Process 64-bit imm/disp only for 64-bit BFD
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b90efa5b 2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d
L
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
22109423 136 unsigned int negated; /* turn off indicated flags. */
6305a203
L
137}
138arch_entry;
139
78f12dd3 140static void update_code_flag (int, int);
e3bb37b5
L
141static void set_code_flag (int);
142static void set_16bit_gcc_code_flag (int);
143static void set_intel_syntax (int);
1efbbeb4 144static void set_intel_mnemonic (int);
db51cc60 145static void set_allow_index_reg (int);
7bab8ab5 146static void set_check (int);
e3bb37b5 147static void set_cpu_arch (int);
6482c264 148#ifdef TE_PE
e3bb37b5 149static void pe_directive_secrel (int);
6482c264 150#endif
e3bb37b5
L
151static void signed_cons (int);
152static char *output_invalid (int c);
ee86248c
JB
153static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
a7619375 157static int i386_att_operand (char *);
e3bb37b5 158static int i386_intel_operand (char *, int);
ee86248c
JB
159static int i386_intel_simplify (expressionS *);
160static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
161static const reg_entry *parse_register (char *, char **);
162static char *parse_insn (char *, char *);
163static char *parse_operands (char *, const char *);
164static void swap_operands (void);
4d456e3d 165static void swap_2_operands (int, int);
e3bb37b5
L
166static void optimize_imm (void);
167static void optimize_disp (void);
d3ce72d0 168static const insn_template *match_template (void);
e3bb37b5
L
169static int check_string (void);
170static int process_suffix (void);
171static int check_byte_reg (void);
172static int check_long_reg (void);
173static int check_qword_reg (void);
174static int check_word_reg (void);
175static int finalize_imm (void);
176static int process_operands (void);
177static const seg_entry *build_modrm_byte (void);
178static void output_insn (void);
179static void output_imm (fragS *, offsetT);
180static void output_disp (fragS *, offsetT);
29b0f896 181#ifndef I386COFF
e3bb37b5 182static void s_bss (int);
252b5132 183#endif
17d4e2a2
L
184#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185static void handle_large_common (int small ATTRIBUTE_UNUSED);
186#endif
252b5132 187
a847613f 188static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 189
43234a1e
L
190/* This struct describes rounding control and SAE in the instruction. */
191struct RC_Operation
192{
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202};
203
204static struct RC_Operation rc_op;
205
206/* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209struct Mask_Operation
210{
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215};
216
217static struct Mask_Operation mask_op;
218
219/* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221struct Broadcast_Operation
222{
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228};
229
230static struct Broadcast_Operation broadcast_op;
231
c0f3af97
L
232/* VEX prefix. */
233typedef struct
234{
43234a1e
L
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
c0f3af97
L
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240} vex_prefix;
241
252b5132 242/* 'md_assemble ()' gathers together information and puts it into a
47926f60 243 i386_insn. */
252b5132 244
520dc8e8
AM
245union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
a65babc9
L
252enum i386_error
253 {
86e026a4 254 operand_size_mismatch,
a65babc9
L
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
6c30d220
L
263 unsupported,
264 invalid_vsib_address,
7bab8ab5 265 invalid_vector_register_set,
43234a1e
L
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
a65babc9
L
277 };
278
252b5132
RH
279struct _i386_insn
280 {
47926f60 281 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 282 insn_template tm;
252b5132 283
7d5e4556
L
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
252b5132
RH
286 char suffix;
287
47926f60 288 /* OPERANDS gives the number of given operands. */
252b5132
RH
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
47926f60 293 operands. */
252b5132
RH
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 297 use OP[i] for the corresponding operand. */
40fb9820 298 i386_operand_type types[MAX_OPERANDS];
252b5132 299
520dc8e8
AM
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
252b5132 303
3e73aa7c
JH
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306#define Operand_PCrel 1
307
252b5132 308 /* Relocation type for operand */
f86103b7 309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 310
252b5132
RH
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 318 explicit segment overrides are given. */
ce8a8b2f 319 const seg_entry *seg[2];
252b5132
RH
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 327 addressing modes of this insn are encoded. */
252b5132 328 modrm_byte rm;
3e73aa7c 329 rex_byte rex;
43234a1e 330 rex_byte vrex;
252b5132 331 sib_byte sib;
c0f3af97 332 vex_prefix vex;
b6169b20 333
43234a1e
L
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
b6169b20 346 /* Swap operand in encoding. */
4473e004 347 unsigned int swap_operand;
891edac4 348
a501d77e
L
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
f8a5c266 356
d5de92cf
L
357 /* REP prefix. */
358 const char *rep_prefix;
359
165de32a
L
360 /* HLE prefix. */
361 const char *hle_prefix;
42164a71 362
7e8b059b
L
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
43234a1e
L
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
891edac4 369 /* Error message. */
a65babc9 370 enum i386_error error;
252b5132
RH
371 };
372
373typedef struct _i386_insn i386_insn;
374
43234a1e
L
375/* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377struct RC_name
378{
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382};
383
384static const struct RC_name RC_NamesTable[] =
385{
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391};
392
252b5132
RH
393/* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
43234a1e 395const char extra_symbol_chars[] = "*%-([{"
252b5132 396#ifdef LEX_AT
32137342
NC
397 "@"
398#endif
399#ifdef LEX_QM
400 "?"
252b5132 401#endif
32137342 402 ;
252b5132 403
29b0f896
AM
404#if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 406 && !defined (TE_GNU) \
29b0f896 407 && !defined (TE_LINUX) \
8d63c93e
RM
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
29b0f896 410 && !defined (TE_FreeBSD) \
5b806d27 411 && !defined (TE_DragonFly) \
29b0f896 412 && !defined (TE_NetBSD)))
252b5132 413/* This array holds the chars that always start a comment. If the
b3b91714
AM
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416const char *i386_comment_chars = "#/";
417#define SVR4_COMMENT_CHARS 1
252b5132 418#define PREFIX_SEPARATOR '\\'
252b5132 419
b3b91714
AM
420#else
421const char *i386_comment_chars = "#";
422#define PREFIX_SEPARATOR '/'
423#endif
424
252b5132
RH
425/* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 429 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
252b5132 432 '/' isn't otherwise defined. */
b3b91714 433const char line_comment_chars[] = "#/";
252b5132 434
63a0b638 435const char line_separator_chars[] = ";";
252b5132 436
ce8a8b2f
AM
437/* Chars that can be used to separate mant from exp in floating point
438 nums. */
252b5132
RH
439const char EXP_CHARS[] = "eE";
440
ce8a8b2f
AM
441/* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
252b5132
RH
444const char FLT_CHARS[] = "fFdDxX";
445
ce8a8b2f 446/* Tables for lexical analysis. */
252b5132
RH
447static char mnemonic_chars[256];
448static char register_chars[256];
449static char operand_chars[256];
450static char identifier_chars[256];
451static char digit_chars[256];
452
ce8a8b2f 453/* Lexical macros. */
252b5132
RH
454#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455#define is_operand_char(x) (operand_chars[(unsigned char) x])
456#define is_register_char(x) (register_chars[(unsigned char) x])
457#define is_space_char(x) ((x) == ' ')
458#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459#define is_digit_char(x) (digit_chars[(unsigned char) x])
460
0234cb7c 461/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
462static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464/* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
47926f60 467 assembler instruction). */
252b5132 468static char save_stack[32];
ce8a8b2f 469static char *save_stack_p;
252b5132
RH
470#define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472#define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
47926f60 475/* The instruction we're assembling. */
252b5132
RH
476static i386_insn i;
477
478/* Possible templates for current insn. */
479static const templates *current_templates;
480
31b2323c
L
481/* Per instruction expressionS buffers: max displacements & immediates. */
482static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 484
47926f60 485/* Current operand we are working on. */
ee86248c 486static int this_operand = -1;
252b5132 487
3e73aa7c
JH
488/* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496static enum flag_code flag_code;
4fa24527 497static unsigned int object_64bit;
862be3fb 498static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
499static int use_rela_relocations = 0;
500
7af8ed2d
NC
501#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
351f65ca
L
505/* The ELF ABI to use. */
506enum x86_elf_abi
507{
508 I386_ABI,
7f56bc95
L
509 X86_64_ABI,
510 X86_64_X32_ABI
351f65ca
L
511};
512
513static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 514#endif
351f65ca 515
167ad85b
TG
516#if defined (TE_PE) || defined (TE_PEP)
517/* Use big object file format. */
518static int use_big_obj = 0;
519#endif
520
8dcea932
L
521#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
522/* 1 if generating code for a shared library. */
523static int shared = 0;
524#endif
525
47926f60
KH
526/* 1 for intel syntax,
527 0 if att syntax. */
528static int intel_syntax = 0;
252b5132 529
1efbbeb4
L
530/* 1 for intel mnemonic,
531 0 if att mnemonic. */
532static int intel_mnemonic = !SYSV386_COMPAT;
533
5209009a 534/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
535static int old_gcc = OLDGCC_COMPAT;
536
a60de03c
JB
537/* 1 if pseudo registers are permitted. */
538static int allow_pseudo_reg = 0;
539
47926f60
KH
540/* 1 if register prefix % not required. */
541static int allow_naked_reg = 0;
252b5132 542
7e8b059b
L
543/* 1 if the assembler should add BND prefix for all control-tranferring
544 instructions supporting it, even if this prefix wasn't specified
545 explicitly. */
546static int add_bnd_prefix = 0;
547
ba104c83 548/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
549static int allow_index_reg = 0;
550
d022bddd
IT
551/* 1 if the assembler should ignore LOCK prefix, even if it was
552 specified explicitly. */
553static int omit_lock_prefix = 0;
554
7bab8ab5 555static enum check_kind
daf50ae7 556 {
7bab8ab5
JB
557 check_none = 0,
558 check_warning,
559 check_error
daf50ae7 560 }
7bab8ab5 561sse_check, operand_check = check_warning;
daf50ae7 562
2ca3ace5
L
563/* Register prefix used for error message. */
564static const char *register_prefix = "%";
565
47926f60
KH
566/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
567 leave, push, and pop instructions so that gcc has the same stack
568 frame as in 32 bit mode. */
569static char stackop_size = '\0';
eecb386c 570
12b55ccc
L
571/* Non-zero to optimize code alignment. */
572int optimize_align_code = 1;
573
47926f60
KH
574/* Non-zero to quieten some warnings. */
575static int quiet_warnings = 0;
a38cf1db 576
47926f60
KH
577/* CPU name. */
578static const char *cpu_arch_name = NULL;
6305a203 579static char *cpu_sub_arch_name = NULL;
a38cf1db 580
47926f60 581/* CPU feature flags. */
40fb9820
L
582static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
583
ccc9c027
L
584/* If we have selected a cpu we are generating instructions for. */
585static int cpu_arch_tune_set = 0;
586
9103f4f4 587/* Cpu we are generating instructions for. */
fbf3f584 588enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
589
590/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 591static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 592
ccc9c027 593/* CPU instruction set architecture used. */
fbf3f584 594enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 595
9103f4f4 596/* CPU feature flags of instruction set architecture used. */
fbf3f584 597i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 598
fddf5b5b
AM
599/* If set, conditional jumps are not automatically promoted to handle
600 larger than a byte offset. */
601static unsigned int no_cond_jump_promotion = 0;
602
c0f3af97
L
603/* Encode SSE instructions with VEX prefix. */
604static unsigned int sse2avx;
605
539f890d
L
606/* Encode scalar AVX instructions with specific vector length. */
607static enum
608 {
609 vex128 = 0,
610 vex256
611 } avxscalar;
612
43234a1e
L
613/* Encode scalar EVEX LIG instructions with specific vector length. */
614static enum
615 {
616 evexl128 = 0,
617 evexl256,
618 evexl512
619 } evexlig;
620
621/* Encode EVEX WIG instructions with specific evex.w. */
622static enum
623 {
624 evexw0 = 0,
625 evexw1
626 } evexwig;
627
d3d3c6db
IT
628/* Value to encode in EVEX RC bits, for SAE-only instructions. */
629static enum rc_type evexrcig = rne;
630
29b0f896 631/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 632static symbolS *GOT_symbol;
29b0f896 633
a4447b93
RH
634/* The dwarf2 return column, adjusted for 32 or 64 bit. */
635unsigned int x86_dwarf2_return_column;
636
637/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
638int x86_cie_data_alignment;
639
252b5132 640/* Interface to relax_segment.
fddf5b5b
AM
641 There are 3 major relax states for 386 jump insns because the
642 different types of jumps add different sizes to frags when we're
643 figuring out what sort of jump to choose to reach a given label. */
252b5132 644
47926f60 645/* Types. */
93c2a809
AM
646#define UNCOND_JUMP 0
647#define COND_JUMP 1
648#define COND_JUMP86 2
fddf5b5b 649
47926f60 650/* Sizes. */
252b5132
RH
651#define CODE16 1
652#define SMALL 0
29b0f896 653#define SMALL16 (SMALL | CODE16)
252b5132 654#define BIG 2
29b0f896 655#define BIG16 (BIG | CODE16)
252b5132
RH
656
657#ifndef INLINE
658#ifdef __GNUC__
659#define INLINE __inline__
660#else
661#define INLINE
662#endif
663#endif
664
fddf5b5b
AM
665#define ENCODE_RELAX_STATE(type, size) \
666 ((relax_substateT) (((type) << 2) | (size)))
667#define TYPE_FROM_RELAX_STATE(s) \
668 ((s) >> 2)
669#define DISP_SIZE_FROM_RELAX_STATE(s) \
670 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
671
672/* This table is used by relax_frag to promote short jumps to long
673 ones where necessary. SMALL (short) jumps may be promoted to BIG
674 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
675 don't allow a short jump in a 32 bit code segment to be promoted to
676 a 16 bit offset jump because it's slower (requires data size
677 prefix), and doesn't work, unless the destination is in the bottom
678 64k of the code segment (The top 16 bits of eip are zeroed). */
679
680const relax_typeS md_relax_table[] =
681{
24eab124
AM
682 /* The fields are:
683 1) most positive reach of this state,
684 2) most negative reach of this state,
93c2a809 685 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 686 4) which index into the table to try if we can't fit into this one. */
252b5132 687
fddf5b5b 688 /* UNCOND_JUMP states. */
93c2a809
AM
689 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
690 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
691 /* dword jmp adds 4 bytes to frag:
692 0 extra opcode bytes, 4 displacement bytes. */
252b5132 693 {0, 0, 4, 0},
93c2a809
AM
694 /* word jmp adds 2 byte2 to frag:
695 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
696 {0, 0, 2, 0},
697
93c2a809
AM
698 /* COND_JUMP states. */
699 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
700 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
701 /* dword conditionals adds 5 bytes to frag:
702 1 extra opcode byte, 4 displacement bytes. */
703 {0, 0, 5, 0},
fddf5b5b 704 /* word conditionals add 3 bytes to frag:
93c2a809
AM
705 1 extra opcode byte, 2 displacement bytes. */
706 {0, 0, 3, 0},
707
708 /* COND_JUMP86 states. */
709 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
711 /* dword conditionals adds 5 bytes to frag:
712 1 extra opcode byte, 4 displacement bytes. */
713 {0, 0, 5, 0},
714 /* word conditionals add 4 bytes to frag:
715 1 displacement byte and a 3 byte long branch insn. */
716 {0, 0, 4, 0}
252b5132
RH
717};
718
9103f4f4
L
719static const arch_entry cpu_arch[] =
720{
89507696
JB
721 /* Do not replace the first two entries - i386_target_format()
722 relies on them being there in this order. */
8a2c8fef 723 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 724 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 725 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 726 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 727 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 728 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 729 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 730 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 731 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 732 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 733 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 734 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 735 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 736 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 737 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 738 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 739 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 740 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 741 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 742 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 743 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 744 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 745 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 746 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 747 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 748 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 749 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 750 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 751 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 752 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 753 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 754 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 755 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 756 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 757 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 758 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 759 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 760 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 761 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 762 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 763 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 764 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 766 CPU_L1OM_FLAGS, 0, 0 },
7a9068fe
L
767 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
768 CPU_K1OM_FLAGS, 0, 0 },
81486035
L
769 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
770 CPU_IAMCU_FLAGS, 0, 0 },
8a2c8fef 771 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 772 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 773 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 774 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 775 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 776 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 777 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 778 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 779 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 780 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 781 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 782 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 783 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 784 CPU_AMDFAM10_FLAGS, 0, 0 },
8aedb9fe 785 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
22109423 786 CPU_BDVER1_FLAGS, 0, 0 },
8aedb9fe 787 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
af2f724e 788 CPU_BDVER2_FLAGS, 0, 0 },
5e5c50d3
NE
789 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
790 CPU_BDVER3_FLAGS, 0, 0 },
c7b0bd56
SE
791 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
792 CPU_BDVER4_FLAGS, 0, 0 },
029f3522 793 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
3739860c 794 CPU_ZNVER1_FLAGS, 0, 0 },
7b458c12
L
795 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
796 CPU_BTVER1_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
798 CPU_BTVER2_FLAGS, 0, 0 },
8a2c8fef 799 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 800 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 801 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 802 CPU_287_FLAGS, 0, 0 },
8a2c8fef 803 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 804 CPU_387_FLAGS, 0, 0 },
8a2c8fef 805 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 806 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 807 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 808 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 809 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 810 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 811 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 812 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 813 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 814 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 815 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 816 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 817 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 818 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 819 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 820 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 821 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 822 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 823 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 824 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 825 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 826 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 827 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 828 CPU_AVX_FLAGS, 0, 0 },
6c30d220
L
829 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
830 CPU_AVX2_FLAGS, 0, 0 },
43234a1e
L
831 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
832 CPU_AVX512F_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
834 CPU_AVX512CD_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
836 CPU_AVX512ER_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
838 CPU_AVX512PF_FLAGS, 0, 0 },
1dfc6506
L
839 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
840 CPU_AVX512DQ_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
842 CPU_AVX512BW_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
844 CPU_AVX512VL_FLAGS, 0, 0 },
8a2c8fef 845 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 846 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 847 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 848 CPU_VMX_FLAGS, 0, 0 },
8729a6f6
L
849 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
850 CPU_VMFUNC_FLAGS, 0, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 852 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 854 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 855 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 856 CPU_XSAVEOPT_FLAGS, 0, 0 },
1dfc6506
L
857 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
858 CPU_XSAVEC_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
860 CPU_XSAVES_FLAGS, 0, 0 },
8a2c8fef 861 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 862 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 863 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 864 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 865 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 866 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 867 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 868 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 869 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 870 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 871 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 872 CPU_F16C_FLAGS, 0, 0 },
6c30d220
L
873 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
874 CPU_BMI2_FLAGS, 0, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 876 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 878 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 880 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 881 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 882 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 883 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 884 CPU_MOVBE_FLAGS, 0, 0 },
60aa667e
L
885 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
886 CPU_CX16_FLAGS, 0, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 888 CPU_EPT_FLAGS, 0, 0 },
6c30d220
L
889 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
890 CPU_LZCNT_FLAGS, 0, 0 },
42164a71
L
891 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
892 CPU_HLE_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
894 CPU_RTM_FLAGS, 0, 0 },
6c30d220
L
895 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
896 CPU_INVPCID_FLAGS, 0, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
898 CPU_CLFLUSH_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
900 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 902 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 904 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 906 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 908 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 910 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 912 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 914 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 916 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 918 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
919 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
920 CPU_BMI_FLAGS, 0, 0 },
2a2a0f38
QN
921 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
922 CPU_TBM_FLAGS, 0, 0 },
e2e1fcde
L
923 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
924 CPU_ADX_FLAGS, 0, 0 },
925 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
926 CPU_RDSEED_FLAGS, 0, 0 },
927 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
928 CPU_PRFCHW_FLAGS, 0, 0 },
5c111e37
L
929 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
930 CPU_SMAP_FLAGS, 0, 0 },
7e8b059b
L
931 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
932 CPU_MPX_FLAGS, 0, 0 },
a0046408
L
933 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
934 CPU_SHA_FLAGS, 0, 0 },
963f3586
IT
935 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
936 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
dcf893b5
IT
937 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
938 CPU_PREFETCHWT1_FLAGS, 0, 0 },
2cf200a4
IT
939 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
940 CPU_SE1_FLAGS, 0, 0 },
c5e7287a
IT
941 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
942 CPU_CLWB_FLAGS, 0, 0 },
9d8596f0
IT
943 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
944 CPU_PCOMMIT_FLAGS, 0, 0 },
2cc1b5aa
IT
945 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
946 CPU_AVX512IFMA_FLAGS, 0, 0 },
14f195c9
IT
947 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
948 CPU_AVX512VBMI_FLAGS, 0, 0 },
029f3522
GG
949 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
950 CPU_CLZERO_FLAGS, 0, 0 },
9916071f
AP
951 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
952 CPU_MWAITX_FLAGS, 0, 0 },
8eab4136
L
953 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
954 CPU_OSPKE_FLAGS, 0, 0 },
e413e4e9
AM
955};
956
704209c0 957#ifdef I386COFF
a6c24e68
NC
958/* Like s_lcomm_internal in gas/read.c but the alignment string
959 is allowed to be optional. */
960
961static symbolS *
962pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
963{
964 addressT align = 0;
965
966 SKIP_WHITESPACE ();
967
7ab9ffdd 968 if (needs_align
a6c24e68
NC
969 && *input_line_pointer == ',')
970 {
971 align = parse_align (needs_align - 1);
7ab9ffdd 972
a6c24e68
NC
973 if (align == (addressT) -1)
974 return NULL;
975 }
976 else
977 {
978 if (size >= 8)
979 align = 3;
980 else if (size >= 4)
981 align = 2;
982 else if (size >= 2)
983 align = 1;
984 else
985 align = 0;
986 }
987
988 bss_alloc (symbolP, size, align);
989 return symbolP;
990}
991
704209c0 992static void
a6c24e68
NC
993pe_lcomm (int needs_align)
994{
995 s_comm_internal (needs_align * 2, pe_lcomm_internal);
996}
704209c0 997#endif
a6c24e68 998
29b0f896
AM
999const pseudo_typeS md_pseudo_table[] =
1000{
1001#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1002 {"align", s_align_bytes, 0},
1003#else
1004 {"align", s_align_ptwo, 0},
1005#endif
1006 {"arch", set_cpu_arch, 0},
1007#ifndef I386COFF
1008 {"bss", s_bss, 0},
a6c24e68
NC
1009#else
1010 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1011#endif
1012 {"ffloat", float_cons, 'f'},
1013 {"dfloat", float_cons, 'd'},
1014 {"tfloat", float_cons, 'x'},
1015 {"value", cons, 2},
d182319b 1016 {"slong", signed_cons, 4},
29b0f896
AM
1017 {"noopt", s_ignore, 0},
1018 {"optim", s_ignore, 0},
1019 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1020 {"code16", set_code_flag, CODE_16BIT},
1021 {"code32", set_code_flag, CODE_32BIT},
1022 {"code64", set_code_flag, CODE_64BIT},
1023 {"intel_syntax", set_intel_syntax, 1},
1024 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1025 {"intel_mnemonic", set_intel_mnemonic, 1},
1026 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1027 {"allow_index_reg", set_allow_index_reg, 1},
1028 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1029 {"sse_check", set_check, 0},
1030 {"operand_check", set_check, 1},
3b22753a
L
1031#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1032 {"largecomm", handle_large_common, 0},
07a53e5c 1033#else
e3bb37b5 1034 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
1035 {"loc", dwarf2_directive_loc, 0},
1036 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1037#endif
6482c264
NC
1038#ifdef TE_PE
1039 {"secrel32", pe_directive_secrel, 0},
1040#endif
29b0f896
AM
1041 {0, 0, 0}
1042};
1043
1044/* For interface with expression (). */
1045extern char *input_line_pointer;
1046
1047/* Hash table for instruction mnemonic lookup. */
1048static struct hash_control *op_hash;
1049
1050/* Hash table for register lookup. */
1051static struct hash_control *reg_hash;
1052\f
252b5132 1053void
e3bb37b5 1054i386_align_code (fragS *fragP, int count)
252b5132 1055{
ce8a8b2f
AM
1056 /* Various efficient no-op patterns for aligning code labels.
1057 Note: Don't try to assemble the instructions in the comments.
1058 0L and 0w are not legal. */
252b5132
RH
1059 static const char f32_1[] =
1060 {0x90}; /* nop */
1061 static const char f32_2[] =
ccc9c027 1062 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
1063 static const char f32_3[] =
1064 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1065 static const char f32_4[] =
1066 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1067 static const char f32_5[] =
1068 {0x90, /* nop */
1069 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1070 static const char f32_6[] =
1071 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1072 static const char f32_7[] =
1073 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1074 static const char f32_8[] =
1075 {0x90, /* nop */
1076 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1077 static const char f32_9[] =
1078 {0x89,0xf6, /* movl %esi,%esi */
1079 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1080 static const char f32_10[] =
1081 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1082 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1083 static const char f32_11[] =
1084 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1085 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1086 static const char f32_12[] =
1087 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1088 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1089 static const char f32_13[] =
1090 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1091 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1092 static const char f32_14[] =
1093 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1094 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
1095 static const char f16_3[] =
1096 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
1097 static const char f16_4[] =
1098 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1099 static const char f16_5[] =
1100 {0x90, /* nop */
1101 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1102 static const char f16_6[] =
1103 {0x89,0xf6, /* mov %si,%si */
1104 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1105 static const char f16_7[] =
1106 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1107 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1108 static const char f16_8[] =
1109 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1110 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
1111 static const char jump_31[] =
1112 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1113 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1114 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1115 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
1116 static const char *const f32_patt[] = {
1117 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1118 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
1119 };
1120 static const char *const f16_patt[] = {
76bc74dc 1121 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1122 };
ccc9c027
L
1123 /* nopl (%[re]ax) */
1124 static const char alt_3[] =
1125 {0x0f,0x1f,0x00};
1126 /* nopl 0(%[re]ax) */
1127 static const char alt_4[] =
1128 {0x0f,0x1f,0x40,0x00};
1129 /* nopl 0(%[re]ax,%[re]ax,1) */
1130 static const char alt_5[] =
1131 {0x0f,0x1f,0x44,0x00,0x00};
1132 /* nopw 0(%[re]ax,%[re]ax,1) */
1133 static const char alt_6[] =
1134 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1135 /* nopl 0L(%[re]ax) */
1136 static const char alt_7[] =
1137 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1138 /* nopl 0L(%[re]ax,%[re]ax,1) */
1139 static const char alt_8[] =
1140 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1141 /* nopw 0L(%[re]ax,%[re]ax,1) */
1142 static const char alt_9[] =
1143 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1145 static const char alt_10[] =
1146 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
80b8656c 1147 static const char *const alt_patt[] = {
ccc9c027 1148 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
80b8656c 1149 alt_9, alt_10
ccc9c027 1150 };
252b5132 1151
76bc74dc
L
1152 /* Only align for at least a positive non-zero boundary. */
1153 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1154 return;
3e73aa7c 1155
ccc9c027
L
1156 /* We need to decide which NOP sequence to use for 32bit and
1157 64bit. When -mtune= is used:
4eed87de 1158
76bc74dc
L
1159 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1160 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1161 2. For the rest, alt_patt will be used.
1162
1163 When -mtune= isn't used, alt_patt will be used if
22109423 1164 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1165 be used.
ccc9c027
L
1166
1167 When -march= or .arch is used, we can't use anything beyond
1168 cpu_arch_isa_flags. */
1169
1170 if (flag_code == CODE_16BIT)
1171 {
ccc9c027 1172 if (count > 8)
33fef721 1173 {
76bc74dc
L
1174 memcpy (fragP->fr_literal + fragP->fr_fix,
1175 jump_31, count);
1176 /* Adjust jump offset. */
1177 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1178 }
76bc74dc
L
1179 else
1180 memcpy (fragP->fr_literal + fragP->fr_fix,
1181 f16_patt[count - 1], count);
252b5132 1182 }
33fef721 1183 else
ccc9c027
L
1184 {
1185 const char *const *patt = NULL;
1186
fbf3f584 1187 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1188 {
1189 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1190 switch (cpu_arch_tune)
1191 {
1192 case PROCESSOR_UNKNOWN:
1193 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1194 optimize with nops. */
1195 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1196 patt = alt_patt;
ccc9c027
L
1197 else
1198 patt = f32_patt;
1199 break;
ccc9c027
L
1200 case PROCESSOR_PENTIUM4:
1201 case PROCESSOR_NOCONA:
ef05d495 1202 case PROCESSOR_CORE:
76bc74dc 1203 case PROCESSOR_CORE2:
bd5295b2 1204 case PROCESSOR_COREI7:
3632d14b 1205 case PROCESSOR_L1OM:
7a9068fe 1206 case PROCESSOR_K1OM:
76bc74dc 1207 case PROCESSOR_GENERIC64:
ccc9c027
L
1208 case PROCESSOR_K6:
1209 case PROCESSOR_ATHLON:
1210 case PROCESSOR_K8:
4eed87de 1211 case PROCESSOR_AMDFAM10:
8aedb9fe 1212 case PROCESSOR_BD:
029f3522 1213 case PROCESSOR_ZNVER:
7b458c12 1214 case PROCESSOR_BT:
80b8656c 1215 patt = alt_patt;
ccc9c027 1216 break;
76bc74dc 1217 case PROCESSOR_I386:
ccc9c027
L
1218 case PROCESSOR_I486:
1219 case PROCESSOR_PENTIUM:
2dde1948 1220 case PROCESSOR_PENTIUMPRO:
81486035 1221 case PROCESSOR_IAMCU:
ccc9c027
L
1222 case PROCESSOR_GENERIC32:
1223 patt = f32_patt;
1224 break;
4eed87de 1225 }
ccc9c027
L
1226 }
1227 else
1228 {
fbf3f584 1229 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1230 {
1231 case PROCESSOR_UNKNOWN:
e6a14101 1232 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1233 PROCESSOR_UNKNOWN. */
1234 abort ();
1235 break;
1236
76bc74dc 1237 case PROCESSOR_I386:
ccc9c027
L
1238 case PROCESSOR_I486:
1239 case PROCESSOR_PENTIUM:
81486035 1240 case PROCESSOR_IAMCU:
ccc9c027
L
1241 case PROCESSOR_K6:
1242 case PROCESSOR_ATHLON:
1243 case PROCESSOR_K8:
4eed87de 1244 case PROCESSOR_AMDFAM10:
8aedb9fe 1245 case PROCESSOR_BD:
029f3522 1246 case PROCESSOR_ZNVER:
7b458c12 1247 case PROCESSOR_BT:
ccc9c027
L
1248 case PROCESSOR_GENERIC32:
1249 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1250 with nops. */
1251 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1252 patt = alt_patt;
ccc9c027
L
1253 else
1254 patt = f32_patt;
1255 break;
76bc74dc
L
1256 case PROCESSOR_PENTIUMPRO:
1257 case PROCESSOR_PENTIUM4:
1258 case PROCESSOR_NOCONA:
1259 case PROCESSOR_CORE:
ef05d495 1260 case PROCESSOR_CORE2:
bd5295b2 1261 case PROCESSOR_COREI7:
3632d14b 1262 case PROCESSOR_L1OM:
7a9068fe 1263 case PROCESSOR_K1OM:
22109423 1264 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1265 patt = alt_patt;
ccc9c027
L
1266 else
1267 patt = f32_patt;
1268 break;
1269 case PROCESSOR_GENERIC64:
80b8656c 1270 patt = alt_patt;
ccc9c027 1271 break;
4eed87de 1272 }
ccc9c027
L
1273 }
1274
76bc74dc
L
1275 if (patt == f32_patt)
1276 {
1277 /* If the padding is less than 15 bytes, we use the normal
1278 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1279 its offset. */
1280 int limit;
76ba9986 1281
711eedef
L
1282 /* For 64bit, the limit is 3 bytes. */
1283 if (flag_code == CODE_64BIT
1284 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1285 limit = 3;
1286 else
1287 limit = 15;
1288 if (count < limit)
76bc74dc
L
1289 memcpy (fragP->fr_literal + fragP->fr_fix,
1290 patt[count - 1], count);
1291 else
1292 {
1293 memcpy (fragP->fr_literal + fragP->fr_fix,
1294 jump_31, count);
1295 /* Adjust jump offset. */
1296 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1297 }
1298 }
1299 else
1300 {
80b8656c
L
1301 /* Maximum length of an instruction is 10 byte. If the
1302 padding is greater than 10 bytes and we don't use jump,
76bc74dc
L
1303 we have to break it into smaller pieces. */
1304 int padding = count;
80b8656c 1305 while (padding > 10)
76bc74dc 1306 {
80b8656c 1307 padding -= 10;
76bc74dc 1308 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
80b8656c 1309 patt [9], 10);
76bc74dc
L
1310 }
1311
1312 if (padding)
1313 memcpy (fragP->fr_literal + fragP->fr_fix,
1314 patt [padding - 1], padding);
1315 }
ccc9c027 1316 }
33fef721 1317 fragP->fr_var = count;
252b5132
RH
1318}
1319
c6fb90c8 1320static INLINE int
0dfbf9d7 1321operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1322{
0dfbf9d7 1323 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1324 {
1325 case 3:
0dfbf9d7 1326 if (x->array[2])
c6fb90c8
L
1327 return 0;
1328 case 2:
0dfbf9d7 1329 if (x->array[1])
c6fb90c8
L
1330 return 0;
1331 case 1:
0dfbf9d7 1332 return !x->array[0];
c6fb90c8
L
1333 default:
1334 abort ();
1335 }
40fb9820
L
1336}
1337
c6fb90c8 1338static INLINE void
0dfbf9d7 1339operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1340{
0dfbf9d7 1341 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1342 {
1343 case 3:
0dfbf9d7 1344 x->array[2] = v;
c6fb90c8 1345 case 2:
0dfbf9d7 1346 x->array[1] = v;
c6fb90c8 1347 case 1:
0dfbf9d7 1348 x->array[0] = v;
c6fb90c8
L
1349 break;
1350 default:
1351 abort ();
1352 }
1353}
40fb9820 1354
c6fb90c8 1355static INLINE int
0dfbf9d7
L
1356operand_type_equal (const union i386_operand_type *x,
1357 const union i386_operand_type *y)
c6fb90c8 1358{
0dfbf9d7 1359 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1360 {
1361 case 3:
0dfbf9d7 1362 if (x->array[2] != y->array[2])
c6fb90c8
L
1363 return 0;
1364 case 2:
0dfbf9d7 1365 if (x->array[1] != y->array[1])
c6fb90c8
L
1366 return 0;
1367 case 1:
0dfbf9d7 1368 return x->array[0] == y->array[0];
c6fb90c8
L
1369 break;
1370 default:
1371 abort ();
1372 }
1373}
40fb9820 1374
0dfbf9d7
L
1375static INLINE int
1376cpu_flags_all_zero (const union i386_cpu_flags *x)
1377{
1378 switch (ARRAY_SIZE(x->array))
1379 {
1380 case 3:
1381 if (x->array[2])
1382 return 0;
1383 case 2:
1384 if (x->array[1])
1385 return 0;
1386 case 1:
1387 return !x->array[0];
1388 default:
1389 abort ();
1390 }
1391}
1392
0dfbf9d7
L
1393static INLINE int
1394cpu_flags_equal (const union i386_cpu_flags *x,
1395 const union i386_cpu_flags *y)
1396{
1397 switch (ARRAY_SIZE(x->array))
1398 {
1399 case 3:
1400 if (x->array[2] != y->array[2])
1401 return 0;
1402 case 2:
1403 if (x->array[1] != y->array[1])
1404 return 0;
1405 case 1:
1406 return x->array[0] == y->array[0];
1407 break;
1408 default:
1409 abort ();
1410 }
1411}
c6fb90c8
L
1412
1413static INLINE int
1414cpu_flags_check_cpu64 (i386_cpu_flags f)
1415{
1416 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1417 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1418}
1419
c6fb90c8
L
1420static INLINE i386_cpu_flags
1421cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1422{
c6fb90c8
L
1423 switch (ARRAY_SIZE (x.array))
1424 {
1425 case 3:
1426 x.array [2] &= y.array [2];
1427 case 2:
1428 x.array [1] &= y.array [1];
1429 case 1:
1430 x.array [0] &= y.array [0];
1431 break;
1432 default:
1433 abort ();
1434 }
1435 return x;
1436}
40fb9820 1437
c6fb90c8
L
1438static INLINE i386_cpu_flags
1439cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1440{
c6fb90c8 1441 switch (ARRAY_SIZE (x.array))
40fb9820 1442 {
c6fb90c8
L
1443 case 3:
1444 x.array [2] |= y.array [2];
1445 case 2:
1446 x.array [1] |= y.array [1];
1447 case 1:
1448 x.array [0] |= y.array [0];
40fb9820
L
1449 break;
1450 default:
1451 abort ();
1452 }
40fb9820
L
1453 return x;
1454}
1455
309d3373
JB
1456static INLINE i386_cpu_flags
1457cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1458{
1459 switch (ARRAY_SIZE (x.array))
1460 {
1461 case 3:
1462 x.array [2] &= ~y.array [2];
1463 case 2:
1464 x.array [1] &= ~y.array [1];
1465 case 1:
1466 x.array [0] &= ~y.array [0];
1467 break;
1468 default:
1469 abort ();
1470 }
1471 return x;
1472}
1473
81486035
L
1474static int
1475valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1476{
1477 if (cpu_arch_isa == PROCESSOR_IAMCU)
1478 {
1479 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1480 i386_cpu_flags compat_flags;
1481 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1482 return cpu_flags_all_zero (&compat_flags);
1483 }
1484 else
1485 return 1;
1486}
1487
c0f3af97
L
1488#define CPU_FLAGS_ARCH_MATCH 0x1
1489#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1490#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1491#define CPU_FLAGS_PCLMUL_MATCH 0x8
1492#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1493
a5ff0eb2 1494#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1495 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1496 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1497#define CPU_FLAGS_PERFECT_MATCH \
1498 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1499
1500/* Return CPU flags match bits. */
3629bb00 1501
40fb9820 1502static int
d3ce72d0 1503cpu_flags_match (const insn_template *t)
40fb9820 1504{
c0f3af97
L
1505 i386_cpu_flags x = t->cpu_flags;
1506 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1507
1508 x.bitfield.cpu64 = 0;
1509 x.bitfield.cpuno64 = 0;
1510
0dfbf9d7 1511 if (cpu_flags_all_zero (&x))
c0f3af97
L
1512 {
1513 /* This instruction is available on all archs. */
1514 match |= CPU_FLAGS_32BIT_MATCH;
1515 }
3629bb00
L
1516 else
1517 {
c0f3af97 1518 /* This instruction is available only on some archs. */
3629bb00
L
1519 i386_cpu_flags cpu = cpu_arch_flags;
1520
1521 cpu.bitfield.cpu64 = 0;
1522 cpu.bitfield.cpuno64 = 0;
1523 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1524 if (!cpu_flags_all_zero (&cpu))
1525 {
a5ff0eb2
L
1526 if (x.bitfield.cpuavx)
1527 {
ce2f5b3c 1528 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1529 if (cpu.bitfield.cpuavx)
1530 {
1531 /* Check SSE2AVX. */
1532 if (!t->opcode_modifier.sse2avx|| sse2avx)
1533 {
1534 match |= (CPU_FLAGS_ARCH_MATCH
1535 | CPU_FLAGS_AVX_MATCH);
1536 /* Check AES. */
1537 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1538 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1539 /* Check PCLMUL. */
1540 if (!x.bitfield.cpupclmul
1541 || cpu.bitfield.cpupclmul)
1542 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1543 }
1544 }
1545 else
1546 match |= CPU_FLAGS_ARCH_MATCH;
1547 }
1548 else
c0f3af97
L
1549 match |= CPU_FLAGS_32BIT_MATCH;
1550 }
3629bb00 1551 }
c0f3af97 1552 return match;
40fb9820
L
1553}
1554
c6fb90c8
L
1555static INLINE i386_operand_type
1556operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1557{
c6fb90c8
L
1558 switch (ARRAY_SIZE (x.array))
1559 {
1560 case 3:
1561 x.array [2] &= y.array [2];
1562 case 2:
1563 x.array [1] &= y.array [1];
1564 case 1:
1565 x.array [0] &= y.array [0];
1566 break;
1567 default:
1568 abort ();
1569 }
1570 return x;
40fb9820
L
1571}
1572
c6fb90c8
L
1573static INLINE i386_operand_type
1574operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1575{
c6fb90c8 1576 switch (ARRAY_SIZE (x.array))
40fb9820 1577 {
c6fb90c8
L
1578 case 3:
1579 x.array [2] |= y.array [2];
1580 case 2:
1581 x.array [1] |= y.array [1];
1582 case 1:
1583 x.array [0] |= y.array [0];
40fb9820
L
1584 break;
1585 default:
1586 abort ();
1587 }
c6fb90c8
L
1588 return x;
1589}
40fb9820 1590
c6fb90c8
L
1591static INLINE i386_operand_type
1592operand_type_xor (i386_operand_type x, i386_operand_type y)
1593{
1594 switch (ARRAY_SIZE (x.array))
1595 {
1596 case 3:
1597 x.array [2] ^= y.array [2];
1598 case 2:
1599 x.array [1] ^= y.array [1];
1600 case 1:
1601 x.array [0] ^= y.array [0];
1602 break;
1603 default:
1604 abort ();
1605 }
40fb9820
L
1606 return x;
1607}
1608
1609static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1610static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1611static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1612static const i386_operand_type inoutportreg
1613 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1614static const i386_operand_type reg16_inoutportreg
1615 = OPERAND_TYPE_REG16_INOUTPORTREG;
1616static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1617static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1618static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1619static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1620static const i386_operand_type anydisp
1621 = OPERAND_TYPE_ANYDISP;
40fb9820 1622static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1623static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1624static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1625static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1626static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1627static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1628static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1629static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1630static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1631static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1632static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1633static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1634static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1635static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1636
1637enum operand_type
1638{
1639 reg,
40fb9820
L
1640 imm,
1641 disp,
1642 anymem
1643};
1644
c6fb90c8 1645static INLINE int
40fb9820
L
1646operand_type_check (i386_operand_type t, enum operand_type c)
1647{
1648 switch (c)
1649 {
1650 case reg:
1651 return (t.bitfield.reg8
1652 || t.bitfield.reg16
1653 || t.bitfield.reg32
1654 || t.bitfield.reg64);
1655
40fb9820
L
1656 case imm:
1657 return (t.bitfield.imm8
1658 || t.bitfield.imm8s
1659 || t.bitfield.imm16
1660 || t.bitfield.imm32
1661 || t.bitfield.imm32s
1662 || t.bitfield.imm64);
1663
1664 case disp:
1665 return (t.bitfield.disp8
1666 || t.bitfield.disp16
1667 || t.bitfield.disp32
1668 || t.bitfield.disp32s
1669 || t.bitfield.disp64);
1670
1671 case anymem:
1672 return (t.bitfield.disp8
1673 || t.bitfield.disp16
1674 || t.bitfield.disp32
1675 || t.bitfield.disp32s
1676 || t.bitfield.disp64
1677 || t.bitfield.baseindex);
1678
1679 default:
1680 abort ();
1681 }
2cfe26b6
AM
1682
1683 return 0;
40fb9820
L
1684}
1685
5c07affc
L
1686/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1687 operand J for instruction template T. */
1688
1689static INLINE int
d3ce72d0 1690match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1691{
1692 return !((i.types[j].bitfield.byte
1693 && !t->operand_types[j].bitfield.byte)
1694 || (i.types[j].bitfield.word
1695 && !t->operand_types[j].bitfield.word)
1696 || (i.types[j].bitfield.dword
1697 && !t->operand_types[j].bitfield.dword)
1698 || (i.types[j].bitfield.qword
1699 && !t->operand_types[j].bitfield.qword));
1700}
1701
1702/* Return 1 if there is no conflict in any size on operand J for
1703 instruction template T. */
1704
1705static INLINE int
d3ce72d0 1706match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1707{
1708 return (match_reg_size (t, j)
1709 && !((i.types[j].bitfield.unspecified
af508cb9 1710 && !i.broadcast
5c07affc
L
1711 && !t->operand_types[j].bitfield.unspecified)
1712 || (i.types[j].bitfield.fword
1713 && !t->operand_types[j].bitfield.fword)
1714 || (i.types[j].bitfield.tbyte
1715 && !t->operand_types[j].bitfield.tbyte)
1716 || (i.types[j].bitfield.xmmword
c0f3af97
L
1717 && !t->operand_types[j].bitfield.xmmword)
1718 || (i.types[j].bitfield.ymmword
43234a1e
L
1719 && !t->operand_types[j].bitfield.ymmword)
1720 || (i.types[j].bitfield.zmmword
1721 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1722}
1723
1724/* Return 1 if there is no size conflict on any operands for
1725 instruction template T. */
1726
1727static INLINE int
d3ce72d0 1728operand_size_match (const insn_template *t)
5c07affc
L
1729{
1730 unsigned int j;
1731 int match = 1;
1732
1733 /* Don't check jump instructions. */
1734 if (t->opcode_modifier.jump
1735 || t->opcode_modifier.jumpbyte
1736 || t->opcode_modifier.jumpdword
1737 || t->opcode_modifier.jumpintersegment)
1738 return match;
1739
1740 /* Check memory and accumulator operand size. */
1741 for (j = 0; j < i.operands; j++)
1742 {
1743 if (t->operand_types[j].bitfield.anysize)
1744 continue;
1745
1746 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1747 {
1748 match = 0;
1749 break;
1750 }
1751
1752 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1753 {
1754 match = 0;
1755 break;
1756 }
1757 }
1758
891edac4 1759 if (match)
5c07affc 1760 return match;
891edac4
L
1761 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1762 {
1763mismatch:
86e026a4 1764 i.error = operand_size_mismatch;
891edac4
L
1765 return 0;
1766 }
5c07affc
L
1767
1768 /* Check reverse. */
9c2799c2 1769 gas_assert (i.operands == 2);
5c07affc
L
1770
1771 match = 1;
1772 for (j = 0; j < 2; j++)
1773 {
1774 if (t->operand_types[j].bitfield.acc
1775 && !match_reg_size (t, j ? 0 : 1))
891edac4 1776 goto mismatch;
5c07affc
L
1777
1778 if (i.types[j].bitfield.mem
1779 && !match_mem_size (t, j ? 0 : 1))
891edac4 1780 goto mismatch;
5c07affc
L
1781 }
1782
1783 return match;
1784}
1785
c6fb90c8 1786static INLINE int
40fb9820
L
1787operand_type_match (i386_operand_type overlap,
1788 i386_operand_type given)
1789{
1790 i386_operand_type temp = overlap;
1791
1792 temp.bitfield.jumpabsolute = 0;
7d5e4556 1793 temp.bitfield.unspecified = 0;
5c07affc
L
1794 temp.bitfield.byte = 0;
1795 temp.bitfield.word = 0;
1796 temp.bitfield.dword = 0;
1797 temp.bitfield.fword = 0;
1798 temp.bitfield.qword = 0;
1799 temp.bitfield.tbyte = 0;
1800 temp.bitfield.xmmword = 0;
c0f3af97 1801 temp.bitfield.ymmword = 0;
43234a1e 1802 temp.bitfield.zmmword = 0;
0dfbf9d7 1803 if (operand_type_all_zero (&temp))
891edac4 1804 goto mismatch;
40fb9820 1805
891edac4
L
1806 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1807 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1808 return 1;
1809
1810mismatch:
a65babc9 1811 i.error = operand_type_mismatch;
891edac4 1812 return 0;
40fb9820
L
1813}
1814
7d5e4556 1815/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1816 unless the expected operand type register overlap is null.
