x86: Determine vector length from the last vector operand
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
c0f3af97
L
237/* VEX prefix. */
238typedef struct
239{
43234a1e
L
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
c0f3af97
L
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
252b5132 247/* 'md_assemble ()' gathers together information and puts it into a
47926f60 248 i386_insn. */
252b5132 249
520dc8e8
AM
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
a65babc9
L
257enum i386_error
258 {
86e026a4 259 operand_size_mismatch,
a65babc9
L
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
a65babc9
L
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
6c30d220
L
267 unsupported,
268 invalid_vsib_address,
7bab8ab5 269 invalid_vector_register_set,
43234a1e
L
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132 323
8325cc63
JB
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
252b5132
RH
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 333 addressing modes of this insn are encoded. */
252b5132 334 modrm_byte rm;
3e73aa7c 335 rex_byte rex;
43234a1e 336 rex_byte vrex;
252b5132 337 sib_byte sib;
c0f3af97 338 vex_prefix vex;
b6169b20 339
43234a1e
L
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
86fa6981
L
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
891edac4 359
a501d77e
L
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
f8a5c266 367
6b6b6807
L
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
b6f8c7c4
L
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
86fa6981
L
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
d5de92cf
L
383 /* REP prefix. */
384 const char *rep_prefix;
385
165de32a
L
386 /* HLE prefix. */
387 const char *hle_prefix;
42164a71 388
7e8b059b
L
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
04ef582a
L
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
891edac4 395 /* Error message. */
a65babc9 396 enum i386_error error;
252b5132
RH
397 };
398
399typedef struct _i386_insn i386_insn;
400
43234a1e
L
401/* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403struct RC_name
404{
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408};
409
410static const struct RC_name RC_NamesTable[] =
411{
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417};
418
252b5132
RH
419/* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 421const char extra_symbol_chars[] = "*%-([{}"
252b5132 422#ifdef LEX_AT
32137342
NC
423 "@"
424#endif
425#ifdef LEX_QM
426 "?"
252b5132 427#endif
32137342 428 ;
252b5132 429
29b0f896
AM
430#if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 432 && !defined (TE_GNU) \
29b0f896 433 && !defined (TE_LINUX) \
8d63c93e 434 && !defined (TE_NACL) \
29b0f896 435 && !defined (TE_FreeBSD) \
5b806d27 436 && !defined (TE_DragonFly) \
29b0f896 437 && !defined (TE_NetBSD)))
252b5132 438/* This array holds the chars that always start a comment. If the
b3b91714
AM
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441const char *i386_comment_chars = "#/";
442#define SVR4_COMMENT_CHARS 1
252b5132 443#define PREFIX_SEPARATOR '\\'
252b5132 444
b3b91714
AM
445#else
446const char *i386_comment_chars = "#";
447#define PREFIX_SEPARATOR '/'
448#endif
449
252b5132
RH
450/* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 454 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
252b5132 457 '/' isn't otherwise defined. */
b3b91714 458const char line_comment_chars[] = "#/";
252b5132 459
63a0b638 460const char line_separator_chars[] = ";";
252b5132 461
ce8a8b2f
AM
462/* Chars that can be used to separate mant from exp in floating point
463 nums. */
252b5132
RH
464const char EXP_CHARS[] = "eE";
465
ce8a8b2f
AM
466/* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
252b5132
RH
469const char FLT_CHARS[] = "fFdDxX";
470
ce8a8b2f 471/* Tables for lexical analysis. */
252b5132
RH
472static char mnemonic_chars[256];
473static char register_chars[256];
474static char operand_chars[256];
475static char identifier_chars[256];
476static char digit_chars[256];
477
ce8a8b2f 478/* Lexical macros. */
252b5132
RH
479#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480#define is_operand_char(x) (operand_chars[(unsigned char) x])
481#define is_register_char(x) (register_chars[(unsigned char) x])
482#define is_space_char(x) ((x) == ' ')
483#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484#define is_digit_char(x) (digit_chars[(unsigned char) x])
485
0234cb7c 486/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
487static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489/* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
47926f60 492 assembler instruction). */
252b5132 493static char save_stack[32];
ce8a8b2f 494static char *save_stack_p;
252b5132
RH
495#define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497#define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
47926f60 500/* The instruction we're assembling. */
252b5132
RH
501static i386_insn i;
502
503/* Possible templates for current insn. */
504static const templates *current_templates;
505
31b2323c
L
506/* Per instruction expressionS buffers: max displacements & immediates. */
507static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 509
47926f60 510/* Current operand we are working on. */
ee86248c 511static int this_operand = -1;
252b5132 512
3e73aa7c
JH
513/* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521static enum flag_code flag_code;
4fa24527 522static unsigned int object_64bit;
862be3fb 523static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
524static int use_rela_relocations = 0;
525
7af8ed2d
NC
526#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
351f65ca
L
530/* The ELF ABI to use. */
531enum x86_elf_abi
532{
533 I386_ABI,
7f56bc95
L
534 X86_64_ABI,
535 X86_64_X32_ABI
351f65ca
L
536};
537
538static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 539#endif
351f65ca 540
167ad85b
TG
541#if defined (TE_PE) || defined (TE_PEP)
542/* Use big object file format. */
543static int use_big_obj = 0;
544#endif
545
8dcea932
L
546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547/* 1 if generating code for a shared library. */
548static int shared = 0;
549#endif
550
47926f60
KH
551/* 1 for intel syntax,
552 0 if att syntax. */
553static int intel_syntax = 0;
252b5132 554
e89c5eaa
L
555/* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557static int intel64;
558
1efbbeb4
L
559/* 1 for intel mnemonic,
560 0 if att mnemonic. */
561static int intel_mnemonic = !SYSV386_COMPAT;
562
a60de03c
JB
563/* 1 if pseudo registers are permitted. */
564static int allow_pseudo_reg = 0;
565
47926f60
KH
566/* 1 if register prefix % not required. */
567static int allow_naked_reg = 0;
252b5132 568
33eaf5de 569/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572static int add_bnd_prefix = 0;
573
ba104c83 574/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
575static int allow_index_reg = 0;
576
d022bddd
IT
577/* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579static int omit_lock_prefix = 0;
580
e4e00185
AS
581/* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583static int avoid_fence = 0;
584
0cb4071e
L
585/* 1 if the assembler should generate relax relocations. */
586
587static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
7bab8ab5 590static enum check_kind
daf50ae7 591 {
7bab8ab5
JB
592 check_none = 0,
593 check_warning,
594 check_error
daf50ae7 595 }
7bab8ab5 596sse_check, operand_check = check_warning;
daf50ae7 597
b6f8c7c4
L
598/* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603static int optimize = 0;
604
605/* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612static int optimize_for_space = 0;
613
2ca3ace5
L
614/* Register prefix used for error message. */
615static const char *register_prefix = "%";
616
47926f60
KH
617/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620static char stackop_size = '\0';
eecb386c 621
12b55ccc
L
622/* Non-zero to optimize code alignment. */
623int optimize_align_code = 1;
624
47926f60
KH
625/* Non-zero to quieten some warnings. */
626static int quiet_warnings = 0;
a38cf1db 627
47926f60
KH
628/* CPU name. */
629static const char *cpu_arch_name = NULL;
6305a203 630static char *cpu_sub_arch_name = NULL;
a38cf1db 631
47926f60 632/* CPU feature flags. */
40fb9820
L
633static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
ccc9c027
L
635/* If we have selected a cpu we are generating instructions for. */
636static int cpu_arch_tune_set = 0;
637
9103f4f4 638/* Cpu we are generating instructions for. */
fbf3f584 639enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
640
641/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 642static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 643
ccc9c027 644/* CPU instruction set architecture used. */
fbf3f584 645enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 646
9103f4f4 647/* CPU feature flags of instruction set architecture used. */
fbf3f584 648i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 649
fddf5b5b
AM
650/* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652static unsigned int no_cond_jump_promotion = 0;
653
c0f3af97
L
654/* Encode SSE instructions with VEX prefix. */
655static unsigned int sse2avx;
656
539f890d
L
657/* Encode scalar AVX instructions with specific vector length. */
658static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
43234a1e
L
664/* Encode scalar EVEX LIG instructions with specific vector length. */
665static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672/* Encode EVEX WIG instructions with specific evex.w. */
673static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
d3d3c6db
IT
679/* Value to encode in EVEX RC bits, for SAE-only instructions. */
680static enum rc_type evexrcig = rne;
681
29b0f896 682/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 683static symbolS *GOT_symbol;
29b0f896 684
a4447b93
RH
685/* The dwarf2 return column, adjusted for 32 or 64 bit. */
686unsigned int x86_dwarf2_return_column;
687
688/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689int x86_cie_data_alignment;
690
252b5132 691/* Interface to relax_segment.
fddf5b5b
AM
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
252b5132 695
47926f60 696/* Types. */
93c2a809
AM
697#define UNCOND_JUMP 0
698#define COND_JUMP 1
699#define COND_JUMP86 2
fddf5b5b 700
47926f60 701/* Sizes. */
252b5132
RH
702#define CODE16 1
703#define SMALL 0
29b0f896 704#define SMALL16 (SMALL | CODE16)
252b5132 705#define BIG 2
29b0f896 706#define BIG16 (BIG | CODE16)
252b5132
RH
707
708#ifndef INLINE
709#ifdef __GNUC__
710#define INLINE __inline__
711#else
712#define INLINE
713#endif
714#endif
715
fddf5b5b
AM
716#define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718#define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720#define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
722
723/* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731const relax_typeS md_relax_table[] =
732{
24eab124
AM
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
93c2a809 736 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 737 4) which index into the table to try if we can't fit into this one. */
252b5132 738
fddf5b5b 739 /* UNCOND_JUMP states. */
93c2a809
AM
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
252b5132 744 {0, 0, 4, 0},
93c2a809
AM
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
747 {0, 0, 2, 0},
748
93c2a809
AM
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
fddf5b5b 755 /* word conditionals add 3 bytes to frag:
93c2a809
AM
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
252b5132
RH
768};
769
9103f4f4
L
770static const arch_entry cpu_arch[] =
771{
89507696
JB
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
8a2c8fef 774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 775 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 777 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 779 CPU_NONE_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_I186_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I286_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 785 CPU_I386_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 787 CPU_I486_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 789 CPU_I586_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 791 CPU_I686_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 793 CPU_I586_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 795 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_P2_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P3_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 801 CPU_P4_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 803 CPU_CORE_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 805 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 807 CPU_CORE_FLAGS, 1 },
8a2c8fef 808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 811 CPU_CORE2_FLAGS, 1 },
8a2c8fef 812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 815 CPU_COREI7_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 817 CPU_L1OM_FLAGS, 0 },
7a9068fe 818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 819 CPU_K1OM_FLAGS, 0 },
81486035 820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 821 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 823 CPU_K6_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 825 CPU_K6_2_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 827 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 829 CPU_K8_FLAGS, 1 },
8a2c8fef 830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 835 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 837 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER4_FLAGS, 0 },
029f3522 844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 845 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
846 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
847 CPU_ZNVER2_FLAGS, 0 },
7b458c12 848 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 849 CPU_BTVER1_FLAGS, 0 },
7b458c12 850 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 851 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_8087_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_287_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_387_FLAGS, 0 },
1848e567
L
858 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
859 CPU_687_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_MMX_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_SSE_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE2_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSE3_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX_FLAGS, 0 },
6c30d220 878 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX2_FLAGS, 0 },
43234a1e 880 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX512F_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512CD_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512ER_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 888 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 892 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_VMX_FLAGS, 0 },
8729a6f6 896 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_SMX_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 902 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 904 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 906 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_AES_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 914 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 916 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 918 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_F16C_FLAGS, 0 },
6c30d220 920 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_BMI2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_FMA_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_FMA4_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_XOP_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_LWP_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_MOVBE_FLAGS, 0 },
60aa667e 932 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_CX16_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_EPT_FLAGS, 0 },
6c30d220 936 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_LZCNT_FLAGS, 0 },
42164a71 938 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_HLE_FLAGS, 0 },
42164a71 940 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_RTM_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_CLFLUSH_FLAGS, 0 },
22109423 946 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_NOP_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_SVME_FLAGS, 1 },
8a2c8fef 960 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SVME_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_ABM_FLAGS, 0 },
87973e9f 966 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_BMI_FLAGS, 0 },
2a2a0f38 968 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_TBM_FLAGS, 0 },
e2e1fcde 970 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ADX_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 974 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_PRFCHW_FLAGS, 0 },
5c111e37 976 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_SMAP_FLAGS, 0 },
7e8b059b 978 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MPX_FLAGS, 0 },
a0046408 980 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_SHA_FLAGS, 0 },
963f3586 982 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 984 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 986 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SE1_FLAGS, 0 },
c5e7287a 988 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 990 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 992 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
994 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
996 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
998 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1000 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1002 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1004 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1006 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_CLZERO_FLAGS, 0 },
9916071f 1008 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_MWAITX_FLAGS, 0 },
8eab4136 1010 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_OSPKE_FLAGS, 0 },
8bc52696 1012 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1014 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1015 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1016 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1017 CPU_IBT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1019 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1020 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1021 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1022 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1023 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1024 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1025 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1026 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1027 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1028 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1029 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1030 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1031 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1032 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1033 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1034 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIRI_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1038};
1039
1040static const noarch_entry cpu_noarch[] =
1041{
1042 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1043 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1044 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1045 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1046 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1047 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1048 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1049 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1054 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1055 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1056 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1065 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1066 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1067 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1068 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1069 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1070 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1071 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1072 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1073 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1074 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1075};
1076
704209c0 1077#ifdef I386COFF
a6c24e68
NC
1078/* Like s_lcomm_internal in gas/read.c but the alignment string
1079 is allowed to be optional. */
1080
1081static symbolS *
1082pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1083{
1084 addressT align = 0;
1085
1086 SKIP_WHITESPACE ();
1087
7ab9ffdd 1088 if (needs_align
a6c24e68
NC
1089 && *input_line_pointer == ',')
1090 {
1091 align = parse_align (needs_align - 1);
7ab9ffdd 1092
a6c24e68
NC
1093 if (align == (addressT) -1)
1094 return NULL;
1095 }
1096 else
1097 {
1098 if (size >= 8)
1099 align = 3;
1100 else if (size >= 4)
1101 align = 2;
1102 else if (size >= 2)
1103 align = 1;
1104 else
1105 align = 0;
1106 }
1107
1108 bss_alloc (symbolP, size, align);
1109 return symbolP;
1110}
1111
704209c0 1112static void
a6c24e68
NC
1113pe_lcomm (int needs_align)
1114{
1115 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1116}
704209c0 1117#endif
a6c24e68 1118
29b0f896
AM
1119const pseudo_typeS md_pseudo_table[] =
1120{
1121#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1122 {"align", s_align_bytes, 0},
1123#else
1124 {"align", s_align_ptwo, 0},
1125#endif
1126 {"arch", set_cpu_arch, 0},
1127#ifndef I386COFF
1128 {"bss", s_bss, 0},
a6c24e68
NC
1129#else
1130 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1131#endif
1132 {"ffloat", float_cons, 'f'},
1133 {"dfloat", float_cons, 'd'},
1134 {"tfloat", float_cons, 'x'},
1135 {"value", cons, 2},
d182319b 1136 {"slong", signed_cons, 4},
29b0f896
AM
1137 {"noopt", s_ignore, 0},
1138 {"optim", s_ignore, 0},
1139 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1140 {"code16", set_code_flag, CODE_16BIT},
1141 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1142#ifdef BFD64
29b0f896 1143 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1144#endif
29b0f896
AM
1145 {"intel_syntax", set_intel_syntax, 1},
1146 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1147 {"intel_mnemonic", set_intel_mnemonic, 1},
1148 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1149 {"allow_index_reg", set_allow_index_reg, 1},
1150 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1151 {"sse_check", set_check, 0},
1152 {"operand_check", set_check, 1},
3b22753a
L
1153#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1154 {"largecomm", handle_large_common, 0},
07a53e5c 1155#else
68d20676 1156 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1157 {"loc", dwarf2_directive_loc, 0},
1158 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1159#endif
6482c264
NC
1160#ifdef TE_PE
1161 {"secrel32", pe_directive_secrel, 0},
1162#endif
29b0f896
AM
1163 {0, 0, 0}
1164};
1165
1166/* For interface with expression (). */
1167extern char *input_line_pointer;
1168
1169/* Hash table for instruction mnemonic lookup. */
1170static struct hash_control *op_hash;
1171
1172/* Hash table for register lookup. */
1173static struct hash_control *reg_hash;
1174\f
ce8a8b2f
AM
1175 /* Various efficient no-op patterns for aligning code labels.
1176 Note: Don't try to assemble the instructions in the comments.
1177 0L and 0w are not legal. */
62a02d25
L
1178static const unsigned char f32_1[] =
1179 {0x90}; /* nop */
1180static const unsigned char f32_2[] =
1181 {0x66,0x90}; /* xchg %ax,%ax */
1182static const unsigned char f32_3[] =
1183 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1184static const unsigned char f32_4[] =
1185 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1186static const unsigned char f32_6[] =
1187 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1188static const unsigned char f32_7[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1190static const unsigned char f16_3[] =
3ae729d5 1191 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1192static const unsigned char f16_4[] =
3ae729d5
L
1193 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1194static const unsigned char jump_disp8[] =
1195 {0xeb}; /* jmp disp8 */
1196static const unsigned char jump32_disp32[] =
1197 {0xe9}; /* jmp disp32 */
1198static const unsigned char jump16_disp32[] =
1199 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1200/* 32-bit NOPs patterns. */
1201static const unsigned char *const f32_patt[] = {
3ae729d5 1202 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1203};
1204/* 16-bit NOPs patterns. */
1205static const unsigned char *const f16_patt[] = {
3ae729d5 1206 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1207};
1208/* nopl (%[re]ax) */
1209static const unsigned char alt_3[] =
1210 {0x0f,0x1f,0x00};
1211/* nopl 0(%[re]ax) */
1212static const unsigned char alt_4[] =
1213 {0x0f,0x1f,0x40,0x00};
1214/* nopl 0(%[re]ax,%[re]ax,1) */
1215static const unsigned char alt_5[] =
1216 {0x0f,0x1f,0x44,0x00,0x00};
1217/* nopw 0(%[re]ax,%[re]ax,1) */
1218static const unsigned char alt_6[] =
1219 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1220/* nopl 0L(%[re]ax) */
1221static const unsigned char alt_7[] =
1222 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1223/* nopl 0L(%[re]ax,%[re]ax,1) */
1224static const unsigned char alt_8[] =
1225 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226/* nopw 0L(%[re]ax,%[re]ax,1) */
1227static const unsigned char alt_9[] =
1228 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1230static const unsigned char alt_10[] =
1231 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1232/* data16 nopw %cs:0L(%eax,%eax,1) */
1233static const unsigned char alt_11[] =
1234 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1235/* 32-bit and 64-bit NOPs patterns. */
1236static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1238 alt_9, alt_10, alt_11
62a02d25
L
1239};
1240
1241/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1242 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1243
1244static void
1245i386_output_nops (char *where, const unsigned char *const *patt,
1246 int count, int max_single_nop_size)
1247
1248{
3ae729d5
L
1249 /* Place the longer NOP first. */
1250 int last;
1251 int offset;
1252 const unsigned char *nops = patt[max_single_nop_size - 1];
1253
1254 /* Use the smaller one if the requsted one isn't available. */
1255 if (nops == NULL)
62a02d25 1256 {
3ae729d5
L
1257 max_single_nop_size--;
1258 nops = patt[max_single_nop_size - 1];
62a02d25
L
1259 }
1260
3ae729d5
L
1261 last = count % max_single_nop_size;
1262
1263 count -= last;
1264 for (offset = 0; offset < count; offset += max_single_nop_size)
1265 memcpy (where + offset, nops, max_single_nop_size);
1266
1267 if (last)
1268 {
1269 nops = patt[last - 1];
1270 if (nops == NULL)
1271 {
1272 /* Use the smaller one plus one-byte NOP if the needed one
1273 isn't available. */
1274 last--;
1275 nops = patt[last - 1];
1276 memcpy (where + offset, nops, last);
1277 where[offset + last] = *patt[0];
1278 }
1279 else
1280 memcpy (where + offset, nops, last);
1281 }
62a02d25
L
1282}
1283
3ae729d5
L
1284static INLINE int
1285fits_in_imm7 (offsetT num)
1286{
1287 return (num & 0x7f) == num;
1288}
1289
1290static INLINE int
1291fits_in_imm31 (offsetT num)
1292{
1293 return (num & 0x7fffffff) == num;
1294}
62a02d25
L
1295
1296/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1297 single NOP instruction LIMIT. */
1298
1299void
3ae729d5 1300i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1301{
3ae729d5 1302 const unsigned char *const *patt = NULL;
62a02d25 1303 int max_single_nop_size;
3ae729d5
L
1304 /* Maximum number of NOPs before switching to jump over NOPs. */
1305 int max_number_of_nops;
62a02d25 1306
3ae729d5 1307 switch (fragP->fr_type)
62a02d25 1308 {
3ae729d5
L
1309 case rs_fill_nop:
1310 case rs_align_code:
1311 break;
1312 default:
62a02d25
L
1313 return;
1314 }
1315
ccc9c027
L
1316 /* We need to decide which NOP sequence to use for 32bit and
1317 64bit. When -mtune= is used:
4eed87de 1318
76bc74dc
L
1319 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1320 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1321 2. For the rest, alt_patt will be used.
1322
1323 When -mtune= isn't used, alt_patt will be used if
22109423 1324 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1325 be used.
ccc9c027
L
1326
1327 When -march= or .arch is used, we can't use anything beyond
1328 cpu_arch_isa_flags. */
1329
1330 if (flag_code == CODE_16BIT)
1331 {
3ae729d5
L
1332 patt = f16_patt;
1333 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1334 /* Limit number of NOPs to 2 in 16-bit mode. */
1335 max_number_of_nops = 2;
252b5132 1336 }
33fef721 1337 else
ccc9c027 1338 {
fbf3f584 1339 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1340 {
1341 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1342 switch (cpu_arch_tune)
1343 {
1344 case PROCESSOR_UNKNOWN:
1345 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1346 optimize with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1348 patt = alt_patt;
ccc9c027
L
1349 else
1350 patt = f32_patt;
1351 break;
ccc9c027
L
1352 case PROCESSOR_PENTIUM4:
1353 case PROCESSOR_NOCONA:
ef05d495 1354 case PROCESSOR_CORE:
76bc74dc 1355 case PROCESSOR_CORE2:
bd5295b2 1356 case PROCESSOR_COREI7:
3632d14b 1357 case PROCESSOR_L1OM:
7a9068fe 1358 case PROCESSOR_K1OM:
76bc74dc 1359 case PROCESSOR_GENERIC64:
ccc9c027
L
1360 case PROCESSOR_K6:
1361 case PROCESSOR_ATHLON:
1362 case PROCESSOR_K8:
4eed87de 1363 case PROCESSOR_AMDFAM10:
8aedb9fe 1364 case PROCESSOR_BD:
029f3522 1365 case PROCESSOR_ZNVER:
7b458c12 1366 case PROCESSOR_BT:
80b8656c 1367 patt = alt_patt;
ccc9c027 1368 break;
76bc74dc 1369 case PROCESSOR_I386:
ccc9c027
L
1370 case PROCESSOR_I486:
1371 case PROCESSOR_PENTIUM:
2dde1948 1372 case PROCESSOR_PENTIUMPRO:
81486035 1373 case PROCESSOR_IAMCU:
ccc9c027
L
1374 case PROCESSOR_GENERIC32:
1375 patt = f32_patt;
1376 break;
4eed87de 1377 }
ccc9c027
L
1378 }
1379 else
1380 {
fbf3f584 1381 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1382 {
1383 case PROCESSOR_UNKNOWN:
e6a14101 1384 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1385 PROCESSOR_UNKNOWN. */
1386 abort ();
1387 break;
1388
76bc74dc 1389 case PROCESSOR_I386:
ccc9c027
L
1390 case PROCESSOR_I486:
1391 case PROCESSOR_PENTIUM:
81486035 1392 case PROCESSOR_IAMCU:
ccc9c027
L
1393 case PROCESSOR_K6:
1394 case PROCESSOR_ATHLON:
1395 case PROCESSOR_K8:
4eed87de 1396 case PROCESSOR_AMDFAM10:
8aedb9fe 1397 case PROCESSOR_BD:
029f3522 1398 case PROCESSOR_ZNVER:
7b458c12 1399 case PROCESSOR_BT:
ccc9c027
L
1400 case PROCESSOR_GENERIC32:
1401 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1402 with nops. */
1403 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1404 patt = alt_patt;
ccc9c027
L
1405 else
1406 patt = f32_patt;
1407 break;
76bc74dc
L
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_PENTIUM4:
1410 case PROCESSOR_NOCONA:
1411 case PROCESSOR_CORE:
ef05d495 1412 case PROCESSOR_CORE2:
bd5295b2 1413 case PROCESSOR_COREI7:
3632d14b 1414 case PROCESSOR_L1OM:
7a9068fe 1415 case PROCESSOR_K1OM:
22109423 1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1417 patt = alt_patt;
ccc9c027
L
1418 else
1419 patt = f32_patt;
1420 break;
1421 case PROCESSOR_GENERIC64:
80b8656c 1422 patt = alt_patt;
ccc9c027 1423 break;
4eed87de 1424 }
ccc9c027
L
1425 }
1426
76bc74dc
L
1427 if (patt == f32_patt)
1428 {
3ae729d5
L
1429 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1430 /* Limit number of NOPs to 2 for older processors. */
1431 max_number_of_nops = 2;
76bc74dc
L
1432 }
1433 else
1434 {
3ae729d5
L
1435 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1436 /* Limit number of NOPs to 7 for newer processors. */
1437 max_number_of_nops = 7;
1438 }
1439 }
1440
1441 if (limit == 0)
1442 limit = max_single_nop_size;
1443
1444 if (fragP->fr_type == rs_fill_nop)
1445 {
1446 /* Output NOPs for .nop directive. */
1447 if (limit > max_single_nop_size)
1448 {
1449 as_bad_where (fragP->fr_file, fragP->fr_line,
1450 _("invalid single nop size: %d "
1451 "(expect within [0, %d])"),
1452 limit, max_single_nop_size);
1453 return;
1454 }
1455 }
1456 else
1457 fragP->fr_var = count;
1458
1459 if ((count / max_single_nop_size) > max_number_of_nops)
1460 {
1461 /* Generate jump over NOPs. */
1462 offsetT disp = count - 2;
1463 if (fits_in_imm7 (disp))
1464 {
1465 /* Use "jmp disp8" if possible. */
1466 count = disp;
1467 where[0] = jump_disp8[0];
1468 where[1] = count;
1469 where += 2;
1470 }
1471 else
1472 {
1473 unsigned int size_of_jump;
1474
1475 if (flag_code == CODE_16BIT)
1476 {
1477 where[0] = jump16_disp32[0];
1478 where[1] = jump16_disp32[1];
1479 size_of_jump = 2;
1480 }
1481 else
1482 {
1483 where[0] = jump32_disp32[0];
1484 size_of_jump = 1;
1485 }
1486
1487 count -= size_of_jump + 4;
1488 if (!fits_in_imm31 (count))
1489 {
1490 as_bad_where (fragP->fr_file, fragP->fr_line,
1491 _("jump over nop padding out of range"));
1492 return;
1493 }
1494
1495 md_number_to_chars (where + size_of_jump, count, 4);
1496 where += size_of_jump + 4;
76bc74dc 1497 }
ccc9c027 1498 }
3ae729d5
L
1499
1500 /* Generate multiple NOPs. */
1501 i386_output_nops (where, patt, count, limit);
252b5132
RH
1502}
1503
c6fb90c8 1504static INLINE int
0dfbf9d7 1505operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1506{
0dfbf9d7 1507 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1508 {
1509 case 3:
0dfbf9d7 1510 if (x->array[2])
c6fb90c8 1511 return 0;
1a0670f3 1512 /* Fall through. */
c6fb90c8 1513 case 2:
0dfbf9d7 1514 if (x->array[1])
c6fb90c8 1515 return 0;
1a0670f3 1516 /* Fall through. */
c6fb90c8 1517 case 1:
0dfbf9d7 1518 return !x->array[0];
c6fb90c8
L
1519 default:
1520 abort ();
1521 }
40fb9820
L
1522}
1523
c6fb90c8 1524static INLINE void
0dfbf9d7 1525operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1526{
0dfbf9d7 1527 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1528 {
1529 case 3:
0dfbf9d7 1530 x->array[2] = v;
1a0670f3 1531 /* Fall through. */
c6fb90c8 1532 case 2:
0dfbf9d7 1533 x->array[1] = v;
1a0670f3 1534 /* Fall through. */
c6fb90c8 1535 case 1:
0dfbf9d7 1536 x->array[0] = v;
1a0670f3 1537 /* Fall through. */
c6fb90c8
L
1538 break;
1539 default:
1540 abort ();
1541 }
1542}
40fb9820 1543
c6fb90c8 1544static INLINE int
0dfbf9d7
L
1545operand_type_equal (const union i386_operand_type *x,
1546 const union i386_operand_type *y)
c6fb90c8 1547{
0dfbf9d7 1548 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1549 {
1550 case 3:
0dfbf9d7 1551 if (x->array[2] != y->array[2])
c6fb90c8 1552 return 0;
1a0670f3 1553 /* Fall through. */
c6fb90c8 1554 case 2:
0dfbf9d7 1555 if (x->array[1] != y->array[1])
c6fb90c8 1556 return 0;
1a0670f3 1557 /* Fall through. */
c6fb90c8 1558 case 1:
0dfbf9d7 1559 return x->array[0] == y->array[0];
c6fb90c8
L
1560 break;
1561 default:
1562 abort ();
1563 }
1564}
40fb9820 1565
0dfbf9d7
L
1566static INLINE int
1567cpu_flags_all_zero (const union i386_cpu_flags *x)
1568{
1569 switch (ARRAY_SIZE(x->array))
1570 {
53467f57
IT
1571 case 4:
1572 if (x->array[3])
1573 return 0;
1574 /* Fall through. */
0dfbf9d7
L
1575 case 3:
1576 if (x->array[2])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 2:
1580 if (x->array[1])
1581 return 0;
1a0670f3 1582 /* Fall through. */
0dfbf9d7
L
1583 case 1:
1584 return !x->array[0];
1585 default:
1586 abort ();
1587 }
1588}
1589
0dfbf9d7
L
1590static INLINE int
1591cpu_flags_equal (const union i386_cpu_flags *x,
1592 const union i386_cpu_flags *y)
1593{
1594 switch (ARRAY_SIZE(x->array))
1595 {
53467f57
IT
1596 case 4:
1597 if (x->array[3] != y->array[3])
1598 return 0;
1599 /* Fall through. */
0dfbf9d7
L
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1a0670f3 1603 /* Fall through. */
0dfbf9d7
L
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1a0670f3 1607 /* Fall through. */
0dfbf9d7
L
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614}
c6fb90c8
L
1615
1616static INLINE int
1617cpu_flags_check_cpu64 (i386_cpu_flags f)
1618{
1619 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1620 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1621}
1622
c6fb90c8
L
1623static INLINE i386_cpu_flags
1624cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1625{
c6fb90c8
L
1626 switch (ARRAY_SIZE (x.array))
1627 {
53467f57
IT
1628 case 4:
1629 x.array [3] &= y.array [3];
1630 /* Fall through. */
c6fb90c8
L
1631 case 3:
1632 x.array [2] &= y.array [2];
1a0670f3 1633 /* Fall through. */
c6fb90c8
L
1634 case 2:
1635 x.array [1] &= y.array [1];
1a0670f3 1636 /* Fall through. */
c6fb90c8
L
1637 case 1:
1638 x.array [0] &= y.array [0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 return x;
1644}
40fb9820 1645
c6fb90c8
L
1646static INLINE i386_cpu_flags
1647cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1648{
c6fb90c8 1649 switch (ARRAY_SIZE (x.array))
40fb9820 1650 {
53467f57
IT
1651 case 4:
1652 x.array [3] |= y.array [3];
1653 /* Fall through. */
c6fb90c8
L
1654 case 3:
1655 x.array [2] |= y.array [2];
1a0670f3 1656 /* Fall through. */
c6fb90c8
L
1657 case 2:
1658 x.array [1] |= y.array [1];
1a0670f3 1659 /* Fall through. */
c6fb90c8
L
1660 case 1:
1661 x.array [0] |= y.array [0];
40fb9820
L
1662 break;
1663 default:
1664 abort ();
1665 }
40fb9820
L
1666 return x;
1667}
1668
309d3373
JB
1669static INLINE i386_cpu_flags
1670cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1671{
1672 switch (ARRAY_SIZE (x.array))
1673 {
53467f57
IT
1674 case 4:
1675 x.array [3] &= ~y.array [3];
1676 /* Fall through. */
309d3373
JB
1677 case 3:
1678 x.array [2] &= ~y.array [2];
1a0670f3 1679 /* Fall through. */
309d3373
JB
1680 case 2:
1681 x.array [1] &= ~y.array [1];
1a0670f3 1682 /* Fall through. */
309d3373
JB
1683 case 1:
1684 x.array [0] &= ~y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690}
1691
c0f3af97
L
1692#define CPU_FLAGS_ARCH_MATCH 0x1
1693#define CPU_FLAGS_64BIT_MATCH 0x2
1694
c0f3af97 1695#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1696 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1697
1698/* Return CPU flags match bits. */
3629bb00 1699
40fb9820 1700static int
d3ce72d0 1701cpu_flags_match (const insn_template *t)
40fb9820 1702{
c0f3af97
L
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
0dfbf9d7 1709 if (cpu_flags_all_zero (&x))
c0f3af97
L
1710 {
1711 /* This instruction is available on all archs. */
db12e14e 1712 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1713 }
3629bb00
L
1714 else
1715 {
c0f3af97 1716 /* This instruction is available only on some archs. */
3629bb00
L
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
ab592e75
JB
1719 /* AVX512VL is no standalone feature - match it and then strip it. */
1720 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1721 return match;
1722 x.bitfield.cpuavx512vl = 0;
1723
3629bb00 1724 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1725 if (!cpu_flags_all_zero (&cpu))
1726 {
a5ff0eb2
L
1727 if (x.bitfield.cpuavx)
1728 {
929f69fa 1729 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1730 if (cpu.bitfield.cpuavx
1731 && (!t->opcode_modifier.sse2avx || sse2avx)
1732 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1734 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1735 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1736 }
929f69fa
JB
1737 else if (x.bitfield.cpuavx512f)
1738 {
1739 /* We need to check a few extra flags with AVX512F. */
1740 if (cpu.bitfield.cpuavx512f
1741 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1742 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1743 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1744 match |= CPU_FLAGS_ARCH_MATCH;
1745 }
a5ff0eb2 1746 else
db12e14e 1747 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1748 }
3629bb00 1749 }
c0f3af97 1750 return match;
40fb9820
L
1751}
1752
c6fb90c8
L
1753static INLINE i386_operand_type
1754operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1755{
c6fb90c8
L
1756 switch (ARRAY_SIZE (x.array))
1757 {
1758 case 3:
1759 x.array [2] &= y.array [2];
1a0670f3 1760 /* Fall through. */
c6fb90c8
L
1761 case 2:
1762 x.array [1] &= y.array [1];
1a0670f3 1763 /* Fall through. */
c6fb90c8
L
1764 case 1:
1765 x.array [0] &= y.array [0];
1766 break;
1767 default:
1768 abort ();
1769 }
1770 return x;
40fb9820
L
1771}
1772
73053c1f
JB
1773static INLINE i386_operand_type
1774operand_type_and_not (i386_operand_type x, i386_operand_type y)
1775{
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 3:
1779 x.array [2] &= ~y.array [2];
1780 /* Fall through. */
1781 case 2:
1782 x.array [1] &= ~y.array [1];
1783 /* Fall through. */
1784 case 1:
1785 x.array [0] &= ~y.array [0];
1786 break;
1787 default:
1788 abort ();
1789 }
1790 return x;
1791}
1792
c6fb90c8
L
1793static INLINE i386_operand_type
1794operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1795{
c6fb90c8 1796 switch (ARRAY_SIZE (x.array))
40fb9820 1797 {
c6fb90c8
L
1798 case 3:
1799 x.array [2] |= y.array [2];
1a0670f3 1800 /* Fall through. */
c6fb90c8
L
1801 case 2:
1802 x.array [1] |= y.array [1];
1a0670f3 1803 /* Fall through. */
c6fb90c8
L
1804 case 1:
1805 x.array [0] |= y.array [0];
40fb9820
L
1806 break;
1807 default:
1808 abort ();
1809 }
c6fb90c8
L
1810 return x;
1811}
40fb9820 1812
c6fb90c8
L
1813static INLINE i386_operand_type
1814operand_type_xor (i386_operand_type x, i386_operand_type y)
1815{
1816 switch (ARRAY_SIZE (x.array))
1817 {
1818 case 3:
1819 x.array [2] ^= y.array [2];
1a0670f3 1820 /* Fall through. */
c6fb90c8
L
1821 case 2:
1822 x.array [1] ^= y.array [1];
1a0670f3 1823 /* Fall through. */
c6fb90c8
L
1824 case 1:
1825 x.array [0] ^= y.array [0];
1826 break;
1827 default:
1828 abort ();
1829 }
40fb9820
L
1830 return x;
1831}
1832
1833static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1834static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1835static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1836static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1837static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1838static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1839static const i386_operand_type anydisp
1840 = OPERAND_TYPE_ANYDISP;
40fb9820 1841static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1842static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1843static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1844static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1845static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1846static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1847static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1848static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1849static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1850static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1851static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1852static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1853
1854enum operand_type
1855{
1856 reg,
40fb9820
L
1857 imm,
1858 disp,
1859 anymem
1860};
1861
c6fb90c8 1862static INLINE int
40fb9820
L
1863operand_type_check (i386_operand_type t, enum operand_type c)
1864{
1865 switch (c)
1866 {
1867 case reg:
dc821c5f 1868 return t.bitfield.reg;
40fb9820 1869
40fb9820
L
1870 case imm:
1871 return (t.bitfield.imm8
1872 || t.bitfield.imm8s
1873 || t.bitfield.imm16
1874 || t.bitfield.imm32
1875 || t.bitfield.imm32s
1876 || t.bitfield.imm64);
1877
1878 case disp:
1879 return (t.bitfield.disp8
1880 || t.bitfield.disp16
1881 || t.bitfield.disp32
1882 || t.bitfield.disp32s
1883 || t.bitfield.disp64);
1884
1885 case anymem:
1886 return (t.bitfield.disp8
1887 || t.bitfield.disp16
1888 || t.bitfield.disp32
1889 || t.bitfield.disp32s
1890 || t.bitfield.disp64
1891 || t.bitfield.baseindex);
1892
1893 default:
1894 abort ();
1895 }
2cfe26b6
AM
1896
1897 return 0;
40fb9820
L
1898}
1899
7a54636a
L
1900/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1901 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1902
1903static INLINE int
7a54636a
L
1904match_operand_size (const insn_template *t, unsigned int wanted,
1905 unsigned int given)
5c07affc 1906{
3ac21baa
JB
1907 return !((i.types[given].bitfield.byte
1908 && !t->operand_types[wanted].bitfield.byte)
1909 || (i.types[given].bitfield.word
1910 && !t->operand_types[wanted].bitfield.word)
1911 || (i.types[given].bitfield.dword
1912 && !t->operand_types[wanted].bitfield.dword)
1913 || (i.types[given].bitfield.qword
1914 && !t->operand_types[wanted].bitfield.qword)
1915 || (i.types[given].bitfield.tbyte
1916 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1917}
1918
dd40ce22
L
1919/* Return 1 if there is no conflict in SIMD register between operand
1920 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1921
1922static INLINE int
dd40ce22
L
1923match_simd_size (const insn_template *t, unsigned int wanted,
1924 unsigned int given)
1b54b8d7 1925{
3ac21baa
JB
1926 return !((i.types[given].bitfield.xmmword
1927 && !t->operand_types[wanted].bitfield.xmmword)
1928 || (i.types[given].bitfield.ymmword
1929 && !t->operand_types[wanted].bitfield.ymmword)
1930 || (i.types[given].bitfield.zmmword
1931 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1932}
1933
7a54636a
L
1934/* Return 1 if there is no conflict in any size between operand GIVEN
1935 and opeand WANTED for instruction template T. */
5c07affc
L
1936
1937static INLINE int
dd40ce22
L
1938match_mem_size (const insn_template *t, unsigned int wanted,
1939 unsigned int given)
5c07affc 1940{
7a54636a 1941 return (match_operand_size (t, wanted, given)
3ac21baa 1942 && !((i.types[given].bitfield.unspecified
af508cb9 1943 && !i.broadcast
3ac21baa
JB
1944 && !t->operand_types[wanted].bitfield.unspecified)
1945 || (i.types[given].bitfield.fword
1946 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1947 /* For scalar opcode templates to allow register and memory
1948 operands at the same time, some special casing is needed
d6793fa1
JB
1949 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1950 down-conversion vpmov*. */
3ac21baa 1951 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1952 && !t->opcode_modifier.broadcast
3ac21baa
JB
1953 && (t->operand_types[wanted].bitfield.byte
1954 || t->operand_types[wanted].bitfield.word
1955 || t->operand_types[wanted].bitfield.dword
1956 || t->operand_types[wanted].bitfield.qword))
1957 ? (i.types[given].bitfield.xmmword
1958 || i.types[given].bitfield.ymmword
1959 || i.types[given].bitfield.zmmword)
1960 : !match_simd_size(t, wanted, given))));
5c07affc
L
1961}
1962
3ac21baa
JB
1963/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1964 operands for instruction template T, and it has MATCH_REVERSE set if there
1965 is no size conflict on any operands for the template with operands reversed
1966 (and the template allows for reversing in the first place). */
5c07affc 1967
3ac21baa
JB
1968#define MATCH_STRAIGHT 1
1969#define MATCH_REVERSE 2
1970
1971static INLINE unsigned int
d3ce72d0 1972operand_size_match (const insn_template *t)
5c07affc 1973{
3ac21baa 1974 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
1975
1976 /* Don't check jump instructions. */
1977 if (t->opcode_modifier.jump
1978 || t->opcode_modifier.jumpbyte
1979 || t->opcode_modifier.jumpdword
1980 || t->opcode_modifier.jumpintersegment)
1981 return match;
1982
1983 /* Check memory and accumulator operand size. */
1984 for (j = 0; j < i.operands; j++)
1985 {
1b54b8d7
JB
1986 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1987 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1988 continue;
1989
1b54b8d7 1990 if (t->operand_types[j].bitfield.reg
7a54636a 1991 && !match_operand_size (t, j, j))
5c07affc
L
1992 {
1993 match = 0;
1994 break;
1995 }
1996
1b54b8d7 1997 if (t->operand_types[j].bitfield.regsimd
3ac21baa 1998 && !match_simd_size (t, j, j))
1b54b8d7
JB
1999 {
2000 match = 0;
2001 break;
2002 }
2003
2004 if (t->operand_types[j].bitfield.acc
7a54636a 2005 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2006 {
2007 match = 0;
2008 break;
2009 }
2010
3ac21baa 2011 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
5c07affc
L
2012 {
2013 match = 0;
2014 break;
2015 }
2016 }
2017
3ac21baa 2018 if (!t->opcode_modifier.d)
891edac4
L
2019 {
2020mismatch:
3ac21baa
JB
2021 if (!match)
2022 i.error = operand_size_mismatch;
2023 return match;
891edac4 2024 }
5c07affc
L
2025
2026 /* Check reverse. */
9c2799c2 2027 gas_assert (i.operands == 2);
5c07affc 2028
5c07affc
L
2029 for (j = 0; j < 2; j++)
2030 {
dc821c5f
JB
2031 if ((t->operand_types[j].bitfield.reg
2032 || t->operand_types[j].bitfield.acc)
7a54636a 2033 && !match_operand_size (t, j, !j))
891edac4 2034 goto mismatch;
5c07affc 2035
3ac21baa
JB
2036 if (i.types[!j].bitfield.mem
2037 && !match_mem_size (t, j, !j))
891edac4 2038 goto mismatch;
5c07affc
L
2039 }
2040
3ac21baa 2041 return match | MATCH_REVERSE;
5c07affc
L
2042}
2043
c6fb90c8 2044static INLINE int
40fb9820
L
2045operand_type_match (i386_operand_type overlap,
2046 i386_operand_type given)
2047{
2048 i386_operand_type temp = overlap;
2049
2050 temp.bitfield.jumpabsolute = 0;
7d5e4556 2051 temp.bitfield.unspecified = 0;
5c07affc
L
2052 temp.bitfield.byte = 0;
2053 temp.bitfield.word = 0;
2054 temp.bitfield.dword = 0;
2055 temp.bitfield.fword = 0;
2056 temp.bitfield.qword = 0;
2057 temp.bitfield.tbyte = 0;
2058 temp.bitfield.xmmword = 0;
c0f3af97 2059 temp.bitfield.ymmword = 0;
43234a1e 2060 temp.bitfield.zmmword = 0;
0dfbf9d7 2061 if (operand_type_all_zero (&temp))
891edac4 2062 goto mismatch;
40fb9820 2063
891edac4
L
2064 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2065 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2066 return 1;
2067
2068mismatch:
a65babc9 2069 i.error = operand_type_mismatch;
891edac4 2070 return 0;
40fb9820
L
2071}
2072
7d5e4556 2073/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2074 unless the expected operand type register overlap is null.
