x86: add GFNI, VAES, and VPCLMUL checking to cpu_flags_match()
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
6b6b6807
L
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
b6f8c7c4
L
375 /* Disable instruction size optimization. */
376 bfd_boolean no_optimize;
377
86fa6981
L
378 /* How to encode vector instructions. */
379 enum
380 {
381 vex_encoding_default = 0,
382 vex_encoding_vex2,
383 vex_encoding_vex3,
384 vex_encoding_evex
385 } vec_encoding;
386
d5de92cf
L
387 /* REP prefix. */
388 const char *rep_prefix;
389
165de32a
L
390 /* HLE prefix. */
391 const char *hle_prefix;
42164a71 392
7e8b059b
L
393 /* Have BND prefix. */
394 const char *bnd_prefix;
395
04ef582a
L
396 /* Have NOTRACK prefix. */
397 const char *notrack_prefix;
398
891edac4 399 /* Error message. */
a65babc9 400 enum i386_error error;
252b5132
RH
401 };
402
403typedef struct _i386_insn i386_insn;
404
43234a1e
L
405/* Link RC type with corresponding string, that'll be looked for in
406 asm. */
407struct RC_name
408{
409 enum rc_type type;
410 const char *name;
411 unsigned int len;
412};
413
414static const struct RC_name RC_NamesTable[] =
415{
416 { rne, STRING_COMMA_LEN ("rn-sae") },
417 { rd, STRING_COMMA_LEN ("rd-sae") },
418 { ru, STRING_COMMA_LEN ("ru-sae") },
419 { rz, STRING_COMMA_LEN ("rz-sae") },
420 { saeonly, STRING_COMMA_LEN ("sae") },
421};
422
252b5132
RH
423/* List of chars besides those in app.c:symbol_chars that can start an
424 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 425const char extra_symbol_chars[] = "*%-([{}"
252b5132 426#ifdef LEX_AT
32137342
NC
427 "@"
428#endif
429#ifdef LEX_QM
430 "?"
252b5132 431#endif
32137342 432 ;
252b5132 433
29b0f896
AM
434#if (defined (TE_I386AIX) \
435 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 436 && !defined (TE_GNU) \
29b0f896 437 && !defined (TE_LINUX) \
8d63c93e
RM
438 && !defined (TE_NACL) \
439 && !defined (TE_NETWARE) \
29b0f896 440 && !defined (TE_FreeBSD) \
5b806d27 441 && !defined (TE_DragonFly) \
29b0f896 442 && !defined (TE_NetBSD)))
252b5132 443/* This array holds the chars that always start a comment. If the
b3b91714
AM
444 pre-processor is disabled, these aren't very useful. The option
445 --divide will remove '/' from this list. */
446const char *i386_comment_chars = "#/";
447#define SVR4_COMMENT_CHARS 1
252b5132 448#define PREFIX_SEPARATOR '\\'
252b5132 449
b3b91714
AM
450#else
451const char *i386_comment_chars = "#";
452#define PREFIX_SEPARATOR '/'
453#endif
454
252b5132
RH
455/* This array holds the chars that only start a comment at the beginning of
456 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
457 .line and .file directives will appear in the pre-processed output.
458 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 459 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
460 #NO_APP at the beginning of its output.
461 Also note that comments started like this one will always work if
252b5132 462 '/' isn't otherwise defined. */
b3b91714 463const char line_comment_chars[] = "#/";
252b5132 464
63a0b638 465const char line_separator_chars[] = ";";
252b5132 466
ce8a8b2f
AM
467/* Chars that can be used to separate mant from exp in floating point
468 nums. */
252b5132
RH
469const char EXP_CHARS[] = "eE";
470
ce8a8b2f
AM
471/* Chars that mean this number is a floating point constant
472 As in 0f12.456
473 or 0d1.2345e12. */
252b5132
RH
474const char FLT_CHARS[] = "fFdDxX";
475
ce8a8b2f 476/* Tables for lexical analysis. */
252b5132
RH
477static char mnemonic_chars[256];
478static char register_chars[256];
479static char operand_chars[256];
480static char identifier_chars[256];
481static char digit_chars[256];
482
ce8a8b2f 483/* Lexical macros. */
252b5132
RH
484#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
485#define is_operand_char(x) (operand_chars[(unsigned char) x])
486#define is_register_char(x) (register_chars[(unsigned char) x])
487#define is_space_char(x) ((x) == ' ')
488#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
489#define is_digit_char(x) (digit_chars[(unsigned char) x])
490
0234cb7c 491/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
492static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
493
494/* md_assemble() always leaves the strings it's passed unaltered. To
495 effect this we maintain a stack of saved characters that we've smashed
496 with '\0's (indicating end of strings for various sub-fields of the
47926f60 497 assembler instruction). */
252b5132 498static char save_stack[32];
ce8a8b2f 499static char *save_stack_p;
252b5132
RH
500#define END_STRING_AND_SAVE(s) \
501 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
502#define RESTORE_END_STRING(s) \
503 do { *(s) = *--save_stack_p; } while (0)
504
47926f60 505/* The instruction we're assembling. */
252b5132
RH
506static i386_insn i;
507
508/* Possible templates for current insn. */
509static const templates *current_templates;
510
31b2323c
L
511/* Per instruction expressionS buffers: max displacements & immediates. */
512static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
513static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 514
47926f60 515/* Current operand we are working on. */
ee86248c 516static int this_operand = -1;
252b5132 517
3e73aa7c
JH
518/* We support four different modes. FLAG_CODE variable is used to distinguish
519 these. */
520
521enum flag_code {
522 CODE_32BIT,
523 CODE_16BIT,
524 CODE_64BIT };
525
526static enum flag_code flag_code;
4fa24527 527static unsigned int object_64bit;
862be3fb 528static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
529static int use_rela_relocations = 0;
530
7af8ed2d
NC
531#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
534
351f65ca
L
535/* The ELF ABI to use. */
536enum x86_elf_abi
537{
538 I386_ABI,
7f56bc95
L
539 X86_64_ABI,
540 X86_64_X32_ABI
351f65ca
L
541};
542
543static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 544#endif
351f65ca 545
167ad85b
TG
546#if defined (TE_PE) || defined (TE_PEP)
547/* Use big object file format. */
548static int use_big_obj = 0;
549#endif
550
8dcea932
L
551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
552/* 1 if generating code for a shared library. */
553static int shared = 0;
554#endif
555
47926f60
KH
556/* 1 for intel syntax,
557 0 if att syntax. */
558static int intel_syntax = 0;
252b5132 559
e89c5eaa
L
560/* 1 for Intel64 ISA,
561 0 if AMD64 ISA. */
562static int intel64;
563
1efbbeb4
L
564/* 1 for intel mnemonic,
565 0 if att mnemonic. */
566static int intel_mnemonic = !SYSV386_COMPAT;
567
5209009a 568/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
569static int old_gcc = OLDGCC_COMPAT;
570
a60de03c
JB
571/* 1 if pseudo registers are permitted. */
572static int allow_pseudo_reg = 0;
573
47926f60
KH
574/* 1 if register prefix % not required. */
575static int allow_naked_reg = 0;
252b5132 576
33eaf5de 577/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
578 instructions supporting it, even if this prefix wasn't specified
579 explicitly. */
580static int add_bnd_prefix = 0;
581
ba104c83 582/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
583static int allow_index_reg = 0;
584
d022bddd
IT
585/* 1 if the assembler should ignore LOCK prefix, even if it was
586 specified explicitly. */
587static int omit_lock_prefix = 0;
588
e4e00185
AS
589/* 1 if the assembler should encode lfence, mfence, and sfence as
590 "lock addl $0, (%{re}sp)". */
591static int avoid_fence = 0;
592
0cb4071e
L
593/* 1 if the assembler should generate relax relocations. */
594
595static int generate_relax_relocations
596 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
597
7bab8ab5 598static enum check_kind
daf50ae7 599 {
7bab8ab5
JB
600 check_none = 0,
601 check_warning,
602 check_error
daf50ae7 603 }
7bab8ab5 604sse_check, operand_check = check_warning;
daf50ae7 605
b6f8c7c4
L
606/* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 */
611static int optimize = 0;
612
613/* Optimization:
614 1. Clear the REX_W bit with register operand if possible.
615 2. Above plus use 128bit vector instruction to clear the full vector
616 register.
617 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
618 "testb $imm7,%r8".
619 */
620static int optimize_for_space = 0;
621
2ca3ace5
L
622/* Register prefix used for error message. */
623static const char *register_prefix = "%";
624
47926f60
KH
625/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
626 leave, push, and pop instructions so that gcc has the same stack
627 frame as in 32 bit mode. */
628static char stackop_size = '\0';
eecb386c 629
12b55ccc
L
630/* Non-zero to optimize code alignment. */
631int optimize_align_code = 1;
632
47926f60
KH
633/* Non-zero to quieten some warnings. */
634static int quiet_warnings = 0;
a38cf1db 635
47926f60
KH
636/* CPU name. */
637static const char *cpu_arch_name = NULL;
6305a203 638static char *cpu_sub_arch_name = NULL;
a38cf1db 639
47926f60 640/* CPU feature flags. */
40fb9820
L
641static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
642
ccc9c027
L
643/* If we have selected a cpu we are generating instructions for. */
644static int cpu_arch_tune_set = 0;
645
9103f4f4 646/* Cpu we are generating instructions for. */
fbf3f584 647enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
648
649/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 650static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 651
ccc9c027 652/* CPU instruction set architecture used. */
fbf3f584 653enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 654
9103f4f4 655/* CPU feature flags of instruction set architecture used. */
fbf3f584 656i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 657
fddf5b5b
AM
658/* If set, conditional jumps are not automatically promoted to handle
659 larger than a byte offset. */
660static unsigned int no_cond_jump_promotion = 0;
661
c0f3af97
L
662/* Encode SSE instructions with VEX prefix. */
663static unsigned int sse2avx;
664
539f890d
L
665/* Encode scalar AVX instructions with specific vector length. */
666static enum
667 {
668 vex128 = 0,
669 vex256
670 } avxscalar;
671
43234a1e
L
672/* Encode scalar EVEX LIG instructions with specific vector length. */
673static enum
674 {
675 evexl128 = 0,
676 evexl256,
677 evexl512
678 } evexlig;
679
680/* Encode EVEX WIG instructions with specific evex.w. */
681static enum
682 {
683 evexw0 = 0,
684 evexw1
685 } evexwig;
686
d3d3c6db
IT
687/* Value to encode in EVEX RC bits, for SAE-only instructions. */
688static enum rc_type evexrcig = rne;
689
29b0f896 690/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 691static symbolS *GOT_symbol;
29b0f896 692
a4447b93
RH
693/* The dwarf2 return column, adjusted for 32 or 64 bit. */
694unsigned int x86_dwarf2_return_column;
695
696/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
697int x86_cie_data_alignment;
698
252b5132 699/* Interface to relax_segment.
fddf5b5b
AM
700 There are 3 major relax states for 386 jump insns because the
701 different types of jumps add different sizes to frags when we're
702 figuring out what sort of jump to choose to reach a given label. */
252b5132 703
47926f60 704/* Types. */
93c2a809
AM
705#define UNCOND_JUMP 0
706#define COND_JUMP 1
707#define COND_JUMP86 2
fddf5b5b 708
47926f60 709/* Sizes. */
252b5132
RH
710#define CODE16 1
711#define SMALL 0
29b0f896 712#define SMALL16 (SMALL | CODE16)
252b5132 713#define BIG 2
29b0f896 714#define BIG16 (BIG | CODE16)
252b5132
RH
715
716#ifndef INLINE
717#ifdef __GNUC__
718#define INLINE __inline__
719#else
720#define INLINE
721#endif
722#endif
723
fddf5b5b
AM
724#define ENCODE_RELAX_STATE(type, size) \
725 ((relax_substateT) (((type) << 2) | (size)))
726#define TYPE_FROM_RELAX_STATE(s) \
727 ((s) >> 2)
728#define DISP_SIZE_FROM_RELAX_STATE(s) \
729 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
730
731/* This table is used by relax_frag to promote short jumps to long
732 ones where necessary. SMALL (short) jumps may be promoted to BIG
733 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
734 don't allow a short jump in a 32 bit code segment to be promoted to
735 a 16 bit offset jump because it's slower (requires data size
736 prefix), and doesn't work, unless the destination is in the bottom
737 64k of the code segment (The top 16 bits of eip are zeroed). */
738
739const relax_typeS md_relax_table[] =
740{
24eab124
AM
741 /* The fields are:
742 1) most positive reach of this state,
743 2) most negative reach of this state,
93c2a809 744 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 745 4) which index into the table to try if we can't fit into this one. */
252b5132 746
fddf5b5b 747 /* UNCOND_JUMP states. */
93c2a809
AM
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
750 /* dword jmp adds 4 bytes to frag:
751 0 extra opcode bytes, 4 displacement bytes. */
252b5132 752 {0, 0, 4, 0},
93c2a809
AM
753 /* word jmp adds 2 byte2 to frag:
754 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
755 {0, 0, 2, 0},
756
93c2a809
AM
757 /* COND_JUMP states. */
758 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
760 /* dword conditionals adds 5 bytes to frag:
761 1 extra opcode byte, 4 displacement bytes. */
762 {0, 0, 5, 0},
fddf5b5b 763 /* word conditionals add 3 bytes to frag:
93c2a809
AM
764 1 extra opcode byte, 2 displacement bytes. */
765 {0, 0, 3, 0},
766
767 /* COND_JUMP86 states. */
768 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
769 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
770 /* dword conditionals adds 5 bytes to frag:
771 1 extra opcode byte, 4 displacement bytes. */
772 {0, 0, 5, 0},
773 /* word conditionals add 4 bytes to frag:
774 1 displacement byte and a 3 byte long branch insn. */
775 {0, 0, 4, 0}
252b5132
RH
776};
777
9103f4f4
L
778static const arch_entry cpu_arch[] =
779{
89507696
JB
780 /* Do not replace the first two entries - i386_target_format()
781 relies on them being there in this order. */
8a2c8fef 782 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 783 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 785 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 787 CPU_NONE_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 789 CPU_I186_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 791 CPU_I286_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 793 CPU_I386_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 795 CPU_I486_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 797 CPU_I586_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_I686_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 801 CPU_I586_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 803 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 805 CPU_P2_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 807 CPU_P3_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 809 CPU_P4_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 813 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 815 CPU_CORE_FLAGS, 1 },
8a2c8fef 816 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 817 CPU_CORE_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 819 CPU_CORE2_FLAGS, 1 },
8a2c8fef 820 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 821 CPU_CORE2_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 823 CPU_COREI7_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 825 CPU_L1OM_FLAGS, 0 },
7a9068fe 826 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 827 CPU_K1OM_FLAGS, 0 },
81486035 828 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 829 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 831 CPU_K6_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 833 CPU_K6_2_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 835 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 837 CPU_K8_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 839 CPU_K8_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 841 CPU_K8_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 843 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 844 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 846 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 847 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 848 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 849 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 850 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 851 CPU_BDVER4_FLAGS, 0 },
029f3522 852 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 853 CPU_ZNVER1_FLAGS, 0 },
7b458c12 854 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 855 CPU_BTVER1_FLAGS, 0 },
7b458c12 856 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 857 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_8087_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_287_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_387_FLAGS, 0 },
1848e567
L
864 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
865 CPU_687_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_MMX_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE3_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 880 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX_FLAGS, 0 },
6c30d220 884 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX2_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512F_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512CD_FLAGS, 0 },
43234a1e 890 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512ER_FLAGS, 0 },
43234a1e 892 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 896 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 898 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_VMX_FLAGS, 0 },
8729a6f6 902 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SMX_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 908 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 910 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 912 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AES_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 920 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 922 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 924 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_F16C_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_BMI2_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_FMA_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_FMA4_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_XOP_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LWP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_MOVBE_FLAGS, 0 },
60aa667e 938 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_CX16_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_EPT_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_LZCNT_FLAGS, 0 },
42164a71 944 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_HLE_FLAGS, 0 },
42164a71 946 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_RTM_FLAGS, 0 },
6c30d220 948 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_CLFLUSH_FLAGS, 0 },
22109423 952 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_NOP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SVME_FLAGS, 1 },
8a2c8fef 966 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_SVME_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ABM_FLAGS, 0 },
87973e9f 972 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_BMI_FLAGS, 0 },
2a2a0f38 974 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_TBM_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_ADX_FLAGS, 0 },
e2e1fcde 978 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 980 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_PRFCHW_FLAGS, 0 },
5c111e37 982 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SMAP_FLAGS, 0 },
7e8b059b 984 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_MPX_FLAGS, 0 },
a0046408 986 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SHA_FLAGS, 0 },
963f3586 988 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 990 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 992 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SE1_FLAGS, 0 },
c5e7287a 994 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 996 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 998 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1000 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1002 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1004 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1006 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1008 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1010 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1012 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_CLZERO_FLAGS, 0 },
9916071f 1014 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_MWAITX_FLAGS, 0 },
8eab4136 1016 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_OSPKE_FLAGS, 0 },
8bc52696 1018 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1020 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1021 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1022 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1023 CPU_IBT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1025 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1026 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1027 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1028 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1029 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1030 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1031 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1032 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1033 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1034 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1035 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1036};
1037
1038static const noarch_entry cpu_noarch[] =
1039{
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1071};
1072
704209c0 1073#ifdef I386COFF
a6c24e68
NC
1074/* Like s_lcomm_internal in gas/read.c but the alignment string
1075 is allowed to be optional. */
1076
1077static symbolS *
1078pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1079{
1080 addressT align = 0;
1081
1082 SKIP_WHITESPACE ();
1083
7ab9ffdd 1084 if (needs_align
a6c24e68
NC
1085 && *input_line_pointer == ',')
1086 {
1087 align = parse_align (needs_align - 1);
7ab9ffdd 1088
a6c24e68
NC
1089 if (align == (addressT) -1)
1090 return NULL;
1091 }
1092 else
1093 {
1094 if (size >= 8)
1095 align = 3;
1096 else if (size >= 4)
1097 align = 2;
1098 else if (size >= 2)
1099 align = 1;
1100 else
1101 align = 0;
1102 }
1103
1104 bss_alloc (symbolP, size, align);
1105 return symbolP;
1106}
1107
704209c0 1108static void
a6c24e68
NC
1109pe_lcomm (int needs_align)
1110{
1111 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1112}
704209c0 1113#endif
a6c24e68 1114
29b0f896
AM
1115const pseudo_typeS md_pseudo_table[] =
1116{
1117#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1118 {"align", s_align_bytes, 0},
1119#else
1120 {"align", s_align_ptwo, 0},
1121#endif
1122 {"arch", set_cpu_arch, 0},
1123#ifndef I386COFF
1124 {"bss", s_bss, 0},
a6c24e68
NC
1125#else
1126 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1127#endif
1128 {"ffloat", float_cons, 'f'},
1129 {"dfloat", float_cons, 'd'},
1130 {"tfloat", float_cons, 'x'},
1131 {"value", cons, 2},
d182319b 1132 {"slong", signed_cons, 4},
29b0f896
AM
1133 {"noopt", s_ignore, 0},
1134 {"optim", s_ignore, 0},
1135 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1136 {"code16", set_code_flag, CODE_16BIT},
1137 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1138#ifdef BFD64
29b0f896 1139 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1140#endif
29b0f896
AM
1141 {"intel_syntax", set_intel_syntax, 1},
1142 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1143 {"intel_mnemonic", set_intel_mnemonic, 1},
1144 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1145 {"allow_index_reg", set_allow_index_reg, 1},
1146 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1147 {"sse_check", set_check, 0},
1148 {"operand_check", set_check, 1},
3b22753a
L
1149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1150 {"largecomm", handle_large_common, 0},
07a53e5c 1151#else
68d20676 1152 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1153 {"loc", dwarf2_directive_loc, 0},
1154 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1155#endif
6482c264
NC
1156#ifdef TE_PE
1157 {"secrel32", pe_directive_secrel, 0},
1158#endif
29b0f896
AM
1159 {0, 0, 0}
1160};
1161
1162/* For interface with expression (). */
1163extern char *input_line_pointer;
1164
1165/* Hash table for instruction mnemonic lookup. */
1166static struct hash_control *op_hash;
1167
1168/* Hash table for register lookup. */
1169static struct hash_control *reg_hash;
1170\f
ce8a8b2f
AM
1171 /* Various efficient no-op patterns for aligning code labels.
1172 Note: Don't try to assemble the instructions in the comments.
1173 0L and 0w are not legal. */
62a02d25
L
1174static const unsigned char f32_1[] =
1175 {0x90}; /* nop */
1176static const unsigned char f32_2[] =
1177 {0x66,0x90}; /* xchg %ax,%ax */
1178static const unsigned char f32_3[] =
1179 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1180static const unsigned char f32_4[] =
1181 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1182static const unsigned char f32_6[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1184static const unsigned char f32_7[] =
1185 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1186static const unsigned char f16_3[] =
3ae729d5 1187 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1188static const unsigned char f16_4[] =
3ae729d5
L
1189 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1190static const unsigned char jump_disp8[] =
1191 {0xeb}; /* jmp disp8 */
1192static const unsigned char jump32_disp32[] =
1193 {0xe9}; /* jmp disp32 */
1194static const unsigned char jump16_disp32[] =
1195 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1196/* 32-bit NOPs patterns. */
1197static const unsigned char *const f32_patt[] = {
3ae729d5 1198 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1199};
1200/* 16-bit NOPs patterns. */
1201static const unsigned char *const f16_patt[] = {
3ae729d5 1202 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1203};
1204/* nopl (%[re]ax) */
1205static const unsigned char alt_3[] =
1206 {0x0f,0x1f,0x00};
1207/* nopl 0(%[re]ax) */
1208static const unsigned char alt_4[] =
1209 {0x0f,0x1f,0x40,0x00};
1210/* nopl 0(%[re]ax,%[re]ax,1) */
1211static const unsigned char alt_5[] =
1212 {0x0f,0x1f,0x44,0x00,0x00};
1213/* nopw 0(%[re]ax,%[re]ax,1) */
1214static const unsigned char alt_6[] =
1215 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1216/* nopl 0L(%[re]ax) */
1217static const unsigned char alt_7[] =
1218 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1219/* nopl 0L(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_8[] =
1221 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1222/* nopw 0L(%[re]ax,%[re]ax,1) */
1223static const unsigned char alt_9[] =
1224 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_10[] =
1227 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1228/* data16 nopw %cs:0L(%eax,%eax,1) */
1229static const unsigned char alt_11[] =
1230 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1231/* 32-bit and 64-bit NOPs patterns. */
1232static const unsigned char *const alt_patt[] = {
1233 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1234 alt_9, alt_10, alt_11
62a02d25
L
1235};
1236
1237/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1238 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1239
1240static void
1241i386_output_nops (char *where, const unsigned char *const *patt,
1242 int count, int max_single_nop_size)
1243
1244{
3ae729d5
L
1245 /* Place the longer NOP first. */
1246 int last;
1247 int offset;
1248 const unsigned char *nops = patt[max_single_nop_size - 1];
1249
1250 /* Use the smaller one if the requsted one isn't available. */
1251 if (nops == NULL)
62a02d25 1252 {
3ae729d5
L
1253 max_single_nop_size--;
1254 nops = patt[max_single_nop_size - 1];
62a02d25
L
1255 }
1256
3ae729d5
L
1257 last = count % max_single_nop_size;
1258
1259 count -= last;
1260 for (offset = 0; offset < count; offset += max_single_nop_size)
1261 memcpy (where + offset, nops, max_single_nop_size);
1262
1263 if (last)
1264 {
1265 nops = patt[last - 1];
1266 if (nops == NULL)
1267 {
1268 /* Use the smaller one plus one-byte NOP if the needed one
1269 isn't available. */
1270 last--;
1271 nops = patt[last - 1];
1272 memcpy (where + offset, nops, last);
1273 where[offset + last] = *patt[0];
1274 }
1275 else
1276 memcpy (where + offset, nops, last);
1277 }
62a02d25
L
1278}
1279
3ae729d5
L
1280static INLINE int
1281fits_in_imm7 (offsetT num)
1282{
1283 return (num & 0x7f) == num;
1284}
1285
1286static INLINE int
1287fits_in_imm31 (offsetT num)
1288{
1289 return (num & 0x7fffffff) == num;
1290}
62a02d25
L
1291
1292/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1293 single NOP instruction LIMIT. */
1294
1295void
3ae729d5 1296i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1297{
3ae729d5 1298 const unsigned char *const *patt = NULL;
62a02d25 1299 int max_single_nop_size;
3ae729d5
L
1300 /* Maximum number of NOPs before switching to jump over NOPs. */
1301 int max_number_of_nops;
62a02d25 1302
3ae729d5 1303 switch (fragP->fr_type)
62a02d25 1304 {
3ae729d5
L
1305 case rs_fill_nop:
1306 case rs_align_code:
1307 break;
1308 default:
62a02d25
L
1309 return;
1310 }
1311
ccc9c027
L
1312 /* We need to decide which NOP sequence to use for 32bit and
1313 64bit. When -mtune= is used:
4eed87de 1314
76bc74dc
L
1315 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1316 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1317 2. For the rest, alt_patt will be used.
1318
1319 When -mtune= isn't used, alt_patt will be used if
22109423 1320 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1321 be used.
ccc9c027
L
1322
1323 When -march= or .arch is used, we can't use anything beyond
1324 cpu_arch_isa_flags. */
1325
1326 if (flag_code == CODE_16BIT)
1327 {
3ae729d5
L
1328 patt = f16_patt;
1329 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1330 /* Limit number of NOPs to 2 in 16-bit mode. */
1331 max_number_of_nops = 2;
252b5132 1332 }
33fef721 1333 else
ccc9c027 1334 {
fbf3f584 1335 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1336 {
1337 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1338 switch (cpu_arch_tune)
1339 {
1340 case PROCESSOR_UNKNOWN:
1341 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1342 optimize with nops. */
1343 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1344 patt = alt_patt;
ccc9c027
L
1345 else
1346 patt = f32_patt;
1347 break;
ccc9c027
L
1348 case PROCESSOR_PENTIUM4:
1349 case PROCESSOR_NOCONA:
ef05d495 1350 case PROCESSOR_CORE:
76bc74dc 1351 case PROCESSOR_CORE2:
bd5295b2 1352 case PROCESSOR_COREI7:
3632d14b 1353 case PROCESSOR_L1OM:
7a9068fe 1354 case PROCESSOR_K1OM:
76bc74dc 1355 case PROCESSOR_GENERIC64:
ccc9c027
L
1356 case PROCESSOR_K6:
1357 case PROCESSOR_ATHLON:
1358 case PROCESSOR_K8:
4eed87de 1359 case PROCESSOR_AMDFAM10:
8aedb9fe 1360 case PROCESSOR_BD:
029f3522 1361 case PROCESSOR_ZNVER:
7b458c12 1362 case PROCESSOR_BT:
80b8656c 1363 patt = alt_patt;
ccc9c027 1364 break;
76bc74dc 1365 case PROCESSOR_I386:
ccc9c027
L
1366 case PROCESSOR_I486:
1367 case PROCESSOR_PENTIUM:
2dde1948 1368 case PROCESSOR_PENTIUMPRO:
81486035 1369 case PROCESSOR_IAMCU:
ccc9c027
L
1370 case PROCESSOR_GENERIC32:
1371 patt = f32_patt;
1372 break;
4eed87de 1373 }
ccc9c027
L
1374 }
1375 else
1376 {
fbf3f584 1377 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1378 {
1379 case PROCESSOR_UNKNOWN:
e6a14101 1380 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1381 PROCESSOR_UNKNOWN. */
1382 abort ();
1383 break;
1384
76bc74dc 1385 case PROCESSOR_I386:
ccc9c027
L
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
81486035 1388 case PROCESSOR_IAMCU:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
ccc9c027
L
1396 case PROCESSOR_GENERIC32:
1397 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1398 with nops. */
1399 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1400 patt = alt_patt;
ccc9c027
L
1401 else
1402 patt = f32_patt;
1403 break;
76bc74dc
L
1404 case PROCESSOR_PENTIUMPRO:
1405 case PROCESSOR_PENTIUM4:
1406 case PROCESSOR_NOCONA:
1407 case PROCESSOR_CORE:
ef05d495 1408 case PROCESSOR_CORE2:
bd5295b2 1409 case PROCESSOR_COREI7:
3632d14b 1410 case PROCESSOR_L1OM:
7a9068fe 1411 case PROCESSOR_K1OM:
22109423 1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1413 patt = alt_patt;
ccc9c027
L
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_GENERIC64:
80b8656c 1418 patt = alt_patt;
ccc9c027 1419 break;
4eed87de 1420 }
ccc9c027
L
1421 }
1422
76bc74dc
L
1423 if (patt == f32_patt)
1424 {
3ae729d5
L
1425 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1426 /* Limit number of NOPs to 2 for older processors. */
1427 max_number_of_nops = 2;
76bc74dc
L
1428 }
1429 else
1430 {
3ae729d5
L
1431 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1432 /* Limit number of NOPs to 7 for newer processors. */
1433 max_number_of_nops = 7;
1434 }
1435 }
1436
1437 if (limit == 0)
1438 limit = max_single_nop_size;
1439
1440 if (fragP->fr_type == rs_fill_nop)
1441 {
1442 /* Output NOPs for .nop directive. */
1443 if (limit > max_single_nop_size)
1444 {
1445 as_bad_where (fragP->fr_file, fragP->fr_line,
1446 _("invalid single nop size: %d "
1447 "(expect within [0, %d])"),
1448 limit, max_single_nop_size);
1449 return;
1450 }
1451 }
1452 else
1453 fragP->fr_var = count;
1454
1455 if ((count / max_single_nop_size) > max_number_of_nops)
1456 {
1457 /* Generate jump over NOPs. */
1458 offsetT disp = count - 2;
1459 if (fits_in_imm7 (disp))
1460 {
1461 /* Use "jmp disp8" if possible. */
1462 count = disp;
1463 where[0] = jump_disp8[0];
1464 where[1] = count;
1465 where += 2;
1466 }
1467 else
1468 {
1469 unsigned int size_of_jump;
1470
1471 if (flag_code == CODE_16BIT)
1472 {
1473 where[0] = jump16_disp32[0];
1474 where[1] = jump16_disp32[1];
1475 size_of_jump = 2;
1476 }
1477 else
1478 {
1479 where[0] = jump32_disp32[0];
1480 size_of_jump = 1;
1481 }
1482
1483 count -= size_of_jump + 4;
1484 if (!fits_in_imm31 (count))
1485 {
1486 as_bad_where (fragP->fr_file, fragP->fr_line,
1487 _("jump over nop padding out of range"));
1488 return;
1489 }
1490
1491 md_number_to_chars (where + size_of_jump, count, 4);
1492 where += size_of_jump + 4;
76bc74dc 1493 }
ccc9c027 1494 }
3ae729d5
L
1495
1496 /* Generate multiple NOPs. */
1497 i386_output_nops (where, patt, count, limit);
252b5132
RH
1498}
1499
c6fb90c8 1500static INLINE int
0dfbf9d7 1501operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1502{
0dfbf9d7 1503 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1504 {
1505 case 3:
0dfbf9d7 1506 if (x->array[2])
c6fb90c8 1507 return 0;
1a0670f3 1508 /* Fall through. */
c6fb90c8 1509 case 2:
0dfbf9d7 1510 if (x->array[1])
c6fb90c8 1511 return 0;
1a0670f3 1512 /* Fall through. */
c6fb90c8 1513 case 1:
0dfbf9d7 1514 return !x->array[0];
c6fb90c8
L
1515 default:
1516 abort ();
1517 }
40fb9820
L
1518}
1519
c6fb90c8 1520static INLINE void
0dfbf9d7 1521operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1522{
0dfbf9d7 1523 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1524 {
1525 case 3:
0dfbf9d7 1526 x->array[2] = v;
1a0670f3 1527 /* Fall through. */
c6fb90c8 1528 case 2:
0dfbf9d7 1529 x->array[1] = v;
1a0670f3 1530 /* Fall through. */
c6fb90c8 1531 case 1:
0dfbf9d7 1532 x->array[0] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8
L
1534 break;
1535 default:
1536 abort ();
1537 }
1538}
40fb9820 1539
c6fb90c8 1540static INLINE int
0dfbf9d7
L
1541operand_type_equal (const union i386_operand_type *x,
1542 const union i386_operand_type *y)
c6fb90c8 1543{
0dfbf9d7 1544 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1545 {
1546 case 3:
0dfbf9d7 1547 if (x->array[2] != y->array[2])
c6fb90c8 1548 return 0;
1a0670f3 1549 /* Fall through. */
c6fb90c8 1550 case 2:
0dfbf9d7 1551 if (x->array[1] != y->array[1])
c6fb90c8 1552 return 0;
1a0670f3 1553 /* Fall through. */
c6fb90c8 1554 case 1:
0dfbf9d7 1555 return x->array[0] == y->array[0];
c6fb90c8
L
1556 break;
1557 default:
1558 abort ();
1559 }
1560}
40fb9820 1561
0dfbf9d7
L
1562static INLINE int
1563cpu_flags_all_zero (const union i386_cpu_flags *x)
1564{
1565 switch (ARRAY_SIZE(x->array))
1566 {
53467f57
IT
1567 case 4:
1568 if (x->array[3])
1569 return 0;
1570 /* Fall through. */
0dfbf9d7
L
1571 case 3:
1572 if (x->array[2])
1573 return 0;
1a0670f3 1574 /* Fall through. */
0dfbf9d7
L
1575 case 2:
1576 if (x->array[1])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 1:
1580 return !x->array[0];
1581 default:
1582 abort ();
1583 }
1584}
1585
0dfbf9d7
L
1586static INLINE int
1587cpu_flags_equal (const union i386_cpu_flags *x,
1588 const union i386_cpu_flags *y)
1589{
1590 switch (ARRAY_SIZE(x->array))
1591 {
53467f57
IT
1592 case 4:
1593 if (x->array[3] != y->array[3])
1594 return 0;
1595 /* Fall through. */
0dfbf9d7
L
1596 case 3:
1597 if (x->array[2] != y->array[2])
1598 return 0;
1a0670f3 1599 /* Fall through. */
0dfbf9d7
L
1600 case 2:
1601 if (x->array[1] != y->array[1])
1602 return 0;
1a0670f3 1603 /* Fall through. */
0dfbf9d7
L
1604 case 1:
1605 return x->array[0] == y->array[0];
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
c6fb90c8
L
1611
1612static INLINE int
1613cpu_flags_check_cpu64 (i386_cpu_flags f)
1614{
1615 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1616 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1617}
1618
c6fb90c8
L
1619static INLINE i386_cpu_flags
1620cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1621{
c6fb90c8
L
1622 switch (ARRAY_SIZE (x.array))
1623 {
53467f57
IT
1624 case 4:
1625 x.array [3] &= y.array [3];
1626 /* Fall through. */
c6fb90c8
L
1627 case 3:
1628 x.array [2] &= y.array [2];
1a0670f3 1629 /* Fall through. */
c6fb90c8
L
1630 case 2:
1631 x.array [1] &= y.array [1];
1a0670f3 1632 /* Fall through. */
c6fb90c8
L
1633 case 1:
1634 x.array [0] &= y.array [0];
1635 break;
1636 default:
1637 abort ();
1638 }
1639 return x;
1640}
40fb9820 1641
c6fb90c8
L
1642static INLINE i386_cpu_flags
1643cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1644{
c6fb90c8 1645 switch (ARRAY_SIZE (x.array))
40fb9820 1646 {
53467f57
IT
1647 case 4:
1648 x.array [3] |= y.array [3];
1649 /* Fall through. */
c6fb90c8
L
1650 case 3:
1651 x.array [2] |= y.array [2];
1a0670f3 1652 /* Fall through. */
c6fb90c8
L
1653 case 2:
1654 x.array [1] |= y.array [1];
1a0670f3 1655 /* Fall through. */
c6fb90c8
L
1656 case 1:
1657 x.array [0] |= y.array [0];
40fb9820
L
1658 break;
1659 default:
1660 abort ();
1661 }
40fb9820
L
1662 return x;
1663}
1664
309d3373
JB
1665static INLINE i386_cpu_flags
1666cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1667{
1668 switch (ARRAY_SIZE (x.array))
1669 {
53467f57
IT
1670 case 4:
1671 x.array [3] &= ~y.array [3];
1672 /* Fall through. */
309d3373
JB
1673 case 3:
1674 x.array [2] &= ~y.array [2];
1a0670f3 1675 /* Fall through. */
309d3373
JB
1676 case 2:
1677 x.array [1] &= ~y.array [1];
1a0670f3 1678 /* Fall through. */
309d3373
JB
1679 case 1:
1680 x.array [0] &= ~y.array [0];
1681 break;
1682 default:
1683 abort ();
1684 }
1685 return x;
1686}
1687
c0f3af97
L
1688#define CPU_FLAGS_ARCH_MATCH 0x1
1689#define CPU_FLAGS_64BIT_MATCH 0x2
1690
c0f3af97 1691#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1692 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1693
1694/* Return CPU flags match bits. */
3629bb00 1695
40fb9820 1696static int
d3ce72d0 1697cpu_flags_match (const insn_template *t)
40fb9820 1698{
c0f3af97
L
1699 i386_cpu_flags x = t->cpu_flags;
1700 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1701
1702 x.bitfield.cpu64 = 0;
1703 x.bitfield.cpuno64 = 0;
1704
0dfbf9d7 1705 if (cpu_flags_all_zero (&x))
c0f3af97
L
1706 {
1707 /* This instruction is available on all archs. */
db12e14e 1708 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1709 }
3629bb00
L
1710 else
1711 {
c0f3af97 1712 /* This instruction is available only on some archs. */
3629bb00
L
1713 i386_cpu_flags cpu = cpu_arch_flags;
1714
ab592e75
JB
1715 /* AVX512VL is no standalone feature - match it and then strip it. */
1716 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1717 return match;
1718 x.bitfield.cpuavx512vl = 0;
1719
3629bb00 1720 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1721 if (!cpu_flags_all_zero (&cpu))
1722 {
a5ff0eb2
L
1723 if (x.bitfield.cpuavx)
1724 {
929f69fa 1725 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1726 if (cpu.bitfield.cpuavx
1727 && (!t->opcode_modifier.sse2avx || sse2avx)
1728 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1729 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1730 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1731 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1732 }
929f69fa
JB
1733 else if (x.bitfield.cpuavx512f)
1734 {
1735 /* We need to check a few extra flags with AVX512F. */
1736 if (cpu.bitfield.cpuavx512f
1737 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1738 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1739 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1740 match |= CPU_FLAGS_ARCH_MATCH;
1741 }
a5ff0eb2 1742 else
db12e14e 1743 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1744 }
3629bb00 1745 }
c0f3af97 1746 return match;
40fb9820
L
1747}
1748
c6fb90c8
L
1749static INLINE i386_operand_type
1750operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1751{
c6fb90c8
L
1752 switch (ARRAY_SIZE (x.array))
1753 {
1754 case 3:
1755 x.array [2] &= y.array [2];
1a0670f3 1756 /* Fall through. */
c6fb90c8
L
1757 case 2:
1758 x.array [1] &= y.array [1];
1a0670f3 1759 /* Fall through. */
c6fb90c8
L
1760 case 1:
1761 x.array [0] &= y.array [0];
1762 break;
1763 default:
1764 abort ();
1765 }
1766 return x;
40fb9820
L
1767}
1768
73053c1f
JB
1769static INLINE i386_operand_type
1770operand_type_and_not (i386_operand_type x, i386_operand_type y)
1771{
1772 switch (ARRAY_SIZE (x.array))
1773 {
1774 case 3:
1775 x.array [2] &= ~y.array [2];
1776 /* Fall through. */
1777 case 2:
1778 x.array [1] &= ~y.array [1];
1779 /* Fall through. */
1780 case 1:
1781 x.array [0] &= ~y.array [0];
1782 break;
1783 default:
1784 abort ();
1785 }
1786 return x;
1787}
1788
c6fb90c8
L
1789static INLINE i386_operand_type
1790operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1791{
c6fb90c8 1792 switch (ARRAY_SIZE (x.array))
40fb9820 1793 {
c6fb90c8
L
1794 case 3:
1795 x.array [2] |= y.array [2];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 2:
1798 x.array [1] |= y.array [1];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 1:
1801 x.array [0] |= y.array [0];
40fb9820
L
1802 break;
1803 default:
1804 abort ();
1805 }
c6fb90c8
L
1806 return x;
1807}
40fb9820 1808
c6fb90c8
L
1809static INLINE i386_operand_type
1810operand_type_xor (i386_operand_type x, i386_operand_type y)
1811{
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] ^= y.array [2];
1a0670f3 1816 /* Fall through. */
c6fb90c8
L
1817 case 2:
1818 x.array [1] ^= y.array [1];
1a0670f3 1819 /* Fall through. */
c6fb90c8
L
1820 case 1:
1821 x.array [0] ^= y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
40fb9820
L
1826 return x;
1827}
1828
1829static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1830static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1831static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1832static const i386_operand_type inoutportreg
1833 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1834static const i386_operand_type reg16_inoutportreg
1835 = OPERAND_TYPE_REG16_INOUTPORTREG;
1836static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1837static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1838static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1839static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1840static const i386_operand_type anydisp
1841 = OPERAND_TYPE_ANYDISP;
40fb9820 1842static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1843static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1844static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1845static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1846static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1847static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1848static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1849static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1850static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1851static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1852static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1853static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1854
1855enum operand_type
1856{
1857 reg,
40fb9820
L
1858 imm,
1859 disp,
1860 anymem
1861};
1862
c6fb90c8 1863static INLINE int
40fb9820
L
1864operand_type_check (i386_operand_type t, enum operand_type c)
1865{
1866 switch (c)
1867 {
1868 case reg:
dc821c5f 1869 return t.bitfield.reg;
40fb9820 1870
40fb9820
L
1871 case imm:
1872 return (t.bitfield.imm8
1873 || t.bitfield.imm8s
1874 || t.bitfield.imm16
1875 || t.bitfield.imm32
1876 || t.bitfield.imm32s
1877 || t.bitfield.imm64);
1878
1879 case disp:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64);
1885
1886 case anymem:
1887 return (t.bitfield.disp8
1888 || t.bitfield.disp16
1889 || t.bitfield.disp32
1890 || t.bitfield.disp32s
1891 || t.bitfield.disp64
1892 || t.bitfield.baseindex);
1893
1894 default:
1895 abort ();
1896 }
2cfe26b6
AM
1897
1898 return 0;
40fb9820
L
1899}
1900
ca0d63fe 1901/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1902 operand J for instruction template T. */
1903
1904static INLINE int
d3ce72d0 1905match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1906{
1907 return !((i.types[j].bitfield.byte
1908 && !t->operand_types[j].bitfield.byte)
1909 || (i.types[j].bitfield.word
1910 && !t->operand_types[j].bitfield.word)
1911 || (i.types[j].bitfield.dword
1912 && !t->operand_types[j].bitfield.dword)
1913 || (i.types[j].bitfield.qword
ca0d63fe
JB
1914 && !t->operand_types[j].bitfield.qword)
1915 || (i.types[j].bitfield.tbyte
1916 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1917}
1918
1b54b8d7
JB
1919/* Return 1 if there is no conflict in SIMD register on
1920 operand J for instruction template T. */
1921
1922static INLINE int
1923match_simd_size (const insn_template *t, unsigned int j)
1924{
1925 return !((i.types[j].bitfield.xmmword
1926 && !t->operand_types[j].bitfield.xmmword)
1927 || (i.types[j].bitfield.ymmword
1928 && !t->operand_types[j].bitfield.ymmword)
1929 || (i.types[j].bitfield.zmmword
1930 && !t->operand_types[j].bitfield.zmmword));
1931}
1932
5c07affc
L
1933/* Return 1 if there is no conflict in any size on operand J for
1934 instruction template T. */
1935
1936static INLINE int
d3ce72d0 1937match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1938{
1939 return (match_reg_size (t, j)
1940 && !((i.types[j].bitfield.unspecified
af508cb9 1941 && !i.broadcast
5c07affc
L
1942 && !t->operand_types[j].bitfield.unspecified)
1943 || (i.types[j].bitfield.fword
1944 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1945 /* For scalar opcode templates to allow register and memory
1946 operands at the same time, some special casing is needed
1947 here. */
1948 || ((t->operand_types[j].bitfield.regsimd
1949 && !t->opcode_modifier.broadcast
1950 && (t->operand_types[j].bitfield.dword
1951 || t->operand_types[j].bitfield.qword))
1952 ? (i.types[j].bitfield.xmmword
1953 || i.types[j].bitfield.ymmword
1954 || i.types[j].bitfield.zmmword)
1955 : !match_simd_size(t, j))));
5c07affc
L
1956}
1957
1958/* Return 1 if there is no size conflict on any operands for
1959 instruction template T. */
1960
1961static INLINE int
d3ce72d0 1962operand_size_match (const insn_template *t)
5c07affc
L
1963{
1964 unsigned int j;
1965 int match = 1;
1966
1967 /* Don't check jump instructions. */
1968 if (t->opcode_modifier.jump
1969 || t->opcode_modifier.jumpbyte
1970 || t->opcode_modifier.jumpdword
1971 || t->opcode_modifier.jumpintersegment)
1972 return match;
1973
1974 /* Check memory and accumulator operand size. */
1975 for (j = 0; j < i.operands; j++)
1976 {
1b54b8d7
JB
1977 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1978 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1979 continue;
1980
1b54b8d7 1981 if (t->operand_types[j].bitfield.reg
dc821c5f 1982 && !match_reg_size (t, j))
5c07affc
L
1983 {
1984 match = 0;
1985 break;
1986 }
1987
1b54b8d7
JB
1988 if (t->operand_types[j].bitfield.regsimd
1989 && !match_simd_size (t, j))
1990 {
1991 match = 0;
1992 break;
1993 }
1994
1995 if (t->operand_types[j].bitfield.acc
1996 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1997 {
1998 match = 0;
1999 break;
2000 }
2001
5c07affc
L
2002 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2003 {
2004 match = 0;
2005 break;
2006 }
2007 }
2008
891edac4 2009 if (match)
5c07affc 2010 return match;
38e314eb 2011 else if (!t->opcode_modifier.d)
891edac4
L
2012 {
2013mismatch:
86e026a4 2014 i.error = operand_size_mismatch;
891edac4
L
2015 return 0;
2016 }
5c07affc
L
2017
2018 /* Check reverse. */
9c2799c2 2019 gas_assert (i.operands == 2);
5c07affc
L
2020
2021 match = 1;
2022 for (j = 0; j < 2; j++)
2023 {
dc821c5f
JB
2024 if ((t->operand_types[j].bitfield.reg
2025 || t->operand_types[j].bitfield.acc)
5c07affc 2026 && !match_reg_size (t, j ? 0 : 1))
891edac4 2027 goto mismatch;
5c07affc
L
2028
2029 if (i.types[j].bitfield.mem
2030 && !match_mem_size (t, j ? 0 : 1))
891edac4 2031 goto mismatch;
5c07affc
L
2032 }
2033
2034 return match;
2035}
2036
c6fb90c8 2037static INLINE int
40fb9820
L
2038operand_type_match (i386_operand_type overlap,
2039 i386_operand_type given)
2040{
2041 i386_operand_type temp = overlap;
2042
2043 temp.bitfield.jumpabsolute = 0;
7d5e4556 2044 temp.bitfield.unspecified = 0;
5c07affc
L
2045 temp.bitfield.byte = 0;
2046 temp.bitfield.word = 0;
2047 temp.bitfield.dword = 0;
2048 temp.bitfield.fword = 0;
2049 temp.bitfield.qword = 0;
2050 temp.bitfield.tbyte = 0;
2051 temp.bitfield.xmmword = 0;
c0f3af97 2052 temp.bitfield.ymmword = 0;
43234a1e 2053 temp.bitfield.zmmword = 0;
0dfbf9d7 2054 if (operand_type_all_zero (&temp))
891edac4 2055 goto mismatch;
40fb9820 2056
891edac4
L
2057 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2058 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2059 return 1;
2060
2061mismatch:
a65babc9 2062 i.error = operand_type_mismatch;
891edac4 2063 return 0;
40fb9820
L
2064}
2065
7d5e4556 2066/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2067 unless the expected operand type register overlap is null.