1817 Note that Acc in a template matches every size of reg. */
1818
c6fb90c8 1819static INLINE int
40fb9820
L
1820operand_type_register_match (i386_operand_type m0,
1821 i386_operand_type g0,
1822 i386_operand_type t0,
1823 i386_operand_type m1,
1824 i386_operand_type g1,
1825 i386_operand_type t1)
1826{
1827 if (!operand_type_check (g0, reg))
1828 return 1;
1829
1830 if (!operand_type_check (g1, reg))
1831 return 1;
1832
1833 if (g0.bitfield.reg8 == g1.bitfield.reg8
1834 && g0.bitfield.reg16 == g1.bitfield.reg16
1835 && g0.bitfield.reg32 == g1.bitfield.reg32
1836 && g0.bitfield.reg64 == g1.bitfield.reg64)
1837 return 1;
1838
1839 if (m0.bitfield.acc)
1840 {
1841 t0.bitfield.reg8 = 1;
1842 t0.bitfield.reg16 = 1;
1843 t0.bitfield.reg32 = 1;
1844 t0.bitfield.reg64 = 1;
1845 }
1846
1847 if (m1.bitfield.acc)
1848 {
1849 t1.bitfield.reg8 = 1;
1850 t1.bitfield.reg16 = 1;
1851 t1.bitfield.reg32 = 1;
1852 t1.bitfield.reg64 = 1;
1853 }
1854
891edac4
L
1855 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1856 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1857 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1858 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1859 return 1;
1860
a65babc9 1861 i.error = register_type_mismatch;
891edac4
L
1862
1863 return 0;
40fb9820
L
1864}
1865
4c692bc7
JB
1866static INLINE unsigned int
1867register_number (const reg_entry *r)
1868{
1869 unsigned int nr = r->reg_num;
1870
1871 if (r->reg_flags & RegRex)
1872 nr += 8;
1873
1874 return nr;
1875}
1876
252b5132 1877static INLINE unsigned int
40fb9820 1878mode_from_disp_size (i386_operand_type t)
252b5132 1879{
43234a1e 1880 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1881 return 1;
1882 else if (t.bitfield.disp16
1883 || t.bitfield.disp32
1884 || t.bitfield.disp32s)
1885 return 2;
1886 else
1887 return 0;
252b5132
RH
1888}
1889
1890static INLINE int
65879393 1891fits_in_signed_byte (addressT num)
252b5132 1892{
65879393 1893 return num + 0x80 <= 0xff;
47926f60 1894}
252b5132
RH
1895
1896static INLINE int
65879393 1897fits_in_unsigned_byte (addressT num)
252b5132 1898{
65879393 1899 return num <= 0xff;
47926f60 1900}
252b5132
RH
1901
1902static INLINE int
65879393 1903fits_in_unsigned_word (addressT num)
252b5132 1904{
65879393 1905 return num <= 0xffff;
47926f60 1906}
252b5132
RH
1907
1908static INLINE int
65879393 1909fits_in_signed_word (addressT num)
252b5132 1910{
65879393 1911 return num + 0x8000 <= 0xffff;
47926f60 1912}
2a962e6d 1913
3e73aa7c 1914static INLINE int
65879393 1915fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1916{
1917#ifndef BFD64
1918 return 1;
1919#else
65879393 1920 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
1921#endif
1922} /* fits_in_signed_long() */
2a962e6d 1923
3e73aa7c 1924static INLINE int
65879393 1925fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1926{
1927#ifndef BFD64
1928 return 1;
1929#else
65879393 1930 return num <= 0xffffffff;
3e73aa7c
JH
1931#endif
1932} /* fits_in_unsigned_long() */
252b5132 1933
43234a1e
L
1934static INLINE int
1935fits_in_vec_disp8 (offsetT num)
1936{
1937 int shift = i.memshift;
1938 unsigned int mask;
1939
1940 if (shift == -1)
1941 abort ();
1942
1943 mask = (1 << shift) - 1;
1944
1945 /* Return 0 if NUM isn't properly aligned. */
1946 if ((num & mask))
1947 return 0;
1948
1949 /* Check if NUM will fit in 8bit after shift. */
1950 return fits_in_signed_byte (num >> shift);
1951}
1952
a683cc34
SP
1953static INLINE int
1954fits_in_imm4 (offsetT num)
1955{
1956 return (num & 0xf) == num;
1957}
1958
40fb9820 1959static i386_operand_type
e3bb37b5 1960smallest_imm_type (offsetT num)
252b5132 1961{
40fb9820 1962 i386_operand_type t;
7ab9ffdd 1963
0dfbf9d7 1964 operand_type_set (&t, 0);
40fb9820
L
1965 t.bitfield.imm64 = 1;
1966
1967 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
1968 {
1969 /* This code is disabled on the 486 because all the Imm1 forms
1970 in the opcode table are slower on the i486. They're the
1971 versions with the implicitly specified single-position
1972 displacement, which has another syntax if you really want to
1973 use that form. */
40fb9820
L
1974 t.bitfield.imm1 = 1;
1975 t.bitfield.imm8 = 1;
1976 t.bitfield.imm8s = 1;
1977 t.bitfield.imm16 = 1;
1978 t.bitfield.imm32 = 1;
1979 t.bitfield.imm32s = 1;
1980 }
1981 else if (fits_in_signed_byte (num))
1982 {
1983 t.bitfield.imm8 = 1;
1984 t.bitfield.imm8s = 1;
1985 t.bitfield.imm16 = 1;
1986 t.bitfield.imm32 = 1;
1987 t.bitfield.imm32s = 1;
1988 }
1989 else if (fits_in_unsigned_byte (num))
1990 {
1991 t.bitfield.imm8 = 1;
1992 t.bitfield.imm16 = 1;
1993 t.bitfield.imm32 = 1;
1994 t.bitfield.imm32s = 1;
1995 }
1996 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1997 {
1998 t.bitfield.imm16 = 1;
1999 t.bitfield.imm32 = 1;
2000 t.bitfield.imm32s = 1;
2001 }
2002 else if (fits_in_signed_long (num))
2003 {
2004 t.bitfield.imm32 = 1;
2005 t.bitfield.imm32s = 1;
2006 }
2007 else if (fits_in_unsigned_long (num))
2008 t.bitfield.imm32 = 1;
2009
2010 return t;
47926f60 2011}
252b5132 2012
847f7ad4 2013static offsetT
e3bb37b5 2014offset_in_range (offsetT val, int size)
847f7ad4 2015{
508866be 2016 addressT mask;
ba2adb93 2017
847f7ad4
AM
2018 switch (size)
2019 {
508866be
L
2020 case 1: mask = ((addressT) 1 << 8) - 1; break;
2021 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2022 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2023#ifdef BFD64
2024 case 8: mask = ((addressT) 2 << 63) - 1; break;
2025#endif
47926f60 2026 default: abort ();
847f7ad4
AM
2027 }
2028
9de868bf
L
2029#ifdef BFD64
2030 /* If BFD64, sign extend val for 32bit address mode. */
2031 if (flag_code != CODE_64BIT
2032 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2033 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2034 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2035#endif
ba2adb93 2036
47926f60 2037 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2038 {
2039 char buf1[40], buf2[40];
2040
2041 sprint_value (buf1, val);
2042 sprint_value (buf2, val & mask);
2043 as_warn (_("%s shortened to %s"), buf1, buf2);
2044 }
2045 return val & mask;
2046}
2047
c32fa91d
L
2048enum PREFIX_GROUP
2049{
2050 PREFIX_EXIST = 0,
2051 PREFIX_LOCK,
2052 PREFIX_REP,
2053 PREFIX_OTHER
2054};
2055
2056/* Returns
2057 a. PREFIX_EXIST if attempting to add a prefix where one from the
2058 same class already exists.
2059 b. PREFIX_LOCK if lock prefix is added.
2060 c. PREFIX_REP if rep/repne prefix is added.
2061 d. PREFIX_OTHER if other prefix is added.
2062 */
2063
2064static enum PREFIX_GROUP
e3bb37b5 2065add_prefix (unsigned int prefix)
252b5132 2066{
c32fa91d 2067 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2068 unsigned int q;
252b5132 2069
29b0f896
AM
2070 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2071 && flag_code == CODE_64BIT)
b1905489 2072 {
161a04f6
L
2073 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2074 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2075 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2076 ret = PREFIX_EXIST;
b1905489
JB
2077 q = REX_PREFIX;
2078 }
3e73aa7c 2079 else
b1905489
JB
2080 {
2081 switch (prefix)
2082 {
2083 default:
2084 abort ();
2085
2086 case CS_PREFIX_OPCODE:
2087 case DS_PREFIX_OPCODE:
2088 case ES_PREFIX_OPCODE:
2089 case FS_PREFIX_OPCODE:
2090 case GS_PREFIX_OPCODE:
2091 case SS_PREFIX_OPCODE:
2092 q = SEG_PREFIX;
2093 break;
2094
2095 case REPNE_PREFIX_OPCODE:
2096 case REPE_PREFIX_OPCODE:
c32fa91d
L
2097 q = REP_PREFIX;
2098 ret = PREFIX_REP;
2099 break;
2100
b1905489 2101 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2102 q = LOCK_PREFIX;
2103 ret = PREFIX_LOCK;
b1905489
JB
2104 break;
2105
2106 case FWAIT_OPCODE:
2107 q = WAIT_PREFIX;
2108 break;
2109
2110 case ADDR_PREFIX_OPCODE:
2111 q = ADDR_PREFIX;
2112 break;
2113
2114 case DATA_PREFIX_OPCODE:
2115 q = DATA_PREFIX;
2116 break;
2117 }
2118 if (i.prefix[q] != 0)
c32fa91d 2119 ret = PREFIX_EXIST;
b1905489 2120 }
252b5132 2121
b1905489 2122 if (ret)
252b5132 2123 {
b1905489
JB
2124 if (!i.prefix[q])
2125 ++i.prefixes;
2126 i.prefix[q] |= prefix;
252b5132 2127 }
b1905489
JB
2128 else
2129 as_bad (_("same type of prefix used twice"));
252b5132 2130
252b5132
RH
2131 return ret;
2132}
2133
2134static void
78f12dd3 2135update_code_flag (int value, int check)
eecb386c 2136{
78f12dd3
L
2137 PRINTF_LIKE ((*as_error));
2138
1e9cc1c2 2139 flag_code = (enum flag_code) value;
40fb9820
L
2140 if (flag_code == CODE_64BIT)
2141 {
2142 cpu_arch_flags.bitfield.cpu64 = 1;
2143 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2144 }
2145 else
2146 {
2147 cpu_arch_flags.bitfield.cpu64 = 0;
2148 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2149 }
2150 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2151 {
78f12dd3
L
2152 if (check)
2153 as_error = as_fatal;
2154 else
2155 as_error = as_bad;
2156 (*as_error) (_("64bit mode not supported on `%s'."),
2157 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2158 }
40fb9820 2159 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2160 {
78f12dd3
L
2161 if (check)
2162 as_error = as_fatal;
2163 else
2164 as_error = as_bad;
2165 (*as_error) (_("32bit mode not supported on `%s'."),
2166 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2167 }
eecb386c
AM
2168 stackop_size = '\0';
2169}
2170
78f12dd3
L
2171static void
2172set_code_flag (int value)
2173{
2174 update_code_flag (value, 0);
2175}
2176
eecb386c 2177static void
e3bb37b5 2178set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2179{
1e9cc1c2 2180 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2181 if (flag_code != CODE_16BIT)
2182 abort ();
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2185 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2186}
2187
2188static void
e3bb37b5 2189set_intel_syntax (int syntax_flag)
252b5132
RH
2190{
2191 /* Find out if register prefixing is specified. */
2192 int ask_naked_reg = 0;
2193
2194 SKIP_WHITESPACE ();
29b0f896 2195 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2196 {
d02603dc
NC
2197 char *string;
2198 int e = get_symbol_name (&string);
252b5132 2199
47926f60 2200 if (strcmp (string, "prefix") == 0)
252b5132 2201 ask_naked_reg = 1;
47926f60 2202 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2203 ask_naked_reg = -1;
2204 else
d0b47220 2205 as_bad (_("bad argument to syntax directive."));
d02603dc 2206 (void) restore_line_pointer (e);
252b5132
RH
2207 }
2208 demand_empty_rest_of_line ();
c3332e24 2209
252b5132
RH
2210 intel_syntax = syntax_flag;
2211
2212 if (ask_naked_reg == 0)
f86103b7
AM
2213 allow_naked_reg = (intel_syntax
2214 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2215 else
2216 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2217
ee86248c 2218 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2219
e4a3b5a4 2220 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2221 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2222 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2223}
2224
1efbbeb4
L
2225static void
2226set_intel_mnemonic (int mnemonic_flag)
2227{
e1d4d893 2228 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2229}
2230
db51cc60
L
2231static void
2232set_allow_index_reg (int flag)
2233{
2234 allow_index_reg = flag;
2235}
2236
cb19c032 2237static void
7bab8ab5 2238set_check (int what)
cb19c032 2239{
7bab8ab5
JB
2240 enum check_kind *kind;
2241 const char *str;
2242
2243 if (what)
2244 {
2245 kind = &operand_check;
2246 str = "operand";
2247 }
2248 else
2249 {
2250 kind = &sse_check;
2251 str = "sse";
2252 }
2253
cb19c032
L
2254 SKIP_WHITESPACE ();
2255
2256 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2257 {
d02603dc
NC
2258 char *string;
2259 int e = get_symbol_name (&string);
cb19c032
L
2260
2261 if (strcmp (string, "none") == 0)
7bab8ab5 2262 *kind = check_none;
cb19c032 2263 else if (strcmp (string, "warning") == 0)
7bab8ab5 2264 *kind = check_warning;
cb19c032 2265 else if (strcmp (string, "error") == 0)
7bab8ab5 2266 *kind = check_error;
cb19c032 2267 else
7bab8ab5 2268 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2269 (void) restore_line_pointer (e);
cb19c032
L
2270 }
2271 else
7bab8ab5 2272 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2273
2274 demand_empty_rest_of_line ();
2275}
2276
8a9036a4
L
2277static void
2278check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2279 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2280{
2281#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2282 static const char *arch;
2283
2284 /* Intel LIOM is only supported on ELF. */
2285 if (!IS_ELF)
2286 return;
2287
2288 if (!arch)
2289 {
2290 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2291 use default_arch. */
2292 arch = cpu_arch_name;
2293 if (!arch)
2294 arch = default_arch;
2295 }
2296
81486035
L
2297 /* If we are targeting Intel MCU, we must enable it. */
2298 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2299 || new_flag.bitfield.cpuiamcu)
2300 return;
2301
3632d14b 2302 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2303 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2304 || new_flag.bitfield.cpul1om)
8a9036a4 2305 return;
76ba9986 2306
7a9068fe
L
2307 /* If we are targeting Intel K1OM, we must enable it. */
2308 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2309 || new_flag.bitfield.cpuk1om)
2310 return;
2311
8a9036a4
L
2312 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2313#endif
2314}
2315
e413e4e9 2316static void
e3bb37b5 2317set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2318{
47926f60 2319 SKIP_WHITESPACE ();
e413e4e9 2320
29b0f896 2321 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2322 {
d02603dc
NC
2323 char *string;
2324 int e = get_symbol_name (&string);
91d6fa6a 2325 unsigned int j;
40fb9820 2326 i386_cpu_flags flags;
e413e4e9 2327
91d6fa6a 2328 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2329 {
91d6fa6a 2330 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2331 {
91d6fa6a 2332 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2333
5c6af06e
JB
2334 if (*string != '.')
2335 {
91d6fa6a 2336 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2337 cpu_sub_arch_name = NULL;
91d6fa6a 2338 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2339 if (flag_code == CODE_64BIT)
2340 {
2341 cpu_arch_flags.bitfield.cpu64 = 1;
2342 cpu_arch_flags.bitfield.cpuno64 = 0;
2343 }
2344 else
2345 {
2346 cpu_arch_flags.bitfield.cpu64 = 0;
2347 cpu_arch_flags.bitfield.cpuno64 = 1;
2348 }
91d6fa6a
NC
2349 cpu_arch_isa = cpu_arch[j].type;
2350 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2351 if (!cpu_arch_tune_set)
2352 {
2353 cpu_arch_tune = cpu_arch_isa;
2354 cpu_arch_tune_flags = cpu_arch_isa_flags;
2355 }
5c6af06e
JB
2356 break;
2357 }
40fb9820 2358
22109423 2359 if (!cpu_arch[j].negated)
309d3373 2360 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2361 cpu_arch[j].flags);
309d3373
JB
2362 else
2363 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2364 cpu_arch[j].flags);
81486035
L
2365
2366 if (!valid_iamcu_cpu_flags (&flags))
2367 as_fatal (_("`%s' isn't valid for Intel MCU"),
2368 cpu_arch[j].name);
2369 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2370 {
6305a203
L
2371 if (cpu_sub_arch_name)
2372 {
2373 char *name = cpu_sub_arch_name;
2374 cpu_sub_arch_name = concat (name,
91d6fa6a 2375 cpu_arch[j].name,
1bf57e9f 2376 (const char *) NULL);
6305a203
L
2377 free (name);
2378 }
2379 else
91d6fa6a 2380 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2381 cpu_arch_flags = flags;
a586129e 2382 cpu_arch_isa_flags = flags;
5c6af06e 2383 }
d02603dc 2384 (void) restore_line_pointer (e);
5c6af06e
JB
2385 demand_empty_rest_of_line ();
2386 return;
e413e4e9
AM
2387 }
2388 }
91d6fa6a 2389 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2390 as_bad (_("no such architecture: `%s'"), string);
2391
2392 *input_line_pointer = e;
2393 }
2394 else
2395 as_bad (_("missing cpu architecture"));
2396
fddf5b5b
AM
2397 no_cond_jump_promotion = 0;
2398 if (*input_line_pointer == ','
29b0f896 2399 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2400 {
d02603dc
NC
2401 char *string;
2402 char e;
2403
2404 ++input_line_pointer;
2405 e = get_symbol_name (&string);
fddf5b5b
AM
2406
2407 if (strcmp (string, "nojumps") == 0)
2408 no_cond_jump_promotion = 1;
2409 else if (strcmp (string, "jumps") == 0)
2410 ;
2411 else
2412 as_bad (_("no such architecture modifier: `%s'"), string);
2413
d02603dc 2414 (void) restore_line_pointer (e);
fddf5b5b
AM
2415 }
2416
e413e4e9
AM
2417 demand_empty_rest_of_line ();
2418}
2419
8a9036a4
L
2420enum bfd_architecture
2421i386_arch (void)
2422{
3632d14b 2423 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2424 {
2425 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2426 || flag_code != CODE_64BIT)
2427 as_fatal (_("Intel L1OM is 64bit ELF only"));
2428 return bfd_arch_l1om;
2429 }
7a9068fe
L
2430 else if (cpu_arch_isa == PROCESSOR_K1OM)
2431 {
2432 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2433 || flag_code != CODE_64BIT)
2434 as_fatal (_("Intel K1OM is 64bit ELF only"));
2435 return bfd_arch_k1om;
2436 }
81486035
L
2437 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2438 {
2439 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2440 || flag_code == CODE_64BIT)
2441 as_fatal (_("Intel MCU is 32bit ELF only"));
2442 return bfd_arch_iamcu;
2443 }
8a9036a4
L
2444 else
2445 return bfd_arch_i386;
2446}
2447
b9d79e03 2448unsigned long
7016a5d5 2449i386_mach (void)
b9d79e03 2450{
351f65ca 2451 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2452 {
3632d14b 2453 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2454 {
351f65ca
L
2455 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2456 || default_arch[6] != '\0')
8a9036a4
L
2457 as_fatal (_("Intel L1OM is 64bit ELF only"));
2458 return bfd_mach_l1om;
2459 }
7a9068fe
L
2460 else if (cpu_arch_isa == PROCESSOR_K1OM)
2461 {
2462 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2463 || default_arch[6] != '\0')
2464 as_fatal (_("Intel K1OM is 64bit ELF only"));
2465 return bfd_mach_k1om;
2466 }
351f65ca 2467 else if (default_arch[6] == '\0')
8a9036a4 2468 return bfd_mach_x86_64;
351f65ca
L
2469 else
2470 return bfd_mach_x64_32;
8a9036a4 2471 }
5197d474
L
2472 else if (!strcmp (default_arch, "i386")
2473 || !strcmp (default_arch, "iamcu"))
81486035
L
2474 {
2475 if (cpu_arch_isa == PROCESSOR_IAMCU)
2476 {
2477 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2478 as_fatal (_("Intel MCU is 32bit ELF only"));
2479 return bfd_mach_i386_iamcu;
2480 }
2481 else
2482 return bfd_mach_i386_i386;
2483 }
b9d79e03 2484 else
2b5d6a91 2485 as_fatal (_("unknown architecture"));
b9d79e03 2486}
b9d79e03 2487\f
252b5132 2488void
7016a5d5 2489md_begin (void)
252b5132
RH
2490{
2491 const char *hash_err;
2492
47926f60 2493 /* Initialize op_hash hash table. */
252b5132
RH
2494 op_hash = hash_new ();
2495
2496 {
d3ce72d0 2497 const insn_template *optab;
29b0f896 2498 templates *core_optab;
252b5132 2499
47926f60
KH
2500 /* Setup for loop. */
2501 optab = i386_optab;
252b5132
RH
2502 core_optab = (templates *) xmalloc (sizeof (templates));
2503 core_optab->start = optab;
2504
2505 while (1)
2506 {
2507 ++optab;
2508 if (optab->name == NULL
2509 || strcmp (optab->name, (optab - 1)->name) != 0)
2510 {
2511 /* different name --> ship out current template list;
47926f60 2512 add to hash table; & begin anew. */
252b5132
RH
2513 core_optab->end = optab;
2514 hash_err = hash_insert (op_hash,
2515 (optab - 1)->name,
5a49b8ac 2516 (void *) core_optab);
252b5132
RH
2517 if (hash_err)
2518 {
b37df7c4 2519 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2520 (optab - 1)->name,
2521 hash_err);
2522 }
2523 if (optab->name == NULL)
2524 break;
2525 core_optab = (templates *) xmalloc (sizeof (templates));
2526 core_optab->start = optab;
2527 }
2528 }
2529 }
2530
47926f60 2531 /* Initialize reg_hash hash table. */
252b5132
RH
2532 reg_hash = hash_new ();
2533 {
29b0f896 2534 const reg_entry *regtab;
c3fe08fa 2535 unsigned int regtab_size = i386_regtab_size;
252b5132 2536
c3fe08fa 2537 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2538 {
5a49b8ac 2539 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2540 if (hash_err)
b37df7c4 2541 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2542 regtab->reg_name,
2543 hash_err);
252b5132
RH
2544 }
2545 }
2546
47926f60 2547 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2548 {
29b0f896
AM
2549 int c;
2550 char *p;
252b5132
RH
2551
2552 for (c = 0; c < 256; c++)
2553 {
3882b010 2554 if (ISDIGIT (c))
252b5132
RH
2555 {
2556 digit_chars[c] = c;
2557 mnemonic_chars[c] = c;
2558 register_chars[c] = c;
2559 operand_chars[c] = c;
2560 }
3882b010 2561 else if (ISLOWER (c))
252b5132
RH
2562 {
2563 mnemonic_chars[c] = c;
2564 register_chars[c] = c;
2565 operand_chars[c] = c;
2566 }
3882b010 2567 else if (ISUPPER (c))
252b5132 2568 {
3882b010 2569 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2570 register_chars[c] = mnemonic_chars[c];
2571 operand_chars[c] = c;
2572 }
43234a1e
L
2573 else if (c == '{' || c == '}')
2574 operand_chars[c] = c;
252b5132 2575
3882b010 2576 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2577 identifier_chars[c] = c;
2578 else if (c >= 128)
2579 {
2580 identifier_chars[c] = c;
2581 operand_chars[c] = c;
2582 }
2583 }
2584
2585#ifdef LEX_AT
2586 identifier_chars['@'] = '@';
32137342
NC
2587#endif
2588#ifdef LEX_QM
2589 identifier_chars['?'] = '?';
2590 operand_chars['?'] = '?';
252b5132 2591#endif
252b5132 2592 digit_chars['-'] = '-';
c0f3af97 2593 mnemonic_chars['_'] = '_';
791fe849 2594 mnemonic_chars['-'] = '-';
0003779b 2595 mnemonic_chars['.'] = '.';
252b5132
RH
2596 identifier_chars['_'] = '_';
2597 identifier_chars['.'] = '.';
2598
2599 for (p = operand_special_chars; *p != '\0'; p++)
2600 operand_chars[(unsigned char) *p] = *p;
2601 }
2602
a4447b93
RH
2603 if (flag_code == CODE_64BIT)
2604 {
ca19b261
KT
2605#if defined (OBJ_COFF) && defined (TE_PE)
2606 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2607 ? 32 : 16);
2608#else
a4447b93 2609 x86_dwarf2_return_column = 16;
ca19b261 2610#endif
61ff971f 2611 x86_cie_data_alignment = -8;
a4447b93
RH
2612 }
2613 else
2614 {
2615 x86_dwarf2_return_column = 8;
2616 x86_cie_data_alignment = -4;
2617 }
252b5132
RH
2618}
2619
2620void
e3bb37b5 2621i386_print_statistics (FILE *file)
252b5132
RH
2622{
2623 hash_print_statistics (file, "i386 opcode", op_hash);
2624 hash_print_statistics (file, "i386 register", reg_hash);
2625}
2626\f
252b5132
RH
2627#ifdef DEBUG386
2628
ce8a8b2f 2629/* Debugging routines for md_assemble. */
d3ce72d0 2630static void pte (insn_template *);
40fb9820 2631static void pt (i386_operand_type);
e3bb37b5
L
2632static void pe (expressionS *);
2633static void ps (symbolS *);
252b5132
RH
2634
2635static void
e3bb37b5 2636pi (char *line, i386_insn *x)
252b5132 2637{
09137c09 2638 unsigned int j;
252b5132
RH
2639
2640 fprintf (stdout, "%s: template ", line);
2641 pte (&x->tm);
09f131f2
JH
2642 fprintf (stdout, " address: base %s index %s scale %x\n",
2643 x->base_reg ? x->base_reg->reg_name : "none",
2644 x->index_reg ? x->index_reg->reg_name : "none",
2645 x->log2_scale_factor);
2646 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2647 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2648 fprintf (stdout, " sib: base %x index %x scale %x\n",
2649 x->sib.base, x->sib.index, x->sib.scale);
2650 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2651 (x->rex & REX_W) != 0,
2652 (x->rex & REX_R) != 0,
2653 (x->rex & REX_X) != 0,
2654 (x->rex & REX_B) != 0);
09137c09 2655 for (j = 0; j < x->operands; j++)
252b5132 2656 {
09137c09
SP
2657 fprintf (stdout, " #%d: ", j + 1);
2658 pt (x->types[j]);
252b5132 2659 fprintf (stdout, "\n");
09137c09
SP
2660 if (x->types[j].bitfield.reg8
2661 || x->types[j].bitfield.reg16
2662 || x->types[j].bitfield.reg32
2663 || x->types[j].bitfield.reg64
2664 || x->types[j].bitfield.regmmx
2665 || x->types[j].bitfield.regxmm
2666 || x->types[j].bitfield.regymm
43234a1e 2667 || x->types[j].bitfield.regzmm
09137c09
SP
2668 || x->types[j].bitfield.sreg2
2669 || x->types[j].bitfield.sreg3
2670 || x->types[j].bitfield.control
2671 || x->types[j].bitfield.debug
2672 || x->types[j].bitfield.test)
2673 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2674 if (operand_type_check (x->types[j], imm))
2675 pe (x->op[j].imms);
2676 if (operand_type_check (x->types[j], disp))
2677 pe (x->op[j].disps);
252b5132
RH
2678 }
2679}
2680
2681static void
d3ce72d0 2682pte (insn_template *t)
252b5132 2683{
09137c09 2684 unsigned int j;
252b5132 2685 fprintf (stdout, " %d operands ", t->operands);
47926f60 2686 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2687 if (t->extension_opcode != None)
2688 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2689 if (t->opcode_modifier.d)
252b5132 2690 fprintf (stdout, "D");
40fb9820 2691 if (t->opcode_modifier.w)
252b5132
RH
2692 fprintf (stdout, "W");
2693 fprintf (stdout, "\n");
09137c09 2694 for (j = 0; j < t->operands; j++)
252b5132 2695 {
09137c09
SP
2696 fprintf (stdout, " #%d type ", j + 1);
2697 pt (t->operand_types[j]);
252b5132
RH
2698 fprintf (stdout, "\n");
2699 }
2700}
2701
2702static void
e3bb37b5 2703pe (expressionS *e)
252b5132 2704{
24eab124 2705 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2706 fprintf (stdout, " add_number %ld (%lx)\n",
2707 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2708 if (e->X_add_symbol)
2709 {
2710 fprintf (stdout, " add_symbol ");
2711 ps (e->X_add_symbol);
2712 fprintf (stdout, "\n");
2713 }
2714 if (e->X_op_symbol)
2715 {
2716 fprintf (stdout, " op_symbol ");
2717 ps (e->X_op_symbol);
2718 fprintf (stdout, "\n");
2719 }
2720}
2721
2722static void
e3bb37b5 2723ps (symbolS *s)
252b5132
RH
2724{
2725 fprintf (stdout, "%s type %s%s",
2726 S_GET_NAME (s),
2727 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2728 segment_name (S_GET_SEGMENT (s)));
2729}
2730
7b81dfbb 2731static struct type_name
252b5132 2732 {
40fb9820
L
2733 i386_operand_type mask;
2734 const char *name;
252b5132 2735 }
7b81dfbb 2736const type_names[] =
252b5132 2737{
40fb9820
L
2738 { OPERAND_TYPE_REG8, "r8" },
2739 { OPERAND_TYPE_REG16, "r16" },
2740 { OPERAND_TYPE_REG32, "r32" },
2741 { OPERAND_TYPE_REG64, "r64" },
2742 { OPERAND_TYPE_IMM8, "i8" },
2743 { OPERAND_TYPE_IMM8, "i8s" },
2744 { OPERAND_TYPE_IMM16, "i16" },
2745 { OPERAND_TYPE_IMM32, "i32" },
2746 { OPERAND_TYPE_IMM32S, "i32s" },
2747 { OPERAND_TYPE_IMM64, "i64" },
2748 { OPERAND_TYPE_IMM1, "i1" },
2749 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2750 { OPERAND_TYPE_DISP8, "d8" },
2751 { OPERAND_TYPE_DISP16, "d16" },
2752 { OPERAND_TYPE_DISP32, "d32" },
2753 { OPERAND_TYPE_DISP32S, "d32s" },
2754 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2755 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2756 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2757 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2758 { OPERAND_TYPE_CONTROL, "control reg" },
2759 { OPERAND_TYPE_TEST, "test reg" },
2760 { OPERAND_TYPE_DEBUG, "debug reg" },
2761 { OPERAND_TYPE_FLOATREG, "FReg" },
2762 { OPERAND_TYPE_FLOATACC, "FAcc" },
2763 { OPERAND_TYPE_SREG2, "SReg2" },
2764 { OPERAND_TYPE_SREG3, "SReg3" },
2765 { OPERAND_TYPE_ACC, "Acc" },
2766 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2767 { OPERAND_TYPE_REGMMX, "rMMX" },
2768 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2769 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2770 { OPERAND_TYPE_REGZMM, "rZMM" },
2771 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2772 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2773};
2774
2775static void
40fb9820 2776pt (i386_operand_type t)
252b5132 2777{
40fb9820 2778 unsigned int j;
c6fb90c8 2779 i386_operand_type a;
252b5132 2780
40fb9820 2781 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2782 {
2783 a = operand_type_and (t, type_names[j].mask);
0349dc08 2784 if (!operand_type_all_zero (&a))
c6fb90c8
L
2785 fprintf (stdout, "%s, ", type_names[j].name);
2786 }
252b5132
RH
2787 fflush (stdout);
2788}
2789
2790#endif /* DEBUG386 */
2791\f
252b5132 2792static bfd_reloc_code_real_type
3956db08 2793reloc (unsigned int size,
64e74474
AM
2794 int pcrel,
2795 int sign,
2796 bfd_reloc_code_real_type other)
252b5132 2797{
47926f60 2798 if (other != NO_RELOC)
3956db08 2799 {
91d6fa6a 2800 reloc_howto_type *rel;
3956db08
JB
2801
2802 if (size == 8)
2803 switch (other)
2804 {
64e74474
AM
2805 case BFD_RELOC_X86_64_GOT32:
2806 return BFD_RELOC_X86_64_GOT64;
2807 break;
553d1284
L
2808 case BFD_RELOC_X86_64_GOTPLT64:
2809 return BFD_RELOC_X86_64_GOTPLT64;
2810 break;
64e74474
AM
2811 case BFD_RELOC_X86_64_PLTOFF64:
2812 return BFD_RELOC_X86_64_PLTOFF64;
2813 break;
2814 case BFD_RELOC_X86_64_GOTPC32:
2815 other = BFD_RELOC_X86_64_GOTPC64;
2816 break;
2817 case BFD_RELOC_X86_64_GOTPCREL:
2818 other = BFD_RELOC_X86_64_GOTPCREL64;
2819 break;
2820 case BFD_RELOC_X86_64_TPOFF32:
2821 other = BFD_RELOC_X86_64_TPOFF64;
2822 break;
2823 case BFD_RELOC_X86_64_DTPOFF32:
2824 other = BFD_RELOC_X86_64_DTPOFF64;
2825 break;
2826 default:
2827 break;
3956db08 2828 }
e05278af 2829
8ce3d284 2830#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2831 if (other == BFD_RELOC_SIZE32)
2832 {
2833 if (size == 8)
1ab668bf 2834 other = BFD_RELOC_SIZE64;
8fd4256d 2835 if (pcrel)
1ab668bf
AM
2836 {
2837 as_bad (_("there are no pc-relative size relocations"));
2838 return NO_RELOC;
2839 }
8fd4256d 2840 }
8ce3d284 2841#endif
8fd4256d 2842
e05278af 2843 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2844 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2845 sign = -1;
2846
91d6fa6a
NC
2847 rel = bfd_reloc_type_lookup (stdoutput, other);
2848 if (!rel)
3956db08 2849 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2850 else if (size != bfd_get_reloc_size (rel))
3956db08 2851 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2852 bfd_get_reloc_size (rel),
3956db08 2853 size);
91d6fa6a 2854 else if (pcrel && !rel->pc_relative)
3956db08 2855 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2856 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2857 && !sign)
91d6fa6a 2858 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2859 && sign > 0))
3956db08
JB
2860 as_bad (_("relocated field and relocation type differ in signedness"));
2861 else
2862 return other;
2863 return NO_RELOC;
2864 }
252b5132
RH
2865
2866 if (pcrel)
2867 {
3e73aa7c 2868 if (!sign)
3956db08 2869 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2870 switch (size)
2871 {
2872 case 1: return BFD_RELOC_8_PCREL;
2873 case 2: return BFD_RELOC_16_PCREL;
d258b828 2874 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2875 case 8: return BFD_RELOC_64_PCREL;
252b5132 2876 }
3956db08 2877 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2878 }
2879 else
2880 {
3956db08 2881 if (sign > 0)
e5cb08ac 2882 switch (size)
3e73aa7c
JH
2883 {
2884 case 4: return BFD_RELOC_X86_64_32S;
2885 }
2886 else
2887 switch (size)
2888 {
2889 case 1: return BFD_RELOC_8;
2890 case 2: return BFD_RELOC_16;
2891 case 4: return BFD_RELOC_32;
2892 case 8: return BFD_RELOC_64;
2893 }
3956db08
JB
2894 as_bad (_("cannot do %s %u byte relocation"),
2895 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2896 }
2897
0cc9e1d3 2898 return NO_RELOC;
252b5132
RH
2899}
2900
47926f60
KH
2901/* Here we decide which fixups can be adjusted to make them relative to
2902 the beginning of the section instead of the symbol. Basically we need
2903 to make sure that the dynamic relocations are done correctly, so in
2904 some cases we force the original symbol to be used. */
2905
252b5132 2906int
e3bb37b5 2907tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2908{
6d249963 2909#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2910 if (!IS_ELF)
31312f95
AM
2911 return 1;
2912
a161fe53
AM
2913 /* Don't adjust pc-relative references to merge sections in 64-bit
2914 mode. */
2915 if (use_rela_relocations
2916 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2917 && fixP->fx_pcrel)
252b5132 2918 return 0;
31312f95 2919
8d01d9a9
AJ
2920 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2921 and changed later by validate_fix. */
2922 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2923 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2924 return 0;
2925
8fd4256d
L
2926 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2927 for size relocations. */
2928 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2929 || fixP->fx_r_type == BFD_RELOC_SIZE64
2930 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
2931 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2932 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 2933 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2946 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2952 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2957 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2958 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2959 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2960 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2961 return 0;
31312f95 2962#endif
252b5132
RH
2963 return 1;
2964}
252b5132 2965
b4cac588 2966static int
e3bb37b5 2967intel_float_operand (const char *mnemonic)
252b5132 2968{
9306ca4a
JB
2969 /* Note that the value returned is meaningful only for opcodes with (memory)
2970 operands, hence the code here is free to improperly handle opcodes that
2971 have no operands (for better performance and smaller code). */
2972
2973 if (mnemonic[0] != 'f')
2974 return 0; /* non-math */
2975
2976 switch (mnemonic[1])
2977 {
2978 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2979 the fs segment override prefix not currently handled because no
2980 call path can make opcodes without operands get here */
2981 case 'i':
2982 return 2 /* integer op */;
2983 case 'l':
2984 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2985 return 3; /* fldcw/fldenv */
2986 break;
2987 case 'n':
2988 if (mnemonic[2] != 'o' /* fnop */)
2989 return 3; /* non-waiting control op */
2990 break;
2991 case 'r':
2992 if (mnemonic[2] == 's')
2993 return 3; /* frstor/frstpm */
2994 break;
2995 case 's':
2996 if (mnemonic[2] == 'a')
2997 return 3; /* fsave */
2998 if (mnemonic[2] == 't')
2999 {
3000 switch (mnemonic[3])
3001 {
3002 case 'c': /* fstcw */
3003 case 'd': /* fstdw */
3004 case 'e': /* fstenv */
3005 case 's': /* fsts[gw] */
3006 return 3;
3007 }
3008 }
3009 break;
3010 case 'x':
3011 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3012 return 0; /* fxsave/fxrstor are not really math ops */
3013 break;
3014 }
252b5132 3015
9306ca4a 3016 return 1;
252b5132
RH
3017}
3018
c0f3af97
L
3019/* Build the VEX prefix. */
3020
3021static void
d3ce72d0 3022build_vex_prefix (const insn_template *t)
c0f3af97
L
3023{
3024 unsigned int register_specifier;
3025 unsigned int implied_prefix;
3026 unsigned int vector_length;
3027
3028 /* Check register specifier. */
3029 if (i.vex.register_specifier)
43234a1e
L
3030 {
3031 register_specifier =
3032 ~register_number (i.vex.register_specifier) & 0xf;
3033 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3034 }
c0f3af97
L
3035 else
3036 register_specifier = 0xf;
3037
fa99fab2
L
3038 /* Use 2-byte VEX prefix by swappping destination and source
3039 operand. */
3040 if (!i.swap_operand
3041 && i.operands == i.reg_operands
7f399153 3042 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
3043 && i.tm.opcode_modifier.s
3044 && i.rex == REX_B)
3045 {
3046 unsigned int xchg = i.operands - 1;
3047 union i386_op temp_op;
3048 i386_operand_type temp_type;
3049
3050 temp_type = i.types[xchg];
3051 i.types[xchg] = i.types[0];
3052 i.types[0] = temp_type;
3053 temp_op = i.op[xchg];
3054 i.op[xchg] = i.op[0];
3055 i.op[0] = temp_op;
3056
9c2799c2 3057 gas_assert (i.rm.mode == 3);
fa99fab2
L
3058
3059 i.rex = REX_R;
3060 xchg = i.rm.regmem;
3061 i.rm.regmem = i.rm.reg;
3062 i.rm.reg = xchg;
3063
3064 /* Use the next insn. */
3065 i.tm = t[1];
3066 }
3067
539f890d
L
3068 if (i.tm.opcode_modifier.vex == VEXScalar)
3069 vector_length = avxscalar;
3070 else
3071 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3072
3073 switch ((i.tm.base_opcode >> 8) & 0xff)
3074 {
3075 case 0:
3076 implied_prefix = 0;
3077 break;
3078 case DATA_PREFIX_OPCODE:
3079 implied_prefix = 1;
3080 break;
3081 case REPE_PREFIX_OPCODE:
3082 implied_prefix = 2;
3083 break;
3084 case REPNE_PREFIX_OPCODE:
3085 implied_prefix = 3;
3086 break;
3087 default:
3088 abort ();
3089 }
3090
3091 /* Use 2-byte VEX prefix if possible. */
7f399153 3092 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3093 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3094 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3095 {
3096 /* 2-byte VEX prefix. */
3097 unsigned int r;
3098
3099 i.vex.length = 2;
3100 i.vex.bytes[0] = 0xc5;
3101
3102 /* Check the REX.R bit. */
3103 r = (i.rex & REX_R) ? 0 : 1;
3104 i.vex.bytes[1] = (r << 7
3105 | register_specifier << 3
3106 | vector_length << 2
3107 | implied_prefix);
3108 }
3109 else
3110 {
3111 /* 3-byte VEX prefix. */
3112 unsigned int m, w;
3113
f88c9eb0 3114 i.vex.length = 3;
f88c9eb0 3115
7f399153 3116 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3117 {
7f399153
L
3118 case VEX0F:
3119 m = 0x1;
80de6e00 3120 i.vex.bytes[0] = 0xc4;
7f399153
L
3121 break;
3122 case VEX0F38:
3123 m = 0x2;
80de6e00 3124 i.vex.bytes[0] = 0xc4;
7f399153
L
3125 break;
3126 case VEX0F3A:
3127 m = 0x3;
80de6e00 3128 i.vex.bytes[0] = 0xc4;
7f399153
L
3129 break;
3130 case XOP08:
5dd85c99
SP
3131 m = 0x8;
3132 i.vex.bytes[0] = 0x8f;
7f399153
L
3133 break;
3134 case XOP09:
f88c9eb0
SP
3135 m = 0x9;
3136 i.vex.bytes[0] = 0x8f;
7f399153
L
3137 break;
3138 case XOP0A:
f88c9eb0
SP
3139 m = 0xa;
3140 i.vex.bytes[0] = 0x8f;
7f399153
L
3141 break;
3142 default:
3143 abort ();
f88c9eb0 3144 }
c0f3af97 3145
c0f3af97
L
3146 /* The high 3 bits of the second VEX byte are 1's compliment
3147 of RXB bits from REX. */
3148 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3149
3150 /* Check the REX.W bit. */
3151 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3152 if (i.tm.opcode_modifier.vexw == VEXW1)
3153 w = 1;
c0f3af97
L
3154
3155 i.vex.bytes[2] = (w << 7
3156 | register_specifier << 3
3157 | vector_length << 2
3158 | implied_prefix);
3159 }
3160}
3161
43234a1e
L
3162/* Build the EVEX prefix. */
3163
3164static void
3165build_evex_prefix (void)
3166{
3167 unsigned int register_specifier;
3168 unsigned int implied_prefix;
3169 unsigned int m, w;
3170 rex_byte vrex_used = 0;
3171
3172 /* Check register specifier. */
3173 if (i.vex.register_specifier)
3174 {
3175 gas_assert ((i.vrex & REX_X) == 0);
3176
3177 register_specifier = i.vex.register_specifier->reg_num;
3178 if ((i.vex.register_specifier->reg_flags & RegRex))
3179 register_specifier += 8;
3180 /* The upper 16 registers are encoded in the fourth byte of the
3181 EVEX prefix. */
3182 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3183 i.vex.bytes[3] = 0x8;
3184 register_specifier = ~register_specifier & 0xf;
3185 }
3186 else
3187 {
3188 register_specifier = 0xf;
3189
3190 /* Encode upper 16 vector index register in the fourth byte of
3191 the EVEX prefix. */
3192 if (!(i.vrex & REX_X))
3193 i.vex.bytes[3] = 0x8;
3194 else
3195 vrex_used |= REX_X;
3196 }
3197
3198 switch ((i.tm.base_opcode >> 8) & 0xff)
3199 {
3200 case 0:
3201 implied_prefix = 0;
3202 break;
3203 case DATA_PREFIX_OPCODE:
3204 implied_prefix = 1;
3205 break;
3206 case REPE_PREFIX_OPCODE:
3207 implied_prefix = 2;
3208 break;
3209 case REPNE_PREFIX_OPCODE:
3210 implied_prefix = 3;
3211 break;
3212 default:
3213 abort ();
3214 }
3215
3216 /* 4 byte EVEX prefix. */
3217 i.vex.length = 4;
3218 i.vex.bytes[0] = 0x62;
3219
3220 /* mmmm bits. */
3221 switch (i.tm.opcode_modifier.vexopcode)
3222 {
3223 case VEX0F:
3224 m = 1;
3225 break;
3226 case VEX0F38:
3227 m = 2;
3228 break;
3229 case VEX0F3A:
3230 m = 3;
3231 break;
3232 default:
3233 abort ();
3234 break;
3235 }
3236
3237 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3238 bits from REX. */
3239 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3240
3241 /* The fifth bit of the second EVEX byte is 1's compliment of the
3242 REX_R bit in VREX. */
3243 if (!(i.vrex & REX_R))
3244 i.vex.bytes[1] |= 0x10;
3245 else
3246 vrex_used |= REX_R;
3247
3248 if ((i.reg_operands + i.imm_operands) == i.operands)
3249 {
3250 /* When all operands are registers, the REX_X bit in REX is not
3251 used. We reuse it to encode the upper 16 registers, which is
3252 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3253 as 1's compliment. */
3254 if ((i.vrex & REX_B))
3255 {
3256 vrex_used |= REX_B;
3257 i.vex.bytes[1] &= ~0x40;
3258 }
3259 }
3260
3261 /* EVEX instructions shouldn't need the REX prefix. */
3262 i.vrex &= ~vrex_used;
3263 gas_assert (i.vrex == 0);
3264
3265 /* Check the REX.W bit. */
3266 w = (i.rex & REX_W) ? 1 : 0;
3267 if (i.tm.opcode_modifier.vexw)
3268 {
3269 if (i.tm.opcode_modifier.vexw == VEXW1)
3270 w = 1;
3271 }
3272 /* If w is not set it means we are dealing with WIG instruction. */
3273 else if (!w)
3274 {
3275 if (evexwig == evexw1)
3276 w = 1;
3277 }
3278
3279 /* Encode the U bit. */
3280 implied_prefix |= 0x4;
3281
3282 /* The third byte of the EVEX prefix. */
3283 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3284
3285 /* The fourth byte of the EVEX prefix. */
3286 /* The zeroing-masking bit. */
3287 if (i.mask && i.mask->zeroing)
3288 i.vex.bytes[3] |= 0x80;
3289
3290 /* Don't always set the broadcast bit if there is no RC. */
3291 if (!i.rounding)
3292 {
3293 /* Encode the vector length. */
3294 unsigned int vec_length;
3295
3296 switch (i.tm.opcode_modifier.evex)
3297 {
3298 case EVEXLIG: /* LL' is ignored */
3299 vec_length = evexlig << 5;
3300 break;
3301 case EVEX128:
3302 vec_length = 0 << 5;
3303 break;
3304 case EVEX256:
3305 vec_length = 1 << 5;
3306 break;
3307 case EVEX512:
3308 vec_length = 2 << 5;
3309 break;
3310 default:
3311 abort ();
3312 break;
3313 }
3314 i.vex.bytes[3] |= vec_length;
3315 /* Encode the broadcast bit. */
3316 if (i.broadcast)
3317 i.vex.bytes[3] |= 0x10;
3318 }
3319 else
3320 {
3321 if (i.rounding->type != saeonly)
3322 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3323 else
d3d3c6db 3324 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3325 }
3326
3327 if (i.mask && i.mask->mask)
3328 i.vex.bytes[3] |= i.mask->mask->reg_num;
3329}
3330
65da13b5
L
3331static void
3332process_immext (void)
3333{
3334 expressionS *exp;
3335
4c692bc7
JB
3336 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3337 && i.operands > 0)
65da13b5 3338 {
4c692bc7
JB
3339 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3340 with an opcode suffix which is coded in the same place as an
3341 8-bit immediate field would be.
