Implement 'print -raw-values' and 'set print raw-values on|off'
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
252b5132 371 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 372 addressing modes of this insn are encoded. */
252b5132 373 modrm_byte rm;
3e73aa7c 374 rex_byte rex;
43234a1e 375 rex_byte vrex;
252b5132 376 sib_byte sib;
c0f3af97 377 vex_prefix vex;
b6169b20 378
43234a1e
L
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
86fa6981
L
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
64c49ab3
JB
396 dir_encoding_store,
397 dir_encoding_swap
86fa6981 398 } dir_encoding;
891edac4 399
a501d77e
L
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
f8a5c266 407
6b6b6807
L
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
b6f8c7c4
L
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
86fa6981
L
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
d5de92cf
L
423 /* REP prefix. */
424 const char *rep_prefix;
425
165de32a
L
426 /* HLE prefix. */
427 const char *hle_prefix;
42164a71 428
7e8b059b
L
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
04ef582a
L
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
891edac4 435 /* Error message. */
a65babc9 436 enum i386_error error;
252b5132
RH
437 };
438
439typedef struct _i386_insn i386_insn;
440
43234a1e
L
441/* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443struct RC_name
444{
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448};
449
450static const struct RC_name RC_NamesTable[] =
451{
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457};
458
252b5132
RH
459/* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 461const char extra_symbol_chars[] = "*%-([{}"
252b5132 462#ifdef LEX_AT
32137342
NC
463 "@"
464#endif
465#ifdef LEX_QM
466 "?"
252b5132 467#endif
32137342 468 ;
252b5132 469
29b0f896
AM
470#if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 472 && !defined (TE_GNU) \
29b0f896 473 && !defined (TE_LINUX) \
8d63c93e 474 && !defined (TE_NACL) \
29b0f896 475 && !defined (TE_FreeBSD) \
5b806d27 476 && !defined (TE_DragonFly) \
29b0f896 477 && !defined (TE_NetBSD)))
252b5132 478/* This array holds the chars that always start a comment. If the
b3b91714
AM
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481const char *i386_comment_chars = "#/";
482#define SVR4_COMMENT_CHARS 1
252b5132 483#define PREFIX_SEPARATOR '\\'
252b5132 484
b3b91714
AM
485#else
486const char *i386_comment_chars = "#";
487#define PREFIX_SEPARATOR '/'
488#endif
489
252b5132
RH
490/* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 494 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
252b5132 497 '/' isn't otherwise defined. */
b3b91714 498const char line_comment_chars[] = "#/";
252b5132 499
63a0b638 500const char line_separator_chars[] = ";";
252b5132 501
ce8a8b2f
AM
502/* Chars that can be used to separate mant from exp in floating point
503 nums. */
252b5132
RH
504const char EXP_CHARS[] = "eE";
505
ce8a8b2f
AM
506/* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
252b5132
RH
509const char FLT_CHARS[] = "fFdDxX";
510
ce8a8b2f 511/* Tables for lexical analysis. */
252b5132
RH
512static char mnemonic_chars[256];
513static char register_chars[256];
514static char operand_chars[256];
515static char identifier_chars[256];
516static char digit_chars[256];
517
ce8a8b2f 518/* Lexical macros. */
252b5132
RH
519#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520#define is_operand_char(x) (operand_chars[(unsigned char) x])
521#define is_register_char(x) (register_chars[(unsigned char) x])
522#define is_space_char(x) ((x) == ' ')
523#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524#define is_digit_char(x) (digit_chars[(unsigned char) x])
525
0234cb7c 526/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
527static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529/* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
47926f60 532 assembler instruction). */
252b5132 533static char save_stack[32];
ce8a8b2f 534static char *save_stack_p;
252b5132
RH
535#define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537#define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
47926f60 540/* The instruction we're assembling. */
252b5132
RH
541static i386_insn i;
542
543/* Possible templates for current insn. */
544static const templates *current_templates;
545
31b2323c
L
546/* Per instruction expressionS buffers: max displacements & immediates. */
547static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 549
47926f60 550/* Current operand we are working on. */
ee86248c 551static int this_operand = -1;
252b5132 552
3e73aa7c
JH
553/* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561static enum flag_code flag_code;
4fa24527 562static unsigned int object_64bit;