2068 Memory operand size of certain SIMD instructions is also being checked
2069 here. */
40fb9820 2070
c6fb90c8 2071static INLINE int
dc821c5f 2072operand_type_register_match (i386_operand_type g0,
40fb9820 2073 i386_operand_type t0,
40fb9820
L
2074 i386_operand_type g1,
2075 i386_operand_type t1)
2076{
10c17abd
JB
2077 if (!g0.bitfield.reg
2078 && !g0.bitfield.regsimd
2079 && (!operand_type_check (g0, anymem)
2080 || g0.bitfield.unspecified
2081 || !t0.bitfield.regsimd))
40fb9820
L
2082 return 1;
2083
10c17abd
JB
2084 if (!g1.bitfield.reg
2085 && !g1.bitfield.regsimd
2086 && (!operand_type_check (g1, anymem)
2087 || g1.bitfield.unspecified
2088 || !t1.bitfield.regsimd))
40fb9820
L
2089 return 1;
2090
dc821c5f
JB
2091 if (g0.bitfield.byte == g1.bitfield.byte
2092 && g0.bitfield.word == g1.bitfield.word
2093 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2094 && g0.bitfield.qword == g1.bitfield.qword
2095 && g0.bitfield.xmmword == g1.bitfield.xmmword
2096 && g0.bitfield.ymmword == g1.bitfield.ymmword
2097 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2098 return 1;
2099
dc821c5f
JB
2100 if (!(t0.bitfield.byte & t1.bitfield.byte)
2101 && !(t0.bitfield.word & t1.bitfield.word)
2102 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2103 && !(t0.bitfield.qword & t1.bitfield.qword)
2104 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2105 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2106 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2107 return 1;
2108
a65babc9 2109 i.error = register_type_mismatch;
891edac4
L
2110
2111 return 0;
40fb9820
L
2112}
2113
4c692bc7
JB
2114static INLINE unsigned int
2115register_number (const reg_entry *r)
2116{
2117 unsigned int nr = r->reg_num;
2118
2119 if (r->reg_flags & RegRex)
2120 nr += 8;
2121
200cbe0f
L
2122 if (r->reg_flags & RegVRex)
2123 nr += 16;
2124
4c692bc7
JB
2125 return nr;
2126}
2127
252b5132 2128static INLINE unsigned int
40fb9820 2129mode_from_disp_size (i386_operand_type t)
252b5132 2130{
b5014f7a 2131 if (t.bitfield.disp8)
40fb9820
L
2132 return 1;
2133 else if (t.bitfield.disp16
2134 || t.bitfield.disp32
2135 || t.bitfield.disp32s)
2136 return 2;
2137 else
2138 return 0;
252b5132
RH
2139}
2140
2141static INLINE int
65879393 2142fits_in_signed_byte (addressT num)
252b5132 2143{
65879393 2144 return num + 0x80 <= 0xff;
47926f60 2145}
252b5132
RH
2146
2147static INLINE int
65879393 2148fits_in_unsigned_byte (addressT num)
252b5132 2149{
65879393 2150 return num <= 0xff;
47926f60 2151}
252b5132
RH
2152
2153static INLINE int
65879393 2154fits_in_unsigned_word (addressT num)
252b5132 2155{
65879393 2156 return num <= 0xffff;
47926f60 2157}
252b5132
RH
2158
2159static INLINE int
65879393 2160fits_in_signed_word (addressT num)
252b5132 2161{
65879393 2162 return num + 0x8000 <= 0xffff;
47926f60 2163}
2a962e6d 2164
3e73aa7c 2165static INLINE int
65879393 2166fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2167{
2168#ifndef BFD64
2169 return 1;
2170#else
65879393 2171 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2172#endif
2173} /* fits_in_signed_long() */
2a962e6d 2174
3e73aa7c 2175static INLINE int
65879393 2176fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2177{
2178#ifndef BFD64
2179 return 1;
2180#else
65879393 2181 return num <= 0xffffffff;
3e73aa7c
JH
2182#endif
2183} /* fits_in_unsigned_long() */
252b5132 2184
43234a1e 2185static INLINE int
b5014f7a 2186fits_in_disp8 (offsetT num)
43234a1e
L
2187{
2188 int shift = i.memshift;
2189 unsigned int mask;
2190
2191 if (shift == -1)
2192 abort ();
2193
2194 mask = (1 << shift) - 1;
2195
2196 /* Return 0 if NUM isn't properly aligned. */
2197 if ((num & mask))
2198 return 0;
2199
2200 /* Check if NUM will fit in 8bit after shift. */
2201 return fits_in_signed_byte (num >> shift);
2202}
2203
a683cc34
SP
2204static INLINE int
2205fits_in_imm4 (offsetT num)
2206{
2207 return (num & 0xf) == num;
2208}
2209
40fb9820 2210static i386_operand_type
e3bb37b5 2211smallest_imm_type (offsetT num)
252b5132 2212{
40fb9820 2213 i386_operand_type t;
7ab9ffdd 2214
0dfbf9d7 2215 operand_type_set (&t, 0);
40fb9820
L
2216 t.bitfield.imm64 = 1;
2217
2218 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2219 {
2220 /* This code is disabled on the 486 because all the Imm1 forms
2221 in the opcode table are slower on the i486. They're the
2222 versions with the implicitly specified single-position
2223 displacement, which has another syntax if you really want to
2224 use that form. */
40fb9820
L
2225 t.bitfield.imm1 = 1;
2226 t.bitfield.imm8 = 1;
2227 t.bitfield.imm8s = 1;
2228 t.bitfield.imm16 = 1;
2229 t.bitfield.imm32 = 1;
2230 t.bitfield.imm32s = 1;
2231 }
2232 else if (fits_in_signed_byte (num))
2233 {
2234 t.bitfield.imm8 = 1;
2235 t.bitfield.imm8s = 1;
2236 t.bitfield.imm16 = 1;
2237 t.bitfield.imm32 = 1;
2238 t.bitfield.imm32s = 1;
2239 }
2240 else if (fits_in_unsigned_byte (num))
2241 {
2242 t.bitfield.imm8 = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2248 {
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_long (num))
2254 {
2255 t.bitfield.imm32 = 1;
2256 t.bitfield.imm32s = 1;
2257 }
2258 else if (fits_in_unsigned_long (num))
2259 t.bitfield.imm32 = 1;
2260
2261 return t;
47926f60 2262}
252b5132 2263
847f7ad4 2264static offsetT
e3bb37b5 2265offset_in_range (offsetT val, int size)
847f7ad4 2266{
508866be 2267 addressT mask;
ba2adb93 2268
847f7ad4
AM
2269 switch (size)
2270 {
508866be
L
2271 case 1: mask = ((addressT) 1 << 8) - 1; break;
2272 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2273 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2274#ifdef BFD64
2275 case 8: mask = ((addressT) 2 << 63) - 1; break;
2276#endif
47926f60 2277 default: abort ();
847f7ad4
AM
2278 }
2279
9de868bf
L
2280#ifdef BFD64
2281 /* If BFD64, sign extend val for 32bit address mode. */
2282 if (flag_code != CODE_64BIT
2283 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2284 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2285 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2286#endif
ba2adb93 2287
47926f60 2288 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2289 {
2290 char buf1[40], buf2[40];
2291
2292 sprint_value (buf1, val);
2293 sprint_value (buf2, val & mask);
2294 as_warn (_("%s shortened to %s"), buf1, buf2);
2295 }
2296 return val & mask;
2297}
2298
c32fa91d
L
2299enum PREFIX_GROUP
2300{
2301 PREFIX_EXIST = 0,
2302 PREFIX_LOCK,
2303 PREFIX_REP,
04ef582a 2304 PREFIX_DS,
c32fa91d
L
2305 PREFIX_OTHER
2306};
2307
2308/* Returns
2309 a. PREFIX_EXIST if attempting to add a prefix where one from the
2310 same class already exists.
2311 b. PREFIX_LOCK if lock prefix is added.
2312 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2313 d. PREFIX_DS if ds prefix is added.
2314 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2315 */
2316
2317static enum PREFIX_GROUP
e3bb37b5 2318add_prefix (unsigned int prefix)
252b5132 2319{
c32fa91d 2320 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2321 unsigned int q;
252b5132 2322
29b0f896
AM
2323 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2324 && flag_code == CODE_64BIT)
b1905489 2325 {
161a04f6
L
2326 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2327 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2328 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2329 ret = PREFIX_EXIST;
b1905489
JB
2330 q = REX_PREFIX;
2331 }
3e73aa7c 2332 else
b1905489
JB
2333 {
2334 switch (prefix)
2335 {
2336 default:
2337 abort ();
2338
b1905489 2339 case DS_PREFIX_OPCODE:
04ef582a
L
2340 ret = PREFIX_DS;
2341 /* Fall through. */
2342 case CS_PREFIX_OPCODE:
b1905489
JB
2343 case ES_PREFIX_OPCODE:
2344 case FS_PREFIX_OPCODE:
2345 case GS_PREFIX_OPCODE:
2346 case SS_PREFIX_OPCODE:
2347 q = SEG_PREFIX;
2348 break;
2349
2350 case REPNE_PREFIX_OPCODE:
2351 case REPE_PREFIX_OPCODE:
c32fa91d
L
2352 q = REP_PREFIX;
2353 ret = PREFIX_REP;
2354 break;
2355
b1905489 2356 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2357 q = LOCK_PREFIX;
2358 ret = PREFIX_LOCK;
b1905489
JB
2359 break;
2360
2361 case FWAIT_OPCODE:
2362 q = WAIT_PREFIX;
2363 break;
2364
2365 case ADDR_PREFIX_OPCODE:
2366 q = ADDR_PREFIX;
2367 break;
2368
2369 case DATA_PREFIX_OPCODE:
2370 q = DATA_PREFIX;
2371 break;
2372 }
2373 if (i.prefix[q] != 0)
c32fa91d 2374 ret = PREFIX_EXIST;
b1905489 2375 }
252b5132 2376
b1905489 2377 if (ret)
252b5132 2378 {
b1905489
JB
2379 if (!i.prefix[q])
2380 ++i.prefixes;
2381 i.prefix[q] |= prefix;
252b5132 2382 }
b1905489
JB
2383 else
2384 as_bad (_("same type of prefix used twice"));
252b5132 2385
252b5132
RH
2386 return ret;
2387}
2388
2389static void
78f12dd3 2390update_code_flag (int value, int check)
eecb386c 2391{
78f12dd3
L
2392 PRINTF_LIKE ((*as_error));
2393
1e9cc1c2 2394 flag_code = (enum flag_code) value;
40fb9820
L
2395 if (flag_code == CODE_64BIT)
2396 {
2397 cpu_arch_flags.bitfield.cpu64 = 1;
2398 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2399 }
2400 else
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 0;
2403 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2404 }
2405 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2406 {
78f12dd3
L
2407 if (check)
2408 as_error = as_fatal;
2409 else
2410 as_error = as_bad;
2411 (*as_error) (_("64bit mode not supported on `%s'."),
2412 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2413 }
40fb9820 2414 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2415 {
78f12dd3
L
2416 if (check)
2417 as_error = as_fatal;
2418 else
2419 as_error = as_bad;
2420 (*as_error) (_("32bit mode not supported on `%s'."),
2421 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2422 }
eecb386c
AM
2423 stackop_size = '\0';
2424}
2425
78f12dd3
L
2426static void
2427set_code_flag (int value)
2428{
2429 update_code_flag (value, 0);
2430}
2431
eecb386c 2432static void
e3bb37b5 2433set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2434{
1e9cc1c2 2435 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2436 if (flag_code != CODE_16BIT)
2437 abort ();
2438 cpu_arch_flags.bitfield.cpu64 = 0;
2439 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2440 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2441}
2442
2443static void
e3bb37b5 2444set_intel_syntax (int syntax_flag)
252b5132
RH
2445{
2446 /* Find out if register prefixing is specified. */
2447 int ask_naked_reg = 0;
2448
2449 SKIP_WHITESPACE ();
29b0f896 2450 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2451 {
d02603dc
NC
2452 char *string;
2453 int e = get_symbol_name (&string);
252b5132 2454
47926f60 2455 if (strcmp (string, "prefix") == 0)
252b5132 2456 ask_naked_reg = 1;
47926f60 2457 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2458 ask_naked_reg = -1;
2459 else
d0b47220 2460 as_bad (_("bad argument to syntax directive."));
d02603dc 2461 (void) restore_line_pointer (e);
252b5132
RH
2462 }
2463 demand_empty_rest_of_line ();
c3332e24 2464
252b5132
RH
2465 intel_syntax = syntax_flag;
2466
2467 if (ask_naked_reg == 0)
f86103b7
AM
2468 allow_naked_reg = (intel_syntax
2469 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2470 else
2471 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2472
ee86248c 2473 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2474
e4a3b5a4 2475 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2476 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2477 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2478}
2479
1efbbeb4
L
2480static void
2481set_intel_mnemonic (int mnemonic_flag)
2482{
e1d4d893 2483 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2484}
2485
db51cc60
L
2486static void
2487set_allow_index_reg (int flag)
2488{
2489 allow_index_reg = flag;
2490}
2491
cb19c032 2492static void
7bab8ab5 2493set_check (int what)
cb19c032 2494{
7bab8ab5
JB
2495 enum check_kind *kind;
2496 const char *str;
2497
2498 if (what)
2499 {
2500 kind = &operand_check;
2501 str = "operand";
2502 }
2503 else
2504 {
2505 kind = &sse_check;
2506 str = "sse";
2507 }
2508
cb19c032
L
2509 SKIP_WHITESPACE ();
2510
2511 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2512 {
d02603dc
NC
2513 char *string;
2514 int e = get_symbol_name (&string);
cb19c032
L
2515
2516 if (strcmp (string, "none") == 0)
7bab8ab5 2517 *kind = check_none;
cb19c032 2518 else if (strcmp (string, "warning") == 0)
7bab8ab5 2519 *kind = check_warning;
cb19c032 2520 else if (strcmp (string, "error") == 0)
7bab8ab5 2521 *kind = check_error;
cb19c032 2522 else
7bab8ab5 2523 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2524 (void) restore_line_pointer (e);
cb19c032
L
2525 }
2526 else
7bab8ab5 2527 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2528
2529 demand_empty_rest_of_line ();
2530}
2531
8a9036a4
L
2532static void
2533check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2534 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2535{
2536#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2537 static const char *arch;
2538
2539 /* Intel LIOM is only supported on ELF. */
2540 if (!IS_ELF)
2541 return;
2542
2543 if (!arch)
2544 {
2545 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2546 use default_arch. */
2547 arch = cpu_arch_name;
2548 if (!arch)
2549 arch = default_arch;
2550 }
2551
81486035
L
2552 /* If we are targeting Intel MCU, we must enable it. */
2553 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2554 || new_flag.bitfield.cpuiamcu)
2555 return;
2556
3632d14b 2557 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2559 || new_flag.bitfield.cpul1om)
8a9036a4 2560 return;
76ba9986 2561
7a9068fe
L
2562 /* If we are targeting Intel K1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2564 || new_flag.bitfield.cpuk1om)
2565 return;
2566
8a9036a4
L
2567 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2568#endif
2569}
2570
e413e4e9 2571static void
e3bb37b5 2572set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2573{
47926f60 2574 SKIP_WHITESPACE ();
e413e4e9 2575
29b0f896 2576 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2577 {
d02603dc
NC
2578 char *string;
2579 int e = get_symbol_name (&string);
91d6fa6a 2580 unsigned int j;
40fb9820 2581 i386_cpu_flags flags;
e413e4e9 2582
91d6fa6a 2583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2584 {
91d6fa6a 2585 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2586 {
91d6fa6a 2587 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2588
5c6af06e
JB
2589 if (*string != '.')
2590 {
91d6fa6a 2591 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2592 cpu_sub_arch_name = NULL;
91d6fa6a 2593 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2594 if (flag_code == CODE_64BIT)
2595 {
2596 cpu_arch_flags.bitfield.cpu64 = 1;
2597 cpu_arch_flags.bitfield.cpuno64 = 0;
2598 }
2599 else
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 0;
2602 cpu_arch_flags.bitfield.cpuno64 = 1;
2603 }
91d6fa6a
NC
2604 cpu_arch_isa = cpu_arch[j].type;
2605 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2606 if (!cpu_arch_tune_set)
2607 {
2608 cpu_arch_tune = cpu_arch_isa;
2609 cpu_arch_tune_flags = cpu_arch_isa_flags;
2610 }
5c6af06e
JB
2611 break;
2612 }
40fb9820 2613
293f5f65
L
2614 flags = cpu_flags_or (cpu_arch_flags,
2615 cpu_arch[j].flags);
81486035 2616
5b64d091 2617 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2618 {
6305a203
L
2619 if (cpu_sub_arch_name)
2620 {
2621 char *name = cpu_sub_arch_name;
2622 cpu_sub_arch_name = concat (name,
91d6fa6a 2623 cpu_arch[j].name,
1bf57e9f 2624 (const char *) NULL);
6305a203
L
2625 free (name);
2626 }
2627 else
91d6fa6a 2628 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2629 cpu_arch_flags = flags;
a586129e 2630 cpu_arch_isa_flags = flags;
5c6af06e 2631 }
d02603dc 2632 (void) restore_line_pointer (e);
5c6af06e
JB
2633 demand_empty_rest_of_line ();
2634 return;
e413e4e9
AM
2635 }
2636 }
293f5f65
L
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
33eaf5de 2640 /* Disable an ISA extension. */
293f5f65
L
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
91d6fa6a 2668 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
fddf5b5b
AM
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
29b0f896 2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2679 {
d02603dc
NC
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
fddf5b5b
AM
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
d02603dc 2693 (void) restore_line_pointer (e);
fddf5b5b
AM
2694 }
2695
e413e4e9
AM
2696 demand_empty_rest_of_line ();
2697}
2698
8a9036a4
L
2699enum bfd_architecture
2700i386_arch (void)
2701{
3632d14b 2702 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
7a9068fe
L
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
81486035
L
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
8a9036a4
L
2723 else
2724 return bfd_arch_i386;
2725}
2726
b9d79e03 2727unsigned long
7016a5d5 2728i386_mach (void)
b9d79e03 2729{
351f65ca 2730 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2731 {
3632d14b 2732 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2733 {
351f65ca
L
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
8a9036a4
L
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
7a9068fe
L
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
351f65ca 2746 else if (default_arch[6] == '\0')
8a9036a4 2747 return bfd_mach_x86_64;
351f65ca
L
2748 else
2749 return bfd_mach_x64_32;
8a9036a4 2750 }
5197d474
L
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
81486035
L
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
b9d79e03 2763 else
2b5d6a91 2764 as_fatal (_("unknown architecture"));
b9d79e03 2765}
b9d79e03 2766\f
252b5132 2767void
7016a5d5 2768md_begin (void)
252b5132
RH
2769{
2770 const char *hash_err;
2771
86fa6981
L
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
47926f60 2775 /* Initialize op_hash hash table. */
252b5132
RH
2776 op_hash = hash_new ();
2777
2778 {
d3ce72d0 2779 const insn_template *optab;
29b0f896 2780 templates *core_optab;
252b5132 2781
47926f60
KH
2782 /* Setup for loop. */
2783 optab = i386_optab;
add39d23 2784 core_optab = XNEW (templates);
252b5132
RH
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
47926f60 2794 add to hash table; & begin anew. */
252b5132
RH
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
5a49b8ac 2798 (void *) core_optab);
252b5132
RH
2799 if (hash_err)
2800 {
b37df7c4 2801 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
add39d23 2807 core_optab = XNEW (templates);
252b5132
RH
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
47926f60 2813 /* Initialize reg_hash hash table. */
252b5132
RH
2814 reg_hash = hash_new ();
2815 {
29b0f896 2816 const reg_entry *regtab;
c3fe08fa 2817 unsigned int regtab_size = i386_regtab_size;
252b5132 2818
c3fe08fa 2819 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2820 {
5a49b8ac 2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2822 if (hash_err)
b37df7c4 2823 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2824 regtab->reg_name,
2825 hash_err);
252b5132
RH
2826 }
2827 }
2828
47926f60 2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2830 {
29b0f896
AM
2831 int c;
2832 char *p;
252b5132
RH
2833
2834 for (c = 0; c < 256; c++)
2835 {
3882b010 2836 if (ISDIGIT (c))
252b5132
RH
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
3882b010 2843 else if (ISLOWER (c))
252b5132
RH
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
3882b010 2849 else if (ISUPPER (c))
252b5132 2850 {
3882b010 2851 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
43234a1e 2855 else if (c == '{' || c == '}')
86fa6981
L
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
252b5132 2860
3882b010 2861 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870#ifdef LEX_AT
2871 identifier_chars['@'] = '@';
32137342
NC
2872#endif
2873#ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
252b5132 2876#endif
252b5132 2877 digit_chars['-'] = '-';
c0f3af97 2878 mnemonic_chars['_'] = '_';
791fe849 2879 mnemonic_chars['-'] = '-';
0003779b 2880 mnemonic_chars['.'] = '.';
252b5132
RH
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
a4447b93
RH
2888 if (flag_code == CODE_64BIT)
2889 {
ca19b261
KT
2890#if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893#else
a4447b93 2894 x86_dwarf2_return_column = 16;
ca19b261 2895#endif
61ff971f 2896 x86_cie_data_alignment = -8;
a4447b93
RH
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
252b5132
RH
2903}
2904
2905void
e3bb37b5 2906i386_print_statistics (FILE *file)
252b5132
RH
2907{
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910}
2911\f
252b5132
RH
2912#ifdef DEBUG386
2913
ce8a8b2f 2914/* Debugging routines for md_assemble. */
d3ce72d0 2915static void pte (insn_template *);
40fb9820 2916static void pt (i386_operand_type);
e3bb37b5
L
2917static void pe (expressionS *);
2918static void ps (symbolS *);
252b5132
RH
2919
2920static void
e3bb37b5 2921pi (char *line, i386_insn *x)
252b5132 2922{
09137c09 2923 unsigned int j;
252b5132
RH
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
09f131f2
JH
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2932 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
09137c09 2940 for (j = 0; j < x->operands; j++)
252b5132 2941 {
09137c09
SP
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
252b5132 2944 fprintf (stdout, "\n");
dc821c5f 2945 if (x->types[j].bitfield.reg
09137c09 2946 || x->types[j].bitfield.regmmx
1b54b8d7 2947 || x->types[j].bitfield.regsimd
09137c09
SP
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
252b5132
RH
2958 }
2959}
2960
2961static void
d3ce72d0 2962pte (insn_template *t)
252b5132 2963{
09137c09 2964 unsigned int j;
252b5132 2965 fprintf (stdout, " %d operands ", t->operands);
47926f60 2966 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2969 if (t->opcode_modifier.d)
252b5132 2970 fprintf (stdout, "D");
40fb9820 2971 if (t->opcode_modifier.w)
252b5132
RH
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
09137c09 2974 for (j = 0; j < t->operands; j++)
252b5132 2975 {
09137c09
SP
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
252b5132
RH
2978 fprintf (stdout, "\n");
2979 }
2980}
2981
2982static void
e3bb37b5 2983pe (expressionS *e)
252b5132 2984{
24eab124 2985 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000}
3001
3002static void
e3bb37b5 3003ps (symbolS *s)
252b5132
RH
3004{
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009}
3010
7b81dfbb 3011static struct type_name
252b5132 3012 {
40fb9820
L
3013 i386_operand_type mask;
3014 const char *name;
252b5132 3015 }
7b81dfbb 3016const type_names[] =
252b5132 3017{
40fb9820
L
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3048 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3051 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3052};
3053
3054static void
40fb9820 3055pt (i386_operand_type t)
252b5132 3056{
40fb9820 3057 unsigned int j;
c6fb90c8 3058 i386_operand_type a;
252b5132 3059
40fb9820 3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
0349dc08 3063 if (!operand_type_all_zero (&a))
c6fb90c8
L
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
252b5132
RH
3066 fflush (stdout);
3067}
3068
3069#endif /* DEBUG386 */
3070\f
252b5132 3071static bfd_reloc_code_real_type
3956db08 3072reloc (unsigned int size,
64e74474
AM
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
252b5132 3076{
47926f60 3077 if (other != NO_RELOC)
3956db08 3078 {
91d6fa6a 3079 reloc_howto_type *rel;
3956db08
JB
3080
3081 if (size == 8)
3082 switch (other)
3083 {
64e74474
AM
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
553d1284
L
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
64e74474
AM
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3956db08 3107 }
e05278af 3108
8ce3d284 3109#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
1ab668bf 3113 other = BFD_RELOC_SIZE64;
8fd4256d 3114 if (pcrel)
1ab668bf
AM
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
8fd4256d 3119 }
8ce3d284 3120#endif
8fd4256d 3121
e05278af 3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3124 sign = -1;
3125
91d6fa6a
NC
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3956db08 3128 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3129 else if (size != bfd_get_reloc_size (rel))
3956db08 3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3131 bfd_get_reloc_size (rel),
3956db08 3132 size);
91d6fa6a 3133 else if (pcrel && !rel->pc_relative)
3956db08 3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3136 && !sign)
91d6fa6a 3137 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3138 && sign > 0))
3956db08
JB
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
252b5132
RH
3144
3145 if (pcrel)
3146 {
3e73aa7c 3147 if (!sign)
3956db08 3148 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
d258b828 3153 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3154 case 8: return BFD_RELOC_64_PCREL;
252b5132 3155 }
3956db08 3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3157 }
3158 else
3159 {
3956db08 3160 if (sign > 0)
e5cb08ac 3161 switch (size)
3e73aa7c
JH
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3956db08
JB
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3175 }
3176
0cc9e1d3 3177 return NO_RELOC;
252b5132
RH
3178}
3179
47926f60
KH
3180/* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
252b5132 3185int
e3bb37b5 3186tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3187{
6d249963 3188#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3189 if (!IS_ELF)
31312f95
AM
3190 return 1;
3191
a161fe53
AM
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
252b5132 3197 return 0;
31312f95 3198
8d01d9a9
AJ
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
8fd4256d
L
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
31312f95 3241#endif
252b5132
RH
3242 return 1;
3243}
252b5132 3244
b4cac588 3245static int
e3bb37b5 3246intel_float_operand (const char *mnemonic)
252b5132 3247{
9306ca4a
JB
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
252b5132 3294
9306ca4a 3295 return 1;
252b5132
RH
3296}
3297
c0f3af97
L
3298/* Build the VEX prefix. */
3299
3300static void
d3ce72d0 3301build_vex_prefix (const insn_template *t)
c0f3af97
L
3302{
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
43234a1e
L
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
c0f3af97
L
3314 else
3315 register_specifier = 0xf;
3316
33eaf5de 3317 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3318 operand. */
86fa6981
L
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
fa99fab2 3321 && i.operands == i.reg_operands
7f399153 3322 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3323 && i.tm.opcode_modifier.load
fa99fab2
L
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
9c2799c2 3337 gas_assert (i.rm.mode == 3);
fa99fab2
L
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
539f890d
L
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
10c17abd
JB
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
539f890d 3352 else
10c17abd
JB
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
c0f3af97
L
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3388 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
f88c9eb0 3409 i.vex.length = 3;
f88c9eb0 3410
7f399153 3411 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3412 {
7f399153
L
3413 case VEX0F:
3414 m = 0x1;
80de6e00 3415 i.vex.bytes[0] = 0xc4;
7f399153
L
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
80de6e00 3419 i.vex.bytes[0] = 0xc4;
7f399153
L
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
80de6e00 3423 i.vex.bytes[0] = 0xc4;
7f399153
L
3424 break;
3425 case XOP08:
5dd85c99
SP
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
7f399153
L
3428 break;
3429 case XOP09:
f88c9eb0
SP
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
7f399153
L
3432 break;
3433 case XOP0A:
f88c9eb0
SP
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
7f399153
L
3436 break;
3437 default:
3438 abort ();
f88c9eb0 3439 }
c0f3af97 3440
c0f3af97
L
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
c0f3af97
L
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455}
3456
43234a1e
L
3457/* Build the EVEX prefix. */
3458
3459static void
3460build_evex_prefix (void)
3461{
3462 unsigned int register_specifier;
3463 unsigned int implied_prefix;
3464 unsigned int m, w;
3465 rex_byte vrex_used = 0;
3466
3467 /* Check register specifier. */
3468 if (i.vex.register_specifier)
3469 {
3470 gas_assert ((i.vrex & REX_X) == 0);
3471
3472 register_specifier = i.vex.register_specifier->reg_num;
3473 if ((i.vex.register_specifier->reg_flags & RegRex))
3474 register_specifier += 8;
3475 /* The upper 16 registers are encoded in the fourth byte of the
3476 EVEX prefix. */
3477 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3478 i.vex.bytes[3] = 0x8;
3479 register_specifier = ~register_specifier & 0xf;
3480 }
3481 else
3482 {
3483 register_specifier = 0xf;
3484
3485 /* Encode upper 16 vector index register in the fourth byte of
3486 the EVEX prefix. */
3487 if (!(i.vrex & REX_X))
3488 i.vex.bytes[3] = 0x8;
3489 else
3490 vrex_used |= REX_X;
3491 }
3492
3493 switch ((i.tm.base_opcode >> 8) & 0xff)
3494 {
3495 case 0:
3496 implied_prefix = 0;
3497 break;
3498 case DATA_PREFIX_OPCODE:
3499 implied_prefix = 1;
3500 break;
3501 case REPE_PREFIX_OPCODE:
3502 implied_prefix = 2;
3503 break;
3504 case REPNE_PREFIX_OPCODE:
3505 implied_prefix = 3;
3506 break;
3507 default:
3508 abort ();
3509 }
3510
3511 /* 4 byte EVEX prefix. */
3512 i.vex.length = 4;
3513 i.vex.bytes[0] = 0x62;
3514
3515 /* mmmm bits. */
3516 switch (i.tm.opcode_modifier.vexopcode)
3517 {
3518 case VEX0F:
3519 m = 1;
3520 break;
3521 case VEX0F38:
3522 m = 2;
3523 break;
3524 case VEX0F3A:
3525 m = 3;
3526 break;
3527 default:
3528 abort ();
3529 break;
3530 }
3531
3532 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3533 bits from REX. */
3534 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3535
3536 /* The fifth bit of the second EVEX byte is 1's compliment of the
3537 REX_R bit in VREX. */
3538 if (!(i.vrex & REX_R))
3539 i.vex.bytes[1] |= 0x10;
3540 else
3541 vrex_used |= REX_R;
3542
3543 if ((i.reg_operands + i.imm_operands) == i.operands)
3544 {
3545 /* When all operands are registers, the REX_X bit in REX is not
3546 used. We reuse it to encode the upper 16 registers, which is
3547 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3548 as 1's compliment. */
3549 if ((i.vrex & REX_B))
3550 {
3551 vrex_used |= REX_B;
3552 i.vex.bytes[1] &= ~0x40;
3553 }
3554 }
3555
3556 /* EVEX instructions shouldn't need the REX prefix. */
3557 i.vrex &= ~vrex_used;
3558 gas_assert (i.vrex == 0);
3559
3560 /* Check the REX.W bit. */
3561 w = (i.rex & REX_W) ? 1 : 0;
3562 if (i.tm.opcode_modifier.vexw)
3563 {
3564 if (i.tm.opcode_modifier.vexw == VEXW1)
3565 w = 1;
3566 }
3567 /* If w is not set it means we are dealing with WIG instruction. */
3568 else if (!w)
3569 {
3570 if (evexwig == evexw1)
3571 w = 1;
3572 }
3573
3574 /* Encode the U bit. */
3575 implied_prefix |= 0x4;
3576
3577 /* The third byte of the EVEX prefix. */
3578 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3579
3580 /* The fourth byte of the EVEX prefix. */
3581 /* The zeroing-masking bit. */
3582 if (i.mask && i.mask->zeroing)
3583 i.vex.bytes[3] |= 0x80;
3584
3585 /* Don't always set the broadcast bit if there is no RC. */
3586 if (!i.rounding)
3587 {
3588 /* Encode the vector length. */
3589 unsigned int vec_length;
3590
3591 switch (i.tm.opcode_modifier.evex)
3592 {
3593 case EVEXLIG: /* LL' is ignored */
3594 vec_length = evexlig << 5;
3595 break;
3596 case EVEX128:
3597 vec_length = 0 << 5;
3598 break;
3599 case EVEX256:
3600 vec_length = 1 << 5;
3601 break;
3602 case EVEX512:
3603 vec_length = 2 << 5;
3604 break;
3605 default:
3606 abort ();
3607 break;
3608 }
3609 i.vex.bytes[3] |= vec_length;
3610 /* Encode the broadcast bit. */
3611 if (i.broadcast)
3612 i.vex.bytes[3] |= 0x10;
3613 }
3614 else
3615 {
3616 if (i.rounding->type != saeonly)
3617 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3618 else
d3d3c6db 3619 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3620 }
3621
3622 if (i.mask && i.mask->mask)
3623 i.vex.bytes[3] |= i.mask->mask->reg_num;
3624}
3625
65da13b5
L
3626static void
3627process_immext (void)
3628{
3629 expressionS *exp;
3630
4c692bc7
JB
3631 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3632 && i.operands > 0)
65da13b5 3633 {
4c692bc7
JB
3634 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3635 with an opcode suffix which is coded in the same place as an
3636 8-bit immediate field would be.
3637 Here we check those operands and remove them afterwards. */
65da13b5
L
3638 unsigned int x;
3639
3640 for (x = 0; x < i.operands; x++)
4c692bc7 3641 if (register_number (i.op[x].regs) != x)
65da13b5 3642 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3643 register_prefix, i.op[x].regs->reg_name, x + 1,
3644 i.tm.name);
3645
3646 i.operands = 0;
65da13b5
L
3647 }
3648
9916071f
AP
3649 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3650 {
3651 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3652 suffix which is coded in the same place as an 8-bit immediate
3653 field would be.
3654 Here we check those operands and remove them afterwards. */
3655 unsigned int x;
3656
3657 if (i.operands != 3)
3658 abort();
3659
3660 for (x = 0; x < 2; x++)
3661 if (register_number (i.op[x].regs) != x)
3662 goto bad_register_operand;
3663
3664 /* Check for third operand for mwaitx/monitorx insn. */
3665 if (register_number (i.op[x].regs)
3666 != (x + (i.tm.extension_opcode == 0xfb)))
3667 {
3668bad_register_operand:
3669 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3670 register_prefix, i.op[x].regs->reg_name, x+1,
3671 i.tm.name);
3672 }
3673
3674 i.operands = 0;
3675 }
3676
c0f3af97 3677 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3678 which is coded in the same place as an 8-bit immediate field
3679 would be. Here we fake an 8-bit immediate operand from the
3680 opcode suffix stored in tm.extension_opcode.
