
a724f0f4 5810/* e04 e05 e04'
9306ca4a 5811
a724f0f4 5812 e04' addOp e05 e04'
9306ca4a
JB
5813 | Empty */
5814static int
5815intel_e04 ()
5816{
a724f0f4 5817 int nregs = -1;
9306ca4a 5818
a724f0f4 5819 for (;;)
9306ca4a 5820 {
a724f0f4
JB
5821 if (!intel_e05())
5822 return 0;
9306ca4a 5823
a724f0f4
JB
5824 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5825 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 5826
a724f0f4
JB
5827 if (cur_token.code == '+')
5828 nregs = -1;
5829 else if (cur_token.code == '-')
5830 nregs = NUM_ADDRESS_REGS;
5831 else
5832 return 1;
64a0c779 5833
a724f0f4
JB
5834 strcat (intel_parser.disp, cur_token.str);
5835 intel_match_token (cur_token.code);
5836 }
64a0c779
DN
5837}
5838
64a0c779
DN
5839/* e05 e06 e05'
5840
9306ca4a 5841 e05' binOp e06 e05'
64a0c779
DN
5842 | Empty */
5843static int
5844intel_e05 ()
5845{
a724f0f4 5846 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5847
a724f0f4 5848 for (;;)
64a0c779 5849 {
a724f0f4
JB
5850 if (!intel_e06())
5851 return 0;
5852
5853 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5854 {
5855 char str[2];
5856
5857 str[0] = cur_token.code;
5858 str[1] = 0;
5859 strcat (intel_parser.disp, str);
5860 }
5861 else
5862 break;
9306ca4a 5863
64a0c779
DN
5864 intel_match_token (cur_token.code);
5865
a724f0f4
JB
5866 if (nregs < 0)
5867 nregs = ~nregs;
64a0c779 5868 }
a724f0f4
JB
5869 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5870 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5871 return 1;
4a1805b1 5872}
64a0c779
DN
5873
5874/* e06 e09 e06'
5875
5876 e06' mulOp e09 e06'
b77a7acd 5877 | Empty */
64a0c779
DN
5878static int
5879intel_e06 ()
5880{
a724f0f4 5881 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5882
a724f0f4 5883 for (;;)
64a0c779 5884 {
a724f0f4
JB
5885 if (!intel_e09())
5886 return 0;
9306ca4a 5887
a724f0f4
JB
5888 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5889 {
5890 char str[2];
9306ca4a 5891
a724f0f4
JB
5892 str[0] = cur_token.code;
5893 str[1] = 0;
5894 strcat (intel_parser.disp, str);
5895 }
5896 else if (cur_token.code == T_SHL)
5897 strcat (intel_parser.disp, "<<");
5898 else if (cur_token.code == T_SHR)
5899 strcat (intel_parser.disp, ">>");
5900 else
5901 break;
9306ca4a 5902
a724f0f4 5903 intel_match_token (cur_token.code);
64a0c779 5904
a724f0f4
JB
5905 if (nregs < 0)
5906 nregs = ~nregs;
64a0c779 5907 }
a724f0f4
JB
5908 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5909 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5910 return 1;
64a0c779
DN
5911}
5912
a724f0f4
JB
5913/* e09 OFFSET e09
5914 | SHORT e09
5915 | + e09
5916 | - e09
5917 | ~ e09
5918 | NOT e09
9306ca4a
JB
5919 | e10 e09'
5920
64a0c779 5921 e09' PTR e10 e09'
b77a7acd 5922 | : e10 e09'
64a0c779
DN
5923 | Empty */
5924static int
5925intel_e09 ()
5926{
a724f0f4
JB
5927 int nregs = ~NUM_ADDRESS_REGS;
5928 int in_offset = 0;
5929
5930 for (;;)
64a0c779 5931 {
a724f0f4
JB
5932 /* Don't consume constants here. */
5933 if (cur_token.code == '+' || cur_token.code == '-')
5934 {
5935 /* Need to look one token ahead - if the next token
5936 is a constant, the current token is its sign. */
5937 int next_code;
5938
5939 intel_match_token (cur_token.code);
5940 next_code = cur_token.code;
5941 intel_putback_token ();
5942 if (next_code == T_CONST)
5943 break;
5944 }
5945
5946 /* e09 OFFSET e09 */
5947 if (cur_token.code == T_OFFSET)
5948 {
5949 if (!in_offset++)
5950 ++intel_parser.in_offset;
5951 }
5952
5953 /* e09 SHORT e09 */
5954 else if (cur_token.code == T_SHORT)
5955 intel_parser.op_modifier |= 1 << T_SHORT;
5956
5957 /* e09 + e09 */
5958 else if (cur_token.code == '+')
5959 strcat (intel_parser.disp, "+");
5960
5961 /* e09 - e09
5962 | ~ e09
5963 | NOT e09 */
5964 else if (cur_token.code == '-' || cur_token.code == '~')
5965 {
5966 char str[2];
64a0c779 5967
a724f0f4
JB
5968 if (nregs < 0)
5969 nregs = ~nregs;