3342 Here we check those operands and remove them afterwards. */
65da13b5
L
3343 unsigned int x;
3344
3345 for (x = 0; x < i.operands; x++)
4c692bc7 3346 if (register_number (i.op[x].regs) != x)
65da13b5 3347 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3348 register_prefix, i.op[x].regs->reg_name, x + 1,
3349 i.tm.name);
3350
3351 i.operands = 0;
65da13b5
L
3352 }
3353
9916071f
AP
3354 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3355 {
3356 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3357 suffix which is coded in the same place as an 8-bit immediate
3358 field would be.
3359 Here we check those operands and remove them afterwards. */
3360 unsigned int x;
3361
3362 if (i.operands != 3)
3363 abort();
3364
3365 for (x = 0; x < 2; x++)
3366 if (register_number (i.op[x].regs) != x)
3367 goto bad_register_operand;
3368
3369 /* Check for third operand for mwaitx/monitorx insn. */
3370 if (register_number (i.op[x].regs)
3371 != (x + (i.tm.extension_opcode == 0xfb)))
3372 {
3373bad_register_operand:
3374 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3375 register_prefix, i.op[x].regs->reg_name, x+1,
3376 i.tm.name);
3377 }
3378
3379 i.operands = 0;
3380 }
3381
c0f3af97 3382 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3383 which is coded in the same place as an 8-bit immediate field
3384 would be. Here we fake an 8-bit immediate operand from the
3385 opcode suffix stored in tm.extension_opcode.
3386
c1e679ec 3387 AVX instructions also use this encoding, for some of
c0f3af97 3388 3 argument instructions. */
65da13b5 3389
43234a1e 3390 gas_assert (i.imm_operands <= 1
7ab9ffdd 3391 && (i.operands <= 2
43234a1e
L
3392 || ((i.tm.opcode_modifier.vex
3393 || i.tm.opcode_modifier.evex)
7ab9ffdd 3394 && i.operands <= 4)));
65da13b5
L
3395
3396 exp = &im_expressions[i.imm_operands++];
3397 i.op[i.operands].imms = exp;
3398 i.types[i.operands] = imm8;
3399 i.operands++;
3400 exp->X_op = O_constant;
3401 exp->X_add_number = i.tm.extension_opcode;
3402 i.tm.extension_opcode = None;
3403}
3404
42164a71
L
3405
3406static int
3407check_hle (void)
3408{
3409 switch (i.tm.opcode_modifier.hleprefixok)
3410 {
3411 default:
3412 abort ();
82c2def5 3413 case HLEPrefixNone:
165de32a
L
3414 as_bad (_("invalid instruction `%s' after `%s'"),
3415 i.tm.name, i.hle_prefix);
42164a71 3416 return 0;
82c2def5 3417 case HLEPrefixLock:
42164a71
L
3418 if (i.prefix[LOCK_PREFIX])
3419 return 1;
165de32a 3420 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3421 return 0;
82c2def5 3422 case HLEPrefixAny:
42164a71 3423 return 1;
82c2def5 3424 case HLEPrefixRelease:
42164a71
L
3425 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3426 {
3427 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3428 i.tm.name);
3429 return 0;
3430 }
3431 if (i.mem_operands == 0
3432 || !operand_type_check (i.types[i.operands - 1], anymem))
3433 {
3434 as_bad (_("memory destination needed for instruction `%s'"
3435 " after `xrelease'"), i.tm.name);
3436 return 0;
3437 }
3438 return 1;
3439 }
3440}
3441
252b5132
RH
3442/* This is the guts of the machine-dependent assembler. LINE points to a
3443 machine dependent instruction. This function is supposed to emit
3444 the frags/bytes it assembles to. */
3445
3446void
65da13b5 3447md_assemble (char *line)
252b5132 3448{
40fb9820 3449 unsigned int j;
252b5132 3450 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 3451 const insn_template *t;
252b5132 3452
47926f60 3453 /* Initialize globals. */
252b5132
RH
3454 memset (&i, '\0', sizeof (i));
3455 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3456 i.reloc[j] = NO_RELOC;
252b5132
RH
3457 memset (disp_expressions, '\0', sizeof (disp_expressions));
3458 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3459 save_stack_p = save_stack;
252b5132
RH
3460
3461 /* First parse an instruction mnemonic & call i386_operand for the operands.
3462 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3463 start of a (possibly prefixed) mnemonic. */
252b5132 3464
29b0f896
AM
3465 line = parse_insn (line, mnemonic);
3466 if (line == NULL)
3467 return;
252b5132 3468
29b0f896 3469 line = parse_operands (line, mnemonic);
ee86248c 3470 this_operand = -1;
29b0f896
AM
3471 if (line == NULL)
3472 return;
252b5132 3473
29b0f896
AM
3474 /* Now we've parsed the mnemonic into a set of templates, and have the
3475 operands at hand. */
3476
3477 /* All intel opcodes have reversed operands except for "bound" and
3478 "enter". We also don't reverse intersegment "jmp" and "call"
3479 instructions with 2 immediate operands so that the immediate segment
050dfa73 3480 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3481 if (intel_syntax
3482 && i.operands > 1
29b0f896 3483 && (strcmp (mnemonic, "bound") != 0)
30123838 3484 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3485 && !(operand_type_check (i.types[0], imm)
3486 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3487 swap_operands ();
3488
ec56d5c0
JB
3489 /* The order of the immediates should be reversed
3490 for 2 immediates extrq and insertq instructions */
3491 if (i.imm_operands == 2
3492 && (strcmp (mnemonic, "extrq") == 0
3493 || strcmp (mnemonic, "insertq") == 0))
3494 swap_2_operands (0, 1);
3495
29b0f896
AM
3496 if (i.imm_operands)
3497 optimize_imm ();
3498
b300c311
L
3499 /* Don't optimize displacement for movabs since it only takes 64bit
3500 displacement. */
3501 if (i.disp_operands
a501d77e 3502 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3503 && (flag_code != CODE_64BIT
3504 || strcmp (mnemonic, "movabs") != 0))
3505 optimize_disp ();
29b0f896
AM
3506
3507 /* Next, we find a template that matches the given insn,
3508 making sure the overlap of the given operands types is consistent
3509 with the template operand types. */
252b5132 3510
fa99fab2 3511 if (!(t = match_template ()))
29b0f896 3512 return;
252b5132 3513
7bab8ab5 3514 if (sse_check != check_none
81f8a913 3515 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3516 && (i.tm.cpu_flags.bitfield.cpusse
3517 || i.tm.cpu_flags.bitfield.cpusse2
3518 || i.tm.cpu_flags.bitfield.cpusse3
3519 || i.tm.cpu_flags.bitfield.cpussse3
3520 || i.tm.cpu_flags.bitfield.cpusse4_1
3521 || i.tm.cpu_flags.bitfield.cpusse4_2))
3522 {
7bab8ab5 3523 (sse_check == check_warning
daf50ae7
L
3524 ? as_warn
3525 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3526 }
3527
321fd21e
L
3528 /* Zap movzx and movsx suffix. The suffix has been set from
3529 "word ptr" or "byte ptr" on the source operand in Intel syntax
3530 or extracted from mnemonic in AT&T syntax. But we'll use
3531 the destination register to choose the suffix for encoding. */
3532 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3533 {
321fd21e
L
3534 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3535 there is no suffix, the default will be byte extension. */
3536 if (i.reg_operands != 2
3537 && !i.suffix
7ab9ffdd 3538 && intel_syntax)
321fd21e
L
3539 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3540
3541 i.suffix = 0;
cd61ebfe 3542 }
24eab124 3543
40fb9820 3544 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3545 if (!add_prefix (FWAIT_OPCODE))
3546 return;
252b5132 3547
d5de92cf
L
3548 /* Check if REP prefix is OK. */
3549 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3550 {
3551 as_bad (_("invalid instruction `%s' after `%s'"),
3552 i.tm.name, i.rep_prefix);
3553 return;
3554 }
3555
c1ba0266
L
3556 /* Check for lock without a lockable instruction. Destination operand
3557 must be memory unless it is xchg (0x86). */
c32fa91d
L
3558 if (i.prefix[LOCK_PREFIX]
3559 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3560 || i.mem_operands == 0
3561 || (i.tm.base_opcode != 0x86
3562 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3563 {
3564 as_bad (_("expecting lockable instruction after `lock'"));
3565 return;
3566 }
3567
42164a71 3568 /* Check if HLE prefix is OK. */
165de32a 3569 if (i.hle_prefix && !check_hle ())
42164a71
L
3570 return;
3571
7e8b059b
L
3572 /* Check BND prefix. */
3573 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3574 as_bad (_("expecting valid branch instruction after `bnd'"));
3575
3576 if (i.tm.cpu_flags.bitfield.cpumpx
3577 && flag_code == CODE_64BIT
3578 && i.prefix[ADDR_PREFIX])
3579 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3580
3581 /* Insert BND prefix. */
3582 if (add_bnd_prefix
3583 && i.tm.opcode_modifier.bndprefixok
3584 && !i.prefix[BND_PREFIX])
3585 add_prefix (BND_PREFIX_OPCODE);
3586
29b0f896 3587 /* Check string instruction segment overrides. */
40fb9820 3588 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3589 {
3590 if (!check_string ())
5dd0794d 3591 return;
fc0763e6 3592 i.disp_operands = 0;
29b0f896 3593 }
5dd0794d 3594
29b0f896
AM
3595 if (!process_suffix ())
3596 return;
e413e4e9 3597
bc0844ae
L
3598 /* Update operand types. */
3599 for (j = 0; j < i.operands; j++)
3600 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3601
29b0f896
AM
3602 /* Make still unresolved immediate matches conform to size of immediate
3603 given in i.suffix. */
3604 if (!finalize_imm ())
3605 return;
252b5132 3606
40fb9820 3607 if (i.types[0].bitfield.imm1)
29b0f896 3608 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3609
9afe6eb8
L
3610 /* We only need to check those implicit registers for instructions
3611 with 3 operands or less. */
3612 if (i.operands <= 3)
3613 for (j = 0; j < i.operands; j++)
3614 if (i.types[j].bitfield.inoutportreg
3615 || i.types[j].bitfield.shiftcount
3616 || i.types[j].bitfield.acc
3617 || i.types[j].bitfield.floatacc)
3618 i.reg_operands--;
40fb9820 3619
c0f3af97
L
3620 /* ImmExt should be processed after SSE2AVX. */
3621 if (!i.tm.opcode_modifier.sse2avx
3622 && i.tm.opcode_modifier.immext)
65da13b5 3623 process_immext ();
252b5132 3624
29b0f896
AM
3625 /* For insns with operands there are more diddles to do to the opcode. */
3626 if (i.operands)
3627 {
3628 if (!process_operands ())
3629 return;
3630 }
40fb9820 3631 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3632 {
3633 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3634 as_warn (_("translating to `%sp'"), i.tm.name);
3635 }
252b5132 3636
9e5e5283
L
3637 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3638 {
3639 if (flag_code == CODE_16BIT)
3640 {
3641 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3642 i.tm.name);
3643 return;
3644 }
c0f3af97 3645
9e5e5283
L
3646 if (i.tm.opcode_modifier.vex)
3647 build_vex_prefix (t);
3648 else
3649 build_evex_prefix ();
3650 }
43234a1e 3651
5dd85c99
SP
3652 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3653 instructions may define INT_OPCODE as well, so avoid this corner
3654 case for those instructions that use MODRM. */
3655 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3656 && !i.tm.opcode_modifier.modrm
3657 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3658 {
3659 i.tm.base_opcode = INT3_OPCODE;
3660 i.imm_operands = 0;
3661 }
252b5132 3662
40fb9820
L
3663 if ((i.tm.opcode_modifier.jump
3664 || i.tm.opcode_modifier.jumpbyte
3665 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3666 && i.op[0].disps->X_op == O_constant)
3667 {
3668 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3669 the absolute address given by the constant. Since ix86 jumps and
3670 calls are pc relative, we need to generate a reloc. */
3671 i.op[0].disps->X_add_symbol = &abs_symbol;
3672 i.op[0].disps->X_op = O_symbol;
3673 }
252b5132 3674
40fb9820 3675 if (i.tm.opcode_modifier.rex64)
161a04f6 3676 i.rex |= REX_W;
252b5132 3677
29b0f896
AM
3678 /* For 8 bit registers we need an empty rex prefix. Also if the
3679 instruction already has a prefix, we need to convert old
3680 registers to new ones. */
773f551c 3681
40fb9820 3682 if ((i.types[0].bitfield.reg8
29b0f896 3683 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3684 || (i.types[1].bitfield.reg8
29b0f896 3685 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3686 || ((i.types[0].bitfield.reg8
3687 || i.types[1].bitfield.reg8)
29b0f896
AM
3688 && i.rex != 0))
3689 {
3690 int x;
726c5dcd 3691
29b0f896
AM
3692 i.rex |= REX_OPCODE;
3693 for (x = 0; x < 2; x++)
3694 {
3695 /* Look for 8 bit operand that uses old registers. */
40fb9820 3696 if (i.types[x].bitfield.reg8
29b0f896 3697 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3698 {
29b0f896
AM
3699 /* In case it is "hi" register, give up. */
3700 if (i.op[x].regs->reg_num > 3)
a540244d 3701 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3702 "instruction requiring REX prefix."),
a540244d 3703 register_prefix, i.op[x].regs->reg_name);
773f551c 3704
29b0f896
AM
3705 /* Otherwise it is equivalent to the extended register.
3706 Since the encoding doesn't change this is merely
3707 cosmetic cleanup for debug output. */
3708
3709 i.op[x].regs = i.op[x].regs + 8;
773f551c 3710 }
29b0f896
AM
3711 }
3712 }
773f551c 3713
7ab9ffdd 3714 if (i.rex != 0)
29b0f896
AM
3715 add_prefix (REX_OPCODE | i.rex);
3716
3717 /* We are ready to output the insn. */
3718 output_insn ();
3719}
3720
3721static char *
e3bb37b5 3722parse_insn (char *line, char *mnemonic)
29b0f896
AM
3723{
3724 char *l = line;
3725 char *token_start = l;
3726 char *mnem_p;
5c6af06e 3727 int supported;
d3ce72d0 3728 const insn_template *t;
b6169b20 3729 char *dot_p = NULL;
29b0f896 3730
29b0f896
AM
3731 while (1)
3732 {
3733 mnem_p = mnemonic;
3734 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3735 {
b6169b20
L
3736 if (*mnem_p == '.')
3737 dot_p = mnem_p;
29b0f896
AM
3738 mnem_p++;
3739 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3740 {
29b0f896
AM
3741 as_bad (_("no such instruction: `%s'"), token_start);
3742 return NULL;
3743 }
3744 l++;
3745 }
3746 if (!is_space_char (*l)
3747 && *l != END_OF_INSN
e44823cf
JB
3748 && (intel_syntax
3749 || (*l != PREFIX_SEPARATOR
3750 && *l != ',')))
29b0f896
AM
3751 {
3752 as_bad (_("invalid character %s in mnemonic"),
3753 output_invalid (*l));
3754 return NULL;
3755 }
3756 if (token_start == l)
3757 {
e44823cf 3758 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3759 as_bad (_("expecting prefix; got nothing"));
3760 else
3761 as_bad (_("expecting mnemonic; got nothing"));
3762 return NULL;
3763 }
45288df1 3764
29b0f896 3765 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3766 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3767
29b0f896
AM
3768 if (*l != END_OF_INSN
3769 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3770 && current_templates
40fb9820 3771 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3772 {
c6fb90c8 3773 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3774 {
3775 as_bad ((flag_code != CODE_64BIT
3776 ? _("`%s' is only supported in 64-bit mode")
3777 : _("`%s' is not supported in 64-bit mode")),
3778 current_templates->start->name);
3779 return NULL;
3780 }
29b0f896
AM
3781 /* If we are in 16-bit mode, do not allow addr16 or data16.
3782 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3783 if ((current_templates->start->opcode_modifier.size16
3784 || current_templates->start->opcode_modifier.size32)
29b0f896 3785 && flag_code != CODE_64BIT
40fb9820 3786 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3787 ^ (flag_code == CODE_16BIT)))
3788 {
3789 as_bad (_("redundant %s prefix"),
3790 current_templates->start->name);
3791 return NULL;
45288df1 3792 }
29b0f896
AM
3793 /* Add prefix, checking for repeated prefixes. */
3794 switch (add_prefix (current_templates->start->base_opcode))
3795 {
c32fa91d 3796 case PREFIX_EXIST:
29b0f896 3797 return NULL;
c32fa91d 3798 case PREFIX_REP:
42164a71 3799 if (current_templates->start->cpu_flags.bitfield.cpuhle)
165de32a 3800 i.hle_prefix = current_templates->start->name;
7e8b059b
L
3801 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3802 i.bnd_prefix = current_templates->start->name;
42164a71 3803 else
d5de92cf 3804 i.rep_prefix = current_templates->start->name;
29b0f896 3805 break;
c32fa91d
L
3806 default:
3807 break;
29b0f896
AM
3808 }
3809 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3810 token_start = ++l;
3811 }
3812 else
3813 break;
3814 }
45288df1 3815
30a55f88 3816 if (!current_templates)
b6169b20 3817 {
f8a5c266
L
3818 /* Check if we should swap operand or force 32bit displacement in
3819 encoding. */
30a55f88
L
3820 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3821 i.swap_operand = 1;
8d63c93e 3822 else if (mnem_p - 3 == dot_p
a501d77e
L
3823 && dot_p[1] == 'd'
3824 && dot_p[2] == '8')
3825 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3826 else if (mnem_p - 4 == dot_p
f8a5c266
L
3827 && dot_p[1] == 'd'
3828 && dot_p[2] == '3'
3829 && dot_p[3] == '2')
a501d77e 3830 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3831 else
3832 goto check_suffix;
3833 mnem_p = dot_p;
3834 *dot_p = '\0';
d3ce72d0 3835 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3836 }
3837
29b0f896
AM
3838 if (!current_templates)
3839 {
b6169b20 3840check_suffix:
29b0f896
AM
3841 /* See if we can get a match by trimming off a suffix. */
3842 switch (mnem_p[-1])
3843 {
3844 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3845 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3846 i.suffix = SHORT_MNEM_SUFFIX;
3847 else
29b0f896
AM
3848 case BYTE_MNEM_SUFFIX:
3849 case QWORD_MNEM_SUFFIX:
3850 i.suffix = mnem_p[-1];
3851 mnem_p[-1] = '\0';
d3ce72d0
NC
3852 current_templates = (const templates *) hash_find (op_hash,
3853 mnemonic);
29b0f896
AM
3854 break;
3855 case SHORT_MNEM_SUFFIX:
3856 case LONG_MNEM_SUFFIX:
3857 if (!intel_syntax)
3858 {
3859 i.suffix = mnem_p[-1];
3860 mnem_p[-1] = '\0';
d3ce72d0
NC
3861 current_templates = (const templates *) hash_find (op_hash,
3862 mnemonic);
29b0f896
AM
3863 }
3864 break;
252b5132 3865
29b0f896
AM
3866 /* Intel Syntax. */
3867 case 'd':
3868 if (intel_syntax)
3869 {
9306ca4a 3870 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3871 i.suffix = SHORT_MNEM_SUFFIX;
3872 else
3873 i.suffix = LONG_MNEM_SUFFIX;
3874 mnem_p[-1] = '\0';
d3ce72d0
NC
3875 current_templates = (const templates *) hash_find (op_hash,
3876 mnemonic);
29b0f896
AM
3877 }
3878 break;
3879 }
3880 if (!current_templates)
3881 {
3882 as_bad (_("no such instruction: `%s'"), token_start);
3883 return NULL;
3884 }
3885 }
252b5132 3886
40fb9820
L
3887 if (current_templates->start->opcode_modifier.jump
3888 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3889 {
3890 /* Check for a branch hint. We allow ",pt" and ",pn" for
3891 predict taken and predict not taken respectively.
3892 I'm not sure that branch hints actually do anything on loop
3893 and jcxz insns (JumpByte) for current Pentium4 chips. They
3894 may work in the future and it doesn't hurt to accept them
3895 now. */
3896 if (l[0] == ',' && l[1] == 'p')
3897 {
3898 if (l[2] == 't')
3899 {
3900 if (!add_prefix (DS_PREFIX_OPCODE))
3901 return NULL;
3902 l += 3;
3903 }
3904 else if (l[2] == 'n')
3905 {
3906 if (!add_prefix (CS_PREFIX_OPCODE))
3907 return NULL;
3908 l += 3;
3909 }
3910 }
3911 }
3912 /* Any other comma loses. */
3913 if (*l == ',')
3914 {
3915 as_bad (_("invalid character %s in mnemonic"),
3916 output_invalid (*l));
3917 return NULL;
3918 }
252b5132 3919
29b0f896 3920 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3921 supported = 0;
3922 for (t = current_templates->start; t < current_templates->end; ++t)
3923 {
c0f3af97
L
3924 supported |= cpu_flags_match (t);
3925 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3926 goto skip;
5c6af06e 3927 }
3629bb00 3928
c0f3af97 3929 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3930 {
3931 as_bad (flag_code == CODE_64BIT
3932 ? _("`%s' is not supported in 64-bit mode")
3933 : _("`%s' is only supported in 64-bit mode"),
3934 current_templates->start->name);
3935 return NULL;
3936 }
c0f3af97 3937 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3938 {
3629bb00 3939 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3940 current_templates->start->name,
41aacd83 3941 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3942 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3943 return NULL;
29b0f896 3944 }
3629bb00
L
3945
3946skip:
3947 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3948 && (flag_code != CODE_16BIT))
29b0f896
AM
3949 {
3950 as_warn (_("use .code16 to ensure correct addressing mode"));
3951 }
252b5132 3952
29b0f896
AM
3953 return l;
3954}
252b5132 3955
29b0f896 3956static char *
e3bb37b5 3957parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3958{
3959 char *token_start;
3138f287 3960
29b0f896
AM
3961 /* 1 if operand is pending after ','. */
3962 unsigned int expecting_operand = 0;
252b5132 3963
29b0f896
AM
3964 /* Non-zero if operand parens not balanced. */
3965 unsigned int paren_not_balanced;
3966
3967 while (*l != END_OF_INSN)
3968 {
3969 /* Skip optional white space before operand. */
3970 if (is_space_char (*l))
3971 ++l;
d02603dc 3972 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
3973 {
3974 as_bad (_("invalid character %s before operand %d"),
3975 output_invalid (*l),
3976 i.operands + 1);
3977 return NULL;
3978 }
d02603dc 3979 token_start = l; /* After white space. */
29b0f896
AM
3980 paren_not_balanced = 0;
3981 while (paren_not_balanced || *l != ',')
3982 {
3983 if (*l == END_OF_INSN)
3984 {
3985 if (paren_not_balanced)
3986 {
3987 if (!intel_syntax)
3988 as_bad (_("unbalanced parenthesis in operand %d."),
3989 i.operands + 1);
3990 else
3991 as_bad (_("unbalanced brackets in operand %d."),
3992 i.operands + 1);
3993 return NULL;
3994 }
3995 else
3996 break; /* we are done */
3997 }
d02603dc 3998 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
3999 {
4000 as_bad (_("invalid character %s in operand %d"),
4001 output_invalid (*l),
4002 i.operands + 1);
4003 return NULL;
4004 }
4005 if (!intel_syntax)
4006 {
4007 if (*l == '(')
4008 ++paren_not_balanced;
4009 if (*l == ')')
4010 --paren_not_balanced;
4011 }
4012 else
4013 {
4014 if (*l == '[')
4015 ++paren_not_balanced;
4016 if (*l == ']')
4017 --paren_not_balanced;
4018 }
4019 l++;
4020 }
4021 if (l != token_start)
4022 { /* Yes, we've read in another operand. */
4023 unsigned int operand_ok;
4024 this_operand = i.operands++;
7d5e4556 4025 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4026 if (i.operands > MAX_OPERANDS)
4027 {
4028 as_bad (_("spurious operands; (%d operands/instruction max)"),
4029 MAX_OPERANDS);
4030 return NULL;
4031 }
4032 /* Now parse operand adding info to 'i' as we go along. */
4033 END_STRING_AND_SAVE (l);
4034
4035 if (intel_syntax)
4036 operand_ok =
4037 i386_intel_operand (token_start,
4038 intel_float_operand (mnemonic));
4039 else
a7619375 4040 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4041
4042 RESTORE_END_STRING (l);
4043 if (!operand_ok)
4044 return NULL;
4045 }
4046 else
4047 {
4048 if (expecting_operand)
4049 {
4050 expecting_operand_after_comma:
4051 as_bad (_("expecting operand after ','; got nothing"));
4052 return NULL;
4053 }
4054 if (*l == ',')
4055 {
4056 as_bad (_("expecting operand before ','; got nothing"));
4057 return NULL;
4058 }
4059 }
7f3f1ea2 4060
29b0f896
AM
4061 /* Now *l must be either ',' or END_OF_INSN. */
4062 if (*l == ',')
4063 {
4064 if (*++l == END_OF_INSN)
4065 {
4066 /* Just skip it, if it's \n complain. */
4067 goto expecting_operand_after_comma;
4068 }
4069 expecting_operand = 1;
4070 }
4071 }
4072 return l;
4073}
7f3f1ea2 4074
050dfa73 4075static void
4d456e3d 4076swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4077{
4078 union i386_op temp_op;
40fb9820 4079 i386_operand_type temp_type;
050dfa73 4080 enum bfd_reloc_code_real temp_reloc;
4eed87de 4081
050dfa73
MM
4082 temp_type = i.types[xchg2];
4083 i.types[xchg2] = i.types[xchg1];
4084 i.types[xchg1] = temp_type;
4085 temp_op = i.op[xchg2];
4086 i.op[xchg2] = i.op[xchg1];
4087 i.op[xchg1] = temp_op;
4088 temp_reloc = i.reloc[xchg2];
4089 i.reloc[xchg2] = i.reloc[xchg1];
4090 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4091
4092 if (i.mask)
4093 {
4094 if (i.mask->operand == xchg1)
4095 i.mask->operand = xchg2;
4096 else if (i.mask->operand == xchg2)
4097 i.mask->operand = xchg1;
4098 }
4099 if (i.broadcast)
4100 {
4101 if (i.broadcast->operand == xchg1)
4102 i.broadcast->operand = xchg2;
4103 else if (i.broadcast->operand == xchg2)
4104 i.broadcast->operand = xchg1;
4105 }
4106 if (i.rounding)
4107 {
4108 if (i.rounding->operand == xchg1)
4109 i.rounding->operand = xchg2;
4110 else if (i.rounding->operand == xchg2)
4111 i.rounding->operand = xchg1;
4112 }
050dfa73
MM
4113}
4114
29b0f896 4115static void
e3bb37b5 4116swap_operands (void)
29b0f896 4117{
b7c61d9a 4118 switch (i.operands)
050dfa73 4119 {
c0f3af97 4120 case 5:
b7c61d9a 4121 case 4:
4d456e3d 4122 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
4123 case 3:
4124 case 2:
4d456e3d 4125 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4126 break;
4127 default:
4128 abort ();
29b0f896 4129 }
29b0f896
AM
4130
4131 if (i.mem_operands == 2)
4132 {
4133 const seg_entry *temp_seg;
4134 temp_seg = i.seg[0];
4135 i.seg[0] = i.seg[1];
4136 i.seg[1] = temp_seg;
4137 }
4138}
252b5132 4139
29b0f896
AM
4140/* Try to ensure constant immediates are represented in the smallest
4141 opcode possible. */
4142static void
e3bb37b5 4143optimize_imm (void)
29b0f896
AM
4144{
4145 char guess_suffix = 0;
4146 int op;
252b5132 4147
29b0f896
AM
4148 if (i.suffix)
4149 guess_suffix = i.suffix;
4150 else if (i.reg_operands)
4151 {
4152 /* Figure out a suffix from the last register operand specified.
4153 We can't do this properly yet, ie. excluding InOutPortReg,
4154 but the following works for instructions with immediates.
4155 In any case, we can't set i.suffix yet. */
4156 for (op = i.operands; --op >= 0;)
40fb9820 4157 if (i.types[op].bitfield.reg8)
7ab9ffdd 4158 {
40fb9820
L
4159 guess_suffix = BYTE_MNEM_SUFFIX;
4160 break;
4161 }
4162 else if (i.types[op].bitfield.reg16)
252b5132 4163 {
40fb9820
L
4164 guess_suffix = WORD_MNEM_SUFFIX;
4165 break;
4166 }
4167 else if (i.types[op].bitfield.reg32)
4168 {
4169 guess_suffix = LONG_MNEM_SUFFIX;
4170 break;
4171 }
4172 else if (i.types[op].bitfield.reg64)
4173 {
4174 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4175 break;
252b5132 4176 }
29b0f896
AM
4177 }
4178 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4179 guess_suffix = WORD_MNEM_SUFFIX;
4180
4181 for (op = i.operands; --op >= 0;)
40fb9820 4182 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4183 {
4184 switch (i.op[op].imms->X_op)
252b5132 4185 {
29b0f896
AM
4186 case O_constant:
4187 /* If a suffix is given, this operand may be shortened. */
4188 switch (guess_suffix)
252b5132 4189 {
29b0f896 4190 case LONG_MNEM_SUFFIX:
40fb9820
L
4191 i.types[op].bitfield.imm32 = 1;
4192 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4193 break;
4194 case WORD_MNEM_SUFFIX:
40fb9820
L
4195 i.types[op].bitfield.imm16 = 1;
4196 i.types[op].bitfield.imm32 = 1;
4197 i.types[op].bitfield.imm32s = 1;
4198 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4199 break;
4200 case BYTE_MNEM_SUFFIX:
40fb9820
L
4201 i.types[op].bitfield.imm8 = 1;
4202 i.types[op].bitfield.imm8s = 1;
4203 i.types[op].bitfield.imm16 = 1;
4204 i.types[op].bitfield.imm32 = 1;
4205 i.types[op].bitfield.imm32s = 1;
4206 i.types[op].bitfield.imm64 = 1;
29b0f896 4207 break;
252b5132 4208 }
252b5132 4209
29b0f896
AM
4210 /* If this operand is at most 16 bits, convert it
4211 to a signed 16 bit number before trying to see
4212 whether it will fit in an even smaller size.
