* gdb.python/py-breakpoint.exp: Make tests have unique names.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
d382c579
TG
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
47926f60 5 Free Software Foundation, Inc.
252b5132
RH
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
ec2655a6 11 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
252b5132 23
47926f60
KH
24/* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 26 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
252b5132 30
252b5132 31#include "as.h"
3882b010 32#include "safe-ctype.h"
252b5132 33#include "subsegs.h"
316e2c05 34#include "dwarf2dbg.h"
54cfded0 35#include "dw2gencfi.h"
d2b2c203 36#include "elf/x86-64.h"
40fb9820 37#include "opcodes/i386-init.h"
252b5132 38
252b5132
RH
39#ifndef REGISTER_WARNINGS
40#define REGISTER_WARNINGS 1
41#endif
42
c3332e24 43#ifndef INFER_ADDR_PREFIX
eecb386c 44#define INFER_ADDR_PREFIX 1
c3332e24
AM
45#endif
46
29b0f896
AM
47#ifndef DEFAULT_ARCH
48#define DEFAULT_ARCH "i386"
246fcdee 49#endif
252b5132 50
edde18a5
AM
51#ifndef INLINE
52#if __GNUC__ >= 2
53#define INLINE __inline__
54#else
55#define INLINE
56#endif
57#endif
58
6305a203
L
59/* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
64#define WAIT_PREFIX 0
65#define SEG_PREFIX 1
66#define ADDR_PREFIX 2
67#define DATA_PREFIX 3
c32fa91d 68#define REP_PREFIX 4
42164a71 69#define HLE_PREFIX REP_PREFIX
7e8b059b 70#define BND_PREFIX REP_PREFIX
c32fa91d
L
71#define LOCK_PREFIX 5
72#define REX_PREFIX 6 /* must come last. */
73#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
74
75/* we define the syntax here (modulo base,index,scale syntax) */
76#define REGISTER_PREFIX '%'
77#define IMMEDIATE_PREFIX '$'
78#define ABSOLUTE_PREFIX '*'
79
80/* these are the instruction mnemonic suffixes in AT&T syntax or
81 memory operand size in Intel syntax. */
82#define WORD_MNEM_SUFFIX 'w'
83#define BYTE_MNEM_SUFFIX 'b'
84#define SHORT_MNEM_SUFFIX 's'
85#define LONG_MNEM_SUFFIX 'l'
86#define QWORD_MNEM_SUFFIX 'q'
87#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 88#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 89#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
90/* Intel Syntax. Use a non-ascii letter since since it never appears
91 in instructions. */
92#define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
94#define END_OF_INSN '\0'
95
96/*
97 'templates' is for grouping together 'template' structures for opcodes
98 of the same name. This is only used for storing the insns in the grand
99 ole hash table of insns.
100 The templates themselves start at START and range up to (but not including)
101 END.
102 */
103typedef struct
104{
d3ce72d0
NC
105 const insn_template *start;
106 const insn_template *end;
6305a203
L
107}
108templates;
109
110/* 386 operand encoding bytes: see 386 book for details of this. */
111typedef struct
112{
113 unsigned int regmem; /* codes register or memory operand */
114 unsigned int reg; /* codes register operand (or extended opcode) */
115 unsigned int mode; /* how to interpret regmem & reg */
116}
117modrm_byte;
118
119/* x86-64 extension prefix. */
120typedef int rex_byte;
121
6305a203
L
122/* 386 opcode byte to code indirect addressing. */
123typedef struct
124{
125 unsigned base;
126 unsigned index;
127 unsigned scale;
128}
129sib_byte;
130
6305a203
L
131/* x86 arch names, types and features */
132typedef struct
133{
134 const char *name; /* arch name */
8a2c8fef 135 unsigned int len; /* arch string length */
6305a203
L
136 enum processor_type type; /* arch type */
137 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 138 unsigned int skip; /* show_arch should skip this. */
22109423 139 unsigned int negated; /* turn off indicated flags. */
6305a203
L
140}
141arch_entry;
142
78f12dd3 143static void update_code_flag (int, int);
e3bb37b5
L
144static void set_code_flag (int);
145static void set_16bit_gcc_code_flag (int);
146static void set_intel_syntax (int);
1efbbeb4 147static void set_intel_mnemonic (int);
db51cc60 148static void set_allow_index_reg (int);
7bab8ab5 149static void set_check (int);
e3bb37b5 150static void set_cpu_arch (int);
6482c264 151#ifdef TE_PE
e3bb37b5 152static void pe_directive_secrel (int);
6482c264 153#endif
e3bb37b5
L
154static void signed_cons (int);
155static char *output_invalid (int c);
ee86248c
JB
156static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
157 const char *);
158static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
159 const char *);
a7619375 160static int i386_att_operand (char *);
e3bb37b5 161static int i386_intel_operand (char *, int);
ee86248c
JB
162static int i386_intel_simplify (expressionS *);
163static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
164static const reg_entry *parse_register (char *, char **);
165static char *parse_insn (char *, char *);
166static char *parse_operands (char *, const char *);
167static void swap_operands (void);
4d456e3d 168static void swap_2_operands (int, int);
e3bb37b5
L
169static void optimize_imm (void);
170static void optimize_disp (void);
d3ce72d0 171static const insn_template *match_template (void);
e3bb37b5
L
172static int check_string (void);
173static int process_suffix (void);
174static int check_byte_reg (void);
175static int check_long_reg (void);
176static int check_qword_reg (void);
177static int check_word_reg (void);
178static int finalize_imm (void);
179static int process_operands (void);
180static const seg_entry *build_modrm_byte (void);
181static void output_insn (void);
182static void output_imm (fragS *, offsetT);
183static void output_disp (fragS *, offsetT);
29b0f896 184#ifndef I386COFF
e3bb37b5 185static void s_bss (int);
252b5132 186#endif
17d4e2a2
L
187#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
188static void handle_large_common (int small ATTRIBUTE_UNUSED);
189#endif
252b5132 190
a847613f 191static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 192
43234a1e
L
193/* This struct describes rounding control and SAE in the instruction. */
194struct RC_Operation
195{
196 enum rc_type
197 {
198 rne = 0,
199 rd,
200 ru,
201 rz,
202 saeonly
203 } type;
204 int operand;
205};
206
207static struct RC_Operation rc_op;
208
209/* The struct describes masking, applied to OPERAND in the instruction.
210 MASK is a pointer to the corresponding mask register. ZEROING tells
211 whether merging or zeroing mask is used. */
212struct Mask_Operation
213{
214 const reg_entry *mask;
215 unsigned int zeroing;
216 /* The operand where this operation is associated. */
217 int operand;
218};
219
220static struct Mask_Operation mask_op;
221
222/* The struct describes broadcasting, applied to OPERAND. FACTOR is
223 broadcast factor. */
224struct Broadcast_Operation
225{
226 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
227 int type;
228
229 /* Index of broadcasted operand. */
230 int operand;
231};
232
233static struct Broadcast_Operation broadcast_op;
234
c0f3af97
L
235/* VEX prefix. */
236typedef struct
237{
43234a1e
L
238 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
239 unsigned char bytes[4];
c0f3af97
L
240 unsigned int length;
241 /* Destination or source register specifier. */
242 const reg_entry *register_specifier;
243} vex_prefix;
244
252b5132 245/* 'md_assemble ()' gathers together information and puts it into a
47926f60 246 i386_insn. */
252b5132 247
520dc8e8
AM
248union i386_op
249 {
250 expressionS *disps;
251 expressionS *imms;
252 const reg_entry *regs;
253 };
254
a65babc9
L
255enum i386_error
256 {
86e026a4 257 operand_size_mismatch,
a65babc9
L
258 operand_type_mismatch,
259 register_type_mismatch,
260 number_of_operands_mismatch,
261 invalid_instruction_suffix,
262 bad_imm4,
263 old_gcc_only,
264 unsupported_with_intel_mnemonic,
265 unsupported_syntax,
6c30d220
L
266 unsupported,
267 invalid_vsib_address,
7bab8ab5 268 invalid_vector_register_set,
43234a1e
L
269 unsupported_vector_index_register,
270 unsupported_broadcast,
271 broadcast_not_on_src_operand,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 try_vector_disp8
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132
RH
323
324 /* PREFIX holds all the given prefix opcodes (usually null).
325 PREFIXES is the number of prefix opcodes. */
326 unsigned int prefixes;
327 unsigned char prefix[MAX_PREFIXES];
328
329 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 330 addressing modes of this insn are encoded. */
252b5132 331 modrm_byte rm;
3e73aa7c 332 rex_byte rex;
43234a1e 333 rex_byte vrex;
252b5132 334 sib_byte sib;
c0f3af97 335 vex_prefix vex;
b6169b20 336
43234a1e
L
337 /* Masking attributes. */
338 struct Mask_Operation *mask;
339
340 /* Rounding control and SAE attributes. */
341 struct RC_Operation *rounding;
342
343 /* Broadcasting attributes. */
344 struct Broadcast_Operation *broadcast;
345
346 /* Compressed disp8*N attribute. */
347 unsigned int memshift;
348
b6169b20 349 /* Swap operand in encoding. */
4473e004 350 unsigned int swap_operand;
891edac4 351
a501d77e
L
352 /* Prefer 8bit or 32bit displacement in encoding. */
353 enum
354 {
355 disp_encoding_default = 0,
356 disp_encoding_8bit,
357 disp_encoding_32bit
358 } disp_encoding;
f8a5c266 359
d5de92cf
L
360 /* REP prefix. */
361 const char *rep_prefix;
362
165de32a
L
363 /* HLE prefix. */
364 const char *hle_prefix;
42164a71 365
7e8b059b
L
366 /* Have BND prefix. */
367 const char *bnd_prefix;
368
43234a1e
L
369 /* Need VREX to support upper 16 registers. */
370 int need_vrex;
371
891edac4 372 /* Error message. */
a65babc9 373 enum i386_error error;
252b5132
RH
374 };
375
376typedef struct _i386_insn i386_insn;
377
43234a1e
L
378/* Link RC type with corresponding string, that'll be looked for in
379 asm. */
380struct RC_name
381{
382 enum rc_type type;
383 const char *name;
384 unsigned int len;
385};
386
387static const struct RC_name RC_NamesTable[] =
388{
389 { rne, STRING_COMMA_LEN ("rn-sae") },
390 { rd, STRING_COMMA_LEN ("rd-sae") },
391 { ru, STRING_COMMA_LEN ("ru-sae") },
392 { rz, STRING_COMMA_LEN ("rz-sae") },
393 { saeonly, STRING_COMMA_LEN ("sae") },
394};
395
252b5132
RH
396/* List of chars besides those in app.c:symbol_chars that can start an
397 operand. Used to prevent the scrubber eating vital white-space. */
43234a1e 398const char extra_symbol_chars[] = "*%-([{"
252b5132 399#ifdef LEX_AT
32137342
NC
400 "@"
401#endif
402#ifdef LEX_QM
403 "?"
252b5132 404#endif
32137342 405 ;
252b5132 406
29b0f896
AM
407#if (defined (TE_I386AIX) \
408 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 409 && !defined (TE_GNU) \
29b0f896 410 && !defined (TE_LINUX) \
8d63c93e
RM
411 && !defined (TE_NACL) \
412 && !defined (TE_NETWARE) \
29b0f896 413 && !defined (TE_FreeBSD) \
5b806d27 414 && !defined (TE_DragonFly) \
29b0f896 415 && !defined (TE_NetBSD)))
252b5132 416/* This array holds the chars that always start a comment. If the
b3b91714
AM
417 pre-processor is disabled, these aren't very useful. The option
418 --divide will remove '/' from this list. */
419const char *i386_comment_chars = "#/";
420#define SVR4_COMMENT_CHARS 1
252b5132 421#define PREFIX_SEPARATOR '\\'
252b5132 422
b3b91714
AM
423#else
424const char *i386_comment_chars = "#";
425#define PREFIX_SEPARATOR '/'
426#endif
427
252b5132
RH
428/* This array holds the chars that only start a comment at the beginning of
429 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
430 .line and .file directives will appear in the pre-processed output.
431 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 432 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
433 #NO_APP at the beginning of its output.
434 Also note that comments started like this one will always work if
252b5132 435 '/' isn't otherwise defined. */
b3b91714 436const char line_comment_chars[] = "#/";
252b5132 437
63a0b638 438const char line_separator_chars[] = ";";
252b5132 439
ce8a8b2f
AM
440/* Chars that can be used to separate mant from exp in floating point
441 nums. */
252b5132
RH
442const char EXP_CHARS[] = "eE";
443
ce8a8b2f
AM
444/* Chars that mean this number is a floating point constant
445 As in 0f12.456
446 or 0d1.2345e12. */
252b5132
RH
447const char FLT_CHARS[] = "fFdDxX";
448
ce8a8b2f 449/* Tables for lexical analysis. */
252b5132
RH
450static char mnemonic_chars[256];
451static char register_chars[256];
452static char operand_chars[256];
453static char identifier_chars[256];
454static char digit_chars[256];
455
ce8a8b2f 456/* Lexical macros. */
252b5132
RH
457#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
458#define is_operand_char(x) (operand_chars[(unsigned char) x])
459#define is_register_char(x) (register_chars[(unsigned char) x])
460#define is_space_char(x) ((x) == ' ')
461#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
462#define is_digit_char(x) (digit_chars[(unsigned char) x])
463
0234cb7c 464/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
465static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
466
467/* md_assemble() always leaves the strings it's passed unaltered. To
468 effect this we maintain a stack of saved characters that we've smashed
469 with '\0's (indicating end of strings for various sub-fields of the
47926f60 470 assembler instruction). */
252b5132 471static char save_stack[32];
ce8a8b2f 472static char *save_stack_p;
252b5132
RH
473#define END_STRING_AND_SAVE(s) \
474 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
475#define RESTORE_END_STRING(s) \
476 do { *(s) = *--save_stack_p; } while (0)
477
47926f60 478/* The instruction we're assembling. */
252b5132
RH
479static i386_insn i;
480
481/* Possible templates for current insn. */
482static const templates *current_templates;
483
31b2323c
L
484/* Per instruction expressionS buffers: max displacements & immediates. */
485static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
486static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 487
47926f60 488/* Current operand we are working on. */
ee86248c 489static int this_operand = -1;
252b5132 490
3e73aa7c
JH
491/* We support four different modes. FLAG_CODE variable is used to distinguish
492 these. */
493
494enum flag_code {
495 CODE_32BIT,
496 CODE_16BIT,
497 CODE_64BIT };
498
499static enum flag_code flag_code;
4fa24527 500static unsigned int object_64bit;
862be3fb 501static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
502static int use_rela_relocations = 0;
503
7af8ed2d
NC
504#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
505 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
506 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
507
351f65ca
L
508/* The ELF ABI to use. */
509enum x86_elf_abi
510{
511 I386_ABI,
7f56bc95
L
512 X86_64_ABI,
513 X86_64_X32_ABI
351f65ca
L
514};
515
516static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 517#endif
351f65ca 518
47926f60
KH
519/* 1 for intel syntax,
520 0 if att syntax. */
521static int intel_syntax = 0;
252b5132 522
1efbbeb4
L
523/* 1 for intel mnemonic,
524 0 if att mnemonic. */
525static int intel_mnemonic = !SYSV386_COMPAT;
526
5209009a 527/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
528static int old_gcc = OLDGCC_COMPAT;
529
a60de03c
JB
530/* 1 if pseudo registers are permitted. */
531static int allow_pseudo_reg = 0;
532
47926f60
KH
533/* 1 if register prefix % not required. */
534static int allow_naked_reg = 0;
252b5132 535
7e8b059b
L
536/* 1 if the assembler should add BND prefix for all control-tranferring
537 instructions supporting it, even if this prefix wasn't specified
538 explicitly. */
539static int add_bnd_prefix = 0;
540
ba104c83 541/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
542static int allow_index_reg = 0;
543
7bab8ab5 544static enum check_kind
daf50ae7 545 {
7bab8ab5
JB
546 check_none = 0,
547 check_warning,
548 check_error
daf50ae7 549 }
7bab8ab5 550sse_check, operand_check = check_warning;
daf50ae7 551
2ca3ace5
L
552/* Register prefix used for error message. */
553static const char *register_prefix = "%";
554
47926f60
KH
555/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
556 leave, push, and pop instructions so that gcc has the same stack
557 frame as in 32 bit mode. */
558static char stackop_size = '\0';
eecb386c 559
12b55ccc
L
560/* Non-zero to optimize code alignment. */
561int optimize_align_code = 1;
562
47926f60
KH
563/* Non-zero to quieten some warnings. */
564static int quiet_warnings = 0;
a38cf1db 565
47926f60
KH
566/* CPU name. */
567static const char *cpu_arch_name = NULL;
6305a203 568static char *cpu_sub_arch_name = NULL;
a38cf1db 569
47926f60 570/* CPU feature flags. */
40fb9820
L
571static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
572
ccc9c027
L
573/* If we have selected a cpu we are generating instructions for. */
574static int cpu_arch_tune_set = 0;
575
9103f4f4 576/* Cpu we are generating instructions for. */
fbf3f584 577enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
578
579/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 580static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 581
ccc9c027 582/* CPU instruction set architecture used. */
fbf3f584 583enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 584
9103f4f4 585/* CPU feature flags of instruction set architecture used. */
fbf3f584 586i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 587
fddf5b5b
AM
588/* If set, conditional jumps are not automatically promoted to handle
589 larger than a byte offset. */
590static unsigned int no_cond_jump_promotion = 0;
591
c0f3af97
L
592/* Encode SSE instructions with VEX prefix. */
593static unsigned int sse2avx;
594
539f890d
L
595/* Encode scalar AVX instructions with specific vector length. */
596static enum
597 {
598 vex128 = 0,
599 vex256
600 } avxscalar;
601
43234a1e
L
602/* Encode scalar EVEX LIG instructions with specific vector length. */
603static enum
604 {
605 evexl128 = 0,
606 evexl256,
607 evexl512
608 } evexlig;
609
610/* Encode EVEX WIG instructions with specific evex.w. */
611static enum
612 {
613 evexw0 = 0,
614 evexw1
615 } evexwig;
616
29b0f896 617/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 618static symbolS *GOT_symbol;
29b0f896 619
a4447b93
RH
620/* The dwarf2 return column, adjusted for 32 or 64 bit. */
621unsigned int x86_dwarf2_return_column;
622
623/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
624int x86_cie_data_alignment;
625
252b5132 626/* Interface to relax_segment.
fddf5b5b
AM
627 There are 3 major relax states for 386 jump insns because the
628 different types of jumps add different sizes to frags when we're
629 figuring out what sort of jump to choose to reach a given label. */
252b5132 630
47926f60 631/* Types. */
93c2a809
AM
632#define UNCOND_JUMP 0
633#define COND_JUMP 1
634#define COND_JUMP86 2
fddf5b5b 635
47926f60 636/* Sizes. */
252b5132
RH
637#define CODE16 1
638#define SMALL 0
29b0f896 639#define SMALL16 (SMALL | CODE16)
252b5132 640#define BIG 2
29b0f896 641#define BIG16 (BIG | CODE16)
252b5132
RH
642
643#ifndef INLINE
644#ifdef __GNUC__
645#define INLINE __inline__
646#else
647#define INLINE
648#endif
649#endif
650
fddf5b5b
AM
651#define ENCODE_RELAX_STATE(type, size) \
652 ((relax_substateT) (((type) << 2) | (size)))
653#define TYPE_FROM_RELAX_STATE(s) \
654 ((s) >> 2)
655#define DISP_SIZE_FROM_RELAX_STATE(s) \
656 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
657
658/* This table is used by relax_frag to promote short jumps to long
659 ones where necessary. SMALL (short) jumps may be promoted to BIG
660 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
661 don't allow a short jump in a 32 bit code segment to be promoted to
662 a 16 bit offset jump because it's slower (requires data size
663 prefix), and doesn't work, unless the destination is in the bottom
664 64k of the code segment (The top 16 bits of eip are zeroed). */
665
666const relax_typeS md_relax_table[] =
667{
24eab124
AM
668 /* The fields are:
669 1) most positive reach of this state,
670 2) most negative reach of this state,
93c2a809 671 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 672 4) which index into the table to try if we can't fit into this one. */
252b5132 673
fddf5b5b 674 /* UNCOND_JUMP states. */
93c2a809
AM
675 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
676 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
677 /* dword jmp adds 4 bytes to frag:
678 0 extra opcode bytes, 4 displacement bytes. */
252b5132 679 {0, 0, 4, 0},
93c2a809
AM
680 /* word jmp adds 2 byte2 to frag:
681 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
682 {0, 0, 2, 0},
683
93c2a809
AM
684 /* COND_JUMP states. */
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
686 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
687 /* dword conditionals adds 5 bytes to frag:
688 1 extra opcode byte, 4 displacement bytes. */
689 {0, 0, 5, 0},
fddf5b5b 690 /* word conditionals add 3 bytes to frag:
93c2a809
AM
691 1 extra opcode byte, 2 displacement bytes. */
692 {0, 0, 3, 0},
693
694 /* COND_JUMP86 states. */
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
696 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
697 /* dword conditionals adds 5 bytes to frag:
698 1 extra opcode byte, 4 displacement bytes. */
699 {0, 0, 5, 0},
700 /* word conditionals add 4 bytes to frag:
701 1 displacement byte and a 3 byte long branch insn. */
702 {0, 0, 4, 0}
252b5132
RH
703};
704
9103f4f4
L
705static const arch_entry cpu_arch[] =
706{
89507696
JB
707 /* Do not replace the first two entries - i386_target_format()
708 relies on them being there in this order. */
8a2c8fef 709 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 710 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 711 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 712 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 713 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 714 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 715 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 716 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 717 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 718 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 719 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 720 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 721 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 722 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 723 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 724 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 725 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 726 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 727 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 728 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 729 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 730 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 731 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 732 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 733 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 734 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 735 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 736 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 737 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 738 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 739 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 740 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 741 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 742 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 743 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 744 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 745 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 746 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 747 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 748 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 749 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 750 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 751 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 752 CPU_L1OM_FLAGS, 0, 0 },
7a9068fe
L
753 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
754 CPU_K1OM_FLAGS, 0, 0 },
8a2c8fef 755 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 756 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 757 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 758 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 759 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 760 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 761 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 762 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 763 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 764 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 766 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 767 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 768 CPU_AMDFAM10_FLAGS, 0, 0 },
8aedb9fe 769 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
22109423 770 CPU_BDVER1_FLAGS, 0, 0 },
8aedb9fe 771 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
af2f724e 772 CPU_BDVER2_FLAGS, 0, 0 },
5e5c50d3
NE
773 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
774 CPU_BDVER3_FLAGS, 0, 0 },
c7b0bd56
SE
775 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
776 CPU_BDVER4_FLAGS, 0, 0 },
7b458c12
L
777 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
778 CPU_BTVER1_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
780 CPU_BTVER2_FLAGS, 0, 0 },
8a2c8fef 781 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 782 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 783 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 784 CPU_287_FLAGS, 0, 0 },
8a2c8fef 785 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 786 CPU_387_FLAGS, 0, 0 },
8a2c8fef 787 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 788 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 789 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 790 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 791 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 792 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 793 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 794 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 795 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 796 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 797 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 798 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 799 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 800 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 801 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 802 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 803 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 804 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 805 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 806 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 807 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 808 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 809 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 810 CPU_AVX_FLAGS, 0, 0 },
6c30d220
L
811 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
812 CPU_AVX2_FLAGS, 0, 0 },
43234a1e
L
813 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
814 CPU_AVX512F_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
816 CPU_AVX512CD_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
818 CPU_AVX512ER_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
820 CPU_AVX512PF_FLAGS, 0, 0 },
8a2c8fef 821 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 822 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 823 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 824 CPU_VMX_FLAGS, 0, 0 },
8729a6f6
L
825 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
826 CPU_VMFUNC_FLAGS, 0, 0 },
8a2c8fef 827 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 828 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 829 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 830 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 831 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 832 CPU_XSAVEOPT_FLAGS, 0, 0 },
8a2c8fef 833 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 834 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 835 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 836 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 837 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 838 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 839 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 840 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 841 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 842 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 843 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 844 CPU_F16C_FLAGS, 0, 0 },
6c30d220
L
845 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
846 CPU_BMI2_FLAGS, 0, 0 },
8a2c8fef 847 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 848 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 849 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 850 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 852 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 854 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 855 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 856 CPU_MOVBE_FLAGS, 0, 0 },
60aa667e
L
857 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
858 CPU_CX16_FLAGS, 0, 0 },
8a2c8fef 859 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 860 CPU_EPT_FLAGS, 0, 0 },
6c30d220
L
861 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
862 CPU_LZCNT_FLAGS, 0, 0 },
42164a71
L
863 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
864 CPU_HLE_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
866 CPU_RTM_FLAGS, 0, 0 },
6c30d220
L
867 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
868 CPU_INVPCID_FLAGS, 0, 0 },
8a2c8fef 869 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
870 CPU_CLFLUSH_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
872 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 873 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 874 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 876 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 878 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 880 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 881 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 882 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 883 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 884 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 885 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 886 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 888 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 889 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 890 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
891 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
892 CPU_BMI_FLAGS, 0, 0 },
2a2a0f38
QN
893 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
894 CPU_TBM_FLAGS, 0, 0 },
e2e1fcde
L
895 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
896 CPU_ADX_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
898 CPU_RDSEED_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
900 CPU_PRFCHW_FLAGS, 0, 0 },
5c111e37
L
901 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
902 CPU_SMAP_FLAGS, 0, 0 },
7e8b059b
L
903 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
904 CPU_MPX_FLAGS, 0, 0 },
a0046408
L
905 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
906 CPU_SHA_FLAGS, 0, 0 },
e413e4e9
AM
907};
908
704209c0 909#ifdef I386COFF
a6c24e68
NC
910/* Like s_lcomm_internal in gas/read.c but the alignment string
911 is allowed to be optional. */
912
913static symbolS *
914pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
915{
916 addressT align = 0;
917
918 SKIP_WHITESPACE ();
919
7ab9ffdd 920 if (needs_align
a6c24e68
NC
921 && *input_line_pointer == ',')
922 {
923 align = parse_align (needs_align - 1);
7ab9ffdd 924
a6c24e68
NC
925 if (align == (addressT) -1)
926 return NULL;
927 }
928 else
929 {
930 if (size >= 8)
931 align = 3;
932 else if (size >= 4)
933 align = 2;
934 else if (size >= 2)
935 align = 1;
936 else
937 align = 0;
938 }
939
940 bss_alloc (symbolP, size, align);
941 return symbolP;
942}
943
704209c0 944static void
a6c24e68
NC
945pe_lcomm (int needs_align)
946{
947 s_comm_internal (needs_align * 2, pe_lcomm_internal);
948}
704209c0 949#endif
a6c24e68 950
29b0f896
AM
951const pseudo_typeS md_pseudo_table[] =
952{
953#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
954 {"align", s_align_bytes, 0},
955#else
956 {"align", s_align_ptwo, 0},
957#endif
958 {"arch", set_cpu_arch, 0},
959#ifndef I386COFF
960 {"bss", s_bss, 0},
a6c24e68
NC
961#else
962 {"lcomm", pe_lcomm, 1},
29b0f896
AM
963#endif
964 {"ffloat", float_cons, 'f'},
965 {"dfloat", float_cons, 'd'},
966 {"tfloat", float_cons, 'x'},
967 {"value", cons, 2},
d182319b 968 {"slong", signed_cons, 4},
29b0f896
AM
969 {"noopt", s_ignore, 0},
970 {"optim", s_ignore, 0},
971 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
972 {"code16", set_code_flag, CODE_16BIT},
973 {"code32", set_code_flag, CODE_32BIT},
974 {"code64", set_code_flag, CODE_64BIT},
975 {"intel_syntax", set_intel_syntax, 1},
976 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
977 {"intel_mnemonic", set_intel_mnemonic, 1},
978 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
979 {"allow_index_reg", set_allow_index_reg, 1},
980 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
981 {"sse_check", set_check, 0},
982 {"operand_check", set_check, 1},
3b22753a
L
983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
984 {"largecomm", handle_large_common, 0},
07a53e5c 985#else
e3bb37b5 986 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
987 {"loc", dwarf2_directive_loc, 0},
988 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 989#endif
6482c264
NC
990#ifdef TE_PE
991 {"secrel32", pe_directive_secrel, 0},
992#endif
29b0f896
AM
993 {0, 0, 0}
994};
995
996/* For interface with expression (). */
997extern char *input_line_pointer;
998
999/* Hash table for instruction mnemonic lookup. */
1000static struct hash_control *op_hash;
1001
1002/* Hash table for register lookup. */
1003static struct hash_control *reg_hash;
1004\f
252b5132 1005void
e3bb37b5 1006i386_align_code (fragS *fragP, int count)
252b5132 1007{
ce8a8b2f
AM
1008 /* Various efficient no-op patterns for aligning code labels.
1009 Note: Don't try to assemble the instructions in the comments.
1010 0L and 0w are not legal. */
252b5132
RH
1011 static const char f32_1[] =
1012 {0x90}; /* nop */
1013 static const char f32_2[] =
ccc9c027 1014 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
1015 static const char f32_3[] =
1016 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1017 static const char f32_4[] =
1018 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1019 static const char f32_5[] =
1020 {0x90, /* nop */
1021 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1022 static const char f32_6[] =
1023 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1024 static const char f32_7[] =
1025 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1026 static const char f32_8[] =
1027 {0x90, /* nop */
1028 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1029 static const char f32_9[] =
1030 {0x89,0xf6, /* movl %esi,%esi */
1031 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1032 static const char f32_10[] =
1033 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1034 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1035 static const char f32_11[] =
1036 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1037 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1038 static const char f32_12[] =
1039 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1040 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1041 static const char f32_13[] =
1042 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1043 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1044 static const char f32_14[] =
1045 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1046 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
1047 static const char f16_3[] =
1048 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
1049 static const char f16_4[] =
1050 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1051 static const char f16_5[] =
1052 {0x90, /* nop */
1053 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1054 static const char f16_6[] =
1055 {0x89,0xf6, /* mov %si,%si */
1056 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1057 static const char f16_7[] =
1058 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1059 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1060 static const char f16_8[] =
1061 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1062 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
1063 static const char jump_31[] =
1064 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1065 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1066 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1067 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
1068 static const char *const f32_patt[] = {
1069 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1070 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
1071 };
1072 static const char *const f16_patt[] = {
76bc74dc 1073 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1074 };
ccc9c027
L
1075 /* nopl (%[re]ax) */
1076 static const char alt_3[] =
1077 {0x0f,0x1f,0x00};
1078 /* nopl 0(%[re]ax) */
1079 static const char alt_4[] =
1080 {0x0f,0x1f,0x40,0x00};
1081 /* nopl 0(%[re]ax,%[re]ax,1) */
1082 static const char alt_5[] =
1083 {0x0f,0x1f,0x44,0x00,0x00};
1084 /* nopw 0(%[re]ax,%[re]ax,1) */
1085 static const char alt_6[] =
1086 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1087 /* nopl 0L(%[re]ax) */
1088 static const char alt_7[] =
1089 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1090 /* nopl 0L(%[re]ax,%[re]ax,1) */
1091 static const char alt_8[] =
1092 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1093 /* nopw 0L(%[re]ax,%[re]ax,1) */
1094 static const char alt_9[] =
1095 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1096 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1097 static const char alt_10[] =
1098 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1099 /* data16
1100 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1101 static const char alt_long_11[] =
1102 {0x66,
1103 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1104 /* data16
1105 data16
1106 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1107 static const char alt_long_12[] =
1108 {0x66,
1109 0x66,
1110 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1111 /* data16
1112 data16
1113 data16
1114 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1115 static const char alt_long_13[] =
1116 {0x66,
1117 0x66,
1118 0x66,
1119 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1120 /* data16
1121 data16
1122 data16
1123 data16
1124 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1125 static const char alt_long_14[] =
1126 {0x66,
1127 0x66,
1128 0x66,
1129 0x66,
1130 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1131 /* data16
1132 data16
1133 data16
1134 data16
1135 data16
1136 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_long_15[] =
1138 {0x66,
1139 0x66,
1140 0x66,
1141 0x66,
1142 0x66,
1143 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopl 0(%[re]ax,%[re]ax,1)
1145 nopw 0(%[re]ax,%[re]ax,1) */
1146 static const char alt_short_11[] =
1147 {0x0f,0x1f,0x44,0x00,0x00,
1148 0x66,0x0f,0x1f,0x44,0x00,0x00};
1149 /* nopw 0(%[re]ax,%[re]ax,1)
1150 nopw 0(%[re]ax,%[re]ax,1) */
1151 static const char alt_short_12[] =
1152 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1153 0x66,0x0f,0x1f,0x44,0x00,0x00};
1154 /* nopw 0(%[re]ax,%[re]ax,1)
1155 nopl 0L(%[re]ax) */
1156 static const char alt_short_13[] =
1157 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1158 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1159 /* nopl 0L(%[re]ax)
1160 nopl 0L(%[re]ax) */
1161 static const char alt_short_14[] =
1162 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1163 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1164 /* nopl 0L(%[re]ax)
1165 nopl 0L(%[re]ax,%[re]ax,1) */
1166 static const char alt_short_15[] =
1167 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1168 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1169 static const char *const alt_short_patt[] = {
1170 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1171 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1172 alt_short_14, alt_short_15
1173 };
1174 static const char *const alt_long_patt[] = {
1175 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1176 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1177 alt_long_14, alt_long_15
1178 };
252b5132 1179
76bc74dc
L
1180 /* Only align for at least a positive non-zero boundary. */
1181 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1182 return;
3e73aa7c 1183
ccc9c027
L
1184 /* We need to decide which NOP sequence to use for 32bit and
1185 64bit. When -mtune= is used:
4eed87de 1186
76bc74dc
L
1187 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1188 PROCESSOR_GENERIC32, f32_patt will be used.
1189 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
1190 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1191 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc 1192 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
7b458c12 1193 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
69dd9865 1194 will be used.
ccc9c027 1195
76bc74dc 1196 When -mtune= isn't used, alt_long_patt will be used if
22109423 1197 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1198 be used.
