* ar.c (main): Clear output_file if we don't change the archive.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132
RH
1/* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22/*
23 Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better.
27 */
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
33#include "opcode/i386.h"
34
35#ifndef TC_RELOC
36#define TC_RELOC(X,Y) (Y)
37#endif
38
39#ifndef REGISTER_WARNINGS
40#define REGISTER_WARNINGS 1
41#endif
42
c3332e24 43#ifndef INFER_ADDR_PREFIX
eecb386c 44#define INFER_ADDR_PREFIX 1
c3332e24
AM
45#endif
46
252b5132
RH
47#ifndef SCALE1_WHEN_NO_INDEX
48/* Specifying a scale factor besides 1 when there is no index is
49 futile. eg. `mov (%ebx,2),%al' does exactly the same as
50 `mov (%ebx),%al'. To slavishly follow what the programmer
51 specified, set SCALE1_WHEN_NO_INDEX to 0. */
52#define SCALE1_WHEN_NO_INDEX 1
53#endif
54
55#define true 1
56#define false 0
57
58static unsigned int mode_from_disp_size PARAMS ((unsigned int));
59static int fits_in_signed_byte PARAMS ((long));
60static int fits_in_unsigned_byte PARAMS ((long));
61static int fits_in_unsigned_word PARAMS ((long));
62static int fits_in_signed_word PARAMS ((long));
63static int smallest_imm_type PARAMS ((long));
64static int add_prefix PARAMS ((unsigned int));
65static void set_16bit_code_flag PARAMS ((int));
eecb386c 66static void set_16bit_gcc_code_flag PARAMS((int));
252b5132
RH
67static void set_intel_syntax PARAMS ((int));
68
69#ifdef BFD_ASSEMBLER
70static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, bfd_reloc_code_real_type));
72#endif
73
74/* 'md_assemble ()' gathers together information and puts it into a
75 i386_insn. */
76
77struct _i386_insn
78 {
79 /* TM holds the template for the insn were currently assembling. */
80 template tm;
81
82 /* SUFFIX holds the instruction mnemonic suffix if given.
83 (e.g. 'l' for 'movl') */
84 char suffix;
85
86 /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
87
88 /* OPERANDS gives the number of given operands. */
89 unsigned int operands;
90
91 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
92 of given register, displacement, memory operands and immediate
93 operands. */
94 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
95
96 /* TYPES [i] is the type (see above #defines) which tells us how to
97 search through DISPS [i] & IMMS [i] & REGS [i] for the required
98 operand. */
99 unsigned int types[MAX_OPERANDS];
100
101 /* Displacements (if given) for each operand. */
102 expressionS *disps[MAX_OPERANDS];
103
104 /* Relocation type for operand */
105#ifdef BFD_ASSEMBLER
106 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
107#else
108 int disp_reloc[MAX_OPERANDS];
109#endif
110
111 /* Immediate operands (if given) for each operand. */
112 expressionS *imms[MAX_OPERANDS];
113
114 /* Register operands (if given) for each operand. */
115 const reg_entry *regs[MAX_OPERANDS];
116
117 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
118 the base index byte below. */
119 const reg_entry *base_reg;
120 const reg_entry *index_reg;
121 unsigned int log2_scale_factor;
122
123 /* SEG gives the seg_entries of this insn. They are zero unless
124 explicit segment overrides are given. */
125 const seg_entry *seg[2]; /* segments for memory operands (if given) */
126
127 /* PREFIX holds all the given prefix opcodes (usually null).
128 PREFIXES is the number of prefix opcodes. */
129 unsigned int prefixes;
130 unsigned char prefix[MAX_PREFIXES];
131
132 /* RM and SIB are the modrm byte and the sib byte where the
133 addressing modes of this insn are encoded. */
134
135 modrm_byte rm;
136 sib_byte sib;
137 };
138
139typedef struct _i386_insn i386_insn;
140
141/* List of chars besides those in app.c:symbol_chars that can start an
142 operand. Used to prevent the scrubber eating vital white-space. */
143#ifdef LEX_AT
144const char extra_symbol_chars[] = "*%-(@";
145#else
146const char extra_symbol_chars[] = "*%-(";
147#endif
148
149/* This array holds the chars that always start a comment. If the
150 pre-processor is disabled, these aren't very useful */
151#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
152/* Putting '/' here makes it impossible to use the divide operator.
153 However, we need it for compatibility with SVR4 systems. */
154const char comment_chars[] = "#/";
155#define PREFIX_SEPARATOR '\\'
156#else
157const char comment_chars[] = "#";
158#define PREFIX_SEPARATOR '/'
159#endif
160
161/* This array holds the chars that only start a comment at the beginning of
162 a line. If the line seems to have the form '# 123 filename'
163 .line and .file directives will appear in the pre-processed output */
164/* Note that input_file.c hand checks for '#' at the beginning of the
165 first line of the input file. This is because the compiler outputs
166 #NO_APP at the beginning of its output. */
167/* Also note that comments started like this one will always work if
168 '/' isn't otherwise defined. */
169#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
170const char line_comment_chars[] = "";
171#else
172const char line_comment_chars[] = "/";
173#endif
174
175const char line_separator_chars[] = "";
176
177/* Chars that can be used to separate mant from exp in floating point nums */
178const char EXP_CHARS[] = "eE";
179
180/* Chars that mean this number is a floating point constant */
181/* As in 0f12.456 */
182/* or 0d1.2345e12 */
183const char FLT_CHARS[] = "fFdDxX";
184
185/* tables for lexical analysis */
186static char mnemonic_chars[256];
187static char register_chars[256];
188static char operand_chars[256];
189static char identifier_chars[256];
190static char digit_chars[256];
191
192/* lexical macros */
193#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
194#define is_operand_char(x) (operand_chars[(unsigned char) x])
195#define is_register_char(x) (register_chars[(unsigned char) x])
196#define is_space_char(x) ((x) == ' ')
197#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
198#define is_digit_char(x) (digit_chars[(unsigned char) x])
199
200/* put here all non-digit non-letter charcters that may occur in an operand */
201static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
202
203/* md_assemble() always leaves the strings it's passed unaltered. To
204 effect this we maintain a stack of saved characters that we've smashed
205 with '\0's (indicating end of strings for various sub-fields of the
206 assembler instruction). */
207static char save_stack[32];
208static char *save_stack_p; /* stack pointer */
209#define END_STRING_AND_SAVE(s) \
210 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
211#define RESTORE_END_STRING(s) \
212 do { *(s) = *--save_stack_p; } while (0)
213
214/* The instruction we're assembling. */
215static i386_insn i;
216
217/* Possible templates for current insn. */
218static const templates *current_templates;
219
220/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
221static expressionS disp_expressions[2], im_expressions[2];
222
223static int this_operand; /* current operand we are working on */
224
225static int flag_do_long_jump; /* FIXME what does this do? */
226
227static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
228
229static int intel_syntax = 0; /* 1 for intel syntax, 0 if att syntax */
230
231static int allow_naked_reg = 0; /* 1 if register prefix % not required */
232
eecb386c
AM
233static char stackop_size = '\0'; /* Used in 16 bit gcc mode to add an l
234 suffix to call, ret, enter, leave, push,
235 and pop instructions. */
236
252b5132
RH
237/* Interface to relax_segment.
238 There are 2 relax states for 386 jump insns: one for conditional &
239 one for unconditional jumps. This is because the these two types
240 of jumps add different sizes to frags when we're figuring out what
241 sort of jump to choose to reach a given label. */
242
243/* types */
244#define COND_JUMP 1 /* conditional jump */
245#define UNCOND_JUMP 2 /* unconditional jump */
246/* sizes */
247#define CODE16 1
248#define SMALL 0
249#define SMALL16 (SMALL|CODE16)
250#define BIG 2
251#define BIG16 (BIG|CODE16)
252
253#ifndef INLINE
254#ifdef __GNUC__
255#define INLINE __inline__
256#else
257#define INLINE
258#endif
259#endif
260
261#define ENCODE_RELAX_STATE(type,size) \
262 ((relax_substateT)((type<<2) | (size)))
263#define SIZE_FROM_RELAX_STATE(s) \
264 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
265
266/* This table is used by relax_frag to promote short jumps to long
267 ones where necessary. SMALL (short) jumps may be promoted to BIG
268 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
269 don't allow a short jump in a 32 bit code segment to be promoted to
270 a 16 bit offset jump because it's slower (requires data size
271 prefix), and doesn't work, unless the destination is in the bottom
272 64k of the code segment (The top 16 bits of eip are zeroed). */
273
274const relax_typeS md_relax_table[] =
275{
24eab124
AM
276 /* The fields are:
277 1) most positive reach of this state,
278 2) most negative reach of this state,
279 3) how many bytes this mode will add to the size of the current frag
280 4) which index into the table to try if we can't fit into this one.
281 */
252b5132
RH
282 {1, 1, 0, 0},
283 {1, 1, 0, 0},
284 {1, 1, 0, 0},
285 {1, 1, 0, 0},
286
287 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
288 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
289 /* dword conditionals adds 4 bytes to frag:
290 1 extra opcode byte, 3 extra displacement bytes. */
291 {0, 0, 4, 0},
292 /* word conditionals add 2 bytes to frag:
293 1 extra opcode byte, 1 extra displacement byte. */
294 {0, 0, 2, 0},
295
296 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
297 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
298 /* dword jmp adds 3 bytes to frag:
299 0 extra opcode bytes, 3 extra displacement bytes. */
300 {0, 0, 3, 0},
301 /* word jmp adds 1 byte to frag:
302 0 extra opcode bytes, 1 extra displacement byte. */
303 {0, 0, 1, 0}
304
305};
306
307
308void
309i386_align_code (fragP, count)
310 fragS *fragP;
311 int count;
312{
313 /* Various efficient no-op patterns for aligning code labels. */
314 /* Note: Don't try to assemble the instructions in the comments. */
315 /* 0L and 0w are not legal */
316 static const char f32_1[] =
317 {0x90}; /* nop */
318 static const char f32_2[] =
319 {0x89,0xf6}; /* movl %esi,%esi */
320 static const char f32_3[] =
321 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
322 static const char f32_4[] =
323 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
324 static const char f32_5[] =
325 {0x90, /* nop */
326 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
327 static const char f32_6[] =
328 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
329 static const char f32_7[] =
330 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
331 static const char f32_8[] =
332 {0x90, /* nop */
333 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
334 static const char f32_9[] =
335 {0x89,0xf6, /* movl %esi,%esi */
336 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
337 static const char f32_10[] =
338 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
339 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
340 static const char f32_11[] =
341 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
342 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
343 static const char f32_12[] =
344 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
345 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
346 static const char f32_13[] =
347 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
348 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
349 static const char f32_14[] =
350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
351 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
352 static const char f32_15[] =
353 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
354 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
355 static const char f16_3[] =
356 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
357 static const char f16_4[] =
358 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
359 static const char f16_5[] =
360 {0x90, /* nop */
361 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
362 static const char f16_6[] =
363 {0x89,0xf6, /* mov %si,%si */
364 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
365 static const char f16_7[] =
366 {0x8d,0x74,0x00, /* lea 0(%si),%si */
367 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
368 static const char f16_8[] =
369 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
370 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
371 static const char *const f32_patt[] = {
372 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
373 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
374 };
375 static const char *const f16_patt[] = {
c3332e24 376 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
377 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
378 };
379
380 if (count > 0 && count <= 15)
381 {
382 if (flag_16bit_code)
383 {
384 memcpy(fragP->fr_literal + fragP->fr_fix,
385 f16_patt[count - 1], count);
386 if (count > 8) /* adjust jump offset */
387 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
388 }
389 else
390 memcpy(fragP->fr_literal + fragP->fr_fix,
391 f32_patt[count - 1], count);
392 fragP->fr_var = count;
393 }
394}
395
396static char *output_invalid PARAMS ((int c));
397static int i386_operand PARAMS ((char *operand_string));
398static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
399static const reg_entry *parse_register PARAMS ((char *reg_string,
400 char **end_op));
401
402#ifndef I386COFF
403static void s_bss PARAMS ((int));
404#endif
405
406symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
407
408static INLINE unsigned int
409mode_from_disp_size (t)
410 unsigned int t;
411{
412 return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0;
413}
414
415static INLINE int
416fits_in_signed_byte (num)
417 long num;
418{
419 return (num >= -128) && (num <= 127);
420} /* fits_in_signed_byte() */
421
422static INLINE int
423fits_in_unsigned_byte (num)
424 long num;
425{
426 return (num & 0xff) == num;
427} /* fits_in_unsigned_byte() */
428
429static INLINE int
430fits_in_unsigned_word (num)
431 long num;
432{
433 return (num & 0xffff) == num;
434} /* fits_in_unsigned_word() */
435
436static INLINE int
437fits_in_signed_word (num)
438 long num;
439{
440 return (-32768 <= num) && (num <= 32767);
441} /* fits_in_signed_word() */
442
443static int
444smallest_imm_type (num)
445 long num;
446{
447#if 0
448 /* This code is disabled because all the Imm1 forms in the opcode table
449 are slower on the i486, and they're the versions with the implicitly
450 specified single-position displacement, which has another syntax if
451 you really want to use that form. If you really prefer to have the
452 one-byte-shorter Imm1 form despite these problems, re-enable this
453 code. */
454 if (num == 1)
455 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
456#endif
457 return (fits_in_signed_byte (num)
458 ? (Imm8S | Imm8 | Imm16 | Imm32)
459 : fits_in_unsigned_byte (num)
460 ? (Imm8 | Imm16 | Imm32)
461 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
462 ? (Imm16 | Imm32)
463 : (Imm32));
464} /* smallest_imm_type() */
465
466/* Returns 0 if attempting to add a prefix where one from the same
467 class already exists, 1 if non rep/repne added, 2 if rep/repne
468 added. */
469static int
470add_prefix (prefix)
471 unsigned int prefix;
472{
473 int ret = 1;
474 int q;
475
476 switch (prefix)
477 {
478 default:
479 abort ();
480
481 case CS_PREFIX_OPCODE:
482 case DS_PREFIX_OPCODE:
483 case ES_PREFIX_OPCODE:
484 case FS_PREFIX_OPCODE:
485 case GS_PREFIX_OPCODE:
486 case SS_PREFIX_OPCODE:
487 q = SEG_PREFIX;
488 break;
489
490 case REPNE_PREFIX_OPCODE:
491 case REPE_PREFIX_OPCODE:
492 ret = 2;
493 /* fall thru */
494 case LOCK_PREFIX_OPCODE:
495 q = LOCKREP_PREFIX;
496 break;
497
498 case FWAIT_OPCODE:
499 q = WAIT_PREFIX;
500 break;
501
502 case ADDR_PREFIX_OPCODE:
503 q = ADDR_PREFIX;
504 break;
505
506 case DATA_PREFIX_OPCODE:
507 q = DATA_PREFIX;
508 break;
509 }
510
511 if (i.prefix[q])
512 {
513 as_bad (_("same type of prefix used twice"));
514 return 0;
515 }
516
517 i.prefixes += 1;
518 i.prefix[q] = prefix;
519 return ret;
520}
521
522static void
523set_16bit_code_flag (new_16bit_code_flag)
eecb386c
AM
524 int new_16bit_code_flag;
525{
526 flag_16bit_code = new_16bit_code_flag;
527 stackop_size = '\0';
528}
529
530static void
531set_16bit_gcc_code_flag (new_16bit_code_flag)
532 int new_16bit_code_flag;
252b5132
RH
533{
534 flag_16bit_code = new_16bit_code_flag;
eecb386c 535 stackop_size = new_16bit_code_flag ? 'l' : '\0';
252b5132
RH
536}
537
538static void
539set_intel_syntax (syntax_flag)
eecb386c 540 int syntax_flag;
252b5132
RH
541{
542 /* Find out if register prefixing is specified. */
543 int ask_naked_reg = 0;
544
545 SKIP_WHITESPACE ();
546 if (! is_end_of_line[(unsigned char) *input_line_pointer])
547 {
548 char *string = input_line_pointer;
549 int e = get_symbol_end ();
550
551 if (strcmp(string, "prefix") == 0)
552 ask_naked_reg = 1;
553 else if (strcmp(string, "noprefix") == 0)
554 ask_naked_reg = -1;
555 else
556 as_bad (_("Bad argument to syntax directive."));