5970 str[0] = cur_token.code;
5971 str[1] = 0;
5972 strcat (intel_parser.disp, str);
5973 }
5974
5975 /* e09 e10 e09' */
5976 else
5977 break;
5978
5979 intel_match_token (cur_token.code);
64a0c779
DN
5980 }
5981
a724f0f4 5982 for (;;)
9306ca4a 5983 {
a724f0f4
JB
5984 if (!intel_e10 ())
5985 return 0;
9306ca4a 5986
a724f0f4
JB
5987 /* e09' PTR e10 e09' */
5988 if (cur_token.code == T_PTR)
5989 {
5990 char suffix;
9306ca4a 5991
a724f0f4
JB
5992 if (prev_token.code == T_BYTE)
5993 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 5994
a724f0f4
JB
5995 else if (prev_token.code == T_WORD)
5996 {
5997 if (current_templates->start->name[0] == 'l'
5998 && current_templates->start->name[2] == 's'
5999 && current_templates->start->name[3] == 0)
6000 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6001 else if (intel_parser.got_a_float == 2) /* "fi..." */
6002 suffix = SHORT_MNEM_SUFFIX;
6003 else
6004 suffix = WORD_MNEM_SUFFIX;
6005 }
64a0c779 6006
a724f0f4
JB
6007 else if (prev_token.code == T_DWORD)
6008 {
6009 if (current_templates->start->name[0] == 'l'
6010 && current_templates->start->name[2] == 's'
6011 && current_templates->start->name[3] == 0)
6012 suffix = WORD_MNEM_SUFFIX;
6013 else if (flag_code == CODE_16BIT
6014 && (current_templates->start->opcode_modifier
6015 & (Jump|JumpDword|JumpInterSegment)))
6016 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6017 else if (intel_parser.got_a_float == 1) /* "f..." */
6018 suffix = SHORT_MNEM_SUFFIX;
6019 else
6020 suffix = LONG_MNEM_SUFFIX;
6021 }
9306ca4a 6022
a724f0f4
JB
6023 else if (prev_token.code == T_FWORD)
6024 {
6025 if (current_templates->start->name[0] == 'l'
6026 && current_templates->start->name[2] == 's'
6027 && current_templates->start->name[3] == 0)
6028 suffix = LONG_MNEM_SUFFIX;
6029 else if (!intel_parser.got_a_float)
6030 {
6031 if (flag_code == CODE_16BIT)
6032 add_prefix (DATA_PREFIX_OPCODE);
6033 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6034 }
6035 else
6036 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6037 }
64a0c779 6038
a724f0f4
JB
6039 else if (prev_token.code == T_QWORD)
6040 {
6041 if (intel_parser.got_a_float == 1) /* "f..." */
6042 suffix = LONG_MNEM_SUFFIX;
6043 else
6044 suffix = QWORD_MNEM_SUFFIX;
6045 }
64a0c779 6046
a724f0f4
JB
6047 else if (prev_token.code == T_TBYTE)
6048 {
6049 if (intel_parser.got_a_float == 1)
6050 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6051 else
6052 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6053 }
9306ca4a 6054
a724f0f4 6055 else if (prev_token.code == T_XMMWORD)
9306ca4a 6056 {
a724f0f4
JB
6057 /* XXX ignored for now, but accepted since gcc uses it */
6058 suffix = 0;
9306ca4a 6059 }
64a0c779 6060
f16b83df 6061 else
a724f0f4
JB
6062 {
6063 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6064 return 0;
6065 }
6066
6067 if (current_templates->start->base_opcode == 0x8d /* lea */)
6068 ;
6069 else if (!i.suffix)
6070 i.suffix = suffix;
6071 else if (i.suffix != suffix)
6072 {
6073 as_bad (_("Conflicting operand modifiers"));
6074 return 0;
6075 }
64a0c779 6076
9306ca4a
JB
6077 }
6078
a724f0f4
JB
6079 /* e09' : e10 e09' */
6080 else if (cur_token.code == ':')
9306ca4a 6081 {
a724f0f4
JB
6082 if (prev_token.code != T_REG)
6083 {
6084 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6085 segment/group identifier (which we don't have), using comma
6086 as the operand separator there is even less consistent, since
6087 there all branches only have a single operand. */
6088 if (this_operand != 0
6089 || intel_parser.in_offset
6090 || intel_parser.in_bracket
6091 || (!(current_templates->start->opcode_modifier
6092 & (Jump|JumpDword|JumpInterSegment))
6093 && !(current_templates->start->operand_types[0]
6094 & JumpAbsolute)))
6095 return intel_match_token (T_NIL);
6096 /* Remember the start of the 2nd operand and terminate 1st
6097 operand here.