ccc9c027
L
1199
1200 When -march= or .arch is used, we can't use anything beyond
1201 cpu_arch_isa_flags. */
1202
1203 if (flag_code == CODE_16BIT)
1204 {
ccc9c027 1205 if (count > 8)
33fef721 1206 {
76bc74dc
L
1207 memcpy (fragP->fr_literal + fragP->fr_fix,
1208 jump_31, count);
1209 /* Adjust jump offset. */
1210 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1211 }
76bc74dc
L
1212 else
1213 memcpy (fragP->fr_literal + fragP->fr_fix,
1214 f16_patt[count - 1], count);
252b5132 1215 }
33fef721 1216 else
ccc9c027
L
1217 {
1218 const char *const *patt = NULL;
1219
fbf3f584 1220 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1221 {
1222 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1223 switch (cpu_arch_tune)
1224 {
1225 case PROCESSOR_UNKNOWN:
1226 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1227 optimize with nops. */
1228 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
76bc74dc 1229 patt = alt_long_patt;
ccc9c027
L
1230 else
1231 patt = f32_patt;
1232 break;
ccc9c027
L
1233 case PROCESSOR_PENTIUM4:
1234 case PROCESSOR_NOCONA:
ef05d495 1235 case PROCESSOR_CORE:
76bc74dc 1236 case PROCESSOR_CORE2:
bd5295b2 1237 case PROCESSOR_COREI7:
3632d14b 1238 case PROCESSOR_L1OM:
7a9068fe 1239 case PROCESSOR_K1OM:
76bc74dc
L
1240 case PROCESSOR_GENERIC64:
1241 patt = alt_long_patt;
1242 break;
ccc9c027
L
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
4eed87de 1246 case PROCESSOR_AMDFAM10:
8aedb9fe 1247 case PROCESSOR_BD:
7b458c12 1248 case PROCESSOR_BT:
ccc9c027
L
1249 patt = alt_short_patt;
1250 break;
76bc74dc 1251 case PROCESSOR_I386:
ccc9c027
L
1252 case PROCESSOR_I486:
1253 case PROCESSOR_PENTIUM:
2dde1948 1254 case PROCESSOR_PENTIUMPRO:
ccc9c027
L
1255 case PROCESSOR_GENERIC32:
1256 patt = f32_patt;
1257 break;
4eed87de 1258 }
ccc9c027
L
1259 }
1260 else
1261 {
fbf3f584 1262 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1263 {
1264 case PROCESSOR_UNKNOWN:
e6a14101 1265 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1266 PROCESSOR_UNKNOWN. */
1267 abort ();
1268 break;
1269
76bc74dc 1270 case PROCESSOR_I386:
ccc9c027
L
1271 case PROCESSOR_I486:
1272 case PROCESSOR_PENTIUM:
ccc9c027
L
1273 case PROCESSOR_K6:
1274 case PROCESSOR_ATHLON:
1275 case PROCESSOR_K8:
4eed87de 1276 case PROCESSOR_AMDFAM10:
8aedb9fe 1277 case PROCESSOR_BD:
7b458c12 1278 case PROCESSOR_BT:
ccc9c027
L
1279 case PROCESSOR_GENERIC32:
1280 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1281 with nops. */
1282 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1283 patt = alt_short_patt;
1284 else
1285 patt = f32_patt;
1286 break;
76bc74dc
L
1287 case PROCESSOR_PENTIUMPRO:
1288 case PROCESSOR_PENTIUM4:
1289 case PROCESSOR_NOCONA:
1290 case PROCESSOR_CORE:
ef05d495 1291 case PROCESSOR_CORE2:
bd5295b2 1292 case PROCESSOR_COREI7:
3632d14b 1293 case PROCESSOR_L1OM:
7a9068fe 1294 case PROCESSOR_K1OM:
22109423 1295 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1296 patt = alt_long_patt;
1297 else
1298 patt = f32_patt;
1299 break;
1300 case PROCESSOR_GENERIC64:
76bc74dc 1301 patt = alt_long_patt;
ccc9c027 1302 break;
4eed87de 1303 }
ccc9c027
L
1304 }
1305
76bc74dc
L
1306 if (patt == f32_patt)
1307 {
1308 /* If the padding is less than 15 bytes, we use the normal
1309 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1310 its offset. */
1311 int limit;
76ba9986 1312
711eedef
L
1313 /* For 64bit, the limit is 3 bytes. */
1314 if (flag_code == CODE_64BIT
1315 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1316 limit = 3;
1317 else
1318 limit = 15;
1319 if (count < limit)
76bc74dc
L
1320 memcpy (fragP->fr_literal + fragP->fr_fix,
1321 patt[count - 1], count);
1322 else
1323 {
1324 memcpy (fragP->fr_literal + fragP->fr_fix,
1325 jump_31, count);
1326 /* Adjust jump offset. */
1327 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1328 }
1329 }
1330 else
1331 {
1332 /* Maximum length of an instruction is 15 byte. If the
1333 padding is greater than 15 bytes and we don't use jump,
1334 we have to break it into smaller pieces. */
1335 int padding = count;
1336 while (padding > 15)
1337 {
1338 padding -= 15;
1339 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1340 patt [14], 15);
1341 }
1342
1343 if (padding)
1344 memcpy (fragP->fr_literal + fragP->fr_fix,
1345 patt [padding - 1], padding);
1346 }
ccc9c027 1347 }
33fef721 1348 fragP->fr_var = count;
252b5132
RH
1349}
1350
c6fb90c8 1351static INLINE int
0dfbf9d7 1352operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1353{
0dfbf9d7 1354 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1355 {
1356 case 3:
0dfbf9d7 1357 if (x->array[2])
c6fb90c8
L
1358 return 0;
1359 case 2:
0dfbf9d7 1360 if (x->array[1])
c6fb90c8
L
1361 return 0;
1362 case 1:
0dfbf9d7 1363 return !x->array[0];
c6fb90c8
L
1364 default:
1365 abort ();
1366 }
40fb9820
L
1367}
1368
c6fb90c8 1369static INLINE void
0dfbf9d7 1370operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1371{
0dfbf9d7 1372 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1373 {
1374 case 3:
0dfbf9d7 1375 x->array[2] = v;
c6fb90c8 1376 case 2:
0dfbf9d7 1377 x->array[1] = v;
c6fb90c8 1378 case 1:
0dfbf9d7 1379 x->array[0] = v;
c6fb90c8
L
1380 break;
1381 default:
1382 abort ();
1383 }
1384}
40fb9820 1385
c6fb90c8 1386static INLINE int
0dfbf9d7
L
1387operand_type_equal (const union i386_operand_type *x,
1388 const union i386_operand_type *y)
c6fb90c8 1389{
0dfbf9d7 1390 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1391 {
1392 case 3:
0dfbf9d7 1393 if (x->array[2] != y->array[2])
c6fb90c8
L
1394 return 0;
1395 case 2:
0dfbf9d7 1396 if (x->array[1] != y->array[1])
c6fb90c8
L
1397 return 0;
1398 case 1:
0dfbf9d7 1399 return x->array[0] == y->array[0];
c6fb90c8
L
1400 break;
1401 default:
1402 abort ();
1403 }
1404}
40fb9820 1405
0dfbf9d7
L
1406static INLINE int
1407cpu_flags_all_zero (const union i386_cpu_flags *x)
1408{
1409 switch (ARRAY_SIZE(x->array))
1410 {
1411 case 3:
1412 if (x->array[2])
1413 return 0;
1414 case 2:
1415 if (x->array[1])
1416 return 0;
1417 case 1:
1418 return !x->array[0];
1419 default:
1420 abort ();
1421 }
1422}
1423
1424static INLINE void
1425cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1426{
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 x->array[2] = v;
1431 case 2:
1432 x->array[1] = v;
1433 case 1:
1434 x->array[0] = v;
1435 break;
1436 default:
1437 abort ();
1438 }
1439}
1440
1441static INLINE int
1442cpu_flags_equal (const union i386_cpu_flags *x,
1443 const union i386_cpu_flags *y)
1444{
1445 switch (ARRAY_SIZE(x->array))
1446 {
1447 case 3:
1448 if (x->array[2] != y->array[2])
1449 return 0;
1450 case 2:
1451 if (x->array[1] != y->array[1])
1452 return 0;
1453 case 1:
1454 return x->array[0] == y->array[0];
1455 break;
1456 default:
1457 abort ();
1458 }
1459}
c6fb90c8
L
1460
1461static INLINE int
1462cpu_flags_check_cpu64 (i386_cpu_flags f)
1463{
1464 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1465 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1466}
1467
c6fb90c8
L
1468static INLINE i386_cpu_flags
1469cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1470{
c6fb90c8
L
1471 switch (ARRAY_SIZE (x.array))
1472 {
1473 case 3:
1474 x.array [2] &= y.array [2];
1475 case 2:
1476 x.array [1] &= y.array [1];
1477 case 1:
1478 x.array [0] &= y.array [0];
1479 break;
1480 default:
1481 abort ();
1482 }
1483 return x;
1484}
40fb9820 1485
c6fb90c8
L
1486static INLINE i386_cpu_flags
1487cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1488{
c6fb90c8 1489 switch (ARRAY_SIZE (x.array))
40fb9820 1490 {
c6fb90c8
L
1491 case 3:
1492 x.array [2] |= y.array [2];
1493 case 2:
1494 x.array [1] |= y.array [1];
1495 case 1:
1496 x.array [0] |= y.array [0];
40fb9820
L
1497 break;
1498 default:
1499 abort ();
1500 }
40fb9820
L
1501 return x;
1502}
1503
309d3373
JB
1504static INLINE i386_cpu_flags
1505cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1506{
1507 switch (ARRAY_SIZE (x.array))
1508 {
1509 case 3:
1510 x.array [2] &= ~y.array [2];
1511 case 2:
1512 x.array [1] &= ~y.array [1];
1513 case 1:
1514 x.array [0] &= ~y.array [0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 return x;
1520}
1521
c0f3af97
L
1522#define CPU_FLAGS_ARCH_MATCH 0x1
1523#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1524#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1525#define CPU_FLAGS_PCLMUL_MATCH 0x8
1526#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1527
a5ff0eb2 1528#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1529 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1530 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1531#define CPU_FLAGS_PERFECT_MATCH \
1532 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1533
1534/* Return CPU flags match bits. */
3629bb00 1535
40fb9820 1536static int
d3ce72d0 1537cpu_flags_match (const insn_template *t)
40fb9820 1538{
c0f3af97
L
1539 i386_cpu_flags x = t->cpu_flags;
1540 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1541
1542 x.bitfield.cpu64 = 0;
1543 x.bitfield.cpuno64 = 0;
1544
0dfbf9d7 1545 if (cpu_flags_all_zero (&x))
c0f3af97
L
1546 {
1547 /* This instruction is available on all archs. */
1548 match |= CPU_FLAGS_32BIT_MATCH;
1549 }
3629bb00
L
1550 else
1551 {
c0f3af97 1552 /* This instruction is available only on some archs. */
3629bb00
L
1553 i386_cpu_flags cpu = cpu_arch_flags;
1554
1555 cpu.bitfield.cpu64 = 0;
1556 cpu.bitfield.cpuno64 = 0;
1557 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1558 if (!cpu_flags_all_zero (&cpu))
1559 {
a5ff0eb2
L
1560 if (x.bitfield.cpuavx)
1561 {
ce2f5b3c 1562 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1563 if (cpu.bitfield.cpuavx)
1564 {
1565 /* Check SSE2AVX. */
1566 if (!t->opcode_modifier.sse2avx|| sse2avx)
1567 {
1568 match |= (CPU_FLAGS_ARCH_MATCH
1569 | CPU_FLAGS_AVX_MATCH);
1570 /* Check AES. */
1571 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1572 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1573 /* Check PCLMUL. */
1574 if (!x.bitfield.cpupclmul
1575 || cpu.bitfield.cpupclmul)
1576 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1577 }
1578 }
1579 else
1580 match |= CPU_FLAGS_ARCH_MATCH;
1581 }
1582 else
c0f3af97
L
1583 match |= CPU_FLAGS_32BIT_MATCH;
1584 }
3629bb00 1585 }
c0f3af97 1586 return match;
40fb9820
L
1587}
1588
c6fb90c8
L
1589static INLINE i386_operand_type
1590operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1591{
c6fb90c8
L
1592 switch (ARRAY_SIZE (x.array))
1593 {
1594 case 3:
1595 x.array [2] &= y.array [2];
1596 case 2:
1597 x.array [1] &= y.array [1];
1598 case 1:
1599 x.array [0] &= y.array [0];
1600 break;
1601 default:
1602 abort ();
1603 }
1604 return x;
40fb9820
L
1605}
1606
c6fb90c8
L
1607static INLINE i386_operand_type
1608operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1609{
c6fb90c8 1610 switch (ARRAY_SIZE (x.array))
40fb9820 1611 {
c6fb90c8
L
1612 case 3:
1613 x.array [2] |= y.array [2];
1614 case 2:
1615 x.array [1] |= y.array [1];
1616 case 1:
1617 x.array [0] |= y.array [0];
40fb9820
L
1618 break;
1619 default:
1620 abort ();
1621 }
c6fb90c8
L
1622 return x;
1623}
40fb9820 1624
c6fb90c8
L
1625static INLINE i386_operand_type
1626operand_type_xor (i386_operand_type x, i386_operand_type y)
1627{
1628 switch (ARRAY_SIZE (x.array))
1629 {
1630 case 3:
1631 x.array [2] ^= y.array [2];
1632 case 2:
1633 x.array [1] ^= y.array [1];
1634 case 1:
1635 x.array [0] ^= y.array [0];
1636 break;
1637 default:
1638 abort ();
1639 }
40fb9820
L
1640 return x;
1641}
1642
1643static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1644static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1645static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1646static const i386_operand_type inoutportreg
1647 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1648static const i386_operand_type reg16_inoutportreg
1649 = OPERAND_TYPE_REG16_INOUTPORTREG;
1650static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1651static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1652static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1653static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1654static const i386_operand_type anydisp
1655 = OPERAND_TYPE_ANYDISP;
40fb9820 1656static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1657static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1658static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1659static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1660static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1661static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1662static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1663static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1664static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1665static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1666static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1667static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1668static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1669static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
7e8b059b 1670static const i386_operand_type regbnd = OPERAND_TYPE_REGBND;
43234a1e 1671static const i386_operand_type vec_disp8 = OPERAND_TYPE_VEC_DISP8;
40fb9820
L
1672
1673enum operand_type
1674{
1675 reg,
40fb9820
L
1676 imm,
1677 disp,
1678 anymem
1679};
1680
c6fb90c8 1681static INLINE int
40fb9820
L
1682operand_type_check (i386_operand_type t, enum operand_type c)
1683{
1684 switch (c)
1685 {
1686 case reg:
1687 return (t.bitfield.reg8
1688 || t.bitfield.reg16
1689 || t.bitfield.reg32
1690 || t.bitfield.reg64);
1691
40fb9820
L
1692 case imm:
1693 return (t.bitfield.imm8
1694 || t.bitfield.imm8s
1695 || t.bitfield.imm16
1696 || t.bitfield.imm32
1697 || t.bitfield.imm32s
1698 || t.bitfield.imm64);
1699
1700 case disp:
1701 return (t.bitfield.disp8
1702 || t.bitfield.disp16
1703 || t.bitfield.disp32
1704 || t.bitfield.disp32s
1705 || t.bitfield.disp64);
1706
1707 case anymem:
1708 return (t.bitfield.disp8
1709 || t.bitfield.disp16
1710 || t.bitfield.disp32
1711 || t.bitfield.disp32s
1712 || t.bitfield.disp64
1713 || t.bitfield.baseindex);
1714
1715 default:
1716 abort ();
1717 }
2cfe26b6
AM
1718
1719 return 0;
40fb9820
L
1720}
1721
5c07affc
L
1722/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1723 operand J for instruction template T. */
1724
1725static INLINE int
d3ce72d0 1726match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1727{
1728 return !((i.types[j].bitfield.byte
1729 && !t->operand_types[j].bitfield.byte)
1730 || (i.types[j].bitfield.word
1731 && !t->operand_types[j].bitfield.word)
1732 || (i.types[j].bitfield.dword
1733 && !t->operand_types[j].bitfield.dword)
1734 || (i.types[j].bitfield.qword
1735 && !t->operand_types[j].bitfield.qword));
1736}
1737
1738/* Return 1 if there is no conflict in any size on operand J for
1739 instruction template T. */
1740
1741static INLINE int
d3ce72d0 1742match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1743{
1744 return (match_reg_size (t, j)
1745 && !((i.types[j].bitfield.unspecified
1746 && !t->operand_types[j].bitfield.unspecified)
1747 || (i.types[j].bitfield.fword
1748 && !t->operand_types[j].bitfield.fword)
1749 || (i.types[j].bitfield.tbyte
1750 && !t->operand_types[j].bitfield.tbyte)
1751 || (i.types[j].bitfield.xmmword
c0f3af97
L
1752 && !t->operand_types[j].bitfield.xmmword)
1753 || (i.types[j].bitfield.ymmword
43234a1e
L
1754 && !t->operand_types[j].bitfield.ymmword)
1755 || (i.types[j].bitfield.zmmword
1756 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1757}
1758
1759/* Return 1 if there is no size conflict on any operands for
1760 instruction template T. */
1761
1762static INLINE int
d3ce72d0 1763operand_size_match (const insn_template *t)
5c07affc
L
1764{
1765 unsigned int j;
1766 int match = 1;
1767
1768 /* Don't check jump instructions. */
1769 if (t->opcode_modifier.jump
1770 || t->opcode_modifier.jumpbyte
1771 || t->opcode_modifier.jumpdword
1772 || t->opcode_modifier.jumpintersegment)
1773 return match;
1774
1775 /* Check memory and accumulator operand size. */
1776 for (j = 0; j < i.operands; j++)
1777 {
1778 if (t->operand_types[j].bitfield.anysize)
1779 continue;
1780
1781 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1782 {
1783 match = 0;
1784 break;
1785 }
1786
1787 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1788 {
1789 match = 0;
1790 break;
1791 }
1792 }
1793
891edac4 1794 if (match)
5c07affc 1795 return match;
891edac4
L
1796 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1797 {
1798mismatch:
86e026a4 1799 i.error = operand_size_mismatch;
891edac4
L
1800 return 0;
1801 }
5c07affc
L
1802
1803 /* Check reverse. */
9c2799c2 1804 gas_assert (i.operands == 2);
5c07affc
L
1805
1806 match = 1;
1807 for (j = 0; j < 2; j++)
1808 {
1809 if (t->operand_types[j].bitfield.acc
1810 && !match_reg_size (t, j ? 0 : 1))
891edac4 1811 goto mismatch;
5c07affc
L
1812
1813 if (i.types[j].bitfield.mem
1814 && !match_mem_size (t, j ? 0 : 1))
891edac4 1815 goto mismatch;
5c07affc
L
1816 }
1817
1818 return match;
1819}
1820
c6fb90c8 1821static INLINE int
40fb9820
L
1822operand_type_match (i386_operand_type overlap,
1823 i386_operand_type given)
1824{
1825 i386_operand_type temp = overlap;
1826
1827 temp.bitfield.jumpabsolute = 0;
7d5e4556 1828 temp.bitfield.unspecified = 0;
5c07affc
L
1829 temp.bitfield.byte = 0;
1830 temp.bitfield.word = 0;
1831 temp.bitfield.dword = 0;
1832 temp.bitfield.fword = 0;
1833 temp.bitfield.qword = 0;
1834 temp.bitfield.tbyte = 0;
1835 temp.bitfield.xmmword = 0;
c0f3af97 1836 temp.bitfield.ymmword = 0;
43234a1e 1837 temp.bitfield.zmmword = 0;
0dfbf9d7 1838 if (operand_type_all_zero (&temp))
891edac4 1839 goto mismatch;
40fb9820 1840
891edac4
L
1841 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1842 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1843 return 1;
1844
1845mismatch:
a65babc9 1846 i.error = operand_type_mismatch;
891edac4 1847 return 0;
40fb9820
L
1848}
1849
7d5e4556 1850/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1851 unless the expected operand type register overlap is null.
1852 Note that Acc in a template matches every size of reg. */
1853
c6fb90c8 1854static INLINE int
40fb9820
L
1855operand_type_register_match (i386_operand_type m0,
1856 i386_operand_type g0,
1857 i386_operand_type t0,
1858 i386_operand_type m1,
1859 i386_operand_type g1,
1860 i386_operand_type t1)
1861{
1862 if (!operand_type_check (g0, reg))
1863 return 1;
1864
1865 if (!operand_type_check (g1, reg))
1866 return 1;
1867
1868 if (g0.bitfield.reg8 == g1.bitfield.reg8
1869 && g0.bitfield.reg16 == g1.bitfield.reg16
1870 && g0.bitfield.reg32 == g1.bitfield.reg32
1871 && g0.bitfield.reg64 == g1.bitfield.reg64)
1872 return 1;
1873
1874 if (m0.bitfield.acc)
1875 {
1876 t0.bitfield.reg8 = 1;
1877 t0.bitfield.reg16 = 1;
1878 t0.bitfield.reg32 = 1;
1879 t0.bitfield.reg64 = 1;
1880 }
1881
1882 if (m1.bitfield.acc)
1883 {
1884 t1.bitfield.reg8 = 1;
1885 t1.bitfield.reg16 = 1;
1886 t1.bitfield.reg32 = 1;
1887 t1.bitfield.reg64 = 1;
1888 }
1889
891edac4
L
1890 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1891 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1892 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1893 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1894 return 1;
1895
a65babc9 1896 i.error = register_type_mismatch;
891edac4
L
1897
1898 return 0;
40fb9820
L
1899}
1900
4c692bc7
JB
1901static INLINE unsigned int
1902register_number (const reg_entry *r)
1903{
1904 unsigned int nr = r->reg_num;
1905
1906 if (r->reg_flags & RegRex)
1907 nr += 8;
1908
1909 return nr;
1910}
1911
252b5132 1912static INLINE unsigned int
40fb9820 1913mode_from_disp_size (i386_operand_type t)
252b5132 1914{
43234a1e 1915 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1916 return 1;
1917 else if (t.bitfield.disp16
1918 || t.bitfield.disp32
1919 || t.bitfield.disp32s)
1920 return 2;
1921 else
1922 return 0;
252b5132
RH
1923}
1924
1925static INLINE int
e3bb37b5 1926fits_in_signed_byte (offsetT num)
252b5132
RH
1927{
1928 return (num >= -128) && (num <= 127);
47926f60 1929}
252b5132
RH
1930
1931static INLINE int
e3bb37b5 1932fits_in_unsigned_byte (offsetT num)
252b5132
RH
1933{
1934 return (num & 0xff) == num;
47926f60 1935}
252b5132
RH
1936
1937static INLINE int
e3bb37b5 1938fits_in_unsigned_word (offsetT num)
252b5132
RH
1939{
1940 return (num & 0xffff) == num;
47926f60 1941}
252b5132
RH
1942
1943static INLINE int
e3bb37b5 1944fits_in_signed_word (offsetT num)
252b5132
RH
1945{
1946 return (-32768 <= num) && (num <= 32767);
47926f60 1947}
2a962e6d 1948
3e73aa7c 1949static INLINE int
e3bb37b5 1950fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1951{
1952#ifndef BFD64
1953 return 1;
1954#else
1955 return (!(((offsetT) -1 << 31) & num)
1956 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1957#endif
1958} /* fits_in_signed_long() */
2a962e6d 1959
3e73aa7c 1960static INLINE int
e3bb37b5 1961fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1962{
1963#ifndef BFD64
1964 return 1;
1965#else
1966 return (num & (((offsetT) 2 << 31) - 1)) == num;
1967#endif
1968} /* fits_in_unsigned_long() */
252b5132 1969
43234a1e
L
1970static INLINE int
1971fits_in_vec_disp8 (offsetT num)
1972{
1973 int shift = i.memshift;
1974 unsigned int mask;
1975
1976 if (shift == -1)
1977 abort ();
1978
1979 mask = (1 << shift) - 1;
1980
1981 /* Return 0 if NUM isn't properly aligned. */
1982 if ((num & mask))
1983 return 0;
1984
1985 /* Check if NUM will fit in 8bit after shift. */
1986 return fits_in_signed_byte (num >> shift);
1987}
1988
a683cc34
SP
1989static INLINE int
1990fits_in_imm4 (offsetT num)
1991{
1992 return (num & 0xf) == num;
1993}
1994
40fb9820 1995static i386_operand_type
e3bb37b5 1996smallest_imm_type (offsetT num)
252b5132 1997{
40fb9820 1998 i386_operand_type t;
7ab9ffdd 1999
0dfbf9d7 2000 operand_type_set (&t, 0);
40fb9820
L
2001 t.bitfield.imm64 = 1;
2002
2003 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2004 {
2005 /* This code is disabled on the 486 because all the Imm1 forms
2006 in the opcode table are slower on the i486. They're the
2007 versions with the implicitly specified single-position
2008 displacement, which has another syntax if you really want to
2009 use that form. */
40fb9820
L
2010 t.bitfield.imm1 = 1;
2011 t.bitfield.imm8 = 1;
2012 t.bitfield.imm8s = 1;
2013 t.bitfield.imm16 = 1;
2014 t.bitfield.imm32 = 1;
2015 t.bitfield.imm32s = 1;
2016 }
2017 else if (fits_in_signed_byte (num))
2018 {
2019 t.bitfield.imm8 = 1;
2020 t.bitfield.imm8s = 1;
2021 t.bitfield.imm16 = 1;
2022 t.bitfield.imm32 = 1;
2023 t.bitfield.imm32s = 1;
2024 }
2025 else if (fits_in_unsigned_byte (num))
2026 {
2027 t.bitfield.imm8 = 1;
2028 t.bitfield.imm16 = 1;
2029 t.bitfield.imm32 = 1;
2030 t.bitfield.imm32s = 1;
2031 }
2032 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2033 {
2034 t.bitfield.imm16 = 1;
2035 t.bitfield.imm32 = 1;
2036 t.bitfield.imm32s = 1;
2037 }
2038 else if (fits_in_signed_long (num))
2039 {
2040 t.bitfield.imm32 = 1;
2041 t.bitfield.imm32s = 1;
2042 }
2043 else if (fits_in_unsigned_long (num))
2044 t.bitfield.imm32 = 1;
2045
2046 return t;
47926f60 2047}
252b5132 2048
847f7ad4 2049static offsetT
e3bb37b5 2050offset_in_range (offsetT val, int size)
847f7ad4 2051{
508866be 2052 addressT mask;
ba2adb93 2053
847f7ad4
AM
2054 switch (size)
2055 {
508866be
L
2056 case 1: mask = ((addressT) 1 << 8) - 1; break;
2057 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2058 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2059#ifdef BFD64
2060 case 8: mask = ((addressT) 2 << 63) - 1; break;
2061#endif
47926f60 2062 default: abort ();
847f7ad4
AM
2063 }
2064
9de868bf
L
2065#ifdef BFD64
2066 /* If BFD64, sign extend val for 32bit address mode. */
2067 if (flag_code != CODE_64BIT
2068 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2069 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2070 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2071#endif
ba2adb93 2072
47926f60 2073 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2074 {
2075 char buf1[40], buf2[40];
2076
2077 sprint_value (buf1, val);
2078 sprint_value (buf2, val & mask);
2079 as_warn (_("%s shortened to %s"), buf1, buf2);
2080 }
2081 return val & mask;
2082}
2083
c32fa91d
L
2084enum PREFIX_GROUP
2085{
2086 PREFIX_EXIST = 0,
2087 PREFIX_LOCK,
2088 PREFIX_REP,
2089 PREFIX_OTHER
2090};
2091
2092/* Returns
2093 a. PREFIX_EXIST if attempting to add a prefix where one from the
2094 same class already exists.
2095 b. PREFIX_LOCK if lock prefix is added.
2096 c. PREFIX_REP if rep/repne prefix is added.
2097 d. PREFIX_OTHER if other prefix is added.
2098 */
2099
2100static enum PREFIX_GROUP
e3bb37b5 2101add_prefix (unsigned int prefix)
252b5132 2102{
c32fa91d 2103 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2104 unsigned int q;
252b5132 2105
29b0f896
AM
2106 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2107 && flag_code == CODE_64BIT)
b1905489 2108 {
161a04f6
L
2109 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2110 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2111 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2112 ret = PREFIX_EXIST;
b1905489
JB
2113 q = REX_PREFIX;
2114 }
3e73aa7c 2115 else
b1905489
JB
2116 {
2117 switch (prefix)
2118 {
2119 default:
2120 abort ();
2121
2122 case CS_PREFIX_OPCODE:
2123 case DS_PREFIX_OPCODE:
2124 case ES_PREFIX_OPCODE:
2125 case FS_PREFIX_OPCODE:
2126 case GS_PREFIX_OPCODE:
2127 case SS_PREFIX_OPCODE:
2128 q = SEG_PREFIX;
2129 break;
2130
2131 case REPNE_PREFIX_OPCODE:
2132 case REPE_PREFIX_OPCODE:
c32fa91d
L
2133 q = REP_PREFIX;
2134 ret = PREFIX_REP;
2135 break;
2136
b1905489 2137 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2138 q = LOCK_PREFIX;
2139 ret = PREFIX_LOCK;
b1905489
JB
2140 break;
2141
2142 case FWAIT_OPCODE:
2143 q = WAIT_PREFIX;
2144 break;
2145
2146 case ADDR_PREFIX_OPCODE:
2147 q = ADDR_PREFIX;
2148 break;
2149
2150 case DATA_PREFIX_OPCODE:
2151 q = DATA_PREFIX;
2152 break;
2153 }
2154 if (i.prefix[q] != 0)
c32fa91d 2155 ret = PREFIX_EXIST;
b1905489 2156 }
252b5132 2157
b1905489 2158 if (ret)
252b5132 2159 {
b1905489
JB
2160 if (!i.prefix[q])
2161 ++i.prefixes;
2162 i.prefix[q] |= prefix;
252b5132 2163 }
b1905489
JB
2164 else
2165 as_bad (_("same type of prefix used twice"));
252b5132 2166
252b5132
RH
2167 return ret;
2168}
2169
2170static void
78f12dd3 2171update_code_flag (int value, int check)
eecb386c 2172{
78f12dd3
L
2173 PRINTF_LIKE ((*as_error));
2174
1e9cc1c2 2175 flag_code = (enum flag_code) value;
40fb9820
L
2176 if (flag_code == CODE_64BIT)
2177 {
2178 cpu_arch_flags.bitfield.cpu64 = 1;
2179 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2180 }
2181 else
2182 {
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2185 }
2186 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2187 {
78f12dd3
L
2188 if (check)
2189 as_error = as_fatal;
2190 else
2191 as_error = as_bad;
2192 (*as_error) (_("64bit mode not supported on `%s'."),
2193 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2194 }
40fb9820 2195 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2196 {
78f12dd3
L
2197 if (check)
2198 as_error = as_fatal;
2199 else
2200 as_error = as_bad;
2201 (*as_error) (_("32bit mode not supported on `%s'."),
2202 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2203 }
eecb386c
AM
2204 stackop_size = '\0';
2205}
2206
78f12dd3
L
2207static void
2208set_code_flag (int value)
2209{
2210 update_code_flag (value, 0);
2211}
2212
eecb386c 2213static void
e3bb37b5 2214set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2215{
1e9cc1c2 2216 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2217 if (flag_code != CODE_16BIT)
2218 abort ();
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2221 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2222}
2223
2224static void
e3bb37b5 2225set_intel_syntax (int syntax_flag)
252b5132
RH
2226{
2227 /* Find out if register prefixing is specified. */
2228 int ask_naked_reg = 0;
2229
2230 SKIP_WHITESPACE ();
29b0f896 2231 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
2232 {
2233 char *string = input_line_pointer;
2234 int e = get_symbol_end ();
2235
47926f60 2236 if (strcmp (string, "prefix") == 0)
252b5132 2237 ask_naked_reg = 1;
47926f60 2238 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2239 ask_naked_reg = -1;
2240 else
d0b47220 2241 as_bad (_("bad argument to syntax directive."));
252b5132
RH
2242 *input_line_pointer = e;
2243 }
2244 demand_empty_rest_of_line ();
c3332e24 2245
252b5132
RH
2246 intel_syntax = syntax_flag;
2247
2248 if (ask_naked_reg == 0)
f86103b7
AM
2249 allow_naked_reg = (intel_syntax
2250 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2251 else
2252 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2253
ee86248c 2254 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2255
e4a3b5a4 2256 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2257 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2258 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2259}
2260
1efbbeb4
L
2261static void
2262set_intel_mnemonic (int mnemonic_flag)
2263{
e1d4d893 2264 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2265}
2266
db51cc60
L
2267static void
2268set_allow_index_reg (int flag)
2269{
2270 allow_index_reg = flag;
2271}
2272
cb19c032 2273static void
7bab8ab5 2274set_check (int what)
cb19c032 2275{
7bab8ab5
JB
2276 enum check_kind *kind;
2277 const char *str;
2278
2279 if (what)
2280 {
2281 kind = &operand_check;
2282 str = "operand";
2283 }
2284 else
2285 {
2286 kind = &sse_check;
2287 str = "sse";
2288 }
2289
cb19c032
L
2290 SKIP_WHITESPACE ();
2291
2292 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2293 {
2294 char *string = input_line_pointer;
2295 int e = get_symbol_end ();
2296
2297 if (strcmp (string, "none") == 0)
7bab8ab5 2298 *kind = check_none;
cb19c032 2299 else if (strcmp (string, "warning") == 0)
7bab8ab5 2300 *kind = check_warning;
cb19c032 2301 else if (strcmp (string, "error") == 0)
7bab8ab5 2302 *kind = check_error;
cb19c032 2303 else
7bab8ab5 2304 as_bad (_("bad argument to %s_check directive."), str);
cb19c032
L
2305 *input_line_pointer = e;
2306 }
2307 else
7bab8ab5 2308 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2309
2310 demand_empty_rest_of_line ();
2311}
2312
8a9036a4
L
2313static void
2314check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2315 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2316{
2317#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2318 static const char *arch;
2319
2320 /* Intel LIOM is only supported on ELF. */
2321 if (!IS_ELF)
2322 return;
2323
2324 if (!arch)
2325 {
2326 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2327 use default_arch. */
2328 arch = cpu_arch_name;
2329 if (!arch)
2330 arch = default_arch;
2331 }
2332
3632d14b 2333 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2334 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2335 || new_flag.bitfield.cpul1om)
8a9036a4 2336 return;
76ba9986 2337
7a9068fe
L
2338 /* If we are targeting Intel K1OM, we must enable it. */
2339 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2340 || new_flag.bitfield.cpuk1om)
2341 return;
2342
8a9036a4
L
2343 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2344#endif
2345}
2346
e413e4e9 2347static void
e3bb37b5 2348set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2349{
47926f60 2350 SKIP_WHITESPACE ();
e413e4e9 2351
29b0f896 2352 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
2353 {
2354 char *string = input_line_pointer;
2355 int e = get_symbol_end ();
91d6fa6a 2356 unsigned int j;
40fb9820 2357 i386_cpu_flags flags;
e413e4e9 2358
91d6fa6a 2359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2360 {
91d6fa6a 2361 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2362 {
91d6fa6a 2363 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2364
5c6af06e
JB
2365 if (*string != '.')
2366 {
91d6fa6a 2367 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2368 cpu_sub_arch_name = NULL;
91d6fa6a 2369 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2370 if (flag_code == CODE_64BIT)
2371 {
2372 cpu_arch_flags.bitfield.cpu64 = 1;
2373 cpu_arch_flags.bitfield.cpuno64 = 0;
2374 }
2375 else
2376 {
2377 cpu_arch_flags.bitfield.cpu64 = 0;
2378 cpu_arch_flags.bitfield.cpuno64 = 1;
2379 }
91d6fa6a
NC
2380 cpu_arch_isa = cpu_arch[j].type;
2381 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2382 if (!cpu_arch_tune_set)
2383 {
2384 cpu_arch_tune = cpu_arch_isa;
2385 cpu_arch_tune_flags = cpu_arch_isa_flags;
2386 }
5c6af06e
JB
2387 break;
2388 }
40fb9820 2389
22109423 2390 if (!cpu_arch[j].negated)
309d3373 2391 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2392 cpu_arch[j].flags);
309d3373
JB
2393 else
2394 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2395 cpu_arch[j].flags);
0dfbf9d7 2396 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2397 {
6305a203
L
2398 if (cpu_sub_arch_name)
2399 {
2400 char *name = cpu_sub_arch_name;
2401 cpu_sub_arch_name = concat (name,
91d6fa6a 2402 cpu_arch[j].name,
1bf57e9f 2403 (const char *) NULL);
6305a203
L
2404 free (name);
2405 }
2406 else
91d6fa6a 2407 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2408 cpu_arch_flags = flags;
a586129e 2409 cpu_arch_isa_flags = flags;
5c6af06e
JB
2410 }
2411 *input_line_pointer = e;
2412 demand_empty_rest_of_line ();
2413 return;
e413e4e9
AM
2414 }
2415 }
91d6fa6a 2416 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2417 as_bad (_("no such architecture: `%s'"), string);
2418
2419 *input_line_pointer = e;
2420 }
2421 else
2422 as_bad (_("missing cpu architecture"));
2423
fddf5b5b
AM
2424 no_cond_jump_promotion = 0;
2425 if (*input_line_pointer == ','
29b0f896 2426 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2427 {
2428 char *string = ++input_line_pointer;
2429 int e = get_symbol_end ();
2430
2431 if (strcmp (string, "nojumps") == 0)
2432 no_cond_jump_promotion = 1;
2433 else if (strcmp (string, "jumps") == 0)
2434 ;
2435 else
2436 as_bad (_("no such architecture modifier: `%s'"), string);
2437
2438 *input_line_pointer = e;
2439 }
2440
e413e4e9
AM
2441 demand_empty_rest_of_line ();
2442}
2443
8a9036a4
L
2444enum bfd_architecture
2445i386_arch (void)
2446{
3632d14b 2447 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2448 {
2449 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2450 || flag_code != CODE_64BIT)
2451 as_fatal (_("Intel L1OM is 64bit ELF only"));
2452 return bfd_arch_l1om;
2453 }
7a9068fe
L
2454 else if (cpu_arch_isa == PROCESSOR_K1OM)
2455 {
2456 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2457 || flag_code != CODE_64BIT)
2458 as_fatal (_("Intel K1OM is 64bit ELF only"));
2459 return bfd_arch_k1om;
2460 }
8a9036a4
L
2461 else
2462 return bfd_arch_i386;
2463}
2464
b9d79e03 2465unsigned long
7016a5d5 2466i386_mach (void)
b9d79e03 2467{
351f65ca 2468 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2469 {
3632d14b 2470 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2471 {
351f65ca
L
2472 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2473 || default_arch[6] != '\0')
8a9036a4
L
2474 as_fatal (_("Intel L1OM is 64bit ELF only"));
2475 return bfd_mach_l1om;
2476 }
7a9068fe
L
2477 else if (cpu_arch_isa == PROCESSOR_K1OM)
2478 {
2479 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 || default_arch[6] != '\0')
2481 as_fatal (_("Intel K1OM is 64bit ELF only"));
2482 return bfd_mach_k1om;
2483 }
351f65ca 2484 else if (default_arch[6] == '\0')
8a9036a4 2485 return bfd_mach_x86_64;
351f65ca
L
2486 else
2487 return bfd_mach_x64_32;
8a9036a4 2488 }
b9d79e03
JH
2489 else if (!strcmp (default_arch, "i386"))
2490 return bfd_mach_i386_i386;
2491 else
2b5d6a91 2492 as_fatal (_("unknown architecture"));
b9d79e03 2493}
b9d79e03 2494\f
252b5132 2495void
7016a5d5 2496md_begin (void)
252b5132
RH
2497{
2498 const char *hash_err;
2499
47926f60 2500 /* Initialize op_hash hash table. */
252b5132
RH
2501 op_hash = hash_new ();
2502
2503 {
d3ce72d0 2504 const insn_template *optab;
29b0f896 2505 templates *core_optab;
252b5132 2506
47926f60
KH
2507 /* Setup for loop. */
2508 optab = i386_optab;
252b5132
RH
2509 core_optab = (templates *) xmalloc (sizeof (templates));
2510 core_optab->start = optab;
2511
2512 while (1)
2513 {
2514 ++optab;
2515 if (optab->name == NULL
2516 || strcmp (optab->name, (optab - 1)->name) != 0)
2517 {
2518 /* different name --> ship out current template list;
47926f60 2519 add to hash table; & begin anew. */
252b5132
RH
2520 core_optab->end = optab;
2521 hash_err = hash_insert (op_hash,
2522 (optab - 1)->name,
5a49b8ac 2523 (void *) core_optab);
252b5132
RH
2524 if (hash_err)
2525 {
b37df7c4 2526 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2527 (optab - 1)->name,
2528 hash_err);
2529 }
2530 if (optab->name == NULL)
2531 break;
2532 core_optab = (templates *) xmalloc (sizeof (templates));
2533 core_optab->start = optab;
2534 }
2535 }
2536 }
2537
47926f60 2538 /* Initialize reg_hash hash table. */
252b5132
RH
2539 reg_hash = hash_new ();
2540 {
29b0f896 2541 const reg_entry *regtab;
c3fe08fa 2542 unsigned int regtab_size = i386_regtab_size;
252b5132 2543
c3fe08fa 2544 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2545 {
5a49b8ac 2546 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2547 if (hash_err)
b37df7c4 2548 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2549 regtab->reg_name,
2550 hash_err);
252b5132
RH
2551 }
2552 }
2553
47926f60 2554 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2555 {
29b0f896
AM
2556 int c;
2557 char *p;
252b5132
RH
2558
2559 for (c = 0; c < 256; c++)
2560 {
3882b010 2561 if (ISDIGIT (c))
252b5132
RH
2562 {
2563 digit_chars[c] = c;
2564 mnemonic_chars[c] = c;
2565 register_chars[c] = c;
2566 operand_chars[c] = c;
2567 }
3882b010 2568 else if (ISLOWER (c))
252b5132
RH
2569 {
2570 mnemonic_chars[c] = c;
2571 register_chars[c] = c;
2572 operand_chars[c] = c;
2573 }
3882b010 2574 else if (ISUPPER (c))
252b5132 2575 {
3882b010 2576 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2577 register_chars[c] = mnemonic_chars[c];
2578 operand_chars[c] = c;
2579 }
43234a1e
L
2580 else if (c == '{' || c == '}')
2581 operand_chars[c] = c;
252b5132 2582
3882b010 2583 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2584 identifier_chars[c] = c;
2585 else if (c >= 128)
2586 {
2587 identifier_chars[c] = c;
2588 operand_chars[c] = c;
2589 }
2590 }
2591
2592#ifdef LEX_AT
2593 identifier_chars['@'] = '@';
32137342
NC
2594#endif
2595#ifdef LEX_QM
2596 identifier_chars['?'] = '?';
2597 operand_chars['?'] = '?';
252b5132 2598#endif
252b5132 2599 digit_chars['-'] = '-';
c0f3af97 2600 mnemonic_chars['_'] = '_';
791fe849 2601 mnemonic_chars['-'] = '-';
0003779b 2602 mnemonic_chars['.'] = '.';
252b5132
RH
2603 identifier_chars['_'] = '_';
2604 identifier_chars['.'] = '.';
2605
2606 for (p = operand_special_chars; *p != '\0'; p++)
2607 operand_chars[(unsigned char) *p] = *p;
2608 }
2609
a4447b93
RH
2610 if (flag_code == CODE_64BIT)
2611 {
ca19b261
KT
2612#if defined (OBJ_COFF) && defined (TE_PE)
2613 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2614 ? 32 : 16);
2615#else
a4447b93 2616 x86_dwarf2_return_column = 16;
ca19b261 2617#endif
61ff971f 2618 x86_cie_data_alignment = -8;
a4447b93
RH
2619 }
2620 else
2621 {
2622 x86_dwarf2_return_column = 8;
2623 x86_cie_data_alignment = -4;
2624 }
252b5132
RH
2625}
2626
2627void
e3bb37b5 2628i386_print_statistics (FILE *file)
252b5132
RH
2629{
2630 hash_print_statistics (file, "i386 opcode", op_hash);
2631 hash_print_statistics (file, "i386 register", reg_hash);
2632}
2633\f
252b5132
RH
2634#ifdef DEBUG386
2635
ce8a8b2f 2636/* Debugging routines for md_assemble. */
d3ce72d0 2637static void pte (insn_template *);
40fb9820 2638static void pt (i386_operand_type);
e3bb37b5
L
2639static void pe (expressionS *);
2640static void ps (symbolS *);
252b5132
RH
2641
2642static void
e3bb37b5 2643pi (char *line, i386_insn *x)
252b5132 2644{
09137c09 2645 unsigned int j;
252b5132
RH
2646
2647 fprintf (stdout, "%s: template ", line);
2648 pte (&x->tm);
09f131f2
JH
2649 fprintf (stdout, " address: base %s index %s scale %x\n",
2650 x->base_reg ? x->base_reg->reg_name : "none",
2651 x->index_reg ? x->index_reg->reg_name : "none",
2652 x->log2_scale_factor);
2653 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2654 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2655 fprintf (stdout, " sib: base %x index %x scale %x\n",
2656 x->sib.base, x->sib.index, x->sib.scale);
2657 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2658 (x->rex & REX_W) != 0,
2659 (x->rex & REX_R) != 0,
2660 (x->rex & REX_X) != 0,
2661 (x->rex & REX_B) != 0);
09137c09 2662 for (j = 0; j < x->operands; j++)
252b5132 2663 {
09137c09
SP
2664 fprintf (stdout, " #%d: ", j + 1);
2665 pt (x->types[j]);
252b5132 2666 fprintf (stdout, "\n");
09137c09
SP
2667 if (x->types[j].bitfield.reg8
2668 || x->types[j].bitfield.reg16
2669 || x->types[j].bitfield.reg32
2670 || x->types[j].bitfield.reg64
2671 || x->types[j].bitfield.regmmx
2672 || x->types[j].bitfield.regxmm
2673 || x->types[j].bitfield.regymm
43234a1e 2674 || x->types[j].bitfield.regzmm
09137c09
SP
2675 || x->types[j].bitfield.sreg2
2676 || x->types[j].bitfield.sreg3
2677 || x->types[j].bitfield.control
2678 || x->types[j].bitfield.debug
2679 || x->types[j].bitfield.test)
2680 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2681 if (operand_type_check (x->types[j], imm))
2682 pe (x->op[j].imms);
2683 if (operand_type_check (x->types[j], disp))
2684 pe (x->op[j].disps);
252b5132
RH
2685 }
2686}
2687
2688static void
d3ce72d0 2689pte (insn_template *t)
252b5132 2690{
09137c09 2691 unsigned int j;
252b5132 2692 fprintf (stdout, " %d operands ", t->operands);
47926f60 2693 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2694 if (t->extension_opcode != None)
2695 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2696 if (t->opcode_modifier.d)
252b5132 2697 fprintf (stdout, "D");
40fb9820 2698 if (t->opcode_modifier.w)