4213 This allows a 16-bit operand such as $0xffe0 to
4214 be recognised as within Imm8S range. */
40fb9820 4215 if ((i.types[op].bitfield.imm16)
29b0f896 4216 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4217 {
29b0f896
AM
4218 i.op[op].imms->X_add_number =
4219 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4220 }
a28def75
L
4221#ifdef BFD64
4222 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4223 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4224 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4225 == 0))
4226 {
4227 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4228 ^ ((offsetT) 1 << 31))
4229 - ((offsetT) 1 << 31));
4230 }
a28def75 4231#endif
40fb9820 4232 i.types[op]
c6fb90c8
L
4233 = operand_type_or (i.types[op],
4234 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4235
29b0f896
AM
4236 /* We must avoid matching of Imm32 templates when 64bit
4237 only immediate is available. */
4238 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4239 i.types[op].bitfield.imm32 = 0;
29b0f896 4240 break;
252b5132 4241
29b0f896
AM
4242 case O_absent:
4243 case O_register:
4244 abort ();
4245
4246 /* Symbols and expressions. */
4247 default:
9cd96992
JB
4248 /* Convert symbolic operand to proper sizes for matching, but don't
4249 prevent matching a set of insns that only supports sizes other
4250 than those matching the insn suffix. */
4251 {
40fb9820 4252 i386_operand_type mask, allowed;
d3ce72d0 4253 const insn_template *t;
9cd96992 4254
0dfbf9d7
L
4255 operand_type_set (&mask, 0);
4256 operand_type_set (&allowed, 0);
40fb9820 4257
4eed87de
AM
4258 for (t = current_templates->start;
4259 t < current_templates->end;
4260 ++t)
c6fb90c8
L
4261 allowed = operand_type_or (allowed,
4262 t->operand_types[op]);
9cd96992
JB
4263 switch (guess_suffix)
4264 {
4265 case QWORD_MNEM_SUFFIX:
40fb9820
L
4266 mask.bitfield.imm64 = 1;
4267 mask.bitfield.imm32s = 1;
9cd96992
JB
4268 break;
4269 case LONG_MNEM_SUFFIX:
40fb9820 4270 mask.bitfield.imm32 = 1;
9cd96992
JB
4271 break;
4272 case WORD_MNEM_SUFFIX:
40fb9820 4273 mask.bitfield.imm16 = 1;
9cd96992
JB
4274 break;
4275 case BYTE_MNEM_SUFFIX:
40fb9820 4276 mask.bitfield.imm8 = 1;
9cd96992
JB
4277 break;
4278 default:
9cd96992
JB
4279 break;
4280 }
c6fb90c8 4281 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4282 if (!operand_type_all_zero (&allowed))
c6fb90c8 4283 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4284 }
29b0f896 4285 break;
252b5132 4286 }
29b0f896
AM
4287 }
4288}
47926f60 4289
29b0f896
AM
4290/* Try to use the smallest displacement type too. */
4291static void
e3bb37b5 4292optimize_disp (void)
29b0f896
AM
4293{
4294 int op;
3e73aa7c 4295
29b0f896 4296 for (op = i.operands; --op >= 0;)
40fb9820 4297 if (operand_type_check (i.types[op], disp))
252b5132 4298 {
b300c311 4299 if (i.op[op].disps->X_op == O_constant)
252b5132 4300 {
91d6fa6a 4301 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4302
40fb9820 4303 if (i.types[op].bitfield.disp16
91d6fa6a 4304 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4305 {
4306 /* If this operand is at most 16 bits, convert
4307 to a signed 16 bit number and don't use 64bit
4308 displacement. */
91d6fa6a 4309 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4310 i.types[op].bitfield.disp64 = 0;
b300c311 4311 }
a28def75
L
4312#ifdef BFD64
4313 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4314 if (i.types[op].bitfield.disp32
91d6fa6a 4315 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4316 {
4317 /* If this operand is at most 32 bits, convert
4318 to a signed 32 bit number and don't use 64bit
4319 displacement. */
91d6fa6a
NC
4320 op_disp &= (((offsetT) 2 << 31) - 1);
4321 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4322 i.types[op].bitfield.disp64 = 0;
b300c311 4323 }
a28def75 4324#endif
91d6fa6a 4325 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4326 {
40fb9820
L
4327 i.types[op].bitfield.disp8 = 0;
4328 i.types[op].bitfield.disp16 = 0;
4329 i.types[op].bitfield.disp32 = 0;
4330 i.types[op].bitfield.disp32s = 0;
4331 i.types[op].bitfield.disp64 = 0;
b300c311
L
4332 i.op[op].disps = 0;
4333 i.disp_operands--;
4334 }
4335 else if (flag_code == CODE_64BIT)
4336 {
91d6fa6a 4337 if (fits_in_signed_long (op_disp))
28a9d8f5 4338 {
40fb9820
L
4339 i.types[op].bitfield.disp64 = 0;
4340 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4341 }
0e1147d9 4342 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4343 && fits_in_unsigned_long (op_disp))
40fb9820 4344 i.types[op].bitfield.disp32 = 1;
b300c311 4345 }
40fb9820
L
4346 if ((i.types[op].bitfield.disp32
4347 || i.types[op].bitfield.disp32s
4348 || i.types[op].bitfield.disp16)
91d6fa6a 4349 && fits_in_signed_byte (op_disp))
40fb9820 4350 i.types[op].bitfield.disp8 = 1;
252b5132 4351 }
67a4f2b7
AO
4352 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4353 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4354 {
4355 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4356 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4357 i.types[op].bitfield.disp8 = 0;
4358 i.types[op].bitfield.disp16 = 0;
4359 i.types[op].bitfield.disp32 = 0;
4360 i.types[op].bitfield.disp32s = 0;
4361 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4362 }
4363 else
b300c311 4364 /* We only support 64bit displacement on constants. */
40fb9820 4365 i.types[op].bitfield.disp64 = 0;
252b5132 4366 }
29b0f896
AM
4367}
4368
6c30d220
L
4369/* Check if operands are valid for the instruction. */
4370
4371static int
4372check_VecOperands (const insn_template *t)
4373{
43234a1e
L
4374 unsigned int op;
4375
6c30d220
L
4376 /* Without VSIB byte, we can't have a vector register for index. */
4377 if (!t->opcode_modifier.vecsib
4378 && i.index_reg
4379 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4380 || i.index_reg->reg_type.bitfield.regymm
4381 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4382 {
4383 i.error = unsupported_vector_index_register;
4384 return 1;
4385 }
4386
ad8ecc81
MZ
4387 /* Check if default mask is allowed. */
4388 if (t->opcode_modifier.nodefmask
4389 && (!i.mask || i.mask->mask->reg_num == 0))
4390 {
4391 i.error = no_default_mask;
4392 return 1;
4393 }
4394
7bab8ab5
JB
4395 /* For VSIB byte, we need a vector register for index, and all vector
4396 registers must be distinct. */
4397 if (t->opcode_modifier.vecsib)
4398 {
4399 if (!i.index_reg
6c30d220
L
4400 || !((t->opcode_modifier.vecsib == VecSIB128
4401 && i.index_reg->reg_type.bitfield.regxmm)
4402 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4403 && i.index_reg->reg_type.bitfield.regymm)
4404 || (t->opcode_modifier.vecsib == VecSIB512
4405 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4406 {
4407 i.error = invalid_vsib_address;
4408 return 1;
4409 }
4410
43234a1e
L
4411 gas_assert (i.reg_operands == 2 || i.mask);
4412 if (i.reg_operands == 2 && !i.mask)
4413 {
4414 gas_assert (i.types[0].bitfield.regxmm
7c84a0ca 4415 || i.types[0].bitfield.regymm);
43234a1e 4416 gas_assert (i.types[2].bitfield.regxmm
7c84a0ca 4417 || i.types[2].bitfield.regymm);
43234a1e
L
4418 if (operand_check == check_none)
4419 return 0;
4420 if (register_number (i.op[0].regs)
4421 != register_number (i.index_reg)
4422 && register_number (i.op[2].regs)
4423 != register_number (i.index_reg)
4424 && register_number (i.op[0].regs)
4425 != register_number (i.op[2].regs))
4426 return 0;
4427 if (operand_check == check_error)
4428 {
4429 i.error = invalid_vector_register_set;
4430 return 1;
4431 }
4432 as_warn (_("mask, index, and destination registers should be distinct"));
4433 }
8444f82a
MZ
4434 else if (i.reg_operands == 1 && i.mask)
4435 {
4436 if ((i.types[1].bitfield.regymm
4437 || i.types[1].bitfield.regzmm)
4438 && (register_number (i.op[1].regs)
4439 == register_number (i.index_reg)))
4440 {
4441 if (operand_check == check_error)
4442 {
4443 i.error = invalid_vector_register_set;
4444 return 1;
4445 }
4446 if (operand_check != check_none)
4447 as_warn (_("index and destination registers should be distinct"));
4448 }
4449 }
43234a1e 4450 }
7bab8ab5 4451
43234a1e
L
4452 /* Check if broadcast is supported by the instruction and is applied
4453 to the memory operand. */
4454 if (i.broadcast)
4455 {
4456 int broadcasted_opnd_size;
4457
4458 /* Check if specified broadcast is supported in this instruction,
4459 and it's applied to memory operand of DWORD or QWORD type,
4460 depending on VecESize. */
4461 if (i.broadcast->type != t->opcode_modifier.broadcast
4462 || !i.types[i.broadcast->operand].bitfield.mem
4463 || (t->opcode_modifier.vecesize == 0
4464 && !i.types[i.broadcast->operand].bitfield.dword
4465 && !i.types[i.broadcast->operand].bitfield.unspecified)
4466 || (t->opcode_modifier.vecesize == 1
4467 && !i.types[i.broadcast->operand].bitfield.qword
4468 && !i.types[i.broadcast->operand].bitfield.unspecified))
4469 goto bad_broadcast;
4470
4471 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4472 if (i.broadcast->type == BROADCAST_1TO16)
4473 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4474 else if (i.broadcast->type == BROADCAST_1TO8)
4475 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4476 else if (i.broadcast->type == BROADCAST_1TO4)
4477 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4478 else if (i.broadcast->type == BROADCAST_1TO2)
4479 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4480 else
4481 goto bad_broadcast;
4482
4483 if ((broadcasted_opnd_size == 256
4484 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4485 || (broadcasted_opnd_size == 512
4486 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4487 {
4488 bad_broadcast:
4489 i.error = unsupported_broadcast;
4490 return 1;
4491 }
4492 }
4493 /* If broadcast is supported in this instruction, we need to check if
4494 operand of one-element size isn't specified without broadcast. */
4495 else if (t->opcode_modifier.broadcast && i.mem_operands)
4496 {
4497 /* Find memory operand. */
4498 for (op = 0; op < i.operands; op++)
4499 if (operand_type_check (i.types[op], anymem))
4500 break;
4501 gas_assert (op < i.operands);
4502 /* Check size of the memory operand. */
4503 if ((t->opcode_modifier.vecesize == 0
4504 && i.types[op].bitfield.dword)
4505 || (t->opcode_modifier.vecesize == 1
4506 && i.types[op].bitfield.qword))
4507 {
4508 i.error = broadcast_needed;
4509 return 1;
4510 }
4511 }
4512
4513 /* Check if requested masking is supported. */
4514 if (i.mask
4515 && (!t->opcode_modifier.masking
4516 || (i.mask->zeroing
4517 && t->opcode_modifier.masking == MERGING_MASKING)))
4518 {
4519 i.error = unsupported_masking;
4520 return 1;
4521 }
4522
4523 /* Check if masking is applied to dest operand. */
4524 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4525 {
4526 i.error = mask_not_on_destination;
4527 return 1;
4528 }
4529
43234a1e
L
4530 /* Check RC/SAE. */
4531 if (i.rounding)
4532 {
4533 if ((i.rounding->type != saeonly
4534 && !t->opcode_modifier.staticrounding)
4535 || (i.rounding->type == saeonly
4536 && (t->opcode_modifier.staticrounding
4537 || !t->opcode_modifier.sae)))
4538 {
4539 i.error = unsupported_rc_sae;
4540 return 1;
4541 }
4542 /* If the instruction has several immediate operands and one of
4543 them is rounding, the rounding operand should be the last
4544 immediate operand. */
4545 if (i.imm_operands > 1
4546 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4547 {
43234a1e 4548 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4549 return 1;
4550 }
6c30d220
L
4551 }
4552
43234a1e
L
4553 /* Check vector Disp8 operand. */
4554 if (t->opcode_modifier.disp8memshift)
4555 {
4556 if (i.broadcast)
4557 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4558 else
4559 i.memshift = t->opcode_modifier.disp8memshift;
4560
4561 for (op = 0; op < i.operands; op++)
4562 if (operand_type_check (i.types[op], disp)
4563 && i.op[op].disps->X_op == O_constant)
4564 {
4565 offsetT value = i.op[op].disps->X_add_number;
4566 int vec_disp8_ok = fits_in_vec_disp8 (value);
4567 if (t->operand_types [op].bitfield.vec_disp8)
4568 {
4569 if (vec_disp8_ok)
4570 i.types[op].bitfield.vec_disp8 = 1;
4571 else
4572 {
4573 /* Vector insn can only have Vec_Disp8/Disp32 in
4574 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4575 mode. */
4576 i.types[op].bitfield.disp8 = 0;
4577 if (flag_code != CODE_16BIT)
4578 i.types[op].bitfield.disp16 = 0;
4579 }
4580 }
4581 else if (flag_code != CODE_16BIT)
4582 {
4583 /* One form of this instruction supports vector Disp8.
4584 Try vector Disp8 if we need to use Disp32. */
4585 if (vec_disp8_ok && !fits_in_signed_byte (value))
4586 {
4587 i.error = try_vector_disp8;
4588 return 1;
4589 }
4590 }
4591 }
4592 }
4593 else
4594 i.memshift = -1;
4595
6c30d220
L
4596 return 0;
4597}
4598
43f3e2ee 4599/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4600 operand types. */
4601
4602static int
4603VEX_check_operands (const insn_template *t)
4604{
43234a1e
L
4605 /* VREX is only valid with EVEX prefix. */
4606 if (i.need_vrex && !t->opcode_modifier.evex)
4607 {
4608 i.error = invalid_register_operand;
4609 return 1;
4610 }
4611
a683cc34
SP
4612 if (!t->opcode_modifier.vex)
4613 return 0;
4614
4615 /* Only check VEX_Imm4, which must be the first operand. */
4616 if (t->operand_types[0].bitfield.vec_imm4)
4617 {
4618 if (i.op[0].imms->X_op != O_constant
4619 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4620 {
a65babc9 4621 i.error = bad_imm4;
891edac4
L
4622 return 1;
4623 }
a683cc34
SP
4624
4625 /* Turn off Imm8 so that update_imm won't complain. */
4626 i.types[0] = vec_imm4;
4627 }
4628
4629 return 0;
4630}
4631
d3ce72d0 4632static const insn_template *
e3bb37b5 4633match_template (void)
29b0f896
AM
4634{
4635 /* Points to template once we've found it. */
d3ce72d0 4636 const insn_template *t;
40fb9820 4637 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4638 i386_operand_type overlap4;
29b0f896 4639 unsigned int found_reverse_match;
40fb9820
L
4640 i386_opcode_modifier suffix_check;
4641 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4642 int addr_prefix_disp;
a5c311ca 4643 unsigned int j;
3629bb00 4644 unsigned int found_cpu_match;
45664ddb 4645 unsigned int check_register;
5614d22c 4646 enum i386_error specific_error = 0;
29b0f896 4647
c0f3af97
L
4648#if MAX_OPERANDS != 5
4649# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4650#endif
4651
29b0f896 4652 found_reverse_match = 0;
539e75ad 4653 addr_prefix_disp = -1;
40fb9820
L
4654
4655 memset (&suffix_check, 0, sizeof (suffix_check));
4656 if (i.suffix == BYTE_MNEM_SUFFIX)
4657 suffix_check.no_bsuf = 1;
4658 else if (i.suffix == WORD_MNEM_SUFFIX)
4659 suffix_check.no_wsuf = 1;
4660 else if (i.suffix == SHORT_MNEM_SUFFIX)
4661 suffix_check.no_ssuf = 1;
4662 else if (i.suffix == LONG_MNEM_SUFFIX)
4663 suffix_check.no_lsuf = 1;
4664 else if (i.suffix == QWORD_MNEM_SUFFIX)
4665 suffix_check.no_qsuf = 1;
4666 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4667 suffix_check.no_ldsuf = 1;
29b0f896 4668
01559ecc
L
4669 /* Must have right number of operands. */
4670 i.error = number_of_operands_mismatch;
4671
45aa61fe 4672 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4673 {
539e75ad
L
4674 addr_prefix_disp = -1;
4675
29b0f896
AM
4676 if (i.operands != t->operands)
4677 continue;
4678
50aecf8c 4679 /* Check processor support. */
a65babc9 4680 i.error = unsupported;
c0f3af97
L
4681 found_cpu_match = (cpu_flags_match (t)
4682 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4683 if (!found_cpu_match)
4684 continue;
4685
e1d4d893 4686 /* Check old gcc support. */
a65babc9 4687 i.error = old_gcc_only;
e1d4d893
L
4688 if (!old_gcc && t->opcode_modifier.oldgcc)
4689 continue;
4690
4691 /* Check AT&T mnemonic. */
a65babc9 4692 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4693 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4694 continue;
4695
891edac4 4696 /* Check AT&T/Intel syntax. */
a65babc9 4697 i.error = unsupported_syntax;
5c07affc
L
4698 if ((intel_syntax && t->opcode_modifier.attsyntax)
4699 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
4700 continue;
4701
20592a94 4702 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4703 i.error = invalid_instruction_suffix;
567e4e96
L
4704 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4705 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4706 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4707 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4708 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4709 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4710 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
4711 continue;
4712
5c07affc 4713 if (!operand_size_match (t))
7d5e4556 4714 continue;
539e75ad 4715
5c07affc
L
4716 for (j = 0; j < MAX_OPERANDS; j++)
4717 operand_types[j] = t->operand_types[j];
4718
45aa61fe
AM
4719 /* In general, don't allow 64-bit operands in 32-bit mode. */
4720 if (i.suffix == QWORD_MNEM_SUFFIX
4721 && flag_code != CODE_64BIT
4722 && (intel_syntax
40fb9820 4723 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4724 && !intel_float_operand (t->name))
4725 : intel_float_operand (t->name) != 2)
40fb9820 4726 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4727 && !operand_types[0].bitfield.regxmm
43234a1e
L
4728 && !operand_types[0].bitfield.regymm
4729 && !operand_types[0].bitfield.regzmm)
40fb9820 4730 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736
AM
4731 && operand_types[t->operands > 1].bitfield.regxmm
4732 && operand_types[t->operands > 1].bitfield.regymm
4733 && operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4734 && (t->base_opcode != 0x0fc7
4735 || t->extension_opcode != 1 /* cmpxchg8b */))
4736 continue;
4737
192dc9c6
JB
4738 /* In general, don't allow 32-bit operands on pre-386. */
4739 else if (i.suffix == LONG_MNEM_SUFFIX
4740 && !cpu_arch_flags.bitfield.cpui386
4741 && (intel_syntax
4742 ? (!t->opcode_modifier.ignoresize
4743 && !intel_float_operand (t->name))
4744 : intel_float_operand (t->name) != 2)
4745 && ((!operand_types[0].bitfield.regmmx
4746 && !operand_types[0].bitfield.regxmm)
4747 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736 4748 && operand_types[t->operands > 1].bitfield.regxmm)))
192dc9c6
JB
4749 continue;
4750
29b0f896 4751 /* Do not verify operands when there are none. */
50aecf8c 4752 else
29b0f896 4753 {
c6fb90c8 4754 if (!t->operands)
2dbab7d5
L
4755 /* We've found a match; break out of loop. */
4756 break;
29b0f896 4757 }
252b5132 4758
539e75ad
L
4759 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4760 into Disp32/Disp16/Disp32 operand. */
4761 if (i.prefix[ADDR_PREFIX] != 0)
4762 {
40fb9820 4763 /* There should be only one Disp operand. */
539e75ad
L
4764 switch (flag_code)
4765 {
4766 case CODE_16BIT:
40fb9820
L
4767 for (j = 0; j < MAX_OPERANDS; j++)
4768 {
4769 if (operand_types[j].bitfield.disp16)
4770 {
4771 addr_prefix_disp = j;
4772 operand_types[j].bitfield.disp32 = 1;
4773 operand_types[j].bitfield.disp16 = 0;
4774 break;
4775 }
4776 }
539e75ad
L
4777 break;
4778 case CODE_32BIT:
40fb9820
L
4779 for (j = 0; j < MAX_OPERANDS; j++)
4780 {
4781 if (operand_types[j].bitfield.disp32)
4782 {
4783 addr_prefix_disp = j;
4784 operand_types[j].bitfield.disp32 = 0;
4785 operand_types[j].bitfield.disp16 = 1;
4786 break;
4787 }
4788 }
539e75ad
L
4789 break;
4790 case CODE_64BIT:
40fb9820
L
4791 for (j = 0; j < MAX_OPERANDS; j++)
4792 {
4793 if (operand_types[j].bitfield.disp64)
4794 {
4795 addr_prefix_disp = j;
4796 operand_types[j].bitfield.disp64 = 0;
4797 operand_types[j].bitfield.disp32 = 1;
4798 break;
4799 }
4800 }
539e75ad
L
4801 break;
4802 }
539e75ad
L
4803 }
4804
02a86693
L
4805 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4806 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4807 continue;
4808
56ffb741
L
4809 /* We check register size if needed. */
4810 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4811 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4812 switch (t->operands)
4813 {
4814 case 1:
40fb9820 4815 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4816 continue;
4817 break;
4818 case 2:
8b38ad71
L
4819 /* xchg %eax, %eax is a special case. It is an aliase for nop
4820 only in 32bit mode and we can use opcode 0x90. In 64bit
4821 mode, we can't use 0x90 for xchg %eax, %eax since it should
4822 zero-extend %eax to %rax. */
4823 if (flag_code == CODE_64BIT
4824 && t->base_opcode == 0x90
0dfbf9d7
L
4825 && operand_type_equal (&i.types [0], &acc32)
4826 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4827 continue;
b6169b20
L
4828 if (i.swap_operand)
4829 {
4830 /* If we swap operand in encoding, we either match
4831 the next one or reverse direction of operands. */
4832 if (t->opcode_modifier.s)
4833 continue;
4834 else if (t->opcode_modifier.d)
4835 goto check_reverse;
4836 }
4837
29b0f896 4838 case 3:
fa99fab2
L
4839 /* If we swap operand in encoding, we match the next one. */
4840 if (i.swap_operand && t->opcode_modifier.s)
4841 continue;
f48ff2ae 4842 case 4:
c0f3af97 4843 case 5:
c6fb90c8 4844 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4845 if (!operand_type_match (overlap0, i.types[0])
4846 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4847 || (check_register
4848 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4849 operand_types[0],
4850 overlap1, i.types[1],
4851 operand_types[1])))
29b0f896
AM
4852 {
4853 /* Check if other direction is valid ... */
40fb9820 4854 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4855 continue;
4856
b6169b20 4857check_reverse:
29b0f896 4858 /* Try reversing direction of operands. */
c6fb90c8
L
4859 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4860 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4861 if (!operand_type_match (overlap0, i.types[0])
4862 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4863 || (check_register
4864 && !operand_type_register_match (overlap0,
4865 i.types[0],
4866 operand_types[1],
4867 overlap1,
4868 i.types[1],
4869 operand_types[0])))
29b0f896
AM
4870 {
4871 /* Does not match either direction. */
4872 continue;
4873 }
4874 /* found_reverse_match holds which of D or FloatDR
4875 we've found. */
40fb9820 4876 if (t->opcode_modifier.d)
8a2ed489 4877 found_reverse_match = Opcode_D;
40fb9820 4878 else if (t->opcode_modifier.floatd)
8a2ed489
L
4879 found_reverse_match = Opcode_FloatD;
4880 else
4881 found_reverse_match = 0;
40fb9820 4882 if (t->opcode_modifier.floatr)
8a2ed489 4883 found_reverse_match |= Opcode_FloatR;
29b0f896 4884 }
f48ff2ae 4885 else
29b0f896 4886 {
f48ff2ae 4887 /* Found a forward 2 operand match here. */
d1cbb4db
L
4888 switch (t->operands)
4889 {
c0f3af97
L
4890 case 5:
4891 overlap4 = operand_type_and (i.types[4],
4892 operand_types[4]);
d1cbb4db 4893 case 4:
c6fb90c8
L
4894 overlap3 = operand_type_and (i.types[3],
4895 operand_types[3]);
d1cbb4db 4896 case 3:
c6fb90c8
L
4897 overlap2 = operand_type_and (i.types[2],
4898 operand_types[2]);
d1cbb4db
L
4899 break;
4900 }
29b0f896 4901
f48ff2ae
L
4902 switch (t->operands)
4903 {
c0f3af97
L
4904 case 5:
4905 if (!operand_type_match (overlap4, i.types[4])
4906 || !operand_type_register_match (overlap3,
4907 i.types[3],
4908 operand_types[3],
4909 overlap4,
4910 i.types[4],
4911 operand_types[4]))
4912 continue;
f48ff2ae 4913 case 4:
40fb9820 4914 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4915 || (check_register
4916 && !operand_type_register_match (overlap2,
4917 i.types[2],
4918 operand_types[2],
4919 overlap3,
4920 i.types[3],
4921 operand_types[3])))
f48ff2ae
L
4922 continue;
4923 case 3:
4924 /* Here we make use of the fact that there are no
4925 reverse match 3 operand instructions, and all 3
4926 operand instructions only need to be checked for
4927 register consistency between operands 2 and 3. */
40fb9820 4928 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4929 || (check_register
4930 && !operand_type_register_match (overlap1,
4931 i.types[1],
4932 operand_types[1],
4933 overlap2,
4934 i.types[2],
4935 operand_types[2])))
f48ff2ae
L
4936 continue;
4937 break;
4938 }
29b0f896 4939 }
f48ff2ae 4940 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4941 slip through to break. */
4942 }
3629bb00 4943 if (!found_cpu_match)
29b0f896
AM
4944 {
4945 found_reverse_match = 0;
4946 continue;
4947 }
c0f3af97 4948
5614d22c
JB
4949 /* Check if vector and VEX operands are valid. */
4950 if (check_VecOperands (t) || VEX_check_operands (t))
4951 {
4952 specific_error = i.error;
4953 continue;
4954 }
a683cc34 4955
29b0f896
AM
4956 /* We've found a match; break out of loop. */
4957 break;
4958 }
4959
4960 if (t == current_templates->end)
4961 {
4962 /* We found no match. */
a65babc9 4963 const char *err_msg;
5614d22c 4964 switch (specific_error ? specific_error : i.error)
a65babc9
L
4965 {
4966 default:
4967 abort ();
86e026a4 4968 case operand_size_mismatch:
a65babc9
L
4969 err_msg = _("operand size mismatch");
4970 break;
4971 case operand_type_mismatch:
4972 err_msg = _("operand type mismatch");
4973 break;
4974 case register_type_mismatch:
4975 err_msg = _("register type mismatch");
4976 break;
4977 case number_of_operands_mismatch:
4978 err_msg = _("number of operands mismatch");
4979 break;
4980 case invalid_instruction_suffix:
4981 err_msg = _("invalid instruction suffix");
4982 break;
4983 case bad_imm4:
4a2608e3 4984 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
4985 break;
4986 case old_gcc_only:
4987 err_msg = _("only supported with old gcc");
4988 break;
4989 case unsupported_with_intel_mnemonic:
4990 err_msg = _("unsupported with Intel mnemonic");
4991 break;
4992 case unsupported_syntax:
4993 err_msg = _("unsupported syntax");
4994 break;
4995 case unsupported:
35262a23 4996 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
4997 current_templates->start->name);
4998 return NULL;
6c30d220
L
4999 case invalid_vsib_address:
5000 err_msg = _("invalid VSIB address");
5001 break;
7bab8ab5
JB
5002 case invalid_vector_register_set:
5003 err_msg = _("mask, index, and destination registers must be distinct");
5004 break;
6c30d220
L
5005 case unsupported_vector_index_register:
5006 err_msg = _("unsupported vector index register");
5007 break;
43234a1e
L
5008 case unsupported_broadcast:
5009 err_msg = _("unsupported broadcast");
5010 break;
5011 case broadcast_not_on_src_operand:
5012 err_msg = _("broadcast not on source memory operand");
5013 break;
5014 case broadcast_needed:
5015 err_msg = _("broadcast is needed for operand of such type");
5016 break;
5017 case unsupported_masking:
5018 err_msg = _("unsupported masking");
5019 break;
5020 case mask_not_on_destination:
5021 err_msg = _("mask not on destination operand");
5022 break;
5023 case no_default_mask:
5024 err_msg = _("default mask isn't allowed");
5025 break;
5026 case unsupported_rc_sae:
5027 err_msg = _("unsupported static rounding/sae");
5028 break;
5029 case rc_sae_operand_not_last_imm:
5030 if (intel_syntax)
5031 err_msg = _("RC/SAE operand must precede immediate operands");
5032 else
5033 err_msg = _("RC/SAE operand must follow immediate operands");
5034 break;
5035 case invalid_register_operand:
5036 err_msg = _("invalid register operand");
5037 break;
a65babc9
L
5038 }
5039 as_bad (_("%s for `%s'"), err_msg,
891edac4 5040 current_templates->start->name);
fa99fab2 5041 return NULL;
29b0f896 5042 }
252b5132 5043
29b0f896
AM
5044 if (!quiet_warnings)
5045 {
5046 if (!intel_syntax
40fb9820
L
5047 && (i.types[0].bitfield.jumpabsolute
5048 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5049 {
5050 as_warn (_("indirect %s without `*'"), t->name);
5051 }
5052
40fb9820
L
5053 if (t->opcode_modifier.isprefix
5054 && t->opcode_modifier.ignoresize)
29b0f896
AM
5055 {
5056 /* Warn them that a data or address size prefix doesn't
5057 affect assembly of the next line of code. */
5058 as_warn (_("stand-alone `%s' prefix"), t->name);
5059 }
5060 }
5061
5062 /* Copy the template we found. */
5063 i.tm = *t;
539e75ad
L
5064
5065 if (addr_prefix_disp != -1)
5066 i.tm.operand_types[addr_prefix_disp]
5067 = operand_types[addr_prefix_disp];
5068
29b0f896
AM
5069 if (found_reverse_match)
5070 {
5071 /* If we found a reverse match we must alter the opcode
5072 direction bit. found_reverse_match holds bits to change
5073 (different for int & float insns). */
5074
5075 i.tm.base_opcode ^= found_reverse_match;
5076
539e75ad
L
5077 i.tm.operand_types[0] = operand_types[1];
5078 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5079 }
5080
fa99fab2 5081 return t;
29b0f896
AM
5082}
5083
5084static int
e3bb37b5 5085check_string (void)
29b0f896 5086{
40fb9820
L
5087 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5088 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5089 {
5090 if (i.seg[0] != NULL && i.seg[0] != &es)
5091 {
a87af027 5092 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5093 i.tm.name,
a87af027
JB
5094 mem_op + 1,
5095 register_prefix);
29b0f896
AM
5096 return 0;
5097 }
5098 /* There's only ever one segment override allowed per instruction.
5099 This instruction possibly has a legal segment override on the
5100 second operand, so copy the segment to where non-string
5101 instructions store it, allowing common code. */
5102 i.seg[0] = i.seg[1];
5103 }
40fb9820 5104 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5105 {
5106 if (i.seg[1] != NULL && i.seg[1] != &es)
5107 {
a87af027 5108 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5109 i.tm.name,
a87af027
JB
5110 mem_op + 2,
5111 register_prefix);
29b0f896
AM
5112 return 0;
5113 }
5114 }
5115 return 1;
5116}
5117
5118static int
543613e9 5119process_suffix (void)
29b0f896
AM
5120{
5121 /* If matched instruction specifies an explicit instruction mnemonic
5122 suffix, use it. */
40fb9820
L
5123 if (i.tm.opcode_modifier.size16)
5124 i.suffix = WORD_MNEM_SUFFIX;
5125 else if (i.tm.opcode_modifier.size32)
5126 i.suffix = LONG_MNEM_SUFFIX;
5127 else if (i.tm.opcode_modifier.size64)
5128 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5129 else if (i.reg_operands)
5130 {
5131 /* If there's no instruction mnemonic suffix we try to invent one
5132 based on register operands. */
5133 if (!i.suffix)
5134 {
5135 /* We take i.suffix from the last register operand specified,
5136 Destination register type is more significant than source
381d071f
L
5137 register type. crc32 in SSE4.2 prefers source register
5138 type. */
5139 if (i.tm.base_opcode == 0xf20f38f1)
5140 {
40fb9820
L
5141 if (i.types[0].bitfield.reg16)
5142 i.suffix = WORD_MNEM_SUFFIX;
5143 else if (i.types[0].bitfield.reg32)
5144 i.suffix = LONG_MNEM_SUFFIX;
5145 else if (i.types[0].bitfield.reg64)
5146 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5147 }
9344ff29 5148 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5149 {
40fb9820 5150 if (i.types[0].bitfield.reg8)
20592a94
L
5151 i.suffix = BYTE_MNEM_SUFFIX;
5152 }
381d071f
L
5153
5154 if (!i.suffix)
5155 {
5156 int op;
5157
20592a94
L
5158 if (i.tm.base_opcode == 0xf20f38f1
5159 || i.tm.base_opcode == 0xf20f38f0)
5160 {
5161 /* We have to know the operand size for crc32. */
5162 as_bad (_("ambiguous memory operand size for `%s`"),
5163 i.tm.name);
5164 return 0;
5165 }
5166
381d071f 5167 for (op = i.operands; --op >= 0;)
40fb9820 5168 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5169 {
40fb9820
L
5170 if (i.types[op].bitfield.reg8)
5171 {
5172 i.suffix = BYTE_MNEM_SUFFIX;
5173 break;
5174 }
5175 else if (i.types[op].bitfield.reg16)
5176 {
5177 i.suffix = WORD_MNEM_SUFFIX;
5178 break;
5179 }
5180 else if (i.types[op].bitfield.reg32)
5181 {
5182 i.suffix = LONG_MNEM_SUFFIX;
5183 break;
5184 }
5185 else if (i.types[op].bitfield.reg64)
5186 {
5187 i.suffix = QWORD_MNEM_SUFFIX;
5188 break;
5189 }
381d071f
L
5190 }
5191 }
29b0f896
AM
5192 }
5193 else if (i.suffix == BYTE_MNEM_SUFFIX)
5194 {
2eb952a4
L
5195 if (intel_syntax
5196 && i.tm.opcode_modifier.ignoresize
5197 && i.tm.opcode_modifier.no_bsuf)
5198 i.suffix = 0;
5199 else if (!check_byte_reg ())
29b0f896
AM
5200 return 0;
5201 }
5202 else if (i.suffix == LONG_MNEM_SUFFIX)
5203 {
2eb952a4
L
5204 if (intel_syntax
5205 && i.tm.opcode_modifier.ignoresize
5206 && i.tm.opcode_modifier.no_lsuf)
5207 i.suffix = 0;
5208 else if (!check_long_reg ())
29b0f896
AM
5209 return 0;
5210 }
5211 else if (i.suffix == QWORD_MNEM_SUFFIX)
5212 {
955e1e6a
L
5213 if (intel_syntax
5214 && i.tm.opcode_modifier.ignoresize
5215 && i.tm.opcode_modifier.no_qsuf)
5216 i.suffix = 0;
5217 else if (!check_qword_reg ())
29b0f896
AM
5218 return 0;
5219 }
5220 else if (i.suffix == WORD_MNEM_SUFFIX)
5221 {
2eb952a4
L
5222 if (intel_syntax
5223 && i.tm.opcode_modifier.ignoresize
5224 && i.tm.opcode_modifier.no_wsuf)
5225 i.suffix = 0;
5226 else if (!check_word_reg ())
29b0f896
AM
5227 return 0;
5228 }
c0f3af97 5229 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5230 || i.suffix == YMMWORD_MNEM_SUFFIX
5231 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5232 {
43234a1e 5233 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5234 should check if it is a valid suffix. */
5235 }
40fb9820 5236 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5237 /* Do nothing if the instruction is going to ignore the prefix. */
5238 ;
5239 else
5240 abort ();
5241 }
40fb9820 5242 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5243 && !i.suffix
5244 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5245 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5246 {
5247 i.suffix = stackop_size;
5248 }
9306ca4a
JB
5249 else if (intel_syntax
5250 && !i.suffix
40fb9820
L
5251 && (i.tm.operand_types[0].bitfield.jumpabsolute
5252 || i.tm.opcode_modifier.jumpbyte
5253 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5254 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5255 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5256 {
5257 switch (flag_code)
5258 {
5259 case CODE_64BIT:
40fb9820 5260 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5261 {
5262 i.suffix = QWORD_MNEM_SUFFIX;
5263 break;
5264 }
5265 case CODE_32BIT:
40fb9820 5266 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5267 i.suffix = LONG_MNEM_SUFFIX;
5268 break;
5269 case CODE_16BIT:
40fb9820 5270 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5271 i.suffix = WORD_MNEM_SUFFIX;
5272 break;
5273 }
5274 }
252b5132 5275
9306ca4a 5276 if (!i.suffix)
29b0f896 5277 {
9306ca4a
JB
5278 if (!intel_syntax)
5279 {
40fb9820 5280 if (i.tm.opcode_modifier.w)
9306ca4a 5281 {
4eed87de
AM
5282 as_bad (_("no instruction mnemonic suffix given and "
5283 "no register operands; can't size instruction"));
9306ca4a
JB
5284 return 0;
5285 }
5286 }
5287 else
5288 {
40fb9820 5289 unsigned int suffixes;
7ab9ffdd 5290
40fb9820
L
5291 suffixes = !i.tm.opcode_modifier.no_bsuf;
5292 if (!i.tm.opcode_modifier.no_wsuf)
5293 suffixes |= 1 << 1;
5294 if (!i.tm.opcode_modifier.no_lsuf)
5295 suffixes |= 1 << 2;
fc4adea1 5296 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5297 suffixes |= 1 << 3;
5298 if (!i.tm.opcode_modifier.no_ssuf)
5299 suffixes |= 1 << 4;
5300 if (!i.tm.opcode_modifier.no_qsuf)
5301 suffixes |= 1 << 5;
5302
5303 /* There are more than suffix matches. */
5304 if (i.tm.opcode_modifier.w
9306ca4a 5305 || ((suffixes & (suffixes - 1))
40fb9820
L
5306 && !i.tm.opcode_modifier.defaultsize
5307 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5308 {
5309 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5310 return 0;
5311 }
5312 }
29b0f896 5313 }
252b5132 5314
9306ca4a
JB
5315 /* Change the opcode based on the operand size given by i.suffix;
5316 We don't need to change things for byte insns. */
5317
582d5edd
L
5318 if (i.suffix
5319 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5320 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5321 && i.suffix != YMMWORD_MNEM_SUFFIX
5322 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5323 {
5324 /* It's not a byte, select word/dword operation. */
40fb9820 5325 if (i.tm.opcode_modifier.w)
29b0f896 5326 {
40fb9820 5327 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5328 i.tm.base_opcode |= 8;
5329 else
5330 i.tm.base_opcode |= 1;
5331 }
0f3f3d8b 5332
29b0f896
AM
5333 /* Now select between word & dword operations via the operand
5334 size prefix, except for instructions that will ignore this
5335 prefix anyway. */
ca61edf2 5336 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5337 {
ca61edf2
L
5338 /* The address size override prefix changes the size of the
5339 first operand. */
40fb9820
L
5340 if ((flag_code == CODE_32BIT
5341 && i.op->regs[0].reg_type.bitfield.reg16)
5342 || (flag_code != CODE_32BIT
5343 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5344 if (!add_prefix (ADDR_PREFIX_OPCODE))
5345 return 0;
5346 }
5347 else if (i.suffix != QWORD_MNEM_SUFFIX
5348 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5349 && !i.tm.opcode_modifier.ignoresize
5350 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5351 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5352 || (flag_code == CODE_64BIT
40fb9820 5353 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5354 {
5355 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5356
40fb9820 5357 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5358 prefix = ADDR_PREFIX_OPCODE;
252b5132 5359
29b0f896
AM
5360 if (!add_prefix (prefix))
5361 return 0;
24eab124 5362 }
252b5132 5363
29b0f896
AM
5364 /* Set mode64 for an operand. */
5365 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5366 && flag_code == CODE_64BIT
40fb9820 5367 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5368 {
5369 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5370 need rex64. cmpxchg8b is also a special case. */
5371 if (! (i.operands == 2
5372 && i.tm.base_opcode == 0x90
5373 && i.tm.extension_opcode == None
0dfbf9d7
L
5374 && operand_type_equal (&i.types [0], &acc64)
5375 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5376 && ! (i.operands == 1
5377 && i.tm.base_opcode == 0xfc7
5378 && i.tm.extension_opcode == 1
40fb9820
L
5379 && !operand_type_check (i.types [0], reg)
5380 && operand_type_check (i.types [0], anymem)))
f6bee062 5381 i.rex |= REX_W;
46e883c5 5382 }
3e73aa7c 5383
29b0f896
AM
5384 /* Size floating point instruction. */
5385 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5386 if (i.tm.opcode_modifier.floatmf)
543613e9 5387 i.tm.base_opcode ^= 4;
29b0f896 5388 }
7ecd2f8b 5389
29b0f896
AM
5390 return 1;
5391}
3e73aa7c 5392
29b0f896 5393static int
543613e9 5394check_byte_reg (void)
29b0f896
AM
5395{
5396 int op;
543613e9 5397
29b0f896
AM
5398 for (op = i.operands; --op >= 0;)
5399 {
5400 /* If this is an eight bit register, it's OK. If it's the 16 or
5401 32 bit version of an eight bit register, we will just use the
5402 low portion, and that's OK too. */
40fb9820 5403 if (i.types[op].bitfield.reg8)
29b0f896
AM
5404 continue;
5405
5a819eb9
JB
5406 /* I/O port address operands are OK too. */
5407 if (i.tm.operand_types[op].bitfield.inoutportreg)
5408 continue;
5409
9344ff29
L
5410 /* crc32 doesn't generate this warning. */
5411 if (i.tm.base_opcode == 0xf20f38f0)
5412 continue;
5413
40fb9820
L
5414 if ((i.types[op].bitfield.reg16
5415 || i.types[op].bitfield.reg32
5416 || i.types[op].bitfield.reg64)
5a819eb9
JB
5417 && i.op[op].regs->reg_num < 4
5418 /* Prohibit these changes in 64bit mode, since the lowering
5419 would be more complicated. */
5420 && flag_code != CODE_64BIT)
29b0f896 5421 {
29b0f896 5422#if REGISTER_WARNINGS
5a819eb9 5423 if (!quiet_warnings)
a540244d
L
5424 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5425 register_prefix,
40fb9820 5426 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5427 ? REGNAM_AL - REGNAM_AX
5428 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5429 register_prefix,
29b0f896
AM
5430 i.op[op].regs->reg_name,
5431 i.suffix);
5432#endif
5433 continue;
5434 }
5435 /* Any other register is bad. */
40fb9820
L
5436 if (i.types[op].bitfield.reg16
5437 || i.types[op].bitfield.reg32
5438 || i.types[op].bitfield.reg64
5439 || i.types[op].bitfield.regmmx
5440 || i.types[op].bitfield.regxmm
c0f3af97 5441 || i.types[op].bitfield.regymm
43234a1e 5442 || i.types[op].bitfield.regzmm
40fb9820
L
5443 || i.types[op].bitfield.sreg2
5444 || i.types[op].bitfield.sreg3
5445 || i.types[op].bitfield.control
5446 || i.types[op].bitfield.debug
5447 || i.types[op].bitfield.test
5448 || i.types[op].bitfield.floatreg
5449 || i.types[op].bitfield.floatacc)
29b0f896 5450 {
a540244d
L
5451 as_bad (_("`%s%s' not allowed with `%s%c'"),
5452 register_prefix,
29b0f896
AM
5453 i.op[op].regs->reg_name,
5454 i.tm.name,
5455 i.suffix);
5456 return 0;
5457 }
5458 }
5459 return 1;
5460}
5461
5462static int
e3bb37b5 5463check_long_reg (void)
29b0f896
AM
5464{
5465 int op;
5466
5467 for (op = i.operands; --op >= 0;)
5468 /* Reject eight bit registers, except where the template requires
5469 them. (eg. movzb) */
40fb9820
L
5470 if (i.types[op].bitfield.reg8
5471 && (i.tm.operand_types[op].bitfield.reg16
5472 || i.tm.operand_types[op].bitfield.reg32
5473 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5474 {
a540244d
L
5475 as_bad (_("`%s%s' not allowed with `%s%c'"),
5476 register_prefix,
29b0f896
AM
5477 i.op[op].regs->reg_name,
5478 i.tm.name,
5479 i.suffix);
5480 return 0;
5481 }
e4630f71 5482 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5483 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5484 && i.types[op].bitfield.reg16
5485 && (i.tm.operand_types[op].bitfield.reg32
5486 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5487 {
5488 /* Prohibit these changes in the 64bit mode, since the
5489 lowering is more complicated. */
5490 if (flag_code == CODE_64BIT)
252b5132 5491 {
2b5d6a91 5492 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5493 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5494 i.suffix);
5495 return 0;
252b5132 5496 }
29b0f896 5497#if REGISTER_WARNINGS
cecf1424
JB
5498 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5499 register_prefix,
5500 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5501 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5502#endif
252b5132 5503 }
e4630f71 5504 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5505 else if (i.types[op].bitfield.reg64
5506 && (i.tm.operand_types[op].bitfield.reg32
5507 || i.tm.operand_types[op].bitfield.acc))
252b5132 5508 {
34828aad 5509 if (intel_syntax
ca61edf2 5510 && i.tm.opcode_modifier.toqword
40fb9820 5511 && !i.types[0].bitfield.regxmm)
34828aad 5512 {
ca61edf2 5513 /* Convert to QWORD. We want REX byte. */
34828aad
L
5514 i.suffix = QWORD_MNEM_SUFFIX;
5515 }
5516 else
5517 {
2b5d6a91 5518 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5519 register_prefix, i.op[op].regs->reg_name,
5520 i.suffix);
5521 return 0;
5522 }
29b0f896
AM
5523 }
5524 return 1;
5525}
252b5132 5526
29b0f896 5527static int
e3bb37b5 5528check_qword_reg (void)
29b0f896
AM
5529{
5530 int op;
252b5132 5531
29b0f896
AM
5532 for (op = i.operands; --op >= 0; )
5533 /* Reject eight bit registers, except where the template requires
5534 them. (eg. movzb) */
40fb9820
L
5535 if (i.types[op].bitfield.reg8
5536 && (i.tm.operand_types[op].bitfield.reg16
5537 || i.tm.operand_types[op].bitfield.reg32
5538 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5539 {
a540244d
L
5540 as_bad (_("`%s%s' not allowed with `%s%c'"),
5541 register_prefix,
29b0f896
AM
5542 i.op[op].regs->reg_name,
5543 i.tm.name,
5544 i.suffix);
5545 return 0;
5546 }
e4630f71 5547 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5548 else if ((i.types[op].bitfield.reg16
5549 || i.types[op].bitfield.reg32)
5550 && (i.tm.operand_types[op].bitfield.reg32
5551 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5552 {
5553 /* Prohibit these changes in the 64bit mode, since the
5554 lowering is more complicated. */
34828aad 5555 if (intel_syntax
ca61edf2 5556 && i.tm.opcode_modifier.todword
40fb9820 5557 && !i.types[0].bitfield.regxmm)
34828aad 5558 {
ca61edf2 5559 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5560 i.suffix = LONG_MNEM_SUFFIX;
5561 }
5562 else
5563 {
2b5d6a91 5564 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5565 register_prefix, i.op[op].regs->reg_name,
5566 i.suffix);
5567 return 0;
5568 }
252b5132 5569 }
29b0f896
AM
5570 return 1;
5571}
252b5132 5572
29b0f896 5573static int
e3bb37b5 5574check_word_reg (void)
29b0f896
AM
5575{
5576 int op;
5577 for (op = i.operands; --op >= 0;)
5578 /* Reject eight bit registers, except where the template requires
5579 them. (eg. movzb) */
40fb9820
L
5580 if (i.types[op].bitfield.reg8
5581 && (i.tm.operand_types[op].bitfield.reg16
5582 || i.tm.operand_types[op].bitfield.reg32
5583 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5584 {
a540244d
L
5585 as_bad (_("`%s%s' not allowed with `%s%c'"),
5586 register_prefix,
29b0f896
AM
5587 i.op[op].regs->reg_name,
5588 i.tm.name,
5589 i.suffix);
5590 return 0;
5591 }
e4630f71 5592 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5593 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5594 && (i.types[op].bitfield.reg32
5595 || i.types[op].bitfield.reg64)
40fb9820
L
5596 && (i.tm.operand_types[op].bitfield.reg16
5597 || i.tm.operand_types[op].bitfield.acc))
252b5132 5598 {
29b0f896
AM
5599 /* Prohibit these changes in the 64bit mode, since the
5600 lowering is more complicated. */
5601 if (flag_code == CODE_64BIT)
252b5132 5602 {
2b5d6a91 5603 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5604 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5605 i.suffix);
5606 return 0;
252b5132 5607 }
29b0f896 5608#if REGISTER_WARNINGS
cecf1424
JB
5609 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5610 register_prefix,
5611 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5612 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5613#endif
5614 }
5615 return 1;
5616}
252b5132 5617
29b0f896 5618static int
40fb9820 5619update_imm (unsigned int j)
29b0f896 5620{
bc0844ae 5621 i386_operand_type overlap = i.types[j];
40fb9820
L
5622 if ((overlap.bitfield.imm8
5623 || overlap.bitfield.imm8s
5624 || overlap.bitfield.imm16
5625 || overlap.bitfield.imm32
5626 || overlap.bitfield.imm32s
5627 || overlap.bitfield.imm64)
0dfbf9d7
L
5628 && !operand_type_equal (&overlap, &imm8)
5629 && !operand_type_equal (&overlap, &imm8s)
5630 && !operand_type_equal (&overlap, &imm16)
5631 && !operand_type_equal (&overlap, &imm32)
5632 && !operand_type_equal (&overlap, &imm32s)
5633 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5634 {
5635 if (i.suffix)
5636 {
40fb9820
L
5637 i386_operand_type temp;
5638
0dfbf9d7 5639 operand_type_set (&temp, 0);
7ab9ffdd 5640 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5641 {
5642 temp.bitfield.imm8 = overlap.bitfield.imm8;
5643 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5644 }
5645 else if (i.suffix == WORD_MNEM_SUFFIX)
5646 temp.bitfield.imm16 = overlap.bitfield.imm16;
5647 else if (i.suffix == QWORD_MNEM_SUFFIX)
5648 {
5649 temp.bitfield.imm64 = overlap.bitfield.imm64;
5650 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5651 }
5652 else
5653 temp.bitfield.imm32 = overlap.bitfield.imm32;
5654 overlap = temp;
29b0f896 5655 }
0dfbf9d7
L
5656 else if (operand_type_equal (&overlap, &imm16_32_32s)
5657 || operand_type_equal (&overlap, &imm16_32)
5658 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5659 {
40fb9820 5660 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5661 overlap = imm16;
40fb9820 5662 else
65da13b5 5663 overlap = imm32s;
29b0f896 5664 }
0dfbf9d7
L
5665 if (!operand_type_equal (&overlap, &imm8)
5666 && !operand_type_equal (&overlap, &imm8s)
5667 && !operand_type_equal (&overlap, &imm16)
5668 && !operand_type_equal (&overlap, &imm32)
5669 && !operand_type_equal (&overlap, &imm32s)
5670 && !operand_type_equal (&overlap, &imm64))
29b0f896 5671 {
4eed87de
AM
5672 as_bad (_("no instruction mnemonic suffix given; "
5673 "can't determine immediate size"));
29b0f896
AM
5674 return 0;
5675 }
5676 }
40fb9820 5677 i.types[j] = overlap;
29b0f896 5678
40fb9820
L
5679 return 1;
5680}
5681
5682static int
5683finalize_imm (void)
5684{
bc0844ae 5685 unsigned int j, n;
29b0f896 5686
bc0844ae
L
5687 /* Update the first 2 immediate operands. */
5688 n = i.operands > 2 ? 2 : i.operands;
5689 if (n)
5690 {
5691 for (j = 0; j < n; j++)
5692 if (update_imm (j) == 0)
5693 return 0;
40fb9820 5694
bc0844ae
L
5695 /* The 3rd operand can't be immediate operand. */
5696 gas_assert (operand_type_check (i.types[2], imm) == 0);
5697 }
29b0f896
AM
5698
5699 return 1;
5700}
5701
c0f3af97
L
5702static int
5703bad_implicit_operand (int xmm)
5704{
91d6fa6a
NC
5705 const char *ireg = xmm ? "xmm0" : "ymm0";
5706
c0f3af97
L
5707 if (intel_syntax)
5708 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5709 i.tm.name, register_prefix, ireg);
c0f3af97
L
5710 else
5711 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5712 i.tm.name, register_prefix, ireg);
c0f3af97
L
5713 return 0;
5714}
5715
29b0f896 5716static int
e3bb37b5 5717process_operands (void)
29b0f896
AM
5718{
5719 /* Default segment register this instruction will use for memory
5720 accesses. 0 means unknown. This is only for optimizing out
5721 unnecessary segment overrides. */
5722 const seg_entry *default_seg = 0;
5723
2426c15f 5724 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5725 {
91d6fa6a
NC
5726 unsigned int dupl = i.operands;
5727 unsigned int dest = dupl - 1;
9fcfb3d7
L
5728 unsigned int j;
5729
c0f3af97 5730 /* The destination must be an xmm register. */
9c2799c2 5731 gas_assert (i.reg_operands
91d6fa6a 5732 && MAX_OPERANDS > dupl
7ab9ffdd 5733 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5734
5735 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5736 {
c0f3af97 5737 /* The first operand is implicit and must be xmm0. */
9c2799c2 5738 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5739 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5740 return bad_implicit_operand (1);
5741
8cd7925b 5742 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5743 {
5744 /* Keep xmm0 for instructions with VEX prefix and 3
5745 sources. */
5746 goto duplicate;
5747 }
e2ec9d29 5748 else
c0f3af97
L
5749 {
5750 /* We remove the first xmm0 and keep the number of
5751 operands unchanged, which in fact duplicates the
5752 destination. */
5753 for (j = 1; j < i.operands; j++)
5754 {
5755 i.op[j - 1] = i.op[j];
5756 i.types[j - 1] = i.types[j];
5757 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5758 }
5759 }
5760 }
5761 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5762 {
91d6fa6a 5763 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5764 && (i.tm.opcode_modifier.vexsources
5765 == VEX3SOURCES));
c0f3af97
L
5766
5767 /* Add the implicit xmm0 for instructions with VEX prefix
5768 and 3 sources. */
5769 for (j = i.operands; j > 0; j--)
5770 {
5771 i.op[j] = i.op[j - 1];
5772 i.types[j] = i.types[j - 1];
5773 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5774 }
5775 i.op[0].regs
5776 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5777 i.types[0] = regxmm;
c0f3af97
L
5778 i.tm.operand_types[0] = regxmm;
5779
5780 i.operands += 2;
5781 i.reg_operands += 2;
5782 i.tm.operands += 2;
5783
91d6fa6a 5784 dupl++;
c0f3af97 5785 dest++;
91d6fa6a
NC
5786 i.op[dupl] = i.op[dest];
5787 i.types[dupl] = i.types[dest];
5788 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5789 }
c0f3af97
L
5790 else
5791 {
5792duplicate:
5793 i.operands++;
5794 i.reg_operands++;
5795 i.tm.operands++;
5796
91d6fa6a
NC
5797 i.op[dupl] = i.op[dest];
5798 i.types[dupl] = i.types[dest];
5799 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5800 }
5801
5802 if (i.tm.opcode_modifier.immext)
5803 process_immext ();
5804 }
5805 else if (i.tm.opcode_modifier.firstxmm0)
5806 {
5807 unsigned int j;
5808
43234a1e 5809 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 5810 gas_assert (i.reg_operands
7ab9ffdd 5811 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
5812 || operand_type_equal (&i.types[0], &regymm)
5813 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 5814 if (register_number (i.op[0].regs) != 0)
c0f3af97 5815 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5816
5817 for (j = 1; j < i.operands; j++)
5818 {
5819 i.op[j - 1] = i.op[j];
5820 i.types[j - 1] = i.types[j];
5821
5822 /* We need to adjust fields in i.tm since they are used by
5823 build_modrm_byte. */
5824 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5825 }
5826
e2ec9d29
L
5827 i.operands--;
5828 i.reg_operands--;
e2ec9d29
L
5829 i.tm.operands--;
5830 }
5831 else if (i.tm.opcode_modifier.regkludge)
5832 {
5833 /* The imul $imm, %reg instruction is converted into
5834 imul $imm, %reg, %reg, and the clr %reg instruction
5835 is converted into xor %reg, %reg. */
5836
5837 unsigned int first_reg_op;
5838
5839 if (operand_type_check (i.types[0], reg))
5840 first_reg_op = 0;
5841 else
5842 first_reg_op = 1;
5843 /* Pretend we saw the extra register operand. */
9c2799c2 5844 gas_assert (i.reg_operands == 1
7ab9ffdd 5845 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5846 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5847 i.types[first_reg_op + 1] = i.types[first_reg_op];
5848 i.operands++;
5849 i.reg_operands++;
29b0f896
AM
5850 }
5851
40fb9820 5852 if (i.tm.opcode_modifier.shortform)
29b0f896 5853 {
40fb9820
L
5854 if (i.types[0].bitfield.sreg2
5855 || i.types[0].bitfield.sreg3)
29b0f896 5856 {
4eed87de
AM
5857 if (i.tm.base_opcode == POP_SEG_SHORT
5858 && i.op[0].regs->reg_num == 1)
29b0f896 5859 {
a87af027 5860 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5861 return 0;
29b0f896 5862 }
4eed87de
AM
5863 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5864 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5865 i.rex |= REX_B;
4eed87de
AM
5866 }
5867 else
5868 {
7ab9ffdd 5869 /* The register or float register operand is in operand
85f10a01 5870 0 or 1. */
40fb9820 5871 unsigned int op;
7ab9ffdd
L
5872
5873 if (i.types[0].bitfield.floatreg
5874 || operand_type_check (i.types[0], reg))
5875 op = 0;
5876 else
5877 op = 1;
4eed87de
AM
5878 /* Register goes in low 3 bits of opcode. */
5879 i.tm.base_opcode |= i.op[op].regs->reg_num;
5880 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5881 i.rex |= REX_B;
40fb9820 5882 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5883 {
4eed87de
AM
5884 /* Warn about some common errors, but press on regardless.