557 *input_line_pointer = e;
558 }
559 demand_empty_rest_of_line ();
c3332e24 560
252b5132
RH
561 intel_syntax = syntax_flag;
562
563 if (ask_naked_reg == 0)
564 {
565#ifdef BFD_ASSEMBLER
566 allow_naked_reg = (intel_syntax
24eab124 567 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
568#else
569 allow_naked_reg = 0; /* conservative default */
570#endif
571 }
572 else
573 allow_naked_reg = (ask_naked_reg < 0);
574}
575
576const pseudo_typeS md_pseudo_table[] =
577{
578#ifndef I386COFF
579 {"bss", s_bss, 0},
580#endif
581#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
582 {"align", s_align_bytes, 0},
583#else
584 {"align", s_align_ptwo, 0},
585#endif
586 {"ffloat", float_cons, 'f'},
587 {"dfloat", float_cons, 'd'},
588 {"tfloat", float_cons, 'x'},
589 {"value", cons, 2},
590 {"noopt", s_ignore, 0},
591 {"optim", s_ignore, 0},
eecb386c 592 {"code16gcc", set_16bit_gcc_code_flag, 1},
252b5132
RH
593 {"code16", set_16bit_code_flag, 1},
594 {"code32", set_16bit_code_flag, 0},
595 {"intel_syntax", set_intel_syntax, 1},
596 {"att_syntax", set_intel_syntax, 0},
597 {0, 0, 0}
598};
599
600/* for interface with expression () */
601extern char *input_line_pointer;
602
603/* hash table for instruction mnemonic lookup */
604static struct hash_control *op_hash;
605/* hash table for register lookup */
606static struct hash_control *reg_hash;
607\f
608
609void
610md_begin ()
611{
612 const char *hash_err;
613
614 /* initialize op_hash hash table */
615 op_hash = hash_new ();
616
617 {
618 register const template *optab;
619 register templates *core_optab;
620
621 optab = i386_optab; /* setup for loop */
622 core_optab = (templates *) xmalloc (sizeof (templates));
623 core_optab->start = optab;
624
625 while (1)
626 {
627 ++optab;
628 if (optab->name == NULL
629 || strcmp (optab->name, (optab - 1)->name) != 0)
630 {
631 /* different name --> ship out current template list;
632 add to hash table; & begin anew */
633 core_optab->end = optab;
634 hash_err = hash_insert (op_hash,
635 (optab - 1)->name,
636 (PTR) core_optab);
637 if (hash_err)
638 {
639 hash_error:
640 as_fatal (_("Internal Error: Can't hash %s: %s"),
641 (optab - 1)->name,
642 hash_err);
643 }
644 if (optab->name == NULL)
645 break;
646 core_optab = (templates *) xmalloc (sizeof (templates));
647 core_optab->start = optab;
648 }
649 }
650 }
651
652 /* initialize reg_hash hash table */
653 reg_hash = hash_new ();
654 {
655 register const reg_entry *regtab;
656
657 for (regtab = i386_regtab;
658 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
659 regtab++)
660 {
661 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
662 if (hash_err)
663 goto hash_error;
664 }
665 }
666
667 /* fill in lexical tables: mnemonic_chars, operand_chars. */
668 {
669 register int c;
670 register char *p;
671
672 for (c = 0; c < 256; c++)
673 {
674 if (isdigit (c))
675 {
676 digit_chars[c] = c;
677 mnemonic_chars[c] = c;
678 register_chars[c] = c;
679 operand_chars[c] = c;
680 }
681 else if (islower (c))
682 {
683 mnemonic_chars[c] = c;
684 register_chars[c] = c;
685 operand_chars[c] = c;
686 }
687 else if (isupper (c))
688 {
689 mnemonic_chars[c] = tolower (c);
690 register_chars[c] = mnemonic_chars[c];
691 operand_chars[c] = c;
692 }
693
694 if (isalpha (c) || isdigit (c))
695 identifier_chars[c] = c;
696 else if (c >= 128)
697 {
698 identifier_chars[c] = c;
699 operand_chars[c] = c;
700 }
701 }
702
703#ifdef LEX_AT
704 identifier_chars['@'] = '@';
705#endif
252b5132
RH
706 digit_chars['-'] = '-';
707 identifier_chars['_'] = '_';
708 identifier_chars['.'] = '.';
709
710 for (p = operand_special_chars; *p != '\0'; p++)
711 operand_chars[(unsigned char) *p] = *p;
712 }
713
714#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
715 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
716 {
717 record_alignment (text_section, 2);
718 record_alignment (data_section, 2);
719 record_alignment (bss_section, 2);
720 }
721#endif
722}
723
724void
725i386_print_statistics (file)
726 FILE *file;
727{
728 hash_print_statistics (file, "i386 opcode", op_hash);
729 hash_print_statistics (file, "i386 register", reg_hash);
730}
731\f
732
733#ifdef DEBUG386
734
735/* debugging routines for md_assemble */
736static void pi PARAMS ((char *, i386_insn *));
737static void pte PARAMS ((template *));
738static void pt PARAMS ((unsigned int));
739static void pe PARAMS ((expressionS *));
740static void ps PARAMS ((symbolS *));
741
742static void
743pi (line, x)
744 char *line;
745 i386_insn *x;
746{
747 register template *p;
748 int i;
749
750 fprintf (stdout, "%s: template ", line);
751 pte (&x->tm);
752 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
753 x->rm.mode, x->rm.reg, x->rm.regmem);
754 fprintf (stdout, " base %x index %x scale %x\n",
755 x->bi.base, x->bi.index, x->bi.scale);
756 for (i = 0; i < x->operands; i++)
757 {
758 fprintf (stdout, " #%d: ", i + 1);
759 pt (x->types[i]);
760 fprintf (stdout, "\n");
761 if (x->types[i]
3f4438ab 762 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
252b5132
RH
763 fprintf (stdout, "%s\n", x->regs[i]->reg_name);
764 if (x->types[i] & Imm)
765 pe (x->imms[i]);
766 if (x->types[i] & Disp)
767 pe (x->disps[i]);
768 }
769}
770
771static void
772pte (t)
773 template *t;
774{
775 int i;
776 fprintf (stdout, " %d operands ", t->operands);
777 fprintf (stdout, "opcode %x ",
778 t->base_opcode);
779 if (t->extension_opcode != None)
780 fprintf (stdout, "ext %x ", t->extension_opcode);
781 if (t->opcode_modifier & D)
782 fprintf (stdout, "D");
783 if (t->opcode_modifier & W)
784 fprintf (stdout, "W");
785 fprintf (stdout, "\n");
786 for (i = 0; i < t->operands; i++)
787 {
788 fprintf (stdout, " #%d type ", i + 1);
789 pt (t->operand_types[i]);
790 fprintf (stdout, "\n");
791 }
792}
793
794static void
795pe (e)
796 expressionS *e;
797{
24eab124 798 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
799 fprintf (stdout, " add_number %ld (%lx)\n",
800 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
801 if (e->X_add_symbol)
802 {
803 fprintf (stdout, " add_symbol ");
804 ps (e->X_add_symbol);
805 fprintf (stdout, "\n");
806 }
807 if (e->X_op_symbol)
808 {
809 fprintf (stdout, " op_symbol ");
810 ps (e->X_op_symbol);
811 fprintf (stdout, "\n");
812 }
813}
814
815static void
816ps (s)
817 symbolS *s;
818{
819 fprintf (stdout, "%s type %s%s",
820 S_GET_NAME (s),
821 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
822 segment_name (S_GET_SEGMENT (s)));
823}
824
825struct type_name
826 {
827 unsigned int mask;
828 char *tname;
829 }
830
831type_names[] =
832{
833 { Reg8, "r8" },
834 { Reg16, "r16" },
835 { Reg32, "r32" },
836 { Imm8, "i8" },
837 { Imm8S, "i8s" },
838 { Imm16, "i16" },
839 { Imm32, "i32" },
840 { Imm1, "i1" },
841 { BaseIndex, "BaseIndex" },
842 { Disp8, "d8" },
843 { Disp16, "d16" },
844 { Disp32, "d32" },
845 { InOutPortReg, "InOutPortReg" },
846 { ShiftCount, "ShiftCount" },
847 { Control, "control reg" },
848 { Test, "test reg" },
849 { Debug, "debug reg" },
850 { FloatReg, "FReg" },
851 { FloatAcc, "FAcc" },
852 { SReg2, "SReg2" },
853 { SReg3, "SReg3" },
854 { Acc, "Acc" },
855 { JumpAbsolute, "Jump Absolute" },
856 { RegMMX, "rMMX" },
3f4438ab 857 { RegXMM, "rXMM" },
252b5132
RH
858 { EsSeg, "es" },
859 { 0, "" }
860};
861
862static void
863pt (t)
864 unsigned int t;
865{
866 register struct type_name *ty;
867
868 if (t == Unknown)
869 {
870 fprintf (stdout, _("Unknown"));
871 }
872 else
873 {
874 for (ty = type_names; ty->mask; ty++)
875 if (t & ty->mask)
876 fprintf (stdout, "%s, ", ty->tname);
877 }
878 fflush (stdout);
879}
880
881#endif /* DEBUG386 */
882\f
883int
884tc_i386_force_relocation (fixp)
885 struct fix *fixp;
886{
887#ifdef BFD_ASSEMBLER
888 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
889 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
890 return 1;
891 return 0;
892#else
893 /* For COFF */
894 return fixp->fx_r_type==7;
895#endif
896}
897
898#ifdef BFD_ASSEMBLER
899static bfd_reloc_code_real_type reloc
900 PARAMS ((int, int, bfd_reloc_code_real_type));
901
902static bfd_reloc_code_real_type
903reloc (size, pcrel, other)
904 int size;
905 int pcrel;
906 bfd_reloc_code_real_type other;
907{
908 if (other != NO_RELOC) return other;
909
910 if (pcrel)
911 {
912 switch (size)
913 {
914 case 1: return BFD_RELOC_8_PCREL;
915 case 2: return BFD_RELOC_16_PCREL;
916 case 4: return BFD_RELOC_32_PCREL;
917 }
918 as_bad (_("Can not do %d byte pc-relative relocation"), size);
919 }
920 else
921 {
922 switch (size)
923 {
924 case 1: return BFD_RELOC_8;
925 case 2: return BFD_RELOC_16;
926 case 4: return BFD_RELOC_32;
927 }
928 as_bad (_("Can not do %d byte relocation"), size);
929 }
930
931 return BFD_RELOC_NONE;
932}
933
934/*
935 * Here we decide which fixups can be adjusted to make them relative to
936 * the beginning of the section instead of the symbol. Basically we need
937 * to make sure that the dynamic relocations are done correctly, so in
938 * some cases we force the original symbol to be used.
939 */
940int
c0c949c7
ILT
941tc_i386_fix_adjustable (fixP)
942 fixS *fixP;
252b5132 943{
79d292aa
ILT
944#if defined (OBJ_ELF) || defined (TE_PE)
945 /* Prevent all adjustments to global symbols, or else dynamic
946 linking will not work correctly. */
252b5132
RH
947 if (S_IS_EXTERN (fixP->fx_addsy))
948 return 0;
949 if (S_IS_WEAK (fixP->fx_addsy))
950 return 0;
951#endif
952 /* adjust_reloc_syms doesn't know about the GOT */
953 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
954 || fixP->fx_r_type == BFD_RELOC_386_PLT32
955 || fixP->fx_r_type == BFD_RELOC_386_GOT32
d33e1d24 956 || fixP->fx_r_type == BFD_RELOC_RVA
252b5132
RH
957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
959 return 0;
960 return 1;
961}
962#else
963#define reloc(SIZE,PCREL,OTHER) 0
964#define BFD_RELOC_16 0
965#define BFD_RELOC_32 0
966#define BFD_RELOC_16_PCREL 0
967#define BFD_RELOC_32_PCREL 0
968#define BFD_RELOC_386_PLT32 0
969#define BFD_RELOC_386_GOT32 0
970#define BFD_RELOC_386_GOTOFF 0
971#endif
972
b4cac588
AM
973static int
974intel_float_operand PARAMS ((char *mnemonic));
975
976static int
252b5132
RH
977intel_float_operand (mnemonic)
978 char *mnemonic;
979{
980 if (mnemonic[0] == 'f' && mnemonic[1] =='i')
981 return 0;
982
983 if (mnemonic[0] == 'f')
984 return 1;
985
986 return 0;
987}
988
989/* This is the guts of the machine-dependent assembler. LINE points to a
990 machine dependent instruction. This function is supposed to emit
991 the frags/bytes it assembles to. */
992
993void
994md_assemble (line)
995 char *line;
996{
997 /* Points to template once we've found it. */
998 const template *t;
999
1000 /* Count the size of the instruction generated. */
1001 int insn_size = 0;
1002
1003 int j;
1004
1005 char mnemonic[MAX_MNEM_SIZE];
1006
1007 /* Initialize globals. */
1008 memset (&i, '\0', sizeof (i));
1009 for (j = 0; j < MAX_OPERANDS; j++)
1010 i.disp_reloc[j] = NO_RELOC;
1011 memset (disp_expressions, '\0', sizeof (disp_expressions));
1012 memset (im_expressions, '\0', sizeof (im_expressions));
1013 save_stack_p = save_stack; /* reset stack pointer */
1014
1015 /* First parse an instruction mnemonic & call i386_operand for the operands.
1016 We assume that the scrubber has arranged it so that line[0] is the valid
1017 start of a (possibly prefixed) mnemonic. */
1018 {
1019 char *l = line;
1020 char *token_start = l;
1021 char *mnem_p;
1022
1023 /* Non-zero if we found a prefix only acceptable with string insns. */
1024 const char *expecting_string_instruction = NULL;
1025
1026 while (1)
1027 {
1028 mnem_p = mnemonic;
1029 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1030 {
1031 mnem_p++;
1032 if (mnem_p >= mnemonic + sizeof (mnemonic))
1033 {
1034 as_bad (_("no such 386 instruction: `%s'"), token_start);
1035 return;
1036 }
1037 l++;
1038 }
1039 if (!is_space_char (*l)
1040 && *l != END_OF_INSN
1041 && *l != PREFIX_SEPARATOR)
1042 {
1043 as_bad (_("invalid character %s in mnemonic"),
1044 output_invalid (*l));
1045 return;
1046 }
1047 if (token_start == l)
1048 {
1049 if (*l == PREFIX_SEPARATOR)
1050 as_bad (_("expecting prefix; got nothing"));
1051 else
1052 as_bad (_("expecting mnemonic; got nothing"));
1053 return;
1054 }
1055
1056 /* Look up instruction (or prefix) via hash table. */
1057 current_templates = hash_find (op_hash, mnemonic);
1058
1059 if (*l != END_OF_INSN
1060 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1061 && current_templates
1062 && (current_templates->start->opcode_modifier & IsPrefix))
1063 {
1064 /* If we are in 16-bit mode, do not allow addr16 or data16.
1065 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1066 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1067 && (((current_templates->start->opcode_modifier & Size32) != 0)
1068 ^ flag_16bit_code))
1069 {
1070 as_bad (_("redundant %s prefix"),
1071 current_templates->start->name);
1072 return;
1073 }
1074 /* Add prefix, checking for repeated prefixes. */
1075 switch (add_prefix (current_templates->start->base_opcode))
1076 {
1077 case 0:
1078 return;
1079 case 2:
1080 expecting_string_instruction =
1081 current_templates->start->name;
1082 break;
1083 }
1084 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1085 token_start = ++l;
1086 }
1087 else
1088 break;
1089 }
1090
1091 if (!current_templates)
1092 {
24eab124 1093 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1094 switch (mnem_p[-1])
1095 {
1096 case DWORD_MNEM_SUFFIX:
1097 case WORD_MNEM_SUFFIX:
1098 case BYTE_MNEM_SUFFIX:
1099 case SHORT_MNEM_SUFFIX:
1100#if LONG_MNEM_SUFFIX != DWORD_MNEM_SUFFIX
1101 case LONG_MNEM_SUFFIX:
1102#endif
1103 i.suffix = mnem_p[-1];
1104 mnem_p[-1] = '\0';
1105 current_templates = hash_find (op_hash, mnemonic);
24eab124
AM
1106 break;
1107
1108 /* Intel Syntax */
1109 case INTEL_DWORD_MNEM_SUFFIX:
1110 if (intel_syntax)
1111 {
1112 i.suffix = mnem_p[-1];
1113 mnem_p[-1] = '\0';
1114 current_templates = hash_find (op_hash, mnemonic);
1115 break;
1116 }
252b5132
RH
1117 }
1118 if (!current_templates)
1119 {
1120 as_bad (_("no such 386 instruction: `%s'"), token_start);
1121 return;
1122 }
1123 }
1124
1125 /* check for rep/repne without a string instruction */
1126 if (expecting_string_instruction
1127 && !(current_templates->start->opcode_modifier & IsString))
1128 {
1129 as_bad (_("expecting string instruction after `%s'"),
1130 expecting_string_instruction);
1131 return;
1132 }
1133
1134 /* There may be operands to parse. */
1135 if (*l != END_OF_INSN)
1136 {
1137 /* parse operands */
1138
1139 /* 1 if operand is pending after ','. */
1140 unsigned int expecting_operand = 0;
1141
1142 /* Non-zero if operand parens not balanced. */
1143 unsigned int paren_not_balanced;
1144
1145 do
1146 {
1147 /* skip optional white space before operand */
1148 if (is_space_char (*l))
1149 ++l;
1150 if (!is_operand_char (*l) && *l != END_OF_INSN)
1151 {
1152 as_bad (_("invalid character %s before operand %d"),
1153 output_invalid (*l),
1154 i.operands + 1);
1155 return;
1156 }
1157 token_start = l; /* after white space */
1158 paren_not_balanced = 0;
1159 while (paren_not_balanced || *l != ',')
1160 {
1161 if (*l == END_OF_INSN)
1162 {
1163 if (paren_not_balanced)
1164 {
24eab124 1165 if (!intel_syntax)
252b5132
RH
1166 as_bad (_("unbalanced parenthesis in operand %d."),
1167 i.operands + 1);
24eab124 1168 else
252b5132
RH
1169 as_bad (_("unbalanced brackets in operand %d."),
1170 i.operands + 1);
1171 return;
1172 }
1173 else
1174 break; /* we are done */
1175 }
1176 else if (!is_operand_char (*l) && !is_space_char (*l))
1177 {
1178 as_bad (_("invalid character %s in operand %d"),
1179 output_invalid (*l),
1180 i.operands + 1);
1181 return;
1182 }
24eab124
AM
1183 if (!intel_syntax)
1184 {
252b5132
RH
1185 if (*l == '(')
1186 ++paren_not_balanced;
1187 if (*l == ')')
1188 --paren_not_balanced;
24eab124
AM
1189 }
1190 else
1191 {
252b5132
RH
1192 if (*l == '[')
1193 ++paren_not_balanced;
1194 if (*l == ']')
1195 --paren_not_balanced;
24eab124 1196 }
252b5132
RH
1197 l++;
1198 }
1199 if (l != token_start)
1200 { /* yes, we've read in another operand */
1201 unsigned int operand_ok;
1202 this_operand = i.operands++;
1203 if (i.operands > MAX_OPERANDS)
1204 {
1205 as_bad (_("spurious operands; (%d operands/instruction max)"),
1206 MAX_OPERANDS);
1207 return;
1208 }
1209 /* now parse operand adding info to 'i' as we go along */
1210 END_STRING_AND_SAVE (l);
1211
24eab124
AM
1212 if (intel_syntax)
1213 operand_ok = i386_intel_operand (token_start, intel_float_operand (mnemonic));
1214 else
1215 operand_ok = i386_operand (token_start);
252b5132
RH
1216
1217 RESTORE_END_STRING (l); /* restore old contents */
1218 if (!operand_ok)
1219 return;
1220 }
1221 else
1222 {
1223 if (expecting_operand)
1224 {
1225 expecting_operand_after_comma:
1226 as_bad (_("expecting operand after ','; got nothing"));
1227 return;
1228 }
1229 if (*l == ',')
1230 {
1231 as_bad (_("expecting operand before ','; got nothing"));
1232 return;
1233 }
1234 }
1235
1236 /* now *l must be either ',' or END_OF_INSN */
1237 if (*l == ',')
1238 {
1239 if (*++l == END_OF_INSN)
1240 { /* just skip it, if it's \n complain */
1241 goto expecting_operand_after_comma;
1242 }
1243 expecting_operand = 1;
1244 }
1245 }
1246 while (*l != END_OF_INSN); /* until we get end of insn */
1247 }
1248 }
1249
1250 /* Now we've parsed the mnemonic into a set of templates, and have the
1251 operands at hand.