252b5132
RH
2699 fprintf (stdout, "W");
2700 fprintf (stdout, "\n");
09137c09 2701 for (j = 0; j < t->operands; j++)
252b5132 2702 {
09137c09
SP
2703 fprintf (stdout, " #%d type ", j + 1);
2704 pt (t->operand_types[j]);
252b5132
RH
2705 fprintf (stdout, "\n");
2706 }
2707}
2708
2709static void
e3bb37b5 2710pe (expressionS *e)
252b5132 2711{
24eab124 2712 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2713 fprintf (stdout, " add_number %ld (%lx)\n",
2714 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2715 if (e->X_add_symbol)
2716 {
2717 fprintf (stdout, " add_symbol ");
2718 ps (e->X_add_symbol);
2719 fprintf (stdout, "\n");
2720 }
2721 if (e->X_op_symbol)
2722 {
2723 fprintf (stdout, " op_symbol ");
2724 ps (e->X_op_symbol);
2725 fprintf (stdout, "\n");
2726 }
2727}
2728
2729static void
e3bb37b5 2730ps (symbolS *s)
252b5132
RH
2731{
2732 fprintf (stdout, "%s type %s%s",
2733 S_GET_NAME (s),
2734 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2735 segment_name (S_GET_SEGMENT (s)));
2736}
2737
7b81dfbb 2738static struct type_name
252b5132 2739 {
40fb9820
L
2740 i386_operand_type mask;
2741 const char *name;
252b5132 2742 }
7b81dfbb 2743const type_names[] =
252b5132 2744{
40fb9820
L
2745 { OPERAND_TYPE_REG8, "r8" },
2746 { OPERAND_TYPE_REG16, "r16" },
2747 { OPERAND_TYPE_REG32, "r32" },
2748 { OPERAND_TYPE_REG64, "r64" },
2749 { OPERAND_TYPE_IMM8, "i8" },
2750 { OPERAND_TYPE_IMM8, "i8s" },
2751 { OPERAND_TYPE_IMM16, "i16" },
2752 { OPERAND_TYPE_IMM32, "i32" },
2753 { OPERAND_TYPE_IMM32S, "i32s" },
2754 { OPERAND_TYPE_IMM64, "i64" },
2755 { OPERAND_TYPE_IMM1, "i1" },
2756 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2757 { OPERAND_TYPE_DISP8, "d8" },
2758 { OPERAND_TYPE_DISP16, "d16" },
2759 { OPERAND_TYPE_DISP32, "d32" },
2760 { OPERAND_TYPE_DISP32S, "d32s" },
2761 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2762 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2763 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2764 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2765 { OPERAND_TYPE_CONTROL, "control reg" },
2766 { OPERAND_TYPE_TEST, "test reg" },
2767 { OPERAND_TYPE_DEBUG, "debug reg" },
2768 { OPERAND_TYPE_FLOATREG, "FReg" },
2769 { OPERAND_TYPE_FLOATACC, "FAcc" },
2770 { OPERAND_TYPE_SREG2, "SReg2" },
2771 { OPERAND_TYPE_SREG3, "SReg3" },
2772 { OPERAND_TYPE_ACC, "Acc" },
2773 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2774 { OPERAND_TYPE_REGMMX, "rMMX" },
2775 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2776 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2777 { OPERAND_TYPE_REGZMM, "rZMM" },
2778 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2779 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2780};
2781
2782static void
40fb9820 2783pt (i386_operand_type t)
252b5132 2784{
40fb9820 2785 unsigned int j;
c6fb90c8 2786 i386_operand_type a;
252b5132 2787
40fb9820 2788 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2789 {
2790 a = operand_type_and (t, type_names[j].mask);
0349dc08 2791 if (!operand_type_all_zero (&a))
c6fb90c8
L
2792 fprintf (stdout, "%s, ", type_names[j].name);
2793 }
252b5132
RH
2794 fflush (stdout);
2795}
2796
2797#endif /* DEBUG386 */
2798\f
252b5132 2799static bfd_reloc_code_real_type
3956db08 2800reloc (unsigned int size,
64e74474
AM
2801 int pcrel,
2802 int sign,
2803 bfd_reloc_code_real_type other)
252b5132 2804{
47926f60 2805 if (other != NO_RELOC)
3956db08 2806 {
91d6fa6a 2807 reloc_howto_type *rel;
3956db08
JB
2808
2809 if (size == 8)
2810 switch (other)
2811 {
64e74474
AM
2812 case BFD_RELOC_X86_64_GOT32:
2813 return BFD_RELOC_X86_64_GOT64;
2814 break;
2815 case BFD_RELOC_X86_64_PLTOFF64:
2816 return BFD_RELOC_X86_64_PLTOFF64;
2817 break;
2818 case BFD_RELOC_X86_64_GOTPC32:
2819 other = BFD_RELOC_X86_64_GOTPC64;
2820 break;
2821 case BFD_RELOC_X86_64_GOTPCREL:
2822 other = BFD_RELOC_X86_64_GOTPCREL64;
2823 break;
2824 case BFD_RELOC_X86_64_TPOFF32:
2825 other = BFD_RELOC_X86_64_TPOFF64;
2826 break;
2827 case BFD_RELOC_X86_64_DTPOFF32:
2828 other = BFD_RELOC_X86_64_DTPOFF64;
2829 break;
2830 default:
2831 break;
3956db08 2832 }
e05278af 2833
8ce3d284 2834#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2835 if (other == BFD_RELOC_SIZE32)
2836 {
2837 if (size == 8)
2838 return BFD_RELOC_SIZE64;
2839 if (pcrel)
2840 as_bad (_("there are no pc-relative size relocations"));
2841 }
8ce3d284 2842#endif
8fd4256d 2843
e05278af 2844 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2845 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2846 sign = -1;
2847
91d6fa6a
NC
2848 rel = bfd_reloc_type_lookup (stdoutput, other);
2849 if (!rel)
3956db08 2850 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2851 else if (size != bfd_get_reloc_size (rel))
3956db08 2852 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2853 bfd_get_reloc_size (rel),
3956db08 2854 size);
91d6fa6a 2855 else if (pcrel && !rel->pc_relative)
3956db08 2856 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2857 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2858 && !sign)
91d6fa6a 2859 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2860 && sign > 0))
3956db08
JB
2861 as_bad (_("relocated field and relocation type differ in signedness"));
2862 else
2863 return other;
2864 return NO_RELOC;
2865 }
252b5132
RH
2866
2867 if (pcrel)
2868 {
3e73aa7c 2869 if (!sign)
3956db08 2870 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2871 switch (size)
2872 {
2873 case 1: return BFD_RELOC_8_PCREL;
2874 case 2: return BFD_RELOC_16_PCREL;
2875 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2876 case 8: return BFD_RELOC_64_PCREL;
252b5132 2877 }
3956db08 2878 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2879 }
2880 else
2881 {
3956db08 2882 if (sign > 0)
e5cb08ac 2883 switch (size)
3e73aa7c
JH
2884 {
2885 case 4: return BFD_RELOC_X86_64_32S;
2886 }
2887 else
2888 switch (size)
2889 {
2890 case 1: return BFD_RELOC_8;
2891 case 2: return BFD_RELOC_16;
2892 case 4: return BFD_RELOC_32;
2893 case 8: return BFD_RELOC_64;
2894 }
3956db08
JB
2895 as_bad (_("cannot do %s %u byte relocation"),
2896 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2897 }
2898
0cc9e1d3 2899 return NO_RELOC;
252b5132
RH
2900}
2901
47926f60
KH
2902/* Here we decide which fixups can be adjusted to make them relative to
2903 the beginning of the section instead of the symbol. Basically we need
2904 to make sure that the dynamic relocations are done correctly, so in
2905 some cases we force the original symbol to be used. */
2906
252b5132 2907int
e3bb37b5 2908tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2909{
6d249963 2910#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2911 if (!IS_ELF)
31312f95
AM
2912 return 1;
2913
a161fe53
AM
2914 /* Don't adjust pc-relative references to merge sections in 64-bit
2915 mode. */
2916 if (use_rela_relocations
2917 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2918 && fixP->fx_pcrel)
252b5132 2919 return 0;
31312f95 2920
8d01d9a9
AJ
2921 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2922 and changed later by validate_fix. */
2923 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2924 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2925 return 0;
2926
8fd4256d
L
2927 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2928 for size relocations. */
2929 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2930 || fixP->fx_r_type == BFD_RELOC_SIZE64
2931 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
2932 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2933 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2946 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2950 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2959 return 0;
31312f95 2960#endif
252b5132
RH
2961 return 1;
2962}
252b5132 2963
b4cac588 2964static int
e3bb37b5 2965intel_float_operand (const char *mnemonic)
252b5132 2966{
9306ca4a
JB
2967 /* Note that the value returned is meaningful only for opcodes with (memory)
2968 operands, hence the code here is free to improperly handle opcodes that
2969 have no operands (for better performance and smaller code). */
2970
2971 if (mnemonic[0] != 'f')
2972 return 0; /* non-math */
2973
2974 switch (mnemonic[1])
2975 {
2976 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2977 the fs segment override prefix not currently handled because no
2978 call path can make opcodes without operands get here */
2979 case 'i':
2980 return 2 /* integer op */;
2981 case 'l':
2982 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2983 return 3; /* fldcw/fldenv */
2984 break;
2985 case 'n':
2986 if (mnemonic[2] != 'o' /* fnop */)
2987 return 3; /* non-waiting control op */
2988 break;
2989 case 'r':
2990 if (mnemonic[2] == 's')
2991 return 3; /* frstor/frstpm */
2992 break;
2993 case 's':
2994 if (mnemonic[2] == 'a')
2995 return 3; /* fsave */
2996 if (mnemonic[2] == 't')
2997 {
2998 switch (mnemonic[3])
2999 {
3000 case 'c': /* fstcw */
3001 case 'd': /* fstdw */
3002 case 'e': /* fstenv */
3003 case 's': /* fsts[gw] */
3004 return 3;
3005 }
3006 }
3007 break;
3008 case 'x':
3009 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3010 return 0; /* fxsave/fxrstor are not really math ops */
3011 break;
3012 }
252b5132 3013
9306ca4a 3014 return 1;
252b5132
RH
3015}
3016
c0f3af97
L
3017/* Build the VEX prefix. */
3018
3019static void
d3ce72d0 3020build_vex_prefix (const insn_template *t)
c0f3af97
L
3021{
3022 unsigned int register_specifier;
3023 unsigned int implied_prefix;
3024 unsigned int vector_length;
3025
3026 /* Check register specifier. */
3027 if (i.vex.register_specifier)
43234a1e
L
3028 {
3029 register_specifier =
3030 ~register_number (i.vex.register_specifier) & 0xf;
3031 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3032 }
c0f3af97
L
3033 else
3034 register_specifier = 0xf;
3035
fa99fab2
L
3036 /* Use 2-byte VEX prefix by swappping destination and source
3037 operand. */
3038 if (!i.swap_operand
3039 && i.operands == i.reg_operands
7f399153 3040 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
3041 && i.tm.opcode_modifier.s
3042 && i.rex == REX_B)
3043 {
3044 unsigned int xchg = i.operands - 1;
3045 union i386_op temp_op;
3046 i386_operand_type temp_type;
3047
3048 temp_type = i.types[xchg];
3049 i.types[xchg] = i.types[0];
3050 i.types[0] = temp_type;
3051 temp_op = i.op[xchg];
3052 i.op[xchg] = i.op[0];
3053 i.op[0] = temp_op;
3054
9c2799c2 3055 gas_assert (i.rm.mode == 3);
fa99fab2
L
3056
3057 i.rex = REX_R;
3058 xchg = i.rm.regmem;
3059 i.rm.regmem = i.rm.reg;
3060 i.rm.reg = xchg;
3061
3062 /* Use the next insn. */
3063 i.tm = t[1];
3064 }
3065
539f890d
L
3066 if (i.tm.opcode_modifier.vex == VEXScalar)
3067 vector_length = avxscalar;
3068 else
3069 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3070
3071 switch ((i.tm.base_opcode >> 8) & 0xff)
3072 {
3073 case 0:
3074 implied_prefix = 0;
3075 break;
3076 case DATA_PREFIX_OPCODE:
3077 implied_prefix = 1;
3078 break;
3079 case REPE_PREFIX_OPCODE:
3080 implied_prefix = 2;
3081 break;
3082 case REPNE_PREFIX_OPCODE:
3083 implied_prefix = 3;
3084 break;
3085 default:
3086 abort ();
3087 }
3088
3089 /* Use 2-byte VEX prefix if possible. */
7f399153 3090 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3091 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3092 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3093 {
3094 /* 2-byte VEX prefix. */
3095 unsigned int r;
3096
3097 i.vex.length = 2;
3098 i.vex.bytes[0] = 0xc5;
3099
3100 /* Check the REX.R bit. */
3101 r = (i.rex & REX_R) ? 0 : 1;
3102 i.vex.bytes[1] = (r << 7
3103 | register_specifier << 3
3104 | vector_length << 2
3105 | implied_prefix);
3106 }
3107 else
3108 {
3109 /* 3-byte VEX prefix. */
3110 unsigned int m, w;
3111
f88c9eb0 3112 i.vex.length = 3;
f88c9eb0 3113
7f399153 3114 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3115 {
7f399153
L
3116 case VEX0F:
3117 m = 0x1;
80de6e00 3118 i.vex.bytes[0] = 0xc4;
7f399153
L
3119 break;
3120 case VEX0F38:
3121 m = 0x2;
80de6e00 3122 i.vex.bytes[0] = 0xc4;
7f399153
L
3123 break;
3124 case VEX0F3A:
3125 m = 0x3;
80de6e00 3126 i.vex.bytes[0] = 0xc4;
7f399153
L
3127 break;
3128 case XOP08:
5dd85c99
SP
3129 m = 0x8;
3130 i.vex.bytes[0] = 0x8f;
7f399153
L
3131 break;
3132 case XOP09:
f88c9eb0
SP
3133 m = 0x9;
3134 i.vex.bytes[0] = 0x8f;
7f399153
L
3135 break;
3136 case XOP0A:
f88c9eb0
SP
3137 m = 0xa;
3138 i.vex.bytes[0] = 0x8f;
7f399153
L
3139 break;
3140 default:
3141 abort ();
f88c9eb0 3142 }
c0f3af97 3143
c0f3af97
L
3144 /* The high 3 bits of the second VEX byte are 1's compliment
3145 of RXB bits from REX. */
3146 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3147
3148 /* Check the REX.W bit. */
3149 w = (i.rex & REX_W) ? 1 : 0;
1ef99a7b 3150 if (i.tm.opcode_modifier.vexw)
c0f3af97
L
3151 {
3152 if (w)
3153 abort ();
3154
1ef99a7b 3155 if (i.tm.opcode_modifier.vexw == VEXW1)
c0f3af97
L
3156 w = 1;
3157 }
3158
3159 i.vex.bytes[2] = (w << 7
3160 | register_specifier << 3
3161 | vector_length << 2
3162 | implied_prefix);
3163 }
3164}
3165
43234a1e
L
3166/* Build the EVEX prefix. */
3167
3168static void
3169build_evex_prefix (void)
3170{
3171 unsigned int register_specifier;
3172 unsigned int implied_prefix;
3173 unsigned int m, w;
3174 rex_byte vrex_used = 0;
3175
3176 /* Check register specifier. */
3177 if (i.vex.register_specifier)
3178 {
3179 gas_assert ((i.vrex & REX_X) == 0);
3180
3181 register_specifier = i.vex.register_specifier->reg_num;
3182 if ((i.vex.register_specifier->reg_flags & RegRex))
3183 register_specifier += 8;
3184 /* The upper 16 registers are encoded in the fourth byte of the
3185 EVEX prefix. */
3186 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3187 i.vex.bytes[3] = 0x8;
3188 register_specifier = ~register_specifier & 0xf;
3189 }
3190 else
3191 {
3192 register_specifier = 0xf;
3193
3194 /* Encode upper 16 vector index register in the fourth byte of
3195 the EVEX prefix. */
3196 if (!(i.vrex & REX_X))
3197 i.vex.bytes[3] = 0x8;
3198 else
3199 vrex_used |= REX_X;
3200 }
3201
3202 switch ((i.tm.base_opcode >> 8) & 0xff)
3203 {
3204 case 0:
3205 implied_prefix = 0;
3206 break;
3207 case DATA_PREFIX_OPCODE:
3208 implied_prefix = 1;
3209 break;
3210 case REPE_PREFIX_OPCODE:
3211 implied_prefix = 2;
3212 break;
3213 case REPNE_PREFIX_OPCODE:
3214 implied_prefix = 3;
3215 break;
3216 default:
3217 abort ();
3218 }
3219
3220 /* 4 byte EVEX prefix. */
3221 i.vex.length = 4;
3222 i.vex.bytes[0] = 0x62;
3223
3224 /* mmmm bits. */
3225 switch (i.tm.opcode_modifier.vexopcode)
3226 {
3227 case VEX0F:
3228 m = 1;
3229 break;
3230 case VEX0F38:
3231 m = 2;
3232 break;
3233 case VEX0F3A:
3234 m = 3;
3235 break;
3236 default:
3237 abort ();
3238 break;
3239 }
3240
3241 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3242 bits from REX. */
3243 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3244
3245 /* The fifth bit of the second EVEX byte is 1's compliment of the
3246 REX_R bit in VREX. */
3247 if (!(i.vrex & REX_R))
3248 i.vex.bytes[1] |= 0x10;
3249 else
3250 vrex_used |= REX_R;
3251
3252 if ((i.reg_operands + i.imm_operands) == i.operands)
3253 {
3254 /* When all operands are registers, the REX_X bit in REX is not
3255 used. We reuse it to encode the upper 16 registers, which is
3256 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3257 as 1's compliment. */
3258 if ((i.vrex & REX_B))
3259 {
3260 vrex_used |= REX_B;
3261 i.vex.bytes[1] &= ~0x40;
3262 }
3263 }
3264
3265 /* EVEX instructions shouldn't need the REX prefix. */
3266 i.vrex &= ~vrex_used;
3267 gas_assert (i.vrex == 0);
3268
3269 /* Check the REX.W bit. */
3270 w = (i.rex & REX_W) ? 1 : 0;
3271 if (i.tm.opcode_modifier.vexw)
3272 {
3273 if (i.tm.opcode_modifier.vexw == VEXW1)
3274 w = 1;
3275 }
3276 /* If w is not set it means we are dealing with WIG instruction. */
3277 else if (!w)
3278 {
3279 if (evexwig == evexw1)
3280 w = 1;
3281 }
3282
3283 /* Encode the U bit. */
3284 implied_prefix |= 0x4;
3285
3286 /* The third byte of the EVEX prefix. */
3287 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3288
3289 /* The fourth byte of the EVEX prefix. */
3290 /* The zeroing-masking bit. */
3291 if (i.mask && i.mask->zeroing)
3292 i.vex.bytes[3] |= 0x80;
3293
3294 /* Don't always set the broadcast bit if there is no RC. */
3295 if (!i.rounding)
3296 {
3297 /* Encode the vector length. */
3298 unsigned int vec_length;
3299
3300 switch (i.tm.opcode_modifier.evex)
3301 {
3302 case EVEXLIG: /* LL' is ignored */
3303 vec_length = evexlig << 5;
3304 break;
3305 case EVEX128:
3306 vec_length = 0 << 5;
3307 break;
3308 case EVEX256:
3309 vec_length = 1 << 5;
3310 break;
3311 case EVEX512:
3312 vec_length = 2 << 5;
3313 break;
3314 default:
3315 abort ();
3316 break;
3317 }
3318 i.vex.bytes[3] |= vec_length;
3319 /* Encode the broadcast bit. */
3320 if (i.broadcast)
3321 i.vex.bytes[3] |= 0x10;
3322 }
3323 else
3324 {
3325 if (i.rounding->type != saeonly)
3326 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3327 else
3328 i.vex.bytes[3] |= 0x10;
3329 }
3330
3331 if (i.mask && i.mask->mask)
3332 i.vex.bytes[3] |= i.mask->mask->reg_num;
3333}
3334
65da13b5
L
3335static void
3336process_immext (void)
3337{
3338 expressionS *exp;
3339
4c692bc7
JB
3340 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3341 && i.operands > 0)
65da13b5 3342 {
4c692bc7
JB
3343 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3344 with an opcode suffix which is coded in the same place as an
3345 8-bit immediate field would be.
3346 Here we check those operands and remove them afterwards. */
65da13b5
L
3347 unsigned int x;
3348
3349 for (x = 0; x < i.operands; x++)
4c692bc7 3350 if (register_number (i.op[x].regs) != x)
65da13b5 3351 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3352 register_prefix, i.op[x].regs->reg_name, x + 1,
3353 i.tm.name);
3354
3355 i.operands = 0;
65da13b5
L
3356 }
3357
c0f3af97 3358 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3359 which is coded in the same place as an 8-bit immediate field
3360 would be. Here we fake an 8-bit immediate operand from the
3361 opcode suffix stored in tm.extension_opcode.
3362
c1e679ec 3363 AVX instructions also use this encoding, for some of
c0f3af97 3364 3 argument instructions. */
65da13b5 3365
43234a1e 3366 gas_assert (i.imm_operands <= 1
7ab9ffdd 3367 && (i.operands <= 2
43234a1e
L
3368 || ((i.tm.opcode_modifier.vex
3369 || i.tm.opcode_modifier.evex)
7ab9ffdd 3370 && i.operands <= 4)));
65da13b5
L
3371
3372 exp = &im_expressions[i.imm_operands++];
3373 i.op[i.operands].imms = exp;
3374 i.types[i.operands] = imm8;
3375 i.operands++;
3376 exp->X_op = O_constant;
3377 exp->X_add_number = i.tm.extension_opcode;
3378 i.tm.extension_opcode = None;
3379}
3380
42164a71
L
3381
3382static int
3383check_hle (void)
3384{
3385 switch (i.tm.opcode_modifier.hleprefixok)
3386 {
3387 default:
3388 abort ();
82c2def5 3389 case HLEPrefixNone:
165de32a
L
3390 as_bad (_("invalid instruction `%s' after `%s'"),
3391 i.tm.name, i.hle_prefix);
42164a71 3392 return 0;
82c2def5 3393 case HLEPrefixLock:
42164a71
L
3394 if (i.prefix[LOCK_PREFIX])
3395 return 1;
165de32a 3396 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3397 return 0;
82c2def5 3398 case HLEPrefixAny:
42164a71 3399 return 1;
82c2def5 3400 case HLEPrefixRelease:
42164a71
L
3401 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3402 {
3403 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3404 i.tm.name);
3405 return 0;
3406 }
3407 if (i.mem_operands == 0
3408 || !operand_type_check (i.types[i.operands - 1], anymem))
3409 {
3410 as_bad (_("memory destination needed for instruction `%s'"
3411 " after `xrelease'"), i.tm.name);
3412 return 0;
3413 }
3414 return 1;
3415 }
3416}
3417
252b5132
RH
3418/* This is the guts of the machine-dependent assembler. LINE points to a
3419 machine dependent instruction. This function is supposed to emit
3420 the frags/bytes it assembles to. */
3421
3422void
65da13b5 3423md_assemble (char *line)
252b5132 3424{
40fb9820 3425 unsigned int j;
252b5132 3426 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 3427 const insn_template *t;
252b5132 3428
47926f60 3429 /* Initialize globals. */
252b5132
RH
3430 memset (&i, '\0', sizeof (i));
3431 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3432 i.reloc[j] = NO_RELOC;
252b5132
RH
3433 memset (disp_expressions, '\0', sizeof (disp_expressions));
3434 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3435 save_stack_p = save_stack;
252b5132
RH
3436
3437 /* First parse an instruction mnemonic & call i386_operand for the operands.
3438 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3439 start of a (possibly prefixed) mnemonic. */
252b5132 3440
29b0f896
AM
3441 line = parse_insn (line, mnemonic);
3442 if (line == NULL)
3443 return;
252b5132 3444
29b0f896 3445 line = parse_operands (line, mnemonic);
ee86248c 3446 this_operand = -1;
29b0f896
AM
3447 if (line == NULL)
3448 return;
252b5132 3449
29b0f896
AM
3450 /* Now we've parsed the mnemonic into a set of templates, and have the
3451 operands at hand. */
3452
3453 /* All intel opcodes have reversed operands except for "bound" and
3454 "enter". We also don't reverse intersegment "jmp" and "call"
3455 instructions with 2 immediate operands so that the immediate segment
050dfa73 3456 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3457 if (intel_syntax
3458 && i.operands > 1
29b0f896 3459 && (strcmp (mnemonic, "bound") != 0)
30123838 3460 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3461 && !(operand_type_check (i.types[0], imm)
3462 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3463 swap_operands ();
3464
ec56d5c0
JB
3465 /* The order of the immediates should be reversed
3466 for 2 immediates extrq and insertq instructions */
3467 if (i.imm_operands == 2
3468 && (strcmp (mnemonic, "extrq") == 0
3469 || strcmp (mnemonic, "insertq") == 0))
3470 swap_2_operands (0, 1);
3471
29b0f896
AM
3472 if (i.imm_operands)
3473 optimize_imm ();
3474
b300c311
L
3475 /* Don't optimize displacement for movabs since it only takes 64bit
3476 displacement. */
3477 if (i.disp_operands
a501d77e 3478 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3479 && (flag_code != CODE_64BIT
3480 || strcmp (mnemonic, "movabs") != 0))
3481 optimize_disp ();
29b0f896
AM
3482
3483 /* Next, we find a template that matches the given insn,
3484 making sure the overlap of the given operands types is consistent
3485 with the template operand types. */
252b5132 3486
fa99fab2 3487 if (!(t = match_template ()))
29b0f896 3488 return;
252b5132 3489
7bab8ab5 3490 if (sse_check != check_none
81f8a913 3491 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3492 && (i.tm.cpu_flags.bitfield.cpusse
3493 || i.tm.cpu_flags.bitfield.cpusse2
3494 || i.tm.cpu_flags.bitfield.cpusse3
3495 || i.tm.cpu_flags.bitfield.cpussse3
3496 || i.tm.cpu_flags.bitfield.cpusse4_1
3497 || i.tm.cpu_flags.bitfield.cpusse4_2))
3498 {
7bab8ab5 3499 (sse_check == check_warning
daf50ae7
L
3500 ? as_warn
3501 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3502 }
3503
321fd21e
L
3504 /* Zap movzx and movsx suffix. The suffix has been set from
3505 "word ptr" or "byte ptr" on the source operand in Intel syntax
3506 or extracted from mnemonic in AT&T syntax. But we'll use
3507 the destination register to choose the suffix for encoding. */
3508 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3509 {
321fd21e
L
3510 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3511 there is no suffix, the default will be byte extension. */
3512 if (i.reg_operands != 2
3513 && !i.suffix
7ab9ffdd 3514 && intel_syntax)
321fd21e
L
3515 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3516
3517 i.suffix = 0;
cd61ebfe 3518 }
24eab124 3519
40fb9820 3520 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3521 if (!add_prefix (FWAIT_OPCODE))
3522 return;
252b5132 3523
d5de92cf
L
3524 /* Check if REP prefix is OK. */
3525 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3526 {
3527 as_bad (_("invalid instruction `%s' after `%s'"),
3528 i.tm.name, i.rep_prefix);
3529 return;
3530 }
3531
c1ba0266
L
3532 /* Check for lock without a lockable instruction. Destination operand
3533 must be memory unless it is xchg (0x86). */
c32fa91d
L
3534 if (i.prefix[LOCK_PREFIX]
3535 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3536 || i.mem_operands == 0
3537 || (i.tm.base_opcode != 0x86
3538 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3539 {
3540 as_bad (_("expecting lockable instruction after `lock'"));
3541 return;
3542 }
3543
42164a71 3544 /* Check if HLE prefix is OK. */
165de32a 3545 if (i.hle_prefix && !check_hle ())
42164a71
L
3546 return;
3547
7e8b059b
L
3548 /* Check BND prefix. */
3549 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3550 as_bad (_("expecting valid branch instruction after `bnd'"));
3551
3552 if (i.tm.cpu_flags.bitfield.cpumpx
3553 && flag_code == CODE_64BIT
3554 && i.prefix[ADDR_PREFIX])
3555 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3556
3557 /* Insert BND prefix. */
3558 if (add_bnd_prefix
3559 && i.tm.opcode_modifier.bndprefixok
3560 && !i.prefix[BND_PREFIX])
3561 add_prefix (BND_PREFIX_OPCODE);
3562
29b0f896 3563 /* Check string instruction segment overrides. */
40fb9820 3564 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3565 {
3566 if (!check_string ())
5dd0794d 3567 return;
fc0763e6 3568 i.disp_operands = 0;
29b0f896 3569 }
5dd0794d 3570
29b0f896
AM
3571 if (!process_suffix ())
3572 return;
e413e4e9 3573
bc0844ae
L
3574 /* Update operand types. */
3575 for (j = 0; j < i.operands; j++)
3576 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3577
29b0f896
AM
3578 /* Make still unresolved immediate matches conform to size of immediate
3579 given in i.suffix. */
3580 if (!finalize_imm ())
3581 return;
252b5132 3582
40fb9820 3583 if (i.types[0].bitfield.imm1)
29b0f896 3584 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3585
9afe6eb8
L
3586 /* We only need to check those implicit registers for instructions
3587 with 3 operands or less. */
3588 if (i.operands <= 3)
3589 for (j = 0; j < i.operands; j++)
3590 if (i.types[j].bitfield.inoutportreg
3591 || i.types[j].bitfield.shiftcount
3592 || i.types[j].bitfield.acc
3593 || i.types[j].bitfield.floatacc)
3594 i.reg_operands--;
40fb9820 3595
c0f3af97
L
3596 /* ImmExt should be processed after SSE2AVX. */
3597 if (!i.tm.opcode_modifier.sse2avx
3598 && i.tm.opcode_modifier.immext)
65da13b5 3599 process_immext ();
252b5132 3600
29b0f896
AM
3601 /* For insns with operands there are more diddles to do to the opcode. */
3602 if (i.operands)
3603 {
3604 if (!process_operands ())
3605 return;
3606 }
40fb9820 3607 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3608 {
3609 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3610 as_warn (_("translating to `%sp'"), i.tm.name);
3611 }
252b5132 3612
c0f3af97 3613 if (i.tm.opcode_modifier.vex)
fa99fab2 3614 build_vex_prefix (t);
c0f3af97 3615
43234a1e
L
3616 if (i.tm.opcode_modifier.evex)
3617 build_evex_prefix ();
3618
5dd85c99
SP
3619 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3620 instructions may define INT_OPCODE as well, so avoid this corner
3621 case for those instructions that use MODRM. */
3622 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3623 && !i.tm.opcode_modifier.modrm
3624 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3625 {
3626 i.tm.base_opcode = INT3_OPCODE;
3627 i.imm_operands = 0;
3628 }
252b5132 3629
40fb9820
L
3630 if ((i.tm.opcode_modifier.jump
3631 || i.tm.opcode_modifier.jumpbyte
3632 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3633 && i.op[0].disps->X_op == O_constant)
3634 {
3635 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3636 the absolute address given by the constant. Since ix86 jumps and
3637 calls are pc relative, we need to generate a reloc. */
3638 i.op[0].disps->X_add_symbol = &abs_symbol;
3639 i.op[0].disps->X_op = O_symbol;
3640 }
252b5132 3641
40fb9820 3642 if (i.tm.opcode_modifier.rex64)
161a04f6 3643 i.rex |= REX_W;
252b5132 3644
29b0f896
AM
3645 /* For 8 bit registers we need an empty rex prefix. Also if the
3646 instruction already has a prefix, we need to convert old
3647 registers to new ones. */
773f551c 3648
40fb9820 3649 if ((i.types[0].bitfield.reg8
29b0f896 3650 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3651 || (i.types[1].bitfield.reg8
29b0f896 3652 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3653 || ((i.types[0].bitfield.reg8
3654 || i.types[1].bitfield.reg8)
29b0f896
AM
3655 && i.rex != 0))
3656 {
3657 int x;
726c5dcd 3658
29b0f896
AM
3659 i.rex |= REX_OPCODE;
3660 for (x = 0; x < 2; x++)
3661 {
3662 /* Look for 8 bit operand that uses old registers. */
40fb9820 3663 if (i.types[x].bitfield.reg8
29b0f896 3664 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3665 {
29b0f896
AM
3666 /* In case it is "hi" register, give up. */
3667 if (i.op[x].regs->reg_num > 3)
a540244d 3668 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3669 "instruction requiring REX prefix."),
a540244d 3670 register_prefix, i.op[x].regs->reg_name);
773f551c 3671
29b0f896
AM
3672 /* Otherwise it is equivalent to the extended register.
3673 Since the encoding doesn't change this is merely
3674 cosmetic cleanup for debug output. */
3675
3676 i.op[x].regs = i.op[x].regs + 8;
773f551c 3677 }
29b0f896
AM
3678 }
3679 }
773f551c 3680
7ab9ffdd 3681 if (i.rex != 0)
29b0f896
AM
3682 add_prefix (REX_OPCODE | i.rex);
3683
3684 /* We are ready to output the insn. */
3685 output_insn ();
3686}
3687
3688static char *
e3bb37b5 3689parse_insn (char *line, char *mnemonic)
29b0f896
AM
3690{
3691 char *l = line;
3692 char *token_start = l;
3693 char *mnem_p;
5c6af06e 3694 int supported;
d3ce72d0 3695 const insn_template *t;
b6169b20 3696 char *dot_p = NULL;
29b0f896 3697
29b0f896
AM
3698 while (1)
3699 {
3700 mnem_p = mnemonic;
3701 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3702 {
b6169b20
L
3703 if (*mnem_p == '.')
3704 dot_p = mnem_p;
29b0f896
AM
3705 mnem_p++;
3706 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3707 {
29b0f896
AM
3708 as_bad (_("no such instruction: `%s'"), token_start);
3709 return NULL;
3710 }
3711 l++;
3712 }
3713 if (!is_space_char (*l)
3714 && *l != END_OF_INSN
e44823cf
JB
3715 && (intel_syntax
3716 || (*l != PREFIX_SEPARATOR
3717 && *l != ',')))
29b0f896
AM
3718 {
3719 as_bad (_("invalid character %s in mnemonic"),
3720 output_invalid (*l));
3721 return NULL;
3722 }
3723 if (token_start == l)
3724 {
e44823cf 3725 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3726 as_bad (_("expecting prefix; got nothing"));
3727 else
3728 as_bad (_("expecting mnemonic; got nothing"));
3729 return NULL;
3730 }
45288df1 3731
29b0f896 3732 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3733 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3734
29b0f896
AM
3735 if (*l != END_OF_INSN
3736 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3737 && current_templates
40fb9820 3738 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3739 {
c6fb90c8 3740 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3741 {
3742 as_bad ((flag_code != CODE_64BIT
3743 ? _("`%s' is only supported in 64-bit mode")
3744 : _("`%s' is not supported in 64-bit mode")),
3745 current_templates->start->name);
3746 return NULL;
3747 }
29b0f896
AM
3748 /* If we are in 16-bit mode, do not allow addr16 or data16.
3749 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3750 if ((current_templates->start->opcode_modifier.size16
3751 || current_templates->start->opcode_modifier.size32)
29b0f896 3752 && flag_code != CODE_64BIT
40fb9820 3753 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3754 ^ (flag_code == CODE_16BIT)))
3755 {
3756 as_bad (_("redundant %s prefix"),
3757 current_templates->start->name);
3758 return NULL;
45288df1 3759 }
29b0f896
AM
3760 /* Add prefix, checking for repeated prefixes. */
3761 switch (add_prefix (current_templates->start->base_opcode))
3762 {
c32fa91d 3763 case PREFIX_EXIST:
29b0f896 3764 return NULL;
c32fa91d 3765 case PREFIX_REP:
42164a71 3766 if (current_templates->start->cpu_flags.bitfield.cpuhle)
165de32a 3767 i.hle_prefix = current_templates->start->name;
7e8b059b
L
3768 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3769 i.bnd_prefix = current_templates->start->name;
42164a71 3770 else
d5de92cf 3771 i.rep_prefix = current_templates->start->name;
29b0f896 3772 break;
c32fa91d
L
3773 default:
3774 break;
29b0f896
AM
3775 }
3776 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3777 token_start = ++l;
3778 }
3779 else
3780 break;
3781 }
45288df1 3782
30a55f88 3783 if (!current_templates)
b6169b20 3784 {
f8a5c266
L
3785 /* Check if we should swap operand or force 32bit displacement in
3786 encoding. */
30a55f88
L
3787 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3788 i.swap_operand = 1;
8d63c93e 3789 else if (mnem_p - 3 == dot_p
a501d77e
L
3790 && dot_p[1] == 'd'
3791 && dot_p[2] == '8')
3792 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3793 else if (mnem_p - 4 == dot_p
f8a5c266
L
3794 && dot_p[1] == 'd'
3795 && dot_p[2] == '3'
3796 && dot_p[3] == '2')
a501d77e 3797 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3798 else
3799 goto check_suffix;
3800 mnem_p = dot_p;
3801 *dot_p = '\0';
d3ce72d0 3802 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3803 }
3804
29b0f896
AM
3805 if (!current_templates)
3806 {
b6169b20 3807check_suffix:
29b0f896
AM
3808 /* See if we can get a match by trimming off a suffix. */
3809 switch (mnem_p[-1])
3810 {
3811 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3812 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3813 i.suffix = SHORT_MNEM_SUFFIX;
3814 else
29b0f896
AM
3815 case BYTE_MNEM_SUFFIX:
3816 case QWORD_MNEM_SUFFIX:
3817 i.suffix = mnem_p[-1];
3818 mnem_p[-1] = '\0';
d3ce72d0
NC
3819 current_templates = (const templates *) hash_find (op_hash,
3820 mnemonic);
29b0f896
AM
3821 break;
3822 case SHORT_MNEM_SUFFIX:
3823 case LONG_MNEM_SUFFIX:
3824 if (!intel_syntax)
3825 {
3826 i.suffix = mnem_p[-1];
3827 mnem_p[-1] = '\0';
d3ce72d0
NC
3828 current_templates = (const templates *) hash_find (op_hash,
3829 mnemonic);
29b0f896
AM
3830 }
3831 break;
252b5132 3832
29b0f896
AM
3833 /* Intel Syntax. */
3834 case 'd':
3835 if (intel_syntax)
3836 {
9306ca4a 3837 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3838 i.suffix = SHORT_MNEM_SUFFIX;
3839 else
3840 i.suffix = LONG_MNEM_SUFFIX;
3841 mnem_p[-1] = '\0';
d3ce72d0
NC
3842 current_templates = (const templates *) hash_find (op_hash,
3843 mnemonic);
29b0f896
AM
3844 }
3845 break;
3846 }
3847 if (!current_templates)
3848 {
3849 as_bad (_("no such instruction: `%s'"), token_start);
3850 return NULL;
3851 }
3852 }
252b5132 3853
40fb9820
L
3854 if (current_templates->start->opcode_modifier.jump
3855 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3856 {
3857 /* Check for a branch hint. We allow ",pt" and ",pn" for
3858 predict taken and predict not taken respectively.
3859 I'm not sure that branch hints actually do anything on loop
3860 and jcxz insns (JumpByte) for current Pentium4 chips. They
3861 may work in the future and it doesn't hurt to accept them
3862 now. */
3863 if (l[0] == ',' && l[1] == 'p')
3864 {
3865 if (l[2] == 't')
3866 {
3867 if (!add_prefix (DS_PREFIX_OPCODE))
3868 return NULL;
3869 l += 3;
3870 }
3871 else if (l[2] == 'n')
3872 {
3873 if (!add_prefix (CS_PREFIX_OPCODE))
3874 return NULL;
3875 l += 3;
3876 }
3877 }
3878 }
3879 /* Any other comma loses. */
3880 if (*l == ',')
3881 {
3882 as_bad (_("invalid character %s in mnemonic"),
3883 output_invalid (*l));
3884 return NULL;
3885 }
252b5132 3886
29b0f896 3887 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3888 supported = 0;
3889 for (t = current_templates->start; t < current_templates->end; ++t)
3890 {
c0f3af97
L
3891 supported |= cpu_flags_match (t);
3892 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3893 goto skip;
5c6af06e 3894 }
3629bb00 3895
c0f3af97 3896 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3897 {
3898 as_bad (flag_code == CODE_64BIT
3899 ? _("`%s' is not supported in 64-bit mode")
3900 : _("`%s' is only supported in 64-bit mode"),
3901 current_templates->start->name);
3902 return NULL;
3903 }
c0f3af97 3904 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3905 {
3629bb00 3906 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3907 current_templates->start->name,
41aacd83 3908 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3909 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3910 return NULL;
29b0f896 3911 }
3629bb00
L
3912
3913skip:
3914 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3915 && (flag_code != CODE_16BIT))
29b0f896
AM
3916 {
3917 as_warn (_("use .code16 to ensure correct addressing mode"));
3918 }
252b5132 3919
29b0f896
AM
3920 return l;
3921}
252b5132 3922
29b0f896 3923static char *
e3bb37b5 3924parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3925{
3926 char *token_start;
3138f287 3927
29b0f896
AM
3928 /* 1 if operand is pending after ','. */
3929 unsigned int expecting_operand = 0;
252b5132 3930
29b0f896
AM
3931 /* Non-zero if operand parens not balanced. */
3932 unsigned int paren_not_balanced;
3933
3934 while (*l != END_OF_INSN)
3935 {
3936 /* Skip optional white space before operand. */
3937 if (is_space_char (*l))
3938 ++l;
3939 if (!is_operand_char (*l) && *l != END_OF_INSN)
3940 {
3941 as_bad (_("invalid character %s before operand %d"),
3942 output_invalid (*l),
3943 i.operands + 1);
3944 return NULL;
3945 }
3946 token_start = l; /* after white space */
3947 paren_not_balanced = 0;
3948 while (paren_not_balanced || *l != ',')
3949 {
3950 if (*l == END_OF_INSN)
3951 {
3952 if (paren_not_balanced)
3953 {
3954 if (!intel_syntax)
3955 as_bad (_("unbalanced parenthesis in operand %d."),
3956 i.operands + 1);
3957 else
3958 as_bad (_("unbalanced brackets in operand %d."),
3959 i.operands + 1);
3960 return NULL;
3961 }
3962 else
3963 break; /* we are done */
3964 }
3965 else if (!is_operand_char (*l) && !is_space_char (*l))
3966 {
3967 as_bad (_("invalid character %s in operand %d"),
3968 output_invalid (*l),
3969 i.operands + 1);
3970 return NULL;
3971 }
3972 if (!intel_syntax)
3973 {
3974 if (*l == '(')
3975 ++paren_not_balanced;
3976 if (*l == ')')
3977 --paren_not_balanced;
3978 }
3979 else
3980 {
3981 if (*l == '[')
3982 ++paren_not_balanced;
3983 if (*l == ']')
3984 --paren_not_balanced;
3985 }
3986 l++;
3987 }
3988 if (l != token_start)
3989 { /* Yes, we've read in another operand. */
3990 unsigned int operand_ok;
3991 this_operand = i.operands++;
7d5e4556 3992 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
3993 if (i.operands > MAX_OPERANDS)
3994 {
3995 as_bad (_("spurious operands; (%d operands/instruction max)"),
3996 MAX_OPERANDS);
3997 return NULL;
3998 }
3999 /* Now parse operand adding info to 'i' as we go along. */
4000 END_STRING_AND_SAVE (l);
4001
4002 if (intel_syntax)
4003 operand_ok =
4004 i386_intel_operand (token_start,
4005 intel_float_operand (mnemonic));
4006 else
a7619375 4007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4008
4009 RESTORE_END_STRING (l);
4010 if (!operand_ok)
4011 return NULL;
4012 }
4013 else
4014 {
4015 if (expecting_operand)
4016 {
4017 expecting_operand_after_comma:
4018 as_bad (_("expecting operand after ','; got nothing"));
4019 return NULL;
4020 }
4021 if (*l == ',')
4022 {
4023 as_bad (_("expecting operand before ','; got nothing"));
4024 return NULL;
4025 }
4026 }
7f3f1ea2 4027
29b0f896
AM
4028 /* Now *l must be either ',' or END_OF_INSN. */
4029 if (*l == ',')
4030 {
4031 if (*++l == END_OF_INSN)
4032 {
4033 /* Just skip it, if it's \n complain. */
4034 goto expecting_operand_after_comma;
4035 }
4036 expecting_operand = 1;
4037 }
4038 }
4039 return l;
4040}
7f3f1ea2 4041
050dfa73 4042static void
4d456e3d 4043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4044{
4045 union i386_op temp_op;
40fb9820 4046 i386_operand_type temp_type;
050dfa73 4047 enum bfd_reloc_code_real temp_reloc;
4eed87de 4048
050dfa73
MM
4049 temp_type = i.types[xchg2];
4050 i.types[xchg2] = i.types[xchg1];
4051 i.types[xchg1] = temp_type;
4052 temp_op = i.op[xchg2];
4053 i.op[xchg2] = i.op[xchg1];
4054 i.op[xchg1] = temp_op;
4055 temp_reloc = i.reloc[xchg2];
4056 i.reloc[xchg2] = i.reloc[xchg1];
4057 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4058
4059 if (i.mask)
4060 {
4061 if (i.mask->operand == xchg1)
4062 i.mask->operand = xchg2;
4063 else if (i.mask->operand == xchg2)
4064 i.mask->operand = xchg1;
4065 }
4066 if (i.broadcast)
4067 {
4068 if (i.broadcast->operand == xchg1)
4069 i.broadcast->operand = xchg2;
4070 else if (i.broadcast->operand == xchg2)
4071 i.broadcast->operand = xchg1;
4072 }
4073 if (i.rounding)
4074 {
4075 if (i.rounding->operand == xchg1)
4076 i.rounding->operand = xchg2;
4077 else if (i.rounding->operand == xchg2)
4078 i.rounding->operand = xchg1;
4079 }
050dfa73
MM
4080}
4081
29b0f896 4082static void
e3bb37b5 4083swap_operands (void)
29b0f896 4084{
b7c61d9a 4085 switch (i.operands)
050dfa73 4086 {
c0f3af97 4087 case 5:
b7c61d9a 4088 case 4:
4d456e3d 4089 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
4090 case 3:
4091 case 2:
4d456e3d 4092 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4093 break;
4094 default:
4095 abort ();
29b0f896 4096 }
29b0f896
AM
4097
4098 if (i.mem_operands == 2)
4099 {
4100 const seg_entry *temp_seg;
4101 temp_seg = i.seg[0];
4102 i.seg[0] = i.seg[1];
4103 i.seg[1] = temp_seg;
4104 }
4105}
252b5132 4106
29b0f896
AM
4107/* Try to ensure constant immediates are represented in the smallest
4108 opcode possible. */
4109static void
e3bb37b5 4110optimize_imm (void)
29b0f896
AM
4111{
4112 char guess_suffix = 0;
4113 int op;
252b5132 4114
29b0f896
AM
4115 if (i.suffix)
4116 guess_suffix = i.suffix;
4117 else if (i.reg_operands)
4118 {
4119 /* Figure out a suffix from the last register operand specified.
4120 We can't do this properly yet, ie. excluding InOutPortReg,
4121 but the following works for instructions with immediates.