5885 The first case can be generated by gcc (<= 2.8.1). */
5886 if (i.operands == 2)
5887 {
5888 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5889 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5890 register_prefix, i.op[!intel_syntax].regs->reg_name,
5891 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5892 }
5893 else
5894 {
5895 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5896 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5897 register_prefix, i.op[0].regs->reg_name);
4eed87de 5898 }
29b0f896
AM
5899 }
5900 }
5901 }
40fb9820 5902 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5903 {
5904 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5905 must be put into the modrm byte). Now, we make the modrm and
5906 index base bytes based on all the info we've collected. */
29b0f896
AM
5907
5908 default_seg = build_modrm_byte ();
5909 }
8a2ed489 5910 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5911 {
5912 default_seg = &ds;
5913 }
40fb9820 5914 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5915 {
5916 /* For the string instructions that allow a segment override
5917 on one of their operands, the default segment is ds. */
5918 default_seg = &ds;
5919 }
5920
75178d9d
L
5921 if (i.tm.base_opcode == 0x8d /* lea */
5922 && i.seg[0]
5923 && !quiet_warnings)
30123838 5924 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5925
5926 /* If a segment was explicitly specified, and the specified segment
5927 is not the default, use an opcode prefix to select it. If we
5928 never figured out what the default segment is, then default_seg
5929 will be zero at this point, and the specified segment prefix will
5930 always be used. */
29b0f896
AM
5931 if ((i.seg[0]) && (i.seg[0] != default_seg))
5932 {
5933 if (!add_prefix (i.seg[0]->seg_prefix))
5934 return 0;
5935 }
5936 return 1;
5937}
5938
5939static const seg_entry *
e3bb37b5 5940build_modrm_byte (void)
29b0f896
AM
5941{
5942 const seg_entry *default_seg = 0;
c0f3af97 5943 unsigned int source, dest;
8cd7925b 5944 int vex_3_sources;
c0f3af97
L
5945
5946 /* The first operand of instructions with VEX prefix and 3 sources
5947 must be VEX_Imm4. */
8cd7925b 5948 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5949 if (vex_3_sources)
5950 {
91d6fa6a 5951 unsigned int nds, reg_slot;
4c2c6516 5952 expressionS *exp;
c0f3af97 5953
922d8de8 5954 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5955 && i.tm.opcode_modifier.immext)
5956 {
5957 dest = i.operands - 2;
5958 gas_assert (dest == 3);
5959 }
922d8de8 5960 else
a683cc34 5961 dest = i.operands - 1;
c0f3af97 5962 nds = dest - 1;
922d8de8 5963
a683cc34
SP
5964 /* There are 2 kinds of instructions:
5965 1. 5 operands: 4 register operands or 3 register operands
5966 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
5967 VexW0 or VexW1. The destination must be either XMM, YMM or
5968 ZMM register.
a683cc34
SP
5969 2. 4 operands: 4 register operands or 3 register operands
5970 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5971 gas_assert ((i.reg_operands == 4
a683cc34
SP
5972 || (i.reg_operands == 3 && i.mem_operands == 1))
5973 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5974 && (i.tm.opcode_modifier.veximmext
5975 || (i.imm_operands == 1
5976 && i.types[0].bitfield.vec_imm4
5977 && (i.tm.opcode_modifier.vexw == VEXW0
5978 || i.tm.opcode_modifier.vexw == VEXW1)
5979 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
5980 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5981 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
5982
5983 if (i.imm_operands == 0)
5984 {
5985 /* When there is no immediate operand, generate an 8bit
5986 immediate operand to encode the first operand. */
5987 exp = &im_expressions[i.imm_operands++];
5988 i.op[i.operands].imms = exp;
5989 i.types[i.operands] = imm8;
5990 i.operands++;
5991 /* If VexW1 is set, the first operand is the source and
5992 the second operand is encoded in the immediate operand. */
5993 if (i.tm.opcode_modifier.vexw == VEXW1)
5994 {
5995 source = 0;
5996 reg_slot = 1;
5997 }
5998 else
5999 {
6000 source = 1;
6001 reg_slot = 0;
6002 }
6003
6004 /* FMA swaps REG and NDS. */
6005 if (i.tm.cpu_flags.bitfield.cpufma)
6006 {
6007 unsigned int tmp;
6008 tmp = reg_slot;
6009 reg_slot = nds;
6010 nds = tmp;
6011 }
6012
24981e7b
L
6013 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6014 &regxmm)
a683cc34 6015 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6016 &regymm)
6017 || operand_type_equal (&i.tm.operand_types[reg_slot],
6018 &regzmm));
a683cc34 6019 exp->X_op = O_constant;
4c692bc7 6020 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6021 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6022 }
922d8de8 6023 else
a683cc34
SP
6024 {
6025 unsigned int imm_slot;
6026
6027 if (i.tm.opcode_modifier.vexw == VEXW0)
6028 {
6029 /* If VexW0 is set, the third operand is the source and
6030 the second operand is encoded in the immediate
6031 operand. */
6032 source = 2;
6033 reg_slot = 1;
6034 }
6035 else
6036 {
6037 /* VexW1 is set, the second operand is the source and
6038 the third operand is encoded in the immediate
6039 operand. */
6040 source = 1;
6041 reg_slot = 2;
6042 }
6043
6044 if (i.tm.opcode_modifier.immext)
6045 {
6046 /* When ImmExt is set, the immdiate byte is the last
6047 operand. */
6048 imm_slot = i.operands - 1;
6049 source--;
6050 reg_slot--;
6051 }
6052 else
6053 {
6054 imm_slot = 0;
6055
6056 /* Turn on Imm8 so that output_imm will generate it. */
6057 i.types[imm_slot].bitfield.imm8 = 1;
6058 }
6059
24981e7b
L
6060 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6061 &regxmm)
6062 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6063 &regymm)
6064 || operand_type_equal (&i.tm.operand_types[reg_slot],
6065 &regzmm));
a683cc34 6066 i.op[imm_slot].imms->X_add_number
4c692bc7 6067 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6068 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6069 }
6070
6071 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6072 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6073 &regymm)
6074 || operand_type_equal (&i.tm.operand_types[nds],
6075 &regzmm));
dae39acc 6076 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6077 }
6078 else
6079 source = dest = 0;
29b0f896
AM
6080
6081 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6082 implicit registers do not count. If there are 3 register
6083 operands, it must be a instruction with VexNDS. For a
6084 instruction with VexNDD, the destination register is encoded
6085 in VEX prefix. If there are 4 register operands, it must be
6086 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6087 if (i.mem_operands == 0
6088 && ((i.reg_operands == 2
2426c15f 6089 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6090 || (i.reg_operands == 3
2426c15f 6091 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6092 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6093 {
cab737b9
L
6094 switch (i.operands)
6095 {
6096 case 2:
6097 source = 0;
6098 break;
6099 case 3:
c81128dc
L
6100 /* When there are 3 operands, one of them may be immediate,
6101 which may be the first or the last operand. Otherwise,
c0f3af97
L
6102 the first operand must be shift count register (cl) or it
6103 is an instruction with VexNDS. */
9c2799c2 6104 gas_assert (i.imm_operands == 1
7ab9ffdd 6105 || (i.imm_operands == 0
2426c15f 6106 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6107 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6108 if (operand_type_check (i.types[0], imm)
6109 || i.types[0].bitfield.shiftcount)
6110 source = 1;
6111 else
6112 source = 0;
cab737b9
L
6113 break;
6114 case 4:
368d64cc
L
6115 /* When there are 4 operands, the first two must be 8bit
6116 immediate operands. The source operand will be the 3rd
c0f3af97
L
6117 one.
6118
6119 For instructions with VexNDS, if the first operand
6120 an imm8, the source operand is the 2nd one. If the last
6121 operand is imm8, the source operand is the first one. */
9c2799c2 6122 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6123 && i.types[0].bitfield.imm8
6124 && i.types[1].bitfield.imm8)
2426c15f 6125 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6126 && i.imm_operands == 1
6127 && (i.types[0].bitfield.imm8
43234a1e
L
6128 || i.types[i.operands - 1].bitfield.imm8
6129 || i.rounding)));
9f2670f2
L
6130 if (i.imm_operands == 2)
6131 source = 2;
6132 else
c0f3af97
L
6133 {
6134 if (i.types[0].bitfield.imm8)
6135 source = 1;
6136 else
6137 source = 0;
6138 }
c0f3af97
L
6139 break;
6140 case 5:
43234a1e
L
6141 if (i.tm.opcode_modifier.evex)
6142 {
6143 /* For EVEX instructions, when there are 5 operands, the
6144 first one must be immediate operand. If the second one
6145 is immediate operand, the source operand is the 3th
6146 one. If the last one is immediate operand, the source
6147 operand is the 2nd one. */
6148 gas_assert (i.imm_operands == 2
6149 && i.tm.opcode_modifier.sae
6150 && operand_type_check (i.types[0], imm));
6151 if (operand_type_check (i.types[1], imm))
6152 source = 2;
6153 else if (operand_type_check (i.types[4], imm))
6154 source = 1;
6155 else
6156 abort ();
6157 }
cab737b9
L
6158 break;
6159 default:
6160 abort ();
6161 }
6162
c0f3af97
L
6163 if (!vex_3_sources)
6164 {
6165 dest = source + 1;
6166
43234a1e
L
6167 /* RC/SAE operand could be between DEST and SRC. That happens
6168 when one operand is GPR and the other one is XMM/YMM/ZMM
6169 register. */
6170 if (i.rounding && i.rounding->operand == (int) dest)
6171 dest++;
6172
2426c15f 6173 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6174 {
43234a1e
L
6175 /* For instructions with VexNDS, the register-only source
6176 operand must be 32/64bit integer, XMM, YMM or ZMM
6177 register. It is encoded in VEX prefix. We need to
6178 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6179
6180 i386_operand_type op;
6181 unsigned int vvvv;
6182
6183 /* Check register-only source operand when two source
6184 operands are swapped. */
6185 if (!i.tm.operand_types[source].bitfield.baseindex
6186 && i.tm.operand_types[dest].bitfield.baseindex)
6187 {
6188 vvvv = source;
6189 source = dest;
6190 }
6191 else
6192 vvvv = dest;
6193
6194 op = i.tm.operand_types[vvvv];
fa99fab2 6195 op.bitfield.regmem = 0;
c0f3af97 6196 if ((dest + 1) >= i.operands
ac4eb736
AM
6197 || (!op.bitfield.reg32
6198 && op.bitfield.reg64
f12dc422 6199 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6200 && !operand_type_equal (&op, &regymm)
6201 && !operand_type_equal (&op, &regzmm)
6202 && !operand_type_equal (&op, &regmask)))
c0f3af97 6203 abort ();
f12dc422 6204 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6205 dest++;
6206 }
6207 }
29b0f896
AM
6208
6209 i.rm.mode = 3;
6210 /* One of the register operands will be encoded in the i.tm.reg
6211 field, the other in the combined i.tm.mode and i.tm.regmem
6212 fields. If no form of this instruction supports a memory
6213 destination operand, then we assume the source operand may
6214 sometimes be a memory operand and so we need to store the
6215 destination in the i.rm.reg field. */
40fb9820
L
6216 if (!i.tm.operand_types[dest].bitfield.regmem
6217 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6218 {
6219 i.rm.reg = i.op[dest].regs->reg_num;
6220 i.rm.regmem = i.op[source].regs->reg_num;
6221 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6222 i.rex |= REX_R;
43234a1e
L
6223 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6224 i.vrex |= REX_R;
29b0f896 6225 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6226 i.rex |= REX_B;
43234a1e
L
6227 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6228 i.vrex |= REX_B;
29b0f896
AM
6229 }
6230 else
6231 {
6232 i.rm.reg = i.op[source].regs->reg_num;
6233 i.rm.regmem = i.op[dest].regs->reg_num;
6234 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6235 i.rex |= REX_B;
43234a1e
L
6236 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6237 i.vrex |= REX_B;
29b0f896 6238 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6239 i.rex |= REX_R;
43234a1e
L
6240 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6241 i.vrex |= REX_R;
29b0f896 6242 }
161a04f6 6243 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6244 {
40fb9820
L
6245 if (!i.types[0].bitfield.control
6246 && !i.types[1].bitfield.control)
c4a530c5 6247 abort ();
161a04f6 6248 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6249 add_prefix (LOCK_PREFIX_OPCODE);
6250 }
29b0f896
AM
6251 }
6252 else
6253 { /* If it's not 2 reg operands... */
c0f3af97
L
6254 unsigned int mem;
6255
29b0f896
AM
6256 if (i.mem_operands)
6257 {
6258 unsigned int fake_zero_displacement = 0;
99018f42 6259 unsigned int op;
4eed87de 6260
7ab9ffdd
L
6261 for (op = 0; op < i.operands; op++)
6262 if (operand_type_check (i.types[op], anymem))
6263 break;
7ab9ffdd 6264 gas_assert (op < i.operands);
29b0f896 6265
6c30d220
L
6266 if (i.tm.opcode_modifier.vecsib)
6267 {
6268 if (i.index_reg->reg_num == RegEiz
6269 || i.index_reg->reg_num == RegRiz)
6270 abort ();
6271
6272 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6273 if (!i.base_reg)
6274 {
6275 i.sib.base = NO_BASE_REGISTER;
6276 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6277 /* No Vec_Disp8 if there is no base. */
6278 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6279 i.types[op].bitfield.disp8 = 0;
6280 i.types[op].bitfield.disp16 = 0;
6281 i.types[op].bitfield.disp64 = 0;
6282 if (flag_code != CODE_64BIT)
6283 {
6284 /* Must be 32 bit */
6285 i.types[op].bitfield.disp32 = 1;
6286 i.types[op].bitfield.disp32s = 0;
6287 }
6288 else
6289 {
6290 i.types[op].bitfield.disp32 = 0;
6291 i.types[op].bitfield.disp32s = 1;
6292 }
6293 }
6294 i.sib.index = i.index_reg->reg_num;
6295 if ((i.index_reg->reg_flags & RegRex) != 0)
6296 i.rex |= REX_X;
43234a1e
L
6297 if ((i.index_reg->reg_flags & RegVRex) != 0)
6298 i.vrex |= REX_X;
6c30d220
L
6299 }
6300
29b0f896
AM
6301 default_seg = &ds;
6302
6303 if (i.base_reg == 0)
6304 {
6305 i.rm.mode = 0;
6306 if (!i.disp_operands)
6c30d220
L
6307 {
6308 fake_zero_displacement = 1;
6309 /* Instructions with VSIB byte need 32bit displacement
6310 if there is no base register. */
6311 if (i.tm.opcode_modifier.vecsib)
6312 i.types[op].bitfield.disp32 = 1;
6313 }
29b0f896
AM
6314 if (i.index_reg == 0)
6315 {
6c30d220 6316 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6317 /* Operand is just <disp> */
20f0a1fc 6318 if (flag_code == CODE_64BIT)
29b0f896
AM
6319 {
6320 /* 64bit mode overwrites the 32bit absolute
6321 addressing by RIP relative addressing and
6322 absolute addressing is encoded by one of the
6323 redundant SIB forms. */
6324 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6325 i.sib.base = NO_BASE_REGISTER;
6326 i.sib.index = NO_INDEX_REGISTER;
fc225355 6327 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6328 ? disp32s : disp32);
20f0a1fc 6329 }
fc225355
L
6330 else if ((flag_code == CODE_16BIT)
6331 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6332 {
6333 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6334 i.types[op] = disp16;
20f0a1fc
NC
6335 }
6336 else
6337 {
6338 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6339 i.types[op] = disp32;
29b0f896
AM
6340 }
6341 }
6c30d220 6342 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6343 {
6c30d220 6344 /* !i.base_reg && i.index_reg */
db51cc60
L
6345 if (i.index_reg->reg_num == RegEiz
6346 || i.index_reg->reg_num == RegRiz)
6347 i.sib.index = NO_INDEX_REGISTER;
6348 else
6349 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6350 i.sib.base = NO_BASE_REGISTER;
6351 i.sib.scale = i.log2_scale_factor;
6352 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6353 /* No Vec_Disp8 if there is no base. */
6354 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6355 i.types[op].bitfield.disp8 = 0;
6356 i.types[op].bitfield.disp16 = 0;
6357 i.types[op].bitfield.disp64 = 0;
29b0f896 6358 if (flag_code != CODE_64BIT)
40fb9820
L
6359 {
6360 /* Must be 32 bit */
6361 i.types[op].bitfield.disp32 = 1;
6362 i.types[op].bitfield.disp32s = 0;
6363 }
29b0f896 6364 else
40fb9820
L
6365 {
6366 i.types[op].bitfield.disp32 = 0;
6367 i.types[op].bitfield.disp32s = 1;
6368 }
29b0f896 6369 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6370 i.rex |= REX_X;
29b0f896
AM
6371 }
6372 }
6373 /* RIP addressing for 64bit mode. */
9a04903e
JB
6374 else if (i.base_reg->reg_num == RegRip ||
6375 i.base_reg->reg_num == RegEip)
29b0f896 6376 {
6c30d220 6377 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6378 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6379 i.types[op].bitfield.disp8 = 0;
6380 i.types[op].bitfield.disp16 = 0;
6381 i.types[op].bitfield.disp32 = 0;
6382 i.types[op].bitfield.disp32s = 1;
6383 i.types[op].bitfield.disp64 = 0;
43234a1e 6384 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6385 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6386 if (! i.disp_operands)
6387 fake_zero_displacement = 1;
29b0f896 6388 }
40fb9820 6389 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6390 {
6c30d220 6391 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6392 switch (i.base_reg->reg_num)
6393 {
6394 case 3: /* (%bx) */
6395 if (i.index_reg == 0)
6396 i.rm.regmem = 7;
6397 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6398 i.rm.regmem = i.index_reg->reg_num - 6;
6399 break;
6400 case 5: /* (%bp) */
6401 default_seg = &ss;
6402 if (i.index_reg == 0)
6403 {
6404 i.rm.regmem = 6;
40fb9820 6405 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6406 {
6407 /* fake (%bp) into 0(%bp) */
43234a1e
L
6408 if (i.tm.operand_types[op].bitfield.vec_disp8)
6409 i.types[op].bitfield.vec_disp8 = 1;
6410 else
6411 i.types[op].bitfield.disp8 = 1;
252b5132 6412 fake_zero_displacement = 1;
29b0f896
AM
6413 }
6414 }
6415 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6416 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6417 break;
6418 default: /* (%si) -> 4 or (%di) -> 5 */
6419 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6420 }
6421 i.rm.mode = mode_from_disp_size (i.types[op]);
6422 }
6423 else /* i.base_reg and 32/64 bit mode */
6424 {
6425 if (flag_code == CODE_64BIT
40fb9820
L
6426 && operand_type_check (i.types[op], disp))
6427 {
6428 i386_operand_type temp;
0dfbf9d7 6429 operand_type_set (&temp, 0);
40fb9820 6430 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6431 temp.bitfield.vec_disp8
6432 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6433 i.types[op] = temp;
6434 if (i.prefix[ADDR_PREFIX] == 0)
6435 i.types[op].bitfield.disp32s = 1;
6436 else
6437 i.types[op].bitfield.disp32 = 1;
6438 }
20f0a1fc 6439
6c30d220
L
6440 if (!i.tm.opcode_modifier.vecsib)
6441 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6442 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6443 i.rex |= REX_B;
29b0f896
AM
6444 i.sib.base = i.base_reg->reg_num;
6445 /* x86-64 ignores REX prefix bit here to avoid decoder
6446 complications. */
848930b2
JB
6447 if (!(i.base_reg->reg_flags & RegRex)
6448 && (i.base_reg->reg_num == EBP_REG_NUM
6449 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6450 default_seg = &ss;
848930b2 6451 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6452 {
848930b2 6453 fake_zero_displacement = 1;
43234a1e
L
6454 if (i.tm.operand_types [op].bitfield.vec_disp8)
6455 i.types[op].bitfield.vec_disp8 = 1;
6456 else
6457 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6458 }
6459 i.sib.scale = i.log2_scale_factor;
6460 if (i.index_reg == 0)
6461 {
6c30d220 6462 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6463 /* <disp>(%esp) becomes two byte modrm with no index
6464 register. We've already stored the code for esp
6465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6466 Any base register besides %esp will not use the
6467 extra modrm byte. */
6468 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6469 }
6c30d220 6470 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6471 {
db51cc60
L
6472 if (i.index_reg->reg_num == RegEiz
6473 || i.index_reg->reg_num == RegRiz)
6474 i.sib.index = NO_INDEX_REGISTER;
6475 else
6476 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6478 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6479 i.rex |= REX_X;
29b0f896 6480 }
67a4f2b7
AO
6481
6482 if (i.disp_operands
6483 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6484 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6485 i.rm.mode = 0;
6486 else
a501d77e
L
6487 {
6488 if (!fake_zero_displacement
6489 && !i.disp_operands
6490 && i.disp_encoding)
6491 {
6492 fake_zero_displacement = 1;
6493 if (i.disp_encoding == disp_encoding_8bit)
6494 i.types[op].bitfield.disp8 = 1;
6495 else
6496 i.types[op].bitfield.disp32 = 1;
6497 }
6498 i.rm.mode = mode_from_disp_size (i.types[op]);
6499 }
29b0f896 6500 }
252b5132 6501
29b0f896
AM
6502 if (fake_zero_displacement)
6503 {
6504 /* Fakes a zero displacement assuming that i.types[op]
6505 holds the correct displacement size. */
6506 expressionS *exp;
6507
9c2799c2 6508 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6509 exp = &disp_expressions[i.disp_operands++];
6510 i.op[op].disps = exp;
6511 exp->X_op = O_constant;
6512 exp->X_add_number = 0;
6513 exp->X_add_symbol = (symbolS *) 0;
6514 exp->X_op_symbol = (symbolS *) 0;
6515 }
c0f3af97
L
6516
6517 mem = op;
29b0f896 6518 }
c0f3af97
L
6519 else
6520 mem = ~0;
252b5132 6521
8c43a48b 6522 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6523 {
6524 if (operand_type_check (i.types[0], imm))
6525 i.vex.register_specifier = NULL;
6526 else
6527 {
6528 /* VEX.vvvv encodes one of the sources when the first
6529 operand is not an immediate. */
1ef99a7b 6530 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6531 i.vex.register_specifier = i.op[0].regs;
6532 else
6533 i.vex.register_specifier = i.op[1].regs;
6534 }
6535
6536 /* Destination is a XMM register encoded in the ModRM.reg
6537 and VEX.R bit. */
6538 i.rm.reg = i.op[2].regs->reg_num;
6539 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6540 i.rex |= REX_R;
6541
6542 /* ModRM.rm and VEX.B encodes the other source. */
6543 if (!i.mem_operands)
6544 {
6545 i.rm.mode = 3;
6546
1ef99a7b 6547 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6548 i.rm.regmem = i.op[1].regs->reg_num;
6549 else
6550 i.rm.regmem = i.op[0].regs->reg_num;
6551
6552 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6553 i.rex |= REX_B;
6554 }
6555 }
2426c15f 6556 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6557 {
6558 i.vex.register_specifier = i.op[2].regs;
6559 if (!i.mem_operands)
6560 {
6561 i.rm.mode = 3;
6562 i.rm.regmem = i.op[1].regs->reg_num;
6563 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6564 i.rex |= REX_B;
6565 }
6566 }
29b0f896
AM
6567 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6568 (if any) based on i.tm.extension_opcode. Again, we must be
6569 careful to make sure that segment/control/debug/test/MMX
6570 registers are coded into the i.rm.reg field. */
f88c9eb0 6571 else if (i.reg_operands)
29b0f896 6572 {
99018f42 6573 unsigned int op;
7ab9ffdd
L
6574 unsigned int vex_reg = ~0;
6575
6576 for (op = 0; op < i.operands; op++)
6577 if (i.types[op].bitfield.reg8
6578 || i.types[op].bitfield.reg16
6579 || i.types[op].bitfield.reg32
6580 || i.types[op].bitfield.reg64
6581 || i.types[op].bitfield.regmmx
6582 || i.types[op].bitfield.regxmm
6583 || i.types[op].bitfield.regymm
7e8b059b 6584 || i.types[op].bitfield.regbnd
43234a1e
L
6585 || i.types[op].bitfield.regzmm
6586 || i.types[op].bitfield.regmask
7ab9ffdd
L
6587 || i.types[op].bitfield.sreg2
6588 || i.types[op].bitfield.sreg3
6589 || i.types[op].bitfield.control
6590 || i.types[op].bitfield.debug
6591 || i.types[op].bitfield.test)
6592 break;
c0209578 6593
7ab9ffdd
L
6594 if (vex_3_sources)
6595 op = dest;
2426c15f 6596 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6597 {
6598 /* For instructions with VexNDS, the register-only
6599 source operand is encoded in VEX prefix. */
6600 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6601
7ab9ffdd 6602 if (op > mem)
c0f3af97 6603 {
7ab9ffdd
L
6604 vex_reg = op++;
6605 gas_assert (op < i.operands);
c0f3af97
L
6606 }
6607 else
c0f3af97 6608 {
f12dc422
L
6609 /* Check register-only source operand when two source
6610 operands are swapped. */
6611 if (!i.tm.operand_types[op].bitfield.baseindex
6612 && i.tm.operand_types[op + 1].bitfield.baseindex)
6613 {
6614 vex_reg = op;
6615 op += 2;
6616 gas_assert (mem == (vex_reg + 1)
6617 && op < i.operands);
6618 }
6619 else
6620 {
6621 vex_reg = op + 1;
6622 gas_assert (vex_reg < i.operands);
6623 }
c0f3af97 6624 }
7ab9ffdd 6625 }
2426c15f 6626 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6627 {
f12dc422 6628 /* For instructions with VexNDD, the register destination
7ab9ffdd 6629 is encoded in VEX prefix. */
f12dc422
L
6630 if (i.mem_operands == 0)
6631 {
6632 /* There is no memory operand. */
6633 gas_assert ((op + 2) == i.operands);
6634 vex_reg = op + 1;
6635 }
6636 else
8d63c93e 6637 {
f12dc422
L
6638 /* There are only 2 operands. */
6639 gas_assert (op < 2 && i.operands == 2);
6640 vex_reg = 1;
6641 }
7ab9ffdd
L
6642 }
6643 else
6644 gas_assert (op < i.operands);
99018f42 6645
7ab9ffdd
L
6646 if (vex_reg != (unsigned int) ~0)
6647 {
f12dc422 6648 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6649
f12dc422
L
6650 if (type->bitfield.reg32 != 1
6651 && type->bitfield.reg64 != 1
6652 && !operand_type_equal (type, &regxmm)
43234a1e
L
6653 && !operand_type_equal (type, &regymm)
6654 && !operand_type_equal (type, &regzmm)
6655 && !operand_type_equal (type, &regmask))
7ab9ffdd 6656 abort ();
f88c9eb0 6657
7ab9ffdd
L
6658 i.vex.register_specifier = i.op[vex_reg].regs;
6659 }
6660
1b9f0c97
L
6661 /* Don't set OP operand twice. */
6662 if (vex_reg != op)
7ab9ffdd 6663 {
1b9f0c97
L
6664 /* If there is an extension opcode to put here, the
6665 register number must be put into the regmem field. */
6666 if (i.tm.extension_opcode != None)
6667 {
6668 i.rm.regmem = i.op[op].regs->reg_num;
6669 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6670 i.rex |= REX_B;
43234a1e
L
6671 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6672 i.vrex |= REX_B;
1b9f0c97
L
6673 }
6674 else
6675 {
6676 i.rm.reg = i.op[op].regs->reg_num;
6677 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6678 i.rex |= REX_R;
43234a1e
L
6679 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6680 i.vrex |= REX_R;
1b9f0c97 6681 }
7ab9ffdd 6682 }
252b5132 6683
29b0f896
AM
6684 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6685 must set it to 3 to indicate this is a register operand
6686 in the regmem field. */
6687 if (!i.mem_operands)
6688 i.rm.mode = 3;
6689 }
252b5132 6690
29b0f896 6691 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6692 if (i.tm.extension_opcode != None)
29b0f896
AM
6693 i.rm.reg = i.tm.extension_opcode;
6694 }
6695 return default_seg;
6696}
252b5132 6697
29b0f896 6698static void
e3bb37b5 6699output_branch (void)
29b0f896
AM
6700{
6701 char *p;
f8a5c266 6702 int size;
29b0f896
AM
6703 int code16;
6704 int prefix;
6705 relax_substateT subtype;
6706 symbolS *sym;
6707 offsetT off;
6708
f8a5c266 6709 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6710 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6711
6712 prefix = 0;
6713 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6714 {
29b0f896
AM
6715 prefix = 1;
6716 i.prefixes -= 1;
6717 code16 ^= CODE16;
252b5132 6718 }
29b0f896
AM
6719 /* Pentium4 branch hints. */
6720 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6721 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6722 {
29b0f896
AM
6723 prefix++;
6724 i.prefixes--;
6725 }
6726 if (i.prefix[REX_PREFIX] != 0)
6727 {
6728 prefix++;
6729 i.prefixes--;
2f66722d
AM
6730 }
6731
7e8b059b
L
6732 /* BND prefixed jump. */
6733 if (i.prefix[BND_PREFIX] != 0)
6734 {
6735 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6736 i.prefixes -= 1;
6737 }
6738
29b0f896
AM
6739 if (i.prefixes != 0 && !intel_syntax)
6740 as_warn (_("skipping prefixes on this instruction"));
6741
6742 /* It's always a symbol; End frag & setup for relax.
6743 Make sure there is enough room in this frag for the largest
6744 instruction we may generate in md_convert_frag. This is 2
6745 bytes for the opcode and room for the prefix and largest
6746 displacement. */
6747 frag_grow (prefix + 2 + 4);
6748 /* Prefix and 1 opcode byte go in fr_fix. */
6749 p = frag_more (prefix + 1);
6750 if (i.prefix[DATA_PREFIX] != 0)
6751 *p++ = DATA_PREFIX_OPCODE;
6752 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6753 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6754 *p++ = i.prefix[SEG_PREFIX];
6755 if (i.prefix[REX_PREFIX] != 0)
6756 *p++ = i.prefix[REX_PREFIX];
6757 *p = i.tm.base_opcode;
6758
6759 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6760 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6761 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6762 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6763 else
f8a5c266 6764 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6765 subtype |= code16;
3e73aa7c 6766
29b0f896
AM
6767 sym = i.op[0].disps->X_add_symbol;
6768 off = i.op[0].disps->X_add_number;
3e73aa7c 6769
29b0f896
AM
6770 if (i.op[0].disps->X_op != O_constant
6771 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6772 {
29b0f896
AM
6773 /* Handle complex expressions. */
6774 sym = make_expr_symbol (i.op[0].disps);
6775 off = 0;
6776 }
3e73aa7c 6777
29b0f896
AM
6778 /* 1 possible extra opcode + 4 byte displacement go in var part.