1252
1253 Next, we find a template that matches the given insn,
1254 making sure the overlap of the given operands types is consistent
1255 with the template operand types. */
1256
1257#define MATCH(overlap, given, template) \
1258 ((overlap) \
1259 && ((given) & BaseIndex) == ((overlap) & BaseIndex) \
1260 && ((given) & JumpAbsolute) == ((template) & JumpAbsolute))
1261
1262 /* If given types r0 and r1 are registers they must be of the same type
1263 unless the expected operand type register overlap is null.
1264 Note that Acc in a template matches every size of reg. */
1265#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1266 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1267 ((g0) & Reg) == ((g1) & Reg) || \
1268 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1269
1270 {
1271 register unsigned int overlap0, overlap1;
252b5132
RH
1272 unsigned int overlap2;
1273 unsigned int found_reverse_match;
1274 int suffix_check;
1275
1276 /* All intel opcodes have reversed operands except for BOUND and ENTER */
1277 if (intel_syntax
24eab124
AM
1278 && (strcmp (mnemonic, "enter") != 0)
1279 && (strcmp (mnemonic, "bound") != 0)
1280 && (strncmp (mnemonic, "fsub", 4) !=0)
1281 && (strncmp (mnemonic, "fdiv", 4) !=0))
252b5132 1282 {
24eab124
AM
1283 const reg_entry *temp_reg = NULL;
1284 expressionS *temp_disp = NULL;
1285 expressionS *temp_imm = NULL;
1286 unsigned int temp_type;
1287 int xchg1 = 0;
ab9da554 1288 int xchg2 = 0;
252b5132 1289
24eab124
AM
1290 if (i.operands == 2)
1291 {
1292 xchg1 = 0;
1293 xchg2 = 1;
1294 }
1295 else if (i.operands == 3)
1296 {
1297 xchg1 = 0;
1298 xchg2 = 2;
1299 }
1300
1301 if (i.operands > 1)
1302 {
1303 temp_type = i.types[xchg2];
1304 if (temp_type & (Reg | FloatReg))
1305 temp_reg = i.regs[xchg2];
1306 else if (temp_type & Imm)
1307 temp_imm = i.imms[xchg2];
1308 else if (temp_type & Disp)
1309 temp_disp = i.disps[xchg2];
1310
1311 i.types[xchg2] = i.types[xchg1];
1312
1313 if (i.types[xchg1] & (Reg | FloatReg))
1314 {
1315 i.regs[xchg2] = i.regs[xchg1];
1316 i.regs[xchg1] = NULL;
1317 }
1318 else if (i.types[xchg2] & Imm)
1319 {
1320 i.imms[xchg2] = i.imms[xchg1];
1321 i.imms[xchg1] = NULL;
1322 }
1323 else if (i.types[xchg2] & Disp)
1324 {
1325 i.disps[xchg2] = i.disps[xchg1];
1326 i.disps[xchg1] = NULL;
1327 }
1328
1329 if (temp_type & (Reg | FloatReg))
1330 {
1331 i.regs[xchg1] = temp_reg;
1332 if (! (i.types[xchg1] & (Reg | FloatReg)))
1333 i.regs[xchg2] = NULL;
1334 }
1335 else if (temp_type & Imm)
1336 {
1337 i.imms[xchg1] = temp_imm;
1338 if (! (i.types[xchg1] & Imm))
1339 i.imms[xchg2] = NULL;
1340 }
1341 else if (temp_type & Disp)
1342 {
1343 i.disps[xchg1] = temp_disp;
1344 if (! (i.types[xchg1] & Disp))
1345 i.disps[xchg2] = NULL;
1346 }
1347
1348 i.types[xchg1] = temp_type;
1349 }
1350 if (!strcmp(mnemonic,"jmp")
1351 || !strcmp (mnemonic, "call"))
1352 if ((i.types[0] & Reg) || i.types[0] & BaseIndex)
1353 i.types[0] |= JumpAbsolute;
1354
1355 }
252b5132
RH
1356 overlap0 = 0;
1357 overlap1 = 0;
1358 overlap2 = 0;
1359 found_reverse_match = 0;
1360 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1361 ? No_bSuf
1362 : (i.suffix == WORD_MNEM_SUFFIX
1363 ? No_wSuf
1364 : (i.suffix == SHORT_MNEM_SUFFIX
1365 ? No_sSuf
1366 : (i.suffix == LONG_MNEM_SUFFIX
24eab124
AM
1367 ? No_lSuf
1368 : (i.suffix == INTEL_DWORD_MNEM_SUFFIX
1369 ? No_dSuf
1370 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1371
1372 for (t = current_templates->start;
1373 t < current_templates->end;
1374 t++)
1375 {
1376 /* Must have right number of operands. */
1377 if (i.operands != t->operands)
1378 continue;
1379
24eab124
AM
1380 /* For some opcodes, don't check the suffix */
1381 if (intel_syntax)
1382 {
1383 if (strcmp (t->name, "fnstcw")
1384 && strcmp (t->name, "fldcw")
1385 && (t->opcode_modifier & suffix_check))
1386 continue;
1387 }
1388 /* Must not have disallowed suffix. */
1389 else if ((t->opcode_modifier & suffix_check))
1390 continue;
252b5132
RH
1391
1392 else if (!t->operands)
1393 break; /* 0 operands always matches */
1394
1395 overlap0 = i.types[0] & t->operand_types[0];
1396 switch (t->operands)
1397 {
1398 case 1:
1399 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1400 continue;
1401 break;
1402 case 2:
1403 case 3:
1404 overlap1 = i.types[1] & t->operand_types[1];
1405 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1406 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1407 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1408 t->operand_types[0],
1409 overlap1, i.types[1],
1410 t->operand_types[1]))
1411 {
1412
1413 /* check if other direction is valid ... */
1414 if ((t->opcode_modifier & (D|FloatD)) == 0)
1415 continue;
1416
1417 /* try reversing direction of operands */
1418 overlap0 = i.types[0] & t->operand_types[1];
1419 overlap1 = i.types[1] & t->operand_types[0];
1420 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1421 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1422 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1423 t->operand_types[1],
1424 overlap1, i.types[1],
1425 t->operand_types[0]))
1426 {
1427 /* does not match either direction */
1428 continue;
1429 }
1430 /* found_reverse_match holds which of D or FloatDR
1431 we've found. */
1432 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1433 break;
1434 }
1435 /* found a forward 2 operand match here */
1436 if (t->operands == 3)
1437 {
1438 /* Here we make use of the fact that there are no
1439 reverse match 3 operand instructions, and all 3
1440 operand instructions only need to be checked for
1441 register consistency between operands 2 and 3. */
1442 overlap2 = i.types[2] & t->operand_types[2];
1443 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1444 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1445 t->operand_types[1],
1446 overlap2, i.types[2],
24eab124 1447 t->operand_types[2]))
252b5132 1448
24eab124 1449 continue;
252b5132
RH
1450 }
1451 /* found either forward/reverse 2 or 3 operand match here:
1452 slip through to break */
1453 }
1454 break; /* we've found a match; break out of loop */
1455 } /* for (t = ... */
1456 if (t == current_templates->end)
1457 { /* we found no match */
1458 as_bad (_("suffix or operands invalid for `%s'"),
1459 current_templates->start->name);
1460 return;
1461 }
1462
1463 if ((t->opcode_modifier & (IsPrefix|IgnoreSize)) == (IsPrefix|IgnoreSize))
1464 {
1465 /* Warn them that a data or address size prefix doesn't affect
1466 assembly of the next line of code. */
1467 as_warn (_("stand-alone `%s' prefix"), t->name);
1468 }
1469
1470 /* Copy the template we found. */
1471 i.tm = *t;
1472 if (found_reverse_match)
1473 {
1474 i.tm.operand_types[0] = t->operand_types[1];
1475 i.tm.operand_types[1] = t->operand_types[0];
1476 }
1477
1478
1479 if (i.tm.opcode_modifier & FWait)
1480 if (! add_prefix (FWAIT_OPCODE))
1481 return;
1482
1483 /* Check string instruction segment overrides */
1484 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1485 {
1486 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1487 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1488 {
1489 if (i.seg[0] != NULL && i.seg[0] != &es)
1490 {
1491 as_bad (_("`%s' operand %d must use `%%es' segment"),
1492 i.tm.name,
1493 mem_op + 1);
1494 return;
1495 }
1496 /* There's only ever one segment override allowed per instruction.
1497 This instruction possibly has a legal segment override on the
1498 second operand, so copy the segment to where non-string
1499 instructions store it, allowing common code. */
1500 i.seg[0] = i.seg[1];
1501 }
1502 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1503 {
1504 if (i.seg[1] != NULL && i.seg[1] != &es)
1505 {
1506 as_bad (_("`%s' operand %d must use `%%es' segment"),
1507 i.tm.name,
1508 mem_op + 2);
1509 return;
1510 }
1511 }
1512 }
1513
1514 /* If matched instruction specifies an explicit instruction mnemonic
1515 suffix, use it. */
1516 if (i.tm.opcode_modifier & (Size16 | Size32))
1517 {
1518 if (i.tm.opcode_modifier & Size16)
1519 i.suffix = WORD_MNEM_SUFFIX;
1520 else
1521 i.suffix = DWORD_MNEM_SUFFIX;
1522 }
1523 else if (i.reg_operands)
1524 {
1525 /* If there's no instruction mnemonic suffix we try to invent one
1526 based on register operands. */
1527 if (!i.suffix)
1528 {
1529 /* We take i.suffix from the last register operand specified,
1530 Destination register type is more significant than source
1531 register type. */
1532 int op;
1533 for (op = i.operands; --op >= 0; )
1534 if (i.types[op] & Reg)
1535 {
1536 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1537 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1538 DWORD_MNEM_SUFFIX);
1539 break;
1540 }
1541 }
1542 else if (i.suffix == BYTE_MNEM_SUFFIX)
1543 {
1544 int op;
1545 for (op = i.operands; --op >= 0; )
1546 {
1547 /* If this is an eight bit register, it's OK. If it's
1548 the 16 or 32 bit version of an eight bit register,
1549 we will just use the low portion, and that's OK too. */
1550 if (i.types[op] & Reg8)
1551 continue;
1552
24eab124
AM
1553 /* movzx and movsx should not generate this warning. */
1554 if (intel_syntax
1555 && (i.tm.base_opcode == 0xfb7
1556 || i.tm.base_opcode == 0xfb6
1557 || i.tm.base_opcode == 0xfbe
1558 || i.tm.base_opcode == 0xfbf))
1559 continue;
252b5132
RH
1560
1561 if ((i.types[op] & WordReg) && i.regs[op]->reg_num < 4
1562#if 0
1563 /* Check that the template allows eight bit regs
1564 This kills insns such as `orb $1,%edx', which
1565 maybe should be allowed. */
1566 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1567#endif
1568 )
1569 {
1570#if REGISTER_WARNINGS
1571 if ((i.tm.operand_types[op] & InOutPortReg) == 0)
1572 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1573 (i.regs[op] - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1574 i.regs[op]->reg_name,
1575 i.suffix);
1576#endif
1577 continue;
1578 }
1579 /* Any other register is bad */
3f4438ab
AM
1580 if (i.types[op] & (Reg | RegMMX | RegXMM
1581 | SReg2 | SReg3
1582 | Control | Debug | Test
1583 | FloatReg | FloatAcc))
252b5132
RH
1584 {
1585 as_bad (_("`%%%s' not allowed with `%s%c'"),
1586 i.regs[op]->reg_name,
1587 i.tm.name,
1588 i.suffix);
1589 return;
1590 }
1591 }
1592 }
1593 else if (i.suffix == DWORD_MNEM_SUFFIX)
1594 {
1595 int op;
1596 for (op = i.operands; --op >= 0; )
1597 /* Reject eight bit registers, except where the template
1598 requires them. (eg. movzb) */
1599 if ((i.types[op] & Reg8) != 0
1600 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1601 {
1602 as_bad (_("`%%%s' not allowed with `%s%c'"),
1603 i.regs[op]->reg_name,
1604 i.tm.name,
1605 i.suffix);
1606 return;
1607 }
1608#if REGISTER_WARNINGS
1609 /* Warn if the e prefix on a general reg is missing. */
1610 else if ((i.types[op] & Reg16) != 0
1611 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1612 {
1613 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1614 (i.regs[op] + 8)->reg_name,
1615 i.regs[op]->reg_name,
1616 i.suffix);
1617 }
1618#endif
1619 }
1620 else if (i.suffix == WORD_MNEM_SUFFIX)
1621 {
1622 int op;
1623 for (op = i.operands; --op >= 0; )
1624 /* Reject eight bit registers, except where the template
1625 requires them. (eg. movzb) */
1626 if ((i.types[op] & Reg8) != 0
1627 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1628 {
1629 as_bad (_("`%%%s' not allowed with `%s%c'"),
1630 i.regs[op]->reg_name,
1631 i.tm.name,
1632 i.suffix);
1633 return;
1634 }
1635#if REGISTER_WARNINGS
1636 /* Warn if the e prefix on a general reg is present. */
1637 else if ((i.types[op] & Reg32) != 0
1638 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1639 {
1640 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1641 (i.regs[op] - 8)->reg_name,
1642 i.regs[op]->reg_name,
1643 i.suffix);
1644 }
1645#endif
1646 }
1647 else
1648 abort();
1649 }
eecb386c
AM
1650 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1651 {
1652 i.suffix = stackop_size;
1653 }
252b5132
RH
1654
1655 /* Make still unresolved immediate matches conform to size of immediate
1656 given in i.suffix. Note: overlap2 cannot be an immediate! */
1657 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1658 && overlap0 != Imm8 && overlap0 != Imm8S
1659 && overlap0 != Imm16 && overlap0 != Imm32)
1660 {
1661 if (i.suffix)
1662 {
24eab124
AM
1663 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1664 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1665 }
1666 else if (overlap0 == (Imm16 | Imm32))
1667 {
24eab124 1668 overlap0 =
252b5132
RH
1669 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1670 }
1671 else
1672 {
1673 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1674 return;
1675 }
1676 }
1677 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1678 && overlap1 != Imm8 && overlap1 != Imm8S
1679 && overlap1 != Imm16 && overlap1 != Imm32)
1680 {
1681 if (i.suffix)
1682 {
24eab124
AM
1683 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1684 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1685 }
1686 else if (overlap1 == (Imm16 | Imm32))
1687 {
24eab124 1688 overlap1 =
252b5132
RH
1689 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1690 }
1691 else
1692 {
1693 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1694 return;
1695 }
1696 }
1697 assert ((overlap2 & Imm) == 0);
1698
1699 i.types[0] = overlap0;
1700 if (overlap0 & ImplicitRegister)
1701 i.reg_operands--;
1702 if (overlap0 & Imm1)
1703 i.imm_operands = 0; /* kludge for shift insns */
1704
1705 i.types[1] = overlap1;
1706 if (overlap1 & ImplicitRegister)
1707 i.reg_operands--;
1708
1709 i.types[2] = overlap2;
1710 if (overlap2 & ImplicitRegister)
1711 i.reg_operands--;
1712
1713 /* Finalize opcode. First, we change the opcode based on the operand
1714 size given by i.suffix: We need not change things for byte insns. */
1715
1716 if (!i.suffix && (i.tm.opcode_modifier & W))
1717 {
1718 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1719 return;
1720 }
1721
1722 /* For movzx and movsx, need to check the register type */
1723 if (intel_syntax
24eab124 1724 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 1725 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
1726 {
1727 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 1728
24eab124
AM
1729 if ((i.regs[1]->reg_type & Reg16) != 0)
1730 if (!add_prefix (prefix))
1731 return;
1732 }
252b5132
RH
1733
1734 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1735 {
1736 /* It's not a byte, select word/dword operation. */
1737 if (i.tm.opcode_modifier & W)
1738 {
1739 if (i.tm.opcode_modifier & ShortForm)
1740 i.tm.base_opcode |= 8;
1741 else
1742 i.tm.base_opcode |= 1;
1743 }
1744 /* Now select between word & dword operations via the operand
1745 size prefix, except for instructions that will ignore this
1746 prefix anyway. */
1747 if (((intel_syntax && (i.suffix == INTEL_DWORD_MNEM_SUFFIX))
24eab124 1748 || i.suffix == DWORD_MNEM_SUFFIX
252b5132
RH
1749 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1750 && !(i.tm.opcode_modifier & IgnoreSize))
1751 {
1752 unsigned int prefix = DATA_PREFIX_OPCODE;
1753 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1754 prefix = ADDR_PREFIX_OPCODE;
1755
1756 if (! add_prefix (prefix))
1757 return;
1758 }
1759 /* Size floating point instruction. */
1760 if (i.suffix == LONG_MNEM_SUFFIX
24eab124 1761 || (intel_syntax && i.suffix == INTEL_DWORD_MNEM_SUFFIX))
252b5132
RH
1762 {
1763 if (i.tm.opcode_modifier & FloatMF)
1764 i.tm.base_opcode ^= 4;
1765 }
252b5132
RH
1766 }
1767
3f4438ab 1768 if (i.tm.opcode_modifier & ImmExt)
252b5132 1769 {
3f4438ab
AM
1770 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1771 opcode suffix which is coded in the same place as an 8-bit
1772 immediate field would be. Here we fake an 8-bit immediate
1773 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
1774
1775 expressionS *exp;
1776
1777 assert(i.imm_operands == 0 && i.operands <= 2);
1778
1779 exp = &im_expressions[i.imm_operands++];
1780 i.imms[i.operands] = exp;
1781 i.types[i.operands++] = Imm8;
1782 exp->X_op = O_constant;
1783 exp->X_add_number = i.tm.extension_opcode;
1784 i.tm.extension_opcode = None;
1785 }
1786
1787 /* For insns with operands there are more diddles to do to the opcode. */
1788 if (i.operands)
1789 {
24eab124 1790 /* Default segment register this instruction will use
252b5132
RH
1791 for memory accesses. 0 means unknown.