862be3fb 563static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
564static int use_rela_relocations = 0;
565
7af8ed2d
NC
566#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
351f65ca
L
570/* The ELF ABI to use. */
571enum x86_elf_abi
572{
573 I386_ABI,
7f56bc95
L
574 X86_64_ABI,
575 X86_64_X32_ABI
351f65ca
L
576};
577
578static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 579#endif
351f65ca 580
167ad85b
TG
581#if defined (TE_PE) || defined (TE_PEP)
582/* Use big object file format. */
583static int use_big_obj = 0;
584#endif
585
8dcea932
L
586#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587/* 1 if generating code for a shared library. */
588static int shared = 0;
589#endif
590
47926f60
KH
591/* 1 for intel syntax,
592 0 if att syntax. */
593static int intel_syntax = 0;
252b5132 594
e89c5eaa
L
595/* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597static int intel64;
598
1efbbeb4
L
599/* 1 for intel mnemonic,
600 0 if att mnemonic. */
601static int intel_mnemonic = !SYSV386_COMPAT;
602
a60de03c
JB
603/* 1 if pseudo registers are permitted. */
604static int allow_pseudo_reg = 0;
605
47926f60
KH
606/* 1 if register prefix % not required. */
607static int allow_naked_reg = 0;
252b5132 608
33eaf5de 609/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612static int add_bnd_prefix = 0;
613
ba104c83 614/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
615static int allow_index_reg = 0;
616
d022bddd
IT
617/* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619static int omit_lock_prefix = 0;
620
e4e00185
AS
621/* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623static int avoid_fence = 0;
624
0cb4071e
L
625/* 1 if the assembler should generate relax relocations. */
626
627static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
7bab8ab5 630static enum check_kind
daf50ae7 631 {
7bab8ab5
JB
632 check_none = 0,
633 check_warning,
634 check_error
daf50ae7 635 }
7bab8ab5 636sse_check, operand_check = check_warning;
daf50ae7 637
b6f8c7c4
L
638/* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643static int optimize = 0;
644
645/* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652static int optimize_for_space = 0;
653
2ca3ace5
L
654/* Register prefix used for error message. */
655static const char *register_prefix = "%";
656
47926f60
KH
657/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660static char stackop_size = '\0';
eecb386c 661
12b55ccc
L
662/* Non-zero to optimize code alignment. */
663int optimize_align_code = 1;
664
47926f60
KH
665/* Non-zero to quieten some warnings. */
666static int quiet_warnings = 0;
a38cf1db 667
47926f60
KH
668/* CPU name. */
669static const char *cpu_arch_name = NULL;
6305a203 670static char *cpu_sub_arch_name = NULL;
a38cf1db 671
47926f60 672/* CPU feature flags. */
40fb9820
L
673static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
ccc9c027
L
675/* If we have selected a cpu we are generating instructions for. */
676static int cpu_arch_tune_set = 0;
677
9103f4f4 678/* Cpu we are generating instructions for. */
fbf3f584 679enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
680
681/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 682static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 683
ccc9c027 684/* CPU instruction set architecture used. */
fbf3f584 685enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 686
9103f4f4 687/* CPU feature flags of instruction set architecture used. */
fbf3f584 688i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 689
fddf5b5b
AM
690/* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692static unsigned int no_cond_jump_promotion = 0;
693
c0f3af97
L
694/* Encode SSE instructions with VEX prefix. */
695static unsigned int sse2avx;
696
539f890d
L
697/* Encode scalar AVX instructions with specific vector length. */
698static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
03751133
L
704/* Encode VEX WIG instructions with specific vex.w. */
705static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
43234a1e
L
711/* Encode scalar EVEX LIG instructions with specific vector length. */
712static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719/* Encode EVEX WIG instructions with specific evex.w. */
720static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
d3d3c6db
IT
726/* Value to encode in EVEX RC bits, for SAE-only instructions. */
727static enum rc_type evexrcig = rne;
728
29b0f896 729/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 730static symbolS *GOT_symbol;
29b0f896 731
a4447b93
RH
732/* The dwarf2 return column, adjusted for 32 or 64 bit. */
733unsigned int x86_dwarf2_return_column;
734
735/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736int x86_cie_data_alignment;
737
252b5132 738/* Interface to relax_segment.