6779 Pass reloc in fr_var. */
d258b828 6780 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 6781}
3e73aa7c 6782
29b0f896 6783static void
e3bb37b5 6784output_jump (void)
29b0f896
AM
6785{
6786 char *p;
6787 int size;
3e02c1cc 6788 fixS *fixP;
29b0f896 6789
40fb9820 6790 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6791 {
6792 /* This is a loop or jecxz type instruction. */
6793 size = 1;
6794 if (i.prefix[ADDR_PREFIX] != 0)
6795 {
6796 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6797 i.prefixes -= 1;
6798 }
6799 /* Pentium4 branch hints. */
6800 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6801 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6802 {
6803 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6804 i.prefixes--;
3e73aa7c
JH
6805 }
6806 }
29b0f896
AM
6807 else
6808 {
6809 int code16;
3e73aa7c 6810
29b0f896
AM
6811 code16 = 0;
6812 if (flag_code == CODE_16BIT)
6813 code16 = CODE16;
3e73aa7c 6814
29b0f896
AM
6815 if (i.prefix[DATA_PREFIX] != 0)
6816 {
6817 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6818 i.prefixes -= 1;
6819 code16 ^= CODE16;
6820 }
252b5132 6821
29b0f896
AM
6822 size = 4;
6823 if (code16)
6824 size = 2;
6825 }
9fcc94b6 6826
29b0f896
AM
6827 if (i.prefix[REX_PREFIX] != 0)
6828 {
6829 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6830 i.prefixes -= 1;
6831 }
252b5132 6832
7e8b059b
L
6833 /* BND prefixed jump. */
6834 if (i.prefix[BND_PREFIX] != 0)
6835 {
6836 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6837 i.prefixes -= 1;
6838 }
6839
29b0f896
AM
6840 if (i.prefixes != 0 && !intel_syntax)
6841 as_warn (_("skipping prefixes on this instruction"));
e0890092 6842
42164a71
L
6843 p = frag_more (i.tm.opcode_length + size);
6844 switch (i.tm.opcode_length)
6845 {
6846 case 2:
6847 *p++ = i.tm.base_opcode >> 8;
6848 case 1:
6849 *p++ = i.tm.base_opcode;
6850 break;
6851 default:
6852 abort ();
6853 }
e0890092 6854
3e02c1cc 6855 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 6856 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3e02c1cc
AM
6857
6858 /* All jumps handled here are signed, but don't use a signed limit
6859 check for 32 and 16 bit jumps as we want to allow wrap around at
6860 4G and 64k respectively. */
6861 if (size == 1)
6862 fixP->fx_signed = 1;
29b0f896 6863}
e0890092 6864
29b0f896 6865static void
e3bb37b5 6866output_interseg_jump (void)
29b0f896
AM
6867{
6868 char *p;
6869 int size;
6870 int prefix;
6871 int code16;
252b5132 6872
29b0f896
AM
6873 code16 = 0;
6874 if (flag_code == CODE_16BIT)
6875 code16 = CODE16;
a217f122 6876
29b0f896
AM
6877 prefix = 0;
6878 if (i.prefix[DATA_PREFIX] != 0)
6879 {
6880 prefix = 1;
6881 i.prefixes -= 1;
6882 code16 ^= CODE16;
6883 }
6884 if (i.prefix[REX_PREFIX] != 0)
6885 {
6886 prefix++;
6887 i.prefixes -= 1;
6888 }
252b5132 6889
29b0f896
AM
6890 size = 4;
6891 if (code16)
6892 size = 2;
252b5132 6893
29b0f896
AM
6894 if (i.prefixes != 0 && !intel_syntax)
6895 as_warn (_("skipping prefixes on this instruction"));
252b5132 6896
29b0f896
AM
6897 /* 1 opcode; 2 segment; offset */
6898 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 6899
29b0f896
AM
6900 if (i.prefix[DATA_PREFIX] != 0)
6901 *p++ = DATA_PREFIX_OPCODE;
252b5132 6902
29b0f896
AM
6903 if (i.prefix[REX_PREFIX] != 0)
6904 *p++ = i.prefix[REX_PREFIX];
252b5132 6905
29b0f896
AM
6906 *p++ = i.tm.base_opcode;
6907 if (i.op[1].imms->X_op == O_constant)
6908 {
6909 offsetT n = i.op[1].imms->X_add_number;
252b5132 6910
29b0f896
AM
6911 if (size == 2
6912 && !fits_in_unsigned_word (n)
6913 && !fits_in_signed_word (n))
6914 {
6915 as_bad (_("16-bit jump out of range"));
6916 return;
6917 }
6918 md_number_to_chars (p, n, size);
6919 }
6920 else
6921 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 6922 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
6923 if (i.op[0].imms->X_op != O_constant)
6924 as_bad (_("can't handle non absolute segment in `%s'"),
6925 i.tm.name);
6926 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6927}
a217f122 6928
29b0f896 6929static void
e3bb37b5 6930output_insn (void)
29b0f896 6931{
2bbd9c25
JJ
6932 fragS *insn_start_frag;
6933 offsetT insn_start_off;
6934
29b0f896
AM
6935 /* Tie dwarf2 debug info to the address at the start of the insn.
6936 We can't do this after the insn has been output as the current
6937 frag may have been closed off. eg. by frag_var. */
6938 dwarf2_emit_insn (0);
6939
2bbd9c25
JJ
6940 insn_start_frag = frag_now;
6941 insn_start_off = frag_now_fix ();
6942
29b0f896 6943 /* Output jumps. */
40fb9820 6944 if (i.tm.opcode_modifier.jump)
29b0f896 6945 output_branch ();
40fb9820
L
6946 else if (i.tm.opcode_modifier.jumpbyte
6947 || i.tm.opcode_modifier.jumpdword)
29b0f896 6948 output_jump ();
40fb9820 6949 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
6950 output_interseg_jump ();
6951 else
6952 {
6953 /* Output normal instructions here. */
6954 char *p;
6955 unsigned char *q;
47465058 6956 unsigned int j;
331d2d0d 6957 unsigned int prefix;
4dffcebc 6958
d022bddd
IT
6959 /* Some processors fail on LOCK prefix. This options makes
6960 assembler ignore LOCK prefix and serves as a workaround. */
6961 if (omit_lock_prefix)
6962 {
6963 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6964 return;
6965 i.prefix[LOCK_PREFIX] = 0;
6966 }
6967
43234a1e
L
6968 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6969 don't need the explicit prefix. */
6970 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 6971 {
c0f3af97 6972 switch (i.tm.opcode_length)
bc4bd9ab 6973 {
c0f3af97
L
6974 case 3:
6975 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6976 {
c0f3af97
L
6977 prefix = (i.tm.base_opcode >> 24) & 0xff;
6978 goto check_prefix;
6979 }
6980 break;
6981 case 2:
6982 if ((i.tm.base_opcode & 0xff0000) != 0)
6983 {
6984 prefix = (i.tm.base_opcode >> 16) & 0xff;
6985 if (i.tm.cpu_flags.bitfield.cpupadlock)
6986 {
4dffcebc 6987check_prefix:
c0f3af97 6988 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6989 || (i.prefix[REP_PREFIX]
c0f3af97
L
6990 != REPE_PREFIX_OPCODE))
6991 add_prefix (prefix);
6992 }
6993 else
4dffcebc
L
6994 add_prefix (prefix);
6995 }
c0f3af97
L
6996 break;
6997 case 1:
6998 break;
6999 default:
7000 abort ();
bc4bd9ab 7001 }
c0f3af97 7002
6d19a37a 7003#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7004 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7005 R_X86_64_GOTTPOFF relocation so that linker can safely
7006 perform IE->LE optimization. */
7007 if (x86_elf_abi == X86_64_X32_ABI
7008 && i.operands == 2
7009 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7010 && i.prefix[REX_PREFIX] == 0)
7011 add_prefix (REX_OPCODE);
6d19a37a 7012#endif
cf61b747 7013
c0f3af97
L
7014 /* The prefix bytes. */
7015 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7016 if (*q)
7017 FRAG_APPEND_1_CHAR (*q);
0f10071e 7018 }
ae5c1c7b 7019 else
c0f3af97
L
7020 {
7021 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7022 if (*q)
7023 switch (j)
7024 {
7025 case REX_PREFIX:
7026 /* REX byte is encoded in VEX prefix. */
7027 break;
7028 case SEG_PREFIX:
7029 case ADDR_PREFIX:
7030 FRAG_APPEND_1_CHAR (*q);
7031 break;
7032 default:
7033 /* There should be no other prefixes for instructions
7034 with VEX prefix. */
7035 abort ();
7036 }
7037
43234a1e
L
7038 /* For EVEX instructions i.vrex should become 0 after
7039 build_evex_prefix. For VEX instructions upper 16 registers
7040 aren't available, so VREX should be 0. */
7041 if (i.vrex)
7042 abort ();
c0f3af97
L
7043 /* Now the VEX prefix. */
7044 p = frag_more (i.vex.length);
7045 for (j = 0; j < i.vex.length; j++)
7046 p[j] = i.vex.bytes[j];
7047 }
252b5132 7048
29b0f896 7049 /* Now the opcode; be careful about word order here! */
4dffcebc 7050 if (i.tm.opcode_length == 1)
29b0f896
AM
7051 {
7052 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7053 }
7054 else
7055 {
4dffcebc 7056 switch (i.tm.opcode_length)
331d2d0d 7057 {
43234a1e
L
7058 case 4:
7059 p = frag_more (4);
7060 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7061 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7062 break;
4dffcebc 7063 case 3:
331d2d0d
L
7064 p = frag_more (3);
7065 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7066 break;
7067 case 2:
7068 p = frag_more (2);
7069 break;
7070 default:
7071 abort ();
7072 break;
331d2d0d 7073 }
0f10071e 7074
29b0f896
AM
7075 /* Put out high byte first: can't use md_number_to_chars! */
7076 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7077 *p = i.tm.base_opcode & 0xff;
7078 }
3e73aa7c 7079
29b0f896 7080 /* Now the modrm byte and sib byte (if present). */
40fb9820 7081 if (i.tm.opcode_modifier.modrm)
29b0f896 7082 {
4a3523fa
L
7083 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7084 | i.rm.reg << 3
7085 | i.rm.mode << 6));
29b0f896
AM
7086 /* If i.rm.regmem == ESP (4)
7087 && i.rm.mode != (Register mode)
7088 && not 16 bit
7089 ==> need second modrm byte. */
7090 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7091 && i.rm.mode != 3
40fb9820 7092 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7093 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7094 | i.sib.index << 3
7095 | i.sib.scale << 6));
29b0f896 7096 }
3e73aa7c 7097
29b0f896 7098 if (i.disp_operands)
2bbd9c25 7099 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7100
29b0f896 7101 if (i.imm_operands)
2bbd9c25 7102 output_imm (insn_start_frag, insn_start_off);
29b0f896 7103 }
252b5132 7104
29b0f896
AM
7105#ifdef DEBUG386
7106 if (flag_debug)
7107 {
7b81dfbb 7108 pi ("" /*line*/, &i);
29b0f896
AM
7109 }
7110#endif /* DEBUG386 */
7111}
252b5132 7112
e205caa7
L
7113/* Return the size of the displacement operand N. */
7114
7115static int
7116disp_size (unsigned int n)
7117{
7118 int size = 4;
43234a1e
L
7119
7120 /* Vec_Disp8 has to be 8bit. */
7121 if (i.types[n].bitfield.vec_disp8)
7122 size = 1;
7123 else if (i.types[n].bitfield.disp64)
40fb9820
L
7124 size = 8;
7125 else if (i.types[n].bitfield.disp8)
7126 size = 1;
7127 else if (i.types[n].bitfield.disp16)
7128 size = 2;
e205caa7
L
7129 return size;
7130}
7131
7132/* Return the size of the immediate operand N. */
7133
7134static int
7135imm_size (unsigned int n)
7136{
7137 int size = 4;
40fb9820
L
7138 if (i.types[n].bitfield.imm64)
7139 size = 8;
7140 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7141 size = 1;
7142 else if (i.types[n].bitfield.imm16)
7143 size = 2;
e205caa7
L
7144 return size;
7145}
7146
29b0f896 7147static void
64e74474 7148output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7149{
7150 char *p;
7151 unsigned int n;
252b5132 7152
29b0f896
AM
7153 for (n = 0; n < i.operands; n++)
7154 {
43234a1e
L
7155 if (i.types[n].bitfield.vec_disp8
7156 || operand_type_check (i.types[n], disp))
29b0f896
AM
7157 {
7158 if (i.op[n].disps->X_op == O_constant)
7159 {
e205caa7 7160 int size = disp_size (n);
43234a1e 7161 offsetT val = i.op[n].disps->X_add_number;
252b5132 7162
43234a1e
L
7163 if (i.types[n].bitfield.vec_disp8)
7164 val >>= i.memshift;
7165 val = offset_in_range (val, size);
29b0f896
AM
7166 p = frag_more (size);
7167 md_number_to_chars (p, val, size);
7168 }
7169 else
7170 {
f86103b7 7171 enum bfd_reloc_code_real reloc_type;
e205caa7 7172 int size = disp_size (n);
40fb9820 7173 int sign = i.types[n].bitfield.disp32s;
29b0f896 7174 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7175 fixS *fixP;
29b0f896 7176
e205caa7 7177 /* We can't have 8 bit displacement here. */
9c2799c2 7178 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7179
29b0f896
AM
7180 /* The PC relative address is computed relative
7181 to the instruction boundary, so in case immediate
7182 fields follows, we need to adjust the value. */
7183 if (pcrel && i.imm_operands)
7184 {
29b0f896 7185 unsigned int n1;
e205caa7 7186 int sz = 0;
252b5132 7187
29b0f896 7188 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7189 if (operand_type_check (i.types[n1], imm))
252b5132 7190 {
e205caa7
L
7191 /* Only one immediate is allowed for PC
7192 relative address. */
9c2799c2 7193 gas_assert (sz == 0);
e205caa7
L
7194 sz = imm_size (n1);
7195 i.op[n].disps->X_add_number -= sz;
252b5132 7196 }
29b0f896 7197 /* We should find the immediate. */
9c2799c2 7198 gas_assert (sz != 0);
29b0f896 7199 }
520dc8e8 7200
29b0f896 7201 p = frag_more (size);
d258b828 7202 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7203 if (GOT_symbol
2bbd9c25 7204 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7205 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7206 || reloc_type == BFD_RELOC_X86_64_32S
7207 || (reloc_type == BFD_RELOC_64
7208 && object_64bit))
d6ab8113
JB
7209 && (i.op[n].disps->X_op == O_symbol
7210 || (i.op[n].disps->X_op == O_add
7211 && ((symbol_get_value_expression
7212 (i.op[n].disps->X_op_symbol)->X_op)
7213 == O_subtract))))
7214 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7215 {
7216 offsetT add;
7217
7218 if (insn_start_frag == frag_now)
7219 add = (p - frag_now->fr_literal) - insn_start_off;
7220 else
7221 {
7222 fragS *fr;
7223
7224 add = insn_start_frag->fr_fix - insn_start_off;
7225 for (fr = insn_start_frag->fr_next;
7226 fr && fr != frag_now; fr = fr->fr_next)
7227 add += fr->fr_fix;
7228 add += p - frag_now->fr_literal;
7229 }
7230
4fa24527 7231 if (!object_64bit)
7b81dfbb
AJ
7232 {
7233 reloc_type = BFD_RELOC_386_GOTPC;
7234 i.op[n].imms->X_add_number += add;
7235 }
7236 else if (reloc_type == BFD_RELOC_64)
7237 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7238 else
7b81dfbb
AJ
7239 /* Don't do the adjustment for x86-64, as there
7240 the pcrel addressing is relative to the _next_
7241 insn, and that is taken care of in other code. */
d6ab8113 7242 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7243 }
02a86693
L
7244 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7245 size, i.op[n].disps, pcrel,
7246 reloc_type);
7247 /* Check for "call/jmp *mem", "mov mem, %reg",
7248 "test %reg, mem" and "binop mem, %reg" where binop
7249 is one of adc, add, and, cmp, or, sbb, sub, xor
7250 instructions. */
7251 if ((i.rm.mode == 2
7252 || (i.rm.mode == 0 && i.rm.regmem == 5))
7253 && ((i.operands == 1
7254 && i.tm.base_opcode == 0xff
7255 && (i.rm.reg == 2 || i.rm.reg == 4))
7256 || (i.operands == 2
7257 && (i.tm.base_opcode == 0x8b
7258 || i.tm.base_opcode == 0x85
7259 || (i.tm.base_opcode & 0xc7) == 0x03))))
7260 {
7261 if (object_64bit)
7262 {
7263 fixP->fx_tcbit = i.rex != 0;
7264 if (i.base_reg
7265 && (i.base_reg->reg_num == RegRip
7266 || i.base_reg->reg_num == RegEip))
7267 fixP->fx_tcbit2 = 1;
7268 }
7269 else
7270 fixP->fx_tcbit2 = 1;
7271 }
29b0f896
AM
7272 }
7273 }
7274 }
7275}
252b5132 7276
29b0f896 7277static void
64e74474 7278output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7279{
7280 char *p;
7281 unsigned int n;
252b5132 7282
29b0f896
AM
7283 for (n = 0; n < i.operands; n++)
7284 {
43234a1e
L
7285 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7286 if (i.rounding && (int) n == i.rounding->operand)
7287 continue;
7288
40fb9820 7289 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7290 {
7291 if (i.op[n].imms->X_op == O_constant)
7292 {
e205caa7 7293 int size = imm_size (n);
29b0f896 7294 offsetT val;
b4cac588 7295
29b0f896
AM
7296 val = offset_in_range (i.op[n].imms->X_add_number,
7297 size);
7298 p = frag_more (size);
7299 md_number_to_chars (p, val, size);
7300 }
7301 else
7302 {
7303 /* Not absolute_section.
7304 Need a 32-bit fixup (don't support 8bit
7305 non-absolute imms). Try to support other
7306 sizes ... */
f86103b7 7307 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7308 int size = imm_size (n);
7309 int sign;
29b0f896 7310
40fb9820 7311 if (i.types[n].bitfield.imm32s
a7d61044 7312 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7313 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7314 sign = 1;
e205caa7
L
7315 else
7316 sign = 0;
520dc8e8 7317
29b0f896 7318 p = frag_more (size);
d258b828 7319 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7320
2bbd9c25
JJ
7321 /* This is tough to explain. We end up with this one if we
7322 * have operands that look like
7323 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7324 * obtain the absolute address of the GOT, and it is strongly
7325 * preferable from a performance point of view to avoid using
7326 * a runtime relocation for this. The actual sequence of
7327 * instructions often look something like:
7328 *
7329 * call .L66
7330 * .L66:
7331 * popl %ebx
7332 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7333 *
7334 * The call and pop essentially return the absolute address
7335 * of the label .L66 and store it in %ebx. The linker itself
7336 * will ultimately change the first operand of the addl so
7337 * that %ebx points to the GOT, but to keep things simple, the
7338 * .o file must have this operand set so that it generates not
7339 * the absolute address of .L66, but the absolute address of
7340 * itself. This allows the linker itself simply treat a GOTPC
7341 * relocation as asking for a pcrel offset to the GOT to be
7342 * added in, and the addend of the relocation is stored in the
7343 * operand field for the instruction itself.
7344 *
7345 * Our job here is to fix the operand so that it would add
7346 * the correct offset so that %ebx would point to itself. The
7347 * thing that is tricky is that .-.L66 will point to the
7348 * beginning of the instruction, so we need to further modify
7349 * the operand so that it will point to itself. There are
7350 * other cases where you have something like:
7351 *
7352 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7353 *
7354 * and here no correction would be required. Internally in
7355 * the assembler we treat operands of this form as not being
7356 * pcrel since the '.' is explicitly mentioned, and I wonder
7357 * whether it would simplify matters to do it this way. Who
7358 * knows. In earlier versions of the PIC patches, the
7359 * pcrel_adjust field was used to store the correction, but
7360 * since the expression is not pcrel, I felt it would be
7361 * confusing to do it this way. */
7362
d6ab8113 7363 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7364 || reloc_type == BFD_RELOC_X86_64_32S
7365 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7366 && GOT_symbol
7367 && GOT_symbol == i.op[n].imms->X_add_symbol
7368 && (i.op[n].imms->X_op == O_symbol
7369 || (i.op[n].imms->X_op == O_add
7370 && ((symbol_get_value_expression
7371 (i.op[n].imms->X_op_symbol)->X_op)
7372 == O_subtract))))
7373 {
2bbd9c25
JJ
7374 offsetT add;
7375
7376 if (insn_start_frag == frag_now)
7377 add = (p - frag_now->fr_literal) - insn_start_off;
7378 else
7379 {
7380 fragS *fr;
7381
7382 add = insn_start_frag->fr_fix - insn_start_off;
7383 for (fr = insn_start_frag->fr_next;
7384 fr && fr != frag_now; fr = fr->fr_next)
7385 add += fr->fr_fix;
7386 add += p - frag_now->fr_literal;
7387 }
7388
4fa24527 7389 if (!object_64bit)
d6ab8113 7390 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7391 else if (size == 4)
d6ab8113 7392 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7393 else if (size == 8)
7394 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7395 i.op[n].imms->X_add_number += add;
29b0f896 7396 }
29b0f896
AM
7397 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7398 i.op[n].imms, 0, reloc_type);
7399 }
7400 }
7401 }
252b5132
RH
7402}
7403\f
d182319b
JB
7404/* x86_cons_fix_new is called via the expression parsing code when a
7405 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7406static int cons_sign = -1;
7407
7408void
e3bb37b5 7409x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7410 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7411{
d258b828 7412 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7413
7414#ifdef TE_PE
7415 if (exp->X_op == O_secrel)
7416 {
7417 exp->X_op = O_symbol;
7418 r = BFD_RELOC_32_SECREL;
7419 }
7420#endif
7421
7422 fix_new_exp (frag, off, len, exp, 0, r);
7423}
7424
357d1bd8
L
7425/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7426 purpose of the `.dc.a' internal pseudo-op. */
7427
7428int
7429x86_address_bytes (void)
7430{
7431 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7432 return 4;
7433 return stdoutput->arch_info->bits_per_address / 8;
7434}
7435
d382c579
TG
7436#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7437 || defined (LEX_AT)
d258b828 7438# define lex_got(reloc, adjust, types) NULL
718ddfc0 7439#else
f3c180ae
AM
7440/* Parse operands of the form
7441 <symbol>@GOTOFF+<nnn>
7442 and similar .plt or .got references.
7443
7444 If we find one, set up the correct relocation in RELOC and copy the
7445 input string, minus the `@GOTOFF' into a malloc'd buffer for
7446 parsing by the calling routine. Return this buffer, and if ADJUST
7447 is non-null set it to the length of the string we removed from the
7448 input line. Otherwise return NULL. */
7449static char *
91d6fa6a 7450lex_got (enum bfd_reloc_code_real *rel,
64e74474 7451 int *adjust,
d258b828 7452 i386_operand_type *types)
f3c180ae 7453{
7b81dfbb
AJ
7454 /* Some of the relocations depend on the size of what field is to
7455 be relocated. But in our callers i386_immediate and i386_displacement
7456 we don't yet know the operand size (this will be set by insn
7457 matching). Hence we record the word32 relocation here,
7458 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7459 static const struct {
7460 const char *str;
cff8d58a 7461 int len;
4fa24527 7462 const enum bfd_reloc_code_real rel[2];
40fb9820 7463 const i386_operand_type types64;
f3c180ae 7464 } gotrel[] = {
8ce3d284 7465#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7466 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7467 BFD_RELOC_SIZE32 },
7468 OPERAND_TYPE_IMM32_64 },
8ce3d284 7469#endif
cff8d58a
L
7470 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7471 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7472 OPERAND_TYPE_IMM64 },
cff8d58a
L
7473 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7474 BFD_RELOC_X86_64_PLT32 },
40fb9820 7475 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7476 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7477 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7478 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7479 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7480 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7481 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7482 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7483 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7484 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7485 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7486 BFD_RELOC_X86_64_TLSGD },
40fb9820 7487 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7488 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7489 _dummy_first_bfd_reloc_code_real },
40fb9820 7490 OPERAND_TYPE_NONE },
cff8d58a
L
7491 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7492 BFD_RELOC_X86_64_TLSLD },
40fb9820 7493 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7494 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7495 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7496 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7497 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7498 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7499 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7500 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7501 _dummy_first_bfd_reloc_code_real },
40fb9820 7502 OPERAND_TYPE_NONE },
cff8d58a
L
7503 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7504 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7505 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7506 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7507 _dummy_first_bfd_reloc_code_real },
40fb9820 7508 OPERAND_TYPE_NONE },
cff8d58a
L
7509 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7510 _dummy_first_bfd_reloc_code_real },
40fb9820 7511 OPERAND_TYPE_NONE },
cff8d58a
L
7512 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7513 BFD_RELOC_X86_64_GOT32 },
40fb9820 7514 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7515 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7516 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7517 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7518 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7519 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7520 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7521 };
7522 char *cp;
7523 unsigned int j;
7524
d382c579 7525#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7526 if (!IS_ELF)
7527 return NULL;
d382c579 7528#endif
718ddfc0 7529
f3c180ae 7530 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7531 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7532 return NULL;
7533
47465058 7534 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7535 {
cff8d58a 7536 int len = gotrel[j].len;
28f81592 7537 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7538 {
4fa24527 7539 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7540 {
28f81592
AM
7541 int first, second;
7542 char *tmpbuf, *past_reloc;
f3c180ae 7543
91d6fa6a 7544 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7545
3956db08
JB
7546 if (types)
7547 {
7548 if (flag_code != CODE_64BIT)
40fb9820
L
7549 {
7550 types->bitfield.imm32 = 1;
7551 types->bitfield.disp32 = 1;
7552 }
3956db08
JB
7553 else
7554 *types = gotrel[j].types64;
7555 }
7556
8fd4256d 7557 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7558 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7559
28f81592 7560 /* The length of the first part of our input line. */
f3c180ae 7561 first = cp - input_line_pointer;
28f81592
AM
7562
7563 /* The second part goes from after the reloc token until
67c11a9b 7564 (and including) an end_of_line char or comma. */
28f81592 7565 past_reloc = cp + 1 + len;
67c11a9b
AM
7566 cp = past_reloc;
7567 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7568 ++cp;
7569 second = cp + 1 - past_reloc;
28f81592
AM
7570
7571 /* Allocate and copy string. The trailing NUL shouldn't
7572 be necessary, but be safe. */
1e9cc1c2 7573 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 7574 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7575 if (second != 0 && *past_reloc != ' ')
7576 /* Replace the relocation token with ' ', so that
7577 errors like foo@GOTOFF1 will be detected. */
7578 tmpbuf[first++] = ' ';
af89796a
L
7579 else
7580 /* Increment length by 1 if the relocation token is
7581 removed. */
7582 len++;
7583 if (adjust)
7584 *adjust = len;
0787a12d
AM
7585 memcpy (tmpbuf + first, past_reloc, second);
7586 tmpbuf[first + second] = '\0';
f3c180ae
AM
7587 return tmpbuf;
7588 }
7589
4fa24527
JB
7590 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7591 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7592 return NULL;
7593 }
7594 }
7595
7596 /* Might be a symbol version string. Don't as_bad here. */
7597 return NULL;
7598}
4e4f7c87 7599#endif
f3c180ae 7600
a988325c
NC
7601#ifdef TE_PE
7602#ifdef lex_got
7603#undef lex_got
7604#endif
7605/* Parse operands of the form
7606 <symbol>@SECREL32+<nnn>
7607
7608 If we find one, set up the correct relocation in RELOC and copy the
7609 input string, minus the `@SECREL32' into a malloc'd buffer for
7610 parsing by the calling routine. Return this buffer, and if ADJUST
7611 is non-null set it to the length of the string we removed from the
34bca508
L
7612 input line. Otherwise return NULL.
7613
a988325c
NC
7614 This function is copied from the ELF version above adjusted for PE targets. */
7615
7616static char *
7617lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7618 int *adjust ATTRIBUTE_UNUSED,
d258b828 7619 i386_operand_type *types)
a988325c
NC
7620{
7621 static const struct
7622 {
7623 const char *str;
7624 int len;
7625 const enum bfd_reloc_code_real rel[2];
7626 const i386_operand_type types64;
7627 }
7628 gotrel[] =
7629 {
7630 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7631 BFD_RELOC_32_SECREL },
7632 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7633 };
7634
7635 char *cp;
7636 unsigned j;
7637
7638 for (cp = input_line_pointer; *cp != '@'; cp++)
7639 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7640 return NULL;
7641
7642 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7643 {
7644 int len = gotrel[j].len;
7645
7646 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7647 {
7648 if (gotrel[j].rel[object_64bit] != 0)
7649 {
7650 int first, second;
7651 char *tmpbuf, *past_reloc;
7652
7653 *rel = gotrel[j].rel[object_64bit];
7654 if (adjust)
7655 *adjust = len;
7656
7657 if (types)
7658 {
7659 if (flag_code != CODE_64BIT)
7660 {
7661 types->bitfield.imm32 = 1;
7662 types->bitfield.disp32 = 1;
7663 }
7664 else
7665 *types = gotrel[j].types64;
7666 }
7667
7668 /* The length of the first part of our input line. */
7669 first = cp - input_line_pointer;
7670
7671 /* The second part goes from after the reloc token until
7672 (and including) an end_of_line char or comma. */
7673 past_reloc = cp + 1 + len;
7674 cp = past_reloc;
7675 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7676 ++cp;
7677 second = cp + 1 - past_reloc;
7678
7679 /* Allocate and copy string. The trailing NUL shouldn't
7680 be necessary, but be safe. */
7681 tmpbuf = (char *) xmalloc (first + second + 2);
7682 memcpy (tmpbuf, input_line_pointer, first);
7683 if (second != 0 && *past_reloc != ' ')
7684 /* Replace the relocation token with ' ', so that
7685 errors like foo@SECLREL321 will be detected. */
7686 tmpbuf[first++] = ' ';
7687 memcpy (tmpbuf + first, past_reloc, second);
7688 tmpbuf[first + second] = '\0';
7689 return tmpbuf;
7690 }
7691
7692 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7693 gotrel[j].str, 1 << (5 + object_64bit));
7694 return NULL;
7695 }
7696 }
7697
7698 /* Might be a symbol version string. Don't as_bad here. */
7699 return NULL;
7700}
7701
7702#endif /* TE_PE */
7703
62ebcb5c 7704bfd_reloc_code_real_type
e3bb37b5 7705x86_cons (expressionS *exp, int size)
f3c180ae 7706{
62ebcb5c
AM
7707 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7708
ee86248c
JB
7709 intel_syntax = -intel_syntax;
7710
3c7b9c2c 7711 exp->X_md = 0;
4fa24527 7712 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
7713 {
7714 /* Handle @GOTOFF and the like in an expression. */
7715 char *save;
7716 char *gotfree_input_line;
4a57f2cf 7717 int adjust = 0;
f3c180ae
AM
7718
7719 save = input_line_pointer;
d258b828 7720 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
7721 if (gotfree_input_line)
7722 input_line_pointer = gotfree_input_line;
7723
7724 expression (exp);
7725
7726 if (gotfree_input_line)
7727 {
7728 /* expression () has merrily parsed up to the end of line,
7729 or a comma - in the wrong buffer. Transfer how far
7730 input_line_pointer has moved to the right buffer. */
7731 input_line_pointer = (save
7732 + (input_line_pointer - gotfree_input_line)
7733 + adjust);
7734 free (gotfree_input_line);
3992d3b7
AM
7735 if (exp->X_op == O_constant
7736 || exp->X_op == O_absent
7737 || exp->X_op == O_illegal
0398aac5 7738 || exp->X_op == O_register
3992d3b7
AM
7739 || exp->X_op == O_big)
7740 {
7741 char c = *input_line_pointer;
7742 *input_line_pointer = 0;
7743 as_bad (_("missing or invalid expression `%s'"), save);
7744 *input_line_pointer = c;
7745 }
f3c180ae
AM
7746 }
7747 }
7748 else
7749 expression (exp);
ee86248c
JB
7750
7751 intel_syntax = -intel_syntax;
7752
7753 if (intel_syntax)
7754 i386_intel_simplify (exp);
62ebcb5c
AM
7755
7756 return got_reloc;
f3c180ae 7757}
f3c180ae 7758
9f32dd5b
L
7759static void
7760signed_cons (int size)
6482c264 7761{
d182319b
JB
7762 if (flag_code == CODE_64BIT)
7763 cons_sign = 1;
7764 cons (size);
7765 cons_sign = -1;
6482c264
NC
7766}
7767
d182319b 7768#ifdef TE_PE
6482c264 7769static void
7016a5d5 7770pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
7771{
7772 expressionS exp;
7773
7774 do
7775 {
7776 expression (&exp);
7777 if (exp.X_op == O_symbol)
7778 exp.X_op = O_secrel;
7779
7780 emit_expr (&exp, 4);
7781 }
7782 while (*input_line_pointer++ == ',');
7783
7784 input_line_pointer--;
7785 demand_empty_rest_of_line ();
7786}
6482c264
NC
7787#endif
7788
43234a1e
L
7789/* Handle Vector operations. */
7790
7791static char *
7792check_VecOperations (char *op_string, char *op_end)
7793{
7794 const reg_entry *mask;
7795 const char *saved;
7796 char *end_op;
7797
7798 while (*op_string
7799 && (op_end == NULL || op_string < op_end))
7800 {
7801 saved = op_string;
7802 if (*op_string == '{')
7803 {
7804 op_string++;
7805
7806 /* Check broadcasts. */
7807 if (strncmp (op_string, "1to", 3) == 0)
7808 {
7809 int bcst_type;
7810
7811 if (i.broadcast)
7812 goto duplicated_vec_op;
7813
7814 op_string += 3;
7815 if (*op_string == '8')
7816 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
7817 else if (*op_string == '4')
7818 bcst_type = BROADCAST_1TO4;
7819 else if (*op_string == '2')
7820 bcst_type = BROADCAST_1TO2;
43234a1e
L
7821 else if (*op_string == '1'
7822 && *(op_string+1) == '6')
7823 {
7824 bcst_type = BROADCAST_1TO16;
7825 op_string++;
7826 }
7827 else
7828 {
7829 as_bad (_("Unsupported broadcast: `%s'"), saved);
7830 return NULL;
7831 }
7832 op_string++;
7833
7834 broadcast_op.type = bcst_type;
7835 broadcast_op.operand = this_operand;
7836 i.broadcast = &broadcast_op;
7837 }
7838 /* Check masking operation. */
7839 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7840 {
7841 /* k0 can't be used for write mask. */
7842 if (mask->reg_num == 0)
7843 {
7844 as_bad (_("`%s' can't be used for write mask"),
7845 op_string);
7846 return NULL;
7847 }
7848
7849 if (!i.mask)
7850 {
7851 mask_op.mask = mask;
7852 mask_op.zeroing = 0;
7853 mask_op.operand = this_operand;
7854 i.mask = &mask_op;
7855 }
7856 else
7857 {
7858 if (i.mask->mask)
7859 goto duplicated_vec_op;
7860
7861 i.mask->mask = mask;
7862
7863 /* Only "{z}" is allowed here. No need to check
7864 zeroing mask explicitly. */
7865 if (i.mask->operand != this_operand)
7866 {
7867 as_bad (_("invalid write mask `%s'"), saved);
7868 return NULL;
7869 }
7870 }
7871
7872 op_string = end_op;
7873 }
7874 /* Check zeroing-flag for masking operation. */
7875 else if (*op_string == 'z')
7876 {
7877 if (!i.mask)
7878 {
7879 mask_op.mask = NULL;
7880 mask_op.zeroing = 1;
7881 mask_op.operand = this_operand;
7882 i.mask = &mask_op;
7883 }
7884 else
7885 {
7886 if (i.mask->zeroing)
7887 {
7888 duplicated_vec_op:
7889 as_bad (_("duplicated `%s'"), saved);
7890 return NULL;
7891 }
7892
7893 i.mask->zeroing = 1;
7894
7895 /* Only "{%k}" is allowed here. No need to check mask
7896 register explicitly. */
7897 if (i.mask->operand != this_operand)
7898 {
7899 as_bad (_("invalid zeroing-masking `%s'"),
7900 saved);
7901 return NULL;
7902 }
7903 }
7904
7905 op_string++;
7906 }
7907 else
7908 goto unknown_vec_op;
7909
7910 if (*op_string != '}')
7911 {
7912 as_bad (_("missing `}' in `%s'"), saved);
7913 return NULL;
7914 }
7915 op_string++;
7916 continue;
7917 }
7918 unknown_vec_op:
7919 /* We don't know this one. */
7920 as_bad (_("unknown vector operation: `%s'"), saved);
7921 return NULL;
7922 }
7923
7924 return op_string;
7925}
7926
252b5132 7927static int
70e41ade 7928i386_immediate (char *imm_start)
252b5132
RH
7929{
7930 char *save_input_line_pointer;
f3c180ae 7931 char *gotfree_input_line;
252b5132 7932 segT exp_seg = 0;
47926f60 7933 expressionS *exp;
40fb9820
L
7934 i386_operand_type types;
7935
0dfbf9d7 7936 operand_type_set (&types, ~0);
252b5132
RH
7937
7938 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7939 {
31b2323c
L
7940 as_bad (_("at most %d immediate operands are allowed"),
7941 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
7942 return 0;
7943 }
7944
7945 exp = &im_expressions[i.imm_operands++];
520dc8e8 7946 i.op[this_operand].imms = exp;
252b5132
RH
7947
7948 if (is_space_char (*imm_start))
7949 ++imm_start;
7950
7951 save_input_line_pointer = input_line_pointer;
7952 input_line_pointer = imm_start;
7953
d258b828 7954 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
7955 if (gotfree_input_line)
7956 input_line_pointer = gotfree_input_line;
252b5132
RH
7957
7958 exp_seg = expression (exp);
7959
83183c0c 7960 SKIP_WHITESPACE ();
43234a1e
L
7961
7962 /* Handle vector operations. */
7963 if (*input_line_pointer == '{')
7964 {
7965 input_line_pointer = check_VecOperations (input_line_pointer,
7966 NULL);
7967 if (input_line_pointer == NULL)
7968 return 0;
7969 }
7970
252b5132 7971 if (*input_line_pointer)
f3c180ae 7972 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
7973
7974 input_line_pointer = save_input_line_pointer;
f3c180ae 7975 if (gotfree_input_line)
ee86248c
JB
7976 {
7977 free (gotfree_input_line);
7978
7979 if (exp->X_op == O_constant || exp->X_op == O_register)
7980 exp->X_op = O_illegal;
7981 }
7982
7983 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7984}
252b5132 7985
ee86248c
JB
7986static int
7987i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7988 i386_operand_type types, const char *imm_start)
7989{
7990 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 7991 {
313c53d1
L
7992 if (imm_start)
7993 as_bad (_("missing or invalid immediate expression `%s'"),
7994 imm_start);
3992d3b7 7995 return 0;
252b5132 7996 }
3e73aa7c 7997 else if (exp->X_op == O_constant)
252b5132 7998 {
47926f60 7999 /* Size it properly later. */
40fb9820 8000 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8001 /* If not 64bit, sign extend val. */
8002 if (flag_code != CODE_64BIT
4eed87de
AM
8003 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8004 exp->X_add_number
8005 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8006 }
4c63da97 8007#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8008 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8009 && exp_seg != absolute_section
47926f60 8010 && exp_seg != text_section
24eab124
AM
8011 && exp_seg != data_section
8012 && exp_seg != bss_section
8013 && exp_seg != undefined_section
f86103b7 8014 && !bfd_is_com_section (exp_seg))
252b5132 8015 {
d0b47220 8016 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8017 return 0;
8018 }
8019#endif
a841bdf5 8020 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8021 {
313c53d1
L
8022 if (imm_start)
8023 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8024 return 0;
8025 }
252b5132
RH
8026 else
8027 {
8028 /* This is an address. The size of the address will be
24eab124 8029 determined later, depending on destination register,
3e73aa7c 8030 suffix, or the default for the section. */
40fb9820
L
8031 i.types[this_operand].bitfield.imm8 = 1;
8032 i.types[this_operand].bitfield.imm16 = 1;
8033 i.types[this_operand].bitfield.imm32 = 1;
8034 i.types[this_operand].bitfield.imm32s = 1;
8035 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8036 i.types[this_operand] = operand_type_and (i.types[this_operand],
8037 types);
252b5132
RH
8038 }
8039
8040 return 1;
8041}
8042
551c1ca1 8043static char *
e3bb37b5 8044i386_scale (char *scale)
252b5132 8045{
551c1ca1
AM
8046 offsetT val;
8047 char *save = input_line_pointer;
252b5132 8048
551c1ca1
AM
8049 input_line_pointer = scale;
8050 val = get_absolute_expression ();
8051
8052 switch (val)
252b5132 8053 {
551c1ca1 8054 case 1:
252b5132
RH
8055 i.log2_scale_factor = 0;
8056 break;
551c1ca1 8057 case 2:
252b5132
RH
8058 i.log2_scale_factor = 1;
8059 break;
551c1ca1 8060 case 4:
252b5132
RH
8061 i.log2_scale_factor = 2;
8062 break;
551c1ca1 8063 case 8:
252b5132
RH
8064 i.log2_scale_factor = 3;
8065 break;
8066 default:
a724f0f4
JB
8067 {
8068 char sep = *input_line_pointer;
8069
8070 *input_line_pointer = '\0';
8071 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8072 scale);
8073 *input_line_pointer = sep;
8074 input_line_pointer = save;
8075 return NULL;
8076 }
252b5132 8077 }
29b0f896 8078 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8079 {
8080 as_warn (_("scale factor of %d without an index register"),
24eab124 8081 1 << i.log2_scale_factor);
252b5132 8082 i.log2_scale_factor = 0;
252b5132 8083 }
551c1ca1
AM
8084 scale = input_line_pointer;
8085 input_line_pointer = save;
8086 return scale;
252b5132
RH
8087}
8088
252b5132 8089static int
e3bb37b5 8090i386_displacement (char *disp_start, char *disp_end)
252b5132 8091{
29b0f896 8092 expressionS *exp;
252b5132
RH
8093 segT exp_seg = 0;
8094 char *save_input_line_pointer;
f3c180ae 8095 char *gotfree_input_line;
40fb9820
L
8096 int override;
8097 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8098 int ret;
252b5132 8099
31b2323c
L
8100 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8101 {
8102 as_bad (_("at most %d displacement operands are allowed"),
8103 MAX_MEMORY_OPERANDS);
8104 return 0;
8105 }
8106
0dfbf9d7 8107 operand_type_set (&bigdisp, 0);
40fb9820
L
8108 if ((i.types[this_operand].bitfield.jumpabsolute)
8109 || (!current_templates->start->opcode_modifier.jump
8110 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8111 {
40fb9820 8112 bigdisp.bitfield.disp32 = 1;
e05278af 8113 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8114 if (flag_code == CODE_64BIT)
8115 {
8116 if (!override)
8117 {
8118 bigdisp.bitfield.disp32s = 1;
8119 bigdisp.bitfield.disp64 = 1;
8120 }
8121 }
8122 else if ((flag_code == CODE_16BIT) ^ override)
8123 {
8124 bigdisp.bitfield.disp32 = 0;
8125 bigdisp.bitfield.disp16 = 1;
8126 }
e05278af
JB
8127 }
8128 else
8129 {
8130 /* For PC-relative branches, the width of the displacement
8131 is dependent upon data size, not address size. */
e05278af 8132 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8133 if (flag_code == CODE_64BIT)
8134 {
8135 if (override || i.suffix == WORD_MNEM_SUFFIX)
8136 bigdisp.bitfield.disp16 = 1;
8137 else
8138 {
8139 bigdisp.bitfield.disp32 = 1;
8140 bigdisp.bitfield.disp32s = 1;
8141 }
8142 }
8143 else
e05278af
JB
8144 {
8145 if (!override)
8146 override = (i.suffix == (flag_code != CODE_16BIT
8147 ? WORD_MNEM_SUFFIX
8148 : LONG_MNEM_SUFFIX));
40fb9820
L
8149 bigdisp.bitfield.disp32 = 1;
8150 if ((flag_code == CODE_16BIT) ^ override)
8151 {
8152 bigdisp.bitfield.disp32 = 0;
8153 bigdisp.bitfield.disp16 = 1;
8154 }
e05278af 8155 }
e05278af 8156 }
c6fb90c8
L
8157 i.types[this_operand] = operand_type_or (i.types[this_operand],
8158 bigdisp);
252b5132
RH
8159
8160 exp = &disp_expressions[i.disp_operands];
520dc8e8 8161 i.op[this_operand].disps = exp;
252b5132
RH
8162 i.disp_operands++;
8163 save_input_line_pointer = input_line_pointer;
8164 input_line_pointer = disp_start;
8165 END_STRING_AND_SAVE (disp_end);
8166
8167#ifndef GCC_ASM_O_HACK
8168#define GCC_ASM_O_HACK 0
8169#endif
8170#if GCC_ASM_O_HACK
8171 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8172 if (i.types[this_operand].bitfield.baseIndex
24eab124 8173 && displacement_string_end[-1] == '+')
252b5132
RH
8174 {
8175 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8176 constraint within gcc asm statements.