4122 In any case, we can't set i.suffix yet. */
4123 for (op = i.operands; --op >= 0;)
40fb9820 4124 if (i.types[op].bitfield.reg8)
7ab9ffdd 4125 {
40fb9820
L
4126 guess_suffix = BYTE_MNEM_SUFFIX;
4127 break;
4128 }
4129 else if (i.types[op].bitfield.reg16)
252b5132 4130 {
40fb9820
L
4131 guess_suffix = WORD_MNEM_SUFFIX;
4132 break;
4133 }
4134 else if (i.types[op].bitfield.reg32)
4135 {
4136 guess_suffix = LONG_MNEM_SUFFIX;
4137 break;
4138 }
4139 else if (i.types[op].bitfield.reg64)
4140 {
4141 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4142 break;
252b5132 4143 }
29b0f896
AM
4144 }
4145 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4146 guess_suffix = WORD_MNEM_SUFFIX;
4147
4148 for (op = i.operands; --op >= 0;)
40fb9820 4149 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4150 {
4151 switch (i.op[op].imms->X_op)
252b5132 4152 {
29b0f896
AM
4153 case O_constant:
4154 /* If a suffix is given, this operand may be shortened. */
4155 switch (guess_suffix)
252b5132 4156 {
29b0f896 4157 case LONG_MNEM_SUFFIX:
40fb9820
L
4158 i.types[op].bitfield.imm32 = 1;
4159 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4160 break;
4161 case WORD_MNEM_SUFFIX:
40fb9820
L
4162 i.types[op].bitfield.imm16 = 1;
4163 i.types[op].bitfield.imm32 = 1;
4164 i.types[op].bitfield.imm32s = 1;
4165 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4166 break;
4167 case BYTE_MNEM_SUFFIX:
40fb9820
L
4168 i.types[op].bitfield.imm8 = 1;
4169 i.types[op].bitfield.imm8s = 1;
4170 i.types[op].bitfield.imm16 = 1;
4171 i.types[op].bitfield.imm32 = 1;
4172 i.types[op].bitfield.imm32s = 1;
4173 i.types[op].bitfield.imm64 = 1;
29b0f896 4174 break;
252b5132 4175 }
252b5132 4176
29b0f896
AM
4177 /* If this operand is at most 16 bits, convert it
4178 to a signed 16 bit number before trying to see
4179 whether it will fit in an even smaller size.
4180 This allows a 16-bit operand such as $0xffe0 to
4181 be recognised as within Imm8S range. */
40fb9820 4182 if ((i.types[op].bitfield.imm16)
29b0f896 4183 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4184 {
29b0f896
AM
4185 i.op[op].imms->X_add_number =
4186 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4187 }
40fb9820 4188 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4189 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4190 == 0))
4191 {
4192 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4193 ^ ((offsetT) 1 << 31))
4194 - ((offsetT) 1 << 31));
4195 }
40fb9820 4196 i.types[op]
c6fb90c8
L
4197 = operand_type_or (i.types[op],
4198 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4199
29b0f896
AM
4200 /* We must avoid matching of Imm32 templates when 64bit
4201 only immediate is available. */
4202 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4203 i.types[op].bitfield.imm32 = 0;
29b0f896 4204 break;
252b5132 4205
29b0f896
AM
4206 case O_absent:
4207 case O_register:
4208 abort ();
4209
4210 /* Symbols and expressions. */
4211 default:
9cd96992
JB
4212 /* Convert symbolic operand to proper sizes for matching, but don't
4213 prevent matching a set of insns that only supports sizes other
4214 than those matching the insn suffix. */
4215 {
40fb9820 4216 i386_operand_type mask, allowed;
d3ce72d0 4217 const insn_template *t;
9cd96992 4218
0dfbf9d7
L
4219 operand_type_set (&mask, 0);
4220 operand_type_set (&allowed, 0);
40fb9820 4221
4eed87de
AM
4222 for (t = current_templates->start;
4223 t < current_templates->end;
4224 ++t)
c6fb90c8
L
4225 allowed = operand_type_or (allowed,
4226 t->operand_types[op]);
9cd96992
JB
4227 switch (guess_suffix)
4228 {
4229 case QWORD_MNEM_SUFFIX:
40fb9820
L
4230 mask.bitfield.imm64 = 1;
4231 mask.bitfield.imm32s = 1;
9cd96992
JB
4232 break;
4233 case LONG_MNEM_SUFFIX:
40fb9820 4234 mask.bitfield.imm32 = 1;
9cd96992
JB
4235 break;
4236 case WORD_MNEM_SUFFIX:
40fb9820 4237 mask.bitfield.imm16 = 1;
9cd96992
JB
4238 break;
4239 case BYTE_MNEM_SUFFIX:
40fb9820 4240 mask.bitfield.imm8 = 1;
9cd96992
JB
4241 break;
4242 default:
9cd96992
JB
4243 break;
4244 }
c6fb90c8 4245 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4246 if (!operand_type_all_zero (&allowed))
c6fb90c8 4247 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4248 }
29b0f896 4249 break;
252b5132 4250 }
29b0f896
AM
4251 }
4252}
47926f60 4253
29b0f896
AM
4254/* Try to use the smallest displacement type too. */
4255static void
e3bb37b5 4256optimize_disp (void)
29b0f896
AM
4257{
4258 int op;
3e73aa7c 4259
29b0f896 4260 for (op = i.operands; --op >= 0;)
40fb9820 4261 if (operand_type_check (i.types[op], disp))
252b5132 4262 {
b300c311 4263 if (i.op[op].disps->X_op == O_constant)
252b5132 4264 {
91d6fa6a 4265 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4266
40fb9820 4267 if (i.types[op].bitfield.disp16
91d6fa6a 4268 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4269 {
4270 /* If this operand is at most 16 bits, convert
4271 to a signed 16 bit number and don't use 64bit
4272 displacement. */
91d6fa6a 4273 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4274 i.types[op].bitfield.disp64 = 0;
b300c311 4275 }
40fb9820 4276 if (i.types[op].bitfield.disp32
91d6fa6a 4277 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4278 {
4279 /* If this operand is at most 32 bits, convert
4280 to a signed 32 bit number and don't use 64bit
4281 displacement. */
91d6fa6a
NC
4282 op_disp &= (((offsetT) 2 << 31) - 1);
4283 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4284 i.types[op].bitfield.disp64 = 0;
b300c311 4285 }
91d6fa6a 4286 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4287 {
40fb9820
L
4288 i.types[op].bitfield.disp8 = 0;
4289 i.types[op].bitfield.disp16 = 0;
4290 i.types[op].bitfield.disp32 = 0;
4291 i.types[op].bitfield.disp32s = 0;
4292 i.types[op].bitfield.disp64 = 0;
b300c311
L
4293 i.op[op].disps = 0;
4294 i.disp_operands--;
4295 }
4296 else if (flag_code == CODE_64BIT)
4297 {
91d6fa6a 4298 if (fits_in_signed_long (op_disp))
28a9d8f5 4299 {
40fb9820
L
4300 i.types[op].bitfield.disp64 = 0;
4301 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4302 }
0e1147d9 4303 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4304 && fits_in_unsigned_long (op_disp))
40fb9820 4305 i.types[op].bitfield.disp32 = 1;
b300c311 4306 }
40fb9820
L
4307 if ((i.types[op].bitfield.disp32
4308 || i.types[op].bitfield.disp32s
4309 || i.types[op].bitfield.disp16)
91d6fa6a 4310 && fits_in_signed_byte (op_disp))
40fb9820 4311 i.types[op].bitfield.disp8 = 1;
252b5132 4312 }
67a4f2b7
AO
4313 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4314 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4315 {
4316 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4317 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4318 i.types[op].bitfield.disp8 = 0;
4319 i.types[op].bitfield.disp16 = 0;
4320 i.types[op].bitfield.disp32 = 0;
4321 i.types[op].bitfield.disp32s = 0;
4322 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4323 }
4324 else
b300c311 4325 /* We only support 64bit displacement on constants. */
40fb9820 4326 i.types[op].bitfield.disp64 = 0;
252b5132 4327 }
29b0f896
AM
4328}
4329
6c30d220
L
4330/* Check if operands are valid for the instruction. */
4331
4332static int
4333check_VecOperands (const insn_template *t)
4334{
43234a1e
L
4335 unsigned int op;
4336
6c30d220
L
4337 /* Without VSIB byte, we can't have a vector register for index. */
4338 if (!t->opcode_modifier.vecsib
4339 && i.index_reg
4340 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4341 || i.index_reg->reg_type.bitfield.regymm
4342 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4343 {
4344 i.error = unsupported_vector_index_register;
4345 return 1;
4346 }
4347
7bab8ab5
JB
4348 /* For VSIB byte, we need a vector register for index, and all vector
4349 registers must be distinct. */
4350 if (t->opcode_modifier.vecsib)
4351 {
4352 if (!i.index_reg
6c30d220
L
4353 || !((t->opcode_modifier.vecsib == VecSIB128
4354 && i.index_reg->reg_type.bitfield.regxmm)
4355 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4356 && i.index_reg->reg_type.bitfield.regymm)
4357 || (t->opcode_modifier.vecsib == VecSIB512
4358 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4359 {
4360 i.error = invalid_vsib_address;
4361 return 1;
4362 }
4363
43234a1e
L
4364 gas_assert (i.reg_operands == 2 || i.mask);
4365 if (i.reg_operands == 2 && !i.mask)
4366 {
4367 gas_assert (i.types[0].bitfield.regxmm
4368 || i.types[0].bitfield.regymm
4369 || i.types[0].bitfield.regzmm);
4370 gas_assert (i.types[2].bitfield.regxmm
4371 || i.types[2].bitfield.regymm
4372 || i.types[2].bitfield.regzmm);
4373 if (operand_check == check_none)
4374 return 0;
4375 if (register_number (i.op[0].regs)
4376 != register_number (i.index_reg)
4377 && register_number (i.op[2].regs)
4378 != register_number (i.index_reg)
4379 && register_number (i.op[0].regs)
4380 != register_number (i.op[2].regs))
4381 return 0;
4382 if (operand_check == check_error)
4383 {
4384 i.error = invalid_vector_register_set;
4385 return 1;
4386 }
4387 as_warn (_("mask, index, and destination registers should be distinct"));
4388 }
4389 }
7bab8ab5 4390
43234a1e
L
4391 /* Check if broadcast is supported by the instruction and is applied
4392 to the memory operand. */
4393 if (i.broadcast)
4394 {
4395 int broadcasted_opnd_size;
4396
4397 /* Check if specified broadcast is supported in this instruction,
4398 and it's applied to memory operand of DWORD or QWORD type,
4399 depending on VecESize. */
4400 if (i.broadcast->type != t->opcode_modifier.broadcast
4401 || !i.types[i.broadcast->operand].bitfield.mem
4402 || (t->opcode_modifier.vecesize == 0
4403 && !i.types[i.broadcast->operand].bitfield.dword
4404 && !i.types[i.broadcast->operand].bitfield.unspecified)
4405 || (t->opcode_modifier.vecesize == 1
4406 && !i.types[i.broadcast->operand].bitfield.qword
4407 && !i.types[i.broadcast->operand].bitfield.unspecified))
4408 goto bad_broadcast;
4409
4410 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4411 if (i.broadcast->type == BROADCAST_1TO16)
4412 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4413 else if (i.broadcast->type == BROADCAST_1TO8)
4414 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4415 else
4416 goto bad_broadcast;
4417
4418 if ((broadcasted_opnd_size == 256
4419 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4420 || (broadcasted_opnd_size == 512
4421 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4422 {
4423 bad_broadcast:
4424 i.error = unsupported_broadcast;
4425 return 1;
4426 }
4427 }
4428 /* If broadcast is supported in this instruction, we need to check if
4429 operand of one-element size isn't specified without broadcast. */
4430 else if (t->opcode_modifier.broadcast && i.mem_operands)
4431 {
4432 /* Find memory operand. */
4433 for (op = 0; op < i.operands; op++)
4434 if (operand_type_check (i.types[op], anymem))
4435 break;
4436 gas_assert (op < i.operands);
4437 /* Check size of the memory operand. */
4438 if ((t->opcode_modifier.vecesize == 0
4439 && i.types[op].bitfield.dword)
4440 || (t->opcode_modifier.vecesize == 1
4441 && i.types[op].bitfield.qword))
4442 {
4443 i.error = broadcast_needed;
4444 return 1;
4445 }
4446 }
4447
4448 /* Check if requested masking is supported. */
4449 if (i.mask
4450 && (!t->opcode_modifier.masking
4451 || (i.mask->zeroing
4452 && t->opcode_modifier.masking == MERGING_MASKING)))
4453 {
4454 i.error = unsupported_masking;
4455 return 1;
4456 }
4457
4458 /* Check if masking is applied to dest operand. */
4459 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4460 {
4461 i.error = mask_not_on_destination;
4462 return 1;
4463 }
4464
4465 /* Check if default mask is allowed. */
4466 if (t->opcode_modifier.nodefmask
4467 && (!i.mask || i.mask->mask->reg_num == 0))
4468 {
4469 i.error = no_default_mask;
4470 return 1;
4471 }
4472
4473 /* Check RC/SAE. */
4474 if (i.rounding)
4475 {
4476 if ((i.rounding->type != saeonly
4477 && !t->opcode_modifier.staticrounding)
4478 || (i.rounding->type == saeonly
4479 && (t->opcode_modifier.staticrounding
4480 || !t->opcode_modifier.sae)))
4481 {
4482 i.error = unsupported_rc_sae;
4483 return 1;
4484 }
4485 /* If the instruction has several immediate operands and one of
4486 them is rounding, the rounding operand should be the last
4487 immediate operand. */
4488 if (i.imm_operands > 1
4489 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4490 {
43234a1e 4491 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4492 return 1;
4493 }
6c30d220
L
4494 }
4495
43234a1e
L
4496 /* Check vector Disp8 operand. */
4497 if (t->opcode_modifier.disp8memshift)
4498 {
4499 if (i.broadcast)
4500 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4501 else
4502 i.memshift = t->opcode_modifier.disp8memshift;
4503
4504 for (op = 0; op < i.operands; op++)
4505 if (operand_type_check (i.types[op], disp)
4506 && i.op[op].disps->X_op == O_constant)
4507 {
4508 offsetT value = i.op[op].disps->X_add_number;
4509 int vec_disp8_ok = fits_in_vec_disp8 (value);
4510 if (t->operand_types [op].bitfield.vec_disp8)
4511 {
4512 if (vec_disp8_ok)
4513 i.types[op].bitfield.vec_disp8 = 1;
4514 else
4515 {
4516 /* Vector insn can only have Vec_Disp8/Disp32 in
4517 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4518 mode. */
4519 i.types[op].bitfield.disp8 = 0;
4520 if (flag_code != CODE_16BIT)
4521 i.types[op].bitfield.disp16 = 0;
4522 }
4523 }
4524 else if (flag_code != CODE_16BIT)
4525 {
4526 /* One form of this instruction supports vector Disp8.
4527 Try vector Disp8 if we need to use Disp32. */
4528 if (vec_disp8_ok && !fits_in_signed_byte (value))
4529 {
4530 i.error = try_vector_disp8;
4531 return 1;
4532 }
4533 }
4534 }
4535 }
4536 else
4537 i.memshift = -1;
4538
6c30d220
L
4539 return 0;
4540}
4541
43f3e2ee 4542/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4543 operand types. */
4544
4545static int
4546VEX_check_operands (const insn_template *t)
4547{
43234a1e
L
4548 /* VREX is only valid with EVEX prefix. */
4549 if (i.need_vrex && !t->opcode_modifier.evex)
4550 {
4551 i.error = invalid_register_operand;
4552 return 1;
4553 }
4554
a683cc34
SP
4555 if (!t->opcode_modifier.vex)
4556 return 0;
4557
4558 /* Only check VEX_Imm4, which must be the first operand. */
4559 if (t->operand_types[0].bitfield.vec_imm4)
4560 {
4561 if (i.op[0].imms->X_op != O_constant
4562 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4563 {
a65babc9 4564 i.error = bad_imm4;
891edac4
L
4565 return 1;
4566 }
a683cc34
SP
4567
4568 /* Turn off Imm8 so that update_imm won't complain. */
4569 i.types[0] = vec_imm4;
4570 }
4571
4572 return 0;
4573}
4574
d3ce72d0 4575static const insn_template *
e3bb37b5 4576match_template (void)
29b0f896
AM
4577{
4578 /* Points to template once we've found it. */
d3ce72d0 4579 const insn_template *t;
40fb9820 4580 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4581 i386_operand_type overlap4;
29b0f896 4582 unsigned int found_reverse_match;
40fb9820
L
4583 i386_opcode_modifier suffix_check;
4584 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4585 int addr_prefix_disp;
a5c311ca 4586 unsigned int j;
3629bb00 4587 unsigned int found_cpu_match;
45664ddb 4588 unsigned int check_register;
5614d22c 4589 enum i386_error specific_error = 0;
29b0f896 4590
c0f3af97
L
4591#if MAX_OPERANDS != 5
4592# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4593#endif
4594
29b0f896 4595 found_reverse_match = 0;
539e75ad 4596 addr_prefix_disp = -1;
40fb9820
L
4597
4598 memset (&suffix_check, 0, sizeof (suffix_check));
4599 if (i.suffix == BYTE_MNEM_SUFFIX)
4600 suffix_check.no_bsuf = 1;
4601 else if (i.suffix == WORD_MNEM_SUFFIX)
4602 suffix_check.no_wsuf = 1;
4603 else if (i.suffix == SHORT_MNEM_SUFFIX)
4604 suffix_check.no_ssuf = 1;
4605 else if (i.suffix == LONG_MNEM_SUFFIX)
4606 suffix_check.no_lsuf = 1;
4607 else if (i.suffix == QWORD_MNEM_SUFFIX)
4608 suffix_check.no_qsuf = 1;
4609 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4610 suffix_check.no_ldsuf = 1;
29b0f896 4611
01559ecc
L
4612 /* Must have right number of operands. */
4613 i.error = number_of_operands_mismatch;
4614
45aa61fe 4615 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4616 {
539e75ad
L
4617 addr_prefix_disp = -1;
4618
29b0f896
AM
4619 if (i.operands != t->operands)
4620 continue;
4621
50aecf8c 4622 /* Check processor support. */
a65babc9 4623 i.error = unsupported;
c0f3af97
L
4624 found_cpu_match = (cpu_flags_match (t)
4625 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4626 if (!found_cpu_match)
4627 continue;
4628
e1d4d893 4629 /* Check old gcc support. */
a65babc9 4630 i.error = old_gcc_only;
e1d4d893
L
4631 if (!old_gcc && t->opcode_modifier.oldgcc)
4632 continue;
4633
4634 /* Check AT&T mnemonic. */
a65babc9 4635 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4636 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4637 continue;
4638
891edac4 4639 /* Check AT&T/Intel syntax. */
a65babc9 4640 i.error = unsupported_syntax;
5c07affc
L
4641 if ((intel_syntax && t->opcode_modifier.attsyntax)
4642 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
4643 continue;
4644
20592a94 4645 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4646 i.error = invalid_instruction_suffix;
567e4e96
L
4647 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4648 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4649 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4650 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4651 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4652 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4653 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
4654 continue;
4655
5c07affc 4656 if (!operand_size_match (t))
7d5e4556 4657 continue;
539e75ad 4658
5c07affc
L
4659 for (j = 0; j < MAX_OPERANDS; j++)
4660 operand_types[j] = t->operand_types[j];
4661
45aa61fe
AM
4662 /* In general, don't allow 64-bit operands in 32-bit mode. */
4663 if (i.suffix == QWORD_MNEM_SUFFIX
4664 && flag_code != CODE_64BIT
4665 && (intel_syntax
40fb9820 4666 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4667 && !intel_float_operand (t->name))
4668 : intel_float_operand (t->name) != 2)
40fb9820 4669 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4670 && !operand_types[0].bitfield.regxmm
43234a1e
L
4671 && !operand_types[0].bitfield.regymm
4672 && !operand_types[0].bitfield.regzmm)
40fb9820 4673 || (!operand_types[t->operands > 1].bitfield.regmmx
c0f3af97 4674 && !!operand_types[t->operands > 1].bitfield.regxmm
43234a1e
L
4675 && !!operand_types[t->operands > 1].bitfield.regymm
4676 && !!operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4677 && (t->base_opcode != 0x0fc7
4678 || t->extension_opcode != 1 /* cmpxchg8b */))
4679 continue;
4680
192dc9c6
JB
4681 /* In general, don't allow 32-bit operands on pre-386. */
4682 else if (i.suffix == LONG_MNEM_SUFFIX
4683 && !cpu_arch_flags.bitfield.cpui386
4684 && (intel_syntax
4685 ? (!t->opcode_modifier.ignoresize
4686 && !intel_float_operand (t->name))
4687 : intel_float_operand (t->name) != 2)
4688 && ((!operand_types[0].bitfield.regmmx
4689 && !operand_types[0].bitfield.regxmm)
4690 || (!operand_types[t->operands > 1].bitfield.regmmx
4691 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4692 continue;
4693
29b0f896 4694 /* Do not verify operands when there are none. */
50aecf8c 4695 else
29b0f896 4696 {
c6fb90c8 4697 if (!t->operands)
2dbab7d5
L
4698 /* We've found a match; break out of loop. */
4699 break;
29b0f896 4700 }
252b5132 4701
539e75ad
L
4702 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4703 into Disp32/Disp16/Disp32 operand. */
4704 if (i.prefix[ADDR_PREFIX] != 0)
4705 {
40fb9820 4706 /* There should be only one Disp operand. */
539e75ad
L
4707 switch (flag_code)
4708 {
4709 case CODE_16BIT:
40fb9820
L
4710 for (j = 0; j < MAX_OPERANDS; j++)
4711 {
4712 if (operand_types[j].bitfield.disp16)
4713 {
4714 addr_prefix_disp = j;
4715 operand_types[j].bitfield.disp32 = 1;
4716 operand_types[j].bitfield.disp16 = 0;
4717 break;
4718 }
4719 }
539e75ad
L
4720 break;
4721 case CODE_32BIT:
40fb9820
L
4722 for (j = 0; j < MAX_OPERANDS; j++)
4723 {
4724 if (operand_types[j].bitfield.disp32)
4725 {
4726 addr_prefix_disp = j;
4727 operand_types[j].bitfield.disp32 = 0;
4728 operand_types[j].bitfield.disp16 = 1;
4729 break;
4730 }
4731 }
539e75ad
L
4732 break;
4733 case CODE_64BIT:
40fb9820
L
4734 for (j = 0; j < MAX_OPERANDS; j++)
4735 {
4736 if (operand_types[j].bitfield.disp64)
4737 {
4738 addr_prefix_disp = j;
4739 operand_types[j].bitfield.disp64 = 0;
4740 operand_types[j].bitfield.disp32 = 1;
4741 break;
4742 }
4743 }
539e75ad
L
4744 break;
4745 }
539e75ad
L
4746 }
4747
56ffb741
L
4748 /* We check register size if needed. */
4749 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4750 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4751 switch (t->operands)
4752 {
4753 case 1:
40fb9820 4754 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4755 continue;
4756 break;
4757 case 2:
8b38ad71
L
4758 /* xchg %eax, %eax is a special case. It is an aliase for nop
4759 only in 32bit mode and we can use opcode 0x90. In 64bit
4760 mode, we can't use 0x90 for xchg %eax, %eax since it should
4761 zero-extend %eax to %rax. */
4762 if (flag_code == CODE_64BIT
4763 && t->base_opcode == 0x90
0dfbf9d7
L
4764 && operand_type_equal (&i.types [0], &acc32)
4765 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4766 continue;
b6169b20
L
4767 if (i.swap_operand)
4768 {
4769 /* If we swap operand in encoding, we either match
4770 the next one or reverse direction of operands. */
4771 if (t->opcode_modifier.s)
4772 continue;
4773 else if (t->opcode_modifier.d)
4774 goto check_reverse;
4775 }
4776
29b0f896 4777 case 3:
fa99fab2
L
4778 /* If we swap operand in encoding, we match the next one. */
4779 if (i.swap_operand && t->opcode_modifier.s)
4780 continue;
f48ff2ae 4781 case 4:
c0f3af97 4782 case 5:
c6fb90c8 4783 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4784 if (!operand_type_match (overlap0, i.types[0])
4785 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4786 || (check_register
4787 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4788 operand_types[0],
4789 overlap1, i.types[1],
4790 operand_types[1])))
29b0f896
AM
4791 {
4792 /* Check if other direction is valid ... */
40fb9820 4793 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4794 continue;
4795
b6169b20 4796check_reverse:
29b0f896 4797 /* Try reversing direction of operands. */
c6fb90c8
L
4798 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4799 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4800 if (!operand_type_match (overlap0, i.types[0])
4801 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4802 || (check_register
4803 && !operand_type_register_match (overlap0,
4804 i.types[0],
4805 operand_types[1],
4806 overlap1,
4807 i.types[1],
4808 operand_types[0])))
29b0f896
AM
4809 {
4810 /* Does not match either direction. */
4811 continue;
4812 }
4813 /* found_reverse_match holds which of D or FloatDR
4814 we've found. */
40fb9820 4815 if (t->opcode_modifier.d)
8a2ed489 4816 found_reverse_match = Opcode_D;
40fb9820 4817 else if (t->opcode_modifier.floatd)
8a2ed489
L
4818 found_reverse_match = Opcode_FloatD;
4819 else
4820 found_reverse_match = 0;
40fb9820 4821 if (t->opcode_modifier.floatr)
8a2ed489 4822 found_reverse_match |= Opcode_FloatR;
29b0f896 4823 }
f48ff2ae 4824 else
29b0f896 4825 {
f48ff2ae 4826 /* Found a forward 2 operand match here. */
d1cbb4db
L
4827 switch (t->operands)
4828 {
c0f3af97
L
4829 case 5:
4830 overlap4 = operand_type_and (i.types[4],
4831 operand_types[4]);
d1cbb4db 4832 case 4:
c6fb90c8
L
4833 overlap3 = operand_type_and (i.types[3],
4834 operand_types[3]);
d1cbb4db 4835 case 3:
c6fb90c8
L
4836 overlap2 = operand_type_and (i.types[2],
4837 operand_types[2]);
d1cbb4db
L
4838 break;
4839 }
29b0f896 4840
f48ff2ae
L
4841 switch (t->operands)
4842 {
c0f3af97
L
4843 case 5:
4844 if (!operand_type_match (overlap4, i.types[4])
4845 || !operand_type_register_match (overlap3,
4846 i.types[3],
4847 operand_types[3],
4848 overlap4,
4849 i.types[4],
4850 operand_types[4]))
4851 continue;
f48ff2ae 4852 case 4:
40fb9820 4853 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4854 || (check_register
4855 && !operand_type_register_match (overlap2,
4856 i.types[2],
4857 operand_types[2],
4858 overlap3,
4859 i.types[3],
4860 operand_types[3])))
f48ff2ae
L
4861 continue;
4862 case 3:
4863 /* Here we make use of the fact that there are no
4864 reverse match 3 operand instructions, and all 3
4865 operand instructions only need to be checked for
4866 register consistency between operands 2 and 3. */
40fb9820 4867 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4868 || (check_register
4869 && !operand_type_register_match (overlap1,
4870 i.types[1],
4871 operand_types[1],
4872 overlap2,
4873 i.types[2],
4874 operand_types[2])))
f48ff2ae
L
4875 continue;
4876 break;
4877 }
29b0f896 4878 }
f48ff2ae 4879 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4880 slip through to break. */
4881 }
3629bb00 4882 if (!found_cpu_match)
29b0f896
AM
4883 {
4884 found_reverse_match = 0;
4885 continue;
4886 }
c0f3af97 4887
5614d22c
JB
4888 /* Check if vector and VEX operands are valid. */
4889 if (check_VecOperands (t) || VEX_check_operands (t))
4890 {
4891 specific_error = i.error;
4892 continue;
4893 }
a683cc34 4894
29b0f896
AM
4895 /* We've found a match; break out of loop. */
4896 break;
4897 }
4898
4899 if (t == current_templates->end)
4900 {
4901 /* We found no match. */
a65babc9 4902 const char *err_msg;
5614d22c 4903 switch (specific_error ? specific_error : i.error)
a65babc9
L
4904 {
4905 default:
4906 abort ();
86e026a4 4907 case operand_size_mismatch:
a65babc9
L
4908 err_msg = _("operand size mismatch");
4909 break;
4910 case operand_type_mismatch:
4911 err_msg = _("operand type mismatch");
4912 break;
4913 case register_type_mismatch:
4914 err_msg = _("register type mismatch");
4915 break;
4916 case number_of_operands_mismatch:
4917 err_msg = _("number of operands mismatch");
4918 break;
4919 case invalid_instruction_suffix:
4920 err_msg = _("invalid instruction suffix");
4921 break;
4922 case bad_imm4:
4a2608e3 4923 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
4924 break;
4925 case old_gcc_only:
4926 err_msg = _("only supported with old gcc");
4927 break;
4928 case unsupported_with_intel_mnemonic:
4929 err_msg = _("unsupported with Intel mnemonic");
4930 break;
4931 case unsupported_syntax:
4932 err_msg = _("unsupported syntax");
4933 break;
4934 case unsupported:
35262a23 4935 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
4936 current_templates->start->name);
4937 return NULL;
6c30d220
L
4938 case invalid_vsib_address:
4939 err_msg = _("invalid VSIB address");
4940 break;
7bab8ab5
JB
4941 case invalid_vector_register_set:
4942 err_msg = _("mask, index, and destination registers must be distinct");
4943 break;
6c30d220
L
4944 case unsupported_vector_index_register:
4945 err_msg = _("unsupported vector index register");
4946 break;
43234a1e
L
4947 case unsupported_broadcast:
4948 err_msg = _("unsupported broadcast");
4949 break;
4950 case broadcast_not_on_src_operand:
4951 err_msg = _("broadcast not on source memory operand");
4952 break;
4953 case broadcast_needed:
4954 err_msg = _("broadcast is needed for operand of such type");
4955 break;
4956 case unsupported_masking:
4957 err_msg = _("unsupported masking");
4958 break;
4959 case mask_not_on_destination:
4960 err_msg = _("mask not on destination operand");
4961 break;
4962 case no_default_mask:
4963 err_msg = _("default mask isn't allowed");
4964 break;
4965 case unsupported_rc_sae:
4966 err_msg = _("unsupported static rounding/sae");
4967 break;
4968 case rc_sae_operand_not_last_imm:
4969 if (intel_syntax)
4970 err_msg = _("RC/SAE operand must precede immediate operands");
4971 else
4972 err_msg = _("RC/SAE operand must follow immediate operands");
4973 break;
4974 case invalid_register_operand:
4975 err_msg = _("invalid register operand");
4976 break;
a65babc9
L
4977 }
4978 as_bad (_("%s for `%s'"), err_msg,
891edac4 4979 current_templates->start->name);
fa99fab2 4980 return NULL;
29b0f896 4981 }
252b5132 4982
29b0f896
AM
4983 if (!quiet_warnings)
4984 {
4985 if (!intel_syntax
40fb9820
L
4986 && (i.types[0].bitfield.jumpabsolute
4987 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
4988 {
4989 as_warn (_("indirect %s without `*'"), t->name);
4990 }
4991
40fb9820
L
4992 if (t->opcode_modifier.isprefix
4993 && t->opcode_modifier.ignoresize)
29b0f896
AM
4994 {
4995 /* Warn them that a data or address size prefix doesn't
4996 affect assembly of the next line of code. */
4997 as_warn (_("stand-alone `%s' prefix"), t->name);
4998 }
4999 }
5000
5001 /* Copy the template we found. */
5002 i.tm = *t;
539e75ad
L
5003
5004 if (addr_prefix_disp != -1)
5005 i.tm.operand_types[addr_prefix_disp]
5006 = operand_types[addr_prefix_disp];
5007
29b0f896
AM
5008 if (found_reverse_match)
5009 {
5010 /* If we found a reverse match we must alter the opcode
5011 direction bit. found_reverse_match holds bits to change
5012 (different for int & float insns). */
5013
5014 i.tm.base_opcode ^= found_reverse_match;
5015
539e75ad
L
5016 i.tm.operand_types[0] = operand_types[1];
5017 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5018 }
5019
fa99fab2 5020 return t;
29b0f896
AM
5021}
5022
5023static int
e3bb37b5 5024check_string (void)
29b0f896 5025{
40fb9820
L
5026 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5027 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5028 {
5029 if (i.seg[0] != NULL && i.seg[0] != &es)
5030 {
a87af027 5031 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5032 i.tm.name,
a87af027
JB
5033 mem_op + 1,
5034 register_prefix);
29b0f896
AM
5035 return 0;
5036 }
5037 /* There's only ever one segment override allowed per instruction.