3681
c1e679ec 3682 AVX instructions also use this encoding, for some of
c0f3af97 3683 3 argument instructions. */
65da13b5 3684
43234a1e 3685 gas_assert (i.imm_operands <= 1
7ab9ffdd 3686 && (i.operands <= 2
43234a1e
L
3687 || ((i.tm.opcode_modifier.vex
3688 || i.tm.opcode_modifier.evex)
7ab9ffdd 3689 && i.operands <= 4)));
65da13b5
L
3690
3691 exp = &im_expressions[i.imm_operands++];
3692 i.op[i.operands].imms = exp;
3693 i.types[i.operands] = imm8;
3694 i.operands++;
3695 exp->X_op = O_constant;
3696 exp->X_add_number = i.tm.extension_opcode;
3697 i.tm.extension_opcode = None;
3698}
3699
42164a71
L
3700
3701static int
3702check_hle (void)
3703{
3704 switch (i.tm.opcode_modifier.hleprefixok)
3705 {
3706 default:
3707 abort ();
82c2def5 3708 case HLEPrefixNone:
165de32a
L
3709 as_bad (_("invalid instruction `%s' after `%s'"),
3710 i.tm.name, i.hle_prefix);
42164a71 3711 return 0;
82c2def5 3712 case HLEPrefixLock:
42164a71
L
3713 if (i.prefix[LOCK_PREFIX])
3714 return 1;
165de32a 3715 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3716 return 0;
82c2def5 3717 case HLEPrefixAny:
42164a71 3718 return 1;
82c2def5 3719 case HLEPrefixRelease:
42164a71
L
3720 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3721 {
3722 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3723 i.tm.name);
3724 return 0;
3725 }
3726 if (i.mem_operands == 0
3727 || !operand_type_check (i.types[i.operands - 1], anymem))
3728 {
3729 as_bad (_("memory destination needed for instruction `%s'"
3730 " after `xrelease'"), i.tm.name);
3731 return 0;
3732 }
3733 return 1;
3734 }
3735}
3736
b6f8c7c4
L
3737/* Try the shortest encoding by shortening operand size. */
3738
3739static void
3740optimize_encoding (void)
3741{
3742 int j;
3743
3744 if (optimize_for_space
3745 && i.reg_operands == 1
3746 && i.imm_operands == 1
3747 && !i.types[1].bitfield.byte
3748 && i.op[0].imms->X_op == O_constant
3749 && fits_in_imm7 (i.op[0].imms->X_add_number)
3750 && ((i.tm.base_opcode == 0xa8
3751 && i.tm.extension_opcode == None)
3752 || (i.tm.base_opcode == 0xf6
3753 && i.tm.extension_opcode == 0x0)))
3754 {
3755 /* Optimize: -Os:
3756 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3757 */
3758 unsigned int base_regnum = i.op[1].regs->reg_num;
3759 if (flag_code == CODE_64BIT || base_regnum < 4)
3760 {
3761 i.types[1].bitfield.byte = 1;
3762 /* Ignore the suffix. */
3763 i.suffix = 0;
3764 if (base_regnum >= 4
3765 && !(i.op[1].regs->reg_flags & RegRex))
3766 {
3767 /* Handle SP, BP, SI and DI registers. */
3768 if (i.types[1].bitfield.word)
3769 j = 16;
3770 else if (i.types[1].bitfield.dword)
3771 j = 32;
3772 else
3773 j = 48;
3774 i.op[1].regs -= j;
3775 }
3776 }
3777 }
3778 else if (flag_code == CODE_64BIT
3779 && ((i.reg_operands == 1
3780 && i.imm_operands == 1
3781 && i.op[0].imms->X_op == O_constant
3782 && ((i.tm.base_opcode == 0xb0
3783 && i.tm.extension_opcode == None
3784 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3785 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3786 && (((i.tm.base_opcode == 0x24
3787 || i.tm.base_opcode == 0xa8)
3788 && i.tm.extension_opcode == None)
3789 || (i.tm.base_opcode == 0x80
3790 && i.tm.extension_opcode == 0x4)
3791 || ((i.tm.base_opcode == 0xf6
3792 || i.tm.base_opcode == 0xc6)
3793 && i.tm.extension_opcode == 0x0)))))
3794 || (i.reg_operands == 2
3795 && i.op[0].regs == i.op[1].regs
3796 && ((i.tm.base_opcode == 0x30
3797 || i.tm.base_opcode == 0x28)
3798 && i.tm.extension_opcode == None)))
3799 && i.types[1].bitfield.qword)
3800 {
3801 /* Optimize: -O:
3802 andq $imm31, %r64 -> andl $imm31, %r32
3803 testq $imm31, %r64 -> testl $imm31, %r32
3804 xorq %r64, %r64 -> xorl %r32, %r32
3805 subq %r64, %r64 -> subl %r32, %r32
3806 movq $imm31, %r64 -> movl $imm31, %r32
3807 movq $imm32, %r64 -> movl $imm32, %r32
3808 */
3809 i.tm.opcode_modifier.norex64 = 1;
3810 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3811 {
3812 /* Handle
3813 movq $imm31, %r64 -> movl $imm31, %r32
3814 movq $imm32, %r64 -> movl $imm32, %r32
3815 */
3816 i.tm.operand_types[0].bitfield.imm32 = 1;
3817 i.tm.operand_types[0].bitfield.imm32s = 0;
3818 i.tm.operand_types[0].bitfield.imm64 = 0;
3819 i.types[0].bitfield.imm32 = 1;
3820 i.types[0].bitfield.imm32s = 0;
3821 i.types[0].bitfield.imm64 = 0;
3822 i.types[1].bitfield.dword = 1;
3823 i.types[1].bitfield.qword = 0;
3824 if (i.tm.base_opcode == 0xc6)
3825 {
3826 /* Handle
3827 movq $imm31, %r64 -> movl $imm31, %r32
3828 */
3829 i.tm.base_opcode = 0xb0;
3830 i.tm.extension_opcode = None;
3831 i.tm.opcode_modifier.shortform = 1;
3832 i.tm.opcode_modifier.modrm = 0;
3833 }
3834 }
3835 }
3836 else if (optimize > 1
3837 && i.reg_operands == 3
3838 && i.op[0].regs == i.op[1].regs
3839 && !i.types[2].bitfield.xmmword
3840 && (i.tm.opcode_modifier.vex
3841 || (!i.mask
3842 && !i.rounding
3843 && i.tm.opcode_modifier.evex
3844 && cpu_arch_flags.bitfield.cpuavx512vl))
3845 && ((i.tm.base_opcode == 0x55
3846 || i.tm.base_opcode == 0x6655
3847 || i.tm.base_opcode == 0x66df
3848 || i.tm.base_opcode == 0x57
3849 || i.tm.base_opcode == 0x6657
8305403a
L
3850 || i.tm.base_opcode == 0x66ef
3851 || i.tm.base_opcode == 0x66f8
3852 || i.tm.base_opcode == 0x66f9
3853 || i.tm.base_opcode == 0x66fa
3854 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3855 && i.tm.extension_opcode == None))
3856 {
3857 /* Optimize: -O2:
8305403a
L
3858 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3859 vpsubq and vpsubw:
b6f8c7c4
L
3860 EVEX VOP %zmmM, %zmmM, %zmmN
3861 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3862 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3863 EVEX VOP %ymmM, %ymmM, %ymmN
3864 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3865 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3866 VEX VOP %ymmM, %ymmM, %ymmN
3867 -> VEX VOP %xmmM, %xmmM, %xmmN
3868 VOP, one of vpandn and vpxor:
3869 VEX VOP %ymmM, %ymmM, %ymmN
3870 -> VEX VOP %xmmM, %xmmM, %xmmN
3871 VOP, one of vpandnd and vpandnq:
3872 EVEX VOP %zmmM, %zmmM, %zmmN
3873 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3874 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3875 EVEX VOP %ymmM, %ymmM, %ymmN
3876 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3877 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3878 VOP, one of vpxord and vpxorq:
3879 EVEX VOP %zmmM, %zmmM, %zmmN
3880 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 EVEX VOP %ymmM, %ymmM, %ymmN
3883 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3884 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3885 */
3886 if (i.tm.opcode_modifier.evex)
3887 {
3888 /* If only lower 16 vector registers are used, we can use
3889 VEX encoding. */
3890 for (j = 0; j < 3; j++)
3891 if (register_number (i.op[j].regs) > 15)
3892 break;
3893
3894 if (j < 3)
3895 i.tm.opcode_modifier.evex = EVEX128;
3896 else
3897 {
3898 i.tm.opcode_modifier.vex = VEX128;
3899 i.tm.opcode_modifier.vexw = VEXW0;
3900 i.tm.opcode_modifier.evex = 0;
3901 }
3902 }
3903 else
3904 i.tm.opcode_modifier.vex = VEX128;
3905
3906 if (i.tm.opcode_modifier.vex)
3907 for (j = 0; j < 3; j++)
3908 {
3909 i.types[j].bitfield.xmmword = 1;
3910 i.types[j].bitfield.ymmword = 0;
3911 }
3912 }
3913}
3914
252b5132
RH
3915/* This is the guts of the machine-dependent assembler. LINE points to a
3916 machine dependent instruction. This function is supposed to emit
3917 the frags/bytes it assembles to. */
3918
3919void
65da13b5 3920md_assemble (char *line)
252b5132 3921{
40fb9820 3922 unsigned int j;
83b16ac6 3923 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3924 const insn_template *t;
252b5132 3925
47926f60 3926 /* Initialize globals. */
252b5132
RH
3927 memset (&i, '\0', sizeof (i));
3928 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3929 i.reloc[j] = NO_RELOC;
252b5132
RH
3930 memset (disp_expressions, '\0', sizeof (disp_expressions));
3931 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3932 save_stack_p = save_stack;
252b5132
RH
3933
3934 /* First parse an instruction mnemonic & call i386_operand for the operands.
3935 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3936 start of a (possibly prefixed) mnemonic. */
252b5132 3937
29b0f896
AM
3938 line = parse_insn (line, mnemonic);
3939 if (line == NULL)
3940 return;
83b16ac6 3941 mnem_suffix = i.suffix;
252b5132 3942
29b0f896 3943 line = parse_operands (line, mnemonic);
ee86248c 3944 this_operand = -1;
8325cc63
JB
3945 xfree (i.memop1_string);
3946 i.memop1_string = NULL;
29b0f896
AM
3947 if (line == NULL)
3948 return;
252b5132 3949
29b0f896
AM
3950 /* Now we've parsed the mnemonic into a set of templates, and have the
3951 operands at hand. */
3952
3953 /* All intel opcodes have reversed operands except for "bound" and
3954 "enter". We also don't reverse intersegment "jmp" and "call"
3955 instructions with 2 immediate operands so that the immediate segment
050dfa73 3956 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3957 if (intel_syntax
3958 && i.operands > 1
29b0f896 3959 && (strcmp (mnemonic, "bound") != 0)
30123838 3960 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3961 && !(operand_type_check (i.types[0], imm)
3962 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3963 swap_operands ();
3964
ec56d5c0
JB
3965 /* The order of the immediates should be reversed
3966 for 2 immediates extrq and insertq instructions */
3967 if (i.imm_operands == 2
3968 && (strcmp (mnemonic, "extrq") == 0
3969 || strcmp (mnemonic, "insertq") == 0))
3970 swap_2_operands (0, 1);
3971
29b0f896
AM
3972 if (i.imm_operands)
3973 optimize_imm ();
3974
b300c311
L
3975 /* Don't optimize displacement for movabs since it only takes 64bit
3976 displacement. */
3977 if (i.disp_operands
a501d77e 3978 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3979 && (flag_code != CODE_64BIT
3980 || strcmp (mnemonic, "movabs") != 0))
3981 optimize_disp ();
29b0f896
AM
3982
3983 /* Next, we find a template that matches the given insn,
3984 making sure the overlap of the given operands types is consistent
3985 with the template operand types. */
252b5132 3986
83b16ac6 3987 if (!(t = match_template (mnem_suffix)))
29b0f896 3988 return;
252b5132 3989
7bab8ab5 3990 if (sse_check != check_none
81f8a913 3991 && !i.tm.opcode_modifier.noavx
6e3e5c9e 3992 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
3993 && (i.tm.cpu_flags.bitfield.cpusse
3994 || i.tm.cpu_flags.bitfield.cpusse2
3995 || i.tm.cpu_flags.bitfield.cpusse3
3996 || i.tm.cpu_flags.bitfield.cpussse3
3997 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
3998 || i.tm.cpu_flags.bitfield.cpusse4_2
3999 || i.tm.cpu_flags.bitfield.cpupclmul
4000 || i.tm.cpu_flags.bitfield.cpuaes
4001 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4002 {
7bab8ab5 4003 (sse_check == check_warning
daf50ae7
L
4004 ? as_warn
4005 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4006 }
4007
321fd21e
L
4008 /* Zap movzx and movsx suffix. The suffix has been set from
4009 "word ptr" or "byte ptr" on the source operand in Intel syntax
4010 or extracted from mnemonic in AT&T syntax. But we'll use
4011 the destination register to choose the suffix for encoding. */
4012 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4013 {
321fd21e
L
4014 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4015 there is no suffix, the default will be byte extension. */
4016 if (i.reg_operands != 2
4017 && !i.suffix
7ab9ffdd 4018 && intel_syntax)
321fd21e
L
4019 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4020
4021 i.suffix = 0;
cd61ebfe 4022 }
24eab124 4023
40fb9820 4024 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4025 if (!add_prefix (FWAIT_OPCODE))
4026 return;
252b5132 4027
d5de92cf
L
4028 /* Check if REP prefix is OK. */
4029 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4030 {
4031 as_bad (_("invalid instruction `%s' after `%s'"),
4032 i.tm.name, i.rep_prefix);
4033 return;
4034 }
4035
c1ba0266
L
4036 /* Check for lock without a lockable instruction. Destination operand
4037 must be memory unless it is xchg (0x86). */
c32fa91d
L
4038 if (i.prefix[LOCK_PREFIX]
4039 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4040 || i.mem_operands == 0
4041 || (i.tm.base_opcode != 0x86
4042 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4043 {
4044 as_bad (_("expecting lockable instruction after `lock'"));
4045 return;
4046 }
4047
42164a71 4048 /* Check if HLE prefix is OK. */
165de32a 4049 if (i.hle_prefix && !check_hle ())
42164a71
L
4050 return;
4051
7e8b059b
L
4052 /* Check BND prefix. */
4053 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4054 as_bad (_("expecting valid branch instruction after `bnd'"));
4055
04ef582a 4056 /* Check NOTRACK prefix. */
9fef80d6
L
4057 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4058 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4059
327e8c42
JB
4060 if (i.tm.cpu_flags.bitfield.cpumpx)
4061 {
4062 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4063 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4064 else if (flag_code != CODE_16BIT
4065 ? i.prefix[ADDR_PREFIX]
4066 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4067 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4068 }
7e8b059b
L
4069
4070 /* Insert BND prefix. */
4071 if (add_bnd_prefix
4072 && i.tm.opcode_modifier.bndprefixok
4073 && !i.prefix[BND_PREFIX])
4074 add_prefix (BND_PREFIX_OPCODE);
4075
29b0f896 4076 /* Check string instruction segment overrides. */
40fb9820 4077 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4078 {
4079 if (!check_string ())
5dd0794d 4080 return;
fc0763e6 4081 i.disp_operands = 0;
29b0f896 4082 }
5dd0794d 4083
b6f8c7c4
L
4084 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4085 optimize_encoding ();
4086
29b0f896
AM
4087 if (!process_suffix ())
4088 return;
e413e4e9 4089
bc0844ae
L
4090 /* Update operand types. */
4091 for (j = 0; j < i.operands; j++)
4092 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4093
29b0f896
AM
4094 /* Make still unresolved immediate matches conform to size of immediate
4095 given in i.suffix. */
4096 if (!finalize_imm ())
4097 return;
252b5132 4098
40fb9820 4099 if (i.types[0].bitfield.imm1)
29b0f896 4100 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4101
9afe6eb8
L
4102 /* We only need to check those implicit registers for instructions
4103 with 3 operands or less. */
4104 if (i.operands <= 3)
4105 for (j = 0; j < i.operands; j++)
4106 if (i.types[j].bitfield.inoutportreg
4107 || i.types[j].bitfield.shiftcount
1b54b8d7 4108 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4109 i.reg_operands--;
40fb9820 4110
c0f3af97
L
4111 /* ImmExt should be processed after SSE2AVX. */
4112 if (!i.tm.opcode_modifier.sse2avx
4113 && i.tm.opcode_modifier.immext)
65da13b5 4114 process_immext ();
252b5132 4115
29b0f896
AM
4116 /* For insns with operands there are more diddles to do to the opcode. */
4117 if (i.operands)
4118 {
4119 if (!process_operands ())
4120 return;
4121 }
40fb9820 4122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4123 {
4124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4125 as_warn (_("translating to `%sp'"), i.tm.name);
4126 }
252b5132 4127
9e5e5283
L
4128 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4129 {
4130 if (flag_code == CODE_16BIT)
4131 {
4132 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4133 i.tm.name);
4134 return;
4135 }
c0f3af97 4136
9e5e5283
L
4137 if (i.tm.opcode_modifier.vex)
4138 build_vex_prefix (t);
4139 else
4140 build_evex_prefix ();
4141 }
43234a1e 4142
5dd85c99
SP
4143 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4144 instructions may define INT_OPCODE as well, so avoid this corner
4145 case for those instructions that use MODRM. */
4146 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4147 && !i.tm.opcode_modifier.modrm
4148 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4149 {
4150 i.tm.base_opcode = INT3_OPCODE;
4151 i.imm_operands = 0;
4152 }
252b5132 4153
40fb9820
L
4154 if ((i.tm.opcode_modifier.jump
4155 || i.tm.opcode_modifier.jumpbyte
4156 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4157 && i.op[0].disps->X_op == O_constant)
4158 {
4159 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4160 the absolute address given by the constant. Since ix86 jumps and
4161 calls are pc relative, we need to generate a reloc. */
4162 i.op[0].disps->X_add_symbol = &abs_symbol;
4163 i.op[0].disps->X_op = O_symbol;
4164 }
252b5132 4165
40fb9820 4166 if (i.tm.opcode_modifier.rex64)
161a04f6 4167 i.rex |= REX_W;
252b5132 4168
29b0f896
AM
4169 /* For 8 bit registers we need an empty rex prefix. Also if the
4170 instruction already has a prefix, we need to convert old
4171 registers to new ones. */
773f551c 4172
dc821c5f 4173 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4174 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4176 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4177 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4178 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4179 && i.rex != 0))
4180 {
4181 int x;
726c5dcd 4182
29b0f896
AM
4183 i.rex |= REX_OPCODE;
4184 for (x = 0; x < 2; x++)
4185 {
4186 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4187 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4188 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4189 {
29b0f896
AM
4190 /* In case it is "hi" register, give up. */
4191 if (i.op[x].regs->reg_num > 3)
a540244d 4192 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4193 "instruction requiring REX prefix."),
a540244d 4194 register_prefix, i.op[x].regs->reg_name);
773f551c 4195
29b0f896
AM
4196 /* Otherwise it is equivalent to the extended register.
4197 Since the encoding doesn't change this is merely
4198 cosmetic cleanup for debug output. */
4199
4200 i.op[x].regs = i.op[x].regs + 8;
773f551c 4201 }
29b0f896
AM
4202 }
4203 }
773f551c 4204
6b6b6807
L
4205 if (i.rex == 0 && i.rex_encoding)
4206 {
4207 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4208 that uses legacy register. If it is "hi" register, don't add
4209 the REX_OPCODE byte. */
4210 int x;
4211 for (x = 0; x < 2; x++)
4212 if (i.types[x].bitfield.reg
4213 && i.types[x].bitfield.byte
4214 && (i.op[x].regs->reg_flags & RegRex64) == 0
4215 && i.op[x].regs->reg_num > 3)
4216 {
4217 i.rex_encoding = FALSE;
4218 break;
4219 }
4220
4221 if (i.rex_encoding)
4222 i.rex = REX_OPCODE;
4223 }
4224
7ab9ffdd 4225 if (i.rex != 0)
29b0f896
AM
4226 add_prefix (REX_OPCODE | i.rex);
4227
4228 /* We are ready to output the insn. */
4229 output_insn ();
4230}
4231
4232static char *
e3bb37b5 4233parse_insn (char *line, char *mnemonic)
29b0f896
AM
4234{
4235 char *l = line;
4236 char *token_start = l;
4237 char *mnem_p;
5c6af06e 4238 int supported;
d3ce72d0 4239 const insn_template *t;
b6169b20 4240 char *dot_p = NULL;
29b0f896 4241
29b0f896
AM
4242 while (1)
4243 {
4244 mnem_p = mnemonic;
4245 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4246 {
b6169b20
L
4247 if (*mnem_p == '.')
4248 dot_p = mnem_p;
29b0f896
AM
4249 mnem_p++;
4250 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4251 {
29b0f896
AM
4252 as_bad (_("no such instruction: `%s'"), token_start);
4253 return NULL;
4254 }
4255 l++;
4256 }
4257 if (!is_space_char (*l)
4258 && *l != END_OF_INSN
e44823cf
JB
4259 && (intel_syntax
4260 || (*l != PREFIX_SEPARATOR
4261 && *l != ',')))
29b0f896
AM
4262 {
4263 as_bad (_("invalid character %s in mnemonic"),
4264 output_invalid (*l));
4265 return NULL;
4266 }
4267 if (token_start == l)
4268 {
e44823cf 4269 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4270 as_bad (_("expecting prefix; got nothing"));
4271 else
4272 as_bad (_("expecting mnemonic; got nothing"));
4273 return NULL;
4274 }
45288df1 4275
29b0f896 4276 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4277 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4278
29b0f896
AM
4279 if (*l != END_OF_INSN
4280 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4281 && current_templates
40fb9820 4282 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4283 {
c6fb90c8 4284 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4285 {
4286 as_bad ((flag_code != CODE_64BIT
4287 ? _("`%s' is only supported in 64-bit mode")
4288 : _("`%s' is not supported in 64-bit mode")),
4289 current_templates->start->name);
4290 return NULL;
4291 }
29b0f896
AM
4292 /* If we are in 16-bit mode, do not allow addr16 or data16.
4293 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4294 if ((current_templates->start->opcode_modifier.size16
4295 || current_templates->start->opcode_modifier.size32)
29b0f896 4296 && flag_code != CODE_64BIT
40fb9820 4297 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4298 ^ (flag_code == CODE_16BIT)))
4299 {
4300 as_bad (_("redundant %s prefix"),
4301 current_templates->start->name);
4302 return NULL;
45288df1 4303 }
86fa6981 4304 if (current_templates->start->opcode_length == 0)
29b0f896 4305 {
86fa6981
L
4306 /* Handle pseudo prefixes. */
4307 switch (current_templates->start->base_opcode)
4308 {
4309 case 0x0:
4310 /* {disp8} */
4311 i.disp_encoding = disp_encoding_8bit;
4312 break;
4313 case 0x1:
4314 /* {disp32} */
4315 i.disp_encoding = disp_encoding_32bit;
4316 break;
4317 case 0x2:
4318 /* {load} */
4319 i.dir_encoding = dir_encoding_load;
4320 break;
4321 case 0x3:
4322 /* {store} */
4323 i.dir_encoding = dir_encoding_store;
4324 break;
4325 case 0x4:
4326 /* {vex2} */
4327 i.vec_encoding = vex_encoding_vex2;
4328 break;
4329 case 0x5:
4330 /* {vex3} */
4331 i.vec_encoding = vex_encoding_vex3;
4332 break;
4333 case 0x6:
4334 /* {evex} */
4335 i.vec_encoding = vex_encoding_evex;
4336 break;
6b6b6807
L
4337 case 0x7:
4338 /* {rex} */
4339 i.rex_encoding = TRUE;
4340 break;
b6f8c7c4
L
4341 case 0x8:
4342 /* {nooptimize} */
4343 i.no_optimize = TRUE;
4344 break;
86fa6981
L
4345 default:
4346 abort ();
4347 }
4348 }
4349 else
4350 {
4351 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4352 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4353 {
4e9ac44a
L
4354 case PREFIX_EXIST:
4355 return NULL;
4356 case PREFIX_DS:
d777820b 4357 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4358 i.notrack_prefix = current_templates->start->name;
4359 break;
4360 case PREFIX_REP:
4361 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4362 i.hle_prefix = current_templates->start->name;
4363 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4364 i.bnd_prefix = current_templates->start->name;
4365 else
4366 i.rep_prefix = current_templates->start->name;
4367 break;
4368 default:
4369 break;
86fa6981 4370 }
29b0f896
AM
4371 }
4372 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4373 token_start = ++l;
4374 }
4375 else
4376 break;
4377 }
45288df1 4378
30a55f88 4379 if (!current_templates)
b6169b20 4380 {
f8a5c266
L
4381 /* Check if we should swap operand or force 32bit displacement in
4382 encoding. */
30a55f88 4383 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4384 i.dir_encoding = dir_encoding_store;
8d63c93e 4385 else if (mnem_p - 3 == dot_p
a501d77e
L
4386 && dot_p[1] == 'd'
4387 && dot_p[2] == '8')
4388 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4389 else if (mnem_p - 4 == dot_p
f8a5c266
L
4390 && dot_p[1] == 'd'
4391 && dot_p[2] == '3'
4392 && dot_p[3] == '2')
a501d77e 4393 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4394 else
4395 goto check_suffix;
4396 mnem_p = dot_p;
4397 *dot_p = '\0';
d3ce72d0 4398 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4399 }
4400
29b0f896
AM
4401 if (!current_templates)
4402 {
b6169b20 4403check_suffix:
29b0f896
AM
4404 /* See if we can get a match by trimming off a suffix. */
4405 switch (mnem_p[-1])
4406 {
4407 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4408 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4409 i.suffix = SHORT_MNEM_SUFFIX;
4410 else
1a0670f3 4411 /* Fall through. */
29b0f896
AM
4412 case BYTE_MNEM_SUFFIX:
4413 case QWORD_MNEM_SUFFIX:
4414 i.suffix = mnem_p[-1];
4415 mnem_p[-1] = '\0';
d3ce72d0
NC
4416 current_templates = (const templates *) hash_find (op_hash,
4417 mnemonic);
29b0f896
AM
4418 break;
4419 case SHORT_MNEM_SUFFIX:
4420 case LONG_MNEM_SUFFIX:
4421 if (!intel_syntax)
4422 {
4423 i.suffix = mnem_p[-1];
4424 mnem_p[-1] = '\0';
d3ce72d0
NC
4425 current_templates = (const templates *) hash_find (op_hash,
4426 mnemonic);
29b0f896
AM
4427 }
4428 break;
252b5132 4429
29b0f896
AM
4430 /* Intel Syntax. */
4431 case 'd':
4432 if (intel_syntax)
4433 {
9306ca4a 4434 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4435 i.suffix = SHORT_MNEM_SUFFIX;
4436 else
4437 i.suffix = LONG_MNEM_SUFFIX;
4438 mnem_p[-1] = '\0';
d3ce72d0
NC
4439 current_templates = (const templates *) hash_find (op_hash,
4440 mnemonic);
29b0f896
AM
4441 }
4442 break;
4443 }
4444 if (!current_templates)
4445 {
4446 as_bad (_("no such instruction: `%s'"), token_start);
4447 return NULL;
4448 }
4449 }
252b5132 4450
40fb9820
L
4451 if (current_templates->start->opcode_modifier.jump
4452 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4453 {
4454 /* Check for a branch hint. We allow ",pt" and ",pn" for
4455 predict taken and predict not taken respectively.
4456 I'm not sure that branch hints actually do anything on loop
4457 and jcxz insns (JumpByte) for current Pentium4 chips. They
4458 may work in the future and it doesn't hurt to accept them
4459 now. */
4460 if (l[0] == ',' && l[1] == 'p')
4461 {
4462 if (l[2] == 't')
4463 {
4464 if (!add_prefix (DS_PREFIX_OPCODE))
4465 return NULL;
4466 l += 3;
4467 }
4468 else if (l[2] == 'n')
4469 {
4470 if (!add_prefix (CS_PREFIX_OPCODE))
4471 return NULL;
4472 l += 3;
4473 }
4474 }
4475 }
4476 /* Any other comma loses. */
4477 if (*l == ',')
4478 {
4479 as_bad (_("invalid character %s in mnemonic"),
4480 output_invalid (*l));
4481 return NULL;
4482 }
252b5132 4483
29b0f896 4484 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4485 supported = 0;
4486 for (t = current_templates->start; t < current_templates->end; ++t)
4487 {
c0f3af97
L
4488 supported |= cpu_flags_match (t);
4489 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4490 goto skip;
5c6af06e 4491 }
3629bb00 4492
c0f3af97 4493 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4494 {
4495 as_bad (flag_code == CODE_64BIT
4496 ? _("`%s' is not supported in 64-bit mode")
4497 : _("`%s' is only supported in 64-bit mode"),
4498 current_templates->start->name);
4499 return NULL;
4500 }
c0f3af97 4501 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4502 {
3629bb00 4503 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4504 current_templates->start->name,
41aacd83 4505 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4506 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4507 return NULL;
29b0f896 4508 }
3629bb00
L
4509
4510skip:
4511 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4512 && (flag_code != CODE_16BIT))
29b0f896
AM
4513 {
4514 as_warn (_("use .code16 to ensure correct addressing mode"));
4515 }
252b5132 4516
29b0f896
AM
4517 return l;
4518}
252b5132 4519
29b0f896 4520static char *
e3bb37b5 4521parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4522{
4523 char *token_start;
3138f287 4524
29b0f896
AM
4525 /* 1 if operand is pending after ','. */
4526 unsigned int expecting_operand = 0;
252b5132 4527
29b0f896
AM
4528 /* Non-zero if operand parens not balanced. */
4529 unsigned int paren_not_balanced;
4530
4531 while (*l != END_OF_INSN)
4532 {
4533 /* Skip optional white space before operand. */
4534 if (is_space_char (*l))
4535 ++l;
d02603dc 4536 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4537 {
4538 as_bad (_("invalid character %s before operand %d"),
4539 output_invalid (*l),
4540 i.operands + 1);
4541 return NULL;
4542 }
d02603dc 4543 token_start = l; /* After white space. */
29b0f896
AM
4544 paren_not_balanced = 0;
4545 while (paren_not_balanced || *l != ',')
4546 {
4547 if (*l == END_OF_INSN)
4548 {
4549 if (paren_not_balanced)
4550 {
4551 if (!intel_syntax)
4552 as_bad (_("unbalanced parenthesis in operand %d."),
4553 i.operands + 1);
4554 else
4555 as_bad (_("unbalanced brackets in operand %d."),
4556 i.operands + 1);
4557 return NULL;
4558 }
4559 else
4560 break; /* we are done */
4561 }
d02603dc 4562 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4563 {
4564 as_bad (_("invalid character %s in operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 if (!intel_syntax)
4570 {
4571 if (*l == '(')
4572 ++paren_not_balanced;
4573 if (*l == ')')
4574 --paren_not_balanced;
4575 }
4576 else
4577 {
4578 if (*l == '[')
4579 ++paren_not_balanced;
4580 if (*l == ']')
4581 --paren_not_balanced;
4582 }
4583 l++;
4584 }
4585 if (l != token_start)
4586 { /* Yes, we've read in another operand. */
4587 unsigned int operand_ok;
4588 this_operand = i.operands++;
4589 if (i.operands > MAX_OPERANDS)
4590 {
4591 as_bad (_("spurious operands; (%d operands/instruction max)"),
4592 MAX_OPERANDS);
4593 return NULL;
4594 }
9d46ce34 4595 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4596 /* Now parse operand adding info to 'i' as we go along. */
4597 END_STRING_AND_SAVE (l);
4598
4599 if (intel_syntax)
4600 operand_ok =
4601 i386_intel_operand (token_start,
4602 intel_float_operand (mnemonic));
4603 else
a7619375 4604 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4605
4606 RESTORE_END_STRING (l);
4607 if (!operand_ok)
4608 return NULL;
4609 }
4610 else
4611 {
4612 if (expecting_operand)
4613 {
4614 expecting_operand_after_comma:
4615 as_bad (_("expecting operand after ','; got nothing"));
4616 return NULL;
4617 }
4618 if (*l == ',')
4619 {
4620 as_bad (_("expecting operand before ','; got nothing"));
4621 return NULL;
4622 }
4623 }
7f3f1ea2 4624
29b0f896
AM
4625 /* Now *l must be either ',' or END_OF_INSN. */
4626 if (*l == ',')
4627 {
4628 if (*++l == END_OF_INSN)
4629 {
4630 /* Just skip it, if it's \n complain. */
4631 goto expecting_operand_after_comma;
4632 }
4633 expecting_operand = 1;
4634 }
4635 }
4636 return l;
4637}
7f3f1ea2 4638
050dfa73 4639static void
4d456e3d 4640swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4641{
4642 union i386_op temp_op;
40fb9820 4643 i386_operand_type temp_type;
050dfa73 4644 enum bfd_reloc_code_real temp_reloc;
4eed87de 4645
050dfa73
MM
4646 temp_type = i.types[xchg2];
4647 i.types[xchg2] = i.types[xchg1];
4648 i.types[xchg1] = temp_type;
4649 temp_op = i.op[xchg2];
4650 i.op[xchg2] = i.op[xchg1];
4651 i.op[xchg1] = temp_op;
4652 temp_reloc = i.reloc[xchg2];
4653 i.reloc[xchg2] = i.reloc[xchg1];
4654 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4655
4656 if (i.mask)
4657 {
4658 if (i.mask->operand == xchg1)
4659 i.mask->operand = xchg2;
4660 else if (i.mask->operand == xchg2)
4661 i.mask->operand = xchg1;
4662 }
4663 if (i.broadcast)
4664 {
4665 if (i.broadcast->operand == xchg1)
4666 i.broadcast->operand = xchg2;
4667 else if (i.broadcast->operand == xchg2)
4668 i.broadcast->operand = xchg1;
4669 }
4670 if (i.rounding)
4671 {
4672 if (i.rounding->operand == xchg1)
4673 i.rounding->operand = xchg2;
4674 else if (i.rounding->operand == xchg2)
4675 i.rounding->operand = xchg1;
4676 }
050dfa73
MM
4677}
4678
29b0f896 4679static void
e3bb37b5 4680swap_operands (void)
29b0f896 4681{
b7c61d9a 4682 switch (i.operands)
050dfa73 4683 {
c0f3af97 4684 case 5:
b7c61d9a 4685 case 4:
4d456e3d 4686 swap_2_operands (1, i.operands - 2);
1a0670f3 4687 /* Fall through. */
b7c61d9a
L
4688 case 3:
4689 case 2:
4d456e3d 4690 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4691 break;
4692 default:
4693 abort ();
29b0f896 4694 }
29b0f896
AM
4695
4696 if (i.mem_operands == 2)
4697 {
4698 const seg_entry *temp_seg;
4699 temp_seg = i.seg[0];
4700 i.seg[0] = i.seg[1];
4701 i.seg[1] = temp_seg;
4702 }
4703}
252b5132 4704
29b0f896
AM
4705/* Try to ensure constant immediates are represented in the smallest
4706 opcode possible. */
4707static void
e3bb37b5 4708optimize_imm (void)
29b0f896
AM
4709{
4710 char guess_suffix = 0;
4711 int op;
252b5132 4712
29b0f896
AM
4713 if (i.suffix)
4714 guess_suffix = i.suffix;
4715 else if (i.reg_operands)
4716 {
4717 /* Figure out a suffix from the last register operand specified.
4718 We can't do this properly yet, ie. excluding InOutPortReg,
4719 but the following works for instructions with immediates.
4720 In any case, we can't set i.suffix yet. */
4721 for (op = i.operands; --op >= 0;)
dc821c5f 4722 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4723 {
40fb9820
L
4724 guess_suffix = BYTE_MNEM_SUFFIX;
4725 break;
4726 }
dc821c5f 4727 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4728 {
40fb9820
L
4729 guess_suffix = WORD_MNEM_SUFFIX;
4730 break;
4731 }
dc821c5f 4732 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4733 {
4734 guess_suffix = LONG_MNEM_SUFFIX;
4735 break;
4736 }
dc821c5f 4737 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4738 {
4739 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4740 break;
252b5132 4741 }
29b0f896
AM
4742 }
4743 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4744 guess_suffix = WORD_MNEM_SUFFIX;
4745
4746 for (op = i.operands; --op >= 0;)
40fb9820 4747 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4748 {
4749 switch (i.op[op].imms->X_op)
252b5132 4750 {
29b0f896
AM
4751 case O_constant:
4752 /* If a suffix is given, this operand may be shortened. */
4753 switch (guess_suffix)
252b5132 4754 {
29b0f896 4755 case LONG_MNEM_SUFFIX:
40fb9820
L
4756 i.types[op].bitfield.imm32 = 1;
4757 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4758 break;
4759 case WORD_MNEM_SUFFIX:
40fb9820
L
4760 i.types[op].bitfield.imm16 = 1;
4761 i.types[op].bitfield.imm32 = 1;
4762 i.types[op].bitfield.imm32s = 1;
4763 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4764 break;
4765 case BYTE_MNEM_SUFFIX:
40fb9820
L
4766 i.types[op].bitfield.imm8 = 1;
4767 i.types[op].bitfield.imm8s = 1;
4768 i.types[op].bitfield.imm16 = 1;
4769 i.types[op].bitfield.imm32 = 1;
4770 i.types[op].bitfield.imm32s = 1;
4771 i.types[op].bitfield.imm64 = 1;
29b0f896 4772 break;
252b5132 4773 }
252b5132 4774
29b0f896
AM
4775 /* If this operand is at most 16 bits, convert it
4776 to a signed 16 bit number before trying to see
4777 whether it will fit in an even smaller size.