1792 This is only for optimizing out unnecessary segment overrides. */
1793 const seg_entry *default_seg = 0;
1794
1795 /* If we found a reverse match we must alter the opcode
1796 direction bit. found_reverse_match holds bits to change
1797 (different for int & float insns). */
1798
1799 i.tm.base_opcode ^= found_reverse_match;
1800
1801 /* The imul $imm, %reg instruction is converted into
1802 imul $imm, %reg, %reg, and the clr %reg instruction
1803 is converted into xor %reg, %reg. */
1804 if (i.tm.opcode_modifier & regKludge)
1805 {
1806 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
1807 /* Pretend we saw the extra register operand. */
1808 i.regs[first_reg_op+1] = i.regs[first_reg_op];
1809 i.reg_operands = 2;
1810 }
1811
1812 if (i.tm.opcode_modifier & ShortForm)
1813 {
1814 /* The register or float register operand is in operand 0 or 1. */
1815 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
1816 /* Register goes in low 3 bits of opcode. */
1817 i.tm.base_opcode |= i.regs[op]->reg_num;
1818 if ((i.tm.opcode_modifier & Ugh) != 0)
1819 {
1820 /* Warn about some common errors, but press on regardless.
1821 The first case can be generated by gcc (<= 2.8.1). */
1822 if (i.operands == 2)
1823 {
1824 /* reversed arguments on faddp, fsubp, etc. */
1825 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
1826 i.regs[1]->reg_name,
1827 i.regs[0]->reg_name);
1828 }
1829 else
1830 {
1831 /* extraneous `l' suffix on fp insn */
1832 as_warn (_("translating to `%s %%%s'"), i.tm.name,
1833 i.regs[0]->reg_name);
1834 }
1835 }
1836 }
1837 else if (i.tm.opcode_modifier & Modrm)
1838 {
1839 /* The opcode is completed (modulo i.tm.extension_opcode which
1840 must be put into the modrm byte).
1841 Now, we make the modrm & index base bytes based on all the
1842 info we've collected. */
1843
1844 /* i.reg_operands MUST be the number of real register operands;
1845 implicit registers do not count. */
1846 if (i.reg_operands == 2)
1847 {
1848 unsigned int source, dest;
1849 source = ((i.types[0]
3f4438ab
AM
1850 & (Reg | RegMMX | RegXMM
1851 | SReg2 | SReg3
1852 | Control | Debug | Test))
252b5132
RH
1853 ? 0 : 1);
1854 dest = source + 1;
1855
252b5132 1856 i.rm.mode = 3;
3f4438ab
AM
1857 /* One of the register operands will be encoded in the
1858 i.tm.reg field, the other in the combined i.tm.mode
1859 and i.tm.regmem fields. If no form of this
1860 instruction supports a memory destination operand,
1861 then we assume the source operand may sometimes be
1862 a memory operand and so we need to store the
1863 destination in the i.rm.reg field. */
1864 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132
RH
1865 {
1866 i.rm.reg = i.regs[dest]->reg_num;
1867 i.rm.regmem = i.regs[source]->reg_num;
1868 }
1869 else
1870 {
1871 i.rm.reg = i.regs[source]->reg_num;
1872 i.rm.regmem = i.regs[dest]->reg_num;
1873 }
1874 }
1875 else
1876 { /* if it's not 2 reg operands... */
1877 if (i.mem_operands)
1878 {
1879 unsigned int fake_zero_displacement = 0;
1880 unsigned int op = ((i.types[0] & AnyMem)
1881 ? 0
1882 : (i.types[1] & AnyMem) ? 1 : 2);
1883
1884 default_seg = &ds;
1885
1886 if (! i.base_reg)
1887 {
1888 i.rm.mode = 0;
1889 if (! i.disp_operands)
1890 fake_zero_displacement = 1;
1891 if (! i.index_reg)
1892 {
1893 /* Operand is just <disp> */
1894 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
1895 {
1896 i.rm.regmem = NO_BASE_REGISTER_16;
1897 i.types[op] &= ~Disp;
1898 i.types[op] |= Disp16;
1899 }
1900 else
1901 {
1902 i.rm.regmem = NO_BASE_REGISTER;
1903 i.types[op] &= ~Disp;
1904 i.types[op] |= Disp32;
1905 }
1906 }
1907 else /* ! i.base_reg && i.index_reg */
1908 {
1909 i.sib.index = i.index_reg->reg_num;
1910 i.sib.base = NO_BASE_REGISTER;
1911 i.sib.scale = i.log2_scale_factor;
1912 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1913 i.types[op] &= ~Disp;
1914 i.types[op] |= Disp32; /* Must be 32 bit */
1915 }
1916 }
1917 else if (i.base_reg->reg_type & Reg16)
1918 {
1919 switch (i.base_reg->reg_num)
1920 {
1921 case 3: /* (%bx) */
1922 if (! i.index_reg)
1923 i.rm.regmem = 7;
1924 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
1925 i.rm.regmem = i.index_reg->reg_num - 6;
1926 break;
1927 case 5: /* (%bp) */
1928 default_seg = &ss;
1929 if (! i.index_reg)
1930 {
1931 i.rm.regmem = 6;
1932 if ((i.types[op] & Disp) == 0)
1933 {
1934 /* fake (%bp) into 0(%bp) */
1935 i.types[op] |= Disp8;
1936 fake_zero_displacement = 1;
1937 }
1938 }
1939 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
1940 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
1941 break;
1942 default: /* (%si) -> 4 or (%di) -> 5 */
1943 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
1944 }
1945 i.rm.mode = mode_from_disp_size (i.types[op]);
1946 }
1947 else /* i.base_reg and 32 bit mode */
1948 {
1949 i.rm.regmem = i.base_reg->reg_num;
1950 i.sib.base = i.base_reg->reg_num;
1951 if (i.base_reg->reg_num == EBP_REG_NUM)
1952 {
1953 default_seg = &ss;
1954 if (i.disp_operands == 0)
1955 {
1956 fake_zero_displacement = 1;
1957 i.types[op] |= Disp8;
1958 }
1959 }
1960 else if (i.base_reg->reg_num == ESP_REG_NUM)
1961 {
1962 default_seg = &ss;
1963 }
1964 i.sib.scale = i.log2_scale_factor;
1965 if (! i.index_reg)
1966 {
1967 /* <disp>(%esp) becomes two byte modrm
1968 with no index register. We've already
1969 stored the code for esp in i.rm.regmem
1970 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
1971 base register besides %esp will not use
1972 the extra modrm byte. */
1973 i.sib.index = NO_INDEX_REGISTER;
1974#if ! SCALE1_WHEN_NO_INDEX
1975 /* Another case where we force the second
1976 modrm byte. */
1977 if (i.log2_scale_factor)
1978 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1979#endif
1980 }
1981 else
1982 {
1983 i.sib.index = i.index_reg->reg_num;
1984 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1985 }
1986 i.rm.mode = mode_from_disp_size (i.types[op]);
1987 }
1988
1989 if (fake_zero_displacement)
1990 {
1991 /* Fakes a zero displacement assuming that i.types[op]
1992 holds the correct displacement size. */
b4cac588
AM
1993 expressionS *exp;
1994
252b5132
RH
1995 exp = &disp_expressions[i.disp_operands++];
1996 i.disps[op] = exp;
1997 exp->X_op = O_constant;
1998 exp->X_add_number = 0;
1999 exp->X_add_symbol = (symbolS *) 0;
2000 exp->X_op_symbol = (symbolS *) 0;
2001 }
2002 }
2003
2004 /* Fill in i.rm.reg or i.rm.regmem field with register
2005 operand (if any) based on i.tm.extension_opcode.
2006 Again, we must be careful to make sure that
2007 segment/control/debug/test/MMX registers are coded
2008 into the i.rm.reg field. */
2009 if (i.reg_operands)
2010 {
2011 unsigned int op =
2012 ((i.types[0]
3f4438ab
AM
2013 & (Reg | RegMMX | RegXMM
2014 | SReg2 | SReg3
2015 | Control | Debug | Test))
252b5132
RH
2016 ? 0
2017 : ((i.types[1]
3f4438ab
AM
2018 & (Reg | RegMMX | RegXMM
2019 | SReg2 | SReg3
2020 | Control | Debug | Test))
252b5132
RH
2021 ? 1
2022 : 2));
2023 /* If there is an extension opcode to put here, the
2024 register number must be put into the regmem field. */
2025 if (i.tm.extension_opcode != None)
2026 i.rm.regmem = i.regs[op]->reg_num;
2027 else
2028 i.rm.reg = i.regs[op]->reg_num;
2029
2030 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2031 we must set it to 3 to indicate this is a register
2032 operand in the regmem field. */
2033 if (!i.mem_operands)
2034 i.rm.mode = 3;
2035 }
2036
2037 /* Fill in i.rm.reg field with extension opcode (if any). */
2038 if (i.tm.extension_opcode != None)
2039 i.rm.reg = i.tm.extension_opcode;
2040 }
2041 }
2042 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2043 {
2044 if (i.tm.base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
2045 {
2046 as_bad (_("you can't `pop %%cs'"));
2047 return;
2048 }
2049 i.tm.base_opcode |= (i.regs[0]->reg_num << 3);
2050 }
2051 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2052 {
2053 default_seg = &ds;
2054 }
2055 else if ((i.tm.opcode_modifier & IsString) != 0)
2056 {
2057 /* For the string instructions that allow a segment override
2058 on one of their operands, the default segment is ds. */
2059 default_seg = &ds;
2060 }
2061
2062 /* If a segment was explicitly specified,
2063 and the specified segment is not the default,
2064 use an opcode prefix to select it.
2065 If we never figured out what the default segment is,
2066 then default_seg will be zero at this point,
2067 and the specified segment prefix will always be used. */
2068 if ((i.seg[0]) && (i.seg[0] != default_seg))
2069 {
2070 if (! add_prefix (i.seg[0]->seg_prefix))
2071 return;
2072 }
2073 }
2074 else if ((i.tm.opcode_modifier & Ugh) != 0)
2075 {
24eab124
AM
2076 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2077 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2078 }
2079 }
2080
2081 /* Handle conversion of 'int $3' --> special int3 insn. */
2082 if (i.tm.base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
2083 {
2084 i.tm.base_opcode = INT3_OPCODE;
2085 i.imm_operands = 0;
2086 }
2087
2088 /* We are ready to output the insn. */
2089 {
2090 register char *p;
2091
2092 /* Output jumps. */
2093 if (i.tm.opcode_modifier & Jump)
2094 {
2095 long n = (long) i.disps[0]->X_add_number;
2096 int prefix = (i.prefix[DATA_PREFIX] != 0);
2097 int code16 = 0;
2098
2099 if (prefix)
2100 {
2101 i.prefixes -= 1;
2102 code16 = CODE16;
2103 }
2104 if (flag_16bit_code)
2105 code16 ^= CODE16;
2106
2107 if (!intel_syntax && (i.prefixes != 0))
2108 as_warn (_("skipping prefixes on this instruction"));
2109
2110 if (i.disps[0]->X_op == O_constant)
2111 {
2112 if (fits_in_signed_byte (n))
2113 {
2114 insn_size += 2;
2115 p = frag_more (2);
2116 p[0] = i.tm.base_opcode;
2117 p[1] = n;
2118 }
2119 else
2120 {
24eab124 2121 /* Use 16-bit jumps only for 16-bit code,
252b5132 2122 because text segments are limited to 64K anyway;
24eab124 2123 Use 32-bit jumps for 32-bit code, because they're faster,
252b5132
RH
2124 and a 16-bit jump will clear the top 16 bits of %eip. */
2125 int jmp_size = code16 ? 2 : 4;
24eab124 2126 if (code16 && !fits_in_signed_word (n))
252b5132
RH
2127 {
2128 as_bad (_("16-bit jump out of range"));
2129 return;
2130 }
2131
2132 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
2133 { /* pace */
2134 /* unconditional jump */
2135 insn_size += prefix + 1 + jmp_size;
2136 p = frag_more (prefix + 1 + jmp_size);
2137 if (prefix)
2138 *p++ = DATA_PREFIX_OPCODE;
2139 *p++ = (char) 0xe9;
2140 md_number_to_chars (p, (valueT) n, jmp_size);
2141 }
2142 else
2143 {
2144 /* conditional jump */
2145 insn_size += prefix + 2 + jmp_size;
2146 p = frag_more (prefix + 2 + jmp_size);
2147 if (prefix)
2148 *p++ = DATA_PREFIX_OPCODE;
2149 *p++ = TWO_BYTE_OPCODE_ESCAPE;
2150 *p++ = i.tm.base_opcode + 0x10;
2151 md_number_to_chars (p, (valueT) n, jmp_size);
2152 }
2153 }
2154 }
2155 else
2156 {
2157 int size = code16 ? 2 : 4;
2158
2159 /* It's a symbol; end frag & setup for relax.