6098 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6099 another expression), but it gets at least the simplest case
6100 (a plain number or symbol on the left side) right. */
6101 intel_parser.next_operand = intel_parser.op_string;
6102 *--intel_parser.op_string = '\0';
6103 return intel_match_token (':');
6104 }
9306ca4a 6105 }
64a0c779 6106
a724f0f4 6107 /* e09' Empty */
64a0c779 6108 else
a724f0f4 6109 break;
64a0c779 6110
a724f0f4
JB
6111 intel_match_token (cur_token.code);
6112
6113 }
6114
6115 if (in_offset)
6116 {
6117 --intel_parser.in_offset;
6118 if (nregs < 0)
6119 nregs = ~nregs;
6120 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 6121 {
a724f0f4 6122 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
6123 return 0;
6124 }
a724f0f4
JB
6125 intel_parser.op_modifier |= 1 << T_OFFSET;
6126 }
9306ca4a 6127
a724f0f4
JB
6128 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6129 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6130 return 1;
6131}
64a0c779 6132
a724f0f4
JB
6133static int
6134intel_bracket_expr ()
6135{
6136 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6137 const char *start = intel_parser.op_string;
6138 int len;
6139
6140 if (i.op[this_operand].regs)
6141 return intel_match_token (T_NIL);
6142
6143 intel_match_token ('[');
6144
6145 /* Mark as a memory operand only if it's not already known to be an
6146 offset expression. If it's an offset expression, we need to keep
6147 the brace in. */
6148 if (!intel_parser.in_offset)
6149 {
6150 ++intel_parser.in_bracket;
6151 /* Unfortunately gas always diverged from MASM in a respect that can't
6152 be easily fixed without risking to break code sequences likely to be
6153 encountered (the testsuite even check for this): MASM doesn't consider
6154 an expression inside brackets unconditionally as a memory reference.
