AArch64: Add half float view to V registers
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
101/*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108typedef struct
109{
d3ce72d0
NC
110 const insn_template *start;
111 const insn_template *end;
6305a203
L
112}
113templates;
114
115/* 386 operand encoding bytes: see 386 book for details of this. */
116typedef struct
117{
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121}
122modrm_byte;
123
124/* x86-64 extension prefix. */
125typedef int rex_byte;
126
6305a203
L
127/* 386 opcode byte to code indirect addressing. */
128typedef struct
129{
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133}
134sib_byte;
135
6305a203
L
136/* x86 arch names, types and features */
137typedef struct
138{
139 const char *name; /* arch name */
8a2c8fef 140 unsigned int len; /* arch string length */
6305a203
L
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 143 unsigned int skip; /* show_arch should skip this. */
6305a203
L
144}
145arch_entry;
146
293f5f65
L
147/* Used to turn off indicated flags. */
148typedef struct
149{
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153}
154noarch_entry;
155
78f12dd3 156static void update_code_flag (int, int);
e3bb37b5
L
157static void set_code_flag (int);
158static void set_16bit_gcc_code_flag (int);
159static void set_intel_syntax (int);
1efbbeb4 160static void set_intel_mnemonic (int);
db51cc60 161static void set_allow_index_reg (int);
7bab8ab5 162static void set_check (int);
e3bb37b5 163static void set_cpu_arch (int);
6482c264 164#ifdef TE_PE
e3bb37b5 165static void pe_directive_secrel (int);
6482c264 166#endif
e3bb37b5
L
167static void signed_cons (int);
168static char *output_invalid (int c);
ee86248c
JB
169static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
a7619375 173static int i386_att_operand (char *);
e3bb37b5 174static int i386_intel_operand (char *, int);
ee86248c
JB
175static int i386_intel_simplify (expressionS *);
176static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
177static const reg_entry *parse_register (char *, char **);
178static char *parse_insn (char *, char *);
179static char *parse_operands (char *, const char *);
180static void swap_operands (void);
4d456e3d 181static void swap_2_operands (int, int);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
b4a3a7b4
L
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
252b5132 365 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 366 addressing modes of this insn are encoded. */
252b5132 367 modrm_byte rm;
3e73aa7c 368 rex_byte rex;
43234a1e 369 rex_byte vrex;
252b5132 370 sib_byte sib;
c0f3af97 371 vex_prefix vex;
b6169b20 372
43234a1e
L
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
86fa6981
L
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
64c49ab3
JB
390 dir_encoding_store,
391 dir_encoding_swap
86fa6981 392 } dir_encoding;
891edac4 393
a501d77e
L
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
f8a5c266 401
6b6b6807
L
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
b6f8c7c4
L
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
86fa6981
L
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
d5de92cf
L
417 /* REP prefix. */
418 const char *rep_prefix;
419
165de32a
L
420 /* HLE prefix. */
421 const char *hle_prefix;
42164a71 422
7e8b059b
L
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
04ef582a
L
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
891edac4 429 /* Error message. */
a65babc9 430 enum i386_error error;
252b5132
RH
431 };
432
433typedef struct _i386_insn i386_insn;
434
43234a1e
L
435/* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437struct RC_name
438{
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442};
443
444static const struct RC_name RC_NamesTable[] =
445{
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451};
452
252b5132
RH
453/* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 455const char extra_symbol_chars[] = "*%-([{}"
252b5132 456#ifdef LEX_AT
32137342
NC
457 "@"
458#endif
459#ifdef LEX_QM
460 "?"
252b5132 461#endif
32137342 462 ;
252b5132 463
29b0f896
AM
464#if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 466 && !defined (TE_GNU) \
29b0f896 467 && !defined (TE_LINUX) \
8d63c93e 468 && !defined (TE_NACL) \
29b0f896 469 && !defined (TE_FreeBSD) \
5b806d27 470 && !defined (TE_DragonFly) \
29b0f896 471 && !defined (TE_NetBSD)))
252b5132 472/* This array holds the chars that always start a comment. If the
b3b91714
AM
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475const char *i386_comment_chars = "#/";
476#define SVR4_COMMENT_CHARS 1
252b5132 477#define PREFIX_SEPARATOR '\\'
252b5132 478
b3b91714
AM
479#else
480const char *i386_comment_chars = "#";
481#define PREFIX_SEPARATOR '/'
482#endif
483
252b5132
RH
484/* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 488 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
252b5132 491 '/' isn't otherwise defined. */
b3b91714 492const char line_comment_chars[] = "#/";
252b5132 493
63a0b638 494const char line_separator_chars[] = ";";
252b5132 495
ce8a8b2f
AM
496/* Chars that can be used to separate mant from exp in floating point
497 nums. */
252b5132
RH
498const char EXP_CHARS[] = "eE";
499
ce8a8b2f
AM
500/* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
252b5132
RH
503const char FLT_CHARS[] = "fFdDxX";
504
ce8a8b2f 505/* Tables for lexical analysis. */
252b5132
RH
506static char mnemonic_chars[256];
507static char register_chars[256];
508static char operand_chars[256];
509static char identifier_chars[256];
510static char digit_chars[256];
511
ce8a8b2f 512/* Lexical macros. */
252b5132
RH
513#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514#define is_operand_char(x) (operand_chars[(unsigned char) x])
515#define is_register_char(x) (register_chars[(unsigned char) x])
516#define is_space_char(x) ((x) == ' ')
517#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518#define is_digit_char(x) (digit_chars[(unsigned char) x])
519
0234cb7c 520/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
521static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523/* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
47926f60 526 assembler instruction). */
252b5132 527static char save_stack[32];
ce8a8b2f 528static char *save_stack_p;
252b5132
RH
529#define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531#define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
47926f60 534/* The instruction we're assembling. */
252b5132
RH
535static i386_insn i;
536
537/* Possible templates for current insn. */
538static const templates *current_templates;
539
31b2323c
L
540/* Per instruction expressionS buffers: max displacements & immediates. */
541static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 543
47926f60 544/* Current operand we are working on. */
ee86248c 545static int this_operand = -1;
252b5132 546
3e73aa7c
JH
547/* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555static enum flag_code flag_code;
4fa24527 556static unsigned int object_64bit;
862be3fb 557static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
558static int use_rela_relocations = 0;
559
7af8ed2d
NC
560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
351f65ca
L
564/* The ELF ABI to use. */
565enum x86_elf_abi
566{
567 I386_ABI,
7f56bc95
L
568 X86_64_ABI,
569 X86_64_X32_ABI
351f65ca
L
570};
571
572static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 573#endif
351f65ca 574
167ad85b
TG
575#if defined (TE_PE) || defined (TE_PEP)
576/* Use big object file format. */
577static int use_big_obj = 0;
578#endif
579
8dcea932
L
580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581/* 1 if generating code for a shared library. */
582static int shared = 0;
583#endif
584
47926f60
KH
585/* 1 for intel syntax,
586 0 if att syntax. */
587static int intel_syntax = 0;
252b5132 588
e89c5eaa
L
589/* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591static int intel64;
592
1efbbeb4
L
593/* 1 for intel mnemonic,
594 0 if att mnemonic. */
595static int intel_mnemonic = !SYSV386_COMPAT;
596
a60de03c
JB
597/* 1 if pseudo registers are permitted. */
598static int allow_pseudo_reg = 0;
599
47926f60
KH
600/* 1 if register prefix % not required. */
601static int allow_naked_reg = 0;
252b5132 602
33eaf5de 603/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606static int add_bnd_prefix = 0;
607
ba104c83 608/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
609static int allow_index_reg = 0;
610
d022bddd
IT
611/* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613static int omit_lock_prefix = 0;
614
e4e00185
AS
615/* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617static int avoid_fence = 0;
618
0cb4071e
L
619/* 1 if the assembler should generate relax relocations. */
620
621static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
7bab8ab5 624static enum check_kind
daf50ae7 625 {
7bab8ab5
JB
626 check_none = 0,
627 check_warning,
628 check_error
daf50ae7 629 }
7bab8ab5 630sse_check, operand_check = check_warning;
daf50ae7 631
b6f8c7c4
L
632/* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637static int optimize = 0;
638
639/* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646static int optimize_for_space = 0;
647
2ca3ace5
L
648/* Register prefix used for error message. */
649static const char *register_prefix = "%";
650
47926f60
KH
651/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654static char stackop_size = '\0';
eecb386c 655
12b55ccc
L
656/* Non-zero to optimize code alignment. */
657int optimize_align_code = 1;
658
47926f60
KH
659/* Non-zero to quieten some warnings. */
660static int quiet_warnings = 0;
a38cf1db 661
47926f60
KH
662/* CPU name. */
663static const char *cpu_arch_name = NULL;
6305a203 664static char *cpu_sub_arch_name = NULL;
a38cf1db 665
47926f60 666/* CPU feature flags. */
40fb9820
L
667static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
ccc9c027
L
669/* If we have selected a cpu we are generating instructions for. */
670static int cpu_arch_tune_set = 0;
671
9103f4f4 672/* Cpu we are generating instructions for. */
fbf3f584 673enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
674
675/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 676static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 677
ccc9c027 678/* CPU instruction set architecture used. */
fbf3f584 679enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 680
9103f4f4 681/* CPU feature flags of instruction set architecture used. */
fbf3f584 682i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 683
fddf5b5b
AM
684/* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686static unsigned int no_cond_jump_promotion = 0;
687
c0f3af97
L
688/* Encode SSE instructions with VEX prefix. */
689static unsigned int sse2avx;
690
539f890d
L
691/* Encode scalar AVX instructions with specific vector length. */
692static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
03751133
L
698/* Encode VEX WIG instructions with specific vex.w. */
699static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
43234a1e
L
705/* Encode scalar EVEX LIG instructions with specific vector length. */
706static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713/* Encode EVEX WIG instructions with specific evex.w. */
714static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
d3d3c6db
IT
720/* Value to encode in EVEX RC bits, for SAE-only instructions. */
721static enum rc_type evexrcig = rne;
722
29b0f896 723/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 724static symbolS *GOT_symbol;
29b0f896 725
a4447b93
RH
726/* The dwarf2 return column, adjusted for 32 or 64 bit. */
727unsigned int x86_dwarf2_return_column;
728
729/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730int x86_cie_data_alignment;
731
252b5132 732/* Interface to relax_segment.
fddf5b5b
AM
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
252b5132 736
47926f60 737/* Types. */
93c2a809
AM
738#define UNCOND_JUMP 0
739#define COND_JUMP 1
740#define COND_JUMP86 2
fddf5b5b 741
47926f60 742/* Sizes. */
252b5132
RH
743#define CODE16 1
744#define SMALL 0
29b0f896 745#define SMALL16 (SMALL | CODE16)
252b5132 746#define BIG 2
29b0f896 747#define BIG16 (BIG | CODE16)
252b5132
RH
748
749#ifndef INLINE
750#ifdef __GNUC__
751#define INLINE __inline__
752#else
753#define INLINE
754#endif
755#endif
756
fddf5b5b
AM
757#define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759#define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761#define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
763
764/* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772const relax_typeS md_relax_table[] =
773{
24eab124
AM
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
93c2a809 777 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 778 4) which index into the table to try if we can't fit into this one. */
252b5132 779
fddf5b5b 780 /* UNCOND_JUMP states. */
93c2a809
AM
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
252b5132 785 {0, 0, 4, 0},
93c2a809
AM
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
788 {0, 0, 2, 0},
789
93c2a809
AM
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
fddf5b5b 796 /* word conditionals add 3 bytes to frag:
93c2a809
AM
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
252b5132
RH
809};
810
9103f4f4
L
811static const arch_entry cpu_arch[] =
812{
89507696
JB
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
8a2c8fef 815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 816 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 818 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 820 CPU_NONE_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 822 CPU_I186_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_I286_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 826 CPU_I386_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 828 CPU_I486_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 830 CPU_I586_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 832 CPU_I686_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 834 CPU_I586_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 836 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_P2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 840 CPU_P3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 842 CPU_P4_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 844 CPU_CORE_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 846 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 848 CPU_CORE_FLAGS, 1 },
8a2c8fef 849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 852 CPU_CORE2_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 854 CPU_CORE2_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 856 CPU_COREI7_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 858 CPU_L1OM_FLAGS, 0 },
7a9068fe 859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 860 CPU_K1OM_FLAGS, 0 },
81486035 861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 862 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 864 CPU_K6_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 866 CPU_K6_2_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 868 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 870 CPU_K8_FLAGS, 1 },
8a2c8fef 871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 872 CPU_K8_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 874 CPU_K8_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 876 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 878 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 880 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 882 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER4_FLAGS, 0 },
029f3522 885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 886 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
7b458c12 889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 890 CPU_BTVER1_FLAGS, 0 },
7b458c12 891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 892 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_8087_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_287_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_387_FLAGS, 0 },
1848e567
L
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
d871f3f4
L
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_MMX_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_SSE_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_SSE2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_SSE3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_AVX_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_AVX2_FLAGS, 0 },
43234a1e 925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_AVX512F_FLAGS, 0 },
43234a1e 927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX512CD_FLAGS, 0 },
43234a1e 929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX512ER_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_VMX_FLAGS, 0 },
8729a6f6 941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SMX_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_AES_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_F16C_FLAGS, 0 },
6c30d220 965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_FMA_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_FMA4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_XOP_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_LWP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_MOVBE_FLAGS, 0 },
60aa667e 977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_CX16_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_EPT_FLAGS, 0 },
6c30d220 981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_LZCNT_FLAGS, 0 },
42164a71 983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_HLE_FLAGS, 0 },
42164a71 985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_RTM_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_CLFLUSH_FLAGS, 0 },
22109423 991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_NOP_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SVME_FLAGS, 1 },
8a2c8fef 1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SVME_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_ABM_FLAGS, 0 },
87973e9f 1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_BMI_FLAGS, 0 },
2a2a0f38 1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_TBM_FLAGS, 0 },
e2e1fcde 1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ADX_FLAGS, 0 },
e2e1fcde 1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_SMAP_FLAGS, 0 },
7e8b059b 1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_MPX_FLAGS, 0 },
a0046408 1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_SHA_FLAGS, 0 },
963f3586 1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SE1_FLAGS, 0 },
c5e7287a 1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_CLZERO_FLAGS, 0 },
9916071f 1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_MWAITX_FLAGS, 0 },
8eab4136 1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_OSPKE_FLAGS, 0 },
8bc52696 1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
293f5f65
L
1085};
1086
1087static const noarch_entry cpu_noarch[] =
1088{
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
e413e4e9
AM
1125};
1126
704209c0 1127#ifdef I386COFF
a6c24e68
NC
1128/* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131static symbolS *
1132pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133{
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
7ab9ffdd 1138 if (needs_align
a6c24e68
NC
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
7ab9ffdd 1142
a6c24e68
NC
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160}
1161
704209c0 1162static void
a6c24e68
NC
1163pe_lcomm (int needs_align)
1164{
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166}
704209c0 1167#endif
a6c24e68 1168
29b0f896
AM
1169const pseudo_typeS md_pseudo_table[] =
1170{
1171#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173#else
1174 {"align", s_align_ptwo, 0},
1175#endif
1176 {"arch", set_cpu_arch, 0},
1177#ifndef I386COFF
1178 {"bss", s_bss, 0},
a6c24e68
NC
1179#else
1180 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1181#endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
d182319b 1186 {"slong", signed_cons, 4},
29b0f896
AM
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1192#ifdef BFD64
29b0f896 1193 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1194#endif
29b0f896
AM
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
3b22753a
L
1203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
07a53e5c 1205#else
68d20676 1206 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1209#endif
6482c264
NC
1210#ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212#endif
29b0f896
AM
1213 {0, 0, 0}
1214};
1215
1216/* For interface with expression (). */
1217extern char *input_line_pointer;
1218
1219/* Hash table for instruction mnemonic lookup. */
1220static struct hash_control *op_hash;
1221
1222/* Hash table for register lookup. */
1223static struct hash_control *reg_hash;
1224\f
ce8a8b2f
AM
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
62a02d25
L
1228static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1236static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1240static const unsigned char f16_3[] =
3ae729d5 1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1242static const unsigned char f16_4[] =
3ae729d5
L
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1250/* 32-bit NOPs patterns. */
1251static const unsigned char *const f32_patt[] = {
3ae729d5 1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1253};
1254/* 16-bit NOPs patterns. */
1255static const unsigned char *const f16_patt[] = {
3ae729d5 1256 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1257};
1258/* nopl (%[re]ax) */
1259static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261/* nopl 0(%[re]ax) */
1262static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264/* nopl 0(%[re]ax,%[re]ax,1) */
1265static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267/* nopw 0(%[re]ax,%[re]ax,1) */
1268static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270/* nopl 0L(%[re]ax) */
1271static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273/* nopl 0L(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276/* nopw 0L(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1282/* data16 nopw %cs:0L(%eax,%eax,1) */
1283static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1285/* 32-bit and 64-bit NOPs patterns. */
1286static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1288 alt_9, alt_10, alt_11
62a02d25
L
1289};
1290
1291/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294static void
1295i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298{
3ae729d5
L
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
62a02d25 1306 {
3ae729d5
L
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
62a02d25
L
1309 }
1310
3ae729d5
L
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
62a02d25
L
1332}
1333
3ae729d5
L
1334static INLINE int
1335fits_in_imm7 (offsetT num)
1336{
1337 return (num & 0x7f) == num;
1338}
1339
1340static INLINE int
1341fits_in_imm31 (offsetT num)
1342{
1343 return (num & 0x7fffffff) == num;
1344}
62a02d25
L
1345
1346/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349void
3ae729d5 1350i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1351{
3ae729d5 1352 const unsigned char *const *patt = NULL;
62a02d25 1353 int max_single_nop_size;
3ae729d5
L
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
62a02d25 1356
3ae729d5 1357 switch (fragP->fr_type)
62a02d25 1358 {
3ae729d5
L
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
62a02d25
L
1363 return;
1364 }
1365
ccc9c027
L
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
4eed87de 1368
76bc74dc
L
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
22109423 1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1375 be used.
ccc9c027
L
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
3ae729d5
L
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
252b5132 1386 }
33fef721 1387 else
ccc9c027 1388 {
fbf3f584 1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1398 patt = alt_patt;
ccc9c027
L
1399 else
1400 patt = f32_patt;
1401 break;
ccc9c027
L
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
ef05d495 1404 case PROCESSOR_CORE:
76bc74dc 1405 case PROCESSOR_CORE2:
bd5295b2 1406 case PROCESSOR_COREI7:
3632d14b 1407 case PROCESSOR_L1OM:
7a9068fe 1408 case PROCESSOR_K1OM:
76bc74dc 1409 case PROCESSOR_GENERIC64:
ccc9c027
L
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
4eed87de 1413 case PROCESSOR_AMDFAM10:
8aedb9fe 1414 case PROCESSOR_BD:
029f3522 1415 case PROCESSOR_ZNVER:
7b458c12 1416 case PROCESSOR_BT:
80b8656c 1417 patt = alt_patt;
ccc9c027 1418 break;
76bc74dc 1419 case PROCESSOR_I386:
ccc9c027
L
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
2dde1948 1422 case PROCESSOR_PENTIUMPRO:
81486035 1423 case PROCESSOR_IAMCU:
ccc9c027
L
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
4eed87de 1427 }
ccc9c027
L
1428 }
1429 else
1430 {
fbf3f584 1431 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1432 {
1433 case PROCESSOR_UNKNOWN:
e6a14101 1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
76bc74dc 1439 case PROCESSOR_I386:
ccc9c027
L
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
81486035 1442 case PROCESSOR_IAMCU:
ccc9c027
L
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
4eed87de 1446 case PROCESSOR_AMDFAM10:
8aedb9fe 1447 case PROCESSOR_BD:
029f3522 1448 case PROCESSOR_ZNVER:
7b458c12 1449 case PROCESSOR_BT:
ccc9c027
L
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1454 patt = alt_patt;
ccc9c027
L
1455 else
1456 patt = f32_patt;
1457 break;
76bc74dc
L
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
ef05d495 1462 case PROCESSOR_CORE2:
bd5295b2 1463 case PROCESSOR_COREI7:
3632d14b 1464 case PROCESSOR_L1OM:
7a9068fe 1465 case PROCESSOR_K1OM:
22109423 1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1467 patt = alt_patt;
ccc9c027
L
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
80b8656c 1472 patt = alt_patt;
ccc9c027 1473 break;
4eed87de 1474 }
ccc9c027
L
1475 }
1476
76bc74dc
L
1477 if (patt == f32_patt)
1478 {
3ae729d5
L
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
76bc74dc
L
1482 }
1483 else
1484 {
3ae729d5
L
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
76bc74dc 1547 }
ccc9c027 1548 }
3ae729d5
L
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
252b5132
RH
1552}
1553
c6fb90c8 1554static INLINE int
0dfbf9d7 1555operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1556{
0dfbf9d7 1557 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1558 {
1559 case 3:
0dfbf9d7 1560 if (x->array[2])
c6fb90c8 1561 return 0;
1a0670f3 1562 /* Fall through. */
c6fb90c8 1563 case 2:
0dfbf9d7 1564 if (x->array[1])
c6fb90c8 1565 return 0;
1a0670f3 1566 /* Fall through. */
c6fb90c8 1567 case 1:
0dfbf9d7 1568 return !x->array[0];
c6fb90c8
L
1569 default:
1570 abort ();
1571 }
40fb9820
L
1572}
1573
c6fb90c8 1574static INLINE void
0dfbf9d7 1575operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 x->array[2] = v;
1a0670f3 1581 /* Fall through. */
c6fb90c8 1582 case 2:
0dfbf9d7 1583 x->array[1] = v;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 x->array[0] = v;
1a0670f3 1587 /* Fall through. */
c6fb90c8
L
1588 break;
1589 default:
1590 abort ();
1591 }
1592}
40fb9820 1593
c6fb90c8 1594static INLINE int
0dfbf9d7
L
1595operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
c6fb90c8 1597{
0dfbf9d7 1598 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1599 {
1600 case 3:
0dfbf9d7 1601 if (x->array[2] != y->array[2])
c6fb90c8 1602 return 0;
1a0670f3 1603 /* Fall through. */
c6fb90c8 1604 case 2:
0dfbf9d7 1605 if (x->array[1] != y->array[1])
c6fb90c8 1606 return 0;
1a0670f3 1607 /* Fall through. */
c6fb90c8 1608 case 1:
0dfbf9d7 1609 return x->array[0] == y->array[0];
c6fb90c8
L
1610 break;
1611 default:
1612 abort ();
1613 }
1614}
40fb9820 1615
0dfbf9d7
L
1616static INLINE int
1617cpu_flags_all_zero (const union i386_cpu_flags *x)
1618{
1619 switch (ARRAY_SIZE(x->array))
1620 {
53467f57
IT
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
0dfbf9d7
L
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1a0670f3 1628 /* Fall through. */
0dfbf9d7
L
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638}
1639
0dfbf9d7
L
1640static INLINE int
1641cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643{
1644 switch (ARRAY_SIZE(x->array))
1645 {
53467f57
IT
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
0dfbf9d7
L
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1a0670f3 1653 /* Fall through. */
0dfbf9d7
L
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1a0670f3 1657 /* Fall through. */
0dfbf9d7
L
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664}
c6fb90c8
L
1665
1666static INLINE int
1667cpu_flags_check_cpu64 (i386_cpu_flags f)
1668{
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1671}
1672
c6fb90c8
L
1673static INLINE i386_cpu_flags
1674cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1675{
c6fb90c8
L
1676 switch (ARRAY_SIZE (x.array))
1677 {
53467f57
IT
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
c6fb90c8
L
1681 case 3:
1682 x.array [2] &= y.array [2];
1a0670f3 1683 /* Fall through. */
c6fb90c8
L
1684 case 2:
1685 x.array [1] &= y.array [1];
1a0670f3 1686 /* Fall through. */
c6fb90c8
L
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694}
40fb9820 1695
c6fb90c8
L
1696static INLINE i386_cpu_flags
1697cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1698{
c6fb90c8 1699 switch (ARRAY_SIZE (x.array))
40fb9820 1700 {
53467f57
IT
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
c6fb90c8
L
1704 case 3:
1705 x.array [2] |= y.array [2];
1a0670f3 1706 /* Fall through. */
c6fb90c8
L
1707 case 2:
1708 x.array [1] |= y.array [1];
1a0670f3 1709 /* Fall through. */
c6fb90c8
L
1710 case 1:
1711 x.array [0] |= y.array [0];
40fb9820
L
1712 break;
1713 default:
1714 abort ();
1715 }
40fb9820
L
1716 return x;
1717}
1718
309d3373
JB
1719static INLINE i386_cpu_flags
1720cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721{
1722 switch (ARRAY_SIZE (x.array))
1723 {
53467f57
IT
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
309d3373
JB
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1a0670f3 1729 /* Fall through. */
309d3373
JB
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1a0670f3 1732 /* Fall through. */
309d3373
JB
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740}
1741
c0f3af97
L
1742#define CPU_FLAGS_ARCH_MATCH 0x1
1743#define CPU_FLAGS_64BIT_MATCH 0x2
1744
c0f3af97 1745#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1747
1748/* Return CPU flags match bits. */
3629bb00 1749
40fb9820 1750static int
d3ce72d0 1751cpu_flags_match (const insn_template *t)
40fb9820 1752{
c0f3af97
L
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
0dfbf9d7 1759 if (cpu_flags_all_zero (&x))
c0f3af97
L
1760 {
1761 /* This instruction is available on all archs. */
db12e14e 1762 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1763 }
3629bb00
L
1764 else
1765 {
c0f3af97 1766 /* This instruction is available only on some archs. */
3629bb00
L
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
ab592e75
JB
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
3629bb00 1774 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
a5ff0eb2
L
1777 if (x.bitfield.cpuavx)
1778 {
929f69fa 1779 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1786 }
929f69fa
JB
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
a5ff0eb2 1796 else
db12e14e 1797 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1798 }
3629bb00 1799 }
c0f3af97 1800 return match;
40fb9820
L
1801}
1802
c6fb90c8
L
1803static INLINE i386_operand_type
1804operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1805{
c6fb90c8
L
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1a0670f3 1810 /* Fall through. */
c6fb90c8
L
1811 case 2:
1812 x.array [1] &= y.array [1];
1a0670f3 1813 /* Fall through. */
c6fb90c8
L
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
40fb9820
L
1821}
1822
73053c1f
JB
1823static INLINE i386_operand_type
1824operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825{
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841}
1842
c6fb90c8
L
1843static INLINE i386_operand_type
1844operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1845{
c6fb90c8 1846 switch (ARRAY_SIZE (x.array))
40fb9820 1847 {
c6fb90c8
L
1848 case 3:
1849 x.array [2] |= y.array [2];
1a0670f3 1850 /* Fall through. */
c6fb90c8
L
1851 case 2:
1852 x.array [1] |= y.array [1];
1a0670f3 1853 /* Fall through. */
c6fb90c8
L
1854 case 1:
1855 x.array [0] |= y.array [0];
40fb9820
L
1856 break;
1857 default:
1858 abort ();
1859 }
c6fb90c8
L
1860 return x;
1861}
40fb9820 1862
c6fb90c8
L
1863static INLINE i386_operand_type
1864operand_type_xor (i386_operand_type x, i386_operand_type y)
1865{
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1a0670f3 1870 /* Fall through. */
c6fb90c8
L
1871 case 2:
1872 x.array [1] ^= y.array [1];
1a0670f3 1873 /* Fall through. */
c6fb90c8
L
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
40fb9820
L
1880 return x;
1881}
1882
1883static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1885static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
40fb9820 1891static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1892static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1893static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1902static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1903
1904enum operand_type
1905{
1906 reg,
40fb9820
L
1907 imm,
1908 disp,
1909 anymem
1910};
1911
c6fb90c8 1912static INLINE int
40fb9820
L
1913operand_type_check (i386_operand_type t, enum operand_type c)
1914{
1915 switch (c)
1916 {
1917 case reg:
dc821c5f 1918 return t.bitfield.reg;
40fb9820 1919
40fb9820
L
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
2cfe26b6
AM
1946
1947 return 0;
40fb9820
L
1948}
1949
7a54636a
L
1950/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1952
1953static INLINE int
7a54636a
L
1954match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
5c07affc 1956{
3ac21baa
JB
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1967}
1968
dd40ce22
L
1969/* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1971
1972static INLINE int
dd40ce22
L
1973match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1b54b8d7 1975{
3ac21baa
JB
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1982}
1983
7a54636a
L
1984/* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
5c07affc
L
1986
1987static INLINE int
dd40ce22
L
1988match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
5c07affc 1990{
7a54636a 1991 return (match_operand_size (t, wanted, given)
3ac21baa 1992 && !((i.types[given].bitfield.unspecified
af508cb9 1993 && !i.broadcast
3ac21baa
JB
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
d6793fa1
JB
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
3ac21baa 2001 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2002 && !t->opcode_modifier.broadcast
3ac21baa
JB
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
5c07affc
L
2011}
2012
3ac21baa
JB
2013/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
5c07affc 2017
3ac21baa
JB
2018#define MATCH_STRAIGHT 1
2019#define MATCH_REVERSE 2
2020
2021static INLINE unsigned int
d3ce72d0 2022operand_size_match (const insn_template *t)
5c07affc 2023{
3ac21baa 2024 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
1b54b8d7
JB
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2038 continue;
2039
1b54b8d7 2040 if (t->operand_types[j].bitfield.reg
7a54636a 2041 && !match_operand_size (t, j, j))
5c07affc
L
2042 {
2043 match = 0;
2044 break;
2045 }
2046
1b54b8d7 2047 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2048 && !match_simd_size (t, j, j))
1b54b8d7
JB
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
7a54636a 2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2056 {
2057 match = 0;
2058 break;
2059 }
2060
c48dadc9 2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
3ac21baa 2068 if (!t->opcode_modifier.d)
891edac4
L
2069 {
2070mismatch:
3ac21baa
JB
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
891edac4 2074 }
5c07affc
L
2075
2076 /* Check reverse. */
f5eb1d70 2077 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2078
f5eb1d70 2079 for (j = 0; j < i.operands; j++)
5c07affc 2080 {
f5eb1d70
JB
2081 unsigned int given = i.operands - j - 1;
2082
dbbc8b7e 2083 if (t->operand_types[j].bitfield.reg
f5eb1d70 2084 && !match_operand_size (t, j, given))
891edac4 2085 goto mismatch;
5c07affc 2086
dbbc8b7e 2087 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2088 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2094 goto mismatch;
2095
f5eb1d70 2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2097 goto mismatch;
5c07affc
L
2098 }
2099
3ac21baa 2100 return match | MATCH_REVERSE;
5c07affc
L
2101}
2102
c6fb90c8 2103static INLINE int
40fb9820
L
2104operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106{
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
7d5e4556 2110 temp.bitfield.unspecified = 0;
5c07affc
L
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
c0f3af97 2118 temp.bitfield.ymmword = 0;
43234a1e 2119 temp.bitfield.zmmword = 0;
0dfbf9d7 2120 if (operand_type_all_zero (&temp))
891edac4 2121 goto mismatch;
40fb9820 2122
891edac4
L
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127mismatch:
a65babc9 2128 i.error = operand_type_mismatch;
891edac4 2129 return 0;
40fb9820
L
2130}
2131
7d5e4556 2132/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
40fb9820 2136
c6fb90c8 2137static INLINE int
dc821c5f 2138operand_type_register_match (i386_operand_type g0,
40fb9820 2139 i386_operand_type t0,
40fb9820
L
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142{
10c17abd
JB
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
40fb9820
L
2148 return 1;
2149
10c17abd
JB
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
40fb9820
L
2155 return 1;
2156
dc821c5f
JB
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2164 return 1;
2165
dc821c5f
JB
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2173 return 1;
2174
a65babc9 2175 i.error = register_type_mismatch;
891edac4
L
2176
2177 return 0;
40fb9820
L
2178}
2179
4c692bc7
JB
2180static INLINE unsigned int
2181register_number (const reg_entry *r)
2182{
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
200cbe0f
L
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
4c692bc7
JB
2191 return nr;
2192}
2193
252b5132 2194static INLINE unsigned int
40fb9820 2195mode_from_disp_size (i386_operand_type t)
252b5132 2196{
b5014f7a 2197 if (t.bitfield.disp8)
40fb9820
L
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
252b5132
RH
2205}
2206
2207static INLINE int
65879393 2208fits_in_signed_byte (addressT num)
252b5132 2209{
65879393 2210 return num + 0x80 <= 0xff;
47926f60 2211}
252b5132
RH
2212
2213static INLINE int
65879393 2214fits_in_unsigned_byte (addressT num)
252b5132 2215{
65879393 2216 return num <= 0xff;
47926f60 2217}
252b5132
RH
2218
2219static INLINE int
65879393 2220fits_in_unsigned_word (addressT num)
252b5132 2221{
65879393 2222 return num <= 0xffff;
47926f60 2223}
252b5132
RH
2224
2225static INLINE int
65879393 2226fits_in_signed_word (addressT num)
252b5132 2227{
65879393 2228 return num + 0x8000 <= 0xffff;
47926f60 2229}
2a962e6d 2230
3e73aa7c 2231static INLINE int
65879393 2232fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2233{
2234#ifndef BFD64
2235 return 1;
2236#else
65879393 2237 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2238#endif
2239} /* fits_in_signed_long() */
2a962e6d 2240
3e73aa7c 2241static INLINE int
65879393 2242fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2243{
2244#ifndef BFD64
2245 return 1;
2246#else
65879393 2247 return num <= 0xffffffff;
3e73aa7c
JH
2248#endif
2249} /* fits_in_unsigned_long() */
252b5132 2250
43234a1e 2251static INLINE int
b5014f7a 2252fits_in_disp8 (offsetT num)
43234a1e
L
2253{
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268}
2269
a683cc34
SP
2270static INLINE int
2271fits_in_imm4 (offsetT num)
2272{
2273 return (num & 0xf) == num;
2274}
2275
40fb9820 2276static i386_operand_type
e3bb37b5 2277smallest_imm_type (offsetT num)
252b5132 2278{
40fb9820 2279 i386_operand_type t;
7ab9ffdd 2280
0dfbf9d7 2281 operand_type_set (&t, 0);
40fb9820
L
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
40fb9820
L
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
47926f60 2328}
252b5132 2329
847f7ad4 2330static offsetT
e3bb37b5 2331offset_in_range (offsetT val, int size)
847f7ad4 2332{
508866be 2333 addressT mask;
ba2adb93 2334
847f7ad4
AM
2335 switch (size)
2336 {
508866be
L
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2340#ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342#endif
47926f60 2343 default: abort ();
847f7ad4
AM
2344 }
2345
9de868bf
L
2346#ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2352#endif
ba2adb93 2353
47926f60 2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363}
2364
c32fa91d
L
2365enum PREFIX_GROUP
2366{
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
04ef582a 2370 PREFIX_DS,
c32fa91d
L
2371 PREFIX_OTHER
2372};
2373
2374/* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2381 */
2382
2383static enum PREFIX_GROUP
e3bb37b5 2384add_prefix (unsigned int prefix)
252b5132 2385{
c32fa91d 2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2387 unsigned int q;
252b5132 2388
29b0f896
AM
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
b1905489 2391 {
161a04f6 2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2396 ret = PREFIX_EXIST;
b1905489
JB
2397 q = REX_PREFIX;
2398 }
3e73aa7c 2399 else
b1905489
JB
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
b1905489 2406 case DS_PREFIX_OPCODE:
04ef582a
L
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
b1905489
JB
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
c32fa91d
L
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
b1905489 2423 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
b1905489
JB
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
c32fa91d 2441 ret = PREFIX_EXIST;
b1905489 2442 }
252b5132 2443
b1905489 2444 if (ret)
252b5132 2445 {
b1905489
JB
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
252b5132 2449 }
b1905489
JB
2450 else
2451 as_bad (_("same type of prefix used twice"));
252b5132 2452
252b5132
RH
2453 return ret;
2454}
2455
2456static void
78f12dd3 2457update_code_flag (int value, int check)
eecb386c 2458{
78f12dd3
L
2459 PRINTF_LIKE ((*as_error));
2460
1e9cc1c2 2461 flag_code = (enum flag_code) value;
40fb9820
L
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2473 {
78f12dd3
L
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2480 }
40fb9820 2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2482 {
78f12dd3
L
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2489 }
eecb386c
AM
2490 stackop_size = '\0';
2491}
2492
78f12dd3
L
2493static void
2494set_code_flag (int value)
2495{
2496 update_code_flag (value, 0);
2497}
2498
eecb386c 2499static void
e3bb37b5 2500set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2501{
1e9cc1c2 2502 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2507 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2508}
2509
2510static void
e3bb37b5 2511set_intel_syntax (int syntax_flag)
252b5132
RH
2512{
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
29b0f896 2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2518 {
d02603dc
NC
2519 char *string;
2520 int e = get_symbol_name (&string);
252b5132 2521
47926f60 2522 if (strcmp (string, "prefix") == 0)
252b5132 2523 ask_naked_reg = 1;
47926f60 2524 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2525 ask_naked_reg = -1;
2526 else
d0b47220 2527 as_bad (_("bad argument to syntax directive."));
d02603dc 2528 (void) restore_line_pointer (e);
252b5132
RH
2529 }
2530 demand_empty_rest_of_line ();
c3332e24 2531
252b5132
RH
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
f86103b7
AM
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2539
ee86248c 2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2541
e4a3b5a4 2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2544 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2545}
2546
1efbbeb4
L
2547static void
2548set_intel_mnemonic (int mnemonic_flag)
2549{
e1d4d893 2550 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2551}
2552
db51cc60
L
2553static void
2554set_allow_index_reg (int flag)
2555{
2556 allow_index_reg = flag;
2557}
2558
cb19c032 2559static void
7bab8ab5 2560set_check (int what)
cb19c032 2561{
7bab8ab5
JB
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
cb19c032
L
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
d02603dc
NC
2580 char *string;
2581 int e = get_symbol_name (&string);
cb19c032
L
2582
2583 if (strcmp (string, "none") == 0)
7bab8ab5 2584 *kind = check_none;
cb19c032 2585 else if (strcmp (string, "warning") == 0)
7bab8ab5 2586 *kind = check_warning;
cb19c032 2587 else if (strcmp (string, "error") == 0)
7bab8ab5 2588 *kind = check_error;
cb19c032 2589 else
7bab8ab5 2590 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2591 (void) restore_line_pointer (e);
cb19c032
L
2592 }
2593 else
7bab8ab5 2594 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2595
2596 demand_empty_rest_of_line ();
2597}
2598
8a9036a4
L
2599static void
2600check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2602{
2603#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
81486035
L
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
3632d14b 2624 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2626 || new_flag.bitfield.cpul1om)
8a9036a4 2627 return;
76ba9986 2628
7a9068fe
L
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
8a9036a4
L
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635#endif
2636}
2637
e413e4e9 2638static void
e3bb37b5 2639set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2640{
47926f60 2641 SKIP_WHITESPACE ();
e413e4e9 2642
29b0f896 2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2644 {
d02603dc
NC
2645 char *string;
2646 int e = get_symbol_name (&string);
91d6fa6a 2647 unsigned int j;
40fb9820 2648 i386_cpu_flags flags;
e413e4e9 2649
91d6fa6a 2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2651 {
91d6fa6a 2652 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2653 {
91d6fa6a 2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2655
5c6af06e
JB
2656 if (*string != '.')