2160 Make sure there are more than 6 chars left in the current frag;
2161 if not we'll have to start a new one. */
2162 frag_grow (prefix + 1 + 2 + size);
2163 insn_size += 1 + prefix;
2164 p = frag_more (1 + prefix);
2165 if (prefix)
2166 *p++ = DATA_PREFIX_OPCODE;
2167 *p = i.tm.base_opcode;
2168 frag_var (rs_machine_dependent,
2169 prefix + 2 + size, /* 2 opcode/prefix + displacement */
2170 1,
2171 ((unsigned char) *p == JUMP_PC_RELATIVE
2172 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2173 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2174 i.disps[0]->X_add_symbol,
2175 (offsetT) n, p);
2176 }
2177 }
2178 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2179 {
2180 int size = (i.tm.opcode_modifier & JumpByte) ? 1 : 4;
2181 long n = (long) i.disps[0]->X_add_number;
2182
2183 if (size == 1) /* then this is a loop or jecxz type instruction */
2184 {
2185 if (i.prefix[ADDR_PREFIX])
2186 {
2187 insn_size += 1;
2188 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2189 i.prefixes -= 1;
2190 }
2191 }
2192 else
2193 {
2194 int code16 = 0;
2195
2196 if (i.prefix[DATA_PREFIX])
2197 {
2198 insn_size += 1;
2199 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2200 i.prefixes -= 1;
2201 code16 = CODE16;
2202 }
2203 if (flag_16bit_code)
2204 code16 ^= CODE16;
2205
2206 if (code16)
2207 size = 2;
2208 }
2209
2210 if (!intel_syntax && (i.prefixes != 0))
2211 as_warn (_("skipping prefixes on this instruction"));
2212
2213 if (fits_in_unsigned_byte (i.tm.base_opcode))
2214 {
2215 insn_size += 1 + size;
2216 p = frag_more (1 + size);
2217 }
2218 else
2219 {
2220 insn_size += 2 + size; /* opcode can be at most two bytes */
2221 p = frag_more (2 + size);
2222 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2223 }
2224 *p++ = i.tm.base_opcode & 0xff;
2225
2226 if (i.disps[0]->X_op == O_constant)
2227 {
2228 if (size == 1 && !fits_in_signed_byte (n))
2229 {
2230 as_bad (_("`%s' only takes byte displacement; %ld shortened to %d"),
2231 i.tm.name, n, *p);
2232 }
2233 else if (size == 2 && !fits_in_signed_word (n))
2234 {
2235 as_bad (_("16-bit jump out of range"));
2236 return;
2237 }
2238 md_number_to_chars (p, (valueT) n, size);
2239 }
2240 else
2241 {
2242 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2243 i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
2244
2245 }
2246 }
2247 else if (i.tm.opcode_modifier & JumpInterSegment)
2248 {
2249 int size;
2250 int reloc_type;
2251 int prefix = i.prefix[DATA_PREFIX] != 0;
2252 int code16 = 0;
2253
2254 if (prefix)
2255 {
2256 code16 = CODE16;
2257 i.prefixes -= 1;
2258 }
2259 if (flag_16bit_code)
2260 code16 ^= CODE16;
2261
2262 size = 4;
2263 reloc_type = BFD_RELOC_32;
2264 if (code16)
2265 {
2266 size = 2;
2267 reloc_type = BFD_RELOC_16;
2268 }
2269
2270 if (!intel_syntax && (i.prefixes != 0))
2271 as_warn (_("skipping prefixes on this instruction"));
2272
2273 insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */
2274 p = frag_more (prefix + 1 + 2 + size);
2275 if (prefix)
2276 *p++ = DATA_PREFIX_OPCODE;
2277 *p++ = i.tm.base_opcode;
2278 if (i.imms[1]->X_op == O_constant)
2279 {
2280 long n = (long) i.imms[1]->X_add_number;
2281
2282 if (size == 2 && !fits_in_unsigned_word (n))
2283 {
2284 as_bad (_("16-bit jump out of range"));
2285 return;
2286 }
2287 md_number_to_chars (p, (valueT) n, size);
2288 }
2289 else
2290 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2291 i.imms[1], 0, reloc_type);
2292 if (i.imms[0]->X_op != O_constant)
2293 as_bad (_("can't handle non absolute segment in `%s'"),
2294 i.tm.name);
2295 md_number_to_chars (p + size, (valueT) i.imms[0]->X_add_number, 2);
2296 }
2297 else
2298 {
2299 /* Output normal instructions here. */
2300 unsigned char *q;
2301
2302 /* The prefix bytes. */
2303 for (q = i.prefix;
2304 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2305 q++)
2306 {
2307 if (*q)
2308 {
2309 insn_size += 1;
2310 p = frag_more (1);
2311 md_number_to_chars (p, (valueT) *q, 1);
2312 }
2313 }
2314
2315 /* Now the opcode; be careful about word order here! */
2316 if (fits_in_unsigned_byte (i.tm.base_opcode))
2317 {
2318 insn_size += 1;
2319 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2320 }
2321 else if (fits_in_unsigned_word (i.tm.base_opcode))
2322 {
2323 insn_size += 2;
2324 p = frag_more (2);
2325 /* put out high byte first: can't use md_number_to_chars! */
2326 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2327 *p = i.tm.base_opcode & 0xff;
2328 }
2329 else
2330 { /* opcode is either 3 or 4 bytes */
2331 if (i.tm.base_opcode & 0xff000000)
2332 {
2333 insn_size += 4;
2334 p = frag_more (4);
2335 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2336 }
2337 else
2338 {
2339 insn_size += 3;
2340 p = frag_more (3);
2341 }
2342 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2343 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2344 *p = (i.tm.base_opcode) & 0xff;
2345 }
2346
2347 /* Now the modrm byte and sib byte (if present). */
2348 if (i.tm.opcode_modifier & Modrm)
2349 {
2350 insn_size += 1;
2351 p = frag_more (1);
2352 md_number_to_chars (p,
2353 (valueT) (i.rm.regmem << 0
2354 | i.rm.reg << 3
2355 | i.rm.mode << 6),
2356 1);
2357 /* If i.rm.regmem == ESP (4)
2358 && i.rm.mode != (Register mode)
2359 && not 16 bit
2360 ==> need second modrm byte. */
2361 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2362 && i.rm.mode != 3
2363 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2364 {
2365 insn_size += 1;
2366 p = frag_more (1);
2367 md_number_to_chars (p,
2368 (valueT) (i.sib.base << 0
2369 | i.sib.index << 3
2370 | i.sib.scale << 6),
2371 1);
2372 }
2373 }
2374
2375 if (i.disp_operands)
2376 {
2377 register unsigned int n;
2378
2379 for (n = 0; n < i.operands; n++)
2380 {
2381 if (i.disps[n])
2382 {
2383 if (i.disps[n]->X_op == O_constant)
2384 {
b4cac588
AM
2385 int size = 4;
2386 long val = (long) i.disps[n]->X_add_number;
2387
2388 if (i.types[n] & (Disp8 | Disp16))
252b5132 2389 {
b4cac588
AM
2390 long mask;
2391
2392 size = 2;
2393 mask = ~ (long) 0xffff;
2394 if (i.types[n] & Disp8)
2395 {
2396 size = 1;
2397 mask = ~ (long) 0xff;
2398 }
2399
2400 if ((val & mask) != 0 && (val & mask) != mask)
24eab124
AM
2401 as_warn (_("%ld shortened to %ld"),
2402 val, val & ~mask);
252b5132 2403 }
b4cac588
AM
2404 insn_size += size;
2405 p = frag_more (size);
2406 md_number_to_chars (p, (valueT) val, size);
252b5132
RH
2407 }
2408 else if (i.types[n] & Disp32)
2409 {
2410 insn_size += 4;
2411 p = frag_more (4);
2412 fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
2413 i.disps[n], 0,
2414 TC_RELOC (i.disp_reloc[n], BFD_RELOC_32));
2415 }
2416 else
2417 { /* must be Disp16 */
2418 insn_size += 2;
2419 p = frag_more (2);
2420 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
2421 i.disps[n], 0,
2422 TC_RELOC (i.disp_reloc[n], BFD_RELOC_16));
2423 }
2424 }
2425 }
2426 } /* end displacement output */
2427
2428 /* output immediate */
2429 if (i.imm_operands)
2430 {
2431 register unsigned int n;
2432
2433 for (n = 0; n < i.operands; n++)
2434 {
2435 if (i.imms[n])
2436 {
2437 if (i.imms[n]->X_op == O_constant)
2438 {
b4cac588
AM
2439 int size = 4;
2440 long val = (long) i.imms[n]->X_add_number;
2441
2442 if (i.types[n] & (Imm8 | Imm8S | Imm16))
252b5132 2443 {
b4cac588
AM
2444 long mask;
2445
2446 size = 2;
2447 mask = ~ (long) 0xffff;
2448 if (i.types[n] & (Imm8 | Imm8S))
2449 {
2450 size = 1;
2451 mask = ~ (long) 0xff;
2452 }
2453 if ((val & mask) != 0 && (val & mask) != mask)
24eab124
AM
2454 as_warn (_("%ld shortened to %ld"),
2455 val, val & ~mask);
252b5132 2456 }
b4cac588
AM
2457 insn_size += size;
2458 p = frag_more (size);
2459 md_number_to_chars (p, (valueT) val, size);
252b5132
RH
2460 }
2461 else
2462 { /* not absolute_section */
2463 /* Need a 32-bit fixup (don't support 8bit
2464 non-absolute ims). Try to support other
2465 sizes ... */
2466 int r_type;
2467 int size;
2468 int pcrel = 0;
2469
2470 if (i.types[n] & (Imm8 | Imm8S))
2471 size = 1;
2472 else if (i.types[n] & Imm16)
2473 size = 2;
2474 else
2475 size = 4;
2476 insn_size += size;
2477 p = frag_more (size);
2478 r_type = reloc (size, 0, i.disp_reloc[0]);
2479#ifdef BFD_ASSEMBLER
2480 if (r_type == BFD_RELOC_32
2481 && GOT_symbol
2482 && GOT_symbol == i.imms[n]->X_add_symbol
2483 && (i.imms[n]->X_op == O_symbol
2484 || (i.imms[n]->X_op == O_add
49309057
ILT
2485 && ((symbol_get_value_expression
2486 (i.imms[n]->X_op_symbol)->X_op)
252b5132
RH
2487 == O_subtract))))
2488 {
2489 r_type = BFD_RELOC_386_GOTPC;
2490 i.imms[n]->X_add_number += 3;
2491 }
2492#endif
2493 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2494 i.imms[n], pcrel, r_type);
2495 }
2496 }
2497 }
2498 } /* end immediate output */
2499 }
2500
2501#ifdef DEBUG386
2502 if (flag_debug)
2503 {
2504 pi (line, &i);
2505 }
2506#endif /* DEBUG386 */
2507 }
2508}
2509\f
252b5132
RH
2510static int i386_immediate PARAMS ((char *));
2511
2512static int
2513i386_immediate (imm_start)
2514 char *imm_start;
2515{
2516 char *save_input_line_pointer;
2517 segT exp_seg = 0;
2518 expressionS * exp;
2519
2520 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2521 {
2522 as_bad (_("Only 1 or 2 immediate operands are allowed"));
2523 return 0;
2524 }
2525
2526 exp = &im_expressions[i.imm_operands++];
2527 i.imms[this_operand] = exp;
2528
2529 if (is_space_char (*imm_start))
2530 ++imm_start;
2531
2532 save_input_line_pointer = input_line_pointer;
2533 input_line_pointer = imm_start;
2534
2535#ifndef LEX_AT
24eab124
AM
2536 {
2537 /*
2538 * We can have operands of the form
2539 * <symbol>@GOTOFF+<nnn>
2540 * Take the easy way out here and copy everything
2541 * into a temporary buffer...
2542 */
2543 register char *cp;
2544
2545 cp = strchr (input_line_pointer, '@');
2546 if (cp != NULL)
2547 {
2548 char *tmpbuf;
2549 int len = 0;
2550 int first;
2551
2552 /* GOT relocations are not supported in 16 bit mode */
2553 if (flag_16bit_code)
2554 as_bad (_("GOT relocations not supported in 16 bit mode"));
2555
2556 if (GOT_symbol == NULL)
2557 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2558
2559 if (strncmp (cp + 1, "PLT", 3) == 0)
2560 {
2561 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2562 len = 3;
2563 }
2564 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2565 {
2566 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2567 len = 6;
2568 }
2569 else if (strncmp (cp + 1, "GOT", 3) == 0)
2570 {
2571 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2572 len = 3;
2573 }
2574 else
2575 as_bad (_("Bad reloc specifier in expression"));
2576
2577 /* Replace the relocation token with ' ', so that errors like
2578 foo@GOTOFF1 will be detected. */
2579 first = cp - input_line_pointer;
2580 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2581 memcpy (tmpbuf, input_line_pointer, first);
2582 tmpbuf[first] = ' ';
2583 strcpy (tmpbuf + first + 1, cp + 1 + len);
2584 input_line_pointer = tmpbuf;
2585 }
2586 }
252b5132
RH
2587#endif
2588
2589 exp_seg = expression (exp);
2590
83183c0c 2591 SKIP_WHITESPACE ();
252b5132
RH
2592 if (*input_line_pointer)
2593 as_bad (_("Ignoring junk `%s' after expression"), input_line_pointer);
2594
2595 input_line_pointer = save_input_line_pointer;
2596
2597 if (exp->X_op == O_absent)
2598 {
2599 /* missing or bad expr becomes absolute 0 */
2600 as_bad (_("Missing or invalid immediate expression `%s' taken as 0"),
24eab124 2601 imm_start);
252b5132
RH
2602 exp->X_op = O_constant;
2603 exp->X_add_number = 0;
2604 exp->X_add_symbol = (symbolS *) 0;
2605 exp->X_op_symbol = (symbolS *) 0;
2606 i.types[this_operand] |= Imm;
2607 }
2608 else if (exp->X_op == O_constant)
2609 {
b4cac588
AM
2610 int bigimm = Imm32;
2611 if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
2612 bigimm = Imm16;
2613
252b5132 2614 i.types[this_operand] |=
b4cac588
AM
2615 (bigimm | smallest_imm_type ((long) exp->X_add_number));
2616
252b5132
RH
2617 /* If a suffix is given, this operand may be shortended. */
2618 switch (i.suffix)
24eab124
AM
2619 {
2620 case WORD_MNEM_SUFFIX:
2621 i.types[this_operand] |= Imm16;
2622 break;
2623 case BYTE_MNEM_SUFFIX:
2624 i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
2625 break;
2626 }
252b5132
RH
2627 }
2628#ifdef OBJ_AOUT
2629 else if (exp_seg != text_section
24eab124
AM
2630 && exp_seg != data_section
2631 && exp_seg != bss_section
2632 && exp_seg != undefined_section
252b5132 2633#ifdef BFD_ASSEMBLER
24eab124 2634 && !bfd_is_com_section (exp_seg)
252b5132 2635#endif
24eab124 2636 )
252b5132 2637 {
252b5132
RH
2638 as_bad (_("Unimplemented segment type %d in operand"), exp_seg);
2639 return 0;
2640 }
2641#endif
2642 else
2643 {
2644 /* This is an address. The size of the address will be
24eab124
AM
2645 determined later, depending on destination register,
2646 suffix, or the default for the section. We exclude
2647 Imm8S here so that `push $foo' and other instructions
2648 with an Imm8S form will use Imm16 or Imm32. */
252b5132
RH
2649 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2650 }
2651
2652 return 1;
2653}
2654
2655static int i386_scale PARAMS ((char *));
2656
2657static int
2658i386_scale (scale)
2659 char *scale;
2660{
2661 if (!isdigit (*scale))
2662 goto bad_scale;
2663
2664 switch (*scale)
2665 {
2666 case '0':
2667 case '1':
2668 i.log2_scale_factor = 0;
2669 break;
2670 case '2':
2671 i.log2_scale_factor = 1;
2672 break;
2673 case '4':
2674 i.log2_scale_factor = 2;
2675 break;
2676 case '8':
2677 i.log2_scale_factor = 3;
2678 break;
2679 default:
2680 bad_scale:
2681 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 2682 scale);
252b5132
RH
2683 return 0;
2684 }
2685 if (i.log2_scale_factor != 0 && ! i.index_reg)
2686 {
2687 as_warn (_("scale factor of %d without an index register"),
24eab124 2688 1 << i.log2_scale_factor);
252b5132
RH
2689#if SCALE1_WHEN_NO_INDEX
2690 i.log2_scale_factor = 0;
2691#endif
2692 }
2693 return 1;
2694}
2695
2696static int i386_displacement PARAMS ((char *, char *));
2697
2698static int
2699i386_displacement (disp_start, disp_end)
2700 char *disp_start;
2701 char *disp_end;
2702{
2703 register expressionS *exp;
2704 segT exp_seg = 0;
2705 char *save_input_line_pointer;
2706 int bigdisp = Disp32;
2707
252b5132
RH
2708 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2709 bigdisp = Disp16;
2710 i.types[this_operand] |= bigdisp;
2711
2712 exp = &disp_expressions[i.disp_operands];
2713 i.disps[this_operand] = exp;
2714 i.disp_reloc[this_operand] = NO_RELOC;
2715 i.disp_operands++;
2716 save_input_line_pointer = input_line_pointer;
2717 input_line_pointer = disp_start;
2718 END_STRING_AND_SAVE (disp_end);
2719
2720#ifndef GCC_ASM_O_HACK
2721#define GCC_ASM_O_HACK 0
2722#endif
2723#if GCC_ASM_O_HACK
2724 END_STRING_AND_SAVE (disp_end + 1);
2725 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 2726 && displacement_string_end[-1] == '+')
252b5132
RH
2727 {
2728 /* This hack is to avoid a warning when using the "o"
24eab124
AM
2729 constraint within gcc asm statements.
2730 For instance:
2731
2732 #define _set_tssldt_desc(n,addr,limit,type) \
2733 __asm__ __volatile__ ( \
2734 "movw %w2,%0\n\t" \
2735 "movw %w1,2+%0\n\t" \
2736 "rorl $16,%1\n\t" \
2737 "movb %b1,4+%0\n\t" \
2738 "movb %4,5+%0\n\t" \
2739 "movb $0,6+%0\n\t" \
2740 "movb %h1,7+%0\n\t" \
2741 "rorl $16,%1" \
2742 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2743
2744 This works great except that the output assembler ends
2745 up looking a bit weird if it turns out that there is
2746 no offset. You end up producing code that looks like:
2747
2748 #APP
2749 movw $235,(%eax)
2750 movw %dx,2+(%eax)
2751 rorl $16,%edx
2752 movb %dl,4+(%eax)
2753 movb $137,5+(%eax)
2754 movb $0,6+(%eax)
2755 movb %dh,7+(%eax)
2756 rorl $16,%edx
2757 #NO_APP
2758
2759 So here we provide the missing zero.
2760 */
2761
2762 *displacement_string_end = '0';
252b5132
RH
2763 }
2764#endif
2765#ifndef LEX_AT
24eab124
AM
2766 {
2767 /*
2768 * We can have operands of the form
2769 * <symbol>@GOTOFF+<nnn>
2770 * Take the easy way out here and copy everything
2771 * into a temporary buffer...