6155 When that is e.g. a constant, an offset expression, or the sum of the
6156 two, this is still taken as a constant load. gas, however, always
6157 treated these as memory references. As a compromise, we'll try to make
6158 offset expressions inside brackets work the MASM way (since that's
6159 less likely to be found in real world code), but make constants alone
6160 continue to work the traditional gas way. In either case, issue a
6161 warning. */
6162 intel_parser.op_modifier &= ~was_offset;
64a0c779 6163 }
a724f0f4
JB
6164 else
6165 strcat (intel_parser.disp, "[");
6166
6167 /* Add a '+' to the displacement string if necessary. */
6168 if (*intel_parser.disp != '\0'
6169 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6170 strcat (intel_parser.disp, "+");
64a0c779 6171
a724f0f4
JB
6172 if (intel_expr ()
6173 && (len = intel_parser.op_string - start - 1,
6174 intel_match_token (']')))
64a0c779 6175 {
a724f0f4
JB
6176 /* Preserve brackets when the operand is an offset expression. */
6177 if (intel_parser.in_offset)
6178 strcat (intel_parser.disp, "]");
6179 else
6180 {
6181 --intel_parser.in_bracket;
6182 if (i.base_reg || i.index_reg)
6183 intel_parser.is_mem = 1;
6184 if (!intel_parser.is_mem)
6185 {
6186 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6187 /* Defer the warning until all of the operand was parsed. */
6188 intel_parser.is_mem = -1;
6189 else if (!quiet_warnings)
6190 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6191 }
6192 }
6193 intel_parser.op_modifier |= was_offset;
64a0c779 6194
a724f0f4 6195 return 1;
64a0c779 6196 }
a724f0f4 6197 return 0;
64a0c779
DN
6198}
6199
6200/* e10 e11 e10'
6201
6202 e10' [ expr ] e10'
b77a7acd 6203 | Empty */
64a0c779
DN
6204static int
6205intel_e10 ()
6206{
a724f0f4
JB
6207 if (!intel_e11 ())
6208 return 0;
64a0c779 6209
a724f0f4 6210 while (cur_token.code == '[')
64a0c779 6211 {
a724f0f4 6212 if (!intel_bracket_expr ())
21d6c4af 6213 return 0;
64a0c779
DN
6214 }
6215
a724f0f4 6216 return 1;
64a0c779
DN
6217}
6218
64a0c779 6219/* e11 ( expr )
b77a7acd 6220 | [ expr ]
64a0c779
DN
6221 | BYTE
6222 | WORD
6223 | DWORD
9306ca4a 6224 | FWORD
64a0c779 6225 | QWORD
9306ca4a
JB
6226 | TBYTE
6227 | OWORD
6228 | XMMWORD
4a1805b1 6229 | $
64a0c779
DN
6230 | .
6231 | register
6232 | id
6233 | constant */
6234static int
6235intel_e11 ()
6236{
a724f0f4 6237 switch (cur_token.code)
64a0c779 6238 {
a724f0f4
JB
6239 /* e11 ( expr ) */
6240 case '(':
64a0c779
DN
6241 intel_match_token ('(');
6242 strcat (intel_parser.disp, "(");
6243
6244 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6245 {
6246 strcat (intel_parser.disp, ")");
6247 return 1;
6248 }
a724f0f4 6249 return 0;
4a1805b1 6250
a724f0f4
JB
6251 /* e11 [ expr ] */
6252 case '[':
6253 /* Operands for jump/call inside brackets denote absolute addresses.
6254 XXX This shouldn't be needed anymore (or if it should rather live
6255 in intel_bracket_expr). */
9306ca4a
JB
6256 if (current_templates->start->opcode_modifier
6257 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6258 i.types[this_operand] |= JumpAbsolute;
6259
a724f0f4 6260 return intel_bracket_expr ();
64a0c779 6261
a724f0f4
JB
6262 /* e11 $
6263 | . */
6264 case '.':
64a0c779
DN
6265 strcat (intel_parser.disp, cur_token.str);
6266 intel_match_token (cur_token.code);
21d6c4af
DN
6267
6268 /* Mark as a memory operand only if it's not already known to be an
6269 offset expression. */
a724f0f4 6270 if (!intel_parser.in_offset)
21d6c4af 6271 intel_parser.is_mem = 1;
64a0c779
DN
6272
6273 return 1;
64a0c779 6274
a724f0f4
JB
6275 /* e11 register */
6276 case T_REG:
6277 {
6278 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 6279
a724f0f4 6280 intel_match_token (T_REG);
64a0c779 6281
a724f0f4
JB
6282 /* Check for segment change. */
6283 if (cur_token.code == ':')
6284 {
6285 if (!(reg->reg_type & (SReg2 | SReg3)))
6286 {