4778 This allows a 16-bit operand such as $0xffe0 to
4779 be recognised as within Imm8S range. */
40fb9820 4780 if ((i.types[op].bitfield.imm16)
29b0f896 4781 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4782 {
29b0f896
AM
4783 i.op[op].imms->X_add_number =
4784 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4785 }
a28def75
L
4786#ifdef BFD64
4787 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4788 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4789 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4790 == 0))
4791 {
4792 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4793 ^ ((offsetT) 1 << 31))
4794 - ((offsetT) 1 << 31));
4795 }
a28def75 4796#endif
40fb9820 4797 i.types[op]
c6fb90c8
L
4798 = operand_type_or (i.types[op],
4799 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4800
29b0f896
AM
4801 /* We must avoid matching of Imm32 templates when 64bit
4802 only immediate is available. */
4803 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4804 i.types[op].bitfield.imm32 = 0;
29b0f896 4805 break;
252b5132 4806
29b0f896
AM
4807 case O_absent:
4808 case O_register:
4809 abort ();
4810
4811 /* Symbols and expressions. */
4812 default:
9cd96992
JB
4813 /* Convert symbolic operand to proper sizes for matching, but don't
4814 prevent matching a set of insns that only supports sizes other
4815 than those matching the insn suffix. */
4816 {
40fb9820 4817 i386_operand_type mask, allowed;
d3ce72d0 4818 const insn_template *t;
9cd96992 4819
0dfbf9d7
L
4820 operand_type_set (&mask, 0);
4821 operand_type_set (&allowed, 0);
40fb9820 4822
4eed87de
AM
4823 for (t = current_templates->start;
4824 t < current_templates->end;
4825 ++t)
c6fb90c8
L
4826 allowed = operand_type_or (allowed,
4827 t->operand_types[op]);
9cd96992
JB
4828 switch (guess_suffix)
4829 {
4830 case QWORD_MNEM_SUFFIX:
40fb9820
L
4831 mask.bitfield.imm64 = 1;
4832 mask.bitfield.imm32s = 1;
9cd96992
JB
4833 break;
4834 case LONG_MNEM_SUFFIX:
40fb9820 4835 mask.bitfield.imm32 = 1;
9cd96992
JB
4836 break;
4837 case WORD_MNEM_SUFFIX:
40fb9820 4838 mask.bitfield.imm16 = 1;
9cd96992
JB
4839 break;
4840 case BYTE_MNEM_SUFFIX:
40fb9820 4841 mask.bitfield.imm8 = 1;
9cd96992
JB
4842 break;
4843 default:
9cd96992
JB
4844 break;
4845 }
c6fb90c8 4846 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4847 if (!operand_type_all_zero (&allowed))
c6fb90c8 4848 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4849 }
29b0f896 4850 break;
252b5132 4851 }
29b0f896
AM
4852 }
4853}
47926f60 4854
29b0f896
AM
4855/* Try to use the smallest displacement type too. */
4856static void
e3bb37b5 4857optimize_disp (void)
29b0f896
AM
4858{
4859 int op;
3e73aa7c 4860
29b0f896 4861 for (op = i.operands; --op >= 0;)
40fb9820 4862 if (operand_type_check (i.types[op], disp))
252b5132 4863 {
b300c311 4864 if (i.op[op].disps->X_op == O_constant)
252b5132 4865 {
91d6fa6a 4866 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4867
40fb9820 4868 if (i.types[op].bitfield.disp16
91d6fa6a 4869 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4870 {
4871 /* If this operand is at most 16 bits, convert
4872 to a signed 16 bit number and don't use 64bit
4873 displacement. */
91d6fa6a 4874 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4875 i.types[op].bitfield.disp64 = 0;
b300c311 4876 }
a28def75
L
4877#ifdef BFD64
4878 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4879 if (i.types[op].bitfield.disp32
91d6fa6a 4880 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4881 {
4882 /* If this operand is at most 32 bits, convert
4883 to a signed 32 bit number and don't use 64bit
4884 displacement. */
91d6fa6a
NC
4885 op_disp &= (((offsetT) 2 << 31) - 1);
4886 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4887 i.types[op].bitfield.disp64 = 0;
b300c311 4888 }
a28def75 4889#endif
91d6fa6a 4890 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4891 {
40fb9820
L
4892 i.types[op].bitfield.disp8 = 0;
4893 i.types[op].bitfield.disp16 = 0;
4894 i.types[op].bitfield.disp32 = 0;
4895 i.types[op].bitfield.disp32s = 0;
4896 i.types[op].bitfield.disp64 = 0;
b300c311
L
4897 i.op[op].disps = 0;
4898 i.disp_operands--;
4899 }
4900 else if (flag_code == CODE_64BIT)
4901 {
91d6fa6a 4902 if (fits_in_signed_long (op_disp))
28a9d8f5 4903 {
40fb9820
L
4904 i.types[op].bitfield.disp64 = 0;
4905 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4906 }
0e1147d9 4907 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4908 && fits_in_unsigned_long (op_disp))
40fb9820 4909 i.types[op].bitfield.disp32 = 1;
b300c311 4910 }
40fb9820
L
4911 if ((i.types[op].bitfield.disp32
4912 || i.types[op].bitfield.disp32s
4913 || i.types[op].bitfield.disp16)
b5014f7a 4914 && fits_in_disp8 (op_disp))
40fb9820 4915 i.types[op].bitfield.disp8 = 1;
252b5132 4916 }
67a4f2b7
AO
4917 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4918 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4919 {
4920 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4921 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4922 i.types[op].bitfield.disp8 = 0;
4923 i.types[op].bitfield.disp16 = 0;
4924 i.types[op].bitfield.disp32 = 0;
4925 i.types[op].bitfield.disp32s = 0;
4926 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4927 }
4928 else
b300c311 4929 /* We only support 64bit displacement on constants. */
40fb9820 4930 i.types[op].bitfield.disp64 = 0;
252b5132 4931 }
29b0f896
AM
4932}
4933
6c30d220
L
4934/* Check if operands are valid for the instruction. */
4935
4936static int
4937check_VecOperands (const insn_template *t)
4938{
43234a1e
L
4939 unsigned int op;
4940
6c30d220
L
4941 /* Without VSIB byte, we can't have a vector register for index. */
4942 if (!t->opcode_modifier.vecsib
4943 && i.index_reg
1b54b8d7
JB
4944 && (i.index_reg->reg_type.bitfield.xmmword
4945 || i.index_reg->reg_type.bitfield.ymmword
4946 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4947 {
4948 i.error = unsupported_vector_index_register;
4949 return 1;
4950 }
4951
ad8ecc81
MZ
4952 /* Check if default mask is allowed. */
4953 if (t->opcode_modifier.nodefmask
4954 && (!i.mask || i.mask->mask->reg_num == 0))
4955 {
4956 i.error = no_default_mask;
4957 return 1;
4958 }
4959
7bab8ab5
JB
4960 /* For VSIB byte, we need a vector register for index, and all vector
4961 registers must be distinct. */
4962 if (t->opcode_modifier.vecsib)
4963 {
4964 if (!i.index_reg
6c30d220 4965 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4966 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4967 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4968 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4969 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4970 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4971 {
4972 i.error = invalid_vsib_address;
4973 return 1;
4974 }
4975
43234a1e
L
4976 gas_assert (i.reg_operands == 2 || i.mask);
4977 if (i.reg_operands == 2 && !i.mask)
4978 {
1b54b8d7
JB
4979 gas_assert (i.types[0].bitfield.regsimd);
4980 gas_assert (i.types[0].bitfield.xmmword
4981 || i.types[0].bitfield.ymmword);
4982 gas_assert (i.types[2].bitfield.regsimd);
4983 gas_assert (i.types[2].bitfield.xmmword
4984 || i.types[2].bitfield.ymmword);
43234a1e
L
4985 if (operand_check == check_none)
4986 return 0;
4987 if (register_number (i.op[0].regs)
4988 != register_number (i.index_reg)
4989 && register_number (i.op[2].regs)
4990 != register_number (i.index_reg)
4991 && register_number (i.op[0].regs)
4992 != register_number (i.op[2].regs))
4993 return 0;
4994 if (operand_check == check_error)
4995 {
4996 i.error = invalid_vector_register_set;
4997 return 1;
4998 }
4999 as_warn (_("mask, index, and destination registers should be distinct"));
5000 }
8444f82a
MZ
5001 else if (i.reg_operands == 1 && i.mask)
5002 {
1b54b8d7
JB
5003 if (i.types[1].bitfield.regsimd
5004 && (i.types[1].bitfield.xmmword
5005 || i.types[1].bitfield.ymmword
5006 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5007 && (register_number (i.op[1].regs)
5008 == register_number (i.index_reg)))
5009 {
5010 if (operand_check == check_error)
5011 {
5012 i.error = invalid_vector_register_set;
5013 return 1;
5014 }
5015 if (operand_check != check_none)
5016 as_warn (_("index and destination registers should be distinct"));
5017 }
5018 }
43234a1e 5019 }
7bab8ab5 5020
43234a1e
L
5021 /* Check if broadcast is supported by the instruction and is applied
5022 to the memory operand. */
5023 if (i.broadcast)
5024 {
5025 int broadcasted_opnd_size;
5026
5027 /* Check if specified broadcast is supported in this instruction,
5028 and it's applied to memory operand of DWORD or QWORD type,
5029 depending on VecESize. */
5030 if (i.broadcast->type != t->opcode_modifier.broadcast
5031 || !i.types[i.broadcast->operand].bitfield.mem
5032 || (t->opcode_modifier.vecesize == 0
5033 && !i.types[i.broadcast->operand].bitfield.dword
5034 && !i.types[i.broadcast->operand].bitfield.unspecified)
5035 || (t->opcode_modifier.vecesize == 1
5036 && !i.types[i.broadcast->operand].bitfield.qword
5037 && !i.types[i.broadcast->operand].bitfield.unspecified))
5038 goto bad_broadcast;
5039
5040 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5041 if (i.broadcast->type == BROADCAST_1TO16)
5042 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5043 else if (i.broadcast->type == BROADCAST_1TO8)
5044 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
5045 else if (i.broadcast->type == BROADCAST_1TO4)
5046 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5047 else if (i.broadcast->type == BROADCAST_1TO2)
5048 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
5049 else
5050 goto bad_broadcast;
5051
5052 if ((broadcasted_opnd_size == 256
5053 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5054 || (broadcasted_opnd_size == 512
5055 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5056 {
5057 bad_broadcast:
5058 i.error = unsupported_broadcast;
5059 return 1;
5060 }
5061 }
5062 /* If broadcast is supported in this instruction, we need to check if
5063 operand of one-element size isn't specified without broadcast. */
5064 else if (t->opcode_modifier.broadcast && i.mem_operands)
5065 {
5066 /* Find memory operand. */
5067 for (op = 0; op < i.operands; op++)
5068 if (operand_type_check (i.types[op], anymem))
5069 break;
5070 gas_assert (op < i.operands);
5071 /* Check size of the memory operand. */
5072 if ((t->opcode_modifier.vecesize == 0
5073 && i.types[op].bitfield.dword)
5074 || (t->opcode_modifier.vecesize == 1
5075 && i.types[op].bitfield.qword))
5076 {
5077 i.error = broadcast_needed;
5078 return 1;
5079 }
5080 }
5081
5082 /* Check if requested masking is supported. */
5083 if (i.mask
5084 && (!t->opcode_modifier.masking
5085 || (i.mask->zeroing
5086 && t->opcode_modifier.masking == MERGING_MASKING)))
5087 {
5088 i.error = unsupported_masking;
5089 return 1;
5090 }
5091
5092 /* Check if masking is applied to dest operand. */
5093 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5094 {
5095 i.error = mask_not_on_destination;
5096 return 1;
5097 }
5098
43234a1e
L
5099 /* Check RC/SAE. */
5100 if (i.rounding)
5101 {
5102 if ((i.rounding->type != saeonly
5103 && !t->opcode_modifier.staticrounding)
5104 || (i.rounding->type == saeonly
5105 && (t->opcode_modifier.staticrounding
5106 || !t->opcode_modifier.sae)))
5107 {
5108 i.error = unsupported_rc_sae;
5109 return 1;
5110 }
5111 /* If the instruction has several immediate operands and one of
5112 them is rounding, the rounding operand should be the last
5113 immediate operand. */
5114 if (i.imm_operands > 1
5115 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5116 {
43234a1e 5117 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5118 return 1;
5119 }
6c30d220
L
5120 }
5121
43234a1e 5122 /* Check vector Disp8 operand. */
b5014f7a
JB
5123 if (t->opcode_modifier.disp8memshift
5124 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5125 {
5126 if (i.broadcast)
5127 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5128 else
5129 i.memshift = t->opcode_modifier.disp8memshift;
5130
5131 for (op = 0; op < i.operands; op++)
5132 if (operand_type_check (i.types[op], disp)
5133 && i.op[op].disps->X_op == O_constant)
5134 {
b5014f7a 5135 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5136 {
b5014f7a
JB
5137 i.types[op].bitfield.disp8 = 1;
5138 return 0;
43234a1e 5139 }
b5014f7a 5140 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5141 }
5142 }
b5014f7a
JB
5143
5144 i.memshift = 0;
43234a1e 5145
6c30d220
L
5146 return 0;
5147}
5148
43f3e2ee 5149/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5150 operand types. */
5151
5152static int
5153VEX_check_operands (const insn_template *t)
5154{
86fa6981 5155 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5156 {
86fa6981
L
5157 /* This instruction must be encoded with EVEX prefix. */
5158 if (!t->opcode_modifier.evex)
5159 {
5160 i.error = unsupported;
5161 return 1;
5162 }
5163 return 0;
43234a1e
L
5164 }
5165
a683cc34 5166 if (!t->opcode_modifier.vex)
86fa6981
L
5167 {
5168 /* This instruction template doesn't have VEX prefix. */
5169 if (i.vec_encoding != vex_encoding_default)
5170 {
5171 i.error = unsupported;
5172 return 1;
5173 }
5174 return 0;
5175 }
a683cc34
SP
5176
5177 /* Only check VEX_Imm4, which must be the first operand. */
5178 if (t->operand_types[0].bitfield.vec_imm4)
5179 {
5180 if (i.op[0].imms->X_op != O_constant
5181 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5182 {
a65babc9 5183 i.error = bad_imm4;
891edac4
L
5184 return 1;
5185 }
a683cc34
SP
5186
5187 /* Turn off Imm8 so that update_imm won't complain. */
5188 i.types[0] = vec_imm4;
5189 }
5190
5191 return 0;
5192}
5193
d3ce72d0 5194static const insn_template *
83b16ac6 5195match_template (char mnem_suffix)
29b0f896
AM
5196{
5197 /* Points to template once we've found it. */
d3ce72d0 5198 const insn_template *t;
40fb9820 5199 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5200 i386_operand_type overlap4;
29b0f896 5201 unsigned int found_reverse_match;
83b16ac6 5202 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5203 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5204 int addr_prefix_disp;
a5c311ca 5205 unsigned int j;
3629bb00 5206 unsigned int found_cpu_match;
45664ddb 5207 unsigned int check_register;
5614d22c 5208 enum i386_error specific_error = 0;
29b0f896 5209
c0f3af97
L
5210#if MAX_OPERANDS != 5
5211# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5212#endif
5213
29b0f896 5214 found_reverse_match = 0;
539e75ad 5215 addr_prefix_disp = -1;
40fb9820
L
5216
5217 memset (&suffix_check, 0, sizeof (suffix_check));
5218 if (i.suffix == BYTE_MNEM_SUFFIX)
5219 suffix_check.no_bsuf = 1;
5220 else if (i.suffix == WORD_MNEM_SUFFIX)
5221 suffix_check.no_wsuf = 1;
5222 else if (i.suffix == SHORT_MNEM_SUFFIX)
5223 suffix_check.no_ssuf = 1;
5224 else if (i.suffix == LONG_MNEM_SUFFIX)
5225 suffix_check.no_lsuf = 1;
5226 else if (i.suffix == QWORD_MNEM_SUFFIX)
5227 suffix_check.no_qsuf = 1;
5228 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5229 suffix_check.no_ldsuf = 1;
29b0f896 5230
83b16ac6
JB
5231 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5232 if (intel_syntax)
5233 {
5234 switch (mnem_suffix)
5235 {
5236 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5237 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5238 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5239 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5240 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5241 }
5242 }
5243
01559ecc
L
5244 /* Must have right number of operands. */
5245 i.error = number_of_operands_mismatch;
5246
45aa61fe 5247 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5248 {
539e75ad
L
5249 addr_prefix_disp = -1;
5250
29b0f896
AM
5251 if (i.operands != t->operands)
5252 continue;
5253
50aecf8c 5254 /* Check processor support. */
a65babc9 5255 i.error = unsupported;
c0f3af97
L
5256 found_cpu_match = (cpu_flags_match (t)
5257 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5258 if (!found_cpu_match)
5259 continue;
5260
e1d4d893 5261 /* Check old gcc support. */
a65babc9 5262 i.error = old_gcc_only;
e1d4d893
L
5263 if (!old_gcc && t->opcode_modifier.oldgcc)
5264 continue;
5265
5266 /* Check AT&T mnemonic. */
a65babc9 5267 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5268 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5269 continue;
5270
e92bae62 5271 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5272 i.error = unsupported_syntax;
5c07affc 5273 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5274 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5275 || (intel64 && t->opcode_modifier.amd64)
5276 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5277 continue;
5278
20592a94 5279 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5280 i.error = invalid_instruction_suffix;
567e4e96
L
5281 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5282 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5283 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5284 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5285 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5286 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5287 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5288 continue;
83b16ac6
JB
5289 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5290 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5291 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5292 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5293 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5294 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5295 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5296 continue;
29b0f896 5297
5c07affc 5298 if (!operand_size_match (t))
7d5e4556 5299 continue;
539e75ad 5300
5c07affc
L
5301 for (j = 0; j < MAX_OPERANDS; j++)
5302 operand_types[j] = t->operand_types[j];
5303
45aa61fe
AM
5304 /* In general, don't allow 64-bit operands in 32-bit mode. */
5305 if (i.suffix == QWORD_MNEM_SUFFIX
5306 && flag_code != CODE_64BIT
5307 && (intel_syntax
40fb9820 5308 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5309 && !intel_float_operand (t->name))
5310 : intel_float_operand (t->name) != 2)
40fb9820 5311 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5312 && !operand_types[0].bitfield.regsimd)
40fb9820 5313 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5314 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5315 && (t->base_opcode != 0x0fc7
5316 || t->extension_opcode != 1 /* cmpxchg8b */))
5317 continue;
5318
192dc9c6
JB
5319 /* In general, don't allow 32-bit operands on pre-386. */
5320 else if (i.suffix == LONG_MNEM_SUFFIX
5321 && !cpu_arch_flags.bitfield.cpui386
5322 && (intel_syntax
5323 ? (!t->opcode_modifier.ignoresize
5324 && !intel_float_operand (t->name))
5325 : intel_float_operand (t->name) != 2)
5326 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5327 && !operand_types[0].bitfield.regsimd)
192dc9c6 5328 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5329 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5330 continue;
5331
29b0f896 5332 /* Do not verify operands when there are none. */
50aecf8c 5333 else
29b0f896 5334 {
c6fb90c8 5335 if (!t->operands)
2dbab7d5
L
5336 /* We've found a match; break out of loop. */
5337 break;
29b0f896 5338 }
252b5132 5339
539e75ad
L
5340 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5341 into Disp32/Disp16/Disp32 operand. */
5342 if (i.prefix[ADDR_PREFIX] != 0)
5343 {
40fb9820 5344 /* There should be only one Disp operand. */
539e75ad
L
5345 switch (flag_code)
5346 {
5347 case CODE_16BIT:
40fb9820
L
5348 for (j = 0; j < MAX_OPERANDS; j++)
5349 {
5350 if (operand_types[j].bitfield.disp16)
5351 {
5352 addr_prefix_disp = j;
5353 operand_types[j].bitfield.disp32 = 1;
5354 operand_types[j].bitfield.disp16 = 0;
5355 break;
5356 }
5357 }
539e75ad
L
5358 break;
5359 case CODE_32BIT:
40fb9820
L
5360 for (j = 0; j < MAX_OPERANDS; j++)
5361 {
5362 if (operand_types[j].bitfield.disp32)
5363 {
5364 addr_prefix_disp = j;
5365 operand_types[j].bitfield.disp32 = 0;
5366 operand_types[j].bitfield.disp16 = 1;
5367 break;
5368 }
5369 }
539e75ad
L
5370 break;
5371 case CODE_64BIT:
40fb9820
L
5372 for (j = 0; j < MAX_OPERANDS; j++)
5373 {
5374 if (operand_types[j].bitfield.disp64)
5375 {
5376 addr_prefix_disp = j;
5377 operand_types[j].bitfield.disp64 = 0;
5378 operand_types[j].bitfield.disp32 = 1;
5379 break;
5380 }
5381 }
539e75ad
L
5382 break;
5383 }
539e75ad
L
5384 }
5385
02a86693
L
5386 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5387 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5388 continue;
5389
56ffb741
L
5390 /* We check register size if needed. */
5391 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5392 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5393 switch (t->operands)
5394 {
5395 case 1:
40fb9820 5396 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5397 continue;
5398 break;
5399 case 2:
33eaf5de 5400 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5401 only in 32bit mode and we can use opcode 0x90. In 64bit
5402 mode, we can't use 0x90 for xchg %eax, %eax since it should
5403 zero-extend %eax to %rax. */
5404 if (flag_code == CODE_64BIT
5405 && t->base_opcode == 0x90
0dfbf9d7
L
5406 && operand_type_equal (&i.types [0], &acc32)
5407 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5408 continue;
86fa6981
L
5409 /* If we want store form, we reverse direction of operands. */
5410 if (i.dir_encoding == dir_encoding_store
5411 && t->opcode_modifier.d)
5412 goto check_reverse;
1a0670f3 5413 /* Fall through. */
b6169b20 5414
29b0f896 5415 case 3:
86fa6981
L
5416 /* If we want store form, we skip the current load. */
5417 if (i.dir_encoding == dir_encoding_store
5418 && i.mem_operands == 0
5419 && t->opcode_modifier.load)
fa99fab2 5420 continue;
1a0670f3 5421 /* Fall through. */
f48ff2ae 5422 case 4:
c0f3af97 5423 case 5:
c6fb90c8 5424 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5425 if (!operand_type_match (overlap0, i.types[0])
5426 || !operand_type_match (overlap1, i.types[1])
45664ddb 5427 || (check_register
dc821c5f 5428 && !operand_type_register_match (i.types[0],
40fb9820 5429 operand_types[0],
dc821c5f 5430 i.types[1],
40fb9820 5431 operand_types[1])))
29b0f896
AM
5432 {
5433 /* Check if other direction is valid ... */
38e314eb 5434 if (!t->opcode_modifier.d)
29b0f896
AM
5435 continue;
5436
b6169b20 5437check_reverse:
29b0f896 5438 /* Try reversing direction of operands. */
c6fb90c8
L
5439 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5440 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5441 if (!operand_type_match (overlap0, i.types[0])
5442 || !operand_type_match (overlap1, i.types[1])
45664ddb 5443 || (check_register
dc821c5f 5444 && !operand_type_register_match (i.types[0],
45664ddb 5445 operand_types[1],
45664ddb
L
5446 i.types[1],
5447 operand_types[0])))
29b0f896
AM
5448 {
5449 /* Does not match either direction. */
5450 continue;
5451 }
38e314eb 5452 /* found_reverse_match holds which of D or FloatR
29b0f896 5453 we've found. */
38e314eb
JB
5454 if (!t->opcode_modifier.d)
5455 found_reverse_match = 0;
5456 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5457 found_reverse_match = Opcode_FloatD;
5458 else
38e314eb 5459 found_reverse_match = Opcode_D;
40fb9820 5460 if (t->opcode_modifier.floatr)
8a2ed489 5461 found_reverse_match |= Opcode_FloatR;
29b0f896 5462 }
f48ff2ae 5463 else
29b0f896 5464 {
f48ff2ae 5465 /* Found a forward 2 operand match here. */
d1cbb4db
L
5466 switch (t->operands)
5467 {
c0f3af97
L
5468 case 5:
5469 overlap4 = operand_type_and (i.types[4],
5470 operand_types[4]);
1a0670f3 5471 /* Fall through. */
d1cbb4db 5472 case 4:
c6fb90c8
L
5473 overlap3 = operand_type_and (i.types[3],
5474 operand_types[3]);
1a0670f3 5475 /* Fall through. */
d1cbb4db 5476 case 3:
c6fb90c8
L
5477 overlap2 = operand_type_and (i.types[2],
5478 operand_types[2]);
d1cbb4db
L
5479 break;
5480 }
29b0f896 5481
f48ff2ae
L
5482 switch (t->operands)
5483 {
c0f3af97
L
5484 case 5:
5485 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5486 || !operand_type_register_match (i.types[3],
c0f3af97 5487 operand_types[3],
c0f3af97
L
5488 i.types[4],
5489 operand_types[4]))
5490 continue;
1a0670f3 5491 /* Fall through. */
f48ff2ae 5492 case 4:
40fb9820 5493 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5494 || (check_register
dc821c5f 5495 && !operand_type_register_match (i.types[2],
45664ddb 5496 operand_types[2],
45664ddb
L
5497 i.types[3],
5498 operand_types[3])))
f48ff2ae 5499 continue;
1a0670f3 5500 /* Fall through. */
f48ff2ae
L
5501 case 3:
5502 /* Here we make use of the fact that there are no
5503 reverse match 3 operand instructions, and all 3
5504 operand instructions only need to be checked for
5505 register consistency between operands 2 and 3. */
40fb9820 5506 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5507 || (check_register
dc821c5f 5508 && !operand_type_register_match (i.types[1],
45664ddb 5509 operand_types[1],
45664ddb
L
5510 i.types[2],
5511 operand_types[2])))
f48ff2ae
L
5512 continue;
5513 break;
5514 }
29b0f896 5515 }
f48ff2ae 5516 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5517 slip through to break. */
5518 }
3629bb00 5519 if (!found_cpu_match)
29b0f896
AM
5520 {
5521 found_reverse_match = 0;
5522 continue;
5523 }
c0f3af97 5524
5614d22c
JB
5525 /* Check if vector and VEX operands are valid. */
5526 if (check_VecOperands (t) || VEX_check_operands (t))
5527 {
5528 specific_error = i.error;
5529 continue;
5530 }
a683cc34 5531
29b0f896
AM
5532 /* We've found a match; break out of loop. */
5533 break;
5534 }
5535
5536 if (t == current_templates->end)
5537 {
5538 /* We found no match. */
a65babc9 5539 const char *err_msg;
5614d22c 5540 switch (specific_error ? specific_error : i.error)
a65babc9
L
5541 {
5542 default:
5543 abort ();
86e026a4 5544 case operand_size_mismatch:
a65babc9
L
5545 err_msg = _("operand size mismatch");
5546 break;
5547 case operand_type_mismatch:
5548 err_msg = _("operand type mismatch");
5549 break;
5550 case register_type_mismatch:
5551 err_msg = _("register type mismatch");
5552 break;
5553 case number_of_operands_mismatch:
5554 err_msg = _("number of operands mismatch");
5555 break;
5556 case invalid_instruction_suffix:
5557 err_msg = _("invalid instruction suffix");
5558 break;
5559 case bad_imm4:
4a2608e3 5560 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5561 break;
5562 case old_gcc_only:
5563 err_msg = _("only supported with old gcc");
5564 break;
5565 case unsupported_with_intel_mnemonic:
5566 err_msg = _("unsupported with Intel mnemonic");
5567 break;
5568 case unsupported_syntax:
5569 err_msg = _("unsupported syntax");
5570 break;
5571 case unsupported:
35262a23 5572 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5573 current_templates->start->name);
5574 return NULL;
6c30d220
L
5575 case invalid_vsib_address:
5576 err_msg = _("invalid VSIB address");
5577 break;
7bab8ab5
JB
5578 case invalid_vector_register_set:
5579 err_msg = _("mask, index, and destination registers must be distinct");
5580 break;
6c30d220
L
5581 case unsupported_vector_index_register:
5582 err_msg = _("unsupported vector index register");
5583 break;
43234a1e
L
5584 case unsupported_broadcast:
5585 err_msg = _("unsupported broadcast");
5586 break;
5587 case broadcast_not_on_src_operand:
5588 err_msg = _("broadcast not on source memory operand");
5589 break;
5590 case broadcast_needed:
5591 err_msg = _("broadcast is needed for operand of such type");
5592 break;
5593 case unsupported_masking:
5594 err_msg = _("unsupported masking");
5595 break;
5596 case mask_not_on_destination:
5597 err_msg = _("mask not on destination operand");
5598 break;
5599 case no_default_mask:
5600 err_msg = _("default mask isn't allowed");
5601 break;
5602 case unsupported_rc_sae:
5603 err_msg = _("unsupported static rounding/sae");
5604 break;
5605 case rc_sae_operand_not_last_imm:
5606 if (intel_syntax)
5607 err_msg = _("RC/SAE operand must precede immediate operands");
5608 else
5609 err_msg = _("RC/SAE operand must follow immediate operands");
5610 break;
5611 case invalid_register_operand:
5612 err_msg = _("invalid register operand");
5613 break;
a65babc9
L
5614 }
5615 as_bad (_("%s for `%s'"), err_msg,
891edac4 5616 current_templates->start->name);
fa99fab2 5617 return NULL;
29b0f896 5618 }
252b5132 5619
29b0f896
AM
5620 if (!quiet_warnings)
5621 {
5622 if (!intel_syntax
40fb9820
L
5623 && (i.types[0].bitfield.jumpabsolute
5624 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5625 {
5626 as_warn (_("indirect %s without `*'"), t->name);
5627 }
5628
40fb9820
L
5629 if (t->opcode_modifier.isprefix
5630 && t->opcode_modifier.ignoresize)
29b0f896
AM
5631 {
5632 /* Warn them that a data or address size prefix doesn't
5633 affect assembly of the next line of code. */
5634 as_warn (_("stand-alone `%s' prefix"), t->name);
5635 }
5636 }
5637
5638 /* Copy the template we found. */
5639 i.tm = *t;
539e75ad
L
5640
5641 if (addr_prefix_disp != -1)
5642 i.tm.operand_types[addr_prefix_disp]
5643 = operand_types[addr_prefix_disp];
5644
29b0f896
AM
5645 if (found_reverse_match)
5646 {
5647 /* If we found a reverse match we must alter the opcode
5648 direction bit. found_reverse_match holds bits to change
5649 (different for int & float insns). */
5650
5651 i.tm.base_opcode ^= found_reverse_match;
5652
539e75ad
L
5653 i.tm.operand_types[0] = operand_types[1];
5654 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5655 }
5656
fa99fab2 5657 return t;
29b0f896
AM
5658}
5659
5660static int
e3bb37b5 5661check_string (void)
29b0f896 5662{
40fb9820
L
5663 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5664 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5665 {
5666 if (i.seg[0] != NULL && i.seg[0] != &es)
5667 {
a87af027 5668 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5669 i.tm.name,
a87af027
JB
5670 mem_op + 1,
5671 register_prefix);
29b0f896
AM
5672 return 0;
5673 }
5674 /* There's only ever one segment override allowed per instruction.
5675 This instruction possibly has a legal segment override on the
5676 second operand, so copy the segment to where non-string
5677 instructions store it, allowing common code. */
5678 i.seg[0] = i.seg[1];
5679 }
40fb9820 5680 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5681 {
5682 if (i.seg[1] != NULL && i.seg[1] != &es)
5683 {
a87af027 5684 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5685 i.tm.name,
a87af027
JB
5686 mem_op + 2,
5687 register_prefix);
29b0f896
AM
5688 return 0;
5689 }
5690 }
5691 return 1;
5692}
5693
5694static int
543613e9 5695process_suffix (void)
29b0f896
AM
5696{
5697 /* If matched instruction specifies an explicit instruction mnemonic
5698 suffix, use it. */
40fb9820
L
5699 if (i.tm.opcode_modifier.size16)
5700 i.suffix = WORD_MNEM_SUFFIX;
5701 else if (i.tm.opcode_modifier.size32)
5702 i.suffix = LONG_MNEM_SUFFIX;
5703 else if (i.tm.opcode_modifier.size64)
5704 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5705 else if (i.reg_operands)
5706 {
5707 /* If there's no instruction mnemonic suffix we try to invent one
5708 based on register operands. */
5709 if (!i.suffix)
5710 {
5711 /* We take i.suffix from the last register operand specified,
5712 Destination register type is more significant than source
381d071f
L
5713 register type. crc32 in SSE4.2 prefers source register
5714 type. */
5715 if (i.tm.base_opcode == 0xf20f38f1)
5716 {
dc821c5f 5717 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5718 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5719 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5720 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5721 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5722 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5723 }
9344ff29 5724 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5725 {
dc821c5f 5726 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5727 i.suffix = BYTE_MNEM_SUFFIX;
5728 }
381d071f
L
5729
5730 if (!i.suffix)
5731 {
5732 int op;
5733
20592a94
L
5734 if (i.tm.base_opcode == 0xf20f38f1
5735 || i.tm.base_opcode == 0xf20f38f0)
5736 {
5737 /* We have to know the operand size for crc32. */
5738 as_bad (_("ambiguous memory operand size for `%s`"),
5739 i.tm.name);
5740 return 0;
5741 }
5742
381d071f 5743 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5744 if (!i.tm.operand_types[op].bitfield.inoutportreg
5745 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5746 {
dc821c5f 5747 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
40fb9820
L
5748 {
5749 i.suffix = BYTE_MNEM_SUFFIX;
5750 break;
5751 }
dc821c5f 5752 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
40fb9820
L
5753 {
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 break;
5756 }
dc821c5f 5757 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5758 {
5759 i.suffix = LONG_MNEM_SUFFIX;
5760 break;
5761 }
dc821c5f 5762 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5763 {
5764 i.suffix = QWORD_MNEM_SUFFIX;
5765 break;
5766 }
381d071f
L
5767 }
5768 }
29b0f896
AM
5769 }
5770 else if (i.suffix == BYTE_MNEM_SUFFIX)
5771 {
2eb952a4
L
5772 if (intel_syntax
5773 && i.tm.opcode_modifier.ignoresize
5774 && i.tm.opcode_modifier.no_bsuf)
5775 i.suffix = 0;
5776 else if (!check_byte_reg ())
29b0f896
AM
5777 return 0;
5778 }
5779 else if (i.suffix == LONG_MNEM_SUFFIX)
5780 {
2eb952a4
L
5781 if (intel_syntax
5782 && i.tm.opcode_modifier.ignoresize
5783 && i.tm.opcode_modifier.no_lsuf)
5784 i.suffix = 0;
5785 else if (!check_long_reg ())
29b0f896
AM
5786 return 0;
5787 }
5788 else if (i.suffix == QWORD_MNEM_SUFFIX)
5789 {
955e1e6a
L
5790 if (intel_syntax
5791 && i.tm.opcode_modifier.ignoresize
5792 && i.tm.opcode_modifier.no_qsuf)
5793 i.suffix = 0;
5794 else if (!check_qword_reg ())
29b0f896
AM
5795 return 0;
5796 }
5797 else if (i.suffix == WORD_MNEM_SUFFIX)
5798 {
2eb952a4
L
5799 if (intel_syntax
5800 && i.tm.opcode_modifier.ignoresize
5801 && i.tm.opcode_modifier.no_wsuf)
5802 i.suffix = 0;
5803 else if (!check_word_reg ())
29b0f896
AM
5804 return 0;
5805 }
c0f3af97 5806 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5807 || i.suffix == YMMWORD_MNEM_SUFFIX
5808 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5809 {
43234a1e 5810 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5811 should check if it is a valid suffix. */
5812 }
40fb9820 5813 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5814 /* Do nothing if the instruction is going to ignore the prefix. */
5815 ;
5816 else
5817 abort ();
5818 }
40fb9820 5819 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5820 && !i.suffix
5821 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5822 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5823 {
5824 i.suffix = stackop_size;
5825 }
9306ca4a
JB
5826 else if (intel_syntax
5827 && !i.suffix
40fb9820
L
5828 && (i.tm.operand_types[0].bitfield.jumpabsolute
5829 || i.tm.opcode_modifier.jumpbyte
5830 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5831 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5832 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5833 {
5834 switch (flag_code)
5835 {
5836 case CODE_64BIT:
40fb9820 5837 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5838 {
5839 i.suffix = QWORD_MNEM_SUFFIX;
5840 break;
5841 }
1a0670f3 5842 /* Fall through. */
9306ca4a 5843 case CODE_32BIT:
40fb9820 5844 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5845 i.suffix = LONG_MNEM_SUFFIX;
5846 break;
5847 case CODE_16BIT:
40fb9820 5848 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5849 i.suffix = WORD_MNEM_SUFFIX;
5850 break;
5851 }
5852 }
252b5132 5853
9306ca4a 5854 if (!i.suffix)
29b0f896 5855 {
9306ca4a
JB
5856 if (!intel_syntax)
5857 {
40fb9820 5858 if (i.tm.opcode_modifier.w)
9306ca4a 5859 {
4eed87de
AM
5860 as_bad (_("no instruction mnemonic suffix given and "
5861 "no register operands; can't size instruction"));
9306ca4a
JB
5862 return 0;
5863 }
5864 }
5865 else
5866 {
40fb9820 5867 unsigned int suffixes;
7ab9ffdd 5868
40fb9820
L
5869 suffixes = !i.tm.opcode_modifier.no_bsuf;
5870 if (!i.tm.opcode_modifier.no_wsuf)
5871 suffixes |= 1 << 1;
5872 if (!i.tm.opcode_modifier.no_lsuf)
5873 suffixes |= 1 << 2;
fc4adea1 5874 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5875 suffixes |= 1 << 3;
5876 if (!i.tm.opcode_modifier.no_ssuf)
5877 suffixes |= 1 << 4;
c2b9da16 5878 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5879 suffixes |= 1 << 5;
5880
5881 /* There are more than suffix matches. */
5882 if (i.tm.opcode_modifier.w
9306ca4a 5883 || ((suffixes & (suffixes - 1))
40fb9820
L
5884 && !i.tm.opcode_modifier.defaultsize
5885 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5886 {
5887 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5888 return 0;
5889 }
5890 }
29b0f896 5891 }
252b5132 5892
9306ca4a
JB
5893 /* Change the opcode based on the operand size given by i.suffix;
5894 We don't need to change things for byte insns. */
5895
582d5edd
L
5896 if (i.suffix
5897 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5898 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5899 && i.suffix != YMMWORD_MNEM_SUFFIX
5900 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5901 {
5902 /* It's not a byte, select word/dword operation. */
40fb9820 5903 if (i.tm.opcode_modifier.w)
29b0f896 5904 {
40fb9820 5905 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5906 i.tm.base_opcode |= 8;
5907 else
5908 i.tm.base_opcode |= 1;
5909 }
0f3f3d8b 5910
29b0f896
AM
5911 /* Now select between word & dword operations via the operand
5912 size prefix, except for instructions that will ignore this
5913 prefix anyway. */
ca61edf2 5914 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5915 {
ca61edf2
L
5916 /* The address size override prefix changes the size of the
5917 first operand. */
40fb9820 5918 if ((flag_code == CODE_32BIT
dc821c5f 5919 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5920 || (flag_code != CODE_32BIT
dc821c5f 5921 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5922 if (!add_prefix (ADDR_PREFIX_OPCODE))
5923 return 0;
5924 }
5925 else if (i.suffix != QWORD_MNEM_SUFFIX
5926 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5927 && !i.tm.opcode_modifier.ignoresize
5928 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5929 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5930 || (flag_code == CODE_64BIT
40fb9820 5931 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5932 {
5933 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5934
40fb9820 5935 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5936 prefix = ADDR_PREFIX_OPCODE;
252b5132 5937
29b0f896
AM
5938 if (!add_prefix (prefix))
5939 return 0;
24eab124 5940 }
252b5132 5941
29b0f896
AM
5942 /* Set mode64 for an operand. */
5943 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5944 && flag_code == CODE_64BIT
40fb9820 5945 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5946 {
5947 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5948 need rex64. cmpxchg8b is also a special case. */
5949 if (! (i.operands == 2
5950 && i.tm.base_opcode == 0x90
5951 && i.tm.extension_opcode == None
0dfbf9d7
L
5952 && operand_type_equal (&i.types [0], &acc64)
5953 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5954 && ! (i.operands == 1
5955 && i.tm.base_opcode == 0xfc7
5956 && i.tm.extension_opcode == 1
40fb9820
L
5957 && !operand_type_check (i.types [0], reg)
5958 && operand_type_check (i.types [0], anymem)))
f6bee062 5959 i.rex |= REX_W;
46e883c5 5960 }
3e73aa7c 5961
29b0f896
AM
5962 /* Size floating point instruction. */
5963 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5964 if (i.tm.opcode_modifier.floatmf)
543613e9 5965 i.tm.base_opcode ^= 4;
29b0f896 5966 }
7ecd2f8b 5967
29b0f896
AM
5968 return 1;
5969}
3e73aa7c 5970
29b0f896 5971static int
543613e9 5972check_byte_reg (void)
29b0f896
AM
5973{
5974 int op;
543613e9 5975
29b0f896
AM
5976 for (op = i.operands; --op >= 0;)
5977 {
dc821c5f
JB
5978 /* Skip non-register operands. */
5979 if (!i.types[op].bitfield.reg)
5980 continue;
5981
29b0f896
AM
5982 /* If this is an eight bit register, it's OK. If it's the 16 or
5983 32 bit version of an eight bit register, we will just use the
5984 low portion, and that's OK too. */
dc821c5f 5985 if (i.types[op].bitfield.byte)
29b0f896
AM
5986 continue;
5987
5a819eb9
JB
5988 /* I/O port address operands are OK too. */
5989 if (i.tm.operand_types[op].bitfield.inoutportreg)
5990 continue;
5991
9344ff29
L
5992 /* crc32 doesn't generate this warning. */
5993 if (i.tm.base_opcode == 0xf20f38f0)
5994 continue;
5995
dc821c5f
JB
5996 if ((i.types[op].bitfield.word
5997 || i.types[op].bitfield.dword
5998 || i.types[op].bitfield.qword)
5a819eb9
JB
5999 && i.op[op].regs->reg_num < 4
6000 /* Prohibit these changes in 64bit mode, since the lowering
6001 would be more complicated. */
6002 && flag_code != CODE_64BIT)
29b0f896 6003 {
29b0f896 6004#if REGISTER_WARNINGS
5a819eb9 6005 if (!quiet_warnings)
a540244d
L
6006 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6007 register_prefix,
dc821c5f 6008 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6009 ? REGNAM_AL - REGNAM_AX
6010 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6011 register_prefix,
29b0f896
AM
6012 i.op[op].regs->reg_name,
6013 i.suffix);
6014#endif
6015 continue;
6016 }
6017 /* Any other register is bad. */
dc821c5f 6018 if (i.types[op].bitfield.reg
40fb9820 6019 || i.types[op].bitfield.regmmx
1b54b8d7 6020 || i.types[op].bitfield.regsimd
40fb9820
L
6021 || i.types[op].bitfield.sreg2
6022 || i.types[op].bitfield.sreg3
6023 || i.types[op].bitfield.control
6024 || i.types[op].bitfield.debug
ca0d63fe 6025 || i.types[op].bitfield.test)
29b0f896 6026 {
a540244d
L
6027 as_bad (_("`%s%s' not allowed with `%s%c'"),
6028 register_prefix,
29b0f896
AM
6029 i.op[op].regs->reg_name,
6030 i.tm.name,
6031 i.suffix);
6032 return 0;
6033 }
6034 }
6035 return 1;
6036}
6037
6038static int
e3bb37b5 6039check_long_reg (void)
29b0f896
AM
6040{
6041 int op;
6042
6043 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6044 /* Skip non-register operands. */
6045 if (!i.types[op].bitfield.reg)
6046 continue;
29b0f896
AM
6047 /* Reject eight bit registers, except where the template requires
6048 them. (eg. movzb) */
dc821c5f
JB
6049 else if (i.types[op].bitfield.byte
6050 && (i.tm.operand_types[op].bitfield.reg
6051 || i.tm.operand_types[op].bitfield.acc)
6052 && (i.tm.operand_types[op].bitfield.word
6053 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6054 {
a540244d
L
6055 as_bad (_("`%s%s' not allowed with `%s%c'"),
6056 register_prefix,
29b0f896
AM
6057 i.op[op].regs->reg_name,
6058 i.tm.name,
6059 i.suffix);
6060 return 0;
6061 }
e4630f71 6062 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6063 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6064 && i.types[op].bitfield.word
6065 && (i.tm.operand_types[op].bitfield.reg
6066 || i.tm.operand_types[op].bitfield.acc)
6067 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6068 {
6069 /* Prohibit these changes in the 64bit mode, since the
6070 lowering is more complicated. */
6071 if (flag_code == CODE_64BIT)
252b5132 6072 {
2b5d6a91 6073 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6074 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6075 i.suffix);
6076 return 0;
252b5132 6077 }
29b0f896 6078#if REGISTER_WARNINGS
cecf1424
JB
6079 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6080 register_prefix,
6081 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6082 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6083#endif
252b5132 6084 }
e4630f71 6085 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6086 else if (i.types[op].bitfield.qword
6087 && (i.tm.operand_types[op].bitfield.reg
6088 || i.tm.operand_types[op].bitfield.acc)
6089 && i.tm.operand_types[op].bitfield.dword)
252b5132 6090 {
34828aad 6091 if (intel_syntax
ca61edf2 6092 && i.tm.opcode_modifier.toqword
1b54b8d7 6093 && !i.types[0].bitfield.regsimd)
34828aad 6094 {
ca61edf2 6095 /* Convert to QWORD. We want REX byte. */
34828aad
L
6096 i.suffix = QWORD_MNEM_SUFFIX;
6097 }
6098 else
6099 {
2b5d6a91 6100 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6101 register_prefix, i.op[op].regs->reg_name,
6102 i.suffix);
6103 return 0;
6104 }
29b0f896
AM
6105 }
6106 return 1;
6107}
252b5132 6108
29b0f896 6109static int
e3bb37b5 6110check_qword_reg (void)
29b0f896
AM
6111{
6112 int op;
252b5132 6113
29b0f896 6114 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6115 /* Skip non-register operands. */
6116 if (!i.types[op].bitfield.reg)
6117 continue;
29b0f896
AM
6118 /* Reject eight bit registers, except where the template requires
6119 them. (eg. movzb) */
dc821c5f
JB
6120 else if (i.types[op].bitfield.byte
6121 && (i.tm.operand_types[op].bitfield.reg
6122 || i.tm.operand_types[op].bitfield.acc)
6123 && (i.tm.operand_types[op].bitfield.word
6124 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6125 {
a540244d
L
6126 as_bad (_("`%s%s' not allowed with `%s%c'"),
6127 register_prefix,
29b0f896
AM
6128 i.op[op].regs->reg_name,
6129 i.tm.name,
6130 i.suffix);
6131 return 0;
6132 }
e4630f71 6133 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6134 else if ((i.types[op].bitfield.word
6135 || i.types[op].bitfield.dword)
6136 && (i.tm.operand_types[op].bitfield.reg
6137 || i.tm.operand_types[op].bitfield.acc)
6138 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6139 {
6140 /* Prohibit these changes in the 64bit mode, since the
6141 lowering is more complicated. */
34828aad 6142 if (intel_syntax
ca61edf2 6143 && i.tm.opcode_modifier.todword
1b54b8d7 6144 && !i.types[0].bitfield.regsimd)
34828aad 6145 {
ca61edf2 6146 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6147 i.suffix = LONG_MNEM_SUFFIX;
6148 }
6149 else
6150 {
2b5d6a91 6151 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6152 register_prefix, i.op[op].regs->reg_name,
6153 i.suffix);
6154 return 0;
6155 }
252b5132 6156 }
29b0f896
AM
6157 return 1;
6158}
252b5132 6159
29b0f896 6160static int
e3bb37b5 6161check_word_reg (void)
29b0f896
AM
6162{
6163 int op;
6164 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6165 /* Skip non-register operands. */
6166 if (!i.types[op].bitfield.reg)
6167 continue;
29b0f896
AM
6168 /* Reject eight bit registers, except where the template requires
6169 them. (eg. movzb) */
dc821c5f
JB
6170 else if (i.types[op].bitfield.byte
6171 && (i.tm.operand_types[op].bitfield.reg
6172 || i.tm.operand_types[op].bitfield.acc)
6173 && (i.tm.operand_types[op].bitfield.word
6174 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6175 {
a540244d
L
6176 as_bad (_("`%s%s' not allowed with `%s%c'"),
6177 register_prefix,
29b0f896
AM
6178 i.op[op].regs->reg_name,
6179 i.tm.name,
6180 i.suffix);
6181 return 0;
6182 }
e4630f71 6183 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6184 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6185 && (i.types[op].bitfield.dword
6186 || i.types[op].bitfield.qword)
6187 && (i.tm.operand_types[op].bitfield.reg
6188 || i.tm.operand_types[op].bitfield.acc)
6189 && i.tm.operand_types[op].bitfield.word)
252b5132 6190 {
29b0f896
AM
6191 /* Prohibit these changes in the 64bit mode, since the
6192 lowering is more complicated. */
6193 if (flag_code == CODE_64BIT)
252b5132 6194 {
2b5d6a91 6195 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6196 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6197 i.suffix);
6198 return 0;
252b5132 6199 }
29b0f896 6200#if REGISTER_WARNINGS
cecf1424
JB
6201 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6202 register_prefix,
6203 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6204 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6205#endif
6206 }
6207 return 1;
6208}
252b5132 6209
29b0f896 6210static int
40fb9820 6211update_imm (unsigned int j)
29b0f896 6212{
bc0844ae 6213 i386_operand_type overlap = i.types[j];
40fb9820
L
6214 if ((overlap.bitfield.imm8
6215 || overlap.bitfield.imm8s
6216 || overlap.bitfield.imm16
6217 || overlap.bitfield.imm32
6218 || overlap.bitfield.imm32s
6219 || overlap.bitfield.imm64)
0dfbf9d7
L
6220 && !operand_type_equal (&overlap, &imm8)
6221 && !operand_type_equal (&overlap, &imm8s)
6222 && !operand_type_equal (&overlap, &imm16)
6223 && !operand_type_equal (&overlap, &imm32)
6224 && !operand_type_equal (&overlap, &imm32s)
6225 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6226 {
6227 if (i.suffix)
6228 {
40fb9820
L
6229 i386_operand_type temp;
6230
0dfbf9d7 6231 operand_type_set (&temp, 0);
7ab9ffdd 6232 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6233 {
6234 temp.bitfield.imm8 = overlap.bitfield.imm8;
6235 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6236 }
6237 else if (i.suffix == WORD_MNEM_SUFFIX)
6238 temp.bitfield.imm16 = overlap.bitfield.imm16;
6239 else if (i.suffix == QWORD_MNEM_SUFFIX)
6240 {
6241 temp.bitfield.imm64 = overlap.bitfield.imm64;
6242 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6243 }
6244 else
6245 temp.bitfield.imm32 = overlap.bitfield.imm32;
6246 overlap = temp;
29b0f896 6247 }
0dfbf9d7
L
6248 else if (operand_type_equal (&overlap, &imm16_32_32s)
6249 || operand_type_equal (&overlap, &imm16_32)
6250 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6251 {
40fb9820 6252 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6253 overlap = imm16;
40fb9820 6254 else
65da13b5 6255 overlap = imm32s;
29b0f896 6256 }
0dfbf9d7
L
6257 if (!operand_type_equal (&overlap, &imm8)
6258 && !operand_type_equal (&overlap, &imm8s)
6259 && !operand_type_equal (&overlap, &imm16)
6260 && !operand_type_equal (&overlap, &imm32)
6261 && !operand_type_equal (&overlap, &imm32s)
6262 && !operand_type_equal (&overlap, &imm64))
29b0f896 6263 {
4eed87de
AM
6264 as_bad (_("no instruction mnemonic suffix given; "
6265 "can't determine immediate size"));
29b0f896
AM
6266 return 0;
6267 }
6268 }
40fb9820 6269 i.types[j] = overlap;
29b0f896 6270
40fb9820
L
6271 return 1;
6272}
6273
6274static int
6275finalize_imm (void)
6276{
bc0844ae 6277 unsigned int j, n;
29b0f896 6278
bc0844ae
L
6279 /* Update the first 2 immediate operands. */
6280 n = i.operands > 2 ? 2 : i.operands;
6281 if (n)
6282 {
6283 for (j = 0; j < n; j++)
6284 if (update_imm (j) == 0)
6285 return 0;
40fb9820 6286
bc0844ae
L
6287 /* The 3rd operand can't be immediate operand. */
6288 gas_assert (operand_type_check (i.types[2], imm) == 0);
6289 }
29b0f896
AM
6290
6291 return 1;
6292}
6293
6294static int
e3bb37b5 6295process_operands (void)
29b0f896
AM
6296{
6297 /* Default segment register this instruction will use for memory
6298 accesses. 0 means unknown. This is only for optimizing out
6299 unnecessary segment overrides. */
6300 const seg_entry *default_seg = 0;
6301
2426c15f 6302 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6303 {
91d6fa6a
NC
6304 unsigned int dupl = i.operands;
6305 unsigned int dest = dupl - 1;
9fcfb3d7
L
6306 unsigned int j;
6307
c0f3af97 6308 /* The destination must be an xmm register. */
9c2799c2 6309 gas_assert (i.reg_operands
91d6fa6a 6310 && MAX_OPERANDS > dupl
7ab9ffdd 6311 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6312
1b54b8d7
JB
6313 if (i.tm.operand_types[0].bitfield.acc
6314 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6315 {
8cd7925b 6316 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6317 {
6318 /* Keep xmm0 for instructions with VEX prefix and 3
6319 sources. */
1b54b8d7
JB
6320 i.tm.operand_types[0].bitfield.acc = 0;
6321 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6322 goto duplicate;
6323 }
e2ec9d29 6324 else
c0f3af97
L
6325 {
6326 /* We remove the first xmm0 and keep the number of
6327 operands unchanged, which in fact duplicates the
6328 destination. */
6329 for (j = 1; j < i.operands; j++)
6330 {
6331 i.op[j - 1] = i.op[j];
6332 i.types[j - 1] = i.types[j];
6333 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6334 }
6335 }
6336 }
6337 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6338 {
91d6fa6a 6339 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6340 && (i.tm.opcode_modifier.vexsources
6341 == VEX3SOURCES));
c0f3af97
L
6342
6343 /* Add the implicit xmm0 for instructions with VEX prefix
6344 and 3 sources. */
6345 for (j = i.operands; j > 0; j--)
6346 {
6347 i.op[j] = i.op[j - 1];
6348 i.types[j] = i.types[j - 1];
6349 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6350 }
6351 i.op[0].regs
6352 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6353 i.types[0] = regxmm;
c0f3af97
L
6354 i.tm.operand_types[0] = regxmm;
6355
6356 i.operands += 2;
6357 i.reg_operands += 2;
6358 i.tm.operands += 2;
6359
91d6fa6a 6360 dupl++;
c0f3af97 6361 dest++;
91d6fa6a
NC
6362 i.op[dupl] = i.op[dest];
6363 i.types[dupl] = i.types[dest];
6364 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6365 }
c0f3af97
L
6366 else
6367 {
6368duplicate:
6369 i.operands++;
6370 i.reg_operands++;
6371 i.tm.operands++;
6372
91d6fa6a
NC
6373 i.op[dupl] = i.op[dest];
6374 i.types[dupl] = i.types[dest];
6375 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6376 }
6377
6378 if (i.tm.opcode_modifier.immext)
6379 process_immext ();
6380 }
1b54b8d7
JB
6381 else if (i.tm.operand_types[0].bitfield.acc
6382 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6383 {
6384 unsigned int j;
6385
9fcfb3d7
L
6386 for (j = 1; j < i.operands; j++)
6387 {
6388 i.op[j - 1] = i.op[j];
6389 i.types[j - 1] = i.types[j];
6390
6391 /* We need to adjust fields in i.tm since they are used by
6392 build_modrm_byte. */
6393 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6394 }
6395
e2ec9d29
L
6396 i.operands--;
6397 i.reg_operands--;
e2ec9d29
L
6398 i.tm.operands--;
6399 }
920d2ddc
IT
6400 else if (i.tm.opcode_modifier.implicitquadgroup)
6401 {
a477a8c4
JB
6402 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6403
920d2ddc 6404 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6405 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6406 regnum = register_number (i.op[1].regs);
6407 first_reg_in_group = regnum & ~3;
6408 last_reg_in_group = first_reg_in_group + 3;
6409 if (regnum != first_reg_in_group)
6410 as_warn (_("source register `%s%s' implicitly denotes"
6411 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6412 register_prefix, i.op[1].regs->reg_name,
6413 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6414 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6415 i.tm.name);
6416 }
e2ec9d29
L
6417 else if (i.tm.opcode_modifier.regkludge)
6418 {
6419 /* The imul $imm, %reg instruction is converted into
6420 imul $imm, %reg, %reg, and the clr %reg instruction
6421 is converted into xor %reg, %reg. */
6422
6423 unsigned int first_reg_op;
6424
6425 if (operand_type_check (i.types[0], reg))
6426 first_reg_op = 0;
6427 else
6428 first_reg_op = 1;
6429 /* Pretend we saw the extra register operand. */
9c2799c2 6430 gas_assert (i.reg_operands == 1
7ab9ffdd 6431 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6432 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6433 i.types[first_reg_op + 1] = i.types[first_reg_op];
6434 i.operands++;
6435 i.reg_operands++;
29b0f896
AM
6436 }
6437
40fb9820 6438 if (i.tm.opcode_modifier.shortform)
29b0f896 6439 {
40fb9820
L
6440 if (i.types[0].bitfield.sreg2
6441 || i.types[0].bitfield.sreg3)
29b0f896 6442 {
4eed87de
AM
6443 if (i.tm.base_opcode == POP_SEG_SHORT
6444 && i.op[0].regs->reg_num == 1)
29b0f896 6445 {
a87af027 6446 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6447 return 0;
29b0f896 6448 }
4eed87de
AM
6449 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6450 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6451 i.rex |= REX_B;
4eed87de
AM
6452 }
6453 else
6454 {
7ab9ffdd 6455 /* The register or float register operand is in operand
85f10a01 6456 0 or 1. */
40fb9820 6457 unsigned int op;
7ab9ffdd 6458
ca0d63fe 6459 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6460 || operand_type_check (i.types[0], reg))
6461 op = 0;
6462 else
6463 op = 1;
4eed87de
AM
6464 /* Register goes in low 3 bits of opcode. */
6465 i.tm.base_opcode |= i.op[op].regs->reg_num;
6466 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6467 i.rex |= REX_B;
40fb9820 6468 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6469 {
4eed87de
AM
6470 /* Warn about some common errors, but press on regardless.