2075 Memory operand size of certain SIMD instructions is also being checked
2076 here. */
40fb9820 2077
c6fb90c8 2078static INLINE int
dc821c5f 2079operand_type_register_match (i386_operand_type g0,
40fb9820 2080 i386_operand_type t0,
40fb9820
L
2081 i386_operand_type g1,
2082 i386_operand_type t1)
2083{
10c17abd
JB
2084 if (!g0.bitfield.reg
2085 && !g0.bitfield.regsimd
2086 && (!operand_type_check (g0, anymem)
2087 || g0.bitfield.unspecified
2088 || !t0.bitfield.regsimd))
40fb9820
L
2089 return 1;
2090
10c17abd
JB
2091 if (!g1.bitfield.reg
2092 && !g1.bitfield.regsimd
2093 && (!operand_type_check (g1, anymem)
2094 || g1.bitfield.unspecified
2095 || !t1.bitfield.regsimd))
40fb9820
L
2096 return 1;
2097
dc821c5f
JB
2098 if (g0.bitfield.byte == g1.bitfield.byte
2099 && g0.bitfield.word == g1.bitfield.word
2100 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2101 && g0.bitfield.qword == g1.bitfield.qword
2102 && g0.bitfield.xmmword == g1.bitfield.xmmword
2103 && g0.bitfield.ymmword == g1.bitfield.ymmword
2104 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2105 return 1;
2106
dc821c5f
JB
2107 if (!(t0.bitfield.byte & t1.bitfield.byte)
2108 && !(t0.bitfield.word & t1.bitfield.word)
2109 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2110 && !(t0.bitfield.qword & t1.bitfield.qword)
2111 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2112 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2113 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2114 return 1;
2115
a65babc9 2116 i.error = register_type_mismatch;
891edac4
L
2117
2118 return 0;
40fb9820
L
2119}
2120
4c692bc7
JB
2121static INLINE unsigned int
2122register_number (const reg_entry *r)
2123{
2124 unsigned int nr = r->reg_num;
2125
2126 if (r->reg_flags & RegRex)
2127 nr += 8;
2128
200cbe0f
L
2129 if (r->reg_flags & RegVRex)
2130 nr += 16;
2131
4c692bc7
JB
2132 return nr;
2133}
2134
252b5132 2135static INLINE unsigned int
40fb9820 2136mode_from_disp_size (i386_operand_type t)
252b5132 2137{
b5014f7a 2138 if (t.bitfield.disp8)
40fb9820
L
2139 return 1;
2140 else if (t.bitfield.disp16
2141 || t.bitfield.disp32
2142 || t.bitfield.disp32s)
2143 return 2;
2144 else
2145 return 0;
252b5132
RH
2146}
2147
2148static INLINE int
65879393 2149fits_in_signed_byte (addressT num)
252b5132 2150{
65879393 2151 return num + 0x80 <= 0xff;
47926f60 2152}
252b5132
RH
2153
2154static INLINE int
65879393 2155fits_in_unsigned_byte (addressT num)
252b5132 2156{
65879393 2157 return num <= 0xff;
47926f60 2158}
252b5132
RH
2159
2160static INLINE int
65879393 2161fits_in_unsigned_word (addressT num)
252b5132 2162{
65879393 2163 return num <= 0xffff;
47926f60 2164}
252b5132
RH
2165
2166static INLINE int
65879393 2167fits_in_signed_word (addressT num)
252b5132 2168{
65879393 2169 return num + 0x8000 <= 0xffff;
47926f60 2170}
2a962e6d 2171
3e73aa7c 2172static INLINE int
65879393 2173fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2174{
2175#ifndef BFD64
2176 return 1;
2177#else
65879393 2178 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2179#endif
2180} /* fits_in_signed_long() */
2a962e6d 2181
3e73aa7c 2182static INLINE int
65879393 2183fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2184{
2185#ifndef BFD64
2186 return 1;
2187#else
65879393 2188 return num <= 0xffffffff;
3e73aa7c
JH
2189#endif
2190} /* fits_in_unsigned_long() */
252b5132 2191
43234a1e 2192static INLINE int
b5014f7a 2193fits_in_disp8 (offsetT num)
43234a1e
L
2194{
2195 int shift = i.memshift;
2196 unsigned int mask;
2197
2198 if (shift == -1)
2199 abort ();
2200
2201 mask = (1 << shift) - 1;
2202
2203 /* Return 0 if NUM isn't properly aligned. */
2204 if ((num & mask))
2205 return 0;
2206
2207 /* Check if NUM will fit in 8bit after shift. */
2208 return fits_in_signed_byte (num >> shift);
2209}
2210
a683cc34
SP
2211static INLINE int
2212fits_in_imm4 (offsetT num)
2213{
2214 return (num & 0xf) == num;
2215}
2216
40fb9820 2217static i386_operand_type
e3bb37b5 2218smallest_imm_type (offsetT num)
252b5132 2219{
40fb9820 2220 i386_operand_type t;
7ab9ffdd 2221
0dfbf9d7 2222 operand_type_set (&t, 0);
40fb9820
L
2223 t.bitfield.imm64 = 1;
2224
2225 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2226 {
2227 /* This code is disabled on the 486 because all the Imm1 forms
2228 in the opcode table are slower on the i486. They're the
2229 versions with the implicitly specified single-position
2230 displacement, which has another syntax if you really want to
2231 use that form. */
40fb9820
L
2232 t.bitfield.imm1 = 1;
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_signed_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm8s = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_unsigned_byte (num))
2248 {
2249 t.bitfield.imm8 = 1;
2250 t.bitfield.imm16 = 1;
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2255 {
2256 t.bitfield.imm16 = 1;
2257 t.bitfield.imm32 = 1;
2258 t.bitfield.imm32s = 1;
2259 }
2260 else if (fits_in_signed_long (num))
2261 {
2262 t.bitfield.imm32 = 1;
2263 t.bitfield.imm32s = 1;
2264 }
2265 else if (fits_in_unsigned_long (num))
2266 t.bitfield.imm32 = 1;
2267
2268 return t;
47926f60 2269}
252b5132 2270
847f7ad4 2271static offsetT
e3bb37b5 2272offset_in_range (offsetT val, int size)
847f7ad4 2273{
508866be 2274 addressT mask;
ba2adb93 2275
847f7ad4
AM
2276 switch (size)
2277 {
508866be
L
2278 case 1: mask = ((addressT) 1 << 8) - 1; break;
2279 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2280 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2281#ifdef BFD64
2282 case 8: mask = ((addressT) 2 << 63) - 1; break;
2283#endif
47926f60 2284 default: abort ();
847f7ad4
AM
2285 }
2286
9de868bf
L
2287#ifdef BFD64
2288 /* If BFD64, sign extend val for 32bit address mode. */
2289 if (flag_code != CODE_64BIT
2290 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2291 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2292 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2293#endif
ba2adb93 2294
47926f60 2295 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2296 {
2297 char buf1[40], buf2[40];
2298
2299 sprint_value (buf1, val);
2300 sprint_value (buf2, val & mask);
2301 as_warn (_("%s shortened to %s"), buf1, buf2);
2302 }
2303 return val & mask;
2304}
2305
c32fa91d
L
2306enum PREFIX_GROUP
2307{
2308 PREFIX_EXIST = 0,
2309 PREFIX_LOCK,
2310 PREFIX_REP,
04ef582a 2311 PREFIX_DS,
c32fa91d
L
2312 PREFIX_OTHER
2313};
2314
2315/* Returns
2316 a. PREFIX_EXIST if attempting to add a prefix where one from the
2317 same class already exists.
2318 b. PREFIX_LOCK if lock prefix is added.
2319 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2320 d. PREFIX_DS if ds prefix is added.
2321 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2322 */
2323
2324static enum PREFIX_GROUP
e3bb37b5 2325add_prefix (unsigned int prefix)
252b5132 2326{
c32fa91d 2327 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2328 unsigned int q;
252b5132 2329
29b0f896
AM
2330 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2331 && flag_code == CODE_64BIT)
b1905489 2332 {
161a04f6 2333 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2334 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2336 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2337 ret = PREFIX_EXIST;
b1905489
JB
2338 q = REX_PREFIX;
2339 }
3e73aa7c 2340 else
b1905489
JB
2341 {
2342 switch (prefix)
2343 {
2344 default:
2345 abort ();
2346
b1905489 2347 case DS_PREFIX_OPCODE:
04ef582a
L
2348 ret = PREFIX_DS;
2349 /* Fall through. */
2350 case CS_PREFIX_OPCODE:
b1905489
JB
2351 case ES_PREFIX_OPCODE:
2352 case FS_PREFIX_OPCODE:
2353 case GS_PREFIX_OPCODE:
2354 case SS_PREFIX_OPCODE:
2355 q = SEG_PREFIX;
2356 break;
2357
2358 case REPNE_PREFIX_OPCODE:
2359 case REPE_PREFIX_OPCODE:
c32fa91d
L
2360 q = REP_PREFIX;
2361 ret = PREFIX_REP;
2362 break;
2363
b1905489 2364 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2365 q = LOCK_PREFIX;
2366 ret = PREFIX_LOCK;
b1905489
JB
2367 break;
2368
2369 case FWAIT_OPCODE:
2370 q = WAIT_PREFIX;
2371 break;
2372
2373 case ADDR_PREFIX_OPCODE:
2374 q = ADDR_PREFIX;
2375 break;
2376
2377 case DATA_PREFIX_OPCODE:
2378 q = DATA_PREFIX;
2379 break;
2380 }
2381 if (i.prefix[q] != 0)
c32fa91d 2382 ret = PREFIX_EXIST;
b1905489 2383 }
252b5132 2384
b1905489 2385 if (ret)
252b5132 2386 {
b1905489
JB
2387 if (!i.prefix[q])
2388 ++i.prefixes;
2389 i.prefix[q] |= prefix;
252b5132 2390 }
b1905489
JB
2391 else
2392 as_bad (_("same type of prefix used twice"));
252b5132 2393
252b5132
RH
2394 return ret;
2395}
2396
2397static void
78f12dd3 2398update_code_flag (int value, int check)
eecb386c 2399{
78f12dd3
L
2400 PRINTF_LIKE ((*as_error));
2401
1e9cc1c2 2402 flag_code = (enum flag_code) value;
40fb9820
L
2403 if (flag_code == CODE_64BIT)
2404 {
2405 cpu_arch_flags.bitfield.cpu64 = 1;
2406 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2407 }
2408 else
2409 {
2410 cpu_arch_flags.bitfield.cpu64 = 0;
2411 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2412 }
2413 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2414 {
78f12dd3
L
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("64bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2421 }
40fb9820 2422 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2423 {
78f12dd3
L
2424 if (check)
2425 as_error = as_fatal;
2426 else
2427 as_error = as_bad;
2428 (*as_error) (_("32bit mode not supported on `%s'."),
2429 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2430 }
eecb386c
AM
2431 stackop_size = '\0';
2432}
2433
78f12dd3
L
2434static void
2435set_code_flag (int value)
2436{
2437 update_code_flag (value, 0);
2438}
2439
eecb386c 2440static void
e3bb37b5 2441set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2442{
1e9cc1c2 2443 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2444 if (flag_code != CODE_16BIT)
2445 abort ();
2446 cpu_arch_flags.bitfield.cpu64 = 0;
2447 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2448 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2449}
2450
2451static void
e3bb37b5 2452set_intel_syntax (int syntax_flag)
252b5132
RH
2453{
2454 /* Find out if register prefixing is specified. */
2455 int ask_naked_reg = 0;
2456
2457 SKIP_WHITESPACE ();
29b0f896 2458 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2459 {
d02603dc
NC
2460 char *string;
2461 int e = get_symbol_name (&string);
252b5132 2462
47926f60 2463 if (strcmp (string, "prefix") == 0)
252b5132 2464 ask_naked_reg = 1;
47926f60 2465 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2466 ask_naked_reg = -1;
2467 else
d0b47220 2468 as_bad (_("bad argument to syntax directive."));
d02603dc 2469 (void) restore_line_pointer (e);
252b5132
RH
2470 }
2471 demand_empty_rest_of_line ();
c3332e24 2472
252b5132
RH
2473 intel_syntax = syntax_flag;
2474
2475 if (ask_naked_reg == 0)
f86103b7
AM
2476 allow_naked_reg = (intel_syntax
2477 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2478 else
2479 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2480
ee86248c 2481 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2482
e4a3b5a4 2483 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2484 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2485 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2486}
2487
1efbbeb4
L
2488static void
2489set_intel_mnemonic (int mnemonic_flag)
2490{
e1d4d893 2491 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2492}
2493
db51cc60
L
2494static void
2495set_allow_index_reg (int flag)
2496{
2497 allow_index_reg = flag;
2498}
2499
cb19c032 2500static void
7bab8ab5 2501set_check (int what)
cb19c032 2502{
7bab8ab5
JB
2503 enum check_kind *kind;
2504 const char *str;
2505
2506 if (what)
2507 {
2508 kind = &operand_check;
2509 str = "operand";
2510 }
2511 else
2512 {
2513 kind = &sse_check;
2514 str = "sse";
2515 }
2516
cb19c032
L
2517 SKIP_WHITESPACE ();
2518
2519 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2520 {
d02603dc
NC
2521 char *string;
2522 int e = get_symbol_name (&string);
cb19c032
L
2523
2524 if (strcmp (string, "none") == 0)
7bab8ab5 2525 *kind = check_none;
cb19c032 2526 else if (strcmp (string, "warning") == 0)
7bab8ab5 2527 *kind = check_warning;
cb19c032 2528 else if (strcmp (string, "error") == 0)
7bab8ab5 2529 *kind = check_error;
cb19c032 2530 else
7bab8ab5 2531 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2532 (void) restore_line_pointer (e);
cb19c032
L
2533 }
2534 else
7bab8ab5 2535 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2536
2537 demand_empty_rest_of_line ();
2538}
2539
8a9036a4
L
2540static void
2541check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2542 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2543{
2544#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2545 static const char *arch;
2546
2547 /* Intel LIOM is only supported on ELF. */
2548 if (!IS_ELF)
2549 return;
2550
2551 if (!arch)
2552 {
2553 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2554 use default_arch. */
2555 arch = cpu_arch_name;
2556 if (!arch)
2557 arch = default_arch;
2558 }
2559
81486035
L
2560 /* If we are targeting Intel MCU, we must enable it. */
2561 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2562 || new_flag.bitfield.cpuiamcu)
2563 return;
2564
3632d14b 2565 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2566 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2567 || new_flag.bitfield.cpul1om)
8a9036a4 2568 return;
76ba9986 2569
7a9068fe
L
2570 /* If we are targeting Intel K1OM, we must enable it. */
2571 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2572 || new_flag.bitfield.cpuk1om)
2573 return;
2574
8a9036a4
L
2575 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2576#endif
2577}
2578
e413e4e9 2579static void
e3bb37b5 2580set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2581{
47926f60 2582 SKIP_WHITESPACE ();
e413e4e9 2583
29b0f896 2584 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2585 {
d02603dc
NC
2586 char *string;
2587 int e = get_symbol_name (&string);
91d6fa6a 2588 unsigned int j;
40fb9820 2589 i386_cpu_flags flags;
e413e4e9 2590
91d6fa6a 2591 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2592 {
91d6fa6a 2593 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2594 {
91d6fa6a 2595 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2596
5c6af06e
JB
2597 if (*string != '.')
2598 {
91d6fa6a 2599 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2600 cpu_sub_arch_name = NULL;
91d6fa6a 2601 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2602 if (flag_code == CODE_64BIT)
2603 {
2604 cpu_arch_flags.bitfield.cpu64 = 1;
2605 cpu_arch_flags.bitfield.cpuno64 = 0;
2606 }
2607 else
2608 {
2609 cpu_arch_flags.bitfield.cpu64 = 0;
2610 cpu_arch_flags.bitfield.cpuno64 = 1;
2611 }
91d6fa6a
NC
2612 cpu_arch_isa = cpu_arch[j].type;
2613 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2614 if (!cpu_arch_tune_set)
2615 {
2616 cpu_arch_tune = cpu_arch_isa;
2617 cpu_arch_tune_flags = cpu_arch_isa_flags;
2618 }
5c6af06e
JB
2619 break;
2620 }
40fb9820 2621
293f5f65
L
2622 flags = cpu_flags_or (cpu_arch_flags,
2623 cpu_arch[j].flags);
81486035 2624
5b64d091 2625 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2626 {
6305a203
L
2627 if (cpu_sub_arch_name)
2628 {
2629 char *name = cpu_sub_arch_name;
2630 cpu_sub_arch_name = concat (name,
91d6fa6a 2631 cpu_arch[j].name,
1bf57e9f 2632 (const char *) NULL);
6305a203
L
2633 free (name);
2634 }
2635 else
91d6fa6a 2636 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2637 cpu_arch_flags = flags;
a586129e 2638 cpu_arch_isa_flags = flags;
5c6af06e 2639 }
0089dace
L
2640 else
2641 cpu_arch_isa_flags
2642 = cpu_flags_or (cpu_arch_isa_flags,
2643 cpu_arch[j].flags);
d02603dc 2644 (void) restore_line_pointer (e);
5c6af06e
JB
2645 demand_empty_rest_of_line ();
2646 return;
e413e4e9
AM
2647 }
2648 }
293f5f65
L
2649
2650 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2651 {
33eaf5de 2652 /* Disable an ISA extension. */
293f5f65
L
2653 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2654 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2655 {
2656 flags = cpu_flags_and_not (cpu_arch_flags,
2657 cpu_noarch[j].flags);
2658 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2659 {
2660 if (cpu_sub_arch_name)
2661 {
2662 char *name = cpu_sub_arch_name;
2663 cpu_sub_arch_name = concat (name, string,
2664 (const char *) NULL);
2665 free (name);
2666 }
2667 else
2668 cpu_sub_arch_name = xstrdup (string);
2669 cpu_arch_flags = flags;
2670 cpu_arch_isa_flags = flags;
2671 }
2672 (void) restore_line_pointer (e);
2673 demand_empty_rest_of_line ();
2674 return;
2675 }
2676
2677 j = ARRAY_SIZE (cpu_arch);
2678 }
2679
91d6fa6a 2680 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2681 as_bad (_("no such architecture: `%s'"), string);
2682
2683 *input_line_pointer = e;
2684 }
2685 else
2686 as_bad (_("missing cpu architecture"));
2687
fddf5b5b
AM
2688 no_cond_jump_promotion = 0;
2689 if (*input_line_pointer == ','
29b0f896 2690 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2691 {
d02603dc
NC
2692 char *string;
2693 char e;
2694
2695 ++input_line_pointer;
2696 e = get_symbol_name (&string);
fddf5b5b
AM
2697
2698 if (strcmp (string, "nojumps") == 0)
2699 no_cond_jump_promotion = 1;
2700 else if (strcmp (string, "jumps") == 0)
2701 ;
2702 else
2703 as_bad (_("no such architecture modifier: `%s'"), string);
2704
d02603dc 2705 (void) restore_line_pointer (e);
fddf5b5b
AM
2706 }
2707
e413e4e9
AM
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711enum bfd_architecture
2712i386_arch (void)
2713{
3632d14b 2714 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2715 {
2716 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2717 || flag_code != CODE_64BIT)
2718 as_fatal (_("Intel L1OM is 64bit ELF only"));
2719 return bfd_arch_l1om;
2720 }
7a9068fe
L
2721 else if (cpu_arch_isa == PROCESSOR_K1OM)
2722 {
2723 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2724 || flag_code != CODE_64BIT)
2725 as_fatal (_("Intel K1OM is 64bit ELF only"));
2726 return bfd_arch_k1om;
2727 }
81486035
L
2728 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2729 {
2730 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2731 || flag_code == CODE_64BIT)
2732 as_fatal (_("Intel MCU is 32bit ELF only"));
2733 return bfd_arch_iamcu;
2734 }
8a9036a4
L
2735 else
2736 return bfd_arch_i386;
2737}
2738
b9d79e03 2739unsigned long
7016a5d5 2740i386_mach (void)
b9d79e03 2741{
351f65ca 2742 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2743 {
3632d14b 2744 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2745 {
351f65ca
L
2746 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2747 || default_arch[6] != '\0')
8a9036a4
L
2748 as_fatal (_("Intel L1OM is 64bit ELF only"));
2749 return bfd_mach_l1om;
2750 }
7a9068fe
L
2751 else if (cpu_arch_isa == PROCESSOR_K1OM)
2752 {
2753 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2754 || default_arch[6] != '\0')
2755 as_fatal (_("Intel K1OM is 64bit ELF only"));
2756 return bfd_mach_k1om;
2757 }
351f65ca 2758 else if (default_arch[6] == '\0')
8a9036a4 2759 return bfd_mach_x86_64;
351f65ca
L
2760 else
2761 return bfd_mach_x64_32;
8a9036a4 2762 }
5197d474
L
2763 else if (!strcmp (default_arch, "i386")
2764 || !strcmp (default_arch, "iamcu"))
81486035
L
2765 {
2766 if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2769 as_fatal (_("Intel MCU is 32bit ELF only"));
2770 return bfd_mach_i386_iamcu;
2771 }
2772 else
2773 return bfd_mach_i386_i386;
2774 }
b9d79e03 2775 else
2b5d6a91 2776 as_fatal (_("unknown architecture"));
b9d79e03 2777}
b9d79e03 2778\f
252b5132 2779void
7016a5d5 2780md_begin (void)
252b5132
RH
2781{
2782 const char *hash_err;
2783
86fa6981
L
2784 /* Support pseudo prefixes like {disp32}. */
2785 lex_type ['{'] = LEX_BEGIN_NAME;
2786
47926f60 2787 /* Initialize op_hash hash table. */
252b5132
RH
2788 op_hash = hash_new ();
2789
2790 {
d3ce72d0 2791 const insn_template *optab;
29b0f896 2792 templates *core_optab;
252b5132 2793
47926f60
KH
2794 /* Setup for loop. */
2795 optab = i386_optab;
add39d23 2796 core_optab = XNEW (templates);
252b5132
RH
2797 core_optab->start = optab;
2798
2799 while (1)
2800 {
2801 ++optab;
2802 if (optab->name == NULL
2803 || strcmp (optab->name, (optab - 1)->name) != 0)
2804 {
2805 /* different name --> ship out current template list;
47926f60 2806 add to hash table; & begin anew. */
252b5132
RH
2807 core_optab->end = optab;
2808 hash_err = hash_insert (op_hash,
2809 (optab - 1)->name,
5a49b8ac 2810 (void *) core_optab);
252b5132
RH
2811 if (hash_err)
2812 {
b37df7c4 2813 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2814 (optab - 1)->name,
2815 hash_err);
2816 }
2817 if (optab->name == NULL)
2818 break;
add39d23 2819 core_optab = XNEW (templates);
252b5132
RH
2820 core_optab->start = optab;
2821 }
2822 }
2823 }
2824
47926f60 2825 /* Initialize reg_hash hash table. */
252b5132
RH
2826 reg_hash = hash_new ();
2827 {
29b0f896 2828 const reg_entry *regtab;
c3fe08fa 2829 unsigned int regtab_size = i386_regtab_size;
252b5132 2830
c3fe08fa 2831 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2832 {
5a49b8ac 2833 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2834 if (hash_err)
b37df7c4 2835 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2836 regtab->reg_name,
2837 hash_err);
252b5132
RH
2838 }
2839 }
2840
47926f60 2841 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2842 {
29b0f896
AM
2843 int c;
2844 char *p;
252b5132
RH
2845
2846 for (c = 0; c < 256; c++)
2847 {
3882b010 2848 if (ISDIGIT (c))
252b5132
RH
2849 {
2850 digit_chars[c] = c;
2851 mnemonic_chars[c] = c;
2852 register_chars[c] = c;
2853 operand_chars[c] = c;
2854 }
3882b010 2855 else if (ISLOWER (c))
252b5132
RH
2856 {
2857 mnemonic_chars[c] = c;
2858 register_chars[c] = c;
2859 operand_chars[c] = c;
2860 }
3882b010 2861 else if (ISUPPER (c))
252b5132 2862 {
3882b010 2863 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2864 register_chars[c] = mnemonic_chars[c];
2865 operand_chars[c] = c;
2866 }
43234a1e 2867 else if (c == '{' || c == '}')
86fa6981
L
2868 {
2869 mnemonic_chars[c] = c;
2870 operand_chars[c] = c;
2871 }
252b5132 2872
3882b010 2873 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2874 identifier_chars[c] = c;
2875 else if (c >= 128)
2876 {
2877 identifier_chars[c] = c;
2878 operand_chars[c] = c;
2879 }
2880 }
2881
2882#ifdef LEX_AT
2883 identifier_chars['@'] = '@';
32137342
NC
2884#endif
2885#ifdef LEX_QM
2886 identifier_chars['?'] = '?';
2887 operand_chars['?'] = '?';
252b5132 2888#endif
252b5132 2889 digit_chars['-'] = '-';
c0f3af97 2890 mnemonic_chars['_'] = '_';
791fe849 2891 mnemonic_chars['-'] = '-';
0003779b 2892 mnemonic_chars['.'] = '.';
252b5132
RH
2893 identifier_chars['_'] = '_';
2894 identifier_chars['.'] = '.';
2895
2896 for (p = operand_special_chars; *p != '\0'; p++)
2897 operand_chars[(unsigned char) *p] = *p;
2898 }
2899
a4447b93
RH
2900 if (flag_code == CODE_64BIT)
2901 {
ca19b261
KT
2902#if defined (OBJ_COFF) && defined (TE_PE)
2903 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2904 ? 32 : 16);
2905#else
a4447b93 2906 x86_dwarf2_return_column = 16;
ca19b261 2907#endif
61ff971f 2908 x86_cie_data_alignment = -8;
a4447b93
RH
2909 }
2910 else
2911 {
2912 x86_dwarf2_return_column = 8;
2913 x86_cie_data_alignment = -4;
2914 }
252b5132
RH
2915}
2916
2917void
e3bb37b5 2918i386_print_statistics (FILE *file)
252b5132
RH
2919{
2920 hash_print_statistics (file, "i386 opcode", op_hash);
2921 hash_print_statistics (file, "i386 register", reg_hash);
2922}
2923\f
252b5132
RH
2924#ifdef DEBUG386
2925
ce8a8b2f 2926/* Debugging routines for md_assemble. */
d3ce72d0 2927static void pte (insn_template *);
40fb9820 2928static void pt (i386_operand_type);
e3bb37b5
L
2929static void pe (expressionS *);
2930static void ps (symbolS *);
252b5132
RH
2931
2932static void
e3bb37b5 2933pi (char *line, i386_insn *x)
252b5132 2934{
09137c09 2935 unsigned int j;
252b5132
RH
2936
2937 fprintf (stdout, "%s: template ", line);
2938 pte (&x->tm);
09f131f2
JH
2939 fprintf (stdout, " address: base %s index %s scale %x\n",
2940 x->base_reg ? x->base_reg->reg_name : "none",
2941 x->index_reg ? x->index_reg->reg_name : "none",
2942 x->log2_scale_factor);
2943 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2944 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2945 fprintf (stdout, " sib: base %x index %x scale %x\n",
2946 x->sib.base, x->sib.index, x->sib.scale);
2947 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2948 (x->rex & REX_W) != 0,
2949 (x->rex & REX_R) != 0,
2950 (x->rex & REX_X) != 0,
2951 (x->rex & REX_B) != 0);
09137c09 2952 for (j = 0; j < x->operands; j++)
252b5132 2953 {
09137c09
SP
2954 fprintf (stdout, " #%d: ", j + 1);
2955 pt (x->types[j]);
252b5132 2956 fprintf (stdout, "\n");
dc821c5f 2957 if (x->types[j].bitfield.reg
09137c09 2958 || x->types[j].bitfield.regmmx
1b54b8d7 2959 || x->types[j].bitfield.regsimd
09137c09
SP
2960 || x->types[j].bitfield.sreg2
2961 || x->types[j].bitfield.sreg3
2962 || x->types[j].bitfield.control
2963 || x->types[j].bitfield.debug
2964 || x->types[j].bitfield.test)
2965 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2966 if (operand_type_check (x->types[j], imm))
2967 pe (x->op[j].imms);
2968 if (operand_type_check (x->types[j], disp))
2969 pe (x->op[j].disps);
252b5132
RH
2970 }
2971}
2972
2973static void
d3ce72d0 2974pte (insn_template *t)
252b5132 2975{
09137c09 2976 unsigned int j;
252b5132 2977 fprintf (stdout, " %d operands ", t->operands);
47926f60 2978 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2979 if (t->extension_opcode != None)
2980 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2981 if (t->opcode_modifier.d)
252b5132 2982 fprintf (stdout, "D");
40fb9820 2983 if (t->opcode_modifier.w)
252b5132
RH
2984 fprintf (stdout, "W");
2985 fprintf (stdout, "\n");
09137c09 2986 for (j = 0; j < t->operands; j++)
252b5132 2987 {
09137c09
SP
2988 fprintf (stdout, " #%d type ", j + 1);
2989 pt (t->operand_types[j]);
252b5132
RH
2990 fprintf (stdout, "\n");
2991 }
2992}
2993
2994static void
e3bb37b5 2995pe (expressionS *e)
252b5132 2996{
24eab124 2997 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2998 fprintf (stdout, " add_number %ld (%lx)\n",
2999 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3000 if (e->X_add_symbol)
3001 {
3002 fprintf (stdout, " add_symbol ");
3003 ps (e->X_add_symbol);
3004 fprintf (stdout, "\n");
3005 }
3006 if (e->X_op_symbol)
3007 {
3008 fprintf (stdout, " op_symbol ");
3009 ps (e->X_op_symbol);
3010 fprintf (stdout, "\n");
3011 }
3012}
3013
3014static void
e3bb37b5 3015ps (symbolS *s)
252b5132
RH
3016{
3017 fprintf (stdout, "%s type %s%s",
3018 S_GET_NAME (s),
3019 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3020 segment_name (S_GET_SEGMENT (s)));
3021}
3022
7b81dfbb 3023static struct type_name
252b5132 3024 {
40fb9820
L
3025 i386_operand_type mask;
3026 const char *name;
252b5132 3027 }
7b81dfbb 3028const type_names[] =
252b5132 3029{
40fb9820
L
3030 { OPERAND_TYPE_REG8, "r8" },
3031 { OPERAND_TYPE_REG16, "r16" },
3032 { OPERAND_TYPE_REG32, "r32" },
3033 { OPERAND_TYPE_REG64, "r64" },
3034 { OPERAND_TYPE_IMM8, "i8" },
3035 { OPERAND_TYPE_IMM8, "i8s" },
3036 { OPERAND_TYPE_IMM16, "i16" },
3037 { OPERAND_TYPE_IMM32, "i32" },
3038 { OPERAND_TYPE_IMM32S, "i32s" },
3039 { OPERAND_TYPE_IMM64, "i64" },
3040 { OPERAND_TYPE_IMM1, "i1" },
3041 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3042 { OPERAND_TYPE_DISP8, "d8" },
3043 { OPERAND_TYPE_DISP16, "d16" },
3044 { OPERAND_TYPE_DISP32, "d32" },
3045 { OPERAND_TYPE_DISP32S, "d32s" },
3046 { OPERAND_TYPE_DISP64, "d64" },
3047 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3048 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3049 { OPERAND_TYPE_CONTROL, "control reg" },
3050 { OPERAND_TYPE_TEST, "test reg" },
3051 { OPERAND_TYPE_DEBUG, "debug reg" },
3052 { OPERAND_TYPE_FLOATREG, "FReg" },
3053 { OPERAND_TYPE_FLOATACC, "FAcc" },
3054 { OPERAND_TYPE_SREG2, "SReg2" },
3055 { OPERAND_TYPE_SREG3, "SReg3" },
3056 { OPERAND_TYPE_ACC, "Acc" },
3057 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3058 { OPERAND_TYPE_REGMMX, "rMMX" },
3059 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3060 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3061 { OPERAND_TYPE_REGZMM, "rZMM" },
3062 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3063 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3064};
3065
3066static void
40fb9820 3067pt (i386_operand_type t)
252b5132 3068{
40fb9820 3069 unsigned int j;
c6fb90c8 3070 i386_operand_type a;
252b5132 3071
40fb9820 3072 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3073 {
3074 a = operand_type_and (t, type_names[j].mask);
0349dc08 3075 if (!operand_type_all_zero (&a))
c6fb90c8
L
3076 fprintf (stdout, "%s, ", type_names[j].name);
3077 }
252b5132
RH
3078 fflush (stdout);
3079}
3080
3081#endif /* DEBUG386 */
3082\f
252b5132 3083static bfd_reloc_code_real_type
3956db08 3084reloc (unsigned int size,
64e74474
AM
3085 int pcrel,
3086 int sign,
3087 bfd_reloc_code_real_type other)
252b5132 3088{
47926f60 3089 if (other != NO_RELOC)
3956db08 3090 {
91d6fa6a 3091 reloc_howto_type *rel;
3956db08
JB
3092
3093 if (size == 8)
3094 switch (other)
3095 {
64e74474
AM
3096 case BFD_RELOC_X86_64_GOT32:
3097 return BFD_RELOC_X86_64_GOT64;
3098 break;
553d1284
L
3099 case BFD_RELOC_X86_64_GOTPLT64:
3100 return BFD_RELOC_X86_64_GOTPLT64;
3101 break;
64e74474
AM
3102 case BFD_RELOC_X86_64_PLTOFF64:
3103 return BFD_RELOC_X86_64_PLTOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPC32:
3106 other = BFD_RELOC_X86_64_GOTPC64;
3107 break;
3108 case BFD_RELOC_X86_64_GOTPCREL:
3109 other = BFD_RELOC_X86_64_GOTPCREL64;
3110 break;
3111 case BFD_RELOC_X86_64_TPOFF32:
3112 other = BFD_RELOC_X86_64_TPOFF64;
3113 break;
3114 case BFD_RELOC_X86_64_DTPOFF32:
3115 other = BFD_RELOC_X86_64_DTPOFF64;
3116 break;
3117 default:
3118 break;
3956db08 3119 }
e05278af 3120
8ce3d284 3121#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3122 if (other == BFD_RELOC_SIZE32)
3123 {
3124 if (size == 8)
1ab668bf 3125 other = BFD_RELOC_SIZE64;
8fd4256d 3126 if (pcrel)
1ab668bf
AM
3127 {
3128 as_bad (_("there are no pc-relative size relocations"));
3129 return NO_RELOC;
3130 }
8fd4256d 3131 }
8ce3d284 3132#endif
8fd4256d 3133
e05278af 3134 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3135 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3136 sign = -1;
3137
91d6fa6a
NC
3138 rel = bfd_reloc_type_lookup (stdoutput, other);
3139 if (!rel)
3956db08 3140 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3141 else if (size != bfd_get_reloc_size (rel))
3956db08 3142 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3143 bfd_get_reloc_size (rel),
3956db08 3144 size);
91d6fa6a 3145 else if (pcrel && !rel->pc_relative)
3956db08 3146 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3147 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3148 && !sign)
91d6fa6a 3149 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3150 && sign > 0))
3956db08
JB
3151 as_bad (_("relocated field and relocation type differ in signedness"));
3152 else
3153 return other;
3154 return NO_RELOC;
3155 }
252b5132
RH
3156
3157 if (pcrel)
3158 {
3e73aa7c 3159 if (!sign)
3956db08 3160 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3161 switch (size)
3162 {
3163 case 1: return BFD_RELOC_8_PCREL;
3164 case 2: return BFD_RELOC_16_PCREL;
d258b828 3165 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3166 case 8: return BFD_RELOC_64_PCREL;
252b5132 3167 }
3956db08 3168 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3169 }
3170 else
3171 {
3956db08 3172 if (sign > 0)
e5cb08ac 3173 switch (size)
3e73aa7c
JH
3174 {
3175 case 4: return BFD_RELOC_X86_64_32S;
3176 }
3177 else
3178 switch (size)
3179 {
3180 case 1: return BFD_RELOC_8;
3181 case 2: return BFD_RELOC_16;
3182 case 4: return BFD_RELOC_32;
3183 case 8: return BFD_RELOC_64;
3184 }
3956db08
JB
3185 as_bad (_("cannot do %s %u byte relocation"),
3186 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3187 }
3188
0cc9e1d3 3189 return NO_RELOC;
252b5132
RH
3190}
3191
47926f60
KH
3192/* Here we decide which fixups can be adjusted to make them relative to
3193 the beginning of the section instead of the symbol. Basically we need
3194 to make sure that the dynamic relocations are done correctly, so in
3195 some cases we force the original symbol to be used. */
3196
252b5132 3197int
e3bb37b5 3198tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3199{
6d249963 3200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3201 if (!IS_ELF)
31312f95
AM
3202 return 1;
3203
a161fe53
AM
3204 /* Don't adjust pc-relative references to merge sections in 64-bit
3205 mode. */
3206 if (use_rela_relocations
3207 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3208 && fixP->fx_pcrel)
252b5132 3209 return 0;
31312f95 3210
8d01d9a9
AJ
3211 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3212 and changed later by validate_fix. */
3213 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3214 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3215 return 0;
3216
8fd4256d
L
3217 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3218 for size relocations. */
3219 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3220 || fixP->fx_r_type == BFD_RELOC_SIZE64
3221 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3222 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3224 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3243 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3251 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3252 return 0;
31312f95 3253#endif
252b5132
RH
3254 return 1;
3255}
252b5132 3256
b4cac588 3257static int
e3bb37b5 3258intel_float_operand (const char *mnemonic)
252b5132 3259{
9306ca4a
JB
3260 /* Note that the value returned is meaningful only for opcodes with (memory)
3261 operands, hence the code here is free to improperly handle opcodes that
3262 have no operands (for better performance and smaller code). */
3263
3264 if (mnemonic[0] != 'f')
3265 return 0; /* non-math */
3266
3267 switch (mnemonic[1])
3268 {
3269 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3270 the fs segment override prefix not currently handled because no
3271 call path can make opcodes without operands get here */
3272 case 'i':
3273 return 2 /* integer op */;
3274 case 'l':
3275 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3276 return 3; /* fldcw/fldenv */
3277 break;
3278 case 'n':
3279 if (mnemonic[2] != 'o' /* fnop */)
3280 return 3; /* non-waiting control op */
3281 break;
3282 case 'r':
3283 if (mnemonic[2] == 's')
3284 return 3; /* frstor/frstpm */
3285 break;
3286 case 's':
3287 if (mnemonic[2] == 'a')
3288 return 3; /* fsave */
3289 if (mnemonic[2] == 't')
3290 {
3291 switch (mnemonic[3])
3292 {
3293 case 'c': /* fstcw */
3294 case 'd': /* fstdw */
3295 case 'e': /* fstenv */
3296 case 's': /* fsts[gw] */
3297 return 3;
3298 }
3299 }
3300 break;
3301 case 'x':
3302 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3303 return 0; /* fxsave/fxrstor are not really math ops */
3304 break;
3305 }
252b5132 3306
9306ca4a 3307 return 1;
252b5132
RH
3308}
3309
c0f3af97
L
3310/* Build the VEX prefix. */
3311
3312static void
d3ce72d0 3313build_vex_prefix (const insn_template *t)
c0f3af97
L
3314{
3315 unsigned int register_specifier;
3316 unsigned int implied_prefix;
3317 unsigned int vector_length;
3318
3319 /* Check register specifier. */
3320 if (i.vex.register_specifier)
43234a1e
L
3321 {
3322 register_specifier =
3323 ~register_number (i.vex.register_specifier) & 0xf;
3324 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3325 }
c0f3af97
L
3326 else
3327 register_specifier = 0xf;
3328
33eaf5de 3329 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3330 operand. */
86fa6981
L
3331 if (i.vec_encoding != vex_encoding_vex3
3332 && i.dir_encoding == dir_encoding_default
fa99fab2 3333 && i.operands == i.reg_operands
7f399153 3334 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3335 && i.tm.opcode_modifier.load
fa99fab2
L
3336 && i.rex == REX_B)
3337 {
3338 unsigned int xchg = i.operands - 1;
3339 union i386_op temp_op;
3340 i386_operand_type temp_type;
3341
3342 temp_type = i.types[xchg];
3343 i.types[xchg] = i.types[0];
3344 i.types[0] = temp_type;
3345 temp_op = i.op[xchg];
3346 i.op[xchg] = i.op[0];
3347 i.op[0] = temp_op;
3348
9c2799c2 3349 gas_assert (i.rm.mode == 3);
fa99fab2
L
3350
3351 i.rex = REX_R;
3352 xchg = i.rm.regmem;
3353 i.rm.regmem = i.rm.reg;
3354 i.rm.reg = xchg;
3355
3356 /* Use the next insn. */
3357 i.tm = t[1];
3358 }
3359
539f890d
L
3360 if (i.tm.opcode_modifier.vex == VEXScalar)
3361 vector_length = avxscalar;
10c17abd
JB
3362 else if (i.tm.opcode_modifier.vex == VEX256)
3363 vector_length = 1;
539f890d 3364 else
10c17abd 3365 {
c7213af9 3366 int op;
10c17abd 3367
c7213af9
L
3368 /* Determine vector length from the last multi-length vector
3369 operand. */
10c17abd 3370 vector_length = 0;
c7213af9 3371 for (op = t->operands - 1; op >= 0; op--)
10c17abd
JB
3372 if (t->operand_types[op].bitfield.xmmword
3373 && t->operand_types[op].bitfield.ymmword
3374 && i.types[op].bitfield.ymmword)
3375 {
3376 vector_length = 1;
3377 break;
3378 }
3379 }
c0f3af97
L
3380
3381 switch ((i.tm.base_opcode >> 8) & 0xff)
3382 {
3383 case 0:
3384 implied_prefix = 0;
3385 break;
3386 case DATA_PREFIX_OPCODE:
3387 implied_prefix = 1;
3388 break;
3389 case REPE_PREFIX_OPCODE:
3390 implied_prefix = 2;
3391 break;
3392 case REPNE_PREFIX_OPCODE:
3393 implied_prefix = 3;
3394 break;
3395 default:
3396 abort ();
3397 }
3398
3399 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3400 if (i.vec_encoding != vex_encoding_vex3
3401 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3402 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3403 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3404 {
3405 /* 2-byte VEX prefix. */
3406 unsigned int r;
3407
3408 i.vex.length = 2;
3409 i.vex.bytes[0] = 0xc5;
3410
3411 /* Check the REX.R bit. */
3412 r = (i.rex & REX_R) ? 0 : 1;
3413 i.vex.bytes[1] = (r << 7
3414 | register_specifier << 3
3415 | vector_length << 2
3416 | implied_prefix);
3417 }
3418 else
3419 {
3420 /* 3-byte VEX prefix. */
3421 unsigned int m, w;
3422
f88c9eb0 3423 i.vex.length = 3;
f88c9eb0 3424
7f399153 3425 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3426 {
7f399153
L
3427 case VEX0F:
3428 m = 0x1;
80de6e00 3429 i.vex.bytes[0] = 0xc4;
7f399153
L
3430 break;
3431 case VEX0F38:
3432 m = 0x2;
80de6e00 3433 i.vex.bytes[0] = 0xc4;
7f399153
L
3434 break;
3435 case VEX0F3A:
3436 m = 0x3;
80de6e00 3437 i.vex.bytes[0] = 0xc4;
7f399153
L
3438 break;
3439 case XOP08:
5dd85c99
SP
3440 m = 0x8;
3441 i.vex.bytes[0] = 0x8f;
7f399153
L
3442 break;
3443 case XOP09:
f88c9eb0
SP
3444 m = 0x9;
3445 i.vex.bytes[0] = 0x8f;
7f399153
L
3446 break;
3447 case XOP0A:
f88c9eb0
SP
3448 m = 0xa;
3449 i.vex.bytes[0] = 0x8f;
7f399153
L
3450 break;
3451 default:
3452 abort ();
f88c9eb0 3453 }
c0f3af97 3454
c0f3af97
L
3455 /* The high 3 bits of the second VEX byte are 1's compliment
3456 of RXB bits from REX. */
3457 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3458
3459 /* Check the REX.W bit. */
3460 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3461 if (i.tm.opcode_modifier.vexw == VEXW1)
3462 w = 1;
c0f3af97
L
3463
3464 i.vex.bytes[2] = (w << 7
3465 | register_specifier << 3
3466 | vector_length << 2
3467 | implied_prefix);
3468 }
3469}
3470
e771e7c9
JB
3471static INLINE bfd_boolean
3472is_evex_encoding (const insn_template *t)
3473{
7091c612 3474 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3475 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3476 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3477}
3478
43234a1e
L
3479/* Build the EVEX prefix. */
3480
3481static void
3482build_evex_prefix (void)
3483{
3484 unsigned int register_specifier;
3485 unsigned int implied_prefix;
3486 unsigned int m, w;
3487 rex_byte vrex_used = 0;
3488
3489 /* Check register specifier. */
3490 if (i.vex.register_specifier)
3491 {
3492 gas_assert ((i.vrex & REX_X) == 0);
3493
3494 register_specifier = i.vex.register_specifier->reg_num;
3495 if ((i.vex.register_specifier->reg_flags & RegRex))
3496 register_specifier += 8;
3497 /* The upper 16 registers are encoded in the fourth byte of the
3498 EVEX prefix. */
3499 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3500 i.vex.bytes[3] = 0x8;
3501 register_specifier = ~register_specifier & 0xf;
3502 }
3503 else
3504 {
3505 register_specifier = 0xf;
3506
3507 /* Encode upper 16 vector index register in the fourth byte of
3508 the EVEX prefix. */
3509 if (!(i.vrex & REX_X))
3510 i.vex.bytes[3] = 0x8;
3511 else
3512 vrex_used |= REX_X;
3513 }
3514
3515 switch ((i.tm.base_opcode >> 8) & 0xff)
3516 {
3517 case 0:
3518 implied_prefix = 0;
3519 break;
3520 case DATA_PREFIX_OPCODE:
3521 implied_prefix = 1;
3522 break;
3523 case REPE_PREFIX_OPCODE:
3524 implied_prefix = 2;
3525 break;
3526 case REPNE_PREFIX_OPCODE:
3527 implied_prefix = 3;
3528 break;
3529 default:
3530 abort ();
3531 }
3532
3533 /* 4 byte EVEX prefix. */
3534 i.vex.length = 4;
3535 i.vex.bytes[0] = 0x62;
3536
3537 /* mmmm bits. */
3538 switch (i.tm.opcode_modifier.vexopcode)
3539 {
3540 case VEX0F:
3541 m = 1;
3542 break;
3543 case VEX0F38:
3544 m = 2;
3545 break;
3546 case VEX0F3A:
3547 m = 3;
3548 break;
3549 default:
3550 abort ();
3551 break;
3552 }
3553
3554 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3555 bits from REX. */
3556 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3557
3558 /* The fifth bit of the second EVEX byte is 1's compliment of the
3559 REX_R bit in VREX. */
3560 if (!(i.vrex & REX_R))
3561 i.vex.bytes[1] |= 0x10;
3562 else
3563 vrex_used |= REX_R;
3564
3565 if ((i.reg_operands + i.imm_operands) == i.operands)
3566 {
3567 /* When all operands are registers, the REX_X bit in REX is not
3568 used. We reuse it to encode the upper 16 registers, which is
3569 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3570 as 1's compliment. */
3571 if ((i.vrex & REX_B))
3572 {
3573 vrex_used |= REX_B;
3574 i.vex.bytes[1] &= ~0x40;
3575 }
3576 }
3577
3578 /* EVEX instructions shouldn't need the REX prefix. */
3579 i.vrex &= ~vrex_used;
3580 gas_assert (i.vrex == 0);
3581
3582 /* Check the REX.W bit. */
3583 w = (i.rex & REX_W) ? 1 : 0;
3584 if (i.tm.opcode_modifier.vexw)
3585 {
3586 if (i.tm.opcode_modifier.vexw == VEXW1)
3587 w = 1;
3588 }
3589 /* If w is not set it means we are dealing with WIG instruction. */
3590 else if (!w)
3591 {
3592 if (evexwig == evexw1)
3593 w = 1;
3594 }
3595
3596 /* Encode the U bit. */
3597 implied_prefix |= 0x4;
3598
3599 /* The third byte of the EVEX prefix. */
3600 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3601
3602 /* The fourth byte of the EVEX prefix. */
3603 /* The zeroing-masking bit. */
3604 if (i.mask && i.mask->zeroing)
3605 i.vex.bytes[3] |= 0x80;
3606
3607 /* Don't always set the broadcast bit if there is no RC. */
3608 if (!i.rounding)
3609 {
3610 /* Encode the vector length. */
3611 unsigned int vec_length;
3612
e771e7c9
JB
3613 if (!i.tm.opcode_modifier.evex
3614 || i.tm.opcode_modifier.evex == EVEXDYN)
3615 {
c7213af9 3616 int op;
e771e7c9 3617
c7213af9
L
3618 /* Determine vector length from the last multi-length vector
3619 operand. */
e771e7c9 3620 vec_length = 0;
c7213af9 3621 for (op = i.operands - 1; op >= 0; op--)
e771e7c9
JB
3622 if (i.tm.operand_types[op].bitfield.xmmword
3623 + i.tm.operand_types[op].bitfield.ymmword
3624 + i.tm.operand_types[op].bitfield.zmmword > 1)
3625 {
3626 if (i.types[op].bitfield.zmmword)
c7213af9
L
3627 {
3628 i.tm.opcode_modifier.evex = EVEX512;
3629 break;
3630 }
e771e7c9 3631 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3632 {
3633 i.tm.opcode_modifier.evex = EVEX256;
3634 break;
3635 }
e771e7c9 3636 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3637 {
3638 i.tm.opcode_modifier.evex = EVEX128;
3639 break;
3640 }
625cbd7a
JB
3641 else if (i.broadcast && (int) op == i.broadcast->operand)
3642 {
3643 switch ((i.tm.operand_types[op].bitfield.dword ? 4 : 8)
3644 * i.broadcast->type)
3645 {
3646 case 64:
3647 i.tm.opcode_modifier.evex = EVEX512;
3648 break;
3649 case 32:
3650 i.tm.opcode_modifier.evex = EVEX256;
3651 break;
3652 case 16:
3653 i.tm.opcode_modifier.evex = EVEX128;
3654 break;
3655 default:
c7213af9 3656 abort ();
625cbd7a 3657 }
c7213af9 3658 break;
625cbd7a 3659 }
e771e7c9 3660 }
c7213af9
L
3661
3662 if (op < 0)
3663 abort ();
e771e7c9
JB
3664 }
3665
43234a1e
L
3666 switch (i.tm.opcode_modifier.evex)
3667 {
3668 case EVEXLIG: /* LL' is ignored */
3669 vec_length = evexlig << 5;
3670 break;
3671 case EVEX128:
3672 vec_length = 0 << 5;
3673 break;
3674 case EVEX256:
3675 vec_length = 1 << 5;
3676 break;
3677 case EVEX512:
3678 vec_length = 2 << 5;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684 i.vex.bytes[3] |= vec_length;
3685 /* Encode the broadcast bit. */
3686 if (i.broadcast)
3687 i.vex.bytes[3] |= 0x10;
3688 }
3689 else
3690 {
3691 if (i.rounding->type != saeonly)
3692 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3693 else
d3d3c6db 3694 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3695 }
3696
3697 if (i.mask && i.mask->mask)
3698 i.vex.bytes[3] |= i.mask->mask->reg_num;
3699}
3700
65da13b5
L
3701static void
3702process_immext (void)
3703{
3704 expressionS *exp;
3705
4c692bc7
JB
3706 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3707 && i.operands > 0)
65da13b5 3708 {
4c692bc7
JB
3709 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3710 with an opcode suffix which is coded in the same place as an
3711 8-bit immediate field would be.