2657 {
91d6fa6a 2658 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2659 cpu_sub_arch_name = NULL;
91d6fa6a 2660 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
91d6fa6a
NC
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
5c6af06e
JB
2678 break;
2679 }
40fb9820 2680
293f5f65
L
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
81486035 2683
5b64d091 2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2685 {
6305a203
L
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
91d6fa6a 2690 cpu_arch[j].name,
1bf57e9f 2691 (const char *) NULL);
6305a203
L
2692 free (name);
2693 }
2694 else
91d6fa6a 2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2696 cpu_arch_flags = flags;
a586129e 2697 cpu_arch_isa_flags = flags;
5c6af06e 2698 }
0089dace
L
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
d02603dc 2703 (void) restore_line_pointer (e);
5c6af06e
JB
2704 demand_empty_rest_of_line ();
2705 return;
e413e4e9
AM
2706 }
2707 }
293f5f65
L
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
33eaf5de 2711 /* Disable an ISA extension. */
293f5f65
L
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
91d6fa6a 2739 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
fddf5b5b
AM
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
29b0f896 2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2750 {
d02603dc
NC
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
fddf5b5b
AM
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
d02603dc 2764 (void) restore_line_pointer (e);
fddf5b5b
AM
2765 }
2766
e413e4e9
AM
2767 demand_empty_rest_of_line ();
2768}
2769
8a9036a4
L
2770enum bfd_architecture
2771i386_arch (void)
2772{
3632d14b 2773 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
7a9068fe
L
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
81486035
L
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
8a9036a4
L
2794 else
2795 return bfd_arch_i386;
2796}
2797
b9d79e03 2798unsigned long
7016a5d5 2799i386_mach (void)
b9d79e03 2800{
351f65ca 2801 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2802 {
3632d14b 2803 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2804 {
351f65ca
L
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
8a9036a4
L
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
7a9068fe
L
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
351f65ca 2817 else if (default_arch[6] == '\0')
8a9036a4 2818 return bfd_mach_x86_64;
351f65ca
L
2819 else
2820 return bfd_mach_x64_32;
8a9036a4 2821 }
5197d474
L
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
81486035
L
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
b9d79e03 2834 else
2b5d6a91 2835 as_fatal (_("unknown architecture"));
b9d79e03 2836}
b9d79e03 2837\f
252b5132 2838void
7016a5d5 2839md_begin (void)
252b5132
RH
2840{
2841 const char *hash_err;
2842
86fa6981
L
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
47926f60 2846 /* Initialize op_hash hash table. */
252b5132
RH
2847 op_hash = hash_new ();
2848
2849 {
d3ce72d0 2850 const insn_template *optab;
29b0f896 2851 templates *core_optab;
252b5132 2852
47926f60
KH
2853 /* Setup for loop. */
2854 optab = i386_optab;
add39d23 2855 core_optab = XNEW (templates);
252b5132
RH
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
47926f60 2865 add to hash table; & begin anew. */
252b5132
RH
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
5a49b8ac 2869 (void *) core_optab);
252b5132
RH
2870 if (hash_err)
2871 {
b37df7c4 2872 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
add39d23 2878 core_optab = XNEW (templates);
252b5132
RH
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
47926f60 2884 /* Initialize reg_hash hash table. */
252b5132
RH
2885 reg_hash = hash_new ();
2886 {
29b0f896 2887 const reg_entry *regtab;
c3fe08fa 2888 unsigned int regtab_size = i386_regtab_size;
252b5132 2889
c3fe08fa 2890 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2891 {
5a49b8ac 2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2893 if (hash_err)
b37df7c4 2894 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2895 regtab->reg_name,
2896 hash_err);
252b5132
RH
2897 }
2898 }
2899
47926f60 2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2901 {
29b0f896
AM
2902 int c;
2903 char *p;
252b5132
RH
2904
2905 for (c = 0; c < 256; c++)
2906 {
3882b010 2907 if (ISDIGIT (c))
252b5132
RH
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
3882b010 2914 else if (ISLOWER (c))
252b5132
RH
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
3882b010 2920 else if (ISUPPER (c))
252b5132 2921 {
3882b010 2922 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
43234a1e 2926 else if (c == '{' || c == '}')
86fa6981
L
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
252b5132 2931
3882b010 2932 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941#ifdef LEX_AT
2942 identifier_chars['@'] = '@';
32137342
NC
2943#endif
2944#ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
252b5132 2947#endif
252b5132 2948 digit_chars['-'] = '-';
c0f3af97 2949 mnemonic_chars['_'] = '_';
791fe849 2950 mnemonic_chars['-'] = '-';
0003779b 2951 mnemonic_chars['.'] = '.';
252b5132
RH
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
a4447b93
RH
2959 if (flag_code == CODE_64BIT)
2960 {
ca19b261
KT
2961#if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964#else
a4447b93 2965 x86_dwarf2_return_column = 16;
ca19b261 2966#endif
61ff971f 2967 x86_cie_data_alignment = -8;
a4447b93
RH
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
252b5132
RH
2974}
2975
2976void
e3bb37b5 2977i386_print_statistics (FILE *file)
252b5132
RH
2978{
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981}
2982\f
252b5132
RH
2983#ifdef DEBUG386
2984
ce8a8b2f 2985/* Debugging routines for md_assemble. */
d3ce72d0 2986static void pte (insn_template *);
40fb9820 2987static void pt (i386_operand_type);
e3bb37b5
L
2988static void pe (expressionS *);
2989static void ps (symbolS *);
252b5132
RH
2990
2991static void
e3bb37b5 2992pi (char *line, i386_insn *x)
252b5132 2993{
09137c09 2994 unsigned int j;
252b5132
RH
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
09f131f2
JH
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3003 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
09137c09 3011 for (j = 0; j < x->operands; j++)
252b5132 3012 {
09137c09
SP
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
252b5132 3015 fprintf (stdout, "\n");
dc821c5f 3016 if (x->types[j].bitfield.reg
09137c09 3017 || x->types[j].bitfield.regmmx
1b54b8d7 3018 || x->types[j].bitfield.regsimd
09137c09
SP
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
252b5132
RH
3029 }
3030}
3031
3032static void
d3ce72d0 3033pte (insn_template *t)
252b5132 3034{
09137c09 3035 unsigned int j;
252b5132 3036 fprintf (stdout, " %d operands ", t->operands);
47926f60 3037 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3040 if (t->opcode_modifier.d)
252b5132 3041 fprintf (stdout, "D");
40fb9820 3042 if (t->opcode_modifier.w)
252b5132
RH
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
09137c09 3045 for (j = 0; j < t->operands; j++)
252b5132 3046 {
09137c09
SP
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
252b5132
RH
3049 fprintf (stdout, "\n");
3050 }
3051}
3052
3053static void
e3bb37b5 3054pe (expressionS *e)
252b5132 3055{
24eab124 3056 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071}
3072
3073static void
e3bb37b5 3074ps (symbolS *s)
252b5132
RH
3075{
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080}
3081
7b81dfbb 3082static struct type_name
252b5132 3083 {
40fb9820
L
3084 i386_operand_type mask;
3085 const char *name;
252b5132 3086 }
7b81dfbb 3087const type_names[] =
252b5132 3088{
40fb9820
L
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3119 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3122 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3123};
3124
3125static void
40fb9820 3126pt (i386_operand_type t)
252b5132 3127{
40fb9820 3128 unsigned int j;
c6fb90c8 3129 i386_operand_type a;
252b5132 3130
40fb9820 3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
0349dc08 3134 if (!operand_type_all_zero (&a))
c6fb90c8
L
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
252b5132
RH
3137 fflush (stdout);
3138}
3139
3140#endif /* DEBUG386 */
3141\f
252b5132 3142static bfd_reloc_code_real_type
3956db08 3143reloc (unsigned int size,
64e74474
AM
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
252b5132 3147{
47926f60 3148 if (other != NO_RELOC)
3956db08 3149 {
91d6fa6a 3150 reloc_howto_type *rel;
3956db08
JB
3151
3152 if (size == 8)
3153 switch (other)
3154 {
64e74474
AM
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
553d1284
L
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
64e74474
AM
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3956db08 3178 }
e05278af 3179
8ce3d284 3180#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
1ab668bf 3184 other = BFD_RELOC_SIZE64;
8fd4256d 3185 if (pcrel)
1ab668bf
AM
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
8fd4256d 3190 }
8ce3d284 3191#endif
8fd4256d 3192
e05278af 3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3195 sign = -1;
3196
91d6fa6a
NC
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3956db08 3199 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3200 else if (size != bfd_get_reloc_size (rel))
3956db08 3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3202 bfd_get_reloc_size (rel),
3956db08 3203 size);
91d6fa6a 3204 else if (pcrel && !rel->pc_relative)
3956db08 3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3207 && !sign)
91d6fa6a 3208 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3209 && sign > 0))
3956db08
JB
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
252b5132
RH
3215
3216 if (pcrel)
3217 {
3e73aa7c 3218 if (!sign)
3956db08 3219 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
d258b828 3224 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3225 case 8: return BFD_RELOC_64_PCREL;
252b5132 3226 }
3956db08 3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3228 }
3229 else
3230 {
3956db08 3231 if (sign > 0)
e5cb08ac 3232 switch (size)
3e73aa7c
JH
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3956db08
JB
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3246 }
3247
0cc9e1d3 3248 return NO_RELOC;
252b5132
RH
3249}
3250
47926f60
KH
3251/* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
252b5132 3256int
e3bb37b5 3257tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3258{
6d249963 3259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3260 if (!IS_ELF)
31312f95
AM
3261 return 1;
3262
a161fe53
AM
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
252b5132 3268 return 0;
31312f95 3269
8d01d9a9
AJ
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
8fd4256d
L
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
31312f95 3312#endif
252b5132
RH
3313 return 1;
3314}
252b5132 3315
b4cac588 3316static int
e3bb37b5 3317intel_float_operand (const char *mnemonic)
252b5132 3318{
9306ca4a
JB
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
252b5132 3365
9306ca4a 3366 return 1;
252b5132
RH
3367}
3368
c0f3af97
L
3369/* Build the VEX prefix. */
3370
3371static void
d3ce72d0 3372build_vex_prefix (const insn_template *t)
c0f3af97
L
3373{
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
03751133 3377 unsigned int w;
c0f3af97
L
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
43234a1e
L
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
c0f3af97
L
3386 else
3387 register_specifier = 0xf;
3388
79f0fa25
L
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
86fa6981 3393 && i.dir_encoding == dir_encoding_default
fa99fab2 3394 && i.operands == i.reg_operands
dbbc8b7e 3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3396 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
9c2799c2 3411 gas_assert (i.rm.mode == 3);
fa99fab2
L
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
dbbc8b7e
JB
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
fa99fab2
L
3423 }
3424
539f890d
L
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
10c17abd
JB
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
539f890d 3429 else
10c17abd 3430 {
56522fc5 3431 unsigned int op;
10c17abd 3432
c7213af9
L
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
10c17abd 3435 vector_length = 0;
56522fc5 3436 for (op = t->operands; op--;)
10c17abd
JB
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
c0f3af97
L
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
03751133
L
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
931d03b7 3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3471
c0f3af97 3472 /* Use 2-byte VEX prefix if possible. */
03751133
L
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
86fa6981 3475 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
03751133 3494 unsigned int m;
c0f3af97 3495
f88c9eb0 3496 i.vex.length = 3;
f88c9eb0 3497
7f399153 3498 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3499 {
7f399153
L
3500 case VEX0F:
3501 m = 0x1;
80de6e00 3502 i.vex.bytes[0] = 0xc4;
7f399153
L
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
80de6e00 3506 i.vex.bytes[0] = 0xc4;
7f399153
L
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
80de6e00 3510 i.vex.bytes[0] = 0xc4;
7f399153
L
3511 break;
3512 case XOP08:
5dd85c99
SP
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
7f399153
L
3515 break;
3516 case XOP09:
f88c9eb0
SP
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
7f399153
L
3519 break;
3520 case XOP0A:
f88c9eb0
SP
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
7f399153
L
3523 break;
3524 default:
3525 abort ();
f88c9eb0 3526 }
c0f3af97 3527
c0f3af97
L
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
c0f3af97
L
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537}
3538
e771e7c9
JB
3539static INLINE bfd_boolean
3540is_evex_encoding (const insn_template *t)
3541{
7091c612 3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545}
3546
7a8655d2
JB
3547static INLINE bfd_boolean
3548is_any_vex_encoding (const insn_template *t)
3549{
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552}
3553
43234a1e
L
3554/* Build the EVEX prefix. */
3555
3556static void
3557build_evex_prefix (void)
3558{
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
6865c043
L
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
931d03b7 3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
e771e7c9
JB
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
56522fc5 3685 unsigned int op;
e771e7c9 3686
c7213af9
L
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
e771e7c9 3689 vec_length = 0;
56522fc5 3690 for (op = i.operands; op--;)
e771e7c9
JB
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
c7213af9
L
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
e771e7c9 3700 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
e771e7c9 3705 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
625cbd7a
JB
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
4a1b91ea 3712 switch (i.broadcast->bytes)
625cbd7a
JB
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
c7213af9 3724 abort ();
625cbd7a 3725 }
c7213af9 3726 break;
625cbd7a 3727 }
e771e7c9 3728 }
c7213af9 3729
56522fc5 3730 if (op >= MAX_OPERANDS)
c7213af9 3731 abort ();
e771e7c9
JB
3732 }
3733
43234a1e
L
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
d3d3c6db 3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767}
3768
65da13b5
L
3769static void
3770process_immext (void)
3771{
3772 expressionS *exp;
3773
4c692bc7
JB
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
65da13b5 3776 {
4c692bc7
JB
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
65da13b5
L
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
4c692bc7 3784 if (register_number (i.op[x].regs) != x)
65da13b5 3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
65da13b5
L
3790 }
3791
9916071f
AP
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
c0f3af97 3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
c1e679ec 3825 AVX instructions also use this encoding, for some of
c0f3af97 3826 3 argument instructions. */
65da13b5 3827
43234a1e 3828 gas_assert (i.imm_operands <= 1
7ab9ffdd 3829 && (i.operands <= 2
7a8655d2 3830 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3831 && i.operands <= 4)));
65da13b5
L
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840}
3841
42164a71
L
3842
3843static int
3844check_hle (void)
3845{
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
82c2def5 3850 case HLEPrefixNone:
165de32a
L
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
42164a71 3853 return 0;
82c2def5 3854 case HLEPrefixLock:
42164a71
L
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
165de32a 3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3858 return 0;
82c2def5 3859 case HLEPrefixAny:
42164a71 3860 return 1;
82c2def5 3861 case HLEPrefixRelease:
42164a71
L
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877}
3878
b6f8c7c4
L
3879/* Try the shortest encoding by shortening operand size. */
3880
3881static void
3882optimize_encoding (void)
3883{
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
d3d50934
L
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
b6f8c7c4
L
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
99112332 3983 else if (i.reg_operands == 3
b6f8c7c4
L
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
7a69eac3 3987 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3988 && !i.rounding
e771e7c9 3989 && is_evex_encoding (&i.tm)
80c34c38 3990 && (i.vec_encoding != vex_encoding_evex
dd22218c 3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 3993 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 3994 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
8305403a
L
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4009 && i.tm.extension_opcode == None))
4010 {
99112332 4011 /* Optimize: -O1:
8305403a
L
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
b6f8c7c4
L
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4045 */
e771e7c9 4046 if (is_evex_encoding (&i.tm))
b6f8c7c4 4047 {
7b1d7ca1 4048 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
7b1d7ca1 4054 else if (optimize > 1)
dd22218c
L
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
b6f8c7c4 4058 }
1424ad86
JB
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
b6f8c7c4
L
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
392a5972 4074 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4075 && !i.types[0].bitfield.zmmword
392a5972 4076 && !i.types[1].bitfield.zmmword
97ed31ae
L
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
392a5972
L
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
97ed31ae
L
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
392a5972
L
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
b6f8c7c4
L
4141}
4142
252b5132
RH
4143/* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147void
65da13b5 4148md_assemble (char *line)
252b5132 4149{
40fb9820 4150 unsigned int j;
83b16ac6 4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4152 const insn_template *t;
252b5132 4153
47926f60 4154 /* Initialize globals. */
252b5132
RH
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4157 i.reloc[j] = NO_RELOC;
252b5132
RH
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4160 save_stack_p = save_stack;
252b5132
RH
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4164 start of a (possibly prefixed) mnemonic. */
252b5132 4165
29b0f896
AM
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
83b16ac6 4169 mnem_suffix = i.suffix;
252b5132 4170
29b0f896 4171 line = parse_operands (line, mnemonic);
ee86248c 4172 this_operand = -1;
8325cc63
JB
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
29b0f896
AM
4175 if (line == NULL)
4176 return;
252b5132 4177
29b0f896
AM
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
050dfa73 4184 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4185 if (intel_syntax
4186 && i.operands > 1
29b0f896 4187 && (strcmp (mnemonic, "bound") != 0)
30123838 4188 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4191 swap_operands ();
4192
ec56d5c0
JB
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
29b0f896
AM
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
b300c311
L
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
a501d77e 4206 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
29b0f896
AM
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
252b5132 4214
83b16ac6 4215 if (!(t = match_template (mnem_suffix)))
29b0f896 4216 return;
252b5132 4217
7bab8ab5 4218 if (sse_check != check_none
81f8a913 4219 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4220 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4230 {
7bab8ab5 4231 (sse_check == check_warning
daf50ae7
L
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
321fd21e
L
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4241 {
321fd21e
L
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
7ab9ffdd 4246 && intel_syntax)
321fd21e
L
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
cd61ebfe 4250 }
24eab124 4251
40fb9820 4252 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
252b5132 4255
d5de92cf
L
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
c1ba0266
L
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
c32fa91d
L
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
7a8655d2
JB
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
42164a71 4283 /* Check if HLE prefix is OK. */
165de32a 4284 if (i.hle_prefix && !check_hle ())
42164a71
L
4285 return;
4286
7e8b059b
L
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
04ef582a 4291 /* Check NOTRACK prefix. */
9fef80d6
L
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4294
327e8c42
JB
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
7e8b059b
L
4304
4305 /* Insert BND prefix. */
76d3a78a
JB
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
7e8b059b 4316
29b0f896 4317 /* Check string instruction segment overrides. */
40fb9820 4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4319 {
4320 if (!check_string ())
5dd0794d 4321 return;
fc0763e6 4322 i.disp_operands = 0;
29b0f896 4323 }
5dd0794d 4324
b6f8c7c4
L
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
29b0f896
AM
4328 if (!process_suffix ())
4329 return;
e413e4e9 4330
bc0844ae
L
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
29b0f896
AM
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
252b5132 4339
40fb9820 4340 if (i.types[0].bitfield.imm1)
29b0f896 4341 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4342
9afe6eb8
L
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
1b54b8d7 4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4350 i.reg_operands--;
40fb9820 4351
c0f3af97
L
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
65da13b5 4355 process_immext ();
252b5132 4356
29b0f896
AM
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
40fb9820 4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
252b5132 4368
7a8655d2 4369 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
c0f3af97 4377
9e5e5283
L
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
43234a1e 4383
5dd85c99
SP
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
252b5132 4394
40fb9820
L
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
252b5132 4406
40fb9820 4407 if (i.tm.opcode_modifier.rex64)
161a04f6 4408 i.rex |= REX_W;
252b5132 4409
29b0f896
AM
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
773f551c 4413
dc821c5f 4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4420 && i.rex != 0))
4421 {
4422 int x;
726c5dcd 4423
29b0f896
AM
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4430 {
29b0f896
AM
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
a540244d 4433 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4434 "instruction requiring REX prefix."),
a540244d 4435 register_prefix, i.op[x].regs->reg_name);
773f551c 4436
29b0f896
AM
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
773f551c 4442 }
29b0f896
AM
4443 }
4444 }
773f551c 4445
6b6b6807
L
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
7ab9ffdd 4466 if (i.rex != 0)
29b0f896
AM
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471}
4472
4473static char *
e3bb37b5 4474parse_insn (char *line, char *mnemonic)
29b0f896
AM
4475{
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
5c6af06e 4479 int supported;
d3ce72d0 4480 const insn_template *t;
b6169b20 4481 char *dot_p = NULL;
29b0f896 4482
29b0f896
AM
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
b6169b20
L
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
29b0f896
AM
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4492 {
29b0f896
AM
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
e44823cf
JB
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
29b0f896
AM
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
e44823cf 4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
45288df1 4516
29b0f896 4517 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4519
29b0f896
AM
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
40fb9820 4523 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4524 {
c6fb90c8 4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
29b0f896
AM
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4537 && flag_code != CODE_64BIT
673fe0f0 4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
45288df1 4544 }
86fa6981 4545 if (current_templates->start->opcode_length == 0)
29b0f896 4546 {
86fa6981
L
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
6b6b6807
L
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
b6f8c7c4
L
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
86fa6981
L
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4593 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4594 {
4e9ac44a
L
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
d777820b 4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
86fa6981 4611 }
29b0f896
AM
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
45288df1 4619
30a55f88 4620 if (!current_templates)
b6169b20 4621 {
07d5e953
JB
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
f8a5c266 4624 encoding. */
30a55f88 4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4626 i.dir_encoding = dir_encoding_swap;
8d63c93e 4627 else if (mnem_p - 3 == dot_p
a501d77e
L
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4631 else if (mnem_p - 4 == dot_p
f8a5c266
L
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
a501d77e 4635 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
d3ce72d0 4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4641 }
4642
29b0f896
AM
4643 if (!current_templates)
4644 {
b6169b20 4645check_suffix:
1c529385 4646 if (mnem_p > mnemonic)
29b0f896 4647 {
1c529385
LH
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
29b0f896 4650 {
1c529385
LH
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
1c529385
LH
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
29b0f896 4659 mnem_p[-1] = '\0';
d3ce72d0 4660 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
29b0f896 4687 }
29b0f896 4688 }
1c529385 4689
29b0f896
AM
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
252b5132 4696
40fb9820
L
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
252b5132 4729
29b0f896 4730 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
c0f3af97
L
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4739
548d0ee6
JB
4740 return l;
4741 }
29b0f896 4742 }
3629bb00 4743
548d0ee6
JB
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4754
548d0ee6 4755 return NULL;
29b0f896 4756}
252b5132 4757
29b0f896 4758static char *
e3bb37b5 4759parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4760{
4761 char *token_start;
3138f287 4762
29b0f896
AM
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
252b5132 4765
29b0f896
AM
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
d02603dc 4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
d02603dc 4781 token_start = l; /* After white space. */
29b0f896
AM
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
d02603dc 4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
9d46ce34 4833 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
1286ab78
L
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
29b0f896
AM
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
a7619375 4849 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
7f3f1ea2 4869
29b0f896
AM
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882}
7f3f1ea2 4883
050dfa73 4884static void
4d456e3d 4885swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4886{
4887 union i386_op temp_op;
40fb9820 4888 i386_operand_type temp_type;
c48dadc9 4889 unsigned int temp_flags;
050dfa73 4890 enum bfd_reloc_code_real temp_reloc;
4eed87de 4891
050dfa73
MM
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
c48dadc9
JB
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
050dfa73
MM
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
c48dadc9 4903
050dfa73
MM
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
050dfa73
MM
4929}
4930
29b0f896 4931static void
e3bb37b5 4932swap_operands (void)
29b0f896 4933{
b7c61d9a 4934 switch (i.operands)
050dfa73 4935 {
c0f3af97 4936 case 5:
b7c61d9a 4937 case 4:
4d456e3d 4938 swap_2_operands (1, i.operands - 2);
1a0670f3 4939 /* Fall through. */
b7c61d9a
L
4940 case 3:
4941 case 2:
4d456e3d 4942 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4943 break;
4944 default:
4945 abort ();
29b0f896 4946 }
29b0f896
AM
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955}
252b5132 4956
29b0f896
AM
4957/* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959static void
e3bb37b5 4960optimize_imm (void)
29b0f896
AM
4961{
4962 char guess_suffix = 0;
4963 int op;
252b5132 4964
29b0f896
AM
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
dc821c5f 4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4975 {
40fb9820
L
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
dc821c5f 4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4980 {
40fb9820
L
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
dc821c5f 4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
dc821c5f 4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4992 break;
252b5132 4993 }
29b0f896
AM
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
40fb9820 4999 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5000 {
5001 switch (i.op[op].imms->X_op)
252b5132 5002 {
29b0f896
AM
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
252b5132 5006 {
29b0f896 5007 case LONG_MNEM_SUFFIX:
40fb9820
L
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5010 break;
5011 case WORD_MNEM_SUFFIX:
40fb9820
L
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5016 break;
5017 case BYTE_MNEM_SUFFIX:
40fb9820
L
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
29b0f896 5024 break;
252b5132 5025 }
252b5132 5026
29b0f896
AM
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
40fb9820 5032 if ((i.types[op].bitfield.imm16)
29b0f896 5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5034 {
29b0f896
AM
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
a28def75
L
5038#ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5040 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
a28def75 5048#endif
40fb9820 5049 i.types[op]
c6fb90c8
L
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5052
29b0f896
AM
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5056 i.types[op].bitfield.imm32 = 0;
29b0f896 5057 break;
252b5132 5058
29b0f896
AM
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
9cd96992
JB
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
40fb9820 5069 i386_operand_type mask, allowed;
d3ce72d0 5070 const insn_template *t;
9cd96992 5071
0dfbf9d7
L
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
40fb9820 5074
4eed87de
AM
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
c6fb90c8
L
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
9cd96992
JB
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
40fb9820
L
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
9cd96992
JB
5085 break;
5086 case LONG_MNEM_SUFFIX:
40fb9820 5087 mask.bitfield.imm32 = 1;
9cd96992
JB
5088 break;
5089 case WORD_MNEM_SUFFIX:
40fb9820 5090 mask.bitfield.imm16 = 1;
9cd96992
JB
5091 break;
5092 case BYTE_MNEM_SUFFIX:
40fb9820 5093 mask.bitfield.imm8 = 1;
9cd96992
JB
5094 break;
5095 default:
9cd96992
JB
5096 break;
5097 }
c6fb90c8 5098 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5099 if (!operand_type_all_zero (&allowed))
c6fb90c8 5100 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5101 }
29b0f896 5102 break;
252b5132 5103 }
29b0f896
AM
5104 }
5105}
47926f60 5106
29b0f896
AM
5107/* Try to use the smallest displacement type too. */
5108static void
e3bb37b5 5109optimize_disp (void)
29b0f896
AM
5110{
5111 int op;
3e73aa7c 5112
29b0f896 5113 for (op = i.operands; --op >= 0;)
40fb9820 5114 if (operand_type_check (i.types[op], disp))
252b5132 5115 {
b300c311 5116 if (i.op[op].disps->X_op == O_constant)
252b5132 5117 {
91d6fa6a 5118 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5119
40fb9820 5120 if (i.types[op].bitfield.disp16
91d6fa6a 5121 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
91d6fa6a 5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5127 i.types[op].bitfield.disp64 = 0;
b300c311 5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5131 if (i.types[op].bitfield.disp32
91d6fa6a 5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
91d6fa6a
NC
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5139 i.types[op].bitfield.disp64 = 0;
b300c311 5140 }
a28def75 5141#endif
91d6fa6a 5142 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5143 {
40fb9820
L
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
b300c311
L
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
91d6fa6a 5154 if (fits_in_signed_long (op_disp))
28a9d8f5 5155 {
40fb9820
L
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5158 }
0e1147d9 5159 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5160 && fits_in_unsigned_long (op_disp))
40fb9820 5161 i.types[op].bitfield.disp32 = 1;
b300c311 5162 }
40fb9820
L
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
b5014f7a 5166 && fits_in_disp8 (op_disp))
40fb9820 5167 i.types[op].bitfield.disp8 = 1;
252b5132 5168 }
67a4f2b7
AO
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5179 }
5180 else
b300c311 5181 /* We only support 64bit displacement on constants. */
40fb9820 5182 i.types[op].bitfield.disp64 = 0;
252b5132 5183 }
29b0f896
AM
5184}
5185
4a1b91ea
L
5186/* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189static INLINE int
5190match_broadcast_size (const insn_template *t, unsigned int given)
5191{
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200}
5201
6c30d220
L
5202/* Check if operands are valid for the instruction. */
5203
5204static int
5205check_VecOperands (const insn_template *t)
5206{
43234a1e 5207 unsigned int op;
e2195274
JB
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
43234a1e 5232
6c30d220
L
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
1b54b8d7
JB
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
ad8ecc81
MZ
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
7bab8ab5
JB
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
6c30d220 5257 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5258 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5259 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5260 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5261 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5262 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
43234a1e
L
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
1b54b8d7
JB
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
43234a1e
L
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
8444f82a
MZ
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
1b54b8d7
JB
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
43234a1e 5311 }
7bab8ab5 5312
43234a1e
L
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
8e6e0792 5317 i386_operand_type type, overlap;
43234a1e
L
5318
5319 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5320 and its broadcast bytes match the memory operand. */
32546502 5321 op = i.broadcast->operand;
8e6e0792 5322 if (!t->opcode_modifier.broadcast
c48dadc9 5323 || !(i.flags[op] & Operand_Mem)
c39e5b26 5324 || (!i.types[op].bitfield.unspecified
4a1b91ea 5325 && !match_broadcast_size (t, op)))
43234a1e
L
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
8e6e0792 5331
4a1b91ea
L
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
8e6e0792 5334 operand_type_set (&type, 0);
4a1b91ea 5335 switch (i.broadcast->bytes)
8e6e0792 5336 {
4a1b91ea
L
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
8e6e0792
JB
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
e2195274 5367 type.bitfield.baseindex = 1;
8e6e0792
JB
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
43234a1e
L
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