6471 The first case can be generated by gcc (<= 2.8.1). */
6472 if (i.operands == 2)
6473 {
6474 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6475 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6476 register_prefix, i.op[!intel_syntax].regs->reg_name,
6477 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6478 }
6479 else
6480 {
6481 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6482 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6483 register_prefix, i.op[0].regs->reg_name);
4eed87de 6484 }
29b0f896
AM
6485 }
6486 }
6487 }
40fb9820 6488 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6489 {
6490 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6491 must be put into the modrm byte). Now, we make the modrm and
6492 index base bytes based on all the info we've collected. */
29b0f896
AM
6493
6494 default_seg = build_modrm_byte ();
6495 }
8a2ed489 6496 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6497 {
6498 default_seg = &ds;
6499 }
40fb9820 6500 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6501 {
6502 /* For the string instructions that allow a segment override
6503 on one of their operands, the default segment is ds. */
6504 default_seg = &ds;
6505 }
6506
75178d9d
L
6507 if (i.tm.base_opcode == 0x8d /* lea */
6508 && i.seg[0]
6509 && !quiet_warnings)
30123838 6510 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6511
6512 /* If a segment was explicitly specified, and the specified segment
6513 is not the default, use an opcode prefix to select it. If we
6514 never figured out what the default segment is, then default_seg
6515 will be zero at this point, and the specified segment prefix will
6516 always be used. */
29b0f896
AM
6517 if ((i.seg[0]) && (i.seg[0] != default_seg))
6518 {
6519 if (!add_prefix (i.seg[0]->seg_prefix))
6520 return 0;
6521 }
6522 return 1;
6523}
6524
6525static const seg_entry *
e3bb37b5 6526build_modrm_byte (void)
29b0f896
AM
6527{
6528 const seg_entry *default_seg = 0;
c0f3af97 6529 unsigned int source, dest;
8cd7925b 6530 int vex_3_sources;
c0f3af97
L
6531
6532 /* The first operand of instructions with VEX prefix and 3 sources
6533 must be VEX_Imm4. */
8cd7925b 6534 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6535 if (vex_3_sources)
6536 {
91d6fa6a 6537 unsigned int nds, reg_slot;
4c2c6516 6538 expressionS *exp;
c0f3af97 6539
922d8de8 6540 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6541 && i.tm.opcode_modifier.immext)
6542 {
6543 dest = i.operands - 2;
6544 gas_assert (dest == 3);
6545 }
922d8de8 6546 else
a683cc34 6547 dest = i.operands - 1;
c0f3af97 6548 nds = dest - 1;
922d8de8 6549
a683cc34
SP
6550 /* There are 2 kinds of instructions:
6551 1. 5 operands: 4 register operands or 3 register operands
6552 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6553 VexW0 or VexW1. The destination must be either XMM, YMM or
6554 ZMM register.
a683cc34
SP
6555 2. 4 operands: 4 register operands or 3 register operands
6556 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6557 gas_assert ((i.reg_operands == 4
a683cc34
SP
6558 || (i.reg_operands == 3 && i.mem_operands == 1))
6559 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6560 && (i.tm.opcode_modifier.veximmext
6561 || (i.imm_operands == 1
6562 && i.types[0].bitfield.vec_imm4
6563 && (i.tm.opcode_modifier.vexw == VEXW0
6564 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6565 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6566
6567 if (i.imm_operands == 0)
6568 {
6569 /* When there is no immediate operand, generate an 8bit
6570 immediate operand to encode the first operand. */
6571 exp = &im_expressions[i.imm_operands++];
6572 i.op[i.operands].imms = exp;
6573 i.types[i.operands] = imm8;
6574 i.operands++;
6575 /* If VexW1 is set, the first operand is the source and
6576 the second operand is encoded in the immediate operand. */
6577 if (i.tm.opcode_modifier.vexw == VEXW1)
6578 {
6579 source = 0;
6580 reg_slot = 1;
6581 }
6582 else
6583 {
6584 source = 1;
6585 reg_slot = 0;
6586 }
6587
6588 /* FMA swaps REG and NDS. */
6589 if (i.tm.cpu_flags.bitfield.cpufma)
6590 {
6591 unsigned int tmp;
6592 tmp = reg_slot;
6593 reg_slot = nds;
6594 nds = tmp;
6595 }
6596
10c17abd 6597 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6598 exp->X_op = O_constant;
4c692bc7 6599 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6600 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6601 }
922d8de8 6602 else
a683cc34
SP
6603 {
6604 unsigned int imm_slot;
6605
6606 if (i.tm.opcode_modifier.vexw == VEXW0)
6607 {
6608 /* If VexW0 is set, the third operand is the source and
6609 the second operand is encoded in the immediate
6610 operand. */
6611 source = 2;
6612 reg_slot = 1;
6613 }
6614 else
6615 {
6616 /* VexW1 is set, the second operand is the source and
6617 the third operand is encoded in the immediate
6618 operand. */
6619 source = 1;
6620 reg_slot = 2;
6621 }
6622
6623 if (i.tm.opcode_modifier.immext)
6624 {
33eaf5de 6625 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6626 operand. */
6627 imm_slot = i.operands - 1;
6628 source--;
6629 reg_slot--;
6630 }
6631 else
6632 {
6633 imm_slot = 0;
6634
6635 /* Turn on Imm8 so that output_imm will generate it. */
6636 i.types[imm_slot].bitfield.imm8 = 1;
6637 }
6638
10c17abd 6639 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6640 i.op[imm_slot].imms->X_add_number
4c692bc7 6641 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6642 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6643 }
6644
10c17abd 6645 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6646 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6647 }
6648 else
6649 source = dest = 0;
29b0f896
AM
6650
6651 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6652 implicit registers do not count. If there are 3 register
6653 operands, it must be a instruction with VexNDS. For a
6654 instruction with VexNDD, the destination register is encoded
6655 in VEX prefix. If there are 4 register operands, it must be
6656 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6657 if (i.mem_operands == 0
6658 && ((i.reg_operands == 2
2426c15f 6659 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6660 || (i.reg_operands == 3
2426c15f 6661 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6662 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6663 {
cab737b9
L
6664 switch (i.operands)
6665 {
6666 case 2:
6667 source = 0;
6668 break;
6669 case 3:
c81128dc
L
6670 /* When there are 3 operands, one of them may be immediate,
6671 which may be the first or the last operand. Otherwise,
c0f3af97
L
6672 the first operand must be shift count register (cl) or it
6673 is an instruction with VexNDS. */
9c2799c2 6674 gas_assert (i.imm_operands == 1
7ab9ffdd 6675 || (i.imm_operands == 0
2426c15f 6676 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6677 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6678 if (operand_type_check (i.types[0], imm)
6679 || i.types[0].bitfield.shiftcount)
6680 source = 1;
6681 else
6682 source = 0;
cab737b9
L
6683 break;
6684 case 4:
368d64cc
L
6685 /* When there are 4 operands, the first two must be 8bit
6686 immediate operands. The source operand will be the 3rd
c0f3af97
L
6687 one.
6688
6689 For instructions with VexNDS, if the first operand
6690 an imm8, the source operand is the 2nd one. If the last
6691 operand is imm8, the source operand is the first one. */
9c2799c2 6692 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6693 && i.types[0].bitfield.imm8
6694 && i.types[1].bitfield.imm8)
2426c15f 6695 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6696 && i.imm_operands == 1
6697 && (i.types[0].bitfield.imm8
43234a1e
L
6698 || i.types[i.operands - 1].bitfield.imm8
6699 || i.rounding)));
9f2670f2
L
6700 if (i.imm_operands == 2)
6701 source = 2;
6702 else
c0f3af97
L
6703 {
6704 if (i.types[0].bitfield.imm8)
6705 source = 1;
6706 else
6707 source = 0;
6708 }
c0f3af97
L
6709 break;
6710 case 5:
43234a1e
L
6711 if (i.tm.opcode_modifier.evex)
6712 {
6713 /* For EVEX instructions, when there are 5 operands, the
6714 first one must be immediate operand. If the second one
6715 is immediate operand, the source operand is the 3th
6716 one. If the last one is immediate operand, the source
6717 operand is the 2nd one. */
6718 gas_assert (i.imm_operands == 2
6719 && i.tm.opcode_modifier.sae
6720 && operand_type_check (i.types[0], imm));
6721 if (operand_type_check (i.types[1], imm))
6722 source = 2;
6723 else if (operand_type_check (i.types[4], imm))
6724 source = 1;
6725 else
6726 abort ();
6727 }
cab737b9
L
6728 break;
6729 default:
6730 abort ();
6731 }
6732
c0f3af97
L
6733 if (!vex_3_sources)
6734 {
6735 dest = source + 1;
6736
43234a1e
L
6737 /* RC/SAE operand could be between DEST and SRC. That happens
6738 when one operand is GPR and the other one is XMM/YMM/ZMM
6739 register. */
6740 if (i.rounding && i.rounding->operand == (int) dest)
6741 dest++;
6742
2426c15f 6743 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6744 {
43234a1e 6745 /* For instructions with VexNDS, the register-only source
c5d0745b 6746 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6747 register. It is encoded in VEX prefix. We need to
6748 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6749
6750 i386_operand_type op;
6751 unsigned int vvvv;
6752
6753 /* Check register-only source operand when two source
6754 operands are swapped. */
6755 if (!i.tm.operand_types[source].bitfield.baseindex
6756 && i.tm.operand_types[dest].bitfield.baseindex)
6757 {
6758 vvvv = source;
6759 source = dest;
6760 }
6761 else
6762 vvvv = dest;
6763
6764 op = i.tm.operand_types[vvvv];
fa99fab2 6765 op.bitfield.regmem = 0;
c0f3af97 6766 if ((dest + 1) >= i.operands
dc821c5f
JB
6767 || ((!op.bitfield.reg
6768 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6769 && !op.bitfield.regsimd
43234a1e 6770 && !operand_type_equal (&op, &regmask)))
c0f3af97 6771 abort ();
f12dc422 6772 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6773 dest++;
6774 }
6775 }
29b0f896
AM
6776
6777 i.rm.mode = 3;
6778 /* One of the register operands will be encoded in the i.tm.reg
6779 field, the other in the combined i.tm.mode and i.tm.regmem
6780 fields. If no form of this instruction supports a memory
6781 destination operand, then we assume the source operand may
6782 sometimes be a memory operand and so we need to store the
6783 destination in the i.rm.reg field. */
40fb9820
L
6784 if (!i.tm.operand_types[dest].bitfield.regmem
6785 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6786 {
6787 i.rm.reg = i.op[dest].regs->reg_num;
6788 i.rm.regmem = i.op[source].regs->reg_num;
6789 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6790 i.rex |= REX_R;
43234a1e
L
6791 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6792 i.vrex |= REX_R;
29b0f896 6793 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6794 i.rex |= REX_B;
43234a1e
L
6795 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6796 i.vrex |= REX_B;
29b0f896
AM
6797 }
6798 else
6799 {
6800 i.rm.reg = i.op[source].regs->reg_num;
6801 i.rm.regmem = i.op[dest].regs->reg_num;
6802 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6803 i.rex |= REX_B;
43234a1e
L
6804 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6805 i.vrex |= REX_B;
29b0f896 6806 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6807 i.rex |= REX_R;
43234a1e
L
6808 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6809 i.vrex |= REX_R;
29b0f896 6810 }
161a04f6 6811 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6812 {
40fb9820
L
6813 if (!i.types[0].bitfield.control
6814 && !i.types[1].bitfield.control)
c4a530c5 6815 abort ();
161a04f6 6816 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6817 add_prefix (LOCK_PREFIX_OPCODE);
6818 }
29b0f896
AM
6819 }
6820 else
6821 { /* If it's not 2 reg operands... */
c0f3af97
L
6822 unsigned int mem;
6823
29b0f896
AM
6824 if (i.mem_operands)
6825 {
6826 unsigned int fake_zero_displacement = 0;
99018f42 6827 unsigned int op;
4eed87de 6828
7ab9ffdd
L
6829 for (op = 0; op < i.operands; op++)
6830 if (operand_type_check (i.types[op], anymem))
6831 break;
7ab9ffdd 6832 gas_assert (op < i.operands);
29b0f896 6833
6c30d220
L
6834 if (i.tm.opcode_modifier.vecsib)
6835 {
6836 if (i.index_reg->reg_num == RegEiz
6837 || i.index_reg->reg_num == RegRiz)
6838 abort ();
6839
6840 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6841 if (!i.base_reg)
6842 {
6843 i.sib.base = NO_BASE_REGISTER;
6844 i.sib.scale = i.log2_scale_factor;
6845 i.types[op].bitfield.disp8 = 0;
6846 i.types[op].bitfield.disp16 = 0;
6847 i.types[op].bitfield.disp64 = 0;
43083a50 6848 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6849 {
6850 /* Must be 32 bit */
6851 i.types[op].bitfield.disp32 = 1;
6852 i.types[op].bitfield.disp32s = 0;
6853 }
6854 else
6855 {
6856 i.types[op].bitfield.disp32 = 0;
6857 i.types[op].bitfield.disp32s = 1;
6858 }
6859 }
6860 i.sib.index = i.index_reg->reg_num;
6861 if ((i.index_reg->reg_flags & RegRex) != 0)
6862 i.rex |= REX_X;
43234a1e
L
6863 if ((i.index_reg->reg_flags & RegVRex) != 0)
6864 i.vrex |= REX_X;
6c30d220
L
6865 }
6866
29b0f896
AM
6867 default_seg = &ds;
6868
6869 if (i.base_reg == 0)
6870 {
6871 i.rm.mode = 0;
6872 if (!i.disp_operands)
9bb129e8 6873 fake_zero_displacement = 1;
29b0f896
AM
6874 if (i.index_reg == 0)
6875 {
73053c1f
JB
6876 i386_operand_type newdisp;
6877
6c30d220 6878 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6879 /* Operand is just <disp> */
20f0a1fc 6880 if (flag_code == CODE_64BIT)
29b0f896
AM
6881 {
6882 /* 64bit mode overwrites the 32bit absolute
6883 addressing by RIP relative addressing and
6884 absolute addressing is encoded by one of the
6885 redundant SIB forms. */
6886 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6887 i.sib.base = NO_BASE_REGISTER;
6888 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6889 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6890 }
fc225355
L
6891 else if ((flag_code == CODE_16BIT)
6892 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6893 {
6894 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6895 newdisp = disp16;
20f0a1fc
NC
6896 }
6897 else
6898 {
6899 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6900 newdisp = disp32;
29b0f896 6901 }
73053c1f
JB
6902 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6903 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6904 }
6c30d220 6905 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6906 {
6c30d220 6907 /* !i.base_reg && i.index_reg */
db51cc60
L
6908 if (i.index_reg->reg_num == RegEiz
6909 || i.index_reg->reg_num == RegRiz)
6910 i.sib.index = NO_INDEX_REGISTER;
6911 else
6912 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6913 i.sib.base = NO_BASE_REGISTER;
6914 i.sib.scale = i.log2_scale_factor;
6915 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6916 i.types[op].bitfield.disp8 = 0;
6917 i.types[op].bitfield.disp16 = 0;
6918 i.types[op].bitfield.disp64 = 0;
43083a50 6919 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6920 {
6921 /* Must be 32 bit */
6922 i.types[op].bitfield.disp32 = 1;
6923 i.types[op].bitfield.disp32s = 0;
6924 }
29b0f896 6925 else
40fb9820
L
6926 {
6927 i.types[op].bitfield.disp32 = 0;
6928 i.types[op].bitfield.disp32s = 1;
6929 }
29b0f896 6930 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6931 i.rex |= REX_X;
29b0f896
AM
6932 }
6933 }
6934 /* RIP addressing for 64bit mode. */
9a04903e
JB
6935 else if (i.base_reg->reg_num == RegRip ||
6936 i.base_reg->reg_num == RegEip)
29b0f896 6937 {
6c30d220 6938 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6939 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6940 i.types[op].bitfield.disp8 = 0;
6941 i.types[op].bitfield.disp16 = 0;
6942 i.types[op].bitfield.disp32 = 0;
6943 i.types[op].bitfield.disp32s = 1;
6944 i.types[op].bitfield.disp64 = 0;
71903a11 6945 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6946 if (! i.disp_operands)
6947 fake_zero_displacement = 1;
29b0f896 6948 }
dc821c5f 6949 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6950 {
6c30d220 6951 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6952 switch (i.base_reg->reg_num)
6953 {
6954 case 3: /* (%bx) */
6955 if (i.index_reg == 0)
6956 i.rm.regmem = 7;
6957 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6958 i.rm.regmem = i.index_reg->reg_num - 6;
6959 break;
6960 case 5: /* (%bp) */
6961 default_seg = &ss;
6962 if (i.index_reg == 0)
6963 {
6964 i.rm.regmem = 6;
40fb9820 6965 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6966 {
6967 /* fake (%bp) into 0(%bp) */
b5014f7a 6968 i.types[op].bitfield.disp8 = 1;
252b5132 6969 fake_zero_displacement = 1;
29b0f896
AM
6970 }
6971 }
6972 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6973 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6974 break;
6975 default: /* (%si) -> 4 or (%di) -> 5 */
6976 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6977 }
6978 i.rm.mode = mode_from_disp_size (i.types[op]);
6979 }
6980 else /* i.base_reg and 32/64 bit mode */
6981 {
6982 if (flag_code == CODE_64BIT
40fb9820
L
6983 && operand_type_check (i.types[op], disp))
6984 {
73053c1f
JB
6985 i.types[op].bitfield.disp16 = 0;
6986 i.types[op].bitfield.disp64 = 0;
40fb9820 6987 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
6988 {
6989 i.types[op].bitfield.disp32 = 0;
6990 i.types[op].bitfield.disp32s = 1;
6991 }
40fb9820 6992 else
73053c1f
JB
6993 {
6994 i.types[op].bitfield.disp32 = 1;
6995 i.types[op].bitfield.disp32s = 0;
6996 }
40fb9820 6997 }
20f0a1fc 6998
6c30d220
L
6999 if (!i.tm.opcode_modifier.vecsib)
7000 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7001 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7002 i.rex |= REX_B;
29b0f896
AM
7003 i.sib.base = i.base_reg->reg_num;
7004 /* x86-64 ignores REX prefix bit here to avoid decoder
7005 complications. */
848930b2
JB
7006 if (!(i.base_reg->reg_flags & RegRex)
7007 && (i.base_reg->reg_num == EBP_REG_NUM
7008 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7009 default_seg = &ss;
848930b2 7010 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7011 {
848930b2 7012 fake_zero_displacement = 1;
b5014f7a 7013 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7014 }
7015 i.sib.scale = i.log2_scale_factor;
7016 if (i.index_reg == 0)
7017 {
6c30d220 7018 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7019 /* <disp>(%esp) becomes two byte modrm with no index
7020 register. We've already stored the code for esp
7021 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7022 Any base register besides %esp will not use the
7023 extra modrm byte. */
7024 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7025 }
6c30d220 7026 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7027 {
db51cc60
L
7028 if (i.index_reg->reg_num == RegEiz
7029 || i.index_reg->reg_num == RegRiz)
7030 i.sib.index = NO_INDEX_REGISTER;
7031 else
7032 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7033 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7034 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7035 i.rex |= REX_X;
29b0f896 7036 }
67a4f2b7
AO
7037
7038 if (i.disp_operands
7039 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7040 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7041 i.rm.mode = 0;
7042 else
a501d77e
L
7043 {
7044 if (!fake_zero_displacement
7045 && !i.disp_operands
7046 && i.disp_encoding)
7047 {
7048 fake_zero_displacement = 1;
7049 if (i.disp_encoding == disp_encoding_8bit)
7050 i.types[op].bitfield.disp8 = 1;
7051 else
7052 i.types[op].bitfield.disp32 = 1;
7053 }
7054 i.rm.mode = mode_from_disp_size (i.types[op]);
7055 }
29b0f896 7056 }
252b5132 7057
29b0f896
AM
7058 if (fake_zero_displacement)
7059 {
7060 /* Fakes a zero displacement assuming that i.types[op]
7061 holds the correct displacement size. */
7062 expressionS *exp;
7063
9c2799c2 7064 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7065 exp = &disp_expressions[i.disp_operands++];
7066 i.op[op].disps = exp;
7067 exp->X_op = O_constant;
7068 exp->X_add_number = 0;
7069 exp->X_add_symbol = (symbolS *) 0;
7070 exp->X_op_symbol = (symbolS *) 0;
7071 }
c0f3af97
L
7072
7073 mem = op;
29b0f896 7074 }
c0f3af97
L
7075 else
7076 mem = ~0;
252b5132 7077
8c43a48b 7078 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7079 {
7080 if (operand_type_check (i.types[0], imm))
7081 i.vex.register_specifier = NULL;
7082 else
7083 {
7084 /* VEX.vvvv encodes one of the sources when the first
7085 operand is not an immediate. */
1ef99a7b 7086 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7087 i.vex.register_specifier = i.op[0].regs;
7088 else
7089 i.vex.register_specifier = i.op[1].regs;
7090 }
7091
7092 /* Destination is a XMM register encoded in the ModRM.reg
7093 and VEX.R bit. */
7094 i.rm.reg = i.op[2].regs->reg_num;
7095 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7096 i.rex |= REX_R;
7097
7098 /* ModRM.rm and VEX.B encodes the other source. */
7099 if (!i.mem_operands)
7100 {
7101 i.rm.mode = 3;
7102
1ef99a7b 7103 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7104 i.rm.regmem = i.op[1].regs->reg_num;
7105 else
7106 i.rm.regmem = i.op[0].regs->reg_num;
7107
7108 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7109 i.rex |= REX_B;
7110 }
7111 }
2426c15f 7112 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7113 {
7114 i.vex.register_specifier = i.op[2].regs;
7115 if (!i.mem_operands)
7116 {
7117 i.rm.mode = 3;
7118 i.rm.regmem = i.op[1].regs->reg_num;
7119 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7120 i.rex |= REX_B;
7121 }
7122 }
29b0f896
AM
7123 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7124 (if any) based on i.tm.extension_opcode. Again, we must be
7125 careful to make sure that segment/control/debug/test/MMX
7126 registers are coded into the i.rm.reg field. */
f88c9eb0 7127 else if (i.reg_operands)
29b0f896 7128 {
99018f42 7129 unsigned int op;
7ab9ffdd
L
7130 unsigned int vex_reg = ~0;
7131
7132 for (op = 0; op < i.operands; op++)
dc821c5f 7133 if (i.types[op].bitfield.reg
7ab9ffdd 7134 || i.types[op].bitfield.regmmx
1b54b8d7 7135 || i.types[op].bitfield.regsimd
7e8b059b 7136 || i.types[op].bitfield.regbnd
43234a1e 7137 || i.types[op].bitfield.regmask
7ab9ffdd
L
7138 || i.types[op].bitfield.sreg2
7139 || i.types[op].bitfield.sreg3
7140 || i.types[op].bitfield.control
7141 || i.types[op].bitfield.debug
7142 || i.types[op].bitfield.test)
7143 break;
c0209578 7144
7ab9ffdd
L
7145 if (vex_3_sources)
7146 op = dest;
2426c15f 7147 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7148 {
7149 /* For instructions with VexNDS, the register-only
7150 source operand is encoded in VEX prefix. */
7151 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7152
7ab9ffdd 7153 if (op > mem)
c0f3af97 7154 {
7ab9ffdd
L
7155 vex_reg = op++;
7156 gas_assert (op < i.operands);
c0f3af97
L
7157 }
7158 else
c0f3af97 7159 {
f12dc422
L
7160 /* Check register-only source operand when two source
7161 operands are swapped. */
7162 if (!i.tm.operand_types[op].bitfield.baseindex
7163 && i.tm.operand_types[op + 1].bitfield.baseindex)
7164 {
7165 vex_reg = op;
7166 op += 2;
7167 gas_assert (mem == (vex_reg + 1)
7168 && op < i.operands);
7169 }
7170 else
7171 {
7172 vex_reg = op + 1;
7173 gas_assert (vex_reg < i.operands);
7174 }
c0f3af97 7175 }
7ab9ffdd 7176 }
2426c15f 7177 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7178 {
f12dc422 7179 /* For instructions with VexNDD, the register destination
7ab9ffdd 7180 is encoded in VEX prefix. */
f12dc422
L
7181 if (i.mem_operands == 0)
7182 {
7183 /* There is no memory operand. */
7184 gas_assert ((op + 2) == i.operands);
7185 vex_reg = op + 1;
7186 }
7187 else
8d63c93e 7188 {
f12dc422
L
7189 /* There are only 2 operands. */
7190 gas_assert (op < 2 && i.operands == 2);
7191 vex_reg = 1;
7192 }
7ab9ffdd
L
7193 }
7194 else
7195 gas_assert (op < i.operands);
99018f42 7196
7ab9ffdd
L
7197 if (vex_reg != (unsigned int) ~0)
7198 {
f12dc422 7199 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7200
dc821c5f
JB
7201 if ((!type->bitfield.reg
7202 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7203 && !type->bitfield.regsimd
43234a1e 7204 && !operand_type_equal (type, &regmask))
7ab9ffdd 7205 abort ();
f88c9eb0 7206
7ab9ffdd
L
7207 i.vex.register_specifier = i.op[vex_reg].regs;
7208 }
7209
1b9f0c97
L
7210 /* Don't set OP operand twice. */
7211 if (vex_reg != op)
7ab9ffdd 7212 {
1b9f0c97
L
7213 /* If there is an extension opcode to put here, the
7214 register number must be put into the regmem field. */
7215 if (i.tm.extension_opcode != None)
7216 {
7217 i.rm.regmem = i.op[op].regs->reg_num;
7218 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7219 i.rex |= REX_B;
43234a1e
L
7220 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7221 i.vrex |= REX_B;
1b9f0c97
L
7222 }
7223 else
7224 {
7225 i.rm.reg = i.op[op].regs->reg_num;
7226 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7227 i.rex |= REX_R;
43234a1e
L
7228 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7229 i.vrex |= REX_R;
1b9f0c97 7230 }
7ab9ffdd 7231 }
252b5132 7232
29b0f896
AM
7233 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7234 must set it to 3 to indicate this is a register operand
7235 in the regmem field. */
7236 if (!i.mem_operands)
7237 i.rm.mode = 3;
7238 }
252b5132 7239
29b0f896 7240 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7241 if (i.tm.extension_opcode != None)
29b0f896
AM
7242 i.rm.reg = i.tm.extension_opcode;
7243 }
7244 return default_seg;
7245}
252b5132 7246
29b0f896 7247static void
e3bb37b5 7248output_branch (void)
29b0f896
AM
7249{
7250 char *p;
f8a5c266 7251 int size;
29b0f896
AM
7252 int code16;
7253 int prefix;
7254 relax_substateT subtype;
7255 symbolS *sym;
7256 offsetT off;
7257
f8a5c266 7258 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7259 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7260
7261 prefix = 0;
7262 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7263 {
29b0f896
AM
7264 prefix = 1;
7265 i.prefixes -= 1;
7266 code16 ^= CODE16;
252b5132 7267 }
29b0f896
AM
7268 /* Pentium4 branch hints. */
7269 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7270 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7271 {
29b0f896
AM
7272 prefix++;
7273 i.prefixes--;
7274 }
7275 if (i.prefix[REX_PREFIX] != 0)
7276 {
7277 prefix++;
7278 i.prefixes--;
2f66722d
AM
7279 }
7280
7e8b059b
L
7281 /* BND prefixed jump. */
7282 if (i.prefix[BND_PREFIX] != 0)
7283 {
7284 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7285 i.prefixes -= 1;
7286 }
7287
29b0f896
AM
7288 if (i.prefixes != 0 && !intel_syntax)
7289 as_warn (_("skipping prefixes on this instruction"));
7290
7291 /* It's always a symbol; End frag & setup for relax.
7292 Make sure there is enough room in this frag for the largest
7293 instruction we may generate in md_convert_frag. This is 2
7294 bytes for the opcode and room for the prefix and largest
7295 displacement. */
7296 frag_grow (prefix + 2 + 4);
7297 /* Prefix and 1 opcode byte go in fr_fix. */
7298 p = frag_more (prefix + 1);
7299 if (i.prefix[DATA_PREFIX] != 0)
7300 *p++ = DATA_PREFIX_OPCODE;
7301 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7302 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7303 *p++ = i.prefix[SEG_PREFIX];
7304 if (i.prefix[REX_PREFIX] != 0)
7305 *p++ = i.prefix[REX_PREFIX];
7306 *p = i.tm.base_opcode;
7307
7308 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7309 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7310 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7311 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7312 else
f8a5c266 7313 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7314 subtype |= code16;
3e73aa7c 7315
29b0f896
AM
7316 sym = i.op[0].disps->X_add_symbol;
7317 off = i.op[0].disps->X_add_number;
3e73aa7c 7318
29b0f896
AM
7319 if (i.op[0].disps->X_op != O_constant
7320 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7321 {
29b0f896
AM
7322 /* Handle complex expressions. */
7323 sym = make_expr_symbol (i.op[0].disps);
7324 off = 0;
7325 }
3e73aa7c 7326
29b0f896
AM
7327 /* 1 possible extra opcode + 4 byte displacement go in var part.
7328 Pass reloc in fr_var. */
d258b828 7329 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7330}
3e73aa7c 7331
bd7ab16b
L
7332#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7333/* Return TRUE iff PLT32 relocation should be used for branching to
7334 symbol S. */
7335
7336static bfd_boolean
7337need_plt32_p (symbolS *s)
7338{
7339 /* PLT32 relocation is ELF only. */
7340 if (!IS_ELF)
7341 return FALSE;
7342
7343 /* Since there is no need to prepare for PLT branch on x86-64, we
7344 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7345 be used as a marker for 32-bit PC-relative branches. */
7346 if (!object_64bit)
7347 return FALSE;
7348
7349 /* Weak or undefined symbol need PLT32 relocation. */
7350 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7351 return TRUE;
7352
7353 /* Non-global symbol doesn't need PLT32 relocation. */
7354 if (! S_IS_EXTERNAL (s))
7355 return FALSE;
7356
7357 /* Other global symbols need PLT32 relocation. NB: Symbol with
7358 non-default visibilities are treated as normal global symbol
7359 so that PLT32 relocation can be used as a marker for 32-bit
7360 PC-relative branches. It is useful for linker relaxation. */
7361 return TRUE;
7362}
7363#endif
7364
29b0f896 7365static void
e3bb37b5 7366output_jump (void)
29b0f896
AM
7367{
7368 char *p;
7369 int size;
3e02c1cc 7370 fixS *fixP;
bd7ab16b 7371 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7372
40fb9820 7373 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7374 {
7375 /* This is a loop or jecxz type instruction. */
7376 size = 1;
7377 if (i.prefix[ADDR_PREFIX] != 0)
7378 {
7379 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7380 i.prefixes -= 1;
7381 }
7382 /* Pentium4 branch hints. */
7383 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7384 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7385 {
7386 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7387 i.prefixes--;
3e73aa7c
JH
7388 }
7389 }
29b0f896
AM
7390 else
7391 {
7392 int code16;
3e73aa7c 7393
29b0f896
AM
7394 code16 = 0;
7395 if (flag_code == CODE_16BIT)
7396 code16 = CODE16;
3e73aa7c 7397
29b0f896
AM
7398 if (i.prefix[DATA_PREFIX] != 0)
7399 {
7400 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7401 i.prefixes -= 1;
7402 code16 ^= CODE16;
7403 }
252b5132 7404
29b0f896
AM
7405 size = 4;
7406 if (code16)
7407 size = 2;
7408 }
9fcc94b6 7409
29b0f896
AM
7410 if (i.prefix[REX_PREFIX] != 0)
7411 {
7412 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7413 i.prefixes -= 1;
7414 }
252b5132 7415
7e8b059b
L
7416 /* BND prefixed jump. */
7417 if (i.prefix[BND_PREFIX] != 0)
7418 {
7419 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7420 i.prefixes -= 1;
7421 }
7422
29b0f896
AM
7423 if (i.prefixes != 0 && !intel_syntax)
7424 as_warn (_("skipping prefixes on this instruction"));
e0890092 7425
42164a71
L
7426 p = frag_more (i.tm.opcode_length + size);
7427 switch (i.tm.opcode_length)
7428 {
7429 case 2:
7430 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7431 /* Fall through. */
42164a71
L
7432 case 1:
7433 *p++ = i.tm.base_opcode;
7434 break;
7435 default:
7436 abort ();
7437 }
e0890092 7438
bd7ab16b
L
7439#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7440 if (size == 4
7441 && jump_reloc == NO_RELOC
7442 && need_plt32_p (i.op[0].disps->X_add_symbol))
7443 jump_reloc = BFD_RELOC_X86_64_PLT32;
7444#endif
7445
7446 jump_reloc = reloc (size, 1, 1, jump_reloc);
7447
3e02c1cc 7448 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7449 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7450
7451 /* All jumps handled here are signed, but don't use a signed limit
7452 check for 32 and 16 bit jumps as we want to allow wrap around at
7453 4G and 64k respectively. */
7454 if (size == 1)
7455 fixP->fx_signed = 1;
29b0f896 7456}
e0890092 7457
29b0f896 7458static void
e3bb37b5 7459output_interseg_jump (void)
29b0f896
AM
7460{
7461 char *p;
7462 int size;
7463 int prefix;
7464 int code16;
252b5132 7465
29b0f896
AM
7466 code16 = 0;
7467 if (flag_code == CODE_16BIT)
7468 code16 = CODE16;
a217f122 7469
29b0f896
AM
7470 prefix = 0;
7471 if (i.prefix[DATA_PREFIX] != 0)
7472 {
7473 prefix = 1;
7474 i.prefixes -= 1;
7475 code16 ^= CODE16;
7476 }
7477 if (i.prefix[REX_PREFIX] != 0)
7478 {
7479 prefix++;
7480 i.prefixes -= 1;
7481 }
252b5132 7482
29b0f896
AM
7483 size = 4;
7484 if (code16)
7485 size = 2;
252b5132 7486
29b0f896
AM
7487 if (i.prefixes != 0 && !intel_syntax)
7488 as_warn (_("skipping prefixes on this instruction"));
252b5132 7489
29b0f896
AM
7490 /* 1 opcode; 2 segment; offset */
7491 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7492
29b0f896
AM
7493 if (i.prefix[DATA_PREFIX] != 0)
7494 *p++ = DATA_PREFIX_OPCODE;
252b5132 7495
29b0f896
AM
7496 if (i.prefix[REX_PREFIX] != 0)
7497 *p++ = i.prefix[REX_PREFIX];
252b5132 7498
29b0f896
AM
7499 *p++ = i.tm.base_opcode;
7500 if (i.op[1].imms->X_op == O_constant)
7501 {
7502 offsetT n = i.op[1].imms->X_add_number;
252b5132 7503
29b0f896
AM
7504 if (size == 2
7505 && !fits_in_unsigned_word (n)
7506 && !fits_in_signed_word (n))
7507 {
7508 as_bad (_("16-bit jump out of range"));
7509 return;
7510 }
7511 md_number_to_chars (p, n, size);
7512 }
7513 else
7514 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7515 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7516 if (i.op[0].imms->X_op != O_constant)
7517 as_bad (_("can't handle non absolute segment in `%s'"),
7518 i.tm.name);
7519 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7520}
a217f122 7521
29b0f896 7522static void
e3bb37b5 7523output_insn (void)
29b0f896 7524{
2bbd9c25
JJ
7525 fragS *insn_start_frag;
7526 offsetT insn_start_off;
7527
29b0f896
AM
7528 /* Tie dwarf2 debug info to the address at the start of the insn.