3712 Here we check those operands and remove them afterwards. */
65da13b5
L
3713 unsigned int x;
3714
3715 for (x = 0; x < i.operands; x++)
4c692bc7 3716 if (register_number (i.op[x].regs) != x)
65da13b5 3717 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3718 register_prefix, i.op[x].regs->reg_name, x + 1,
3719 i.tm.name);
3720
3721 i.operands = 0;
65da13b5
L
3722 }
3723
9916071f
AP
3724 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3725 {
3726 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3727 suffix which is coded in the same place as an 8-bit immediate
3728 field would be.
3729 Here we check those operands and remove them afterwards. */
3730 unsigned int x;
3731
3732 if (i.operands != 3)
3733 abort();
3734
3735 for (x = 0; x < 2; x++)
3736 if (register_number (i.op[x].regs) != x)
3737 goto bad_register_operand;
3738
3739 /* Check for third operand for mwaitx/monitorx insn. */
3740 if (register_number (i.op[x].regs)
3741 != (x + (i.tm.extension_opcode == 0xfb)))
3742 {
3743bad_register_operand:
3744 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3745 register_prefix, i.op[x].regs->reg_name, x+1,
3746 i.tm.name);
3747 }
3748
3749 i.operands = 0;
3750 }
3751
c0f3af97 3752 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3753 which is coded in the same place as an 8-bit immediate field
3754 would be. Here we fake an 8-bit immediate operand from the
3755 opcode suffix stored in tm.extension_opcode.
3756
c1e679ec 3757 AVX instructions also use this encoding, for some of
c0f3af97 3758 3 argument instructions. */
65da13b5 3759
43234a1e 3760 gas_assert (i.imm_operands <= 1
7ab9ffdd 3761 && (i.operands <= 2
43234a1e 3762 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3763 || i.tm.opcode_modifier.vexopcode
3764 || is_evex_encoding (&i.tm))
7ab9ffdd 3765 && i.operands <= 4)));
65da13b5
L
3766
3767 exp = &im_expressions[i.imm_operands++];
3768 i.op[i.operands].imms = exp;
3769 i.types[i.operands] = imm8;
3770 i.operands++;
3771 exp->X_op = O_constant;
3772 exp->X_add_number = i.tm.extension_opcode;
3773 i.tm.extension_opcode = None;
3774}
3775
42164a71
L
3776
3777static int
3778check_hle (void)
3779{
3780 switch (i.tm.opcode_modifier.hleprefixok)
3781 {
3782 default:
3783 abort ();
82c2def5 3784 case HLEPrefixNone:
165de32a
L
3785 as_bad (_("invalid instruction `%s' after `%s'"),
3786 i.tm.name, i.hle_prefix);
42164a71 3787 return 0;
82c2def5 3788 case HLEPrefixLock:
42164a71
L
3789 if (i.prefix[LOCK_PREFIX])
3790 return 1;
165de32a 3791 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3792 return 0;
82c2def5 3793 case HLEPrefixAny:
42164a71 3794 return 1;
82c2def5 3795 case HLEPrefixRelease:
42164a71
L
3796 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3797 {
3798 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3799 i.tm.name);
3800 return 0;
3801 }
3802 if (i.mem_operands == 0
3803 || !operand_type_check (i.types[i.operands - 1], anymem))
3804 {
3805 as_bad (_("memory destination needed for instruction `%s'"
3806 " after `xrelease'"), i.tm.name);
3807 return 0;
3808 }
3809 return 1;
3810 }
3811}
3812
b6f8c7c4
L
3813/* Try the shortest encoding by shortening operand size. */
3814
3815static void
3816optimize_encoding (void)
3817{
3818 int j;
3819
3820 if (optimize_for_space
3821 && i.reg_operands == 1
3822 && i.imm_operands == 1
3823 && !i.types[1].bitfield.byte
3824 && i.op[0].imms->X_op == O_constant
3825 && fits_in_imm7 (i.op[0].imms->X_add_number)
3826 && ((i.tm.base_opcode == 0xa8
3827 && i.tm.extension_opcode == None)
3828 || (i.tm.base_opcode == 0xf6
3829 && i.tm.extension_opcode == 0x0)))
3830 {
3831 /* Optimize: -Os:
3832 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3833 */
3834 unsigned int base_regnum = i.op[1].regs->reg_num;
3835 if (flag_code == CODE_64BIT || base_regnum < 4)
3836 {
3837 i.types[1].bitfield.byte = 1;
3838 /* Ignore the suffix. */
3839 i.suffix = 0;
3840 if (base_regnum >= 4
3841 && !(i.op[1].regs->reg_flags & RegRex))
3842 {
3843 /* Handle SP, BP, SI and DI registers. */
3844 if (i.types[1].bitfield.word)
3845 j = 16;
3846 else if (i.types[1].bitfield.dword)
3847 j = 32;
3848 else
3849 j = 48;
3850 i.op[1].regs -= j;
3851 }
3852 }
3853 }
3854 else if (flag_code == CODE_64BIT
d3d50934
L
3855 && ((i.types[1].bitfield.qword
3856 && i.reg_operands == 1
b6f8c7c4
L
3857 && i.imm_operands == 1
3858 && i.op[0].imms->X_op == O_constant
3859 && ((i.tm.base_opcode == 0xb0
3860 && i.tm.extension_opcode == None
3861 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3862 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3863 && (((i.tm.base_opcode == 0x24
3864 || i.tm.base_opcode == 0xa8)
3865 && i.tm.extension_opcode == None)
3866 || (i.tm.base_opcode == 0x80
3867 && i.tm.extension_opcode == 0x4)
3868 || ((i.tm.base_opcode == 0xf6
3869 || i.tm.base_opcode == 0xc6)
3870 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3871 || (i.types[0].bitfield.qword
3872 && ((i.reg_operands == 2
3873 && i.op[0].regs == i.op[1].regs
3874 && ((i.tm.base_opcode == 0x30
3875 || i.tm.base_opcode == 0x28)
3876 && i.tm.extension_opcode == None))
3877 || (i.reg_operands == 1
3878 && i.operands == 1
3879 && i.tm.base_opcode == 0x30
3880 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3881 {
3882 /* Optimize: -O:
3883 andq $imm31, %r64 -> andl $imm31, %r32
3884 testq $imm31, %r64 -> testl $imm31, %r32
3885 xorq %r64, %r64 -> xorl %r32, %r32
3886 subq %r64, %r64 -> subl %r32, %r32
3887 movq $imm31, %r64 -> movl $imm31, %r32
3888 movq $imm32, %r64 -> movl $imm32, %r32
3889 */
3890 i.tm.opcode_modifier.norex64 = 1;
3891 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3892 {
3893 /* Handle
3894 movq $imm31, %r64 -> movl $imm31, %r32
3895 movq $imm32, %r64 -> movl $imm32, %r32
3896 */
3897 i.tm.operand_types[0].bitfield.imm32 = 1;
3898 i.tm.operand_types[0].bitfield.imm32s = 0;
3899 i.tm.operand_types[0].bitfield.imm64 = 0;
3900 i.types[0].bitfield.imm32 = 1;
3901 i.types[0].bitfield.imm32s = 0;
3902 i.types[0].bitfield.imm64 = 0;
3903 i.types[1].bitfield.dword = 1;
3904 i.types[1].bitfield.qword = 0;
3905 if (i.tm.base_opcode == 0xc6)
3906 {
3907 /* Handle
3908 movq $imm31, %r64 -> movl $imm31, %r32
3909 */
3910 i.tm.base_opcode = 0xb0;
3911 i.tm.extension_opcode = None;
3912 i.tm.opcode_modifier.shortform = 1;
3913 i.tm.opcode_modifier.modrm = 0;
3914 }
3915 }
3916 }
3917 else if (optimize > 1
3918 && i.reg_operands == 3
3919 && i.op[0].regs == i.op[1].regs
3920 && !i.types[2].bitfield.xmmword
3921 && (i.tm.opcode_modifier.vex
7a69eac3 3922 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3923 && !i.rounding
e771e7c9 3924 && is_evex_encoding (&i.tm)
80c34c38
L
3925 && (i.vec_encoding != vex_encoding_evex
3926 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3927 || (i.tm.operand_types[2].bitfield.zmmword
3928 && i.types[2].bitfield.ymmword)
0089dace 3929 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3930 && ((i.tm.base_opcode == 0x55
3931 || i.tm.base_opcode == 0x6655
3932 || i.tm.base_opcode == 0x66df
3933 || i.tm.base_opcode == 0x57
3934 || i.tm.base_opcode == 0x6657
8305403a
L
3935 || i.tm.base_opcode == 0x66ef
3936 || i.tm.base_opcode == 0x66f8
3937 || i.tm.base_opcode == 0x66f9
3938 || i.tm.base_opcode == 0x66fa
3939 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3940 && i.tm.extension_opcode == None))
3941 {
3942 /* Optimize: -O2:
8305403a
L
3943 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3944 vpsubq and vpsubw:
b6f8c7c4
L
3945 EVEX VOP %zmmM, %zmmM, %zmmN
3946 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3947 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3948 EVEX VOP %ymmM, %ymmM, %ymmN
3949 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3950 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3951 VEX VOP %ymmM, %ymmM, %ymmN
3952 -> VEX VOP %xmmM, %xmmM, %xmmN
3953 VOP, one of vpandn and vpxor:
3954 VEX VOP %ymmM, %ymmM, %ymmN
3955 -> VEX VOP %xmmM, %xmmM, %xmmN
3956 VOP, one of vpandnd and vpandnq:
3957 EVEX VOP %zmmM, %zmmM, %zmmN
3958 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3959 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3960 EVEX VOP %ymmM, %ymmM, %ymmN
3961 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3962 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3963 VOP, one of vpxord and vpxorq:
3964 EVEX VOP %zmmM, %zmmM, %zmmN
3965 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3966 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3967 EVEX VOP %ymmM, %ymmM, %ymmN
3968 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3969 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3970 */
e771e7c9 3971 if (is_evex_encoding (&i.tm))
b6f8c7c4 3972 {
0089dace 3973 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3974 i.tm.opcode_modifier.evex = EVEX128;
3975 else
3976 {
3977 i.tm.opcode_modifier.vex = VEX128;
3978 i.tm.opcode_modifier.vexw = VEXW0;
3979 i.tm.opcode_modifier.evex = 0;
3980 }
3981 }
3982 else
3983 i.tm.opcode_modifier.vex = VEX128;
3984
3985 if (i.tm.opcode_modifier.vex)
3986 for (j = 0; j < 3; j++)
3987 {
3988 i.types[j].bitfield.xmmword = 1;
3989 i.types[j].bitfield.ymmword = 0;
3990 }
3991 }
3992}
3993
252b5132
RH
3994/* This is the guts of the machine-dependent assembler. LINE points to a
3995 machine dependent instruction. This function is supposed to emit
3996 the frags/bytes it assembles to. */
3997
3998void
65da13b5 3999md_assemble (char *line)
252b5132 4000{
40fb9820 4001 unsigned int j;
83b16ac6 4002 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4003 const insn_template *t;
252b5132 4004
47926f60 4005 /* Initialize globals. */
252b5132
RH
4006 memset (&i, '\0', sizeof (i));
4007 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4008 i.reloc[j] = NO_RELOC;
252b5132
RH
4009 memset (disp_expressions, '\0', sizeof (disp_expressions));
4010 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4011 save_stack_p = save_stack;
252b5132
RH
4012
4013 /* First parse an instruction mnemonic & call i386_operand for the operands.
4014 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4015 start of a (possibly prefixed) mnemonic. */
252b5132 4016
29b0f896
AM
4017 line = parse_insn (line, mnemonic);
4018 if (line == NULL)
4019 return;
83b16ac6 4020 mnem_suffix = i.suffix;
252b5132 4021
29b0f896 4022 line = parse_operands (line, mnemonic);
ee86248c 4023 this_operand = -1;
8325cc63
JB
4024 xfree (i.memop1_string);
4025 i.memop1_string = NULL;
29b0f896
AM
4026 if (line == NULL)
4027 return;
252b5132 4028
29b0f896
AM
4029 /* Now we've parsed the mnemonic into a set of templates, and have the
4030 operands at hand. */
4031
4032 /* All intel opcodes have reversed operands except for "bound" and
4033 "enter". We also don't reverse intersegment "jmp" and "call"
4034 instructions with 2 immediate operands so that the immediate segment
050dfa73 4035 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4036 if (intel_syntax
4037 && i.operands > 1
29b0f896 4038 && (strcmp (mnemonic, "bound") != 0)
30123838 4039 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4040 && !(operand_type_check (i.types[0], imm)
4041 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4042 swap_operands ();
4043
ec56d5c0
JB
4044 /* The order of the immediates should be reversed
4045 for 2 immediates extrq and insertq instructions */
4046 if (i.imm_operands == 2
4047 && (strcmp (mnemonic, "extrq") == 0
4048 || strcmp (mnemonic, "insertq") == 0))
4049 swap_2_operands (0, 1);
4050
29b0f896
AM
4051 if (i.imm_operands)
4052 optimize_imm ();
4053
b300c311
L
4054 /* Don't optimize displacement for movabs since it only takes 64bit
4055 displacement. */
4056 if (i.disp_operands
a501d77e 4057 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4058 && (flag_code != CODE_64BIT
4059 || strcmp (mnemonic, "movabs") != 0))
4060 optimize_disp ();
29b0f896
AM
4061
4062 /* Next, we find a template that matches the given insn,
4063 making sure the overlap of the given operands types is consistent
4064 with the template operand types. */
252b5132 4065
83b16ac6 4066 if (!(t = match_template (mnem_suffix)))
29b0f896 4067 return;
252b5132 4068
7bab8ab5 4069 if (sse_check != check_none
81f8a913 4070 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4071 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4072 && (i.tm.cpu_flags.bitfield.cpusse
4073 || i.tm.cpu_flags.bitfield.cpusse2
4074 || i.tm.cpu_flags.bitfield.cpusse3
4075 || i.tm.cpu_flags.bitfield.cpussse3
4076 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4077 || i.tm.cpu_flags.bitfield.cpusse4_2
4078 || i.tm.cpu_flags.bitfield.cpupclmul
4079 || i.tm.cpu_flags.bitfield.cpuaes
4080 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4081 {
7bab8ab5 4082 (sse_check == check_warning
daf50ae7
L
4083 ? as_warn
4084 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4085 }
4086
321fd21e
L
4087 /* Zap movzx and movsx suffix. The suffix has been set from
4088 "word ptr" or "byte ptr" on the source operand in Intel syntax
4089 or extracted from mnemonic in AT&T syntax. But we'll use
4090 the destination register to choose the suffix for encoding. */
4091 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4092 {
321fd21e
L
4093 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4094 there is no suffix, the default will be byte extension. */
4095 if (i.reg_operands != 2
4096 && !i.suffix
7ab9ffdd 4097 && intel_syntax)
321fd21e
L
4098 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4099
4100 i.suffix = 0;
cd61ebfe 4101 }
24eab124 4102
40fb9820 4103 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4104 if (!add_prefix (FWAIT_OPCODE))
4105 return;
252b5132 4106
d5de92cf
L
4107 /* Check if REP prefix is OK. */
4108 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4109 {
4110 as_bad (_("invalid instruction `%s' after `%s'"),
4111 i.tm.name, i.rep_prefix);
4112 return;
4113 }
4114
c1ba0266
L
4115 /* Check for lock without a lockable instruction. Destination operand
4116 must be memory unless it is xchg (0x86). */
c32fa91d
L
4117 if (i.prefix[LOCK_PREFIX]
4118 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4119 || i.mem_operands == 0
4120 || (i.tm.base_opcode != 0x86
4121 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4122 {
4123 as_bad (_("expecting lockable instruction after `lock'"));
4124 return;
4125 }
4126
42164a71 4127 /* Check if HLE prefix is OK. */
165de32a 4128 if (i.hle_prefix && !check_hle ())
42164a71
L
4129 return;
4130
7e8b059b
L
4131 /* Check BND prefix. */
4132 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4133 as_bad (_("expecting valid branch instruction after `bnd'"));
4134
04ef582a 4135 /* Check NOTRACK prefix. */
9fef80d6
L
4136 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4137 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4138
327e8c42
JB
4139 if (i.tm.cpu_flags.bitfield.cpumpx)
4140 {
4141 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4142 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4143 else if (flag_code != CODE_16BIT
4144 ? i.prefix[ADDR_PREFIX]
4145 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4146 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4147 }
7e8b059b
L
4148
4149 /* Insert BND prefix. */
76d3a78a
JB
4150 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4151 {
4152 if (!i.prefix[BND_PREFIX])
4153 add_prefix (BND_PREFIX_OPCODE);
4154 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4155 {
4156 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4157 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4158 }
4159 }
7e8b059b 4160
29b0f896 4161 /* Check string instruction segment overrides. */
40fb9820 4162 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4163 {
4164 if (!check_string ())
5dd0794d 4165 return;
fc0763e6 4166 i.disp_operands = 0;
29b0f896 4167 }
5dd0794d 4168
b6f8c7c4
L
4169 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4170 optimize_encoding ();
4171
29b0f896
AM
4172 if (!process_suffix ())
4173 return;
e413e4e9 4174
bc0844ae
L
4175 /* Update operand types. */
4176 for (j = 0; j < i.operands; j++)
4177 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4178
29b0f896
AM
4179 /* Make still unresolved immediate matches conform to size of immediate
4180 given in i.suffix. */
4181 if (!finalize_imm ())
4182 return;
252b5132 4183
40fb9820 4184 if (i.types[0].bitfield.imm1)
29b0f896 4185 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4186
9afe6eb8
L
4187 /* We only need to check those implicit registers for instructions
4188 with 3 operands or less. */
4189 if (i.operands <= 3)
4190 for (j = 0; j < i.operands; j++)
4191 if (i.types[j].bitfield.inoutportreg
4192 || i.types[j].bitfield.shiftcount
1b54b8d7 4193 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4194 i.reg_operands--;
40fb9820 4195
c0f3af97
L
4196 /* ImmExt should be processed after SSE2AVX. */
4197 if (!i.tm.opcode_modifier.sse2avx
4198 && i.tm.opcode_modifier.immext)
65da13b5 4199 process_immext ();
252b5132 4200
29b0f896
AM
4201 /* For insns with operands there are more diddles to do to the opcode. */
4202 if (i.operands)
4203 {
4204 if (!process_operands ())
4205 return;
4206 }
40fb9820 4207 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4208 {
4209 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4210 as_warn (_("translating to `%sp'"), i.tm.name);
4211 }
252b5132 4212
e771e7c9
JB
4213 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4214 || is_evex_encoding (&i.tm))
9e5e5283
L
4215 {
4216 if (flag_code == CODE_16BIT)
4217 {
4218 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4219 i.tm.name);
4220 return;
4221 }
c0f3af97 4222
9e5e5283
L
4223 if (i.tm.opcode_modifier.vex)
4224 build_vex_prefix (t);
4225 else
4226 build_evex_prefix ();
4227 }
43234a1e 4228
5dd85c99
SP
4229 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4230 instructions may define INT_OPCODE as well, so avoid this corner
4231 case for those instructions that use MODRM. */
4232 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4233 && !i.tm.opcode_modifier.modrm
4234 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4235 {
4236 i.tm.base_opcode = INT3_OPCODE;
4237 i.imm_operands = 0;
4238 }
252b5132 4239
40fb9820
L
4240 if ((i.tm.opcode_modifier.jump
4241 || i.tm.opcode_modifier.jumpbyte
4242 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4243 && i.op[0].disps->X_op == O_constant)
4244 {
4245 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4246 the absolute address given by the constant. Since ix86 jumps and
4247 calls are pc relative, we need to generate a reloc. */
4248 i.op[0].disps->X_add_symbol = &abs_symbol;
4249 i.op[0].disps->X_op = O_symbol;
4250 }
252b5132 4251
40fb9820 4252 if (i.tm.opcode_modifier.rex64)
161a04f6 4253 i.rex |= REX_W;
252b5132 4254
29b0f896
AM
4255 /* For 8 bit registers we need an empty rex prefix. Also if the
4256 instruction already has a prefix, we need to convert old
4257 registers to new ones. */
773f551c 4258
dc821c5f 4259 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4260 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4261 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4262 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4263 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4264 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4265 && i.rex != 0))
4266 {
4267 int x;
726c5dcd 4268
29b0f896
AM
4269 i.rex |= REX_OPCODE;
4270 for (x = 0; x < 2; x++)
4271 {
4272 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4273 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4274 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4275 {
29b0f896
AM
4276 /* In case it is "hi" register, give up. */
4277 if (i.op[x].regs->reg_num > 3)
a540244d 4278 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4279 "instruction requiring REX prefix."),
a540244d 4280 register_prefix, i.op[x].regs->reg_name);
773f551c 4281
29b0f896
AM
4282 /* Otherwise it is equivalent to the extended register.
4283 Since the encoding doesn't change this is merely
4284 cosmetic cleanup for debug output. */
4285
4286 i.op[x].regs = i.op[x].regs + 8;
773f551c 4287 }
29b0f896
AM
4288 }
4289 }
773f551c 4290
6b6b6807
L
4291 if (i.rex == 0 && i.rex_encoding)
4292 {
4293 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4294 that uses legacy register. If it is "hi" register, don't add
4295 the REX_OPCODE byte. */
4296 int x;
4297 for (x = 0; x < 2; x++)
4298 if (i.types[x].bitfield.reg
4299 && i.types[x].bitfield.byte
4300 && (i.op[x].regs->reg_flags & RegRex64) == 0
4301 && i.op[x].regs->reg_num > 3)
4302 {
4303 i.rex_encoding = FALSE;
4304 break;
4305 }
4306
4307 if (i.rex_encoding)
4308 i.rex = REX_OPCODE;
4309 }
4310
7ab9ffdd 4311 if (i.rex != 0)
29b0f896
AM
4312 add_prefix (REX_OPCODE | i.rex);
4313
4314 /* We are ready to output the insn. */
4315 output_insn ();
4316}
4317
4318static char *
e3bb37b5 4319parse_insn (char *line, char *mnemonic)
29b0f896
AM
4320{
4321 char *l = line;
4322 char *token_start = l;
4323 char *mnem_p;
5c6af06e 4324 int supported;
d3ce72d0 4325 const insn_template *t;
b6169b20 4326 char *dot_p = NULL;
29b0f896 4327
29b0f896
AM
4328 while (1)
4329 {
4330 mnem_p = mnemonic;
4331 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4332 {
b6169b20
L
4333 if (*mnem_p == '.')
4334 dot_p = mnem_p;
29b0f896
AM
4335 mnem_p++;
4336 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4337 {
29b0f896
AM
4338 as_bad (_("no such instruction: `%s'"), token_start);
4339 return NULL;
4340 }
4341 l++;
4342 }
4343 if (!is_space_char (*l)
4344 && *l != END_OF_INSN
e44823cf
JB
4345 && (intel_syntax
4346 || (*l != PREFIX_SEPARATOR
4347 && *l != ',')))
29b0f896
AM
4348 {
4349 as_bad (_("invalid character %s in mnemonic"),
4350 output_invalid (*l));
4351 return NULL;
4352 }
4353 if (token_start == l)
4354 {
e44823cf 4355 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4356 as_bad (_("expecting prefix; got nothing"));
4357 else
4358 as_bad (_("expecting mnemonic; got nothing"));
4359 return NULL;
4360 }
45288df1 4361
29b0f896 4362 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4363 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4364
29b0f896
AM
4365 if (*l != END_OF_INSN
4366 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4367 && current_templates
40fb9820 4368 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4369 {
c6fb90c8 4370 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4371 {
4372 as_bad ((flag_code != CODE_64BIT
4373 ? _("`%s' is only supported in 64-bit mode")
4374 : _("`%s' is not supported in 64-bit mode")),
4375 current_templates->start->name);
4376 return NULL;
4377 }
29b0f896
AM
4378 /* If we are in 16-bit mode, do not allow addr16 or data16.
4379 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4380 if ((current_templates->start->opcode_modifier.size16
4381 || current_templates->start->opcode_modifier.size32)
29b0f896 4382 && flag_code != CODE_64BIT
40fb9820 4383 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4384 ^ (flag_code == CODE_16BIT)))
4385 {
4386 as_bad (_("redundant %s prefix"),
4387 current_templates->start->name);
4388 return NULL;
45288df1 4389 }
86fa6981 4390 if (current_templates->start->opcode_length == 0)
29b0f896 4391 {
86fa6981
L
4392 /* Handle pseudo prefixes. */
4393 switch (current_templates->start->base_opcode)
4394 {
4395 case 0x0:
4396 /* {disp8} */
4397 i.disp_encoding = disp_encoding_8bit;
4398 break;
4399 case 0x1:
4400 /* {disp32} */
4401 i.disp_encoding = disp_encoding_32bit;
4402 break;
4403 case 0x2:
4404 /* {load} */
4405 i.dir_encoding = dir_encoding_load;
4406 break;
4407 case 0x3:
4408 /* {store} */
4409 i.dir_encoding = dir_encoding_store;
4410 break;
4411 case 0x4:
4412 /* {vex2} */
4413 i.vec_encoding = vex_encoding_vex2;
4414 break;
4415 case 0x5:
4416 /* {vex3} */
4417 i.vec_encoding = vex_encoding_vex3;
4418 break;
4419 case 0x6:
4420 /* {evex} */
4421 i.vec_encoding = vex_encoding_evex;
4422 break;
6b6b6807
L
4423 case 0x7:
4424 /* {rex} */
4425 i.rex_encoding = TRUE;
4426 break;
b6f8c7c4
L
4427 case 0x8:
4428 /* {nooptimize} */
4429 i.no_optimize = TRUE;
4430 break;
86fa6981
L
4431 default:
4432 abort ();
4433 }
4434 }
4435 else
4436 {
4437 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4438 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4439 {
4e9ac44a
L
4440 case PREFIX_EXIST:
4441 return NULL;
4442 case PREFIX_DS:
d777820b 4443 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4444 i.notrack_prefix = current_templates->start->name;
4445 break;
4446 case PREFIX_REP:
4447 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4448 i.hle_prefix = current_templates->start->name;
4449 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4450 i.bnd_prefix = current_templates->start->name;
4451 else
4452 i.rep_prefix = current_templates->start->name;
4453 break;
4454 default:
4455 break;
86fa6981 4456 }
29b0f896
AM
4457 }
4458 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4459 token_start = ++l;
4460 }
4461 else
4462 break;
4463 }
45288df1 4464
30a55f88 4465 if (!current_templates)
b6169b20 4466 {
f8a5c266
L
4467 /* Check if we should swap operand or force 32bit displacement in
4468 encoding. */
30a55f88 4469 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4470 i.dir_encoding = dir_encoding_store;
8d63c93e 4471 else if (mnem_p - 3 == dot_p
a501d77e
L
4472 && dot_p[1] == 'd'
4473 && dot_p[2] == '8')
4474 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4475 else if (mnem_p - 4 == dot_p
f8a5c266
L
4476 && dot_p[1] == 'd'
4477 && dot_p[2] == '3'
4478 && dot_p[3] == '2')
a501d77e 4479 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4480 else
4481 goto check_suffix;
4482 mnem_p = dot_p;
4483 *dot_p = '\0';
d3ce72d0 4484 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4485 }
4486
29b0f896
AM
4487 if (!current_templates)
4488 {
b6169b20 4489check_suffix:
29b0f896
AM
4490 /* See if we can get a match by trimming off a suffix. */
4491 switch (mnem_p[-1])
4492 {
4493 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4494 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4495 i.suffix = SHORT_MNEM_SUFFIX;
4496 else
1a0670f3 4497 /* Fall through. */
29b0f896
AM
4498 case BYTE_MNEM_SUFFIX:
4499 case QWORD_MNEM_SUFFIX:
4500 i.suffix = mnem_p[-1];
4501 mnem_p[-1] = '\0';
d3ce72d0
NC
4502 current_templates = (const templates *) hash_find (op_hash,
4503 mnemonic);
29b0f896
AM
4504 break;
4505 case SHORT_MNEM_SUFFIX:
4506 case LONG_MNEM_SUFFIX:
4507 if (!intel_syntax)
4508 {
4509 i.suffix = mnem_p[-1];
4510 mnem_p[-1] = '\0';
d3ce72d0
NC
4511 current_templates = (const templates *) hash_find (op_hash,
4512 mnemonic);
29b0f896
AM
4513 }
4514 break;
252b5132 4515
29b0f896
AM
4516 /* Intel Syntax. */
4517 case 'd':
4518 if (intel_syntax)
4519 {
9306ca4a 4520 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4521 i.suffix = SHORT_MNEM_SUFFIX;
4522 else
4523 i.suffix = LONG_MNEM_SUFFIX;
4524 mnem_p[-1] = '\0';
d3ce72d0
NC
4525 current_templates = (const templates *) hash_find (op_hash,
4526 mnemonic);
29b0f896
AM
4527 }
4528 break;
4529 }
4530 if (!current_templates)
4531 {
4532 as_bad (_("no such instruction: `%s'"), token_start);
4533 return NULL;
4534 }
4535 }
252b5132 4536
40fb9820
L
4537 if (current_templates->start->opcode_modifier.jump
4538 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4539 {
4540 /* Check for a branch hint. We allow ",pt" and ",pn" for
4541 predict taken and predict not taken respectively.
4542 I'm not sure that branch hints actually do anything on loop
4543 and jcxz insns (JumpByte) for current Pentium4 chips. They
4544 may work in the future and it doesn't hurt to accept them
4545 now. */
4546 if (l[0] == ',' && l[1] == 'p')
4547 {
4548 if (l[2] == 't')
4549 {
4550 if (!add_prefix (DS_PREFIX_OPCODE))
4551 return NULL;
4552 l += 3;
4553 }
4554 else if (l[2] == 'n')
4555 {
4556 if (!add_prefix (CS_PREFIX_OPCODE))
4557 return NULL;
4558 l += 3;
4559 }
4560 }
4561 }
4562 /* Any other comma loses. */
4563 if (*l == ',')
4564 {
4565 as_bad (_("invalid character %s in mnemonic"),
4566 output_invalid (*l));
4567 return NULL;
4568 }
252b5132 4569
29b0f896 4570 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4571 supported = 0;
4572 for (t = current_templates->start; t < current_templates->end; ++t)
4573 {
c0f3af97
L
4574 supported |= cpu_flags_match (t);
4575 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4576 {
4577 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4578 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4579
548d0ee6
JB
4580 return l;
4581 }
29b0f896 4582 }
3629bb00 4583
548d0ee6
JB
4584 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4585 as_bad (flag_code == CODE_64BIT
4586 ? _("`%s' is not supported in 64-bit mode")
4587 : _("`%s' is only supported in 64-bit mode"),
4588 current_templates->start->name);
4589 else
4590 as_bad (_("`%s' is not supported on `%s%s'"),
4591 current_templates->start->name,
4592 cpu_arch_name ? cpu_arch_name : default_arch,
4593 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4594
548d0ee6 4595 return NULL;
29b0f896 4596}
252b5132 4597
29b0f896 4598static char *
e3bb37b5 4599parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4600{
4601 char *token_start;
3138f287 4602
29b0f896
AM
4603 /* 1 if operand is pending after ','. */
4604 unsigned int expecting_operand = 0;
252b5132 4605
29b0f896
AM
4606 /* Non-zero if operand parens not balanced. */
4607 unsigned int paren_not_balanced;
4608
4609 while (*l != END_OF_INSN)
4610 {
4611 /* Skip optional white space before operand. */
4612 if (is_space_char (*l))
4613 ++l;
d02603dc 4614 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4615 {
4616 as_bad (_("invalid character %s before operand %d"),
4617 output_invalid (*l),
4618 i.operands + 1);
4619 return NULL;
4620 }
d02603dc 4621 token_start = l; /* After white space. */
29b0f896
AM
4622 paren_not_balanced = 0;
4623 while (paren_not_balanced || *l != ',')
4624 {
4625 if (*l == END_OF_INSN)
4626 {
4627 if (paren_not_balanced)
4628 {
4629 if (!intel_syntax)
4630 as_bad (_("unbalanced parenthesis in operand %d."),
4631 i.operands + 1);
4632 else
4633 as_bad (_("unbalanced brackets in operand %d."),
4634 i.operands + 1);
4635 return NULL;
4636 }
4637 else
4638 break; /* we are done */
4639 }
d02603dc 4640 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4641 {
4642 as_bad (_("invalid character %s in operand %d"),
4643 output_invalid (*l),
4644 i.operands + 1);
4645 return NULL;
4646 }
4647 if (!intel_syntax)
4648 {
4649 if (*l == '(')
4650 ++paren_not_balanced;
4651 if (*l == ')')
4652 --paren_not_balanced;
4653 }
4654 else
4655 {
4656 if (*l == '[')
4657 ++paren_not_balanced;
4658 if (*l == ']')
4659 --paren_not_balanced;
4660 }
4661 l++;
4662 }
4663 if (l != token_start)
4664 { /* Yes, we've read in another operand. */
4665 unsigned int operand_ok;
4666 this_operand = i.operands++;
4667 if (i.operands > MAX_OPERANDS)
4668 {
4669 as_bad (_("spurious operands; (%d operands/instruction max)"),
4670 MAX_OPERANDS);
4671 return NULL;
4672 }
9d46ce34 4673 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4674 /* Now parse operand adding info to 'i' as we go along. */
4675 END_STRING_AND_SAVE (l);
4676
4677 if (intel_syntax)
4678 operand_ok =
4679 i386_intel_operand (token_start,
4680 intel_float_operand (mnemonic));
4681 else
a7619375 4682 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4683
4684 RESTORE_END_STRING (l);
4685 if (!operand_ok)
4686 return NULL;
4687 }
4688 else
4689 {
4690 if (expecting_operand)
4691 {
4692 expecting_operand_after_comma:
4693 as_bad (_("expecting operand after ','; got nothing"));
4694 return NULL;
4695 }
4696 if (*l == ',')
4697 {
4698 as_bad (_("expecting operand before ','; got nothing"));
4699 return NULL;
4700 }
4701 }
7f3f1ea2 4702
29b0f896
AM
4703 /* Now *l must be either ',' or END_OF_INSN. */
4704 if (*l == ',')
4705 {
4706 if (*++l == END_OF_INSN)
4707 {
4708 /* Just skip it, if it's \n complain. */
4709 goto expecting_operand_after_comma;
4710 }
4711 expecting_operand = 1;
4712 }
4713 }
4714 return l;
4715}
7f3f1ea2 4716
050dfa73 4717static void
4d456e3d 4718swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4719{
4720 union i386_op temp_op;
40fb9820 4721 i386_operand_type temp_type;
050dfa73 4722 enum bfd_reloc_code_real temp_reloc;
4eed87de 4723
050dfa73
MM
4724 temp_type = i.types[xchg2];
4725 i.types[xchg2] = i.types[xchg1];
4726 i.types[xchg1] = temp_type;
4727 temp_op = i.op[xchg2];
4728 i.op[xchg2] = i.op[xchg1];
4729 i.op[xchg1] = temp_op;
4730 temp_reloc = i.reloc[xchg2];
4731 i.reloc[xchg2] = i.reloc[xchg1];
4732 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4733
4734 if (i.mask)
4735 {
4736 if (i.mask->operand == xchg1)
4737 i.mask->operand = xchg2;
4738 else if (i.mask->operand == xchg2)
4739 i.mask->operand = xchg1;
4740 }
4741 if (i.broadcast)
4742 {
4743 if (i.broadcast->operand == xchg1)
4744 i.broadcast->operand = xchg2;
4745 else if (i.broadcast->operand == xchg2)
4746 i.broadcast->operand = xchg1;
4747 }
4748 if (i.rounding)
4749 {
4750 if (i.rounding->operand == xchg1)
4751 i.rounding->operand = xchg2;
4752 else if (i.rounding->operand == xchg2)
4753 i.rounding->operand = xchg1;
4754 }
050dfa73
MM
4755}
4756
29b0f896 4757static void
e3bb37b5 4758swap_operands (void)
29b0f896 4759{
b7c61d9a 4760 switch (i.operands)
050dfa73 4761 {
c0f3af97 4762 case 5:
b7c61d9a 4763 case 4:
4d456e3d 4764 swap_2_operands (1, i.operands - 2);
1a0670f3 4765 /* Fall through. */
b7c61d9a
L
4766 case 3:
4767 case 2:
4d456e3d 4768 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4769 break;
4770 default:
4771 abort ();
29b0f896 4772 }
29b0f896
AM
4773
4774 if (i.mem_operands == 2)
4775 {
4776 const seg_entry *temp_seg;
4777 temp_seg = i.seg[0];
4778 i.seg[0] = i.seg[1];
4779 i.seg[1] = temp_seg;
4780 }
4781}
252b5132 4782
29b0f896
AM
4783/* Try to ensure constant immediates are represented in the smallest
4784 opcode possible. */
4785static void
e3bb37b5 4786optimize_imm (void)
29b0f896
AM
4787{
4788 char guess_suffix = 0;
4789 int op;
252b5132 4790
29b0f896
AM
4791 if (i.suffix)
4792 guess_suffix = i.suffix;
4793 else if (i.reg_operands)
4794 {
4795 /* Figure out a suffix from the last register operand specified.
4796 We can't do this properly yet, ie. excluding InOutPortReg,
4797 but the following works for instructions with immediates.
4798 In any case, we can't set i.suffix yet. */
4799 for (op = i.operands; --op >= 0;)
dc821c5f 4800 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4801 {
40fb9820
L
4802 guess_suffix = BYTE_MNEM_SUFFIX;
4803 break;
4804 }
dc821c5f 4805 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4806 {
40fb9820
L
4807 guess_suffix = WORD_MNEM_SUFFIX;
4808 break;
4809 }
dc821c5f 4810 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4811 {
4812 guess_suffix = LONG_MNEM_SUFFIX;
4813 break;
4814 }
dc821c5f 4815 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4816 {
4817 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4818 break;
252b5132 4819 }
29b0f896
AM
4820 }
4821 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4822 guess_suffix = WORD_MNEM_SUFFIX;
4823
4824 for (op = i.operands; --op >= 0;)
40fb9820 4825 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4826 {
4827 switch (i.op[op].imms->X_op)
252b5132 4828 {
29b0f896
AM
4829 case O_constant:
4830 /* If a suffix is given, this operand may be shortened. */
4831 switch (guess_suffix)
252b5132 4832 {
29b0f896 4833 case LONG_MNEM_SUFFIX:
40fb9820
L
4834 i.types[op].bitfield.imm32 = 1;
4835 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4836 break;
4837 case WORD_MNEM_SUFFIX:
40fb9820
L
4838 i.types[op].bitfield.imm16 = 1;
4839 i.types[op].bitfield.imm32 = 1;
4840 i.types[op].bitfield.imm32s = 1;
4841 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4842 break;
4843 case BYTE_MNEM_SUFFIX:
40fb9820
L
4844 i.types[op].bitfield.imm8 = 1;
4845 i.types[op].bitfield.imm8s = 1;
4846 i.types[op].bitfield.imm16 = 1;
4847 i.types[op].bitfield.imm32 = 1;
4848 i.types[op].bitfield.imm32s = 1;
4849 i.types[op].bitfield.imm64 = 1;
29b0f896 4850 break;
252b5132 4851 }
252b5132 4852
29b0f896
AM
4853 /* If this operand is at most 16 bits, convert it
4854 to a signed 16 bit number before trying to see
4855 whether it will fit in an even smaller size.