fddf5b5b
AM
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
252b5132 742
47926f60 743/* Types. */
93c2a809
AM
744#define UNCOND_JUMP 0
745#define COND_JUMP 1
746#define COND_JUMP86 2
fddf5b5b 747
47926f60 748/* Sizes. */
252b5132
RH
749#define CODE16 1
750#define SMALL 0
29b0f896 751#define SMALL16 (SMALL | CODE16)
252b5132 752#define BIG 2
29b0f896 753#define BIG16 (BIG | CODE16)
252b5132
RH
754
755#ifndef INLINE
756#ifdef __GNUC__
757#define INLINE __inline__
758#else
759#define INLINE
760#endif
761#endif
762
fddf5b5b
AM
763#define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765#define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767#define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
769
770/* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778const relax_typeS md_relax_table[] =
779{
24eab124
AM
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
93c2a809 783 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 784 4) which index into the table to try if we can't fit into this one. */
252b5132 785
fddf5b5b 786 /* UNCOND_JUMP states. */
93c2a809
AM
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
252b5132 791 {0, 0, 4, 0},
93c2a809
AM
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
794 {0, 0, 2, 0},
795
93c2a809
AM
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
fddf5b5b 802 /* word conditionals add 3 bytes to frag:
93c2a809
AM
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
252b5132
RH
815};
816
9103f4f4
L
817static const arch_entry cpu_arch[] =
818{
89507696
JB
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
8a2c8fef 821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 822 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 824 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 826 CPU_NONE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 828 CPU_I186_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 830 CPU_I286_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 832 CPU_I386_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 834 CPU_I486_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 836 CPU_I586_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_I686_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 840 CPU_I586_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 842 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 844 CPU_P2_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 846 CPU_P3_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 848 CPU_P4_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 852 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 854 CPU_CORE_FLAGS, 1 },
8a2c8fef 855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 856 CPU_CORE_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 858 CPU_CORE2_FLAGS, 1 },
8a2c8fef 859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 860 CPU_CORE2_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 862 CPU_COREI7_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 864 CPU_L1OM_FLAGS, 0 },
7a9068fe 865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 866 CPU_K1OM_FLAGS, 0 },
81486035 867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 868 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 870 CPU_K6_FLAGS, 0 },
8a2c8fef 871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 872 CPU_K6_2_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 874 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 876 CPU_K8_FLAGS, 1 },
8a2c8fef 877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 878 CPU_K8_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 880 CPU_K8_FLAGS, 0 },
8a2c8fef 881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 882 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 886 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 888 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 890 CPU_BDVER4_FLAGS, 0 },
029f3522 891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 892 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
7b458c12 895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 896 CPU_BTVER1_FLAGS, 0 },
7b458c12 897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 898 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_8087_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_287_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_387_FLAGS, 0 },
1848e567
L
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
d871f3f4
L
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_MMX_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSE_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE2_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE3_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX_FLAGS, 0 },
6c30d220 929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX2_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512F_FLAGS, 0 },
43234a1e 933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512CD_FLAGS, 0 },
43234a1e 935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512ER_FLAGS, 0 },
43234a1e 937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_VMX_FLAGS, 0 },
8729a6f6 947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_SMX_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_AES_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_F16C_FLAGS, 0 },
6c30d220 971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_BMI2_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_FMA_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_FMA4_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_XOP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_LWP_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_MOVBE_FLAGS, 0 },
60aa667e 983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_CX16_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_EPT_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_LZCNT_FLAGS, 0 },
42164a71 989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_HLE_FLAGS, 0 },
42164a71 991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_RTM_FLAGS, 0 },
6c30d220 993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_CLFLUSH_FLAGS, 0 },