7529 We can't do this after the insn has been output as the current
7530 frag may have been closed off. eg. by frag_var. */
7531 dwarf2_emit_insn (0);
7532
2bbd9c25
JJ
7533 insn_start_frag = frag_now;
7534 insn_start_off = frag_now_fix ();
7535
29b0f896 7536 /* Output jumps. */
40fb9820 7537 if (i.tm.opcode_modifier.jump)
29b0f896 7538 output_branch ();
40fb9820
L
7539 else if (i.tm.opcode_modifier.jumpbyte
7540 || i.tm.opcode_modifier.jumpdword)
29b0f896 7541 output_jump ();
40fb9820 7542 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7543 output_interseg_jump ();
7544 else
7545 {
7546 /* Output normal instructions here. */
7547 char *p;
7548 unsigned char *q;
47465058 7549 unsigned int j;
331d2d0d 7550 unsigned int prefix;
4dffcebc 7551
e4e00185
AS
7552 if (avoid_fence
7553 && i.tm.base_opcode == 0xfae
7554 && i.operands == 1
7555 && i.imm_operands == 1
7556 && (i.op[0].imms->X_add_number == 0xe8
7557 || i.op[0].imms->X_add_number == 0xf0
7558 || i.op[0].imms->X_add_number == 0xf8))
7559 {
7560 /* Encode lfence, mfence, and sfence as
7561 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7562 offsetT val = 0x240483f0ULL;
7563 p = frag_more (5);
7564 md_number_to_chars (p, val, 5);
7565 return;
7566 }
7567
d022bddd
IT
7568 /* Some processors fail on LOCK prefix. This options makes
7569 assembler ignore LOCK prefix and serves as a workaround. */
7570 if (omit_lock_prefix)
7571 {
7572 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7573 return;
7574 i.prefix[LOCK_PREFIX] = 0;
7575 }
7576
43234a1e
L
7577 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7578 don't need the explicit prefix. */
7579 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7580 {
c0f3af97 7581 switch (i.tm.opcode_length)
bc4bd9ab 7582 {
c0f3af97
L
7583 case 3:
7584 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7585 {
c0f3af97
L
7586 prefix = (i.tm.base_opcode >> 24) & 0xff;
7587 goto check_prefix;
7588 }
7589 break;
7590 case 2:
7591 if ((i.tm.base_opcode & 0xff0000) != 0)
7592 {
7593 prefix = (i.tm.base_opcode >> 16) & 0xff;
7594 if (i.tm.cpu_flags.bitfield.cpupadlock)
7595 {
4dffcebc 7596check_prefix:
c0f3af97 7597 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7598 || (i.prefix[REP_PREFIX]
c0f3af97
L
7599 != REPE_PREFIX_OPCODE))
7600 add_prefix (prefix);
7601 }
7602 else
4dffcebc
L
7603 add_prefix (prefix);
7604 }
c0f3af97
L
7605 break;
7606 case 1:
7607 break;
390c91cf
L
7608 case 0:
7609 /* Check for pseudo prefixes. */
7610 as_bad_where (insn_start_frag->fr_file,
7611 insn_start_frag->fr_line,
7612 _("pseudo prefix without instruction"));
7613 return;
c0f3af97
L
7614 default:
7615 abort ();
bc4bd9ab 7616 }
c0f3af97 7617
6d19a37a 7618#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7619 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7620 R_X86_64_GOTTPOFF relocation so that linker can safely
7621 perform IE->LE optimization. */
7622 if (x86_elf_abi == X86_64_X32_ABI
7623 && i.operands == 2
7624 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7625 && i.prefix[REX_PREFIX] == 0)
7626 add_prefix (REX_OPCODE);
6d19a37a 7627#endif
cf61b747 7628
c0f3af97
L
7629 /* The prefix bytes. */
7630 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7631 if (*q)
7632 FRAG_APPEND_1_CHAR (*q);
0f10071e 7633 }
ae5c1c7b 7634 else
c0f3af97
L
7635 {
7636 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7637 if (*q)
7638 switch (j)
7639 {
7640 case REX_PREFIX:
7641 /* REX byte is encoded in VEX prefix. */
7642 break;
7643 case SEG_PREFIX:
7644 case ADDR_PREFIX:
7645 FRAG_APPEND_1_CHAR (*q);
7646 break;
7647 default:
7648 /* There should be no other prefixes for instructions
7649 with VEX prefix. */
7650 abort ();
7651 }
7652
43234a1e
L
7653 /* For EVEX instructions i.vrex should become 0 after
7654 build_evex_prefix. For VEX instructions upper 16 registers
7655 aren't available, so VREX should be 0. */
7656 if (i.vrex)
7657 abort ();
c0f3af97
L
7658 /* Now the VEX prefix. */
7659 p = frag_more (i.vex.length);
7660 for (j = 0; j < i.vex.length; j++)
7661 p[j] = i.vex.bytes[j];
7662 }
252b5132 7663
29b0f896 7664 /* Now the opcode; be careful about word order here! */
4dffcebc 7665 if (i.tm.opcode_length == 1)
29b0f896
AM
7666 {
7667 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7668 }
7669 else
7670 {
4dffcebc 7671 switch (i.tm.opcode_length)
331d2d0d 7672 {
43234a1e
L
7673 case 4:
7674 p = frag_more (4);
7675 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7676 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7677 break;
4dffcebc 7678 case 3:
331d2d0d
L
7679 p = frag_more (3);
7680 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7681 break;
7682 case 2:
7683 p = frag_more (2);
7684 break;
7685 default:
7686 abort ();
7687 break;
331d2d0d 7688 }
0f10071e 7689
29b0f896
AM
7690 /* Put out high byte first: can't use md_number_to_chars! */
7691 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7692 *p = i.tm.base_opcode & 0xff;
7693 }
3e73aa7c 7694
29b0f896 7695 /* Now the modrm byte and sib byte (if present). */
40fb9820 7696 if (i.tm.opcode_modifier.modrm)
29b0f896 7697 {
4a3523fa
L
7698 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7699 | i.rm.reg << 3
7700 | i.rm.mode << 6));
29b0f896
AM
7701 /* If i.rm.regmem == ESP (4)
7702 && i.rm.mode != (Register mode)
7703 && not 16 bit
7704 ==> need second modrm byte. */
7705 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7706 && i.rm.mode != 3
dc821c5f 7707 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7708 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7709 | i.sib.index << 3
7710 | i.sib.scale << 6));
29b0f896 7711 }
3e73aa7c 7712
29b0f896 7713 if (i.disp_operands)
2bbd9c25 7714 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7715
29b0f896 7716 if (i.imm_operands)
2bbd9c25 7717 output_imm (insn_start_frag, insn_start_off);
29b0f896 7718 }
252b5132 7719
29b0f896
AM
7720#ifdef DEBUG386
7721 if (flag_debug)
7722 {
7b81dfbb 7723 pi ("" /*line*/, &i);
29b0f896
AM
7724 }
7725#endif /* DEBUG386 */
7726}
252b5132 7727
e205caa7
L
7728/* Return the size of the displacement operand N. */
7729
7730static int
7731disp_size (unsigned int n)
7732{
7733 int size = 4;
43234a1e 7734
b5014f7a 7735 if (i.types[n].bitfield.disp64)
40fb9820
L
7736 size = 8;
7737 else if (i.types[n].bitfield.disp8)
7738 size = 1;
7739 else if (i.types[n].bitfield.disp16)
7740 size = 2;
e205caa7
L
7741 return size;
7742}
7743
7744/* Return the size of the immediate operand N. */
7745
7746static int
7747imm_size (unsigned int n)
7748{
7749 int size = 4;
40fb9820
L
7750 if (i.types[n].bitfield.imm64)
7751 size = 8;
7752 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7753 size = 1;
7754 else if (i.types[n].bitfield.imm16)
7755 size = 2;
e205caa7
L
7756 return size;
7757}
7758
29b0f896 7759static void
64e74474 7760output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7761{
7762 char *p;
7763 unsigned int n;
252b5132 7764
29b0f896
AM
7765 for (n = 0; n < i.operands; n++)
7766 {
b5014f7a 7767 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7768 {
7769 if (i.op[n].disps->X_op == O_constant)
7770 {
e205caa7 7771 int size = disp_size (n);
43234a1e 7772 offsetT val = i.op[n].disps->X_add_number;
252b5132 7773
b5014f7a 7774 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7775 p = frag_more (size);
7776 md_number_to_chars (p, val, size);
7777 }
7778 else
7779 {
f86103b7 7780 enum bfd_reloc_code_real reloc_type;
e205caa7 7781 int size = disp_size (n);
40fb9820 7782 int sign = i.types[n].bitfield.disp32s;
29b0f896 7783 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7784 fixS *fixP;
29b0f896 7785
e205caa7 7786 /* We can't have 8 bit displacement here. */
9c2799c2 7787 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7788
29b0f896
AM
7789 /* The PC relative address is computed relative
7790 to the instruction boundary, so in case immediate
7791 fields follows, we need to adjust the value. */
7792 if (pcrel && i.imm_operands)
7793 {
29b0f896 7794 unsigned int n1;
e205caa7 7795 int sz = 0;
252b5132 7796
29b0f896 7797 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7798 if (operand_type_check (i.types[n1], imm))
252b5132 7799 {
e205caa7
L
7800 /* Only one immediate is allowed for PC
7801 relative address. */
9c2799c2 7802 gas_assert (sz == 0);
e205caa7
L
7803 sz = imm_size (n1);
7804 i.op[n].disps->X_add_number -= sz;
252b5132 7805 }
29b0f896 7806 /* We should find the immediate. */
9c2799c2 7807 gas_assert (sz != 0);
29b0f896 7808 }
520dc8e8 7809
29b0f896 7810 p = frag_more (size);
d258b828 7811 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7812 if (GOT_symbol
2bbd9c25 7813 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7814 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7815 || reloc_type == BFD_RELOC_X86_64_32S
7816 || (reloc_type == BFD_RELOC_64
7817 && object_64bit))
d6ab8113
JB
7818 && (i.op[n].disps->X_op == O_symbol
7819 || (i.op[n].disps->X_op == O_add
7820 && ((symbol_get_value_expression
7821 (i.op[n].disps->X_op_symbol)->X_op)
7822 == O_subtract))))
7823 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7824 {
7825 offsetT add;
7826
7827 if (insn_start_frag == frag_now)
7828 add = (p - frag_now->fr_literal) - insn_start_off;
7829 else
7830 {
7831 fragS *fr;
7832
7833 add = insn_start_frag->fr_fix - insn_start_off;
7834 for (fr = insn_start_frag->fr_next;
7835 fr && fr != frag_now; fr = fr->fr_next)
7836 add += fr->fr_fix;
7837 add += p - frag_now->fr_literal;
7838 }
7839
4fa24527 7840 if (!object_64bit)
7b81dfbb
AJ
7841 {
7842 reloc_type = BFD_RELOC_386_GOTPC;
7843 i.op[n].imms->X_add_number += add;
7844 }
7845 else if (reloc_type == BFD_RELOC_64)
7846 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7847 else
7b81dfbb
AJ
7848 /* Don't do the adjustment for x86-64, as there
7849 the pcrel addressing is relative to the _next_
7850 insn, and that is taken care of in other code. */
d6ab8113 7851 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7852 }
02a86693
L
7853 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7854 size, i.op[n].disps, pcrel,
7855 reloc_type);
7856 /* Check for "call/jmp *mem", "mov mem, %reg",
7857 "test %reg, mem" and "binop mem, %reg" where binop
7858 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7859 instructions. Always generate R_386_GOT32X for
7860 "sym*GOT" operand in 32-bit mode. */
7861 if ((generate_relax_relocations
7862 || (!object_64bit
7863 && i.rm.mode == 0
7864 && i.rm.regmem == 5))
7865 && (i.rm.mode == 2
7866 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7867 && ((i.operands == 1
7868 && i.tm.base_opcode == 0xff
7869 && (i.rm.reg == 2 || i.rm.reg == 4))
7870 || (i.operands == 2
7871 && (i.tm.base_opcode == 0x8b
7872 || i.tm.base_opcode == 0x85
7873 || (i.tm.base_opcode & 0xc7) == 0x03))))
7874 {
7875 if (object_64bit)
7876 {
7877 fixP->fx_tcbit = i.rex != 0;
7878 if (i.base_reg
7879 && (i.base_reg->reg_num == RegRip
7880 || i.base_reg->reg_num == RegEip))
7881 fixP->fx_tcbit2 = 1;
7882 }
7883 else
7884 fixP->fx_tcbit2 = 1;
7885 }
29b0f896
AM
7886 }
7887 }
7888 }
7889}
252b5132 7890
29b0f896 7891static void
64e74474 7892output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7893{
7894 char *p;
7895 unsigned int n;
252b5132 7896
29b0f896
AM
7897 for (n = 0; n < i.operands; n++)
7898 {
43234a1e
L
7899 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7900 if (i.rounding && (int) n == i.rounding->operand)
7901 continue;
7902
40fb9820 7903 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7904 {
7905 if (i.op[n].imms->X_op == O_constant)
7906 {
e205caa7 7907 int size = imm_size (n);
29b0f896 7908 offsetT val;
b4cac588 7909
29b0f896
AM
7910 val = offset_in_range (i.op[n].imms->X_add_number,
7911 size);
7912 p = frag_more (size);
7913 md_number_to_chars (p, val, size);
7914 }
7915 else
7916 {
7917 /* Not absolute_section.
7918 Need a 32-bit fixup (don't support 8bit
7919 non-absolute imms). Try to support other
7920 sizes ... */
f86103b7 7921 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7922 int size = imm_size (n);
7923 int sign;
29b0f896 7924
40fb9820 7925 if (i.types[n].bitfield.imm32s
a7d61044 7926 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7927 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7928 sign = 1;
e205caa7
L
7929 else
7930 sign = 0;
520dc8e8 7931
29b0f896 7932 p = frag_more (size);
d258b828 7933 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7934
2bbd9c25
JJ
7935 /* This is tough to explain. We end up with this one if we
7936 * have operands that look like
7937 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7938 * obtain the absolute address of the GOT, and it is strongly
7939 * preferable from a performance point of view to avoid using
7940 * a runtime relocation for this. The actual sequence of
7941 * instructions often look something like:
7942 *
7943 * call .L66
7944 * .L66:
7945 * popl %ebx
7946 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7947 *
7948 * The call and pop essentially return the absolute address
7949 * of the label .L66 and store it in %ebx. The linker itself
7950 * will ultimately change the first operand of the addl so
7951 * that %ebx points to the GOT, but to keep things simple, the
7952 * .o file must have this operand set so that it generates not
7953 * the absolute address of .L66, but the absolute address of
7954 * itself. This allows the linker itself simply treat a GOTPC
7955 * relocation as asking for a pcrel offset to the GOT to be
7956 * added in, and the addend of the relocation is stored in the
7957 * operand field for the instruction itself.
7958 *
7959 * Our job here is to fix the operand so that it would add
7960 * the correct offset so that %ebx would point to itself. The
7961 * thing that is tricky is that .-.L66 will point to the
7962 * beginning of the instruction, so we need to further modify
7963 * the operand so that it will point to itself. There are
7964 * other cases where you have something like:
7965 *
7966 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7967 *
7968 * and here no correction would be required. Internally in
7969 * the assembler we treat operands of this form as not being
7970 * pcrel since the '.' is explicitly mentioned, and I wonder
7971 * whether it would simplify matters to do it this way. Who
7972 * knows. In earlier versions of the PIC patches, the
7973 * pcrel_adjust field was used to store the correction, but
7974 * since the expression is not pcrel, I felt it would be
7975 * confusing to do it this way. */
7976
d6ab8113 7977 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7978 || reloc_type == BFD_RELOC_X86_64_32S
7979 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7980 && GOT_symbol
7981 && GOT_symbol == i.op[n].imms->X_add_symbol
7982 && (i.op[n].imms->X_op == O_symbol
7983 || (i.op[n].imms->X_op == O_add
7984 && ((symbol_get_value_expression
7985 (i.op[n].imms->X_op_symbol)->X_op)
7986 == O_subtract))))
7987 {
2bbd9c25
JJ
7988 offsetT add;
7989
7990 if (insn_start_frag == frag_now)
7991 add = (p - frag_now->fr_literal) - insn_start_off;
7992 else
7993 {
7994 fragS *fr;
7995
7996 add = insn_start_frag->fr_fix - insn_start_off;
7997 for (fr = insn_start_frag->fr_next;
7998 fr && fr != frag_now; fr = fr->fr_next)
7999 add += fr->fr_fix;
8000 add += p - frag_now->fr_literal;
8001 }
8002
4fa24527 8003 if (!object_64bit)
d6ab8113 8004 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8005 else if (size == 4)
d6ab8113 8006 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8007 else if (size == 8)
8008 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8009 i.op[n].imms->X_add_number += add;
29b0f896 8010 }
29b0f896
AM
8011 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8012 i.op[n].imms, 0, reloc_type);
8013 }
8014 }
8015 }
252b5132
RH
8016}
8017\f
d182319b
JB
8018/* x86_cons_fix_new is called via the expression parsing code when a
8019 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8020static int cons_sign = -1;
8021
8022void
e3bb37b5 8023x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8024 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8025{
d258b828 8026 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8027
8028#ifdef TE_PE
8029 if (exp->X_op == O_secrel)
8030 {
8031 exp->X_op = O_symbol;
8032 r = BFD_RELOC_32_SECREL;
8033 }
8034#endif
8035
8036 fix_new_exp (frag, off, len, exp, 0, r);
8037}
8038
357d1bd8
L
8039/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8040 purpose of the `.dc.a' internal pseudo-op. */
8041
8042int
8043x86_address_bytes (void)
8044{
8045 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8046 return 4;
8047 return stdoutput->arch_info->bits_per_address / 8;
8048}
8049
d382c579
TG
8050#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8051 || defined (LEX_AT)
d258b828 8052# define lex_got(reloc, adjust, types) NULL
718ddfc0 8053#else
f3c180ae
AM
8054/* Parse operands of the form
8055 <symbol>@GOTOFF+<nnn>
8056 and similar .plt or .got references.
8057
8058 If we find one, set up the correct relocation in RELOC and copy the
8059 input string, minus the `@GOTOFF' into a malloc'd buffer for
8060 parsing by the calling routine. Return this buffer, and if ADJUST
8061 is non-null set it to the length of the string we removed from the
8062 input line. Otherwise return NULL. */
8063static char *
91d6fa6a 8064lex_got (enum bfd_reloc_code_real *rel,
64e74474 8065 int *adjust,
d258b828 8066 i386_operand_type *types)
f3c180ae 8067{
7b81dfbb
AJ
8068 /* Some of the relocations depend on the size of what field is to
8069 be relocated. But in our callers i386_immediate and i386_displacement
8070 we don't yet know the operand size (this will be set by insn
8071 matching). Hence we record the word32 relocation here,
8072 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8073 static const struct {
8074 const char *str;
cff8d58a 8075 int len;
4fa24527 8076 const enum bfd_reloc_code_real rel[2];
40fb9820 8077 const i386_operand_type types64;
f3c180ae 8078 } gotrel[] = {
8ce3d284 8079#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8080 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8081 BFD_RELOC_SIZE32 },
8082 OPERAND_TYPE_IMM32_64 },
8ce3d284 8083#endif
cff8d58a
L
8084 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8085 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8086 OPERAND_TYPE_IMM64 },
cff8d58a
L
8087 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8088 BFD_RELOC_X86_64_PLT32 },
40fb9820 8089 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8090 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8091 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8092 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8093 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8094 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8095 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8096 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8097 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8098 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8099 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8100 BFD_RELOC_X86_64_TLSGD },
40fb9820 8101 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8102 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8103 _dummy_first_bfd_reloc_code_real },
40fb9820 8104 OPERAND_TYPE_NONE },
cff8d58a
L
8105 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8106 BFD_RELOC_X86_64_TLSLD },
40fb9820 8107 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8108 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8109 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8110 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8111 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8112 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8113 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8114 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8115 _dummy_first_bfd_reloc_code_real },
40fb9820 8116 OPERAND_TYPE_NONE },
cff8d58a
L
8117 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8118 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8119 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8120 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8121 _dummy_first_bfd_reloc_code_real },
40fb9820 8122 OPERAND_TYPE_NONE },
cff8d58a
L
8123 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8124 _dummy_first_bfd_reloc_code_real },
40fb9820 8125 OPERAND_TYPE_NONE },
cff8d58a
L
8126 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8127 BFD_RELOC_X86_64_GOT32 },
40fb9820 8128 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8129 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8130 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8131 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8132 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8133 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8134 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8135 };
8136 char *cp;
8137 unsigned int j;
8138
d382c579 8139#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8140 if (!IS_ELF)
8141 return NULL;
d382c579 8142#endif
718ddfc0 8143
f3c180ae 8144 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8145 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8146 return NULL;
8147
47465058 8148 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8149 {
cff8d58a 8150 int len = gotrel[j].len;
28f81592 8151 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8152 {
4fa24527 8153 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8154 {
28f81592
AM
8155 int first, second;
8156 char *tmpbuf, *past_reloc;
f3c180ae 8157
91d6fa6a 8158 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8159
3956db08
JB
8160 if (types)
8161 {
8162 if (flag_code != CODE_64BIT)
40fb9820
L
8163 {
8164 types->bitfield.imm32 = 1;
8165 types->bitfield.disp32 = 1;
8166 }
3956db08
JB
8167 else
8168 *types = gotrel[j].types64;
8169 }
8170
8fd4256d 8171 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8172 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8173
28f81592 8174 /* The length of the first part of our input line. */
f3c180ae 8175 first = cp - input_line_pointer;
28f81592
AM
8176
8177 /* The second part goes from after the reloc token until
67c11a9b 8178 (and including) an end_of_line char or comma. */
28f81592 8179 past_reloc = cp + 1 + len;
67c11a9b
AM
8180 cp = past_reloc;
8181 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8182 ++cp;
8183 second = cp + 1 - past_reloc;
28f81592
AM
8184
8185 /* Allocate and copy string. The trailing NUL shouldn't
8186 be necessary, but be safe. */
add39d23 8187 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8188 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8189 if (second != 0 && *past_reloc != ' ')
8190 /* Replace the relocation token with ' ', so that
8191 errors like foo@GOTOFF1 will be detected. */
8192 tmpbuf[first++] = ' ';
af89796a
L
8193 else
8194 /* Increment length by 1 if the relocation token is
8195 removed. */
8196 len++;
8197 if (adjust)
8198 *adjust = len;
0787a12d
AM
8199 memcpy (tmpbuf + first, past_reloc, second);
8200 tmpbuf[first + second] = '\0';
f3c180ae
AM
8201 return tmpbuf;
8202 }
8203
4fa24527
JB
8204 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8205 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8206 return NULL;
8207 }
8208 }
8209
8210 /* Might be a symbol version string. Don't as_bad here. */
8211 return NULL;
8212}
4e4f7c87 8213#endif
f3c180ae 8214
a988325c
NC
8215#ifdef TE_PE
8216#ifdef lex_got
8217#undef lex_got
8218#endif
8219/* Parse operands of the form
8220 <symbol>@SECREL32+<nnn>
8221
8222 If we find one, set up the correct relocation in RELOC and copy the
8223 input string, minus the `@SECREL32' into a malloc'd buffer for
8224 parsing by the calling routine. Return this buffer, and if ADJUST
8225 is non-null set it to the length of the string we removed from the
34bca508
L
8226 input line. Otherwise return NULL.
8227
a988325c
NC
8228 This function is copied from the ELF version above adjusted for PE targets. */
8229
8230static char *
8231lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8232 int *adjust ATTRIBUTE_UNUSED,
d258b828 8233 i386_operand_type *types)
a988325c
NC
8234{
8235 static const struct
8236 {
8237 const char *str;
8238 int len;
8239 const enum bfd_reloc_code_real rel[2];
8240 const i386_operand_type types64;
8241 }
8242 gotrel[] =
8243 {
8244 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8245 BFD_RELOC_32_SECREL },
8246 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8247 };
8248
8249 char *cp;
8250 unsigned j;
8251
8252 for (cp = input_line_pointer; *cp != '@'; cp++)
8253 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8254 return NULL;
8255
8256 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8257 {
8258 int len = gotrel[j].len;
8259
8260 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8261 {
8262 if (gotrel[j].rel[object_64bit] != 0)
8263 {
8264 int first, second;
8265 char *tmpbuf, *past_reloc;
8266
8267 *rel = gotrel[j].rel[object_64bit];
8268 if (adjust)
8269 *adjust = len;
8270
8271 if (types)
8272 {
8273 if (flag_code != CODE_64BIT)
8274 {
8275 types->bitfield.imm32 = 1;
8276 types->bitfield.disp32 = 1;
8277 }
8278 else
8279 *types = gotrel[j].types64;
8280 }
8281
8282 /* The length of the first part of our input line. */
8283 first = cp - input_line_pointer;
8284
8285 /* The second part goes from after the reloc token until
8286 (and including) an end_of_line char or comma. */
8287 past_reloc = cp + 1 + len;
8288 cp = past_reloc;
8289 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8290 ++cp;
8291 second = cp + 1 - past_reloc;
8292
8293 /* Allocate and copy string. The trailing NUL shouldn't
8294 be necessary, but be safe. */
add39d23 8295 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8296 memcpy (tmpbuf, input_line_pointer, first);
8297 if (second != 0 && *past_reloc != ' ')
8298 /* Replace the relocation token with ' ', so that
8299 errors like foo@SECLREL321 will be detected. */
8300 tmpbuf[first++] = ' ';
8301 memcpy (tmpbuf + first, past_reloc, second);
8302 tmpbuf[first + second] = '\0';
8303 return tmpbuf;
8304 }
8305
8306 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8307 gotrel[j].str, 1 << (5 + object_64bit));
8308 return NULL;
8309 }
8310 }
8311
8312 /* Might be a symbol version string. Don't as_bad here. */
8313 return NULL;
8314}
8315
8316#endif /* TE_PE */
8317
62ebcb5c 8318bfd_reloc_code_real_type
e3bb37b5 8319x86_cons (expressionS *exp, int size)
f3c180ae 8320{
62ebcb5c
AM
8321 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8322
ee86248c
JB
8323 intel_syntax = -intel_syntax;
8324
3c7b9c2c 8325 exp->X_md = 0;
4fa24527 8326 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8327 {
8328 /* Handle @GOTOFF and the like in an expression. */
8329 char *save;
8330 char *gotfree_input_line;
4a57f2cf 8331 int adjust = 0;
f3c180ae
AM
8332
8333 save = input_line_pointer;
d258b828 8334 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8335 if (gotfree_input_line)
8336 input_line_pointer = gotfree_input_line;
8337
8338 expression (exp);
8339
8340 if (gotfree_input_line)
8341 {
8342 /* expression () has merrily parsed up to the end of line,
8343 or a comma - in the wrong buffer. Transfer how far
8344 input_line_pointer has moved to the right buffer. */
8345 input_line_pointer = (save
8346 + (input_line_pointer - gotfree_input_line)
8347 + adjust);
8348 free (gotfree_input_line);
3992d3b7
AM
8349 if (exp->X_op == O_constant
8350 || exp->X_op == O_absent
8351 || exp->X_op == O_illegal
0398aac5 8352 || exp->X_op == O_register
3992d3b7
AM
8353 || exp->X_op == O_big)
8354 {
8355 char c = *input_line_pointer;
8356 *input_line_pointer = 0;
8357 as_bad (_("missing or invalid expression `%s'"), save);
8358 *input_line_pointer = c;
8359 }
f3c180ae
AM
8360 }
8361 }
8362 else
8363 expression (exp);
ee86248c
JB
8364
8365 intel_syntax = -intel_syntax;
8366
8367 if (intel_syntax)
8368 i386_intel_simplify (exp);
62ebcb5c
AM
8369
8370 return got_reloc;
f3c180ae 8371}
f3c180ae 8372
9f32dd5b
L
8373static void
8374signed_cons (int size)
6482c264 8375{
d182319b
JB
8376 if (flag_code == CODE_64BIT)
8377 cons_sign = 1;
8378 cons (size);
8379 cons_sign = -1;
6482c264
NC
8380}
8381
d182319b 8382#ifdef TE_PE
6482c264 8383static void
7016a5d5 8384pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8385{
8386 expressionS exp;
8387
8388 do
8389 {
8390 expression (&exp);
8391 if (exp.X_op == O_symbol)
8392 exp.X_op = O_secrel;
8393
8394 emit_expr (&exp, 4);
8395 }
8396 while (*input_line_pointer++ == ',');
8397
8398 input_line_pointer--;
8399 demand_empty_rest_of_line ();
8400}
6482c264
NC
8401#endif
8402
43234a1e
L
8403/* Handle Vector operations. */
8404
8405static char *
8406check_VecOperations (char *op_string, char *op_end)
8407{
8408 const reg_entry *mask;
8409 const char *saved;
8410 char *end_op;
8411
8412 while (*op_string
8413 && (op_end == NULL || op_string < op_end))
8414 {
8415 saved = op_string;
8416 if (*op_string == '{')
8417 {
8418 op_string++;
8419
8420 /* Check broadcasts. */
8421 if (strncmp (op_string, "1to", 3) == 0)
8422 {
8423 int bcst_type;
8424
8425 if (i.broadcast)
8426 goto duplicated_vec_op;
8427
8428 op_string += 3;
8429 if (*op_string == '8')
8430 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8431 else if (*op_string == '4')
8432 bcst_type = BROADCAST_1TO4;
8433 else if (*op_string == '2')
8434 bcst_type = BROADCAST_1TO2;
43234a1e
L
8435 else if (*op_string == '1'
8436 && *(op_string+1) == '6')
8437 {
8438 bcst_type = BROADCAST_1TO16;
8439 op_string++;
8440 }
8441 else
8442 {
8443 as_bad (_("Unsupported broadcast: `%s'"), saved);
8444 return NULL;
8445 }
8446 op_string++;
8447
8448 broadcast_op.type = bcst_type;
8449 broadcast_op.operand = this_operand;
8450 i.broadcast = &broadcast_op;
8451 }
8452 /* Check masking operation. */
8453 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8454 {
8455 /* k0 can't be used for write mask. */
6d2cd6b2 8456 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8457 {
6d2cd6b2
JB
8458 as_bad (_("`%s%s' can't be used for write mask"),
8459 register_prefix, mask->reg_name);
43234a1e
L
8460 return NULL;
8461 }
8462
8463 if (!i.mask)
8464 {
8465 mask_op.mask = mask;
8466 mask_op.zeroing = 0;
8467 mask_op.operand = this_operand;
8468 i.mask = &mask_op;
8469 }
8470 else
8471 {
8472 if (i.mask->mask)
8473 goto duplicated_vec_op;
8474
8475 i.mask->mask = mask;
8476
8477 /* Only "{z}" is allowed here. No need to check
8478 zeroing mask explicitly. */
8479 if (i.mask->operand != this_operand)
8480 {
8481 as_bad (_("invalid write mask `%s'"), saved);
8482 return NULL;
8483 }
8484 }
8485
8486 op_string = end_op;
8487 }
8488 /* Check zeroing-flag for masking operation. */
8489 else if (*op_string == 'z')
8490 {
8491 if (!i.mask)
8492 {
8493 mask_op.mask = NULL;
8494 mask_op.zeroing = 1;
8495 mask_op.operand = this_operand;
8496 i.mask = &mask_op;
8497 }
8498 else
8499 {
8500 if (i.mask->zeroing)
8501 {
8502 duplicated_vec_op:
8503 as_bad (_("duplicated `%s'"), saved);
8504 return NULL;
8505 }
8506
8507 i.mask->zeroing = 1;
8508
8509 /* Only "{%k}" is allowed here. No need to check mask
8510 register explicitly. */
8511 if (i.mask->operand != this_operand)
8512 {
8513 as_bad (_("invalid zeroing-masking `%s'"),
8514 saved);
8515 return NULL;
8516 }
8517 }
8518
8519 op_string++;
8520 }
8521 else
8522 goto unknown_vec_op;
8523
8524 if (*op_string != '}')
8525 {
8526 as_bad (_("missing `}' in `%s'"), saved);
8527 return NULL;
8528 }
8529 op_string++;
8530 continue;
8531 }
8532 unknown_vec_op:
8533 /* We don't know this one. */
8534 as_bad (_("unknown vector operation: `%s'"), saved);
8535 return NULL;
8536 }
8537
6d2cd6b2
JB
8538 if (i.mask && i.mask->zeroing && !i.mask->mask)
8539 {
8540 as_bad (_("zeroing-masking only allowed with write mask"));
8541 return NULL;
8542 }
8543
43234a1e
L
8544 return op_string;
8545}
8546
252b5132 8547static int
70e41ade 8548i386_immediate (char *imm_start)
252b5132
RH
8549{
8550 char *save_input_line_pointer;
f3c180ae 8551 char *gotfree_input_line;
252b5132 8552 segT exp_seg = 0;
47926f60 8553 expressionS *exp;
40fb9820
L
8554 i386_operand_type types;
8555
0dfbf9d7 8556 operand_type_set (&types, ~0);
252b5132
RH
8557
8558 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8559 {
31b2323c
L
8560 as_bad (_("at most %d immediate operands are allowed"),
8561 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8562 return 0;
8563 }
8564
8565 exp = &im_expressions[i.imm_operands++];
520dc8e8 8566 i.op[this_operand].imms = exp;
252b5132
RH
8567
8568 if (is_space_char (*imm_start))
8569 ++imm_start;
8570
8571 save_input_line_pointer = input_line_pointer;
8572 input_line_pointer = imm_start;
8573
d258b828 8574 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8575 if (gotfree_input_line)
8576 input_line_pointer = gotfree_input_line;
252b5132
RH
8577
8578 exp_seg = expression (exp);
8579
83183c0c 8580 SKIP_WHITESPACE ();
43234a1e
L
8581
8582 /* Handle vector operations. */
8583 if (*input_line_pointer == '{')
8584 {
8585 input_line_pointer = check_VecOperations (input_line_pointer,
8586 NULL);
8587 if (input_line_pointer == NULL)
8588 return 0;
8589 }
8590
252b5132 8591 if (*input_line_pointer)
f3c180ae 8592 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8593
8594 input_line_pointer = save_input_line_pointer;
f3c180ae 8595 if (gotfree_input_line)
ee86248c
JB
8596 {
8597 free (gotfree_input_line);
8598
8599 if (exp->X_op == O_constant || exp->X_op == O_register)
8600 exp->X_op = O_illegal;
8601 }
8602
8603 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8604}
252b5132 8605
ee86248c
JB
8606static int
8607i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8608 i386_operand_type types, const char *imm_start)
8609{
8610 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8611 {
313c53d1
L
8612 if (imm_start)
8613 as_bad (_("missing or invalid immediate expression `%s'"),
8614 imm_start);
3992d3b7 8615 return 0;
252b5132 8616 }
3e73aa7c 8617 else if (exp->X_op == O_constant)
252b5132 8618 {
47926f60 8619 /* Size it properly later. */
40fb9820 8620 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8621 /* If not 64bit, sign extend val. */
8622 if (flag_code != CODE_64BIT
4eed87de
AM
8623 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8624 exp->X_add_number
8625 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8626 }
4c63da97 8627#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8628 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8629 && exp_seg != absolute_section
47926f60 8630 && exp_seg != text_section
24eab124
AM
8631 && exp_seg != data_section
8632 && exp_seg != bss_section
8633 && exp_seg != undefined_section
f86103b7 8634 && !bfd_is_com_section (exp_seg))
252b5132 8635 {
d0b47220 8636 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8637 return 0;
8638 }
8639#endif
a841bdf5 8640 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8641 {
313c53d1
L
8642 if (imm_start)
8643 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8644 return 0;
8645 }
252b5132
RH
8646 else
8647 {
8648 /* This is an address. The size of the address will be
24eab124 8649 determined later, depending on destination register,
3e73aa7c 8650 suffix, or the default for the section. */
40fb9820
L
8651 i.types[this_operand].bitfield.imm8 = 1;
8652 i.types[this_operand].bitfield.imm16 = 1;
8653 i.types[this_operand].bitfield.imm32 = 1;
8654 i.types[this_operand].bitfield.imm32s = 1;
8655 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8656 i.types[this_operand] = operand_type_and (i.types[this_operand],
8657 types);
252b5132
RH
8658 }
8659
8660 return 1;
8661}
8662
551c1ca1 8663static char *
e3bb37b5 8664i386_scale (char *scale)
252b5132 8665{
551c1ca1
AM
8666 offsetT val;
8667 char *save = input_line_pointer;
252b5132 8668
551c1ca1
AM
8669 input_line_pointer = scale;
8670 val = get_absolute_expression ();
8671
8672 switch (val)
252b5132 8673 {
551c1ca1 8674 case 1:
252b5132
RH
8675 i.log2_scale_factor = 0;
8676 break;
551c1ca1 8677 case 2:
252b5132
RH
8678 i.log2_scale_factor = 1;
8679 break;
551c1ca1 8680 case 4:
252b5132
RH
8681 i.log2_scale_factor = 2;
8682 break;
551c1ca1 8683 case 8:
252b5132
RH
8684 i.log2_scale_factor = 3;
8685 break;
8686 default:
a724f0f4
JB
8687 {
8688 char sep = *input_line_pointer;
8689
8690 *input_line_pointer = '\0';
8691 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8692 scale);
8693 *input_line_pointer = sep;
8694 input_line_pointer = save;
8695 return NULL;
8696 }
252b5132 8697 }
29b0f896 8698 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8699 {
8700 as_warn (_("scale factor of %d without an index register"),
24eab124 8701 1 << i.log2_scale_factor);
252b5132 8702 i.log2_scale_factor = 0;
252b5132 8703 }
551c1ca1
AM
8704 scale = input_line_pointer;
8705 input_line_pointer = save;
8706 return scale;
252b5132
RH
8707}
8708
252b5132 8709static int
e3bb37b5 8710i386_displacement (char *disp_start, char *disp_end)
252b5132 8711{
29b0f896 8712 expressionS *exp;
252b5132
RH
8713 segT exp_seg = 0;
8714 char *save_input_line_pointer;
f3c180ae 8715 char *gotfree_input_line;
40fb9820
L
8716 int override;
8717 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8718 int ret;
252b5132 8719
31b2323c
L
8720 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8721 {
8722 as_bad (_("at most %d displacement operands are allowed"),
8723 MAX_MEMORY_OPERANDS);
8724 return 0;
8725 }
8726
0dfbf9d7 8727 operand_type_set (&bigdisp, 0);
40fb9820
L
8728 if ((i.types[this_operand].bitfield.jumpabsolute)
8729 || (!current_templates->start->opcode_modifier.jump
8730 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8731 {
40fb9820 8732 bigdisp.bitfield.disp32 = 1;
e05278af 8733 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8734 if (flag_code == CODE_64BIT)
8735 {
8736 if (!override)
8737 {
8738 bigdisp.bitfield.disp32s = 1;
8739 bigdisp.bitfield.disp64 = 1;
8740 }
8741 }
8742 else if ((flag_code == CODE_16BIT) ^ override)
8743 {
8744 bigdisp.bitfield.disp32 = 0;
8745 bigdisp.bitfield.disp16 = 1;
8746 }
e05278af
JB
8747 }
8748 else
8749 {
8750 /* For PC-relative branches, the width of the displacement
8751 is dependent upon data size, not address size. */
e05278af 8752 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8753 if (flag_code == CODE_64BIT)
8754 {
8755 if (override || i.suffix == WORD_MNEM_SUFFIX)
8756 bigdisp.bitfield.disp16 = 1;
8757 else
8758 {
8759 bigdisp.bitfield.disp32 = 1;
8760 bigdisp.bitfield.disp32s = 1;
8761 }
8762 }
8763 else
e05278af
JB
8764 {
8765 if (!override)
8766 override = (i.suffix == (flag_code != CODE_16BIT
8767 ? WORD_MNEM_SUFFIX
8768 : LONG_MNEM_SUFFIX));
40fb9820
L
8769 bigdisp.bitfield.disp32 = 1;
8770 if ((flag_code == CODE_16BIT) ^ override)
8771 {
8772 bigdisp.bitfield.disp32 = 0;
8773 bigdisp.bitfield.disp16 = 1;
8774 }
e05278af 8775 }
e05278af 8776 }
c6fb90c8
L
8777 i.types[this_operand] = operand_type_or (i.types[this_operand],
8778 bigdisp);
252b5132
RH
8779
8780 exp = &disp_expressions[i.disp_operands];
520dc8e8 8781 i.op[this_operand].disps = exp;
252b5132
RH
8782 i.disp_operands++;
8783 save_input_line_pointer = input_line_pointer;
8784 input_line_pointer = disp_start;
8785 END_STRING_AND_SAVE (disp_end);
8786
8787#ifndef GCC_ASM_O_HACK
8788#define GCC_ASM_O_HACK 0
8789#endif
8790#if GCC_ASM_O_HACK
8791 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8792 if (i.types[this_operand].bitfield.baseIndex
24eab124 8793 && displacement_string_end[-1] == '+')
252b5132
RH
8794 {
8795 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8796 constraint within gcc asm statements.