6287 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6288 return 0;
6289 }
6290 else if (i.seg[i.mem_operands])
6291 as_warn (_("Extra segment override ignored"));
6292 else
6293 {
6294 if (!intel_parser.in_offset)
6295 intel_parser.is_mem = 1;
6296 switch (reg->reg_num)
6297 {
6298 case 0:
6299 i.seg[i.mem_operands] = &es;
6300 break;
6301 case 1:
6302 i.seg[i.mem_operands] = &cs;
6303 break;
6304 case 2:
6305 i.seg[i.mem_operands] = &ss;
6306 break;
6307 case 3:
6308 i.seg[i.mem_operands] = &ds;
6309 break;
6310 case 4:
6311 i.seg[i.mem_operands] = &fs;
6312 break;
6313 case 5:
6314 i.seg[i.mem_operands] = &gs;
6315 break;
6316 }
6317 }
6318 }
64a0c779 6319
a724f0f4
JB
6320 /* Not a segment register. Check for register scaling. */
6321 else if (cur_token.code == '*')
6322 {
6323 if (!intel_parser.in_bracket)
6324 {
6325 as_bad (_("Register scaling only allowed in memory operands"));
6326 return 0;
6327 }
64a0c779 6328
a724f0f4
JB
6329 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6330 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6331 else if (i.index_reg)
6332 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 6333
a724f0f4
JB
6334 /* What follows must be a valid scale. */
6335 intel_match_token ('*');
6336 i.index_reg = reg;
6337 i.types[this_operand] |= BaseIndex;
64a0c779 6338
a724f0f4
JB
6339 /* Set the scale after setting the register (otherwise,
6340 i386_scale will complain) */
6341 if (cur_token.code == '+' || cur_token.code == '-')
6342 {
6343 char *str, sign = cur_token.code;
6344 intel_match_token (cur_token.code);
6345 if (cur_token.code != T_CONST)
6346 {
6347 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6348 cur_token.str);
6349 return 0;
6350 }
6351 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6352 strcpy (str + 1, cur_token.str);
6353 *str = sign;
6354 if (!i386_scale (str))
6355 return 0;
6356 free (str);
6357 }
6358 else if (!i386_scale (cur_token.str))
64a0c779 6359 return 0;
a724f0f4
JB
6360 intel_match_token (cur_token.code);
6361 }
64a0c779 6362
a724f0f4
JB
6363 /* No scaling. If this is a memory operand, the register is either a
6364 base register (first occurrence) or an index register (second
6365 occurrence). */
6366 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6367 {
64a0c779 6368
a724f0f4
JB
6369 if (!i.base_reg)
6370 i.base_reg = reg;
6371 else if (!i.index_reg)
6372 i.index_reg = reg;
6373 else
6374 {
6375 as_bad (_("Too many register references in memory operand"));
6376 return 0;
6377 }
64a0c779 6378
a724f0f4
JB
6379 i.types[this_operand] |= BaseIndex;
6380 }
4a1805b1 6381
a724f0f4
JB
6382 /* Offset modifier. Add the register to the displacement string to be
6383 parsed as an immediate expression after we're done. */
6384 else if (intel_parser.in_offset)
6385 {
6386 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6387 strcat (intel_parser.disp, reg->reg_name);
6388 }
64a0c779 6389
a724f0f4
JB
6390 /* It's neither base nor index nor offset. */
6391 else if (!intel_parser.is_mem)
6392 {
6393 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6394 i.op[this_operand].regs = reg;
6395 i.reg_operands++;
6396 }
6397 else
6398 {
6399 as_bad (_("Invalid use of register"));
6400 return 0;
6401 }
64a0c779 6402
a724f0f4
JB
6403 /* Since registers are not part of the displacement string (except
6404 when we're parsing offset operands), we may need to remove any
6405 preceding '+' from the displacement string. */
6406 if (*intel_parser.disp != '\0'
6407 && !intel_parser.in_offset)
6408 {
6409 char *s = intel_parser.disp;
6410 s += strlen (s) - 1;
6411 if (*s == '+')
6412 *s = '\0';
6413 }
4a1805b1 6414
a724f0f4
JB
6415 return 1;
6416 }
6417
6418 /* e11 BYTE
6419 | WORD
6420 | DWORD
6421 | FWORD
6422 | QWORD
6423 | TBYTE
6424 | OWORD
6425 | XMMWORD */
6426 case T_BYTE:
6427 case T_WORD:
6428 case T_DWORD:
6429 case T_FWORD:
6430 case T_QWORD:
6431 case T_TBYTE:
6432 case T_XMMWORD:
6433 intel_match_token (cur_token.code);
64a0c779 6434
a724f0f4
JB
6435 if (cur_token.code == T_PTR)
6436 return 1;
6437
6438 /* It must have been an identifier. */
6439 intel_putback_token ();
6440 cur_token.code = T_ID;
6441 /* FALLTHRU */
6442
6443 /* e11 id
6444 | constant */
6445 case T_ID:
6446 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
6447 {
6448 symbolS *symbolP;
6449
a724f0f4
JB
6450 /* The identifier represents a memory reference only if it's not
6451 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
6452 symbolP = symbol_find(cur_token.str);
6453 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6454 intel_parser.is_mem = 1;
6455 }
a724f0f4 6456 /* FALLTHRU */
64a0c779 6457
a724f0f4
JB
6458 case T_CONST:
6459 case '-':
6460 case '+':
6461 {
6462 char *save_str, sign = 0;
64a0c779 6463
a724f0f4
JB
6464 /* Allow constants that start with `+' or `-'. */
6465 if (cur_token.code == '-' || cur_token.code == '+')
6466 {
6467 sign = cur_token.code;
6468 intel_match_token (cur_token.code);
6469 if (cur_token.code != T_CONST)
6470 {
6471 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6472 cur_token.str);
6473 return 0;
6474 }
6475 }
64a0c779 6476
a724f0f4
JB
6477 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6478 strcpy (save_str + !!sign, cur_token.str);
6479 if (sign)
6480 *save_str = sign;
64a0c779 6481
a724f0f4
JB
6482 /* Get the next token to check for register scaling. */
6483 intel_match_token (cur_token.code);
64a0c779 6484
a724f0f4
JB
6485 /* Check if this constant is a scaling factor for an index register. */
6486 if (cur_token.code == '*')
6487 {
6488 if (intel_match_token ('*') && cur_token.code == T_REG)
6489 {
6490 const reg_entry *reg = cur_token.reg;
6491
6492 if (!intel_parser.in_bracket)
6493 {
6494 as_bad (_("Register scaling only allowed in memory operands"));
6495 return 0;
6496 }
6497
6498 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6499 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6500 else if (i.index_reg)
6501 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6502
6503 /* The constant is followed by `* reg', so it must be
6504 a valid scale. */
6505 i.index_reg = reg;
6506 i.types[this_operand] |= BaseIndex;
6507
6508 /* Set the scale after setting the register (otherwise,
6509 i386_scale will complain) */
6510 if (!i386_scale (save_str))
64a0c779 6511 return 0;
a724f0f4
JB
6512 intel_match_token (T_REG);
6513
6514 /* Since registers are not part of the displacement
6515 string, we may need to remove any preceding '+' from
6516 the displacement string. */
6517 if (*intel_parser.disp != '\0')
6518 {
6519 char *s = intel_parser.disp;
6520 s += strlen (s) - 1;
6521 if (*s == '+')
6522 *s = '\0';
6523 }
6524
6525 free (save_str);
6526
6527 return 1;
6528 }
64a0c779 6529
a724f0f4
JB
6530 /* The constant was not used for register scaling. Since we have
6531 already consumed the token following `*' we now need to put it
6532 back in the stream. */
64a0c779 6533 intel_putback_token ();
a724f0f4 6534 }
64a0c779 6535
a724f0f4
JB
6536 /* Add the constant to the displacement string. */
6537 strcat (intel_parser.disp, save_str);
6538 free (save_str);
64a0c779 6539
a724f0f4
JB
6540 return 1;
6541 }
64a0c779
DN
6542 }
6543
64a0c779
DN
6544 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6545 return 0;
6546}
6547
64a0c779
DN
6548/* Match the given token against cur_token. If they match, read the next
6549 token from the operand string. */
6550static int
6551intel_match_token (code)
e5cb08ac 6552 int code;
64a0c779
DN
6553{
6554 if (cur_token.code == code)
6555 {
6556 intel_get_token ();
6557 return 1;
6558 }
6559 else
6560 {
0477af35 6561 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6562 return 0;
6563 }
6564}
6565
64a0c779
DN
6566/* Read a new token from intel_parser.op_string and store it in cur_token. */
6567static void
6568intel_get_token ()
6569{