5038 This instruction possibly has a legal segment override on the
5039 second operand, so copy the segment to where non-string
5040 instructions store it, allowing common code. */
5041 i.seg[0] = i.seg[1];
5042 }
40fb9820 5043 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5044 {
5045 if (i.seg[1] != NULL && i.seg[1] != &es)
5046 {
a87af027 5047 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5048 i.tm.name,
a87af027
JB
5049 mem_op + 2,
5050 register_prefix);
29b0f896
AM
5051 return 0;
5052 }
5053 }
5054 return 1;
5055}
5056
5057static int
543613e9 5058process_suffix (void)
29b0f896
AM
5059{
5060 /* If matched instruction specifies an explicit instruction mnemonic
5061 suffix, use it. */
40fb9820
L
5062 if (i.tm.opcode_modifier.size16)
5063 i.suffix = WORD_MNEM_SUFFIX;
5064 else if (i.tm.opcode_modifier.size32)
5065 i.suffix = LONG_MNEM_SUFFIX;
5066 else if (i.tm.opcode_modifier.size64)
5067 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5068 else if (i.reg_operands)
5069 {
5070 /* If there's no instruction mnemonic suffix we try to invent one
5071 based on register operands. */
5072 if (!i.suffix)
5073 {
5074 /* We take i.suffix from the last register operand specified,
5075 Destination register type is more significant than source
381d071f
L
5076 register type. crc32 in SSE4.2 prefers source register
5077 type. */
5078 if (i.tm.base_opcode == 0xf20f38f1)
5079 {
40fb9820
L
5080 if (i.types[0].bitfield.reg16)
5081 i.suffix = WORD_MNEM_SUFFIX;
5082 else if (i.types[0].bitfield.reg32)
5083 i.suffix = LONG_MNEM_SUFFIX;
5084 else if (i.types[0].bitfield.reg64)
5085 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5086 }
9344ff29 5087 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5088 {
40fb9820 5089 if (i.types[0].bitfield.reg8)
20592a94
L
5090 i.suffix = BYTE_MNEM_SUFFIX;
5091 }
381d071f
L
5092
5093 if (!i.suffix)
5094 {
5095 int op;
5096
20592a94
L
5097 if (i.tm.base_opcode == 0xf20f38f1
5098 || i.tm.base_opcode == 0xf20f38f0)
5099 {
5100 /* We have to know the operand size for crc32. */
5101 as_bad (_("ambiguous memory operand size for `%s`"),
5102 i.tm.name);
5103 return 0;
5104 }
5105
381d071f 5106 for (op = i.operands; --op >= 0;)
40fb9820 5107 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5108 {
40fb9820
L
5109 if (i.types[op].bitfield.reg8)
5110 {
5111 i.suffix = BYTE_MNEM_SUFFIX;
5112 break;
5113 }
5114 else if (i.types[op].bitfield.reg16)
5115 {
5116 i.suffix = WORD_MNEM_SUFFIX;
5117 break;
5118 }
5119 else if (i.types[op].bitfield.reg32)
5120 {
5121 i.suffix = LONG_MNEM_SUFFIX;
5122 break;
5123 }
5124 else if (i.types[op].bitfield.reg64)
5125 {
5126 i.suffix = QWORD_MNEM_SUFFIX;
5127 break;
5128 }
381d071f
L
5129 }
5130 }
29b0f896
AM
5131 }
5132 else if (i.suffix == BYTE_MNEM_SUFFIX)
5133 {
2eb952a4
L
5134 if (intel_syntax
5135 && i.tm.opcode_modifier.ignoresize
5136 && i.tm.opcode_modifier.no_bsuf)
5137 i.suffix = 0;
5138 else if (!check_byte_reg ())
29b0f896
AM
5139 return 0;
5140 }
5141 else if (i.suffix == LONG_MNEM_SUFFIX)
5142 {
2eb952a4
L
5143 if (intel_syntax
5144 && i.tm.opcode_modifier.ignoresize
5145 && i.tm.opcode_modifier.no_lsuf)
5146 i.suffix = 0;
5147 else if (!check_long_reg ())
29b0f896
AM
5148 return 0;
5149 }
5150 else if (i.suffix == QWORD_MNEM_SUFFIX)
5151 {
955e1e6a
L
5152 if (intel_syntax
5153 && i.tm.opcode_modifier.ignoresize
5154 && i.tm.opcode_modifier.no_qsuf)
5155 i.suffix = 0;
5156 else if (!check_qword_reg ())
29b0f896
AM
5157 return 0;
5158 }
5159 else if (i.suffix == WORD_MNEM_SUFFIX)
5160 {
2eb952a4
L
5161 if (intel_syntax
5162 && i.tm.opcode_modifier.ignoresize
5163 && i.tm.opcode_modifier.no_wsuf)
5164 i.suffix = 0;
5165 else if (!check_word_reg ())
29b0f896
AM
5166 return 0;
5167 }
c0f3af97 5168 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5169 || i.suffix == YMMWORD_MNEM_SUFFIX
5170 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5171 {
43234a1e 5172 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5173 should check if it is a valid suffix. */
5174 }
40fb9820 5175 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5176 /* Do nothing if the instruction is going to ignore the prefix. */
5177 ;
5178 else
5179 abort ();
5180 }
40fb9820 5181 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5182 && !i.suffix
5183 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5184 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5185 {
5186 i.suffix = stackop_size;
5187 }
9306ca4a
JB
5188 else if (intel_syntax
5189 && !i.suffix
40fb9820
L
5190 && (i.tm.operand_types[0].bitfield.jumpabsolute
5191 || i.tm.opcode_modifier.jumpbyte
5192 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5193 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5194 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5195 {
5196 switch (flag_code)
5197 {
5198 case CODE_64BIT:
40fb9820 5199 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5200 {
5201 i.suffix = QWORD_MNEM_SUFFIX;
5202 break;
5203 }
5204 case CODE_32BIT:
40fb9820 5205 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5206 i.suffix = LONG_MNEM_SUFFIX;
5207 break;
5208 case CODE_16BIT:
40fb9820 5209 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5210 i.suffix = WORD_MNEM_SUFFIX;
5211 break;
5212 }
5213 }
252b5132 5214
9306ca4a 5215 if (!i.suffix)
29b0f896 5216 {
9306ca4a
JB
5217 if (!intel_syntax)
5218 {
40fb9820 5219 if (i.tm.opcode_modifier.w)
9306ca4a 5220 {
4eed87de
AM
5221 as_bad (_("no instruction mnemonic suffix given and "
5222 "no register operands; can't size instruction"));
9306ca4a
JB
5223 return 0;
5224 }
5225 }
5226 else
5227 {
40fb9820 5228 unsigned int suffixes;
7ab9ffdd 5229
40fb9820
L
5230 suffixes = !i.tm.opcode_modifier.no_bsuf;
5231 if (!i.tm.opcode_modifier.no_wsuf)
5232 suffixes |= 1 << 1;
5233 if (!i.tm.opcode_modifier.no_lsuf)
5234 suffixes |= 1 << 2;
fc4adea1 5235 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5236 suffixes |= 1 << 3;
5237 if (!i.tm.opcode_modifier.no_ssuf)
5238 suffixes |= 1 << 4;
5239 if (!i.tm.opcode_modifier.no_qsuf)
5240 suffixes |= 1 << 5;
5241
5242 /* There are more than suffix matches. */
5243 if (i.tm.opcode_modifier.w
9306ca4a 5244 || ((suffixes & (suffixes - 1))
40fb9820
L
5245 && !i.tm.opcode_modifier.defaultsize
5246 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5247 {
5248 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5249 return 0;
5250 }
5251 }
29b0f896 5252 }
252b5132 5253
9306ca4a
JB
5254 /* Change the opcode based on the operand size given by i.suffix;
5255 We don't need to change things for byte insns. */
5256
582d5edd
L
5257 if (i.suffix
5258 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5259 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5260 && i.suffix != YMMWORD_MNEM_SUFFIX
5261 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5262 {
5263 /* It's not a byte, select word/dword operation. */
40fb9820 5264 if (i.tm.opcode_modifier.w)
29b0f896 5265 {
40fb9820 5266 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5267 i.tm.base_opcode |= 8;
5268 else
5269 i.tm.base_opcode |= 1;
5270 }
0f3f3d8b 5271
29b0f896
AM
5272 /* Now select between word & dword operations via the operand
5273 size prefix, except for instructions that will ignore this
5274 prefix anyway. */
ca61edf2 5275 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5276 {
ca61edf2
L
5277 /* The address size override prefix changes the size of the
5278 first operand. */
40fb9820
L
5279 if ((flag_code == CODE_32BIT
5280 && i.op->regs[0].reg_type.bitfield.reg16)
5281 || (flag_code != CODE_32BIT
5282 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5283 if (!add_prefix (ADDR_PREFIX_OPCODE))
5284 return 0;
5285 }
5286 else if (i.suffix != QWORD_MNEM_SUFFIX
5287 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5288 && !i.tm.opcode_modifier.ignoresize
5289 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5290 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5291 || (flag_code == CODE_64BIT
40fb9820 5292 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5293 {
5294 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5295
40fb9820 5296 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5297 prefix = ADDR_PREFIX_OPCODE;
252b5132 5298
29b0f896
AM
5299 if (!add_prefix (prefix))
5300 return 0;
24eab124 5301 }
252b5132 5302
29b0f896
AM
5303 /* Set mode64 for an operand. */
5304 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5305 && flag_code == CODE_64BIT
40fb9820 5306 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5307 {
5308 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5309 need rex64. cmpxchg8b is also a special case. */
5310 if (! (i.operands == 2
5311 && i.tm.base_opcode == 0x90
5312 && i.tm.extension_opcode == None
0dfbf9d7
L
5313 && operand_type_equal (&i.types [0], &acc64)
5314 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5315 && ! (i.operands == 1
5316 && i.tm.base_opcode == 0xfc7
5317 && i.tm.extension_opcode == 1
40fb9820
L
5318 && !operand_type_check (i.types [0], reg)
5319 && operand_type_check (i.types [0], anymem)))
f6bee062 5320 i.rex |= REX_W;
46e883c5 5321 }
3e73aa7c 5322
29b0f896
AM
5323 /* Size floating point instruction. */
5324 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5325 if (i.tm.opcode_modifier.floatmf)
543613e9 5326 i.tm.base_opcode ^= 4;
29b0f896 5327 }
7ecd2f8b 5328
29b0f896
AM
5329 return 1;
5330}
3e73aa7c 5331
29b0f896 5332static int
543613e9 5333check_byte_reg (void)
29b0f896
AM
5334{
5335 int op;
543613e9 5336
29b0f896
AM
5337 for (op = i.operands; --op >= 0;)
5338 {
5339 /* If this is an eight bit register, it's OK. If it's the 16 or
5340 32 bit version of an eight bit register, we will just use the
5341 low portion, and that's OK too. */
40fb9820 5342 if (i.types[op].bitfield.reg8)
29b0f896
AM
5343 continue;
5344
5a819eb9
JB
5345 /* I/O port address operands are OK too. */
5346 if (i.tm.operand_types[op].bitfield.inoutportreg)
5347 continue;
5348
9344ff29
L
5349 /* crc32 doesn't generate this warning. */
5350 if (i.tm.base_opcode == 0xf20f38f0)
5351 continue;
5352
40fb9820
L
5353 if ((i.types[op].bitfield.reg16
5354 || i.types[op].bitfield.reg32
5355 || i.types[op].bitfield.reg64)
5a819eb9
JB
5356 && i.op[op].regs->reg_num < 4
5357 /* Prohibit these changes in 64bit mode, since the lowering
5358 would be more complicated. */
5359 && flag_code != CODE_64BIT)
29b0f896 5360 {
29b0f896 5361#if REGISTER_WARNINGS
5a819eb9 5362 if (!quiet_warnings)
a540244d
L
5363 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5364 register_prefix,
40fb9820 5365 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5366 ? REGNAM_AL - REGNAM_AX
5367 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5368 register_prefix,
29b0f896
AM
5369 i.op[op].regs->reg_name,
5370 i.suffix);
5371#endif
5372 continue;
5373 }
5374 /* Any other register is bad. */
40fb9820
L
5375 if (i.types[op].bitfield.reg16
5376 || i.types[op].bitfield.reg32
5377 || i.types[op].bitfield.reg64
5378 || i.types[op].bitfield.regmmx
5379 || i.types[op].bitfield.regxmm
c0f3af97 5380 || i.types[op].bitfield.regymm
43234a1e 5381 || i.types[op].bitfield.regzmm
40fb9820
L
5382 || i.types[op].bitfield.sreg2
5383 || i.types[op].bitfield.sreg3
5384 || i.types[op].bitfield.control
5385 || i.types[op].bitfield.debug
5386 || i.types[op].bitfield.test
5387 || i.types[op].bitfield.floatreg
5388 || i.types[op].bitfield.floatacc)
29b0f896 5389 {
a540244d
L
5390 as_bad (_("`%s%s' not allowed with `%s%c'"),
5391 register_prefix,
29b0f896
AM
5392 i.op[op].regs->reg_name,
5393 i.tm.name,
5394 i.suffix);
5395 return 0;
5396 }
5397 }
5398 return 1;
5399}
5400
5401static int
e3bb37b5 5402check_long_reg (void)
29b0f896
AM
5403{
5404 int op;
5405
5406 for (op = i.operands; --op >= 0;)
5407 /* Reject eight bit registers, except where the template requires
5408 them. (eg. movzb) */
40fb9820
L
5409 if (i.types[op].bitfield.reg8
5410 && (i.tm.operand_types[op].bitfield.reg16
5411 || i.tm.operand_types[op].bitfield.reg32
5412 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5413 {
a540244d
L
5414 as_bad (_("`%s%s' not allowed with `%s%c'"),
5415 register_prefix,
29b0f896
AM
5416 i.op[op].regs->reg_name,
5417 i.tm.name,
5418 i.suffix);
5419 return 0;
5420 }
e4630f71 5421 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5422 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5423 && i.types[op].bitfield.reg16
5424 && (i.tm.operand_types[op].bitfield.reg32
5425 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5426 {
5427 /* Prohibit these changes in the 64bit mode, since the
5428 lowering is more complicated. */
5429 if (flag_code == CODE_64BIT)
252b5132 5430 {
2b5d6a91 5431 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5432 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5433 i.suffix);
5434 return 0;
252b5132 5435 }
29b0f896 5436#if REGISTER_WARNINGS
cecf1424
JB
5437 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5438 register_prefix,
5439 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5440 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5441#endif
252b5132 5442 }
e4630f71 5443 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5444 else if (i.types[op].bitfield.reg64
5445 && (i.tm.operand_types[op].bitfield.reg32
5446 || i.tm.operand_types[op].bitfield.acc))
252b5132 5447 {
34828aad 5448 if (intel_syntax
ca61edf2 5449 && i.tm.opcode_modifier.toqword
40fb9820 5450 && !i.types[0].bitfield.regxmm)
34828aad 5451 {
ca61edf2 5452 /* Convert to QWORD. We want REX byte. */
34828aad
L
5453 i.suffix = QWORD_MNEM_SUFFIX;
5454 }
5455 else
5456 {
2b5d6a91 5457 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5458 register_prefix, i.op[op].regs->reg_name,
5459 i.suffix);
5460 return 0;
5461 }
29b0f896
AM
5462 }
5463 return 1;
5464}
252b5132 5465
29b0f896 5466static int
e3bb37b5 5467check_qword_reg (void)
29b0f896
AM
5468{
5469 int op;
252b5132 5470
29b0f896
AM
5471 for (op = i.operands; --op >= 0; )
5472 /* Reject eight bit registers, except where the template requires
5473 them. (eg. movzb) */
40fb9820
L
5474 if (i.types[op].bitfield.reg8
5475 && (i.tm.operand_types[op].bitfield.reg16
5476 || i.tm.operand_types[op].bitfield.reg32
5477 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5478 {
a540244d
L
5479 as_bad (_("`%s%s' not allowed with `%s%c'"),
5480 register_prefix,
29b0f896
AM
5481 i.op[op].regs->reg_name,
5482 i.tm.name,
5483 i.suffix);
5484 return 0;
5485 }
e4630f71 5486 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5487 else if ((i.types[op].bitfield.reg16
5488 || i.types[op].bitfield.reg32)
5489 && (i.tm.operand_types[op].bitfield.reg32
5490 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5491 {
5492 /* Prohibit these changes in the 64bit mode, since the
5493 lowering is more complicated. */
34828aad 5494 if (intel_syntax
ca61edf2 5495 && i.tm.opcode_modifier.todword
40fb9820 5496 && !i.types[0].bitfield.regxmm)
34828aad 5497 {
ca61edf2 5498 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5499 i.suffix = LONG_MNEM_SUFFIX;
5500 }
5501 else
5502 {
2b5d6a91 5503 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5504 register_prefix, i.op[op].regs->reg_name,
5505 i.suffix);
5506 return 0;
5507 }
252b5132 5508 }
29b0f896
AM
5509 return 1;
5510}
252b5132 5511
29b0f896 5512static int
e3bb37b5 5513check_word_reg (void)
29b0f896
AM
5514{
5515 int op;
5516 for (op = i.operands; --op >= 0;)
5517 /* Reject eight bit registers, except where the template requires
5518 them. (eg. movzb) */
40fb9820
L
5519 if (i.types[op].bitfield.reg8
5520 && (i.tm.operand_types[op].bitfield.reg16
5521 || i.tm.operand_types[op].bitfield.reg32
5522 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5523 {
a540244d
L
5524 as_bad (_("`%s%s' not allowed with `%s%c'"),
5525 register_prefix,
29b0f896
AM
5526 i.op[op].regs->reg_name,
5527 i.tm.name,
5528 i.suffix);
5529 return 0;
5530 }
e4630f71 5531 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5532 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5533 && (i.types[op].bitfield.reg32
5534 || i.types[op].bitfield.reg64)
40fb9820
L
5535 && (i.tm.operand_types[op].bitfield.reg16
5536 || i.tm.operand_types[op].bitfield.acc))
252b5132 5537 {
29b0f896
AM
5538 /* Prohibit these changes in the 64bit mode, since the
5539 lowering is more complicated. */
5540 if (flag_code == CODE_64BIT)
252b5132 5541 {
2b5d6a91 5542 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5543 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5544 i.suffix);
5545 return 0;
252b5132 5546 }
29b0f896 5547#if REGISTER_WARNINGS
cecf1424
JB
5548 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5549 register_prefix,
5550 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5551 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5552#endif
5553 }
5554 return 1;
5555}
252b5132 5556
29b0f896 5557static int
40fb9820 5558update_imm (unsigned int j)
29b0f896 5559{
bc0844ae 5560 i386_operand_type overlap = i.types[j];
40fb9820
L
5561 if ((overlap.bitfield.imm8
5562 || overlap.bitfield.imm8s
5563 || overlap.bitfield.imm16
5564 || overlap.bitfield.imm32
5565 || overlap.bitfield.imm32s
5566 || overlap.bitfield.imm64)
0dfbf9d7
L
5567 && !operand_type_equal (&overlap, &imm8)
5568 && !operand_type_equal (&overlap, &imm8s)
5569 && !operand_type_equal (&overlap, &imm16)
5570 && !operand_type_equal (&overlap, &imm32)
5571 && !operand_type_equal (&overlap, &imm32s)
5572 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5573 {
5574 if (i.suffix)
5575 {
40fb9820
L
5576 i386_operand_type temp;
5577
0dfbf9d7 5578 operand_type_set (&temp, 0);
7ab9ffdd 5579 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5580 {
5581 temp.bitfield.imm8 = overlap.bitfield.imm8;
5582 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5583 }
5584 else if (i.suffix == WORD_MNEM_SUFFIX)
5585 temp.bitfield.imm16 = overlap.bitfield.imm16;
5586 else if (i.suffix == QWORD_MNEM_SUFFIX)
5587 {
5588 temp.bitfield.imm64 = overlap.bitfield.imm64;
5589 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5590 }
5591 else
5592 temp.bitfield.imm32 = overlap.bitfield.imm32;
5593 overlap = temp;
29b0f896 5594 }
0dfbf9d7
L
5595 else if (operand_type_equal (&overlap, &imm16_32_32s)
5596 || operand_type_equal (&overlap, &imm16_32)
5597 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5598 {
40fb9820 5599 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5600 overlap = imm16;
40fb9820 5601 else
65da13b5 5602 overlap = imm32s;
29b0f896 5603 }
0dfbf9d7
L
5604 if (!operand_type_equal (&overlap, &imm8)
5605 && !operand_type_equal (&overlap, &imm8s)
5606 && !operand_type_equal (&overlap, &imm16)
5607 && !operand_type_equal (&overlap, &imm32)
5608 && !operand_type_equal (&overlap, &imm32s)
5609 && !operand_type_equal (&overlap, &imm64))
29b0f896 5610 {
4eed87de
AM
5611 as_bad (_("no instruction mnemonic suffix given; "
5612 "can't determine immediate size"));
29b0f896
AM
5613 return 0;
5614 }
5615 }
40fb9820 5616 i.types[j] = overlap;
29b0f896 5617
40fb9820
L
5618 return 1;
5619}
5620
5621static int
5622finalize_imm (void)
5623{
bc0844ae 5624 unsigned int j, n;
29b0f896 5625
bc0844ae
L
5626 /* Update the first 2 immediate operands. */
5627 n = i.operands > 2 ? 2 : i.operands;
5628 if (n)
5629 {
5630 for (j = 0; j < n; j++)
5631 if (update_imm (j) == 0)
5632 return 0;
40fb9820 5633
bc0844ae
L
5634 /* The 3rd operand can't be immediate operand. */
5635 gas_assert (operand_type_check (i.types[2], imm) == 0);
5636 }
29b0f896
AM
5637
5638 return 1;
5639}
5640
c0f3af97
L
5641static int
5642bad_implicit_operand (int xmm)
5643{
91d6fa6a
NC
5644 const char *ireg = xmm ? "xmm0" : "ymm0";
5645
c0f3af97
L
5646 if (intel_syntax)
5647 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5648 i.tm.name, register_prefix, ireg);
c0f3af97
L
5649 else
5650 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5651 i.tm.name, register_prefix, ireg);
c0f3af97
L
5652 return 0;
5653}
5654
29b0f896 5655static int
e3bb37b5 5656process_operands (void)
29b0f896
AM
5657{
5658 /* Default segment register this instruction will use for memory
5659 accesses. 0 means unknown. This is only for optimizing out
5660 unnecessary segment overrides. */
5661 const seg_entry *default_seg = 0;
5662
2426c15f 5663 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5664 {
91d6fa6a
NC
5665 unsigned int dupl = i.operands;
5666 unsigned int dest = dupl - 1;
9fcfb3d7
L
5667 unsigned int j;
5668
c0f3af97 5669 /* The destination must be an xmm register. */
9c2799c2 5670 gas_assert (i.reg_operands
91d6fa6a 5671 && MAX_OPERANDS > dupl
7ab9ffdd 5672 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5673
5674 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5675 {
c0f3af97 5676 /* The first operand is implicit and must be xmm0. */
9c2799c2 5677 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5678 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5679 return bad_implicit_operand (1);
5680
8cd7925b 5681 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5682 {
5683 /* Keep xmm0 for instructions with VEX prefix and 3
5684 sources. */
5685 goto duplicate;
5686 }
e2ec9d29 5687 else
c0f3af97
L
5688 {
5689 /* We remove the first xmm0 and keep the number of
5690 operands unchanged, which in fact duplicates the
5691 destination. */
5692 for (j = 1; j < i.operands; j++)
5693 {
5694 i.op[j - 1] = i.op[j];
5695 i.types[j - 1] = i.types[j];
5696 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5697 }
5698 }
5699 }
5700 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5701 {
91d6fa6a 5702 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5703 && (i.tm.opcode_modifier.vexsources
5704 == VEX3SOURCES));
c0f3af97
L
5705
5706 /* Add the implicit xmm0 for instructions with VEX prefix
5707 and 3 sources. */
5708 for (j = i.operands; j > 0; j--)
5709 {
5710 i.op[j] = i.op[j - 1];
5711 i.types[j] = i.types[j - 1];
5712 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5713 }
5714 i.op[0].regs
5715 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5716 i.types[0] = regxmm;
c0f3af97
L
5717 i.tm.operand_types[0] = regxmm;
5718
5719 i.operands += 2;
5720 i.reg_operands += 2;
5721 i.tm.operands += 2;
5722
91d6fa6a 5723 dupl++;
c0f3af97 5724 dest++;
91d6fa6a
NC
5725 i.op[dupl] = i.op[dest];
5726 i.types[dupl] = i.types[dest];
5727 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5728 }
c0f3af97
L
5729 else
5730 {
5731duplicate:
5732 i.operands++;
5733 i.reg_operands++;
5734 i.tm.operands++;
5735
91d6fa6a
NC
5736 i.op[dupl] = i.op[dest];
5737 i.types[dupl] = i.types[dest];
5738 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5739 }
5740
5741 if (i.tm.opcode_modifier.immext)
5742 process_immext ();
5743 }
5744 else if (i.tm.opcode_modifier.firstxmm0)
5745 {
5746 unsigned int j;
5747
43234a1e 5748 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 5749 gas_assert (i.reg_operands
7ab9ffdd 5750 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
5751 || operand_type_equal (&i.types[0], &regymm)
5752 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 5753 if (register_number (i.op[0].regs) != 0)
c0f3af97 5754 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5755
5756 for (j = 1; j < i.operands; j++)
5757 {
5758 i.op[j - 1] = i.op[j];
5759 i.types[j - 1] = i.types[j];
5760
5761 /* We need to adjust fields in i.tm since they are used by
5762 build_modrm_byte. */
5763 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5764 }
5765
e2ec9d29
L
5766 i.operands--;
5767 i.reg_operands--;
e2ec9d29
L
5768 i.tm.operands--;
5769 }
5770 else if (i.tm.opcode_modifier.regkludge)
5771 {
5772 /* The imul $imm, %reg instruction is converted into
5773 imul $imm, %reg, %reg, and the clr %reg instruction
5774 is converted into xor %reg, %reg. */
5775
5776 unsigned int first_reg_op;
5777
5778 if (operand_type_check (i.types[0], reg))
5779 first_reg_op = 0;
5780 else
5781 first_reg_op = 1;
5782 /* Pretend we saw the extra register operand. */
9c2799c2 5783 gas_assert (i.reg_operands == 1
7ab9ffdd 5784 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5785 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5786 i.types[first_reg_op + 1] = i.types[first_reg_op];
5787 i.operands++;
5788 i.reg_operands++;
29b0f896
AM
5789 }
5790
40fb9820 5791 if (i.tm.opcode_modifier.shortform)
29b0f896 5792 {
40fb9820
L
5793 if (i.types[0].bitfield.sreg2
5794 || i.types[0].bitfield.sreg3)
29b0f896 5795 {
4eed87de
AM
5796 if (i.tm.base_opcode == POP_SEG_SHORT
5797 && i.op[0].regs->reg_num == 1)
29b0f896 5798 {
a87af027 5799 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5800 return 0;
29b0f896 5801 }
4eed87de
AM
5802 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5803 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5804 i.rex |= REX_B;
4eed87de
AM
5805 }
5806 else
5807 {
7ab9ffdd 5808 /* The register or float register operand is in operand
85f10a01 5809 0 or 1. */
40fb9820 5810 unsigned int op;
7ab9ffdd
L
5811
5812 if (i.types[0].bitfield.floatreg
5813 || operand_type_check (i.types[0], reg))
5814 op = 0;
5815 else
5816 op = 1;
4eed87de
AM
5817 /* Register goes in low 3 bits of opcode. */
5818 i.tm.base_opcode |= i.op[op].regs->reg_num;
5819 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5820 i.rex |= REX_B;
40fb9820 5821 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5822 {
4eed87de
AM
5823 /* Warn about some common errors, but press on regardless.
5824 The first case can be generated by gcc (<= 2.8.1). */
5825 if (i.operands == 2)
5826 {
5827 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5828 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5829 register_prefix, i.op[!intel_syntax].regs->reg_name,
5830 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5831 }
5832 else
5833 {
5834 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5835 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5836 register_prefix, i.op[0].regs->reg_name);
4eed87de 5837 }
29b0f896
AM
5838 }
5839 }
5840 }
40fb9820 5841 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5842 {
5843 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5844 must be put into the modrm byte). Now, we make the modrm and
5845 index base bytes based on all the info we've collected. */
29b0f896
AM
5846
5847 default_seg = build_modrm_byte ();
5848 }
8a2ed489 5849 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5850 {
5851 default_seg = &ds;
5852 }
40fb9820 5853 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5854 {
5855 /* For the string instructions that allow a segment override
5856 on one of their operands, the default segment is ds. */
5857 default_seg = &ds;
5858 }
5859
75178d9d
L
5860 if (i.tm.base_opcode == 0x8d /* lea */
5861 && i.seg[0]
5862 && !quiet_warnings)
30123838 5863 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5864
5865 /* If a segment was explicitly specified, and the specified segment
5866 is not the default, use an opcode prefix to select it. If we
5867 never figured out what the default segment is, then default_seg
5868 will be zero at this point, and the specified segment prefix will
5869 always be used. */
29b0f896
AM
5870 if ((i.seg[0]) && (i.seg[0] != default_seg))
5871 {
5872 if (!add_prefix (i.seg[0]->seg_prefix))
5873 return 0;
5874 }
5875 return 1;
5876}
5877
5878static const seg_entry *
e3bb37b5 5879build_modrm_byte (void)
29b0f896
AM
5880{
5881 const seg_entry *default_seg = 0;
c0f3af97 5882 unsigned int source, dest;
8cd7925b 5883 int vex_3_sources;
c0f3af97
L
5884
5885 /* The first operand of instructions with VEX prefix and 3 sources
5886 must be VEX_Imm4. */
8cd7925b 5887 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5888 if (vex_3_sources)
5889 {
91d6fa6a 5890 unsigned int nds, reg_slot;
4c2c6516 5891 expressionS *exp;
c0f3af97 5892
922d8de8 5893 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5894 && i.tm.opcode_modifier.immext)
5895 {
5896 dest = i.operands - 2;
5897 gas_assert (dest == 3);
5898 }
922d8de8 5899 else
a683cc34 5900 dest = i.operands - 1;
c0f3af97 5901 nds = dest - 1;
922d8de8 5902
a683cc34
SP
5903 /* There are 2 kinds of instructions:
5904 1. 5 operands: 4 register operands or 3 register operands
5905 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
5906 VexW0 or VexW1. The destination must be either XMM, YMM or
5907 ZMM register.
a683cc34
SP
5908 2. 4 operands: 4 register operands or 3 register operands
5909 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5910 gas_assert ((i.reg_operands == 4
a683cc34
SP
5911 || (i.reg_operands == 3 && i.mem_operands == 1))
5912 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5913 && (i.tm.opcode_modifier.veximmext
5914 || (i.imm_operands == 1
5915 && i.types[0].bitfield.vec_imm4
5916 && (i.tm.opcode_modifier.vexw == VEXW0
5917 || i.tm.opcode_modifier.vexw == VEXW1)
5918 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
5919 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5920 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
5921
5922 if (i.imm_operands == 0)
5923 {
5924 /* When there is no immediate operand, generate an 8bit
5925 immediate operand to encode the first operand. */
5926 exp = &im_expressions[i.imm_operands++];
5927 i.op[i.operands].imms = exp;
5928 i.types[i.operands] = imm8;
5929 i.operands++;
5930 /* If VexW1 is set, the first operand is the source and
5931 the second operand is encoded in the immediate operand. */
5932 if (i.tm.opcode_modifier.vexw == VEXW1)
5933 {
5934 source = 0;
5935 reg_slot = 1;
5936 }
5937 else
5938 {
5939 source = 1;
5940 reg_slot = 0;
5941 }
5942
5943 /* FMA swaps REG and NDS. */
5944 if (i.tm.cpu_flags.bitfield.cpufma)
5945 {
5946 unsigned int tmp;
5947 tmp = reg_slot;
5948 reg_slot = nds;
5949 nds = tmp;
5950 }
5951
24981e7b
L
5952 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5953 &regxmm)
a683cc34 5954 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
5955 &regymm)
5956 || operand_type_equal (&i.tm.operand_types[reg_slot],
5957 &regzmm));
a683cc34 5958 exp->X_op = O_constant;
4c692bc7 5959 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
5960 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5961 }
922d8de8 5962 else
a683cc34
SP
5963 {
5964 unsigned int imm_slot;
5965
5966 if (i.tm.opcode_modifier.vexw == VEXW0)
5967 {
5968 /* If VexW0 is set, the third operand is the source and
5969 the second operand is encoded in the immediate
5970 operand. */
5971 source = 2;
5972 reg_slot = 1;
5973 }
5974 else
5975 {
5976 /* VexW1 is set, the second operand is the source and
5977 the third operand is encoded in the immediate
5978 operand. */
5979 source = 1;
5980 reg_slot = 2;
5981 }
5982
5983 if (i.tm.opcode_modifier.immext)
5984 {
5985 /* When ImmExt is set, the immdiate byte is the last
5986 operand. */
5987 imm_slot = i.operands - 1;
5988 source--;
5989 reg_slot--;
5990 }
5991 else
5992 {
5993 imm_slot = 0;
5994
5995 /* Turn on Imm8 so that output_imm will generate it. */
5996 i.types[imm_slot].bitfield.imm8 = 1;
5997 }
5998
24981e7b
L
5999 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6000 &regxmm)
6001 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6002 &regymm)
6003 || operand_type_equal (&i.tm.operand_types[reg_slot],
6004 &regzmm));
a683cc34 6005 i.op[imm_slot].imms->X_add_number
4c692bc7 6006 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6007 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6008 }
6009
6010 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6011 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6012 &regymm)
6013 || operand_type_equal (&i.tm.operand_types[nds],
6014 &regzmm));
dae39acc 6015 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6016 }
6017 else
6018 source = dest = 0;
29b0f896
AM
6019
6020 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6021 implicit registers do not count. If there are 3 register
6022 operands, it must be a instruction with VexNDS. For a
6023 instruction with VexNDD, the destination register is encoded
6024 in VEX prefix. If there are 4 register operands, it must be
6025 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6026 if (i.mem_operands == 0
6027 && ((i.reg_operands == 2
2426c15f 6028 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6029 || (i.reg_operands == 3
2426c15f 6030 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6031 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6032 {
cab737b9
L
6033 switch (i.operands)
6034 {
6035 case 2:
6036 source = 0;
6037 break;
6038 case 3:
c81128dc
L
6039 /* When there are 3 operands, one of them may be immediate,
6040 which may be the first or the last operand. Otherwise,
c0f3af97
L
6041 the first operand must be shift count register (cl) or it
6042 is an instruction with VexNDS. */
9c2799c2 6043 gas_assert (i.imm_operands == 1
7ab9ffdd 6044 || (i.imm_operands == 0
2426c15f 6045 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6046 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6047 if (operand_type_check (i.types[0], imm)
6048 || i.types[0].bitfield.shiftcount)
6049 source = 1;
6050 else
6051 source = 0;
cab737b9
L
6052 break;
6053 case 4:
368d64cc
L
6054 /* When there are 4 operands, the first two must be 8bit
6055 immediate operands. The source operand will be the 3rd
c0f3af97
L
6056 one.
6057
6058 For instructions with VexNDS, if the first operand
6059 an imm8, the source operand is the 2nd one. If the last
6060 operand is imm8, the source operand is the first one. */
9c2799c2 6061 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6062 && i.types[0].bitfield.imm8
6063 && i.types[1].bitfield.imm8)
2426c15f 6064 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6065 && i.imm_operands == 1
6066 && (i.types[0].bitfield.imm8
43234a1e
L
6067 || i.types[i.operands - 1].bitfield.imm8
6068 || i.rounding)));
9f2670f2
L
6069 if (i.imm_operands == 2)
6070 source = 2;
6071 else
c0f3af97
L
6072 {
6073 if (i.types[0].bitfield.imm8)
6074 source = 1;
6075 else
6076 source = 0;
6077 }
c0f3af97
L
6078 break;
6079 case 5:
43234a1e
L
6080 if (i.tm.opcode_modifier.evex)
6081 {
6082 /* For EVEX instructions, when there are 5 operands, the
6083 first one must be immediate operand. If the second one
6084 is immediate operand, the source operand is the 3th
6085 one. If the last one is immediate operand, the source
6086 operand is the 2nd one. */
6087 gas_assert (i.imm_operands == 2
6088 && i.tm.opcode_modifier.sae
6089 && operand_type_check (i.types[0], imm));
6090 if (operand_type_check (i.types[1], imm))
6091 source = 2;
6092 else if (operand_type_check (i.types[4], imm))
6093 source = 1;
6094 else
6095 abort ();
6096 }
cab737b9
L
6097 break;
6098 default:
6099 abort ();
6100 }
6101
c0f3af97
L
6102 if (!vex_3_sources)
6103 {
6104 dest = source + 1;
6105
43234a1e
L
6106 /* RC/SAE operand could be between DEST and SRC. That happens
6107 when one operand is GPR and the other one is XMM/YMM/ZMM
6108 register. */
6109 if (i.rounding && i.rounding->operand == (int) dest)
6110 dest++;
6111
2426c15f 6112 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6113 {
43234a1e
L
6114 /* For instructions with VexNDS, the register-only source
6115 operand must be 32/64bit integer, XMM, YMM or ZMM
6116 register. It is encoded in VEX prefix. We need to
6117 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6118
6119 i386_operand_type op;
6120 unsigned int vvvv;
6121
6122 /* Check register-only source operand when two source
6123 operands are swapped. */
6124 if (!i.tm.operand_types[source].bitfield.baseindex
6125 && i.tm.operand_types[dest].bitfield.baseindex)
6126 {
6127 vvvv = source;
6128 source = dest;
6129 }
6130 else
6131 vvvv = dest;
6132
6133 op = i.tm.operand_types[vvvv];
fa99fab2 6134 op.bitfield.regmem = 0;
c0f3af97 6135 if ((dest + 1) >= i.operands
f12dc422
L
6136 || (op.bitfield.reg32 != 1
6137 && !op.bitfield.reg64 != 1
6138 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6139 && !operand_type_equal (&op, &regymm)
6140 && !operand_type_equal (&op, &regzmm)
6141 && !operand_type_equal (&op, &regmask)))
c0f3af97 6142 abort ();
f12dc422 6143 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6144 dest++;
6145 }
6146 }
29b0f896
AM
6147
6148 i.rm.mode = 3;
6149 /* One of the register operands will be encoded in the i.tm.reg
6150 field, the other in the combined i.tm.mode and i.tm.regmem
6151 fields. If no form of this instruction supports a memory
6152 destination operand, then we assume the source operand may
6153 sometimes be a memory operand and so we need to store the
6154 destination in the i.rm.reg field. */
40fb9820
L
6155 if (!i.tm.operand_types[dest].bitfield.regmem
6156 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6157 {
6158 i.rm.reg = i.op[dest].regs->reg_num;
6159 i.rm.regmem = i.op[source].regs->reg_num;
6160 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6161 i.rex |= REX_R;
43234a1e
L
6162 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6163 i.vrex |= REX_R;
29b0f896 6164 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6165 i.rex |= REX_B;
43234a1e
L
6166 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6167 i.vrex |= REX_B;
29b0f896
AM
6168 }
6169 else
6170 {
6171 i.rm.reg = i.op[source].regs->reg_num;
6172 i.rm.regmem = i.op[dest].regs->reg_num;
6173 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6174 i.rex |= REX_B;
43234a1e
L
6175 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6176 i.vrex |= REX_B;
29b0f896 6177 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6178 i.rex |= REX_R;
43234a1e
L
6179 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6180 i.vrex |= REX_R;
29b0f896 6181 }
161a04f6 6182 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6183 {
40fb9820
L
6184 if (!i.types[0].bitfield.control
6185 && !i.types[1].bitfield.control)
c4a530c5 6186 abort ();
161a04f6 6187 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6188 add_prefix (LOCK_PREFIX_OPCODE);
6189 }
29b0f896
AM
6190 }
6191 else
6192 { /* If it's not 2 reg operands... */
c0f3af97
L
6193 unsigned int mem;
6194
29b0f896
AM
6195 if (i.mem_operands)
6196 {
6197 unsigned int fake_zero_displacement = 0;
99018f42 6198 unsigned int op;
4eed87de 6199
7ab9ffdd
L
6200 for (op = 0; op < i.operands; op++)
6201 if (operand_type_check (i.types[op], anymem))
6202 break;
7ab9ffdd 6203 gas_assert (op < i.operands);
29b0f896 6204
6c30d220
L
6205 if (i.tm.opcode_modifier.vecsib)
6206 {
6207 if (i.index_reg->reg_num == RegEiz
6208 || i.index_reg->reg_num == RegRiz)
6209 abort ();
6210
6211 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6212 if (!i.base_reg)
6213 {
6214 i.sib.base = NO_BASE_REGISTER;
6215 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6216 /* No Vec_Disp8 if there is no base. */
6217 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6218 i.types[op].bitfield.disp8 = 0;
6219 i.types[op].bitfield.disp16 = 0;
6220 i.types[op].bitfield.disp64 = 0;
6221 if (flag_code != CODE_64BIT)
6222 {
6223 /* Must be 32 bit */
6224 i.types[op].bitfield.disp32 = 1;
6225 i.types[op].bitfield.disp32s = 0;
6226 }
6227 else
6228 {
6229 i.types[op].bitfield.disp32 = 0;
6230 i.types[op].bitfield.disp32s = 1;
6231 }
6232 }
6233 i.sib.index = i.index_reg->reg_num;
6234 if ((i.index_reg->reg_flags & RegRex) != 0)
6235 i.rex |= REX_X;
43234a1e
L
6236 if ((i.index_reg->reg_flags & RegVRex) != 0)
6237 i.vrex |= REX_X;
6c30d220
L
6238 }
6239
29b0f896
AM
6240 default_seg = &ds;
6241
6242 if (i.base_reg == 0)
6243 {
6244 i.rm.mode = 0;
6245 if (!i.disp_operands)
6c30d220
L
6246 {
6247 fake_zero_displacement = 1;
6248 /* Instructions with VSIB byte need 32bit displacement
6249 if there is no base register. */
6250 if (i.tm.opcode_modifier.vecsib)
6251 i.types[op].bitfield.disp32 = 1;
6252 }
29b0f896
AM
6253 if (i.index_reg == 0)
6254 {
6c30d220 6255 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6256 /* Operand is just <disp> */
20f0a1fc 6257 if (flag_code == CODE_64BIT)
29b0f896
AM
6258 {
6259 /* 64bit mode overwrites the 32bit absolute
6260 addressing by RIP relative addressing and
6261 absolute addressing is encoded by one of the
6262 redundant SIB forms. */
6263 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6264 i.sib.base = NO_BASE_REGISTER;
6265 i.sib.index = NO_INDEX_REGISTER;
fc225355 6266 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6267 ? disp32s : disp32);
20f0a1fc 6268 }
fc225355
L
6269 else if ((flag_code == CODE_16BIT)
6270 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6271 {
6272 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6273 i.types[op] = disp16;
20f0a1fc
NC
6274 }
6275 else
6276 {
6277 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6278 i.types[op] = disp32;
29b0f896
AM
6279 }
6280 }
6c30d220 6281 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6282 {
6c30d220 6283 /* !i.base_reg && i.index_reg */
db51cc60
L
6284 if (i.index_reg->reg_num == RegEiz
6285 || i.index_reg->reg_num == RegRiz)
6286 i.sib.index = NO_INDEX_REGISTER;
6287 else
6288 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6289 i.sib.base = NO_BASE_REGISTER;
6290 i.sib.scale = i.log2_scale_factor;
6291 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6292 /* No Vec_Disp8 if there is no base. */
6293 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6294 i.types[op].bitfield.disp8 = 0;
6295 i.types[op].bitfield.disp16 = 0;
6296 i.types[op].bitfield.disp64 = 0;
29b0f896 6297 if (flag_code != CODE_64BIT)
40fb9820
L
6298 {
6299 /* Must be 32 bit */
6300 i.types[op].bitfield.disp32 = 1;
6301 i.types[op].bitfield.disp32s = 0;
6302 }
29b0f896 6303 else
40fb9820
L
6304 {
6305 i.types[op].bitfield.disp32 = 0;
6306 i.types[op].bitfield.disp32s = 1;
6307 }
29b0f896 6308 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6309 i.rex |= REX_X;
29b0f896
AM
6310 }
6311 }
6312 /* RIP addressing for 64bit mode. */
9a04903e
JB
6313 else if (i.base_reg->reg_num == RegRip ||
6314 i.base_reg->reg_num == RegEip)
29b0f896 6315 {
6c30d220 6316 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6317 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6318 i.types[op].bitfield.disp8 = 0;
6319 i.types[op].bitfield.disp16 = 0;
6320 i.types[op].bitfield.disp32 = 0;
6321 i.types[op].bitfield.disp32s = 1;
6322 i.types[op].bitfield.disp64 = 0;
43234a1e 6323 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6324 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6325 if (! i.disp_operands)
6326 fake_zero_displacement = 1;
29b0f896 6327 }
40fb9820 6328 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6329 {
6c30d220 6330 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6331 switch (i.base_reg->reg_num)
6332 {
6333 case 3: /* (%bx) */
6334 if (i.index_reg == 0)
6335 i.rm.regmem = 7;
6336 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6337 i.rm.regmem = i.index_reg->reg_num - 6;
6338 break;
6339 case 5: /* (%bp) */
6340 default_seg = &ss;
6341 if (i.index_reg == 0)
6342 {
6343 i.rm.regmem = 6;
40fb9820 6344 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6345 {
6346 /* fake (%bp) into 0(%bp) */
43234a1e
L
6347 if (i.tm.operand_types[op].bitfield.vec_disp8)
6348 i.types[op].bitfield.vec_disp8 = 1;
6349 else
6350 i.types[op].bitfield.disp8 = 1;
252b5132 6351 fake_zero_displacement = 1;
29b0f896
AM
6352 }
6353 }
6354 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6355 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6356 break;
6357 default: /* (%si) -> 4 or (%di) -> 5 */
6358 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6359 }
6360 i.rm.mode = mode_from_disp_size (i.types[op]);
6361 }
6362 else /* i.base_reg and 32/64 bit mode */
6363 {
6364 if (flag_code == CODE_64BIT
40fb9820
L
6365 && operand_type_check (i.types[op], disp))
6366 {
6367 i386_operand_type temp;
0dfbf9d7 6368 operand_type_set (&temp, 0);
40fb9820 6369 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6370 temp.bitfield.vec_disp8
6371 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6372 i.types[op] = temp;
6373 if (i.prefix[ADDR_PREFIX] == 0)
6374 i.types[op].bitfield.disp32s = 1;
6375 else
6376 i.types[op].bitfield.disp32 = 1;
6377 }
20f0a1fc 6378
6c30d220
L
6379 if (!i.tm.opcode_modifier.vecsib)
6380 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6381 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6382 i.rex |= REX_B;
29b0f896
AM
6383 i.sib.base = i.base_reg->reg_num;
6384 /* x86-64 ignores REX prefix bit here to avoid decoder
6385 complications. */
848930b2
JB
6386 if (!(i.base_reg->reg_flags & RegRex)
6387 && (i.base_reg->reg_num == EBP_REG_NUM
6388 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6389 default_seg = &ss;
848930b2 6390 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6391 {
848930b2 6392 fake_zero_displacement = 1;
43234a1e
L
6393 if (i.tm.operand_types [op].bitfield.vec_disp8)
6394 i.types[op].bitfield.vec_disp8 = 1;
6395 else
6396 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6397 }
6398 i.sib.scale = i.log2_scale_factor;
6399 if (i.index_reg == 0)
6400 {
6c30d220 6401 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6402 /* <disp>(%esp) becomes two byte modrm with no index
6403 register. We've already stored the code for esp
6404 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6405 Any base register besides %esp will not use the
6406 extra modrm byte. */
6407 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6408 }
6c30d220 6409 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6410 {
db51cc60
L
6411 if (i.index_reg->reg_num == RegEiz
6412 || i.index_reg->reg_num == RegRiz)
6413 i.sib.index = NO_INDEX_REGISTER;
6414 else
6415 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6416 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6417 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6418 i.rex |= REX_X;
29b0f896 6419 }
67a4f2b7
AO
6420
6421 if (i.disp_operands
6422 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6423 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6424 i.rm.mode = 0;
6425 else
a501d77e
L
6426 {
6427 if (!fake_zero_displacement
6428 && !i.disp_operands
6429 && i.disp_encoding)
6430 {
6431 fake_zero_displacement = 1;
6432 if (i.disp_encoding == disp_encoding_8bit)
6433 i.types[op].bitfield.disp8 = 1;
6434 else
6435 i.types[op].bitfield.disp32 = 1;
6436 }
6437 i.rm.mode = mode_from_disp_size (i.types[op]);
6438 }
29b0f896 6439 }
252b5132 6440
29b0f896
AM
6441 if (fake_zero_displacement)
6442 {
6443 /* Fakes a zero displacement assuming that i.types[op]
6444 holds the correct displacement size. */
6445 expressionS *exp;
6446
9c2799c2 6447 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6448 exp = &disp_expressions[i.disp_operands++];
6449 i.op[op].disps = exp;
6450 exp->X_op = O_constant;
6451 exp->X_add_number = 0;
6452 exp->X_add_symbol = (symbolS *) 0;
6453 exp->X_op_symbol = (symbolS *) 0;
6454 }
c0f3af97
L
6455
6456 mem = op;
29b0f896 6457 }
c0f3af97
L
6458 else
6459 mem = ~0;
252b5132 6460
8c43a48b 6461 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6462 {
6463 if (operand_type_check (i.types[0], imm))
6464 i.vex.register_specifier = NULL;
6465 else
6466 {
6467 /* VEX.vvvv encodes one of the sources when the first
6468 operand is not an immediate. */
1ef99a7b 6469 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6470 i.vex.register_specifier = i.op[0].regs;
6471 else
6472 i.vex.register_specifier = i.op[1].regs;
6473 }
6474
6475 /* Destination is a XMM register encoded in the ModRM.reg
6476 and VEX.R bit. */
6477 i.rm.reg = i.op[2].regs->reg_num;
6478 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6479 i.rex |= REX_R;
6480
6481 /* ModRM.rm and VEX.B encodes the other source. */
6482 if (!i.mem_operands)
6483 {
6484 i.rm.mode = 3;
6485
1ef99a7b 6486 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6487 i.rm.regmem = i.op[1].regs->reg_num;
6488 else
6489 i.rm.regmem = i.op[0].regs->reg_num;
6490
6491 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6492 i.rex |= REX_B;
6493 }
6494 }
2426c15f 6495 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6496 {
6497 i.vex.register_specifier = i.op[2].regs;
6498 if (!i.mem_operands)
6499 {
6500 i.rm.mode = 3;
6501 i.rm.regmem = i.op[1].regs->reg_num;
6502 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6503 i.rex |= REX_B;
6504 }
6505 }
29b0f896
AM
6506 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6507 (if any) based on i.tm.extension_opcode. Again, we must be
6508 careful to make sure that segment/control/debug/test/MMX
6509 registers are coded into the i.rm.reg field. */
f88c9eb0 6510 else if (i.reg_operands)
29b0f896 6511 {
99018f42 6512 unsigned int op;
7ab9ffdd
L
6513 unsigned int vex_reg = ~0;
6514
6515 for (op = 0; op < i.operands; op++)
6516 if (i.types[op].bitfield.reg8
6517 || i.types[op].bitfield.reg16
6518 || i.types[op].bitfield.reg32
6519 || i.types[op].bitfield.reg64
6520 || i.types[op].bitfield.regmmx
6521 || i.types[op].bitfield.regxmm
6522 || i.types[op].bitfield.regymm
7e8b059b 6523 || i.types[op].bitfield.regbnd
43234a1e
L
6524 || i.types[op].bitfield.regzmm
6525 || i.types[op].bitfield.regmask
7ab9ffdd
L
6526 || i.types[op].bitfield.sreg2
6527 || i.types[op].bitfield.sreg3
6528 || i.types[op].bitfield.control
6529 || i.types[op].bitfield.debug
6530 || i.types[op].bitfield.test)
6531 break;
c0209578 6532
7ab9ffdd
L
6533 if (vex_3_sources)
6534 op = dest;
2426c15f 6535 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6536 {
6537 /* For instructions with VexNDS, the register-only
6538 source operand is encoded in VEX prefix. */
6539 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6540
7ab9ffdd 6541 if (op > mem)
c0f3af97 6542 {
7ab9ffdd
L
6543 vex_reg = op++;
6544 gas_assert (op < i.operands);
c0f3af97
L
6545 }
6546 else
c0f3af97 6547 {
f12dc422
L
6548 /* Check register-only source operand when two source
6549 operands are swapped. */
6550 if (!i.tm.operand_types[op].bitfield.baseindex
6551 && i.tm.operand_types[op + 1].bitfield.baseindex)
6552 {
6553 vex_reg = op;
6554 op += 2;
6555 gas_assert (mem == (vex_reg + 1)
6556 && op < i.operands);
6557 }
6558 else
6559 {
6560 vex_reg = op + 1;
6561 gas_assert (vex_reg < i.operands);
6562 }
c0f3af97 6563 }
7ab9ffdd 6564 }
2426c15f 6565 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6566 {
f12dc422 6567 /* For instructions with VexNDD, the register destination
7ab9ffdd 6568 is encoded in VEX prefix. */
f12dc422
L
6569 if (i.mem_operands == 0)
6570 {
6571 /* There is no memory operand. */
6572 gas_assert ((op + 2) == i.operands);
6573 vex_reg = op + 1;
6574 }
6575 else
8d63c93e 6576 {
f12dc422
L
6577 /* There are only 2 operands. */
6578 gas_assert (op < 2 && i.operands == 2);
6579 vex_reg = 1;
6580 }
7ab9ffdd
L
6581 }
6582 else
6583 gas_assert (op < i.operands);
99018f42 6584
7ab9ffdd
L
6585 if (vex_reg != (unsigned int) ~0)
6586 {
f12dc422 6587 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6588
f12dc422
L
6589 if (type->bitfield.reg32 != 1
6590 && type->bitfield.reg64 != 1
6591 && !operand_type_equal (type, &regxmm)
43234a1e
L
6592 && !operand_type_equal (type, &regymm)
6593 && !operand_type_equal (type, &regzmm)
6594 && !operand_type_equal (type, &regmask))
7ab9ffdd 6595 abort ();
f88c9eb0 6596
7ab9ffdd
L
6597 i.vex.register_specifier = i.op[vex_reg].regs;
6598 }
6599
1b9f0c97
L
6600 /* Don't set OP operand twice. */
6601 if (vex_reg != op)
7ab9ffdd 6602 {
1b9f0c97
L
6603 /* If there is an extension opcode to put here, the
6604 register number must be put into the regmem field. */
6605 if (i.tm.extension_opcode != None)
6606 {
6607 i.rm.regmem = i.op[op].regs->reg_num;
6608 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6609 i.rex |= REX_B;
43234a1e
L
6610 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6611 i.vrex |= REX_B;
1b9f0c97
L
6612 }
6613 else
6614 {
6615 i.rm.reg = i.op[op].regs->reg_num;
6616 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6617 i.rex |= REX_R;
43234a1e
L
6618 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6619 i.vrex |= REX_R;
1b9f0c97 6620 }
7ab9ffdd 6621 }
252b5132 6622
29b0f896
AM
6623 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6624 must set it to 3 to indicate this is a register operand
6625 in the regmem field. */
6626 if (!i.mem_operands)
6627 i.rm.mode = 3;
6628 }
252b5132 6629
29b0f896 6630 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6631 if (i.tm.extension_opcode != None)
29b0f896
AM
6632 i.rm.reg = i.tm.extension_opcode;
6633 }
6634 return default_seg;
6635}
252b5132 6636
29b0f896 6637static void
e3bb37b5 6638output_branch (void)
29b0f896
AM
6639{
6640 char *p;
f8a5c266 6641 int size;
29b0f896
AM
6642 int code16;
6643 int prefix;
6644 relax_substateT subtype;
6645 symbolS *sym;
6646 offsetT off;
6647
f8a5c266 6648 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6649 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6650
6651 prefix = 0;
6652 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6653 {
29b0f896
AM
6654 prefix = 1;
6655 i.prefixes -= 1;
6656 code16 ^= CODE16;
252b5132 6657 }
29b0f896
AM
6658 /* Pentium4 branch hints. */
6659 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6660 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6661 {
29b0f896
AM
6662 prefix++;
6663 i.prefixes--;
6664 }
6665 if (i.prefix[REX_PREFIX] != 0)
6666 {
6667 prefix++;
6668 i.prefixes--;
2f66722d
AM
6669 }
6670
7e8b059b
L
6671 /* BND prefixed jump. */
6672 if (i.prefix[BND_PREFIX] != 0)
6673 {
6674 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6675 i.prefixes -= 1;
6676 }
6677
29b0f896
AM
6678 if (i.prefixes != 0 && !intel_syntax)
6679 as_warn (_("skipping prefixes on this instruction"));
6680
6681 /* It's always a symbol; End frag & setup for relax.