4a1b91ea 5389 if (match_broadcast_size (t, op))
43234a1e
L
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
c39e5b26
JB
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5397
5398 /* Check if requested masking is supported. */
ae2387fe 5399 if (i.mask)
43234a1e 5400 {
ae2387fe
JB
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
c48dadc9 5419 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
43234a1e
L
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
43234a1e
L
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5458 {
43234a1e 5459 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5460 return 1;
5461 }
6c30d220
L
5462 }
5463
43234a1e 5464 /* Check vector Disp8 operand. */
b5014f7a
JB
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5467 {
5468 if (i.broadcast)
4a1b91ea 5469 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5471 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
4174bfff
JB
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
4174bfff
JB
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
43234a1e
L
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
b5014f7a 5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5520 {
b5014f7a
JB
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
43234a1e 5523 }
b5014f7a 5524 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5525 }
5526 }
b5014f7a
JB
5527
5528 i.memshift = 0;
43234a1e 5529
6c30d220
L
5530 return 0;
5531}
5532
43f3e2ee 5533/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5534 operand types. */
5535
5536static int
5537VEX_check_operands (const insn_template *t)
5538{
86fa6981 5539 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5540 {
86fa6981 5541 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5542 if (!is_evex_encoding (t))
86fa6981
L
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
43234a1e
L
5548 }
5549
a683cc34 5550 if (!t->opcode_modifier.vex)
86fa6981
L
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
a683cc34
SP
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5566 {
a65babc9 5567 i.error = bad_imm4;
891edac4
L
5568 return 1;
5569 }
a683cc34
SP
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576}
5577
d3ce72d0 5578static const insn_template *
83b16ac6 5579match_template (char mnem_suffix)
29b0f896
AM
5580{
5581 /* Points to template once we've found it. */
d3ce72d0 5582 const insn_template *t;
40fb9820 5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5584 i386_operand_type overlap4;
29b0f896 5585 unsigned int found_reverse_match;
83b16ac6 5586 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5587 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5588 int addr_prefix_disp;
a5c311ca 5589 unsigned int j;
3ac21baa 5590 unsigned int found_cpu_match, size_match;
45664ddb 5591 unsigned int check_register;
5614d22c 5592 enum i386_error specific_error = 0;
29b0f896 5593
c0f3af97
L
5594#if MAX_OPERANDS != 5
5595# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5596#endif
5597
29b0f896 5598 found_reverse_match = 0;
539e75ad 5599 addr_prefix_disp = -1;
40fb9820
L
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5615 suffix_check.no_ldsuf = 1;
29b0f896 5616
83b16ac6
JB
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
01559ecc
L
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
45aa61fe 5633 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5634 {
539e75ad 5635 addr_prefix_disp = -1;
dbbc8b7e 5636 found_reverse_match = 0;
539e75ad 5637
29b0f896
AM
5638 if (i.operands != t->operands)
5639 continue;
5640
50aecf8c 5641 /* Check processor support. */
a65babc9 5642 i.error = unsupported;
c0f3af97
L
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5645 if (!found_cpu_match)
5646 continue;
5647
e1d4d893 5648 /* Check AT&T mnemonic. */
a65babc9 5649 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5651 continue;
5652
e92bae62 5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5654 i.error = unsupported_syntax;
5c07affc 5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5659 continue;
5660
20592a94 5661 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5662 i.error = invalid_instruction_suffix;
567e4e96
L
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5670 continue;
83b16ac6
JB
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
29b0f896 5679
3ac21baa
JB
5680 size_match = operand_size_match (t);
5681 if (!size_match)
7d5e4556 5682 continue;
539e75ad 5683
5c07affc
L
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
45aa61fe
AM
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
40fb9820 5691 ? (!t->opcode_modifier.ignoresize
625cbd7a 5692 && !t->opcode_modifier.broadcast
45aa61fe
AM
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
40fb9820 5695 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5696 && !operand_types[0].bitfield.regsimd)
40fb9820 5697 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5698 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
192dc9c6
JB
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5711 && !operand_types[0].bitfield.regsimd)
192dc9c6 5712 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5714 continue;
5715
29b0f896 5716 /* Do not verify operands when there are none. */
50aecf8c 5717 else
29b0f896 5718 {
c6fb90c8 5719 if (!t->operands)
2dbab7d5
L
5720 /* We've found a match; break out of loop. */
5721 break;
29b0f896 5722 }
252b5132 5723
539e75ad
L
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
40fb9820 5728 /* There should be only one Disp operand. */
539e75ad
L
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
40fb9820
L
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
539e75ad
L
5742 break;
5743 case CODE_32BIT:
40fb9820
L
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
539e75ad
L
5754 break;
5755 case CODE_64BIT:
40fb9820
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
539e75ad
L
5766 break;
5767 }
539e75ad
L
5768 }
5769
02a86693
L
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
56ffb741 5774 /* We check register size if needed. */
e2195274
JB
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
c6fb90c8 5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5785 switch (t->operands)
5786 {
5787 case 1:
40fb9820 5788 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5789 continue;
5790 break;
5791 case 2:
33eaf5de 5792 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
0dfbf9d7
L
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5800 continue;
1212781b
JB
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
f5eb1d70
JB
5809 /* Fall through. */
5810
5811 case 3:
3ac21baa
JB
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
64c49ab3
JB
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
86fa6981 5842 /* If we want store form, we skip the current load. */
64c49ab3
JB
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
fa99fab2 5847 continue;
1a0670f3 5848 /* Fall through. */
f48ff2ae 5849 case 4:
c0f3af97 5850 case 5:
c6fb90c8 5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
e2195274 5854 || ((check_register & 3) == 3
dc821c5f 5855 && !operand_type_register_match (i.types[0],
40fb9820 5856 operand_types[0],
dc821c5f 5857 i.types[1],
40fb9820 5858 operand_types[1])))
29b0f896
AM
5859 {
5860 /* Check if other direction is valid ... */
38e314eb 5861 if (!t->opcode_modifier.d)
29b0f896
AM
5862 continue;
5863
b6169b20 5864check_reverse:
3ac21baa
JB
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
29b0f896 5867 /* Try reversing direction of operands. */
f5eb1d70
JB
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5870 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5872 || (check_register
dc821c5f 5873 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
45664ddb 5876 operand_types[0])))
29b0f896
AM
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
38e314eb 5881 /* found_reverse_match holds which of D or FloatR
29b0f896 5882 we've found. */
38e314eb
JB
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5886 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5887 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5888 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5889 || operand_types[0].bitfield.regmmx
f5eb1d70 5890 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5894 else
38e314eb 5895 found_reverse_match = Opcode_D;
40fb9820 5896 if (t->opcode_modifier.floatr)
8a2ed489 5897 found_reverse_match |= Opcode_FloatR;
29b0f896 5898 }
f48ff2ae 5899 else
29b0f896 5900 {
f48ff2ae 5901 /* Found a forward 2 operand match here. */
d1cbb4db
L
5902 switch (t->operands)
5903 {
c0f3af97
L
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
1a0670f3 5907 /* Fall through. */
d1cbb4db 5908 case 4:
c6fb90c8
L
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
1a0670f3 5911 /* Fall through. */
d1cbb4db 5912 case 3:
c6fb90c8
L
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
d1cbb4db
L
5915 break;
5916 }
29b0f896 5917
f48ff2ae
L
5918 switch (t->operands)
5919 {
c0f3af97
L
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5922 || !operand_type_register_match (i.types[3],
c0f3af97 5923 operand_types[3],
c0f3af97
L
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
1a0670f3 5927 /* Fall through. */
f48ff2ae 5928 case 4:
40fb9820 5929 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
f7768225
JB
5932 operand_types[1],
5933 i.types[3],
e2195274
JB
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
f48ff2ae 5940 continue;
1a0670f3 5941 /* Fall through. */
f48ff2ae
L
5942 case 3:
5943 /* Here we make use of the fact that there are no
23e42951 5944 reverse match 3 operand instructions. */
40fb9820 5945 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
23e42951
JB
5948 operand_types[0],
5949 i.types[2],
e2195274
JB
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
f48ff2ae
L
5956 continue;
5957 break;
5958 }
29b0f896 5959 }
f48ff2ae 5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5961 slip through to break. */
5962 }
3629bb00 5963 if (!found_cpu_match)
dbbc8b7e 5964 continue;
c0f3af97 5965
5614d22c
JB
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
a683cc34 5972
29b0f896
AM
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
a65babc9 5980 const char *err_msg;
5614d22c 5981 switch (specific_error ? specific_error : i.error)
a65babc9
L
5982 {
5983 default:
5984 abort ();
86e026a4 5985 case operand_size_mismatch:
a65babc9
L
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
4a2608e3 6001 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6002 break;
a65babc9
L
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
35262a23 6010 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6011 current_templates->start->name);
6012 return NULL;
6c30d220
L
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
7bab8ab5
JB
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6c30d220
L
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
43234a1e
L
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
43234a1e
L
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
a65babc9
L
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
891edac4 6051 current_templates->start->name);
fa99fab2 6052 return NULL;
29b0f896 6053 }
252b5132 6054
29b0f896
AM
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
40fb9820
L
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
40fb9820
L
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
29b0f896
AM
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
539e75ad
L
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
29b0f896
AM
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
f5eb1d70
JB
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6090 }
6091
fa99fab2 6092 return t;
29b0f896
AM
6093}
6094
6095static int
e3bb37b5 6096check_string (void)
29b0f896 6097{
40fb9820
L
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
a87af027 6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6104 i.tm.name,
a87af027
JB
6105 mem_op + 1,
6106 register_prefix);
29b0f896
AM
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
40fb9820 6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
a87af027 6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6120 i.tm.name,
a87af027
JB
6121 mem_op + 2,
6122 register_prefix);
29b0f896
AM
6123 return 0;
6124 }
6125 }
6126 return 1;
6127}
6128
6129static int
543613e9 6130process_suffix (void)
29b0f896
AM
6131{
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
673fe0f0 6134 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6135 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6136 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6137 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6138 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6139 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
381d071f
L
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
556059dd 6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6151 {
556059dd
JB
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
40fb9820 6155 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6156 else if (i.types[0].bitfield.dword)
40fb9820 6157 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6158 else if (i.types[0].bitfield.qword)
40fb9820 6159 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
556059dd 6166 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
381d071f 6174 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6177 {
8819ada6
JB
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
381d071f
L
6191 }
6192 }
29b0f896
AM
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
2eb952a4
L
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
29b0f896
AM
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
2eb952a4
L
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
29b0f896
AM
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
955e1e6a
L
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
29b0f896
AM
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
2eb952a4
L
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
29b0f896
AM
6232 return 0;
6233 }
40fb9820 6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
40fb9820 6240 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6243 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6244 {
06f74c5c
L
6245 if (stackop_size == LONG_MNEM_SUFFIX
6246 && i.tm.base_opcode == 0xcf)
6247 {
6248 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6249 .code16gcc directive to support 16-bit mode with
6250 32-bit address. For IRET without a suffix, generate
6251 16-bit IRET (opcode 0xcf) to return from an interrupt
6252 handler. */
6253 i.suffix = WORD_MNEM_SUFFIX;
6254 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6255 }
6256 else
6257 i.suffix = stackop_size;
29b0f896 6258 }
9306ca4a
JB
6259 else if (intel_syntax
6260 && !i.suffix
40fb9820
L
6261 && (i.tm.operand_types[0].bitfield.jumpabsolute
6262 || i.tm.opcode_modifier.jumpbyte
6263 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6264 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6265 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6266 {
6267 switch (flag_code)
6268 {
6269 case CODE_64BIT:
40fb9820 6270 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6271 {
6272 i.suffix = QWORD_MNEM_SUFFIX;
6273 break;
6274 }
1a0670f3 6275 /* Fall through. */
9306ca4a 6276 case CODE_32BIT:
40fb9820 6277 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6278 i.suffix = LONG_MNEM_SUFFIX;
6279 break;
6280 case CODE_16BIT:
40fb9820 6281 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6282 i.suffix = WORD_MNEM_SUFFIX;
6283 break;
6284 }
6285 }
252b5132 6286
9306ca4a 6287 if (!i.suffix)
29b0f896 6288 {
9306ca4a
JB
6289 if (!intel_syntax)
6290 {
40fb9820 6291 if (i.tm.opcode_modifier.w)
9306ca4a 6292 {
4eed87de
AM
6293 as_bad (_("no instruction mnemonic suffix given and "
6294 "no register operands; can't size instruction"));
9306ca4a
JB
6295 return 0;
6296 }
6297 }
6298 else
6299 {
40fb9820 6300 unsigned int suffixes;
7ab9ffdd 6301
40fb9820
L
6302 suffixes = !i.tm.opcode_modifier.no_bsuf;
6303 if (!i.tm.opcode_modifier.no_wsuf)
6304 suffixes |= 1 << 1;
6305 if (!i.tm.opcode_modifier.no_lsuf)
6306 suffixes |= 1 << 2;
fc4adea1 6307 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6308 suffixes |= 1 << 3;
6309 if (!i.tm.opcode_modifier.no_ssuf)
6310 suffixes |= 1 << 4;
c2b9da16 6311 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6312 suffixes |= 1 << 5;
6313
6314 /* There are more than suffix matches. */
6315 if (i.tm.opcode_modifier.w
9306ca4a 6316 || ((suffixes & (suffixes - 1))
40fb9820
L
6317 && !i.tm.opcode_modifier.defaultsize
6318 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6319 {
6320 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6321 return 0;
6322 }
6323 }
29b0f896 6324 }
252b5132 6325
d2224064
JB
6326 /* Change the opcode based on the operand size given by i.suffix. */
6327 switch (i.suffix)
29b0f896 6328 {
d2224064
JB
6329 /* Size floating point instruction. */
6330 case LONG_MNEM_SUFFIX:
6331 if (i.tm.opcode_modifier.floatmf)
6332 {
6333 i.tm.base_opcode ^= 4;
6334 break;
6335 }
6336 /* fall through */
6337 case WORD_MNEM_SUFFIX:
6338 case QWORD_MNEM_SUFFIX:
29b0f896 6339 /* It's not a byte, select word/dword operation. */
40fb9820 6340 if (i.tm.opcode_modifier.w)
29b0f896 6341 {
40fb9820 6342 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6343 i.tm.base_opcode |= 8;
6344 else
6345 i.tm.base_opcode |= 1;
6346 }
d2224064
JB
6347 /* fall through */
6348 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6349 /* Now select between word & dword operations via the operand
6350 size prefix, except for instructions that will ignore this
6351 prefix anyway. */
75c0a438
L
6352 if (i.reg_operands > 0
6353 && i.types[0].bitfield.reg
6354 && i.tm.opcode_modifier.addrprefixopreg
6355 && (i.tm.opcode_modifier.immext
6356 || i.operands == 1))
cb712a9e 6357 {
ca61edf2
L
6358 /* The address size override prefix changes the size of the
6359 first operand. */
40fb9820 6360 if ((flag_code == CODE_32BIT
75c0a438 6361 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6362 || (flag_code != CODE_32BIT
75c0a438 6363 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6364 if (!add_prefix (ADDR_PREFIX_OPCODE))
6365 return 0;
6366 }
6367 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6368 && !i.tm.opcode_modifier.ignoresize
6369 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6370 && !i.tm.opcode_modifier.vex
6371 && !i.tm.opcode_modifier.vexopcode
6372 && !is_evex_encoding (&i.tm)
cb712a9e
L
6373 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6374 || (flag_code == CODE_64BIT
40fb9820 6375 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6376 {
6377 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6378
40fb9820 6379 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6380 prefix = ADDR_PREFIX_OPCODE;
252b5132 6381
29b0f896
AM
6382 if (!add_prefix (prefix))
6383 return 0;
24eab124 6384 }
252b5132 6385
29b0f896
AM
6386 /* Set mode64 for an operand. */
6387 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6388 && flag_code == CODE_64BIT
d2224064 6389 && !i.tm.opcode_modifier.norex64
46e883c5 6390 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6391 need rex64. */
6392 && ! (i.operands == 2
6393 && i.tm.base_opcode == 0x90
6394 && i.tm.extension_opcode == None
6395 && operand_type_equal (&i.types [0], &acc64)
6396 && operand_type_equal (&i.types [1], &acc64)))
6397 i.rex |= REX_W;
3e73aa7c 6398
d2224064 6399 break;
29b0f896 6400 }
7ecd2f8b 6401
c0a30a9f
L
6402 if (i.reg_operands != 0
6403 && i.operands > 1
6404 && i.tm.opcode_modifier.addrprefixopreg
6405 && !i.tm.opcode_modifier.immext)
6406 {
6407 /* Check invalid register operand when the address size override
6408 prefix changes the size of register operands. */
6409 unsigned int op;
6410 enum { need_word, need_dword, need_qword } need;
6411
6412 if (flag_code == CODE_32BIT)
6413 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6414 else
6415 {
6416 if (i.prefix[ADDR_PREFIX])
6417 need = need_dword;
6418 else
6419 need = flag_code == CODE_64BIT ? need_qword : need_word;
6420 }
6421
6422 for (op = 0; op < i.operands; op++)
6423 if (i.types[op].bitfield.reg
6424 && ((need == need_word
6425 && !i.op[op].regs->reg_type.bitfield.word)
6426 || (need == need_dword
6427 && !i.op[op].regs->reg_type.bitfield.dword)
6428 || (need == need_qword
6429 && !i.op[op].regs->reg_type.bitfield.qword)))
6430 {
6431 as_bad (_("invalid register operand size for `%s'"),
6432 i.tm.name);
6433 return 0;
6434 }
6435 }
6436
29b0f896
AM
6437 return 1;
6438}
3e73aa7c 6439
29b0f896 6440static int
543613e9 6441check_byte_reg (void)
29b0f896
AM
6442{
6443 int op;
543613e9 6444
29b0f896
AM
6445 for (op = i.operands; --op >= 0;)
6446 {
dc821c5f
JB
6447 /* Skip non-register operands. */
6448 if (!i.types[op].bitfield.reg)
6449 continue;
6450
29b0f896
AM
6451 /* If this is an eight bit register, it's OK. If it's the 16 or
6452 32 bit version of an eight bit register, we will just use the
6453 low portion, and that's OK too. */
dc821c5f 6454 if (i.types[op].bitfield.byte)
29b0f896
AM
6455 continue;
6456
5a819eb9
JB
6457 /* I/O port address operands are OK too. */
6458 if (i.tm.operand_types[op].bitfield.inoutportreg)
6459 continue;
6460
9344ff29
L
6461 /* crc32 doesn't generate this warning. */
6462 if (i.tm.base_opcode == 0xf20f38f0)
6463 continue;
6464
dc821c5f
JB
6465 if ((i.types[op].bitfield.word
6466 || i.types[op].bitfield.dword
6467 || i.types[op].bitfield.qword)
5a819eb9
JB
6468 && i.op[op].regs->reg_num < 4
6469 /* Prohibit these changes in 64bit mode, since the lowering
6470 would be more complicated. */
6471 && flag_code != CODE_64BIT)
29b0f896 6472 {
29b0f896 6473#if REGISTER_WARNINGS
5a819eb9 6474 if (!quiet_warnings)
a540244d
L
6475 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6476 register_prefix,
dc821c5f 6477 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6478 ? REGNAM_AL - REGNAM_AX
6479 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6480 register_prefix,
29b0f896
AM
6481 i.op[op].regs->reg_name,
6482 i.suffix);
6483#endif
6484 continue;
6485 }
6486 /* Any other register is bad. */
dc821c5f 6487 if (i.types[op].bitfield.reg
40fb9820 6488 || i.types[op].bitfield.regmmx
1b54b8d7 6489 || i.types[op].bitfield.regsimd
40fb9820
L
6490 || i.types[op].bitfield.sreg2
6491 || i.types[op].bitfield.sreg3
6492 || i.types[op].bitfield.control
6493 || i.types[op].bitfield.debug
ca0d63fe 6494 || i.types[op].bitfield.test)
29b0f896 6495 {
a540244d
L
6496 as_bad (_("`%s%s' not allowed with `%s%c'"),
6497 register_prefix,
29b0f896
AM
6498 i.op[op].regs->reg_name,
6499 i.tm.name,
6500 i.suffix);
6501 return 0;
6502 }
6503 }
6504 return 1;
6505}
6506
6507static int
e3bb37b5 6508check_long_reg (void)
29b0f896
AM
6509{
6510 int op;
6511
6512 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6513 /* Skip non-register operands. */
6514 if (!i.types[op].bitfield.reg)
6515 continue;
29b0f896
AM
6516 /* Reject eight bit registers, except where the template requires
6517 them. (eg. movzb) */
dc821c5f
JB
6518 else if (i.types[op].bitfield.byte
6519 && (i.tm.operand_types[op].bitfield.reg
6520 || i.tm.operand_types[op].bitfield.acc)
6521 && (i.tm.operand_types[op].bitfield.word
6522 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6523 {
a540244d
L
6524 as_bad (_("`%s%s' not allowed with `%s%c'"),
6525 register_prefix,
29b0f896
AM
6526 i.op[op].regs->reg_name,
6527 i.tm.name,
6528 i.suffix);
6529 return 0;
6530 }
e4630f71 6531 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6532 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6533 && i.types[op].bitfield.word
6534 && (i.tm.operand_types[op].bitfield.reg
6535 || i.tm.operand_types[op].bitfield.acc)
6536 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6537 {
6538 /* Prohibit these changes in the 64bit mode, since the
6539 lowering is more complicated. */
6540 if (flag_code == CODE_64BIT)
252b5132 6541 {
2b5d6a91 6542 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6543 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6544 i.suffix);
6545 return 0;
252b5132 6546 }
29b0f896 6547#if REGISTER_WARNINGS
cecf1424
JB
6548 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6549 register_prefix,
6550 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6551 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6552#endif
252b5132 6553 }
e4630f71 6554 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6555 else if (i.types[op].bitfield.qword
6556 && (i.tm.operand_types[op].bitfield.reg
6557 || i.tm.operand_types[op].bitfield.acc)
6558 && i.tm.operand_types[op].bitfield.dword)
252b5132 6559 {
34828aad 6560 if (intel_syntax
ca61edf2 6561 && i.tm.opcode_modifier.toqword
1b54b8d7 6562 && !i.types[0].bitfield.regsimd)
34828aad 6563 {
ca61edf2 6564 /* Convert to QWORD. We want REX byte. */
34828aad
L
6565 i.suffix = QWORD_MNEM_SUFFIX;
6566 }
6567 else
6568 {
2b5d6a91 6569 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6570 register_prefix, i.op[op].regs->reg_name,
6571 i.suffix);
6572 return 0;
6573 }
29b0f896
AM
6574 }
6575 return 1;
6576}
252b5132 6577
29b0f896 6578static int
e3bb37b5 6579check_qword_reg (void)
29b0f896
AM
6580{
6581 int op;
252b5132 6582
29b0f896 6583 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6584 /* Skip non-register operands. */
6585 if (!i.types[op].bitfield.reg)
6586 continue;
29b0f896
AM
6587 /* Reject eight bit registers, except where the template requires
6588 them. (eg. movzb) */
dc821c5f
JB
6589 else if (i.types[op].bitfield.byte
6590 && (i.tm.operand_types[op].bitfield.reg
6591 || i.tm.operand_types[op].bitfield.acc)
6592 && (i.tm.operand_types[op].bitfield.word
6593 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6594 {
a540244d
L
6595 as_bad (_("`%s%s' not allowed with `%s%c'"),
6596 register_prefix,
29b0f896
AM
6597 i.op[op].regs->reg_name,
6598 i.tm.name,
6599 i.suffix);
6600 return 0;
6601 }
e4630f71 6602 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6603 else if ((i.types[op].bitfield.word
6604 || i.types[op].bitfield.dword)
6605 && (i.tm.operand_types[op].bitfield.reg
6606 || i.tm.operand_types[op].bitfield.acc)
6607 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6608 {
6609 /* Prohibit these changes in the 64bit mode, since the
6610 lowering is more complicated. */
34828aad 6611 if (intel_syntax
ca61edf2 6612 && i.tm.opcode_modifier.todword
1b54b8d7 6613 && !i.types[0].bitfield.regsimd)
34828aad 6614 {
ca61edf2 6615 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6616 i.suffix = LONG_MNEM_SUFFIX;
6617 }
6618 else
6619 {
2b5d6a91 6620 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6621 register_prefix, i.op[op].regs->reg_name,
6622 i.suffix);
6623 return 0;
6624 }
252b5132 6625 }
29b0f896
AM
6626 return 1;
6627}
252b5132 6628
29b0f896 6629static int
e3bb37b5 6630check_word_reg (void)
29b0f896
AM
6631{
6632 int op;
6633 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6634 /* Skip non-register operands. */
6635 if (!i.types[op].bitfield.reg)
6636 continue;
29b0f896
AM
6637 /* Reject eight bit registers, except where the template requires
6638 them. (eg. movzb) */
dc821c5f
JB
6639 else if (i.types[op].bitfield.byte
6640 && (i.tm.operand_types[op].bitfield.reg
6641 || i.tm.operand_types[op].bitfield.acc)
6642 && (i.tm.operand_types[op].bitfield.word
6643 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6644 {
a540244d
L
6645 as_bad (_("`%s%s' not allowed with `%s%c'"),
6646 register_prefix,
29b0f896
AM
6647 i.op[op].regs->reg_name,
6648 i.tm.name,
6649 i.suffix);
6650 return 0;
6651 }
e4630f71 6652 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6653 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6654 && (i.types[op].bitfield.dword
6655 || i.types[op].bitfield.qword)
6656 && (i.tm.operand_types[op].bitfield.reg
6657 || i.tm.operand_types[op].bitfield.acc)
6658 && i.tm.operand_types[op].bitfield.word)
252b5132 6659 {
29b0f896
AM
6660 /* Prohibit these changes in the 64bit mode, since the
6661 lowering is more complicated. */
6662 if (flag_code == CODE_64BIT)
252b5132 6663 {
2b5d6a91 6664 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6665 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6666 i.suffix);
6667 return 0;
252b5132 6668 }
29b0f896 6669#if REGISTER_WARNINGS
cecf1424
JB
6670 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6671 register_prefix,
6672 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6673 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6674#endif
6675 }
6676 return 1;
6677}
252b5132 6678
29b0f896 6679static int
40fb9820 6680update_imm (unsigned int j)
29b0f896 6681{
bc0844ae 6682 i386_operand_type overlap = i.types[j];
40fb9820
L
6683 if ((overlap.bitfield.imm8
6684 || overlap.bitfield.imm8s
6685 || overlap.bitfield.imm16
6686 || overlap.bitfield.imm32
6687 || overlap.bitfield.imm32s
6688 || overlap.bitfield.imm64)
0dfbf9d7
L
6689 && !operand_type_equal (&overlap, &imm8)
6690 && !operand_type_equal (&overlap, &imm8s)
6691 && !operand_type_equal (&overlap, &imm16)
6692 && !operand_type_equal (&overlap, &imm32)
6693 && !operand_type_equal (&overlap, &imm32s)
6694 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6695 {
6696 if (i.suffix)
6697 {
40fb9820
L
6698 i386_operand_type temp;
6699
0dfbf9d7 6700 operand_type_set (&temp, 0);
7ab9ffdd 6701 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6702 {
6703 temp.bitfield.imm8 = overlap.bitfield.imm8;
6704 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6705 }
6706 else if (i.suffix == WORD_MNEM_SUFFIX)
6707 temp.bitfield.imm16 = overlap.bitfield.imm16;
6708 else if (i.suffix == QWORD_MNEM_SUFFIX)
6709 {
6710 temp.bitfield.imm64 = overlap.bitfield.imm64;
6711 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6712 }
6713 else
6714 temp.bitfield.imm32 = overlap.bitfield.imm32;
6715 overlap = temp;
29b0f896 6716 }
0dfbf9d7
L
6717 else if (operand_type_equal (&overlap, &imm16_32_32s)
6718 || operand_type_equal (&overlap, &imm16_32)
6719 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6720 {
40fb9820 6721 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6722 overlap = imm16;
40fb9820 6723 else
65da13b5 6724 overlap = imm32s;
29b0f896 6725 }
0dfbf9d7
L
6726 if (!operand_type_equal (&overlap, &imm8)
6727 && !operand_type_equal (&overlap, &imm8s)
6728 && !operand_type_equal (&overlap, &imm16)
6729 && !operand_type_equal (&overlap, &imm32)
6730 && !operand_type_equal (&overlap, &imm32s)
6731 && !operand_type_equal (&overlap, &imm64))
29b0f896 6732 {
4eed87de
AM
6733 as_bad (_("no instruction mnemonic suffix given; "
6734 "can't determine immediate size"));
29b0f896
AM
6735 return 0;
6736 }
6737 }
40fb9820 6738 i.types[j] = overlap;
29b0f896 6739
40fb9820
L
6740 return 1;
6741}
6742
6743static int
6744finalize_imm (void)
6745{
bc0844ae 6746 unsigned int j, n;
29b0f896 6747
bc0844ae
L
6748 /* Update the first 2 immediate operands. */
6749 n = i.operands > 2 ? 2 : i.operands;
6750 if (n)
6751 {
6752 for (j = 0; j < n; j++)
6753 if (update_imm (j) == 0)
6754 return 0;
40fb9820 6755
bc0844ae
L
6756 /* The 3rd operand can't be immediate operand. */
6757 gas_assert (operand_type_check (i.types[2], imm) == 0);
6758 }
29b0f896
AM
6759
6760 return 1;
6761}
6762
6763static int
e3bb37b5 6764process_operands (void)
29b0f896
AM
6765{
6766 /* Default segment register this instruction will use for memory
6767 accesses. 0 means unknown. This is only for optimizing out
6768 unnecessary segment overrides. */
6769 const seg_entry *default_seg = 0;
6770
2426c15f 6771 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6772 {
91d6fa6a
NC
6773 unsigned int dupl = i.operands;
6774 unsigned int dest = dupl - 1;
9fcfb3d7
L
6775 unsigned int j;
6776
c0f3af97 6777 /* The destination must be an xmm register. */
9c2799c2 6778 gas_assert (i.reg_operands
91d6fa6a 6779 && MAX_OPERANDS > dupl
7ab9ffdd 6780 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6781
1b54b8d7
JB
6782 if (i.tm.operand_types[0].bitfield.acc
6783 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6784 {
8cd7925b 6785 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6786 {
6787 /* Keep xmm0 for instructions with VEX prefix and 3
6788 sources. */
1b54b8d7
JB
6789 i.tm.operand_types[0].bitfield.acc = 0;
6790 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6791 goto duplicate;
6792 }
e2ec9d29 6793 else
c0f3af97
L
6794 {
6795 /* We remove the first xmm0 and keep the number of
6796 operands unchanged, which in fact duplicates the
6797 destination. */
6798 for (j = 1; j < i.operands; j++)
6799 {
6800 i.op[j - 1] = i.op[j];
6801 i.types[j - 1] = i.types[j];
6802 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6803 }
6804 }
6805 }
6806 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6807 {
91d6fa6a 6808 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6809 && (i.tm.opcode_modifier.vexsources
6810 == VEX3SOURCES));
c0f3af97
L
6811
6812 /* Add the implicit xmm0 for instructions with VEX prefix
6813 and 3 sources. */
6814 for (j = i.operands; j > 0; j--)
6815 {
6816 i.op[j] = i.op[j - 1];
6817 i.types[j] = i.types[j - 1];
6818 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6819 }
6820 i.op[0].regs
6821 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6822 i.types[0] = regxmm;
c0f3af97
L
6823 i.tm.operand_types[0] = regxmm;
6824
6825 i.operands += 2;
6826 i.reg_operands += 2;
6827 i.tm.operands += 2;
6828
91d6fa6a 6829 dupl++;
c0f3af97 6830 dest++;
91d6fa6a
NC
6831 i.op[dupl] = i.op[dest];
6832 i.types[dupl] = i.types[dest];
6833 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6834 }
c0f3af97
L
6835 else
6836 {
6837duplicate:
6838 i.operands++;
6839 i.reg_operands++;
6840 i.tm.operands++;
6841
91d6fa6a
NC
6842 i.op[dupl] = i.op[dest];
6843 i.types[dupl] = i.types[dest];
6844 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6845 }
6846
6847 if (i.tm.opcode_modifier.immext)
6848 process_immext ();
6849 }
1b54b8d7
JB
6850 else if (i.tm.operand_types[0].bitfield.acc
6851 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6852 {
6853 unsigned int j;
6854
9fcfb3d7
L
6855 for (j = 1; j < i.operands; j++)
6856 {
6857 i.op[j - 1] = i.op[j];
6858 i.types[j - 1] = i.types[j];
6859
6860 /* We need to adjust fields in i.tm since they are used by
6861 build_modrm_byte. */
6862 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6863 }
6864
e2ec9d29
L
6865 i.operands--;
6866 i.reg_operands--;
e2ec9d29
L
6867 i.tm.operands--;
6868 }
920d2ddc
IT
6869 else if (i.tm.opcode_modifier.implicitquadgroup)
6870 {
a477a8c4
JB
6871 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6872
920d2ddc 6873 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6874 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6875 regnum = register_number (i.op[1].regs);
6876 first_reg_in_group = regnum & ~3;
6877 last_reg_in_group = first_reg_in_group + 3;
6878 if (regnum != first_reg_in_group)
6879 as_warn (_("source register `%s%s' implicitly denotes"
6880 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6881 register_prefix, i.op[1].regs->reg_name,
6882 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6883 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6884 i.tm.name);
6885 }
e2ec9d29
L
6886 else if (i.tm.opcode_modifier.regkludge)
6887 {
6888 /* The imul $imm, %reg instruction is converted into
6889 imul $imm, %reg, %reg, and the clr %reg instruction
6890 is converted into xor %reg, %reg. */
6891
6892 unsigned int first_reg_op;
6893
6894 if (operand_type_check (i.types[0], reg))
6895 first_reg_op = 0;
6896 else
6897 first_reg_op = 1;
6898 /* Pretend we saw the extra register operand. */
9c2799c2 6899 gas_assert (i.reg_operands == 1
7ab9ffdd 6900 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6901 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6902 i.types[first_reg_op + 1] = i.types[first_reg_op];
6903 i.operands++;
6904 i.reg_operands++;
29b0f896
AM
6905 }
6906
40fb9820 6907 if (i.tm.opcode_modifier.shortform)
29b0f896 6908 {
40fb9820
L
6909 if (i.types[0].bitfield.sreg2
6910 || i.types[0].bitfield.sreg3)
29b0f896 6911 {
4eed87de
AM
6912 if (i.tm.base_opcode == POP_SEG_SHORT
6913 && i.op[0].regs->reg_num == 1)
29b0f896 6914 {
a87af027 6915 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6916 return 0;
29b0f896 6917 }
4eed87de
AM
6918 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6919 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6920 i.rex |= REX_B;
4eed87de
AM
6921 }
6922 else
6923 {
7ab9ffdd 6924 /* The register or float register operand is in operand
85f10a01 6925 0 or 1. */
40fb9820 6926 unsigned int op;
7ab9ffdd 6927
ca0d63fe 6928 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6929 || operand_type_check (i.types[0], reg))
6930 op = 0;
6931 else
6932 op = 1;
4eed87de
AM
6933 /* Register goes in low 3 bits of opcode. */
6934 i.tm.base_opcode |= i.op[op].regs->reg_num;
6935 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6936 i.rex |= REX_B;
40fb9820 6937 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6938 {
4eed87de
AM
6939 /* Warn about some common errors, but press on regardless.