2772 */
2773 register char *cp;
2774
2775 cp = strchr (input_line_pointer, '@');
2776 if (cp != NULL)
2777 {
2778 char *tmpbuf;
2779 int len = 0;
2780 int first;
2781
2782 /* GOT relocations are not supported in 16 bit mode */
2783 if (flag_16bit_code)
2784 as_bad (_("GOT relocations not supported in 16 bit mode"));
2785
2786 if (GOT_symbol == NULL)
2787 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2788
2789 if (strncmp (cp + 1, "PLT", 3) == 0)
2790 {
2791 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2792 len = 3;
2793 }
2794 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2795 {
2796 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2797 len = 6;
2798 }
2799 else if (strncmp (cp + 1, "GOT", 3) == 0)
2800 {
2801 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2802 len = 3;
2803 }
2804 else
2805 as_bad (_("Bad reloc specifier in expression"));
2806
2807 /* Replace the relocation token with ' ', so that errors like
2808 foo@GOTOFF1 will be detected. */
2809 first = cp - input_line_pointer;
2810 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2811 memcpy (tmpbuf, input_line_pointer, first);
2812 tmpbuf[first] = ' ';
2813 strcpy (tmpbuf + first + 1, cp + 1 + len);
2814 input_line_pointer = tmpbuf;
2815 }
2816 }
252b5132
RH
2817#endif
2818
24eab124 2819 exp_seg = expression (exp);
252b5132
RH
2820
2821#ifdef BFD_ASSEMBLER
24eab124
AM
2822 /* We do this to make sure that the section symbol is in
2823 the symbol table. We will ultimately change the relocation
2824 to be relative to the beginning of the section */
2825 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2826 {
2827 if (S_IS_LOCAL(exp->X_add_symbol)
2828 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2829 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2830 assert (exp->X_op == O_symbol);
2831 exp->X_op = O_subtract;
2832 exp->X_op_symbol = GOT_symbol;
2833 i.disp_reloc[this_operand] = BFD_RELOC_32;
2834 }
252b5132
RH
2835#endif
2836
24eab124
AM
2837 SKIP_WHITESPACE ();
2838 if (*input_line_pointer)
2839 as_bad (_("Ignoring junk `%s' after expression"),
2840 input_line_pointer);
252b5132 2841#if GCC_ASM_O_HACK
24eab124 2842 RESTORE_END_STRING (disp_end + 1);
252b5132 2843#endif
24eab124
AM
2844 RESTORE_END_STRING (disp_end);
2845 input_line_pointer = save_input_line_pointer;
2846
2847 if (exp->X_op == O_constant)
2848 {
2849 if (fits_in_signed_byte (exp->X_add_number))
2850 i.types[this_operand] |= Disp8;
2851 }
252b5132 2852#ifdef OBJ_AOUT
24eab124
AM
2853 else if (exp_seg != text_section
2854 && exp_seg != data_section
2855 && exp_seg != bss_section
2856 && exp_seg != undefined_section)
2857 {
2858 as_bad (_ ("Unimplemented segment type %d in operand"), exp_seg);
2859 return 0;
2860 }
252b5132
RH
2861#endif
2862 return 1;
2863}
2864
2865static int i386_operand_modifier PARAMS ((char **, int));
2866
2867static int
2868i386_operand_modifier (op_string, got_a_float)
2869 char **op_string;
2870 int got_a_float;
2871{
24eab124
AM
2872 if (!strncasecmp (*op_string, "BYTE PTR", 8))
2873 {
2874 i.suffix = BYTE_MNEM_SUFFIX;
2875 *op_string += 8;
2876 return BYTE_PTR;
252b5132 2877
24eab124
AM
2878 }
2879 else if (!strncasecmp (*op_string, "WORD PTR", 8))
2880 {
2881 i.suffix = WORD_MNEM_SUFFIX;
2882 *op_string += 8;
2883 return WORD_PTR;
2884 }
252b5132 2885
24eab124
AM
2886 else if (!strncasecmp (*op_string, "DWORD PTR", 9))
2887 {
2888 if (got_a_float)
2889 i.suffix = SHORT_MNEM_SUFFIX;
2890 else
2891 i.suffix = DWORD_MNEM_SUFFIX;
2892 *op_string += 9;
2893 return DWORD_PTR;
2894 }
252b5132 2895
24eab124
AM
2896 else if (!strncasecmp (*op_string, "QWORD PTR", 9))
2897 {
2898 i.suffix = INTEL_DWORD_MNEM_SUFFIX;
2899 *op_string += 9;
2900 return QWORD_PTR;
2901 }
252b5132 2902
24eab124
AM
2903 else if (!strncasecmp (*op_string, "XWORD PTR", 9))
2904 {
2905 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
2906 *op_string += 9;
2907 return XWORD_PTR;
2908 }
252b5132 2909
24eab124
AM
2910 else if (!strncasecmp (*op_string, "SHORT", 5))
2911 {
2912 *op_string += 5;
2913 return SHORT;
2914 }
252b5132 2915
24eab124
AM
2916 else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12))
2917 {
2918 *op_string += 12;
2919 return OFFSET_FLAT;
2920 }
252b5132 2921
24eab124
AM
2922 else if (!strncasecmp (*op_string, "FLAT", 4))
2923 {
2924 *op_string += 4;
2925 return FLAT;
2926 }
252b5132 2927
24eab124 2928 else return NONE_FOUND;
c3332e24 2929}
252b5132
RH
2930
2931static char * build_displacement_string PARAMS ((int, char *));
2932
2933static char *
2934build_displacement_string (initial_disp, op_string)
2935 int initial_disp;
2936 char *op_string;
2937{
2938 char *temp_string = (char *) malloc (strlen (op_string) + 1);
2939 char *end_of_operand_string;
2940 char *tc;
2941 char *temp_disp;
2942
2943 temp_string[0] = '\0';
2944 tc = end_of_operand_string = strchr (op_string, '[');
2945 if ( initial_disp && !end_of_operand_string)
2946 {
2947 strcpy (temp_string, op_string);
2948 return (temp_string);
2949 }
2950
2951 /* Build the whole displacement string */
2952 if (initial_disp)
2953 {
2954 strncpy (temp_string, op_string, end_of_operand_string - op_string);
2955 temp_string[end_of_operand_string - op_string] = '\0';
2956 temp_disp = tc;
2957 }
c3332e24 2958 else
252b5132
RH
2959 temp_disp = op_string;
2960
2961 while (*temp_disp != '\0')
2962 {
af6bdddf 2963 char *end_op;
252b5132
RH
2964 int add_minus = (*temp_disp == '-');
2965
2966 if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[')
24eab124 2967 temp_disp++;
252b5132
RH
2968
2969 if (is_space_char (*temp_disp))
24eab124 2970 temp_disp++;
252b5132
RH
2971
2972 /* Don't consider registers */
af6bdddf
AM
2973 if ( !((*temp_disp == REGISTER_PREFIX || allow_naked_reg)
2974 && parse_register (temp_disp, &end_op)) )
24eab124
AM
2975 {
2976 char *string_start = temp_disp;
2977
2978 while (*temp_disp != ']'
2979 && *temp_disp != '+'
2980 && *temp_disp != '-'
2981 && *temp_disp != '*')
2982 ++temp_disp;
2983
2984 if (add_minus)
2985 strcat (temp_string, "-");
2986 else
2987 strcat (temp_string, "+");
2988
2989 strncat (temp_string, string_start, temp_disp - string_start);
2990 if (*temp_disp == '+' || *temp_disp == '-')
2991 --temp_disp;
2992 }
252b5132
RH
2993
2994 while (*temp_disp != '\0'
24eab124
AM
2995 && *temp_disp != '+'
2996 && *temp_disp != '-')
2997 ++temp_disp;
252b5132
RH
2998 }
2999
3000 return temp_string;
3001}
3002
3003static int i386_parse_seg PARAMS ((char *));
3004
3005static int
3006i386_parse_seg (op_string)
3007 char *op_string;
3008{
3009 if (is_space_char (*op_string))
3010 ++op_string;
3011
3012 /* Should be one of es, cs, ss, ds fs or gs */
3013 switch (*op_string++)
3014 {
3015 case 'e':
3016 i.seg[i.mem_operands] = &es;
3017 break;
3018 case 'c':
3019 i.seg[i.mem_operands] = &cs;
3020 break;
3021 case 's':
3022 i.seg[i.mem_operands] = &ss;
3023 break;
3024 case 'd':
3025 i.seg[i.mem_operands] = &ds;
3026 break;
3027 case 'f':
3028 i.seg[i.mem_operands] = &fs;
3029 break;
3030 case 'g':
3031 i.seg[i.mem_operands] = &gs;
3032 break;
3033 default:
3034 as_bad (_("bad segment name `%s'"), op_string);
3035 return 0;
3036 }
3037
3038 if (*op_string++ != 's')
3039 {
24eab124
AM
3040 as_bad (_("bad segment name `%s'"), op_string);
3041 return 0;
252b5132
RH
3042 }
3043
3044 if (is_space_char (*op_string))
3045 ++op_string;
3046
3047 if (*op_string != ':')
3048 {
24eab124
AM
3049 as_bad (_("bad segment name `%s'"), op_string);
3050 return 0;
252b5132
RH
3051 }
3052
c3332e24
AM
3053 return 1;
3054
252b5132
RH
3055}
3056
eecb386c 3057static int i386_index_check PARAMS((const char *));
252b5132 3058
eecb386c
AM
3059/* Make sure the memory operand we've been dealt is valid.
3060 Returns 1 on success, 0 on a failure.
3061*/
252b5132 3062static int
eecb386c
AM
3063i386_index_check (operand_string)
3064 const char *operand_string;
252b5132 3065{
24eab124 3066#if INFER_ADDR_PREFIX
eecb386c
AM
3067 int fudged = 0;
3068
24eab124
AM
3069 tryprefix:
3070#endif
3071 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ?
3072 /* 16 bit mode checks */
3073 ((i.base_reg
3074 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3075 != (Reg16|BaseIndex)))
3076 || (i.index_reg
3077 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3078 != (Reg16|BaseIndex))
3079 || ! (i.base_reg
3080 && i.base_reg->reg_num < 6
3081 && i.index_reg->reg_num >= 6
3082 && i.log2_scale_factor == 0)))) :
3083 /* 32 bit mode checks */
3084 ((i.base_reg
3085 && (i.base_reg->reg_type & Reg32) == 0)
3086 || (i.index_reg
3087 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3088 != (Reg32|BaseIndex)))))
3089 {
3090#if INFER_ADDR_PREFIX
eecb386c 3091 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3092 {
3093 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3094 i.prefixes += 1;
b23bac36
AM
3095 /* Change the size of any displacement too. At most one of
3096 Disp16 or Disp32 is set.
3097 FIXME. There doesn't seem to be any real need for separate
3098 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3099 Removing them would probably clean up the code quite a lot.
3100 */
3101 if (i.types[this_operand] & (Disp16|Disp32))
3102 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3103 fudged = 1;
24eab124
AM
3104 goto tryprefix;
3105 }
24eab124 3106#endif
eecb386c
AM
3107 if (fudged)
3108 as_bad (_("`%s' is not a valid base/index expression"),
3109 operand_string);
3110 else
3111 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3112 operand_string,
3113 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3114 return 0;
24eab124
AM
3115 }
3116 return 1;
3117}
252b5132 3118
24eab124
AM
3119static int i386_intel_memory_operand PARAMS ((char *));
3120
3121static int
3122i386_intel_memory_operand (operand_string)
3123 char *operand_string;
3124{
3125 char *op_string = operand_string;
252b5132
RH
3126 char *end_of_operand_string;
3127
24eab124
AM
3128 if ((i.mem_operands == 1
3129 && (current_templates->start->opcode_modifier & IsString) == 0)
3130 || i.mem_operands == 2)
252b5132 3131 {
24eab124
AM
3132 as_bad (_("too many memory references for `%s'"),
3133 current_templates->start->name);
3134 return 0;
252b5132
RH
3135 }
3136
3137 /* Look for displacement preceding open bracket */
3138 if (*op_string != '[')
3139 {
3140 char *end_seg;
3141 char *temp_string;
3142
3143 end_seg = strchr (op_string, ':');
3144 if (end_seg)
24eab124
AM
3145 {
3146 if (!i386_parse_seg (op_string))
3147 return 0;
3148 op_string = end_seg + 1;
3149 }
252b5132
RH
3150
3151 temp_string = build_displacement_string (true, op_string);
24eab124
AM
3152
3153 if (i.disp_operands == 0 &&
3154 !i386_displacement (temp_string, temp_string + strlen (temp_string)))
3155 return 0;
252b5132
RH
3156
3157 end_of_operand_string = strchr (op_string, '[');
3158 if (!end_of_operand_string)
24eab124 3159 end_of_operand_string = op_string + strlen (op_string);
252b5132
RH
3160
3161 if (is_space_char (*end_of_operand_string))
24eab124 3162 --end_of_operand_string;
252b5132
RH
3163
3164 op_string = end_of_operand_string;
24eab124 3165 }
252b5132
RH
3166
3167 if (*op_string == '[')
3168 {
3169 ++op_string;
3170
3171 /* Pick off each component and figure out where it belongs */
3172
3173 end_of_operand_string = op_string;
3174
3175 while (*op_string != ']')
24eab124 3176 {
af6bdddf
AM
3177 const reg_entry *temp_reg;
3178 char *end_op;
3179 char *temp_string;
24eab124
AM
3180
3181 while (*end_of_operand_string != '+'
3182 && *end_of_operand_string != '-'
3183 && *end_of_operand_string != '*'
3184 && *end_of_operand_string != ']')
3185 end_of_operand_string++;
3186
af6bdddf
AM
3187 temp_string = op_string;
3188 if (*temp_string == '+')
24eab124 3189 {
af6bdddf 3190 ++temp_string;
24eab124
AM
3191 if (is_space_char (*temp_string))
3192 ++temp_string;
24eab124
AM
3193 }
3194
af6bdddf
AM
3195 if ((*temp_string == REGISTER_PREFIX || allow_naked_reg)
3196 && (temp_reg = parse_register (temp_string, &end_op)) != NULL)
24eab124 3197 {
24eab124
AM
3198 if (i.base_reg == NULL)
3199 i.base_reg = temp_reg;
3200 else
3201 i.index_reg = temp_reg;
3202
3203 i.types[this_operand] |= BaseIndex;
24eab124 3204 }
af6bdddf 3205 else if (*temp_string == REGISTER_PREFIX)
24eab124 3206 {
af6bdddf
AM
3207 as_bad (_("bad register name `%s'"), temp_string);
3208 return 0;
3209 }
3210 else if (is_digit_char (*op_string)
3211 || *op_string == '+' || *op_string == '-')
3212 {
3213 temp_string = build_displacement_string (false, op_string);
24eab124
AM
3214
3215 if (*temp_string == '+')
3216 ++temp_string;
3217
3218 if (i.disp_operands == 0 &&
3219 !i386_displacement (temp_string, temp_string + strlen (temp_string)))
3220 return 0;
3221
3222 ++op_string;
3223 end_of_operand_string = op_string;
3224 while (*end_of_operand_string != ']'
3225 && *end_of_operand_string != '+'
3226 && *end_of_operand_string != '-'
3227 && *end_of_operand_string != '*')
3228 ++end_of_operand_string;
3229 }
3230 else if (*op_string == '*')
3231 {
3232 ++op_string;
3233
3234 if (i.base_reg && !i.index_reg)
3235 {
3236 i.index_reg = i.base_reg;
3237 i.base_reg = 0;
3238 }
3239
3240 if (!i386_scale (op_string))
3241 return 0;
3242 }
3243 op_string = end_of_operand_string;
3244 ++end_of_operand_string;
3245 }
3246 }
3247
eecb386c
AM
3248 if (i386_index_check (operand_string) == 0)
3249 return 0;
252b5132 3250
24eab124 3251 i.mem_operands++;
252b5132
RH
3252 return 1;
3253}
3254
252b5132
RH
3255static int
3256i386_intel_operand (operand_string, got_a_float)
3257 char *operand_string;
3258 int got_a_float;
3259{
af6bdddf
AM
3260 const reg_entry * r;
3261 char *end_op;
252b5132
RH
3262 char *op_string = operand_string;
3263
3264 int operand_modifier = i386_operand_modifier (&op_string, got_a_float);
3265 if (is_space_char (*op_string))
3266 ++op_string;
3267
3268 switch (operand_modifier)
3269 {
3270 case BYTE_PTR:
3271 case WORD_PTR:
3272 case DWORD_PTR:
3273 case QWORD_PTR:
3274 case XWORD_PTR:
252b5132 3275 if (!i386_intel_memory_operand (op_string))
24eab124 3276 return 0;
252b5132
RH
3277 break;
3278
3279 case FLAT:
252b5132
RH
3280 case OFFSET_FLAT:
3281 if (!i386_immediate (op_string))
24eab124 3282 return 0;
252b5132
RH
3283 break;
3284
3285 case SHORT:
252b5132 3286 case NONE_FOUND:
c3332e24
AM
3287 /* Should be register or immediate */
3288 if (is_digit_char (*op_string)
3289 && strchr (op_string, '[') == 0)
3290 {
3291 if (!i386_immediate (op_string))
3292 return 0;
3293 }
af6bdddf
AM
3294 else if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3295 && (r = parse_register (op_string, &end_op)) != NULL)
c3332e24 3296 {
c3332e24
AM
3297 /* Check for a segment override by searching for ':' after a
3298 segment register. */
3299 op_string = end_op;
3300 if (is_space_char (*op_string))
3301 ++op_string;
3302 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3303 {
3304 switch (r->reg_num)
3305 {
3306 case 0:
3307 i.seg[i.mem_operands] = &es;
3308 break;
3309 case 1:
3310 i.seg[i.mem_operands] = &cs;
3311 break;
3312 case 2:
3313 i.seg[i.mem_operands] = &ss;
3314 break;
3315 case 3:
3316 i.seg[i.mem_operands] = &ds;
3317 break;
3318 case 4:
3319 i.seg[i.mem_operands] = &fs;
3320 break;
3321 case 5:
3322 i.seg[i.mem_operands] = &gs;
3323 break;
3324 }
252b5132 3325
c3332e24
AM
3326 }
3327 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3328 i.regs[this_operand] = r;
3329 i.reg_operands++;
3330 }
af6bdddf 3331 else if (*op_string == REGISTER_PREFIX)
c3332e24 3332 {
af6bdddf
AM
3333 as_bad (_("bad register name `%s'"), op_string);
3334 return 0;
c3332e24 3335 }
af6bdddf
AM
3336 else if (!i386_intel_memory_operand (op_string))
3337 return 0;
3338
c3332e24 3339 break;
c3332e24 3340 } /* end switch */
24eab124 3341
252b5132
RH
3342 return 1;
3343}
3344
3345/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3346 on error. */
3347
252b5132
RH
3348static int
3349i386_operand (operand_string)
3350 char *operand_string;
3351{
af6bdddf
AM
3352 const reg_entry *r;
3353 char *end_op;
24eab124 3354 char *op_string = operand_string;
252b5132 3355
24eab124 3356 if (is_space_char (*op_string))
252b5132
RH
3357 ++op_string;
3358
24eab124
AM
3359 /* We check for an absolute prefix (differentiating,