4856 This allows a 16-bit operand such as $0xffe0 to
4857 be recognised as within Imm8S range. */
40fb9820 4858 if ((i.types[op].bitfield.imm16)
29b0f896 4859 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4860 {
29b0f896
AM
4861 i.op[op].imms->X_add_number =
4862 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4863 }
a28def75
L
4864#ifdef BFD64
4865 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4866 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4867 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4868 == 0))
4869 {
4870 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4871 ^ ((offsetT) 1 << 31))
4872 - ((offsetT) 1 << 31));
4873 }
a28def75 4874#endif
40fb9820 4875 i.types[op]
c6fb90c8
L
4876 = operand_type_or (i.types[op],
4877 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4878
29b0f896
AM
4879 /* We must avoid matching of Imm32 templates when 64bit
4880 only immediate is available. */
4881 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4882 i.types[op].bitfield.imm32 = 0;
29b0f896 4883 break;
252b5132 4884
29b0f896
AM
4885 case O_absent:
4886 case O_register:
4887 abort ();
4888
4889 /* Symbols and expressions. */
4890 default:
9cd96992
JB
4891 /* Convert symbolic operand to proper sizes for matching, but don't
4892 prevent matching a set of insns that only supports sizes other
4893 than those matching the insn suffix. */
4894 {
40fb9820 4895 i386_operand_type mask, allowed;
d3ce72d0 4896 const insn_template *t;
9cd96992 4897
0dfbf9d7
L
4898 operand_type_set (&mask, 0);
4899 operand_type_set (&allowed, 0);
40fb9820 4900
4eed87de
AM
4901 for (t = current_templates->start;
4902 t < current_templates->end;
4903 ++t)
c6fb90c8
L
4904 allowed = operand_type_or (allowed,
4905 t->operand_types[op]);
9cd96992
JB
4906 switch (guess_suffix)
4907 {
4908 case QWORD_MNEM_SUFFIX:
40fb9820
L
4909 mask.bitfield.imm64 = 1;
4910 mask.bitfield.imm32s = 1;
9cd96992
JB
4911 break;
4912 case LONG_MNEM_SUFFIX:
40fb9820 4913 mask.bitfield.imm32 = 1;
9cd96992
JB
4914 break;
4915 case WORD_MNEM_SUFFIX:
40fb9820 4916 mask.bitfield.imm16 = 1;
9cd96992
JB
4917 break;
4918 case BYTE_MNEM_SUFFIX:
40fb9820 4919 mask.bitfield.imm8 = 1;
9cd96992
JB
4920 break;
4921 default:
9cd96992
JB
4922 break;
4923 }
c6fb90c8 4924 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4925 if (!operand_type_all_zero (&allowed))
c6fb90c8 4926 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4927 }
29b0f896 4928 break;
252b5132 4929 }
29b0f896
AM
4930 }
4931}
47926f60 4932
29b0f896
AM
4933/* Try to use the smallest displacement type too. */
4934static void
e3bb37b5 4935optimize_disp (void)
29b0f896
AM
4936{
4937 int op;
3e73aa7c 4938
29b0f896 4939 for (op = i.operands; --op >= 0;)
40fb9820 4940 if (operand_type_check (i.types[op], disp))
252b5132 4941 {
b300c311 4942 if (i.op[op].disps->X_op == O_constant)
252b5132 4943 {
91d6fa6a 4944 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4945
40fb9820 4946 if (i.types[op].bitfield.disp16
91d6fa6a 4947 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4948 {
4949 /* If this operand is at most 16 bits, convert
4950 to a signed 16 bit number and don't use 64bit
4951 displacement. */
91d6fa6a 4952 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4953 i.types[op].bitfield.disp64 = 0;
b300c311 4954 }
a28def75
L
4955#ifdef BFD64
4956 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4957 if (i.types[op].bitfield.disp32
91d6fa6a 4958 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4959 {
4960 /* If this operand is at most 32 bits, convert
4961 to a signed 32 bit number and don't use 64bit
4962 displacement. */
91d6fa6a
NC
4963 op_disp &= (((offsetT) 2 << 31) - 1);
4964 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4965 i.types[op].bitfield.disp64 = 0;
b300c311 4966 }
a28def75 4967#endif
91d6fa6a 4968 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4969 {
40fb9820
L
4970 i.types[op].bitfield.disp8 = 0;
4971 i.types[op].bitfield.disp16 = 0;
4972 i.types[op].bitfield.disp32 = 0;
4973 i.types[op].bitfield.disp32s = 0;
4974 i.types[op].bitfield.disp64 = 0;
b300c311
L
4975 i.op[op].disps = 0;
4976 i.disp_operands--;
4977 }
4978 else if (flag_code == CODE_64BIT)
4979 {
91d6fa6a 4980 if (fits_in_signed_long (op_disp))
28a9d8f5 4981 {
40fb9820
L
4982 i.types[op].bitfield.disp64 = 0;
4983 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4984 }
0e1147d9 4985 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4986 && fits_in_unsigned_long (op_disp))
40fb9820 4987 i.types[op].bitfield.disp32 = 1;
b300c311 4988 }
40fb9820
L
4989 if ((i.types[op].bitfield.disp32
4990 || i.types[op].bitfield.disp32s
4991 || i.types[op].bitfield.disp16)
b5014f7a 4992 && fits_in_disp8 (op_disp))
40fb9820 4993 i.types[op].bitfield.disp8 = 1;
252b5132 4994 }
67a4f2b7
AO
4995 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4996 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4997 {
4998 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4999 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5000 i.types[op].bitfield.disp8 = 0;
5001 i.types[op].bitfield.disp16 = 0;
5002 i.types[op].bitfield.disp32 = 0;
5003 i.types[op].bitfield.disp32s = 0;
5004 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5005 }
5006 else
b300c311 5007 /* We only support 64bit displacement on constants. */
40fb9820 5008 i.types[op].bitfield.disp64 = 0;
252b5132 5009 }
29b0f896
AM
5010}
5011
6c30d220
L
5012/* Check if operands are valid for the instruction. */
5013
5014static int
5015check_VecOperands (const insn_template *t)
5016{
43234a1e 5017 unsigned int op;
e2195274
JB
5018 i386_cpu_flags cpu;
5019 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5020
5021 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5022 any one operand are implicity requiring AVX512VL support if the actual
5023 operand size is YMMword or XMMword. Since this function runs after
5024 template matching, there's no need to check for YMMword/XMMword in
5025 the template. */
5026 cpu = cpu_flags_and (t->cpu_flags, avx512);
5027 if (!cpu_flags_all_zero (&cpu)
5028 && !t->cpu_flags.bitfield.cpuavx512vl
5029 && !cpu_arch_flags.bitfield.cpuavx512vl)
5030 {
5031 for (op = 0; op < t->operands; ++op)
5032 {
5033 if (t->operand_types[op].bitfield.zmmword
5034 && (i.types[op].bitfield.ymmword
5035 || i.types[op].bitfield.xmmword))
5036 {
5037 i.error = unsupported;
5038 return 1;
5039 }
5040 }
5041 }
43234a1e 5042
6c30d220
L
5043 /* Without VSIB byte, we can't have a vector register for index. */
5044 if (!t->opcode_modifier.vecsib
5045 && i.index_reg
1b54b8d7
JB
5046 && (i.index_reg->reg_type.bitfield.xmmword
5047 || i.index_reg->reg_type.bitfield.ymmword
5048 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5049 {
5050 i.error = unsupported_vector_index_register;
5051 return 1;
5052 }
5053
ad8ecc81
MZ
5054 /* Check if default mask is allowed. */
5055 if (t->opcode_modifier.nodefmask
5056 && (!i.mask || i.mask->mask->reg_num == 0))
5057 {
5058 i.error = no_default_mask;
5059 return 1;
5060 }
5061
7bab8ab5
JB
5062 /* For VSIB byte, we need a vector register for index, and all vector
5063 registers must be distinct. */
5064 if (t->opcode_modifier.vecsib)
5065 {
5066 if (!i.index_reg
6c30d220 5067 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5068 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5069 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5070 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5071 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5072 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5073 {
5074 i.error = invalid_vsib_address;
5075 return 1;
5076 }
5077
43234a1e
L
5078 gas_assert (i.reg_operands == 2 || i.mask);
5079 if (i.reg_operands == 2 && !i.mask)
5080 {
1b54b8d7
JB
5081 gas_assert (i.types[0].bitfield.regsimd);
5082 gas_assert (i.types[0].bitfield.xmmword
5083 || i.types[0].bitfield.ymmword);
5084 gas_assert (i.types[2].bitfield.regsimd);
5085 gas_assert (i.types[2].bitfield.xmmword
5086 || i.types[2].bitfield.ymmword);
43234a1e
L
5087 if (operand_check == check_none)
5088 return 0;
5089 if (register_number (i.op[0].regs)
5090 != register_number (i.index_reg)
5091 && register_number (i.op[2].regs)
5092 != register_number (i.index_reg)
5093 && register_number (i.op[0].regs)
5094 != register_number (i.op[2].regs))
5095 return 0;
5096 if (operand_check == check_error)
5097 {
5098 i.error = invalid_vector_register_set;
5099 return 1;
5100 }
5101 as_warn (_("mask, index, and destination registers should be distinct"));
5102 }
8444f82a
MZ
5103 else if (i.reg_operands == 1 && i.mask)
5104 {
1b54b8d7
JB
5105 if (i.types[1].bitfield.regsimd
5106 && (i.types[1].bitfield.xmmword
5107 || i.types[1].bitfield.ymmword
5108 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5109 && (register_number (i.op[1].regs)
5110 == register_number (i.index_reg)))
5111 {
5112 if (operand_check == check_error)
5113 {
5114 i.error = invalid_vector_register_set;
5115 return 1;
5116 }
5117 if (operand_check != check_none)
5118 as_warn (_("index and destination registers should be distinct"));
5119 }
5120 }
43234a1e 5121 }
7bab8ab5 5122
43234a1e
L
5123 /* Check if broadcast is supported by the instruction and is applied
5124 to the memory operand. */
5125 if (i.broadcast)
5126 {
8e6e0792 5127 i386_operand_type type, overlap;
43234a1e
L
5128
5129 /* Check if specified broadcast is supported in this instruction,
c39e5b26 5130 and it's applied to memory operand of DWORD or QWORD type. */
32546502 5131 op = i.broadcast->operand;
8e6e0792 5132 if (!t->opcode_modifier.broadcast
32546502 5133 || !i.types[op].bitfield.mem
c39e5b26
JB
5134 || (!i.types[op].bitfield.unspecified
5135 && (t->operand_types[op].bitfield.dword
5136 ? !i.types[op].bitfield.dword
5137 : !i.types[op].bitfield.qword)))
43234a1e
L
5138 {
5139 bad_broadcast:
5140 i.error = unsupported_broadcast;
5141 return 1;
5142 }
8e6e0792
JB
5143
5144 operand_type_set (&type, 0);
c39e5b26 5145 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
8e6e0792
JB
5146 {
5147 case 8:
5148 type.bitfield.qword = 1;
5149 break;
5150 case 16:
5151 type.bitfield.xmmword = 1;
5152 break;
5153 case 32:
5154 type.bitfield.ymmword = 1;
5155 break;
5156 case 64:
5157 type.bitfield.zmmword = 1;
5158 break;
5159 default:
5160 goto bad_broadcast;
5161 }
5162
5163 overlap = operand_type_and (type, t->operand_types[op]);
5164 if (operand_type_all_zero (&overlap))
5165 goto bad_broadcast;
5166
5167 if (t->opcode_modifier.checkregsize)
5168 {
5169 unsigned int j;
5170
e2195274 5171 type.bitfield.baseindex = 1;
8e6e0792
JB
5172 for (j = 0; j < i.operands; ++j)
5173 {
5174 if (j != op
5175 && !operand_type_register_match(i.types[j],
5176 t->operand_types[j],
5177 type,
5178 t->operand_types[op]))
5179 goto bad_broadcast;
5180 }
5181 }
43234a1e
L
5182 }
5183 /* If broadcast is supported in this instruction, we need to check if
5184 operand of one-element size isn't specified without broadcast. */
5185 else if (t->opcode_modifier.broadcast && i.mem_operands)
5186 {
5187 /* Find memory operand. */
5188 for (op = 0; op < i.operands; op++)
5189 if (operand_type_check (i.types[op], anymem))
5190 break;
5191 gas_assert (op < i.operands);
5192 /* Check size of the memory operand. */
c39e5b26
JB
5193 if (t->operand_types[op].bitfield.dword
5194 ? i.types[op].bitfield.dword
5195 : i.types[op].bitfield.qword)
43234a1e
L
5196 {
5197 i.error = broadcast_needed;
5198 return 1;
5199 }
5200 }
c39e5b26
JB
5201 else
5202 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5203
5204 /* Check if requested masking is supported. */
5205 if (i.mask
5206 && (!t->opcode_modifier.masking
5207 || (i.mask->zeroing
5208 && t->opcode_modifier.masking == MERGING_MASKING)))
5209 {
5210 i.error = unsupported_masking;
5211 return 1;
5212 }
5213
5214 /* Check if masking is applied to dest operand. */
5215 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5216 {
5217 i.error = mask_not_on_destination;
5218 return 1;
5219 }
5220
43234a1e
L
5221 /* Check RC/SAE. */
5222 if (i.rounding)
5223 {
5224 if ((i.rounding->type != saeonly
5225 && !t->opcode_modifier.staticrounding)
5226 || (i.rounding->type == saeonly
5227 && (t->opcode_modifier.staticrounding
5228 || !t->opcode_modifier.sae)))
5229 {
5230 i.error = unsupported_rc_sae;
5231 return 1;
5232 }
5233 /* If the instruction has several immediate operands and one of
5234 them is rounding, the rounding operand should be the last
5235 immediate operand. */
5236 if (i.imm_operands > 1
5237 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5238 {
43234a1e 5239 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5240 return 1;
5241 }
6c30d220
L
5242 }
5243
43234a1e 5244 /* Check vector Disp8 operand. */
b5014f7a
JB
5245 if (t->opcode_modifier.disp8memshift
5246 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5247 {
5248 if (i.broadcast)
c39e5b26 5249 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
7091c612 5250 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5251 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5252 else
5253 {
5254 const i386_operand_type *type = NULL;
5255
5256 i.memshift = 0;
5257 for (op = 0; op < i.operands; op++)
5258 if (operand_type_check (i.types[op], anymem))
5259 {
5260 if (t->operand_types[op].bitfield.xmmword
5261 + t->operand_types[op].bitfield.ymmword
5262 + t->operand_types[op].bitfield.zmmword <= 1)
5263 type = &t->operand_types[op];
5264 else if (!i.types[op].bitfield.unspecified)
5265 type = &i.types[op];
5266 }
5267 else if (i.types[op].bitfield.regsimd)
5268 {
5269 if (i.types[op].bitfield.zmmword)
5270 i.memshift = 6;
5271 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5272 i.memshift = 5;
5273 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5274 i.memshift = 4;
5275 }
5276
5277 if (type)
5278 {
5279 if (type->bitfield.zmmword)
5280 i.memshift = 6;
5281 else if (type->bitfield.ymmword)
5282 i.memshift = 5;
5283 else if (type->bitfield.xmmword)
5284 i.memshift = 4;
5285 }
5286
5287 /* For the check in fits_in_disp8(). */
5288 if (i.memshift == 0)
5289 i.memshift = -1;
5290 }
43234a1e
L
5291
5292 for (op = 0; op < i.operands; op++)
5293 if (operand_type_check (i.types[op], disp)
5294 && i.op[op].disps->X_op == O_constant)
5295 {
b5014f7a 5296 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5297 {
b5014f7a
JB
5298 i.types[op].bitfield.disp8 = 1;
5299 return 0;
43234a1e 5300 }
b5014f7a 5301 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5302 }
5303 }
b5014f7a
JB
5304
5305 i.memshift = 0;
43234a1e 5306
6c30d220
L
5307 return 0;
5308}
5309
43f3e2ee 5310/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5311 operand types. */
5312
5313static int
5314VEX_check_operands (const insn_template *t)
5315{
86fa6981 5316 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5317 {
86fa6981 5318 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5319 if (!is_evex_encoding (t))
86fa6981
L
5320 {
5321 i.error = unsupported;
5322 return 1;
5323 }
5324 return 0;
43234a1e
L
5325 }
5326
a683cc34 5327 if (!t->opcode_modifier.vex)
86fa6981
L
5328 {
5329 /* This instruction template doesn't have VEX prefix. */
5330 if (i.vec_encoding != vex_encoding_default)
5331 {
5332 i.error = unsupported;
5333 return 1;
5334 }
5335 return 0;
5336 }
a683cc34
SP
5337
5338 /* Only check VEX_Imm4, which must be the first operand. */
5339 if (t->operand_types[0].bitfield.vec_imm4)
5340 {
5341 if (i.op[0].imms->X_op != O_constant
5342 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5343 {
a65babc9 5344 i.error = bad_imm4;
891edac4
L
5345 return 1;
5346 }
a683cc34
SP
5347
5348 /* Turn off Imm8 so that update_imm won't complain. */
5349 i.types[0] = vec_imm4;
5350 }
5351
5352 return 0;
5353}
5354
d3ce72d0 5355static const insn_template *
83b16ac6 5356match_template (char mnem_suffix)
29b0f896
AM
5357{
5358 /* Points to template once we've found it. */
d3ce72d0 5359 const insn_template *t;
40fb9820 5360 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5361 i386_operand_type overlap4;
29b0f896 5362 unsigned int found_reverse_match;
83b16ac6 5363 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5364 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5365 int addr_prefix_disp;
a5c311ca 5366 unsigned int j;
3ac21baa 5367 unsigned int found_cpu_match, size_match;
45664ddb 5368 unsigned int check_register;
5614d22c 5369 enum i386_error specific_error = 0;
29b0f896 5370
c0f3af97
L
5371#if MAX_OPERANDS != 5
5372# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5373#endif
5374
29b0f896 5375 found_reverse_match = 0;
539e75ad 5376 addr_prefix_disp = -1;
40fb9820
L
5377
5378 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5379 if (intel_syntax && i.broadcast)
5380 /* nothing */;
5381 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5382 suffix_check.no_bsuf = 1;
5383 else if (i.suffix == WORD_MNEM_SUFFIX)
5384 suffix_check.no_wsuf = 1;
5385 else if (i.suffix == SHORT_MNEM_SUFFIX)
5386 suffix_check.no_ssuf = 1;
5387 else if (i.suffix == LONG_MNEM_SUFFIX)
5388 suffix_check.no_lsuf = 1;
5389 else if (i.suffix == QWORD_MNEM_SUFFIX)
5390 suffix_check.no_qsuf = 1;
5391 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5392 suffix_check.no_ldsuf = 1;
29b0f896 5393
83b16ac6
JB
5394 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5395 if (intel_syntax)
5396 {
5397 switch (mnem_suffix)
5398 {
5399 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5400 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5401 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5402 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5403 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5404 }
5405 }
5406
01559ecc
L
5407 /* Must have right number of operands. */
5408 i.error = number_of_operands_mismatch;
5409
45aa61fe 5410 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5411 {
539e75ad
L
5412 addr_prefix_disp = -1;
5413
29b0f896
AM
5414 if (i.operands != t->operands)
5415 continue;
5416
50aecf8c 5417 /* Check processor support. */
a65babc9 5418 i.error = unsupported;
c0f3af97
L
5419 found_cpu_match = (cpu_flags_match (t)
5420 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5421 if (!found_cpu_match)
5422 continue;
5423
e1d4d893 5424 /* Check AT&T mnemonic. */
a65babc9 5425 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5426 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5427 continue;
5428
e92bae62 5429 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5430 i.error = unsupported_syntax;
5c07affc 5431 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5432 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5433 || (intel64 && t->opcode_modifier.amd64)
5434 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5435 continue;
5436
20592a94 5437 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5438 i.error = invalid_instruction_suffix;
567e4e96
L
5439 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5440 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5441 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5442 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5443 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5444 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5445 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5446 continue;
83b16ac6
JB
5447 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5448 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5449 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5450 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5451 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5452 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5453 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5454 continue;
29b0f896 5455
3ac21baa
JB
5456 size_match = operand_size_match (t);
5457 if (!size_match)
7d5e4556 5458 continue;
539e75ad 5459
5c07affc
L
5460 for (j = 0; j < MAX_OPERANDS; j++)
5461 operand_types[j] = t->operand_types[j];
5462
45aa61fe
AM
5463 /* In general, don't allow 64-bit operands in 32-bit mode. */
5464 if (i.suffix == QWORD_MNEM_SUFFIX
5465 && flag_code != CODE_64BIT
5466 && (intel_syntax
40fb9820 5467 ? (!t->opcode_modifier.ignoresize
625cbd7a 5468 && !t->opcode_modifier.broadcast
45aa61fe
AM
5469 && !intel_float_operand (t->name))
5470 : intel_float_operand (t->name) != 2)
40fb9820 5471 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5472 && !operand_types[0].bitfield.regsimd)
40fb9820 5473 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5474 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5475 && (t->base_opcode != 0x0fc7
5476 || t->extension_opcode != 1 /* cmpxchg8b */))
5477 continue;
5478
192dc9c6
JB
5479 /* In general, don't allow 32-bit operands on pre-386. */
5480 else if (i.suffix == LONG_MNEM_SUFFIX
5481 && !cpu_arch_flags.bitfield.cpui386
5482 && (intel_syntax
5483 ? (!t->opcode_modifier.ignoresize
5484 && !intel_float_operand (t->name))
5485 : intel_float_operand (t->name) != 2)
5486 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5487 && !operand_types[0].bitfield.regsimd)
192dc9c6 5488 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5489 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5490 continue;
5491
29b0f896 5492 /* Do not verify operands when there are none. */
50aecf8c 5493 else
29b0f896 5494 {
c6fb90c8 5495 if (!t->operands)
2dbab7d5
L
5496 /* We've found a match; break out of loop. */
5497 break;
29b0f896 5498 }
252b5132 5499
539e75ad
L
5500 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5501 into Disp32/Disp16/Disp32 operand. */
5502 if (i.prefix[ADDR_PREFIX] != 0)
5503 {
40fb9820 5504 /* There should be only one Disp operand. */
539e75ad
L
5505 switch (flag_code)
5506 {
5507 case CODE_16BIT:
40fb9820
L
5508 for (j = 0; j < MAX_OPERANDS; j++)
5509 {
5510 if (operand_types[j].bitfield.disp16)
5511 {
5512 addr_prefix_disp = j;
5513 operand_types[j].bitfield.disp32 = 1;
5514 operand_types[j].bitfield.disp16 = 0;
5515 break;
5516 }
5517 }
539e75ad
L
5518 break;
5519 case CODE_32BIT:
40fb9820
L
5520 for (j = 0; j < MAX_OPERANDS; j++)
5521 {
5522 if (operand_types[j].bitfield.disp32)
5523 {
5524 addr_prefix_disp = j;
5525 operand_types[j].bitfield.disp32 = 0;
5526 operand_types[j].bitfield.disp16 = 1;
5527 break;
5528 }
5529 }
539e75ad
L
5530 break;
5531 case CODE_64BIT:
40fb9820
L
5532 for (j = 0; j < MAX_OPERANDS; j++)
5533 {
5534 if (operand_types[j].bitfield.disp64)
5535 {
5536 addr_prefix_disp = j;
5537 operand_types[j].bitfield.disp64 = 0;
5538 operand_types[j].bitfield.disp32 = 1;
5539 break;
5540 }
5541 }
539e75ad
L
5542 break;
5543 }
539e75ad
L
5544 }
5545
02a86693
L
5546 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5547 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5548 continue;
5549
56ffb741 5550 /* We check register size if needed. */
e2195274
JB
5551 if (t->opcode_modifier.checkregsize)
5552 {
5553 check_register = (1 << t->operands) - 1;
5554 if (i.broadcast)
5555 check_register &= ~(1 << i.broadcast->operand);
5556 }
5557 else
5558 check_register = 0;
5559
c6fb90c8 5560 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5561 switch (t->operands)
5562 {
5563 case 1:
40fb9820 5564 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5565 continue;
5566 break;
5567 case 2:
33eaf5de 5568 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5569 only in 32bit mode and we can use opcode 0x90. In 64bit
5570 mode, we can't use 0x90 for xchg %eax, %eax since it should
5571 zero-extend %eax to %rax. */
5572 if (flag_code == CODE_64BIT
5573 && t->base_opcode == 0x90
0dfbf9d7
L
5574 && operand_type_equal (&i.types [0], &acc32)
5575 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5576 continue;
1212781b
JB
5577 /* xrelease mov %eax, <disp> is another special case. It must not
5578 match the accumulator-only encoding of mov. */
5579 if (flag_code != CODE_64BIT
5580 && i.hle_prefix
5581 && t->base_opcode == 0xa0
5582 && i.types[0].bitfield.acc
5583 && operand_type_check (i.types[1], anymem))
5584 continue;
3ac21baa
JB
5585 if (!(size_match & MATCH_STRAIGHT))
5586 goto check_reverse;
86fa6981
L
5587 /* If we want store form, we reverse direction of operands. */
5588 if (i.dir_encoding == dir_encoding_store
5589 && t->opcode_modifier.d)
5590 goto check_reverse;
1a0670f3 5591 /* Fall through. */
b6169b20 5592
29b0f896 5593 case 3:
86fa6981
L
5594 /* If we want store form, we skip the current load. */
5595 if (i.dir_encoding == dir_encoding_store
5596 && i.mem_operands == 0
5597 && t->opcode_modifier.load)
fa99fab2 5598 continue;
1a0670f3 5599 /* Fall through. */
f48ff2ae 5600 case 4:
c0f3af97 5601 case 5:
c6fb90c8 5602 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5603 if (!operand_type_match (overlap0, i.types[0])
5604 || !operand_type_match (overlap1, i.types[1])
e2195274 5605 || ((check_register & 3) == 3
dc821c5f 5606 && !operand_type_register_match (i.types[0],
40fb9820 5607 operand_types[0],
dc821c5f 5608 i.types[1],
40fb9820 5609 operand_types[1])))
29b0f896
AM
5610 {
5611 /* Check if other direction is valid ... */
38e314eb 5612 if (!t->opcode_modifier.d)
29b0f896
AM
5613 continue;
5614
b6169b20 5615check_reverse:
3ac21baa
JB
5616 if (!(size_match & MATCH_REVERSE))
5617 continue;
29b0f896 5618 /* Try reversing direction of operands. */
c6fb90c8
L
5619 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5620 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5621 if (!operand_type_match (overlap0, i.types[0])
5622 || !operand_type_match (overlap1, i.types[1])
45664ddb 5623 || (check_register
dc821c5f 5624 && !operand_type_register_match (i.types[0],
45664ddb 5625 operand_types[1],
45664ddb
L
5626 i.types[1],
5627 operand_types[0])))
29b0f896
AM
5628 {
5629 /* Does not match either direction. */
5630 continue;
5631 }
38e314eb 5632 /* found_reverse_match holds which of D or FloatR
29b0f896 5633 we've found. */
38e314eb
JB
5634 if (!t->opcode_modifier.d)
5635 found_reverse_match = 0;
5636 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5637 found_reverse_match = Opcode_FloatD;
5638 else
38e314eb 5639 found_reverse_match = Opcode_D;
40fb9820 5640 if (t->opcode_modifier.floatr)
8a2ed489 5641 found_reverse_match |= Opcode_FloatR;
29b0f896 5642 }
f48ff2ae 5643 else
29b0f896 5644 {
f48ff2ae 5645 /* Found a forward 2 operand match here. */
d1cbb4db
L
5646 switch (t->operands)
5647 {
c0f3af97
L
5648 case 5:
5649 overlap4 = operand_type_and (i.types[4],
5650 operand_types[4]);
1a0670f3 5651 /* Fall through. */
d1cbb4db 5652 case 4:
c6fb90c8
L
5653 overlap3 = operand_type_and (i.types[3],
5654 operand_types[3]);
1a0670f3 5655 /* Fall through. */
d1cbb4db 5656 case 3:
c6fb90c8
L
5657 overlap2 = operand_type_and (i.types[2],
5658 operand_types[2]);
d1cbb4db
L
5659 break;
5660 }
29b0f896 5661
f48ff2ae
L
5662 switch (t->operands)
5663 {
c0f3af97
L
5664 case 5:
5665 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5666 || !operand_type_register_match (i.types[3],
c0f3af97 5667 operand_types[3],
c0f3af97
L
5668 i.types[4],
5669 operand_types[4]))
5670 continue;
1a0670f3 5671 /* Fall through. */
f48ff2ae 5672 case 4:
40fb9820 5673 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5674 || ((check_register & 0xa) == 0xa
5675 && !operand_type_register_match (i.types[1],
f7768225
JB
5676 operand_types[1],
5677 i.types[3],
e2195274
JB
5678 operand_types[3]))
5679 || ((check_register & 0xc) == 0xc
5680 && !operand_type_register_match (i.types[2],
5681 operand_types[2],
5682 i.types[3],
5683 operand_types[3])))
f48ff2ae 5684 continue;
1a0670f3 5685 /* Fall through. */
f48ff2ae
L
5686 case 3:
5687 /* Here we make use of the fact that there are no
23e42951 5688 reverse match 3 operand instructions. */
40fb9820 5689 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5690 || ((check_register & 5) == 5
5691 && !operand_type_register_match (i.types[0],
23e42951
JB
5692 operand_types[0],
5693 i.types[2],
e2195274
JB
5694 operand_types[2]))
5695 || ((check_register & 6) == 6
5696 && !operand_type_register_match (i.types[1],
5697 operand_types[1],
5698 i.types[2],
5699 operand_types[2])))
f48ff2ae
L
5700 continue;
5701 break;
5702 }
29b0f896 5703 }
f48ff2ae 5704 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5705 slip through to break. */
5706 }
3629bb00 5707 if (!found_cpu_match)
29b0f896
AM
5708 {
5709 found_reverse_match = 0;
5710 continue;
5711 }
c0f3af97 5712
5614d22c
JB
5713 /* Check if vector and VEX operands are valid. */
5714 if (check_VecOperands (t) || VEX_check_operands (t))
5715 {
5716 specific_error = i.error;
5717 continue;
5718 }
a683cc34 5719
29b0f896
AM
5720 /* We've found a match; break out of loop. */
5721 break;
5722 }
5723
5724 if (t == current_templates->end)
5725 {
5726 /* We found no match. */
a65babc9 5727 const char *err_msg;
5614d22c 5728 switch (specific_error ? specific_error : i.error)
a65babc9
L
5729 {
5730 default:
5731 abort ();
86e026a4 5732 case operand_size_mismatch:
a65babc9
L
5733 err_msg = _("operand size mismatch");
5734 break;
5735 case operand_type_mismatch:
5736 err_msg = _("operand type mismatch");
5737 break;
5738 case register_type_mismatch:
5739 err_msg = _("register type mismatch");
5740 break;
5741 case number_of_operands_mismatch:
5742 err_msg = _("number of operands mismatch");
5743 break;
5744 case invalid_instruction_suffix:
5745 err_msg = _("invalid instruction suffix");
5746 break;
5747 case bad_imm4:
4a2608e3 5748 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5749 break;
a65babc9
L
5750 case unsupported_with_intel_mnemonic:
5751 err_msg = _("unsupported with Intel mnemonic");
5752 break;
5753 case unsupported_syntax:
5754 err_msg = _("unsupported syntax");
5755 break;
5756 case unsupported:
35262a23 5757 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5758 current_templates->start->name);
5759 return NULL;
6c30d220
L
5760 case invalid_vsib_address:
5761 err_msg = _("invalid VSIB address");
5762 break;
7bab8ab5
JB
5763 case invalid_vector_register_set:
5764 err_msg = _("mask, index, and destination registers must be distinct");
5765 break;
6c30d220
L
5766 case unsupported_vector_index_register:
5767 err_msg = _("unsupported vector index register");
5768 break;
43234a1e
L
5769 case unsupported_broadcast:
5770 err_msg = _("unsupported broadcast");
5771 break;
5772 case broadcast_not_on_src_operand:
5773 err_msg = _("broadcast not on source memory operand");
5774 break;
5775 case broadcast_needed:
5776 err_msg = _("broadcast is needed for operand of such type");
5777 break;
5778 case unsupported_masking:
5779 err_msg = _("unsupported masking");
5780 break;
5781 case mask_not_on_destination:
5782 err_msg = _("mask not on destination operand");
5783 break;
5784 case no_default_mask:
5785 err_msg = _("default mask isn't allowed");
5786 break;
5787 case unsupported_rc_sae:
5788 err_msg = _("unsupported static rounding/sae");
5789 break;
5790 case rc_sae_operand_not_last_imm:
5791 if (intel_syntax)
5792 err_msg = _("RC/SAE operand must precede immediate operands");
5793 else
5794 err_msg = _("RC/SAE operand must follow immediate operands");
5795 break;
5796 case invalid_register_operand:
5797 err_msg = _("invalid register operand");
5798 break;
a65babc9
L
5799 }
5800 as_bad (_("%s for `%s'"), err_msg,
891edac4 5801 current_templates->start->name);
fa99fab2 5802 return NULL;
29b0f896 5803 }
252b5132 5804
29b0f896
AM
5805 if (!quiet_warnings)
5806 {
5807 if (!intel_syntax
40fb9820
L
5808 && (i.types[0].bitfield.jumpabsolute
5809 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5810 {
5811 as_warn (_("indirect %s without `*'"), t->name);
5812 }
5813
40fb9820
L
5814 if (t->opcode_modifier.isprefix
5815 && t->opcode_modifier.ignoresize)
29b0f896
AM
5816 {
5817 /* Warn them that a data or address size prefix doesn't
5818 affect assembly of the next line of code. */
5819 as_warn (_("stand-alone `%s' prefix"), t->name);
5820 }
5821 }
5822
5823 /* Copy the template we found. */
5824 i.tm = *t;
539e75ad
L
5825
5826 if (addr_prefix_disp != -1)
5827 i.tm.operand_types[addr_prefix_disp]
5828 = operand_types[addr_prefix_disp];
5829
29b0f896
AM
5830 if (found_reverse_match)
5831 {
5832 /* If we found a reverse match we must alter the opcode
5833 direction bit. found_reverse_match holds bits to change
5834 (different for int & float insns). */
5835
5836 i.tm.base_opcode ^= found_reverse_match;
5837
539e75ad
L
5838 i.tm.operand_types[0] = operand_types[1];
5839 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5840 }
5841
fa99fab2 5842 return t;
29b0f896
AM
5843}
5844
5845static int
e3bb37b5 5846check_string (void)
29b0f896 5847{
40fb9820
L
5848 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5849 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5850 {
5851 if (i.seg[0] != NULL && i.seg[0] != &es)
5852 {
a87af027 5853 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5854 i.tm.name,
a87af027
JB
5855 mem_op + 1,
5856 register_prefix);
29b0f896
AM
5857 return 0;
5858 }
5859 /* There's only ever one segment override allowed per instruction.