6940 The first case can be generated by gcc (<= 2.8.1). */
6941 if (i.operands == 2)
6942 {
6943 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6944 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6945 register_prefix, i.op[!intel_syntax].regs->reg_name,
6946 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6947 }
6948 else
6949 {
6950 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6951 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6952 register_prefix, i.op[0].regs->reg_name);
4eed87de 6953 }
29b0f896
AM
6954 }
6955 }
6956 }
40fb9820 6957 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6958 {
6959 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6960 must be put into the modrm byte). Now, we make the modrm and
6961 index base bytes based on all the info we've collected. */
29b0f896
AM
6962
6963 default_seg = build_modrm_byte ();
6964 }
8a2ed489 6965 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6966 {
6967 default_seg = &ds;
6968 }
40fb9820 6969 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6970 {
6971 /* For the string instructions that allow a segment override
6972 on one of their operands, the default segment is ds. */
6973 default_seg = &ds;
6974 }
6975
75178d9d
L
6976 if (i.tm.base_opcode == 0x8d /* lea */
6977 && i.seg[0]
6978 && !quiet_warnings)
30123838 6979 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6980
6981 /* If a segment was explicitly specified, and the specified segment
6982 is not the default, use an opcode prefix to select it. If we
6983 never figured out what the default segment is, then default_seg
6984 will be zero at this point, and the specified segment prefix will
6985 always be used. */
29b0f896
AM
6986 if ((i.seg[0]) && (i.seg[0] != default_seg))
6987 {
6988 if (!add_prefix (i.seg[0]->seg_prefix))
6989 return 0;
6990 }
6991 return 1;
6992}
6993
6994static const seg_entry *
e3bb37b5 6995build_modrm_byte (void)
29b0f896
AM
6996{
6997 const seg_entry *default_seg = 0;
c0f3af97 6998 unsigned int source, dest;
8cd7925b 6999 int vex_3_sources;
c0f3af97 7000
8cd7925b 7001 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7002 if (vex_3_sources)
7003 {
91d6fa6a 7004 unsigned int nds, reg_slot;
4c2c6516 7005 expressionS *exp;
c0f3af97 7006
6b8d3588 7007 dest = i.operands - 1;
c0f3af97 7008 nds = dest - 1;
922d8de8 7009
a683cc34 7010 /* There are 2 kinds of instructions:
bed3d976
JB
7011 1. 5 operands: 4 register operands or 3 register operands
7012 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7013 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7014 ZMM register.
bed3d976 7015 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7016 plus 1 memory operand, with VexXDS. */
922d8de8 7017 gas_assert ((i.reg_operands == 4
bed3d976
JB
7018 || (i.reg_operands == 3 && i.mem_operands == 1))
7019 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7020 && i.tm.opcode_modifier.vexw
7021 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7022
48db9223
JB
7023 /* If VexW1 is set, the first non-immediate operand is the source and
7024 the second non-immediate one is encoded in the immediate operand. */
7025 if (i.tm.opcode_modifier.vexw == VEXW1)
7026 {
7027 source = i.imm_operands;
7028 reg_slot = i.imm_operands + 1;
7029 }
7030 else
7031 {
7032 source = i.imm_operands + 1;
7033 reg_slot = i.imm_operands;
7034 }
7035
a683cc34 7036 if (i.imm_operands == 0)
bed3d976
JB
7037 {
7038 /* When there is no immediate operand, generate an 8bit
7039 immediate operand to encode the first operand. */
7040 exp = &im_expressions[i.imm_operands++];
7041 i.op[i.operands].imms = exp;
7042 i.types[i.operands] = imm8;
7043 i.operands++;
7044
7045 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7046 exp->X_op = O_constant;
7047 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7048 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7049 }
922d8de8 7050 else
bed3d976
JB
7051 {
7052 unsigned int imm_slot;
a683cc34 7053
2f1bada2
JB
7054 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7055
bed3d976
JB
7056 if (i.tm.opcode_modifier.immext)
7057 {
7058 /* When ImmExt is set, the immediate byte is the last
7059 operand. */
7060 imm_slot = i.operands - 1;
7061 source--;
7062 reg_slot--;
7063 }
7064 else
7065 {
7066 imm_slot = 0;
7067
7068 /* Turn on Imm8 so that output_imm will generate it. */
7069 i.types[imm_slot].bitfield.imm8 = 1;
7070 }
7071
7072 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7073 i.op[imm_slot].imms->X_add_number
7074 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7075 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7076 }
a683cc34 7077
10c17abd 7078 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7079 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7080 }
7081 else
7082 source = dest = 0;
29b0f896
AM
7083
7084 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7085 implicit registers do not count. If there are 3 register
7086 operands, it must be a instruction with VexNDS. For a
7087 instruction with VexNDD, the destination register is encoded
7088 in VEX prefix. If there are 4 register operands, it must be
7089 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7090 if (i.mem_operands == 0
7091 && ((i.reg_operands == 2
2426c15f 7092 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7093 || (i.reg_operands == 3
2426c15f 7094 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7095 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7096 {
cab737b9
L
7097 switch (i.operands)
7098 {
7099 case 2:
7100 source = 0;
7101 break;
7102 case 3:
c81128dc
L
7103 /* When there are 3 operands, one of them may be immediate,
7104 which may be the first or the last operand. Otherwise,
c0f3af97
L
7105 the first operand must be shift count register (cl) or it
7106 is an instruction with VexNDS. */
9c2799c2 7107 gas_assert (i.imm_operands == 1
7ab9ffdd 7108 || (i.imm_operands == 0
2426c15f 7109 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7110 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7111 if (operand_type_check (i.types[0], imm)
7112 || i.types[0].bitfield.shiftcount)
7113 source = 1;
7114 else
7115 source = 0;
cab737b9
L
7116 break;
7117 case 4:
368d64cc
L
7118 /* When there are 4 operands, the first two must be 8bit
7119 immediate operands. The source operand will be the 3rd
c0f3af97
L
7120 one.
7121
7122 For instructions with VexNDS, if the first operand
7123 an imm8, the source operand is the 2nd one. If the last
7124 operand is imm8, the source operand is the first one. */
9c2799c2 7125 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7126 && i.types[0].bitfield.imm8
7127 && i.types[1].bitfield.imm8)
2426c15f 7128 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7129 && i.imm_operands == 1
7130 && (i.types[0].bitfield.imm8
43234a1e
L
7131 || i.types[i.operands - 1].bitfield.imm8
7132 || i.rounding)));
9f2670f2
L
7133 if (i.imm_operands == 2)
7134 source = 2;
7135 else
c0f3af97
L
7136 {
7137 if (i.types[0].bitfield.imm8)
7138 source = 1;
7139 else
7140 source = 0;
7141 }
c0f3af97
L
7142 break;
7143 case 5:
e771e7c9 7144 if (is_evex_encoding (&i.tm))
43234a1e
L
7145 {
7146 /* For EVEX instructions, when there are 5 operands, the
7147 first one must be immediate operand. If the second one
7148 is immediate operand, the source operand is the 3th
7149 one. If the last one is immediate operand, the source
7150 operand is the 2nd one. */
7151 gas_assert (i.imm_operands == 2
7152 && i.tm.opcode_modifier.sae
7153 && operand_type_check (i.types[0], imm));
7154 if (operand_type_check (i.types[1], imm))
7155 source = 2;
7156 else if (operand_type_check (i.types[4], imm))
7157 source = 1;
7158 else
7159 abort ();
7160 }
cab737b9
L
7161 break;
7162 default:
7163 abort ();
7164 }
7165
c0f3af97
L
7166 if (!vex_3_sources)
7167 {
7168 dest = source + 1;
7169
43234a1e
L
7170 /* RC/SAE operand could be between DEST and SRC. That happens
7171 when one operand is GPR and the other one is XMM/YMM/ZMM
7172 register. */
7173 if (i.rounding && i.rounding->operand == (int) dest)
7174 dest++;
7175
2426c15f 7176 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7177 {
43234a1e 7178 /* For instructions with VexNDS, the register-only source
c5d0745b 7179 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7180 register. It is encoded in VEX prefix. We need to
7181 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7182
7183 i386_operand_type op;
7184 unsigned int vvvv;
7185
7186 /* Check register-only source operand when two source
7187 operands are swapped. */
7188 if (!i.tm.operand_types[source].bitfield.baseindex
7189 && i.tm.operand_types[dest].bitfield.baseindex)
7190 {
7191 vvvv = source;
7192 source = dest;
7193 }
7194 else
7195 vvvv = dest;
7196
7197 op = i.tm.operand_types[vvvv];
fa99fab2 7198 op.bitfield.regmem = 0;
c0f3af97 7199 if ((dest + 1) >= i.operands
dc821c5f
JB
7200 || ((!op.bitfield.reg
7201 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7202 && !op.bitfield.regsimd
43234a1e 7203 && !operand_type_equal (&op, &regmask)))
c0f3af97 7204 abort ();
f12dc422 7205 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7206 dest++;
7207 }
7208 }
29b0f896
AM
7209
7210 i.rm.mode = 3;
7211 /* One of the register operands will be encoded in the i.tm.reg
7212 field, the other in the combined i.tm.mode and i.tm.regmem
7213 fields. If no form of this instruction supports a memory
7214 destination operand, then we assume the source operand may
7215 sometimes be a memory operand and so we need to store the
7216 destination in the i.rm.reg field. */
40fb9820
L
7217 if (!i.tm.operand_types[dest].bitfield.regmem
7218 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7219 {
7220 i.rm.reg = i.op[dest].regs->reg_num;
7221 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7222 if (i.op[dest].regs->reg_type.bitfield.regmmx
7223 || i.op[source].regs->reg_type.bitfield.regmmx)
7224 i.has_regmmx = TRUE;
7225 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7226 || i.op[source].regs->reg_type.bitfield.regsimd)
7227 {
7228 if (i.types[dest].bitfield.zmmword
7229 || i.types[source].bitfield.zmmword)
7230 i.has_regzmm = TRUE;
7231 else if (i.types[dest].bitfield.ymmword
7232 || i.types[source].bitfield.ymmword)
7233 i.has_regymm = TRUE;
7234 else
7235 i.has_regxmm = TRUE;
7236 }
29b0f896 7237 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7238 i.rex |= REX_R;
43234a1e
L
7239 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7240 i.vrex |= REX_R;
29b0f896 7241 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7242 i.rex |= REX_B;
43234a1e
L
7243 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7244 i.vrex |= REX_B;
29b0f896
AM
7245 }
7246 else
7247 {
7248 i.rm.reg = i.op[source].regs->reg_num;
7249 i.rm.regmem = i.op[dest].regs->reg_num;
7250 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7251 i.rex |= REX_B;
43234a1e
L
7252 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7253 i.vrex |= REX_B;
29b0f896 7254 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7255 i.rex |= REX_R;
43234a1e
L
7256 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7257 i.vrex |= REX_R;
29b0f896 7258 }
e0c7f900 7259 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7260 {
e0c7f900 7261 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7262 abort ();
e0c7f900 7263 i.rex &= ~REX_R;
c4a530c5
JB
7264 add_prefix (LOCK_PREFIX_OPCODE);
7265 }
29b0f896
AM
7266 }
7267 else
7268 { /* If it's not 2 reg operands... */
c0f3af97
L
7269 unsigned int mem;
7270
29b0f896
AM
7271 if (i.mem_operands)
7272 {
7273 unsigned int fake_zero_displacement = 0;
99018f42 7274 unsigned int op;
4eed87de 7275
7ab9ffdd
L
7276 for (op = 0; op < i.operands; op++)
7277 if (operand_type_check (i.types[op], anymem))
7278 break;
7ab9ffdd 7279 gas_assert (op < i.operands);
29b0f896 7280
6c30d220
L
7281 if (i.tm.opcode_modifier.vecsib)
7282 {
e968fc9b 7283 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7284 abort ();
7285
7286 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7287 if (!i.base_reg)
7288 {
7289 i.sib.base = NO_BASE_REGISTER;
7290 i.sib.scale = i.log2_scale_factor;
7291 i.types[op].bitfield.disp8 = 0;
7292 i.types[op].bitfield.disp16 = 0;
7293 i.types[op].bitfield.disp64 = 0;
43083a50 7294 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7295 {
7296 /* Must be 32 bit */
7297 i.types[op].bitfield.disp32 = 1;
7298 i.types[op].bitfield.disp32s = 0;
7299 }
7300 else
7301 {
7302 i.types[op].bitfield.disp32 = 0;
7303 i.types[op].bitfield.disp32s = 1;
7304 }
7305 }
7306 i.sib.index = i.index_reg->reg_num;
7307 if ((i.index_reg->reg_flags & RegRex) != 0)
7308 i.rex |= REX_X;
43234a1e
L
7309 if ((i.index_reg->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_X;
6c30d220
L
7311 }
7312
29b0f896
AM
7313 default_seg = &ds;
7314
7315 if (i.base_reg == 0)
7316 {
7317 i.rm.mode = 0;
7318 if (!i.disp_operands)
9bb129e8 7319 fake_zero_displacement = 1;
29b0f896
AM
7320 if (i.index_reg == 0)
7321 {
73053c1f
JB
7322 i386_operand_type newdisp;
7323
6c30d220 7324 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7325 /* Operand is just <disp> */
20f0a1fc 7326 if (flag_code == CODE_64BIT)
29b0f896
AM
7327 {
7328 /* 64bit mode overwrites the 32bit absolute
7329 addressing by RIP relative addressing and
7330 absolute addressing is encoded by one of the
7331 redundant SIB forms. */
7332 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7333 i.sib.base = NO_BASE_REGISTER;
7334 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7335 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7336 }
fc225355
L
7337 else if ((flag_code == CODE_16BIT)
7338 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7339 {
7340 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7341 newdisp = disp16;
20f0a1fc
NC
7342 }
7343 else
7344 {
7345 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7346 newdisp = disp32;
29b0f896 7347 }
73053c1f
JB
7348 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7349 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7350 }
6c30d220 7351 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7352 {
6c30d220 7353 /* !i.base_reg && i.index_reg */
e968fc9b 7354 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7355 i.sib.index = NO_INDEX_REGISTER;
7356 else
7357 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7358 i.sib.base = NO_BASE_REGISTER;
7359 i.sib.scale = i.log2_scale_factor;
7360 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7361 i.types[op].bitfield.disp8 = 0;
7362 i.types[op].bitfield.disp16 = 0;
7363 i.types[op].bitfield.disp64 = 0;
43083a50 7364 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7365 {
7366 /* Must be 32 bit */
7367 i.types[op].bitfield.disp32 = 1;
7368 i.types[op].bitfield.disp32s = 0;
7369 }
29b0f896 7370 else
40fb9820
L
7371 {
7372 i.types[op].bitfield.disp32 = 0;
7373 i.types[op].bitfield.disp32s = 1;
7374 }
29b0f896 7375 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7376 i.rex |= REX_X;
29b0f896
AM
7377 }
7378 }
7379 /* RIP addressing for 64bit mode. */
e968fc9b 7380 else if (i.base_reg->reg_num == RegIP)
29b0f896 7381 {
6c30d220 7382 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7383 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7384 i.types[op].bitfield.disp8 = 0;
7385 i.types[op].bitfield.disp16 = 0;
7386 i.types[op].bitfield.disp32 = 0;
7387 i.types[op].bitfield.disp32s = 1;
7388 i.types[op].bitfield.disp64 = 0;
71903a11 7389 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7390 if (! i.disp_operands)
7391 fake_zero_displacement = 1;
29b0f896 7392 }
dc821c5f 7393 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7394 {
6c30d220 7395 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7396 switch (i.base_reg->reg_num)
7397 {
7398 case 3: /* (%bx) */
7399 if (i.index_reg == 0)
7400 i.rm.regmem = 7;
7401 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7402 i.rm.regmem = i.index_reg->reg_num - 6;
7403 break;
7404 case 5: /* (%bp) */
7405 default_seg = &ss;
7406 if (i.index_reg == 0)
7407 {
7408 i.rm.regmem = 6;
40fb9820 7409 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7410 {
7411 /* fake (%bp) into 0(%bp) */
b5014f7a 7412 i.types[op].bitfield.disp8 = 1;
252b5132 7413 fake_zero_displacement = 1;
29b0f896
AM
7414 }
7415 }
7416 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7417 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7418 break;
7419 default: /* (%si) -> 4 or (%di) -> 5 */
7420 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7421 }
7422 i.rm.mode = mode_from_disp_size (i.types[op]);
7423 }
7424 else /* i.base_reg and 32/64 bit mode */
7425 {
7426 if (flag_code == CODE_64BIT
40fb9820
L
7427 && operand_type_check (i.types[op], disp))
7428 {
73053c1f
JB
7429 i.types[op].bitfield.disp16 = 0;
7430 i.types[op].bitfield.disp64 = 0;
40fb9820 7431 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7432 {
7433 i.types[op].bitfield.disp32 = 0;
7434 i.types[op].bitfield.disp32s = 1;
7435 }
40fb9820 7436 else
73053c1f
JB
7437 {
7438 i.types[op].bitfield.disp32 = 1;
7439 i.types[op].bitfield.disp32s = 0;
7440 }
40fb9820 7441 }
20f0a1fc 7442
6c30d220
L
7443 if (!i.tm.opcode_modifier.vecsib)
7444 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7445 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7446 i.rex |= REX_B;
29b0f896
AM
7447 i.sib.base = i.base_reg->reg_num;
7448 /* x86-64 ignores REX prefix bit here to avoid decoder
7449 complications. */
848930b2
JB
7450 if (!(i.base_reg->reg_flags & RegRex)
7451 && (i.base_reg->reg_num == EBP_REG_NUM
7452 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7453 default_seg = &ss;
848930b2 7454 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7455 {
848930b2 7456 fake_zero_displacement = 1;
b5014f7a 7457 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7458 }
7459 i.sib.scale = i.log2_scale_factor;
7460 if (i.index_reg == 0)
7461 {
6c30d220 7462 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7463 /* <disp>(%esp) becomes two byte modrm with no index
7464 register. We've already stored the code for esp
7465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7466 Any base register besides %esp will not use the
7467 extra modrm byte. */
7468 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7469 }
6c30d220 7470 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7471 {
e968fc9b 7472 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7473 i.sib.index = NO_INDEX_REGISTER;
7474 else
7475 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7476 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7477 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7478 i.rex |= REX_X;
29b0f896 7479 }
67a4f2b7
AO
7480
7481 if (i.disp_operands
7482 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7483 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7484 i.rm.mode = 0;
7485 else
a501d77e
L
7486 {
7487 if (!fake_zero_displacement
7488 && !i.disp_operands
7489 && i.disp_encoding)
7490 {
7491 fake_zero_displacement = 1;
7492 if (i.disp_encoding == disp_encoding_8bit)
7493 i.types[op].bitfield.disp8 = 1;
7494 else
7495 i.types[op].bitfield.disp32 = 1;
7496 }
7497 i.rm.mode = mode_from_disp_size (i.types[op]);
7498 }
29b0f896 7499 }
252b5132 7500
29b0f896
AM
7501 if (fake_zero_displacement)
7502 {
7503 /* Fakes a zero displacement assuming that i.types[op]
7504 holds the correct displacement size. */
7505 expressionS *exp;
7506
9c2799c2 7507 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7508 exp = &disp_expressions[i.disp_operands++];
7509 i.op[op].disps = exp;
7510 exp->X_op = O_constant;
7511 exp->X_add_number = 0;
7512 exp->X_add_symbol = (symbolS *) 0;
7513 exp->X_op_symbol = (symbolS *) 0;
7514 }
c0f3af97
L
7515
7516 mem = op;
29b0f896 7517 }
c0f3af97
L
7518 else
7519 mem = ~0;
252b5132 7520
8c43a48b 7521 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7522 {
7523 if (operand_type_check (i.types[0], imm))
7524 i.vex.register_specifier = NULL;
7525 else
7526 {
7527 /* VEX.vvvv encodes one of the sources when the first
7528 operand is not an immediate. */
1ef99a7b 7529 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7530 i.vex.register_specifier = i.op[0].regs;
7531 else
7532 i.vex.register_specifier = i.op[1].regs;
7533 }
7534
7535 /* Destination is a XMM register encoded in the ModRM.reg
7536 and VEX.R bit. */
7537 i.rm.reg = i.op[2].regs->reg_num;
7538 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7539 i.rex |= REX_R;
7540
7541 /* ModRM.rm and VEX.B encodes the other source. */
7542 if (!i.mem_operands)
7543 {
7544 i.rm.mode = 3;
7545
1ef99a7b 7546 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7547 i.rm.regmem = i.op[1].regs->reg_num;
7548 else
7549 i.rm.regmem = i.op[0].regs->reg_num;
7550
7551 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7552 i.rex |= REX_B;
7553 }
7554 }
2426c15f 7555 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7556 {
7557 i.vex.register_specifier = i.op[2].regs;
7558 if (!i.mem_operands)
7559 {
7560 i.rm.mode = 3;
7561 i.rm.regmem = i.op[1].regs->reg_num;
7562 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7563 i.rex |= REX_B;
7564 }
7565 }
29b0f896
AM
7566 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7567 (if any) based on i.tm.extension_opcode. Again, we must be
7568 careful to make sure that segment/control/debug/test/MMX
7569 registers are coded into the i.rm.reg field. */
f88c9eb0 7570 else if (i.reg_operands)
29b0f896 7571 {
99018f42 7572 unsigned int op;
7ab9ffdd
L
7573 unsigned int vex_reg = ~0;
7574
7575 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7576 {
7577 if (i.types[op].bitfield.reg
7578 || i.types[op].bitfield.regbnd
7579 || i.types[op].bitfield.regmask
7580 || i.types[op].bitfield.sreg2
7581 || i.types[op].bitfield.sreg3
7582 || i.types[op].bitfield.control
7583 || i.types[op].bitfield.debug
7584 || i.types[op].bitfield.test)
7585 break;
7586 if (i.types[op].bitfield.regsimd)
7587 {
7588 if (i.types[op].bitfield.zmmword)
7589 i.has_regzmm = TRUE;
7590 else if (i.types[op].bitfield.ymmword)
7591 i.has_regymm = TRUE;
7592 else
7593 i.has_regxmm = TRUE;
7594 break;
7595 }
7596 if (i.types[op].bitfield.regmmx)
7597 {
7598 i.has_regmmx = TRUE;
7599 break;
7600 }
7601 }
c0209578 7602
7ab9ffdd
L
7603 if (vex_3_sources)
7604 op = dest;
2426c15f 7605 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7606 {
7607 /* For instructions with VexNDS, the register-only
7608 source operand is encoded in VEX prefix. */
7609 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7610
7ab9ffdd 7611 if (op > mem)
c0f3af97 7612 {
7ab9ffdd
L
7613 vex_reg = op++;
7614 gas_assert (op < i.operands);
c0f3af97
L
7615 }
7616 else
c0f3af97 7617 {
f12dc422
L
7618 /* Check register-only source operand when two source
7619 operands are swapped. */
7620 if (!i.tm.operand_types[op].bitfield.baseindex
7621 && i.tm.operand_types[op + 1].bitfield.baseindex)
7622 {
7623 vex_reg = op;
7624 op += 2;
7625 gas_assert (mem == (vex_reg + 1)
7626 && op < i.operands);
7627 }
7628 else
7629 {
7630 vex_reg = op + 1;
7631 gas_assert (vex_reg < i.operands);
7632 }
c0f3af97 7633 }
7ab9ffdd 7634 }
2426c15f 7635 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7636 {
f12dc422 7637 /* For instructions with VexNDD, the register destination
7ab9ffdd 7638 is encoded in VEX prefix. */
f12dc422
L
7639 if (i.mem_operands == 0)
7640 {
7641 /* There is no memory operand. */
7642 gas_assert ((op + 2) == i.operands);
7643 vex_reg = op + 1;
7644 }
7645 else
8d63c93e 7646 {
ed438a93
JB
7647 /* There are only 2 non-immediate operands. */
7648 gas_assert (op < i.imm_operands + 2
7649 && i.operands == i.imm_operands + 2);
7650 vex_reg = i.imm_operands + 1;
f12dc422 7651 }
7ab9ffdd
L
7652 }
7653 else
7654 gas_assert (op < i.operands);
99018f42 7655
7ab9ffdd
L
7656 if (vex_reg != (unsigned int) ~0)
7657 {
f12dc422 7658 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7659
dc821c5f
JB
7660 if ((!type->bitfield.reg
7661 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7662 && !type->bitfield.regsimd
43234a1e 7663 && !operand_type_equal (type, &regmask))
7ab9ffdd 7664 abort ();
f88c9eb0 7665
7ab9ffdd
L
7666 i.vex.register_specifier = i.op[vex_reg].regs;
7667 }
7668
1b9f0c97
L
7669 /* Don't set OP operand twice. */
7670 if (vex_reg != op)
7ab9ffdd 7671 {
1b9f0c97
L
7672 /* If there is an extension opcode to put here, the
7673 register number must be put into the regmem field. */
7674 if (i.tm.extension_opcode != None)
7675 {
7676 i.rm.regmem = i.op[op].regs->reg_num;
7677 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7678 i.rex |= REX_B;
43234a1e
L
7679 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7680 i.vrex |= REX_B;
1b9f0c97
L
7681 }
7682 else
7683 {
7684 i.rm.reg = i.op[op].regs->reg_num;
7685 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7686 i.rex |= REX_R;
43234a1e
L
7687 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7688 i.vrex |= REX_R;
1b9f0c97 7689 }
7ab9ffdd 7690 }
252b5132 7691
29b0f896
AM
7692 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7693 must set it to 3 to indicate this is a register operand
7694 in the regmem field. */
7695 if (!i.mem_operands)
7696 i.rm.mode = 3;
7697 }
252b5132 7698
29b0f896 7699 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7700 if (i.tm.extension_opcode != None)
29b0f896
AM
7701 i.rm.reg = i.tm.extension_opcode;
7702 }
7703 return default_seg;
7704}
252b5132 7705
29b0f896 7706static void
e3bb37b5 7707output_branch (void)
29b0f896
AM
7708{
7709 char *p;
f8a5c266 7710 int size;
29b0f896
AM
7711 int code16;
7712 int prefix;
7713 relax_substateT subtype;
7714 symbolS *sym;
7715 offsetT off;
7716
f8a5c266 7717 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7718 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7719
7720 prefix = 0;
7721 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7722 {
29b0f896
AM
7723 prefix = 1;
7724 i.prefixes -= 1;
7725 code16 ^= CODE16;
252b5132 7726 }
29b0f896
AM
7727 /* Pentium4 branch hints. */
7728 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7729 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7730 {
29b0f896
AM
7731 prefix++;
7732 i.prefixes--;
7733 }
7734 if (i.prefix[REX_PREFIX] != 0)
7735 {
7736 prefix++;
7737 i.prefixes--;
2f66722d
AM
7738 }
7739
7e8b059b
L
7740 /* BND prefixed jump. */
7741 if (i.prefix[BND_PREFIX] != 0)
7742 {
7743 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7744 i.prefixes -= 1;
7745 }
7746
29b0f896
AM
7747 if (i.prefixes != 0 && !intel_syntax)
7748 as_warn (_("skipping prefixes on this instruction"));
7749
7750 /* It's always a symbol; End frag & setup for relax.
7751 Make sure there is enough room in this frag for the largest
7752 instruction we may generate in md_convert_frag. This is 2
7753 bytes for the opcode and room for the prefix and largest
7754 displacement. */
7755 frag_grow (prefix + 2 + 4);
7756 /* Prefix and 1 opcode byte go in fr_fix. */
7757 p = frag_more (prefix + 1);
7758 if (i.prefix[DATA_PREFIX] != 0)
7759 *p++ = DATA_PREFIX_OPCODE;
7760 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7761 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7762 *p++ = i.prefix[SEG_PREFIX];
7763 if (i.prefix[REX_PREFIX] != 0)
7764 *p++ = i.prefix[REX_PREFIX];
7765 *p = i.tm.base_opcode;
7766
7767 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7768 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7769 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7770 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7771 else
f8a5c266 7772 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7773 subtype |= code16;
3e73aa7c 7774
29b0f896
AM
7775 sym = i.op[0].disps->X_add_symbol;
7776 off = i.op[0].disps->X_add_number;
3e73aa7c 7777
29b0f896
AM
7778 if (i.op[0].disps->X_op != O_constant
7779 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7780 {
29b0f896
AM
7781 /* Handle complex expressions. */
7782 sym = make_expr_symbol (i.op[0].disps);
7783 off = 0;
7784 }
3e73aa7c 7785
29b0f896
AM
7786 /* 1 possible extra opcode + 4 byte displacement go in var part.
7787 Pass reloc in fr_var. */
d258b828 7788 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7789}
3e73aa7c 7790
bd7ab16b
L
7791#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7792/* Return TRUE iff PLT32 relocation should be used for branching to
7793 symbol S. */
7794
7795static bfd_boolean
7796need_plt32_p (symbolS *s)
7797{
7798 /* PLT32 relocation is ELF only. */
7799 if (!IS_ELF)
7800 return FALSE;
7801
a5def729
RO
7802#ifdef TE_SOLARIS
7803 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7804 krtld support it. */
7805 return FALSE;
7806#endif
7807
bd7ab16b
L
7808 /* Since there is no need to prepare for PLT branch on x86-64, we
7809 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7810 be used as a marker for 32-bit PC-relative branches. */
7811 if (!object_64bit)
7812 return FALSE;
7813
7814 /* Weak or undefined symbol need PLT32 relocation. */
7815 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7816 return TRUE;
7817
7818 /* Non-global symbol doesn't need PLT32 relocation. */
7819 if (! S_IS_EXTERNAL (s))
7820 return FALSE;
7821
7822 /* Other global symbols need PLT32 relocation. NB: Symbol with
7823 non-default visibilities are treated as normal global symbol
7824 so that PLT32 relocation can be used as a marker for 32-bit
7825 PC-relative branches. It is useful for linker relaxation. */
7826 return TRUE;
7827}
7828#endif
7829
29b0f896 7830static void
e3bb37b5 7831output_jump (void)
29b0f896
AM
7832{
7833 char *p;
7834 int size;
3e02c1cc 7835 fixS *fixP;
bd7ab16b 7836 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7837
40fb9820 7838 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7839 {
7840 /* This is a loop or jecxz type instruction. */
7841 size = 1;
7842 if (i.prefix[ADDR_PREFIX] != 0)
7843 {
7844 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7845 i.prefixes -= 1;
7846 }
7847 /* Pentium4 branch hints. */
7848 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7849 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7850 {
7851 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7852 i.prefixes--;
3e73aa7c
JH
7853 }
7854 }
29b0f896
AM
7855 else
7856 {
7857 int code16;
3e73aa7c 7858
29b0f896
AM
7859 code16 = 0;
7860 if (flag_code == CODE_16BIT)
7861 code16 = CODE16;
3e73aa7c 7862
29b0f896
AM
7863 if (i.prefix[DATA_PREFIX] != 0)
7864 {
7865 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7866 i.prefixes -= 1;
7867 code16 ^= CODE16;
7868 }
252b5132 7869
29b0f896
AM
7870 size = 4;
7871 if (code16)
7872 size = 2;
7873 }
9fcc94b6 7874
29b0f896
AM
7875 if (i.prefix[REX_PREFIX] != 0)
7876 {
7877 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7878 i.prefixes -= 1;
7879 }
252b5132 7880
7e8b059b
L
7881 /* BND prefixed jump. */
7882 if (i.prefix[BND_PREFIX] != 0)
7883 {
7884 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7885 i.prefixes -= 1;
7886 }
7887
29b0f896
AM
7888 if (i.prefixes != 0 && !intel_syntax)
7889 as_warn (_("skipping prefixes on this instruction"));
e0890092 7890
42164a71
L
7891 p = frag_more (i.tm.opcode_length + size);
7892 switch (i.tm.opcode_length)
7893 {
7894 case 2:
7895 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7896 /* Fall through. */
42164a71
L
7897 case 1:
7898 *p++ = i.tm.base_opcode;
7899 break;
7900 default:
7901 abort ();
7902 }
e0890092 7903
bd7ab16b
L
7904#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7905 if (size == 4
7906 && jump_reloc == NO_RELOC
7907 && need_plt32_p (i.op[0].disps->X_add_symbol))
7908 jump_reloc = BFD_RELOC_X86_64_PLT32;
7909#endif
7910
7911 jump_reloc = reloc (size, 1, 1, jump_reloc);
7912
3e02c1cc 7913 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7914 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7915
7916 /* All jumps handled here are signed, but don't use a signed limit
7917 check for 32 and 16 bit jumps as we want to allow wrap around at
7918 4G and 64k respectively. */
7919 if (size == 1)
7920 fixP->fx_signed = 1;
29b0f896 7921}
e0890092 7922
29b0f896 7923static void
e3bb37b5 7924output_interseg_jump (void)
29b0f896
AM
7925{
7926 char *p;
7927 int size;
7928 int prefix;
7929 int code16;
252b5132 7930
29b0f896
AM
7931 code16 = 0;
7932 if (flag_code == CODE_16BIT)
7933 code16 = CODE16;
a217f122 7934
29b0f896
AM
7935 prefix = 0;
7936 if (i.prefix[DATA_PREFIX] != 0)
7937 {
7938 prefix = 1;
7939 i.prefixes -= 1;
7940 code16 ^= CODE16;
7941 }
7942 if (i.prefix[REX_PREFIX] != 0)
7943 {
7944 prefix++;
7945 i.prefixes -= 1;
7946 }
252b5132 7947
29b0f896
AM
7948 size = 4;
7949 if (code16)
7950 size = 2;
252b5132 7951
29b0f896
AM
7952 if (i.prefixes != 0 && !intel_syntax)
7953 as_warn (_("skipping prefixes on this instruction"));
252b5132 7954
29b0f896
AM
7955 /* 1 opcode; 2 segment; offset */
7956 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7957
29b0f896
AM
7958 if (i.prefix[DATA_PREFIX] != 0)
7959 *p++ = DATA_PREFIX_OPCODE;
252b5132 7960
29b0f896
AM
7961 if (i.prefix[REX_PREFIX] != 0)
7962 *p++ = i.prefix[REX_PREFIX];
252b5132 7963
29b0f896
AM
7964 *p++ = i.tm.base_opcode;
7965 if (i.op[1].imms->X_op == O_constant)
7966 {
7967 offsetT n = i.op[1].imms->X_add_number;
252b5132 7968
29b0f896
AM
7969 if (size == 2
7970 && !fits_in_unsigned_word (n)
7971 && !fits_in_signed_word (n))
7972 {
7973 as_bad (_("16-bit jump out of range"));
7974 return;
7975 }
7976 md_number_to_chars (p, n, size);
7977 }
7978 else
7979 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7980 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7981 if (i.op[0].imms->X_op != O_constant)
7982 as_bad (_("can't handle non absolute segment in `%s'"),
7983 i.tm.name);
7984 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7985}
a217f122 7986
b4a3a7b4
L
7987#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7988void
7989x86_cleanup (void)
7990{
7991 char *p;
7992 asection *seg = now_seg;
7993 subsegT subseg = now_subseg;
7994 asection *sec;
7995 unsigned int alignment, align_size_1;
7996 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7997 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7998 unsigned int padding;
7999
8000 if (!IS_ELF || !x86_used_note)
8001 return;
8002
b4a3a7b4
L
8003 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8004
8005 /* The .note.gnu.property section layout:
8006
8007 Field Length Contents
8008 ---- ---- ----
8009 n_namsz 4 4
8010 n_descsz 4 The note descriptor size
8011 n_type 4 NT_GNU_PROPERTY_TYPE_0
8012 n_name 4 "GNU"
8013 n_desc n_descsz The program property array
8014 .... .... ....