22109423 997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_NOP_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_SVME_FLAGS, 1 },
8a2c8fef 1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_SVME_FLAGS, 0 },
8a2c8fef 1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ABM_FLAGS, 0 },
87973e9f 1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_BMI_FLAGS, 0 },
2a2a0f38 1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_TBM_FLAGS, 0 },
e2e1fcde 1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_ADX_FLAGS, 0 },
e2e1fcde 1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_SMAP_FLAGS, 0 },
7e8b059b 1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_MPX_FLAGS, 0 },
a0046408 1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SHA_FLAGS, 0 },
963f3586 1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_SE1_FLAGS, 0 },
c5e7287a 1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_CLZERO_FLAGS, 0 },
9916071f 1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_MWAITX_FLAGS, 0 },
8eab4136 1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_OSPKE_FLAGS, 0 },
8bc52696 1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1099};
1100
1101static const noarch_entry cpu_noarch[] =
1102{
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1141};
1142
704209c0 1143#ifdef I386COFF
a6c24e68
NC
1144/* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147static symbolS *
1148pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149{
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
7ab9ffdd 1154 if (needs_align
a6c24e68
NC
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
7ab9ffdd 1158
a6c24e68
NC
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176}
1177
704209c0 1178static void
a6c24e68
NC
1179pe_lcomm (int needs_align)
1180{
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182}
704209c0 1183#endif
a6c24e68 1184
29b0f896
AM
1185const pseudo_typeS md_pseudo_table[] =
1186{
1187#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189#else
1190 {"align", s_align_ptwo, 0},
1191#endif
1192 {"arch", set_cpu_arch, 0},
1193#ifndef I386COFF
1194 {"bss", s_bss, 0},
a6c24e68
NC
1195#else
1196 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1197#endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
d182319b 1202 {"slong", signed_cons, 4},
29b0f896
AM
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1208#ifdef BFD64
29b0f896 1209 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1210#endif
29b0f896
AM
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
3b22753a
L
1219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
07a53e5c 1221#else
68d20676 1222 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1225#endif
6482c264
NC
1226#ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228#endif
29b0f896
AM
1229 {0, 0, 0}
1230};
1231
1232/* For interface with expression (). */
1233extern char *input_line_pointer;
1234
1235/* Hash table for instruction mnemonic lookup. */
1236static struct hash_control *op_hash;
1237
1238/* Hash table for register lookup. */
1239static struct hash_control *reg_hash;
1240\f
ce8a8b2f
AM
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
62a02d25
L
1244static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1252static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1256static const unsigned char f16_3[] =
3ae729d5 1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1258static const unsigned char f16_4[] =
3ae729d5
L
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1266/* 32-bit NOPs patterns. */
1267static const unsigned char *const f32_patt[] = {
3ae729d5 1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1269};
1270/* 16-bit NOPs patterns. */
1271static const unsigned char *const f16_patt[] = {
3ae729d5 1272 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1273};
1274/* nopl (%[re]ax) */
1275static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277/* nopl 0(%[re]ax) */
1278static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280/* nopl 0(%[re]ax,%[re]ax,1) */
1281static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283/* nopw 0(%[re]ax,%[re]ax,1) */
1284static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286/* nopl 0L(%[re]ax) */
1287static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289/* nopl 0L(%[re]ax,%[re]ax,1) */
1290static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292/* nopw 0L(%[re]ax,%[re]ax,1) */
1293static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1298/* data16 nopw %cs:0L(%eax,%eax,1) */
1299static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1301/* 32-bit and 64-bit NOPs patterns. */
1302static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1304 alt_9, alt_10, alt_11
62a02d25
L
1305};
1306
1307/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310static void
1311i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314{
3ae729d5
L
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
3076e594
NC
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
62a02d25 1331 {
3ae729d5
L
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
62a02d25
L
1334 }
1335
3ae729d5
L
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
62a02d25
L
1357}
1358
3ae729d5
L
1359static INLINE int
1360fits_in_imm7 (offsetT num)
1361{
1362 return (num & 0x7f) == num;
1363}
1364
1365static INLINE int
1366fits_in_imm31 (offsetT num)
1367{
1368 return (num & 0x7fffffff) == num;
1369}
62a02d25
L
1370
1371/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374void
3ae729d5 1375i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1376{
3ae729d5 1377 const unsigned char *const *patt = NULL;
62a02d25 1378 int max_single_nop_size;
3ae729d5
L
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
62a02d25 1381
3ae729d5 1382 switch (fragP->fr_type)
62a02d25 1383 {
3ae729d5
L
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
62a02d25
L
1388 return;
1389 }
1390
ccc9c027
L
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
4eed87de 1393
76bc74dc
L
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
22109423 1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1400 be used.