5860 This instruction possibly has a legal segment override on the
5861 second operand, so copy the segment to where non-string
5862 instructions store it, allowing common code. */
5863 i.seg[0] = i.seg[1];
5864 }
40fb9820 5865 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5866 {
5867 if (i.seg[1] != NULL && i.seg[1] != &es)
5868 {
a87af027 5869 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5870 i.tm.name,
a87af027
JB
5871 mem_op + 2,
5872 register_prefix);
29b0f896
AM
5873 return 0;
5874 }
5875 }
5876 return 1;
5877}
5878
5879static int
543613e9 5880process_suffix (void)
29b0f896
AM
5881{
5882 /* If matched instruction specifies an explicit instruction mnemonic
5883 suffix, use it. */
40fb9820
L
5884 if (i.tm.opcode_modifier.size16)
5885 i.suffix = WORD_MNEM_SUFFIX;
5886 else if (i.tm.opcode_modifier.size32)
5887 i.suffix = LONG_MNEM_SUFFIX;
5888 else if (i.tm.opcode_modifier.size64)
5889 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5890 else if (i.reg_operands)
5891 {
5892 /* If there's no instruction mnemonic suffix we try to invent one
5893 based on register operands. */
5894 if (!i.suffix)
5895 {
5896 /* We take i.suffix from the last register operand specified,
5897 Destination register type is more significant than source
381d071f
L
5898 register type. crc32 in SSE4.2 prefers source register
5899 type. */
5900 if (i.tm.base_opcode == 0xf20f38f1)
5901 {
dc821c5f 5902 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5903 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5904 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5905 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5906 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5907 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5908 }
9344ff29 5909 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5910 {
dc821c5f 5911 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5912 i.suffix = BYTE_MNEM_SUFFIX;
5913 }
381d071f
L
5914
5915 if (!i.suffix)
5916 {
5917 int op;
5918
20592a94
L
5919 if (i.tm.base_opcode == 0xf20f38f1
5920 || i.tm.base_opcode == 0xf20f38f0)
5921 {
5922 /* We have to know the operand size for crc32. */
5923 as_bad (_("ambiguous memory operand size for `%s`"),
5924 i.tm.name);
5925 return 0;
5926 }
5927
381d071f 5928 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5929 if (!i.tm.operand_types[op].bitfield.inoutportreg
5930 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5931 {
8819ada6
JB
5932 if (!i.types[op].bitfield.reg)
5933 continue;
5934 if (i.types[op].bitfield.byte)
5935 i.suffix = BYTE_MNEM_SUFFIX;
5936 else if (i.types[op].bitfield.word)
5937 i.suffix = WORD_MNEM_SUFFIX;
5938 else if (i.types[op].bitfield.dword)
5939 i.suffix = LONG_MNEM_SUFFIX;
5940 else if (i.types[op].bitfield.qword)
5941 i.suffix = QWORD_MNEM_SUFFIX;
5942 else
5943 continue;
5944 break;
381d071f
L
5945 }
5946 }
29b0f896
AM
5947 }
5948 else if (i.suffix == BYTE_MNEM_SUFFIX)
5949 {
2eb952a4
L
5950 if (intel_syntax
5951 && i.tm.opcode_modifier.ignoresize
5952 && i.tm.opcode_modifier.no_bsuf)
5953 i.suffix = 0;
5954 else if (!check_byte_reg ())
29b0f896
AM
5955 return 0;
5956 }
5957 else if (i.suffix == LONG_MNEM_SUFFIX)
5958 {
2eb952a4
L
5959 if (intel_syntax
5960 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5961 && i.tm.opcode_modifier.no_lsuf
5962 && !i.tm.opcode_modifier.todword
5963 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5964 i.suffix = 0;
5965 else if (!check_long_reg ())
29b0f896
AM
5966 return 0;
5967 }
5968 else if (i.suffix == QWORD_MNEM_SUFFIX)
5969 {
955e1e6a
L
5970 if (intel_syntax
5971 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5972 && i.tm.opcode_modifier.no_qsuf
5973 && !i.tm.opcode_modifier.todword
5974 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5975 i.suffix = 0;
5976 else if (!check_qword_reg ())
29b0f896
AM
5977 return 0;
5978 }
5979 else if (i.suffix == WORD_MNEM_SUFFIX)
5980 {
2eb952a4
L
5981 if (intel_syntax
5982 && i.tm.opcode_modifier.ignoresize
5983 && i.tm.opcode_modifier.no_wsuf)
5984 i.suffix = 0;
5985 else if (!check_word_reg ())
29b0f896
AM
5986 return 0;
5987 }
40fb9820 5988 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5989 /* Do nothing if the instruction is going to ignore the prefix. */
5990 ;
5991 else
5992 abort ();
5993 }
40fb9820 5994 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5995 && !i.suffix
5996 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5997 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5998 {
5999 i.suffix = stackop_size;
6000 }
9306ca4a
JB
6001 else if (intel_syntax
6002 && !i.suffix
40fb9820
L
6003 && (i.tm.operand_types[0].bitfield.jumpabsolute
6004 || i.tm.opcode_modifier.jumpbyte
6005 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6006 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6007 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6008 {
6009 switch (flag_code)
6010 {
6011 case CODE_64BIT:
40fb9820 6012 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6013 {
6014 i.suffix = QWORD_MNEM_SUFFIX;
6015 break;
6016 }
1a0670f3 6017 /* Fall through. */
9306ca4a 6018 case CODE_32BIT:
40fb9820 6019 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6020 i.suffix = LONG_MNEM_SUFFIX;
6021 break;
6022 case CODE_16BIT:
40fb9820 6023 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6024 i.suffix = WORD_MNEM_SUFFIX;
6025 break;
6026 }
6027 }
252b5132 6028
9306ca4a 6029 if (!i.suffix)
29b0f896 6030 {
9306ca4a
JB
6031 if (!intel_syntax)
6032 {
40fb9820 6033 if (i.tm.opcode_modifier.w)
9306ca4a 6034 {
4eed87de
AM
6035 as_bad (_("no instruction mnemonic suffix given and "
6036 "no register operands; can't size instruction"));
9306ca4a
JB
6037 return 0;
6038 }
6039 }
6040 else
6041 {
40fb9820 6042 unsigned int suffixes;
7ab9ffdd 6043
40fb9820
L
6044 suffixes = !i.tm.opcode_modifier.no_bsuf;
6045 if (!i.tm.opcode_modifier.no_wsuf)
6046 suffixes |= 1 << 1;
6047 if (!i.tm.opcode_modifier.no_lsuf)
6048 suffixes |= 1 << 2;
fc4adea1 6049 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6050 suffixes |= 1 << 3;
6051 if (!i.tm.opcode_modifier.no_ssuf)
6052 suffixes |= 1 << 4;
c2b9da16 6053 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6054 suffixes |= 1 << 5;
6055
6056 /* There are more than suffix matches. */
6057 if (i.tm.opcode_modifier.w
9306ca4a 6058 || ((suffixes & (suffixes - 1))
40fb9820
L
6059 && !i.tm.opcode_modifier.defaultsize
6060 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6061 {
6062 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6063 return 0;
6064 }
6065 }
29b0f896 6066 }
252b5132 6067
d2224064
JB
6068 /* Change the opcode based on the operand size given by i.suffix. */
6069 switch (i.suffix)
29b0f896 6070 {
d2224064
JB
6071 /* Size floating point instruction. */
6072 case LONG_MNEM_SUFFIX:
6073 if (i.tm.opcode_modifier.floatmf)
6074 {
6075 i.tm.base_opcode ^= 4;
6076 break;
6077 }
6078 /* fall through */
6079 case WORD_MNEM_SUFFIX:
6080 case QWORD_MNEM_SUFFIX:
29b0f896 6081 /* It's not a byte, select word/dword operation. */
40fb9820 6082 if (i.tm.opcode_modifier.w)
29b0f896 6083 {
40fb9820 6084 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6085 i.tm.base_opcode |= 8;
6086 else
6087 i.tm.base_opcode |= 1;
6088 }
d2224064
JB
6089 /* fall through */
6090 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6091 /* Now select between word & dword operations via the operand
6092 size prefix, except for instructions that will ignore this
6093 prefix anyway. */
75c0a438
L
6094 if (i.reg_operands > 0
6095 && i.types[0].bitfield.reg
6096 && i.tm.opcode_modifier.addrprefixopreg
6097 && (i.tm.opcode_modifier.immext
6098 || i.operands == 1))
cb712a9e 6099 {
ca61edf2
L
6100 /* The address size override prefix changes the size of the
6101 first operand. */
40fb9820 6102 if ((flag_code == CODE_32BIT
75c0a438 6103 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6104 || (flag_code != CODE_32BIT
75c0a438 6105 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6106 if (!add_prefix (ADDR_PREFIX_OPCODE))
6107 return 0;
6108 }
6109 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6110 && !i.tm.opcode_modifier.ignoresize
6111 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
6112 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6113 || (flag_code == CODE_64BIT
40fb9820 6114 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6115 {
6116 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6117
40fb9820 6118 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6119 prefix = ADDR_PREFIX_OPCODE;
252b5132 6120
29b0f896
AM
6121 if (!add_prefix (prefix))
6122 return 0;
24eab124 6123 }
252b5132 6124
29b0f896
AM
6125 /* Set mode64 for an operand. */
6126 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6127 && flag_code == CODE_64BIT
d2224064 6128 && !i.tm.opcode_modifier.norex64
46e883c5 6129 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6130 need rex64. */
6131 && ! (i.operands == 2
6132 && i.tm.base_opcode == 0x90
6133 && i.tm.extension_opcode == None
6134 && operand_type_equal (&i.types [0], &acc64)
6135 && operand_type_equal (&i.types [1], &acc64)))
6136 i.rex |= REX_W;
3e73aa7c 6137
d2224064 6138 break;
29b0f896 6139 }
7ecd2f8b 6140
c0a30a9f
L
6141 if (i.reg_operands != 0
6142 && i.operands > 1
6143 && i.tm.opcode_modifier.addrprefixopreg
6144 && !i.tm.opcode_modifier.immext)
6145 {
6146 /* Check invalid register operand when the address size override
6147 prefix changes the size of register operands. */
6148 unsigned int op;
6149 enum { need_word, need_dword, need_qword } need;
6150
6151 if (flag_code == CODE_32BIT)
6152 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6153 else
6154 {
6155 if (i.prefix[ADDR_PREFIX])
6156 need = need_dword;
6157 else
6158 need = flag_code == CODE_64BIT ? need_qword : need_word;
6159 }
6160
6161 for (op = 0; op < i.operands; op++)
6162 if (i.types[op].bitfield.reg
6163 && ((need == need_word
6164 && !i.op[op].regs->reg_type.bitfield.word)
6165 || (need == need_dword
6166 && !i.op[op].regs->reg_type.bitfield.dword)
6167 || (need == need_qword
6168 && !i.op[op].regs->reg_type.bitfield.qword)))
6169 {
6170 as_bad (_("invalid register operand size for `%s'"),
6171 i.tm.name);
6172 return 0;
6173 }
6174 }
6175
29b0f896
AM
6176 return 1;
6177}
3e73aa7c 6178
29b0f896 6179static int
543613e9 6180check_byte_reg (void)
29b0f896
AM
6181{
6182 int op;
543613e9 6183
29b0f896
AM
6184 for (op = i.operands; --op >= 0;)
6185 {
dc821c5f
JB
6186 /* Skip non-register operands. */
6187 if (!i.types[op].bitfield.reg)
6188 continue;
6189
29b0f896
AM
6190 /* If this is an eight bit register, it's OK. If it's the 16 or
6191 32 bit version of an eight bit register, we will just use the
6192 low portion, and that's OK too. */
dc821c5f 6193 if (i.types[op].bitfield.byte)
29b0f896
AM
6194 continue;
6195
5a819eb9
JB
6196 /* I/O port address operands are OK too. */
6197 if (i.tm.operand_types[op].bitfield.inoutportreg)
6198 continue;
6199
9344ff29
L
6200 /* crc32 doesn't generate this warning. */
6201 if (i.tm.base_opcode == 0xf20f38f0)
6202 continue;
6203
dc821c5f
JB
6204 if ((i.types[op].bitfield.word
6205 || i.types[op].bitfield.dword
6206 || i.types[op].bitfield.qword)
5a819eb9
JB
6207 && i.op[op].regs->reg_num < 4
6208 /* Prohibit these changes in 64bit mode, since the lowering
6209 would be more complicated. */
6210 && flag_code != CODE_64BIT)
29b0f896 6211 {
29b0f896 6212#if REGISTER_WARNINGS
5a819eb9 6213 if (!quiet_warnings)
a540244d
L
6214 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6215 register_prefix,
dc821c5f 6216 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6217 ? REGNAM_AL - REGNAM_AX
6218 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6219 register_prefix,
29b0f896
AM
6220 i.op[op].regs->reg_name,
6221 i.suffix);
6222#endif
6223 continue;
6224 }
6225 /* Any other register is bad. */
dc821c5f 6226 if (i.types[op].bitfield.reg
40fb9820 6227 || i.types[op].bitfield.regmmx
1b54b8d7 6228 || i.types[op].bitfield.regsimd
40fb9820
L
6229 || i.types[op].bitfield.sreg2
6230 || i.types[op].bitfield.sreg3
6231 || i.types[op].bitfield.control
6232 || i.types[op].bitfield.debug
ca0d63fe 6233 || i.types[op].bitfield.test)
29b0f896 6234 {
a540244d
L
6235 as_bad (_("`%s%s' not allowed with `%s%c'"),
6236 register_prefix,
29b0f896
AM
6237 i.op[op].regs->reg_name,
6238 i.tm.name,
6239 i.suffix);
6240 return 0;
6241 }
6242 }
6243 return 1;
6244}
6245
6246static int
e3bb37b5 6247check_long_reg (void)
29b0f896
AM
6248{
6249 int op;
6250
6251 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6252 /* Skip non-register operands. */
6253 if (!i.types[op].bitfield.reg)
6254 continue;
29b0f896
AM
6255 /* Reject eight bit registers, except where the template requires
6256 them. (eg. movzb) */
dc821c5f
JB
6257 else if (i.types[op].bitfield.byte
6258 && (i.tm.operand_types[op].bitfield.reg
6259 || i.tm.operand_types[op].bitfield.acc)
6260 && (i.tm.operand_types[op].bitfield.word
6261 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6262 {
a540244d
L
6263 as_bad (_("`%s%s' not allowed with `%s%c'"),
6264 register_prefix,
29b0f896
AM
6265 i.op[op].regs->reg_name,
6266 i.tm.name,
6267 i.suffix);
6268 return 0;
6269 }
e4630f71 6270 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6271 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6272 && i.types[op].bitfield.word
6273 && (i.tm.operand_types[op].bitfield.reg
6274 || i.tm.operand_types[op].bitfield.acc)
6275 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6276 {
6277 /* Prohibit these changes in the 64bit mode, since the
6278 lowering is more complicated. */
6279 if (flag_code == CODE_64BIT)
252b5132 6280 {
2b5d6a91 6281 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6282 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6283 i.suffix);
6284 return 0;
252b5132 6285 }
29b0f896 6286#if REGISTER_WARNINGS
cecf1424
JB
6287 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6288 register_prefix,
6289 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6290 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6291#endif
252b5132 6292 }
e4630f71 6293 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6294 else if (i.types[op].bitfield.qword
6295 && (i.tm.operand_types[op].bitfield.reg
6296 || i.tm.operand_types[op].bitfield.acc)
6297 && i.tm.operand_types[op].bitfield.dword)
252b5132 6298 {
34828aad 6299 if (intel_syntax
ca61edf2 6300 && i.tm.opcode_modifier.toqword
1b54b8d7 6301 && !i.types[0].bitfield.regsimd)
34828aad 6302 {
ca61edf2 6303 /* Convert to QWORD. We want REX byte. */
34828aad
L
6304 i.suffix = QWORD_MNEM_SUFFIX;
6305 }
6306 else
6307 {
2b5d6a91 6308 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6309 register_prefix, i.op[op].regs->reg_name,
6310 i.suffix);
6311 return 0;
6312 }
29b0f896
AM
6313 }
6314 return 1;
6315}
252b5132 6316
29b0f896 6317static int
e3bb37b5 6318check_qword_reg (void)
29b0f896
AM
6319{
6320 int op;
252b5132 6321
29b0f896 6322 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6323 /* Skip non-register operands. */
6324 if (!i.types[op].bitfield.reg)
6325 continue;
29b0f896
AM
6326 /* Reject eight bit registers, except where the template requires
6327 them. (eg. movzb) */
dc821c5f
JB
6328 else if (i.types[op].bitfield.byte
6329 && (i.tm.operand_types[op].bitfield.reg
6330 || i.tm.operand_types[op].bitfield.acc)
6331 && (i.tm.operand_types[op].bitfield.word
6332 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6333 {
a540244d
L
6334 as_bad (_("`%s%s' not allowed with `%s%c'"),
6335 register_prefix,
29b0f896
AM
6336 i.op[op].regs->reg_name,
6337 i.tm.name,
6338 i.suffix);
6339 return 0;
6340 }
e4630f71 6341 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6342 else if ((i.types[op].bitfield.word
6343 || i.types[op].bitfield.dword)
6344 && (i.tm.operand_types[op].bitfield.reg
6345 || i.tm.operand_types[op].bitfield.acc)
6346 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6347 {
6348 /* Prohibit these changes in the 64bit mode, since the
6349 lowering is more complicated. */
34828aad 6350 if (intel_syntax
ca61edf2 6351 && i.tm.opcode_modifier.todword
1b54b8d7 6352 && !i.types[0].bitfield.regsimd)
34828aad 6353 {
ca61edf2 6354 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6355 i.suffix = LONG_MNEM_SUFFIX;
6356 }
6357 else
6358 {
2b5d6a91 6359 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6360 register_prefix, i.op[op].regs->reg_name,
6361 i.suffix);
6362 return 0;
6363 }
252b5132 6364 }
29b0f896
AM
6365 return 1;
6366}
252b5132 6367
29b0f896 6368static int
e3bb37b5 6369check_word_reg (void)
29b0f896
AM
6370{
6371 int op;
6372 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6373 /* Skip non-register operands. */
6374 if (!i.types[op].bitfield.reg)
6375 continue;
29b0f896
AM
6376 /* Reject eight bit registers, except where the template requires
6377 them. (eg. movzb) */
dc821c5f
JB
6378 else if (i.types[op].bitfield.byte
6379 && (i.tm.operand_types[op].bitfield.reg
6380 || i.tm.operand_types[op].bitfield.acc)
6381 && (i.tm.operand_types[op].bitfield.word
6382 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6383 {
a540244d
L
6384 as_bad (_("`%s%s' not allowed with `%s%c'"),
6385 register_prefix,
29b0f896
AM
6386 i.op[op].regs->reg_name,
6387 i.tm.name,
6388 i.suffix);
6389 return 0;
6390 }
e4630f71 6391 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6392 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6393 && (i.types[op].bitfield.dword
6394 || i.types[op].bitfield.qword)
6395 && (i.tm.operand_types[op].bitfield.reg
6396 || i.tm.operand_types[op].bitfield.acc)
6397 && i.tm.operand_types[op].bitfield.word)
252b5132 6398 {
29b0f896
AM
6399 /* Prohibit these changes in the 64bit mode, since the
6400 lowering is more complicated. */
6401 if (flag_code == CODE_64BIT)
252b5132 6402 {
2b5d6a91 6403 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6404 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6405 i.suffix);
6406 return 0;
252b5132 6407 }
29b0f896 6408#if REGISTER_WARNINGS
cecf1424
JB
6409 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6410 register_prefix,
6411 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6412 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6413#endif
6414 }
6415 return 1;
6416}
252b5132 6417
29b0f896 6418static int
40fb9820 6419update_imm (unsigned int j)
29b0f896 6420{
bc0844ae 6421 i386_operand_type overlap = i.types[j];
40fb9820
L
6422 if ((overlap.bitfield.imm8
6423 || overlap.bitfield.imm8s
6424 || overlap.bitfield.imm16
6425 || overlap.bitfield.imm32
6426 || overlap.bitfield.imm32s
6427 || overlap.bitfield.imm64)
0dfbf9d7
L
6428 && !operand_type_equal (&overlap, &imm8)
6429 && !operand_type_equal (&overlap, &imm8s)
6430 && !operand_type_equal (&overlap, &imm16)
6431 && !operand_type_equal (&overlap, &imm32)
6432 && !operand_type_equal (&overlap, &imm32s)
6433 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6434 {
6435 if (i.suffix)
6436 {
40fb9820
L
6437 i386_operand_type temp;
6438
0dfbf9d7 6439 operand_type_set (&temp, 0);
7ab9ffdd 6440 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6441 {
6442 temp.bitfield.imm8 = overlap.bitfield.imm8;
6443 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6444 }
6445 else if (i.suffix == WORD_MNEM_SUFFIX)
6446 temp.bitfield.imm16 = overlap.bitfield.imm16;
6447 else if (i.suffix == QWORD_MNEM_SUFFIX)
6448 {
6449 temp.bitfield.imm64 = overlap.bitfield.imm64;
6450 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6451 }
6452 else
6453 temp.bitfield.imm32 = overlap.bitfield.imm32;
6454 overlap = temp;
29b0f896 6455 }
0dfbf9d7
L
6456 else if (operand_type_equal (&overlap, &imm16_32_32s)
6457 || operand_type_equal (&overlap, &imm16_32)
6458 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6459 {
40fb9820 6460 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6461 overlap = imm16;
40fb9820 6462 else
65da13b5 6463 overlap = imm32s;
29b0f896 6464 }
0dfbf9d7
L
6465 if (!operand_type_equal (&overlap, &imm8)
6466 && !operand_type_equal (&overlap, &imm8s)
6467 && !operand_type_equal (&overlap, &imm16)
6468 && !operand_type_equal (&overlap, &imm32)
6469 && !operand_type_equal (&overlap, &imm32s)
6470 && !operand_type_equal (&overlap, &imm64))
29b0f896 6471 {
4eed87de
AM
6472 as_bad (_("no instruction mnemonic suffix given; "
6473 "can't determine immediate size"));
29b0f896
AM
6474 return 0;
6475 }
6476 }
40fb9820 6477 i.types[j] = overlap;
29b0f896 6478
40fb9820
L
6479 return 1;
6480}
6481
6482static int
6483finalize_imm (void)
6484{
bc0844ae 6485 unsigned int j, n;
29b0f896 6486
bc0844ae
L
6487 /* Update the first 2 immediate operands. */
6488 n = i.operands > 2 ? 2 : i.operands;
6489 if (n)
6490 {
6491 for (j = 0; j < n; j++)
6492 if (update_imm (j) == 0)
6493 return 0;
40fb9820 6494
bc0844ae
L
6495 /* The 3rd operand can't be immediate operand. */
6496 gas_assert (operand_type_check (i.types[2], imm) == 0);
6497 }
29b0f896
AM
6498
6499 return 1;
6500}
6501
6502static int
e3bb37b5 6503process_operands (void)
29b0f896
AM
6504{
6505 /* Default segment register this instruction will use for memory
6506 accesses. 0 means unknown. This is only for optimizing out
6507 unnecessary segment overrides. */
6508 const seg_entry *default_seg = 0;
6509
2426c15f 6510 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6511 {
91d6fa6a
NC
6512 unsigned int dupl = i.operands;
6513 unsigned int dest = dupl - 1;
9fcfb3d7
L
6514 unsigned int j;
6515
c0f3af97 6516 /* The destination must be an xmm register. */
9c2799c2 6517 gas_assert (i.reg_operands
91d6fa6a 6518 && MAX_OPERANDS > dupl
7ab9ffdd 6519 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6520
1b54b8d7
JB
6521 if (i.tm.operand_types[0].bitfield.acc
6522 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6523 {
8cd7925b 6524 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6525 {
6526 /* Keep xmm0 for instructions with VEX prefix and 3
6527 sources. */
1b54b8d7
JB
6528 i.tm.operand_types[0].bitfield.acc = 0;
6529 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6530 goto duplicate;
6531 }
e2ec9d29 6532 else
c0f3af97
L
6533 {
6534 /* We remove the first xmm0 and keep the number of
6535 operands unchanged, which in fact duplicates the
6536 destination. */
6537 for (j = 1; j < i.operands; j++)
6538 {
6539 i.op[j - 1] = i.op[j];
6540 i.types[j - 1] = i.types[j];
6541 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6542 }
6543 }
6544 }
6545 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6546 {
91d6fa6a 6547 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6548 && (i.tm.opcode_modifier.vexsources
6549 == VEX3SOURCES));
c0f3af97
L
6550
6551 /* Add the implicit xmm0 for instructions with VEX prefix
6552 and 3 sources. */
6553 for (j = i.operands; j > 0; j--)
6554 {
6555 i.op[j] = i.op[j - 1];
6556 i.types[j] = i.types[j - 1];
6557 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6558 }
6559 i.op[0].regs
6560 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6561 i.types[0] = regxmm;
c0f3af97
L
6562 i.tm.operand_types[0] = regxmm;
6563
6564 i.operands += 2;
6565 i.reg_operands += 2;
6566 i.tm.operands += 2;
6567
91d6fa6a 6568 dupl++;
c0f3af97 6569 dest++;
91d6fa6a
NC
6570 i.op[dupl] = i.op[dest];
6571 i.types[dupl] = i.types[dest];
6572 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6573 }
c0f3af97
L
6574 else
6575 {
6576duplicate:
6577 i.operands++;
6578 i.reg_operands++;
6579 i.tm.operands++;
6580
91d6fa6a
NC
6581 i.op[dupl] = i.op[dest];
6582 i.types[dupl] = i.types[dest];
6583 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6584 }
6585
6586 if (i.tm.opcode_modifier.immext)
6587 process_immext ();
6588 }
1b54b8d7
JB
6589 else if (i.tm.operand_types[0].bitfield.acc
6590 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6591 {
6592 unsigned int j;
6593
9fcfb3d7
L
6594 for (j = 1; j < i.operands; j++)
6595 {
6596 i.op[j - 1] = i.op[j];
6597 i.types[j - 1] = i.types[j];
6598
6599 /* We need to adjust fields in i.tm since they are used by
6600 build_modrm_byte. */
6601 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6602 }
6603
e2ec9d29
L
6604 i.operands--;
6605 i.reg_operands--;
e2ec9d29
L
6606 i.tm.operands--;
6607 }
920d2ddc
IT
6608 else if (i.tm.opcode_modifier.implicitquadgroup)
6609 {
a477a8c4
JB
6610 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6611
920d2ddc 6612 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6613 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6614 regnum = register_number (i.op[1].regs);
6615 first_reg_in_group = regnum & ~3;
6616 last_reg_in_group = first_reg_in_group + 3;
6617 if (regnum != first_reg_in_group)
6618 as_warn (_("source register `%s%s' implicitly denotes"
6619 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6620 register_prefix, i.op[1].regs->reg_name,
6621 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6622 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6623 i.tm.name);
6624 }
e2ec9d29
L
6625 else if (i.tm.opcode_modifier.regkludge)
6626 {
6627 /* The imul $imm, %reg instruction is converted into
6628 imul $imm, %reg, %reg, and the clr %reg instruction
6629 is converted into xor %reg, %reg. */
6630
6631 unsigned int first_reg_op;
6632
6633 if (operand_type_check (i.types[0], reg))
6634 first_reg_op = 0;
6635 else
6636 first_reg_op = 1;
6637 /* Pretend we saw the extra register operand. */
9c2799c2 6638 gas_assert (i.reg_operands == 1
7ab9ffdd 6639 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6640 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6641 i.types[first_reg_op + 1] = i.types[first_reg_op];
6642 i.operands++;
6643 i.reg_operands++;
29b0f896
AM
6644 }
6645
40fb9820 6646 if (i.tm.opcode_modifier.shortform)
29b0f896 6647 {
40fb9820
L
6648 if (i.types[0].bitfield.sreg2
6649 || i.types[0].bitfield.sreg3)
29b0f896 6650 {
4eed87de
AM
6651 if (i.tm.base_opcode == POP_SEG_SHORT
6652 && i.op[0].regs->reg_num == 1)
29b0f896 6653 {
a87af027 6654 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6655 return 0;
29b0f896 6656 }
4eed87de
AM
6657 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6658 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6659 i.rex |= REX_B;
4eed87de
AM
6660 }
6661 else
6662 {
7ab9ffdd 6663 /* The register or float register operand is in operand
85f10a01 6664 0 or 1. */
40fb9820 6665 unsigned int op;
7ab9ffdd 6666
ca0d63fe 6667 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6668 || operand_type_check (i.types[0], reg))
6669 op = 0;
6670 else
6671 op = 1;
4eed87de
AM
6672 /* Register goes in low 3 bits of opcode. */
6673 i.tm.base_opcode |= i.op[op].regs->reg_num;
6674 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6675 i.rex |= REX_B;
40fb9820 6676 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6677 {
4eed87de
AM
6678 /* Warn about some common errors, but press on regardless.
6679 The first case can be generated by gcc (<= 2.8.1). */
6680 if (i.operands == 2)
6681 {
6682 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6683 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6684 register_prefix, i.op[!intel_syntax].regs->reg_name,
6685 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6686 }
6687 else
6688 {
6689 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6690 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6691 register_prefix, i.op[0].regs->reg_name);
4eed87de 6692 }
29b0f896
AM
6693 }
6694 }
6695 }
40fb9820 6696 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6697 {
6698 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6699 must be put into the modrm byte). Now, we make the modrm and
6700 index base bytes based on all the info we've collected. */
29b0f896
AM
6701
6702 default_seg = build_modrm_byte ();
6703 }
8a2ed489 6704 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6705 {
6706 default_seg = &ds;
6707 }
40fb9820 6708 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6709 {
6710 /* For the string instructions that allow a segment override
6711 on one of their operands, the default segment is ds. */
6712 default_seg = &ds;
6713 }
6714
75178d9d
L
6715 if (i.tm.base_opcode == 0x8d /* lea */
6716 && i.seg[0]
6717 && !quiet_warnings)
30123838 6718 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6719
6720 /* If a segment was explicitly specified, and the specified segment
6721 is not the default, use an opcode prefix to select it. If we
6722 never figured out what the default segment is, then default_seg
6723 will be zero at this point, and the specified segment prefix will
6724 always be used. */
29b0f896
AM
6725 if ((i.seg[0]) && (i.seg[0] != default_seg))
6726 {
6727 if (!add_prefix (i.seg[0]->seg_prefix))
6728 return 0;
6729 }
6730 return 1;
6731}
6732
6733static const seg_entry *
e3bb37b5 6734build_modrm_byte (void)
29b0f896
AM
6735{
6736 const seg_entry *default_seg = 0;
c0f3af97 6737 unsigned int source, dest;
8cd7925b 6738 int vex_3_sources;
c0f3af97 6739
8cd7925b 6740 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6741 if (vex_3_sources)
6742 {
91d6fa6a 6743 unsigned int nds, reg_slot;
4c2c6516 6744 expressionS *exp;
c0f3af97 6745
6b8d3588 6746 dest = i.operands - 1;
c0f3af97 6747 nds = dest - 1;
922d8de8 6748
a683cc34 6749 /* There are 2 kinds of instructions:
bed3d976
JB
6750 1. 5 operands: 4 register operands or 3 register operands
6751 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6752 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6753 ZMM register.
bed3d976 6754 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6755 plus 1 memory operand, with VexXDS. */
922d8de8 6756 gas_assert ((i.reg_operands == 4
bed3d976
JB
6757 || (i.reg_operands == 3 && i.mem_operands == 1))
6758 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6759 && i.tm.opcode_modifier.vexw
6760 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6761
48db9223
JB
6762 /* If VexW1 is set, the first non-immediate operand is the source and
6763 the second non-immediate one is encoded in the immediate operand. */
6764 if (i.tm.opcode_modifier.vexw == VEXW1)
6765 {
6766 source = i.imm_operands;
6767 reg_slot = i.imm_operands + 1;
6768 }
6769 else
6770 {
6771 source = i.imm_operands + 1;
6772 reg_slot = i.imm_operands;
6773 }
6774
a683cc34 6775 if (i.imm_operands == 0)
bed3d976
JB
6776 {
6777 /* When there is no immediate operand, generate an 8bit
6778 immediate operand to encode the first operand. */
6779 exp = &im_expressions[i.imm_operands++];
6780 i.op[i.operands].imms = exp;
6781 i.types[i.operands] = imm8;
6782 i.operands++;
6783
6784 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6785 exp->X_op = O_constant;
6786 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6787 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6788 }
922d8de8 6789 else
bed3d976
JB
6790 {
6791 unsigned int imm_slot;
a683cc34 6792
2f1bada2
JB
6793 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6794
bed3d976
JB
6795 if (i.tm.opcode_modifier.immext)
6796 {
6797 /* When ImmExt is set, the immediate byte is the last
6798 operand. */
6799 imm_slot = i.operands - 1;
6800 source--;
6801 reg_slot--;
6802 }
6803 else
6804 {
6805 imm_slot = 0;
6806
6807 /* Turn on Imm8 so that output_imm will generate it. */
6808 i.types[imm_slot].bitfield.imm8 = 1;
6809 }
6810
6811 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6812 i.op[imm_slot].imms->X_add_number
6813 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6814 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6815 }
a683cc34 6816
10c17abd 6817 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6818 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6819 }
6820 else
6821 source = dest = 0;
29b0f896
AM
6822
6823 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6824 implicit registers do not count. If there are 3 register
6825 operands, it must be a instruction with VexNDS. For a
6826 instruction with VexNDD, the destination register is encoded
6827 in VEX prefix. If there are 4 register operands, it must be
6828 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6829 if (i.mem_operands == 0
6830 && ((i.reg_operands == 2
2426c15f 6831 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6832 || (i.reg_operands == 3
2426c15f 6833 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6834 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6835 {
cab737b9
L
6836 switch (i.operands)
6837 {
6838 case 2:
6839 source = 0;
6840 break;
6841 case 3:
c81128dc
L
6842 /* When there are 3 operands, one of them may be immediate,
6843 which may be the first or the last operand. Otherwise,
c0f3af97
L
6844 the first operand must be shift count register (cl) or it
6845 is an instruction with VexNDS. */
9c2799c2 6846 gas_assert (i.imm_operands == 1
7ab9ffdd 6847 || (i.imm_operands == 0
2426c15f 6848 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6849 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6850 if (operand_type_check (i.types[0], imm)
6851 || i.types[0].bitfield.shiftcount)
6852 source = 1;
6853 else
6854 source = 0;
cab737b9
L
6855 break;
6856 case 4:
368d64cc
L
6857 /* When there are 4 operands, the first two must be 8bit
6858 immediate operands. The source operand will be the 3rd
c0f3af97
L
6859 one.
6860
6861 For instructions with VexNDS, if the first operand
6862 an imm8, the source operand is the 2nd one. If the last
6863 operand is imm8, the source operand is the first one. */
9c2799c2 6864 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6865 && i.types[0].bitfield.imm8
6866 && i.types[1].bitfield.imm8)
2426c15f 6867 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6868 && i.imm_operands == 1
6869 && (i.types[0].bitfield.imm8
43234a1e
L
6870 || i.types[i.operands - 1].bitfield.imm8
6871 || i.rounding)));
9f2670f2
L
6872 if (i.imm_operands == 2)
6873 source = 2;
6874 else
c0f3af97
L
6875 {
6876 if (i.types[0].bitfield.imm8)
6877 source = 1;
6878 else
6879 source = 0;
6880 }
c0f3af97
L
6881 break;
6882 case 5:
e771e7c9 6883 if (is_evex_encoding (&i.tm))
43234a1e
L
6884 {
6885 /* For EVEX instructions, when there are 5 operands, the
6886 first one must be immediate operand. If the second one
6887 is immediate operand, the source operand is the 3th
6888 one. If the last one is immediate operand, the source
6889 operand is the 2nd one. */
6890 gas_assert (i.imm_operands == 2
6891 && i.tm.opcode_modifier.sae
6892 && operand_type_check (i.types[0], imm));
6893 if (operand_type_check (i.types[1], imm))
6894 source = 2;
6895 else if (operand_type_check (i.types[4], imm))
6896 source = 1;
6897 else
6898 abort ();
6899 }
cab737b9
L
6900 break;
6901 default:
6902 abort ();
6903 }
6904
c0f3af97
L
6905 if (!vex_3_sources)
6906 {
6907 dest = source + 1;
6908
43234a1e
L
6909 /* RC/SAE operand could be between DEST and SRC. That happens
6910 when one operand is GPR and the other one is XMM/YMM/ZMM
6911 register. */
6912 if (i.rounding && i.rounding->operand == (int) dest)
6913 dest++;
6914
2426c15f 6915 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6916 {
43234a1e 6917 /* For instructions with VexNDS, the register-only source
c5d0745b 6918 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6919 register. It is encoded in VEX prefix. We need to
6920 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6921
6922 i386_operand_type op;
6923 unsigned int vvvv;
6924
6925 /* Check register-only source operand when two source
6926 operands are swapped. */
6927 if (!i.tm.operand_types[source].bitfield.baseindex
6928 && i.tm.operand_types[dest].bitfield.baseindex)
6929 {
6930 vvvv = source;
6931 source = dest;
6932 }
6933 else
6934 vvvv = dest;
6935
6936 op = i.tm.operand_types[vvvv];
fa99fab2 6937 op.bitfield.regmem = 0;
c0f3af97 6938 if ((dest + 1) >= i.operands
dc821c5f
JB
6939 || ((!op.bitfield.reg
6940 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6941 && !op.bitfield.regsimd
43234a1e 6942 && !operand_type_equal (&op, &regmask)))
c0f3af97 6943 abort ();
f12dc422 6944 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6945 dest++;
6946 }
6947 }
29b0f896
AM
6948
6949 i.rm.mode = 3;
6950 /* One of the register operands will be encoded in the i.tm.reg
6951 field, the other in the combined i.tm.mode and i.tm.regmem
6952 fields. If no form of this instruction supports a memory
6953 destination operand, then we assume the source operand may
6954 sometimes be a memory operand and so we need to store the
6955 destination in the i.rm.reg field. */
40fb9820
L
6956 if (!i.tm.operand_types[dest].bitfield.regmem
6957 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6958 {
6959 i.rm.reg = i.op[dest].regs->reg_num;
6960 i.rm.regmem = i.op[source].regs->reg_num;
6961 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6962 i.rex |= REX_R;
43234a1e
L
6963 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6964 i.vrex |= REX_R;
29b0f896 6965 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6966 i.rex |= REX_B;
43234a1e
L
6967 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6968 i.vrex |= REX_B;
29b0f896
AM
6969 }
6970 else
6971 {
6972 i.rm.reg = i.op[source].regs->reg_num;
6973 i.rm.regmem = i.op[dest].regs->reg_num;
6974 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6975 i.rex |= REX_B;
43234a1e
L
6976 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6977 i.vrex |= REX_B;
29b0f896 6978 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6979 i.rex |= REX_R;
43234a1e
L
6980 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6981 i.vrex |= REX_R;
29b0f896 6982 }
e0c7f900 6983 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 6984 {
e0c7f900 6985 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 6986 abort ();
e0c7f900 6987 i.rex &= ~REX_R;
c4a530c5
JB
6988 add_prefix (LOCK_PREFIX_OPCODE);
6989 }
29b0f896
AM
6990 }
6991 else
6992 { /* If it's not 2 reg operands... */
c0f3af97
L
6993 unsigned int mem;
6994
29b0f896
AM
6995 if (i.mem_operands)
6996 {
6997 unsigned int fake_zero_displacement = 0;
99018f42 6998 unsigned int op;
4eed87de 6999
7ab9ffdd
L
7000 for (op = 0; op < i.operands; op++)
7001 if (operand_type_check (i.types[op], anymem))
7002 break;
7ab9ffdd 7003 gas_assert (op < i.operands);
29b0f896 7004
6c30d220
L
7005 if (i.tm.opcode_modifier.vecsib)
7006 {
7007 if (i.index_reg->reg_num == RegEiz
7008 || i.index_reg->reg_num == RegRiz)
7009 abort ();
7010
7011 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7012 if (!i.base_reg)
7013 {
7014 i.sib.base = NO_BASE_REGISTER;
7015 i.sib.scale = i.log2_scale_factor;
7016 i.types[op].bitfield.disp8 = 0;
7017 i.types[op].bitfield.disp16 = 0;
7018 i.types[op].bitfield.disp64 = 0;
43083a50 7019 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7020 {
7021 /* Must be 32 bit */
7022 i.types[op].bitfield.disp32 = 1;
7023 i.types[op].bitfield.disp32s = 0;
7024 }
7025 else
7026 {
7027 i.types[op].bitfield.disp32 = 0;
7028 i.types[op].bitfield.disp32s = 1;
7029 }
7030 }
7031 i.sib.index = i.index_reg->reg_num;
7032 if ((i.index_reg->reg_flags & RegRex) != 0)
7033 i.rex |= REX_X;
43234a1e
L
7034 if ((i.index_reg->reg_flags & RegVRex) != 0)
7035 i.vrex |= REX_X;
6c30d220
L
7036 }
7037
29b0f896
AM
7038 default_seg = &ds;
7039
7040 if (i.base_reg == 0)
7041 {
7042 i.rm.mode = 0;
7043 if (!i.disp_operands)
9bb129e8 7044 fake_zero_displacement = 1;
29b0f896
AM
7045 if (i.index_reg == 0)
7046 {
73053c1f
JB
7047 i386_operand_type newdisp;
7048
6c30d220 7049 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7050 /* Operand is just <disp> */
20f0a1fc 7051 if (flag_code == CODE_64BIT)
29b0f896
AM
7052 {
7053 /* 64bit mode overwrites the 32bit absolute
7054 addressing by RIP relative addressing and
7055 absolute addressing is encoded by one of the
7056 redundant SIB forms. */
7057 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7058 i.sib.base = NO_BASE_REGISTER;
7059 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7060 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7061 }
fc225355
L
7062 else if ((flag_code == CODE_16BIT)
7063 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7064 {
7065 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7066 newdisp = disp16;
20f0a1fc
NC
7067 }
7068 else
7069 {
7070 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7071 newdisp = disp32;
29b0f896 7072 }
73053c1f
JB
7073 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7074 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7075 }
6c30d220 7076 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7077 {
6c30d220 7078 /* !i.base_reg && i.index_reg */
db51cc60
L
7079 if (i.index_reg->reg_num == RegEiz
7080 || i.index_reg->reg_num == RegRiz)
7081 i.sib.index = NO_INDEX_REGISTER;
7082 else
7083 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7084 i.sib.base = NO_BASE_REGISTER;
7085 i.sib.scale = i.log2_scale_factor;
7086 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7087 i.types[op].bitfield.disp8 = 0;
7088 i.types[op].bitfield.disp16 = 0;
7089 i.types[op].bitfield.disp64 = 0;
43083a50 7090 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7091 {
7092 /* Must be 32 bit */
7093 i.types[op].bitfield.disp32 = 1;
7094 i.types[op].bitfield.disp32s = 0;
7095 }
29b0f896 7096 else
40fb9820
L
7097 {
7098 i.types[op].bitfield.disp32 = 0;
7099 i.types[op].bitfield.disp32s = 1;
7100 }
29b0f896 7101 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7102 i.rex |= REX_X;
29b0f896
AM
7103 }
7104 }
7105 /* RIP addressing for 64bit mode. */
9a04903e
JB
7106 else if (i.base_reg->reg_num == RegRip ||
7107 i.base_reg->reg_num == RegEip)
29b0f896 7108 {
6c30d220 7109 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7110 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7111 i.types[op].bitfield.disp8 = 0;
7112 i.types[op].bitfield.disp16 = 0;
7113 i.types[op].bitfield.disp32 = 0;
7114 i.types[op].bitfield.disp32s = 1;
7115 i.types[op].bitfield.disp64 = 0;
71903a11 7116 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7117 if (! i.disp_operands)
7118 fake_zero_displacement = 1;
29b0f896 7119 }
dc821c5f 7120 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7121 {
6c30d220 7122 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7123 switch (i.base_reg->reg_num)
7124 {
7125 case 3: /* (%bx) */
7126 if (i.index_reg == 0)
7127 i.rm.regmem = 7;
7128 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7129 i.rm.regmem = i.index_reg->reg_num - 6;
7130 break;
7131 case 5: /* (%bp) */
7132 default_seg = &ss;
7133 if (i.index_reg == 0)
7134 {
7135 i.rm.regmem = 6;
40fb9820 7136 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7137 {
7138 /* fake (%bp) into 0(%bp) */
b5014f7a 7139 i.types[op].bitfield.disp8 = 1;
252b5132 7140 fake_zero_displacement = 1;
29b0f896
AM
7141 }
7142 }
7143 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7144 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7145 break;
7146 default: /* (%si) -> 4 or (%di) -> 5 */
7147 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7148 }
7149 i.rm.mode = mode_from_disp_size (i.types[op]);
7150 }
7151 else /* i.base_reg and 32/64 bit mode */
7152 {
7153 if (flag_code == CODE_64BIT
40fb9820
L
7154 && operand_type_check (i.types[op], disp))
7155 {
73053c1f
JB
7156 i.types[op].bitfield.disp16 = 0;
7157 i.types[op].bitfield.disp64 = 0;
40fb9820 7158 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7159 {
7160 i.types[op].bitfield.disp32 = 0;
7161 i.types[op].bitfield.disp32s = 1;
7162 }
40fb9820 7163 else
73053c1f
JB
7164 {
7165 i.types[op].bitfield.disp32 = 1;
7166 i.types[op].bitfield.disp32s = 0;
7167 }
40fb9820 7168 }
20f0a1fc 7169
6c30d220
L
7170 if (!i.tm.opcode_modifier.vecsib)
7171 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7172 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7173 i.rex |= REX_B;
29b0f896
AM
7174 i.sib.base = i.base_reg->reg_num;
7175 /* x86-64 ignores REX prefix bit here to avoid decoder
7176 complications. */
848930b2
JB
7177 if (!(i.base_reg->reg_flags & RegRex)
7178 && (i.base_reg->reg_num == EBP_REG_NUM
7179 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7180 default_seg = &ss;
848930b2 7181 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7182 {
848930b2 7183 fake_zero_displacement = 1;
b5014f7a 7184 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7185 }
7186 i.sib.scale = i.log2_scale_factor;
7187 if (i.index_reg == 0)
7188 {
6c30d220 7189 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7190 /* <disp>(%esp) becomes two byte modrm with no index
7191 register. We've already stored the code for esp
7192 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7193 Any base register besides %esp will not use the
7194 extra modrm byte. */
7195 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7196 }
6c30d220 7197 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7198 {
db51cc60
L
7199 if (i.index_reg->reg_num == RegEiz
7200 || i.index_reg->reg_num == RegRiz)
7201 i.sib.index = NO_INDEX_REGISTER;
7202 else
7203 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7204 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7205 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7206 i.rex |= REX_X;
29b0f896 7207 }
67a4f2b7
AO
7208
7209 if (i.disp_operands
7210 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7211 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7212 i.rm.mode = 0;
7213 else
a501d77e
L
7214 {
7215 if (!fake_zero_displacement
7216 && !i.disp_operands
7217 && i.disp_encoding)
7218 {
7219 fake_zero_displacement = 1;
7220 if (i.disp_encoding == disp_encoding_8bit)
7221 i.types[op].bitfield.disp8 = 1;
7222 else
7223 i.types[op].bitfield.disp32 = 1;
7224 }
7225 i.rm.mode = mode_from_disp_size (i.types[op]);
7226 }
29b0f896 7227 }
252b5132 7228
29b0f896
AM
7229 if (fake_zero_displacement)
7230 {
7231 /* Fakes a zero displacement assuming that i.types[op]
7232 holds the correct displacement size. */
7233 expressionS *exp;
7234
9c2799c2 7235 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7236 exp = &disp_expressions[i.disp_operands++];
7237 i.op[op].disps = exp;
7238 exp->X_op = O_constant;
7239 exp->X_add_number = 0;
7240 exp->X_add_symbol = (symbolS *) 0;
7241 exp->X_op_symbol = (symbolS *) 0;
7242 }
c0f3af97
L
7243
7244 mem = op;
29b0f896 7245 }
c0f3af97
L
7246 else
7247 mem = ~0;
252b5132 7248
8c43a48b 7249 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7250 {
7251 if (operand_type_check (i.types[0], imm))
7252 i.vex.register_specifier = NULL;
7253 else
7254 {
7255 /* VEX.vvvv encodes one of the sources when the first
7256 operand is not an immediate. */
1ef99a7b 7257 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7258 i.vex.register_specifier = i.op[0].regs;
7259 else
7260 i.vex.register_specifier = i.op[1].regs;
7261 }
7262
7263 /* Destination is a XMM register encoded in the ModRM.reg
7264 and VEX.R bit. */
7265 i.rm.reg = i.op[2].regs->reg_num;
7266 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7267 i.rex |= REX_R;
7268
7269 /* ModRM.rm and VEX.B encodes the other source. */
7270 if (!i.mem_operands)
7271 {
7272 i.rm.mode = 3;
7273
1ef99a7b 7274 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7275 i.rm.regmem = i.op[1].regs->reg_num;
7276 else
7277 i.rm.regmem = i.op[0].regs->reg_num;
7278
7279 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7280 i.rex |= REX_B;
7281 }
7282 }
2426c15f 7283 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7284 {
7285 i.vex.register_specifier = i.op[2].regs;
7286 if (!i.mem_operands)
7287 {
7288 i.rm.mode = 3;
7289 i.rm.regmem = i.op[1].regs->reg_num;
7290 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7291 i.rex |= REX_B;
7292 }
7293 }
29b0f896
AM
7294 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7295 (if any) based on i.tm.extension_opcode. Again, we must be
7296 careful to make sure that segment/control/debug/test/MMX
7297 registers are coded into the i.rm.reg field. */
f88c9eb0 7298 else if (i.reg_operands)
29b0f896 7299 {
99018f42 7300 unsigned int op;
7ab9ffdd
L
7301 unsigned int vex_reg = ~0;
7302
7303 for (op = 0; op < i.operands; op++)
dc821c5f 7304 if (i.types[op].bitfield.reg
7ab9ffdd 7305 || i.types[op].bitfield.regmmx
1b54b8d7 7306 || i.types[op].bitfield.regsimd
7e8b059b 7307 || i.types[op].bitfield.regbnd
43234a1e 7308 || i.types[op].bitfield.regmask
7ab9ffdd
L
7309 || i.types[op].bitfield.sreg2
7310 || i.types[op].bitfield.sreg3
7311 || i.types[op].bitfield.control
7312 || i.types[op].bitfield.debug
7313 || i.types[op].bitfield.test)
7314 break;
c0209578 7315
7ab9ffdd
L
7316 if (vex_3_sources)
7317 op = dest;
2426c15f 7318 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7319 {
7320 /* For instructions with VexNDS, the register-only
7321 source operand is encoded in VEX prefix. */
7322 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7323
7ab9ffdd 7324 if (op > mem)
c0f3af97 7325 {
7ab9ffdd
L
7326 vex_reg = op++;
7327 gas_assert (op < i.operands);
c0f3af97
L
7328 }
7329 else
c0f3af97 7330 {
f12dc422
L
7331 /* Check register-only source operand when two source
7332 operands are swapped. */
7333 if (!i.tm.operand_types[op].bitfield.baseindex
7334 && i.tm.operand_types[op + 1].bitfield.baseindex)
7335 {
7336 vex_reg = op;
7337 op += 2;
7338 gas_assert (mem == (vex_reg + 1)
7339 && op < i.operands);
7340 }
7341 else
7342 {
7343 vex_reg = op + 1;
7344 gas_assert (vex_reg < i.operands);
7345 }
c0f3af97 7346 }
7ab9ffdd 7347 }
2426c15f 7348 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7349 {
f12dc422 7350 /* For instructions with VexNDD, the register destination
7ab9ffdd 7351 is encoded in VEX prefix. */
f12dc422
L
7352 if (i.mem_operands == 0)
7353 {
7354 /* There is no memory operand. */
7355 gas_assert ((op + 2) == i.operands);
7356 vex_reg = op + 1;
7357 }
7358 else
8d63c93e 7359 {
ed438a93
JB
7360 /* There are only 2 non-immediate operands. */
7361 gas_assert (op < i.imm_operands + 2
7362 && i.operands == i.imm_operands + 2);
7363 vex_reg = i.imm_operands + 1;
f12dc422 7364 }
7ab9ffdd
L
7365 }
7366 else
7367 gas_assert (op < i.operands);
99018f42 7368
7ab9ffdd
L
7369 if (vex_reg != (unsigned int) ~0)
7370 {
f12dc422 7371 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7372
dc821c5f
JB
7373 if ((!type->bitfield.reg
7374 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7375 && !type->bitfield.regsimd
43234a1e 7376 && !operand_type_equal (type, &regmask))
7ab9ffdd 7377 abort ();
f88c9eb0 7378
7ab9ffdd
L
7379 i.vex.register_specifier = i.op[vex_reg].regs;
7380 }
7381
1b9f0c97
L
7382 /* Don't set OP operand twice. */
7383 if (vex_reg != op)
7ab9ffdd 7384 {
1b9f0c97
L
7385 /* If there is an extension opcode to put here, the
7386 register number must be put into the regmem field. */
7387 if (i.tm.extension_opcode != None)
7388 {
7389 i.rm.regmem = i.op[op].regs->reg_num;
7390 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7391 i.rex |= REX_B;
43234a1e
L
7392 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7393 i.vrex |= REX_B;
1b9f0c97
L
7394 }
7395 else
7396 {
7397 i.rm.reg = i.op[op].regs->reg_num;
7398 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7399 i.rex |= REX_R;
43234a1e
L
7400 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7401 i.vrex |= REX_R;
1b9f0c97 7402 }
7ab9ffdd 7403 }
252b5132 7404
29b0f896
AM
7405 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7406 must set it to 3 to indicate this is a register operand
7407 in the regmem field. */
7408 if (!i.mem_operands)
7409 i.rm.mode = 3;
7410 }
252b5132 7411
29b0f896 7412 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7413 if (i.tm.extension_opcode != None)
29b0f896
AM
7414 i.rm.reg = i.tm.extension_opcode;
7415 }
7416 return default_seg;
7417}
252b5132 7418
29b0f896 7419static void
e3bb37b5 7420output_branch (void)
29b0f896
AM
7421{
7422 char *p;
f8a5c266 7423 int size;
29b0f896
AM
7424 int code16;
7425 int prefix;
7426 relax_substateT subtype;
7427 symbolS *sym;
7428 offsetT off;
7429
f8a5c266 7430 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7431 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7432
7433 prefix = 0;
7434 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7435 {
29b0f896
AM
7436 prefix = 1;
7437 i.prefixes -= 1;
7438 code16 ^= CODE16;
252b5132 7439 }
29b0f896
AM
7440 /* Pentium4 branch hints. */
7441 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7442 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7443 {
29b0f896
AM
7444 prefix++;
7445 i.prefixes--;
7446 }
7447 if (i.prefix[REX_PREFIX] != 0)
7448 {
7449 prefix++;
7450 i.prefixes--;
2f66722d
AM
7451 }
7452
7e8b059b
L
7453 /* BND prefixed jump. */
7454 if (i.prefix[BND_PREFIX] != 0)
7455 {
7456 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7457 i.prefixes -= 1;
7458 }
7459
29b0f896
AM
7460 if (i.prefixes != 0 && !intel_syntax)
7461 as_warn (_("skipping prefixes on this instruction"));
7462
7463 /* It's always a symbol; End frag & setup for relax.
7464 Make sure there is enough room in this frag for the largest
7465 instruction we may generate in md_convert_frag. This is 2
7466 bytes for the opcode and room for the prefix and largest
7467 displacement. */
7468 frag_grow (prefix + 2 + 4);
7469 /* Prefix and 1 opcode byte go in fr_fix. */
7470 p = frag_more (prefix + 1);
7471 if (i.prefix[DATA_PREFIX] != 0)
7472 *p++ = DATA_PREFIX_OPCODE;
7473 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7474 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7475 *p++ = i.prefix[SEG_PREFIX];
7476 if (i.prefix[REX_PREFIX] != 0)
7477 *p++ = i.prefix[REX_PREFIX];
7478 *p = i.tm.base_opcode;
7479
7480 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7481 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7482 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7483 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7484 else
f8a5c266 7485 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7486 subtype |= code16;
3e73aa7c 7487
29b0f896
AM
7488 sym = i.op[0].disps->X_add_symbol;
7489 off = i.op[0].disps->X_add_number;
3e73aa7c 7490
29b0f896
AM
7491 if (i.op[0].disps->X_op != O_constant
7492 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7493 {
29b0f896
AM
7494 /* Handle complex expressions. */
7495 sym = make_expr_symbol (i.op[0].disps);
7496 off = 0;
7497 }
3e73aa7c 7498
29b0f896
AM
7499 /* 1 possible extra opcode + 4 byte displacement go in var part.