8015 */
8016
8017 /* Create the .note.gnu.property section. */
8018 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8019 bfd_set_section_flags (stdoutput, sec,
8020 (SEC_ALLOC
8021 | SEC_LOAD
8022 | SEC_DATA
8023 | SEC_HAS_CONTENTS
8024 | SEC_READONLY));
8025
8026 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8027 {
8028 align_size_1 = 7;
8029 alignment = 3;
8030 }
8031 else
8032 {
8033 align_size_1 = 3;
8034 alignment = 2;
8035 }
8036
8037 bfd_set_section_alignment (stdoutput, sec, alignment);
8038 elf_section_type (sec) = SHT_NOTE;
8039
8040 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8041 + 4-byte data */
8042 isa_1_descsz_raw = 4 + 4 + 4;
8043 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8044 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8045
8046 feature_2_descsz_raw = isa_1_descsz;
8047 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8048 + 4-byte data */
8049 feature_2_descsz_raw += 4 + 4 + 4;
8050 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8051 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8052 & ~align_size_1);
8053
8054 descsz = feature_2_descsz;
8055 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8056 p = frag_more (4 + 4 + 4 + 4 + descsz);
8057
8058 /* Write n_namsz. */
8059 md_number_to_chars (p, (valueT) 4, 4);
8060
8061 /* Write n_descsz. */
8062 md_number_to_chars (p + 4, (valueT) descsz, 4);
8063
8064 /* Write n_type. */
8065 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8066
8067 /* Write n_name. */
8068 memcpy (p + 4 * 3, "GNU", 4);
8069
8070 /* Write 4-byte type. */
8071 md_number_to_chars (p + 4 * 4,
8072 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8073
8074 /* Write 4-byte data size. */
8075 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8076
8077 /* Write 4-byte data. */
8078 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8079
8080 /* Zero out paddings. */
8081 padding = isa_1_descsz - isa_1_descsz_raw;
8082 if (padding)
8083 memset (p + 4 * 7, 0, padding);
8084
8085 /* Write 4-byte type. */
8086 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8087 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8088
8089 /* Write 4-byte data size. */
8090 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8091
8092 /* Write 4-byte data. */
8093 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8094 (valueT) x86_feature_2_used, 4);
8095
8096 /* Zero out paddings. */
8097 padding = feature_2_descsz - feature_2_descsz_raw;
8098 if (padding)
8099 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8100
8101 /* We probably can't restore the current segment, for there likely
8102 isn't one yet... */
8103 if (seg && subseg)
8104 subseg_set (seg, subseg);
8105}
8106#endif
8107
29b0f896 8108static void
e3bb37b5 8109output_insn (void)
29b0f896 8110{
2bbd9c25
JJ
8111 fragS *insn_start_frag;
8112 offsetT insn_start_off;
8113
b4a3a7b4
L
8114#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8115 if (IS_ELF && x86_used_note)
8116 {
8117 if (i.tm.cpu_flags.bitfield.cpucmov)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8119 if (i.tm.cpu_flags.bitfield.cpusse)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8121 if (i.tm.cpu_flags.bitfield.cpusse2)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8123 if (i.tm.cpu_flags.bitfield.cpusse3)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8125 if (i.tm.cpu_flags.bitfield.cpussse3)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8127 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8129 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8131 if (i.tm.cpu_flags.bitfield.cpuavx)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8133 if (i.tm.cpu_flags.bitfield.cpuavx2)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8135 if (i.tm.cpu_flags.bitfield.cpufma)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8147 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8149 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8150 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8151 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8152 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8153 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8154 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8155 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8156 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8157 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8158 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8159 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8160 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8161 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8162 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8163 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8164 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8165 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8166 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8167
8168 if (i.tm.cpu_flags.bitfield.cpu8087
8169 || i.tm.cpu_flags.bitfield.cpu287
8170 || i.tm.cpu_flags.bitfield.cpu387
8171 || i.tm.cpu_flags.bitfield.cpu687
8172 || i.tm.cpu_flags.bitfield.cpufisttp)
8173 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8174 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8175 Xfence instructions. */
8176 if (i.tm.base_opcode != 0xf18
8177 && i.tm.base_opcode != 0xf0d
8178 && i.tm.base_opcode != 0xfae
8179 && (i.has_regmmx
8180 || i.tm.cpu_flags.bitfield.cpummx
8181 || i.tm.cpu_flags.bitfield.cpua3dnow
8182 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8183 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8184 if (i.has_regxmm)
8185 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8186 if (i.has_regymm)
8187 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8188 if (i.has_regzmm)
8189 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8190 if (i.tm.cpu_flags.bitfield.cpufxsr)
8191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8192 if (i.tm.cpu_flags.bitfield.cpuxsave)
8193 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8194 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8195 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8196 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8197 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8198 }
8199#endif
8200
29b0f896
AM
8201 /* Tie dwarf2 debug info to the address at the start of the insn.
8202 We can't do this after the insn has been output as the current
8203 frag may have been closed off. eg. by frag_var. */
8204 dwarf2_emit_insn (0);
8205
2bbd9c25
JJ
8206 insn_start_frag = frag_now;
8207 insn_start_off = frag_now_fix ();
8208
29b0f896 8209 /* Output jumps. */
40fb9820 8210 if (i.tm.opcode_modifier.jump)
29b0f896 8211 output_branch ();
40fb9820
L
8212 else if (i.tm.opcode_modifier.jumpbyte
8213 || i.tm.opcode_modifier.jumpdword)
29b0f896 8214 output_jump ();
40fb9820 8215 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8216 output_interseg_jump ();
8217 else
8218 {
8219 /* Output normal instructions here. */
8220 char *p;
8221 unsigned char *q;
47465058 8222 unsigned int j;
331d2d0d 8223 unsigned int prefix;
4dffcebc 8224
e4e00185
AS
8225 if (avoid_fence
8226 && i.tm.base_opcode == 0xfae
8227 && i.operands == 1
8228 && i.imm_operands == 1
8229 && (i.op[0].imms->X_add_number == 0xe8
8230 || i.op[0].imms->X_add_number == 0xf0
8231 || i.op[0].imms->X_add_number == 0xf8))
8232 {
8233 /* Encode lfence, mfence, and sfence as
8234 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8235 offsetT val = 0x240483f0ULL;
8236 p = frag_more (5);
8237 md_number_to_chars (p, val, 5);
8238 return;
8239 }
8240
d022bddd
IT
8241 /* Some processors fail on LOCK prefix. This options makes
8242 assembler ignore LOCK prefix and serves as a workaround. */
8243 if (omit_lock_prefix)
8244 {
8245 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8246 return;
8247 i.prefix[LOCK_PREFIX] = 0;
8248 }
8249
43234a1e
L
8250 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8251 don't need the explicit prefix. */
8252 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8253 {
c0f3af97 8254 switch (i.tm.opcode_length)
bc4bd9ab 8255 {
c0f3af97
L
8256 case 3:
8257 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8258 {
c0f3af97 8259 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8260 add_prefix (prefix);
c0f3af97
L
8261 }
8262 break;
8263 case 2:
8264 if ((i.tm.base_opcode & 0xff0000) != 0)
8265 {
8266 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8267 if (!i.tm.cpu_flags.bitfield.cpupadlock
8268 || prefix != REPE_PREFIX_OPCODE
8269 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8270 add_prefix (prefix);
8271 }
c0f3af97
L
8272 break;
8273 case 1:
8274 break;
390c91cf
L
8275 case 0:
8276 /* Check for pseudo prefixes. */
8277 as_bad_where (insn_start_frag->fr_file,
8278 insn_start_frag->fr_line,
8279 _("pseudo prefix without instruction"));
8280 return;
c0f3af97
L
8281 default:
8282 abort ();
bc4bd9ab 8283 }
c0f3af97 8284
6d19a37a 8285#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8286 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8287 R_X86_64_GOTTPOFF relocation so that linker can safely
8288 perform IE->LE optimization. */
8289 if (x86_elf_abi == X86_64_X32_ABI
8290 && i.operands == 2
8291 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8292 && i.prefix[REX_PREFIX] == 0)
8293 add_prefix (REX_OPCODE);
6d19a37a 8294#endif
cf61b747 8295
c0f3af97
L
8296 /* The prefix bytes. */
8297 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8298 if (*q)
8299 FRAG_APPEND_1_CHAR (*q);
0f10071e 8300 }
ae5c1c7b 8301 else
c0f3af97
L
8302 {
8303 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8304 if (*q)
8305 switch (j)
8306 {
8307 case REX_PREFIX:
8308 /* REX byte is encoded in VEX prefix. */
8309 break;
8310 case SEG_PREFIX:
8311 case ADDR_PREFIX:
8312 FRAG_APPEND_1_CHAR (*q);
8313 break;
8314 default:
8315 /* There should be no other prefixes for instructions
8316 with VEX prefix. */
8317 abort ();
8318 }
8319
43234a1e
L
8320 /* For EVEX instructions i.vrex should become 0 after
8321 build_evex_prefix. For VEX instructions upper 16 registers
8322 aren't available, so VREX should be 0. */
8323 if (i.vrex)
8324 abort ();
c0f3af97
L
8325 /* Now the VEX prefix. */
8326 p = frag_more (i.vex.length);
8327 for (j = 0; j < i.vex.length; j++)
8328 p[j] = i.vex.bytes[j];
8329 }
252b5132 8330
29b0f896 8331 /* Now the opcode; be careful about word order here! */
4dffcebc 8332 if (i.tm.opcode_length == 1)
29b0f896
AM
8333 {
8334 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8335 }
8336 else
8337 {
4dffcebc 8338 switch (i.tm.opcode_length)
331d2d0d 8339 {
43234a1e
L
8340 case 4:
8341 p = frag_more (4);
8342 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8343 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8344 break;
4dffcebc 8345 case 3:
331d2d0d
L
8346 p = frag_more (3);
8347 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8348 break;
8349 case 2:
8350 p = frag_more (2);
8351 break;
8352 default:
8353 abort ();
8354 break;
331d2d0d 8355 }
0f10071e 8356
29b0f896
AM
8357 /* Put out high byte first: can't use md_number_to_chars! */
8358 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8359 *p = i.tm.base_opcode & 0xff;
8360 }
3e73aa7c 8361
29b0f896 8362 /* Now the modrm byte and sib byte (if present). */
40fb9820 8363 if (i.tm.opcode_modifier.modrm)
29b0f896 8364 {
4a3523fa
L
8365 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8366 | i.rm.reg << 3
8367 | i.rm.mode << 6));
29b0f896
AM
8368 /* If i.rm.regmem == ESP (4)
8369 && i.rm.mode != (Register mode)
8370 && not 16 bit
8371 ==> need second modrm byte. */
8372 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8373 && i.rm.mode != 3
dc821c5f 8374 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8375 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8376 | i.sib.index << 3
8377 | i.sib.scale << 6));
29b0f896 8378 }
3e73aa7c 8379
29b0f896 8380 if (i.disp_operands)
2bbd9c25 8381 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8382
29b0f896 8383 if (i.imm_operands)
2bbd9c25 8384 output_imm (insn_start_frag, insn_start_off);
29b0f896 8385 }
252b5132 8386
29b0f896
AM
8387#ifdef DEBUG386
8388 if (flag_debug)
8389 {
7b81dfbb 8390 pi ("" /*line*/, &i);
29b0f896
AM
8391 }
8392#endif /* DEBUG386 */
8393}
252b5132 8394
e205caa7
L
8395/* Return the size of the displacement operand N. */
8396
8397static int
8398disp_size (unsigned int n)
8399{
8400 int size = 4;
43234a1e 8401
b5014f7a 8402 if (i.types[n].bitfield.disp64)
40fb9820
L
8403 size = 8;
8404 else if (i.types[n].bitfield.disp8)
8405 size = 1;
8406 else if (i.types[n].bitfield.disp16)
8407 size = 2;
e205caa7
L
8408 return size;
8409}
8410
8411/* Return the size of the immediate operand N. */
8412
8413static int
8414imm_size (unsigned int n)
8415{
8416 int size = 4;
40fb9820
L
8417 if (i.types[n].bitfield.imm64)
8418 size = 8;
8419 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8420 size = 1;
8421 else if (i.types[n].bitfield.imm16)
8422 size = 2;
e205caa7
L
8423 return size;
8424}
8425
29b0f896 8426static void
64e74474 8427output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8428{
8429 char *p;
8430 unsigned int n;
252b5132 8431
29b0f896
AM
8432 for (n = 0; n < i.operands; n++)
8433 {
b5014f7a 8434 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8435 {
8436 if (i.op[n].disps->X_op == O_constant)
8437 {
e205caa7 8438 int size = disp_size (n);
43234a1e 8439 offsetT val = i.op[n].disps->X_add_number;
252b5132 8440
629cfaf1
JB
8441 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8442 size);
29b0f896
AM
8443 p = frag_more (size);
8444 md_number_to_chars (p, val, size);
8445 }
8446 else
8447 {
f86103b7 8448 enum bfd_reloc_code_real reloc_type;
e205caa7 8449 int size = disp_size (n);
40fb9820 8450 int sign = i.types[n].bitfield.disp32s;
29b0f896 8451 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8452 fixS *fixP;
29b0f896 8453
e205caa7 8454 /* We can't have 8 bit displacement here. */
9c2799c2 8455 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8456
29b0f896
AM
8457 /* The PC relative address is computed relative
8458 to the instruction boundary, so in case immediate
8459 fields follows, we need to adjust the value. */
8460 if (pcrel && i.imm_operands)
8461 {
29b0f896 8462 unsigned int n1;
e205caa7 8463 int sz = 0;
252b5132 8464
29b0f896 8465 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8466 if (operand_type_check (i.types[n1], imm))
252b5132 8467 {
e205caa7
L
8468 /* Only one immediate is allowed for PC
8469 relative address. */
9c2799c2 8470 gas_assert (sz == 0);
e205caa7
L
8471 sz = imm_size (n1);
8472 i.op[n].disps->X_add_number -= sz;
252b5132 8473 }
29b0f896 8474 /* We should find the immediate. */
9c2799c2 8475 gas_assert (sz != 0);
29b0f896 8476 }
520dc8e8 8477
29b0f896 8478 p = frag_more (size);
d258b828 8479 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8480 if (GOT_symbol
2bbd9c25 8481 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8482 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8483 || reloc_type == BFD_RELOC_X86_64_32S
8484 || (reloc_type == BFD_RELOC_64
8485 && object_64bit))
d6ab8113
JB
8486 && (i.op[n].disps->X_op == O_symbol
8487 || (i.op[n].disps->X_op == O_add
8488 && ((symbol_get_value_expression
8489 (i.op[n].disps->X_op_symbol)->X_op)
8490 == O_subtract))))
8491 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8492 {
8493 offsetT add;
8494
8495 if (insn_start_frag == frag_now)
8496 add = (p - frag_now->fr_literal) - insn_start_off;
8497 else
8498 {
8499 fragS *fr;
8500
8501 add = insn_start_frag->fr_fix - insn_start_off;
8502 for (fr = insn_start_frag->fr_next;
8503 fr && fr != frag_now; fr = fr->fr_next)
8504 add += fr->fr_fix;
8505 add += p - frag_now->fr_literal;
8506 }
8507
4fa24527 8508 if (!object_64bit)
7b81dfbb
AJ
8509 {
8510 reloc_type = BFD_RELOC_386_GOTPC;
8511 i.op[n].imms->X_add_number += add;
8512 }
8513 else if (reloc_type == BFD_RELOC_64)
8514 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8515 else
7b81dfbb
AJ
8516 /* Don't do the adjustment for x86-64, as there
8517 the pcrel addressing is relative to the _next_
8518 insn, and that is taken care of in other code. */
d6ab8113 8519 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8520 }
02a86693
L
8521 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8522 size, i.op[n].disps, pcrel,
8523 reloc_type);
8524 /* Check for "call/jmp *mem", "mov mem, %reg",
8525 "test %reg, mem" and "binop mem, %reg" where binop
8526 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8527 instructions without data prefix. Always generate
8528 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8529 if (i.prefix[DATA_PREFIX] == 0
8530 && (generate_relax_relocations
8531 || (!object_64bit
8532 && i.rm.mode == 0
8533 && i.rm.regmem == 5))
0cb4071e
L
8534 && (i.rm.mode == 2
8535 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8536 && ((i.operands == 1
8537 && i.tm.base_opcode == 0xff
8538 && (i.rm.reg == 2 || i.rm.reg == 4))
8539 || (i.operands == 2
8540 && (i.tm.base_opcode == 0x8b
8541 || i.tm.base_opcode == 0x85
8542 || (i.tm.base_opcode & 0xc7) == 0x03))))
8543 {
8544 if (object_64bit)
8545 {
8546 fixP->fx_tcbit = i.rex != 0;
8547 if (i.base_reg
e968fc9b 8548 && (i.base_reg->reg_num == RegIP))
02a86693
L
8549 fixP->fx_tcbit2 = 1;
8550 }
8551 else
8552 fixP->fx_tcbit2 = 1;
8553 }
29b0f896
AM
8554 }
8555 }
8556 }
8557}
252b5132 8558
29b0f896 8559static void
64e74474 8560output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8561{
8562 char *p;
8563 unsigned int n;
252b5132 8564
29b0f896
AM
8565 for (n = 0; n < i.operands; n++)
8566 {
43234a1e
L
8567 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8568 if (i.rounding && (int) n == i.rounding->operand)
8569 continue;
8570
40fb9820 8571 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8572 {
8573 if (i.op[n].imms->X_op == O_constant)
8574 {
e205caa7 8575 int size = imm_size (n);
29b0f896 8576 offsetT val;
b4cac588 8577
29b0f896
AM
8578 val = offset_in_range (i.op[n].imms->X_add_number,
8579 size);
8580 p = frag_more (size);
8581 md_number_to_chars (p, val, size);
8582 }
8583 else
8584 {
8585 /* Not absolute_section.
8586 Need a 32-bit fixup (don't support 8bit
8587 non-absolute imms). Try to support other
8588 sizes ... */
f86103b7 8589 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8590 int size = imm_size (n);
8591 int sign;
29b0f896 8592
40fb9820 8593 if (i.types[n].bitfield.imm32s
a7d61044 8594 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8595 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8596 sign = 1;
e205caa7
L
8597 else
8598 sign = 0;
520dc8e8 8599
29b0f896 8600 p = frag_more (size);
d258b828 8601 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8602
2bbd9c25
JJ
8603 /* This is tough to explain. We end up with this one if we
8604 * have operands that look like
8605 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8606 * obtain the absolute address of the GOT, and it is strongly
8607 * preferable from a performance point of view to avoid using
8608 * a runtime relocation for this. The actual sequence of
8609 * instructions often look something like:
8610 *
8611 * call .L66
8612 * .L66:
8613 * popl %ebx
8614 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8615 *
8616 * The call and pop essentially return the absolute address
8617 * of the label .L66 and store it in %ebx. The linker itself
8618 * will ultimately change the first operand of the addl so
8619 * that %ebx points to the GOT, but to keep things simple, the
8620 * .o file must have this operand set so that it generates not
8621 * the absolute address of .L66, but the absolute address of
8622 * itself. This allows the linker itself simply treat a GOTPC
8623 * relocation as asking for a pcrel offset to the GOT to be
8624 * added in, and the addend of the relocation is stored in the
8625 * operand field for the instruction itself.
8626 *
8627 * Our job here is to fix the operand so that it would add
8628 * the correct offset so that %ebx would point to itself. The
8629 * thing that is tricky is that .-.L66 will point to the
8630 * beginning of the instruction, so we need to further modify
8631 * the operand so that it will point to itself. There are
8632 * other cases where you have something like:
8633 *
8634 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8635 *
8636 * and here no correction would be required. Internally in
8637 * the assembler we treat operands of this form as not being
8638 * pcrel since the '.' is explicitly mentioned, and I wonder
8639 * whether it would simplify matters to do it this way. Who
8640 * knows. In earlier versions of the PIC patches, the
8641 * pcrel_adjust field was used to store the correction, but
8642 * since the expression is not pcrel, I felt it would be
8643 * confusing to do it this way. */
8644
d6ab8113 8645 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8646 || reloc_type == BFD_RELOC_X86_64_32S
8647 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8648 && GOT_symbol
8649 && GOT_symbol == i.op[n].imms->X_add_symbol
8650 && (i.op[n].imms->X_op == O_symbol
8651 || (i.op[n].imms->X_op == O_add
8652 && ((symbol_get_value_expression
8653 (i.op[n].imms->X_op_symbol)->X_op)
8654 == O_subtract))))
8655 {
2bbd9c25
JJ
8656 offsetT add;
8657
8658 if (insn_start_frag == frag_now)
8659 add = (p - frag_now->fr_literal) - insn_start_off;
8660 else
8661 {
8662 fragS *fr;
8663
8664 add = insn_start_frag->fr_fix - insn_start_off;
8665 for (fr = insn_start_frag->fr_next;
8666 fr && fr != frag_now; fr = fr->fr_next)
8667 add += fr->fr_fix;
8668 add += p - frag_now->fr_literal;
8669 }
8670
4fa24527 8671 if (!object_64bit)
d6ab8113 8672 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8673 else if (size == 4)
d6ab8113 8674 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8675 else if (size == 8)
8676 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8677 i.op[n].imms->X_add_number += add;
29b0f896 8678 }
29b0f896
AM
8679 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8680 i.op[n].imms, 0, reloc_type);
8681 }
8682 }
8683 }
252b5132
RH
8684}
8685\f
d182319b
JB
8686/* x86_cons_fix_new is called via the expression parsing code when a
8687 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8688static int cons_sign = -1;
8689
8690void
e3bb37b5 8691x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8692 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8693{
d258b828 8694 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8695
8696#ifdef TE_PE
8697 if (exp->X_op == O_secrel)
8698 {
8699 exp->X_op = O_symbol;
8700 r = BFD_RELOC_32_SECREL;
8701 }
8702#endif
8703
8704 fix_new_exp (frag, off, len, exp, 0, r);
8705}
8706
357d1bd8
L
8707/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8708 purpose of the `.dc.a' internal pseudo-op. */
8709
8710int
8711x86_address_bytes (void)
8712{
8713 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8714 return 4;
8715 return stdoutput->arch_info->bits_per_address / 8;
8716}
8717
d382c579
TG
8718#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8719 || defined (LEX_AT)
d258b828 8720# define lex_got(reloc, adjust, types) NULL
718ddfc0 8721#else
f3c180ae
AM
8722/* Parse operands of the form
8723 <symbol>@GOTOFF+<nnn>
8724 and similar .plt or .got references.
8725
8726 If we find one, set up the correct relocation in RELOC and copy the
8727 input string, minus the `@GOTOFF' into a malloc'd buffer for
8728 parsing by the calling routine. Return this buffer, and if ADJUST
8729 is non-null set it to the length of the string we removed from the
8730 input line. Otherwise return NULL. */
8731static char *
91d6fa6a 8732lex_got (enum bfd_reloc_code_real *rel,
64e74474 8733 int *adjust,
d258b828 8734 i386_operand_type *types)
f3c180ae 8735{
7b81dfbb
AJ
8736 /* Some of the relocations depend on the size of what field is to
8737 be relocated. But in our callers i386_immediate and i386_displacement
8738 we don't yet know the operand size (this will be set by insn
8739 matching). Hence we record the word32 relocation here,
8740 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8741 static const struct {
8742 const char *str;
cff8d58a 8743 int len;
4fa24527 8744 const enum bfd_reloc_code_real rel[2];
40fb9820 8745 const i386_operand_type types64;
f3c180ae 8746 } gotrel[] = {
8ce3d284 8747#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8748 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8749 BFD_RELOC_SIZE32 },
8750 OPERAND_TYPE_IMM32_64 },
8ce3d284 8751#endif
cff8d58a
L
8752 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8753 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8754 OPERAND_TYPE_IMM64 },
cff8d58a
L
8755 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8756 BFD_RELOC_X86_64_PLT32 },
40fb9820 8757 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8758 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8759 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8760 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8761 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8762 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8763 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8764 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8765 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8766 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8767 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8768 BFD_RELOC_X86_64_TLSGD },
40fb9820 8769 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8770 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8771 _dummy_first_bfd_reloc_code_real },
40fb9820 8772 OPERAND_TYPE_NONE },
cff8d58a
L
8773 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8774 BFD_RELOC_X86_64_TLSLD },
40fb9820 8775 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8776 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8777 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8778 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8779 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8780 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8781 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8782 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8783 _dummy_first_bfd_reloc_code_real },
40fb9820 8784 OPERAND_TYPE_NONE },
cff8d58a
L
8785 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8786 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8787 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8788 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8789 _dummy_first_bfd_reloc_code_real },
40fb9820 8790 OPERAND_TYPE_NONE },
cff8d58a
L
8791 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8792 _dummy_first_bfd_reloc_code_real },
40fb9820 8793 OPERAND_TYPE_NONE },
cff8d58a
L
8794 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8795 BFD_RELOC_X86_64_GOT32 },
40fb9820 8796 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8797 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8798 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8799 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8800 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8801 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8802 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8803 };
8804 char *cp;
8805 unsigned int j;
8806
d382c579 8807#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8808 if (!IS_ELF)
8809 return NULL;
d382c579 8810#endif
718ddfc0 8811
f3c180ae 8812 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8813 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8814 return NULL;
8815
47465058 8816 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8817 {
cff8d58a 8818 int len = gotrel[j].len;
28f81592 8819 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8820 {
4fa24527 8821 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8822 {
28f81592
AM
8823 int first, second;
8824 char *tmpbuf, *past_reloc;
f3c180ae 8825
91d6fa6a 8826 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8827
3956db08
JB
8828 if (types)
8829 {
8830 if (flag_code != CODE_64BIT)
40fb9820
L
8831 {
8832 types->bitfield.imm32 = 1;
8833 types->bitfield.disp32 = 1;
8834 }
3956db08
JB
8835 else
8836 *types = gotrel[j].types64;
8837 }
8838
8fd4256d 8839 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8840 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8841
28f81592 8842 /* The length of the first part of our input line. */
f3c180ae 8843 first = cp - input_line_pointer;
28f81592
AM
8844
8845 /* The second part goes from after the reloc token until
67c11a9b 8846 (and including) an end_of_line char or comma. */
28f81592 8847 past_reloc = cp + 1 + len;
67c11a9b
AM
8848 cp = past_reloc;
8849 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8850 ++cp;
8851 second = cp + 1 - past_reloc;
28f81592
AM
8852
8853 /* Allocate and copy string. The trailing NUL shouldn't
8854 be necessary, but be safe. */
add39d23 8855 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8856 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8857 if (second != 0 && *past_reloc != ' ')
8858 /* Replace the relocation token with ' ', so that
8859 errors like foo@GOTOFF1 will be detected. */
8860 tmpbuf[first++] = ' ';
af89796a
L
8861 else
8862 /* Increment length by 1 if the relocation token is
8863 removed. */
8864 len++;
8865 if (adjust)
8866 *adjust = len;
0787a12d
AM
8867 memcpy (tmpbuf + first, past_reloc, second);
8868 tmpbuf[first + second] = '\0';
f3c180ae
AM
8869 return tmpbuf;
8870 }
8871
4fa24527
JB
8872 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8873 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8874 return NULL;
8875 }
8876 }
8877
8878 /* Might be a symbol version string. Don't as_bad here. */
8879 return NULL;
8880}
4e4f7c87 8881#endif
f3c180ae 8882
a988325c
NC
8883#ifdef TE_PE
8884#ifdef lex_got
8885#undef lex_got
8886#endif
8887/* Parse operands of the form
8888 <symbol>@SECREL32+<nnn>
8889
8890 If we find one, set up the correct relocation in RELOC and copy the
8891 input string, minus the `@SECREL32' into a malloc'd buffer for
8892 parsing by the calling routine. Return this buffer, and if ADJUST
8893 is non-null set it to the length of the string we removed from the
34bca508
L
8894 input line. Otherwise return NULL.