6682 Make sure there is enough room in this frag for the largest
6683 instruction we may generate in md_convert_frag. This is 2
6684 bytes for the opcode and room for the prefix and largest
6685 displacement. */
6686 frag_grow (prefix + 2 + 4);
6687 /* Prefix and 1 opcode byte go in fr_fix. */
6688 p = frag_more (prefix + 1);
6689 if (i.prefix[DATA_PREFIX] != 0)
6690 *p++ = DATA_PREFIX_OPCODE;
6691 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6692 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6693 *p++ = i.prefix[SEG_PREFIX];
6694 if (i.prefix[REX_PREFIX] != 0)
6695 *p++ = i.prefix[REX_PREFIX];
6696 *p = i.tm.base_opcode;
6697
6698 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6699 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6700 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6701 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6702 else
f8a5c266 6703 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6704 subtype |= code16;
3e73aa7c 6705
29b0f896
AM
6706 sym = i.op[0].disps->X_add_symbol;
6707 off = i.op[0].disps->X_add_number;
3e73aa7c 6708
29b0f896
AM
6709 if (i.op[0].disps->X_op != O_constant
6710 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6711 {
29b0f896
AM
6712 /* Handle complex expressions. */
6713 sym = make_expr_symbol (i.op[0].disps);
6714 off = 0;
6715 }
3e73aa7c 6716
29b0f896
AM
6717 /* 1 possible extra opcode + 4 byte displacement go in var part.
6718 Pass reloc in fr_var. */
6719 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6720}
3e73aa7c 6721
29b0f896 6722static void
e3bb37b5 6723output_jump (void)
29b0f896
AM
6724{
6725 char *p;
6726 int size;
3e02c1cc 6727 fixS *fixP;
29b0f896 6728
40fb9820 6729 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6730 {
6731 /* This is a loop or jecxz type instruction. */
6732 size = 1;
6733 if (i.prefix[ADDR_PREFIX] != 0)
6734 {
6735 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6736 i.prefixes -= 1;
6737 }
6738 /* Pentium4 branch hints. */
6739 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6740 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6741 {
6742 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6743 i.prefixes--;
3e73aa7c
JH
6744 }
6745 }
29b0f896
AM
6746 else
6747 {
6748 int code16;
3e73aa7c 6749
29b0f896
AM
6750 code16 = 0;
6751 if (flag_code == CODE_16BIT)
6752 code16 = CODE16;
3e73aa7c 6753
29b0f896
AM
6754 if (i.prefix[DATA_PREFIX] != 0)
6755 {
6756 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6757 i.prefixes -= 1;
6758 code16 ^= CODE16;
6759 }
252b5132 6760
29b0f896
AM
6761 size = 4;
6762 if (code16)
6763 size = 2;
6764 }
9fcc94b6 6765
29b0f896
AM
6766 if (i.prefix[REX_PREFIX] != 0)
6767 {
6768 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6769 i.prefixes -= 1;
6770 }
252b5132 6771
7e8b059b
L
6772 /* BND prefixed jump. */
6773 if (i.prefix[BND_PREFIX] != 0)
6774 {
6775 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6776 i.prefixes -= 1;
6777 }
6778
29b0f896
AM
6779 if (i.prefixes != 0 && !intel_syntax)
6780 as_warn (_("skipping prefixes on this instruction"));
e0890092 6781
42164a71
L
6782 p = frag_more (i.tm.opcode_length + size);
6783 switch (i.tm.opcode_length)
6784 {
6785 case 2:
6786 *p++ = i.tm.base_opcode >> 8;
6787 case 1:
6788 *p++ = i.tm.base_opcode;
6789 break;
6790 default:
6791 abort ();
6792 }
e0890092 6793
3e02c1cc
AM
6794 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6795 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6796
6797 /* All jumps handled here are signed, but don't use a signed limit
6798 check for 32 and 16 bit jumps as we want to allow wrap around at
6799 4G and 64k respectively. */
6800 if (size == 1)
6801 fixP->fx_signed = 1;
29b0f896 6802}
e0890092 6803
29b0f896 6804static void
e3bb37b5 6805output_interseg_jump (void)
29b0f896
AM
6806{
6807 char *p;
6808 int size;
6809 int prefix;
6810 int code16;
252b5132 6811
29b0f896
AM
6812 code16 = 0;
6813 if (flag_code == CODE_16BIT)
6814 code16 = CODE16;
a217f122 6815
29b0f896
AM
6816 prefix = 0;
6817 if (i.prefix[DATA_PREFIX] != 0)
6818 {
6819 prefix = 1;
6820 i.prefixes -= 1;
6821 code16 ^= CODE16;
6822 }
6823 if (i.prefix[REX_PREFIX] != 0)
6824 {
6825 prefix++;
6826 i.prefixes -= 1;
6827 }
252b5132 6828
29b0f896
AM
6829 size = 4;
6830 if (code16)
6831 size = 2;
252b5132 6832
29b0f896
AM
6833 if (i.prefixes != 0 && !intel_syntax)
6834 as_warn (_("skipping prefixes on this instruction"));
252b5132 6835
29b0f896
AM
6836 /* 1 opcode; 2 segment; offset */
6837 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 6838
29b0f896
AM
6839 if (i.prefix[DATA_PREFIX] != 0)
6840 *p++ = DATA_PREFIX_OPCODE;
252b5132 6841
29b0f896
AM
6842 if (i.prefix[REX_PREFIX] != 0)
6843 *p++ = i.prefix[REX_PREFIX];
252b5132 6844
29b0f896
AM
6845 *p++ = i.tm.base_opcode;
6846 if (i.op[1].imms->X_op == O_constant)
6847 {
6848 offsetT n = i.op[1].imms->X_add_number;
252b5132 6849
29b0f896
AM
6850 if (size == 2
6851 && !fits_in_unsigned_word (n)
6852 && !fits_in_signed_word (n))
6853 {
6854 as_bad (_("16-bit jump out of range"));
6855 return;
6856 }
6857 md_number_to_chars (p, n, size);
6858 }
6859 else
6860 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6861 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6862 if (i.op[0].imms->X_op != O_constant)
6863 as_bad (_("can't handle non absolute segment in `%s'"),
6864 i.tm.name);
6865 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6866}
a217f122 6867
29b0f896 6868static void
e3bb37b5 6869output_insn (void)
29b0f896 6870{
2bbd9c25
JJ
6871 fragS *insn_start_frag;
6872 offsetT insn_start_off;
6873
29b0f896
AM
6874 /* Tie dwarf2 debug info to the address at the start of the insn.
6875 We can't do this after the insn has been output as the current
6876 frag may have been closed off. eg. by frag_var. */
6877 dwarf2_emit_insn (0);
6878
2bbd9c25
JJ
6879 insn_start_frag = frag_now;
6880 insn_start_off = frag_now_fix ();
6881
29b0f896 6882 /* Output jumps. */
40fb9820 6883 if (i.tm.opcode_modifier.jump)
29b0f896 6884 output_branch ();
40fb9820
L
6885 else if (i.tm.opcode_modifier.jumpbyte
6886 || i.tm.opcode_modifier.jumpdword)
29b0f896 6887 output_jump ();
40fb9820 6888 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
6889 output_interseg_jump ();
6890 else
6891 {
6892 /* Output normal instructions here. */
6893 char *p;
6894 unsigned char *q;
47465058 6895 unsigned int j;
331d2d0d 6896 unsigned int prefix;
4dffcebc 6897
43234a1e
L
6898 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6899 don't need the explicit prefix. */
6900 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 6901 {
c0f3af97 6902 switch (i.tm.opcode_length)
bc4bd9ab 6903 {
c0f3af97
L
6904 case 3:
6905 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6906 {
c0f3af97
L
6907 prefix = (i.tm.base_opcode >> 24) & 0xff;
6908 goto check_prefix;
6909 }
6910 break;
6911 case 2:
6912 if ((i.tm.base_opcode & 0xff0000) != 0)
6913 {
6914 prefix = (i.tm.base_opcode >> 16) & 0xff;
6915 if (i.tm.cpu_flags.bitfield.cpupadlock)
6916 {
4dffcebc 6917check_prefix:
c0f3af97 6918 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6919 || (i.prefix[REP_PREFIX]
c0f3af97
L
6920 != REPE_PREFIX_OPCODE))
6921 add_prefix (prefix);
6922 }
6923 else
4dffcebc
L
6924 add_prefix (prefix);
6925 }
c0f3af97
L
6926 break;
6927 case 1:
6928 break;
6929 default:
6930 abort ();
bc4bd9ab 6931 }
c0f3af97
L
6932
6933 /* The prefix bytes. */
6934 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6935 if (*q)
6936 FRAG_APPEND_1_CHAR (*q);
0f10071e 6937 }
ae5c1c7b 6938 else
c0f3af97
L
6939 {
6940 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6941 if (*q)
6942 switch (j)
6943 {
6944 case REX_PREFIX:
6945 /* REX byte is encoded in VEX prefix. */
6946 break;
6947 case SEG_PREFIX:
6948 case ADDR_PREFIX:
6949 FRAG_APPEND_1_CHAR (*q);
6950 break;
6951 default:
6952 /* There should be no other prefixes for instructions
6953 with VEX prefix. */
6954 abort ();
6955 }
6956
43234a1e
L
6957 /* For EVEX instructions i.vrex should become 0 after
6958 build_evex_prefix. For VEX instructions upper 16 registers
6959 aren't available, so VREX should be 0. */
6960 if (i.vrex)
6961 abort ();
c0f3af97
L
6962 /* Now the VEX prefix. */
6963 p = frag_more (i.vex.length);
6964 for (j = 0; j < i.vex.length; j++)
6965 p[j] = i.vex.bytes[j];
6966 }
252b5132 6967
29b0f896 6968 /* Now the opcode; be careful about word order here! */
4dffcebc 6969 if (i.tm.opcode_length == 1)
29b0f896
AM
6970 {
6971 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6972 }
6973 else
6974 {
4dffcebc 6975 switch (i.tm.opcode_length)
331d2d0d 6976 {
43234a1e
L
6977 case 4:
6978 p = frag_more (4);
6979 *p++ = (i.tm.base_opcode >> 24) & 0xff;
6980 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6981 break;
4dffcebc 6982 case 3:
331d2d0d
L
6983 p = frag_more (3);
6984 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
6985 break;
6986 case 2:
6987 p = frag_more (2);
6988 break;
6989 default:
6990 abort ();
6991 break;
331d2d0d 6992 }
0f10071e 6993
29b0f896
AM
6994 /* Put out high byte first: can't use md_number_to_chars! */
6995 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6996 *p = i.tm.base_opcode & 0xff;
6997 }
3e73aa7c 6998
29b0f896 6999 /* Now the modrm byte and sib byte (if present). */
40fb9820 7000 if (i.tm.opcode_modifier.modrm)
29b0f896 7001 {
4a3523fa
L
7002 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7003 | i.rm.reg << 3
7004 | i.rm.mode << 6));
29b0f896
AM
7005 /* If i.rm.regmem == ESP (4)
7006 && i.rm.mode != (Register mode)
7007 && not 16 bit
7008 ==> need second modrm byte. */
7009 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7010 && i.rm.mode != 3
40fb9820 7011 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7012 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7013 | i.sib.index << 3
7014 | i.sib.scale << 6));
29b0f896 7015 }
3e73aa7c 7016
29b0f896 7017 if (i.disp_operands)
2bbd9c25 7018 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7019
29b0f896 7020 if (i.imm_operands)
2bbd9c25 7021 output_imm (insn_start_frag, insn_start_off);
29b0f896 7022 }
252b5132 7023
29b0f896
AM
7024#ifdef DEBUG386
7025 if (flag_debug)
7026 {
7b81dfbb 7027 pi ("" /*line*/, &i);
29b0f896
AM
7028 }
7029#endif /* DEBUG386 */
7030}
252b5132 7031
e205caa7
L
7032/* Return the size of the displacement operand N. */
7033
7034static int
7035disp_size (unsigned int n)
7036{
7037 int size = 4;
43234a1e
L
7038
7039 /* Vec_Disp8 has to be 8bit. */
7040 if (i.types[n].bitfield.vec_disp8)
7041 size = 1;
7042 else if (i.types[n].bitfield.disp64)
40fb9820
L
7043 size = 8;
7044 else if (i.types[n].bitfield.disp8)
7045 size = 1;
7046 else if (i.types[n].bitfield.disp16)
7047 size = 2;
e205caa7
L
7048 return size;
7049}
7050
7051/* Return the size of the immediate operand N. */
7052
7053static int
7054imm_size (unsigned int n)
7055{
7056 int size = 4;
40fb9820
L
7057 if (i.types[n].bitfield.imm64)
7058 size = 8;
7059 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7060 size = 1;
7061 else if (i.types[n].bitfield.imm16)
7062 size = 2;
e205caa7
L
7063 return size;
7064}
7065
29b0f896 7066static void
64e74474 7067output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7068{
7069 char *p;
7070 unsigned int n;
252b5132 7071
29b0f896
AM
7072 for (n = 0; n < i.operands; n++)
7073 {
43234a1e
L
7074 if (i.types[n].bitfield.vec_disp8
7075 || operand_type_check (i.types[n], disp))
29b0f896
AM
7076 {
7077 if (i.op[n].disps->X_op == O_constant)
7078 {
e205caa7 7079 int size = disp_size (n);
43234a1e 7080 offsetT val = i.op[n].disps->X_add_number;
252b5132 7081
43234a1e
L
7082 if (i.types[n].bitfield.vec_disp8)
7083 val >>= i.memshift;
7084 val = offset_in_range (val, size);
29b0f896
AM
7085 p = frag_more (size);
7086 md_number_to_chars (p, val, size);
7087 }
7088 else
7089 {
f86103b7 7090 enum bfd_reloc_code_real reloc_type;
e205caa7 7091 int size = disp_size (n);
40fb9820 7092 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
7093 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7094
e205caa7 7095 /* We can't have 8 bit displacement here. */
9c2799c2 7096 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7097
29b0f896
AM
7098 /* The PC relative address is computed relative
7099 to the instruction boundary, so in case immediate
7100 fields follows, we need to adjust the value. */
7101 if (pcrel && i.imm_operands)
7102 {
29b0f896 7103 unsigned int n1;
e205caa7 7104 int sz = 0;
252b5132 7105
29b0f896 7106 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7107 if (operand_type_check (i.types[n1], imm))
252b5132 7108 {
e205caa7
L
7109 /* Only one immediate is allowed for PC
7110 relative address. */
9c2799c2 7111 gas_assert (sz == 0);
e205caa7
L
7112 sz = imm_size (n1);
7113 i.op[n].disps->X_add_number -= sz;
252b5132 7114 }
29b0f896 7115 /* We should find the immediate. */
9c2799c2 7116 gas_assert (sz != 0);
29b0f896 7117 }
520dc8e8 7118
29b0f896 7119 p = frag_more (size);
2bbd9c25 7120 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7121 if (GOT_symbol
2bbd9c25 7122 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7123 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7124 || reloc_type == BFD_RELOC_X86_64_32S
7125 || (reloc_type == BFD_RELOC_64
7126 && object_64bit))
d6ab8113
JB
7127 && (i.op[n].disps->X_op == O_symbol
7128 || (i.op[n].disps->X_op == O_add
7129 && ((symbol_get_value_expression
7130 (i.op[n].disps->X_op_symbol)->X_op)
7131 == O_subtract))))
7132 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7133 {
7134 offsetT add;
7135
7136 if (insn_start_frag == frag_now)
7137 add = (p - frag_now->fr_literal) - insn_start_off;
7138 else
7139 {
7140 fragS *fr;
7141
7142 add = insn_start_frag->fr_fix - insn_start_off;
7143 for (fr = insn_start_frag->fr_next;
7144 fr && fr != frag_now; fr = fr->fr_next)
7145 add += fr->fr_fix;
7146 add += p - frag_now->fr_literal;
7147 }
7148
4fa24527 7149 if (!object_64bit)
7b81dfbb
AJ
7150 {
7151 reloc_type = BFD_RELOC_386_GOTPC;
7152 i.op[n].imms->X_add_number += add;
7153 }
7154 else if (reloc_type == BFD_RELOC_64)
7155 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7156 else
7b81dfbb
AJ
7157 /* Don't do the adjustment for x86-64, as there
7158 the pcrel addressing is relative to the _next_
7159 insn, and that is taken care of in other code. */
d6ab8113 7160 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7161 }
062cd5e7 7162 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 7163 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
7164 }
7165 }
7166 }
7167}
252b5132 7168
29b0f896 7169static void
64e74474 7170output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7171{
7172 char *p;
7173 unsigned int n;
252b5132 7174
29b0f896
AM
7175 for (n = 0; n < i.operands; n++)
7176 {
43234a1e
L
7177 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7178 if (i.rounding && (int) n == i.rounding->operand)
7179 continue;
7180
40fb9820 7181 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7182 {
7183 if (i.op[n].imms->X_op == O_constant)
7184 {
e205caa7 7185 int size = imm_size (n);
29b0f896 7186 offsetT val;
b4cac588 7187
29b0f896
AM
7188 val = offset_in_range (i.op[n].imms->X_add_number,
7189 size);
7190 p = frag_more (size);
7191 md_number_to_chars (p, val, size);
7192 }
7193 else
7194 {
7195 /* Not absolute_section.
7196 Need a 32-bit fixup (don't support 8bit
7197 non-absolute imms). Try to support other
7198 sizes ... */
f86103b7 7199 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7200 int size = imm_size (n);
7201 int sign;
29b0f896 7202
40fb9820 7203 if (i.types[n].bitfield.imm32s
a7d61044 7204 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7205 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7206 sign = 1;
e205caa7
L
7207 else
7208 sign = 0;
520dc8e8 7209
29b0f896
AM
7210 p = frag_more (size);
7211 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7212
2bbd9c25
JJ
7213 /* This is tough to explain. We end up with this one if we
7214 * have operands that look like
7215 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7216 * obtain the absolute address of the GOT, and it is strongly
7217 * preferable from a performance point of view to avoid using
7218 * a runtime relocation for this. The actual sequence of
7219 * instructions often look something like:
7220 *
7221 * call .L66
7222 * .L66:
7223 * popl %ebx
7224 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7225 *
7226 * The call and pop essentially return the absolute address
7227 * of the label .L66 and store it in %ebx. The linker itself
7228 * will ultimately change the first operand of the addl so
7229 * that %ebx points to the GOT, but to keep things simple, the
7230 * .o file must have this operand set so that it generates not
7231 * the absolute address of .L66, but the absolute address of
7232 * itself. This allows the linker itself simply treat a GOTPC
7233 * relocation as asking for a pcrel offset to the GOT to be
7234 * added in, and the addend of the relocation is stored in the
7235 * operand field for the instruction itself.
7236 *
7237 * Our job here is to fix the operand so that it would add
7238 * the correct offset so that %ebx would point to itself. The
7239 * thing that is tricky is that .-.L66 will point to the
7240 * beginning of the instruction, so we need to further modify
7241 * the operand so that it will point to itself. There are
7242 * other cases where you have something like:
7243 *
7244 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7245 *
7246 * and here no correction would be required. Internally in
7247 * the assembler we treat operands of this form as not being
7248 * pcrel since the '.' is explicitly mentioned, and I wonder
7249 * whether it would simplify matters to do it this way. Who
7250 * knows. In earlier versions of the PIC patches, the
7251 * pcrel_adjust field was used to store the correction, but
7252 * since the expression is not pcrel, I felt it would be
7253 * confusing to do it this way. */
7254
d6ab8113 7255 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7256 || reloc_type == BFD_RELOC_X86_64_32S
7257 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7258 && GOT_symbol
7259 && GOT_symbol == i.op[n].imms->X_add_symbol
7260 && (i.op[n].imms->X_op == O_symbol
7261 || (i.op[n].imms->X_op == O_add
7262 && ((symbol_get_value_expression
7263 (i.op[n].imms->X_op_symbol)->X_op)
7264 == O_subtract))))
7265 {
2bbd9c25
JJ
7266 offsetT add;
7267
7268 if (insn_start_frag == frag_now)
7269 add = (p - frag_now->fr_literal) - insn_start_off;
7270 else
7271 {
7272 fragS *fr;
7273
7274 add = insn_start_frag->fr_fix - insn_start_off;
7275 for (fr = insn_start_frag->fr_next;
7276 fr && fr != frag_now; fr = fr->fr_next)
7277 add += fr->fr_fix;
7278 add += p - frag_now->fr_literal;
7279 }
7280
4fa24527 7281 if (!object_64bit)
d6ab8113 7282 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7283 else if (size == 4)
d6ab8113 7284 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7285 else if (size == 8)
7286 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7287 i.op[n].imms->X_add_number += add;
29b0f896 7288 }
29b0f896
AM
7289 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7290 i.op[n].imms, 0, reloc_type);
7291 }
7292 }
7293 }
252b5132
RH
7294}
7295\f
d182319b
JB
7296/* x86_cons_fix_new is called via the expression parsing code when a
7297 reloc is needed. We use this hook to get the correct .got reloc. */
7298static enum bfd_reloc_code_real got_reloc = NO_RELOC;
7299static int cons_sign = -1;
7300
7301void
e3bb37b5 7302x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 7303 expressionS *exp)
d182319b
JB
7304{
7305 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
7306
7307 got_reloc = NO_RELOC;
7308
7309#ifdef TE_PE
7310 if (exp->X_op == O_secrel)
7311 {
7312 exp->X_op = O_symbol;
7313 r = BFD_RELOC_32_SECREL;
7314 }
7315#endif
7316
7317 fix_new_exp (frag, off, len, exp, 0, r);
7318}
7319
357d1bd8
L
7320/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7321 purpose of the `.dc.a' internal pseudo-op. */
7322
7323int
7324x86_address_bytes (void)
7325{
7326 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7327 return 4;
7328 return stdoutput->arch_info->bits_per_address / 8;
7329}
7330
d382c579
TG
7331#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7332 || defined (LEX_AT)
718ddfc0
JB
7333# define lex_got(reloc, adjust, types) NULL
7334#else
f3c180ae
AM
7335/* Parse operands of the form
7336 <symbol>@GOTOFF+<nnn>
7337 and similar .plt or .got references.
7338
7339 If we find one, set up the correct relocation in RELOC and copy the
7340 input string, minus the `@GOTOFF' into a malloc'd buffer for
7341 parsing by the calling routine. Return this buffer, and if ADJUST
7342 is non-null set it to the length of the string we removed from the
7343 input line. Otherwise return NULL. */
7344static char *
91d6fa6a 7345lex_got (enum bfd_reloc_code_real *rel,
64e74474 7346 int *adjust,
40fb9820 7347 i386_operand_type *types)
f3c180ae 7348{
7b81dfbb
AJ
7349 /* Some of the relocations depend on the size of what field is to
7350 be relocated. But in our callers i386_immediate and i386_displacement
7351 we don't yet know the operand size (this will be set by insn
7352 matching). Hence we record the word32 relocation here,
7353 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7354 static const struct {
7355 const char *str;
cff8d58a 7356 int len;
4fa24527 7357 const enum bfd_reloc_code_real rel[2];
40fb9820 7358 const i386_operand_type types64;
f3c180ae 7359 } gotrel[] = {
8ce3d284 7360#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7361 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7362 BFD_RELOC_SIZE32 },
7363 OPERAND_TYPE_IMM32_64 },
8ce3d284 7364#endif
cff8d58a
L
7365 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7366 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7367 OPERAND_TYPE_IMM64 },
cff8d58a
L
7368 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7369 BFD_RELOC_X86_64_PLT32 },
40fb9820 7370 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7371 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7372 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7373 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7374 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7375 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7376 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7377 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7378 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7379 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7380 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7381 BFD_RELOC_X86_64_TLSGD },
40fb9820 7382 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7383 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7384 _dummy_first_bfd_reloc_code_real },
40fb9820 7385 OPERAND_TYPE_NONE },
cff8d58a
L
7386 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7387 BFD_RELOC_X86_64_TLSLD },
40fb9820 7388 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7389 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7390 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7391 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7392 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7393 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7394 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7395 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7396 _dummy_first_bfd_reloc_code_real },
40fb9820 7397 OPERAND_TYPE_NONE },
cff8d58a
L
7398 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7399 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7400 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7401 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7402 _dummy_first_bfd_reloc_code_real },
40fb9820 7403 OPERAND_TYPE_NONE },
cff8d58a
L
7404 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7405 _dummy_first_bfd_reloc_code_real },
40fb9820 7406 OPERAND_TYPE_NONE },
cff8d58a
L
7407 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7408 BFD_RELOC_X86_64_GOT32 },
40fb9820 7409 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7410 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7411 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7412 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7413 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7414 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7415 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7416 };
7417 char *cp;
7418 unsigned int j;
7419
d382c579 7420#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7421 if (!IS_ELF)
7422 return NULL;
d382c579 7423#endif
718ddfc0 7424
f3c180ae 7425 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7426 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7427 return NULL;
7428
47465058 7429 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7430 {
cff8d58a 7431 int len = gotrel[j].len;
28f81592 7432 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7433 {
4fa24527 7434 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7435 {
28f81592
AM
7436 int first, second;
7437 char *tmpbuf, *past_reloc;
f3c180ae 7438
91d6fa6a 7439 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7440
3956db08
JB
7441 if (types)
7442 {
7443 if (flag_code != CODE_64BIT)
40fb9820
L
7444 {
7445 types->bitfield.imm32 = 1;
7446 types->bitfield.disp32 = 1;
7447 }
3956db08
JB
7448 else
7449 *types = gotrel[j].types64;
7450 }
7451
8fd4256d 7452 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7453 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7454
28f81592 7455 /* The length of the first part of our input line. */
f3c180ae 7456 first = cp - input_line_pointer;
28f81592
AM
7457
7458 /* The second part goes from after the reloc token until
67c11a9b 7459 (and including) an end_of_line char or comma. */
28f81592 7460 past_reloc = cp + 1 + len;
67c11a9b
AM
7461 cp = past_reloc;
7462 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7463 ++cp;
7464 second = cp + 1 - past_reloc;
28f81592
AM
7465
7466 /* Allocate and copy string. The trailing NUL shouldn't
7467 be necessary, but be safe. */
1e9cc1c2 7468 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 7469 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7470 if (second != 0 && *past_reloc != ' ')
7471 /* Replace the relocation token with ' ', so that
7472 errors like foo@GOTOFF1 will be detected. */
7473 tmpbuf[first++] = ' ';
af89796a
L
7474 else
7475 /* Increment length by 1 if the relocation token is
7476 removed. */
7477 len++;
7478 if (adjust)
7479 *adjust = len;
0787a12d
AM
7480 memcpy (tmpbuf + first, past_reloc, second);
7481 tmpbuf[first + second] = '\0';
f3c180ae
AM
7482 return tmpbuf;
7483 }
7484
4fa24527
JB
7485 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7486 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7487 return NULL;
7488 }
7489 }
7490
7491 /* Might be a symbol version string. Don't as_bad here. */
7492 return NULL;
7493}
4e4f7c87 7494#endif
f3c180ae 7495
a988325c
NC
7496#ifdef TE_PE
7497#ifdef lex_got
7498#undef lex_got
7499#endif
7500/* Parse operands of the form
7501 <symbol>@SECREL32+<nnn>
7502
7503 If we find one, set up the correct relocation in RELOC and copy the
7504 input string, minus the `@SECREL32' into a malloc'd buffer for
7505 parsing by the calling routine. Return this buffer, and if ADJUST
7506 is non-null set it to the length of the string we removed from the
34bca508
L
7507 input line. Otherwise return NULL.
7508
a988325c
NC
7509 This function is copied from the ELF version above adjusted for PE targets. */
7510
7511static char *
7512lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7513 int *adjust ATTRIBUTE_UNUSED,
7514 i386_operand_type *types ATTRIBUTE_UNUSED)
7515{
7516 static const struct
7517 {
7518 const char *str;
7519 int len;
7520 const enum bfd_reloc_code_real rel[2];
7521 const i386_operand_type types64;
7522 }
7523 gotrel[] =
7524 {
7525 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7526 BFD_RELOC_32_SECREL },
7527 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7528 };
7529
7530 char *cp;
7531 unsigned j;
7532
7533 for (cp = input_line_pointer; *cp != '@'; cp++)
7534 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7535 return NULL;
7536
7537 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7538 {
7539 int len = gotrel[j].len;
7540
7541 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7542 {
7543 if (gotrel[j].rel[object_64bit] != 0)
7544 {
7545 int first, second;
7546 char *tmpbuf, *past_reloc;
7547
7548 *rel = gotrel[j].rel[object_64bit];
7549 if (adjust)
7550 *adjust = len;
7551
7552 if (types)
7553 {
7554 if (flag_code != CODE_64BIT)
7555 {
7556 types->bitfield.imm32 = 1;
7557 types->bitfield.disp32 = 1;
7558 }
7559 else
7560 *types = gotrel[j].types64;
7561 }
7562
7563 /* The length of the first part of our input line. */
7564 first = cp - input_line_pointer;
7565
7566 /* The second part goes from after the reloc token until
7567 (and including) an end_of_line char or comma. */
7568 past_reloc = cp + 1 + len;
7569 cp = past_reloc;
7570 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7571 ++cp;
7572 second = cp + 1 - past_reloc;
7573
7574 /* Allocate and copy string. The trailing NUL shouldn't
7575 be necessary, but be safe. */
7576 tmpbuf = (char *) xmalloc (first + second + 2);
7577 memcpy (tmpbuf, input_line_pointer, first);
7578 if (second != 0 && *past_reloc != ' ')
7579 /* Replace the relocation token with ' ', so that
7580 errors like foo@SECLREL321 will be detected. */
7581 tmpbuf[first++] = ' ';
7582 memcpy (tmpbuf + first, past_reloc, second);
7583 tmpbuf[first + second] = '\0';
7584 return tmpbuf;
7585 }
7586
7587 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7588 gotrel[j].str, 1 << (5 + object_64bit));
7589 return NULL;
7590 }
7591 }
7592
7593 /* Might be a symbol version string. Don't as_bad here. */
7594 return NULL;
7595}
7596
7597#endif /* TE_PE */
7598
f3c180ae 7599void
e3bb37b5 7600x86_cons (expressionS *exp, int size)
f3c180ae 7601{
ee86248c
JB
7602 intel_syntax = -intel_syntax;
7603
3c7b9c2c 7604 exp->X_md = 0;
4fa24527 7605 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
7606 {
7607 /* Handle @GOTOFF and the like in an expression. */
7608 char *save;
7609 char *gotfree_input_line;
4a57f2cf 7610 int adjust = 0;
f3c180ae
AM
7611
7612 save = input_line_pointer;
3956db08 7613 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
7614 if (gotfree_input_line)
7615 input_line_pointer = gotfree_input_line;
7616
7617 expression (exp);
7618
7619 if (gotfree_input_line)
7620 {
7621 /* expression () has merrily parsed up to the end of line,
7622 or a comma - in the wrong buffer. Transfer how far
7623 input_line_pointer has moved to the right buffer. */
7624 input_line_pointer = (save
7625 + (input_line_pointer - gotfree_input_line)
7626 + adjust);
7627 free (gotfree_input_line);
3992d3b7
AM
7628 if (exp->X_op == O_constant
7629 || exp->X_op == O_absent
7630 || exp->X_op == O_illegal
0398aac5 7631 || exp->X_op == O_register
3992d3b7
AM
7632 || exp->X_op == O_big)
7633 {
7634 char c = *input_line_pointer;
7635 *input_line_pointer = 0;
7636 as_bad (_("missing or invalid expression `%s'"), save);
7637 *input_line_pointer = c;
7638 }
f3c180ae
AM
7639 }
7640 }
7641 else
7642 expression (exp);
ee86248c
JB
7643
7644 intel_syntax = -intel_syntax;
7645
7646 if (intel_syntax)
7647 i386_intel_simplify (exp);
f3c180ae 7648}
f3c180ae 7649
9f32dd5b
L
7650static void
7651signed_cons (int size)
6482c264 7652{
d182319b
JB
7653 if (flag_code == CODE_64BIT)
7654 cons_sign = 1;
7655 cons (size);
7656 cons_sign = -1;
6482c264
NC
7657}
7658
d182319b 7659#ifdef TE_PE
6482c264 7660static void
7016a5d5 7661pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
7662{
7663 expressionS exp;
7664
7665 do
7666 {
7667 expression (&exp);
7668 if (exp.X_op == O_symbol)
7669 exp.X_op = O_secrel;
7670
7671 emit_expr (&exp, 4);
7672 }
7673 while (*input_line_pointer++ == ',');
7674
7675 input_line_pointer--;
7676 demand_empty_rest_of_line ();
7677}
6482c264
NC
7678#endif
7679
43234a1e
L
7680/* Handle Vector operations. */
7681
7682static char *
7683check_VecOperations (char *op_string, char *op_end)
7684{
7685 const reg_entry *mask;
7686 const char *saved;
7687 char *end_op;
7688
7689 while (*op_string
7690 && (op_end == NULL || op_string < op_end))
7691 {
7692 saved = op_string;
7693 if (*op_string == '{')
7694 {
7695 op_string++;
7696
7697 /* Check broadcasts. */
7698 if (strncmp (op_string, "1to", 3) == 0)
7699 {
7700 int bcst_type;
7701
7702 if (i.broadcast)
7703 goto duplicated_vec_op;
7704
7705 op_string += 3;
7706 if (*op_string == '8')
7707 bcst_type = BROADCAST_1TO8;
7708 else if (*op_string == '1'
7709 && *(op_string+1) == '6')
7710 {
7711 bcst_type = BROADCAST_1TO16;
7712 op_string++;
7713 }
7714 else
7715 {
7716 as_bad (_("Unsupported broadcast: `%s'"), saved);
7717 return NULL;
7718 }
7719 op_string++;
7720
7721 broadcast_op.type = bcst_type;
7722 broadcast_op.operand = this_operand;
7723 i.broadcast = &broadcast_op;
7724 }
7725 /* Check masking operation. */
7726 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7727 {
7728 /* k0 can't be used for write mask. */
7729 if (mask->reg_num == 0)
7730 {
7731 as_bad (_("`%s' can't be used for write mask"),
7732 op_string);
7733 return NULL;
7734 }
7735
7736 if (!i.mask)
7737 {
7738 mask_op.mask = mask;
7739 mask_op.zeroing = 0;
7740 mask_op.operand = this_operand;
7741 i.mask = &mask_op;
7742 }
7743 else
7744 {
7745 if (i.mask->mask)
7746 goto duplicated_vec_op;
7747
7748 i.mask->mask = mask;
7749
7750 /* Only "{z}" is allowed here. No need to check
7751 zeroing mask explicitly. */
7752 if (i.mask->operand != this_operand)
7753 {
7754 as_bad (_("invalid write mask `%s'"), saved);
7755 return NULL;
7756 }
7757 }
7758
7759 op_string = end_op;
7760 }
7761 /* Check zeroing-flag for masking operation. */
7762 else if (*op_string == 'z')
7763 {
7764 if (!i.mask)
7765 {
7766 mask_op.mask = NULL;
7767 mask_op.zeroing = 1;
7768 mask_op.operand = this_operand;
7769 i.mask = &mask_op;
7770 }
7771 else
7772 {
7773 if (i.mask->zeroing)
7774 {
7775 duplicated_vec_op:
7776 as_bad (_("duplicated `%s'"), saved);
7777 return NULL;
7778 }
7779
7780 i.mask->zeroing = 1;
7781
7782 /* Only "{%k}" is allowed here. No need to check mask
7783 register explicitly. */
7784 if (i.mask->operand != this_operand)
7785 {
7786 as_bad (_("invalid zeroing-masking `%s'"),
7787 saved);
7788 return NULL;
7789 }
7790 }
7791
7792 op_string++;
7793 }
7794 else
7795 goto unknown_vec_op;
7796
7797 if (*op_string != '}')
7798 {
7799 as_bad (_("missing `}' in `%s'"), saved);
7800 return NULL;
7801 }
7802 op_string++;
7803 continue;
7804 }
7805 unknown_vec_op:
7806 /* We don't know this one. */
7807 as_bad (_("unknown vector operation: `%s'"), saved);
7808 return NULL;
7809 }
7810
7811 return op_string;
7812}
7813
252b5132 7814static int
70e41ade 7815i386_immediate (char *imm_start)
252b5132
RH
7816{
7817 char *save_input_line_pointer;
f3c180ae 7818 char *gotfree_input_line;
252b5132 7819 segT exp_seg = 0;
47926f60 7820 expressionS *exp;
40fb9820
L
7821 i386_operand_type types;
7822
0dfbf9d7 7823 operand_type_set (&types, ~0);
252b5132
RH
7824
7825 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7826 {
31b2323c
L
7827 as_bad (_("at most %d immediate operands are allowed"),
7828 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
7829 return 0;
7830 }
7831
7832 exp = &im_expressions[i.imm_operands++];
520dc8e8 7833 i.op[this_operand].imms = exp;
252b5132
RH
7834
7835 if (is_space_char (*imm_start))
7836 ++imm_start;
7837
7838 save_input_line_pointer = input_line_pointer;
7839 input_line_pointer = imm_start;
7840
3956db08 7841 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
7842 if (gotfree_input_line)
7843 input_line_pointer = gotfree_input_line;
252b5132
RH
7844
7845 exp_seg = expression (exp);
7846
83183c0c 7847 SKIP_WHITESPACE ();
43234a1e
L
7848
7849 /* Handle vector operations. */
7850 if (*input_line_pointer == '{')
7851 {
7852 input_line_pointer = check_VecOperations (input_line_pointer,
7853 NULL);
7854 if (input_line_pointer == NULL)
7855 return 0;
7856 }
7857
252b5132 7858 if (*input_line_pointer)
f3c180ae 7859 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
7860
7861 input_line_pointer = save_input_line_pointer;
f3c180ae 7862 if (gotfree_input_line)
ee86248c
JB
7863 {
7864 free (gotfree_input_line);
7865
7866 if (exp->X_op == O_constant || exp->X_op == O_register)
7867 exp->X_op = O_illegal;
7868 }
7869
7870 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7871}
252b5132 7872
ee86248c
JB
7873static int
7874i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7875 i386_operand_type types, const char *imm_start)
7876{
7877 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 7878 {
313c53d1
L
7879 if (imm_start)
7880 as_bad (_("missing or invalid immediate expression `%s'"),
7881 imm_start);
3992d3b7 7882 return 0;
252b5132 7883 }
3e73aa7c 7884 else if (exp->X_op == O_constant)
252b5132 7885 {
47926f60 7886 /* Size it properly later. */
40fb9820 7887 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
7888 /* If not 64bit, sign extend val. */
7889 if (flag_code != CODE_64BIT
4eed87de
AM
7890 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7891 exp->X_add_number
7892 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 7893 }
4c63da97 7894#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 7895 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 7896 && exp_seg != absolute_section
47926f60 7897 && exp_seg != text_section
24eab124
AM
7898 && exp_seg != data_section
7899 && exp_seg != bss_section
7900 && exp_seg != undefined_section
f86103b7 7901 && !bfd_is_com_section (exp_seg))
252b5132 7902 {
d0b47220 7903 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
7904 return 0;
7905 }
7906#endif
bb8f5920
L
7907 else if (!intel_syntax && exp->X_op == O_register)
7908 {
313c53d1
L
7909 if (imm_start)
7910 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
7911 return 0;
7912 }
252b5132
RH
7913 else
7914 {
7915 /* This is an address. The size of the address will be
24eab124 7916 determined later, depending on destination register,
3e73aa7c 7917 suffix, or the default for the section. */
40fb9820
L
7918 i.types[this_operand].bitfield.imm8 = 1;
7919 i.types[this_operand].bitfield.imm16 = 1;
7920 i.types[this_operand].bitfield.imm32 = 1;
7921 i.types[this_operand].bitfield.imm32s = 1;
7922 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
7923 i.types[this_operand] = operand_type_and (i.types[this_operand],
7924 types);
252b5132
RH
7925 }
7926
7927 return 1;
7928}
7929
551c1ca1 7930static char *
e3bb37b5 7931i386_scale (char *scale)
252b5132 7932{
551c1ca1
AM
7933 offsetT val;
7934 char *save = input_line_pointer;
252b5132 7935
551c1ca1
AM
7936 input_line_pointer = scale;
7937 val = get_absolute_expression ();
7938
7939 switch (val)
252b5132 7940 {
551c1ca1 7941 case 1:
252b5132
RH
7942 i.log2_scale_factor = 0;
7943 break;
551c1ca1 7944 case 2:
252b5132
RH
7945 i.log2_scale_factor = 1;
7946 break;
551c1ca1 7947 case 4:
252b5132
RH
7948 i.log2_scale_factor = 2;
7949 break;
551c1ca1 7950 case 8:
252b5132
RH
7951 i.log2_scale_factor = 3;
7952 break;
7953 default:
a724f0f4
JB
7954 {
7955 char sep = *input_line_pointer;
7956
7957 *input_line_pointer = '\0';
7958 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7959 scale);
7960 *input_line_pointer = sep;
7961 input_line_pointer = save;
7962 return NULL;
7963 }
252b5132 7964 }
29b0f896 7965 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
7966 {
7967 as_warn (_("scale factor of %d without an index register"),
24eab124 7968 1 << i.log2_scale_factor);
252b5132 7969 i.log2_scale_factor = 0;
252b5132 7970 }
551c1ca1
AM
7971 scale = input_line_pointer;
7972 input_line_pointer = save;
7973 return scale;
252b5132
RH
7974}
7975
252b5132 7976static int
e3bb37b5 7977i386_displacement (char *disp_start, char *disp_end)
252b5132 7978{
29b0f896 7979 expressionS *exp;
252b5132
RH
7980 segT exp_seg = 0;
7981 char *save_input_line_pointer;
f3c180ae 7982 char *gotfree_input_line;
40fb9820
L
7983 int override;
7984 i386_operand_type bigdisp, types = anydisp;
3992d3b7 7985 int ret;
252b5132 7986
31b2323c
L
7987 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7988 {
7989 as_bad (_("at most %d displacement operands are allowed"),
7990 MAX_MEMORY_OPERANDS);
7991 return 0;
7992 }
7993
0dfbf9d7 7994 operand_type_set (&bigdisp, 0);
40fb9820
L
7995 if ((i.types[this_operand].bitfield.jumpabsolute)
7996 || (!current_templates->start->opcode_modifier.jump
7997 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 7998 {
40fb9820 7999 bigdisp.bitfield.disp32 = 1;
e05278af 8000 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8001 if (flag_code == CODE_64BIT)
8002 {
8003 if (!override)
8004 {
8005 bigdisp.bitfield.disp32s = 1;
8006 bigdisp.bitfield.disp64 = 1;
8007 }
8008 }
8009 else if ((flag_code == CODE_16BIT) ^ override)
8010 {
8011 bigdisp.bitfield.disp32 = 0;
8012 bigdisp.bitfield.disp16 = 1;
8013 }
e05278af
JB
8014 }
8015 else
8016 {
8017 /* For PC-relative branches, the width of the displacement
8018 is dependent upon data size, not address size. */
e05278af 8019 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8020 if (flag_code == CODE_64BIT)
8021 {
8022 if (override || i.suffix == WORD_MNEM_SUFFIX)
8023 bigdisp.bitfield.disp16 = 1;
8024 else
8025 {
8026 bigdisp.bitfield.disp32 = 1;
8027 bigdisp.bitfield.disp32s = 1;
8028 }
8029 }
8030 else
e05278af
JB
8031 {
8032 if (!override)
8033 override = (i.suffix == (flag_code != CODE_16BIT
8034 ? WORD_MNEM_SUFFIX
8035 : LONG_MNEM_SUFFIX));
40fb9820
L
8036 bigdisp.bitfield.disp32 = 1;
8037 if ((flag_code == CODE_16BIT) ^ override)
8038 {
8039 bigdisp.bitfield.disp32 = 0;
8040 bigdisp.bitfield.disp16 = 1;
8041 }
e05278af 8042 }
e05278af 8043 }
c6fb90c8
L
8044 i.types[this_operand] = operand_type_or (i.types[this_operand],
8045 bigdisp);
252b5132
RH
8046
8047 exp = &disp_expressions[i.disp_operands];
520dc8e8 8048 i.op[this_operand].disps = exp;
252b5132
RH
8049 i.disp_operands++;
8050 save_input_line_pointer = input_line_pointer;
8051 input_line_pointer = disp_start;
8052 END_STRING_AND_SAVE (disp_end);
8053
8054#ifndef GCC_ASM_O_HACK
8055#define GCC_ASM_O_HACK 0
8056#endif
8057#if GCC_ASM_O_HACK
8058 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8059 if (i.types[this_operand].bitfield.baseIndex
24eab124 8060 && displacement_string_end[-1] == '+')
252b5132
RH
8061 {
8062 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8063 constraint within gcc asm statements.