7500 Pass reloc in fr_var. */
d258b828 7501 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7502}
3e73aa7c 7503
bd7ab16b
L
7504#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7505/* Return TRUE iff PLT32 relocation should be used for branching to
7506 symbol S. */
7507
7508static bfd_boolean
7509need_plt32_p (symbolS *s)
7510{
7511 /* PLT32 relocation is ELF only. */
7512 if (!IS_ELF)
7513 return FALSE;
7514
7515 /* Since there is no need to prepare for PLT branch on x86-64, we
7516 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7517 be used as a marker for 32-bit PC-relative branches. */
7518 if (!object_64bit)
7519 return FALSE;
7520
7521 /* Weak or undefined symbol need PLT32 relocation. */
7522 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7523 return TRUE;
7524
7525 /* Non-global symbol doesn't need PLT32 relocation. */
7526 if (! S_IS_EXTERNAL (s))
7527 return FALSE;
7528
7529 /* Other global symbols need PLT32 relocation. NB: Symbol with
7530 non-default visibilities are treated as normal global symbol
7531 so that PLT32 relocation can be used as a marker for 32-bit
7532 PC-relative branches. It is useful for linker relaxation. */
7533 return TRUE;
7534}
7535#endif
7536
29b0f896 7537static void
e3bb37b5 7538output_jump (void)
29b0f896
AM
7539{
7540 char *p;
7541 int size;
3e02c1cc 7542 fixS *fixP;
bd7ab16b 7543 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7544
40fb9820 7545 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7546 {
7547 /* This is a loop or jecxz type instruction. */
7548 size = 1;
7549 if (i.prefix[ADDR_PREFIX] != 0)
7550 {
7551 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7552 i.prefixes -= 1;
7553 }
7554 /* Pentium4 branch hints. */
7555 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7556 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7557 {
7558 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7559 i.prefixes--;
3e73aa7c
JH
7560 }
7561 }
29b0f896
AM
7562 else
7563 {
7564 int code16;
3e73aa7c 7565
29b0f896
AM
7566 code16 = 0;
7567 if (flag_code == CODE_16BIT)
7568 code16 = CODE16;
3e73aa7c 7569
29b0f896
AM
7570 if (i.prefix[DATA_PREFIX] != 0)
7571 {
7572 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7573 i.prefixes -= 1;
7574 code16 ^= CODE16;
7575 }
252b5132 7576
29b0f896
AM
7577 size = 4;
7578 if (code16)
7579 size = 2;
7580 }
9fcc94b6 7581
29b0f896
AM
7582 if (i.prefix[REX_PREFIX] != 0)
7583 {
7584 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7585 i.prefixes -= 1;
7586 }
252b5132 7587
7e8b059b
L
7588 /* BND prefixed jump. */
7589 if (i.prefix[BND_PREFIX] != 0)
7590 {
7591 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7592 i.prefixes -= 1;
7593 }
7594
29b0f896
AM
7595 if (i.prefixes != 0 && !intel_syntax)
7596 as_warn (_("skipping prefixes on this instruction"));
e0890092 7597
42164a71
L
7598 p = frag_more (i.tm.opcode_length + size);
7599 switch (i.tm.opcode_length)
7600 {
7601 case 2:
7602 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7603 /* Fall through. */
42164a71
L
7604 case 1:
7605 *p++ = i.tm.base_opcode;
7606 break;
7607 default:
7608 abort ();
7609 }
e0890092 7610
bd7ab16b
L
7611#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7612 if (size == 4
7613 && jump_reloc == NO_RELOC
7614 && need_plt32_p (i.op[0].disps->X_add_symbol))
7615 jump_reloc = BFD_RELOC_X86_64_PLT32;
7616#endif
7617
7618 jump_reloc = reloc (size, 1, 1, jump_reloc);
7619
3e02c1cc 7620 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7621 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7622
7623 /* All jumps handled here are signed, but don't use a signed limit
7624 check for 32 and 16 bit jumps as we want to allow wrap around at
7625 4G and 64k respectively. */
7626 if (size == 1)
7627 fixP->fx_signed = 1;
29b0f896 7628}
e0890092 7629
29b0f896 7630static void
e3bb37b5 7631output_interseg_jump (void)
29b0f896
AM
7632{
7633 char *p;
7634 int size;
7635 int prefix;
7636 int code16;
252b5132 7637
29b0f896
AM
7638 code16 = 0;
7639 if (flag_code == CODE_16BIT)
7640 code16 = CODE16;
a217f122 7641
29b0f896
AM
7642 prefix = 0;
7643 if (i.prefix[DATA_PREFIX] != 0)
7644 {
7645 prefix = 1;
7646 i.prefixes -= 1;
7647 code16 ^= CODE16;
7648 }
7649 if (i.prefix[REX_PREFIX] != 0)
7650 {
7651 prefix++;
7652 i.prefixes -= 1;
7653 }
252b5132 7654
29b0f896
AM
7655 size = 4;
7656 if (code16)
7657 size = 2;
252b5132 7658
29b0f896
AM
7659 if (i.prefixes != 0 && !intel_syntax)
7660 as_warn (_("skipping prefixes on this instruction"));
252b5132 7661
29b0f896
AM
7662 /* 1 opcode; 2 segment; offset */
7663 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7664
29b0f896
AM
7665 if (i.prefix[DATA_PREFIX] != 0)
7666 *p++ = DATA_PREFIX_OPCODE;
252b5132 7667
29b0f896
AM
7668 if (i.prefix[REX_PREFIX] != 0)
7669 *p++ = i.prefix[REX_PREFIX];
252b5132 7670
29b0f896
AM
7671 *p++ = i.tm.base_opcode;
7672 if (i.op[1].imms->X_op == O_constant)
7673 {
7674 offsetT n = i.op[1].imms->X_add_number;
252b5132 7675
29b0f896
AM
7676 if (size == 2
7677 && !fits_in_unsigned_word (n)
7678 && !fits_in_signed_word (n))
7679 {
7680 as_bad (_("16-bit jump out of range"));
7681 return;
7682 }
7683 md_number_to_chars (p, n, size);
7684 }
7685 else
7686 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7687 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7688 if (i.op[0].imms->X_op != O_constant)
7689 as_bad (_("can't handle non absolute segment in `%s'"),
7690 i.tm.name);
7691 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7692}
a217f122 7693
29b0f896 7694static void
e3bb37b5 7695output_insn (void)
29b0f896 7696{
2bbd9c25
JJ
7697 fragS *insn_start_frag;
7698 offsetT insn_start_off;
7699
29b0f896
AM
7700 /* Tie dwarf2 debug info to the address at the start of the insn.
7701 We can't do this after the insn has been output as the current
7702 frag may have been closed off. eg. by frag_var. */
7703 dwarf2_emit_insn (0);
7704
2bbd9c25
JJ
7705 insn_start_frag = frag_now;
7706 insn_start_off = frag_now_fix ();
7707
29b0f896 7708 /* Output jumps. */
40fb9820 7709 if (i.tm.opcode_modifier.jump)
29b0f896 7710 output_branch ();
40fb9820
L
7711 else if (i.tm.opcode_modifier.jumpbyte
7712 || i.tm.opcode_modifier.jumpdword)
29b0f896 7713 output_jump ();
40fb9820 7714 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7715 output_interseg_jump ();
7716 else
7717 {
7718 /* Output normal instructions here. */
7719 char *p;
7720 unsigned char *q;
47465058 7721 unsigned int j;
331d2d0d 7722 unsigned int prefix;
4dffcebc 7723
e4e00185
AS
7724 if (avoid_fence
7725 && i.tm.base_opcode == 0xfae
7726 && i.operands == 1
7727 && i.imm_operands == 1
7728 && (i.op[0].imms->X_add_number == 0xe8
7729 || i.op[0].imms->X_add_number == 0xf0
7730 || i.op[0].imms->X_add_number == 0xf8))
7731 {
7732 /* Encode lfence, mfence, and sfence as
7733 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7734 offsetT val = 0x240483f0ULL;
7735 p = frag_more (5);
7736 md_number_to_chars (p, val, 5);
7737 return;
7738 }
7739
d022bddd
IT
7740 /* Some processors fail on LOCK prefix. This options makes
7741 assembler ignore LOCK prefix and serves as a workaround. */
7742 if (omit_lock_prefix)
7743 {
7744 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7745 return;
7746 i.prefix[LOCK_PREFIX] = 0;
7747 }
7748
43234a1e
L
7749 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7750 don't need the explicit prefix. */
7751 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7752 {
c0f3af97 7753 switch (i.tm.opcode_length)
bc4bd9ab 7754 {
c0f3af97
L
7755 case 3:
7756 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7757 {
c0f3af97 7758 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 7759 add_prefix (prefix);
c0f3af97
L
7760 }
7761 break;
7762 case 2:
7763 if ((i.tm.base_opcode & 0xff0000) != 0)
7764 {
7765 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
7766 if (!i.tm.cpu_flags.bitfield.cpupadlock
7767 || prefix != REPE_PREFIX_OPCODE
7768 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
7769 add_prefix (prefix);
7770 }
c0f3af97
L
7771 break;
7772 case 1:
7773 break;
390c91cf
L
7774 case 0:
7775 /* Check for pseudo prefixes. */
7776 as_bad_where (insn_start_frag->fr_file,
7777 insn_start_frag->fr_line,
7778 _("pseudo prefix without instruction"));
7779 return;
c0f3af97
L
7780 default:
7781 abort ();
bc4bd9ab 7782 }
c0f3af97 7783
6d19a37a 7784#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7785 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7786 R_X86_64_GOTTPOFF relocation so that linker can safely
7787 perform IE->LE optimization. */
7788 if (x86_elf_abi == X86_64_X32_ABI
7789 && i.operands == 2
7790 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7791 && i.prefix[REX_PREFIX] == 0)
7792 add_prefix (REX_OPCODE);
6d19a37a 7793#endif
cf61b747 7794
c0f3af97
L
7795 /* The prefix bytes. */
7796 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7797 if (*q)
7798 FRAG_APPEND_1_CHAR (*q);
0f10071e 7799 }
ae5c1c7b 7800 else
c0f3af97
L
7801 {
7802 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7803 if (*q)
7804 switch (j)
7805 {
7806 case REX_PREFIX:
7807 /* REX byte is encoded in VEX prefix. */
7808 break;
7809 case SEG_PREFIX:
7810 case ADDR_PREFIX:
7811 FRAG_APPEND_1_CHAR (*q);
7812 break;
7813 default:
7814 /* There should be no other prefixes for instructions
7815 with VEX prefix. */
7816 abort ();
7817 }
7818
43234a1e
L
7819 /* For EVEX instructions i.vrex should become 0 after
7820 build_evex_prefix. For VEX instructions upper 16 registers
7821 aren't available, so VREX should be 0. */
7822 if (i.vrex)
7823 abort ();
c0f3af97
L
7824 /* Now the VEX prefix. */
7825 p = frag_more (i.vex.length);
7826 for (j = 0; j < i.vex.length; j++)
7827 p[j] = i.vex.bytes[j];
7828 }
252b5132 7829
29b0f896 7830 /* Now the opcode; be careful about word order here! */
4dffcebc 7831 if (i.tm.opcode_length == 1)
29b0f896
AM
7832 {
7833 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7834 }
7835 else
7836 {
4dffcebc 7837 switch (i.tm.opcode_length)
331d2d0d 7838 {
43234a1e
L
7839 case 4:
7840 p = frag_more (4);
7841 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7842 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7843 break;
4dffcebc 7844 case 3:
331d2d0d
L
7845 p = frag_more (3);
7846 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7847 break;
7848 case 2:
7849 p = frag_more (2);
7850 break;
7851 default:
7852 abort ();
7853 break;
331d2d0d 7854 }
0f10071e 7855
29b0f896
AM
7856 /* Put out high byte first: can't use md_number_to_chars! */
7857 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7858 *p = i.tm.base_opcode & 0xff;
7859 }
3e73aa7c 7860
29b0f896 7861 /* Now the modrm byte and sib byte (if present). */
40fb9820 7862 if (i.tm.opcode_modifier.modrm)
29b0f896 7863 {
4a3523fa
L
7864 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7865 | i.rm.reg << 3
7866 | i.rm.mode << 6));
29b0f896
AM
7867 /* If i.rm.regmem == ESP (4)
7868 && i.rm.mode != (Register mode)
7869 && not 16 bit
7870 ==> need second modrm byte. */
7871 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7872 && i.rm.mode != 3
dc821c5f 7873 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7874 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7875 | i.sib.index << 3
7876 | i.sib.scale << 6));
29b0f896 7877 }
3e73aa7c 7878
29b0f896 7879 if (i.disp_operands)
2bbd9c25 7880 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7881
29b0f896 7882 if (i.imm_operands)
2bbd9c25 7883 output_imm (insn_start_frag, insn_start_off);
29b0f896 7884 }
252b5132 7885
29b0f896
AM
7886#ifdef DEBUG386
7887 if (flag_debug)
7888 {
7b81dfbb 7889 pi ("" /*line*/, &i);
29b0f896
AM
7890 }
7891#endif /* DEBUG386 */
7892}
252b5132 7893
e205caa7
L
7894/* Return the size of the displacement operand N. */
7895
7896static int
7897disp_size (unsigned int n)
7898{
7899 int size = 4;
43234a1e 7900
b5014f7a 7901 if (i.types[n].bitfield.disp64)
40fb9820
L
7902 size = 8;
7903 else if (i.types[n].bitfield.disp8)
7904 size = 1;
7905 else if (i.types[n].bitfield.disp16)
7906 size = 2;
e205caa7
L
7907 return size;
7908}
7909
7910/* Return the size of the immediate operand N. */
7911
7912static int
7913imm_size (unsigned int n)
7914{
7915 int size = 4;
40fb9820
L
7916 if (i.types[n].bitfield.imm64)
7917 size = 8;
7918 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7919 size = 1;
7920 else if (i.types[n].bitfield.imm16)
7921 size = 2;
e205caa7
L
7922 return size;
7923}
7924
29b0f896 7925static void
64e74474 7926output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7927{
7928 char *p;
7929 unsigned int n;
252b5132 7930
29b0f896
AM
7931 for (n = 0; n < i.operands; n++)
7932 {
b5014f7a 7933 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7934 {
7935 if (i.op[n].disps->X_op == O_constant)
7936 {
e205caa7 7937 int size = disp_size (n);
43234a1e 7938 offsetT val = i.op[n].disps->X_add_number;
252b5132 7939
b5014f7a 7940 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7941 p = frag_more (size);
7942 md_number_to_chars (p, val, size);
7943 }
7944 else
7945 {
f86103b7 7946 enum bfd_reloc_code_real reloc_type;
e205caa7 7947 int size = disp_size (n);
40fb9820 7948 int sign = i.types[n].bitfield.disp32s;
29b0f896 7949 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7950 fixS *fixP;
29b0f896 7951
e205caa7 7952 /* We can't have 8 bit displacement here. */
9c2799c2 7953 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7954
29b0f896
AM
7955 /* The PC relative address is computed relative
7956 to the instruction boundary, so in case immediate
7957 fields follows, we need to adjust the value. */
7958 if (pcrel && i.imm_operands)
7959 {
29b0f896 7960 unsigned int n1;
e205caa7 7961 int sz = 0;
252b5132 7962
29b0f896 7963 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7964 if (operand_type_check (i.types[n1], imm))
252b5132 7965 {
e205caa7
L
7966 /* Only one immediate is allowed for PC
7967 relative address. */
9c2799c2 7968 gas_assert (sz == 0);
e205caa7
L
7969 sz = imm_size (n1);
7970 i.op[n].disps->X_add_number -= sz;
252b5132 7971 }
29b0f896 7972 /* We should find the immediate. */
9c2799c2 7973 gas_assert (sz != 0);
29b0f896 7974 }
520dc8e8 7975
29b0f896 7976 p = frag_more (size);
d258b828 7977 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7978 if (GOT_symbol
2bbd9c25 7979 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7980 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7981 || reloc_type == BFD_RELOC_X86_64_32S
7982 || (reloc_type == BFD_RELOC_64
7983 && object_64bit))
d6ab8113
JB
7984 && (i.op[n].disps->X_op == O_symbol
7985 || (i.op[n].disps->X_op == O_add
7986 && ((symbol_get_value_expression
7987 (i.op[n].disps->X_op_symbol)->X_op)
7988 == O_subtract))))
7989 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7990 {
7991 offsetT add;
7992
7993 if (insn_start_frag == frag_now)
7994 add = (p - frag_now->fr_literal) - insn_start_off;
7995 else
7996 {
7997 fragS *fr;
7998
7999 add = insn_start_frag->fr_fix - insn_start_off;
8000 for (fr = insn_start_frag->fr_next;
8001 fr && fr != frag_now; fr = fr->fr_next)
8002 add += fr->fr_fix;
8003 add += p - frag_now->fr_literal;
8004 }
8005
4fa24527 8006 if (!object_64bit)
7b81dfbb
AJ
8007 {
8008 reloc_type = BFD_RELOC_386_GOTPC;
8009 i.op[n].imms->X_add_number += add;
8010 }
8011 else if (reloc_type == BFD_RELOC_64)
8012 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8013 else
7b81dfbb
AJ
8014 /* Don't do the adjustment for x86-64, as there
8015 the pcrel addressing is relative to the _next_
8016 insn, and that is taken care of in other code. */
d6ab8113 8017 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8018 }
02a86693
L
8019 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8020 size, i.op[n].disps, pcrel,
8021 reloc_type);
8022 /* Check for "call/jmp *mem", "mov mem, %reg",
8023 "test %reg, mem" and "binop mem, %reg" where binop
8024 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8025 instructions. Always generate R_386_GOT32X for
8026 "sym*GOT" operand in 32-bit mode. */
8027 if ((generate_relax_relocations
8028 || (!object_64bit
8029 && i.rm.mode == 0
8030 && i.rm.regmem == 5))
8031 && (i.rm.mode == 2
8032 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8033 && ((i.operands == 1
8034 && i.tm.base_opcode == 0xff
8035 && (i.rm.reg == 2 || i.rm.reg == 4))
8036 || (i.operands == 2
8037 && (i.tm.base_opcode == 0x8b
8038 || i.tm.base_opcode == 0x85
8039 || (i.tm.base_opcode & 0xc7) == 0x03))))
8040 {
8041 if (object_64bit)
8042 {
8043 fixP->fx_tcbit = i.rex != 0;
8044 if (i.base_reg
8045 && (i.base_reg->reg_num == RegRip
8046 || i.base_reg->reg_num == RegEip))
8047 fixP->fx_tcbit2 = 1;
8048 }
8049 else
8050 fixP->fx_tcbit2 = 1;
8051 }
29b0f896
AM
8052 }
8053 }
8054 }
8055}
252b5132 8056
29b0f896 8057static void
64e74474 8058output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8059{
8060 char *p;
8061 unsigned int n;
252b5132 8062
29b0f896
AM
8063 for (n = 0; n < i.operands; n++)
8064 {
43234a1e
L
8065 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8066 if (i.rounding && (int) n == i.rounding->operand)
8067 continue;
8068
40fb9820 8069 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8070 {
8071 if (i.op[n].imms->X_op == O_constant)
8072 {
e205caa7 8073 int size = imm_size (n);
29b0f896 8074 offsetT val;
b4cac588 8075
29b0f896
AM
8076 val = offset_in_range (i.op[n].imms->X_add_number,
8077 size);
8078 p = frag_more (size);
8079 md_number_to_chars (p, val, size);
8080 }
8081 else
8082 {
8083 /* Not absolute_section.
8084 Need a 32-bit fixup (don't support 8bit
8085 non-absolute imms). Try to support other
8086 sizes ... */
f86103b7 8087 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8088 int size = imm_size (n);
8089 int sign;
29b0f896 8090
40fb9820 8091 if (i.types[n].bitfield.imm32s
a7d61044 8092 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8093 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8094 sign = 1;
e205caa7
L
8095 else
8096 sign = 0;
520dc8e8 8097
29b0f896 8098 p = frag_more (size);
d258b828 8099 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8100
2bbd9c25
JJ
8101 /* This is tough to explain. We end up with this one if we
8102 * have operands that look like
8103 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8104 * obtain the absolute address of the GOT, and it is strongly
8105 * preferable from a performance point of view to avoid using
8106 * a runtime relocation for this. The actual sequence of
8107 * instructions often look something like:
8108 *
8109 * call .L66
8110 * .L66:
8111 * popl %ebx
8112 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8113 *
8114 * The call and pop essentially return the absolute address
8115 * of the label .L66 and store it in %ebx. The linker itself
8116 * will ultimately change the first operand of the addl so
8117 * that %ebx points to the GOT, but to keep things simple, the
8118 * .o file must have this operand set so that it generates not
8119 * the absolute address of .L66, but the absolute address of
8120 * itself. This allows the linker itself simply treat a GOTPC
8121 * relocation as asking for a pcrel offset to the GOT to be
8122 * added in, and the addend of the relocation is stored in the
8123 * operand field for the instruction itself.
8124 *
8125 * Our job here is to fix the operand so that it would add
8126 * the correct offset so that %ebx would point to itself. The
8127 * thing that is tricky is that .-.L66 will point to the
8128 * beginning of the instruction, so we need to further modify
8129 * the operand so that it will point to itself. There are
8130 * other cases where you have something like:
8131 *
8132 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8133 *
8134 * and here no correction would be required. Internally in
8135 * the assembler we treat operands of this form as not being
8136 * pcrel since the '.' is explicitly mentioned, and I wonder
8137 * whether it would simplify matters to do it this way. Who
8138 * knows. In earlier versions of the PIC patches, the
8139 * pcrel_adjust field was used to store the correction, but
8140 * since the expression is not pcrel, I felt it would be
8141 * confusing to do it this way. */
8142
d6ab8113 8143 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8144 || reloc_type == BFD_RELOC_X86_64_32S
8145 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8146 && GOT_symbol
8147 && GOT_symbol == i.op[n].imms->X_add_symbol
8148 && (i.op[n].imms->X_op == O_symbol
8149 || (i.op[n].imms->X_op == O_add
8150 && ((symbol_get_value_expression
8151 (i.op[n].imms->X_op_symbol)->X_op)
8152 == O_subtract))))
8153 {
2bbd9c25
JJ
8154 offsetT add;
8155
8156 if (insn_start_frag == frag_now)
8157 add = (p - frag_now->fr_literal) - insn_start_off;
8158 else
8159 {
8160 fragS *fr;
8161
8162 add = insn_start_frag->fr_fix - insn_start_off;
8163 for (fr = insn_start_frag->fr_next;
8164 fr && fr != frag_now; fr = fr->fr_next)
8165 add += fr->fr_fix;
8166 add += p - frag_now->fr_literal;
8167 }
8168
4fa24527 8169 if (!object_64bit)
d6ab8113 8170 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8171 else if (size == 4)
d6ab8113 8172 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8173 else if (size == 8)
8174 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8175 i.op[n].imms->X_add_number += add;
29b0f896 8176 }
29b0f896
AM
8177 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8178 i.op[n].imms, 0, reloc_type);
8179 }
8180 }
8181 }
252b5132
RH
8182}
8183\f
d182319b
JB
8184/* x86_cons_fix_new is called via the expression parsing code when a
8185 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8186static int cons_sign = -1;
8187
8188void
e3bb37b5 8189x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8190 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8191{
d258b828 8192 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8193
8194#ifdef TE_PE
8195 if (exp->X_op == O_secrel)
8196 {
8197 exp->X_op = O_symbol;
8198 r = BFD_RELOC_32_SECREL;
8199 }
8200#endif
8201
8202 fix_new_exp (frag, off, len, exp, 0, r);
8203}
8204
357d1bd8
L
8205/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8206 purpose of the `.dc.a' internal pseudo-op. */
8207
8208int
8209x86_address_bytes (void)
8210{
8211 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8212 return 4;
8213 return stdoutput->arch_info->bits_per_address / 8;
8214}
8215
d382c579
TG
8216#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8217 || defined (LEX_AT)
d258b828 8218# define lex_got(reloc, adjust, types) NULL
718ddfc0 8219#else
f3c180ae
AM
8220/* Parse operands of the form
8221 <symbol>@GOTOFF+<nnn>
8222 and similar .plt or .got references.
8223
8224 If we find one, set up the correct relocation in RELOC and copy the
8225 input string, minus the `@GOTOFF' into a malloc'd buffer for
8226 parsing by the calling routine. Return this buffer, and if ADJUST
8227 is non-null set it to the length of the string we removed from the
8228 input line. Otherwise return NULL. */
8229static char *
91d6fa6a 8230lex_got (enum bfd_reloc_code_real *rel,
64e74474 8231 int *adjust,
d258b828 8232 i386_operand_type *types)
f3c180ae 8233{
7b81dfbb
AJ
8234 /* Some of the relocations depend on the size of what field is to
8235 be relocated. But in our callers i386_immediate and i386_displacement
8236 we don't yet know the operand size (this will be set by insn
8237 matching). Hence we record the word32 relocation here,
8238 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8239 static const struct {
8240 const char *str;
cff8d58a 8241 int len;
4fa24527 8242 const enum bfd_reloc_code_real rel[2];
40fb9820 8243 const i386_operand_type types64;
f3c180ae 8244 } gotrel[] = {
8ce3d284 8245#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8246 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8247 BFD_RELOC_SIZE32 },
8248 OPERAND_TYPE_IMM32_64 },
8ce3d284 8249#endif
cff8d58a
L
8250 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8251 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8252 OPERAND_TYPE_IMM64 },
cff8d58a
L
8253 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8254 BFD_RELOC_X86_64_PLT32 },
40fb9820 8255 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8256 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8257 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8258 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8259 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8260 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8261 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8262 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8263 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8264 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8265 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8266 BFD_RELOC_X86_64_TLSGD },
40fb9820 8267 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8268 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8269 _dummy_first_bfd_reloc_code_real },
40fb9820 8270 OPERAND_TYPE_NONE },
cff8d58a
L
8271 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8272 BFD_RELOC_X86_64_TLSLD },
40fb9820 8273 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8274 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8275 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8276 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8277 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8278 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8279 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8280 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8281 _dummy_first_bfd_reloc_code_real },
40fb9820 8282 OPERAND_TYPE_NONE },
cff8d58a
L
8283 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8284 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8285 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8286 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8287 _dummy_first_bfd_reloc_code_real },
40fb9820 8288 OPERAND_TYPE_NONE },
cff8d58a
L
8289 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8290 _dummy_first_bfd_reloc_code_real },
40fb9820 8291 OPERAND_TYPE_NONE },
cff8d58a
L
8292 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8293 BFD_RELOC_X86_64_GOT32 },
40fb9820 8294 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8295 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8296 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8297 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8298 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8299 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8300 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8301 };
8302 char *cp;
8303 unsigned int j;
8304
d382c579 8305#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8306 if (!IS_ELF)
8307 return NULL;
d382c579 8308#endif
718ddfc0 8309
f3c180ae 8310 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8311 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8312 return NULL;
8313
47465058 8314 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8315 {
cff8d58a 8316 int len = gotrel[j].len;
28f81592 8317 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8318 {
4fa24527 8319 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8320 {
28f81592
AM
8321 int first, second;
8322 char *tmpbuf, *past_reloc;
f3c180ae 8323
91d6fa6a 8324 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8325
3956db08
JB
8326 if (types)
8327 {
8328 if (flag_code != CODE_64BIT)
40fb9820
L
8329 {
8330 types->bitfield.imm32 = 1;
8331 types->bitfield.disp32 = 1;
8332 }
3956db08
JB
8333 else
8334 *types = gotrel[j].types64;
8335 }
8336
8fd4256d 8337 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8338 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8339
28f81592 8340 /* The length of the first part of our input line. */
f3c180ae 8341 first = cp - input_line_pointer;
28f81592
AM
8342
8343 /* The second part goes from after the reloc token until
67c11a9b 8344 (and including) an end_of_line char or comma. */
28f81592 8345 past_reloc = cp + 1 + len;
67c11a9b
AM
8346 cp = past_reloc;
8347 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8348 ++cp;
8349 second = cp + 1 - past_reloc;
28f81592
AM
8350
8351 /* Allocate and copy string. The trailing NUL shouldn't
8352 be necessary, but be safe. */
add39d23 8353 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8354 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8355 if (second != 0 && *past_reloc != ' ')
8356 /* Replace the relocation token with ' ', so that
8357 errors like foo@GOTOFF1 will be detected. */
8358 tmpbuf[first++] = ' ';
af89796a
L
8359 else
8360 /* Increment length by 1 if the relocation token is
8361 removed. */
8362 len++;
8363 if (adjust)
8364 *adjust = len;
0787a12d
AM
8365 memcpy (tmpbuf + first, past_reloc, second);
8366 tmpbuf[first + second] = '\0';
f3c180ae
AM
8367 return tmpbuf;
8368 }
8369
4fa24527
JB
8370 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8371 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8372 return NULL;
8373 }
8374 }
8375
8376 /* Might be a symbol version string. Don't as_bad here. */
8377 return NULL;
8378}
4e4f7c87 8379#endif
f3c180ae 8380
a988325c
NC
8381#ifdef TE_PE
8382#ifdef lex_got
8383#undef lex_got
8384#endif
8385/* Parse operands of the form
8386 <symbol>@SECREL32+<nnn>
8387
8388 If we find one, set up the correct relocation in RELOC and copy the
8389 input string, minus the `@SECREL32' into a malloc'd buffer for
8390 parsing by the calling routine. Return this buffer, and if ADJUST
8391 is non-null set it to the length of the string we removed from the
34bca508
L
8392 input line. Otherwise return NULL.
8393
a988325c
NC
8394 This function is copied from the ELF version above adjusted for PE targets. */
8395
8396static char *
8397lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8398 int *adjust ATTRIBUTE_UNUSED,
d258b828 8399 i386_operand_type *types)
a988325c
NC
8400{
8401 static const struct
8402 {
8403 const char *str;
8404 int len;
8405 const enum bfd_reloc_code_real rel[2];
8406 const i386_operand_type types64;
8407 }
8408 gotrel[] =
8409 {
8410 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8411 BFD_RELOC_32_SECREL },
8412 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8413 };
8414
8415 char *cp;
8416 unsigned j;
8417
8418 for (cp = input_line_pointer; *cp != '@'; cp++)
8419 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8420 return NULL;
8421
8422 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8423 {
8424 int len = gotrel[j].len;
8425
8426 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8427 {
8428 if (gotrel[j].rel[object_64bit] != 0)
8429 {
8430 int first, second;
8431 char *tmpbuf, *past_reloc;
8432
8433 *rel = gotrel[j].rel[object_64bit];
8434 if (adjust)
8435 *adjust = len;
8436
8437 if (types)
8438 {
8439 if (flag_code != CODE_64BIT)
8440 {
8441 types->bitfield.imm32 = 1;
8442 types->bitfield.disp32 = 1;
8443 }
8444 else
8445 *types = gotrel[j].types64;
8446 }
8447
8448 /* The length of the first part of our input line. */
8449 first = cp - input_line_pointer;
8450
8451 /* The second part goes from after the reloc token until
8452 (and including) an end_of_line char or comma. */
8453 past_reloc = cp + 1 + len;
8454 cp = past_reloc;
8455 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8456 ++cp;
8457 second = cp + 1 - past_reloc;
8458
8459 /* Allocate and copy string. The trailing NUL shouldn't
8460 be necessary, but be safe. */
add39d23 8461 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8462 memcpy (tmpbuf, input_line_pointer, first);
8463 if (second != 0 && *past_reloc != ' ')
8464 /* Replace the relocation token with ' ', so that
8465 errors like foo@SECLREL321 will be detected. */
8466 tmpbuf[first++] = ' ';
8467 memcpy (tmpbuf + first, past_reloc, second);
8468 tmpbuf[first + second] = '\0';
8469 return tmpbuf;
8470 }
8471
8472 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8473 gotrel[j].str, 1 << (5 + object_64bit));
8474 return NULL;
8475 }
8476 }
8477
8478 /* Might be a symbol version string. Don't as_bad here. */
8479 return NULL;
8480}
8481
8482#endif /* TE_PE */
8483
62ebcb5c 8484bfd_reloc_code_real_type
e3bb37b5 8485x86_cons (expressionS *exp, int size)
f3c180ae 8486{
62ebcb5c
AM
8487 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8488
ee86248c
JB
8489 intel_syntax = -intel_syntax;
8490
3c7b9c2c 8491 exp->X_md = 0;
4fa24527 8492 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8493 {
8494 /* Handle @GOTOFF and the like in an expression. */
8495 char *save;
8496 char *gotfree_input_line;
4a57f2cf 8497 int adjust = 0;
f3c180ae
AM
8498
8499 save = input_line_pointer;
d258b828 8500 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8501 if (gotfree_input_line)
8502 input_line_pointer = gotfree_input_line;
8503
8504 expression (exp);
8505
8506 if (gotfree_input_line)
8507 {
8508 /* expression () has merrily parsed up to the end of line,
8509 or a comma - in the wrong buffer. Transfer how far
8510 input_line_pointer has moved to the right buffer. */
8511 input_line_pointer = (save
8512 + (input_line_pointer - gotfree_input_line)
8513 + adjust);
8514 free (gotfree_input_line);
3992d3b7
AM
8515 if (exp->X_op == O_constant
8516 || exp->X_op == O_absent
8517 || exp->X_op == O_illegal
0398aac5 8518 || exp->X_op == O_register
3992d3b7
AM
8519 || exp->X_op == O_big)
8520 {
8521 char c = *input_line_pointer;
8522 *input_line_pointer = 0;
8523 as_bad (_("missing or invalid expression `%s'"), save);
8524 *input_line_pointer = c;
8525 }
f3c180ae
AM
8526 }
8527 }
8528 else
8529 expression (exp);
ee86248c
JB
8530
8531 intel_syntax = -intel_syntax;
8532
8533 if (intel_syntax)
8534 i386_intel_simplify (exp);
62ebcb5c
AM
8535
8536 return got_reloc;
f3c180ae 8537}
f3c180ae 8538
9f32dd5b
L
8539static void
8540signed_cons (int size)
6482c264 8541{
d182319b
JB
8542 if (flag_code == CODE_64BIT)
8543 cons_sign = 1;
8544 cons (size);
8545 cons_sign = -1;
6482c264
NC
8546}
8547
d182319b 8548#ifdef TE_PE
6482c264 8549static void
7016a5d5 8550pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8551{
8552 expressionS exp;
8553
8554 do
8555 {
8556 expression (&exp);
8557 if (exp.X_op == O_symbol)
8558 exp.X_op = O_secrel;
8559
8560 emit_expr (&exp, 4);
8561 }
8562 while (*input_line_pointer++ == ',');
8563
8564 input_line_pointer--;
8565 demand_empty_rest_of_line ();
8566}
6482c264
NC
8567#endif
8568
43234a1e
L
8569/* Handle Vector operations. */
8570
8571static char *
8572check_VecOperations (char *op_string, char *op_end)
8573{
8574 const reg_entry *mask;
8575 const char *saved;
8576 char *end_op;
8577
8578 while (*op_string
8579 && (op_end == NULL || op_string < op_end))
8580 {
8581 saved = op_string;
8582 if (*op_string == '{')
8583 {
8584 op_string++;
8585
8586 /* Check broadcasts. */
8587 if (strncmp (op_string, "1to", 3) == 0)
8588 {
8589 int bcst_type;
8590
8591 if (i.broadcast)
8592 goto duplicated_vec_op;
8593
8594 op_string += 3;
8595 if (*op_string == '8')
8e6e0792 8596 bcst_type = 8;
b28d1bda 8597 else if (*op_string == '4')
8e6e0792 8598 bcst_type = 4;
b28d1bda 8599 else if (*op_string == '2')
8e6e0792 8600 bcst_type = 2;
43234a1e
L
8601 else if (*op_string == '1'
8602 && *(op_string+1) == '6')
8603 {
8e6e0792 8604 bcst_type = 16;
43234a1e
L
8605 op_string++;
8606 }
8607 else
8608 {
8609 as_bad (_("Unsupported broadcast: `%s'"), saved);
8610 return NULL;
8611 }
8612 op_string++;
8613
8614 broadcast_op.type = bcst_type;
8615 broadcast_op.operand = this_operand;
8616 i.broadcast = &broadcast_op;
8617 }
8618 /* Check masking operation. */
8619 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8620 {
8621 /* k0 can't be used for write mask. */
6d2cd6b2 8622 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8623 {
6d2cd6b2
JB
8624 as_bad (_("`%s%s' can't be used for write mask"),
8625 register_prefix, mask->reg_name);
43234a1e
L
8626 return NULL;
8627 }
8628
8629 if (!i.mask)
8630 {
8631 mask_op.mask = mask;
8632 mask_op.zeroing = 0;
8633 mask_op.operand = this_operand;
8634 i.mask = &mask_op;
8635 }
8636 else
8637 {
8638 if (i.mask->mask)
8639 goto duplicated_vec_op;
8640
8641 i.mask->mask = mask;
8642
8643 /* Only "{z}" is allowed here. No need to check
8644 zeroing mask explicitly. */
8645 if (i.mask->operand != this_operand)
8646 {
8647 as_bad (_("invalid write mask `%s'"), saved);
8648 return NULL;
8649 }
8650 }
8651
8652 op_string = end_op;
8653 }
8654 /* Check zeroing-flag for masking operation. */
8655 else if (*op_string == 'z')
8656 {
8657 if (!i.mask)
8658 {
8659 mask_op.mask = NULL;
8660 mask_op.zeroing = 1;
8661 mask_op.operand = this_operand;
8662 i.mask = &mask_op;
8663 }
8664 else
8665 {
8666 if (i.mask->zeroing)
8667 {
8668 duplicated_vec_op:
8669 as_bad (_("duplicated `%s'"), saved);
8670 return NULL;
8671 }
8672
8673 i.mask->zeroing = 1;
8674
8675 /* Only "{%k}" is allowed here. No need to check mask
8676 register explicitly. */
8677 if (i.mask->operand != this_operand)
8678 {
8679 as_bad (_("invalid zeroing-masking `%s'"),
8680 saved);
8681 return NULL;
8682 }
8683 }
8684
8685 op_string++;
8686 }
8687 else
8688 goto unknown_vec_op;
8689
8690 if (*op_string != '}')
8691 {
8692 as_bad (_("missing `}' in `%s'"), saved);
8693 return NULL;
8694 }
8695 op_string++;
0ba3a731
L
8696
8697 /* Strip whitespace since the addition of pseudo prefixes
8698 changed how the scrubber treats '{'. */
8699 if (is_space_char (*op_string))
8700 ++op_string;
8701
43234a1e
L
8702 continue;
8703 }
8704 unknown_vec_op:
8705 /* We don't know this one. */
8706 as_bad (_("unknown vector operation: `%s'"), saved);
8707 return NULL;
8708 }
8709
6d2cd6b2
JB
8710 if (i.mask && i.mask->zeroing && !i.mask->mask)
8711 {
8712 as_bad (_("zeroing-masking only allowed with write mask"));
8713 return NULL;
8714 }
8715
43234a1e
L
8716 return op_string;
8717}
8718
252b5132 8719static int
70e41ade 8720i386_immediate (char *imm_start)
252b5132
RH
8721{
8722 char *save_input_line_pointer;
f3c180ae 8723 char *gotfree_input_line;
252b5132 8724 segT exp_seg = 0;
47926f60 8725 expressionS *exp;
40fb9820
L
8726 i386_operand_type types;
8727
0dfbf9d7 8728 operand_type_set (&types, ~0);
252b5132
RH
8729
8730 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8731 {
31b2323c
L
8732 as_bad (_("at most %d immediate operands are allowed"),
8733 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8734 return 0;
8735 }
8736
8737 exp = &im_expressions[i.imm_operands++];
520dc8e8 8738 i.op[this_operand].imms = exp;
252b5132
RH
8739
8740 if (is_space_char (*imm_start))
8741 ++imm_start;
8742
8743 save_input_line_pointer = input_line_pointer;
8744 input_line_pointer = imm_start;
8745
d258b828 8746 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8747 if (gotfree_input_line)
8748 input_line_pointer = gotfree_input_line;
252b5132
RH
8749
8750 exp_seg = expression (exp);
8751
83183c0c 8752 SKIP_WHITESPACE ();
43234a1e
L
8753
8754 /* Handle vector operations. */
8755 if (*input_line_pointer == '{')
8756 {
8757 input_line_pointer = check_VecOperations (input_line_pointer,
8758 NULL);
8759 if (input_line_pointer == NULL)
8760 return 0;
8761 }
8762
252b5132 8763 if (*input_line_pointer)
f3c180ae 8764 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8765
8766 input_line_pointer = save_input_line_pointer;
f3c180ae 8767 if (gotfree_input_line)
ee86248c
JB
8768 {
8769 free (gotfree_input_line);
8770
8771 if (exp->X_op == O_constant || exp->X_op == O_register)
8772 exp->X_op = O_illegal;
8773 }
8774
8775 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8776}
252b5132 8777
ee86248c
JB
8778static int
8779i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8780 i386_operand_type types, const char *imm_start)
8781{
8782 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8783 {
313c53d1
L
8784 if (imm_start)
8785 as_bad (_("missing or invalid immediate expression `%s'"),
8786 imm_start);
3992d3b7 8787 return 0;
252b5132 8788 }
3e73aa7c 8789 else if (exp->X_op == O_constant)
252b5132 8790 {
47926f60 8791 /* Size it properly later. */
40fb9820 8792 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8793 /* If not 64bit, sign extend val. */
8794 if (flag_code != CODE_64BIT
4eed87de
AM
8795 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8796 exp->X_add_number
8797 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8798 }
4c63da97 8799#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8800 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8801 && exp_seg != absolute_section
47926f60 8802 && exp_seg != text_section
24eab124
AM
8803 && exp_seg != data_section
8804 && exp_seg != bss_section
8805 && exp_seg != undefined_section
f86103b7 8806 && !bfd_is_com_section (exp_seg))
252b5132 8807 {
d0b47220 8808 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8809 return 0;
8810 }
8811#endif
a841bdf5 8812 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8813 {
313c53d1
L
8814 if (imm_start)
8815 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8816 return 0;
8817 }
252b5132
RH
8818 else
8819 {
8820 /* This is an address. The size of the address will be
24eab124 8821 determined later, depending on destination register,
3e73aa7c 8822 suffix, or the default for the section. */
40fb9820
L
8823 i.types[this_operand].bitfield.imm8 = 1;
8824 i.types[this_operand].bitfield.imm16 = 1;
8825 i.types[this_operand].bitfield.imm32 = 1;
8826 i.types[this_operand].bitfield.imm32s = 1;
8827 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8828 i.types[this_operand] = operand_type_and (i.types[this_operand],
8829 types);
252b5132
RH
8830 }
8831
8832 return 1;
8833}
8834
551c1ca1 8835static char *
e3bb37b5 8836i386_scale (char *scale)
252b5132 8837{
551c1ca1
AM
8838 offsetT val;
8839 char *save = input_line_pointer;
252b5132 8840
551c1ca1
AM
8841 input_line_pointer = scale;
8842 val = get_absolute_expression ();
8843
8844 switch (val)
252b5132 8845 {
551c1ca1 8846 case 1:
252b5132
RH
8847 i.log2_scale_factor = 0;
8848 break;
551c1ca1 8849 case 2:
252b5132
RH
8850 i.log2_scale_factor = 1;
8851 break;
551c1ca1 8852 case 4:
252b5132
RH
8853 i.log2_scale_factor = 2;
8854 break;
551c1ca1 8855 case 8:
252b5132
RH
8856 i.log2_scale_factor = 3;
8857 break;
8858 default:
a724f0f4
JB
8859 {
8860 char sep = *input_line_pointer;
8861
8862 *input_line_pointer = '\0';
8863 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8864 scale);
8865 *input_line_pointer = sep;
8866 input_line_pointer = save;
8867 return NULL;
8868 }
252b5132 8869 }
29b0f896 8870 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8871 {
8872 as_warn (_("scale factor of %d without an index register"),
24eab124 8873 1 << i.log2_scale_factor);
252b5132 8874 i.log2_scale_factor = 0;
252b5132 8875 }
551c1ca1
AM
8876 scale = input_line_pointer;
8877 input_line_pointer = save;
8878 return scale;
252b5132
RH
8879}
8880
252b5132 8881static int
e3bb37b5 8882i386_displacement (char *disp_start, char *disp_end)
252b5132 8883{
29b0f896 8884 expressionS *exp;
252b5132
RH
8885 segT exp_seg = 0;
8886 char *save_input_line_pointer;
f3c180ae 8887 char *gotfree_input_line;
40fb9820
L
8888 int override;
8889 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8890 int ret;
252b5132 8891
31b2323c
L
8892 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8893 {
8894 as_bad (_("at most %d displacement operands are allowed"),
8895 MAX_MEMORY_OPERANDS);
8896 return 0;
8897 }
8898
0dfbf9d7 8899 operand_type_set (&bigdisp, 0);
40fb9820
L
8900 if ((i.types[this_operand].bitfield.jumpabsolute)
8901 || (!current_templates->start->opcode_modifier.jump
8902 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8903 {
40fb9820 8904 bigdisp.bitfield.disp32 = 1;
e05278af 8905 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8906 if (flag_code == CODE_64BIT)
8907 {
8908 if (!override)
8909 {
8910 bigdisp.bitfield.disp32s = 1;
8911 bigdisp.bitfield.disp64 = 1;
8912 }
8913 }
8914 else if ((flag_code == CODE_16BIT) ^ override)
8915 {
8916 bigdisp.bitfield.disp32 = 0;
8917 bigdisp.bitfield.disp16 = 1;
8918 }
e05278af
JB
8919 }
8920 else
8921 {
8922 /* For PC-relative branches, the width of the displacement
8923 is dependent upon data size, not address size. */
e05278af 8924 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8925 if (flag_code == CODE_64BIT)
8926 {
8927 if (override || i.suffix == WORD_MNEM_SUFFIX)
8928 bigdisp.bitfield.disp16 = 1;
8929 else
8930 {
8931 bigdisp.bitfield.disp32 = 1;
8932 bigdisp.bitfield.disp32s = 1;
8933 }
8934 }
8935 else
e05278af
JB
8936 {
8937 if (!override)
8938 override = (i.suffix == (flag_code != CODE_16BIT
8939 ? WORD_MNEM_SUFFIX
8940 : LONG_MNEM_SUFFIX));
40fb9820
L
8941 bigdisp.bitfield.disp32 = 1;
8942 if ((flag_code == CODE_16BIT) ^ override)
8943 {
8944 bigdisp.bitfield.disp32 = 0;
8945 bigdisp.bitfield.disp16 = 1;
8946 }
e05278af 8947 }
e05278af 8948 }
c6fb90c8
L
8949 i.types[this_operand] = operand_type_or (i.types[this_operand],
8950 bigdisp);
252b5132
RH
8951
8952 exp = &disp_expressions[i.disp_operands];
520dc8e8 8953 i.op[this_operand].disps = exp;
252b5132
RH
8954 i.disp_operands++;
8955 save_input_line_pointer = input_line_pointer;
8956 input_line_pointer = disp_start;
8957 END_STRING_AND_SAVE (disp_end);
8958
8959#ifndef GCC_ASM_O_HACK
8960#define GCC_ASM_O_HACK 0
8961#endif
8962#if GCC_ASM_O_HACK
8963 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8964 if (i.types[this_operand].bitfield.baseIndex
24eab124 8965 && displacement_string_end[-1] == '+')
252b5132
RH
8966 {
8967 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8968 constraint within gcc asm statements.