8895
a988325c
NC
8896 This function is copied from the ELF version above adjusted for PE targets. */
8897
8898static char *
8899lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8900 int *adjust ATTRIBUTE_UNUSED,
d258b828 8901 i386_operand_type *types)
a988325c
NC
8902{
8903 static const struct
8904 {
8905 const char *str;
8906 int len;
8907 const enum bfd_reloc_code_real rel[2];
8908 const i386_operand_type types64;
8909 }
8910 gotrel[] =
8911 {
8912 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8913 BFD_RELOC_32_SECREL },
8914 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8915 };
8916
8917 char *cp;
8918 unsigned j;
8919
8920 for (cp = input_line_pointer; *cp != '@'; cp++)
8921 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8922 return NULL;
8923
8924 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8925 {
8926 int len = gotrel[j].len;
8927
8928 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8929 {
8930 if (gotrel[j].rel[object_64bit] != 0)
8931 {
8932 int first, second;
8933 char *tmpbuf, *past_reloc;
8934
8935 *rel = gotrel[j].rel[object_64bit];
8936 if (adjust)
8937 *adjust = len;
8938
8939 if (types)
8940 {
8941 if (flag_code != CODE_64BIT)
8942 {
8943 types->bitfield.imm32 = 1;
8944 types->bitfield.disp32 = 1;
8945 }
8946 else
8947 *types = gotrel[j].types64;
8948 }
8949
8950 /* The length of the first part of our input line. */
8951 first = cp - input_line_pointer;
8952
8953 /* The second part goes from after the reloc token until
8954 (and including) an end_of_line char or comma. */
8955 past_reloc = cp + 1 + len;
8956 cp = past_reloc;
8957 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8958 ++cp;
8959 second = cp + 1 - past_reloc;
8960
8961 /* Allocate and copy string. The trailing NUL shouldn't
8962 be necessary, but be safe. */
add39d23 8963 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8964 memcpy (tmpbuf, input_line_pointer, first);
8965 if (second != 0 && *past_reloc != ' ')
8966 /* Replace the relocation token with ' ', so that
8967 errors like foo@SECLREL321 will be detected. */
8968 tmpbuf[first++] = ' ';
8969 memcpy (tmpbuf + first, past_reloc, second);
8970 tmpbuf[first + second] = '\0';
8971 return tmpbuf;
8972 }
8973
8974 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8975 gotrel[j].str, 1 << (5 + object_64bit));
8976 return NULL;
8977 }
8978 }
8979
8980 /* Might be a symbol version string. Don't as_bad here. */
8981 return NULL;
8982}
8983
8984#endif /* TE_PE */
8985
62ebcb5c 8986bfd_reloc_code_real_type
e3bb37b5 8987x86_cons (expressionS *exp, int size)
f3c180ae 8988{
62ebcb5c
AM
8989 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8990
ee86248c
JB
8991 intel_syntax = -intel_syntax;
8992
3c7b9c2c 8993 exp->X_md = 0;
4fa24527 8994 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8995 {
8996 /* Handle @GOTOFF and the like in an expression. */
8997 char *save;
8998 char *gotfree_input_line;
4a57f2cf 8999 int adjust = 0;
f3c180ae
AM
9000
9001 save = input_line_pointer;
d258b828 9002 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9003 if (gotfree_input_line)
9004 input_line_pointer = gotfree_input_line;
9005
9006 expression (exp);
9007
9008 if (gotfree_input_line)
9009 {
9010 /* expression () has merrily parsed up to the end of line,
9011 or a comma - in the wrong buffer. Transfer how far
9012 input_line_pointer has moved to the right buffer. */
9013 input_line_pointer = (save
9014 + (input_line_pointer - gotfree_input_line)
9015 + adjust);
9016 free (gotfree_input_line);
3992d3b7
AM
9017 if (exp->X_op == O_constant
9018 || exp->X_op == O_absent
9019 || exp->X_op == O_illegal
0398aac5 9020 || exp->X_op == O_register
3992d3b7
AM
9021 || exp->X_op == O_big)
9022 {
9023 char c = *input_line_pointer;
9024 *input_line_pointer = 0;
9025 as_bad (_("missing or invalid expression `%s'"), save);
9026 *input_line_pointer = c;
9027 }
b9519cfe
L
9028 else if ((got_reloc == BFD_RELOC_386_PLT32
9029 || got_reloc == BFD_RELOC_X86_64_PLT32)
9030 && exp->X_op != O_symbol)
9031 {
9032 char c = *input_line_pointer;
9033 *input_line_pointer = 0;
9034 as_bad (_("invalid PLT expression `%s'"), save);
9035 *input_line_pointer = c;
9036 }
f3c180ae
AM
9037 }
9038 }
9039 else
9040 expression (exp);
ee86248c
JB
9041
9042 intel_syntax = -intel_syntax;
9043
9044 if (intel_syntax)
9045 i386_intel_simplify (exp);
62ebcb5c
AM
9046
9047 return got_reloc;
f3c180ae 9048}
f3c180ae 9049
9f32dd5b
L
9050static void
9051signed_cons (int size)
6482c264 9052{
d182319b
JB
9053 if (flag_code == CODE_64BIT)
9054 cons_sign = 1;
9055 cons (size);
9056 cons_sign = -1;
6482c264
NC
9057}
9058
d182319b 9059#ifdef TE_PE
6482c264 9060static void
7016a5d5 9061pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9062{
9063 expressionS exp;
9064
9065 do
9066 {
9067 expression (&exp);
9068 if (exp.X_op == O_symbol)
9069 exp.X_op = O_secrel;
9070
9071 emit_expr (&exp, 4);
9072 }
9073 while (*input_line_pointer++ == ',');
9074
9075 input_line_pointer--;
9076 demand_empty_rest_of_line ();
9077}
6482c264
NC
9078#endif
9079
43234a1e
L
9080/* Handle Vector operations. */
9081
9082static char *
9083check_VecOperations (char *op_string, char *op_end)
9084{
9085 const reg_entry *mask;
9086 const char *saved;
9087 char *end_op;
9088
9089 while (*op_string
9090 && (op_end == NULL || op_string < op_end))
9091 {
9092 saved = op_string;
9093 if (*op_string == '{')
9094 {
9095 op_string++;
9096
9097 /* Check broadcasts. */
9098 if (strncmp (op_string, "1to", 3) == 0)
9099 {
9100 int bcst_type;
9101
9102 if (i.broadcast)
9103 goto duplicated_vec_op;
9104
9105 op_string += 3;
9106 if (*op_string == '8')
8e6e0792 9107 bcst_type = 8;
b28d1bda 9108 else if (*op_string == '4')
8e6e0792 9109 bcst_type = 4;
b28d1bda 9110 else if (*op_string == '2')
8e6e0792 9111 bcst_type = 2;
43234a1e
L
9112 else if (*op_string == '1'
9113 && *(op_string+1) == '6')
9114 {
8e6e0792 9115 bcst_type = 16;
43234a1e
L
9116 op_string++;
9117 }
9118 else
9119 {
9120 as_bad (_("Unsupported broadcast: `%s'"), saved);
9121 return NULL;
9122 }
9123 op_string++;
9124
9125 broadcast_op.type = bcst_type;
9126 broadcast_op.operand = this_operand;
1f75763a 9127 broadcast_op.bytes = 0;
43234a1e
L
9128 i.broadcast = &broadcast_op;
9129 }
9130 /* Check masking operation. */
9131 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9132 {
9133 /* k0 can't be used for write mask. */
6d2cd6b2 9134 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9135 {
6d2cd6b2
JB
9136 as_bad (_("`%s%s' can't be used for write mask"),
9137 register_prefix, mask->reg_name);
43234a1e
L
9138 return NULL;
9139 }
9140
9141 if (!i.mask)
9142 {
9143 mask_op.mask = mask;
9144 mask_op.zeroing = 0;
9145 mask_op.operand = this_operand;
9146 i.mask = &mask_op;
9147 }
9148 else
9149 {
9150 if (i.mask->mask)
9151 goto duplicated_vec_op;
9152
9153 i.mask->mask = mask;
9154
9155 /* Only "{z}" is allowed here. No need to check
9156 zeroing mask explicitly. */
9157 if (i.mask->operand != this_operand)
9158 {
9159 as_bad (_("invalid write mask `%s'"), saved);
9160 return NULL;
9161 }
9162 }
9163
9164 op_string = end_op;
9165 }
9166 /* Check zeroing-flag for masking operation. */
9167 else if (*op_string == 'z')
9168 {
9169 if (!i.mask)
9170 {
9171 mask_op.mask = NULL;
9172 mask_op.zeroing = 1;
9173 mask_op.operand = this_operand;
9174 i.mask = &mask_op;
9175 }
9176 else
9177 {
9178 if (i.mask->zeroing)
9179 {
9180 duplicated_vec_op:
9181 as_bad (_("duplicated `%s'"), saved);
9182 return NULL;
9183 }
9184
9185 i.mask->zeroing = 1;
9186
9187 /* Only "{%k}" is allowed here. No need to check mask
9188 register explicitly. */
9189 if (i.mask->operand != this_operand)
9190 {
9191 as_bad (_("invalid zeroing-masking `%s'"),
9192 saved);
9193 return NULL;
9194 }
9195 }
9196
9197 op_string++;
9198 }
9199 else
9200 goto unknown_vec_op;
9201
9202 if (*op_string != '}')
9203 {
9204 as_bad (_("missing `}' in `%s'"), saved);
9205 return NULL;
9206 }
9207 op_string++;
0ba3a731
L
9208
9209 /* Strip whitespace since the addition of pseudo prefixes
9210 changed how the scrubber treats '{'. */
9211 if (is_space_char (*op_string))
9212 ++op_string;
9213
43234a1e
L
9214 continue;
9215 }
9216 unknown_vec_op:
9217 /* We don't know this one. */
9218 as_bad (_("unknown vector operation: `%s'"), saved);
9219 return NULL;
9220 }
9221
6d2cd6b2
JB
9222 if (i.mask && i.mask->zeroing && !i.mask->mask)
9223 {
9224 as_bad (_("zeroing-masking only allowed with write mask"));
9225 return NULL;
9226 }
9227
43234a1e
L
9228 return op_string;
9229}
9230
252b5132 9231static int
70e41ade 9232i386_immediate (char *imm_start)
252b5132
RH
9233{
9234 char *save_input_line_pointer;
f3c180ae 9235 char *gotfree_input_line;
252b5132 9236 segT exp_seg = 0;
47926f60 9237 expressionS *exp;
40fb9820
L
9238 i386_operand_type types;
9239
0dfbf9d7 9240 operand_type_set (&types, ~0);
252b5132
RH
9241
9242 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9243 {
31b2323c
L
9244 as_bad (_("at most %d immediate operands are allowed"),
9245 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9246 return 0;
9247 }
9248
9249 exp = &im_expressions[i.imm_operands++];
520dc8e8 9250 i.op[this_operand].imms = exp;
252b5132
RH
9251
9252 if (is_space_char (*imm_start))
9253 ++imm_start;
9254
9255 save_input_line_pointer = input_line_pointer;
9256 input_line_pointer = imm_start;
9257
d258b828 9258 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9259 if (gotfree_input_line)
9260 input_line_pointer = gotfree_input_line;
252b5132
RH
9261
9262 exp_seg = expression (exp);
9263
83183c0c 9264 SKIP_WHITESPACE ();
43234a1e
L
9265
9266 /* Handle vector operations. */
9267 if (*input_line_pointer == '{')
9268 {
9269 input_line_pointer = check_VecOperations (input_line_pointer,
9270 NULL);
9271 if (input_line_pointer == NULL)
9272 return 0;
9273 }
9274
252b5132 9275 if (*input_line_pointer)
f3c180ae 9276 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9277
9278 input_line_pointer = save_input_line_pointer;
f3c180ae 9279 if (gotfree_input_line)
ee86248c
JB
9280 {
9281 free (gotfree_input_line);
9282
9283 if (exp->X_op == O_constant || exp->X_op == O_register)
9284 exp->X_op = O_illegal;
9285 }
9286
9287 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9288}
252b5132 9289
ee86248c
JB
9290static int
9291i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9292 i386_operand_type types, const char *imm_start)
9293{
9294 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9295 {
313c53d1
L
9296 if (imm_start)
9297 as_bad (_("missing or invalid immediate expression `%s'"),
9298 imm_start);
3992d3b7 9299 return 0;
252b5132 9300 }
3e73aa7c 9301 else if (exp->X_op == O_constant)
252b5132 9302 {
47926f60 9303 /* Size it properly later. */
40fb9820 9304 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9305 /* If not 64bit, sign extend val. */
9306 if (flag_code != CODE_64BIT
4eed87de
AM
9307 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9308 exp->X_add_number
9309 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9310 }
4c63da97 9311#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9312 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9313 && exp_seg != absolute_section
47926f60 9314 && exp_seg != text_section
24eab124
AM
9315 && exp_seg != data_section
9316 && exp_seg != bss_section
9317 && exp_seg != undefined_section
f86103b7 9318 && !bfd_is_com_section (exp_seg))
252b5132 9319 {
d0b47220 9320 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9321 return 0;
9322 }
9323#endif
a841bdf5 9324 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9325 {
313c53d1
L
9326 if (imm_start)
9327 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9328 return 0;
9329 }
252b5132
RH
9330 else
9331 {
9332 /* This is an address. The size of the address will be
24eab124 9333 determined later, depending on destination register,
3e73aa7c 9334 suffix, or the default for the section. */
40fb9820
L
9335 i.types[this_operand].bitfield.imm8 = 1;
9336 i.types[this_operand].bitfield.imm16 = 1;
9337 i.types[this_operand].bitfield.imm32 = 1;
9338 i.types[this_operand].bitfield.imm32s = 1;
9339 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9340 i.types[this_operand] = operand_type_and (i.types[this_operand],
9341 types);
252b5132
RH
9342 }
9343
9344 return 1;
9345}
9346
551c1ca1 9347static char *
e3bb37b5 9348i386_scale (char *scale)
252b5132 9349{
551c1ca1
AM
9350 offsetT val;
9351 char *save = input_line_pointer;
252b5132 9352
551c1ca1
AM
9353 input_line_pointer = scale;
9354 val = get_absolute_expression ();
9355
9356 switch (val)
252b5132 9357 {
551c1ca1 9358 case 1:
252b5132
RH
9359 i.log2_scale_factor = 0;
9360 break;
551c1ca1 9361 case 2:
252b5132
RH
9362 i.log2_scale_factor = 1;
9363 break;
551c1ca1 9364 case 4:
252b5132
RH
9365 i.log2_scale_factor = 2;
9366 break;
551c1ca1 9367 case 8:
252b5132
RH
9368 i.log2_scale_factor = 3;
9369 break;
9370 default:
a724f0f4
JB
9371 {
9372 char sep = *input_line_pointer;
9373
9374 *input_line_pointer = '\0';
9375 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9376 scale);
9377 *input_line_pointer = sep;
9378 input_line_pointer = save;
9379 return NULL;
9380 }
252b5132 9381 }
29b0f896 9382 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9383 {
9384 as_warn (_("scale factor of %d without an index register"),
24eab124 9385 1 << i.log2_scale_factor);
252b5132 9386 i.log2_scale_factor = 0;
252b5132 9387 }
551c1ca1
AM
9388 scale = input_line_pointer;
9389 input_line_pointer = save;
9390 return scale;
252b5132
RH
9391}
9392
252b5132 9393static int
e3bb37b5 9394i386_displacement (char *disp_start, char *disp_end)
252b5132 9395{
29b0f896 9396 expressionS *exp;
252b5132
RH
9397 segT exp_seg = 0;
9398 char *save_input_line_pointer;
f3c180ae 9399 char *gotfree_input_line;
40fb9820
L
9400 int override;
9401 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9402 int ret;
252b5132 9403
31b2323c
L
9404 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9405 {
9406 as_bad (_("at most %d displacement operands are allowed"),
9407 MAX_MEMORY_OPERANDS);
9408 return 0;
9409 }
9410
0dfbf9d7 9411 operand_type_set (&bigdisp, 0);
40fb9820
L
9412 if ((i.types[this_operand].bitfield.jumpabsolute)
9413 || (!current_templates->start->opcode_modifier.jump
9414 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9415 {
40fb9820 9416 bigdisp.bitfield.disp32 = 1;
e05278af 9417 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9418 if (flag_code == CODE_64BIT)
9419 {
9420 if (!override)
9421 {
9422 bigdisp.bitfield.disp32s = 1;
9423 bigdisp.bitfield.disp64 = 1;
9424 }
9425 }
9426 else if ((flag_code == CODE_16BIT) ^ override)
9427 {
9428 bigdisp.bitfield.disp32 = 0;
9429 bigdisp.bitfield.disp16 = 1;
9430 }
e05278af
JB
9431 }
9432 else
9433 {
9434 /* For PC-relative branches, the width of the displacement
9435 is dependent upon data size, not address size. */
e05278af 9436 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9437 if (flag_code == CODE_64BIT)
9438 {
9439 if (override || i.suffix == WORD_MNEM_SUFFIX)
9440 bigdisp.bitfield.disp16 = 1;
9441 else
9442 {
9443 bigdisp.bitfield.disp32 = 1;
9444 bigdisp.bitfield.disp32s = 1;
9445 }
9446 }
9447 else
e05278af
JB
9448 {
9449 if (!override)
9450 override = (i.suffix == (flag_code != CODE_16BIT
9451 ? WORD_MNEM_SUFFIX
9452 : LONG_MNEM_SUFFIX));
40fb9820
L
9453 bigdisp.bitfield.disp32 = 1;
9454 if ((flag_code == CODE_16BIT) ^ override)
9455 {
9456 bigdisp.bitfield.disp32 = 0;
9457 bigdisp.bitfield.disp16 = 1;
9458 }
e05278af 9459 }
e05278af 9460 }
c6fb90c8
L
9461 i.types[this_operand] = operand_type_or (i.types[this_operand],
9462 bigdisp);
252b5132
RH
9463
9464 exp = &disp_expressions[i.disp_operands];
520dc8e8 9465 i.op[this_operand].disps = exp;
252b5132
RH
9466 i.disp_operands++;
9467 save_input_line_pointer = input_line_pointer;
9468 input_line_pointer = disp_start;
9469 END_STRING_AND_SAVE (disp_end);
9470
9471#ifndef GCC_ASM_O_HACK
9472#define GCC_ASM_O_HACK 0
9473#endif
9474#if GCC_ASM_O_HACK
9475 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9476 if (i.types[this_operand].bitfield.baseIndex
24eab124 9477 && displacement_string_end[-1] == '+')
252b5132
RH
9478 {
9479 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9480 constraint within gcc asm statements.
9481 For instance:
9482
9483 #define _set_tssldt_desc(n,addr,limit,type) \
9484 __asm__ __volatile__ ( \
9485 "movw %w2,%0\n\t" \
9486 "movw %w1,2+%0\n\t" \
9487 "rorl $16,%1\n\t" \
9488 "movb %b1,4+%0\n\t" \
9489 "movb %4,5+%0\n\t" \
9490 "movb $0,6+%0\n\t" \
9491 "movb %h1,7+%0\n\t" \
9492 "rorl $16,%1" \
9493 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9494
9495 This works great except that the output assembler ends
9496 up looking a bit weird if it turns out that there is
9497 no offset. You end up producing code that looks like:
9498
9499 #APP
9500 movw $235,(%eax)
9501 movw %dx,2+(%eax)
9502 rorl $16,%edx
9503 movb %dl,4+(%eax)
9504 movb $137,5+(%eax)
9505 movb $0,6+(%eax)
9506 movb %dh,7+(%eax)
9507 rorl $16,%edx
9508 #NO_APP
9509
47926f60 9510 So here we provide the missing zero. */
24eab124
AM
9511
9512 *displacement_string_end = '0';
252b5132
RH
9513 }
9514#endif
d258b828 9515 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9516 if (gotfree_input_line)
9517 input_line_pointer = gotfree_input_line;
252b5132 9518
24eab124 9519 exp_seg = expression (exp);
252b5132 9520
636c26b0
AM
9521 SKIP_WHITESPACE ();
9522 if (*input_line_pointer)
9523 as_bad (_("junk `%s' after expression"), input_line_pointer);
9524#if GCC_ASM_O_HACK
9525 RESTORE_END_STRING (disp_end + 1);
9526#endif
636c26b0 9527 input_line_pointer = save_input_line_pointer;
636c26b0 9528 if (gotfree_input_line)
ee86248c
JB
9529 {
9530 free (gotfree_input_line);
9531
9532 if (exp->X_op == O_constant || exp->X_op == O_register)
9533 exp->X_op = O_illegal;
9534 }
9535
9536 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9537
9538 RESTORE_END_STRING (disp_end);
9539
9540 return ret;
9541}
9542
9543static int
9544i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9545 i386_operand_type types, const char *disp_start)
9546{
9547 i386_operand_type bigdisp;
9548 int ret = 1;
636c26b0 9549
24eab124
AM
9550 /* We do this to make sure that the section symbol is in
9551 the symbol table. We will ultimately change the relocation
47926f60 9552 to be relative to the beginning of the section. */
1ae12ab7 9553 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9554 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9555 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9556 {
636c26b0 9557 if (exp->X_op != O_symbol)
3992d3b7 9558 goto inv_disp;
636c26b0 9559
e5cb08ac 9560 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9561 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9562 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9563 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9564 exp->X_op = O_subtract;
9565 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9566 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9567 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9568 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9569 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9570 else
29b0f896 9571 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9572 }
252b5132 9573
3992d3b7
AM
9574 else if (exp->X_op == O_absent
9575 || exp->X_op == O_illegal
ee86248c 9576 || exp->X_op == O_big)
2daf4fd8 9577 {
3992d3b7
AM
9578 inv_disp:
9579 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9580 disp_start);
3992d3b7 9581 ret = 0;
2daf4fd8
AM
9582 }
9583
0e1147d9
L
9584 else if (flag_code == CODE_64BIT
9585 && !i.prefix[ADDR_PREFIX]
9586 && exp->X_op == O_constant)
9587 {
9588 /* Since displacement is signed extended to 64bit, don't allow
9589 disp32 and turn off disp32s if they are out of range. */
9590 i.types[this_operand].bitfield.disp32 = 0;
9591 if (!fits_in_signed_long (exp->X_add_number))
9592 {
9593 i.types[this_operand].bitfield.disp32s = 0;
9594 if (i.types[this_operand].bitfield.baseindex)
9595 {
9596 as_bad (_("0x%lx out range of signed 32bit displacement"),
9597 (long) exp->X_add_number);
9598 ret = 0;
9599 }
9600 }
9601 }
9602
4c63da97 9603#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9604 else if (exp->X_op != O_constant
9605 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9606 && exp_seg != absolute_section
9607 && exp_seg != text_section
9608 && exp_seg != data_section
9609 && exp_seg != bss_section
9610 && exp_seg != undefined_section
9611 && !bfd_is_com_section (exp_seg))
24eab124 9612 {
d0b47220 9613 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9614 ret = 0;
24eab124 9615 }
252b5132 9616#endif
3956db08 9617
40fb9820
L
9618 /* Check if this is a displacement only operand. */
9619 bigdisp = i.types[this_operand];
9620 bigdisp.bitfield.disp8 = 0;
9621 bigdisp.bitfield.disp16 = 0;
9622 bigdisp.bitfield.disp32 = 0;
9623 bigdisp.bitfield.disp32s = 0;
9624 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9625 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9626 i.types[this_operand] = operand_type_and (i.types[this_operand],
9627 types);
3956db08 9628
3992d3b7 9629 return ret;
252b5132
RH
9630}
9631
2abc2bec
JB
9632/* Return the active addressing mode, taking address override and
9633 registers forming the address into consideration. Update the
9634 address override prefix if necessary. */
47926f60 9635
2abc2bec
JB
9636static enum flag_code
9637i386_addressing_mode (void)
252b5132 9638{
be05d201
L
9639 enum flag_code addr_mode;
9640
9641 if (i.prefix[ADDR_PREFIX])
9642 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9643 else
9644 {
9645 addr_mode = flag_code;
9646
24eab124 9647#if INFER_ADDR_PREFIX
be05d201
L
9648 if (i.mem_operands == 0)
9649 {
9650 /* Infer address prefix from the first memory operand. */
9651 const reg_entry *addr_reg = i.base_reg;
9652
9653 if (addr_reg == NULL)
9654 addr_reg = i.index_reg;
eecb386c 9655
be05d201
L
9656 if (addr_reg)
9657 {
e968fc9b 9658 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9659 addr_mode = CODE_32BIT;
9660 else if (flag_code != CODE_64BIT
dc821c5f 9661 && addr_reg->reg_type.bitfield.word)
be05d201
L
9662 addr_mode = CODE_16BIT;
9663
9664 if (addr_mode != flag_code)
9665 {
9666 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9667 i.prefixes += 1;
9668 /* Change the size of any displacement too. At most one
9669 of Disp16 or Disp32 is set.
9670 FIXME. There doesn't seem to be any real need for
9671 separate Disp16 and Disp32 flags. The same goes for
9672 Imm16 and Imm32. Removing them would probably clean
9673 up the code quite a lot. */
9674 if (flag_code != CODE_64BIT
9675 && (i.types[this_operand].bitfield.disp16
9676 || i.types[this_operand].bitfield.disp32))
9677 i.types[this_operand]
9678 = operand_type_xor (i.types[this_operand], disp16_32);
9679 }
9680 }
9681 }
24eab124 9682#endif
be05d201
L
9683 }
9684
2abc2bec
JB
9685 return addr_mode;
9686}
9687
9688/* Make sure the memory operand we've been dealt is valid.
9689 Return 1 on success, 0 on a failure. */
9690
9691static int
9692i386_index_check (const char *operand_string)
9693{
9694 const char *kind = "base/index";
9695 enum flag_code addr_mode = i386_addressing_mode ();
9696
fc0763e6
JB
9697 if (current_templates->start->opcode_modifier.isstring
9698 && !current_templates->start->opcode_modifier.immext
9699 && (current_templates->end[-1].opcode_modifier.isstring
9700 || i.mem_operands))
9701 {
9702 /* Memory operands of string insns are special in that they only allow
9703 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9704 const reg_entry *expected_reg;
9705 static const char *di_si[][2] =
9706 {
9707 { "esi", "edi" },
9708 { "si", "di" },
9709 { "rsi", "rdi" }
9710 };
9711 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9712
9713 kind = "string address";
9714
8325cc63 9715 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9716 {
9717 i386_operand_type type = current_templates->end[-1].operand_types[0];
9718
9719 if (!type.bitfield.baseindex
9720 || ((!i.mem_operands != !intel_syntax)
9721 && current_templates->end[-1].operand_types[1]
9722 .bitfield.baseindex))
9723 type = current_templates->end[-1].operand_types[1];
be05d201
L
9724 expected_reg = hash_find (reg_hash,
9725 di_si[addr_mode][type.bitfield.esseg]);
9726
fc0763e6
JB
9727 }
9728 else
be05d201 9729 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9730
be05d201
L
9731 if (i.base_reg != expected_reg
9732 || i.index_reg
fc0763e6 9733 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9734 {
be05d201
L
9735 /* The second memory operand must have the same size as
9736 the first one. */
9737 if (i.mem_operands
9738 && i.base_reg
9739 && !((addr_mode == CODE_64BIT
dc821c5f 9740 && i.base_reg->reg_type.bitfield.qword)
be05d201 9741 || (addr_mode == CODE_32BIT
dc821c5f
JB
9742 ? i.base_reg->reg_type.bitfield.dword
9743 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9744 goto bad_address;
9745
fc0763e6
JB
9746 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9747 operand_string,
9748 intel_syntax ? '[' : '(',
9749 register_prefix,
be05d201 9750 expected_reg->reg_name,
fc0763e6 9751 intel_syntax ? ']' : ')');
be05d201 9752 return 1;
fc0763e6 9753 }
be05d201
L
9754 else
9755 return 1;
9756
9757bad_address:
9758 as_bad (_("`%s' is not a valid %s expression"),
9759 operand_string, kind);
9760 return 0;
3e73aa7c
JH
9761 }
9762 else
9763 {
be05d201
L
9764 if (addr_mode != CODE_16BIT)
9765 {
9766 /* 32-bit/64-bit checks. */
9767 if ((i.base_reg
e968fc9b
JB
9768 && ((addr_mode == CODE_64BIT
9769 ? !i.base_reg->reg_type.bitfield.qword
9770 : !i.base_reg->reg_type.bitfield.dword)
9771 || (i.index_reg && i.base_reg->reg_num == RegIP)
9772 || i.base_reg->reg_num == RegIZ))
be05d201 9773 || (i.index_reg
1b54b8d7
JB
9774 && !i.index_reg->reg_type.bitfield.xmmword
9775 && !i.index_reg->reg_type.bitfield.ymmword
9776 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9777 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9778 ? !i.index_reg->reg_type.bitfield.qword
9779 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9780 || !i.index_reg->reg_type.bitfield.baseindex)))
9781 goto bad_address;
8178be5b
JB
9782
9783 /* bndmk, bndldx, and bndstx have special restrictions. */
9784 if (current_templates->start->base_opcode == 0xf30f1b
9785 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9786 {
9787 /* They cannot use RIP-relative addressing. */
e968fc9b 9788 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9789 {
9790 as_bad (_("`%s' cannot be used here"), operand_string);
9791 return 0;
9792 }
9793
9794 /* bndldx and bndstx ignore their scale factor. */
9795 if (current_templates->start->base_opcode != 0xf30f1b
9796 && i.log2_scale_factor)
9797 as_warn (_("register scaling is being ignored here"));
9798 }
be05d201
L
9799 }
9800 else
3e73aa7c 9801 {
be05d201 9802 /* 16-bit checks. */
3e73aa7c 9803 if ((i.base_reg
dc821c5f 9804 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9805 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9806 || (i.index_reg
dc821c5f 9807 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9808 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9809 || !(i.base_reg
9810 && i.base_reg->reg_num < 6
9811 && i.index_reg->reg_num >= 6
9812 && i.log2_scale_factor == 0))))
be05d201 9813 goto bad_address;
3e73aa7c
JH
9814 }
9815 }
be05d201 9816 return 1;
24eab124 9817}
252b5132 9818
43234a1e
L
9819/* Handle vector immediates. */
9820
9821static int
9822RC_SAE_immediate (const char *imm_start)
9823{
9824 unsigned int match_found, j;
9825 const char *pstr = imm_start;
9826 expressionS *exp;
9827
9828 if (*pstr != '{')
9829 return 0;
9830
9831 pstr++;
9832 match_found = 0;
9833 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9834 {
9835 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9836 {
9837 if (!i.rounding)
9838 {
9839 rc_op.type = RC_NamesTable[j].type;
9840 rc_op.operand = this_operand;
9841 i.rounding = &rc_op;
9842 }
9843 else
9844 {
9845 as_bad (_("duplicated `%s'"), imm_start);
9846 return 0;
9847 }
9848 pstr += RC_NamesTable[j].len;
9849 match_found = 1;
9850 break;
9851 }
9852 }
9853 if (!match_found)
9854 return 0;
9855
9856 if (*pstr++ != '}')
9857 {
9858 as_bad (_("Missing '}': '%s'"), imm_start);
9859 return 0;
9860 }
9861 /* RC/SAE immediate string should contain nothing more. */;
9862 if (*pstr != 0)
9863 {
9864 as_bad (_("Junk after '}': '%s'"), imm_start);
9865 return 0;
9866 }
9867
9868 exp = &im_expressions[i.imm_operands++];
9869 i.op[this_operand].imms = exp;
9870
9871 exp->X_op = O_constant;
9872 exp->X_add_number = 0;
9873 exp->X_add_symbol = (symbolS *) 0;
9874 exp->X_op_symbol = (symbolS *) 0;
9875
9876 i.types[this_operand].bitfield.imm8 = 1;
9877 return 1;
9878}
9879
8325cc63
JB
9880/* Only string instructions can have a second memory operand, so
9881 reduce current_templates to just those if it contains any. */
9882static int
9883maybe_adjust_templates (void)
9884{
9885 const insn_template *t;
9886
9887 gas_assert (i.mem_operands == 1);
9888
9889 for (t = current_templates->start; t < current_templates->end; ++t)
9890 if (t->opcode_modifier.isstring)
9891 break;
9892
9893 if (t < current_templates->end)
9894 {
9895 static templates aux_templates;
9896 bfd_boolean recheck;
9897
9898 aux_templates.start = t;
9899 for (; t < current_templates->end; ++t)
9900 if (!t->opcode_modifier.isstring)
9901 break;
9902 aux_templates.end = t;
9903
9904 /* Determine whether to re-check the first memory operand. */
9905 recheck = (aux_templates.start != current_templates->start
9906 || t != current_templates->end);
9907
9908 current_templates = &aux_templates;
9909
9910 if (recheck)
9911 {
9912 i.mem_operands = 0;
9913 if (i.memop1_string != NULL
9914 && i386_index_check (i.memop1_string) == 0)
9915 return 0;
9916 i.mem_operands = 1;
9917 }
9918 }
9919
9920 return 1;
9921}
9922
fc0763e6 9923/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9924 on error. */
252b5132 9925
252b5132 9926static int
a7619375 9927i386_att_operand (char *operand_string)
252b5132 9928{
af6bdddf
AM
9929 const reg_entry *r;
9930 char *end_op;
24eab124 9931 char *op_string = operand_string;
252b5132 9932
24eab124 9933 if (is_space_char (*op_string))
252b5132
RH
9934 ++op_string;
9935
24eab124 9936 /* We check for an absolute prefix (differentiating,
47926f60 9937 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9938 if (*op_string == ABSOLUTE_PREFIX)
9939 {
9940 ++op_string;
9941 if (is_space_char (*op_string))
9942 ++op_string;
40fb9820 9943 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9944 }
252b5132 9945
47926f60 9946 /* Check if operand is a register. */
4d1bb795 9947 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9948 {
40fb9820
L
9949 i386_operand_type temp;
9950
24eab124
AM
9951 /* Check for a segment override by searching for ':' after a
9952 segment register. */
9953 op_string = end_op;
9954 if (is_space_char (*op_string))
9955 ++op_string;
40fb9820
L
9956 if (*op_string == ':'
9957 && (r->reg_type.bitfield.sreg2
9958 || r->reg_type.bitfield.sreg3))
24eab124
AM
9959 {
9960 switch (r->reg_num)
9961 {
9962 case 0:
9963 i.seg[i.mem_operands] = &es;
9964 break;
9965 case 1:
9966 i.seg[i.mem_operands] = &cs;
9967 break;
9968 case 2:
9969 i.seg[i.mem_operands] = &ss;
9970 break;
9971 case 3:
9972 i.seg[i.mem_operands] = &ds;
9973 break;
9974 case 4:
9975 i.seg[i.mem_operands] = &fs;
9976 break;
9977 case 5:
9978 i.seg[i.mem_operands] = &gs;
9979 break;
9980 }
252b5132 9981
24eab124 9982 /* Skip the ':' and whitespace. */
252b5132
RH
9983 ++op_string;
9984 if (is_space_char (*op_string))
24eab124 9985 ++op_string;
252b5132 9986
24eab124
AM
9987 if (!is_digit_char (*op_string)
9988 && !is_identifier_char (*op_string)
9989 && *op_string != '('
9990 && *op_string != ABSOLUTE_PREFIX)
9991 {
9992 as_bad (_("bad memory operand `%s'"), op_string);
9993 return 0;
9994 }
47926f60 9995 /* Handle case of %es:*foo. */
24eab124
AM
9996 if (*op_string == ABSOLUTE_PREFIX)
9997 {
9998 ++op_string;
9999 if (is_space_char (*op_string))
10000 ++op_string;
40fb9820 10001 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10002 }
10003 goto do_memory_reference;
10004 }
43234a1e
L
10005
10006 /* Handle vector operations. */
10007 if (*op_string == '{')
10008 {
10009 op_string = check_VecOperations (op_string, NULL);
10010 if (op_string == NULL)
10011 return 0;
10012 }
10013
24eab124
AM
10014 if (*op_string)
10015 {
d0b47220 10016 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10017 return 0;
10018 }
40fb9820
L
10019 temp = r->reg_type;
10020 temp.bitfield.baseindex = 0;
c6fb90c8
L
10021 i.types[this_operand] = operand_type_or (i.types[this_operand],
10022 temp);
7d5e4556 10023 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10024 i.op[this_operand].regs = r;
24eab124
AM
10025 i.reg_operands++;
10026 }
af6bdddf
AM
10027 else if (*op_string == REGISTER_PREFIX)
10028 {
10029 as_bad (_("bad register name `%s'"), op_string);
10030 return 0;
10031 }
24eab124 10032 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10033 {
24eab124 10034 ++op_string;
40fb9820 10035 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10036 {
d0b47220 10037 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10038 return 0;
10039 }
10040 if (!i386_immediate (op_string))
10041 return 0;
10042 }
43234a1e
L
10043 else if (RC_SAE_immediate (operand_string))
10044 {
10045 /* If it is a RC or SAE immediate, do nothing. */
10046 ;
10047 }
24eab124
AM
10048 else if (is_digit_char (*op_string)
10049 || is_identifier_char (*op_string)
d02603dc 10050 || *op_string == '"'
e5cb08ac 10051 || *op_string == '(')
24eab124 10052 {
47926f60 10053 /* This is a memory reference of some sort. */
af6bdddf 10054 char *base_string;
252b5132 10055
47926f60 10056 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10057 char *displacement_string_start;
10058 char *displacement_string_end;
43234a1e 10059 char *vop_start;
252b5132 10060
24eab124 10061 do_memory_reference:
8325cc63
JB
10062 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10063 return 0;
24eab124 10064 if ((i.mem_operands == 1
40fb9820 10065 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10066 || i.mem_operands == 2)
10067 {
10068 as_bad (_("too many memory references for `%s'"),
10069 current_templates->start->name);
10070 return 0;
10071 }
252b5132 10072
24eab124
AM
10073 /* Check for base index form. We detect the base index form by
10074 looking for an ')' at the end of the operand, searching
10075 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10076 after the '('. */
af6bdddf 10077 base_string = op_string + strlen (op_string);
c3332e24 10078
43234a1e
L
10079 /* Handle vector operations. */
10080 vop_start = strchr (op_string, '{');
10081 if (vop_start && vop_start < base_string)
10082 {
10083 if (check_VecOperations (vop_start, base_string) == NULL)
10084 return 0;
10085 base_string = vop_start;
10086 }
10087
af6bdddf
AM
10088 --base_string;
10089 if (is_space_char (*base_string))
10090 --base_string;
252b5132 10091
47926f60 10092 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10093 displacement_string_start = op_string;
10094 displacement_string_end = base_string + 1;
252b5132 10095
24eab124
AM
10096 if (*base_string == ')')
10097 {
af6bdddf 10098 char *temp_string;
24eab124
AM
10099 unsigned int parens_balanced = 1;
10100 /* We've already checked that the number of left & right ()'s are
47926f60 10101 equal, so this loop will not be infinite. */
24eab124
AM
10102 do
10103 {
10104 base_string--;
10105 if (*base_string == ')')
10106 parens_balanced++;
10107 if (*base_string == '(')
10108 parens_balanced--;
10109 }
10110 while (parens_balanced);
c3332e24 10111
af6bdddf 10112 temp_string = base_string;
c3332e24 10113
24eab124 10114 /* Skip past '(' and whitespace. */
252b5132
RH
10115 ++base_string;
10116 if (is_space_char (*base_string))
24eab124 10117 ++base_string;
252b5132 10118
af6bdddf 10119 if (*base_string == ','
4eed87de
AM
10120 || ((i.base_reg = parse_register (base_string, &end_op))
10121 != NULL))
252b5132 10122 {
af6bdddf 10123 displacement_string_end = temp_string;
252b5132 10124
40fb9820 10125 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10126
af6bdddf 10127 if (i.base_reg)
24eab124 10128 {
24eab124
AM
10129 base_string = end_op;
10130 if (is_space_char (*base_string))
10131 ++base_string;
af6bdddf
AM
10132 }
10133
10134 /* There may be an index reg or scale factor here. */
10135 if (*base_string == ',')
10136 {
10137 ++base_string;
10138 if (is_space_char (*base_string))
10139 ++base_string;
10140
4eed87de
AM
10141 if ((i.index_reg = parse_register (base_string, &end_op))
10142 != NULL)
24eab124 10143 {
af6bdddf 10144 base_string = end_op;
24eab124
AM
10145 if (is_space_char (*base_string))
10146 ++base_string;
af6bdddf
AM
10147 if (*base_string == ',')
10148 {
10149 ++base_string;
10150 if (is_space_char (*base_string))
10151 ++base_string;
10152 }
e5cb08ac 10153 else if (*base_string != ')')
af6bdddf 10154 {
4eed87de
AM
10155 as_bad (_("expecting `,' or `)' "
10156 "after index register in `%s'"),
af6bdddf
AM
10157 operand_string);
10158 return 0;
10159 }
24eab124 10160 }
af6bdddf 10161 else if (*base_string == REGISTER_PREFIX)
24eab124 10162 {
f76bf5e0
L
10163 end_op = strchr (base_string, ',');
10164 if (end_op)
10165 *end_op = '\0';
af6bdddf 10166 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10167 return 0;
10168 }
252b5132 10169
47926f60 10170 /* Check for scale factor. */
551c1ca1 10171 if (*base_string != ')')
af6bdddf 10172 {
551c1ca1
AM
10173 char *end_scale = i386_scale (base_string);
10174
10175 if (!end_scale)
af6bdddf 10176 return 0;
24eab124 10177
551c1ca1 10178 base_string = end_scale;
af6bdddf
AM
10179 if (is_space_char (*base_string))
10180 ++base_string;
10181 if (*base_string != ')')
10182 {
4eed87de
AM
10183 as_bad (_("expecting `)' "
10184 "after scale factor in `%s'"),
af6bdddf
AM
10185 operand_string);
10186 return 0;
10187 }
10188 }
10189 else if (!i.index_reg)
24eab124 10190 {
4eed87de
AM
10191 as_bad (_("expecting index register or scale factor "
10192 "after `,'; got '%c'"),
af6bdddf 10193 *base_string);
24eab124
AM
10194 return 0;
10195 }
10196 }
af6bdddf 10197 else if (*base_string != ')')
24eab124 10198 {
4eed87de
AM
10199 as_bad (_("expecting `,' or `)' "
10200 "after base register in `%s'"),
af6bdddf 10201 operand_string);
24eab124
AM
10202 return 0;
10203 }
c3332e24 10204 }
af6bdddf 10205 else if (*base_string == REGISTER_PREFIX)
c3332e24 10206 {
f76bf5e0
L
10207 end_op = strchr (base_string, ',');
10208 if (end_op)
10209 *end_op = '\0';
af6bdddf 10210 as_bad (_("bad register name `%s'"), base_string);
24eab124 10211 return 0;
c3332e24 10212 }
24eab124
AM
10213 }
10214
10215 /* If there's an expression beginning the operand, parse it,
10216 assuming displacement_string_start and
10217 displacement_string_end are meaningful. */
10218 if (displacement_string_start != displacement_string_end)
10219 {
10220 if (!i386_displacement (displacement_string_start,
10221 displacement_string_end))
10222 return 0;
10223 }
10224
10225 /* Special case for (%dx) while doing input/output op. */
10226 if (i.base_reg
2fb5be8d 10227 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10228 && i.index_reg == 0
10229 && i.log2_scale_factor == 0
10230 && i.seg[i.mem_operands] == 0
40fb9820 10231 && !operand_type_check (i.types[this_operand], disp))
24eab124 10232 {
2fb5be8d 10233 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10234 return 1;
10235 }
10236
eecb386c
AM
10237 if (i386_index_check (operand_string) == 0)
10238 return 0;
c48dadc9 10239 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10240 if (i.mem_operands == 0)
10241 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10242 i.mem_operands++;
10243 }
10244 else
ce8a8b2f
AM
10245 {
10246 /* It's not a memory operand; argh! */
24eab124
AM
10247 as_bad (_("invalid char %s beginning operand %d `%s'"),
10248 output_invalid (*op_string),
10249 this_operand + 1,
10250 op_string);
10251 return 0;
10252 }
47926f60 10253 return 1; /* Normal return. */
252b5132
RH
10254}
10255\f
fa94de6b
RM
10256/* Calculate the maximum variable size (i.e., excluding fr_fix)
10257 that an rs_machine_dependent frag may reach. */
10258
10259unsigned int
10260i386_frag_max_var (fragS *frag)
10261{
10262 /* The only relaxable frags are for jumps.