6570 char *end_op;
6571 const reg_entry *reg;
6572 struct intel_token new_token;
6573
6574 new_token.code = T_NIL;
6575 new_token.reg = NULL;
6576 new_token.str = NULL;
6577
4a1805b1 6578 /* Free the memory allocated to the previous token and move
64a0c779
DN
6579 cur_token to prev_token. */
6580 if (prev_token.str)
6581 free (prev_token.str);
6582
6583 prev_token = cur_token;
6584
6585 /* Skip whitespace. */
6586 while (is_space_char (*intel_parser.op_string))
6587 intel_parser.op_string++;
6588
6589 /* Return an empty token if we find nothing else on the line. */
6590 if (*intel_parser.op_string == '\0')
6591 {
6592 cur_token = new_token;
6593 return;
6594 }
6595
6596 /* The new token cannot be larger than the remainder of the operand
6597 string. */
a724f0f4 6598 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
6599 new_token.str[0] = '\0';
6600
6601 if (strchr ("0123456789", *intel_parser.op_string))
6602 {
6603 char *p = new_token.str;
6604 char *q = intel_parser.op_string;
6605 new_token.code = T_CONST;
6606
6607 /* Allow any kind of identifier char to encompass floating point and
6608 hexadecimal numbers. */
6609 while (is_identifier_char (*q))
6610 *p++ = *q++;
6611 *p = '\0';
6612
6613 /* Recognize special symbol names [0-9][bf]. */
6614 if (strlen (intel_parser.op_string) == 2
4a1805b1 6615 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6616 || intel_parser.op_string[1] == 'f'))
6617 new_token.code = T_ID;
6618 }
6619
64a0c779
DN
6620 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6621 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6622 {
6623 new_token.code = T_REG;
6624 new_token.reg = reg;
6625
6626 if (*intel_parser.op_string == REGISTER_PREFIX)
6627 {
6628 new_token.str[0] = REGISTER_PREFIX;
6629 new_token.str[1] = '\0';
6630 }
6631
6632 strcat (new_token.str, reg->reg_name);
6633 }
6634
6635 else if (is_identifier_char (*intel_parser.op_string))
6636 {
6637 char *p = new_token.str;
6638 char *q = intel_parser.op_string;
6639
6640 /* A '.' or '$' followed by an identifier char is an identifier.
6641 Otherwise, it's operator '.' followed by an expression. */
6642 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6643 {
9306ca4a
JB
6644 new_token.code = '.';
6645 new_token.str[0] = '.';
64a0c779
DN
6646 new_token.str[1] = '\0';
6647 }
6648 else
6649 {
6650 while (is_identifier_char (*q) || *q == '@')
6651 *p++ = *q++;
6652 *p = '\0';
6653
9306ca4a
JB
6654 if (strcasecmp (new_token.str, "NOT") == 0)
6655 new_token.code = '~';
6656
6657 else if (strcasecmp (new_token.str, "MOD") == 0)
6658 new_token.code = '%';
6659
6660 else if (strcasecmp (new_token.str, "AND") == 0)
6661 new_token.code = '&';
6662
6663 else if (strcasecmp (new_token.str, "OR") == 0)
6664 new_token.code = '|';
6665
6666 else if (strcasecmp (new_token.str, "XOR") == 0)
6667 new_token.code = '^';
6668
6669 else if (strcasecmp (new_token.str, "SHL") == 0)
6670 new_token.code = T_SHL;
6671
6672 else if (strcasecmp (new_token.str, "SHR") == 0)
6673 new_token.code = T_SHR;
6674
6675 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6676 new_token.code = T_BYTE;
6677
6678 else if (strcasecmp (new_token.str, "WORD") == 0)
6679 new_token.code = T_WORD;
6680
6681 else if (strcasecmp (new_token.str, "DWORD") == 0)
6682 new_token.code = T_DWORD;
6683
9306ca4a
JB
6684 else if (strcasecmp (new_token.str, "FWORD") == 0)
6685 new_token.code = T_FWORD;
6686
64a0c779
DN
6687 else if (strcasecmp (new_token.str, "QWORD") == 0)
6688 new_token.code = T_QWORD;
6689
9306ca4a
JB
6690 else if (strcasecmp (new_token.str, "TBYTE") == 0
6691 /* XXX remove (gcc still uses it) */
6692 || strcasecmp (new_token.str, "XWORD") == 0)
6693 new_token.code = T_TBYTE;
6694
6695 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6696 || strcasecmp (new_token.str, "OWORD") == 0)
6697 new_token.code = T_XMMWORD;
64a0c779
DN
6698
6699 else if (strcasecmp (new_token.str, "PTR") == 0)