8177 For instance:
8178
8179 #define _set_tssldt_desc(n,addr,limit,type) \
8180 __asm__ __volatile__ ( \
8181 "movw %w2,%0\n\t" \
8182 "movw %w1,2+%0\n\t" \
8183 "rorl $16,%1\n\t" \
8184 "movb %b1,4+%0\n\t" \
8185 "movb %4,5+%0\n\t" \
8186 "movb $0,6+%0\n\t" \
8187 "movb %h1,7+%0\n\t" \
8188 "rorl $16,%1" \
8189 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8190
8191 This works great except that the output assembler ends
8192 up looking a bit weird if it turns out that there is
8193 no offset. You end up producing code that looks like:
8194
8195 #APP
8196 movw $235,(%eax)
8197 movw %dx,2+(%eax)
8198 rorl $16,%edx
8199 movb %dl,4+(%eax)
8200 movb $137,5+(%eax)
8201 movb $0,6+(%eax)
8202 movb %dh,7+(%eax)
8203 rorl $16,%edx
8204 #NO_APP
8205
47926f60 8206 So here we provide the missing zero. */
24eab124
AM
8207
8208 *displacement_string_end = '0';
252b5132
RH
8209 }
8210#endif
d258b828 8211 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8212 if (gotfree_input_line)
8213 input_line_pointer = gotfree_input_line;
252b5132 8214
24eab124 8215 exp_seg = expression (exp);
252b5132 8216
636c26b0
AM
8217 SKIP_WHITESPACE ();
8218 if (*input_line_pointer)
8219 as_bad (_("junk `%s' after expression"), input_line_pointer);
8220#if GCC_ASM_O_HACK
8221 RESTORE_END_STRING (disp_end + 1);
8222#endif
636c26b0 8223 input_line_pointer = save_input_line_pointer;
636c26b0 8224 if (gotfree_input_line)
ee86248c
JB
8225 {
8226 free (gotfree_input_line);
8227
8228 if (exp->X_op == O_constant || exp->X_op == O_register)
8229 exp->X_op = O_illegal;
8230 }
8231
8232 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8233
8234 RESTORE_END_STRING (disp_end);
8235
8236 return ret;
8237}
8238
8239static int
8240i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8241 i386_operand_type types, const char *disp_start)
8242{
8243 i386_operand_type bigdisp;
8244 int ret = 1;
636c26b0 8245
24eab124
AM
8246 /* We do this to make sure that the section symbol is in
8247 the symbol table. We will ultimately change the relocation
47926f60 8248 to be relative to the beginning of the section. */
1ae12ab7 8249 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8250 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8251 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8252 {
636c26b0 8253 if (exp->X_op != O_symbol)
3992d3b7 8254 goto inv_disp;
636c26b0 8255
e5cb08ac 8256 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8257 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8258 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8259 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8260 exp->X_op = O_subtract;
8261 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8262 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8263 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8264 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8265 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8266 else
29b0f896 8267 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8268 }
252b5132 8269
3992d3b7
AM
8270 else if (exp->X_op == O_absent
8271 || exp->X_op == O_illegal
ee86248c 8272 || exp->X_op == O_big)
2daf4fd8 8273 {
3992d3b7
AM
8274 inv_disp:
8275 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8276 disp_start);
3992d3b7 8277 ret = 0;
2daf4fd8
AM
8278 }
8279
0e1147d9
L
8280 else if (flag_code == CODE_64BIT
8281 && !i.prefix[ADDR_PREFIX]
8282 && exp->X_op == O_constant)
8283 {
8284 /* Since displacement is signed extended to 64bit, don't allow
8285 disp32 and turn off disp32s if they are out of range. */
8286 i.types[this_operand].bitfield.disp32 = 0;
8287 if (!fits_in_signed_long (exp->X_add_number))
8288 {
8289 i.types[this_operand].bitfield.disp32s = 0;
8290 if (i.types[this_operand].bitfield.baseindex)
8291 {
8292 as_bad (_("0x%lx out range of signed 32bit displacement"),
8293 (long) exp->X_add_number);
8294 ret = 0;
8295 }
8296 }
8297 }
8298
4c63da97 8299#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8300 else if (exp->X_op != O_constant
8301 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8302 && exp_seg != absolute_section
8303 && exp_seg != text_section
8304 && exp_seg != data_section
8305 && exp_seg != bss_section
8306 && exp_seg != undefined_section
8307 && !bfd_is_com_section (exp_seg))
24eab124 8308 {
d0b47220 8309 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8310 ret = 0;
24eab124 8311 }
252b5132 8312#endif
3956db08 8313
40fb9820
L
8314 /* Check if this is a displacement only operand. */
8315 bigdisp = i.types[this_operand];
8316 bigdisp.bitfield.disp8 = 0;
8317 bigdisp.bitfield.disp16 = 0;
8318 bigdisp.bitfield.disp32 = 0;
8319 bigdisp.bitfield.disp32s = 0;
8320 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8321 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8322 i.types[this_operand] = operand_type_and (i.types[this_operand],
8323 types);
3956db08 8324
3992d3b7 8325 return ret;
252b5132
RH
8326}
8327
eecb386c 8328/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8329 Return 1 on success, 0 on a failure. */
8330
252b5132 8331static int
e3bb37b5 8332i386_index_check (const char *operand_string)
252b5132 8333{
fc0763e6 8334 const char *kind = "base/index";
be05d201
L
8335 enum flag_code addr_mode;
8336
8337 if (i.prefix[ADDR_PREFIX])
8338 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8339 else
8340 {
8341 addr_mode = flag_code;
8342
24eab124 8343#if INFER_ADDR_PREFIX
be05d201
L
8344 if (i.mem_operands == 0)
8345 {
8346 /* Infer address prefix from the first memory operand. */
8347 const reg_entry *addr_reg = i.base_reg;
8348
8349 if (addr_reg == NULL)
8350 addr_reg = i.index_reg;
eecb386c 8351
be05d201
L
8352 if (addr_reg)
8353 {
8354 if (addr_reg->reg_num == RegEip
8355 || addr_reg->reg_num == RegEiz
8356 || addr_reg->reg_type.bitfield.reg32)
8357 addr_mode = CODE_32BIT;
8358 else if (flag_code != CODE_64BIT
8359 && addr_reg->reg_type.bitfield.reg16)
8360 addr_mode = CODE_16BIT;
8361
8362 if (addr_mode != flag_code)
8363 {
8364 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8365 i.prefixes += 1;
8366 /* Change the size of any displacement too. At most one
8367 of Disp16 or Disp32 is set.
8368 FIXME. There doesn't seem to be any real need for
8369 separate Disp16 and Disp32 flags. The same goes for
8370 Imm16 and Imm32. Removing them would probably clean
8371 up the code quite a lot. */
8372 if (flag_code != CODE_64BIT
8373 && (i.types[this_operand].bitfield.disp16
8374 || i.types[this_operand].bitfield.disp32))
8375 i.types[this_operand]
8376 = operand_type_xor (i.types[this_operand], disp16_32);
8377 }
8378 }
8379 }
24eab124 8380#endif
be05d201
L
8381 }
8382
fc0763e6
JB
8383 if (current_templates->start->opcode_modifier.isstring
8384 && !current_templates->start->opcode_modifier.immext
8385 && (current_templates->end[-1].opcode_modifier.isstring
8386 || i.mem_operands))
8387 {
8388 /* Memory operands of string insns are special in that they only allow
8389 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8390 const reg_entry *expected_reg;
8391 static const char *di_si[][2] =
8392 {
8393 { "esi", "edi" },
8394 { "si", "di" },
8395 { "rsi", "rdi" }
8396 };
8397 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8398
8399 kind = "string address";
8400
8401 if (current_templates->start->opcode_modifier.w)
8402 {
8403 i386_operand_type type = current_templates->end[-1].operand_types[0];
8404
8405 if (!type.bitfield.baseindex
8406 || ((!i.mem_operands != !intel_syntax)
8407 && current_templates->end[-1].operand_types[1]
8408 .bitfield.baseindex))
8409 type = current_templates->end[-1].operand_types[1];
be05d201
L
8410 expected_reg = hash_find (reg_hash,
8411 di_si[addr_mode][type.bitfield.esseg]);
8412
fc0763e6
JB
8413 }
8414 else
be05d201 8415 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8416
be05d201
L
8417 if (i.base_reg != expected_reg
8418 || i.index_reg
fc0763e6 8419 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8420 {
be05d201
L
8421 /* The second memory operand must have the same size as
8422 the first one. */
8423 if (i.mem_operands
8424 && i.base_reg
8425 && !((addr_mode == CODE_64BIT
8426 && i.base_reg->reg_type.bitfield.reg64)
8427 || (addr_mode == CODE_32BIT
8428 ? i.base_reg->reg_type.bitfield.reg32
8429 : i.base_reg->reg_type.bitfield.reg16)))
8430 goto bad_address;
8431
fc0763e6
JB
8432 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8433 operand_string,
8434 intel_syntax ? '[' : '(',
8435 register_prefix,
be05d201 8436 expected_reg->reg_name,
fc0763e6 8437 intel_syntax ? ']' : ')');
be05d201 8438 return 1;
fc0763e6 8439 }
be05d201
L
8440 else
8441 return 1;
8442
8443bad_address:
8444 as_bad (_("`%s' is not a valid %s expression"),
8445 operand_string, kind);
8446 return 0;
3e73aa7c
JH
8447 }
8448 else
8449 {
be05d201
L
8450 if (addr_mode != CODE_16BIT)
8451 {
8452 /* 32-bit/64-bit checks. */
8453 if ((i.base_reg
8454 && (addr_mode == CODE_64BIT
8455 ? !i.base_reg->reg_type.bitfield.reg64
8456 : !i.base_reg->reg_type.bitfield.reg32)
8457 && (i.index_reg
8458 || (i.base_reg->reg_num
8459 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8460 || (i.index_reg
8461 && !i.index_reg->reg_type.bitfield.regxmm
8462 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8463 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8464 && ((addr_mode == CODE_64BIT
8465 ? !(i.index_reg->reg_type.bitfield.reg64
8466 || i.index_reg->reg_num == RegRiz)
8467 : !(i.index_reg->reg_type.bitfield.reg32
8468 || i.index_reg->reg_num == RegEiz))
8469 || !i.index_reg->reg_type.bitfield.baseindex)))
8470 goto bad_address;
8471 }
8472 else
3e73aa7c 8473 {
be05d201 8474 /* 16-bit checks. */
3e73aa7c 8475 if ((i.base_reg
40fb9820
L
8476 && (!i.base_reg->reg_type.bitfield.reg16
8477 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8478 || (i.index_reg
40fb9820
L
8479 && (!i.index_reg->reg_type.bitfield.reg16
8480 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8481 || !(i.base_reg
8482 && i.base_reg->reg_num < 6
8483 && i.index_reg->reg_num >= 6
8484 && i.log2_scale_factor == 0))))
be05d201 8485 goto bad_address;
3e73aa7c
JH
8486 }
8487 }
be05d201 8488 return 1;
24eab124 8489}
252b5132 8490
43234a1e
L
8491/* Handle vector immediates. */
8492
8493static int
8494RC_SAE_immediate (const char *imm_start)
8495{
8496 unsigned int match_found, j;
8497 const char *pstr = imm_start;
8498 expressionS *exp;
8499
8500 if (*pstr != '{')
8501 return 0;
8502
8503 pstr++;
8504 match_found = 0;
8505 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8506 {
8507 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8508 {
8509 if (!i.rounding)
8510 {
8511 rc_op.type = RC_NamesTable[j].type;
8512 rc_op.operand = this_operand;
8513 i.rounding = &rc_op;
8514 }
8515 else
8516 {
8517 as_bad (_("duplicated `%s'"), imm_start);
8518 return 0;
8519 }
8520 pstr += RC_NamesTable[j].len;
8521 match_found = 1;
8522 break;
8523 }
8524 }
8525 if (!match_found)
8526 return 0;
8527
8528 if (*pstr++ != '}')
8529 {
8530 as_bad (_("Missing '}': '%s'"), imm_start);
8531 return 0;
8532 }
8533 /* RC/SAE immediate string should contain nothing more. */;
8534 if (*pstr != 0)
8535 {
8536 as_bad (_("Junk after '}': '%s'"), imm_start);
8537 return 0;
8538 }
8539
8540 exp = &im_expressions[i.imm_operands++];
8541 i.op[this_operand].imms = exp;
8542
8543 exp->X_op = O_constant;
8544 exp->X_add_number = 0;
8545 exp->X_add_symbol = (symbolS *) 0;
8546 exp->X_op_symbol = (symbolS *) 0;
8547
8548 i.types[this_operand].bitfield.imm8 = 1;
8549 return 1;
8550}
8551
fc0763e6 8552/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8553 on error. */
252b5132 8554
252b5132 8555static int
a7619375 8556i386_att_operand (char *operand_string)
252b5132 8557{
af6bdddf
AM
8558 const reg_entry *r;
8559 char *end_op;
24eab124 8560 char *op_string = operand_string;
252b5132 8561
24eab124 8562 if (is_space_char (*op_string))
252b5132
RH
8563 ++op_string;
8564
24eab124 8565 /* We check for an absolute prefix (differentiating,
47926f60 8566 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8567 if (*op_string == ABSOLUTE_PREFIX)
8568 {
8569 ++op_string;
8570 if (is_space_char (*op_string))
8571 ++op_string;
40fb9820 8572 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8573 }
252b5132 8574
47926f60 8575 /* Check if operand is a register. */
4d1bb795 8576 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8577 {
40fb9820
L
8578 i386_operand_type temp;
8579
24eab124
AM
8580 /* Check for a segment override by searching for ':' after a
8581 segment register. */
8582 op_string = end_op;
8583 if (is_space_char (*op_string))
8584 ++op_string;
40fb9820
L
8585 if (*op_string == ':'
8586 && (r->reg_type.bitfield.sreg2
8587 || r->reg_type.bitfield.sreg3))
24eab124
AM
8588 {
8589 switch (r->reg_num)
8590 {
8591 case 0:
8592 i.seg[i.mem_operands] = &es;
8593 break;
8594 case 1:
8595 i.seg[i.mem_operands] = &cs;
8596 break;
8597 case 2:
8598 i.seg[i.mem_operands] = &ss;
8599 break;
8600 case 3:
8601 i.seg[i.mem_operands] = &ds;
8602 break;
8603 case 4:
8604 i.seg[i.mem_operands] = &fs;
8605 break;
8606 case 5:
8607 i.seg[i.mem_operands] = &gs;
8608 break;
8609 }
252b5132 8610
24eab124 8611 /* Skip the ':' and whitespace. */
252b5132
RH
8612 ++op_string;
8613 if (is_space_char (*op_string))
24eab124 8614 ++op_string;
252b5132 8615
24eab124
AM
8616 if (!is_digit_char (*op_string)
8617 && !is_identifier_char (*op_string)
8618 && *op_string != '('
8619 && *op_string != ABSOLUTE_PREFIX)
8620 {
8621 as_bad (_("bad memory operand `%s'"), op_string);
8622 return 0;
8623 }
47926f60 8624 /* Handle case of %es:*foo. */
24eab124
AM
8625 if (*op_string == ABSOLUTE_PREFIX)
8626 {
8627 ++op_string;
8628 if (is_space_char (*op_string))
8629 ++op_string;
40fb9820 8630 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8631 }
8632 goto do_memory_reference;
8633 }
43234a1e
L
8634
8635 /* Handle vector operations. */
8636 if (*op_string == '{')
8637 {
8638 op_string = check_VecOperations (op_string, NULL);
8639 if (op_string == NULL)
8640 return 0;
8641 }
8642
24eab124
AM
8643 if (*op_string)
8644 {
d0b47220 8645 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
8646 return 0;
8647 }
40fb9820
L
8648 temp = r->reg_type;
8649 temp.bitfield.baseindex = 0;
c6fb90c8
L
8650 i.types[this_operand] = operand_type_or (i.types[this_operand],
8651 temp);
7d5e4556 8652 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 8653 i.op[this_operand].regs = r;
24eab124
AM
8654 i.reg_operands++;
8655 }
af6bdddf
AM
8656 else if (*op_string == REGISTER_PREFIX)
8657 {
8658 as_bad (_("bad register name `%s'"), op_string);
8659 return 0;
8660 }
24eab124 8661 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 8662 {
24eab124 8663 ++op_string;
40fb9820 8664 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 8665 {
d0b47220 8666 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
8667 return 0;
8668 }
8669 if (!i386_immediate (op_string))
8670 return 0;
8671 }
43234a1e
L
8672 else if (RC_SAE_immediate (operand_string))
8673 {
8674 /* If it is a RC or SAE immediate, do nothing. */
8675 ;
8676 }
24eab124
AM
8677 else if (is_digit_char (*op_string)
8678 || is_identifier_char (*op_string)
d02603dc 8679 || *op_string == '"'
e5cb08ac 8680 || *op_string == '(')
24eab124 8681 {
47926f60 8682 /* This is a memory reference of some sort. */
af6bdddf 8683 char *base_string;
252b5132 8684
47926f60 8685 /* Start and end of displacement string expression (if found). */
eecb386c
AM
8686 char *displacement_string_start;
8687 char *displacement_string_end;
43234a1e 8688 char *vop_start;
252b5132 8689
24eab124 8690 do_memory_reference:
24eab124 8691 if ((i.mem_operands == 1
40fb9820 8692 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
8693 || i.mem_operands == 2)
8694 {
8695 as_bad (_("too many memory references for `%s'"),
8696 current_templates->start->name);
8697 return 0;
8698 }
252b5132 8699
24eab124
AM
8700 /* Check for base index form. We detect the base index form by
8701 looking for an ')' at the end of the operand, searching
8702 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8703 after the '('. */
af6bdddf 8704 base_string = op_string + strlen (op_string);
c3332e24 8705
43234a1e
L
8706 /* Handle vector operations. */
8707 vop_start = strchr (op_string, '{');
8708 if (vop_start && vop_start < base_string)
8709 {
8710 if (check_VecOperations (vop_start, base_string) == NULL)
8711 return 0;
8712 base_string = vop_start;
8713 }
8714
af6bdddf
AM
8715 --base_string;
8716 if (is_space_char (*base_string))
8717 --base_string;
252b5132 8718
47926f60 8719 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
8720 displacement_string_start = op_string;
8721 displacement_string_end = base_string + 1;
252b5132 8722
24eab124
AM
8723 if (*base_string == ')')
8724 {
af6bdddf 8725 char *temp_string;
24eab124
AM
8726 unsigned int parens_balanced = 1;
8727 /* We've already checked that the number of left & right ()'s are
47926f60 8728 equal, so this loop will not be infinite. */
24eab124
AM
8729 do
8730 {
8731 base_string--;
8732 if (*base_string == ')')
8733 parens_balanced++;
8734 if (*base_string == '(')
8735 parens_balanced--;
8736 }
8737 while (parens_balanced);
c3332e24 8738
af6bdddf 8739 temp_string = base_string;
c3332e24 8740
24eab124 8741 /* Skip past '(' and whitespace. */
252b5132
RH
8742 ++base_string;
8743 if (is_space_char (*base_string))
24eab124 8744 ++base_string;
252b5132 8745
af6bdddf 8746 if (*base_string == ','
4eed87de
AM
8747 || ((i.base_reg = parse_register (base_string, &end_op))
8748 != NULL))
252b5132 8749 {
af6bdddf 8750 displacement_string_end = temp_string;
252b5132 8751
40fb9820 8752 i.types[this_operand].bitfield.baseindex = 1;
252b5132 8753
af6bdddf 8754 if (i.base_reg)
24eab124 8755 {
24eab124
AM
8756 base_string = end_op;
8757 if (is_space_char (*base_string))
8758 ++base_string;
af6bdddf
AM
8759 }
8760
8761 /* There may be an index reg or scale factor here. */
8762 if (*base_string == ',')
8763 {
8764 ++base_string;
8765 if (is_space_char (*base_string))
8766 ++base_string;
8767
4eed87de
AM
8768 if ((i.index_reg = parse_register (base_string, &end_op))
8769 != NULL)
24eab124 8770 {
af6bdddf 8771 base_string = end_op;
24eab124
AM
8772 if (is_space_char (*base_string))
8773 ++base_string;
af6bdddf
AM
8774 if (*base_string == ',')
8775 {
8776 ++base_string;
8777 if (is_space_char (*base_string))
8778 ++base_string;
8779 }
e5cb08ac 8780 else if (*base_string != ')')
af6bdddf 8781 {
4eed87de
AM
8782 as_bad (_("expecting `,' or `)' "
8783 "after index register in `%s'"),
af6bdddf
AM
8784 operand_string);
8785 return 0;
8786 }
24eab124 8787 }
af6bdddf 8788 else if (*base_string == REGISTER_PREFIX)
24eab124 8789 {
f76bf5e0
L
8790 end_op = strchr (base_string, ',');
8791 if (end_op)
8792 *end_op = '\0';
af6bdddf 8793 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
8794 return 0;
8795 }
252b5132 8796
47926f60 8797 /* Check for scale factor. */
551c1ca1 8798 if (*base_string != ')')
af6bdddf 8799 {
551c1ca1
AM
8800 char *end_scale = i386_scale (base_string);
8801
8802 if (!end_scale)
af6bdddf 8803 return 0;
24eab124 8804
551c1ca1 8805 base_string = end_scale;
af6bdddf
AM
8806 if (is_space_char (*base_string))
8807 ++base_string;
8808 if (*base_string != ')')
8809 {
4eed87de
AM
8810 as_bad (_("expecting `)' "
8811 "after scale factor in `%s'"),
af6bdddf
AM
8812 operand_string);
8813 return 0;
8814 }
8815 }
8816 else if (!i.index_reg)
24eab124 8817 {
4eed87de
AM
8818 as_bad (_("expecting index register or scale factor "
8819 "after `,'; got '%c'"),
af6bdddf 8820 *base_string);
24eab124
AM
8821 return 0;
8822 }
8823 }
af6bdddf 8824 else if (*base_string != ')')
24eab124 8825 {
4eed87de
AM
8826 as_bad (_("expecting `,' or `)' "
8827 "after base register in `%s'"),
af6bdddf 8828 operand_string);
24eab124
AM
8829 return 0;
8830 }
c3332e24 8831 }
af6bdddf 8832 else if (*base_string == REGISTER_PREFIX)
c3332e24 8833 {
f76bf5e0
L
8834 end_op = strchr (base_string, ',');
8835 if (end_op)
8836 *end_op = '\0';
af6bdddf 8837 as_bad (_("bad register name `%s'"), base_string);
24eab124 8838 return 0;
c3332e24 8839 }
24eab124
AM
8840 }
8841
8842 /* If there's an expression beginning the operand, parse it,
8843 assuming displacement_string_start and
8844 displacement_string_end are meaningful. */
8845 if (displacement_string_start != displacement_string_end)
8846 {
8847 if (!i386_displacement (displacement_string_start,
8848 displacement_string_end))
8849 return 0;
8850 }
8851
8852 /* Special case for (%dx) while doing input/output op. */
8853 if (i.base_reg
0dfbf9d7
L
8854 && operand_type_equal (&i.base_reg->reg_type,
8855 &reg16_inoutportreg)
24eab124
AM
8856 && i.index_reg == 0
8857 && i.log2_scale_factor == 0
8858 && i.seg[i.mem_operands] == 0
40fb9820 8859 && !operand_type_check (i.types[this_operand], disp))
24eab124 8860 {
65da13b5 8861 i.types[this_operand] = inoutportreg;
24eab124
AM
8862 return 1;
8863 }
8864
eecb386c
AM
8865 if (i386_index_check (operand_string) == 0)
8866 return 0;
5c07affc 8867 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
8868 i.mem_operands++;
8869 }
8870 else
ce8a8b2f
AM
8871 {
8872 /* It's not a memory operand; argh! */
24eab124
AM
8873 as_bad (_("invalid char %s beginning operand %d `%s'"),
8874 output_invalid (*op_string),
8875 this_operand + 1,
8876 op_string);
8877 return 0;
8878 }
47926f60 8879 return 1; /* Normal return. */
252b5132
RH
8880}
8881\f
fa94de6b
RM
8882/* Calculate the maximum variable size (i.e., excluding fr_fix)
8883 that an rs_machine_dependent frag may reach. */
8884
8885unsigned int
8886i386_frag_max_var (fragS *frag)
8887{
8888 /* The only relaxable frags are for jumps.
8889 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8890 gas_assert (frag->fr_type == rs_machine_dependent);
8891 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8892}
8893
b084df0b
L
8894#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8895static int
8dcea932 8896elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
8897{
8898 /* STT_GNU_IFUNC symbol must go through PLT. */
8899 if ((symbol_get_bfdsym (fr_symbol)->flags
8900 & BSF_GNU_INDIRECT_FUNCTION) != 0)
8901 return 0;
8902
8903 if (!S_IS_EXTERNAL (fr_symbol))
8904 /* Symbol may be weak or local. */
8905 return !S_IS_WEAK (fr_symbol);
8906
8dcea932
L
8907 /* Global symbols with non-default visibility can't be preempted. */
8908 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
8909 return 1;
8910
8911 if (fr_var != NO_RELOC)
8912 switch ((enum bfd_reloc_code_real) fr_var)
8913 {
8914 case BFD_RELOC_386_PLT32:
8915 case BFD_RELOC_X86_64_PLT32:
8916 /* Symbol with PLT relocatin may be preempted. */
8917 return 0;
8918 default:
8919 abort ();
8920 }
8921
b084df0b
L
8922 /* Global symbols with default visibility in a shared library may be
8923 preempted by another definition. */
8dcea932 8924 return !shared;
b084df0b
L
8925}
8926#endif
8927
ee7fcc42
AM
8928/* md_estimate_size_before_relax()
8929
8930 Called just before relax() for rs_machine_dependent frags. The x86
8931 assembler uses these frags to handle variable size jump
8932 instructions.
8933
8934 Any symbol that is now undefined will not become defined.
8935 Return the correct fr_subtype in the frag.
8936 Return the initial "guess for variable size of frag" to caller.
8937 The guess is actually the growth beyond the fixed part. Whatever
8938 we do to grow the fixed or variable part contributes to our
8939 returned value. */
8940
252b5132 8941int
7016a5d5 8942md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 8943{
252b5132 8944 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
8945 check for un-relaxable symbols. On an ELF system, we can't relax
8946 an externally visible symbol, because it may be overridden by a
8947 shared library. */
8948 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 8949#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8950 || (IS_ELF
8dcea932
L
8951 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
8952 fragP->fr_var))
fbeb56a4
DK
8953#endif
8954#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 8955 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 8956 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
8957#endif
8958 )
252b5132 8959 {
b98ef147
AM
8960 /* Symbol is undefined in this segment, or we need to keep a
8961 reloc so that weak symbols can be overridden. */
8962 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 8963 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
8964 unsigned char *opcode;
8965 int old_fr_fix;
f6af82bd 8966
ee7fcc42 8967 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 8968 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 8969 else if (size == 2)
f6af82bd
AM
8970 reloc_type = BFD_RELOC_16_PCREL;
8971 else
8972 reloc_type = BFD_RELOC_32_PCREL;
252b5132 8973
ee7fcc42
AM
8974 old_fr_fix = fragP->fr_fix;
8975 opcode = (unsigned char *) fragP->fr_opcode;
8976
fddf5b5b 8977 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 8978 {
fddf5b5b
AM
8979 case UNCOND_JUMP:
8980 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 8981 opcode[0] = 0xe9;
252b5132 8982 fragP->fr_fix += size;
062cd5e7
AS
8983 fix_new (fragP, old_fr_fix, size,
8984 fragP->fr_symbol,
8985 fragP->fr_offset, 1,
8986 reloc_type);
252b5132
RH
8987 break;
8988
fddf5b5b 8989 case COND_JUMP86:
412167cb
AM
8990 if (size == 2
8991 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
8992 {
8993 /* Negate the condition, and branch past an
8994 unconditional jump. */
8995 opcode[0] ^= 1;
8996 opcode[1] = 3;
8997 /* Insert an unconditional jump. */
8998 opcode[2] = 0xe9;
8999 /* We added two extra opcode bytes, and have a two byte
9000 offset. */
9001 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9002 fix_new (fragP, old_fr_fix + 2, 2,
9003 fragP->fr_symbol,
9004 fragP->fr_offset, 1,
9005 reloc_type);
fddf5b5b
AM
9006 break;
9007 }
9008 /* Fall through. */
9009
9010 case COND_JUMP:
412167cb
AM
9011 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9012 {
3e02c1cc
AM
9013 fixS *fixP;
9014
412167cb 9015 fragP->fr_fix += 1;
3e02c1cc
AM
9016 fixP = fix_new (fragP, old_fr_fix, 1,
9017 fragP->fr_symbol,
9018 fragP->fr_offset, 1,
9019 BFD_RELOC_8_PCREL);
9020 fixP->fx_signed = 1;
412167cb
AM
9021 break;
9022 }
93c2a809 9023
24eab124 9024 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9025 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9026 opcode[1] = opcode[0] + 0x10;
f6af82bd 9027 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9028 /* We've added an opcode byte. */
9029 fragP->fr_fix += 1 + size;
062cd5e7
AS
9030 fix_new (fragP, old_fr_fix + 1, size,
9031 fragP->fr_symbol,
9032 fragP->fr_offset, 1,
9033 reloc_type);
252b5132 9034 break;
fddf5b5b
AM
9035
9036 default:
9037 BAD_CASE (fragP->fr_subtype);
9038 break;
252b5132
RH
9039 }
9040 frag_wane (fragP);
ee7fcc42 9041 return fragP->fr_fix - old_fr_fix;
252b5132 9042 }
93c2a809 9043
93c2a809
AM
9044 /* Guess size depending on current relax state. Initially the relax
9045 state will correspond to a short jump and we return 1, because
9046 the variable part of the frag (the branch offset) is one byte
9047 long. However, we can relax a section more than once and in that
9048 case we must either set fr_subtype back to the unrelaxed state,
9049 or return the value for the appropriate branch. */
9050 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9051}
9052
47926f60
KH
9053/* Called after relax() is finished.
9054
9055 In: Address of frag.
9056 fr_type == rs_machine_dependent.
9057 fr_subtype is what the address relaxed to.
9058
9059 Out: Any fixSs and constants are set up.
9060 Caller will turn frag into a ".space 0". */
9061
252b5132 9062void
7016a5d5
TG
9063md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9064 fragS *fragP)
252b5132 9065{
29b0f896 9066 unsigned char *opcode;
252b5132 9067 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9068 offsetT target_address;
9069 offsetT opcode_address;
252b5132 9070 unsigned int extension = 0;
847f7ad4 9071 offsetT displacement_from_opcode_start;
252b5132
RH
9072
9073 opcode = (unsigned char *) fragP->fr_opcode;
9074
47926f60 9075 /* Address we want to reach in file space. */
252b5132 9076 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9077
47926f60 9078 /* Address opcode resides at in file space. */
252b5132
RH
9079 opcode_address = fragP->fr_address + fragP->fr_fix;
9080
47926f60 9081 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9082 displacement_from_opcode_start = target_address - opcode_address;
9083
fddf5b5b 9084 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9085 {
47926f60
KH
9086 /* Don't have to change opcode. */
9087 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9088 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9089 }
9090 else
9091 {
9092 if (no_cond_jump_promotion
9093 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9094 as_warn_where (fragP->fr_file, fragP->fr_line,
9095 _("long jump required"));
252b5132 9096
fddf5b5b
AM
9097 switch (fragP->fr_subtype)
9098 {
9099 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9100 extension = 4; /* 1 opcode + 4 displacement */
9101 opcode[0] = 0xe9;
9102 where_to_put_displacement = &opcode[1];
9103 break;
252b5132 9104
fddf5b5b
AM
9105 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9106 extension = 2; /* 1 opcode + 2 displacement */
9107 opcode[0] = 0xe9;
9108 where_to_put_displacement = &opcode[1];
9109 break;
252b5132 9110
fddf5b5b
AM
9111 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9112 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9113 extension = 5; /* 2 opcode + 4 displacement */
9114 opcode[1] = opcode[0] + 0x10;
9115 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9116 where_to_put_displacement = &opcode[2];
9117 break;
252b5132 9118
fddf5b5b
AM
9119 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9120 extension = 3; /* 2 opcode + 2 displacement */
9121 opcode[1] = opcode[0] + 0x10;
9122 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9123 where_to_put_displacement = &opcode[2];
9124 break;
252b5132 9125
fddf5b5b
AM
9126 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9127 extension = 4;
9128 opcode[0] ^= 1;
9129 opcode[1] = 3;
9130 opcode[2] = 0xe9;
9131 where_to_put_displacement = &opcode[3];
9132 break;
9133
9134 default:
9135 BAD_CASE (fragP->fr_subtype);
9136 break;
9137 }
252b5132 9138 }
fddf5b5b 9139
7b81dfbb
AJ
9140 /* If size if less then four we are sure that the operand fits,
9141 but if it's 4, then it could be that the displacement is larger
9142 then -/+ 2GB. */
9143 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9144 && object_64bit
9145 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9146 + ((addressT) 1 << 31))
9147 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9148 {
9149 as_bad_where (fragP->fr_file, fragP->fr_line,
9150 _("jump target out of range"));
9151 /* Make us emit 0. */
9152 displacement_from_opcode_start = extension;
9153 }
47926f60 9154 /* Now put displacement after opcode. */
252b5132
RH
9155 md_number_to_chars ((char *) where_to_put_displacement,
9156 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9157 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9158 fragP->fr_fix += extension;
9159}
9160\f
7016a5d5 9161/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9162 by our caller that we have all the info we need to fix it up.
9163
7016a5d5
TG
9164 Parameter valP is the pointer to the value of the bits.
9165
252b5132
RH
9166 On the 386, immediates, displacements, and data pointers are all in
9167 the same (little-endian) format, so we don't need to care about which
9168 we are handling. */
9169
94f592af 9170void
7016a5d5 9171md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9172{
94f592af 9173 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9174 valueT value = *valP;
252b5132 9175
f86103b7 9176#if !defined (TE_Mach)
93382f6d
AM
9177 if (fixP->fx_pcrel)
9178 {
9179 switch (fixP->fx_r_type)
9180 {
5865bb77
ILT
9181 default:
9182 break;
9183
d6ab8113
JB
9184 case BFD_RELOC_64:
9185 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9186 break;
93382f6d 9187 case BFD_RELOC_32:
ae8887b5 9188 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9189 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9190 break;
9191 case BFD_RELOC_16:
9192 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9193 break;
9194 case BFD_RELOC_8:
9195 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9196 break;
9197 }
9198 }
252b5132 9199
a161fe53 9200 if (fixP->fx_addsy != NULL
31312f95 9201 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9202 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9203 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9204 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9205 && !use_rela_relocations)
252b5132 9206 {
31312f95
AM
9207 /* This is a hack. There should be a better way to handle this.
9208 This covers for the fact that bfd_install_relocation will
9209 subtract the current location (for partial_inplace, PC relative
9210 relocations); see more below. */
252b5132 9211#ifndef OBJ_AOUT
718ddfc0 9212 if (IS_ELF
252b5132
RH
9213#ifdef TE_PE
9214 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9215#endif
9216 )
9217 value += fixP->fx_where + fixP->fx_frag->fr_address;
9218#endif
9219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9220 if (IS_ELF)
252b5132 9221 {
6539b54b 9222 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9223
6539b54b 9224 if ((sym_seg == seg
2f66722d 9225 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9226 && sym_seg != absolute_section))
af65af87 9227 && !generic_force_reloc (fixP))
2f66722d
AM
9228 {
9229 /* Yes, we add the values in twice. This is because
6539b54b
AM
9230 bfd_install_relocation subtracts them out again. I think
9231 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9232 it. FIXME. */
9233 value += fixP->fx_where + fixP->fx_frag->fr_address;
9234 }
252b5132
RH
9235 }
9236#endif
9237#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9238 /* For some reason, the PE format does not store a
9239 section address offset for a PC relative symbol. */
9240 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9241 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9242 value += md_pcrel_from (fixP);
9243#endif
9244 }
fbeb56a4 9245#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9246 if (fixP->fx_addsy != NULL
9247 && S_IS_WEAK (fixP->fx_addsy)
9248 /* PR 16858: Do not modify weak function references. */
9249 && ! fixP->fx_pcrel)
fbeb56a4 9250 {
296a8689
NC
9251#if !defined (TE_PEP)
9252 /* For x86 PE weak function symbols are neither PC-relative
9253 nor do they set S_IS_FUNCTION. So the only reliable way
9254 to detect them is to check the flags of their containing
9255 section. */
9256 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9257 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9258 ;
9259 else
9260#endif
fbeb56a4
DK
9261 value -= S_GET_VALUE (fixP->fx_addsy);
9262 }
9263#endif
252b5132
RH
9264
9265 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9266 and we must not disappoint it. */
252b5132 9267#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9268 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9269 switch (fixP->fx_r_type)
9270 {
9271 case BFD_RELOC_386_PLT32:
3e73aa7c 9272 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9273 /* Make the jump instruction point to the address of the operand. At
9274 runtime we merely add the offset to the actual PLT entry. */
9275 value = -4;
9276 break;
31312f95 9277
13ae64f3
JJ
9278 case BFD_RELOC_386_TLS_GD:
9279 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9280 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9281 case BFD_RELOC_386_TLS_IE:
9282 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9283 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9284 case BFD_RELOC_X86_64_TLSGD:
9285 case BFD_RELOC_X86_64_TLSLD:
9286 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9287 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9288 value = 0; /* Fully resolved at runtime. No addend. */
9289 /* Fallthrough */
9290 case BFD_RELOC_386_TLS_LE:
9291 case BFD_RELOC_386_TLS_LDO_32:
9292 case BFD_RELOC_386_TLS_LE_32:
9293 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9294 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9295 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9296 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9297 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9298 break;
9299
67a4f2b7
AO
9300 case BFD_RELOC_386_TLS_DESC_CALL:
9301 case BFD_RELOC_X86_64_TLSDESC_CALL:
9302 value = 0; /* Fully resolved at runtime. No addend. */
9303 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9304 fixP->fx_done = 0;
9305 return;
9306
00f7efb6
JJ
9307 case BFD_RELOC_386_GOT32:
9308 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
9309 value = 0; /* Fully resolved at runtime. No addend. */
9310 break;
47926f60
KH
9311
9312 case BFD_RELOC_VTABLE_INHERIT:
9313 case BFD_RELOC_VTABLE_ENTRY:
9314 fixP->fx_done = 0;
94f592af 9315 return;
47926f60
KH
9316
9317 default:
9318 break;
9319 }
9320#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9321 *valP = value;
f86103b7 9322#endif /* !defined (TE_Mach) */
3e73aa7c 9323
3e73aa7c 9324 /* Are we finished with this relocation now? */
c6682705 9325 if (fixP->fx_addsy == NULL)
3e73aa7c 9326 fixP->fx_done = 1;
fbeb56a4
DK
9327#if defined (OBJ_COFF) && defined (TE_PE)
9328 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9329 {
9330 fixP->fx_done = 0;
9331 /* Remember value for tc_gen_reloc. */
9332 fixP->fx_addnumber = value;
9333 /* Clear out the frag for now. */
9334 value = 0;
9335 }
9336#endif
3e73aa7c
JH
9337 else if (use_rela_relocations)
9338 {
9339 fixP->fx_no_overflow = 1;
062cd5e7
AS
9340 /* Remember value for tc_gen_reloc. */
9341 fixP->fx_addnumber = value;
3e73aa7c
JH
9342 value = 0;
9343 }
f86103b7 9344
94f592af 9345 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9346}
252b5132 9347\f
252b5132 9348char *
499ac353 9349md_atof (int type, char *litP, int *sizeP)
252b5132 9350{
499ac353
NC
9351 /* This outputs the LITTLENUMs in REVERSE order;
9352 in accord with the bigendian 386. */
9353 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9354}
9355\f
2d545b82 9356static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9357
252b5132 9358static char *
e3bb37b5 9359output_invalid (int c)
252b5132 9360{
3882b010 9361 if (ISPRINT (c))
f9f21a03
L
9362 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9363 "'%c'", c);
252b5132 9364 else
f9f21a03 9365 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9366 "(0x%x)", (unsigned char) c);
252b5132
RH
9367 return output_invalid_buf;
9368}
9369
af6bdddf 9370/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9371
9372static const reg_entry *
4d1bb795 9373parse_real_register (char *reg_string, char **end_op)
252b5132 9374{
af6bdddf
AM
9375 char *s = reg_string;
9376 char *p;
252b5132
RH
9377 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9378 const reg_entry *r;
9379
9380 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9381 if (*s == REGISTER_PREFIX)
9382 ++s;
9383
9384 if (is_space_char (*s))
9385 ++s;
9386
9387 p = reg_name_given;
af6bdddf 9388 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9389 {
9390 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9391 return (const reg_entry *) NULL;
9392 s++;
252b5132
RH
9393 }
9394
6588847e
DN
9395 /* For naked regs, make sure that we are not dealing with an identifier.