ccc9c027
L
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
3ae729d5
L
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
252b5132 1411 }
33fef721 1412 else
ccc9c027 1413 {
fbf3f584 1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1423 patt = alt_patt;
ccc9c027
L
1424 else
1425 patt = f32_patt;
1426 break;
ccc9c027
L
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
ef05d495 1429 case PROCESSOR_CORE:
76bc74dc 1430 case PROCESSOR_CORE2:
bd5295b2 1431 case PROCESSOR_COREI7:
3632d14b 1432 case PROCESSOR_L1OM:
7a9068fe 1433 case PROCESSOR_K1OM:
76bc74dc 1434 case PROCESSOR_GENERIC64:
ccc9c027
L
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
4eed87de 1438 case PROCESSOR_AMDFAM10:
8aedb9fe 1439 case PROCESSOR_BD:
029f3522 1440 case PROCESSOR_ZNVER:
7b458c12 1441 case PROCESSOR_BT:
80b8656c 1442 patt = alt_patt;
ccc9c027 1443 break;
76bc74dc 1444 case PROCESSOR_I386:
ccc9c027
L
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
2dde1948 1447 case PROCESSOR_PENTIUMPRO:
81486035 1448 case PROCESSOR_IAMCU:
ccc9c027
L
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
4eed87de 1452 }
ccc9c027
L
1453 }
1454 else
1455 {
fbf3f584 1456 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1457 {
1458 case PROCESSOR_UNKNOWN:
e6a14101 1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
76bc74dc 1464 case PROCESSOR_I386:
ccc9c027
L
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
81486035 1467 case PROCESSOR_IAMCU:
ccc9c027
L
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
4eed87de 1471 case PROCESSOR_AMDFAM10:
8aedb9fe 1472 case PROCESSOR_BD:
029f3522 1473 case PROCESSOR_ZNVER:
7b458c12 1474 case PROCESSOR_BT:
ccc9c027
L
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1479 patt = alt_patt;
ccc9c027
L
1480 else
1481 patt = f32_patt;
1482 break;
76bc74dc
L
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
ef05d495 1487 case PROCESSOR_CORE2:
bd5295b2 1488 case PROCESSOR_COREI7:
3632d14b 1489 case PROCESSOR_L1OM:
7a9068fe 1490 case PROCESSOR_K1OM:
22109423 1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1492 patt = alt_patt;
ccc9c027
L
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
80b8656c 1497 patt = alt_patt;
ccc9c027 1498 break;
4eed87de 1499 }
ccc9c027
L
1500 }
1501
76bc74dc
L
1502 if (patt == f32_patt)
1503 {
3ae729d5
L
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
76bc74dc
L
1507 }
1508 else
1509 {
3ae729d5
L
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
76bc74dc 1572 }
ccc9c027 1573 }
3ae729d5
L
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
252b5132
RH
1577}
1578
c6fb90c8 1579static INLINE int
0dfbf9d7 1580operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1581{
0dfbf9d7 1582 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1583 {
1584 case 3:
0dfbf9d7 1585 if (x->array[2])
c6fb90c8 1586 return 0;
1a0670f3 1587 /* Fall through. */
c6fb90c8 1588 case 2:
0dfbf9d7 1589 if (x->array[1])
c6fb90c8 1590 return 0;
1a0670f3 1591 /* Fall through. */
c6fb90c8 1592 case 1:
0dfbf9d7 1593 return !x->array[0];
c6fb90c8
L
1594 default:
1595 abort ();
1596 }
40fb9820
L
1597}
1598
c6fb90c8 1599static INLINE void
0dfbf9d7 1600operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1601{
0dfbf9d7 1602 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1603 {
1604 case 3:
0dfbf9d7 1605 x->array[2] = v;
1a0670f3 1606 /* Fall through. */
c6fb90c8 1607 case 2:
0dfbf9d7 1608 x->array[1] = v;
1a0670f3 1609 /* Fall through. */
c6fb90c8 1610 case 1:
0dfbf9d7 1611 x->array[0] = v;
1a0670f3 1612 /* Fall through. */
c6fb90c8
L