8969 For instance:
8970
8971 #define _set_tssldt_desc(n,addr,limit,type) \
8972 __asm__ __volatile__ ( \
8973 "movw %w2,%0\n\t" \
8974 "movw %w1,2+%0\n\t" \
8975 "rorl $16,%1\n\t" \
8976 "movb %b1,4+%0\n\t" \
8977 "movb %4,5+%0\n\t" \
8978 "movb $0,6+%0\n\t" \
8979 "movb %h1,7+%0\n\t" \
8980 "rorl $16,%1" \
8981 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8982
8983 This works great except that the output assembler ends
8984 up looking a bit weird if it turns out that there is
8985 no offset. You end up producing code that looks like:
8986
8987 #APP
8988 movw $235,(%eax)
8989 movw %dx,2+(%eax)
8990 rorl $16,%edx
8991 movb %dl,4+(%eax)
8992 movb $137,5+(%eax)
8993 movb $0,6+(%eax)
8994 movb %dh,7+(%eax)
8995 rorl $16,%edx
8996 #NO_APP
8997
47926f60 8998 So here we provide the missing zero. */
24eab124
AM
8999
9000 *displacement_string_end = '0';
252b5132
RH
9001 }
9002#endif
d258b828 9003 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9004 if (gotfree_input_line)
9005 input_line_pointer = gotfree_input_line;
252b5132 9006
24eab124 9007 exp_seg = expression (exp);
252b5132 9008
636c26b0
AM
9009 SKIP_WHITESPACE ();
9010 if (*input_line_pointer)
9011 as_bad (_("junk `%s' after expression"), input_line_pointer);
9012#if GCC_ASM_O_HACK
9013 RESTORE_END_STRING (disp_end + 1);
9014#endif
636c26b0 9015 input_line_pointer = save_input_line_pointer;
636c26b0 9016 if (gotfree_input_line)
ee86248c
JB
9017 {
9018 free (gotfree_input_line);
9019
9020 if (exp->X_op == O_constant || exp->X_op == O_register)
9021 exp->X_op = O_illegal;
9022 }
9023
9024 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9025
9026 RESTORE_END_STRING (disp_end);
9027
9028 return ret;
9029}
9030
9031static int
9032i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9033 i386_operand_type types, const char *disp_start)
9034{
9035 i386_operand_type bigdisp;
9036 int ret = 1;
636c26b0 9037
24eab124
AM
9038 /* We do this to make sure that the section symbol is in
9039 the symbol table. We will ultimately change the relocation
47926f60 9040 to be relative to the beginning of the section. */
1ae12ab7 9041 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9042 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9043 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9044 {
636c26b0 9045 if (exp->X_op != O_symbol)
3992d3b7 9046 goto inv_disp;
636c26b0 9047
e5cb08ac 9048 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9049 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9050 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9051 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9052 exp->X_op = O_subtract;
9053 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9054 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9055 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9056 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9057 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9058 else
29b0f896 9059 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9060 }
252b5132 9061
3992d3b7
AM
9062 else if (exp->X_op == O_absent
9063 || exp->X_op == O_illegal
ee86248c 9064 || exp->X_op == O_big)
2daf4fd8 9065 {
3992d3b7
AM
9066 inv_disp:
9067 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9068 disp_start);
3992d3b7 9069 ret = 0;
2daf4fd8
AM
9070 }
9071
0e1147d9
L
9072 else if (flag_code == CODE_64BIT
9073 && !i.prefix[ADDR_PREFIX]
9074 && exp->X_op == O_constant)
9075 {
9076 /* Since displacement is signed extended to 64bit, don't allow
9077 disp32 and turn off disp32s if they are out of range. */
9078 i.types[this_operand].bitfield.disp32 = 0;
9079 if (!fits_in_signed_long (exp->X_add_number))
9080 {
9081 i.types[this_operand].bitfield.disp32s = 0;
9082 if (i.types[this_operand].bitfield.baseindex)
9083 {
9084 as_bad (_("0x%lx out range of signed 32bit displacement"),
9085 (long) exp->X_add_number);
9086 ret = 0;
9087 }
9088 }
9089 }
9090
4c63da97 9091#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9092 else if (exp->X_op != O_constant
9093 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9094 && exp_seg != absolute_section
9095 && exp_seg != text_section
9096 && exp_seg != data_section
9097 && exp_seg != bss_section
9098 && exp_seg != undefined_section
9099 && !bfd_is_com_section (exp_seg))
24eab124 9100 {
d0b47220 9101 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9102 ret = 0;
24eab124 9103 }
252b5132 9104#endif
3956db08 9105
40fb9820
L
9106 /* Check if this is a displacement only operand. */
9107 bigdisp = i.types[this_operand];
9108 bigdisp.bitfield.disp8 = 0;
9109 bigdisp.bitfield.disp16 = 0;
9110 bigdisp.bitfield.disp32 = 0;
9111 bigdisp.bitfield.disp32s = 0;
9112 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9113 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9114 i.types[this_operand] = operand_type_and (i.types[this_operand],
9115 types);
3956db08 9116
3992d3b7 9117 return ret;
252b5132
RH
9118}
9119
2abc2bec
JB
9120/* Return the active addressing mode, taking address override and
9121 registers forming the address into consideration. Update the
9122 address override prefix if necessary. */
47926f60 9123
2abc2bec
JB
9124static enum flag_code
9125i386_addressing_mode (void)
252b5132 9126{
be05d201
L
9127 enum flag_code addr_mode;
9128
9129 if (i.prefix[ADDR_PREFIX])
9130 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9131 else
9132 {
9133 addr_mode = flag_code;
9134
24eab124 9135#if INFER_ADDR_PREFIX
be05d201
L
9136 if (i.mem_operands == 0)
9137 {
9138 /* Infer address prefix from the first memory operand. */
9139 const reg_entry *addr_reg = i.base_reg;
9140
9141 if (addr_reg == NULL)
9142 addr_reg = i.index_reg;
eecb386c 9143
be05d201
L
9144 if (addr_reg)
9145 {
9146 if (addr_reg->reg_num == RegEip
9147 || addr_reg->reg_num == RegEiz
dc821c5f 9148 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9149 addr_mode = CODE_32BIT;
9150 else if (flag_code != CODE_64BIT
dc821c5f 9151 && addr_reg->reg_type.bitfield.word)
be05d201
L
9152 addr_mode = CODE_16BIT;
9153
9154 if (addr_mode != flag_code)
9155 {
9156 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9157 i.prefixes += 1;
9158 /* Change the size of any displacement too. At most one
9159 of Disp16 or Disp32 is set.
9160 FIXME. There doesn't seem to be any real need for
9161 separate Disp16 and Disp32 flags. The same goes for
9162 Imm16 and Imm32. Removing them would probably clean
9163 up the code quite a lot. */
9164 if (flag_code != CODE_64BIT
9165 && (i.types[this_operand].bitfield.disp16
9166 || i.types[this_operand].bitfield.disp32))
9167 i.types[this_operand]
9168 = operand_type_xor (i.types[this_operand], disp16_32);
9169 }
9170 }
9171 }
24eab124 9172#endif
be05d201
L
9173 }
9174
2abc2bec
JB
9175 return addr_mode;
9176}
9177
9178/* Make sure the memory operand we've been dealt is valid.
9179 Return 1 on success, 0 on a failure. */
9180
9181static int
9182i386_index_check (const char *operand_string)
9183{
9184 const char *kind = "base/index";
9185 enum flag_code addr_mode = i386_addressing_mode ();
9186
fc0763e6
JB
9187 if (current_templates->start->opcode_modifier.isstring
9188 && !current_templates->start->opcode_modifier.immext
9189 && (current_templates->end[-1].opcode_modifier.isstring
9190 || i.mem_operands))
9191 {
9192 /* Memory operands of string insns are special in that they only allow
9193 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9194 const reg_entry *expected_reg;
9195 static const char *di_si[][2] =
9196 {
9197 { "esi", "edi" },
9198 { "si", "di" },
9199 { "rsi", "rdi" }
9200 };
9201 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9202
9203 kind = "string address";
9204
8325cc63 9205 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9206 {
9207 i386_operand_type type = current_templates->end[-1].operand_types[0];
9208
9209 if (!type.bitfield.baseindex
9210 || ((!i.mem_operands != !intel_syntax)
9211 && current_templates->end[-1].operand_types[1]
9212 .bitfield.baseindex))
9213 type = current_templates->end[-1].operand_types[1];
be05d201
L
9214 expected_reg = hash_find (reg_hash,
9215 di_si[addr_mode][type.bitfield.esseg]);
9216
fc0763e6
JB
9217 }
9218 else
be05d201 9219 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9220
be05d201
L
9221 if (i.base_reg != expected_reg
9222 || i.index_reg
fc0763e6 9223 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9224 {
be05d201
L
9225 /* The second memory operand must have the same size as
9226 the first one. */
9227 if (i.mem_operands
9228 && i.base_reg
9229 && !((addr_mode == CODE_64BIT
dc821c5f 9230 && i.base_reg->reg_type.bitfield.qword)
be05d201 9231 || (addr_mode == CODE_32BIT
dc821c5f
JB
9232 ? i.base_reg->reg_type.bitfield.dword
9233 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9234 goto bad_address;
9235
fc0763e6
JB
9236 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9237 operand_string,
9238 intel_syntax ? '[' : '(',
9239 register_prefix,
be05d201 9240 expected_reg->reg_name,
fc0763e6 9241 intel_syntax ? ']' : ')');
be05d201 9242 return 1;
fc0763e6 9243 }
be05d201
L
9244 else
9245 return 1;
9246
9247bad_address:
9248 as_bad (_("`%s' is not a valid %s expression"),
9249 operand_string, kind);
9250 return 0;
3e73aa7c
JH
9251 }
9252 else
9253 {
be05d201
L
9254 if (addr_mode != CODE_16BIT)
9255 {
9256 /* 32-bit/64-bit checks. */
9257 if ((i.base_reg
9258 && (addr_mode == CODE_64BIT
dc821c5f
JB
9259 ? !i.base_reg->reg_type.bitfield.qword
9260 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9261 && (i.index_reg
9262 || (i.base_reg->reg_num
9263 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9264 || (i.index_reg
1b54b8d7
JB
9265 && !i.index_reg->reg_type.bitfield.xmmword
9266 && !i.index_reg->reg_type.bitfield.ymmword
9267 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9268 && ((addr_mode == CODE_64BIT
dc821c5f 9269 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9270 || i.index_reg->reg_num == RegRiz)
dc821c5f 9271 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9272 || i.index_reg->reg_num == RegEiz))
9273 || !i.index_reg->reg_type.bitfield.baseindex)))
9274 goto bad_address;
8178be5b
JB
9275
9276 /* bndmk, bndldx, and bndstx have special restrictions. */
9277 if (current_templates->start->base_opcode == 0xf30f1b
9278 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9279 {
9280 /* They cannot use RIP-relative addressing. */
9281 if (i.base_reg && i.base_reg->reg_num == RegRip)
9282 {
9283 as_bad (_("`%s' cannot be used here"), operand_string);
9284 return 0;
9285 }
9286
9287 /* bndldx and bndstx ignore their scale factor. */
9288 if (current_templates->start->base_opcode != 0xf30f1b
9289 && i.log2_scale_factor)
9290 as_warn (_("register scaling is being ignored here"));
9291 }
be05d201
L
9292 }
9293 else
3e73aa7c 9294 {
be05d201 9295 /* 16-bit checks. */
3e73aa7c 9296 if ((i.base_reg
dc821c5f 9297 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9298 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9299 || (i.index_reg
dc821c5f 9300 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9301 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9302 || !(i.base_reg
9303 && i.base_reg->reg_num < 6
9304 && i.index_reg->reg_num >= 6
9305 && i.log2_scale_factor == 0))))
be05d201 9306 goto bad_address;
3e73aa7c
JH
9307 }
9308 }
be05d201 9309 return 1;
24eab124 9310}
252b5132 9311
43234a1e
L
9312/* Handle vector immediates. */
9313
9314static int
9315RC_SAE_immediate (const char *imm_start)
9316{
9317 unsigned int match_found, j;
9318 const char *pstr = imm_start;
9319 expressionS *exp;
9320
9321 if (*pstr != '{')
9322 return 0;
9323
9324 pstr++;
9325 match_found = 0;
9326 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9327 {
9328 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9329 {
9330 if (!i.rounding)
9331 {
9332 rc_op.type = RC_NamesTable[j].type;
9333 rc_op.operand = this_operand;
9334 i.rounding = &rc_op;
9335 }
9336 else
9337 {
9338 as_bad (_("duplicated `%s'"), imm_start);
9339 return 0;
9340 }
9341 pstr += RC_NamesTable[j].len;
9342 match_found = 1;
9343 break;
9344 }
9345 }
9346 if (!match_found)
9347 return 0;
9348
9349 if (*pstr++ != '}')
9350 {
9351 as_bad (_("Missing '}': '%s'"), imm_start);
9352 return 0;
9353 }
9354 /* RC/SAE immediate string should contain nothing more. */;
9355 if (*pstr != 0)
9356 {
9357 as_bad (_("Junk after '}': '%s'"), imm_start);
9358 return 0;
9359 }
9360
9361 exp = &im_expressions[i.imm_operands++];
9362 i.op[this_operand].imms = exp;
9363
9364 exp->X_op = O_constant;
9365 exp->X_add_number = 0;
9366 exp->X_add_symbol = (symbolS *) 0;
9367 exp->X_op_symbol = (symbolS *) 0;
9368
9369 i.types[this_operand].bitfield.imm8 = 1;
9370 return 1;
9371}
9372
8325cc63
JB
9373/* Only string instructions can have a second memory operand, so
9374 reduce current_templates to just those if it contains any. */
9375static int
9376maybe_adjust_templates (void)
9377{
9378 const insn_template *t;
9379
9380 gas_assert (i.mem_operands == 1);
9381
9382 for (t = current_templates->start; t < current_templates->end; ++t)
9383 if (t->opcode_modifier.isstring)
9384 break;
9385
9386 if (t < current_templates->end)
9387 {
9388 static templates aux_templates;
9389 bfd_boolean recheck;
9390
9391 aux_templates.start = t;
9392 for (; t < current_templates->end; ++t)
9393 if (!t->opcode_modifier.isstring)
9394 break;
9395 aux_templates.end = t;
9396
9397 /* Determine whether to re-check the first memory operand. */
9398 recheck = (aux_templates.start != current_templates->start
9399 || t != current_templates->end);
9400
9401 current_templates = &aux_templates;
9402
9403 if (recheck)
9404 {
9405 i.mem_operands = 0;
9406 if (i.memop1_string != NULL
9407 && i386_index_check (i.memop1_string) == 0)
9408 return 0;
9409 i.mem_operands = 1;
9410 }
9411 }
9412
9413 return 1;
9414}
9415
fc0763e6 9416/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9417 on error. */
252b5132 9418
252b5132 9419static int
a7619375 9420i386_att_operand (char *operand_string)
252b5132 9421{
af6bdddf
AM
9422 const reg_entry *r;
9423 char *end_op;
24eab124 9424 char *op_string = operand_string;
252b5132 9425
24eab124 9426 if (is_space_char (*op_string))
252b5132
RH
9427 ++op_string;
9428
24eab124 9429 /* We check for an absolute prefix (differentiating,
47926f60 9430 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9431 if (*op_string == ABSOLUTE_PREFIX)
9432 {
9433 ++op_string;
9434 if (is_space_char (*op_string))
9435 ++op_string;
40fb9820 9436 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9437 }
252b5132 9438
47926f60 9439 /* Check if operand is a register. */
4d1bb795 9440 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9441 {
40fb9820
L
9442 i386_operand_type temp;
9443
24eab124
AM
9444 /* Check for a segment override by searching for ':' after a
9445 segment register. */
9446 op_string = end_op;
9447 if (is_space_char (*op_string))
9448 ++op_string;
40fb9820
L
9449 if (*op_string == ':'
9450 && (r->reg_type.bitfield.sreg2
9451 || r->reg_type.bitfield.sreg3))
24eab124
AM
9452 {
9453 switch (r->reg_num)
9454 {
9455 case 0:
9456 i.seg[i.mem_operands] = &es;
9457 break;
9458 case 1:
9459 i.seg[i.mem_operands] = &cs;
9460 break;
9461 case 2:
9462 i.seg[i.mem_operands] = &ss;
9463 break;
9464 case 3:
9465 i.seg[i.mem_operands] = &ds;
9466 break;
9467 case 4:
9468 i.seg[i.mem_operands] = &fs;
9469 break;
9470 case 5:
9471 i.seg[i.mem_operands] = &gs;
9472 break;
9473 }
252b5132 9474
24eab124 9475 /* Skip the ':' and whitespace. */
252b5132
RH
9476 ++op_string;
9477 if (is_space_char (*op_string))
24eab124 9478 ++op_string;
252b5132 9479
24eab124
AM
9480 if (!is_digit_char (*op_string)
9481 && !is_identifier_char (*op_string)
9482 && *op_string != '('
9483 && *op_string != ABSOLUTE_PREFIX)
9484 {
9485 as_bad (_("bad memory operand `%s'"), op_string);
9486 return 0;
9487 }
47926f60 9488 /* Handle case of %es:*foo. */
24eab124
AM
9489 if (*op_string == ABSOLUTE_PREFIX)
9490 {
9491 ++op_string;
9492 if (is_space_char (*op_string))
9493 ++op_string;
40fb9820 9494 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9495 }
9496 goto do_memory_reference;
9497 }
43234a1e
L
9498
9499 /* Handle vector operations. */
9500 if (*op_string == '{')
9501 {
9502 op_string = check_VecOperations (op_string, NULL);
9503 if (op_string == NULL)
9504 return 0;
9505 }
9506
24eab124
AM
9507 if (*op_string)
9508 {
d0b47220 9509 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9510 return 0;
9511 }
40fb9820
L
9512 temp = r->reg_type;
9513 temp.bitfield.baseindex = 0;
c6fb90c8
L
9514 i.types[this_operand] = operand_type_or (i.types[this_operand],
9515 temp);
7d5e4556 9516 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9517 i.op[this_operand].regs = r;
24eab124
AM
9518 i.reg_operands++;
9519 }
af6bdddf
AM
9520 else if (*op_string == REGISTER_PREFIX)
9521 {
9522 as_bad (_("bad register name `%s'"), op_string);
9523 return 0;
9524 }
24eab124 9525 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9526 {
24eab124 9527 ++op_string;
40fb9820 9528 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9529 {
d0b47220 9530 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9531 return 0;
9532 }
9533 if (!i386_immediate (op_string))
9534 return 0;
9535 }
43234a1e
L
9536 else if (RC_SAE_immediate (operand_string))
9537 {
9538 /* If it is a RC or SAE immediate, do nothing. */
9539 ;
9540 }
24eab124
AM
9541 else if (is_digit_char (*op_string)
9542 || is_identifier_char (*op_string)
d02603dc 9543 || *op_string == '"'
e5cb08ac 9544 || *op_string == '(')
24eab124 9545 {
47926f60 9546 /* This is a memory reference of some sort. */
af6bdddf 9547 char *base_string;
252b5132 9548
47926f60 9549 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9550 char *displacement_string_start;
9551 char *displacement_string_end;
43234a1e 9552 char *vop_start;
252b5132 9553
24eab124 9554 do_memory_reference:
8325cc63
JB
9555 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9556 return 0;
24eab124 9557 if ((i.mem_operands == 1
40fb9820 9558 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9559 || i.mem_operands == 2)
9560 {
9561 as_bad (_("too many memory references for `%s'"),
9562 current_templates->start->name);
9563 return 0;
9564 }
252b5132 9565
24eab124
AM
9566 /* Check for base index form. We detect the base index form by
9567 looking for an ')' at the end of the operand, searching
9568 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9569 after the '('. */
af6bdddf 9570 base_string = op_string + strlen (op_string);
c3332e24 9571
43234a1e
L
9572 /* Handle vector operations. */
9573 vop_start = strchr (op_string, '{');
9574 if (vop_start && vop_start < base_string)
9575 {
9576 if (check_VecOperations (vop_start, base_string) == NULL)
9577 return 0;
9578 base_string = vop_start;
9579 }
9580
af6bdddf
AM
9581 --base_string;
9582 if (is_space_char (*base_string))
9583 --base_string;
252b5132 9584
47926f60 9585 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9586 displacement_string_start = op_string;
9587 displacement_string_end = base_string + 1;
252b5132 9588
24eab124
AM
9589 if (*base_string == ')')
9590 {
af6bdddf 9591 char *temp_string;
24eab124
AM
9592 unsigned int parens_balanced = 1;
9593 /* We've already checked that the number of left & right ()'s are
47926f60 9594 equal, so this loop will not be infinite. */
24eab124
AM
9595 do
9596 {
9597 base_string--;
9598 if (*base_string == ')')
9599 parens_balanced++;
9600 if (*base_string == '(')
9601 parens_balanced--;
9602 }
9603 while (parens_balanced);
c3332e24 9604
af6bdddf 9605 temp_string = base_string;
c3332e24 9606
24eab124 9607 /* Skip past '(' and whitespace. */
252b5132
RH
9608 ++base_string;
9609 if (is_space_char (*base_string))
24eab124 9610 ++base_string;
252b5132 9611
af6bdddf 9612 if (*base_string == ','
4eed87de
AM
9613 || ((i.base_reg = parse_register (base_string, &end_op))
9614 != NULL))
252b5132 9615 {
af6bdddf 9616 displacement_string_end = temp_string;
252b5132 9617
40fb9820 9618 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9619
af6bdddf 9620 if (i.base_reg)
24eab124 9621 {
24eab124
AM
9622 base_string = end_op;
9623 if (is_space_char (*base_string))
9624 ++base_string;
af6bdddf
AM
9625 }
9626
9627 /* There may be an index reg or scale factor here. */
9628 if (*base_string == ',')
9629 {
9630 ++base_string;
9631 if (is_space_char (*base_string))
9632 ++base_string;
9633
4eed87de
AM
9634 if ((i.index_reg = parse_register (base_string, &end_op))
9635 != NULL)
24eab124 9636 {
af6bdddf 9637 base_string = end_op;
24eab124
AM
9638 if (is_space_char (*base_string))
9639 ++base_string;
af6bdddf
AM
9640 if (*base_string == ',')
9641 {
9642 ++base_string;
9643 if (is_space_char (*base_string))
9644 ++base_string;
9645 }
e5cb08ac 9646 else if (*base_string != ')')
af6bdddf 9647 {
4eed87de
AM
9648 as_bad (_("expecting `,' or `)' "
9649 "after index register in `%s'"),
af6bdddf
AM
9650 operand_string);
9651 return 0;
9652 }
24eab124 9653 }
af6bdddf 9654 else if (*base_string == REGISTER_PREFIX)
24eab124 9655 {
f76bf5e0
L
9656 end_op = strchr (base_string, ',');
9657 if (end_op)
9658 *end_op = '\0';
af6bdddf 9659 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9660 return 0;
9661 }
252b5132 9662
47926f60 9663 /* Check for scale factor. */
551c1ca1 9664 if (*base_string != ')')
af6bdddf 9665 {
551c1ca1
AM
9666 char *end_scale = i386_scale (base_string);
9667
9668 if (!end_scale)
af6bdddf 9669 return 0;
24eab124 9670
551c1ca1 9671 base_string = end_scale;
af6bdddf
AM
9672 if (is_space_char (*base_string))
9673 ++base_string;
9674 if (*base_string != ')')
9675 {
4eed87de
AM
9676 as_bad (_("expecting `)' "
9677 "after scale factor in `%s'"),
af6bdddf
AM
9678 operand_string);
9679 return 0;
9680 }
9681 }
9682 else if (!i.index_reg)
24eab124 9683 {
4eed87de
AM
9684 as_bad (_("expecting index register or scale factor "
9685 "after `,'; got '%c'"),
af6bdddf 9686 *base_string);
24eab124
AM
9687 return 0;
9688 }
9689 }
af6bdddf 9690 else if (*base_string != ')')
24eab124 9691 {
4eed87de
AM
9692 as_bad (_("expecting `,' or `)' "
9693 "after base register in `%s'"),
af6bdddf 9694 operand_string);
24eab124
AM
9695 return 0;
9696 }
c3332e24 9697 }
af6bdddf 9698 else if (*base_string == REGISTER_PREFIX)
c3332e24 9699 {
f76bf5e0
L
9700 end_op = strchr (base_string, ',');
9701 if (end_op)
9702 *end_op = '\0';
af6bdddf 9703 as_bad (_("bad register name `%s'"), base_string);
24eab124 9704 return 0;
c3332e24 9705 }
24eab124
AM
9706 }
9707
9708 /* If there's an expression beginning the operand, parse it,
9709 assuming displacement_string_start and
9710 displacement_string_end are meaningful. */
9711 if (displacement_string_start != displacement_string_end)
9712 {
9713 if (!i386_displacement (displacement_string_start,
9714 displacement_string_end))
9715 return 0;
9716 }
9717
9718 /* Special case for (%dx) while doing input/output op. */
9719 if (i.base_reg
2fb5be8d 9720 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
9721 && i.index_reg == 0
9722 && i.log2_scale_factor == 0
9723 && i.seg[i.mem_operands] == 0
40fb9820 9724 && !operand_type_check (i.types[this_operand], disp))
24eab124 9725 {
2fb5be8d 9726 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
9727 return 1;
9728 }
9729
eecb386c
AM
9730 if (i386_index_check (operand_string) == 0)
9731 return 0;
5c07affc 9732 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9733 if (i.mem_operands == 0)
9734 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9735 i.mem_operands++;
9736 }
9737 else
ce8a8b2f
AM
9738 {
9739 /* It's not a memory operand; argh! */
24eab124
AM
9740 as_bad (_("invalid char %s beginning operand %d `%s'"),
9741 output_invalid (*op_string),
9742 this_operand + 1,
9743 op_string);
9744 return 0;
9745 }
47926f60 9746 return 1; /* Normal return. */
252b5132
RH
9747}
9748\f
fa94de6b
RM
9749/* Calculate the maximum variable size (i.e., excluding fr_fix)
9750 that an rs_machine_dependent frag may reach. */
9751
9752unsigned int
9753i386_frag_max_var (fragS *frag)
9754{
9755 /* The only relaxable frags are for jumps.
9756 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9757 gas_assert (frag->fr_type == rs_machine_dependent);
9758 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9759}
9760
b084df0b
L
9761#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9762static int
8dcea932 9763elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9764{
9765 /* STT_GNU_IFUNC symbol must go through PLT. */
9766 if ((symbol_get_bfdsym (fr_symbol)->flags
9767 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9768 return 0;
9769
9770 if (!S_IS_EXTERNAL (fr_symbol))
9771 /* Symbol may be weak or local. */
9772 return !S_IS_WEAK (fr_symbol);
9773
8dcea932
L
9774 /* Global symbols with non-default visibility can't be preempted. */
9775 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9776 return 1;
9777
9778 if (fr_var != NO_RELOC)
9779 switch ((enum bfd_reloc_code_real) fr_var)
9780 {
9781 case BFD_RELOC_386_PLT32:
9782 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9783 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9784 return 0;
9785 default:
9786 abort ();
9787 }
9788
b084df0b
L
9789 /* Global symbols with default visibility in a shared library may be
9790 preempted by another definition. */
8dcea932 9791 return !shared;
b084df0b
L
9792}
9793#endif
9794
ee7fcc42
AM
9795/* md_estimate_size_before_relax()
9796
9797 Called just before relax() for rs_machine_dependent frags. The x86
9798 assembler uses these frags to handle variable size jump
9799 instructions.
9800
9801 Any symbol that is now undefined will not become defined.
9802 Return the correct fr_subtype in the frag.
9803 Return the initial "guess for variable size of frag" to caller.
9804 The guess is actually the growth beyond the fixed part. Whatever
9805 we do to grow the fixed or variable part contributes to our
9806 returned value. */
9807
252b5132 9808int
7016a5d5 9809md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9810{
252b5132 9811 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9812 check for un-relaxable symbols. On an ELF system, we can't relax
9813 an externally visible symbol, because it may be overridden by a
9814 shared library. */
9815 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9816#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9817 || (IS_ELF
8dcea932
L
9818 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9819 fragP->fr_var))
fbeb56a4
DK
9820#endif
9821#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9822 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9823 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9824#endif
9825 )
252b5132 9826 {
b98ef147
AM
9827 /* Symbol is undefined in this segment, or we need to keep a
9828 reloc so that weak symbols can be overridden. */
9829 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9830 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9831 unsigned char *opcode;
9832 int old_fr_fix;
f6af82bd 9833
ee7fcc42 9834 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9835 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9836 else if (size == 2)
f6af82bd 9837 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9838#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9839 else if (need_plt32_p (fragP->fr_symbol))
9840 reloc_type = BFD_RELOC_X86_64_PLT32;
9841#endif
f6af82bd
AM
9842 else
9843 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9844
ee7fcc42
AM
9845 old_fr_fix = fragP->fr_fix;
9846 opcode = (unsigned char *) fragP->fr_opcode;
9847
fddf5b5b 9848 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9849 {
fddf5b5b
AM
9850 case UNCOND_JUMP:
9851 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9852 opcode[0] = 0xe9;
252b5132 9853 fragP->fr_fix += size;
062cd5e7
AS
9854 fix_new (fragP, old_fr_fix, size,
9855 fragP->fr_symbol,
9856 fragP->fr_offset, 1,
9857 reloc_type);
252b5132
RH
9858 break;
9859
fddf5b5b 9860 case COND_JUMP86:
412167cb
AM
9861 if (size == 2
9862 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9863 {
9864 /* Negate the condition, and branch past an
9865 unconditional jump. */
9866 opcode[0] ^= 1;
9867 opcode[1] = 3;
9868 /* Insert an unconditional jump. */
9869 opcode[2] = 0xe9;
9870 /* We added two extra opcode bytes, and have a two byte
9871 offset. */
9872 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9873 fix_new (fragP, old_fr_fix + 2, 2,
9874 fragP->fr_symbol,
9875 fragP->fr_offset, 1,
9876 reloc_type);
fddf5b5b
AM
9877 break;
9878 }
9879 /* Fall through. */
9880
9881 case COND_JUMP:
412167cb
AM
9882 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9883 {
3e02c1cc
AM
9884 fixS *fixP;
9885
412167cb 9886 fragP->fr_fix += 1;
3e02c1cc
AM
9887 fixP = fix_new (fragP, old_fr_fix, 1,
9888 fragP->fr_symbol,
9889 fragP->fr_offset, 1,
9890 BFD_RELOC_8_PCREL);
9891 fixP->fx_signed = 1;
412167cb
AM
9892 break;
9893 }
93c2a809 9894
24eab124 9895 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9896 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9897 opcode[1] = opcode[0] + 0x10;
f6af82bd 9898 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9899 /* We've added an opcode byte. */
9900 fragP->fr_fix += 1 + size;
062cd5e7
AS
9901 fix_new (fragP, old_fr_fix + 1, size,
9902 fragP->fr_symbol,
9903 fragP->fr_offset, 1,
9904 reloc_type);
252b5132 9905 break;
fddf5b5b
AM
9906
9907 default:
9908 BAD_CASE (fragP->fr_subtype);
9909 break;
252b5132
RH
9910 }
9911 frag_wane (fragP);
ee7fcc42 9912 return fragP->fr_fix - old_fr_fix;
252b5132 9913 }
93c2a809 9914
93c2a809
AM
9915 /* Guess size depending on current relax state. Initially the relax
9916 state will correspond to a short jump and we return 1, because
9917 the variable part of the frag (the branch offset) is one byte
9918 long. However, we can relax a section more than once and in that
9919 case we must either set fr_subtype back to the unrelaxed state,
9920 or return the value for the appropriate branch. */
9921 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9922}
9923
47926f60
KH
9924/* Called after relax() is finished.
9925
9926 In: Address of frag.
9927 fr_type == rs_machine_dependent.
9928 fr_subtype is what the address relaxed to.
9929
9930 Out: Any fixSs and constants are set up.
9931 Caller will turn frag into a ".space 0". */
9932
252b5132 9933void
7016a5d5
TG
9934md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9935 fragS *fragP)
252b5132 9936{
29b0f896 9937 unsigned char *opcode;
252b5132 9938 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9939 offsetT target_address;
9940 offsetT opcode_address;
252b5132 9941 unsigned int extension = 0;
847f7ad4 9942 offsetT displacement_from_opcode_start;
252b5132
RH
9943
9944 opcode = (unsigned char *) fragP->fr_opcode;
9945
47926f60 9946 /* Address we want to reach in file space. */
252b5132 9947 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9948
47926f60 9949 /* Address opcode resides at in file space. */
252b5132
RH
9950 opcode_address = fragP->fr_address + fragP->fr_fix;
9951
47926f60 9952 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9953 displacement_from_opcode_start = target_address - opcode_address;
9954
fddf5b5b 9955 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9956 {
47926f60
KH
9957 /* Don't have to change opcode. */
9958 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9959 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9960 }
9961 else
9962 {
9963 if (no_cond_jump_promotion
9964 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9965 as_warn_where (fragP->fr_file, fragP->fr_line,
9966 _("long jump required"));
252b5132 9967
fddf5b5b
AM
9968 switch (fragP->fr_subtype)
9969 {
9970 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9971 extension = 4; /* 1 opcode + 4 displacement */
9972 opcode[0] = 0xe9;
9973 where_to_put_displacement = &opcode[1];
9974 break;
252b5132 9975
fddf5b5b
AM
9976 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9977 extension = 2; /* 1 opcode + 2 displacement */
9978 opcode[0] = 0xe9;
9979 where_to_put_displacement = &opcode[1];
9980 break;
252b5132 9981
fddf5b5b
AM
9982 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9983 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9984 extension = 5; /* 2 opcode + 4 displacement */
9985 opcode[1] = opcode[0] + 0x10;
9986 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9987 where_to_put_displacement = &opcode[2];
9988 break;
252b5132 9989
fddf5b5b
AM
9990 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9991 extension = 3; /* 2 opcode + 2 displacement */
9992 opcode[1] = opcode[0] + 0x10;
9993 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9994 where_to_put_displacement = &opcode[2];
9995 break;
252b5132 9996
fddf5b5b
AM
9997 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9998 extension = 4;
9999 opcode[0] ^= 1;
10000 opcode[1] = 3;
10001 opcode[2] = 0xe9;
10002 where_to_put_displacement = &opcode[3];
10003 break;
10004
10005 default:
10006 BAD_CASE (fragP->fr_subtype);
10007 break;
10008 }
252b5132 10009 }
fddf5b5b 10010
7b81dfbb
AJ
10011 /* If size if less then four we are sure that the operand fits,
10012 but if it's 4, then it could be that the displacement is larger
10013 then -/+ 2GB. */
10014 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10015 && object_64bit
10016 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10017 + ((addressT) 1 << 31))
10018 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10019 {
10020 as_bad_where (fragP->fr_file, fragP->fr_line,
10021 _("jump target out of range"));
10022 /* Make us emit 0. */
10023 displacement_from_opcode_start = extension;
10024 }
47926f60 10025 /* Now put displacement after opcode. */
252b5132
RH
10026 md_number_to_chars ((char *) where_to_put_displacement,
10027 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10028 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10029 fragP->fr_fix += extension;
10030}
10031\f
7016a5d5 10032/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10033 by our caller that we have all the info we need to fix it up.
10034
7016a5d5
TG
10035 Parameter valP is the pointer to the value of the bits.
10036
252b5132
RH
10037 On the 386, immediates, displacements, and data pointers are all in
10038 the same (little-endian) format, so we don't need to care about which
10039 we are handling. */
10040
94f592af 10041void
7016a5d5 10042md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10043{
94f592af 10044 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10045 valueT value = *valP;
252b5132 10046
f86103b7 10047#if !defined (TE_Mach)
93382f6d
AM
10048 if (fixP->fx_pcrel)
10049 {
10050 switch (fixP->fx_r_type)
10051 {
5865bb77
ILT
10052 default:
10053 break;
10054
d6ab8113
JB
10055 case BFD_RELOC_64:
10056 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10057 break;
93382f6d 10058 case BFD_RELOC_32:
ae8887b5 10059 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10060 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10061 break;
10062 case BFD_RELOC_16:
10063 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10064 break;
10065 case BFD_RELOC_8:
10066 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10067 break;
10068 }
10069 }
252b5132 10070
a161fe53 10071 if (fixP->fx_addsy != NULL
31312f95 10072 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10073 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10074 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10075 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10076 && !use_rela_relocations)
252b5132 10077 {
31312f95
AM
10078 /* This is a hack. There should be a better way to handle this.
10079 This covers for the fact that bfd_install_relocation will
10080 subtract the current location (for partial_inplace, PC relative
10081 relocations); see more below. */
252b5132 10082#ifndef OBJ_AOUT
718ddfc0 10083 if (IS_ELF
252b5132
RH
10084#ifdef TE_PE
10085 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10086#endif
10087 )
10088 value += fixP->fx_where + fixP->fx_frag->fr_address;
10089#endif
10090#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10091 if (IS_ELF)
252b5132 10092 {
6539b54b 10093 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10094
6539b54b 10095 if ((sym_seg == seg
2f66722d 10096 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10097 && sym_seg != absolute_section))
af65af87 10098 && !generic_force_reloc (fixP))
2f66722d
AM
10099 {
10100 /* Yes, we add the values in twice. This is because
6539b54b
AM
10101 bfd_install_relocation subtracts them out again. I think
10102 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10103 it. FIXME. */
10104 value += fixP->fx_where + fixP->fx_frag->fr_address;
10105 }
252b5132
RH
10106 }
10107#endif
10108#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10109 /* For some reason, the PE format does not store a
10110 section address offset for a PC relative symbol. */
10111 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10112 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10113 value += md_pcrel_from (fixP);
10114#endif
10115 }
fbeb56a4 10116#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10117 if (fixP->fx_addsy != NULL
10118 && S_IS_WEAK (fixP->fx_addsy)
10119 /* PR 16858: Do not modify weak function references. */
10120 && ! fixP->fx_pcrel)
fbeb56a4 10121 {
296a8689
NC
10122#if !defined (TE_PEP)
10123 /* For x86 PE weak function symbols are neither PC-relative
10124 nor do they set S_IS_FUNCTION. So the only reliable way
10125 to detect them is to check the flags of their containing
10126 section. */
10127 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10128 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10129 ;
10130 else
10131#endif
fbeb56a4
DK
10132 value -= S_GET_VALUE (fixP->fx_addsy);
10133 }
10134#endif
252b5132
RH
10135
10136 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10137 and we must not disappoint it. */
252b5132 10138#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10139 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10140 switch (fixP->fx_r_type)
10141 {
10142 case BFD_RELOC_386_PLT32:
3e73aa7c 10143 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10144 /* Make the jump instruction point to the address of the operand. At
10145 runtime we merely add the offset to the actual PLT entry. */
10146 value = -4;
10147 break;
31312f95 10148
13ae64f3
JJ
10149 case BFD_RELOC_386_TLS_GD:
10150 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10151 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10152 case BFD_RELOC_386_TLS_IE:
10153 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10154 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10155 case BFD_RELOC_X86_64_TLSGD:
10156 case BFD_RELOC_X86_64_TLSLD:
10157 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10158 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10159 value = 0; /* Fully resolved at runtime. No addend. */
10160 /* Fallthrough */
10161 case BFD_RELOC_386_TLS_LE:
10162 case BFD_RELOC_386_TLS_LDO_32:
10163 case BFD_RELOC_386_TLS_LE_32:
10164 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10165 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10166 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10167 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10168 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10169 break;
10170
67a4f2b7
AO
10171 case BFD_RELOC_386_TLS_DESC_CALL:
10172 case BFD_RELOC_X86_64_TLSDESC_CALL:
10173 value = 0; /* Fully resolved at runtime. No addend. */
10174 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10175 fixP->fx_done = 0;
10176 return;
10177
47926f60
KH
10178 case BFD_RELOC_VTABLE_INHERIT:
10179 case BFD_RELOC_VTABLE_ENTRY:
10180 fixP->fx_done = 0;
94f592af 10181 return;
47926f60
KH
10182
10183 default:
10184 break;
10185 }
10186#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10187 *valP = value;
f86103b7 10188#endif /* !defined (TE_Mach) */
3e73aa7c 10189
3e73aa7c 10190 /* Are we finished with this relocation now? */
c6682705 10191 if (fixP->fx_addsy == NULL)
3e73aa7c 10192 fixP->fx_done = 1;
fbeb56a4
DK
10193#if defined (OBJ_COFF) && defined (TE_PE)
10194 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10195 {
10196 fixP->fx_done = 0;
10197 /* Remember value for tc_gen_reloc. */
10198 fixP->fx_addnumber = value;
10199 /* Clear out the frag for now. */
10200 value = 0;
10201 }
10202#endif
3e73aa7c
JH
10203 else if (use_rela_relocations)
10204 {
10205 fixP->fx_no_overflow = 1;
062cd5e7
AS
10206 /* Remember value for tc_gen_reloc. */
10207 fixP->fx_addnumber = value;
3e73aa7c
JH
10208 value = 0;
10209 }
f86103b7 10210
94f592af 10211 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10212}
252b5132 10213\f
6d4af3c2 10214const char *
499ac353 10215md_atof (int type, char *litP, int *sizeP)
252b5132 10216{
499ac353
NC
10217 /* This outputs the LITTLENUMs in REVERSE order;
10218 in accord with the bigendian 386. */
10219 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10220}
10221\f
2d545b82 10222static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10223
252b5132 10224static char *
e3bb37b5 10225output_invalid (int c)
252b5132 10226{
3882b010 10227 if (ISPRINT (c))
f9f21a03
L
10228 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10229 "'%c'", c);
252b5132 10230 else
f9f21a03 10231 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10232 "(0x%x)", (unsigned char) c);
252b5132
RH
10233 return output_invalid_buf;
10234}
10235
af6bdddf 10236/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10237
10238static const reg_entry *
4d1bb795 10239parse_real_register (char *reg_string, char **end_op)
252b5132 10240{
af6bdddf
AM
10241 char *s = reg_string;
10242 char *p;
252b5132
RH
10243 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10244 const reg_entry *r;
10245
10246 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10247 if (*s == REGISTER_PREFIX)
10248 ++s;
10249
10250 if (is_space_char (*s))
10251 ++s;
10252
10253 p = reg_name_given;
af6bdddf 10254 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10255 {
10256 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10257 return (const reg_entry *) NULL;
10258 s++;
252b5132
RH
10259 }
10260
6588847e
DN
10261 /* For naked regs, make sure that we are not dealing with an identifier.