8064 For instance:
8065
8066 #define _set_tssldt_desc(n,addr,limit,type) \
8067 __asm__ __volatile__ ( \
8068 "movw %w2,%0\n\t" \
8069 "movw %w1,2+%0\n\t" \
8070 "rorl $16,%1\n\t" \
8071 "movb %b1,4+%0\n\t" \
8072 "movb %4,5+%0\n\t" \
8073 "movb $0,6+%0\n\t" \
8074 "movb %h1,7+%0\n\t" \
8075 "rorl $16,%1" \
8076 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8077
8078 This works great except that the output assembler ends
8079 up looking a bit weird if it turns out that there is
8080 no offset. You end up producing code that looks like:
8081
8082 #APP
8083 movw $235,(%eax)
8084 movw %dx,2+(%eax)
8085 rorl $16,%edx
8086 movb %dl,4+(%eax)
8087 movb $137,5+(%eax)
8088 movb $0,6+(%eax)
8089 movb %dh,7+(%eax)
8090 rorl $16,%edx
8091 #NO_APP
8092
47926f60 8093 So here we provide the missing zero. */
24eab124
AM
8094
8095 *displacement_string_end = '0';
252b5132
RH
8096 }
8097#endif
3956db08 8098 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8099 if (gotfree_input_line)
8100 input_line_pointer = gotfree_input_line;
252b5132 8101
24eab124 8102 exp_seg = expression (exp);
252b5132 8103
636c26b0
AM
8104 SKIP_WHITESPACE ();
8105 if (*input_line_pointer)
8106 as_bad (_("junk `%s' after expression"), input_line_pointer);
8107#if GCC_ASM_O_HACK
8108 RESTORE_END_STRING (disp_end + 1);
8109#endif
636c26b0 8110 input_line_pointer = save_input_line_pointer;
636c26b0 8111 if (gotfree_input_line)
ee86248c
JB
8112 {
8113 free (gotfree_input_line);
8114
8115 if (exp->X_op == O_constant || exp->X_op == O_register)
8116 exp->X_op = O_illegal;
8117 }
8118
8119 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8120
8121 RESTORE_END_STRING (disp_end);
8122
8123 return ret;
8124}
8125
8126static int
8127i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8128 i386_operand_type types, const char *disp_start)
8129{
8130 i386_operand_type bigdisp;
8131 int ret = 1;
636c26b0 8132
24eab124
AM
8133 /* We do this to make sure that the section symbol is in
8134 the symbol table. We will ultimately change the relocation
47926f60 8135 to be relative to the beginning of the section. */
1ae12ab7 8136 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8137 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8138 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8139 {
636c26b0 8140 if (exp->X_op != O_symbol)
3992d3b7 8141 goto inv_disp;
636c26b0 8142
e5cb08ac 8143 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8144 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8145 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8146 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8147 exp->X_op = O_subtract;
8148 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8149 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8150 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8151 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8152 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8153 else
29b0f896 8154 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8155 }
252b5132 8156
3992d3b7
AM
8157 else if (exp->X_op == O_absent
8158 || exp->X_op == O_illegal
ee86248c 8159 || exp->X_op == O_big)
2daf4fd8 8160 {
3992d3b7
AM
8161 inv_disp:
8162 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8163 disp_start);
3992d3b7 8164 ret = 0;
2daf4fd8
AM
8165 }
8166
0e1147d9
L
8167 else if (flag_code == CODE_64BIT
8168 && !i.prefix[ADDR_PREFIX]
8169 && exp->X_op == O_constant)
8170 {
8171 /* Since displacement is signed extended to 64bit, don't allow
8172 disp32 and turn off disp32s if they are out of range. */
8173 i.types[this_operand].bitfield.disp32 = 0;
8174 if (!fits_in_signed_long (exp->X_add_number))
8175 {
8176 i.types[this_operand].bitfield.disp32s = 0;
8177 if (i.types[this_operand].bitfield.baseindex)
8178 {
8179 as_bad (_("0x%lx out range of signed 32bit displacement"),
8180 (long) exp->X_add_number);
8181 ret = 0;
8182 }
8183 }
8184 }
8185
4c63da97 8186#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8187 else if (exp->X_op != O_constant
8188 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8189 && exp_seg != absolute_section
8190 && exp_seg != text_section
8191 && exp_seg != data_section
8192 && exp_seg != bss_section
8193 && exp_seg != undefined_section
8194 && !bfd_is_com_section (exp_seg))
24eab124 8195 {
d0b47220 8196 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8197 ret = 0;
24eab124 8198 }
252b5132 8199#endif
3956db08 8200
40fb9820
L
8201 /* Check if this is a displacement only operand. */
8202 bigdisp = i.types[this_operand];
8203 bigdisp.bitfield.disp8 = 0;
8204 bigdisp.bitfield.disp16 = 0;
8205 bigdisp.bitfield.disp32 = 0;
8206 bigdisp.bitfield.disp32s = 0;
8207 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8208 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8209 i.types[this_operand] = operand_type_and (i.types[this_operand],
8210 types);
3956db08 8211
3992d3b7 8212 return ret;
252b5132
RH
8213}
8214
eecb386c 8215/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8216 Return 1 on success, 0 on a failure. */
8217
252b5132 8218static int
e3bb37b5 8219i386_index_check (const char *operand_string)
252b5132 8220{
fc0763e6 8221 const char *kind = "base/index";
be05d201
L
8222 enum flag_code addr_mode;
8223
8224 if (i.prefix[ADDR_PREFIX])
8225 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8226 else
8227 {
8228 addr_mode = flag_code;
8229
24eab124 8230#if INFER_ADDR_PREFIX
be05d201
L
8231 if (i.mem_operands == 0)
8232 {
8233 /* Infer address prefix from the first memory operand. */
8234 const reg_entry *addr_reg = i.base_reg;
8235
8236 if (addr_reg == NULL)
8237 addr_reg = i.index_reg;
eecb386c 8238
be05d201
L
8239 if (addr_reg)
8240 {
8241 if (addr_reg->reg_num == RegEip
8242 || addr_reg->reg_num == RegEiz
8243 || addr_reg->reg_type.bitfield.reg32)
8244 addr_mode = CODE_32BIT;
8245 else if (flag_code != CODE_64BIT
8246 && addr_reg->reg_type.bitfield.reg16)
8247 addr_mode = CODE_16BIT;
8248
8249 if (addr_mode != flag_code)
8250 {
8251 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8252 i.prefixes += 1;
8253 /* Change the size of any displacement too. At most one
8254 of Disp16 or Disp32 is set.
8255 FIXME. There doesn't seem to be any real need for
8256 separate Disp16 and Disp32 flags. The same goes for
8257 Imm16 and Imm32. Removing them would probably clean
8258 up the code quite a lot. */
8259 if (flag_code != CODE_64BIT
8260 && (i.types[this_operand].bitfield.disp16
8261 || i.types[this_operand].bitfield.disp32))
8262 i.types[this_operand]
8263 = operand_type_xor (i.types[this_operand], disp16_32);
8264 }
8265 }
8266 }
24eab124 8267#endif
be05d201
L
8268 }
8269
fc0763e6
JB
8270 if (current_templates->start->opcode_modifier.isstring
8271 && !current_templates->start->opcode_modifier.immext
8272 && (current_templates->end[-1].opcode_modifier.isstring
8273 || i.mem_operands))
8274 {
8275 /* Memory operands of string insns are special in that they only allow
8276 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8277 const reg_entry *expected_reg;
8278 static const char *di_si[][2] =
8279 {
8280 { "esi", "edi" },
8281 { "si", "di" },
8282 { "rsi", "rdi" }
8283 };
8284 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8285
8286 kind = "string address";
8287
8288 if (current_templates->start->opcode_modifier.w)
8289 {
8290 i386_operand_type type = current_templates->end[-1].operand_types[0];
8291
8292 if (!type.bitfield.baseindex
8293 || ((!i.mem_operands != !intel_syntax)
8294 && current_templates->end[-1].operand_types[1]
8295 .bitfield.baseindex))
8296 type = current_templates->end[-1].operand_types[1];
be05d201
L
8297 expected_reg = hash_find (reg_hash,
8298 di_si[addr_mode][type.bitfield.esseg]);
8299
fc0763e6
JB
8300 }
8301 else
be05d201 8302 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8303
be05d201
L
8304 if (i.base_reg != expected_reg
8305 || i.index_reg
fc0763e6 8306 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8307 {
be05d201
L
8308 /* The second memory operand must have the same size as
8309 the first one. */
8310 if (i.mem_operands
8311 && i.base_reg
8312 && !((addr_mode == CODE_64BIT
8313 && i.base_reg->reg_type.bitfield.reg64)
8314 || (addr_mode == CODE_32BIT
8315 ? i.base_reg->reg_type.bitfield.reg32
8316 : i.base_reg->reg_type.bitfield.reg16)))
8317 goto bad_address;
8318
fc0763e6
JB
8319 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8320 operand_string,
8321 intel_syntax ? '[' : '(',
8322 register_prefix,
be05d201 8323 expected_reg->reg_name,
fc0763e6 8324 intel_syntax ? ']' : ')');
be05d201 8325 return 1;
fc0763e6 8326 }
be05d201
L
8327 else
8328 return 1;
8329
8330bad_address:
8331 as_bad (_("`%s' is not a valid %s expression"),
8332 operand_string, kind);
8333 return 0;
3e73aa7c
JH
8334 }
8335 else
8336 {
be05d201
L
8337 if (addr_mode != CODE_16BIT)
8338 {
8339 /* 32-bit/64-bit checks. */
8340 if ((i.base_reg
8341 && (addr_mode == CODE_64BIT
8342 ? !i.base_reg->reg_type.bitfield.reg64
8343 : !i.base_reg->reg_type.bitfield.reg32)
8344 && (i.index_reg
8345 || (i.base_reg->reg_num
8346 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8347 || (i.index_reg
8348 && !i.index_reg->reg_type.bitfield.regxmm
8349 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8350 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8351 && ((addr_mode == CODE_64BIT
8352 ? !(i.index_reg->reg_type.bitfield.reg64
8353 || i.index_reg->reg_num == RegRiz)
8354 : !(i.index_reg->reg_type.bitfield.reg32
8355 || i.index_reg->reg_num == RegEiz))
8356 || !i.index_reg->reg_type.bitfield.baseindex)))
8357 goto bad_address;
8358 }
8359 else
3e73aa7c 8360 {
be05d201 8361 /* 16-bit checks. */
3e73aa7c 8362 if ((i.base_reg
40fb9820
L
8363 && (!i.base_reg->reg_type.bitfield.reg16
8364 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8365 || (i.index_reg
40fb9820
L
8366 && (!i.index_reg->reg_type.bitfield.reg16
8367 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8368 || !(i.base_reg
8369 && i.base_reg->reg_num < 6
8370 && i.index_reg->reg_num >= 6
8371 && i.log2_scale_factor == 0))))
be05d201 8372 goto bad_address;
3e73aa7c
JH
8373 }
8374 }
be05d201 8375 return 1;
24eab124 8376}
252b5132 8377
43234a1e
L
8378/* Handle vector immediates. */
8379
8380static int
8381RC_SAE_immediate (const char *imm_start)
8382{
8383 unsigned int match_found, j;
8384 const char *pstr = imm_start;
8385 expressionS *exp;
8386
8387 if (*pstr != '{')
8388 return 0;
8389
8390 pstr++;
8391 match_found = 0;
8392 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8393 {
8394 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8395 {
8396 if (!i.rounding)
8397 {
8398 rc_op.type = RC_NamesTable[j].type;
8399 rc_op.operand = this_operand;
8400 i.rounding = &rc_op;
8401 }
8402 else
8403 {
8404 as_bad (_("duplicated `%s'"), imm_start);
8405 return 0;
8406 }
8407 pstr += RC_NamesTable[j].len;
8408 match_found = 1;
8409 break;
8410 }
8411 }
8412 if (!match_found)
8413 return 0;
8414
8415 if (*pstr++ != '}')
8416 {
8417 as_bad (_("Missing '}': '%s'"), imm_start);
8418 return 0;
8419 }
8420 /* RC/SAE immediate string should contain nothing more. */;
8421 if (*pstr != 0)
8422 {
8423 as_bad (_("Junk after '}': '%s'"), imm_start);
8424 return 0;
8425 }
8426
8427 exp = &im_expressions[i.imm_operands++];
8428 i.op[this_operand].imms = exp;
8429
8430 exp->X_op = O_constant;
8431 exp->X_add_number = 0;
8432 exp->X_add_symbol = (symbolS *) 0;
8433 exp->X_op_symbol = (symbolS *) 0;
8434
8435 i.types[this_operand].bitfield.imm8 = 1;
8436 return 1;
8437}
8438
fc0763e6 8439/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8440 on error. */
252b5132 8441
252b5132 8442static int
a7619375 8443i386_att_operand (char *operand_string)
252b5132 8444{
af6bdddf
AM
8445 const reg_entry *r;
8446 char *end_op;
24eab124 8447 char *op_string = operand_string;
252b5132 8448
24eab124 8449 if (is_space_char (*op_string))
252b5132
RH
8450 ++op_string;
8451
24eab124 8452 /* We check for an absolute prefix (differentiating,
47926f60 8453 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8454 if (*op_string == ABSOLUTE_PREFIX)
8455 {
8456 ++op_string;
8457 if (is_space_char (*op_string))
8458 ++op_string;
40fb9820 8459 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8460 }
252b5132 8461
47926f60 8462 /* Check if operand is a register. */
4d1bb795 8463 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8464 {
40fb9820
L
8465 i386_operand_type temp;
8466
24eab124
AM
8467 /* Check for a segment override by searching for ':' after a
8468 segment register. */
8469 op_string = end_op;
8470 if (is_space_char (*op_string))
8471 ++op_string;
40fb9820
L
8472 if (*op_string == ':'
8473 && (r->reg_type.bitfield.sreg2
8474 || r->reg_type.bitfield.sreg3))
24eab124
AM
8475 {
8476 switch (r->reg_num)
8477 {
8478 case 0:
8479 i.seg[i.mem_operands] = &es;
8480 break;
8481 case 1:
8482 i.seg[i.mem_operands] = &cs;
8483 break;
8484 case 2:
8485 i.seg[i.mem_operands] = &ss;
8486 break;
8487 case 3:
8488 i.seg[i.mem_operands] = &ds;
8489 break;
8490 case 4:
8491 i.seg[i.mem_operands] = &fs;
8492 break;
8493 case 5:
8494 i.seg[i.mem_operands] = &gs;
8495 break;
8496 }
252b5132 8497
24eab124 8498 /* Skip the ':' and whitespace. */
252b5132
RH
8499 ++op_string;
8500 if (is_space_char (*op_string))
24eab124 8501 ++op_string;
252b5132 8502
24eab124
AM
8503 if (!is_digit_char (*op_string)
8504 && !is_identifier_char (*op_string)
8505 && *op_string != '('
8506 && *op_string != ABSOLUTE_PREFIX)
8507 {
8508 as_bad (_("bad memory operand `%s'"), op_string);
8509 return 0;
8510 }
47926f60 8511 /* Handle case of %es:*foo. */
24eab124
AM
8512 if (*op_string == ABSOLUTE_PREFIX)
8513 {
8514 ++op_string;
8515 if (is_space_char (*op_string))
8516 ++op_string;
40fb9820 8517 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8518 }
8519 goto do_memory_reference;
8520 }
43234a1e
L
8521
8522 /* Handle vector operations. */
8523 if (*op_string == '{')
8524 {
8525 op_string = check_VecOperations (op_string, NULL);
8526 if (op_string == NULL)
8527 return 0;
8528 }
8529
24eab124
AM
8530 if (*op_string)
8531 {
d0b47220 8532 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
8533 return 0;
8534 }
40fb9820
L
8535 temp = r->reg_type;
8536 temp.bitfield.baseindex = 0;
c6fb90c8
L
8537 i.types[this_operand] = operand_type_or (i.types[this_operand],
8538 temp);
7d5e4556 8539 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 8540 i.op[this_operand].regs = r;
24eab124
AM
8541 i.reg_operands++;
8542 }
af6bdddf
AM
8543 else if (*op_string == REGISTER_PREFIX)
8544 {
8545 as_bad (_("bad register name `%s'"), op_string);
8546 return 0;
8547 }
24eab124 8548 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 8549 {
24eab124 8550 ++op_string;
40fb9820 8551 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 8552 {
d0b47220 8553 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
8554 return 0;
8555 }
8556 if (!i386_immediate (op_string))
8557 return 0;
8558 }
43234a1e
L
8559 else if (RC_SAE_immediate (operand_string))
8560 {
8561 /* If it is a RC or SAE immediate, do nothing. */
8562 ;
8563 }
24eab124
AM
8564 else if (is_digit_char (*op_string)
8565 || is_identifier_char (*op_string)
e5cb08ac 8566 || *op_string == '(')
24eab124 8567 {
47926f60 8568 /* This is a memory reference of some sort. */
af6bdddf 8569 char *base_string;
252b5132 8570
47926f60 8571 /* Start and end of displacement string expression (if found). */
eecb386c
AM
8572 char *displacement_string_start;
8573 char *displacement_string_end;
43234a1e 8574 char *vop_start;
252b5132 8575
24eab124 8576 do_memory_reference:
24eab124 8577 if ((i.mem_operands == 1
40fb9820 8578 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
8579 || i.mem_operands == 2)
8580 {
8581 as_bad (_("too many memory references for `%s'"),
8582 current_templates->start->name);
8583 return 0;
8584 }
252b5132 8585
24eab124
AM
8586 /* Check for base index form. We detect the base index form by
8587 looking for an ')' at the end of the operand, searching
8588 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8589 after the '('. */
af6bdddf 8590 base_string = op_string + strlen (op_string);
c3332e24 8591
43234a1e
L
8592 /* Handle vector operations. */
8593 vop_start = strchr (op_string, '{');
8594 if (vop_start && vop_start < base_string)
8595 {
8596 if (check_VecOperations (vop_start, base_string) == NULL)
8597 return 0;
8598 base_string = vop_start;
8599 }
8600
af6bdddf
AM
8601 --base_string;
8602 if (is_space_char (*base_string))
8603 --base_string;
252b5132 8604
47926f60 8605 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
8606 displacement_string_start = op_string;
8607 displacement_string_end = base_string + 1;
252b5132 8608
24eab124
AM
8609 if (*base_string == ')')
8610 {
af6bdddf 8611 char *temp_string;
24eab124
AM
8612 unsigned int parens_balanced = 1;
8613 /* We've already checked that the number of left & right ()'s are
47926f60 8614 equal, so this loop will not be infinite. */
24eab124
AM
8615 do
8616 {
8617 base_string--;
8618 if (*base_string == ')')
8619 parens_balanced++;
8620 if (*base_string == '(')
8621 parens_balanced--;
8622 }
8623 while (parens_balanced);
c3332e24 8624
af6bdddf 8625 temp_string = base_string;
c3332e24 8626
24eab124 8627 /* Skip past '(' and whitespace. */
252b5132
RH
8628 ++base_string;
8629 if (is_space_char (*base_string))
24eab124 8630 ++base_string;
252b5132 8631
af6bdddf 8632 if (*base_string == ','
4eed87de
AM
8633 || ((i.base_reg = parse_register (base_string, &end_op))
8634 != NULL))
252b5132 8635 {
af6bdddf 8636 displacement_string_end = temp_string;
252b5132 8637
40fb9820 8638 i.types[this_operand].bitfield.baseindex = 1;
252b5132 8639
af6bdddf 8640 if (i.base_reg)
24eab124 8641 {
24eab124
AM
8642 base_string = end_op;
8643 if (is_space_char (*base_string))
8644 ++base_string;
af6bdddf
AM
8645 }
8646
8647 /* There may be an index reg or scale factor here. */
8648 if (*base_string == ',')
8649 {
8650 ++base_string;
8651 if (is_space_char (*base_string))
8652 ++base_string;
8653
4eed87de
AM
8654 if ((i.index_reg = parse_register (base_string, &end_op))
8655 != NULL)
24eab124 8656 {
af6bdddf 8657 base_string = end_op;
24eab124
AM
8658 if (is_space_char (*base_string))
8659 ++base_string;
af6bdddf
AM
8660 if (*base_string == ',')
8661 {
8662 ++base_string;
8663 if (is_space_char (*base_string))
8664 ++base_string;
8665 }
e5cb08ac 8666 else if (*base_string != ')')
af6bdddf 8667 {
4eed87de
AM
8668 as_bad (_("expecting `,' or `)' "
8669 "after index register in `%s'"),
af6bdddf
AM
8670 operand_string);
8671 return 0;
8672 }
24eab124 8673 }
af6bdddf 8674 else if (*base_string == REGISTER_PREFIX)
24eab124 8675 {
f76bf5e0
L
8676 end_op = strchr (base_string, ',');
8677 if (end_op)
8678 *end_op = '\0';
af6bdddf 8679 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
8680 return 0;
8681 }
252b5132 8682
47926f60 8683 /* Check for scale factor. */
551c1ca1 8684 if (*base_string != ')')
af6bdddf 8685 {
551c1ca1
AM
8686 char *end_scale = i386_scale (base_string);
8687
8688 if (!end_scale)
af6bdddf 8689 return 0;
24eab124 8690
551c1ca1 8691 base_string = end_scale;
af6bdddf
AM
8692 if (is_space_char (*base_string))
8693 ++base_string;
8694 if (*base_string != ')')
8695 {
4eed87de
AM
8696 as_bad (_("expecting `)' "
8697 "after scale factor in `%s'"),
af6bdddf
AM
8698 operand_string);
8699 return 0;
8700 }
8701 }
8702 else if (!i.index_reg)
24eab124 8703 {
4eed87de
AM
8704 as_bad (_("expecting index register or scale factor "
8705 "after `,'; got '%c'"),
af6bdddf 8706 *base_string);
24eab124
AM
8707 return 0;
8708 }
8709 }
af6bdddf 8710 else if (*base_string != ')')
24eab124 8711 {
4eed87de
AM
8712 as_bad (_("expecting `,' or `)' "
8713 "after base register in `%s'"),
af6bdddf 8714 operand_string);
24eab124
AM
8715 return 0;
8716 }
c3332e24 8717 }
af6bdddf 8718 else if (*base_string == REGISTER_PREFIX)
c3332e24 8719 {
f76bf5e0
L
8720 end_op = strchr (base_string, ',');
8721 if (end_op)
8722 *end_op = '\0';
af6bdddf 8723 as_bad (_("bad register name `%s'"), base_string);
24eab124 8724 return 0;
c3332e24 8725 }
24eab124
AM
8726 }
8727
8728 /* If there's an expression beginning the operand, parse it,
8729 assuming displacement_string_start and
8730 displacement_string_end are meaningful. */
8731 if (displacement_string_start != displacement_string_end)
8732 {
8733 if (!i386_displacement (displacement_string_start,
8734 displacement_string_end))
8735 return 0;
8736 }
8737
8738 /* Special case for (%dx) while doing input/output op. */
8739 if (i.base_reg
0dfbf9d7
L
8740 && operand_type_equal (&i.base_reg->reg_type,
8741 &reg16_inoutportreg)
24eab124
AM
8742 && i.index_reg == 0
8743 && i.log2_scale_factor == 0
8744 && i.seg[i.mem_operands] == 0
40fb9820 8745 && !operand_type_check (i.types[this_operand], disp))
24eab124 8746 {
65da13b5 8747 i.types[this_operand] = inoutportreg;
24eab124
AM
8748 return 1;
8749 }
8750
eecb386c
AM
8751 if (i386_index_check (operand_string) == 0)
8752 return 0;
5c07affc 8753 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
8754 i.mem_operands++;
8755 }
8756 else
ce8a8b2f
AM
8757 {
8758 /* It's not a memory operand; argh! */
24eab124
AM
8759 as_bad (_("invalid char %s beginning operand %d `%s'"),
8760 output_invalid (*op_string),
8761 this_operand + 1,
8762 op_string);
8763 return 0;
8764 }
47926f60 8765 return 1; /* Normal return. */
252b5132
RH
8766}
8767\f
fa94de6b
RM
8768/* Calculate the maximum variable size (i.e., excluding fr_fix)
8769 that an rs_machine_dependent frag may reach. */
8770
8771unsigned int
8772i386_frag_max_var (fragS *frag)
8773{
8774 /* The only relaxable frags are for jumps.
8775 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8776 gas_assert (frag->fr_type == rs_machine_dependent);
8777 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8778}
8779
ee7fcc42
AM
8780/* md_estimate_size_before_relax()
8781
8782 Called just before relax() for rs_machine_dependent frags. The x86
8783 assembler uses these frags to handle variable size jump
8784 instructions.
8785
8786 Any symbol that is now undefined will not become defined.
8787 Return the correct fr_subtype in the frag.
8788 Return the initial "guess for variable size of frag" to caller.
8789 The guess is actually the growth beyond the fixed part. Whatever
8790 we do to grow the fixed or variable part contributes to our
8791 returned value. */
8792
252b5132 8793int
7016a5d5 8794md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 8795{
252b5132 8796 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
8797 check for un-relaxable symbols. On an ELF system, we can't relax
8798 an externally visible symbol, because it may be overridden by a
8799 shared library. */
8800 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 8801#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8802 || (IS_ELF
31312f95 8803 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
8804 || S_IS_WEAK (fragP->fr_symbol)
8805 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8806 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
8807#endif
8808#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 8809 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 8810 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
8811#endif
8812 )
252b5132 8813 {
b98ef147
AM
8814 /* Symbol is undefined in this segment, or we need to keep a
8815 reloc so that weak symbols can be overridden. */
8816 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 8817 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
8818 unsigned char *opcode;
8819 int old_fr_fix;
f6af82bd 8820
ee7fcc42 8821 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 8822 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 8823 else if (size == 2)
f6af82bd
AM
8824 reloc_type = BFD_RELOC_16_PCREL;
8825 else
8826 reloc_type = BFD_RELOC_32_PCREL;
252b5132 8827
ee7fcc42
AM
8828 old_fr_fix = fragP->fr_fix;
8829 opcode = (unsigned char *) fragP->fr_opcode;
8830
fddf5b5b 8831 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 8832 {
fddf5b5b
AM
8833 case UNCOND_JUMP:
8834 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 8835 opcode[0] = 0xe9;
252b5132 8836 fragP->fr_fix += size;
062cd5e7
AS
8837 fix_new (fragP, old_fr_fix, size,
8838 fragP->fr_symbol,
8839 fragP->fr_offset, 1,
8840 reloc_type);
252b5132
RH
8841 break;
8842
fddf5b5b 8843 case COND_JUMP86:
412167cb
AM
8844 if (size == 2
8845 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
8846 {
8847 /* Negate the condition, and branch past an
8848 unconditional jump. */
8849 opcode[0] ^= 1;
8850 opcode[1] = 3;
8851 /* Insert an unconditional jump. */
8852 opcode[2] = 0xe9;
8853 /* We added two extra opcode bytes, and have a two byte
8854 offset. */
8855 fragP->fr_fix += 2 + 2;
062cd5e7
AS
8856 fix_new (fragP, old_fr_fix + 2, 2,
8857 fragP->fr_symbol,
8858 fragP->fr_offset, 1,
8859 reloc_type);
fddf5b5b
AM
8860 break;
8861 }
8862 /* Fall through. */
8863
8864 case COND_JUMP:
412167cb
AM
8865 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8866 {
3e02c1cc
AM
8867 fixS *fixP;
8868
412167cb 8869 fragP->fr_fix += 1;
3e02c1cc
AM
8870 fixP = fix_new (fragP, old_fr_fix, 1,
8871 fragP->fr_symbol,
8872 fragP->fr_offset, 1,
8873 BFD_RELOC_8_PCREL);
8874 fixP->fx_signed = 1;
412167cb
AM
8875 break;
8876 }
93c2a809 8877
24eab124 8878 /* This changes the byte-displacement jump 0x7N
fddf5b5b 8879 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 8880 opcode[1] = opcode[0] + 0x10;
f6af82bd 8881 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
8882 /* We've added an opcode byte. */
8883 fragP->fr_fix += 1 + size;
062cd5e7
AS
8884 fix_new (fragP, old_fr_fix + 1, size,
8885 fragP->fr_symbol,
8886 fragP->fr_offset, 1,
8887 reloc_type);
252b5132 8888 break;
fddf5b5b
AM
8889
8890 default:
8891 BAD_CASE (fragP->fr_subtype);
8892 break;
252b5132
RH
8893 }
8894 frag_wane (fragP);
ee7fcc42 8895 return fragP->fr_fix - old_fr_fix;
252b5132 8896 }
93c2a809 8897
93c2a809
AM
8898 /* Guess size depending on current relax state. Initially the relax
8899 state will correspond to a short jump and we return 1, because
8900 the variable part of the frag (the branch offset) is one byte
8901 long. However, we can relax a section more than once and in that
8902 case we must either set fr_subtype back to the unrelaxed state,
8903 or return the value for the appropriate branch. */
8904 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
8905}
8906
47926f60
KH
8907/* Called after relax() is finished.
8908
8909 In: Address of frag.
8910 fr_type == rs_machine_dependent.
8911 fr_subtype is what the address relaxed to.
8912
8913 Out: Any fixSs and constants are set up.
8914 Caller will turn frag into a ".space 0". */
8915
252b5132 8916void
7016a5d5
TG
8917md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8918 fragS *fragP)
252b5132 8919{
29b0f896 8920 unsigned char *opcode;
252b5132 8921 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
8922 offsetT target_address;
8923 offsetT opcode_address;
252b5132 8924 unsigned int extension = 0;
847f7ad4 8925 offsetT displacement_from_opcode_start;
252b5132
RH
8926
8927 opcode = (unsigned char *) fragP->fr_opcode;
8928
47926f60 8929 /* Address we want to reach in file space. */
252b5132 8930 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 8931
47926f60 8932 /* Address opcode resides at in file space. */
252b5132
RH
8933 opcode_address = fragP->fr_address + fragP->fr_fix;
8934
47926f60 8935 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
8936 displacement_from_opcode_start = target_address - opcode_address;
8937
fddf5b5b 8938 if ((fragP->fr_subtype & BIG) == 0)
252b5132 8939 {
47926f60
KH
8940 /* Don't have to change opcode. */
8941 extension = 1; /* 1 opcode + 1 displacement */
252b5132 8942 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
8943 }
8944 else
8945 {
8946 if (no_cond_jump_promotion
8947 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
8948 as_warn_where (fragP->fr_file, fragP->fr_line,
8949 _("long jump required"));
252b5132 8950
fddf5b5b
AM
8951 switch (fragP->fr_subtype)
8952 {
8953 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8954 extension = 4; /* 1 opcode + 4 displacement */
8955 opcode[0] = 0xe9;
8956 where_to_put_displacement = &opcode[1];
8957 break;
252b5132 8958
fddf5b5b
AM
8959 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8960 extension = 2; /* 1 opcode + 2 displacement */
8961 opcode[0] = 0xe9;
8962 where_to_put_displacement = &opcode[1];
8963 break;
252b5132 8964
fddf5b5b
AM
8965 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8966 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8967 extension = 5; /* 2 opcode + 4 displacement */
8968 opcode[1] = opcode[0] + 0x10;
8969 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8970 where_to_put_displacement = &opcode[2];
8971 break;
252b5132 8972
fddf5b5b
AM
8973 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8974 extension = 3; /* 2 opcode + 2 displacement */
8975 opcode[1] = opcode[0] + 0x10;
8976 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8977 where_to_put_displacement = &opcode[2];
8978 break;
252b5132 8979
fddf5b5b
AM
8980 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8981 extension = 4;
8982 opcode[0] ^= 1;
8983 opcode[1] = 3;
8984 opcode[2] = 0xe9;
8985 where_to_put_displacement = &opcode[3];
8986 break;
8987
8988 default:
8989 BAD_CASE (fragP->fr_subtype);
8990 break;
8991 }
252b5132 8992 }
fddf5b5b 8993
7b81dfbb
AJ
8994 /* If size if less then four we are sure that the operand fits,
8995 but if it's 4, then it could be that the displacement is larger
8996 then -/+ 2GB. */
8997 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
8998 && object_64bit
8999 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9000 + ((addressT) 1 << 31))
9001 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9002 {
9003 as_bad_where (fragP->fr_file, fragP->fr_line,
9004 _("jump target out of range"));
9005 /* Make us emit 0. */
9006 displacement_from_opcode_start = extension;
9007 }
47926f60 9008 /* Now put displacement after opcode. */
252b5132
RH
9009 md_number_to_chars ((char *) where_to_put_displacement,
9010 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9011 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9012 fragP->fr_fix += extension;
9013}
9014\f
7016a5d5 9015/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9016 by our caller that we have all the info we need to fix it up.
9017
7016a5d5
TG
9018 Parameter valP is the pointer to the value of the bits.
9019
252b5132
RH
9020 On the 386, immediates, displacements, and data pointers are all in
9021 the same (little-endian) format, so we don't need to care about which
9022 we are handling. */
9023
94f592af 9024void
7016a5d5 9025md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9026{
94f592af 9027 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9028 valueT value = *valP;
252b5132 9029
f86103b7 9030#if !defined (TE_Mach)
93382f6d
AM
9031 if (fixP->fx_pcrel)
9032 {
9033 switch (fixP->fx_r_type)
9034 {
5865bb77
ILT
9035 default:
9036 break;
9037
d6ab8113
JB
9038 case BFD_RELOC_64:
9039 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9040 break;
93382f6d 9041 case BFD_RELOC_32:
ae8887b5 9042 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9043 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9044 break;
9045 case BFD_RELOC_16:
9046 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9047 break;
9048 case BFD_RELOC_8:
9049 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9050 break;
9051 }
9052 }
252b5132 9053
a161fe53 9054 if (fixP->fx_addsy != NULL
31312f95 9055 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9056 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
9057 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9058 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9059 && !use_rela_relocations)
252b5132 9060 {
31312f95
AM
9061 /* This is a hack. There should be a better way to handle this.
9062 This covers for the fact that bfd_install_relocation will
9063 subtract the current location (for partial_inplace, PC relative
9064 relocations); see more below. */
252b5132 9065#ifndef OBJ_AOUT
718ddfc0 9066 if (IS_ELF
252b5132
RH
9067#ifdef TE_PE
9068 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9069#endif
9070 )
9071 value += fixP->fx_where + fixP->fx_frag->fr_address;
9072#endif
9073#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9074 if (IS_ELF)
252b5132 9075 {
6539b54b 9076 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9077
6539b54b 9078 if ((sym_seg == seg
2f66722d 9079 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9080 && sym_seg != absolute_section))
af65af87 9081 && !generic_force_reloc (fixP))
2f66722d
AM
9082 {
9083 /* Yes, we add the values in twice. This is because
6539b54b
AM
9084 bfd_install_relocation subtracts them out again. I think
9085 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9086 it. FIXME. */
9087 value += fixP->fx_where + fixP->fx_frag->fr_address;
9088 }
252b5132
RH
9089 }
9090#endif
9091#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9092 /* For some reason, the PE format does not store a
9093 section address offset for a PC relative symbol. */
9094 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9095 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9096 value += md_pcrel_from (fixP);
9097#endif
9098 }
fbeb56a4
DK
9099#if defined (OBJ_COFF) && defined (TE_PE)
9100 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9101 {
9102 value -= S_GET_VALUE (fixP->fx_addsy);
9103 }
9104#endif
252b5132
RH
9105
9106 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9107 and we must not disappoint it. */
252b5132 9108#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9109 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9110 switch (fixP->fx_r_type)
9111 {
9112 case BFD_RELOC_386_PLT32:
3e73aa7c 9113 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9114 /* Make the jump instruction point to the address of the operand. At
9115 runtime we merely add the offset to the actual PLT entry. */
9116 value = -4;
9117 break;
31312f95 9118
13ae64f3
JJ
9119 case BFD_RELOC_386_TLS_GD:
9120 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9121 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9122 case BFD_RELOC_386_TLS_IE:
9123 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9124 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9125 case BFD_RELOC_X86_64_TLSGD:
9126 case BFD_RELOC_X86_64_TLSLD:
9127 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9128 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9129 value = 0; /* Fully resolved at runtime. No addend. */
9130 /* Fallthrough */
9131 case BFD_RELOC_386_TLS_LE:
9132 case BFD_RELOC_386_TLS_LDO_32:
9133 case BFD_RELOC_386_TLS_LE_32:
9134 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9135 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9136 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9137 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9138 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9139 break;
9140
67a4f2b7
AO
9141 case BFD_RELOC_386_TLS_DESC_CALL:
9142 case BFD_RELOC_X86_64_TLSDESC_CALL:
9143 value = 0; /* Fully resolved at runtime. No addend. */
9144 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9145 fixP->fx_done = 0;
9146 return;
9147
00f7efb6
JJ
9148 case BFD_RELOC_386_GOT32:
9149 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
9150 value = 0; /* Fully resolved at runtime. No addend. */
9151 break;
47926f60
KH
9152
9153 case BFD_RELOC_VTABLE_INHERIT:
9154 case BFD_RELOC_VTABLE_ENTRY:
9155 fixP->fx_done = 0;
94f592af 9156 return;
47926f60
KH
9157
9158 default:
9159 break;
9160 }
9161#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9162 *valP = value;
f86103b7 9163#endif /* !defined (TE_Mach) */
3e73aa7c 9164
3e73aa7c 9165 /* Are we finished with this relocation now? */
c6682705 9166 if (fixP->fx_addsy == NULL)
3e73aa7c 9167 fixP->fx_done = 1;
fbeb56a4
DK
9168#if defined (OBJ_COFF) && defined (TE_PE)
9169 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9170 {
9171 fixP->fx_done = 0;
9172 /* Remember value for tc_gen_reloc. */
9173 fixP->fx_addnumber = value;
9174 /* Clear out the frag for now. */
9175 value = 0;
9176 }
9177#endif
3e73aa7c
JH
9178 else if (use_rela_relocations)
9179 {
9180 fixP->fx_no_overflow = 1;
062cd5e7
AS
9181 /* Remember value for tc_gen_reloc. */
9182 fixP->fx_addnumber = value;
3e73aa7c
JH
9183 value = 0;
9184 }
f86103b7 9185
94f592af 9186 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9187}
252b5132 9188\f
252b5132 9189char *
499ac353 9190md_atof (int type, char *litP, int *sizeP)
252b5132 9191{
499ac353
NC
9192 /* This outputs the LITTLENUMs in REVERSE order;
9193 in accord with the bigendian 386. */
9194 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9195}
9196\f
2d545b82 9197static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9198
252b5132 9199static char *
e3bb37b5 9200output_invalid (int c)
252b5132 9201{
3882b010 9202 if (ISPRINT (c))
f9f21a03
L
9203 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9204 "'%c'", c);
252b5132 9205 else
f9f21a03 9206 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9207 "(0x%x)", (unsigned char) c);
252b5132
RH
9208 return output_invalid_buf;
9209}
9210
af6bdddf 9211/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9212
9213static const reg_entry *
4d1bb795 9214parse_real_register (char *reg_string, char **end_op)
252b5132 9215{
af6bdddf
AM
9216 char *s = reg_string;
9217 char *p;
252b5132
RH
9218 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9219 const reg_entry *r;
9220
9221 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9222 if (*s == REGISTER_PREFIX)
9223 ++s;
9224
9225 if (is_space_char (*s))
9226 ++s;
9227
9228 p = reg_name_given;
af6bdddf 9229 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9230 {
9231 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9232 return (const reg_entry *) NULL;
9233 s++;
252b5132
RH
9234 }
9235
6588847e
DN
9236 /* For naked regs, make sure that we are not dealing with an identifier.