1613 break;
1614 default:
1615 abort ();
1616 }
bab6aec1
JB
1617
1618 x->bitfield.class = ClassNone;
75e5731b 1619 x->bitfield.instance = InstanceNone;
c6fb90c8 1620}
40fb9820 1621
c6fb90c8 1622static INLINE int
0dfbf9d7
L
1623operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
c6fb90c8 1625{
0dfbf9d7 1626 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1627 {
1628 case 3:
0dfbf9d7 1629 if (x->array[2] != y->array[2])
c6fb90c8 1630 return 0;
1a0670f3 1631 /* Fall through. */
c6fb90c8 1632 case 2:
0dfbf9d7 1633 if (x->array[1] != y->array[1])
c6fb90c8 1634 return 0;
1a0670f3 1635 /* Fall through. */
c6fb90c8 1636 case 1:
0dfbf9d7 1637 return x->array[0] == y->array[0];
c6fb90c8
L
1638 break;
1639 default:
1640 abort ();
1641 }
1642}
40fb9820 1643
0dfbf9d7
L
1644static INLINE int
1645cpu_flags_all_zero (const union i386_cpu_flags *x)
1646{
1647 switch (ARRAY_SIZE(x->array))
1648 {
53467f57
IT
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
0dfbf9d7
L
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1a0670f3 1656 /* Fall through. */
0dfbf9d7
L
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1a0670f3 1660 /* Fall through. */
0dfbf9d7
L
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666}
1667
0dfbf9d7
L
1668static INLINE int
1669cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671{
1672 switch (ARRAY_SIZE(x->array))
1673 {
53467f57
IT
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
0dfbf9d7
L
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1a0670f3 1681 /* Fall through. */
0dfbf9d7
L
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1a0670f3 1685 /* Fall through. */
0dfbf9d7
L
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692}
c6fb90c8
L
1693
1694static INLINE int
1695cpu_flags_check_cpu64 (i386_cpu_flags f)
1696{
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1699}
1700
c6fb90c8
L
1701static INLINE i386_cpu_flags
1702cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1703{
c6fb90c8
L
1704 switch (ARRAY_SIZE (x.array))
1705 {
53467f57
IT
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
c6fb90c8
L
1709 case 3:
1710 x.array [2] &= y.array [2];
1a0670f3 1711 /* Fall through. */
c6fb90c8
L
1712 case 2:
1713 x.array [1] &= y.array [1];
1a0670f3 1714 /* Fall through. */
c6fb90c8
L
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722}
40fb9820 1723
c6fb90c8
L
1724static INLINE i386_cpu_flags
1725cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1726{
c6fb90c8 1727 switch (ARRAY_SIZE (x.array))
40fb9820 1728 {
53467f57
IT
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
c6fb90c8
L
1732 case 3:
1733 x.array [2] |= y.array [2];
1a0670f3 1734 /* Fall through. */
c6fb90c8
L
1735 case 2:
1736 x.array [1] |= y.array [1];
1a0670f3 1737 /* Fall through. */
c6fb90c8
L
1738 case 1:
1739 x.array [0] |= y.array [0];
40fb9820
L
1740 break;
1741 default:
1742 abort ();
1743 }
40fb9820
L
1744 return x;
1745}
1746
309d3373
JB
1747static INLINE i386_cpu_flags
1748cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749{
1750 switch (ARRAY_SIZE (x.array))
1751 {
53467f57
IT
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
309d3373
JB
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1a0670f3 1757 /* Fall through. */
309d3373
JB
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1a0670f3 1760 /* Fall through. */
309d3373
JB
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768}
1769
c0f3af97
L
1770#define CPU_FLAGS_ARCH_MATCH 0x1
1771#define CPU_FLAGS_64BIT_MATCH 0x2
1772
c0f3af97 1773#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1775