8797 For instance:
8798
8799 #define _set_tssldt_desc(n,addr,limit,type) \
8800 __asm__ __volatile__ ( \
8801 "movw %w2,%0\n\t" \
8802 "movw %w1,2+%0\n\t" \
8803 "rorl $16,%1\n\t" \
8804 "movb %b1,4+%0\n\t" \
8805 "movb %4,5+%0\n\t" \
8806 "movb $0,6+%0\n\t" \
8807 "movb %h1,7+%0\n\t" \
8808 "rorl $16,%1" \
8809 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8810
8811 This works great except that the output assembler ends
8812 up looking a bit weird if it turns out that there is
8813 no offset. You end up producing code that looks like:
8814
8815 #APP
8816 movw $235,(%eax)
8817 movw %dx,2+(%eax)
8818 rorl $16,%edx
8819 movb %dl,4+(%eax)
8820 movb $137,5+(%eax)
8821 movb $0,6+(%eax)
8822 movb %dh,7+(%eax)
8823 rorl $16,%edx
8824 #NO_APP
8825
47926f60 8826 So here we provide the missing zero. */
24eab124
AM
8827
8828 *displacement_string_end = '0';
252b5132
RH
8829 }
8830#endif
d258b828 8831 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8832 if (gotfree_input_line)
8833 input_line_pointer = gotfree_input_line;
252b5132 8834
24eab124 8835 exp_seg = expression (exp);
252b5132 8836
636c26b0
AM
8837 SKIP_WHITESPACE ();
8838 if (*input_line_pointer)
8839 as_bad (_("junk `%s' after expression"), input_line_pointer);
8840#if GCC_ASM_O_HACK
8841 RESTORE_END_STRING (disp_end + 1);
8842#endif
636c26b0 8843 input_line_pointer = save_input_line_pointer;
636c26b0 8844 if (gotfree_input_line)
ee86248c
JB
8845 {
8846 free (gotfree_input_line);
8847
8848 if (exp->X_op == O_constant || exp->X_op == O_register)
8849 exp->X_op = O_illegal;
8850 }
8851
8852 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8853
8854 RESTORE_END_STRING (disp_end);
8855
8856 return ret;
8857}
8858
8859static int
8860i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8861 i386_operand_type types, const char *disp_start)
8862{
8863 i386_operand_type bigdisp;
8864 int ret = 1;
636c26b0 8865
24eab124
AM
8866 /* We do this to make sure that the section symbol is in
8867 the symbol table. We will ultimately change the relocation
47926f60 8868 to be relative to the beginning of the section. */
1ae12ab7 8869 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8870 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8871 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8872 {
636c26b0 8873 if (exp->X_op != O_symbol)
3992d3b7 8874 goto inv_disp;
636c26b0 8875
e5cb08ac 8876 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8877 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8878 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8879 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8880 exp->X_op = O_subtract;
8881 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8882 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8883 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8884 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8885 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8886 else
29b0f896 8887 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8888 }
252b5132 8889
3992d3b7
AM
8890 else if (exp->X_op == O_absent
8891 || exp->X_op == O_illegal
ee86248c 8892 || exp->X_op == O_big)
2daf4fd8 8893 {
3992d3b7
AM
8894 inv_disp:
8895 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8896 disp_start);
3992d3b7 8897 ret = 0;
2daf4fd8
AM
8898 }
8899
0e1147d9
L
8900 else if (flag_code == CODE_64BIT
8901 && !i.prefix[ADDR_PREFIX]
8902 && exp->X_op == O_constant)
8903 {
8904 /* Since displacement is signed extended to 64bit, don't allow
8905 disp32 and turn off disp32s if they are out of range. */
8906 i.types[this_operand].bitfield.disp32 = 0;
8907 if (!fits_in_signed_long (exp->X_add_number))
8908 {
8909 i.types[this_operand].bitfield.disp32s = 0;
8910 if (i.types[this_operand].bitfield.baseindex)
8911 {
8912 as_bad (_("0x%lx out range of signed 32bit displacement"),
8913 (long) exp->X_add_number);
8914 ret = 0;
8915 }
8916 }
8917 }
8918
4c63da97 8919#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8920 else if (exp->X_op != O_constant
8921 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8922 && exp_seg != absolute_section
8923 && exp_seg != text_section
8924 && exp_seg != data_section
8925 && exp_seg != bss_section
8926 && exp_seg != undefined_section
8927 && !bfd_is_com_section (exp_seg))
24eab124 8928 {
d0b47220 8929 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8930 ret = 0;
24eab124 8931 }
252b5132 8932#endif
3956db08 8933
40fb9820
L
8934 /* Check if this is a displacement only operand. */
8935 bigdisp = i.types[this_operand];
8936 bigdisp.bitfield.disp8 = 0;
8937 bigdisp.bitfield.disp16 = 0;
8938 bigdisp.bitfield.disp32 = 0;
8939 bigdisp.bitfield.disp32s = 0;
8940 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8941 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8942 i.types[this_operand] = operand_type_and (i.types[this_operand],
8943 types);
3956db08 8944
3992d3b7 8945 return ret;
252b5132
RH
8946}
8947
2abc2bec
JB
8948/* Return the active addressing mode, taking address override and
8949 registers forming the address into consideration. Update the
8950 address override prefix if necessary. */
47926f60 8951
2abc2bec
JB
8952static enum flag_code
8953i386_addressing_mode (void)
252b5132 8954{
be05d201
L
8955 enum flag_code addr_mode;
8956
8957 if (i.prefix[ADDR_PREFIX])
8958 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8959 else
8960 {
8961 addr_mode = flag_code;
8962
24eab124 8963#if INFER_ADDR_PREFIX
be05d201
L
8964 if (i.mem_operands == 0)
8965 {
8966 /* Infer address prefix from the first memory operand. */
8967 const reg_entry *addr_reg = i.base_reg;
8968
8969 if (addr_reg == NULL)
8970 addr_reg = i.index_reg;
eecb386c 8971
be05d201
L
8972 if (addr_reg)
8973 {
8974 if (addr_reg->reg_num == RegEip
8975 || addr_reg->reg_num == RegEiz
dc821c5f 8976 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8977 addr_mode = CODE_32BIT;
8978 else if (flag_code != CODE_64BIT
dc821c5f 8979 && addr_reg->reg_type.bitfield.word)
be05d201
L
8980 addr_mode = CODE_16BIT;
8981
8982 if (addr_mode != flag_code)
8983 {
8984 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8985 i.prefixes += 1;
8986 /* Change the size of any displacement too. At most one
8987 of Disp16 or Disp32 is set.
8988 FIXME. There doesn't seem to be any real need for
8989 separate Disp16 and Disp32 flags. The same goes for
8990 Imm16 and Imm32. Removing them would probably clean
8991 up the code quite a lot. */
8992 if (flag_code != CODE_64BIT
8993 && (i.types[this_operand].bitfield.disp16
8994 || i.types[this_operand].bitfield.disp32))
8995 i.types[this_operand]
8996 = operand_type_xor (i.types[this_operand], disp16_32);
8997 }
8998 }
8999 }
24eab124 9000#endif
be05d201
L
9001 }
9002
2abc2bec
JB
9003 return addr_mode;
9004}
9005
9006/* Make sure the memory operand we've been dealt is valid.
9007 Return 1 on success, 0 on a failure. */
9008
9009static int
9010i386_index_check (const char *operand_string)
9011{
9012 const char *kind = "base/index";
9013 enum flag_code addr_mode = i386_addressing_mode ();
9014
fc0763e6
JB
9015 if (current_templates->start->opcode_modifier.isstring
9016 && !current_templates->start->opcode_modifier.immext
9017 && (current_templates->end[-1].opcode_modifier.isstring
9018 || i.mem_operands))
9019 {
9020 /* Memory operands of string insns are special in that they only allow
9021 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9022 const reg_entry *expected_reg;
9023 static const char *di_si[][2] =
9024 {
9025 { "esi", "edi" },
9026 { "si", "di" },
9027 { "rsi", "rdi" }
9028 };
9029 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9030
9031 kind = "string address";
9032
8325cc63 9033 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9034 {
9035 i386_operand_type type = current_templates->end[-1].operand_types[0];
9036
9037 if (!type.bitfield.baseindex
9038 || ((!i.mem_operands != !intel_syntax)
9039 && current_templates->end[-1].operand_types[1]
9040 .bitfield.baseindex))
9041 type = current_templates->end[-1].operand_types[1];
be05d201
L
9042 expected_reg = hash_find (reg_hash,
9043 di_si[addr_mode][type.bitfield.esseg]);
9044
fc0763e6
JB
9045 }
9046 else
be05d201 9047 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9048
be05d201
L
9049 if (i.base_reg != expected_reg
9050 || i.index_reg
fc0763e6 9051 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9052 {
be05d201
L
9053 /* The second memory operand must have the same size as
9054 the first one. */
9055 if (i.mem_operands
9056 && i.base_reg
9057 && !((addr_mode == CODE_64BIT
dc821c5f 9058 && i.base_reg->reg_type.bitfield.qword)
be05d201 9059 || (addr_mode == CODE_32BIT
dc821c5f
JB
9060 ? i.base_reg->reg_type.bitfield.dword
9061 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9062 goto bad_address;
9063
fc0763e6
JB
9064 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9065 operand_string,
9066 intel_syntax ? '[' : '(',
9067 register_prefix,
be05d201 9068 expected_reg->reg_name,
fc0763e6 9069 intel_syntax ? ']' : ')');
be05d201 9070 return 1;
fc0763e6 9071 }
be05d201
L
9072 else
9073 return 1;
9074
9075bad_address:
9076 as_bad (_("`%s' is not a valid %s expression"),
9077 operand_string, kind);
9078 return 0;
3e73aa7c
JH
9079 }
9080 else
9081 {
be05d201
L
9082 if (addr_mode != CODE_16BIT)
9083 {
9084 /* 32-bit/64-bit checks. */
9085 if ((i.base_reg
9086 && (addr_mode == CODE_64BIT
dc821c5f
JB
9087 ? !i.base_reg->reg_type.bitfield.qword
9088 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9089 && (i.index_reg
9090 || (i.base_reg->reg_num
9091 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9092 || (i.index_reg
1b54b8d7
JB
9093 && !i.index_reg->reg_type.bitfield.xmmword
9094 && !i.index_reg->reg_type.bitfield.ymmword
9095 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9096 && ((addr_mode == CODE_64BIT
dc821c5f 9097 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9098 || i.index_reg->reg_num == RegRiz)
dc821c5f 9099 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9100 || i.index_reg->reg_num == RegEiz))
9101 || !i.index_reg->reg_type.bitfield.baseindex)))
9102 goto bad_address;
8178be5b
JB
9103
9104 /* bndmk, bndldx, and bndstx have special restrictions. */
9105 if (current_templates->start->base_opcode == 0xf30f1b
9106 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9107 {
9108 /* They cannot use RIP-relative addressing. */
9109 if (i.base_reg && i.base_reg->reg_num == RegRip)
9110 {
9111 as_bad (_("`%s' cannot be used here"), operand_string);
9112 return 0;
9113 }
9114
9115 /* bndldx and bndstx ignore their scale factor. */
9116 if (current_templates->start->base_opcode != 0xf30f1b
9117 && i.log2_scale_factor)
9118 as_warn (_("register scaling is being ignored here"));
9119 }
be05d201
L
9120 }
9121 else
3e73aa7c 9122 {
be05d201 9123 /* 16-bit checks. */
3e73aa7c 9124 if ((i.base_reg
dc821c5f 9125 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9126 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9127 || (i.index_reg
dc821c5f 9128 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9129 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9130 || !(i.base_reg
9131 && i.base_reg->reg_num < 6
9132 && i.index_reg->reg_num >= 6
9133 && i.log2_scale_factor == 0))))
be05d201 9134 goto bad_address;
3e73aa7c
JH
9135 }
9136 }
be05d201 9137 return 1;
24eab124 9138}
252b5132 9139
43234a1e
L
9140/* Handle vector immediates. */
9141
9142static int
9143RC_SAE_immediate (const char *imm_start)
9144{
9145 unsigned int match_found, j;
9146 const char *pstr = imm_start;
9147 expressionS *exp;
9148
9149 if (*pstr != '{')
9150 return 0;
9151
9152 pstr++;
9153 match_found = 0;
9154 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9155 {
9156 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9157 {
9158 if (!i.rounding)
9159 {
9160 rc_op.type = RC_NamesTable[j].type;
9161 rc_op.operand = this_operand;
9162 i.rounding = &rc_op;
9163 }
9164 else
9165 {
9166 as_bad (_("duplicated `%s'"), imm_start);
9167 return 0;
9168 }
9169 pstr += RC_NamesTable[j].len;
9170 match_found = 1;
9171 break;
9172 }
9173 }
9174 if (!match_found)
9175 return 0;
9176
9177 if (*pstr++ != '}')
9178 {
9179 as_bad (_("Missing '}': '%s'"), imm_start);
9180 return 0;
9181 }
9182 /* RC/SAE immediate string should contain nothing more. */;
9183 if (*pstr != 0)
9184 {
9185 as_bad (_("Junk after '}': '%s'"), imm_start);
9186 return 0;
9187 }
9188
9189 exp = &im_expressions[i.imm_operands++];
9190 i.op[this_operand].imms = exp;
9191
9192 exp->X_op = O_constant;
9193 exp->X_add_number = 0;
9194 exp->X_add_symbol = (symbolS *) 0;
9195 exp->X_op_symbol = (symbolS *) 0;
9196
9197 i.types[this_operand].bitfield.imm8 = 1;
9198 return 1;
9199}
9200
8325cc63
JB
9201/* Only string instructions can have a second memory operand, so
9202 reduce current_templates to just those if it contains any. */
9203static int
9204maybe_adjust_templates (void)
9205{
9206 const insn_template *t;
9207
9208 gas_assert (i.mem_operands == 1);
9209
9210 for (t = current_templates->start; t < current_templates->end; ++t)
9211 if (t->opcode_modifier.isstring)
9212 break;
9213
9214 if (t < current_templates->end)
9215 {
9216 static templates aux_templates;
9217 bfd_boolean recheck;
9218
9219 aux_templates.start = t;
9220 for (; t < current_templates->end; ++t)
9221 if (!t->opcode_modifier.isstring)
9222 break;
9223 aux_templates.end = t;
9224
9225 /* Determine whether to re-check the first memory operand. */
9226 recheck = (aux_templates.start != current_templates->start
9227 || t != current_templates->end);
9228
9229 current_templates = &aux_templates;
9230
9231 if (recheck)
9232 {
9233 i.mem_operands = 0;
9234 if (i.memop1_string != NULL
9235 && i386_index_check (i.memop1_string) == 0)
9236 return 0;
9237 i.mem_operands = 1;
9238 }
9239 }
9240
9241 return 1;
9242}
9243
fc0763e6 9244/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9245 on error. */
252b5132 9246
252b5132 9247static int
a7619375 9248i386_att_operand (char *operand_string)
252b5132 9249{
af6bdddf
AM
9250 const reg_entry *r;
9251 char *end_op;
24eab124 9252 char *op_string = operand_string;
252b5132 9253
24eab124 9254 if (is_space_char (*op_string))
252b5132
RH
9255 ++op_string;
9256
24eab124 9257 /* We check for an absolute prefix (differentiating,
47926f60 9258 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9259 if (*op_string == ABSOLUTE_PREFIX)
9260 {
9261 ++op_string;
9262 if (is_space_char (*op_string))
9263 ++op_string;
40fb9820 9264 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9265 }
252b5132 9266
47926f60 9267 /* Check if operand is a register. */
4d1bb795 9268 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9269 {
40fb9820
L
9270 i386_operand_type temp;
9271
24eab124
AM
9272 /* Check for a segment override by searching for ':' after a
9273 segment register. */
9274 op_string = end_op;
9275 if (is_space_char (*op_string))
9276 ++op_string;
40fb9820
L
9277 if (*op_string == ':'
9278 && (r->reg_type.bitfield.sreg2
9279 || r->reg_type.bitfield.sreg3))
24eab124
AM
9280 {
9281 switch (r->reg_num)
9282 {
9283 case 0:
9284 i.seg[i.mem_operands] = &es;
9285 break;
9286 case 1:
9287 i.seg[i.mem_operands] = &cs;
9288 break;
9289 case 2:
9290 i.seg[i.mem_operands] = &ss;
9291 break;
9292 case 3:
9293 i.seg[i.mem_operands] = &ds;
9294 break;
9295 case 4:
9296 i.seg[i.mem_operands] = &fs;
9297 break;
9298 case 5:
9299 i.seg[i.mem_operands] = &gs;
9300 break;
9301 }
252b5132 9302
24eab124 9303 /* Skip the ':' and whitespace. */
252b5132
RH
9304 ++op_string;
9305 if (is_space_char (*op_string))
24eab124 9306 ++op_string;
252b5132 9307
24eab124
AM
9308 if (!is_digit_char (*op_string)
9309 && !is_identifier_char (*op_string)
9310 && *op_string != '('
9311 && *op_string != ABSOLUTE_PREFIX)
9312 {
9313 as_bad (_("bad memory operand `%s'"), op_string);
9314 return 0;
9315 }
47926f60 9316 /* Handle case of %es:*foo. */
24eab124
AM
9317 if (*op_string == ABSOLUTE_PREFIX)
9318 {
9319 ++op_string;
9320 if (is_space_char (*op_string))
9321 ++op_string;
40fb9820 9322 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9323 }
9324 goto do_memory_reference;
9325 }
43234a1e
L
9326
9327 /* Handle vector operations. */
9328 if (*op_string == '{')
9329 {
9330 op_string = check_VecOperations (op_string, NULL);
9331 if (op_string == NULL)
9332 return 0;
9333 }
9334
24eab124
AM
9335 if (*op_string)
9336 {
d0b47220 9337 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9338 return 0;
9339 }
40fb9820
L
9340 temp = r->reg_type;
9341 temp.bitfield.baseindex = 0;
c6fb90c8
L
9342 i.types[this_operand] = operand_type_or (i.types[this_operand],
9343 temp);
7d5e4556 9344 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9345 i.op[this_operand].regs = r;
24eab124
AM
9346 i.reg_operands++;
9347 }
af6bdddf
AM
9348 else if (*op_string == REGISTER_PREFIX)
9349 {
9350 as_bad (_("bad register name `%s'"), op_string);
9351 return 0;
9352 }
24eab124 9353 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9354 {
24eab124 9355 ++op_string;
40fb9820 9356 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9357 {
d0b47220 9358 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9359 return 0;
9360 }
9361 if (!i386_immediate (op_string))
9362 return 0;
9363 }
43234a1e
L
9364 else if (RC_SAE_immediate (operand_string))
9365 {
9366 /* If it is a RC or SAE immediate, do nothing. */
9367 ;
9368 }
24eab124
AM
9369 else if (is_digit_char (*op_string)
9370 || is_identifier_char (*op_string)
d02603dc 9371 || *op_string == '"'
e5cb08ac 9372 || *op_string == '(')
24eab124 9373 {
47926f60 9374 /* This is a memory reference of some sort. */
af6bdddf 9375 char *base_string;
252b5132 9376
47926f60 9377 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9378 char *displacement_string_start;
9379 char *displacement_string_end;
43234a1e 9380 char *vop_start;
252b5132 9381
24eab124 9382 do_memory_reference:
8325cc63
JB
9383 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9384 return 0;
24eab124 9385 if ((i.mem_operands == 1
40fb9820 9386 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9387 || i.mem_operands == 2)
9388 {
9389 as_bad (_("too many memory references for `%s'"),
9390 current_templates->start->name);
9391 return 0;
9392 }
252b5132 9393
24eab124
AM
9394 /* Check for base index form. We detect the base index form by
9395 looking for an ')' at the end of the operand, searching
9396 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9397 after the '('. */
af6bdddf 9398 base_string = op_string + strlen (op_string);
c3332e24 9399
43234a1e
L
9400 /* Handle vector operations. */
9401 vop_start = strchr (op_string, '{');
9402 if (vop_start && vop_start < base_string)
9403 {
9404 if (check_VecOperations (vop_start, base_string) == NULL)
9405 return 0;
9406 base_string = vop_start;
9407 }
9408
af6bdddf
AM
9409 --base_string;
9410 if (is_space_char (*base_string))
9411 --base_string;
252b5132 9412
47926f60 9413 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9414 displacement_string_start = op_string;
9415 displacement_string_end = base_string + 1;
252b5132 9416
24eab124
AM
9417 if (*base_string == ')')
9418 {
af6bdddf 9419 char *temp_string;
24eab124
AM
9420 unsigned int parens_balanced = 1;
9421 /* We've already checked that the number of left & right ()'s are
47926f60 9422 equal, so this loop will not be infinite. */
24eab124
AM
9423 do
9424 {
9425 base_string--;
9426 if (*base_string == ')')
9427 parens_balanced++;
9428 if (*base_string == '(')
9429 parens_balanced--;
9430 }
9431 while (parens_balanced);
c3332e24 9432
af6bdddf 9433 temp_string = base_string;
c3332e24 9434
24eab124 9435 /* Skip past '(' and whitespace. */
252b5132
RH
9436 ++base_string;
9437 if (is_space_char (*base_string))
24eab124 9438 ++base_string;
252b5132 9439
af6bdddf 9440 if (*base_string == ','
4eed87de
AM
9441 || ((i.base_reg = parse_register (base_string, &end_op))
9442 != NULL))
252b5132 9443 {
af6bdddf 9444 displacement_string_end = temp_string;
252b5132 9445
40fb9820 9446 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9447
af6bdddf 9448 if (i.base_reg)
24eab124 9449 {
24eab124
AM
9450 base_string = end_op;
9451 if (is_space_char (*base_string))
9452 ++base_string;
af6bdddf
AM
9453 }
9454
9455 /* There may be an index reg or scale factor here. */
9456 if (*base_string == ',')
9457 {
9458 ++base_string;
9459 if (is_space_char (*base_string))
9460 ++base_string;
9461
4eed87de
AM
9462 if ((i.index_reg = parse_register (base_string, &end_op))
9463 != NULL)
24eab124 9464 {
af6bdddf 9465 base_string = end_op;
24eab124
AM
9466 if (is_space_char (*base_string))
9467 ++base_string;
af6bdddf
AM
9468 if (*base_string == ',')
9469 {
9470 ++base_string;
9471 if (is_space_char (*base_string))
9472 ++base_string;
9473 }
e5cb08ac 9474 else if (*base_string != ')')
af6bdddf 9475 {
4eed87de
AM
9476 as_bad (_("expecting `,' or `)' "
9477 "after index register in `%s'"),
af6bdddf
AM
9478 operand_string);
9479 return 0;
9480 }
24eab124 9481 }
af6bdddf 9482 else if (*base_string == REGISTER_PREFIX)
24eab124 9483 {
f76bf5e0
L
9484 end_op = strchr (base_string, ',');
9485 if (end_op)
9486 *end_op = '\0';
af6bdddf 9487 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9488 return 0;
9489 }
252b5132 9490
47926f60 9491 /* Check for scale factor. */
551c1ca1 9492 if (*base_string != ')')
af6bdddf 9493 {
551c1ca1
AM
9494 char *end_scale = i386_scale (base_string);
9495
9496 if (!end_scale)
af6bdddf 9497 return 0;
24eab124 9498
551c1ca1 9499 base_string = end_scale;
af6bdddf
AM
9500 if (is_space_char (*base_string))
9501 ++base_string;
9502 if (*base_string != ')')
9503 {
4eed87de
AM
9504 as_bad (_("expecting `)' "
9505 "after scale factor in `%s'"),
af6bdddf
AM
9506 operand_string);
9507 return 0;
9508 }
9509 }
9510 else if (!i.index_reg)
24eab124 9511 {
4eed87de
AM
9512 as_bad (_("expecting index register or scale factor "
9513 "after `,'; got '%c'"),
af6bdddf 9514 *base_string);
24eab124
AM
9515 return 0;
9516 }
9517 }
af6bdddf 9518 else if (*base_string != ')')
24eab124 9519 {
4eed87de
AM
9520 as_bad (_("expecting `,' or `)' "
9521 "after base register in `%s'"),
af6bdddf 9522 operand_string);
24eab124
AM
9523 return 0;
9524 }
c3332e24 9525 }
af6bdddf 9526 else if (*base_string == REGISTER_PREFIX)
c3332e24 9527 {
f76bf5e0
L
9528 end_op = strchr (base_string, ',');
9529 if (end_op)
9530 *end_op = '\0';
af6bdddf 9531 as_bad (_("bad register name `%s'"), base_string);
24eab124 9532 return 0;
c3332e24 9533 }
24eab124
AM
9534 }
9535
9536 /* If there's an expression beginning the operand, parse it,
9537 assuming displacement_string_start and
9538 displacement_string_end are meaningful. */
9539 if (displacement_string_start != displacement_string_end)
9540 {
9541 if (!i386_displacement (displacement_string_start,
9542 displacement_string_end))
9543 return 0;
9544 }
9545
9546 /* Special case for (%dx) while doing input/output op. */
9547 if (i.base_reg
0dfbf9d7
L
9548 && operand_type_equal (&i.base_reg->reg_type,
9549 &reg16_inoutportreg)
24eab124
AM
9550 && i.index_reg == 0
9551 && i.log2_scale_factor == 0
9552 && i.seg[i.mem_operands] == 0
40fb9820 9553 && !operand_type_check (i.types[this_operand], disp))
24eab124 9554 {
65da13b5 9555 i.types[this_operand] = inoutportreg;
24eab124
AM
9556 return 1;
9557 }
9558
eecb386c
AM
9559 if (i386_index_check (operand_string) == 0)
9560 return 0;
5c07affc 9561 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9562 if (i.mem_operands == 0)
9563 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9564 i.mem_operands++;
9565 }
9566 else
ce8a8b2f
AM
9567 {
9568 /* It's not a memory operand; argh! */
24eab124
AM
9569 as_bad (_("invalid char %s beginning operand %d `%s'"),
9570 output_invalid (*op_string),
9571 this_operand + 1,
9572 op_string);
9573 return 0;
9574 }
47926f60 9575 return 1; /* Normal return. */
252b5132
RH
9576}
9577\f
fa94de6b
RM
9578/* Calculate the maximum variable size (i.e., excluding fr_fix)
9579 that an rs_machine_dependent frag may reach. */
9580
9581unsigned int
9582i386_frag_max_var (fragS *frag)
9583{
9584 /* The only relaxable frags are for jumps.
9585 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9586 gas_assert (frag->fr_type == rs_machine_dependent);
9587 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9588}
9589
b084df0b
L
9590#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9591static int
8dcea932 9592elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9593{
9594 /* STT_GNU_IFUNC symbol must go through PLT. */
9595 if ((symbol_get_bfdsym (fr_symbol)->flags
9596 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9597 return 0;
9598
9599 if (!S_IS_EXTERNAL (fr_symbol))
9600 /* Symbol may be weak or local. */
9601 return !S_IS_WEAK (fr_symbol);
9602
8dcea932
L
9603 /* Global symbols with non-default visibility can't be preempted. */
9604 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9605 return 1;
9606
9607 if (fr_var != NO_RELOC)
9608 switch ((enum bfd_reloc_code_real) fr_var)
9609 {
9610 case BFD_RELOC_386_PLT32:
9611 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9612 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9613 return 0;
9614 default:
9615 abort ();
9616 }
9617
b084df0b
L
9618 /* Global symbols with default visibility in a shared library may be
9619 preempted by another definition. */
8dcea932 9620 return !shared;
b084df0b
L
9621}
9622#endif
9623
ee7fcc42
AM
9624/* md_estimate_size_before_relax()
9625
9626 Called just before relax() for rs_machine_dependent frags. The x86
9627 assembler uses these frags to handle variable size jump
9628 instructions.
9629
9630 Any symbol that is now undefined will not become defined.
9631 Return the correct fr_subtype in the frag.
9632 Return the initial "guess for variable size of frag" to caller.
9633 The guess is actually the growth beyond the fixed part. Whatever
9634 we do to grow the fixed or variable part contributes to our
9635 returned value. */
9636
252b5132 9637int
7016a5d5 9638md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9639{
252b5132 9640 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9641 check for un-relaxable symbols. On an ELF system, we can't relax
9642 an externally visible symbol, because it may be overridden by a
9643 shared library. */
9644 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9645#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9646 || (IS_ELF
8dcea932
L
9647 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9648 fragP->fr_var))
fbeb56a4
DK
9649#endif
9650#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9651 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9652 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9653#endif
9654 )
252b5132 9655 {
b98ef147
AM
9656 /* Symbol is undefined in this segment, or we need to keep a
9657 reloc so that weak symbols can be overridden. */
9658 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9659 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9660 unsigned char *opcode;
9661 int old_fr_fix;
f6af82bd 9662
ee7fcc42 9663 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9664 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9665 else if (size == 2)
f6af82bd 9666 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9668 else if (need_plt32_p (fragP->fr_symbol))
9669 reloc_type = BFD_RELOC_X86_64_PLT32;
9670#endif
f6af82bd
AM
9671 else
9672 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9673
ee7fcc42
AM
9674 old_fr_fix = fragP->fr_fix;
9675 opcode = (unsigned char *) fragP->fr_opcode;
9676
fddf5b5b 9677 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9678 {
fddf5b5b
AM
9679 case UNCOND_JUMP:
9680 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9681 opcode[0] = 0xe9;
252b5132 9682 fragP->fr_fix += size;
062cd5e7
AS
9683 fix_new (fragP, old_fr_fix, size,
9684 fragP->fr_symbol,
9685 fragP->fr_offset, 1,
9686 reloc_type);
252b5132
RH
9687 break;
9688
fddf5b5b 9689 case COND_JUMP86:
412167cb
AM
9690 if (size == 2
9691 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9692 {
9693 /* Negate the condition, and branch past an
9694 unconditional jump. */
9695 opcode[0] ^= 1;
9696 opcode[1] = 3;
9697 /* Insert an unconditional jump. */
9698 opcode[2] = 0xe9;
9699 /* We added two extra opcode bytes, and have a two byte
9700 offset. */
9701 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9702 fix_new (fragP, old_fr_fix + 2, 2,
9703 fragP->fr_symbol,
9704 fragP->fr_offset, 1,
9705 reloc_type);
fddf5b5b
AM
9706 break;
9707 }
9708 /* Fall through. */
9709
9710 case COND_JUMP:
412167cb
AM
9711 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9712 {
3e02c1cc
AM
9713 fixS *fixP;
9714
412167cb 9715 fragP->fr_fix += 1;
3e02c1cc
AM
9716 fixP = fix_new (fragP, old_fr_fix, 1,
9717 fragP->fr_symbol,
9718 fragP->fr_offset, 1,
9719 BFD_RELOC_8_PCREL);
9720 fixP->fx_signed = 1;
412167cb
AM
9721 break;
9722 }
93c2a809 9723
24eab124 9724 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9725 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9726 opcode[1] = opcode[0] + 0x10;
f6af82bd 9727 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9728 /* We've added an opcode byte. */
9729 fragP->fr_fix += 1 + size;
062cd5e7
AS
9730 fix_new (fragP, old_fr_fix + 1, size,
9731 fragP->fr_symbol,
9732 fragP->fr_offset, 1,
9733 reloc_type);
252b5132 9734 break;
fddf5b5b
AM
9735
9736 default:
9737 BAD_CASE (fragP->fr_subtype);
9738 break;
252b5132
RH
9739 }
9740 frag_wane (fragP);
ee7fcc42 9741 return fragP->fr_fix - old_fr_fix;
252b5132 9742 }
93c2a809 9743
93c2a809
AM
9744 /* Guess size depending on current relax state. Initially the relax
9745 state will correspond to a short jump and we return 1, because
9746 the variable part of the frag (the branch offset) is one byte
9747 long. However, we can relax a section more than once and in that
9748 case we must either set fr_subtype back to the unrelaxed state,
9749 or return the value for the appropriate branch. */
9750 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9751}
9752
47926f60
KH
9753/* Called after relax() is finished.
9754
9755 In: Address of frag.
9756 fr_type == rs_machine_dependent.
9757 fr_subtype is what the address relaxed to.
9758
9759 Out: Any fixSs and constants are set up.
9760 Caller will turn frag into a ".space 0". */
9761
252b5132 9762void
7016a5d5
TG
9763md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9764 fragS *fragP)
252b5132 9765{
29b0f896 9766 unsigned char *opcode;
252b5132 9767 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9768 offsetT target_address;
9769 offsetT opcode_address;
252b5132 9770 unsigned int extension = 0;
847f7ad4 9771 offsetT displacement_from_opcode_start;
252b5132
RH
9772
9773 opcode = (unsigned char *) fragP->fr_opcode;
9774
47926f60 9775 /* Address we want to reach in file space. */
252b5132 9776 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9777
47926f60 9778 /* Address opcode resides at in file space. */
252b5132
RH
9779 opcode_address = fragP->fr_address + fragP->fr_fix;
9780
47926f60 9781 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9782 displacement_from_opcode_start = target_address - opcode_address;
9783
fddf5b5b 9784 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9785 {
47926f60
KH
9786 /* Don't have to change opcode. */
9787 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9788 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9789 }
9790 else
9791 {
9792 if (no_cond_jump_promotion
9793 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9794 as_warn_where (fragP->fr_file, fragP->fr_line,
9795 _("long jump required"));
252b5132 9796
fddf5b5b
AM
9797 switch (fragP->fr_subtype)
9798 {
9799 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9800 extension = 4; /* 1 opcode + 4 displacement */
9801 opcode[0] = 0xe9;
9802 where_to_put_displacement = &opcode[1];
9803 break;
252b5132 9804
fddf5b5b
AM
9805 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9806 extension = 2; /* 1 opcode + 2 displacement */
9807 opcode[0] = 0xe9;
9808 where_to_put_displacement = &opcode[1];
9809 break;
252b5132 9810
fddf5b5b
AM
9811 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9812 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9813 extension = 5; /* 2 opcode + 4 displacement */
9814 opcode[1] = opcode[0] + 0x10;
9815 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9816 where_to_put_displacement = &opcode[2];
9817 break;
252b5132 9818
fddf5b5b
AM
9819 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9820 extension = 3; /* 2 opcode + 2 displacement */
9821 opcode[1] = opcode[0] + 0x10;
9822 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9823 where_to_put_displacement = &opcode[2];
9824 break;
252b5132 9825
fddf5b5b
AM
9826 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9827 extension = 4;
9828 opcode[0] ^= 1;
9829 opcode[1] = 3;
9830 opcode[2] = 0xe9;
9831 where_to_put_displacement = &opcode[3];
9832 break;
9833
9834 default:
9835 BAD_CASE (fragP->fr_subtype);
9836 break;
9837 }
252b5132 9838 }
fddf5b5b 9839
7b81dfbb
AJ
9840 /* If size if less then four we are sure that the operand fits,
9841 but if it's 4, then it could be that the displacement is larger
9842 then -/+ 2GB. */
9843 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9844 && object_64bit
9845 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9846 + ((addressT) 1 << 31))
9847 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9848 {
9849 as_bad_where (fragP->fr_file, fragP->fr_line,
9850 _("jump target out of range"));
9851 /* Make us emit 0. */
9852 displacement_from_opcode_start = extension;
9853 }
47926f60 9854 /* Now put displacement after opcode. */
252b5132
RH
9855 md_number_to_chars ((char *) where_to_put_displacement,
9856 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9857 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9858 fragP->fr_fix += extension;
9859}
9860\f
7016a5d5 9861/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9862 by our caller that we have all the info we need to fix it up.
9863
7016a5d5
TG
9864 Parameter valP is the pointer to the value of the bits.
9865
252b5132
RH
9866 On the 386, immediates, displacements, and data pointers are all in
9867 the same (little-endian) format, so we don't need to care about which
9868 we are handling. */
9869
94f592af 9870void
7016a5d5 9871md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9872{
94f592af 9873 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9874 valueT value = *valP;
252b5132 9875
f86103b7 9876#if !defined (TE_Mach)
93382f6d
AM
9877 if (fixP->fx_pcrel)
9878 {
9879 switch (fixP->fx_r_type)
9880 {
5865bb77
ILT
9881 default:
9882 break;
9883
d6ab8113
JB
9884 case BFD_RELOC_64:
9885 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9886 break;
93382f6d 9887 case BFD_RELOC_32:
ae8887b5 9888 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9889 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9890 break;
9891 case BFD_RELOC_16:
9892 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9893 break;
9894 case BFD_RELOC_8:
9895 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9896 break;
9897 }
9898 }
252b5132 9899
a161fe53 9900 if (fixP->fx_addsy != NULL
31312f95 9901 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9902 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9903 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9904 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9905 && !use_rela_relocations)
252b5132 9906 {
31312f95
AM
9907 /* This is a hack. There should be a better way to handle this.
9908 This covers for the fact that bfd_install_relocation will
9909 subtract the current location (for partial_inplace, PC relative
9910 relocations); see more below. */
252b5132 9911#ifndef OBJ_AOUT
718ddfc0 9912 if (IS_ELF
252b5132
RH
9913#ifdef TE_PE
9914 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9915#endif
9916 )
9917 value += fixP->fx_where + fixP->fx_frag->fr_address;
9918#endif
9919#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9920 if (IS_ELF)
252b5132 9921 {
6539b54b 9922 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9923
6539b54b 9924 if ((sym_seg == seg
2f66722d 9925 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9926 && sym_seg != absolute_section))
af65af87 9927 && !generic_force_reloc (fixP))
2f66722d
AM
9928 {
9929 /* Yes, we add the values in twice. This is because
6539b54b
AM
9930 bfd_install_relocation subtracts them out again. I think
9931 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9932 it. FIXME. */
9933 value += fixP->fx_where + fixP->fx_frag->fr_address;
9934 }
252b5132
RH
9935 }
9936#endif
9937#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9938 /* For some reason, the PE format does not store a
9939 section address offset for a PC relative symbol. */
9940 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9941 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9942 value += md_pcrel_from (fixP);
9943#endif
9944 }
fbeb56a4 9945#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9946 if (fixP->fx_addsy != NULL
9947 && S_IS_WEAK (fixP->fx_addsy)
9948 /* PR 16858: Do not modify weak function references. */
9949 && ! fixP->fx_pcrel)
fbeb56a4 9950 {
296a8689
NC
9951#if !defined (TE_PEP)
9952 /* For x86 PE weak function symbols are neither PC-relative
9953 nor do they set S_IS_FUNCTION. So the only reliable way
9954 to detect them is to check the flags of their containing
9955 section. */
9956 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9957 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9958 ;
9959 else
9960#endif
fbeb56a4
DK
9961 value -= S_GET_VALUE (fixP->fx_addsy);
9962 }
9963#endif
252b5132
RH
9964
9965 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9966 and we must not disappoint it. */
252b5132 9967#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9968 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9969 switch (fixP->fx_r_type)
9970 {
9971 case BFD_RELOC_386_PLT32:
3e73aa7c 9972 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9973 /* Make the jump instruction point to the address of the operand. At
9974 runtime we merely add the offset to the actual PLT entry. */
9975 value = -4;
9976 break;
31312f95 9977
13ae64f3
JJ
9978 case BFD_RELOC_386_TLS_GD:
9979 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9980 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9981 case BFD_RELOC_386_TLS_IE:
9982 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9983 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9984 case BFD_RELOC_X86_64_TLSGD:
9985 case BFD_RELOC_X86_64_TLSLD:
9986 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9987 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9988 value = 0; /* Fully resolved at runtime. No addend. */
9989 /* Fallthrough */
9990 case BFD_RELOC_386_TLS_LE:
9991 case BFD_RELOC_386_TLS_LDO_32:
9992 case BFD_RELOC_386_TLS_LE_32:
9993 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9994 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9995 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9996 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9997 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9998 break;
9999
67a4f2b7
AO
10000 case BFD_RELOC_386_TLS_DESC_CALL:
10001 case BFD_RELOC_X86_64_TLSDESC_CALL:
10002 value = 0; /* Fully resolved at runtime. No addend. */
10003 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10004 fixP->fx_done = 0;
10005 return;
10006
47926f60
KH
10007 case BFD_RELOC_VTABLE_INHERIT:
10008 case BFD_RELOC_VTABLE_ENTRY:
10009 fixP->fx_done = 0;
94f592af 10010 return;
47926f60
KH
10011
10012 default:
10013 break;
10014 }
10015#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10016 *valP = value;
f86103b7 10017#endif /* !defined (TE_Mach) */
3e73aa7c 10018
3e73aa7c 10019 /* Are we finished with this relocation now? */
c6682705 10020 if (fixP->fx_addsy == NULL)
3e73aa7c 10021 fixP->fx_done = 1;
fbeb56a4
DK
10022#if defined (OBJ_COFF) && defined (TE_PE)
10023 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10024 {
10025 fixP->fx_done = 0;
10026 /* Remember value for tc_gen_reloc. */
10027 fixP->fx_addnumber = value;
10028 /* Clear out the frag for now. */
10029 value = 0;
10030 }
10031#endif
3e73aa7c
JH
10032 else if (use_rela_relocations)
10033 {
10034 fixP->fx_no_overflow = 1;
062cd5e7
AS
10035 /* Remember value for tc_gen_reloc. */
10036 fixP->fx_addnumber = value;
3e73aa7c
JH
10037 value = 0;
10038 }
f86103b7 10039
94f592af 10040 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10041}
252b5132 10042\f
6d4af3c2 10043const char *
499ac353 10044md_atof (int type, char *litP, int *sizeP)
252b5132 10045{
499ac353
NC
10046 /* This outputs the LITTLENUMs in REVERSE order;
10047 in accord with the bigendian 386. */
10048 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10049}
10050\f
2d545b82 10051static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10052
252b5132 10053static char *
e3bb37b5 10054output_invalid (int c)
252b5132 10055{
3882b010 10056 if (ISPRINT (c))
f9f21a03
L
10057 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10058 "'%c'", c);
252b5132 10059 else
f9f21a03 10060 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10061 "(0x%x)", (unsigned char) c);
252b5132
RH
10062 return output_invalid_buf;
10063}
10064
af6bdddf 10065/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10066
10067static const reg_entry *
4d1bb795 10068parse_real_register (char *reg_string, char **end_op)
252b5132 10069{
af6bdddf
AM
10070 char *s = reg_string;
10071 char *p;
252b5132
RH
10072 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10073 const reg_entry *r;
10074
10075 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10076 if (*s == REGISTER_PREFIX)
10077 ++s;
10078
10079 if (is_space_char (*s))
10080 ++s;
10081
10082 p = reg_name_given;
af6bdddf 10083 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10084 {
10085 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10086 return (const reg_entry *) NULL;
10087 s++;
252b5132
RH
10088 }
10089
6588847e
DN
10090 /* For naked regs, make sure that we are not dealing with an identifier.