9237 This prevents confusing an identifier like `eax_var' with register
9238 `eax'. */
9239 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9240 return (const reg_entry *) NULL;
9241
af6bdddf 9242 *end_op = s;
252b5132
RH
9243
9244 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9245
5f47d35b 9246 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9247 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9248 {
5f47d35b
AM
9249 if (is_space_char (*s))
9250 ++s;
9251 if (*s == '(')
9252 {
af6bdddf 9253 ++s;
5f47d35b
AM
9254 if (is_space_char (*s))
9255 ++s;
9256 if (*s >= '0' && *s <= '7')
9257 {
db557034 9258 int fpr = *s - '0';
af6bdddf 9259 ++s;
5f47d35b
AM
9260 if (is_space_char (*s))
9261 ++s;
9262 if (*s == ')')
9263 {
9264 *end_op = s + 1;
1e9cc1c2 9265 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9266 know (r);
9267 return r + fpr;
5f47d35b 9268 }
5f47d35b 9269 }
47926f60 9270 /* We have "%st(" then garbage. */
5f47d35b
AM
9271 return (const reg_entry *) NULL;
9272 }
9273 }
9274
a60de03c
JB
9275 if (r == NULL || allow_pseudo_reg)
9276 return r;
9277
0dfbf9d7 9278 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9279 return (const reg_entry *) NULL;
9280
192dc9c6
JB
9281 if ((r->reg_type.bitfield.reg32
9282 || r->reg_type.bitfield.sreg3
9283 || r->reg_type.bitfield.control
9284 || r->reg_type.bitfield.debug
9285 || r->reg_type.bitfield.test)
9286 && !cpu_arch_flags.bitfield.cpui386)
9287 return (const reg_entry *) NULL;
9288
309d3373
JB
9289 if (r->reg_type.bitfield.floatreg
9290 && !cpu_arch_flags.bitfield.cpu8087
9291 && !cpu_arch_flags.bitfield.cpu287
9292 && !cpu_arch_flags.bitfield.cpu387)
9293 return (const reg_entry *) NULL;
9294
192dc9c6
JB
9295 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9296 return (const reg_entry *) NULL;
9297
9298 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9299 return (const reg_entry *) NULL;
9300
40f12533
L
9301 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9302 return (const reg_entry *) NULL;
9303
43234a1e
L
9304 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9305 && !cpu_arch_flags.bitfield.cpuavx512f)
9306 return (const reg_entry *) NULL;
9307
db51cc60 9308 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9309 if (!allow_index_reg
db51cc60
L
9310 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9311 return (const reg_entry *) NULL;
9312
43234a1e
L
9313 /* Upper 16 vector register is only available with VREX in 64bit
9314 mode. */
9315 if ((r->reg_flags & RegVRex))
9316 {
9317 if (!cpu_arch_flags.bitfield.cpuvrex
9318 || flag_code != CODE_64BIT)
9319 return (const reg_entry *) NULL;
9320
9321 i.need_vrex = 1;
9322 }
9323
a60de03c
JB
9324 if (((r->reg_flags & (RegRex64 | RegRex))
9325 || r->reg_type.bitfield.reg64)
40fb9820 9326 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9327 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9328 && flag_code != CODE_64BIT)
20f0a1fc 9329 return (const reg_entry *) NULL;
1ae00879 9330
b7240065
JB
9331 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9332 return (const reg_entry *) NULL;
9333
252b5132
RH
9334 return r;
9335}
4d1bb795
JB
9336
9337/* REG_STRING starts *before* REGISTER_PREFIX. */
9338
9339static const reg_entry *
9340parse_register (char *reg_string, char **end_op)
9341{
9342 const reg_entry *r;
9343
9344 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9345 r = parse_real_register (reg_string, end_op);
9346 else
9347 r = NULL;
9348 if (!r)
9349 {
9350 char *save = input_line_pointer;
9351 char c;
9352 symbolS *symbolP;
9353
9354 input_line_pointer = reg_string;
9355 c = get_symbol_end ();
9356 symbolP = symbol_find (reg_string);
9357 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9358 {
9359 const expressionS *e = symbol_get_value_expression (symbolP);
9360
0398aac5 9361 know (e->X_op == O_register);
4eed87de 9362 know (e->X_add_number >= 0
c3fe08fa 9363 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
9364 r = i386_regtab + e->X_add_number;
9365 *end_op = input_line_pointer;
9366 }
9367 *input_line_pointer = c;
9368 input_line_pointer = save;
9369 }
9370 return r;
9371}
9372
9373int
9374i386_parse_name (char *name, expressionS *e, char *nextcharP)
9375{
9376 const reg_entry *r;
9377 char *end = input_line_pointer;
9378
9379 *end = *nextcharP;
9380 r = parse_register (name, &input_line_pointer);
9381 if (r && end <= input_line_pointer)
9382 {
9383 *nextcharP = *input_line_pointer;
9384 *input_line_pointer = 0;
9385 e->X_op = O_register;
9386 e->X_add_number = r - i386_regtab;
9387 return 1;
9388 }
9389 input_line_pointer = end;
9390 *end = 0;
ee86248c 9391 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9392}
9393
9394void
9395md_operand (expressionS *e)
9396{
ee86248c
JB
9397 char *end;
9398 const reg_entry *r;
4d1bb795 9399
ee86248c
JB
9400 switch (*input_line_pointer)
9401 {
9402 case REGISTER_PREFIX:
9403 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9404 if (r)
9405 {
9406 e->X_op = O_register;
9407 e->X_add_number = r - i386_regtab;
9408 input_line_pointer = end;
9409 }
ee86248c
JB
9410 break;
9411
9412 case '[':
9c2799c2 9413 gas_assert (intel_syntax);
ee86248c
JB
9414 end = input_line_pointer++;
9415 expression (e);
9416 if (*input_line_pointer == ']')
9417 {
9418 ++input_line_pointer;
9419 e->X_op_symbol = make_expr_symbol (e);
9420 e->X_add_symbol = NULL;
9421 e->X_add_number = 0;
9422 e->X_op = O_index;
9423 }
9424 else
9425 {
9426 e->X_op = O_absent;
9427 input_line_pointer = end;
9428 }
9429 break;
4d1bb795
JB
9430 }
9431}
9432
252b5132 9433\f
4cc782b5 9434#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9435const char *md_shortopts = "kVQ:sqn";
252b5132 9436#else
12b55ccc 9437const char *md_shortopts = "qn";
252b5132 9438#endif
6e0b89ee 9439
3e73aa7c 9440#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9441#define OPTION_64 (OPTION_MD_BASE + 1)
9442#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9443#define OPTION_MARCH (OPTION_MD_BASE + 3)
9444#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9445#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9446#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9447#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9448#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9449#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9450#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9451#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9452#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9453#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9454#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9455#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9456#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9457#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
b3b91714 9458
99ad8390
NC
9459struct option md_longopts[] =
9460{
3e73aa7c 9461 {"32", no_argument, NULL, OPTION_32},
321098a5 9462#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9463 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9464 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9465#endif
9466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9467 {"x32", no_argument, NULL, OPTION_X32},
6e0b89ee 9468#endif
b3b91714 9469 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9470 {"march", required_argument, NULL, OPTION_MARCH},
9471 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
9472 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9473 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9474 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9475 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9476 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 9477 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 9478 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 9479 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 9480 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 9481 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
9482 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9483 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
252b5132
RH
9484 {NULL, no_argument, NULL, 0}
9485};
9486size_t md_longopts_size = sizeof (md_longopts);
9487
9488int
9103f4f4 9489md_parse_option (int c, char *arg)
252b5132 9490{
91d6fa6a 9491 unsigned int j;
6305a203 9492 char *arch, *next;
9103f4f4 9493
252b5132
RH
9494 switch (c)
9495 {
12b55ccc
L
9496 case 'n':
9497 optimize_align_code = 0;
9498 break;
9499
a38cf1db
AM
9500 case 'q':
9501 quiet_warnings = 1;
252b5132
RH
9502 break;
9503
9504#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
9505 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9506 should be emitted or not. FIXME: Not implemented. */
9507 case 'Q':
252b5132
RH
9508 break;
9509
9510 /* -V: SVR4 argument to print version ID. */
9511 case 'V':
9512 print_version_id ();
9513 break;
9514
a38cf1db
AM
9515 /* -k: Ignore for FreeBSD compatibility. */
9516 case 'k':
252b5132 9517 break;
4cc782b5
ILT
9518
9519 case 's':
9520 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 9521 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 9522 break;
99ad8390 9523#endif
321098a5 9524#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9525 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
9526 case OPTION_64:
9527 {
9528 const char **list, **l;
9529
3e73aa7c
JH
9530 list = bfd_target_list ();
9531 for (l = list; *l != NULL; l++)
8620418b 9532 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
9533 || strcmp (*l, "coff-x86-64") == 0
9534 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
9535 || strcmp (*l, "pei-x86-64") == 0
9536 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
9537 {
9538 default_arch = "x86_64";
9539 break;
9540 }
3e73aa7c 9541 if (*l == NULL)
2b5d6a91 9542 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
9543 free (list);
9544 }
9545 break;
9546#endif
252b5132 9547
351f65ca 9548#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9549 case OPTION_X32:
351f65ca
L
9550 if (IS_ELF)
9551 {
9552 const char **list, **l;
9553
9554 list = bfd_target_list ();
9555 for (l = list; *l != NULL; l++)
9556 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9557 {
9558 default_arch = "x86_64:32";
9559 break;
9560 }
9561 if (*l == NULL)
2b5d6a91 9562 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
9563 free (list);
9564 }
9565 else
9566 as_fatal (_("32bit x86_64 is only supported for ELF"));
9567 break;
9568#endif
9569
6e0b89ee
AM
9570 case OPTION_32:
9571 default_arch = "i386";
9572 break;
9573
b3b91714
AM
9574 case OPTION_DIVIDE:
9575#ifdef SVR4_COMMENT_CHARS
9576 {
9577 char *n, *t;
9578 const char *s;
9579
9580 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9581 t = n;
9582 for (s = i386_comment_chars; *s != '\0'; s++)
9583 if (*s != '/')
9584 *t++ = *s;
9585 *t = '\0';
9586 i386_comment_chars = n;
9587 }
9588#endif
9589 break;
9590
9103f4f4 9591 case OPTION_MARCH:
6305a203
L
9592 arch = xstrdup (arg);
9593 do
9103f4f4 9594 {
6305a203 9595 if (*arch == '.')
2b5d6a91 9596 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9597 next = strchr (arch, '+');
9598 if (next)
9599 *next++ = '\0';
91d6fa6a 9600 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9601 {
91d6fa6a 9602 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 9603 {
6305a203 9604 /* Processor. */
1ded5609
JB
9605 if (! cpu_arch[j].flags.bitfield.cpui386)
9606 continue;
9607
91d6fa6a 9608 cpu_arch_name = cpu_arch[j].name;
6305a203 9609 cpu_sub_arch_name = NULL;
91d6fa6a
NC
9610 cpu_arch_flags = cpu_arch[j].flags;
9611 cpu_arch_isa = cpu_arch[j].type;
9612 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
9613 if (!cpu_arch_tune_set)
9614 {
9615 cpu_arch_tune = cpu_arch_isa;
9616 cpu_arch_tune_flags = cpu_arch_isa_flags;
9617 }
9618 break;
9619 }
91d6fa6a
NC
9620 else if (*cpu_arch [j].name == '.'
9621 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
9622 {
9623 /* ISA entension. */
9624 i386_cpu_flags flags;
309d3373 9625
49021df2 9626 if (!cpu_arch[j].negated)
309d3373 9627 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 9628 cpu_arch[j].flags);
309d3373
JB
9629 else
9630 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 9631 cpu_arch[j].flags);
0dfbf9d7 9632 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
9633 {
9634 if (cpu_sub_arch_name)
9635 {
9636 char *name = cpu_sub_arch_name;
9637 cpu_sub_arch_name = concat (name,
91d6fa6a 9638 cpu_arch[j].name,
1bf57e9f 9639 (const char *) NULL);
6305a203
L
9640 free (name);
9641 }
9642 else
91d6fa6a 9643 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 9644 cpu_arch_flags = flags;
a586129e 9645 cpu_arch_isa_flags = flags;
6305a203
L
9646 }
9647 break;
ccc9c027 9648 }
9103f4f4 9649 }
6305a203 9650
91d6fa6a 9651 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9652 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9653
9654 arch = next;
9103f4f4 9655 }
6305a203 9656 while (next != NULL );
9103f4f4
L
9657 break;
9658
9659 case OPTION_MTUNE:
9660 if (*arg == '.')
2b5d6a91 9661 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 9662 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9663 {
91d6fa6a 9664 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 9665 {
ccc9c027 9666 cpu_arch_tune_set = 1;
91d6fa6a
NC
9667 cpu_arch_tune = cpu_arch [j].type;
9668 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
9669 break;
9670 }
9671 }
91d6fa6a 9672 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9673 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
9674 break;
9675
1efbbeb4
L
9676 case OPTION_MMNEMONIC:
9677 if (strcasecmp (arg, "att") == 0)
9678 intel_mnemonic = 0;
9679 else if (strcasecmp (arg, "intel") == 0)
9680 intel_mnemonic = 1;
9681 else
2b5d6a91 9682 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
9683 break;
9684
9685 case OPTION_MSYNTAX:
9686 if (strcasecmp (arg, "att") == 0)
9687 intel_syntax = 0;
9688 else if (strcasecmp (arg, "intel") == 0)
9689 intel_syntax = 1;
9690 else
2b5d6a91 9691 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
9692 break;
9693
9694 case OPTION_MINDEX_REG:
9695 allow_index_reg = 1;
9696 break;
9697
9698 case OPTION_MNAKED_REG:
9699 allow_naked_reg = 1;
9700 break;
9701
9702 case OPTION_MOLD_GCC:
9703 old_gcc = 1;
1efbbeb4
L
9704 break;
9705
c0f3af97
L
9706 case OPTION_MSSE2AVX:
9707 sse2avx = 1;
9708 break;
9709
daf50ae7
L
9710 case OPTION_MSSE_CHECK:
9711 if (strcasecmp (arg, "error") == 0)
7bab8ab5 9712 sse_check = check_error;
daf50ae7 9713 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 9714 sse_check = check_warning;
daf50ae7 9715 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 9716 sse_check = check_none;
daf50ae7 9717 else
2b5d6a91 9718 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
9719 break;
9720
7bab8ab5
JB
9721 case OPTION_MOPERAND_CHECK:
9722 if (strcasecmp (arg, "error") == 0)
9723 operand_check = check_error;
9724 else if (strcasecmp (arg, "warning") == 0)
9725 operand_check = check_warning;
9726 else if (strcasecmp (arg, "none") == 0)
9727 operand_check = check_none;
9728 else
9729 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9730 break;
9731
539f890d
L
9732 case OPTION_MAVXSCALAR:
9733 if (strcasecmp (arg, "128") == 0)
9734 avxscalar = vex128;
9735 else if (strcasecmp (arg, "256") == 0)
9736 avxscalar = vex256;
9737 else
2b5d6a91 9738 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
9739 break;
9740
7e8b059b
L
9741 case OPTION_MADD_BND_PREFIX:
9742 add_bnd_prefix = 1;
9743 break;
9744
43234a1e
L
9745 case OPTION_MEVEXLIG:
9746 if (strcmp (arg, "128") == 0)
9747 evexlig = evexl128;
9748 else if (strcmp (arg, "256") == 0)
9749 evexlig = evexl256;
9750 else if (strcmp (arg, "512") == 0)
9751 evexlig = evexl512;
9752 else
9753 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9754 break;
9755
9756 case OPTION_MEVEXWIG:
9757 if (strcmp (arg, "0") == 0)
9758 evexwig = evexw0;
9759 else if (strcmp (arg, "1") == 0)
9760 evexwig = evexw1;
9761 else
9762 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9763 break;
9764
252b5132
RH
9765 default:
9766 return 0;
9767 }
9768 return 1;
9769}
9770
8a2c8fef
L
9771#define MESSAGE_TEMPLATE \
9772" "
9773
9774static void
1ded5609 9775show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
9776{
9777 static char message[] = MESSAGE_TEMPLATE;
9778 char *start = message + 27;
9779 char *p;
9780 int size = sizeof (MESSAGE_TEMPLATE);
9781 int left;
9782 const char *name;
9783 int len;
9784 unsigned int j;
9785
9786 p = start;
9787 left = size - (start - message);
9788 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9789 {
9790 /* Should it be skipped? */
9791 if (cpu_arch [j].skip)
9792 continue;
9793
9794 name = cpu_arch [j].name;
9795 len = cpu_arch [j].len;
9796 if (*name == '.')
9797 {
9798 /* It is an extension. Skip if we aren't asked to show it. */
9799 if (ext)
9800 {
9801 name++;
9802 len--;
9803 }
9804 else
9805 continue;
9806 }
9807 else if (ext)
9808 {
9809 /* It is an processor. Skip if we show only extension. */
9810 continue;
9811 }
1ded5609
JB
9812 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9813 {
9814 /* It is an impossible processor - skip. */
9815 continue;
9816 }
8a2c8fef
L
9817
9818 /* Reserve 2 spaces for ", " or ",\0" */
9819 left -= len + 2;
9820
9821 /* Check if there is any room. */
9822 if (left >= 0)
9823 {
9824 if (p != start)
9825 {
9826 *p++ = ',';
9827 *p++ = ' ';
9828 }
9829 p = mempcpy (p, name, len);
9830 }
9831 else
9832 {
9833 /* Output the current message now and start a new one. */
9834 *p++ = ',';
9835 *p = '\0';
9836 fprintf (stream, "%s\n", message);
9837 p = start;
9838 left = size - (start - message) - len - 2;
8d63c93e 9839
8a2c8fef
L
9840 gas_assert (left >= 0);
9841
9842 p = mempcpy (p, name, len);
9843 }
9844 }
9845
9846 *p = '\0';
9847 fprintf (stream, "%s\n", message);
9848}
9849
252b5132 9850void
8a2c8fef 9851md_show_usage (FILE *stream)
252b5132 9852{
4cc782b5
ILT
9853#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9854 fprintf (stream, _("\
a38cf1db
AM
9855 -Q ignored\n\
9856 -V print assembler version number\n\
b3b91714
AM
9857 -k ignored\n"));
9858#endif
9859 fprintf (stream, _("\
12b55ccc 9860 -n Do not optimize code alignment\n\
b3b91714
AM
9861 -q quieten some warnings\n"));
9862#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9863 fprintf (stream, _("\
a38cf1db 9864 -s ignored\n"));
b3b91714 9865#endif
321098a5
L
9866#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9867 || defined (TE_PE) || defined (TE_PEP))
751d281c 9868 fprintf (stream, _("\
570561f7 9869 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 9870#endif
b3b91714
AM
9871#ifdef SVR4_COMMENT_CHARS
9872 fprintf (stream, _("\
9873 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
9874#else
9875 fprintf (stream, _("\
b3b91714 9876 --divide ignored\n"));
4cc782b5 9877#endif
9103f4f4 9878 fprintf (stream, _("\
6305a203 9879 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 9880 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 9881 show_arch (stream, 0, 1);
8a2c8fef
L
9882 fprintf (stream, _("\
9883 EXTENSION is combination of:\n"));
1ded5609 9884 show_arch (stream, 1, 0);
6305a203 9885 fprintf (stream, _("\
8a2c8fef 9886 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 9887 show_arch (stream, 0, 0);
ba104c83 9888 fprintf (stream, _("\
c0f3af97
L
9889 -msse2avx encode SSE instructions with VEX prefix\n"));
9890 fprintf (stream, _("\
daf50ae7
L
9891 -msse-check=[none|error|warning]\n\
9892 check SSE instructions\n"));
9893 fprintf (stream, _("\
7bab8ab5
JB
9894 -moperand-check=[none|error|warning]\n\
9895 check operand combinations for validity\n"));
9896 fprintf (stream, _("\
539f890d
L
9897 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9898 length\n"));
9899 fprintf (stream, _("\
43234a1e
L
9900 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9901 length\n"));
9902 fprintf (stream, _("\
9903 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9904 for EVEX.W bit ignored instructions\n"));
9905 fprintf (stream, _("\
ba104c83
L
9906 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9907 fprintf (stream, _("\
9908 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9909 fprintf (stream, _("\
9910 -mindex-reg support pseudo index registers\n"));
9911 fprintf (stream, _("\
9912 -mnaked-reg don't require `%%' prefix for registers\n"));
9913 fprintf (stream, _("\
9914 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
9915 fprintf (stream, _("\
9916 -madd-bnd-prefix add BND prefix for all valid branches\n"));
252b5132
RH
9917}
9918
3e73aa7c 9919#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 9920 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 9921 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
9922
9923/* Pick the target format to use. */
9924
47926f60 9925const char *
e3bb37b5 9926i386_target_format (void)
252b5132 9927{
351f65ca
L
9928 if (!strncmp (default_arch, "x86_64", 6))
9929 {
9930 update_code_flag (CODE_64BIT, 1);
9931 if (default_arch[6] == '\0')
7f56bc95 9932 x86_elf_abi = X86_64_ABI;
351f65ca 9933 else
7f56bc95 9934 x86_elf_abi = X86_64_X32_ABI;
351f65ca 9935 }
3e73aa7c 9936 else if (!strcmp (default_arch, "i386"))
78f12dd3 9937 update_code_flag (CODE_32BIT, 1);
3e73aa7c 9938 else
2b5d6a91 9939 as_fatal (_("unknown architecture"));
89507696
JB
9940
9941 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9942 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9943 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
9944 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9945
252b5132
RH
9946 switch (OUTPUT_FLAVOR)
9947 {
9384f2ff 9948#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 9949 case bfd_target_aout_flavour:
47926f60 9950 return AOUT_TARGET_FORMAT;
4c63da97 9951#endif
9384f2ff
AM
9952#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9953# if defined (TE_PE) || defined (TE_PEP)
9954 case bfd_target_coff_flavour:
9955 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9956# elif defined (TE_GO32)
0561d57c
JK
9957 case bfd_target_coff_flavour:
9958 return "coff-go32";
9384f2ff 9959# else
252b5132
RH
9960 case bfd_target_coff_flavour:
9961 return "coff-i386";
9384f2ff 9962# endif
4c63da97 9963#endif
3e73aa7c 9964#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 9965 case bfd_target_elf_flavour:
3e73aa7c 9966 {
351f65ca
L
9967 const char *format;
9968
9969 switch (x86_elf_abi)
4fa24527 9970 {
351f65ca
L
9971 default:
9972 format = ELF_TARGET_FORMAT;
9973 break;
7f56bc95 9974 case X86_64_ABI:
351f65ca 9975 use_rela_relocations = 1;
4fa24527 9976 object_64bit = 1;
351f65ca
L
9977 format = ELF_TARGET_FORMAT64;
9978 break;
7f56bc95 9979 case X86_64_X32_ABI:
4fa24527 9980 use_rela_relocations = 1;
351f65ca 9981 object_64bit = 1;
862be3fb 9982 disallow_64bit_reloc = 1;
351f65ca
L
9983 format = ELF_TARGET_FORMAT32;
9984 break;
4fa24527 9985 }
3632d14b 9986 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 9987 {
7f56bc95 9988 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
9989 as_fatal (_("Intel L1OM is 64bit only"));
9990 return ELF_TARGET_L1OM_FORMAT;
9991 }
7a9068fe
L
9992 if (cpu_arch_isa == PROCESSOR_K1OM)
9993 {
9994 if (x86_elf_abi != X86_64_ABI)
9995 as_fatal (_("Intel K1OM is 64bit only"));
9996 return ELF_TARGET_K1OM_FORMAT;
9997 }
8a9036a4 9998 else
351f65ca 9999 return format;
3e73aa7c 10000 }
e57f8c65
TG
10001#endif
10002#if defined (OBJ_MACH_O)
10003 case bfd_target_mach_o_flavour:
d382c579
TG
10004 if (flag_code == CODE_64BIT)
10005 {
10006 use_rela_relocations = 1;
10007 object_64bit = 1;
10008 return "mach-o-x86-64";
10009 }
10010 else
10011 return "mach-o-i386";
4c63da97 10012#endif
252b5132
RH
10013 default:
10014 abort ();
10015 return NULL;
10016 }
10017}
10018
47926f60 10019#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
10020
10021#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
10022void
10023i386_elf_emit_arch_note (void)
a847613f 10024{
718ddfc0 10025 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
10026 {
10027 char *p;
10028 asection *seg = now_seg;
10029 subsegT subseg = now_subseg;
10030 Elf_Internal_Note i_note;
10031 Elf_External_Note e_note;
10032 asection *note_secp;
10033 int len;
10034
10035 /* Create the .note section. */
10036 note_secp = subseg_new (".note", 0);
10037 bfd_set_section_flags (stdoutput,
10038 note_secp,
10039 SEC_HAS_CONTENTS | SEC_READONLY);
10040
10041 /* Process the arch string. */
10042 len = strlen (cpu_arch_name);
10043
10044 i_note.namesz = len + 1;
10045 i_note.descsz = 0;
10046 i_note.type = NT_ARCH;
10047 p = frag_more (sizeof (e_note.namesz));
10048 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10049 p = frag_more (sizeof (e_note.descsz));
10050 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10051 p = frag_more (sizeof (e_note.type));
10052 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10053 p = frag_more (len + 1);
10054 strcpy (p, cpu_arch_name);
10055
10056 frag_align (2, 0, 0);
10057
10058 subseg_set (seg, subseg);
10059 }
10060}
10061#endif
252b5132 10062\f
252b5132 10063symbolS *
7016a5d5 10064md_undefined_symbol (char *name)
252b5132 10065{
18dc2407
ILT
10066 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10067 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10068 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10069 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10070 {
10071 if (!GOT_symbol)
10072 {
10073 if (symbol_find (name))
10074 as_bad (_("GOT already in symbol table"));
10075 GOT_symbol = symbol_new (name, undefined_section,
10076 (valueT) 0, &zero_address_frag);
10077 };
10078 return GOT_symbol;
10079 }
252b5132
RH
10080 return 0;
10081}
10082
10083/* Round up a section size to the appropriate boundary. */
47926f60 10084
252b5132 10085valueT
7016a5d5 10086md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10087{
4c63da97
AM
10088#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10089 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10090 {
10091 /* For a.out, force the section size to be aligned. If we don't do
10092 this, BFD will align it for us, but it will not write out the
10093 final bytes of the section. This may be a bug in BFD, but it is
10094 easier to fix it here since that is how the other a.out targets
10095 work. */
10096 int align;
10097
10098 align = bfd_get_section_alignment (stdoutput, segment);
10099 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10100 }
252b5132
RH
10101#endif
10102
10103 return size;
10104}
10105
10106/* On the i386, PC-relative offsets are relative to the start of the
10107 next instruction. That is, the address of the offset, plus its
10108 size, since the offset is always the last part of the insn. */
10109
10110long
e3bb37b5 10111md_pcrel_from (fixS *fixP)
252b5132
RH
10112{
10113 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10114}
10115
10116#ifndef I386COFF
10117
10118static void
e3bb37b5 10119s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10120{
29b0f896 10121 int temp;
252b5132 10122
8a75718c
JB
10123#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10124 if (IS_ELF)
10125 obj_elf_section_change_hook ();
10126#endif
252b5132
RH
10127 temp = get_absolute_expression ();
10128 subseg_set (bss_section, (subsegT) temp);
10129 demand_empty_rest_of_line ();
10130}
10131
10132#endif
10133
252b5132 10134void
e3bb37b5 10135i386_validate_fix (fixS *fixp)
252b5132
RH
10136{
10137 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10138 {
23df1078
JH
10139 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10140 {
4fa24527 10141 if (!object_64bit)
23df1078
JH
10142 abort ();
10143 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10144 }
10145 else
10146 {
4fa24527 10147 if (!object_64bit)
d6ab8113
JB
10148 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10149 else
10150 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 10151 }
252b5132
RH
10152 fixp->fx_subsy = 0;
10153 }
10154}
10155
252b5132 10156arelent *
7016a5d5 10157tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10158{
10159 arelent *rel;
10160 bfd_reloc_code_real_type code;
10161
10162 switch (fixp->fx_r_type)
10163 {
8ce3d284 10164#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10165 case BFD_RELOC_SIZE32:
10166 case BFD_RELOC_SIZE64:
10167 if (S_IS_DEFINED (fixp->fx_addsy)
10168 && !S_IS_EXTERNAL (fixp->fx_addsy))
10169 {
10170 /* Resolve size relocation against local symbol to size of
10171 the symbol plus addend. */
10172 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10173 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10174 && !fits_in_unsigned_long (value))
10175 as_bad_where (fixp->fx_file, fixp->fx_line,
10176 _("symbol size computation overflow"));
10177 fixp->fx_addsy = NULL;
10178 fixp->fx_subsy = NULL;
10179 md_apply_fix (fixp, (valueT *) &value, NULL);
10180 return NULL;
10181 }
8ce3d284 10182#endif
8fd4256d 10183
3e73aa7c
JH
10184 case BFD_RELOC_X86_64_PLT32:
10185 case BFD_RELOC_X86_64_GOT32:
10186 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
10187 case BFD_RELOC_386_PLT32:
10188 case BFD_RELOC_386_GOT32:
10189 case BFD_RELOC_386_GOTOFF:
10190 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10191 case BFD_RELOC_386_TLS_GD:
10192 case BFD_RELOC_386_TLS_LDM:
10193 case BFD_RELOC_386_TLS_LDO_32:
10194 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10195 case BFD_RELOC_386_TLS_IE:
10196 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10197 case BFD_RELOC_386_TLS_LE_32:
10198 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10199 case BFD_RELOC_386_TLS_GOTDESC:
10200 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10201 case BFD_RELOC_X86_64_TLSGD:
10202 case BFD_RELOC_X86_64_TLSLD:
10203 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10204 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10205 case BFD_RELOC_X86_64_GOTTPOFF:
10206 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10207 case BFD_RELOC_X86_64_TPOFF64:
10208 case BFD_RELOC_X86_64_GOTOFF64:
10209 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10210 case BFD_RELOC_X86_64_GOT64:
10211 case BFD_RELOC_X86_64_GOTPCREL64:
10212 case BFD_RELOC_X86_64_GOTPC64:
10213 case BFD_RELOC_X86_64_GOTPLT64:
10214 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10215 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10216 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10217 case BFD_RELOC_RVA:
10218 case BFD_RELOC_VTABLE_ENTRY:
10219 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10220#ifdef TE_PE
10221 case BFD_RELOC_32_SECREL:
10222#endif
252b5132
RH
10223 code = fixp->fx_r_type;
10224 break;
dbbaec26
L
10225 case BFD_RELOC_X86_64_32S:
10226 if (!fixp->fx_pcrel)
10227 {
10228 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10229 code = fixp->fx_r_type;
10230 break;
10231 }
252b5132 10232 default:
93382f6d 10233 if (fixp->fx_pcrel)
252b5132 10234 {
93382f6d
AM
10235 switch (fixp->fx_size)
10236 {
10237 default:
b091f402
AM
10238 as_bad_where (fixp->fx_file, fixp->fx_line,
10239 _("can not do %d byte pc-relative relocation"),
10240 fixp->fx_size);
93382f6d
AM
10241 code = BFD_RELOC_32_PCREL;
10242 break;
10243 case 1: code = BFD_RELOC_8_PCREL; break;
10244 case 2: code = BFD_RELOC_16_PCREL; break;
10245 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10246#ifdef BFD64
10247 case 8: code = BFD_RELOC_64_PCREL; break;
10248#endif
93382f6d
AM
10249 }
10250 }
10251 else
10252 {
10253 switch (fixp->fx_size)
10254 {
10255 default:
b091f402
AM
10256 as_bad_where (fixp->fx_file, fixp->fx_line,
10257 _("can not do %d byte relocation"),
10258 fixp->fx_size);
93382f6d
AM
10259 code = BFD_RELOC_32;
10260 break;
10261 case 1: code = BFD_RELOC_8; break;
10262 case 2: code = BFD_RELOC_16; break;
10263 case 4: code = BFD_RELOC_32; break;
937149dd 10264#ifdef BFD64
3e73aa7c 10265 case 8: code = BFD_RELOC_64; break;
937149dd 10266#endif
93382f6d 10267 }
252b5132
RH
10268 }
10269 break;
10270 }
252b5132 10271
d182319b
JB
10272 if ((code == BFD_RELOC_32
10273 || code == BFD_RELOC_32_PCREL
10274 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10275 && GOT_symbol
10276 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10277 {
4fa24527 10278 if (!object_64bit)
d6ab8113
JB
10279 code = BFD_RELOC_386_GOTPC;
10280 else
10281 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10282 }
7b81dfbb
AJ
10283 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10284 && GOT_symbol
10285 && fixp->fx_addsy == GOT_symbol)
10286 {
10287 code = BFD_RELOC_X86_64_GOTPC64;
10288 }
252b5132
RH
10289
10290 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
10291 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10292 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10293
10294 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10295
3e73aa7c
JH
10296 if (!use_rela_relocations)
10297 {
10298 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10299 vtable entry to be used in the relocation's section offset. */
10300 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10301 rel->address = fixp->fx_offset;
fbeb56a4
DK
10302#if defined (OBJ_COFF) && defined (TE_PE)
10303 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10304 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10305 else
10306#endif
c6682705 10307 rel->addend = 0;
3e73aa7c
JH
10308 }
10309 /* Use the rela in 64bit mode. */
252b5132 10310 else
3e73aa7c 10311 {
862be3fb
L
10312 if (disallow_64bit_reloc)
10313 switch (code)
10314 {
862be3fb
L
10315 case BFD_RELOC_X86_64_DTPOFF64:
10316 case BFD_RELOC_X86_64_TPOFF64:
10317 case BFD_RELOC_64_PCREL:
10318 case BFD_RELOC_X86_64_GOTOFF64:
10319 case BFD_RELOC_X86_64_GOT64:
10320 case BFD_RELOC_X86_64_GOTPCREL64:
10321 case BFD_RELOC_X86_64_GOTPC64:
10322 case BFD_RELOC_X86_64_GOTPLT64:
10323 case BFD_RELOC_X86_64_PLTOFF64:
10324 as_bad_where (fixp->fx_file, fixp->fx_line,
10325 _("cannot represent relocation type %s in x32 mode"),
10326 bfd_get_reloc_code_name (code));
10327 break;
10328 default:
10329 break;
10330 }
10331
062cd5e7
AS
10332 if (!fixp->fx_pcrel)
10333 rel->addend = fixp->fx_offset;
10334 else
10335 switch (code)
10336 {
10337 case BFD_RELOC_X86_64_PLT32:
10338 case BFD_RELOC_X86_64_GOT32:
10339 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
10340 case BFD_RELOC_X86_64_TLSGD:
10341 case BFD_RELOC_X86_64_TLSLD:
10342 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
10343 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10344 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
10345 rel->addend = fixp->fx_offset - fixp->fx_size;
10346 break;
10347 default:
10348 rel->addend = (section->vma
10349 - fixp->fx_size
10350 + fixp->fx_addnumber
10351 + md_pcrel_from (fixp));
10352 break;
10353 }
3e73aa7c
JH
10354 }
10355
252b5132
RH
10356 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10357 if (rel->howto == NULL)
10358 {
10359 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 10360 _("cannot represent relocation type %s"),
252b5132
RH
10361 bfd_get_reloc_code_name (code));
10362 /* Set howto to a garbage value so that we can keep going. */
10363 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 10364 gas_assert (rel->howto != NULL);
252b5132
RH
10365 }
10366
10367 return rel;
10368}
10369
ee86248c 10370#include "tc-i386-intel.c"
54cfded0 10371
a60de03c
JB
10372void
10373tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 10374{
a60de03c
JB
10375 int saved_naked_reg;
10376 char saved_register_dot;
54cfded0 10377
a60de03c
JB
10378 saved_naked_reg = allow_naked_reg;
10379 allow_naked_reg = 1;
10380 saved_register_dot = register_chars['.'];
10381 register_chars['.'] = '.';
10382 allow_pseudo_reg = 1;
10383 expression_and_evaluate (exp);
10384 allow_pseudo_reg = 0;
10385 register_chars['.'] = saved_register_dot;
10386 allow_naked_reg = saved_naked_reg;
10387
e96d56a1 10388 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 10389 {
a60de03c
JB
10390 if ((addressT) exp->X_add_number < i386_regtab_size)
10391 {
10392 exp->X_op = O_constant;
10393 exp->X_add_number = i386_regtab[exp->X_add_number]
10394 .dw2_regnum[flag_code >> 1];
10395 }
10396 else
10397 exp->X_op = O_illegal;
54cfded0 10398 }
54cfded0
AM
10399}
10400
10401void
10402tc_x86_frame_initial_instructions (void)
10403{
a60de03c
JB
10404 static unsigned int sp_regno[2];
10405
10406 if (!sp_regno[flag_code >> 1])
10407 {
10408 char *saved_input = input_line_pointer;
10409 char sp[][4] = {"esp", "rsp"};
10410 expressionS exp;
a4447b93 10411
a60de03c
JB
10412 input_line_pointer = sp[flag_code >> 1];
10413 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 10414 gas_assert (exp.X_op == O_constant);
a60de03c
JB
10415 sp_regno[flag_code >> 1] = exp.X_add_number;
10416 input_line_pointer = saved_input;
10417 }
a4447b93 10418
61ff971f
L
10419 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10420 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 10421}
d2b2c203 10422
d7921315
L
10423int
10424x86_dwarf2_addr_size (void)
10425{
10426#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10427 if (x86_elf_abi == X86_64_X32_ABI)
10428 return 4;
10429#endif
10430 return bfd_arch_bits_per_address (stdoutput) / 8;
10431}
10432
d2b2c203
DJ
10433int
10434i386_elf_section_type (const char *str, size_t len)
10435{
10436 if (flag_code == CODE_64BIT
10437 && len == sizeof ("unwind") - 1
10438 && strncmp (str, "unwind", 6) == 0)
10439 return SHT_X86_64_UNWIND;
10440
10441 return -1;
10442}
bb41ade5 10443
ad5fec3b
EB
10444#ifdef TE_SOLARIS
10445void
10446i386_solaris_fix_up_eh_frame (segT sec)
10447{
10448 if (flag_code == CODE_64BIT)
10449 elf_section_type (sec) = SHT_X86_64_UNWIND;
10450}
10451#endif
10452
bb41ade5
AM
10453#ifdef TE_PE
10454void
10455tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10456{
91d6fa6a 10457 expressionS exp;
bb41ade5 10458
91d6fa6a
NC
10459 exp.X_op = O_secrel;
10460 exp.X_add_symbol = symbol;
10461 exp.X_add_number = 0;
10462 emit_expr (&exp, size);
bb41ade5
AM
10463}
10464#endif
3b22753a
L
10465
10466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10467/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10468
01e1a5bc 10469bfd_vma
3b22753a
L
10470x86_64_section_letter (int letter, char **ptr_msg)
10471{
10472 if (flag_code == CODE_64BIT)
10473 {
10474 if (letter == 'l')
10475 return SHF_X86_64_LARGE;
10476
8f3bae45 10477 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 10478 }
3b22753a 10479 else
8f3bae45 10480 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
10481 return -1;
10482}
10483
01e1a5bc 10484bfd_vma
3b22753a
L
10485x86_64_section_word (char *str, size_t len)
10486{
8620418b 10487 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
10488 return SHF_X86_64_LARGE;
10489
10490 return -1;
10491}
10492
10493static void
10494handle_large_common (int small ATTRIBUTE_UNUSED)
10495{
10496 if (flag_code != CODE_64BIT)
10497 {
10498 s_comm_internal (0, elf_common_parse);
10499 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10500 }
10501 else
10502 {
10503 static segT lbss_section;
10504 asection *saved_com_section_ptr = elf_com_section_ptr;
10505 asection *saved_bss_section = bss_section;
10506
10507 if (lbss_section == NULL)
10508 {
10509 flagword applicable;
10510 segT seg = now_seg;
10511 subsegT subseg = now_subseg;
10512
10513 /* The .lbss section is for local .largecomm symbols. */
10514 lbss_section = subseg_new (".lbss", 0);
10515 applicable = bfd_applicable_section_flags (stdoutput);
10516 bfd_set_section_flags (stdoutput, lbss_section,
10517 applicable & SEC_ALLOC);
10518 seg_info (lbss_section)->bss = 1;
10519
10520 subseg_set (seg, subseg);
10521 }
10522
10523 elf_com_section_ptr = &_bfd_elf_large_com_section;
10524 bss_section = lbss_section;
10525
10526 s_comm_internal (0, elf_common_parse);
10527
10528 elf_com_section_ptr = saved_com_section_ptr;
10529 bss_section = saved_bss_section;
10530 }
10531}
10532#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.761332 seconds and 4 git commands to generate.