10262 This prevents confusing an identifier like `eax_var' with register
10263 `eax'. */
10264 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10265 return (const reg_entry *) NULL;
10266
af6bdddf 10267 *end_op = s;
252b5132
RH
10268
10269 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10270
5f47d35b 10271 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10272 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10273 {
0e0eea78
JB
10274 if (!cpu_arch_flags.bitfield.cpu8087
10275 && !cpu_arch_flags.bitfield.cpu287
10276 && !cpu_arch_flags.bitfield.cpu387)
10277 return (const reg_entry *) NULL;
10278
5f47d35b
AM
10279 if (is_space_char (*s))
10280 ++s;
10281 if (*s == '(')
10282 {
af6bdddf 10283 ++s;
5f47d35b
AM
10284 if (is_space_char (*s))
10285 ++s;
10286 if (*s >= '0' && *s <= '7')
10287 {
db557034 10288 int fpr = *s - '0';
af6bdddf 10289 ++s;
5f47d35b
AM
10290 if (is_space_char (*s))
10291 ++s;
10292 if (*s == ')')
10293 {
10294 *end_op = s + 1;
1e9cc1c2 10295 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10296 know (r);
10297 return r + fpr;
5f47d35b 10298 }
5f47d35b 10299 }
47926f60 10300 /* We have "%st(" then garbage. */
5f47d35b
AM
10301 return (const reg_entry *) NULL;
10302 }
10303 }
10304
a60de03c
JB
10305 if (r == NULL || allow_pseudo_reg)
10306 return r;
10307
0dfbf9d7 10308 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10309 return (const reg_entry *) NULL;
10310
dc821c5f 10311 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10312 || r->reg_type.bitfield.sreg3
10313 || r->reg_type.bitfield.control
10314 || r->reg_type.bitfield.debug
10315 || r->reg_type.bitfield.test)
10316 && !cpu_arch_flags.bitfield.cpui386)
10317 return (const reg_entry *) NULL;
10318
6e041cf4 10319 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10320 return (const reg_entry *) NULL;
10321
6e041cf4
JB
10322 if (!cpu_arch_flags.bitfield.cpuavx512f)
10323 {
10324 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10325 return (const reg_entry *) NULL;
40f12533 10326
6e041cf4
JB
10327 if (!cpu_arch_flags.bitfield.cpuavx)
10328 {
10329 if (r->reg_type.bitfield.ymmword)
10330 return (const reg_entry *) NULL;
1848e567 10331
6e041cf4
JB
10332 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10333 return (const reg_entry *) NULL;
10334 }
10335 }
43234a1e 10336
1adf7f56
JB
10337 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10338 return (const reg_entry *) NULL;
10339
db51cc60 10340 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10341 if (!allow_index_reg
db51cc60
L
10342 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10343 return (const reg_entry *) NULL;
10344
1d3f8286
JB
10345 /* Upper 16 vector registers are only available with VREX in 64bit
10346 mode, and require EVEX encoding. */
10347 if (r->reg_flags & RegVRex)
43234a1e
L
10348 {
10349 if (!cpu_arch_flags.bitfield.cpuvrex
10350 || flag_code != CODE_64BIT)
10351 return (const reg_entry *) NULL;
1d3f8286
JB
10352
10353 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10354 }
10355
4787f4a5
JB
10356 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10357 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10358 && flag_code != CODE_64BIT)
20f0a1fc 10359 return (const reg_entry *) NULL;
1ae00879 10360
b7240065
JB
10361 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10362 return (const reg_entry *) NULL;
10363
252b5132
RH
10364 return r;
10365}
4d1bb795
JB
10366
10367/* REG_STRING starts *before* REGISTER_PREFIX. */
10368
10369static const reg_entry *
10370parse_register (char *reg_string, char **end_op)
10371{
10372 const reg_entry *r;
10373
10374 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10375 r = parse_real_register (reg_string, end_op);
10376 else
10377 r = NULL;
10378 if (!r)
10379 {
10380 char *save = input_line_pointer;
10381 char c;
10382 symbolS *symbolP;
10383
10384 input_line_pointer = reg_string;
d02603dc 10385 c = get_symbol_name (&reg_string);
4d1bb795
JB
10386 symbolP = symbol_find (reg_string);
10387 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10388 {
10389 const expressionS *e = symbol_get_value_expression (symbolP);
10390
0398aac5 10391 know (e->X_op == O_register);
4eed87de 10392 know (e->X_add_number >= 0
c3fe08fa 10393 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10394 r = i386_regtab + e->X_add_number;
d3bb6b49 10395 if ((r->reg_flags & RegVRex))
86fa6981 10396 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10397 *end_op = input_line_pointer;
10398 }
10399 *input_line_pointer = c;
10400 input_line_pointer = save;
10401 }
10402 return r;
10403}
10404
10405int
10406i386_parse_name (char *name, expressionS *e, char *nextcharP)
10407{
10408 const reg_entry *r;
10409 char *end = input_line_pointer;
10410
10411 *end = *nextcharP;
10412 r = parse_register (name, &input_line_pointer);
10413 if (r && end <= input_line_pointer)
10414 {
10415 *nextcharP = *input_line_pointer;
10416 *input_line_pointer = 0;
10417 e->X_op = O_register;
10418 e->X_add_number = r - i386_regtab;
10419 return 1;
10420 }
10421 input_line_pointer = end;
10422 *end = 0;
ee86248c 10423 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10424}
10425
10426void
10427md_operand (expressionS *e)
10428{
ee86248c
JB
10429 char *end;
10430 const reg_entry *r;
4d1bb795 10431
ee86248c
JB
10432 switch (*input_line_pointer)
10433 {
10434 case REGISTER_PREFIX:
10435 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10436 if (r)
10437 {
10438 e->X_op = O_register;
10439 e->X_add_number = r - i386_regtab;
10440 input_line_pointer = end;
10441 }
ee86248c
JB
10442 break;
10443
10444 case '[':
9c2799c2 10445 gas_assert (intel_syntax);
ee86248c
JB
10446 end = input_line_pointer++;
10447 expression (e);
10448 if (*input_line_pointer == ']')
10449 {
10450 ++input_line_pointer;
10451 e->X_op_symbol = make_expr_symbol (e);
10452 e->X_add_symbol = NULL;
10453 e->X_add_number = 0;
10454 e->X_op = O_index;
10455 }
10456 else
10457 {
10458 e->X_op = O_absent;
10459 input_line_pointer = end;
10460 }
10461 break;
4d1bb795
JB
10462 }
10463}
10464
252b5132 10465\f
4cc782b5 10466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10467const char *md_shortopts = "kVQ:sqnO::";
252b5132 10468#else
b6f8c7c4 10469const char *md_shortopts = "qnO::";
252b5132 10470#endif
6e0b89ee 10471
3e73aa7c 10472#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10473#define OPTION_64 (OPTION_MD_BASE + 1)
10474#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10475#define OPTION_MARCH (OPTION_MD_BASE + 3)
10476#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10477#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10478#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10479#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10480#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10481#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10482#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10483#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10484#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10485#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10486#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10487#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10488#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10489#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10490#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10491#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10492#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10493#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10494#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10495#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10496#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10497
99ad8390
NC
10498struct option md_longopts[] =
10499{
3e73aa7c 10500 {"32", no_argument, NULL, OPTION_32},
321098a5 10501#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10502 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10503 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10504#endif
10505#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10506 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10507 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10508#endif
b3b91714 10509 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10510 {"march", required_argument, NULL, OPTION_MARCH},
10511 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10512 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10513 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10514 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10515 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10516 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10517 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10518 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10519 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10520 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10521 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10522 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10523# if defined (TE_PE) || defined (TE_PEP)
10524 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10525#endif
d1982f93 10526 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10527 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10528 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10529 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10530 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10531 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10532 {NULL, no_argument, NULL, 0}
10533};
10534size_t md_longopts_size = sizeof (md_longopts);
10535
10536int
17b9d67d 10537md_parse_option (int c, const char *arg)
252b5132 10538{
91d6fa6a 10539 unsigned int j;
293f5f65 10540 char *arch, *next, *saved;
9103f4f4 10541
252b5132
RH
10542 switch (c)
10543 {
12b55ccc
L
10544 case 'n':
10545 optimize_align_code = 0;
10546 break;
10547
a38cf1db
AM
10548 case 'q':
10549 quiet_warnings = 1;
252b5132
RH
10550 break;
10551
10552#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10553 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10554 should be emitted or not. FIXME: Not implemented. */
10555 case 'Q':
252b5132
RH
10556 break;
10557
10558 /* -V: SVR4 argument to print version ID. */
10559 case 'V':
10560 print_version_id ();
10561 break;
10562
a38cf1db
AM
10563 /* -k: Ignore for FreeBSD compatibility. */
10564 case 'k':
252b5132 10565 break;
4cc782b5
ILT
10566
10567 case 's':
10568 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10569 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10570 break;
8dcea932
L
10571
10572 case OPTION_MSHARED:
10573 shared = 1;
10574 break;
99ad8390 10575#endif
321098a5 10576#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10577 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10578 case OPTION_64:
10579 {
10580 const char **list, **l;
10581
3e73aa7c
JH
10582 list = bfd_target_list ();
10583 for (l = list; *l != NULL; l++)
8620418b 10584 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10585 || strcmp (*l, "coff-x86-64") == 0
10586 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10587 || strcmp (*l, "pei-x86-64") == 0
10588 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10589 {
10590 default_arch = "x86_64";
10591 break;
10592 }
3e73aa7c 10593 if (*l == NULL)
2b5d6a91 10594 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10595 free (list);
10596 }
10597 break;
10598#endif
252b5132 10599
351f65ca 10600#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10601 case OPTION_X32:
351f65ca
L
10602 if (IS_ELF)
10603 {
10604 const char **list, **l;
10605
10606 list = bfd_target_list ();
10607 for (l = list; *l != NULL; l++)
10608 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10609 {
10610 default_arch = "x86_64:32";
10611 break;
10612 }
10613 if (*l == NULL)
2b5d6a91 10614 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10615 free (list);
10616 }
10617 else
10618 as_fatal (_("32bit x86_64 is only supported for ELF"));
10619 break;
10620#endif
10621
6e0b89ee
AM
10622 case OPTION_32:
10623 default_arch = "i386";
10624 break;
10625
b3b91714
AM
10626 case OPTION_DIVIDE:
10627#ifdef SVR4_COMMENT_CHARS
10628 {
10629 char *n, *t;
10630 const char *s;
10631
add39d23 10632 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10633 t = n;
10634 for (s = i386_comment_chars; *s != '\0'; s++)
10635 if (*s != '/')
10636 *t++ = *s;
10637 *t = '\0';
10638 i386_comment_chars = n;
10639 }
10640#endif
10641 break;
10642
9103f4f4 10643 case OPTION_MARCH:
293f5f65
L
10644 saved = xstrdup (arg);
10645 arch = saved;
10646 /* Allow -march=+nosse. */
10647 if (*arch == '+')
10648 arch++;
6305a203 10649 do
9103f4f4 10650 {
6305a203 10651 if (*arch == '.')
2b5d6a91 10652 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10653 next = strchr (arch, '+');
10654 if (next)
10655 *next++ = '\0';
91d6fa6a 10656 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10657 {
91d6fa6a 10658 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10659 {
6305a203 10660 /* Processor. */
1ded5609
JB
10661 if (! cpu_arch[j].flags.bitfield.cpui386)
10662 continue;
10663
91d6fa6a 10664 cpu_arch_name = cpu_arch[j].name;
6305a203 10665 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10666 cpu_arch_flags = cpu_arch[j].flags;
10667 cpu_arch_isa = cpu_arch[j].type;
10668 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10669 if (!cpu_arch_tune_set)
10670 {
10671 cpu_arch_tune = cpu_arch_isa;
10672 cpu_arch_tune_flags = cpu_arch_isa_flags;
10673 }
10674 break;
10675 }
91d6fa6a
NC
10676 else if (*cpu_arch [j].name == '.'
10677 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10678 {
33eaf5de 10679 /* ISA extension. */
6305a203 10680 i386_cpu_flags flags;
309d3373 10681
293f5f65
L
10682 flags = cpu_flags_or (cpu_arch_flags,
10683 cpu_arch[j].flags);
81486035 10684
5b64d091 10685 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10686 {
10687 if (cpu_sub_arch_name)
10688 {
10689 char *name = cpu_sub_arch_name;
10690 cpu_sub_arch_name = concat (name,
91d6fa6a 10691 cpu_arch[j].name,
1bf57e9f 10692 (const char *) NULL);
6305a203
L
10693 free (name);
10694 }
10695 else
91d6fa6a 10696 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10697 cpu_arch_flags = flags;
a586129e 10698 cpu_arch_isa_flags = flags;
6305a203 10699 }
0089dace
L
10700 else
10701 cpu_arch_isa_flags
10702 = cpu_flags_or (cpu_arch_isa_flags,
10703 cpu_arch[j].flags);
6305a203 10704 break;
ccc9c027 10705 }
9103f4f4 10706 }
6305a203 10707
293f5f65
L
10708 if (j >= ARRAY_SIZE (cpu_arch))
10709 {
33eaf5de 10710 /* Disable an ISA extension. */
293f5f65
L
10711 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10712 if (strcmp (arch, cpu_noarch [j].name) == 0)
10713 {
10714 i386_cpu_flags flags;
10715
10716 flags = cpu_flags_and_not (cpu_arch_flags,
10717 cpu_noarch[j].flags);
10718 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10719 {
10720 if (cpu_sub_arch_name)
10721 {
10722 char *name = cpu_sub_arch_name;
10723 cpu_sub_arch_name = concat (arch,
10724 (const char *) NULL);
10725 free (name);
10726 }
10727 else
10728 cpu_sub_arch_name = xstrdup (arch);
10729 cpu_arch_flags = flags;
10730 cpu_arch_isa_flags = flags;
10731 }
10732 break;
10733 }
10734
10735 if (j >= ARRAY_SIZE (cpu_noarch))
10736 j = ARRAY_SIZE (cpu_arch);
10737 }
10738
91d6fa6a 10739 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10740 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10741
10742 arch = next;
9103f4f4 10743 }
293f5f65
L
10744 while (next != NULL);
10745 free (saved);
9103f4f4
L
10746 break;
10747
10748 case OPTION_MTUNE:
10749 if (*arg == '.')
2b5d6a91 10750 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10751 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10752 {
91d6fa6a 10753 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10754 {
ccc9c027 10755 cpu_arch_tune_set = 1;
91d6fa6a
NC
10756 cpu_arch_tune = cpu_arch [j].type;
10757 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10758 break;
10759 }
10760 }
91d6fa6a 10761 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10762 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10763 break;
10764
1efbbeb4
L
10765 case OPTION_MMNEMONIC:
10766 if (strcasecmp (arg, "att") == 0)
10767 intel_mnemonic = 0;
10768 else if (strcasecmp (arg, "intel") == 0)
10769 intel_mnemonic = 1;
10770 else
2b5d6a91 10771 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10772 break;
10773
10774 case OPTION_MSYNTAX:
10775 if (strcasecmp (arg, "att") == 0)
10776 intel_syntax = 0;
10777 else if (strcasecmp (arg, "intel") == 0)
10778 intel_syntax = 1;
10779 else
2b5d6a91 10780 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10781 break;
10782
10783 case OPTION_MINDEX_REG:
10784 allow_index_reg = 1;
10785 break;
10786
10787 case OPTION_MNAKED_REG:
10788 allow_naked_reg = 1;
10789 break;
10790
c0f3af97
L
10791 case OPTION_MSSE2AVX:
10792 sse2avx = 1;
10793 break;
10794
daf50ae7
L
10795 case OPTION_MSSE_CHECK:
10796 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10797 sse_check = check_error;
daf50ae7 10798 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10799 sse_check = check_warning;
daf50ae7 10800 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10801 sse_check = check_none;
daf50ae7 10802 else
2b5d6a91 10803 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10804 break;
10805
7bab8ab5
JB
10806 case OPTION_MOPERAND_CHECK:
10807 if (strcasecmp (arg, "error") == 0)
10808 operand_check = check_error;
10809 else if (strcasecmp (arg, "warning") == 0)
10810 operand_check = check_warning;
10811 else if (strcasecmp (arg, "none") == 0)
10812 operand_check = check_none;
10813 else
10814 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10815 break;
10816
539f890d
L
10817 case OPTION_MAVXSCALAR:
10818 if (strcasecmp (arg, "128") == 0)
10819 avxscalar = vex128;
10820 else if (strcasecmp (arg, "256") == 0)
10821 avxscalar = vex256;
10822 else
2b5d6a91 10823 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10824 break;
10825
7e8b059b
L
10826 case OPTION_MADD_BND_PREFIX:
10827 add_bnd_prefix = 1;
10828 break;
10829
43234a1e
L
10830 case OPTION_MEVEXLIG:
10831 if (strcmp (arg, "128") == 0)
10832 evexlig = evexl128;
10833 else if (strcmp (arg, "256") == 0)
10834 evexlig = evexl256;
10835 else if (strcmp (arg, "512") == 0)
10836 evexlig = evexl512;
10837 else
10838 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10839 break;
10840
d3d3c6db
IT
10841 case OPTION_MEVEXRCIG:
10842 if (strcmp (arg, "rne") == 0)
10843 evexrcig = rne;
10844 else if (strcmp (arg, "rd") == 0)
10845 evexrcig = rd;
10846 else if (strcmp (arg, "ru") == 0)
10847 evexrcig = ru;
10848 else if (strcmp (arg, "rz") == 0)
10849 evexrcig = rz;
10850 else
10851 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10852 break;
10853
43234a1e
L
10854 case OPTION_MEVEXWIG:
10855 if (strcmp (arg, "0") == 0)
10856 evexwig = evexw0;
10857 else if (strcmp (arg, "1") == 0)
10858 evexwig = evexw1;
10859 else
10860 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10861 break;
10862
167ad85b
TG
10863# if defined (TE_PE) || defined (TE_PEP)
10864 case OPTION_MBIG_OBJ:
10865 use_big_obj = 1;
10866 break;
10867#endif
10868
d1982f93 10869 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10870 if (strcasecmp (arg, "yes") == 0)
10871 omit_lock_prefix = 1;
10872 else if (strcasecmp (arg, "no") == 0)
10873 omit_lock_prefix = 0;
10874 else
10875 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10876 break;
10877
e4e00185
AS
10878 case OPTION_MFENCE_AS_LOCK_ADD:
10879 if (strcasecmp (arg, "yes") == 0)
10880 avoid_fence = 1;
10881 else if (strcasecmp (arg, "no") == 0)
10882 avoid_fence = 0;
10883 else
10884 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10885 break;
10886
0cb4071e
L
10887 case OPTION_MRELAX_RELOCATIONS:
10888 if (strcasecmp (arg, "yes") == 0)
10889 generate_relax_relocations = 1;
10890 else if (strcasecmp (arg, "no") == 0)
10891 generate_relax_relocations = 0;
10892 else
10893 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10894 break;
10895
5db04b09 10896 case OPTION_MAMD64:
e89c5eaa 10897 intel64 = 0;
5db04b09
L
10898 break;
10899
10900 case OPTION_MINTEL64:
e89c5eaa 10901 intel64 = 1;
5db04b09
L
10902 break;
10903
b6f8c7c4
L
10904 case 'O':
10905 if (arg == NULL)
10906 {
10907 optimize = 1;
10908 /* Turn off -Os. */
10909 optimize_for_space = 0;
10910 }
10911 else if (*arg == 's')
10912 {
10913 optimize_for_space = 1;
10914 /* Turn on all encoding optimizations. */
10915 optimize = -1;
10916 }
10917 else
10918 {
10919 optimize = atoi (arg);
10920 /* Turn off -Os. */
10921 optimize_for_space = 0;
10922 }
10923 break;
10924
252b5132
RH
10925 default:
10926 return 0;
10927 }
10928 return 1;
10929}
10930
8a2c8fef
L
10931#define MESSAGE_TEMPLATE \
10932" "
10933
293f5f65
L
10934static char *
10935output_message (FILE *stream, char *p, char *message, char *start,
10936 int *left_p, const char *name, int len)
10937{
10938 int size = sizeof (MESSAGE_TEMPLATE);
10939 int left = *left_p;
10940
10941 /* Reserve 2 spaces for ", " or ",\0" */
10942 left -= len + 2;
10943
10944 /* Check if there is any room. */
10945 if (left >= 0)
10946 {
10947 if (p != start)
10948 {
10949 *p++ = ',';
10950 *p++ = ' ';
10951 }
10952 p = mempcpy (p, name, len);
10953 }
10954 else
10955 {
10956 /* Output the current message now and start a new one. */
10957 *p++ = ',';
10958 *p = '\0';
10959 fprintf (stream, "%s\n", message);
10960 p = start;
10961 left = size - (start - message) - len - 2;
10962
10963 gas_assert (left >= 0);
10964
10965 p = mempcpy (p, name, len);
10966 }
10967
10968 *left_p = left;
10969 return p;
10970}
10971
8a2c8fef 10972static void
1ded5609 10973show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10974{
10975 static char message[] = MESSAGE_TEMPLATE;
10976 char *start = message + 27;
10977 char *p;
10978 int size = sizeof (MESSAGE_TEMPLATE);
10979 int left;
10980 const char *name;
10981 int len;
10982 unsigned int j;
10983
10984 p = start;
10985 left = size - (start - message);
10986 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10987 {
10988 /* Should it be skipped? */
10989 if (cpu_arch [j].skip)
10990 continue;
10991
10992 name = cpu_arch [j].name;
10993 len = cpu_arch [j].len;
10994 if (*name == '.')
10995 {
10996 /* It is an extension. Skip if we aren't asked to show it. */
10997 if (ext)
10998 {
10999 name++;
11000 len--;
11001 }
11002 else
11003 continue;
11004 }
11005 else if (ext)
11006 {
11007 /* It is an processor. Skip if we show only extension. */
11008 continue;
11009 }
1ded5609
JB
11010 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11011 {
11012 /* It is an impossible processor - skip. */
11013 continue;
11014 }
8a2c8fef 11015
293f5f65 11016 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11017 }
11018
293f5f65
L
11019 /* Display disabled extensions. */
11020 if (ext)
11021 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11022 {
11023 name = cpu_noarch [j].name;
11024 len = cpu_noarch [j].len;
11025 p = output_message (stream, p, message, start, &left, name,
11026 len);
11027 }
11028
8a2c8fef
L
11029 *p = '\0';
11030 fprintf (stream, "%s\n", message);
11031}
11032
252b5132 11033void
8a2c8fef 11034md_show_usage (FILE *stream)
252b5132 11035{
4cc782b5
ILT
11036#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11037 fprintf (stream, _("\
a38cf1db
AM
11038 -Q ignored\n\
11039 -V print assembler version number\n\
b3b91714
AM
11040 -k ignored\n"));
11041#endif
11042 fprintf (stream, _("\
12b55ccc 11043 -n Do not optimize code alignment\n\
b3b91714
AM
11044 -q quieten some warnings\n"));
11045#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11046 fprintf (stream, _("\
a38cf1db 11047 -s ignored\n"));
b3b91714 11048#endif
321098a5
L
11049#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11050 || defined (TE_PE) || defined (TE_PEP))
751d281c 11051 fprintf (stream, _("\
570561f7 11052 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11053#endif
b3b91714
AM
11054#ifdef SVR4_COMMENT_CHARS
11055 fprintf (stream, _("\
11056 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11057#else
11058 fprintf (stream, _("\
b3b91714 11059 --divide ignored\n"));
4cc782b5 11060#endif
9103f4f4 11061 fprintf (stream, _("\
6305a203 11062 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11063 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11064 show_arch (stream, 0, 1);
8a2c8fef
L
11065 fprintf (stream, _("\
11066 EXTENSION is combination of:\n"));
1ded5609 11067 show_arch (stream, 1, 0);
6305a203 11068 fprintf (stream, _("\
8a2c8fef 11069 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11070 show_arch (stream, 0, 0);
ba104c83 11071 fprintf (stream, _("\
c0f3af97
L
11072 -msse2avx encode SSE instructions with VEX prefix\n"));
11073 fprintf (stream, _("\
daf50ae7
L
11074 -msse-check=[none|error|warning]\n\
11075 check SSE instructions\n"));
11076 fprintf (stream, _("\
7bab8ab5
JB
11077 -moperand-check=[none|error|warning]\n\
11078 check operand combinations for validity\n"));
11079 fprintf (stream, _("\
539f890d
L
11080 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11081 length\n"));
11082 fprintf (stream, _("\
43234a1e
L
11083 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11084 length\n"));
11085 fprintf (stream, _("\
11086 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11087 for EVEX.W bit ignored instructions\n"));
11088 fprintf (stream, _("\
d3d3c6db
IT
11089 -mevexrcig=[rne|rd|ru|rz]\n\
11090 encode EVEX instructions with specific EVEX.RC value\n\
11091 for SAE-only ignored instructions\n"));
11092 fprintf (stream, _("\
ba104c83
L
11093 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11094 fprintf (stream, _("\
11095 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11096 fprintf (stream, _("\
11097 -mindex-reg support pseudo index registers\n"));
11098 fprintf (stream, _("\
11099 -mnaked-reg don't require `%%' prefix for registers\n"));
11100 fprintf (stream, _("\
7e8b059b 11101 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
11102 fprintf (stream, _("\
11103 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
11104# if defined (TE_PE) || defined (TE_PEP)
11105 fprintf (stream, _("\
11106 -mbig-obj generate big object files\n"));
11107#endif
d022bddd
IT
11108 fprintf (stream, _("\
11109 -momit-lock-prefix=[no|yes]\n\
11110 strip all lock prefixes\n"));
5db04b09 11111 fprintf (stream, _("\
e4e00185
AS
11112 -mfence-as-lock-add=[no|yes]\n\
11113 encode lfence, mfence and sfence as\n\
11114 lock addl $0x0, (%%{re}sp)\n"));
11115 fprintf (stream, _("\
0cb4071e
L
11116 -mrelax-relocations=[no|yes]\n\
11117 generate relax relocations\n"));
11118 fprintf (stream, _("\
5db04b09
L
11119 -mamd64 accept only AMD64 ISA\n"));
11120 fprintf (stream, _("\
11121 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11122}
11123
3e73aa7c 11124#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11125 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11126 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11127
11128/* Pick the target format to use. */
11129
47926f60 11130const char *
e3bb37b5 11131i386_target_format (void)
252b5132 11132{
351f65ca
L
11133 if (!strncmp (default_arch, "x86_64", 6))
11134 {
11135 update_code_flag (CODE_64BIT, 1);
11136 if (default_arch[6] == '\0')
7f56bc95 11137 x86_elf_abi = X86_64_ABI;
351f65ca 11138 else
7f56bc95 11139 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11140 }
3e73aa7c 11141 else if (!strcmp (default_arch, "i386"))
78f12dd3 11142 update_code_flag (CODE_32BIT, 1);
5197d474
L
11143 else if (!strcmp (default_arch, "iamcu"))
11144 {
11145 update_code_flag (CODE_32BIT, 1);
11146 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11147 {
11148 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11149 cpu_arch_name = "iamcu";
11150 cpu_sub_arch_name = NULL;
11151 cpu_arch_flags = iamcu_flags;
11152 cpu_arch_isa = PROCESSOR_IAMCU;
11153 cpu_arch_isa_flags = iamcu_flags;
11154 if (!cpu_arch_tune_set)
11155 {
11156 cpu_arch_tune = cpu_arch_isa;
11157 cpu_arch_tune_flags = cpu_arch_isa_flags;
11158 }
11159 }
8d471ec1 11160 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11161 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11162 cpu_arch_name);
11163 }
3e73aa7c 11164 else
2b5d6a91 11165 as_fatal (_("unknown architecture"));
89507696
JB
11166
11167 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11168 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11169 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11170 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11171
252b5132
RH
11172 switch (OUTPUT_FLAVOR)
11173 {
9384f2ff 11174#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11175 case bfd_target_aout_flavour:
47926f60 11176 return AOUT_TARGET_FORMAT;
4c63da97 11177#endif
9384f2ff
AM
11178#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11179# if defined (TE_PE) || defined (TE_PEP)
11180 case bfd_target_coff_flavour:
167ad85b
TG
11181 if (flag_code == CODE_64BIT)
11182 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11183 else
11184 return "pe-i386";
9384f2ff 11185# elif defined (TE_GO32)
0561d57c
JK
11186 case bfd_target_coff_flavour:
11187 return "coff-go32";
9384f2ff 11188# else
252b5132
RH
11189 case bfd_target_coff_flavour:
11190 return "coff-i386";
9384f2ff 11191# endif
4c63da97 11192#endif
3e73aa7c 11193#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11194 case bfd_target_elf_flavour:
3e73aa7c 11195 {
351f65ca
L
11196 const char *format;
11197
11198 switch (x86_elf_abi)
4fa24527 11199 {
351f65ca
L
11200 default:
11201 format = ELF_TARGET_FORMAT;
11202 break;
7f56bc95 11203 case X86_64_ABI:
351f65ca 11204 use_rela_relocations = 1;
4fa24527 11205 object_64bit = 1;
351f65ca
L
11206 format = ELF_TARGET_FORMAT64;
11207 break;
7f56bc95 11208 case X86_64_X32_ABI:
4fa24527 11209 use_rela_relocations = 1;
351f65ca 11210 object_64bit = 1;
862be3fb 11211 disallow_64bit_reloc = 1;
351f65ca
L
11212 format = ELF_TARGET_FORMAT32;
11213 break;
4fa24527 11214 }
3632d14b 11215 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11216 {
7f56bc95 11217 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11218 as_fatal (_("Intel L1OM is 64bit only"));
11219 return ELF_TARGET_L1OM_FORMAT;
11220 }
b49f93f6 11221 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11222 {
11223 if (x86_elf_abi != X86_64_ABI)
11224 as_fatal (_("Intel K1OM is 64bit only"));
11225 return ELF_TARGET_K1OM_FORMAT;
11226 }
81486035
L
11227 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11228 {
11229 if (x86_elf_abi != I386_ABI)
11230 as_fatal (_("Intel MCU is 32bit only"));
11231 return ELF_TARGET_IAMCU_FORMAT;
11232 }
8a9036a4 11233 else
351f65ca 11234 return format;
3e73aa7c 11235 }
e57f8c65
TG
11236#endif
11237#if defined (OBJ_MACH_O)
11238 case bfd_target_mach_o_flavour:
d382c579
TG
11239 if (flag_code == CODE_64BIT)
11240 {
11241 use_rela_relocations = 1;
11242 object_64bit = 1;
11243 return "mach-o-x86-64";
11244 }
11245 else
11246 return "mach-o-i386";
4c63da97 11247#endif
252b5132
RH
11248 default:
11249 abort ();
11250 return NULL;
11251 }
11252}
11253
47926f60 11254#endif /* OBJ_MAYBE_ more than one */
252b5132 11255\f
252b5132 11256symbolS *
7016a5d5 11257md_undefined_symbol (char *name)
252b5132 11258{
18dc2407
ILT
11259 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11260 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11261 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11262 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11263 {
11264 if (!GOT_symbol)
11265 {
11266 if (symbol_find (name))
11267 as_bad (_("GOT already in symbol table"));
11268 GOT_symbol = symbol_new (name, undefined_section,
11269 (valueT) 0, &zero_address_frag);
11270 };
11271 return GOT_symbol;
11272 }
252b5132
RH
11273 return 0;
11274}
11275
11276/* Round up a section size to the appropriate boundary. */
47926f60 11277
252b5132 11278valueT
7016a5d5 11279md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11280{
4c63da97
AM
11281#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11282 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11283 {
11284 /* For a.out, force the section size to be aligned. If we don't do
11285 this, BFD will align it for us, but it will not write out the
11286 final bytes of the section. This may be a bug in BFD, but it is
11287 easier to fix it here since that is how the other a.out targets
11288 work. */
11289 int align;
11290
11291 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11292 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11293 }
252b5132
RH
11294#endif
11295
11296 return size;
11297}
11298
11299/* On the i386, PC-relative offsets are relative to the start of the
11300 next instruction. That is, the address of the offset, plus its
11301 size, since the offset is always the last part of the insn. */
11302
11303long
e3bb37b5 11304md_pcrel_from (fixS *fixP)
252b5132
RH
11305{
11306 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11307}
11308
11309#ifndef I386COFF
11310
11311static void
e3bb37b5 11312s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11313{
29b0f896 11314 int temp;
252b5132 11315
8a75718c
JB
11316#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11317 if (IS_ELF)
11318 obj_elf_section_change_hook ();
11319#endif
252b5132
RH
11320 temp = get_absolute_expression ();
11321 subseg_set (bss_section, (subsegT) temp);
11322 demand_empty_rest_of_line ();
11323}
11324
11325#endif
11326
252b5132 11327void
e3bb37b5 11328i386_validate_fix (fixS *fixp)
252b5132 11329{
02a86693 11330 if (fixp->fx_subsy)
252b5132 11331 {
02a86693 11332 if (fixp->fx_subsy == GOT_symbol)
23df1078 11333 {
02a86693
L
11334 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11335 {
11336 if (!object_64bit)
11337 abort ();
11338#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11339 if (fixp->fx_tcbit2)
56ceb5b5
L
11340 fixp->fx_r_type = (fixp->fx_tcbit
11341 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11342 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11343 else
11344#endif
11345 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11346 }
d6ab8113 11347 else
02a86693
L
11348 {
11349 if (!object_64bit)
11350 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11351 else
11352 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11353 }
11354 fixp->fx_subsy = 0;
23df1078 11355 }
252b5132 11356 }
02a86693
L
11357#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11358 else if (!object_64bit)
11359 {
11360 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11361 && fixp->fx_tcbit2)
11362 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11363 }
11364#endif
252b5132
RH
11365}
11366
252b5132 11367arelent *
7016a5d5 11368tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11369{
11370 arelent *rel;
11371 bfd_reloc_code_real_type code;
11372
11373 switch (fixp->fx_r_type)
11374 {
8ce3d284 11375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11376 case BFD_RELOC_SIZE32:
11377 case BFD_RELOC_SIZE64:
11378 if (S_IS_DEFINED (fixp->fx_addsy)
11379 && !S_IS_EXTERNAL (fixp->fx_addsy))
11380 {
11381 /* Resolve size relocation against local symbol to size of
11382 the symbol plus addend. */
11383 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11384 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11385 && !fits_in_unsigned_long (value))
11386 as_bad_where (fixp->fx_file, fixp->fx_line,
11387 _("symbol size computation overflow"));
11388 fixp->fx_addsy = NULL;
11389 fixp->fx_subsy = NULL;
11390 md_apply_fix (fixp, (valueT *) &value, NULL);
11391 return NULL;
11392 }
8ce3d284 11393#endif
1a0670f3 11394 /* Fall through. */
8fd4256d 11395
3e73aa7c
JH
11396 case BFD_RELOC_X86_64_PLT32:
11397 case BFD_RELOC_X86_64_GOT32:
11398 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11399 case BFD_RELOC_X86_64_GOTPCRELX:
11400 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11401 case BFD_RELOC_386_PLT32:
11402 case BFD_RELOC_386_GOT32:
02a86693 11403 case BFD_RELOC_386_GOT32X:
252b5132
RH
11404 case BFD_RELOC_386_GOTOFF:
11405 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11406 case BFD_RELOC_386_TLS_GD:
11407 case BFD_RELOC_386_TLS_LDM:
11408 case BFD_RELOC_386_TLS_LDO_32:
11409 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11410 case BFD_RELOC_386_TLS_IE:
11411 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11412 case BFD_RELOC_386_TLS_LE_32:
11413 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11414 case BFD_RELOC_386_TLS_GOTDESC:
11415 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11416 case BFD_RELOC_X86_64_TLSGD:
11417 case BFD_RELOC_X86_64_TLSLD:
11418 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11419 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11420 case BFD_RELOC_X86_64_GOTTPOFF:
11421 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11422 case BFD_RELOC_X86_64_TPOFF64:
11423 case BFD_RELOC_X86_64_GOTOFF64:
11424 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11425 case BFD_RELOC_X86_64_GOT64:
11426 case BFD_RELOC_X86_64_GOTPCREL64:
11427 case BFD_RELOC_X86_64_GOTPC64:
11428 case BFD_RELOC_X86_64_GOTPLT64:
11429 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11430 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11431 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11432 case BFD_RELOC_RVA:
11433 case BFD_RELOC_VTABLE_ENTRY:
11434 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11435#ifdef TE_PE
11436 case BFD_RELOC_32_SECREL:
11437#endif
252b5132
RH
11438 code = fixp->fx_r_type;
11439 break;
dbbaec26
L
11440 case BFD_RELOC_X86_64_32S:
11441 if (!fixp->fx_pcrel)
11442 {
11443 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11444 code = fixp->fx_r_type;
11445 break;
11446 }
1a0670f3 11447 /* Fall through. */
252b5132 11448 default:
93382f6d 11449 if (fixp->fx_pcrel)
252b5132 11450 {
93382f6d
AM
11451 switch (fixp->fx_size)
11452 {
11453 default:
b091f402
AM
11454 as_bad_where (fixp->fx_file, fixp->fx_line,
11455 _("can not do %d byte pc-relative relocation"),
11456 fixp->fx_size);
93382f6d
AM
11457 code = BFD_RELOC_32_PCREL;
11458 break;
11459 case 1: code = BFD_RELOC_8_PCREL; break;
11460 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11461 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11462#ifdef BFD64
11463 case 8: code = BFD_RELOC_64_PCREL; break;
11464#endif
93382f6d
AM
11465 }
11466 }
11467 else
11468 {
11469 switch (fixp->fx_size)
11470 {
11471 default:
b091f402
AM
11472 as_bad_where (fixp->fx_file, fixp->fx_line,
11473 _("can not do %d byte relocation"),
11474 fixp->fx_size);
93382f6d
AM
11475 code = BFD_RELOC_32;
11476 break;
11477 case 1: code = BFD_RELOC_8; break;
11478 case 2: code = BFD_RELOC_16; break;
11479 case 4: code = BFD_RELOC_32; break;
937149dd 11480#ifdef BFD64
3e73aa7c 11481 case 8: code = BFD_RELOC_64; break;
937149dd 11482#endif
93382f6d 11483 }
252b5132
RH
11484 }
11485 break;
11486 }
252b5132 11487
d182319b
JB
11488 if ((code == BFD_RELOC_32
11489 || code == BFD_RELOC_32_PCREL
11490 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11491 && GOT_symbol
11492 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11493 {
4fa24527 11494 if (!object_64bit)
d6ab8113
JB
11495 code = BFD_RELOC_386_GOTPC;
11496 else
11497 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11498 }
7b81dfbb
AJ
11499 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11500 && GOT_symbol
11501 && fixp->fx_addsy == GOT_symbol)
11502 {
11503 code = BFD_RELOC_X86_64_GOTPC64;
11504 }
252b5132 11505
add39d23
TS
11506 rel = XNEW (arelent);
11507 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11508 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11509
11510 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11511
3e73aa7c
JH
11512 if (!use_rela_relocations)
11513 {
11514 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11515 vtable entry to be used in the relocation's section offset. */
11516 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11517 rel->address = fixp->fx_offset;
fbeb56a4
DK
11518#if defined (OBJ_COFF) && defined (TE_PE)
11519 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11520 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11521 else
11522#endif
c6682705 11523 rel->addend = 0;
3e73aa7c
JH
11524 }
11525 /* Use the rela in 64bit mode. */
252b5132 11526 else
3e73aa7c 11527 {
862be3fb
L
11528 if (disallow_64bit_reloc)
11529 switch (code)
11530 {
862be3fb
L
11531 case BFD_RELOC_X86_64_DTPOFF64:
11532 case BFD_RELOC_X86_64_TPOFF64:
11533 case BFD_RELOC_64_PCREL:
11534 case BFD_RELOC_X86_64_GOTOFF64:
11535 case BFD_RELOC_X86_64_GOT64:
11536 case BFD_RELOC_X86_64_GOTPCREL64:
11537 case BFD_RELOC_X86_64_GOTPC64:
11538 case BFD_RELOC_X86_64_GOTPLT64:
11539 case BFD_RELOC_X86_64_PLTOFF64:
11540 as_bad_where (fixp->fx_file, fixp->fx_line,
11541 _("cannot represent relocation type %s in x32 mode"),
11542 bfd_get_reloc_code_name (code));
11543 break;
11544 default:
11545 break;
11546 }
11547
062cd5e7
AS
11548 if (!fixp->fx_pcrel)
11549 rel->addend = fixp->fx_offset;
11550 else
11551 switch (code)
11552 {
11553 case BFD_RELOC_X86_64_PLT32:
11554 case BFD_RELOC_X86_64_GOT32:
11555 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11556 case BFD_RELOC_X86_64_GOTPCRELX:
11557 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11558 case BFD_RELOC_X86_64_TLSGD:
11559 case BFD_RELOC_X86_64_TLSLD:
11560 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11561 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11562 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11563 rel->addend = fixp->fx_offset - fixp->fx_size;
11564 break;
11565 default:
11566 rel->addend = (section->vma
11567 - fixp->fx_size
11568 + fixp->fx_addnumber
11569 + md_pcrel_from (fixp));
11570 break;
11571 }
3e73aa7c
JH
11572 }
11573
252b5132
RH
11574 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11575 if (rel->howto == NULL)
11576 {
11577 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11578 _("cannot represent relocation type %s"),
252b5132
RH
11579 bfd_get_reloc_code_name (code));
11580 /* Set howto to a garbage value so that we can keep going. */
11581 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11582 gas_assert (rel->howto != NULL);
252b5132
RH
11583 }
11584
11585 return rel;
11586}
11587
ee86248c 11588#include "tc-i386-intel.c"
54cfded0 11589
a60de03c
JB
11590void
11591tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11592{
a60de03c
JB
11593 int saved_naked_reg;
11594 char saved_register_dot;
54cfded0 11595
a60de03c
JB
11596 saved_naked_reg = allow_naked_reg;
11597 allow_naked_reg = 1;
11598 saved_register_dot = register_chars['.'];
11599 register_chars['.'] = '.';
11600 allow_pseudo_reg = 1;
11601 expression_and_evaluate (exp);
11602 allow_pseudo_reg = 0;
11603 register_chars['.'] = saved_register_dot;
11604 allow_naked_reg = saved_naked_reg;
11605
e96d56a1 11606 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11607 {
a60de03c
JB
11608 if ((addressT) exp->X_add_number < i386_regtab_size)
11609 {
11610 exp->X_op = O_constant;
11611 exp->X_add_number = i386_regtab[exp->X_add_number]
11612 .dw2_regnum[flag_code >> 1];
11613 }
11614 else
11615 exp->X_op = O_illegal;
54cfded0 11616 }
54cfded0
AM
11617}
11618
11619void
11620tc_x86_frame_initial_instructions (void)
11621{
a60de03c
JB
11622 static unsigned int sp_regno[2];
11623
11624 if (!sp_regno[flag_code >> 1])
11625 {
11626 char *saved_input = input_line_pointer;
11627 char sp[][4] = {"esp", "rsp"};
11628 expressionS exp;
a4447b93 11629
a60de03c
JB
11630 input_line_pointer = sp[flag_code >> 1];
11631 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11632 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11633 sp_regno[flag_code >> 1] = exp.X_add_number;
11634 input_line_pointer = saved_input;
11635 }
a4447b93 11636
61ff971f
L
11637 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11638 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11639}
d2b2c203 11640
d7921315
L
11641int
11642x86_dwarf2_addr_size (void)
11643{
11644#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11645 if (x86_elf_abi == X86_64_X32_ABI)
11646 return 4;
11647#endif
11648 return bfd_arch_bits_per_address (stdoutput) / 8;
11649}
11650
d2b2c203
DJ
11651int
11652i386_elf_section_type (const char *str, size_t len)
11653{
11654 if (flag_code == CODE_64BIT
11655 && len == sizeof ("unwind") - 1
11656 && strncmp (str, "unwind", 6) == 0)
11657 return SHT_X86_64_UNWIND;
11658
11659 return -1;
11660}
bb41ade5 11661
ad5fec3b
EB
11662#ifdef TE_SOLARIS
11663void
11664i386_solaris_fix_up_eh_frame (segT sec)
11665{
11666 if (flag_code == CODE_64BIT)
11667 elf_section_type (sec) = SHT_X86_64_UNWIND;
11668}
11669#endif
11670
bb41ade5
AM
11671#ifdef TE_PE
11672void
11673tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11674{
91d6fa6a 11675 expressionS exp;
bb41ade5 11676
91d6fa6a
NC
11677 exp.X_op = O_secrel;
11678 exp.X_add_symbol = symbol;
11679 exp.X_add_number = 0;
11680 emit_expr (&exp, size);
bb41ade5
AM
11681}
11682#endif
3b22753a
L
11683
11684#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11685/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11686
01e1a5bc 11687bfd_vma
6d4af3c2 11688x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11689{
11690 if (flag_code == CODE_64BIT)
11691 {
11692 if (letter == 'l')
11693 return SHF_X86_64_LARGE;
11694
8f3bae45 11695 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11696 }
3b22753a 11697 else
8f3bae45 11698 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11699 return -1;
11700}
11701
01e1a5bc 11702bfd_vma
3b22753a
L
11703x86_64_section_word (char *str, size_t len)
11704{
8620418b 11705 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11706 return SHF_X86_64_LARGE;
11707
11708 return -1;
11709}
11710
11711static void
11712handle_large_common (int small ATTRIBUTE_UNUSED)
11713{
11714 if (flag_code != CODE_64BIT)
11715 {
11716 s_comm_internal (0, elf_common_parse);
11717 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11718 }
11719 else
11720 {
11721 static segT lbss_section;
11722 asection *saved_com_section_ptr = elf_com_section_ptr;
11723 asection *saved_bss_section = bss_section;
11724
11725 if (lbss_section == NULL)
11726 {
11727 flagword applicable;
11728 segT seg = now_seg;
11729 subsegT subseg = now_subseg;
11730
11731 /* The .lbss section is for local .largecomm symbols. */
11732 lbss_section = subseg_new (".lbss", 0);
11733 applicable = bfd_applicable_section_flags (stdoutput);
11734 bfd_set_section_flags (stdoutput, lbss_section,
11735 applicable & SEC_ALLOC);
11736 seg_info (lbss_section)->bss = 1;
11737
11738 subseg_set (seg, subseg);
11739 }
11740
11741 elf_com_section_ptr = &_bfd_elf_large_com_section;
11742 bss_section = lbss_section;
11743
11744 s_comm_internal (0, elf_common_parse);
11745
11746 elf_com_section_ptr = saved_com_section_ptr;
11747 bss_section = saved_bss_section;
11748 }
11749}
11750#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.246202 seconds and 4 git commands to generate.