6700 new_token.code = T_PTR;
6701
6702 else if (strcasecmp (new_token.str, "SHORT") == 0)
6703 new_token.code = T_SHORT;
6704
6705 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6706 {
6707 new_token.code = T_OFFSET;
6708
6709 /* ??? This is not mentioned in the MASM grammar but gcc
6710 makes use of it with -mintel-syntax. OFFSET may be
6711 followed by FLAT: */
6712 if (strncasecmp (q, " FLAT:", 6) == 0)
6713 strcat (new_token.str, " FLAT:");
6714 }
6715
6716 /* ??? This is not mentioned in the MASM grammar. */
6717 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
6718 {
6719 new_token.code = T_OFFSET;
6720 if (*q == ':')
6721 strcat (new_token.str, ":");
6722 else
6723 as_bad (_("`:' expected"));
6724 }
64a0c779
DN
6725
6726 else
6727 new_token.code = T_ID;
6728 }
6729 }
6730
9306ca4a
JB
6731 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6732 {
6733 new_token.code = *intel_parser.op_string;
6734 new_token.str[0] = *intel_parser.op_string;
6735 new_token.str[1] = '\0';
6736 }
6737
6738 else if (strchr ("<>", *intel_parser.op_string)
6739 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6740 {
6741 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6742 new_token.str[0] = *intel_parser.op_string;
6743 new_token.str[1] = *intel_parser.op_string;
6744 new_token.str[2] = '\0';
6745 }
6746
64a0c779 6747 else
0477af35 6748 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6749
6750 intel_parser.op_string += strlen (new_token.str);
6751 cur_token = new_token;
6752}
6753
64a0c779
DN
6754/* Put cur_token back into the token stream and make cur_token point to
6755 prev_token. */
6756static void
6757intel_putback_token ()
6758{
a724f0f4
JB
6759 if (cur_token.code != T_NIL)
6760 {
6761 intel_parser.op_string -= strlen (cur_token.str);
6762 free (cur_token.str);
6763 }
64a0c779 6764 cur_token = prev_token;
4a1805b1 6765
64a0c779
DN
6766 /* Forget prev_token. */
6767 prev_token.code = T_NIL;
6768 prev_token.reg = NULL;
6769 prev_token.str = NULL;
6770}
54cfded0 6771
a4447b93 6772int
54cfded0
AM
6773tc_x86_regname_to_dw2regnum (const char *regname)
6774{
6775 unsigned int regnum;
6776 unsigned int regnames_count;
6777 char *regnames_32[] =
6778 {
a4447b93
RH
6779 "eax", "ecx", "edx", "ebx",
6780 "esp", "ebp", "esi", "edi",
54cfded0
AM
6781 "eip"
6782 };
6783 char *regnames_64[] =
6784 {
6785 "rax", "rbx", "rcx", "rdx",
6786 "rdi", "rsi", "rbp", "rsp",
6787 "r8", "r9", "r10", "r11",
6788 "r12", "r13", "r14", "r15",
6789 "rip"
6790 };
6791 char **regnames;
6792
6793 if (flag_code == CODE_64BIT)
6794 {
6795 regnames = regnames_64;
0cea6190 6796 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6797 }
6798 else
6799 {
6800 regnames = regnames_32;
0cea6190 6801 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6802 }
6803
6804 for (regnum = 0; regnum < regnames_count; regnum++)
6805 if (strcmp (regname, regnames[regnum]) == 0)
6806 return regnum;
6807
54cfded0
AM
6808 return -1;
6809}
6810
6811void
6812tc_x86_frame_initial_instructions (void)
6813{
a4447b93
RH
6814 static unsigned int sp_regno;
6815
6816 if (!sp_regno)
6817 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6818 ? "rsp" : "esp");
6819
6820 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6821 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6822}
d2b2c203
DJ
6823
6824int
6825i386_elf_section_type (const char *str, size_t len)
6826{
6827 if (flag_code == CODE_64BIT
6828 && len == sizeof ("unwind") - 1
6829 && strncmp (str, "unwind", 6) == 0)
6830 return SHT_X86_64_UNWIND;
6831
6832 return -1;
6833}
bb41ade5
AM
6834
6835#ifdef TE_PE
6836void
6837tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6838{
6839 expressionS expr;
6840
6841 expr.X_op = O_secrel;
6842 expr.X_add_symbol = symbol;
6843 expr.X_add_number = 0;
6844 emit_expr (&expr, size);
6845}
6846#endif
This page took 0.725424 seconds and 4 git commands to generate.