10263 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10264 gas_assert (frag->fr_type == rs_machine_dependent);
10265 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10266}
10267
b084df0b
L
10268#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10269static int
8dcea932 10270elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10271{
10272 /* STT_GNU_IFUNC symbol must go through PLT. */
10273 if ((symbol_get_bfdsym (fr_symbol)->flags
10274 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10275 return 0;
10276
10277 if (!S_IS_EXTERNAL (fr_symbol))
10278 /* Symbol may be weak or local. */
10279 return !S_IS_WEAK (fr_symbol);
10280
8dcea932
L
10281 /* Global symbols with non-default visibility can't be preempted. */
10282 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10283 return 1;
10284
10285 if (fr_var != NO_RELOC)
10286 switch ((enum bfd_reloc_code_real) fr_var)
10287 {
10288 case BFD_RELOC_386_PLT32:
10289 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10290 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10291 return 0;
10292 default:
10293 abort ();
10294 }
10295
b084df0b
L
10296 /* Global symbols with default visibility in a shared library may be
10297 preempted by another definition. */
8dcea932 10298 return !shared;
b084df0b
L
10299}
10300#endif
10301
ee7fcc42
AM
10302/* md_estimate_size_before_relax()
10303
10304 Called just before relax() for rs_machine_dependent frags. The x86
10305 assembler uses these frags to handle variable size jump
10306 instructions.
10307
10308 Any symbol that is now undefined will not become defined.
10309 Return the correct fr_subtype in the frag.
10310 Return the initial "guess for variable size of frag" to caller.
10311 The guess is actually the growth beyond the fixed part. Whatever
10312 we do to grow the fixed or variable part contributes to our
10313 returned value. */
10314
252b5132 10315int
7016a5d5 10316md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10317{
252b5132 10318 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10319 check for un-relaxable symbols. On an ELF system, we can't relax
10320 an externally visible symbol, because it may be overridden by a
10321 shared library. */
10322 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10323#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10324 || (IS_ELF
8dcea932
L
10325 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10326 fragP->fr_var))
fbeb56a4
DK
10327#endif
10328#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10329 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10330 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10331#endif
10332 )
252b5132 10333 {
b98ef147
AM
10334 /* Symbol is undefined in this segment, or we need to keep a
10335 reloc so that weak symbols can be overridden. */
10336 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10337 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10338 unsigned char *opcode;
10339 int old_fr_fix;
f6af82bd 10340
ee7fcc42 10341 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10342 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10343 else if (size == 2)
f6af82bd 10344 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10345#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10346 else if (need_plt32_p (fragP->fr_symbol))
10347 reloc_type = BFD_RELOC_X86_64_PLT32;
10348#endif
f6af82bd
AM
10349 else
10350 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10351
ee7fcc42
AM
10352 old_fr_fix = fragP->fr_fix;
10353 opcode = (unsigned char *) fragP->fr_opcode;
10354
fddf5b5b 10355 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10356 {
fddf5b5b
AM
10357 case UNCOND_JUMP:
10358 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10359 opcode[0] = 0xe9;
252b5132 10360 fragP->fr_fix += size;
062cd5e7
AS
10361 fix_new (fragP, old_fr_fix, size,
10362 fragP->fr_symbol,
10363 fragP->fr_offset, 1,
10364 reloc_type);
252b5132
RH
10365 break;
10366
fddf5b5b 10367 case COND_JUMP86:
412167cb
AM
10368 if (size == 2
10369 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10370 {
10371 /* Negate the condition, and branch past an
10372 unconditional jump. */
10373 opcode[0] ^= 1;
10374 opcode[1] = 3;
10375 /* Insert an unconditional jump. */
10376 opcode[2] = 0xe9;
10377 /* We added two extra opcode bytes, and have a two byte
10378 offset. */
10379 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10380 fix_new (fragP, old_fr_fix + 2, 2,
10381 fragP->fr_symbol,
10382 fragP->fr_offset, 1,
10383 reloc_type);
fddf5b5b
AM
10384 break;
10385 }
10386 /* Fall through. */
10387
10388 case COND_JUMP:
412167cb
AM
10389 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10390 {
3e02c1cc
AM
10391 fixS *fixP;
10392
412167cb 10393 fragP->fr_fix += 1;
3e02c1cc
AM
10394 fixP = fix_new (fragP, old_fr_fix, 1,
10395 fragP->fr_symbol,
10396 fragP->fr_offset, 1,
10397 BFD_RELOC_8_PCREL);
10398 fixP->fx_signed = 1;
412167cb
AM
10399 break;
10400 }
93c2a809 10401
24eab124 10402 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10403 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10404 opcode[1] = opcode[0] + 0x10;
f6af82bd 10405 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10406 /* We've added an opcode byte. */
10407 fragP->fr_fix += 1 + size;
062cd5e7
AS
10408 fix_new (fragP, old_fr_fix + 1, size,
10409 fragP->fr_symbol,
10410 fragP->fr_offset, 1,
10411 reloc_type);
252b5132 10412 break;
fddf5b5b
AM
10413
10414 default:
10415 BAD_CASE (fragP->fr_subtype);
10416 break;
252b5132
RH
10417 }
10418 frag_wane (fragP);
ee7fcc42 10419 return fragP->fr_fix - old_fr_fix;
252b5132 10420 }
93c2a809 10421
93c2a809
AM
10422 /* Guess size depending on current relax state. Initially the relax
10423 state will correspond to a short jump and we return 1, because
10424 the variable part of the frag (the branch offset) is one byte
10425 long. However, we can relax a section more than once and in that
10426 case we must either set fr_subtype back to the unrelaxed state,
10427 or return the value for the appropriate branch. */
10428 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10429}
10430
47926f60
KH
10431/* Called after relax() is finished.
10432
10433 In: Address of frag.
10434 fr_type == rs_machine_dependent.
10435 fr_subtype is what the address relaxed to.
10436
10437 Out: Any fixSs and constants are set up.
10438 Caller will turn frag into a ".space 0". */
10439
252b5132 10440void
7016a5d5
TG
10441md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10442 fragS *fragP)
252b5132 10443{
29b0f896 10444 unsigned char *opcode;
252b5132 10445 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10446 offsetT target_address;
10447 offsetT opcode_address;
252b5132 10448 unsigned int extension = 0;
847f7ad4 10449 offsetT displacement_from_opcode_start;
252b5132
RH
10450
10451 opcode = (unsigned char *) fragP->fr_opcode;
10452
47926f60 10453 /* Address we want to reach in file space. */
252b5132 10454 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10455
47926f60 10456 /* Address opcode resides at in file space. */
252b5132
RH
10457 opcode_address = fragP->fr_address + fragP->fr_fix;
10458
47926f60 10459 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10460 displacement_from_opcode_start = target_address - opcode_address;
10461
fddf5b5b 10462 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10463 {
47926f60
KH
10464 /* Don't have to change opcode. */
10465 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10466 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10467 }
10468 else
10469 {
10470 if (no_cond_jump_promotion
10471 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10472 as_warn_where (fragP->fr_file, fragP->fr_line,
10473 _("long jump required"));
252b5132 10474
fddf5b5b
AM
10475 switch (fragP->fr_subtype)
10476 {
10477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10478 extension = 4; /* 1 opcode + 4 displacement */
10479 opcode[0] = 0xe9;
10480 where_to_put_displacement = &opcode[1];
10481 break;
252b5132 10482
fddf5b5b
AM
10483 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10484 extension = 2; /* 1 opcode + 2 displacement */
10485 opcode[0] = 0xe9;
10486 where_to_put_displacement = &opcode[1];
10487 break;
252b5132 10488
fddf5b5b
AM
10489 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10490 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10491 extension = 5; /* 2 opcode + 4 displacement */
10492 opcode[1] = opcode[0] + 0x10;
10493 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10494 where_to_put_displacement = &opcode[2];
10495 break;
252b5132 10496
fddf5b5b
AM
10497 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10498 extension = 3; /* 2 opcode + 2 displacement */
10499 opcode[1] = opcode[0] + 0x10;
10500 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10501 where_to_put_displacement = &opcode[2];
10502 break;
252b5132 10503
fddf5b5b
AM
10504 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10505 extension = 4;
10506 opcode[0] ^= 1;
10507 opcode[1] = 3;
10508 opcode[2] = 0xe9;
10509 where_to_put_displacement = &opcode[3];
10510 break;
10511
10512 default:
10513 BAD_CASE (fragP->fr_subtype);
10514 break;
10515 }
252b5132 10516 }
fddf5b5b 10517
7b81dfbb
AJ
10518 /* If size if less then four we are sure that the operand fits,
10519 but if it's 4, then it could be that the displacement is larger
10520 then -/+ 2GB. */
10521 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10522 && object_64bit
10523 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10524 + ((addressT) 1 << 31))
10525 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10526 {
10527 as_bad_where (fragP->fr_file, fragP->fr_line,
10528 _("jump target out of range"));
10529 /* Make us emit 0. */
10530 displacement_from_opcode_start = extension;
10531 }
47926f60 10532 /* Now put displacement after opcode. */
252b5132
RH
10533 md_number_to_chars ((char *) where_to_put_displacement,
10534 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10535 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10536 fragP->fr_fix += extension;
10537}
10538\f
7016a5d5 10539/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10540 by our caller that we have all the info we need to fix it up.
10541
7016a5d5
TG
10542 Parameter valP is the pointer to the value of the bits.
10543
252b5132
RH
10544 On the 386, immediates, displacements, and data pointers are all in
10545 the same (little-endian) format, so we don't need to care about which
10546 we are handling. */
10547
94f592af 10548void
7016a5d5 10549md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10550{
94f592af 10551 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10552 valueT value = *valP;
252b5132 10553
f86103b7 10554#if !defined (TE_Mach)
93382f6d
AM
10555 if (fixP->fx_pcrel)
10556 {
10557 switch (fixP->fx_r_type)
10558 {
5865bb77
ILT
10559 default:
10560 break;
10561
d6ab8113
JB
10562 case BFD_RELOC_64:
10563 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10564 break;
93382f6d 10565 case BFD_RELOC_32:
ae8887b5 10566 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10567 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10568 break;
10569 case BFD_RELOC_16:
10570 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10571 break;
10572 case BFD_RELOC_8:
10573 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10574 break;
10575 }
10576 }
252b5132 10577
a161fe53 10578 if (fixP->fx_addsy != NULL
31312f95 10579 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10580 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10581 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10582 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10583 && !use_rela_relocations)
252b5132 10584 {
31312f95
AM
10585 /* This is a hack. There should be a better way to handle this.
10586 This covers for the fact that bfd_install_relocation will
10587 subtract the current location (for partial_inplace, PC relative
10588 relocations); see more below. */
252b5132 10589#ifndef OBJ_AOUT
718ddfc0 10590 if (IS_ELF
252b5132
RH
10591#ifdef TE_PE
10592 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10593#endif
10594 )
10595 value += fixP->fx_where + fixP->fx_frag->fr_address;
10596#endif
10597#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10598 if (IS_ELF)
252b5132 10599 {
6539b54b 10600 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10601
6539b54b 10602 if ((sym_seg == seg
2f66722d 10603 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10604 && sym_seg != absolute_section))
af65af87 10605 && !generic_force_reloc (fixP))
2f66722d
AM
10606 {
10607 /* Yes, we add the values in twice. This is because
6539b54b
AM
10608 bfd_install_relocation subtracts them out again. I think
10609 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10610 it. FIXME. */
10611 value += fixP->fx_where + fixP->fx_frag->fr_address;
10612 }
252b5132
RH
10613 }
10614#endif
10615#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10616 /* For some reason, the PE format does not store a
10617 section address offset for a PC relative symbol. */
10618 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10619 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10620 value += md_pcrel_from (fixP);
10621#endif
10622 }
fbeb56a4 10623#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10624 if (fixP->fx_addsy != NULL
10625 && S_IS_WEAK (fixP->fx_addsy)
10626 /* PR 16858: Do not modify weak function references. */
10627 && ! fixP->fx_pcrel)
fbeb56a4 10628 {
296a8689
NC
10629#if !defined (TE_PEP)
10630 /* For x86 PE weak function symbols are neither PC-relative
10631 nor do they set S_IS_FUNCTION. So the only reliable way
10632 to detect them is to check the flags of their containing
10633 section. */
10634 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10635 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10636 ;
10637 else
10638#endif
fbeb56a4
DK
10639 value -= S_GET_VALUE (fixP->fx_addsy);
10640 }
10641#endif
252b5132
RH
10642
10643 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10644 and we must not disappoint it. */
252b5132 10645#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10646 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10647 switch (fixP->fx_r_type)
10648 {
10649 case BFD_RELOC_386_PLT32:
3e73aa7c 10650 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10651 /* Make the jump instruction point to the address of the operand.
10652 At runtime we merely add the offset to the actual PLT entry.
10653 NB: Subtract the offset size only for jump instructions. */
10654 if (fixP->fx_pcrel)
10655 value = -4;
47926f60 10656 break;
31312f95 10657
13ae64f3
JJ
10658 case BFD_RELOC_386_TLS_GD:
10659 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10660 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10661 case BFD_RELOC_386_TLS_IE:
10662 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10663 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10664 case BFD_RELOC_X86_64_TLSGD:
10665 case BFD_RELOC_X86_64_TLSLD:
10666 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10667 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10668 value = 0; /* Fully resolved at runtime. No addend. */
10669 /* Fallthrough */
10670 case BFD_RELOC_386_TLS_LE:
10671 case BFD_RELOC_386_TLS_LDO_32:
10672 case BFD_RELOC_386_TLS_LE_32:
10673 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10674 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10675 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10676 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10677 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10678 break;
10679
67a4f2b7
AO
10680 case BFD_RELOC_386_TLS_DESC_CALL:
10681 case BFD_RELOC_X86_64_TLSDESC_CALL:
10682 value = 0; /* Fully resolved at runtime. No addend. */
10683 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10684 fixP->fx_done = 0;
10685 return;
10686
47926f60
KH
10687 case BFD_RELOC_VTABLE_INHERIT:
10688 case BFD_RELOC_VTABLE_ENTRY:
10689 fixP->fx_done = 0;
94f592af 10690 return;
47926f60
KH
10691
10692 default:
10693 break;
10694 }
10695#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10696 *valP = value;
f86103b7 10697#endif /* !defined (TE_Mach) */
3e73aa7c 10698
3e73aa7c 10699 /* Are we finished with this relocation now? */
c6682705 10700 if (fixP->fx_addsy == NULL)
3e73aa7c 10701 fixP->fx_done = 1;
fbeb56a4
DK
10702#if defined (OBJ_COFF) && defined (TE_PE)
10703 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10704 {
10705 fixP->fx_done = 0;
10706 /* Remember value for tc_gen_reloc. */
10707 fixP->fx_addnumber = value;
10708 /* Clear out the frag for now. */
10709 value = 0;
10710 }
10711#endif
3e73aa7c
JH
10712 else if (use_rela_relocations)
10713 {
10714 fixP->fx_no_overflow = 1;
062cd5e7
AS
10715 /* Remember value for tc_gen_reloc. */
10716 fixP->fx_addnumber = value;
3e73aa7c
JH
10717 value = 0;
10718 }
f86103b7 10719
94f592af 10720 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10721}
252b5132 10722\f
6d4af3c2 10723const char *
499ac353 10724md_atof (int type, char *litP, int *sizeP)
252b5132 10725{
499ac353
NC
10726 /* This outputs the LITTLENUMs in REVERSE order;
10727 in accord with the bigendian 386. */
10728 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10729}
10730\f
2d545b82 10731static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10732
252b5132 10733static char *
e3bb37b5 10734output_invalid (int c)
252b5132 10735{
3882b010 10736 if (ISPRINT (c))
f9f21a03
L
10737 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10738 "'%c'", c);
252b5132 10739 else
f9f21a03 10740 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10741 "(0x%x)", (unsigned char) c);
252b5132
RH
10742 return output_invalid_buf;
10743}
10744
af6bdddf 10745/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10746
10747static const reg_entry *
4d1bb795 10748parse_real_register (char *reg_string, char **end_op)
252b5132 10749{
af6bdddf
AM
10750 char *s = reg_string;
10751 char *p;
252b5132
RH
10752 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10753 const reg_entry *r;
10754
10755 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10756 if (*s == REGISTER_PREFIX)
10757 ++s;
10758
10759 if (is_space_char (*s))
10760 ++s;
10761
10762 p = reg_name_given;
af6bdddf 10763 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10764 {
10765 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10766 return (const reg_entry *) NULL;
10767 s++;
252b5132
RH
10768 }
10769
6588847e
DN
10770 /* For naked regs, make sure that we are not dealing with an identifier.
10771 This prevents confusing an identifier like `eax_var' with register
10772 `eax'. */
10773 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10774 return (const reg_entry *) NULL;
10775
af6bdddf 10776 *end_op = s;
252b5132
RH
10777
10778 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10779
5f47d35b 10780 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10781 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10782 {
0e0eea78
JB
10783 if (!cpu_arch_flags.bitfield.cpu8087
10784 && !cpu_arch_flags.bitfield.cpu287
10785 && !cpu_arch_flags.bitfield.cpu387)
10786 return (const reg_entry *) NULL;
10787
5f47d35b
AM
10788 if (is_space_char (*s))
10789 ++s;
10790 if (*s == '(')
10791 {
af6bdddf 10792 ++s;
5f47d35b
AM
10793 if (is_space_char (*s))
10794 ++s;
10795 if (*s >= '0' && *s <= '7')
10796 {
db557034 10797 int fpr = *s - '0';
af6bdddf 10798 ++s;
5f47d35b
AM
10799 if (is_space_char (*s))
10800 ++s;
10801 if (*s == ')')
10802 {
10803 *end_op = s + 1;
1e9cc1c2 10804 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10805 know (r);
10806 return r + fpr;
5f47d35b 10807 }
5f47d35b 10808 }
47926f60 10809 /* We have "%st(" then garbage. */
5f47d35b
AM
10810 return (const reg_entry *) NULL;
10811 }
10812 }
10813
a60de03c
JB
10814 if (r == NULL || allow_pseudo_reg)
10815 return r;
10816
0dfbf9d7 10817 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10818 return (const reg_entry *) NULL;
10819
dc821c5f 10820 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10821 || r->reg_type.bitfield.sreg3
10822 || r->reg_type.bitfield.control
10823 || r->reg_type.bitfield.debug
10824 || r->reg_type.bitfield.test)
10825 && !cpu_arch_flags.bitfield.cpui386)
10826 return (const reg_entry *) NULL;
10827
6e041cf4 10828 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10829 return (const reg_entry *) NULL;
10830
6e041cf4
JB
10831 if (!cpu_arch_flags.bitfield.cpuavx512f)
10832 {
10833 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10834 return (const reg_entry *) NULL;
40f12533 10835
6e041cf4
JB
10836 if (!cpu_arch_flags.bitfield.cpuavx)
10837 {
10838 if (r->reg_type.bitfield.ymmword)
10839 return (const reg_entry *) NULL;
1848e567 10840
6e041cf4
JB
10841 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10842 return (const reg_entry *) NULL;
10843 }
10844 }
43234a1e 10845
1adf7f56
JB
10846 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10847 return (const reg_entry *) NULL;
10848
db51cc60 10849 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10850 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10851 return (const reg_entry *) NULL;
10852
1d3f8286
JB
10853 /* Upper 16 vector registers are only available with VREX in 64bit
10854 mode, and require EVEX encoding. */
10855 if (r->reg_flags & RegVRex)
43234a1e 10856 {
e951d5ca 10857 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10858 || flag_code != CODE_64BIT)
10859 return (const reg_entry *) NULL;
1d3f8286
JB
10860
10861 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10862 }
10863
4787f4a5
JB
10864 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10865 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10866 && flag_code != CODE_64BIT)
20f0a1fc 10867 return (const reg_entry *) NULL;
1ae00879 10868
b7240065
JB
10869 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10870 return (const reg_entry *) NULL;
10871
252b5132
RH
10872 return r;
10873}
4d1bb795
JB
10874
10875/* REG_STRING starts *before* REGISTER_PREFIX. */
10876
10877static const reg_entry *
10878parse_register (char *reg_string, char **end_op)
10879{
10880 const reg_entry *r;
10881
10882 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10883 r = parse_real_register (reg_string, end_op);
10884 else
10885 r = NULL;
10886 if (!r)
10887 {
10888 char *save = input_line_pointer;
10889 char c;
10890 symbolS *symbolP;
10891
10892 input_line_pointer = reg_string;
d02603dc 10893 c = get_symbol_name (&reg_string);
4d1bb795
JB
10894 symbolP = symbol_find (reg_string);
10895 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10896 {
10897 const expressionS *e = symbol_get_value_expression (symbolP);
10898
0398aac5 10899 know (e->X_op == O_register);
4eed87de 10900 know (e->X_add_number >= 0
c3fe08fa 10901 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10902 r = i386_regtab + e->X_add_number;
d3bb6b49 10903 if ((r->reg_flags & RegVRex))
86fa6981 10904 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10905 *end_op = input_line_pointer;
10906 }
10907 *input_line_pointer = c;
10908 input_line_pointer = save;
10909 }
10910 return r;
10911}
10912
10913int
10914i386_parse_name (char *name, expressionS *e, char *nextcharP)
10915{
10916 const reg_entry *r;
10917 char *end = input_line_pointer;
10918
10919 *end = *nextcharP;
10920 r = parse_register (name, &input_line_pointer);
10921 if (r && end <= input_line_pointer)
10922 {
10923 *nextcharP = *input_line_pointer;
10924 *input_line_pointer = 0;
10925 e->X_op = O_register;
10926 e->X_add_number = r - i386_regtab;
10927 return 1;
10928 }
10929 input_line_pointer = end;
10930 *end = 0;
ee86248c 10931 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10932}
10933
10934void
10935md_operand (expressionS *e)
10936{
ee86248c
JB
10937 char *end;
10938 const reg_entry *r;
4d1bb795 10939
ee86248c
JB
10940 switch (*input_line_pointer)
10941 {
10942 case REGISTER_PREFIX:
10943 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10944 if (r)
10945 {
10946 e->X_op = O_register;
10947 e->X_add_number = r - i386_regtab;
10948 input_line_pointer = end;
10949 }
ee86248c
JB
10950 break;
10951
10952 case '[':
9c2799c2 10953 gas_assert (intel_syntax);
ee86248c
JB
10954 end = input_line_pointer++;
10955 expression (e);
10956 if (*input_line_pointer == ']')
10957 {
10958 ++input_line_pointer;
10959 e->X_op_symbol = make_expr_symbol (e);
10960 e->X_add_symbol = NULL;
10961 e->X_add_number = 0;
10962 e->X_op = O_index;
10963 }
10964 else
10965 {
10966 e->X_op = O_absent;
10967 input_line_pointer = end;
10968 }
10969 break;
4d1bb795
JB
10970 }
10971}
10972
252b5132 10973\f
4cc782b5 10974#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10975const char *md_shortopts = "kVQ:sqnO::";
252b5132 10976#else
b6f8c7c4 10977const char *md_shortopts = "qnO::";
252b5132 10978#endif
6e0b89ee 10979
3e73aa7c 10980#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10981#define OPTION_64 (OPTION_MD_BASE + 1)
10982#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10983#define OPTION_MARCH (OPTION_MD_BASE + 3)
10984#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10985#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10986#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10987#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10988#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10989#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10990#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10991#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10992#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10993#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10994#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10995#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10996#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10997#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10998#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10999#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11000#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11001#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11002#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11003#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11004#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11005#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11006#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11007
99ad8390
NC
11008struct option md_longopts[] =
11009{
3e73aa7c 11010 {"32", no_argument, NULL, OPTION_32},
321098a5 11011#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11012 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11013 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11014#endif
11015#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11016 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11017 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11018 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11019#endif
b3b91714 11020 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11021 {"march", required_argument, NULL, OPTION_MARCH},
11022 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11023 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11024 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11025 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11026 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11027 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11028 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11029 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11030 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11031 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11032 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11033 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11034 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11035# if defined (TE_PE) || defined (TE_PEP)
11036 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11037#endif
d1982f93 11038 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11039 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11040 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11041 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11042 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11043 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11044 {NULL, no_argument, NULL, 0}
11045};
11046size_t md_longopts_size = sizeof (md_longopts);
11047
11048int
17b9d67d 11049md_parse_option (int c, const char *arg)
252b5132 11050{
91d6fa6a 11051 unsigned int j;
293f5f65 11052 char *arch, *next, *saved;
9103f4f4 11053
252b5132
RH
11054 switch (c)
11055 {
12b55ccc
L
11056 case 'n':
11057 optimize_align_code = 0;
11058 break;
11059
a38cf1db
AM
11060 case 'q':
11061 quiet_warnings = 1;
252b5132
RH
11062 break;
11063
11064#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11065 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11066 should be emitted or not. FIXME: Not implemented. */
11067 case 'Q':
252b5132
RH
11068 break;
11069
11070 /* -V: SVR4 argument to print version ID. */
11071 case 'V':
11072 print_version_id ();
11073 break;
11074
a38cf1db
AM
11075 /* -k: Ignore for FreeBSD compatibility. */
11076 case 'k':
252b5132 11077 break;
4cc782b5
ILT
11078
11079 case 's':
11080 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11081 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11082 break;
8dcea932
L
11083
11084 case OPTION_MSHARED:
11085 shared = 1;
11086 break;
b4a3a7b4
L
11087
11088 case OPTION_X86_USED_NOTE:
11089 if (strcasecmp (arg, "yes") == 0)
11090 x86_used_note = 1;
11091 else if (strcasecmp (arg, "no") == 0)
11092 x86_used_note = 0;
11093 else
11094 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11095 break;
11096
11097
99ad8390 11098#endif
321098a5 11099#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11100 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11101 case OPTION_64:
11102 {
11103 const char **list, **l;
11104
3e73aa7c
JH
11105 list = bfd_target_list ();
11106 for (l = list; *l != NULL; l++)
8620418b 11107 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11108 || strcmp (*l, "coff-x86-64") == 0
11109 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11110 || strcmp (*l, "pei-x86-64") == 0
11111 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11112 {
11113 default_arch = "x86_64";
11114 break;
11115 }
3e73aa7c 11116 if (*l == NULL)
2b5d6a91 11117 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11118 free (list);
11119 }
11120 break;
11121#endif
252b5132 11122
351f65ca 11123#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11124 case OPTION_X32:
351f65ca
L
11125 if (IS_ELF)
11126 {
11127 const char **list, **l;
11128
11129 list = bfd_target_list ();
11130 for (l = list; *l != NULL; l++)
11131 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11132 {
11133 default_arch = "x86_64:32";
11134 break;
11135 }
11136 if (*l == NULL)
2b5d6a91 11137 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11138 free (list);
11139 }
11140 else
11141 as_fatal (_("32bit x86_64 is only supported for ELF"));
11142 break;
11143#endif
11144
6e0b89ee
AM
11145 case OPTION_32:
11146 default_arch = "i386";
11147 break;
11148
b3b91714
AM
11149 case OPTION_DIVIDE:
11150#ifdef SVR4_COMMENT_CHARS
11151 {
11152 char *n, *t;
11153 const char *s;
11154
add39d23 11155 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11156 t = n;
11157 for (s = i386_comment_chars; *s != '\0'; s++)
11158 if (*s != '/')
11159 *t++ = *s;
11160 *t = '\0';
11161 i386_comment_chars = n;
11162 }
11163#endif
11164 break;
11165
9103f4f4 11166 case OPTION_MARCH:
293f5f65
L
11167 saved = xstrdup (arg);
11168 arch = saved;
11169 /* Allow -march=+nosse. */
11170 if (*arch == '+')
11171 arch++;
6305a203 11172 do
9103f4f4 11173 {
6305a203 11174 if (*arch == '.')
2b5d6a91 11175 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11176 next = strchr (arch, '+');
11177 if (next)
11178 *next++ = '\0';
91d6fa6a 11179 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11180 {
91d6fa6a 11181 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11182 {
6305a203 11183 /* Processor. */
1ded5609
JB
11184 if (! cpu_arch[j].flags.bitfield.cpui386)
11185 continue;
11186
91d6fa6a 11187 cpu_arch_name = cpu_arch[j].name;
6305a203 11188 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11189 cpu_arch_flags = cpu_arch[j].flags;
11190 cpu_arch_isa = cpu_arch[j].type;
11191 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11192 if (!cpu_arch_tune_set)
11193 {
11194 cpu_arch_tune = cpu_arch_isa;
11195 cpu_arch_tune_flags = cpu_arch_isa_flags;
11196 }
11197 break;
11198 }
91d6fa6a
NC
11199 else if (*cpu_arch [j].name == '.'
11200 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11201 {
33eaf5de 11202 /* ISA extension. */
6305a203 11203 i386_cpu_flags flags;
309d3373 11204
293f5f65
L
11205 flags = cpu_flags_or (cpu_arch_flags,
11206 cpu_arch[j].flags);
81486035 11207
5b64d091 11208 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11209 {
11210 if (cpu_sub_arch_name)
11211 {
11212 char *name = cpu_sub_arch_name;
11213 cpu_sub_arch_name = concat (name,
91d6fa6a 11214 cpu_arch[j].name,
1bf57e9f 11215 (const char *) NULL);
6305a203
L
11216 free (name);
11217 }
11218 else
91d6fa6a 11219 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11220 cpu_arch_flags = flags;
a586129e 11221 cpu_arch_isa_flags = flags;
6305a203 11222 }
0089dace
L
11223 else
11224 cpu_arch_isa_flags
11225 = cpu_flags_or (cpu_arch_isa_flags,
11226 cpu_arch[j].flags);
6305a203 11227 break;
ccc9c027 11228 }
9103f4f4 11229 }
6305a203 11230
293f5f65
L
11231 if (j >= ARRAY_SIZE (cpu_arch))
11232 {
33eaf5de 11233 /* Disable an ISA extension. */
293f5f65
L
11234 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11235 if (strcmp (arch, cpu_noarch [j].name) == 0)
11236 {
11237 i386_cpu_flags flags;
11238
11239 flags = cpu_flags_and_not (cpu_arch_flags,
11240 cpu_noarch[j].flags);
11241 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11242 {
11243 if (cpu_sub_arch_name)
11244 {
11245 char *name = cpu_sub_arch_name;
11246 cpu_sub_arch_name = concat (arch,
11247 (const char *) NULL);
11248 free (name);
11249 }
11250 else
11251 cpu_sub_arch_name = xstrdup (arch);
11252 cpu_arch_flags = flags;
11253 cpu_arch_isa_flags = flags;
11254 }
11255 break;
11256 }
11257
11258 if (j >= ARRAY_SIZE (cpu_noarch))
11259 j = ARRAY_SIZE (cpu_arch);
11260 }
11261
91d6fa6a 11262 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11263 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11264
11265 arch = next;
9103f4f4 11266 }
293f5f65
L
11267 while (next != NULL);
11268 free (saved);
9103f4f4
L
11269 break;
11270
11271 case OPTION_MTUNE:
11272 if (*arg == '.')