3360 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3361 if (*op_string == ABSOLUTE_PREFIX)
3362 {
3363 ++op_string;
3364 if (is_space_char (*op_string))
3365 ++op_string;
3366 i.types[this_operand] |= JumpAbsolute;
3367 }
252b5132 3368
24eab124 3369 /* Check if operand is a register. */
af6bdddf
AM
3370 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3371 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3372 {
24eab124
AM
3373 /* Check for a segment override by searching for ':' after a
3374 segment register. */
3375 op_string = end_op;
3376 if (is_space_char (*op_string))
3377 ++op_string;
3378 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3379 {
3380 switch (r->reg_num)
3381 {
3382 case 0:
3383 i.seg[i.mem_operands] = &es;
3384 break;
3385 case 1:
3386 i.seg[i.mem_operands] = &cs;
3387 break;
3388 case 2:
3389 i.seg[i.mem_operands] = &ss;
3390 break;
3391 case 3:
3392 i.seg[i.mem_operands] = &ds;
3393 break;
3394 case 4:
3395 i.seg[i.mem_operands] = &fs;
3396 break;
3397 case 5:
3398 i.seg[i.mem_operands] = &gs;
3399 break;
3400 }
252b5132 3401
24eab124 3402 /* Skip the ':' and whitespace. */
252b5132
RH
3403 ++op_string;
3404 if (is_space_char (*op_string))
24eab124 3405 ++op_string;
252b5132 3406
24eab124
AM
3407 if (!is_digit_char (*op_string)
3408 && !is_identifier_char (*op_string)
3409 && *op_string != '('
3410 && *op_string != ABSOLUTE_PREFIX)
3411 {
3412 as_bad (_("bad memory operand `%s'"), op_string);
3413 return 0;
3414 }
3415 /* Handle case of %es:*foo. */
3416 if (*op_string == ABSOLUTE_PREFIX)
3417 {
3418 ++op_string;
3419 if (is_space_char (*op_string))
3420 ++op_string;
3421 i.types[this_operand] |= JumpAbsolute;
3422 }
3423 goto do_memory_reference;
3424 }
3425 if (*op_string)
3426 {
3427 as_bad (_("Junk `%s' after register"), op_string);
3428 return 0;
3429 }
3430 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3431 i.regs[this_operand] = r;
3432 i.reg_operands++;
3433 }
af6bdddf
AM
3434 else if (*op_string == REGISTER_PREFIX)
3435 {
3436 as_bad (_("bad register name `%s'"), op_string);
3437 return 0;
3438 }
24eab124
AM
3439 else if (*op_string == IMMEDIATE_PREFIX)
3440 { /* ... or an immediate */
3441 ++op_string;
3442 if (i.types[this_operand] & JumpAbsolute)
3443 {
3444 as_bad (_("Immediate operand illegal with absolute jump"));
3445 return 0;
3446 }
3447 if (!i386_immediate (op_string))
3448 return 0;
3449 }
3450 else if (is_digit_char (*op_string)
3451 || is_identifier_char (*op_string)
3452 || *op_string == '(' )
3453 {
3454 /* This is a memory reference of some sort. */
af6bdddf 3455 char *base_string;
252b5132 3456
24eab124 3457 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3458 char *displacement_string_start;
3459 char *displacement_string_end;
252b5132 3460
24eab124 3461 do_memory_reference:
24eab124
AM
3462 if ((i.mem_operands == 1
3463 && (current_templates->start->opcode_modifier & IsString) == 0)
3464 || i.mem_operands == 2)
3465 {
3466 as_bad (_("too many memory references for `%s'"),
3467 current_templates->start->name);
3468 return 0;
3469 }
252b5132 3470
24eab124
AM
3471 /* Check for base index form. We detect the base index form by
3472 looking for an ')' at the end of the operand, searching
3473 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3474 after the '('. */
af6bdddf 3475 base_string = op_string + strlen (op_string);
c3332e24 3476
af6bdddf
AM
3477 --base_string;
3478 if (is_space_char (*base_string))
3479 --base_string;
252b5132 3480
af6bdddf
AM
3481 /* If we only have a displacement, set-up for it to be parsed later. */
3482 displacement_string_start = op_string;
3483 displacement_string_end = base_string + 1;
252b5132 3484
24eab124
AM
3485 if (*base_string == ')')
3486 {
af6bdddf 3487 char *temp_string;
24eab124
AM
3488 unsigned int parens_balanced = 1;
3489 /* We've already checked that the number of left & right ()'s are
3490 equal, so this loop will not be infinite. */
3491 do
3492 {
3493 base_string--;
3494 if (*base_string == ')')
3495 parens_balanced++;
3496 if (*base_string == '(')
3497 parens_balanced--;
3498 }
3499 while (parens_balanced);
c3332e24 3500
af6bdddf 3501 temp_string = base_string;
c3332e24 3502
24eab124 3503 /* Skip past '(' and whitespace. */
252b5132
RH
3504 ++base_string;
3505 if (is_space_char (*base_string))
24eab124 3506 ++base_string;
252b5132 3507
af6bdddf
AM
3508 if (*base_string == ','
3509 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3510 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3511 {
af6bdddf 3512 displacement_string_end = temp_string;
252b5132 3513
af6bdddf 3514 i.types[this_operand] |= BaseIndex;
252b5132 3515
af6bdddf 3516 if (i.base_reg)
24eab124 3517 {
24eab124
AM
3518 base_string = end_op;
3519 if (is_space_char (*base_string))
3520 ++base_string;
af6bdddf
AM
3521 }
3522
3523 /* There may be an index reg or scale factor here. */
3524 if (*base_string == ',')
3525 {
3526 ++base_string;
3527 if (is_space_char (*base_string))
3528 ++base_string;
3529
3530 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3531 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3532 {
af6bdddf 3533 base_string = end_op;
24eab124
AM
3534 if (is_space_char (*base_string))
3535 ++base_string;
af6bdddf
AM
3536 if (*base_string == ',')
3537 {
3538 ++base_string;
3539 if (is_space_char (*base_string))
3540 ++base_string;
3541 }
3542 else if (*base_string != ')' )
3543 {
3544 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3545 operand_string);
3546 return 0;
3547 }
24eab124 3548 }
af6bdddf 3549 else if (*base_string == REGISTER_PREFIX)
24eab124 3550 {
af6bdddf 3551 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3552 return 0;
3553 }
252b5132 3554
af6bdddf
AM
3555 /* Check for scale factor. */
3556 if (isdigit ((unsigned char) *base_string))
3557 {
3558 if (!i386_scale (base_string))
3559 return 0;
24eab124 3560
af6bdddf
AM
3561 ++base_string;
3562 if (is_space_char (*base_string))
3563 ++base_string;
3564 if (*base_string != ')')
3565 {
3566 as_bad (_("expecting `)' after scale factor in `%s'"),
3567 operand_string);
3568 return 0;
3569 }
3570 }
3571 else if (!i.index_reg)
24eab124 3572 {
af6bdddf
AM
3573 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3574 *base_string);
24eab124
AM
3575 return 0;
3576 }
3577 }
af6bdddf 3578 else if (*base_string != ')')
24eab124 3579 {
af6bdddf
AM
3580 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3581 operand_string);
24eab124
AM
3582 return 0;
3583 }
c3332e24 3584 }
af6bdddf 3585 else if (*base_string == REGISTER_PREFIX)
c3332e24 3586 {
af6bdddf 3587 as_bad (_("bad register name `%s'"), base_string);
24eab124 3588 return 0;
c3332e24 3589 }
24eab124
AM
3590 }
3591
3592 /* If there's an expression beginning the operand, parse it,
3593 assuming displacement_string_start and
3594 displacement_string_end are meaningful. */
3595 if (displacement_string_start != displacement_string_end)
3596 {
3597 if (!i386_displacement (displacement_string_start,
3598 displacement_string_end))
3599 return 0;
3600 }
3601
3602 /* Special case for (%dx) while doing input/output op. */
3603 if (i.base_reg
3604 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3605 && i.index_reg == 0
3606 && i.log2_scale_factor == 0
3607 && i.seg[i.mem_operands] == 0
3608 && (i.types[this_operand] & Disp) == 0)
3609 {
3610 i.types[this_operand] = InOutPortReg;
3611 return 1;
3612 }
3613
eecb386c
AM
3614 if (i386_index_check (operand_string) == 0)
3615 return 0;
24eab124
AM
3616 i.mem_operands++;
3617 }
3618 else
3619 { /* it's not a memory operand; argh! */
3620 as_bad (_("invalid char %s beginning operand %d `%s'"),
3621 output_invalid (*op_string),
3622 this_operand + 1,
3623 op_string);
3624 return 0;
3625 }
3626 return 1; /* normal return */
252b5132
RH
3627}
3628\f
3629/*
24eab124 3630 * md_estimate_size_before_relax()
252b5132
RH
3631 *
3632 * Called just before relax().
3633 * Any symbol that is now undefined will not become defined.
3634 * Return the correct fr_subtype in the frag.
3635 * Return the initial "guess for fr_var" to caller.
3636 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
3637 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
3638 * Although it may not be explicit in the frag, pretend fr_var starts with a
3639 * 0 value.
3640 */
3641int
3642md_estimate_size_before_relax (fragP, segment)
3643 register fragS *fragP;
3644 register segT segment;
3645{
3646 register unsigned char *opcode;
3647 register int old_fr_fix;
3648
3649 old_fr_fix = fragP->fr_fix;
3650 opcode = (unsigned char *) fragP->fr_opcode;
3651 /* We've already got fragP->fr_subtype right; all we have to do is
3652 check for un-relaxable symbols. */
3653 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
3654 {
3655 /* symbol is undefined in this segment */
3656 int code16 = fragP->fr_subtype & CODE16;
3657 int size = code16 ? 2 : 4;
3658 int pcrel_reloc = code16 ? BFD_RELOC_16_PCREL : BFD_RELOC_32_PCREL;
3659
3660 switch (opcode[0])
3661 {
3662 case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
3663 opcode[0] = 0xe9; /* dword disp jmp */
3664 fragP->fr_fix += size;
3665 fix_new (fragP, old_fr_fix, size,
3666 fragP->fr_symbol,
3667 fragP->fr_offset, 1,
3668 (GOT_symbol && /* Not quite right - we should switch on
3669 presence of @PLT, but I cannot see how
3670 to get to that from here. We should have
3671 done this in md_assemble to really
3672 get it right all of the time, but I
3673 think it does not matter that much, as
3674 this will be right most of the time. ERY*/
3675 S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
3676 ? BFD_RELOC_386_PLT32 : pcrel_reloc);
3677 break;
3678
3679 default:
24eab124
AM
3680 /* This changes the byte-displacement jump 0x7N
3681 to the dword-displacement jump 0x0f8N. */
252b5132
RH
3682 opcode[1] = opcode[0] + 0x10;
3683 opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
3684 fragP->fr_fix += 1 + size; /* we've added an opcode byte */
3685 fix_new (fragP, old_fr_fix + 1, size,
3686 fragP->fr_symbol,
3687 fragP->fr_offset, 1,
3688 (GOT_symbol && /* Not quite right - we should switch on
24eab124
AM
3689 presence of @PLT, but I cannot see how
3690 to get to that from here. ERY */
252b5132
RH
3691 S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
3692 ? BFD_RELOC_386_PLT32 : pcrel_reloc);
3693 break;
3694 }
3695 frag_wane (fragP);
3696 }
3697 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
3698} /* md_estimate_size_before_relax() */
3699\f
3700/*
3701 * md_convert_frag();
3702 *
3703 * Called after relax() is finished.
3704 * In: Address of frag.
3705 * fr_type == rs_machine_dependent.
3706 * fr_subtype is what the address relaxed to.
3707 *
3708 * Out: Any fixSs and constants are set up.
3709 * Caller will turn frag into a ".space 0".
3710 */
3711#ifndef BFD_ASSEMBLER
3712void
3713md_convert_frag (headers, sec, fragP)
a04b544b
ILT
3714 object_headers *headers ATTRIBUTE_UNUSED;
3715 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3716 register fragS *fragP;
3717#else
3718void
3719md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
3720 bfd *abfd ATTRIBUTE_UNUSED;
3721 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3722 register fragS *fragP;
3723#endif
3724{
3725 register unsigned char *opcode;
3726 unsigned char *where_to_put_displacement = NULL;
3727 unsigned int target_address;
3728 unsigned int opcode_address;
3729 unsigned int extension = 0;
3730 int displacement_from_opcode_start;
3731
3732 opcode = (unsigned char *) fragP->fr_opcode;
3733
3734 /* Address we want to reach in file space. */
3735 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3736#ifdef BFD_ASSEMBLER /* not needed otherwise? */
49309057 3737 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
3738#endif
3739
3740 /* Address opcode resides at in file space. */
3741 opcode_address = fragP->fr_address + fragP->fr_fix;
3742
3743 /* Displacement from opcode start to fill into instruction. */
3744 displacement_from_opcode_start = target_address - opcode_address;
3745
3746 switch (fragP->fr_subtype)
3747 {
3748 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3749 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3750 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3751 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3752 /* don't have to change opcode */
3753 extension = 1; /* 1 opcode + 1 displacement */
3754 where_to_put_displacement = &opcode[1];
3755 break;
3756
3757 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3758 extension = 5; /* 2 opcode + 4 displacement */
3759 opcode[1] = opcode[0] + 0x10;
3760 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3761 where_to_put_displacement = &opcode[2];
3762 break;
3763
3764 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3765 extension = 4; /* 1 opcode + 4 displacement */
3766 opcode[0] = 0xe9;
3767 where_to_put_displacement = &opcode[1];
3768 break;
3769
3770 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3771 extension = 3; /* 2 opcode + 2 displacement */
3772 opcode[1] = opcode[0] + 0x10;
3773 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3774 where_to_put_displacement = &opcode[2];
3775 break;
3776
3777 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3778 extension = 2; /* 1 opcode + 2 displacement */
3779 opcode[0] = 0xe9;
3780 where_to_put_displacement = &opcode[1];
3781 break;
3782
3783 default:
3784 BAD_CASE (fragP->fr_subtype);
3785 break;
3786 }
3787 /* now put displacement after opcode */
3788 md_number_to_chars ((char *) where_to_put_displacement,
3789 (valueT) (displacement_from_opcode_start - extension),
3790 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3791 fragP->fr_fix += extension;
3792}
3793\f
3794
3795int md_short_jump_size = 2; /* size of byte displacement jmp */
3796int md_long_jump_size = 5; /* size of dword displacement jmp */
3797const int md_reloc_size = 8; /* Size of relocation record */
3798
3799void
3800md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3801 char *ptr;
3802 addressT from_addr, to_addr;
ab9da554
ILT
3803 fragS *frag ATTRIBUTE_UNUSED;
3804 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132
RH
3805{
3806 long offset;
3807
3808 offset = to_addr - (from_addr + 2);
3809 md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
3810 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3811}
3812
3813void
3814md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3815 char *ptr;
3816 addressT from_addr, to_addr;
3817 fragS *frag;
3818 symbolS *to_symbol;
3819{
3820 long offset;
3821
3822 if (flag_do_long_jump)
3823 {
3824 offset = to_addr - S_GET_VALUE (to_symbol);
3825 md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
3826 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3827 fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
3828 to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
3829 }
3830 else
3831 {
3832 offset = to_addr - (from_addr + 5);
3833 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3834 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3835 }
3836}
3837\f
3838/* Apply a fixup (fixS) to segment data, once it has been determined
3839 by our caller that we have all the info we need to fix it up.
3840
3841 On the 386, immediates, displacements, and data pointers are all in
3842 the same (little-endian) format, so we don't need to care about which
3843 we are handling. */
3844
3845int
3846md_apply_fix3 (fixP, valp, seg)
3847 fixS *fixP; /* The fix we're to put in. */
3848 valueT *valp; /* Pointer to the value of the bits. */
a04b544b 3849 segT seg ATTRIBUTE_UNUSED; /* Segment fix is from. */
252b5132
RH
3850{
3851 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
3852 valueT value = *valp;
3853
e1b283bb 3854#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
3855 if (fixP->fx_pcrel)
3856 {
3857 switch (fixP->fx_r_type)
3858 {
5865bb77
ILT
3859 default:
3860 break;
3861
93382f6d
AM
3862 case BFD_RELOC_32:
3863 fixP->fx_r_type = BFD_RELOC_32_PCREL;
3864 break;
3865 case BFD_RELOC_16:
3866 fixP->fx_r_type = BFD_RELOC_16_PCREL;
3867 break;
3868 case BFD_RELOC_8:
3869 fixP->fx_r_type = BFD_RELOC_8_PCREL;
3870 break;
3871 }
3872 }
252b5132 3873
0723899b
ILT
3874 /* This is a hack. There should be a better way to handle this.