10091 This prevents confusing an identifier like `eax_var' with register
10092 `eax'. */
10093 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10094 return (const reg_entry *) NULL;
10095
af6bdddf 10096 *end_op = s;
252b5132
RH
10097
10098 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10099
5f47d35b 10100 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10101 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10102 {
5f47d35b
AM
10103 if (is_space_char (*s))
10104 ++s;
10105 if (*s == '(')
10106 {
af6bdddf 10107 ++s;
5f47d35b
AM
10108 if (is_space_char (*s))
10109 ++s;
10110 if (*s >= '0' && *s <= '7')
10111 {
db557034 10112 int fpr = *s - '0';
af6bdddf 10113 ++s;
5f47d35b
AM
10114 if (is_space_char (*s))
10115 ++s;
10116 if (*s == ')')
10117 {
10118 *end_op = s + 1;
1e9cc1c2 10119 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10120 know (r);
10121 return r + fpr;
5f47d35b 10122 }
5f47d35b 10123 }
47926f60 10124 /* We have "%st(" then garbage. */
5f47d35b
AM
10125 return (const reg_entry *) NULL;
10126 }
10127 }
10128
a60de03c
JB
10129 if (r == NULL || allow_pseudo_reg)
10130 return r;
10131
0dfbf9d7 10132 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10133 return (const reg_entry *) NULL;
10134
dc821c5f 10135 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10136 || r->reg_type.bitfield.sreg3
10137 || r->reg_type.bitfield.control
10138 || r->reg_type.bitfield.debug
10139 || r->reg_type.bitfield.test)
10140 && !cpu_arch_flags.bitfield.cpui386)
10141 return (const reg_entry *) NULL;
10142
ca0d63fe 10143 if (r->reg_type.bitfield.tbyte
309d3373
JB
10144 && !cpu_arch_flags.bitfield.cpu8087
10145 && !cpu_arch_flags.bitfield.cpu287
10146 && !cpu_arch_flags.bitfield.cpu387)
10147 return (const reg_entry *) NULL;
10148
1848e567 10149 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
10150 return (const reg_entry *) NULL;
10151
1b54b8d7 10152 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
10153 return (const reg_entry *) NULL;
10154
1b54b8d7 10155 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
10156 return (const reg_entry *) NULL;
10157
1b54b8d7 10158 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
10159 return (const reg_entry *) NULL;
10160
10161 if (r->reg_type.bitfield.regmask
10162 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
10163 return (const reg_entry *) NULL;
10164
db51cc60 10165 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10166 if (!allow_index_reg
db51cc60
L
10167 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10168 return (const reg_entry *) NULL;
10169
43234a1e
L
10170 /* Upper 16 vector register is only available with VREX in 64bit
10171 mode. */
10172 if ((r->reg_flags & RegVRex))
10173 {
86fa6981
L
10174 if (i.vec_encoding == vex_encoding_default)
10175 i.vec_encoding = vex_encoding_evex;
10176
43234a1e 10177 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 10178 || i.vec_encoding != vex_encoding_evex
43234a1e
L
10179 || flag_code != CODE_64BIT)
10180 return (const reg_entry *) NULL;
43234a1e
L
10181 }
10182
a60de03c 10183 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10184 || r->reg_type.bitfield.qword)
40fb9820 10185 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10186 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10187 && flag_code != CODE_64BIT)
20f0a1fc 10188 return (const reg_entry *) NULL;
1ae00879 10189
b7240065
JB
10190 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10191 return (const reg_entry *) NULL;
10192
252b5132
RH
10193 return r;
10194}
4d1bb795
JB
10195
10196/* REG_STRING starts *before* REGISTER_PREFIX. */
10197
10198static const reg_entry *
10199parse_register (char *reg_string, char **end_op)
10200{
10201 const reg_entry *r;
10202
10203 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10204 r = parse_real_register (reg_string, end_op);
10205 else
10206 r = NULL;
10207 if (!r)
10208 {
10209 char *save = input_line_pointer;
10210 char c;
10211 symbolS *symbolP;
10212
10213 input_line_pointer = reg_string;
d02603dc 10214 c = get_symbol_name (&reg_string);
4d1bb795
JB
10215 symbolP = symbol_find (reg_string);
10216 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10217 {
10218 const expressionS *e = symbol_get_value_expression (symbolP);
10219
0398aac5 10220 know (e->X_op == O_register);
4eed87de 10221 know (e->X_add_number >= 0
c3fe08fa 10222 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10223 r = i386_regtab + e->X_add_number;
d3bb6b49 10224 if ((r->reg_flags & RegVRex))
86fa6981 10225 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10226 *end_op = input_line_pointer;
10227 }
10228 *input_line_pointer = c;
10229 input_line_pointer = save;
10230 }
10231 return r;
10232}
10233
10234int
10235i386_parse_name (char *name, expressionS *e, char *nextcharP)
10236{
10237 const reg_entry *r;
10238 char *end = input_line_pointer;
10239
10240 *end = *nextcharP;
10241 r = parse_register (name, &input_line_pointer);
10242 if (r && end <= input_line_pointer)
10243 {
10244 *nextcharP = *input_line_pointer;
10245 *input_line_pointer = 0;
10246 e->X_op = O_register;
10247 e->X_add_number = r - i386_regtab;
10248 return 1;
10249 }
10250 input_line_pointer = end;
10251 *end = 0;
ee86248c 10252 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10253}
10254
10255void
10256md_operand (expressionS *e)
10257{
ee86248c
JB
10258 char *end;
10259 const reg_entry *r;
4d1bb795 10260
ee86248c
JB
10261 switch (*input_line_pointer)
10262 {
10263 case REGISTER_PREFIX:
10264 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10265 if (r)
10266 {
10267 e->X_op = O_register;
10268 e->X_add_number = r - i386_regtab;
10269 input_line_pointer = end;
10270 }
ee86248c
JB
10271 break;
10272
10273 case '[':
9c2799c2 10274 gas_assert (intel_syntax);
ee86248c
JB
10275 end = input_line_pointer++;
10276 expression (e);
10277 if (*input_line_pointer == ']')
10278 {
10279 ++input_line_pointer;
10280 e->X_op_symbol = make_expr_symbol (e);
10281 e->X_add_symbol = NULL;
10282 e->X_add_number = 0;
10283 e->X_op = O_index;
10284 }
10285 else
10286 {
10287 e->X_op = O_absent;
10288 input_line_pointer = end;
10289 }
10290 break;
4d1bb795
JB
10291 }
10292}
10293
252b5132 10294\f
4cc782b5 10295#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10296const char *md_shortopts = "kVQ:sqnO::";
252b5132 10297#else
b6f8c7c4 10298const char *md_shortopts = "qnO::";
252b5132 10299#endif
6e0b89ee 10300
3e73aa7c 10301#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10302#define OPTION_64 (OPTION_MD_BASE + 1)
10303#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10304#define OPTION_MARCH (OPTION_MD_BASE + 3)
10305#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10306#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10307#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10308#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10309#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10310#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10311#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10312#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10313#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10314#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10315#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10316#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10317#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10318#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10319#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10320#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10321#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10322#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10323#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10324#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10325#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10326#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10327
99ad8390
NC
10328struct option md_longopts[] =
10329{
3e73aa7c 10330 {"32", no_argument, NULL, OPTION_32},
321098a5 10331#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10332 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10333 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10334#endif
10335#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10336 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10337 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10338#endif
b3b91714 10339 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10340 {"march", required_argument, NULL, OPTION_MARCH},
10341 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10342 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10343 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10344 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10345 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10346 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10347 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10348 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10349 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10350 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10351 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10352 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10353 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10354# if defined (TE_PE) || defined (TE_PEP)
10355 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10356#endif
d1982f93 10357 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10358 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10359 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10360 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10361 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10362 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10363 {NULL, no_argument, NULL, 0}
10364};
10365size_t md_longopts_size = sizeof (md_longopts);
10366
10367int
17b9d67d 10368md_parse_option (int c, const char *arg)
252b5132 10369{
91d6fa6a 10370 unsigned int j;
293f5f65 10371 char *arch, *next, *saved;
9103f4f4 10372
252b5132
RH
10373 switch (c)
10374 {
12b55ccc
L
10375 case 'n':
10376 optimize_align_code = 0;
10377 break;
10378
a38cf1db
AM
10379 case 'q':
10380 quiet_warnings = 1;
252b5132
RH
10381 break;
10382
10383#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10384 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10385 should be emitted or not. FIXME: Not implemented. */
10386 case 'Q':
252b5132
RH
10387 break;
10388
10389 /* -V: SVR4 argument to print version ID. */
10390 case 'V':
10391 print_version_id ();
10392 break;
10393
a38cf1db
AM
10394 /* -k: Ignore for FreeBSD compatibility. */
10395 case 'k':
252b5132 10396 break;
4cc782b5
ILT
10397
10398 case 's':
10399 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10400 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10401 break;
8dcea932
L
10402
10403 case OPTION_MSHARED:
10404 shared = 1;
10405 break;
99ad8390 10406#endif
321098a5 10407#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10408 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10409 case OPTION_64:
10410 {
10411 const char **list, **l;
10412
3e73aa7c
JH
10413 list = bfd_target_list ();
10414 for (l = list; *l != NULL; l++)
8620418b 10415 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10416 || strcmp (*l, "coff-x86-64") == 0
10417 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10418 || strcmp (*l, "pei-x86-64") == 0
10419 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10420 {
10421 default_arch = "x86_64";
10422 break;
10423 }
3e73aa7c 10424 if (*l == NULL)
2b5d6a91 10425 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10426 free (list);
10427 }
10428 break;
10429#endif
252b5132 10430
351f65ca 10431#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10432 case OPTION_X32:
351f65ca
L
10433 if (IS_ELF)
10434 {
10435 const char **list, **l;
10436
10437 list = bfd_target_list ();
10438 for (l = list; *l != NULL; l++)
10439 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10440 {
10441 default_arch = "x86_64:32";
10442 break;
10443 }
10444 if (*l == NULL)
2b5d6a91 10445 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10446 free (list);
10447 }
10448 else
10449 as_fatal (_("32bit x86_64 is only supported for ELF"));
10450 break;
10451#endif
10452
6e0b89ee
AM
10453 case OPTION_32:
10454 default_arch = "i386";
10455 break;
10456
b3b91714
AM
10457 case OPTION_DIVIDE:
10458#ifdef SVR4_COMMENT_CHARS
10459 {
10460 char *n, *t;
10461 const char *s;
10462
add39d23 10463 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10464 t = n;
10465 for (s = i386_comment_chars; *s != '\0'; s++)
10466 if (*s != '/')
10467 *t++ = *s;
10468 *t = '\0';
10469 i386_comment_chars = n;
10470 }
10471#endif
10472 break;
10473
9103f4f4 10474 case OPTION_MARCH:
293f5f65
L
10475 saved = xstrdup (arg);
10476 arch = saved;
10477 /* Allow -march=+nosse. */
10478 if (*arch == '+')
10479 arch++;
6305a203 10480 do
9103f4f4 10481 {
6305a203 10482 if (*arch == '.')
2b5d6a91 10483 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10484 next = strchr (arch, '+');
10485 if (next)
10486 *next++ = '\0';
91d6fa6a 10487 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10488 {
91d6fa6a 10489 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10490 {
6305a203 10491 /* Processor. */
1ded5609
JB
10492 if (! cpu_arch[j].flags.bitfield.cpui386)
10493 continue;
10494
91d6fa6a 10495 cpu_arch_name = cpu_arch[j].name;
6305a203 10496 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10497 cpu_arch_flags = cpu_arch[j].flags;
10498 cpu_arch_isa = cpu_arch[j].type;
10499 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10500 if (!cpu_arch_tune_set)
10501 {
10502 cpu_arch_tune = cpu_arch_isa;
10503 cpu_arch_tune_flags = cpu_arch_isa_flags;
10504 }
10505 break;
10506 }
91d6fa6a
NC
10507 else if (*cpu_arch [j].name == '.'
10508 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10509 {
33eaf5de 10510 /* ISA extension. */
6305a203 10511 i386_cpu_flags flags;
309d3373 10512
293f5f65
L
10513 flags = cpu_flags_or (cpu_arch_flags,
10514 cpu_arch[j].flags);
81486035 10515
5b64d091 10516 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10517 {
10518 if (cpu_sub_arch_name)
10519 {
10520 char *name = cpu_sub_arch_name;
10521 cpu_sub_arch_name = concat (name,
91d6fa6a 10522 cpu_arch[j].name,
1bf57e9f 10523 (const char *) NULL);
6305a203
L
10524 free (name);
10525 }
10526 else
91d6fa6a 10527 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10528 cpu_arch_flags = flags;
a586129e 10529 cpu_arch_isa_flags = flags;
6305a203
L
10530 }
10531 break;
ccc9c027 10532 }
9103f4f4 10533 }
6305a203 10534
293f5f65
L
10535 if (j >= ARRAY_SIZE (cpu_arch))
10536 {
33eaf5de 10537 /* Disable an ISA extension. */
293f5f65
L
10538 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10539 if (strcmp (arch, cpu_noarch [j].name) == 0)
10540 {
10541 i386_cpu_flags flags;
10542
10543 flags = cpu_flags_and_not (cpu_arch_flags,
10544 cpu_noarch[j].flags);
10545 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10546 {
10547 if (cpu_sub_arch_name)
10548 {
10549 char *name = cpu_sub_arch_name;
10550 cpu_sub_arch_name = concat (arch,
10551 (const char *) NULL);
10552 free (name);
10553 }
10554 else
10555 cpu_sub_arch_name = xstrdup (arch);
10556 cpu_arch_flags = flags;
10557 cpu_arch_isa_flags = flags;
10558 }
10559 break;
10560 }
10561
10562 if (j >= ARRAY_SIZE (cpu_noarch))
10563 j = ARRAY_SIZE (cpu_arch);
10564 }
10565
91d6fa6a 10566 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10567 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10568
10569 arch = next;
9103f4f4 10570 }
293f5f65
L
10571 while (next != NULL);
10572 free (saved);
9103f4f4
L
10573 break;
10574
10575 case OPTION_MTUNE:
10576 if (*arg == '.')
2b5d6a91 10577 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10578 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10579 {
91d6fa6a 10580 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10581 {
ccc9c027 10582 cpu_arch_tune_set = 1;
91d6fa6a
NC
10583 cpu_arch_tune = cpu_arch [j].type;
10584 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10585 break;
10586 }
10587 }
91d6fa6a 10588 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10589 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10590 break;
10591
1efbbeb4
L
10592 case OPTION_MMNEMONIC:
10593 if (strcasecmp (arg, "att") == 0)
10594 intel_mnemonic = 0;
10595 else if (strcasecmp (arg, "intel") == 0)
10596 intel_mnemonic = 1;
10597 else
2b5d6a91 10598 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10599 break;
10600
10601 case OPTION_MSYNTAX:
10602 if (strcasecmp (arg, "att") == 0)
10603 intel_syntax = 0;
10604 else if (strcasecmp (arg, "intel") == 0)
10605 intel_syntax = 1;
10606 else
2b5d6a91 10607 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10608 break;
10609
10610 case OPTION_MINDEX_REG:
10611 allow_index_reg = 1;
10612 break;
10613
10614 case OPTION_MNAKED_REG:
10615 allow_naked_reg = 1;
10616 break;
10617
10618 case OPTION_MOLD_GCC:
10619 old_gcc = 1;
1efbbeb4
L
10620 break;
10621
c0f3af97
L
10622 case OPTION_MSSE2AVX:
10623 sse2avx = 1;
10624 break;
10625
daf50ae7
L
10626 case OPTION_MSSE_CHECK:
10627 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10628 sse_check = check_error;
daf50ae7 10629 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10630 sse_check = check_warning;
daf50ae7 10631 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10632 sse_check = check_none;
daf50ae7 10633 else
2b5d6a91 10634 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10635 break;
10636
7bab8ab5
JB
10637 case OPTION_MOPERAND_CHECK:
10638 if (strcasecmp (arg, "error") == 0)
10639 operand_check = check_error;
10640 else if (strcasecmp (arg, "warning") == 0)
10641 operand_check = check_warning;
10642 else if (strcasecmp (arg, "none") == 0)
10643 operand_check = check_none;
10644 else
10645 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10646 break;
10647
539f890d
L
10648 case OPTION_MAVXSCALAR:
10649 if (strcasecmp (arg, "128") == 0)
10650 avxscalar = vex128;
10651 else if (strcasecmp (arg, "256") == 0)
10652 avxscalar = vex256;
10653 else
2b5d6a91 10654 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10655 break;
10656
7e8b059b
L
10657 case OPTION_MADD_BND_PREFIX:
10658 add_bnd_prefix = 1;
10659 break;
10660
43234a1e
L
10661 case OPTION_MEVEXLIG:
10662 if (strcmp (arg, "128") == 0)
10663 evexlig = evexl128;
10664 else if (strcmp (arg, "256") == 0)
10665 evexlig = evexl256;
10666 else if (strcmp (arg, "512") == 0)
10667 evexlig = evexl512;
10668 else
10669 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10670 break;
10671
d3d3c6db
IT
10672 case OPTION_MEVEXRCIG:
10673 if (strcmp (arg, "rne") == 0)
10674 evexrcig = rne;
10675 else if (strcmp (arg, "rd") == 0)
10676 evexrcig = rd;
10677 else if (strcmp (arg, "ru") == 0)
10678 evexrcig = ru;
10679 else if (strcmp (arg, "rz") == 0)
10680 evexrcig = rz;
10681 else
10682 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10683 break;
10684
43234a1e
L
10685 case OPTION_MEVEXWIG:
10686 if (strcmp (arg, "0") == 0)
10687 evexwig = evexw0;
10688 else if (strcmp (arg, "1") == 0)
10689 evexwig = evexw1;
10690 else
10691 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10692 break;
10693
167ad85b
TG
10694# if defined (TE_PE) || defined (TE_PEP)
10695 case OPTION_MBIG_OBJ:
10696 use_big_obj = 1;
10697 break;
10698#endif
10699
d1982f93 10700 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10701 if (strcasecmp (arg, "yes") == 0)
10702 omit_lock_prefix = 1;
10703 else if (strcasecmp (arg, "no") == 0)
10704 omit_lock_prefix = 0;
10705 else
10706 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10707 break;
10708
e4e00185
AS
10709 case OPTION_MFENCE_AS_LOCK_ADD:
10710 if (strcasecmp (arg, "yes") == 0)
10711 avoid_fence = 1;
10712 else if (strcasecmp (arg, "no") == 0)
10713 avoid_fence = 0;
10714 else
10715 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10716 break;
10717
0cb4071e
L
10718 case OPTION_MRELAX_RELOCATIONS:
10719 if (strcasecmp (arg, "yes") == 0)
10720 generate_relax_relocations = 1;
10721 else if (strcasecmp (arg, "no") == 0)
10722 generate_relax_relocations = 0;
10723 else
10724 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10725 break;
10726
5db04b09 10727 case OPTION_MAMD64:
e89c5eaa 10728 intel64 = 0;
5db04b09
L
10729 break;
10730
10731 case OPTION_MINTEL64:
e89c5eaa 10732 intel64 = 1;
5db04b09
L
10733 break;
10734
b6f8c7c4
L
10735 case 'O':
10736 if (arg == NULL)
10737 {
10738 optimize = 1;
10739 /* Turn off -Os. */
10740 optimize_for_space = 0;
10741 }
10742 else if (*arg == 's')
10743 {
10744 optimize_for_space = 1;
10745 /* Turn on all encoding optimizations. */
10746 optimize = -1;
10747 }
10748 else
10749 {
10750 optimize = atoi (arg);
10751 /* Turn off -Os. */
10752 optimize_for_space = 0;
10753 }
10754 break;
10755
252b5132
RH
10756 default:
10757 return 0;
10758 }
10759 return 1;
10760}
10761
8a2c8fef
L
10762#define MESSAGE_TEMPLATE \
10763" "
10764
293f5f65
L
10765static char *
10766output_message (FILE *stream, char *p, char *message, char *start,
10767 int *left_p, const char *name, int len)
10768{
10769 int size = sizeof (MESSAGE_TEMPLATE);
10770 int left = *left_p;
10771
10772 /* Reserve 2 spaces for ", " or ",\0" */
10773 left -= len + 2;
10774
10775 /* Check if there is any room. */
10776 if (left >= 0)
10777 {
10778 if (p != start)
10779 {
10780 *p++ = ',';
10781 *p++ = ' ';
10782 }
10783 p = mempcpy (p, name, len);
10784 }
10785 else
10786 {
10787 /* Output the current message now and start a new one. */
10788 *p++ = ',';
10789 *p = '\0';
10790 fprintf (stream, "%s\n", message);
10791 p = start;
10792 left = size - (start - message) - len - 2;
10793
10794 gas_assert (left >= 0);
10795
10796 p = mempcpy (p, name, len);
10797 }
10798
10799 *left_p = left;
10800 return p;
10801}
10802
8a2c8fef 10803static void
1ded5609 10804show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10805{
10806 static char message[] = MESSAGE_TEMPLATE;
10807 char *start = message + 27;
10808 char *p;
10809 int size = sizeof (MESSAGE_TEMPLATE);
10810 int left;
10811 const char *name;
10812 int len;
10813 unsigned int j;
10814
10815 p = start;
10816 left = size - (start - message);
10817 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10818 {
10819 /* Should it be skipped? */
10820 if (cpu_arch [j].skip)
10821 continue;
10822
10823 name = cpu_arch [j].name;
10824 len = cpu_arch [j].len;
10825 if (*name == '.')
10826 {
10827 /* It is an extension. Skip if we aren't asked to show it. */
10828 if (ext)
10829 {
10830 name++;
10831 len--;
10832 }
10833 else
10834 continue;
10835 }
10836 else if (ext)
10837 {
10838 /* It is an processor. Skip if we show only extension. */
10839 continue;
10840 }
1ded5609
JB
10841 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10842 {
10843 /* It is an impossible processor - skip. */
10844 continue;
10845 }
8a2c8fef 10846
293f5f65 10847 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10848 }
10849
293f5f65
L
10850 /* Display disabled extensions. */
10851 if (ext)
10852 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10853 {
10854 name = cpu_noarch [j].name;
10855 len = cpu_noarch [j].len;
10856 p = output_message (stream, p, message, start, &left, name,
10857 len);
10858 }
10859
8a2c8fef
L
10860 *p = '\0';
10861 fprintf (stream, "%s\n", message);
10862}
10863
252b5132 10864void
8a2c8fef 10865md_show_usage (FILE *stream)
252b5132 10866{
4cc782b5
ILT
10867#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10868 fprintf (stream, _("\
a38cf1db
AM
10869 -Q ignored\n\
10870 -V print assembler version number\n\
b3b91714
AM
10871 -k ignored\n"));
10872#endif
10873 fprintf (stream, _("\
12b55ccc 10874 -n Do not optimize code alignment\n\
b3b91714
AM
10875 -q quieten some warnings\n"));
10876#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10877 fprintf (stream, _("\
a38cf1db 10878 -s ignored\n"));
b3b91714 10879#endif
321098a5
L
10880#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10881 || defined (TE_PE) || defined (TE_PEP))
751d281c 10882 fprintf (stream, _("\
570561f7 10883 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10884#endif
b3b91714
AM
10885#ifdef SVR4_COMMENT_CHARS
10886 fprintf (stream, _("\
10887 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10888#else
10889 fprintf (stream, _("\
b3b91714 10890 --divide ignored\n"));
4cc782b5 10891#endif
9103f4f4 10892 fprintf (stream, _("\
6305a203 10893 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10894 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10895 show_arch (stream, 0, 1);
8a2c8fef
L
10896 fprintf (stream, _("\
10897 EXTENSION is combination of:\n"));
1ded5609 10898 show_arch (stream, 1, 0);
6305a203 10899 fprintf (stream, _("\
8a2c8fef 10900 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10901 show_arch (stream, 0, 0);
ba104c83 10902 fprintf (stream, _("\
c0f3af97
L
10903 -msse2avx encode SSE instructions with VEX prefix\n"));
10904 fprintf (stream, _("\
daf50ae7
L
10905 -msse-check=[none|error|warning]\n\
10906 check SSE instructions\n"));
10907 fprintf (stream, _("\
7bab8ab5
JB
10908 -moperand-check=[none|error|warning]\n\
10909 check operand combinations for validity\n"));
10910 fprintf (stream, _("\
539f890d
L
10911 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10912 length\n"));
10913 fprintf (stream, _("\
43234a1e
L
10914 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10915 length\n"));
10916 fprintf (stream, _("\
10917 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10918 for EVEX.W bit ignored instructions\n"));
10919 fprintf (stream, _("\
d3d3c6db
IT
10920 -mevexrcig=[rne|rd|ru|rz]\n\
10921 encode EVEX instructions with specific EVEX.RC value\n\
10922 for SAE-only ignored instructions\n"));
10923 fprintf (stream, _("\
ba104c83
L
10924 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10925 fprintf (stream, _("\
10926 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10927 fprintf (stream, _("\
10928 -mindex-reg support pseudo index registers\n"));
10929 fprintf (stream, _("\
10930 -mnaked-reg don't require `%%' prefix for registers\n"));
10931 fprintf (stream, _("\
10932 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10933 fprintf (stream, _("\
10934 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10935 fprintf (stream, _("\
10936 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10937# if defined (TE_PE) || defined (TE_PEP)
10938 fprintf (stream, _("\
10939 -mbig-obj generate big object files\n"));
10940#endif
d022bddd
IT
10941 fprintf (stream, _("\
10942 -momit-lock-prefix=[no|yes]\n\
10943 strip all lock prefixes\n"));
5db04b09 10944 fprintf (stream, _("\
e4e00185
AS
10945 -mfence-as-lock-add=[no|yes]\n\
10946 encode lfence, mfence and sfence as\n\
10947 lock addl $0x0, (%%{re}sp)\n"));
10948 fprintf (stream, _("\
0cb4071e
L
10949 -mrelax-relocations=[no|yes]\n\
10950 generate relax relocations\n"));
10951 fprintf (stream, _("\
5db04b09
L
10952 -mamd64 accept only AMD64 ISA\n"));
10953 fprintf (stream, _("\
10954 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10955}
10956
3e73aa7c 10957#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10958 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10959 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10960
10961/* Pick the target format to use. */
10962
47926f60 10963const char *
e3bb37b5 10964i386_target_format (void)
252b5132 10965{
351f65ca
L
10966 if (!strncmp (default_arch, "x86_64", 6))
10967 {
10968 update_code_flag (CODE_64BIT, 1);
10969 if (default_arch[6] == '\0')
7f56bc95 10970 x86_elf_abi = X86_64_ABI;
351f65ca 10971 else
7f56bc95 10972 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10973 }
3e73aa7c 10974 else if (!strcmp (default_arch, "i386"))
78f12dd3 10975 update_code_flag (CODE_32BIT, 1);
5197d474
L
10976 else if (!strcmp (default_arch, "iamcu"))
10977 {
10978 update_code_flag (CODE_32BIT, 1);
10979 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10980 {
10981 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10982 cpu_arch_name = "iamcu";
10983 cpu_sub_arch_name = NULL;
10984 cpu_arch_flags = iamcu_flags;
10985 cpu_arch_isa = PROCESSOR_IAMCU;
10986 cpu_arch_isa_flags = iamcu_flags;
10987 if (!cpu_arch_tune_set)
10988 {
10989 cpu_arch_tune = cpu_arch_isa;
10990 cpu_arch_tune_flags = cpu_arch_isa_flags;
10991 }
10992 }
8d471ec1 10993 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10994 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10995 cpu_arch_name);
10996 }
3e73aa7c 10997 else
2b5d6a91 10998 as_fatal (_("unknown architecture"));
89507696
JB
10999
11000 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11001 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11002 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11003 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11004
252b5132
RH
11005 switch (OUTPUT_FLAVOR)
11006 {
9384f2ff 11007#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11008 case bfd_target_aout_flavour:
47926f60 11009 return AOUT_TARGET_FORMAT;
4c63da97 11010#endif
9384f2ff
AM
11011#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11012# if defined (TE_PE) || defined (TE_PEP)
11013 case bfd_target_coff_flavour:
167ad85b
TG
11014 if (flag_code == CODE_64BIT)
11015 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11016 else
11017 return "pe-i386";
9384f2ff 11018# elif defined (TE_GO32)
0561d57c
JK
11019 case bfd_target_coff_flavour:
11020 return "coff-go32";
9384f2ff 11021# else
252b5132
RH
11022 case bfd_target_coff_flavour:
11023 return "coff-i386";
9384f2ff 11024# endif
4c63da97 11025#endif
3e73aa7c 11026#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11027 case bfd_target_elf_flavour:
3e73aa7c 11028 {
351f65ca
L
11029 const char *format;
11030
11031 switch (x86_elf_abi)
4fa24527 11032 {
351f65ca
L
11033 default:
11034 format = ELF_TARGET_FORMAT;
11035 break;
7f56bc95 11036 case X86_64_ABI:
351f65ca 11037 use_rela_relocations = 1;
4fa24527 11038 object_64bit = 1;
351f65ca
L
11039 format = ELF_TARGET_FORMAT64;
11040 break;
7f56bc95 11041 case X86_64_X32_ABI:
4fa24527 11042 use_rela_relocations = 1;
351f65ca 11043 object_64bit = 1;
862be3fb 11044 disallow_64bit_reloc = 1;
351f65ca
L
11045 format = ELF_TARGET_FORMAT32;
11046 break;
4fa24527 11047 }
3632d14b 11048 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11049 {
7f56bc95 11050 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11051 as_fatal (_("Intel L1OM is 64bit only"));
11052 return ELF_TARGET_L1OM_FORMAT;
11053 }
b49f93f6 11054 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11055 {
11056 if (x86_elf_abi != X86_64_ABI)
11057 as_fatal (_("Intel K1OM is 64bit only"));
11058 return ELF_TARGET_K1OM_FORMAT;
11059 }
81486035
L
11060 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11061 {
11062 if (x86_elf_abi != I386_ABI)
11063 as_fatal (_("Intel MCU is 32bit only"));
11064 return ELF_TARGET_IAMCU_FORMAT;
11065 }
8a9036a4 11066 else
351f65ca 11067 return format;
3e73aa7c 11068 }
e57f8c65
TG
11069#endif
11070#if defined (OBJ_MACH_O)
11071 case bfd_target_mach_o_flavour:
d382c579
TG
11072 if (flag_code == CODE_64BIT)
11073 {
11074 use_rela_relocations = 1;
11075 object_64bit = 1;
11076 return "mach-o-x86-64";
11077 }
11078 else
11079 return "mach-o-i386";
4c63da97 11080#endif
252b5132
RH
11081 default:
11082 abort ();
11083 return NULL;
11084 }
11085}
11086
47926f60 11087#endif /* OBJ_MAYBE_ more than one */
252b5132 11088\f
252b5132 11089symbolS *
7016a5d5 11090md_undefined_symbol (char *name)
252b5132 11091{
18dc2407
ILT
11092 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11093 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11094 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11095 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11096 {
11097 if (!GOT_symbol)
11098 {
11099 if (symbol_find (name))
11100 as_bad (_("GOT already in symbol table"));
11101 GOT_symbol = symbol_new (name, undefined_section,
11102 (valueT) 0, &zero_address_frag);
11103 };
11104 return GOT_symbol;
11105 }
252b5132
RH
11106 return 0;
11107}
11108
11109/* Round up a section size to the appropriate boundary. */
47926f60 11110
252b5132 11111valueT
7016a5d5 11112md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11113{
4c63da97
AM
11114#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11115 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11116 {
11117 /* For a.out, force the section size to be aligned. If we don't do
11118 this, BFD will align it for us, but it will not write out the
11119 final bytes of the section. This may be a bug in BFD, but it is
11120 easier to fix it here since that is how the other a.out targets
11121 work. */
11122 int align;
11123
11124 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11125 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11126 }
252b5132
RH
11127#endif
11128
11129 return size;
11130}
11131
11132/* On the i386, PC-relative offsets are relative to the start of the
11133 next instruction. That is, the address of the offset, plus its
11134 size, since the offset is always the last part of the insn. */
11135
11136long
e3bb37b5 11137md_pcrel_from (fixS *fixP)
252b5132
RH
11138{
11139 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11140}
11141
11142#ifndef I386COFF
11143
11144static void
e3bb37b5 11145s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11146{
29b0f896 11147 int temp;
252b5132 11148
8a75718c
JB
11149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11150 if (IS_ELF)
11151 obj_elf_section_change_hook ();
11152#endif
252b5132
RH
11153 temp = get_absolute_expression ();
11154 subseg_set (bss_section, (subsegT) temp);
11155 demand_empty_rest_of_line ();
11156}
11157
11158#endif
11159
252b5132 11160void
e3bb37b5 11161i386_validate_fix (fixS *fixp)
252b5132 11162{
02a86693 11163 if (fixp->fx_subsy)
252b5132 11164 {
02a86693 11165 if (fixp->fx_subsy == GOT_symbol)
23df1078 11166 {
02a86693
L
11167 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11168 {
11169 if (!object_64bit)
11170 abort ();
11171#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11172 if (fixp->fx_tcbit2)
56ceb5b5
L
11173 fixp->fx_r_type = (fixp->fx_tcbit
11174 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11175 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11176 else
11177#endif
11178 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11179 }
d6ab8113 11180 else
02a86693
L
11181 {
11182 if (!object_64bit)
11183 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11184 else
11185 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11186 }
11187 fixp->fx_subsy = 0;
23df1078 11188 }
252b5132 11189 }
02a86693
L
11190#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11191 else if (!object_64bit)
11192 {
11193 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11194 && fixp->fx_tcbit2)
11195 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11196 }
11197#endif
252b5132
RH
11198}
11199
252b5132 11200arelent *
7016a5d5 11201tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11202{
11203 arelent *rel;
11204 bfd_reloc_code_real_type code;
11205
11206 switch (fixp->fx_r_type)
11207 {
8ce3d284 11208#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11209 case BFD_RELOC_SIZE32:
11210 case BFD_RELOC_SIZE64:
11211 if (S_IS_DEFINED (fixp->fx_addsy)
11212 && !S_IS_EXTERNAL (fixp->fx_addsy))
11213 {
11214 /* Resolve size relocation against local symbol to size of
11215 the symbol plus addend. */
11216 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11217 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11218 && !fits_in_unsigned_long (value))
11219 as_bad_where (fixp->fx_file, fixp->fx_line,
11220 _("symbol size computation overflow"));
11221 fixp->fx_addsy = NULL;
11222 fixp->fx_subsy = NULL;
11223 md_apply_fix (fixp, (valueT *) &value, NULL);
11224 return NULL;
11225 }
8ce3d284 11226#endif
1a0670f3 11227 /* Fall through. */
8fd4256d 11228
3e73aa7c
JH
11229 case BFD_RELOC_X86_64_PLT32:
11230 case BFD_RELOC_X86_64_GOT32:
11231 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11232 case BFD_RELOC_X86_64_GOTPCRELX:
11233 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11234 case BFD_RELOC_386_PLT32:
11235 case BFD_RELOC_386_GOT32:
02a86693 11236 case BFD_RELOC_386_GOT32X:
252b5132
RH
11237 case BFD_RELOC_386_GOTOFF:
11238 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11239 case BFD_RELOC_386_TLS_GD:
11240 case BFD_RELOC_386_TLS_LDM:
11241 case BFD_RELOC_386_TLS_LDO_32:
11242 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11243 case BFD_RELOC_386_TLS_IE:
11244 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11245 case BFD_RELOC_386_TLS_LE_32:
11246 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11247 case BFD_RELOC_386_TLS_GOTDESC:
11248 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11249 case BFD_RELOC_X86_64_TLSGD:
11250 case BFD_RELOC_X86_64_TLSLD:
11251 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11252 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11253 case BFD_RELOC_X86_64_GOTTPOFF:
11254 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11255 case BFD_RELOC_X86_64_TPOFF64:
11256 case BFD_RELOC_X86_64_GOTOFF64:
11257 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11258 case BFD_RELOC_X86_64_GOT64:
11259 case BFD_RELOC_X86_64_GOTPCREL64:
11260 case BFD_RELOC_X86_64_GOTPC64:
11261 case BFD_RELOC_X86_64_GOTPLT64:
11262 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11263 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11264 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11265 case BFD_RELOC_RVA:
11266 case BFD_RELOC_VTABLE_ENTRY:
11267 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11268#ifdef TE_PE
11269 case BFD_RELOC_32_SECREL:
11270#endif
252b5132
RH
11271 code = fixp->fx_r_type;
11272 break;
dbbaec26
L
11273 case BFD_RELOC_X86_64_32S:
11274 if (!fixp->fx_pcrel)
11275 {
11276 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11277 code = fixp->fx_r_type;
11278 break;
11279 }
1a0670f3 11280 /* Fall through. */
252b5132 11281 default:
93382f6d 11282 if (fixp->fx_pcrel)
252b5132 11283 {
93382f6d
AM
11284 switch (fixp->fx_size)
11285 {
11286 default:
b091f402
AM
11287 as_bad_where (fixp->fx_file, fixp->fx_line,
11288 _("can not do %d byte pc-relative relocation"),
11289 fixp->fx_size);
93382f6d
AM
11290 code = BFD_RELOC_32_PCREL;
11291 break;
11292 case 1: code = BFD_RELOC_8_PCREL; break;
11293 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11294 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11295#ifdef BFD64
11296 case 8: code = BFD_RELOC_64_PCREL; break;
11297#endif
93382f6d
AM
11298 }
11299 }
11300 else
11301 {
11302 switch (fixp->fx_size)
11303 {
11304 default:
b091f402
AM
11305 as_bad_where (fixp->fx_file, fixp->fx_line,
11306 _("can not do %d byte relocation"),
11307 fixp->fx_size);
93382f6d
AM
11308 code = BFD_RELOC_32;
11309 break;
11310 case 1: code = BFD_RELOC_8; break;
11311 case 2: code = BFD_RELOC_16; break;
11312 case 4: code = BFD_RELOC_32; break;
937149dd 11313#ifdef BFD64
3e73aa7c 11314 case 8: code = BFD_RELOC_64; break;
937149dd 11315#endif
93382f6d 11316 }
252b5132
RH
11317 }
11318 break;
11319 }
252b5132 11320
d182319b
JB
11321 if ((code == BFD_RELOC_32
11322 || code == BFD_RELOC_32_PCREL
11323 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11324 && GOT_symbol
11325 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11326 {
4fa24527 11327 if (!object_64bit)
d6ab8113
JB
11328 code = BFD_RELOC_386_GOTPC;
11329 else
11330 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11331 }
7b81dfbb
AJ
11332 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11333 && GOT_symbol
11334 && fixp->fx_addsy == GOT_symbol)
11335 {
11336 code = BFD_RELOC_X86_64_GOTPC64;
11337 }
252b5132 11338
add39d23
TS
11339 rel = XNEW (arelent);
11340 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11341 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11342
11343 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11344
3e73aa7c
JH
11345 if (!use_rela_relocations)
11346 {
11347 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11348 vtable entry to be used in the relocation's section offset. */
11349 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11350 rel->address = fixp->fx_offset;
fbeb56a4
DK
11351#if defined (OBJ_COFF) && defined (TE_PE)
11352 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11353 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11354 else
11355#endif
c6682705 11356 rel->addend = 0;
3e73aa7c
JH
11357 }
11358 /* Use the rela in 64bit mode. */
252b5132 11359 else
3e73aa7c 11360 {
862be3fb
L
11361 if (disallow_64bit_reloc)
11362 switch (code)
11363 {
862be3fb
L
11364 case BFD_RELOC_X86_64_DTPOFF64:
11365 case BFD_RELOC_X86_64_TPOFF64:
11366 case BFD_RELOC_64_PCREL:
11367 case BFD_RELOC_X86_64_GOTOFF64:
11368 case BFD_RELOC_X86_64_GOT64:
11369 case BFD_RELOC_X86_64_GOTPCREL64:
11370 case BFD_RELOC_X86_64_GOTPC64:
11371 case BFD_RELOC_X86_64_GOTPLT64:
11372 case BFD_RELOC_X86_64_PLTOFF64:
11373 as_bad_where (fixp->fx_file, fixp->fx_line,
11374 _("cannot represent relocation type %s in x32 mode"),
11375 bfd_get_reloc_code_name (code));
11376 break;
11377 default:
11378 break;
11379 }
11380
062cd5e7
AS
11381 if (!fixp->fx_pcrel)
11382 rel->addend = fixp->fx_offset;
11383 else
11384 switch (code)
11385 {
11386 case BFD_RELOC_X86_64_PLT32:
11387 case BFD_RELOC_X86_64_GOT32:
11388 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11389 case BFD_RELOC_X86_64_GOTPCRELX:
11390 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11391 case BFD_RELOC_X86_64_TLSGD:
11392 case BFD_RELOC_X86_64_TLSLD:
11393 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11394 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11395 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11396 rel->addend = fixp->fx_offset - fixp->fx_size;
11397 break;
11398 default:
11399 rel->addend = (section->vma
11400 - fixp->fx_size
11401 + fixp->fx_addnumber
11402 + md_pcrel_from (fixp));
11403 break;
11404 }
3e73aa7c
JH
11405 }
11406
252b5132
RH
11407 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11408 if (rel->howto == NULL)
11409 {
11410 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11411 _("cannot represent relocation type %s"),
252b5132
RH
11412 bfd_get_reloc_code_name (code));
11413 /* Set howto to a garbage value so that we can keep going. */
11414 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11415 gas_assert (rel->howto != NULL);
252b5132
RH
11416 }
11417
11418 return rel;
11419}
11420
ee86248c 11421#include "tc-i386-intel.c"
54cfded0 11422
a60de03c
JB
11423void
11424tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11425{
a60de03c
JB
11426 int saved_naked_reg;
11427 char saved_register_dot;
54cfded0 11428
a60de03c
JB
11429 saved_naked_reg = allow_naked_reg;
11430 allow_naked_reg = 1;
11431 saved_register_dot = register_chars['.'];
11432 register_chars['.'] = '.';
11433 allow_pseudo_reg = 1;
11434 expression_and_evaluate (exp);
11435 allow_pseudo_reg = 0;
11436 register_chars['.'] = saved_register_dot;
11437 allow_naked_reg = saved_naked_reg;
11438
e96d56a1 11439 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11440 {
a60de03c
JB
11441 if ((addressT) exp->X_add_number < i386_regtab_size)
11442 {
11443 exp->X_op = O_constant;
11444 exp->X_add_number = i386_regtab[exp->X_add_number]
11445 .dw2_regnum[flag_code >> 1];
11446 }
11447 else
11448 exp->X_op = O_illegal;
54cfded0 11449 }
54cfded0
AM
11450}
11451
11452void
11453tc_x86_frame_initial_instructions (void)
11454{
a60de03c
JB
11455 static unsigned int sp_regno[2];
11456
11457 if (!sp_regno[flag_code >> 1])
11458 {
11459 char *saved_input = input_line_pointer;
11460 char sp[][4] = {"esp", "rsp"};
11461 expressionS exp;
a4447b93 11462
a60de03c
JB
11463 input_line_pointer = sp[flag_code >> 1];
11464 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11465 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11466 sp_regno[flag_code >> 1] = exp.X_add_number;
11467 input_line_pointer = saved_input;
11468 }
a4447b93 11469
61ff971f
L
11470 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11471 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11472}
d2b2c203 11473
d7921315
L
11474int
11475x86_dwarf2_addr_size (void)
11476{
11477#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11478 if (x86_elf_abi == X86_64_X32_ABI)
11479 return 4;
11480#endif
11481 return bfd_arch_bits_per_address (stdoutput) / 8;
11482}
11483
d2b2c203
DJ
11484int
11485i386_elf_section_type (const char *str, size_t len)
11486{
11487 if (flag_code == CODE_64BIT
11488 && len == sizeof ("unwind") - 1
11489 && strncmp (str, "unwind", 6) == 0)
11490 return SHT_X86_64_UNWIND;
11491
11492 return -1;
11493}
bb41ade5 11494
ad5fec3b
EB
11495#ifdef TE_SOLARIS
11496void
11497i386_solaris_fix_up_eh_frame (segT sec)
11498{
11499 if (flag_code == CODE_64BIT)
11500 elf_section_type (sec) = SHT_X86_64_UNWIND;
11501}
11502#endif
11503
bb41ade5
AM
11504#ifdef TE_PE
11505void
11506tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11507{
91d6fa6a 11508 expressionS exp;
bb41ade5 11509
91d6fa6a
NC
11510 exp.X_op = O_secrel;
11511 exp.X_add_symbol = symbol;
11512 exp.X_add_number = 0;
11513 emit_expr (&exp, size);
bb41ade5
AM
11514}
11515#endif
3b22753a
L
11516
11517#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11518/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11519
01e1a5bc 11520bfd_vma
6d4af3c2 11521x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11522{
11523 if (flag_code == CODE_64BIT)
11524 {
11525 if (letter == 'l')
11526 return SHF_X86_64_LARGE;
11527
8f3bae45 11528 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11529 }
3b22753a 11530 else
8f3bae45 11531 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11532 return -1;
11533}
11534
01e1a5bc 11535bfd_vma
3b22753a
L
11536x86_64_section_word (char *str, size_t len)
11537{
8620418b 11538 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11539 return SHF_X86_64_LARGE;
11540
11541 return -1;
11542}
11543
11544static void
11545handle_large_common (int small ATTRIBUTE_UNUSED)
11546{
11547 if (flag_code != CODE_64BIT)
11548 {
11549 s_comm_internal (0, elf_common_parse);
11550 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11551 }
11552 else
11553 {
11554 static segT lbss_section;
11555 asection *saved_com_section_ptr = elf_com_section_ptr;
11556 asection *saved_bss_section = bss_section;
11557
11558 if (lbss_section == NULL)
11559 {
11560 flagword applicable;
11561 segT seg = now_seg;
11562 subsegT subseg = now_subseg;
11563
11564 /* The .lbss section is for local .largecomm symbols. */
11565 lbss_section = subseg_new (".lbss", 0);
11566 applicable = bfd_applicable_section_flags (stdoutput);
11567 bfd_set_section_flags (stdoutput, lbss_section,
11568 applicable & SEC_ALLOC);
11569 seg_info (lbss_section)->bss = 1;
11570
11571 subseg_set (seg, subseg);
11572 }
11573
11574 elf_com_section_ptr = &_bfd_elf_large_com_section;
11575 bss_section = lbss_section;
11576
11577 s_comm_internal (0, elf_common_parse);
11578
11579 elf_com_section_ptr = saved_com_section_ptr;
11580 bss_section = saved_bss_section;
11581 }
11582}
11583#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.931186 seconds and 4 git commands to generate.