2b5d6a91 11273 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11274 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11275 {
91d6fa6a 11276 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11277 {
ccc9c027 11278 cpu_arch_tune_set = 1;
91d6fa6a
NC
11279 cpu_arch_tune = cpu_arch [j].type;
11280 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11281 break;
11282 }
11283 }
91d6fa6a 11284 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11285 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11286 break;
11287
1efbbeb4
L
11288 case OPTION_MMNEMONIC:
11289 if (strcasecmp (arg, "att") == 0)
11290 intel_mnemonic = 0;
11291 else if (strcasecmp (arg, "intel") == 0)
11292 intel_mnemonic = 1;
11293 else
2b5d6a91 11294 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11295 break;
11296
11297 case OPTION_MSYNTAX:
11298 if (strcasecmp (arg, "att") == 0)
11299 intel_syntax = 0;
11300 else if (strcasecmp (arg, "intel") == 0)
11301 intel_syntax = 1;
11302 else
2b5d6a91 11303 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11304 break;
11305
11306 case OPTION_MINDEX_REG:
11307 allow_index_reg = 1;
11308 break;
11309
11310 case OPTION_MNAKED_REG:
11311 allow_naked_reg = 1;
11312 break;
11313
c0f3af97
L
11314 case OPTION_MSSE2AVX:
11315 sse2avx = 1;
11316 break;
11317
daf50ae7
L
11318 case OPTION_MSSE_CHECK:
11319 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11320 sse_check = check_error;
daf50ae7 11321 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11322 sse_check = check_warning;
daf50ae7 11323 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11324 sse_check = check_none;
daf50ae7 11325 else
2b5d6a91 11326 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11327 break;
11328
7bab8ab5
JB
11329 case OPTION_MOPERAND_CHECK:
11330 if (strcasecmp (arg, "error") == 0)
11331 operand_check = check_error;
11332 else if (strcasecmp (arg, "warning") == 0)
11333 operand_check = check_warning;
11334 else if (strcasecmp (arg, "none") == 0)
11335 operand_check = check_none;
11336 else
11337 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11338 break;
11339
539f890d
L
11340 case OPTION_MAVXSCALAR:
11341 if (strcasecmp (arg, "128") == 0)
11342 avxscalar = vex128;
11343 else if (strcasecmp (arg, "256") == 0)
11344 avxscalar = vex256;
11345 else
2b5d6a91 11346 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11347 break;
11348
03751133
L
11349 case OPTION_MVEXWIG:
11350 if (strcmp (arg, "0") == 0)
11351 vexwig = evexw0;
11352 else if (strcmp (arg, "1") == 0)
11353 vexwig = evexw1;
11354 else
11355 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11356 break;
11357
7e8b059b
L
11358 case OPTION_MADD_BND_PREFIX:
11359 add_bnd_prefix = 1;
11360 break;
11361
43234a1e
L
11362 case OPTION_MEVEXLIG:
11363 if (strcmp (arg, "128") == 0)
11364 evexlig = evexl128;
11365 else if (strcmp (arg, "256") == 0)
11366 evexlig = evexl256;
11367 else if (strcmp (arg, "512") == 0)
11368 evexlig = evexl512;
11369 else
11370 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11371 break;
11372
d3d3c6db
IT
11373 case OPTION_MEVEXRCIG:
11374 if (strcmp (arg, "rne") == 0)
11375 evexrcig = rne;
11376 else if (strcmp (arg, "rd") == 0)
11377 evexrcig = rd;
11378 else if (strcmp (arg, "ru") == 0)
11379 evexrcig = ru;
11380 else if (strcmp (arg, "rz") == 0)
11381 evexrcig = rz;
11382 else
11383 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11384 break;
11385
43234a1e
L
11386 case OPTION_MEVEXWIG:
11387 if (strcmp (arg, "0") == 0)
11388 evexwig = evexw0;
11389 else if (strcmp (arg, "1") == 0)
11390 evexwig = evexw1;
11391 else
11392 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11393 break;
11394
167ad85b
TG
11395# if defined (TE_PE) || defined (TE_PEP)
11396 case OPTION_MBIG_OBJ:
11397 use_big_obj = 1;
11398 break;
11399#endif
11400
d1982f93 11401 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11402 if (strcasecmp (arg, "yes") == 0)
11403 omit_lock_prefix = 1;
11404 else if (strcasecmp (arg, "no") == 0)
11405 omit_lock_prefix = 0;
11406 else
11407 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11408 break;
11409
e4e00185
AS
11410 case OPTION_MFENCE_AS_LOCK_ADD:
11411 if (strcasecmp (arg, "yes") == 0)
11412 avoid_fence = 1;
11413 else if (strcasecmp (arg, "no") == 0)
11414 avoid_fence = 0;
11415 else
11416 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11417 break;
11418
0cb4071e
L
11419 case OPTION_MRELAX_RELOCATIONS:
11420 if (strcasecmp (arg, "yes") == 0)
11421 generate_relax_relocations = 1;
11422 else if (strcasecmp (arg, "no") == 0)
11423 generate_relax_relocations = 0;
11424 else
11425 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11426 break;
11427
5db04b09 11428 case OPTION_MAMD64:
e89c5eaa 11429 intel64 = 0;
5db04b09
L
11430 break;
11431
11432 case OPTION_MINTEL64:
e89c5eaa 11433 intel64 = 1;
5db04b09
L
11434 break;
11435
b6f8c7c4
L
11436 case 'O':
11437 if (arg == NULL)
11438 {
11439 optimize = 1;
11440 /* Turn off -Os. */
11441 optimize_for_space = 0;
11442 }
11443 else if (*arg == 's')
11444 {
11445 optimize_for_space = 1;
11446 /* Turn on all encoding optimizations. */
41fd2579 11447 optimize = INT_MAX;
b6f8c7c4
L
11448 }
11449 else
11450 {
11451 optimize = atoi (arg);
11452 /* Turn off -Os. */
11453 optimize_for_space = 0;
11454 }
11455 break;
11456
252b5132
RH
11457 default:
11458 return 0;
11459 }
11460 return 1;
11461}
11462
8a2c8fef
L
11463#define MESSAGE_TEMPLATE \
11464" "
11465
293f5f65
L
11466static char *
11467output_message (FILE *stream, char *p, char *message, char *start,
11468 int *left_p, const char *name, int len)
11469{
11470 int size = sizeof (MESSAGE_TEMPLATE);
11471 int left = *left_p;
11472
11473 /* Reserve 2 spaces for ", " or ",\0" */
11474 left -= len + 2;
11475
11476 /* Check if there is any room. */
11477 if (left >= 0)
11478 {
11479 if (p != start)
11480 {
11481 *p++ = ',';
11482 *p++ = ' ';
11483 }
11484 p = mempcpy (p, name, len);
11485 }
11486 else
11487 {
11488 /* Output the current message now and start a new one. */
11489 *p++ = ',';
11490 *p = '\0';
11491 fprintf (stream, "%s\n", message);
11492 p = start;
11493 left = size - (start - message) - len - 2;
11494
11495 gas_assert (left >= 0);
11496
11497 p = mempcpy (p, name, len);
11498 }
11499
11500 *left_p = left;
11501 return p;
11502}
11503
8a2c8fef 11504static void
1ded5609 11505show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11506{
11507 static char message[] = MESSAGE_TEMPLATE;
11508 char *start = message + 27;
11509 char *p;
11510 int size = sizeof (MESSAGE_TEMPLATE);
11511 int left;
11512 const char *name;
11513 int len;
11514 unsigned int j;
11515
11516 p = start;
11517 left = size - (start - message);
11518 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11519 {
11520 /* Should it be skipped? */
11521 if (cpu_arch [j].skip)
11522 continue;
11523
11524 name = cpu_arch [j].name;
11525 len = cpu_arch [j].len;
11526 if (*name == '.')
11527 {
11528 /* It is an extension. Skip if we aren't asked to show it. */
11529 if (ext)
11530 {
11531 name++;
11532 len--;
11533 }
11534 else
11535 continue;
11536 }
11537 else if (ext)
11538 {
11539 /* It is an processor. Skip if we show only extension. */
11540 continue;
11541 }
1ded5609
JB
11542 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11543 {
11544 /* It is an impossible processor - skip. */
11545 continue;
11546 }
8a2c8fef 11547
293f5f65 11548 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11549 }
11550
293f5f65
L
11551 /* Display disabled extensions. */
11552 if (ext)
11553 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11554 {
11555 name = cpu_noarch [j].name;
11556 len = cpu_noarch [j].len;
11557 p = output_message (stream, p, message, start, &left, name,
11558 len);
11559 }
11560
8a2c8fef
L
11561 *p = '\0';
11562 fprintf (stream, "%s\n", message);
11563}
11564
252b5132 11565void
8a2c8fef 11566md_show_usage (FILE *stream)
252b5132 11567{
4cc782b5
ILT
11568#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11569 fprintf (stream, _("\
a38cf1db
AM
11570 -Q ignored\n\
11571 -V print assembler version number\n\
b3b91714
AM
11572 -k ignored\n"));
11573#endif
11574 fprintf (stream, _("\
12b55ccc 11575 -n Do not optimize code alignment\n\
b3b91714
AM
11576 -q quieten some warnings\n"));
11577#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11578 fprintf (stream, _("\
a38cf1db 11579 -s ignored\n"));
b3b91714 11580#endif
d7f449c0
L
11581#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11582 || defined (TE_PE) || defined (TE_PEP))
751d281c 11583 fprintf (stream, _("\
570561f7 11584 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11585#endif
b3b91714
AM
11586#ifdef SVR4_COMMENT_CHARS
11587 fprintf (stream, _("\
11588 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11589#else
11590 fprintf (stream, _("\
b3b91714 11591 --divide ignored\n"));
4cc782b5 11592#endif
9103f4f4 11593 fprintf (stream, _("\
6305a203 11594 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11595 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11596 show_arch (stream, 0, 1);
8a2c8fef
L
11597 fprintf (stream, _("\
11598 EXTENSION is combination of:\n"));
1ded5609 11599 show_arch (stream, 1, 0);
6305a203 11600 fprintf (stream, _("\
8a2c8fef 11601 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11602 show_arch (stream, 0, 0);
ba104c83 11603 fprintf (stream, _("\
c0f3af97
L
11604 -msse2avx encode SSE instructions with VEX prefix\n"));
11605 fprintf (stream, _("\
7c5c05ef 11606 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11607 check SSE instructions\n"));
11608 fprintf (stream, _("\
7c5c05ef 11609 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11610 check operand combinations for validity\n"));
11611 fprintf (stream, _("\
7c5c05ef
L
11612 -mavxscalar=[128|256] (default: 128)\n\
11613 encode scalar AVX instructions with specific vector\n\
539f890d
L
11614 length\n"));
11615 fprintf (stream, _("\
03751133
L
11616 -mvexwig=[0|1] (default: 0)\n\
11617 encode VEX instructions with specific VEX.W value\n\
11618 for VEX.W bit ignored instructions\n"));
11619 fprintf (stream, _("\
7c5c05ef
L
11620 -mevexlig=[128|256|512] (default: 128)\n\
11621 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11622 length\n"));
11623 fprintf (stream, _("\
7c5c05ef
L
11624 -mevexwig=[0|1] (default: 0)\n\
11625 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11626 for EVEX.W bit ignored instructions\n"));
11627 fprintf (stream, _("\
7c5c05ef 11628 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11629 encode EVEX instructions with specific EVEX.RC value\n\
11630 for SAE-only ignored instructions\n"));
11631 fprintf (stream, _("\
7c5c05ef
L
11632 -mmnemonic=[att|intel] "));
11633 if (SYSV386_COMPAT)
11634 fprintf (stream, _("(default: att)\n"));
11635 else
11636 fprintf (stream, _("(default: intel)\n"));
11637 fprintf (stream, _("\
11638 use AT&T/Intel mnemonic\n"));
ba104c83 11639 fprintf (stream, _("\
7c5c05ef
L
11640 -msyntax=[att|intel] (default: att)\n\
11641 use AT&T/Intel syntax\n"));
ba104c83
L
11642 fprintf (stream, _("\
11643 -mindex-reg support pseudo index registers\n"));
11644 fprintf (stream, _("\
11645 -mnaked-reg don't require `%%' prefix for registers\n"));
11646 fprintf (stream, _("\
7e8b059b 11647 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11648#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11649 fprintf (stream, _("\
11650 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11651 fprintf (stream, _("\
11652 -mx86-used-note=[no|yes] "));
11653 if (DEFAULT_X86_USED_NOTE)
11654 fprintf (stream, _("(default: yes)\n"));
11655 else
11656 fprintf (stream, _("(default: no)\n"));
11657 fprintf (stream, _("\
11658 generate x86 used ISA and feature properties\n"));
11659#endif
11660#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11661 fprintf (stream, _("\
11662 -mbig-obj generate big object files\n"));
11663#endif
d022bddd 11664 fprintf (stream, _("\
7c5c05ef 11665 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11666 strip all lock prefixes\n"));
5db04b09 11667 fprintf (stream, _("\
7c5c05ef 11668 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11669 encode lfence, mfence and sfence as\n\
11670 lock addl $0x0, (%%{re}sp)\n"));
11671 fprintf (stream, _("\
7c5c05ef
L
11672 -mrelax-relocations=[no|yes] "));
11673 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11674 fprintf (stream, _("(default: yes)\n"));
11675 else
11676 fprintf (stream, _("(default: no)\n"));
11677 fprintf (stream, _("\
0cb4071e
L
11678 generate relax relocations\n"));
11679 fprintf (stream, _("\
7c5c05ef 11680 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11681 fprintf (stream, _("\
11682 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11683}
11684
3e73aa7c 11685#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11686 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11687 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11688
11689/* Pick the target format to use. */
11690
47926f60 11691const char *
e3bb37b5 11692i386_target_format (void)
252b5132 11693{
351f65ca
L
11694 if (!strncmp (default_arch, "x86_64", 6))
11695 {
11696 update_code_flag (CODE_64BIT, 1);
11697 if (default_arch[6] == '\0')
7f56bc95 11698 x86_elf_abi = X86_64_ABI;
351f65ca 11699 else
7f56bc95 11700 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11701 }
3e73aa7c 11702 else if (!strcmp (default_arch, "i386"))
78f12dd3 11703 update_code_flag (CODE_32BIT, 1);
5197d474
L
11704 else if (!strcmp (default_arch, "iamcu"))
11705 {
11706 update_code_flag (CODE_32BIT, 1);
11707 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11708 {
11709 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11710 cpu_arch_name = "iamcu";
11711 cpu_sub_arch_name = NULL;
11712 cpu_arch_flags = iamcu_flags;
11713 cpu_arch_isa = PROCESSOR_IAMCU;
11714 cpu_arch_isa_flags = iamcu_flags;
11715 if (!cpu_arch_tune_set)
11716 {
11717 cpu_arch_tune = cpu_arch_isa;
11718 cpu_arch_tune_flags = cpu_arch_isa_flags;
11719 }
11720 }
8d471ec1 11721 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11722 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11723 cpu_arch_name);
11724 }
3e73aa7c 11725 else
2b5d6a91 11726 as_fatal (_("unknown architecture"));
89507696
JB
11727
11728 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11729 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11730 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11731 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11732
252b5132
RH
11733 switch (OUTPUT_FLAVOR)
11734 {
9384f2ff 11735#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11736 case bfd_target_aout_flavour:
47926f60 11737 return AOUT_TARGET_FORMAT;
4c63da97 11738#endif
9384f2ff
AM
11739#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11740# if defined (TE_PE) || defined (TE_PEP)
11741 case bfd_target_coff_flavour:
167ad85b
TG
11742 if (flag_code == CODE_64BIT)
11743 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11744 else
11745 return "pe-i386";
9384f2ff 11746# elif defined (TE_GO32)
0561d57c
JK
11747 case bfd_target_coff_flavour:
11748 return "coff-go32";
9384f2ff 11749# else
252b5132
RH
11750 case bfd_target_coff_flavour:
11751 return "coff-i386";
9384f2ff 11752# endif
4c63da97 11753#endif
3e73aa7c 11754#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11755 case bfd_target_elf_flavour:
3e73aa7c 11756 {
351f65ca
L
11757 const char *format;
11758
11759 switch (x86_elf_abi)
4fa24527 11760 {
351f65ca
L
11761 default:
11762 format = ELF_TARGET_FORMAT;
11763 break;
7f56bc95 11764 case X86_64_ABI:
351f65ca 11765 use_rela_relocations = 1;
4fa24527 11766 object_64bit = 1;
351f65ca
L
11767 format = ELF_TARGET_FORMAT64;
11768 break;
7f56bc95 11769 case X86_64_X32_ABI:
4fa24527 11770 use_rela_relocations = 1;
351f65ca 11771 object_64bit = 1;
862be3fb 11772 disallow_64bit_reloc = 1;
351f65ca
L
11773 format = ELF_TARGET_FORMAT32;
11774 break;
4fa24527 11775 }
3632d14b 11776 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11777 {
7f56bc95 11778 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11779 as_fatal (_("Intel L1OM is 64bit only"));
11780 return ELF_TARGET_L1OM_FORMAT;
11781 }
b49f93f6 11782 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11783 {
11784 if (x86_elf_abi != X86_64_ABI)
11785 as_fatal (_("Intel K1OM is 64bit only"));
11786 return ELF_TARGET_K1OM_FORMAT;
11787 }
81486035
L
11788 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11789 {
11790 if (x86_elf_abi != I386_ABI)
11791 as_fatal (_("Intel MCU is 32bit only"));
11792 return ELF_TARGET_IAMCU_FORMAT;
11793 }
8a9036a4 11794 else
351f65ca 11795 return format;
3e73aa7c 11796 }
e57f8c65
TG
11797#endif
11798#if defined (OBJ_MACH_O)
11799 case bfd_target_mach_o_flavour:
d382c579
TG
11800 if (flag_code == CODE_64BIT)
11801 {
11802 use_rela_relocations = 1;
11803 object_64bit = 1;
11804 return "mach-o-x86-64";
11805 }
11806 else
11807 return "mach-o-i386";
4c63da97 11808#endif
252b5132
RH
11809 default:
11810 abort ();
11811 return NULL;
11812 }
11813}
11814
47926f60 11815#endif /* OBJ_MAYBE_ more than one */
252b5132 11816\f
252b5132 11817symbolS *
7016a5d5 11818md_undefined_symbol (char *name)
252b5132 11819{
18dc2407
ILT
11820 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11821 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11822 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11823 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11824 {
11825 if (!GOT_symbol)
11826 {
11827 if (symbol_find (name))
11828 as_bad (_("GOT already in symbol table"));
11829 GOT_symbol = symbol_new (name, undefined_section,
11830 (valueT) 0, &zero_address_frag);
11831 };
11832 return GOT_symbol;
11833 }
252b5132
RH
11834 return 0;
11835}
11836
11837/* Round up a section size to the appropriate boundary. */
47926f60 11838
252b5132 11839valueT
7016a5d5 11840md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11841{
4c63da97
AM
11842#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11843 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11844 {
11845 /* For a.out, force the section size to be aligned. If we don't do
11846 this, BFD will align it for us, but it will not write out the
11847 final bytes of the section. This may be a bug in BFD, but it is
11848 easier to fix it here since that is how the other a.out targets
11849 work. */
11850 int align;
11851
11852 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11853 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11854 }
252b5132
RH
11855#endif
11856
11857 return size;
11858}
11859
11860/* On the i386, PC-relative offsets are relative to the start of the
11861 next instruction. That is, the address of the offset, plus its
11862 size, since the offset is always the last part of the insn. */
11863
11864long
e3bb37b5 11865md_pcrel_from (fixS *fixP)
252b5132
RH
11866{
11867 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11868}
11869
11870#ifndef I386COFF
11871
11872static void
e3bb37b5 11873s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11874{
29b0f896 11875 int temp;
252b5132 11876
8a75718c
JB
11877#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11878 if (IS_ELF)
11879 obj_elf_section_change_hook ();
11880#endif
252b5132
RH
11881 temp = get_absolute_expression ();
11882 subseg_set (bss_section, (subsegT) temp);
11883 demand_empty_rest_of_line ();
11884}
11885
11886#endif
11887
252b5132 11888void
e3bb37b5 11889i386_validate_fix (fixS *fixp)
252b5132 11890{
02a86693 11891 if (fixp->fx_subsy)
252b5132 11892 {
02a86693 11893 if (fixp->fx_subsy == GOT_symbol)
23df1078 11894 {
02a86693
L
11895 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11896 {
11897 if (!object_64bit)
11898 abort ();
11899#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11900 if (fixp->fx_tcbit2)
56ceb5b5
L
11901 fixp->fx_r_type = (fixp->fx_tcbit
11902 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11903 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11904 else
11905#endif
11906 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11907 }
d6ab8113 11908 else
02a86693
L
11909 {
11910 if (!object_64bit)
11911 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11912 else
11913 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11914 }
11915 fixp->fx_subsy = 0;
23df1078 11916 }
252b5132 11917 }
02a86693
L
11918#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11919 else if (!object_64bit)
11920 {
11921 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11922 && fixp->fx_tcbit2)
11923 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11924 }
11925#endif
252b5132
RH
11926}
11927
252b5132 11928arelent *
7016a5d5 11929tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11930{
11931 arelent *rel;
11932 bfd_reloc_code_real_type code;
11933
11934 switch (fixp->fx_r_type)
11935 {
8ce3d284 11936#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11937 case BFD_RELOC_SIZE32:
11938 case BFD_RELOC_SIZE64:
11939 if (S_IS_DEFINED (fixp->fx_addsy)
11940 && !S_IS_EXTERNAL (fixp->fx_addsy))
11941 {
11942 /* Resolve size relocation against local symbol to size of
11943 the symbol plus addend. */
11944 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11945 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11946 && !fits_in_unsigned_long (value))
11947 as_bad_where (fixp->fx_file, fixp->fx_line,
11948 _("symbol size computation overflow"));
11949 fixp->fx_addsy = NULL;
11950 fixp->fx_subsy = NULL;
11951 md_apply_fix (fixp, (valueT *) &value, NULL);
11952 return NULL;
11953 }
8ce3d284 11954#endif
1a0670f3 11955 /* Fall through. */
8fd4256d 11956
3e73aa7c
JH
11957 case BFD_RELOC_X86_64_PLT32:
11958 case BFD_RELOC_X86_64_GOT32:
11959 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11960 case BFD_RELOC_X86_64_GOTPCRELX:
11961 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11962 case BFD_RELOC_386_PLT32:
11963 case BFD_RELOC_386_GOT32:
02a86693 11964 case BFD_RELOC_386_GOT32X:
252b5132
RH
11965 case BFD_RELOC_386_GOTOFF:
11966 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11967 case BFD_RELOC_386_TLS_GD:
11968 case BFD_RELOC_386_TLS_LDM:
11969 case BFD_RELOC_386_TLS_LDO_32:
11970 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11971 case BFD_RELOC_386_TLS_IE:
11972 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11973 case BFD_RELOC_386_TLS_LE_32:
11974 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11975 case BFD_RELOC_386_TLS_GOTDESC:
11976 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11977 case BFD_RELOC_X86_64_TLSGD:
11978 case BFD_RELOC_X86_64_TLSLD:
11979 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11980 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11981 case BFD_RELOC_X86_64_GOTTPOFF:
11982 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11983 case BFD_RELOC_X86_64_TPOFF64:
11984 case BFD_RELOC_X86_64_GOTOFF64:
11985 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11986 case BFD_RELOC_X86_64_GOT64:
11987 case BFD_RELOC_X86_64_GOTPCREL64:
11988 case BFD_RELOC_X86_64_GOTPC64:
11989 case BFD_RELOC_X86_64_GOTPLT64:
11990 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11991 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11992 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11993 case BFD_RELOC_RVA:
11994 case BFD_RELOC_VTABLE_ENTRY:
11995 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11996#ifdef TE_PE
11997 case BFD_RELOC_32_SECREL:
11998#endif
252b5132
RH
11999 code = fixp->fx_r_type;
12000 break;
dbbaec26
L
12001 case BFD_RELOC_X86_64_32S:
12002 if (!fixp->fx_pcrel)
12003 {
12004 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12005 code = fixp->fx_r_type;
12006 break;
12007 }
1a0670f3 12008 /* Fall through. */
252b5132 12009 default:
93382f6d 12010 if (fixp->fx_pcrel)
252b5132 12011 {
93382f6d
AM
12012 switch (fixp->fx_size)
12013 {
12014 default:
b091f402
AM
12015 as_bad_where (fixp->fx_file, fixp->fx_line,
12016 _("can not do %d byte pc-relative relocation"),
12017 fixp->fx_size);
93382f6d
AM
12018 code = BFD_RELOC_32_PCREL;
12019 break;
12020 case 1: code = BFD_RELOC_8_PCREL; break;
12021 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12022 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12023#ifdef BFD64
12024 case 8: code = BFD_RELOC_64_PCREL; break;
12025#endif
93382f6d
AM
12026 }
12027 }
12028 else
12029 {
12030 switch (fixp->fx_size)
12031 {
12032 default:
b091f402
AM
12033 as_bad_where (fixp->fx_file, fixp->fx_line,
12034 _("can not do %d byte relocation"),
12035 fixp->fx_size);
93382f6d
AM
12036 code = BFD_RELOC_32;
12037 break;
12038 case 1: code = BFD_RELOC_8; break;
12039 case 2: code = BFD_RELOC_16; break;
12040 case 4: code = BFD_RELOC_32; break;
937149dd 12041#ifdef BFD64
3e73aa7c 12042 case 8: code = BFD_RELOC_64; break;
937149dd 12043#endif
93382f6d 12044 }
252b5132
RH
12045 }
12046 break;
12047 }
252b5132 12048
d182319b
JB
12049 if ((code == BFD_RELOC_32
12050 || code == BFD_RELOC_32_PCREL
12051 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12052 && GOT_symbol
12053 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12054 {
4fa24527 12055 if (!object_64bit)
d6ab8113
JB
12056 code = BFD_RELOC_386_GOTPC;
12057 else
12058 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12059 }
7b81dfbb
AJ
12060 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12061 && GOT_symbol
12062 && fixp->fx_addsy == GOT_symbol)
12063 {
12064 code = BFD_RELOC_X86_64_GOTPC64;
12065 }
252b5132 12066
add39d23
TS
12067 rel = XNEW (arelent);
12068 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12069 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12070
12071 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12072
3e73aa7c
JH
12073 if (!use_rela_relocations)
12074 {
12075 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12076 vtable entry to be used in the relocation's section offset. */
12077 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12078 rel->address = fixp->fx_offset;
fbeb56a4
DK
12079#if defined (OBJ_COFF) && defined (TE_PE)
12080 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12081 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12082 else
12083#endif
c6682705 12084 rel->addend = 0;
3e73aa7c
JH
12085 }
12086 /* Use the rela in 64bit mode. */
252b5132 12087 else
3e73aa7c 12088 {
862be3fb
L
12089 if (disallow_64bit_reloc)
12090 switch (code)
12091 {
862be3fb
L
12092 case BFD_RELOC_X86_64_DTPOFF64:
12093 case BFD_RELOC_X86_64_TPOFF64:
12094 case BFD_RELOC_64_PCREL:
12095 case BFD_RELOC_X86_64_GOTOFF64:
12096 case BFD_RELOC_X86_64_GOT64:
12097 case BFD_RELOC_X86_64_GOTPCREL64:
12098 case BFD_RELOC_X86_64_GOTPC64:
12099 case BFD_RELOC_X86_64_GOTPLT64:
12100 case BFD_RELOC_X86_64_PLTOFF64:
12101 as_bad_where (fixp->fx_file, fixp->fx_line,
12102 _("cannot represent relocation type %s in x32 mode"),
12103 bfd_get_reloc_code_name (code));
12104 break;
12105 default:
12106 break;
12107 }
12108
062cd5e7
AS
12109 if (!fixp->fx_pcrel)
12110 rel->addend = fixp->fx_offset;
12111 else
12112 switch (code)
12113 {
12114 case BFD_RELOC_X86_64_PLT32:
12115 case BFD_RELOC_X86_64_GOT32:
12116 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12117 case BFD_RELOC_X86_64_GOTPCRELX:
12118 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12119 case BFD_RELOC_X86_64_TLSGD:
12120 case BFD_RELOC_X86_64_TLSLD:
12121 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12122 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12123 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12124 rel->addend = fixp->fx_offset - fixp->fx_size;
12125 break;
12126 default:
12127 rel->addend = (section->vma
12128 - fixp->fx_size
12129 + fixp->fx_addnumber
12130 + md_pcrel_from (fixp));
12131 break;
12132 }
3e73aa7c
JH
12133 }
12134
252b5132
RH
12135 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12136 if (rel->howto == NULL)
12137 {
12138 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12139 _("cannot represent relocation type %s"),
252b5132
RH
12140 bfd_get_reloc_code_name (code));
12141 /* Set howto to a garbage value so that we can keep going. */
12142 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12143 gas_assert (rel->howto != NULL);
252b5132
RH
12144 }
12145
12146 return rel;
12147}
12148
ee86248c 12149#include "tc-i386-intel.c"
54cfded0 12150
a60de03c
JB
12151void
12152tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12153{
a60de03c
JB
12154 int saved_naked_reg;
12155 char saved_register_dot;
54cfded0 12156
a60de03c
JB
12157 saved_naked_reg = allow_naked_reg;
12158 allow_naked_reg = 1;
12159 saved_register_dot = register_chars['.'];
12160 register_chars['.'] = '.';
12161 allow_pseudo_reg = 1;
12162 expression_and_evaluate (exp);
12163 allow_pseudo_reg = 0;
12164 register_chars['.'] = saved_register_dot;
12165 allow_naked_reg = saved_naked_reg;
12166
e96d56a1 12167 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12168 {
a60de03c
JB
12169 if ((addressT) exp->X_add_number < i386_regtab_size)
12170 {
12171 exp->X_op = O_constant;
12172 exp->X_add_number = i386_regtab[exp->X_add_number]
12173 .dw2_regnum[flag_code >> 1];
12174 }
12175 else
12176 exp->X_op = O_illegal;
54cfded0 12177 }
54cfded0
AM
12178}
12179
12180void
12181tc_x86_frame_initial_instructions (void)
12182{
a60de03c
JB
12183 static unsigned int sp_regno[2];
12184
12185 if (!sp_regno[flag_code >> 1])
12186 {
12187 char *saved_input = input_line_pointer;
12188 char sp[][4] = {"esp", "rsp"};
12189 expressionS exp;
a4447b93 12190
a60de03c
JB
12191 input_line_pointer = sp[flag_code >> 1];
12192 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12193 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12194 sp_regno[flag_code >> 1] = exp.X_add_number;
12195 input_line_pointer = saved_input;
12196 }
a4447b93 12197
61ff971f
L
12198 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12199 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12200}
d2b2c203 12201
d7921315
L
12202int
12203x86_dwarf2_addr_size (void)
12204{
12205#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12206 if (x86_elf_abi == X86_64_X32_ABI)
12207 return 4;
12208#endif
12209 return bfd_arch_bits_per_address (stdoutput) / 8;
12210}
12211
d2b2c203
DJ
12212int
12213i386_elf_section_type (const char *str, size_t len)
12214{
12215 if (flag_code == CODE_64BIT
12216 && len == sizeof ("unwind") - 1
12217 && strncmp (str, "unwind", 6) == 0)
12218 return SHT_X86_64_UNWIND;
12219
12220 return -1;
12221}
bb41ade5 12222
ad5fec3b
EB
12223#ifdef TE_SOLARIS
12224void
12225i386_solaris_fix_up_eh_frame (segT sec)
12226{
12227 if (flag_code == CODE_64BIT)
12228 elf_section_type (sec) = SHT_X86_64_UNWIND;
12229}
12230#endif
12231
bb41ade5
AM
12232#ifdef TE_PE
12233void
12234tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12235{
91d6fa6a 12236 expressionS exp;
bb41ade5 12237
91d6fa6a
NC
12238 exp.X_op = O_secrel;
12239 exp.X_add_symbol = symbol;
12240 exp.X_add_number = 0;
12241 emit_expr (&exp, size);
bb41ade5
AM
12242}
12243#endif
3b22753a
L
12244
12245#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12246/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12247
01e1a5bc 12248bfd_vma
6d4af3c2 12249x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12250{
12251 if (flag_code == CODE_64BIT)
12252 {
12253 if (letter == 'l')
12254 return SHF_X86_64_LARGE;
12255
8f3bae45 12256 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12257 }
3b22753a 12258 else
8f3bae45 12259 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12260 return -1;
12261}
12262
01e1a5bc 12263bfd_vma
3b22753a
L
12264x86_64_section_word (char *str, size_t len)
12265{
8620418b 12266 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12267 return SHF_X86_64_LARGE;
12268
12269 return -1;
12270}
12271
12272static void
12273handle_large_common (int small ATTRIBUTE_UNUSED)
12274{
12275 if (flag_code != CODE_64BIT)
12276 {
12277 s_comm_internal (0, elf_common_parse);
12278 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12279 }
12280 else
12281 {
12282 static segT lbss_section;
12283 asection *saved_com_section_ptr = elf_com_section_ptr;
12284 asection *saved_bss_section = bss_section;
12285
12286 if (lbss_section == NULL)
12287 {
12288 flagword applicable;
12289 segT seg = now_seg;
12290 subsegT subseg = now_subseg;
12291
12292 /* The .lbss section is for local .largecomm symbols. */
12293 lbss_section = subseg_new (".lbss", 0);
12294 applicable = bfd_applicable_section_flags (stdoutput);
12295 bfd_set_section_flags (stdoutput, lbss_section,
12296 applicable & SEC_ALLOC);
12297 seg_info (lbss_section)->bss = 1;
12298
12299 subseg_set (seg, subseg);
12300 }
12301
12302 elf_com_section_ptr = &_bfd_elf_large_com_section;
12303 bss_section = lbss_section;
12304
12305 s_comm_internal (0, elf_common_parse);
12306
12307 elf_com_section_ptr = saved_com_section_ptr;
12308 bss_section = saved_bss_section;
12309 }
12310}
12311#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.054766 seconds and 4 git commands to generate.