9396 This prevents confusing an identifier like `eax_var' with register
9397 `eax'. */
9398 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9399 return (const reg_entry *) NULL;
9400
af6bdddf 9401 *end_op = s;
252b5132
RH
9402
9403 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9404
5f47d35b 9405 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9406 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9407 {
5f47d35b
AM
9408 if (is_space_char (*s))
9409 ++s;
9410 if (*s == '(')
9411 {
af6bdddf 9412 ++s;
5f47d35b
AM
9413 if (is_space_char (*s))
9414 ++s;
9415 if (*s >= '0' && *s <= '7')
9416 {
db557034 9417 int fpr = *s - '0';
af6bdddf 9418 ++s;
5f47d35b
AM
9419 if (is_space_char (*s))
9420 ++s;
9421 if (*s == ')')
9422 {
9423 *end_op = s + 1;
1e9cc1c2 9424 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9425 know (r);
9426 return r + fpr;
5f47d35b 9427 }
5f47d35b 9428 }
47926f60 9429 /* We have "%st(" then garbage. */
5f47d35b
AM
9430 return (const reg_entry *) NULL;
9431 }
9432 }
9433
a60de03c
JB
9434 if (r == NULL || allow_pseudo_reg)
9435 return r;
9436
0dfbf9d7 9437 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9438 return (const reg_entry *) NULL;
9439
192dc9c6
JB
9440 if ((r->reg_type.bitfield.reg32
9441 || r->reg_type.bitfield.sreg3
9442 || r->reg_type.bitfield.control
9443 || r->reg_type.bitfield.debug
9444 || r->reg_type.bitfield.test)
9445 && !cpu_arch_flags.bitfield.cpui386)
9446 return (const reg_entry *) NULL;
9447
309d3373
JB
9448 if (r->reg_type.bitfield.floatreg
9449 && !cpu_arch_flags.bitfield.cpu8087
9450 && !cpu_arch_flags.bitfield.cpu287
9451 && !cpu_arch_flags.bitfield.cpu387)
9452 return (const reg_entry *) NULL;
9453
192dc9c6
JB
9454 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9455 return (const reg_entry *) NULL;
9456
9457 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9458 return (const reg_entry *) NULL;
9459
40f12533
L
9460 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9461 return (const reg_entry *) NULL;
9462
43234a1e
L
9463 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9464 && !cpu_arch_flags.bitfield.cpuavx512f)
9465 return (const reg_entry *) NULL;
9466
db51cc60 9467 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9468 if (!allow_index_reg
db51cc60
L
9469 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9470 return (const reg_entry *) NULL;
9471
43234a1e
L
9472 /* Upper 16 vector register is only available with VREX in 64bit
9473 mode. */
9474 if ((r->reg_flags & RegVRex))
9475 {
9476 if (!cpu_arch_flags.bitfield.cpuvrex
9477 || flag_code != CODE_64BIT)
9478 return (const reg_entry *) NULL;
9479
9480 i.need_vrex = 1;
9481 }
9482
a60de03c
JB
9483 if (((r->reg_flags & (RegRex64 | RegRex))
9484 || r->reg_type.bitfield.reg64)
40fb9820 9485 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9486 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9487 && flag_code != CODE_64BIT)
20f0a1fc 9488 return (const reg_entry *) NULL;
1ae00879 9489
b7240065
JB
9490 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9491 return (const reg_entry *) NULL;
9492
252b5132
RH
9493 return r;
9494}
4d1bb795
JB
9495
9496/* REG_STRING starts *before* REGISTER_PREFIX. */
9497
9498static const reg_entry *
9499parse_register (char *reg_string, char **end_op)
9500{
9501 const reg_entry *r;
9502
9503 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9504 r = parse_real_register (reg_string, end_op);
9505 else
9506 r = NULL;
9507 if (!r)
9508 {
9509 char *save = input_line_pointer;
9510 char c;
9511 symbolS *symbolP;
9512
9513 input_line_pointer = reg_string;
d02603dc 9514 c = get_symbol_name (&reg_string);
4d1bb795
JB
9515 symbolP = symbol_find (reg_string);
9516 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9517 {
9518 const expressionS *e = symbol_get_value_expression (symbolP);
9519
0398aac5 9520 know (e->X_op == O_register);
4eed87de 9521 know (e->X_add_number >= 0
c3fe08fa 9522 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9523 r = i386_regtab + e->X_add_number;
d3bb6b49
IT
9524 if ((r->reg_flags & RegVRex))
9525 i.need_vrex = 1;
4d1bb795
JB
9526 *end_op = input_line_pointer;
9527 }
9528 *input_line_pointer = c;
9529 input_line_pointer = save;
9530 }
9531 return r;
9532}
9533
9534int
9535i386_parse_name (char *name, expressionS *e, char *nextcharP)
9536{
9537 const reg_entry *r;
9538 char *end = input_line_pointer;
9539
9540 *end = *nextcharP;
9541 r = parse_register (name, &input_line_pointer);
9542 if (r && end <= input_line_pointer)
9543 {
9544 *nextcharP = *input_line_pointer;
9545 *input_line_pointer = 0;
9546 e->X_op = O_register;
9547 e->X_add_number = r - i386_regtab;
9548 return 1;
9549 }
9550 input_line_pointer = end;
9551 *end = 0;
ee86248c 9552 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9553}
9554
9555void
9556md_operand (expressionS *e)
9557{
ee86248c
JB
9558 char *end;
9559 const reg_entry *r;
4d1bb795 9560
ee86248c
JB
9561 switch (*input_line_pointer)
9562 {
9563 case REGISTER_PREFIX:
9564 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9565 if (r)
9566 {
9567 e->X_op = O_register;
9568 e->X_add_number = r - i386_regtab;
9569 input_line_pointer = end;
9570 }
ee86248c
JB
9571 break;
9572
9573 case '[':
9c2799c2 9574 gas_assert (intel_syntax);
ee86248c
JB
9575 end = input_line_pointer++;
9576 expression (e);
9577 if (*input_line_pointer == ']')
9578 {
9579 ++input_line_pointer;
9580 e->X_op_symbol = make_expr_symbol (e);
9581 e->X_add_symbol = NULL;
9582 e->X_add_number = 0;
9583 e->X_op = O_index;
9584 }
9585 else
9586 {
9587 e->X_op = O_absent;
9588 input_line_pointer = end;
9589 }
9590 break;
4d1bb795
JB
9591 }
9592}
9593
252b5132 9594\f
4cc782b5 9595#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9596const char *md_shortopts = "kVQ:sqn";
252b5132 9597#else
12b55ccc 9598const char *md_shortopts = "qn";
252b5132 9599#endif
6e0b89ee 9600
3e73aa7c 9601#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9602#define OPTION_64 (OPTION_MD_BASE + 1)
9603#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9604#define OPTION_MARCH (OPTION_MD_BASE + 3)
9605#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9606#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9607#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9608#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9609#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9610#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9611#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9612#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9613#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9614#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9615#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9616#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9617#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9618#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 9619#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
a5094208 9620#define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 9621#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 9622#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
9623#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9624#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
b3b91714 9625
99ad8390
NC
9626struct option md_longopts[] =
9627{
3e73aa7c 9628 {"32", no_argument, NULL, OPTION_32},
321098a5 9629#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9630 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9631 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9632#endif
9633#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9634 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 9635 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 9636#endif
b3b91714 9637 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9638 {"march", required_argument, NULL, OPTION_MARCH},
9639 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
9640 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9641 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9642 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9643 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9644 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 9645 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 9646 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 9647 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 9648 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 9649 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
9650 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9651 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
9652# if defined (TE_PE) || defined (TE_PEP)
9653 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9654#endif
a5094208 9655 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
d3d3c6db 9656 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
9657 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9658 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
9659 {NULL, no_argument, NULL, 0}
9660};
9661size_t md_longopts_size = sizeof (md_longopts);
9662
9663int
9103f4f4 9664md_parse_option (int c, char *arg)
252b5132 9665{
91d6fa6a 9666 unsigned int j;
6305a203 9667 char *arch, *next;
9103f4f4 9668
252b5132
RH
9669 switch (c)
9670 {
12b55ccc
L
9671 case 'n':
9672 optimize_align_code = 0;
9673 break;
9674
a38cf1db
AM
9675 case 'q':
9676 quiet_warnings = 1;
252b5132
RH
9677 break;
9678
9679#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
9680 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9681 should be emitted or not. FIXME: Not implemented. */
9682 case 'Q':
252b5132
RH
9683 break;
9684
9685 /* -V: SVR4 argument to print version ID. */
9686 case 'V':
9687 print_version_id ();
9688 break;
9689
a38cf1db
AM
9690 /* -k: Ignore for FreeBSD compatibility. */
9691 case 'k':
252b5132 9692 break;
4cc782b5
ILT
9693
9694 case 's':
9695 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 9696 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 9697 break;
8dcea932
L
9698
9699 case OPTION_MSHARED:
9700 shared = 1;
9701 break;
99ad8390 9702#endif
321098a5 9703#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9704 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
9705 case OPTION_64:
9706 {
9707 const char **list, **l;
9708
3e73aa7c
JH
9709 list = bfd_target_list ();
9710 for (l = list; *l != NULL; l++)
8620418b 9711 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
9712 || strcmp (*l, "coff-x86-64") == 0
9713 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
9714 || strcmp (*l, "pei-x86-64") == 0
9715 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
9716 {
9717 default_arch = "x86_64";
9718 break;
9719 }
3e73aa7c 9720 if (*l == NULL)
2b5d6a91 9721 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
9722 free (list);
9723 }
9724 break;
9725#endif
252b5132 9726
351f65ca 9727#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9728 case OPTION_X32:
351f65ca
L
9729 if (IS_ELF)
9730 {
9731 const char **list, **l;
9732
9733 list = bfd_target_list ();
9734 for (l = list; *l != NULL; l++)
9735 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9736 {
9737 default_arch = "x86_64:32";
9738 break;
9739 }
9740 if (*l == NULL)
2b5d6a91 9741 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
9742 free (list);
9743 }
9744 else
9745 as_fatal (_("32bit x86_64 is only supported for ELF"));
9746 break;
9747#endif
9748
6e0b89ee
AM
9749 case OPTION_32:
9750 default_arch = "i386";
9751 break;
9752
b3b91714
AM
9753 case OPTION_DIVIDE:
9754#ifdef SVR4_COMMENT_CHARS
9755 {
9756 char *n, *t;
9757 const char *s;
9758
9759 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9760 t = n;
9761 for (s = i386_comment_chars; *s != '\0'; s++)
9762 if (*s != '/')
9763 *t++ = *s;
9764 *t = '\0';
9765 i386_comment_chars = n;
9766 }
9767#endif
9768 break;
9769
9103f4f4 9770 case OPTION_MARCH:
6305a203
L
9771 arch = xstrdup (arg);
9772 do
9103f4f4 9773 {
6305a203 9774 if (*arch == '.')
2b5d6a91 9775 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9776 next = strchr (arch, '+');
9777 if (next)
9778 *next++ = '\0';
91d6fa6a 9779 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9780 {
91d6fa6a 9781 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 9782 {
6305a203 9783 /* Processor. */
1ded5609
JB
9784 if (! cpu_arch[j].flags.bitfield.cpui386)
9785 continue;
9786
91d6fa6a 9787 cpu_arch_name = cpu_arch[j].name;
6305a203 9788 cpu_sub_arch_name = NULL;
91d6fa6a
NC
9789 cpu_arch_flags = cpu_arch[j].flags;
9790 cpu_arch_isa = cpu_arch[j].type;
9791 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
9792 if (!cpu_arch_tune_set)
9793 {
9794 cpu_arch_tune = cpu_arch_isa;
9795 cpu_arch_tune_flags = cpu_arch_isa_flags;
9796 }
9797 break;
9798 }
91d6fa6a
NC
9799 else if (*cpu_arch [j].name == '.'
9800 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
9801 {
9802 /* ISA entension. */
9803 i386_cpu_flags flags;
309d3373 9804
49021df2 9805 if (!cpu_arch[j].negated)
309d3373 9806 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 9807 cpu_arch[j].flags);
309d3373
JB
9808 else
9809 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 9810 cpu_arch[j].flags);
81486035
L
9811
9812 if (!valid_iamcu_cpu_flags (&flags))
9813 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9814 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
9815 {
9816 if (cpu_sub_arch_name)
9817 {
9818 char *name = cpu_sub_arch_name;
9819 cpu_sub_arch_name = concat (name,
91d6fa6a 9820 cpu_arch[j].name,
1bf57e9f 9821 (const char *) NULL);
6305a203
L
9822 free (name);
9823 }
9824 else
91d6fa6a 9825 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 9826 cpu_arch_flags = flags;
a586129e 9827 cpu_arch_isa_flags = flags;
6305a203
L
9828 }
9829 break;
ccc9c027 9830 }
9103f4f4 9831 }
6305a203 9832
91d6fa6a 9833 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9834 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9835
9836 arch = next;
9103f4f4 9837 }
6305a203 9838 while (next != NULL );
9103f4f4
L
9839 break;
9840
9841 case OPTION_MTUNE:
9842 if (*arg == '.')
2b5d6a91 9843 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 9844 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9845 {
91d6fa6a 9846 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 9847 {
ccc9c027 9848 cpu_arch_tune_set = 1;
91d6fa6a
NC
9849 cpu_arch_tune = cpu_arch [j].type;
9850 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
9851 break;
9852 }
9853 }
91d6fa6a 9854 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9855 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
9856 break;
9857
1efbbeb4
L
9858 case OPTION_MMNEMONIC:
9859 if (strcasecmp (arg, "att") == 0)
9860 intel_mnemonic = 0;
9861 else if (strcasecmp (arg, "intel") == 0)
9862 intel_mnemonic = 1;
9863 else
2b5d6a91 9864 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
9865 break;
9866
9867 case OPTION_MSYNTAX:
9868 if (strcasecmp (arg, "att") == 0)
9869 intel_syntax = 0;
9870 else if (strcasecmp (arg, "intel") == 0)
9871 intel_syntax = 1;
9872 else
2b5d6a91 9873 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
9874 break;
9875
9876 case OPTION_MINDEX_REG:
9877 allow_index_reg = 1;
9878 break;
9879
9880 case OPTION_MNAKED_REG:
9881 allow_naked_reg = 1;
9882 break;
9883
9884 case OPTION_MOLD_GCC:
9885 old_gcc = 1;
1efbbeb4
L
9886 break;
9887
c0f3af97
L
9888 case OPTION_MSSE2AVX:
9889 sse2avx = 1;
9890 break;
9891
daf50ae7
L
9892 case OPTION_MSSE_CHECK:
9893 if (strcasecmp (arg, "error") == 0)
7bab8ab5 9894 sse_check = check_error;
daf50ae7 9895 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 9896 sse_check = check_warning;
daf50ae7 9897 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 9898 sse_check = check_none;
daf50ae7 9899 else
2b5d6a91 9900 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
9901 break;
9902
7bab8ab5
JB
9903 case OPTION_MOPERAND_CHECK:
9904 if (strcasecmp (arg, "error") == 0)
9905 operand_check = check_error;
9906 else if (strcasecmp (arg, "warning") == 0)
9907 operand_check = check_warning;
9908 else if (strcasecmp (arg, "none") == 0)
9909 operand_check = check_none;
9910 else
9911 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9912 break;
9913
539f890d
L
9914 case OPTION_MAVXSCALAR:
9915 if (strcasecmp (arg, "128") == 0)
9916 avxscalar = vex128;
9917 else if (strcasecmp (arg, "256") == 0)
9918 avxscalar = vex256;
9919 else
2b5d6a91 9920 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
9921 break;
9922
7e8b059b
L
9923 case OPTION_MADD_BND_PREFIX:
9924 add_bnd_prefix = 1;
9925 break;
9926
43234a1e
L
9927 case OPTION_MEVEXLIG:
9928 if (strcmp (arg, "128") == 0)
9929 evexlig = evexl128;
9930 else if (strcmp (arg, "256") == 0)
9931 evexlig = evexl256;
9932 else if (strcmp (arg, "512") == 0)
9933 evexlig = evexl512;
9934 else
9935 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9936 break;
9937
d3d3c6db
IT
9938 case OPTION_MEVEXRCIG:
9939 if (strcmp (arg, "rne") == 0)
9940 evexrcig = rne;
9941 else if (strcmp (arg, "rd") == 0)
9942 evexrcig = rd;
9943 else if (strcmp (arg, "ru") == 0)
9944 evexrcig = ru;
9945 else if (strcmp (arg, "rz") == 0)
9946 evexrcig = rz;
9947 else
9948 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9949 break;
9950
43234a1e
L
9951 case OPTION_MEVEXWIG:
9952 if (strcmp (arg, "0") == 0)
9953 evexwig = evexw0;
9954 else if (strcmp (arg, "1") == 0)
9955 evexwig = evexw1;
9956 else
9957 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9958 break;
9959
167ad85b
TG
9960# if defined (TE_PE) || defined (TE_PEP)
9961 case OPTION_MBIG_OBJ:
9962 use_big_obj = 1;
9963 break;
9964#endif
9965
a5094208 9966 case OPTION_OMIT_LOCK_PREFIX:
d022bddd
IT
9967 if (strcasecmp (arg, "yes") == 0)
9968 omit_lock_prefix = 1;
9969 else if (strcasecmp (arg, "no") == 0)
9970 omit_lock_prefix = 0;
9971 else
9972 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9973 break;
9974
5db04b09
L
9975 case OPTION_MAMD64:
9976 cpu_arch_flags.bitfield.cpuamd64 = 1;
9977 cpu_arch_flags.bitfield.cpuintel64 = 0;
9978 cpu_arch_isa_flags.bitfield.cpuamd64 = 1;
9979 cpu_arch_isa_flags.bitfield.cpuintel64 = 0;
9980 break;
9981
9982 case OPTION_MINTEL64:
9983 cpu_arch_flags.bitfield.cpuamd64 = 0;
9984 cpu_arch_flags.bitfield.cpuintel64 = 1;
9985 cpu_arch_isa_flags.bitfield.cpuamd64 = 0;
9986 cpu_arch_isa_flags.bitfield.cpuintel64 = 1;
9987 break;
9988
252b5132
RH
9989 default:
9990 return 0;
9991 }
9992 return 1;
9993}
9994
8a2c8fef
L
9995#define MESSAGE_TEMPLATE \
9996" "
9997
9998static void
1ded5609 9999show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10000{
10001 static char message[] = MESSAGE_TEMPLATE;
10002 char *start = message + 27;
10003 char *p;
10004 int size = sizeof (MESSAGE_TEMPLATE);
10005 int left;
10006 const char *name;
10007 int len;
10008 unsigned int j;
10009
10010 p = start;
10011 left = size - (start - message);
10012 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10013 {
10014 /* Should it be skipped? */
10015 if (cpu_arch [j].skip)
10016 continue;
10017
10018 name = cpu_arch [j].name;
10019 len = cpu_arch [j].len;
10020 if (*name == '.')
10021 {
10022 /* It is an extension. Skip if we aren't asked to show it. */
10023 if (ext)
10024 {
10025 name++;
10026 len--;
10027 }
10028 else
10029 continue;
10030 }
10031 else if (ext)
10032 {
10033 /* It is an processor. Skip if we show only extension. */
10034 continue;
10035 }
1ded5609
JB
10036 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10037 {
10038 /* It is an impossible processor - skip. */
10039 continue;
10040 }
8a2c8fef
L
10041
10042 /* Reserve 2 spaces for ", " or ",\0" */
10043 left -= len + 2;
10044
10045 /* Check if there is any room. */
10046 if (left >= 0)
10047 {
10048 if (p != start)
10049 {
10050 *p++ = ',';
10051 *p++ = ' ';
10052 }
10053 p = mempcpy (p, name, len);
10054 }
10055 else
10056 {
10057 /* Output the current message now and start a new one. */
10058 *p++ = ',';
10059 *p = '\0';
10060 fprintf (stream, "%s\n", message);
10061 p = start;
10062 left = size - (start - message) - len - 2;
8d63c93e 10063
8a2c8fef
L
10064 gas_assert (left >= 0);
10065
10066 p = mempcpy (p, name, len);
10067 }
10068 }
10069
10070 *p = '\0';
10071 fprintf (stream, "%s\n", message);
10072}
10073
252b5132 10074void
8a2c8fef 10075md_show_usage (FILE *stream)
252b5132 10076{
4cc782b5
ILT
10077#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10078 fprintf (stream, _("\
a38cf1db
AM
10079 -Q ignored\n\
10080 -V print assembler version number\n\
b3b91714
AM
10081 -k ignored\n"));
10082#endif
10083 fprintf (stream, _("\
12b55ccc 10084 -n Do not optimize code alignment\n\
b3b91714
AM
10085 -q quieten some warnings\n"));
10086#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10087 fprintf (stream, _("\
a38cf1db 10088 -s ignored\n"));
b3b91714 10089#endif
321098a5
L
10090#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10091 || defined (TE_PE) || defined (TE_PEP))
751d281c 10092 fprintf (stream, _("\
570561f7 10093 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10094#endif
b3b91714
AM
10095#ifdef SVR4_COMMENT_CHARS
10096 fprintf (stream, _("\
10097 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10098#else
10099 fprintf (stream, _("\
b3b91714 10100 --divide ignored\n"));
4cc782b5 10101#endif
9103f4f4 10102 fprintf (stream, _("\
6305a203 10103 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10104 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10105 show_arch (stream, 0, 1);
8a2c8fef
L
10106 fprintf (stream, _("\
10107 EXTENSION is combination of:\n"));
1ded5609 10108 show_arch (stream, 1, 0);
6305a203 10109 fprintf (stream, _("\
8a2c8fef 10110 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10111 show_arch (stream, 0, 0);
ba104c83 10112 fprintf (stream, _("\
c0f3af97
L
10113 -msse2avx encode SSE instructions with VEX prefix\n"));
10114 fprintf (stream, _("\
daf50ae7
L
10115 -msse-check=[none|error|warning]\n\
10116 check SSE instructions\n"));
10117 fprintf (stream, _("\
7bab8ab5
JB
10118 -moperand-check=[none|error|warning]\n\
10119 check operand combinations for validity\n"));
10120 fprintf (stream, _("\
539f890d
L
10121 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10122 length\n"));
10123 fprintf (stream, _("\
43234a1e
L
10124 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10125 length\n"));
10126 fprintf (stream, _("\
10127 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10128 for EVEX.W bit ignored instructions\n"));
10129 fprintf (stream, _("\
d3d3c6db
IT
10130 -mevexrcig=[rne|rd|ru|rz]\n\
10131 encode EVEX instructions with specific EVEX.RC value\n\
10132 for SAE-only ignored instructions\n"));
10133 fprintf (stream, _("\
ba104c83
L
10134 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10135 fprintf (stream, _("\
10136 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10137 fprintf (stream, _("\
10138 -mindex-reg support pseudo index registers\n"));
10139 fprintf (stream, _("\
10140 -mnaked-reg don't require `%%' prefix for registers\n"));
10141 fprintf (stream, _("\
10142 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10143 fprintf (stream, _("\
10144 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10145 fprintf (stream, _("\
10146 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10147# if defined (TE_PE) || defined (TE_PEP)
10148 fprintf (stream, _("\
10149 -mbig-obj generate big object files\n"));
10150#endif
d022bddd
IT
10151 fprintf (stream, _("\
10152 -momit-lock-prefix=[no|yes]\n\
10153 strip all lock prefixes\n"));
5db04b09
L
10154 fprintf (stream, _("\
10155 -mamd64 accept only AMD64 ISA\n"));
10156 fprintf (stream, _("\
10157 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10158}
10159
3e73aa7c 10160#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10161 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10162 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10163
10164/* Pick the target format to use. */
10165
47926f60 10166const char *
e3bb37b5 10167i386_target_format (void)
252b5132 10168{
351f65ca
L
10169 if (!strncmp (default_arch, "x86_64", 6))
10170 {
10171 update_code_flag (CODE_64BIT, 1);
10172 if (default_arch[6] == '\0')
7f56bc95 10173 x86_elf_abi = X86_64_ABI;
351f65ca 10174 else
7f56bc95 10175 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10176 }
3e73aa7c 10177 else if (!strcmp (default_arch, "i386"))
78f12dd3 10178 update_code_flag (CODE_32BIT, 1);
5197d474
L
10179 else if (!strcmp (default_arch, "iamcu"))
10180 {
10181 update_code_flag (CODE_32BIT, 1);
10182 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10183 {
10184 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10185 cpu_arch_name = "iamcu";
10186 cpu_sub_arch_name = NULL;
10187 cpu_arch_flags = iamcu_flags;
10188 cpu_arch_isa = PROCESSOR_IAMCU;
10189 cpu_arch_isa_flags = iamcu_flags;
10190 if (!cpu_arch_tune_set)
10191 {
10192 cpu_arch_tune = cpu_arch_isa;
10193 cpu_arch_tune_flags = cpu_arch_isa_flags;
10194 }
10195 }
10196 else
10197 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10198 cpu_arch_name);
10199 }
3e73aa7c 10200 else
2b5d6a91 10201 as_fatal (_("unknown architecture"));
89507696
JB
10202
10203 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10204 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10205 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10206 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10207
252b5132
RH
10208 switch (OUTPUT_FLAVOR)
10209 {
9384f2ff 10210#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10211 case bfd_target_aout_flavour:
47926f60 10212 return AOUT_TARGET_FORMAT;
4c63da97 10213#endif
9384f2ff
AM
10214#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10215# if defined (TE_PE) || defined (TE_PEP)
10216 case bfd_target_coff_flavour:
167ad85b
TG
10217 if (flag_code == CODE_64BIT)
10218 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10219 else
10220 return "pe-i386";
9384f2ff 10221# elif defined (TE_GO32)
0561d57c
JK
10222 case bfd_target_coff_flavour:
10223 return "coff-go32";
9384f2ff 10224# else
252b5132
RH
10225 case bfd_target_coff_flavour:
10226 return "coff-i386";
9384f2ff 10227# endif
4c63da97 10228#endif
3e73aa7c 10229#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10230 case bfd_target_elf_flavour:
3e73aa7c 10231 {
351f65ca
L
10232 const char *format;
10233
10234 switch (x86_elf_abi)
4fa24527 10235 {
351f65ca
L
10236 default:
10237 format = ELF_TARGET_FORMAT;
10238 break;
7f56bc95 10239 case X86_64_ABI:
351f65ca 10240 use_rela_relocations = 1;
4fa24527 10241 object_64bit = 1;
351f65ca
L
10242 format = ELF_TARGET_FORMAT64;
10243 break;
7f56bc95 10244 case X86_64_X32_ABI:
4fa24527 10245 use_rela_relocations = 1;
351f65ca 10246 object_64bit = 1;
862be3fb 10247 disallow_64bit_reloc = 1;
351f65ca
L
10248 format = ELF_TARGET_FORMAT32;
10249 break;
4fa24527 10250 }
3632d14b 10251 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10252 {
7f56bc95 10253 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10254 as_fatal (_("Intel L1OM is 64bit only"));
10255 return ELF_TARGET_L1OM_FORMAT;
10256 }
b49f93f6 10257 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10258 {
10259 if (x86_elf_abi != X86_64_ABI)
10260 as_fatal (_("Intel K1OM is 64bit only"));
10261 return ELF_TARGET_K1OM_FORMAT;
10262 }
81486035
L
10263 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10264 {
10265 if (x86_elf_abi != I386_ABI)
10266 as_fatal (_("Intel MCU is 32bit only"));
10267 return ELF_TARGET_IAMCU_FORMAT;
10268 }
8a9036a4 10269 else
351f65ca 10270 return format;
3e73aa7c 10271 }
e57f8c65
TG
10272#endif
10273#if defined (OBJ_MACH_O)
10274 case bfd_target_mach_o_flavour:
d382c579
TG
10275 if (flag_code == CODE_64BIT)
10276 {
10277 use_rela_relocations = 1;
10278 object_64bit = 1;
10279 return "mach-o-x86-64";
10280 }
10281 else
10282 return "mach-o-i386";
4c63da97 10283#endif
252b5132
RH
10284 default:
10285 abort ();
10286 return NULL;
10287 }
10288}
10289
47926f60 10290#endif /* OBJ_MAYBE_ more than one */
252b5132 10291\f
252b5132 10292symbolS *
7016a5d5 10293md_undefined_symbol (char *name)
252b5132 10294{
18dc2407
ILT
10295 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10296 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10297 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10298 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10299 {
10300 if (!GOT_symbol)
10301 {
10302 if (symbol_find (name))
10303 as_bad (_("GOT already in symbol table"));
10304 GOT_symbol = symbol_new (name, undefined_section,
10305 (valueT) 0, &zero_address_frag);
10306 };
10307 return GOT_symbol;
10308 }
252b5132
RH
10309 return 0;
10310}
10311
10312/* Round up a section size to the appropriate boundary. */
47926f60 10313
252b5132 10314valueT
7016a5d5 10315md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10316{
4c63da97
AM
10317#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10318 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10319 {
10320 /* For a.out, force the section size to be aligned. If we don't do
10321 this, BFD will align it for us, but it will not write out the
10322 final bytes of the section. This may be a bug in BFD, but it is
10323 easier to fix it here since that is how the other a.out targets
10324 work. */
10325 int align;
10326
10327 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10328 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10329 }
252b5132
RH
10330#endif
10331
10332 return size;
10333}
10334
10335/* On the i386, PC-relative offsets are relative to the start of the
10336 next instruction. That is, the address of the offset, plus its
10337 size, since the offset is always the last part of the insn. */
10338
10339long
e3bb37b5 10340md_pcrel_from (fixS *fixP)
252b5132
RH
10341{
10342 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10343}
10344
10345#ifndef I386COFF
10346
10347static void
e3bb37b5 10348s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10349{
29b0f896 10350 int temp;
252b5132 10351
8a75718c
JB
10352#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10353 if (IS_ELF)
10354 obj_elf_section_change_hook ();
10355#endif
252b5132
RH
10356 temp = get_absolute_expression ();
10357 subseg_set (bss_section, (subsegT) temp);
10358 demand_empty_rest_of_line ();
10359}
10360
10361#endif
10362
252b5132 10363void
e3bb37b5 10364i386_validate_fix (fixS *fixp)
252b5132 10365{
02a86693 10366 if (fixp->fx_subsy)
252b5132 10367 {
02a86693 10368 if (fixp->fx_subsy == GOT_symbol)
23df1078 10369 {
02a86693
L
10370 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10371 {
10372 if (!object_64bit)
10373 abort ();
10374#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10375 if (fixp->fx_tcbit2)
56ceb5b5
L
10376 fixp->fx_r_type = (fixp->fx_tcbit
10377 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10378 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10379 else
10380#endif
10381 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10382 }
d6ab8113 10383 else
02a86693
L
10384 {
10385 if (!object_64bit)
10386 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10387 else
10388 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10389 }
10390 fixp->fx_subsy = 0;
23df1078 10391 }
252b5132 10392 }
02a86693
L
10393#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10394 else if (!object_64bit)
10395 {
10396 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10397 && fixp->fx_tcbit2)
10398 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10399 }
10400#endif
252b5132
RH
10401}
10402
252b5132 10403arelent *
7016a5d5 10404tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10405{
10406 arelent *rel;
10407 bfd_reloc_code_real_type code;
10408
10409 switch (fixp->fx_r_type)
10410 {
8ce3d284 10411#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10412 case BFD_RELOC_SIZE32:
10413 case BFD_RELOC_SIZE64:
10414 if (S_IS_DEFINED (fixp->fx_addsy)
10415 && !S_IS_EXTERNAL (fixp->fx_addsy))
10416 {
10417 /* Resolve size relocation against local symbol to size of
10418 the symbol plus addend. */
10419 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10420 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10421 && !fits_in_unsigned_long (value))
10422 as_bad_where (fixp->fx_file, fixp->fx_line,
10423 _("symbol size computation overflow"));
10424 fixp->fx_addsy = NULL;
10425 fixp->fx_subsy = NULL;
10426 md_apply_fix (fixp, (valueT *) &value, NULL);
10427 return NULL;
10428 }
8ce3d284 10429#endif
8fd4256d 10430
3e73aa7c
JH
10431 case BFD_RELOC_X86_64_PLT32:
10432 case BFD_RELOC_X86_64_GOT32:
10433 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10434 case BFD_RELOC_X86_64_GOTPCRELX:
10435 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10436 case BFD_RELOC_386_PLT32:
10437 case BFD_RELOC_386_GOT32:
02a86693 10438 case BFD_RELOC_386_GOT32X:
252b5132
RH
10439 case BFD_RELOC_386_GOTOFF:
10440 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10441 case BFD_RELOC_386_TLS_GD:
10442 case BFD_RELOC_386_TLS_LDM:
10443 case BFD_RELOC_386_TLS_LDO_32:
10444 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10445 case BFD_RELOC_386_TLS_IE:
10446 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10447 case BFD_RELOC_386_TLS_LE_32:
10448 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10449 case BFD_RELOC_386_TLS_GOTDESC:
10450 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10451 case BFD_RELOC_X86_64_TLSGD:
10452 case BFD_RELOC_X86_64_TLSLD:
10453 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10454 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10455 case BFD_RELOC_X86_64_GOTTPOFF:
10456 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10457 case BFD_RELOC_X86_64_TPOFF64:
10458 case BFD_RELOC_X86_64_GOTOFF64:
10459 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10460 case BFD_RELOC_X86_64_GOT64:
10461 case BFD_RELOC_X86_64_GOTPCREL64:
10462 case BFD_RELOC_X86_64_GOTPC64:
10463 case BFD_RELOC_X86_64_GOTPLT64:
10464 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10465 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10466 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10467 case BFD_RELOC_RVA:
10468 case BFD_RELOC_VTABLE_ENTRY:
10469 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10470#ifdef TE_PE
10471 case BFD_RELOC_32_SECREL:
10472#endif
252b5132
RH
10473 code = fixp->fx_r_type;
10474 break;
dbbaec26
L
10475 case BFD_RELOC_X86_64_32S:
10476 if (!fixp->fx_pcrel)
10477 {
10478 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10479 code = fixp->fx_r_type;
10480 break;
10481 }
252b5132 10482 default:
93382f6d 10483 if (fixp->fx_pcrel)
252b5132 10484 {
93382f6d
AM
10485 switch (fixp->fx_size)
10486 {
10487 default:
b091f402
AM
10488 as_bad_where (fixp->fx_file, fixp->fx_line,
10489 _("can not do %d byte pc-relative relocation"),
10490 fixp->fx_size);
93382f6d
AM
10491 code = BFD_RELOC_32_PCREL;
10492 break;
10493 case 1: code = BFD_RELOC_8_PCREL; break;
10494 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 10495 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10496#ifdef BFD64
10497 case 8: code = BFD_RELOC_64_PCREL; break;
10498#endif
93382f6d
AM
10499 }
10500 }
10501 else
10502 {
10503 switch (fixp->fx_size)
10504 {
10505 default:
b091f402
AM
10506 as_bad_where (fixp->fx_file, fixp->fx_line,
10507 _("can not do %d byte relocation"),
10508 fixp->fx_size);
93382f6d
AM
10509 code = BFD_RELOC_32;
10510 break;
10511 case 1: code = BFD_RELOC_8; break;
10512 case 2: code = BFD_RELOC_16; break;
10513 case 4: code = BFD_RELOC_32; break;
937149dd 10514#ifdef BFD64
3e73aa7c 10515 case 8: code = BFD_RELOC_64; break;
937149dd 10516#endif
93382f6d 10517 }
252b5132
RH
10518 }
10519 break;
10520 }
252b5132 10521
d182319b
JB
10522 if ((code == BFD_RELOC_32
10523 || code == BFD_RELOC_32_PCREL
10524 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10525 && GOT_symbol
10526 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10527 {
4fa24527 10528 if (!object_64bit)
d6ab8113
JB
10529 code = BFD_RELOC_386_GOTPC;
10530 else
10531 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10532 }
7b81dfbb
AJ
10533 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10534 && GOT_symbol
10535 && fixp->fx_addsy == GOT_symbol)
10536 {
10537 code = BFD_RELOC_X86_64_GOTPC64;
10538 }
252b5132
RH
10539
10540 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
10541 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10542 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10543
10544 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10545
3e73aa7c
JH
10546 if (!use_rela_relocations)
10547 {
10548 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10549 vtable entry to be used in the relocation's section offset. */
10550 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10551 rel->address = fixp->fx_offset;
fbeb56a4
DK
10552#if defined (OBJ_COFF) && defined (TE_PE)
10553 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10554 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10555 else
10556#endif
c6682705 10557 rel->addend = 0;
3e73aa7c
JH
10558 }
10559 /* Use the rela in 64bit mode. */
252b5132 10560 else
3e73aa7c 10561 {
862be3fb
L
10562 if (disallow_64bit_reloc)
10563 switch (code)
10564 {
862be3fb
L
10565 case BFD_RELOC_X86_64_DTPOFF64:
10566 case BFD_RELOC_X86_64_TPOFF64:
10567 case BFD_RELOC_64_PCREL:
10568 case BFD_RELOC_X86_64_GOTOFF64:
10569 case BFD_RELOC_X86_64_GOT64:
10570 case BFD_RELOC_X86_64_GOTPCREL64:
10571 case BFD_RELOC_X86_64_GOTPC64:
10572 case BFD_RELOC_X86_64_GOTPLT64:
10573 case BFD_RELOC_X86_64_PLTOFF64:
10574 as_bad_where (fixp->fx_file, fixp->fx_line,
10575 _("cannot represent relocation type %s in x32 mode"),
10576 bfd_get_reloc_code_name (code));
10577 break;
10578 default:
10579 break;
10580 }
10581
062cd5e7
AS
10582 if (!fixp->fx_pcrel)
10583 rel->addend = fixp->fx_offset;
10584 else
10585 switch (code)
10586 {
10587 case BFD_RELOC_X86_64_PLT32:
10588 case BFD_RELOC_X86_64_GOT32:
10589 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10590 case BFD_RELOC_X86_64_GOTPCRELX:
10591 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
10592 case BFD_RELOC_X86_64_TLSGD:
10593 case BFD_RELOC_X86_64_TLSLD:
10594 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
10595 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10596 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
10597 rel->addend = fixp->fx_offset - fixp->fx_size;
10598 break;
10599 default:
10600 rel->addend = (section->vma
10601 - fixp->fx_size
10602 + fixp->fx_addnumber
10603 + md_pcrel_from (fixp));
10604 break;
10605 }
3e73aa7c
JH
10606 }
10607
252b5132
RH
10608 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10609 if (rel->howto == NULL)
10610 {
10611 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 10612 _("cannot represent relocation type %s"),
252b5132
RH
10613 bfd_get_reloc_code_name (code));
10614 /* Set howto to a garbage value so that we can keep going. */
10615 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 10616 gas_assert (rel->howto != NULL);
252b5132
RH
10617 }
10618
10619 return rel;
10620}
10621
ee86248c 10622#include "tc-i386-intel.c"
54cfded0 10623
a60de03c
JB
10624void
10625tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 10626{
a60de03c
JB
10627 int saved_naked_reg;
10628 char saved_register_dot;
54cfded0 10629
a60de03c
JB
10630 saved_naked_reg = allow_naked_reg;
10631 allow_naked_reg = 1;
10632 saved_register_dot = register_chars['.'];
10633 register_chars['.'] = '.';
10634 allow_pseudo_reg = 1;
10635 expression_and_evaluate (exp);
10636 allow_pseudo_reg = 0;
10637 register_chars['.'] = saved_register_dot;
10638 allow_naked_reg = saved_naked_reg;
10639
e96d56a1 10640 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 10641 {
a60de03c
JB
10642 if ((addressT) exp->X_add_number < i386_regtab_size)
10643 {
10644 exp->X_op = O_constant;
10645 exp->X_add_number = i386_regtab[exp->X_add_number]
10646 .dw2_regnum[flag_code >> 1];
10647 }
10648 else
10649 exp->X_op = O_illegal;
54cfded0 10650 }
54cfded0
AM
10651}
10652
10653void
10654tc_x86_frame_initial_instructions (void)
10655{
a60de03c
JB
10656 static unsigned int sp_regno[2];
10657
10658 if (!sp_regno[flag_code >> 1])
10659 {
10660 char *saved_input = input_line_pointer;
10661 char sp[][4] = {"esp", "rsp"};
10662 expressionS exp;
a4447b93 10663
a60de03c
JB
10664 input_line_pointer = sp[flag_code >> 1];
10665 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 10666 gas_assert (exp.X_op == O_constant);
a60de03c
JB
10667 sp_regno[flag_code >> 1] = exp.X_add_number;
10668 input_line_pointer = saved_input;
10669 }
a4447b93 10670
61ff971f
L
10671 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10672 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 10673}
d2b2c203 10674
d7921315
L
10675int
10676x86_dwarf2_addr_size (void)
10677{
10678#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10679 if (x86_elf_abi == X86_64_X32_ABI)
10680 return 4;
10681#endif
10682 return bfd_arch_bits_per_address (stdoutput) / 8;
10683}
10684
d2b2c203
DJ
10685int
10686i386_elf_section_type (const char *str, size_t len)
10687{
10688 if (flag_code == CODE_64BIT
10689 && len == sizeof ("unwind") - 1
10690 && strncmp (str, "unwind", 6) == 0)
10691 return SHT_X86_64_UNWIND;
10692
10693 return -1;
10694}
bb41ade5 10695
ad5fec3b
EB
10696#ifdef TE_SOLARIS
10697void
10698i386_solaris_fix_up_eh_frame (segT sec)
10699{
10700 if (flag_code == CODE_64BIT)
10701 elf_section_type (sec) = SHT_X86_64_UNWIND;
10702}
10703#endif
10704
bb41ade5
AM
10705#ifdef TE_PE
10706void
10707tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10708{
91d6fa6a 10709 expressionS exp;
bb41ade5 10710
91d6fa6a
NC
10711 exp.X_op = O_secrel;
10712 exp.X_add_symbol = symbol;
10713 exp.X_add_number = 0;
10714 emit_expr (&exp, size);
bb41ade5
AM
10715}
10716#endif
3b22753a
L
10717
10718#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10719/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10720
01e1a5bc 10721bfd_vma
3b22753a
L
10722x86_64_section_letter (int letter, char **ptr_msg)
10723{
10724 if (flag_code == CODE_64BIT)
10725 {
10726 if (letter == 'l')
10727 return SHF_X86_64_LARGE;
10728
8f3bae45 10729 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 10730 }
3b22753a 10731 else
8f3bae45 10732 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
10733 return -1;
10734}
10735
01e1a5bc 10736bfd_vma
3b22753a
L
10737x86_64_section_word (char *str, size_t len)
10738{
8620418b 10739 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
10740 return SHF_X86_64_LARGE;
10741
10742 return -1;
10743}
10744
10745static void
10746handle_large_common (int small ATTRIBUTE_UNUSED)
10747{
10748 if (flag_code != CODE_64BIT)
10749 {
10750 s_comm_internal (0, elf_common_parse);
10751 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10752 }
10753 else
10754 {
10755 static segT lbss_section;
10756 asection *saved_com_section_ptr = elf_com_section_ptr;
10757 asection *saved_bss_section = bss_section;
10758
10759 if (lbss_section == NULL)
10760 {
10761 flagword applicable;
10762 segT seg = now_seg;
10763 subsegT subseg = now_subseg;
10764
10765 /* The .lbss section is for local .largecomm symbols. */
10766 lbss_section = subseg_new (".lbss", 0);
10767 applicable = bfd_applicable_section_flags (stdoutput);
10768 bfd_set_section_flags (stdoutput, lbss_section,
10769 applicable & SEC_ALLOC);
10770 seg_info (lbss_section)->bss = 1;
10771
10772 subseg_set (seg, subseg);
10773 }
10774
10775 elf_com_section_ptr = &_bfd_elf_large_com_section;
10776 bss_section = lbss_section;
10777
10778 s_comm_internal (0, elf_common_parse);
10779
10780 elf_com_section_ptr = saved_com_section_ptr;
10781 bss_section = saved_bss_section;
10782 }
10783}
10784#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.680243 seconds and 4 git commands to generate.