3875 This covers for the fact that bfd_install_relocation will
3876 subtract the current location (for partial_inplace, PC relative
3877 relocations); see more below. */
93382f6d
AM
3878 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
3879 || fixP->fx_r_type == BFD_RELOC_16_PCREL
3880 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
3881 && fixP->fx_addsy)
252b5132
RH
3882 {
3883#ifndef OBJ_AOUT
3884 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3885#ifdef TE_PE
3886 || OUTPUT_FLAVOR == bfd_target_coff_flavour
3887#endif
3888 )
3889 value += fixP->fx_where + fixP->fx_frag->fr_address;
3890#endif
3891#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3892 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3893 && (S_GET_SEGMENT (fixP->fx_addsy) == seg
49309057 3894 || symbol_section_p (fixP->fx_addsy))
252b5132
RH
3895 && ! S_IS_EXTERNAL (fixP->fx_addsy)
3896 && ! S_IS_WEAK (fixP->fx_addsy)
3897 && S_IS_DEFINED (fixP->fx_addsy)
3898 && ! S_IS_COMMON (fixP->fx_addsy))
3899 {
3900 /* Yes, we add the values in twice. This is because
3901 bfd_perform_relocation subtracts them out again. I think
3902 bfd_perform_relocation is broken, but I don't dare change
3903 it. FIXME. */
3904 value += fixP->fx_where + fixP->fx_frag->fr_address;
3905 }
3906#endif
3907#if defined (OBJ_COFF) && defined (TE_PE)
3908 /* For some reason, the PE format does not store a section
24eab124 3909 address offset for a PC relative symbol. */
252b5132
RH
3910 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
3911 value += md_pcrel_from (fixP);
c0c949c7
ILT
3912 else if (S_IS_EXTERNAL (fixP->fx_addsy)
3913 || S_IS_WEAK (fixP->fx_addsy))
3914 {
3915 /* We are generating an external relocation for this defined
3916 symbol. We add the address, because
3917 bfd_install_relocation will subtract it. VALUE already
3918 holds the symbol value, because fixup_segment added it
3919 in. We subtract it out, and then we subtract it out
3920 again because bfd_install_relocation will add it in
3921 again. */
3922 value += md_pcrel_from (fixP);
3923 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
3924 }
252b5132
RH
3925#endif
3926 }
c0c949c7
ILT
3927#ifdef TE_PE
3928 else if (fixP->fx_addsy != NULL
3929 && S_IS_DEFINED (fixP->fx_addsy)
3930 && (S_IS_EXTERNAL (fixP->fx_addsy)
3931 || S_IS_WEAK (fixP->fx_addsy)))
3932 {
3933 /* We are generating an external relocation for this defined
3934 symbol. VALUE already holds the symbol value, and
3935 bfd_install_relocation will add it in again. We don't want
3936 either addition. */
3937 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
3938 }
3939#endif
252b5132
RH
3940
3941 /* Fix a few things - the dynamic linker expects certain values here,
3942 and we must not dissappoint it. */
3943#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3944 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3945 && fixP->fx_addsy)
3946 switch (fixP->fx_r_type) {
3947 case BFD_RELOC_386_PLT32:
3948 /* Make the jump instruction point to the address of the operand. At
3949 runtime we merely add the offset to the actual PLT entry. */
3950 value = 0xfffffffc;
3951 break;
3952 case BFD_RELOC_386_GOTPC:
3953/*
24eab124 3954 * This is tough to explain. We end up with this one if we have
252b5132
RH
3955 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
3956 * here is to obtain the absolute address of the GOT, and it is strongly
3957 * preferable from a performance point of view to avoid using a runtime
c3332e24 3958 * relocation for this. The actual sequence of instructions often look
252b5132 3959 * something like:
c3332e24 3960 *
24eab124 3961 * call .L66
252b5132 3962 * .L66:
24eab124
AM
3963 * popl %ebx
3964 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 3965 *
24eab124 3966 * The call and pop essentially return the absolute address of
252b5132
RH
3967 * the label .L66 and store it in %ebx. The linker itself will
3968 * ultimately change the first operand of the addl so that %ebx points to
3969 * the GOT, but to keep things simple, the .o file must have this operand
3970 * set so that it generates not the absolute address of .L66, but the
3971 * absolute address of itself. This allows the linker itself simply
3972 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
3973 * added in, and the addend of the relocation is stored in the operand
3974 * field for the instruction itself.
c3332e24 3975 *
24eab124 3976 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
3977 * offset so that %ebx would point to itself. The thing that is tricky is
3978 * that .-.L66 will point to the beginning of the instruction, so we need
3979 * to further modify the operand so that it will point to itself.
3980 * There are other cases where you have something like:
c3332e24 3981 *
24eab124 3982 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 3983 *
252b5132 3984 * and here no correction would be required. Internally in the assembler
c3332e24 3985 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
3986 * explicitly mentioned, and I wonder whether it would simplify matters
3987 * to do it this way. Who knows. In earlier versions of the PIC patches,
3988 * the pcrel_adjust field was used to store the correction, but since the
3989 * expression is not pcrel, I felt it would be confusing to do it this way.
3990 */
3991 value -= 1;
3992 break;
3993 case BFD_RELOC_386_GOT32:
24eab124 3994 value = 0; /* Fully resolved at runtime. No addend. */
252b5132
RH
3995 break;
3996 case BFD_RELOC_386_GOTOFF:
3997 break;
3998
3999 case BFD_RELOC_VTABLE_INHERIT:
4000 case BFD_RELOC_VTABLE_ENTRY:
4001 fixP->fx_done = 0;
4002 return 1;
4003
4004 default:
4005 break;
4006 }
93382f6d
AM
4007#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4008 *valp = value;
4009#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
252b5132
RH
4010 md_number_to_chars (p, value, fixP->fx_size);
4011
4012 return 1;
4013}
4014
4015#if 0
4016/* This is never used. */
4017long /* Knows about the byte order in a word. */
4018md_chars_to_number (con, nbytes)
4019 unsigned char con[]; /* Low order byte 1st. */
4020 int nbytes; /* Number of bytes in the input. */
4021{
4022 long retval;
4023 for (retval = 0, con += nbytes - 1; nbytes--; con--)
4024 {
4025 retval <<= BITS_PER_CHAR;
4026 retval |= *con;
4027 }
4028 return retval;
4029}
4030#endif /* 0 */
4031\f
4032
4033#define MAX_LITTLENUMS 6
4034
4035/* Turn the string pointed to by litP into a floating point constant of type
4036 type, and emit the appropriate bytes. The number of LITTLENUMS emitted
4037 is stored in *sizeP . An error message is returned, or NULL on OK. */
4038char *
4039md_atof (type, litP, sizeP)
2ab9b79e 4040 int type;
252b5132
RH
4041 char *litP;
4042 int *sizeP;
4043{
4044 int prec;
4045 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4046 LITTLENUM_TYPE *wordP;
4047 char *t;
4048
4049 switch (type)
4050 {
4051 case 'f':
4052 case 'F':
4053 prec = 2;
4054 break;
4055
4056 case 'd':
4057 case 'D':
4058 prec = 4;
4059 break;
4060
4061 case 'x':
4062 case 'X':
4063 prec = 5;
4064 break;
4065
4066 default:
4067 *sizeP = 0;
4068 return _("Bad call to md_atof ()");
4069 }
4070 t = atof_ieee (input_line_pointer, type, words);
4071 if (t)
4072 input_line_pointer = t;
4073
4074 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4075 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4076 the bigendian 386. */
4077 for (wordP = words + prec - 1; prec--;)
4078 {
4079 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4080 litP += sizeof (LITTLENUM_TYPE);
4081 }
4082 return 0;
4083}
4084\f
4085char output_invalid_buf[8];
4086
4087static char * output_invalid PARAMS ((int));
4088
4089static char *
4090output_invalid (c)
4091 int c;
4092{
4093 if (isprint (c))
4094 sprintf (output_invalid_buf, "'%c'", c);
4095 else
4096 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4097 return output_invalid_buf;
4098}
4099
252b5132 4100
af6bdddf 4101/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4102
4103static const reg_entry *
4104parse_register (reg_string, end_op)
4105 char *reg_string;
4106 char **end_op;
4107{
af6bdddf
AM
4108 char *s = reg_string;
4109 char *p;
252b5132
RH
4110 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4111 const reg_entry *r;
4112
4113 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4114 if (*s == REGISTER_PREFIX)
4115 ++s;
4116
4117 if (is_space_char (*s))
4118 ++s;
4119
4120 p = reg_name_given;
af6bdddf 4121 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4122 {
4123 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4124 return (const reg_entry *) NULL;
4125 s++;
252b5132
RH
4126 }
4127
af6bdddf 4128 *end_op = s;
252b5132
RH
4129
4130 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4131
5f47d35b
AM
4132 /* Handle floating point regs, allowing spaces in the (i) part. */
4133 if (r == i386_regtab /* %st is first entry of table */)
4134 {
5f47d35b
AM
4135 if (is_space_char (*s))
4136 ++s;
4137 if (*s == '(')
4138 {
af6bdddf 4139 ++s;
5f47d35b
AM
4140 if (is_space_char (*s))
4141 ++s;
4142 if (*s >= '0' && *s <= '7')
4143 {
4144 r = &i386_float_regtab[*s - '0'];
af6bdddf 4145 ++s;
5f47d35b
AM
4146 if (is_space_char (*s))
4147 ++s;
4148 if (*s == ')')
4149 {
4150 *end_op = s + 1;
4151 return r;
4152 }
5f47d35b 4153 }
af6bdddf 4154 /* We have "%st(" then garbage */
5f47d35b
AM
4155 return (const reg_entry *) NULL;
4156 }
4157 }
4158
252b5132
RH
4159 return r;
4160}
4161\f
4162#ifdef OBJ_ELF
4163CONST char *md_shortopts = "kmVQ:";
4164#else
4165CONST char *md_shortopts = "m";
4166#endif
4167struct option md_longopts[] = {
4168 {NULL, no_argument, NULL, 0}
4169};
4170size_t md_longopts_size = sizeof (md_longopts);
4171
4172int
4173md_parse_option (c, arg)
4174 int c;
ab9da554 4175 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4176{
4177 switch (c)
4178 {
4179 case 'm':
4180 flag_do_long_jump = 1;
4181 break;
4182
4183#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4184 /* -k: Ignore for FreeBSD compatibility. */
4185 case 'k':
4186 break;
4187
4188 /* -V: SVR4 argument to print version ID. */
4189 case 'V':
4190 print_version_id ();
4191 break;
4192
4193 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4194 should be emitted or not. FIXME: Not implemented. */
4195 case 'Q':
4196 break;
4197#endif
4198
4199 default:
4200 return 0;
4201 }
4202 return 1;
4203}
4204
4205void
4206md_show_usage (stream)
4207 FILE *stream;
4208{
4209 fprintf (stream, _("\
4210-m do long jump\n"));
4211}
4212
4213#ifdef BFD_ASSEMBLER
4214#ifdef OBJ_MAYBE_ELF
4215#ifdef OBJ_MAYBE_COFF
4216
4217/* Pick the target format to use. */
4218
4219const char *
4220i386_target_format ()
4221{
4222 switch (OUTPUT_FLAVOR)
4223 {
4224 case bfd_target_coff_flavour:
4225 return "coff-i386";
4226 case bfd_target_elf_flavour:
4227 return "elf32-i386";
4228 default:
4229 abort ();
4230 return NULL;
4231 }
4232}
4233
4234#endif /* OBJ_MAYBE_COFF */
4235#endif /* OBJ_MAYBE_ELF */
4236#endif /* BFD_ASSEMBLER */
4237\f
4238/* ARGSUSED */
4239symbolS *
4240md_undefined_symbol (name)
4241 char *name;
4242{
18dc2407
ILT
4243 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4244 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4245 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4246 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4247 {
4248 if (!GOT_symbol)
4249 {
4250 if (symbol_find (name))
4251 as_bad (_("GOT already in symbol table"));
4252 GOT_symbol = symbol_new (name, undefined_section,
4253 (valueT) 0, &zero_address_frag);
4254 };
4255 return GOT_symbol;
4256 }
252b5132
RH
4257 return 0;
4258}
4259
4260/* Round up a section size to the appropriate boundary. */
4261valueT
4262md_section_align (segment, size)
ab9da554 4263 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4264 valueT size;
4265{
4266#ifdef OBJ_AOUT
4267#ifdef BFD_ASSEMBLER
4268 /* For a.out, force the section size to be aligned. If we don't do
4269 this, BFD will align it for us, but it will not write out the
4270 final bytes of the section. This may be a bug in BFD, but it is
4271 easier to fix it here since that is how the other a.out targets
4272 work. */
4273 int align;
4274
4275 align = bfd_get_section_alignment (stdoutput, segment);
4276 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4277#endif
4278#endif
4279
4280 return size;
4281}
4282
4283/* On the i386, PC-relative offsets are relative to the start of the
4284 next instruction. That is, the address of the offset, plus its
4285 size, since the offset is always the last part of the insn. */
4286
4287long
4288md_pcrel_from (fixP)
4289 fixS *fixP;
4290{
4291 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4292}
4293
4294#ifndef I386COFF
4295
4296static void
4297s_bss (ignore)
ab9da554 4298 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4299{
4300 register int temp;
4301
4302 temp = get_absolute_expression ();
4303 subseg_set (bss_section, (subsegT) temp);
4304 demand_empty_rest_of_line ();
4305}
4306
4307#endif
4308
4309
4310#ifdef BFD_ASSEMBLER
4311
4312void
4313i386_validate_fix (fixp)
4314 fixS *fixp;
4315{
4316 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4317 {
4318 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4319 fixp->fx_subsy = 0;
4320 }
4321}
4322
252b5132
RH
4323arelent *
4324tc_gen_reloc (section, fixp)
ab9da554 4325 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4326 fixS *fixp;
4327{
4328 arelent *rel;
4329 bfd_reloc_code_real_type code;
4330
4331 switch (fixp->fx_r_type)
4332 {
4333 case BFD_RELOC_386_PLT32:
4334 case BFD_RELOC_386_GOT32:
4335 case BFD_RELOC_386_GOTOFF:
4336 case BFD_RELOC_386_GOTPC:
4337 case BFD_RELOC_RVA:
4338 case BFD_RELOC_VTABLE_ENTRY:
4339 case BFD_RELOC_VTABLE_INHERIT:
4340 code = fixp->fx_r_type;
4341 break;
4342 default:
93382f6d 4343 if (fixp->fx_pcrel)
252b5132 4344 {
93382f6d
AM
4345 switch (fixp->fx_size)
4346 {
4347 default:
4348 as_bad (_("Can not do %d byte pc-relative relocation"),
4349 fixp->fx_size);
4350 code = BFD_RELOC_32_PCREL;
4351 break;
4352 case 1: code = BFD_RELOC_8_PCREL; break;
4353 case 2: code = BFD_RELOC_16_PCREL; break;
4354 case 4: code = BFD_RELOC_32_PCREL; break;
4355 }
4356 }
4357 else
4358 {
4359 switch (fixp->fx_size)
4360 {
4361 default:
4362 as_bad (_("Can not do %d byte relocation"), fixp->fx_size);
4363 code = BFD_RELOC_32;
4364 break;
4365 case 1: code = BFD_RELOC_8; break;
4366 case 2: code = BFD_RELOC_16; break;
4367 case 4: code = BFD_RELOC_32; break;
4368 }
252b5132
RH
4369 }
4370 break;
4371 }
252b5132
RH
4372
4373 if (code == BFD_RELOC_32
4374 && GOT_symbol
4375 && fixp->fx_addsy == GOT_symbol)
4376 code = BFD_RELOC_386_GOTPC;
4377
4378 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4379 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4380 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4381
4382 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4383 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4384 vtable entry to be used in the relocation's section offset. */
4385 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4386 rel->address = fixp->fx_offset;
4387
4388 if (fixp->fx_pcrel)
4389 rel->addend = fixp->fx_addnumber;
4390 else
4391 rel->addend = 0;
4392
4393 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4394 if (rel->howto == NULL)
4395 {
4396 as_bad_where (fixp->fx_file, fixp->fx_line,
4397 _("Cannot represent relocation type %s"),
4398 bfd_get_reloc_code_name (code));
4399 /* Set howto to a garbage value so that we can keep going. */
4400 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4401 assert (rel->howto != NULL);
4402 }
4403
4404 return rel;
4405}
4406
4407#else /* ! BFD_ASSEMBLER */
4408
4409#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4410void
4411tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4412 char *where;
4413 fixS *fixP;
4414 relax_addressT segment_address_in_file;
4415{
4416 /*
4417 * In: length of relocation (or of address) in chars: 1, 2 or 4.
4418 * Out: GNU LD relocation length code: 0, 1, or 2.
4419 */
4420
4421 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
4422 long r_symbolnum;
4423
4424 know (fixP->fx_addsy != NULL);
4425
4426 md_number_to_chars (where,
4427 (valueT) (fixP->fx_frag->fr_address
4428 + fixP->fx_where - segment_address_in_file),
4429 4);
4430
4431 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4432 ? S_GET_TYPE (fixP->fx_addsy)
4433 : fixP->fx_addsy->sy_number);
4434
4435 where[6] = (r_symbolnum >> 16) & 0x0ff;
4436 where[5] = (r_symbolnum >> 8) & 0x0ff;
4437 where[4] = r_symbolnum & 0x0ff;
4438 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4439 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4440 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4441}
4442
4443#endif /* OBJ_AOUT or OBJ_BOUT */
4444
4445#if defined (I386COFF)
4446
4447short
4448tc_coff_fix2rtype (fixP)
4449 fixS *fixP;
4450{
4451 if (fixP->fx_r_type == R_IMAGEBASE)
4452 return R_IMAGEBASE;
4453
4454 return (fixP->fx_pcrel ?
4455 (fixP->fx_size == 1 ? R_PCRBYTE :
4456 fixP->fx_size == 2 ? R_PCRWORD :
4457 R_PCRLONG) :
4458 (fixP->fx_size == 1 ? R_RELBYTE :
4459 fixP->fx_size == 2 ? R_RELWORD :
4460 R_DIR32));
4461}
4462
4463int
4464tc_coff_sizemachdep (frag)
4465 fragS *frag;
4466{
4467 if (frag->fr_next)
4468 return (frag->fr_next->fr_address - frag->fr_address);
4469 else
4470 return 0;
4471}
4472
4473#endif /* I386COFF */
4474
93382f6d 4475#endif /* ! BFD_ASSEMBLER */
252b5132
RH
4476\f
4477/* end of tc-i386.c */
This page took 0.224895 seconds and 4 git commands to generate.