1776/* Return CPU flags match bits. */
3629bb00 1777
40fb9820 1778static int
d3ce72d0 1779cpu_flags_match (const insn_template *t)
40fb9820 1780{
c0f3af97
L
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
0dfbf9d7 1787 if (cpu_flags_all_zero (&x))
c0f3af97
L
1788 {
1789 /* This instruction is available on all archs. */
db12e14e 1790 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1791 }
3629bb00
L
1792 else
1793 {
c0f3af97 1794 /* This instruction is available only on some archs. */
3629bb00
L
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
ab592e75
JB
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
3629bb00 1802 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
a5ff0eb2
L
1805 if (x.bitfield.cpuavx)
1806 {
929f69fa 1807 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1814 }
929f69fa
JB
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
a5ff0eb2 1824 else
db12e14e 1825 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1826 }
3629bb00 1827 }
c0f3af97 1828 return match;
40fb9820
L
1829}
1830
c6fb90c8
L
1831static INLINE i386_operand_type
1832operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1833{
bab6aec1
JB
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
75e5731b
JB
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
bab6aec1 1838
c6fb90c8
L
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1a0670f3 1843 /* Fall through. */
c6fb90c8
L
1844 case 2:
1845 x.array [1] &= y.array [1];
1a0670f3 1846 /* Fall through. */
c6fb90c8
L
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
40fb9820
L
1854}
1855
73053c1f
JB
1856static INLINE i386_operand_type
1857operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858{
bab6aec1 1859 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1860 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1861
73053c1f
JB
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877}
1878
c6fb90c8
L
1879static INLINE i386_operand_type
1880operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1881{
bab6aec1
JB
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1888
c6fb90c8 1889 switch (ARRAY_SIZE (x.array))
40fb9820 1890 {
c6fb90c8
L
1891 case 3:
1892 x.array [2] |= y.array [2];
1a0670f3 1893 /* Fall through. */
c6fb90c8
L
1894 case 2:
1895 x.array [1] |= y.array [1];
1a0670f3 1896 /* Fall through. */
c6fb90c8
L
1897 case 1:
1898 x.array [0] |= y.array [0];
40fb9820
L
1899 break;
1900 default:
1901 abort ();
1902 }
c6fb90c8
L
1903 return x;
1904}
40fb9820 1905
c6fb90c8
L
1906static INLINE i386_operand_type
1907operand_type_xor (i386_operand_type x, i386_operand_type y)
1908{
bab6aec1 1909 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1910 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1911
c6fb90c8
L
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1a0670f3 1916 /* Fall through. */
c6fb90c8
L
1917 case 2:
1918 x.array [1] ^= y.array [1];
1a0670f3 1919 /* Fall through. */
c6fb90c8
L
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
40fb9820
L
1926 return x;
1927}
1928
40fb9820
L
1929static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
1933static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 1935static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1936static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1937static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947enum operand_type
1948{
1949 reg,
40fb9820
L
1950 imm,
1951 disp,
1952 anymem
1953};
1954
c6fb90c8 1955static INLINE int
40fb9820
L
1956operand_type_check (i386_operand_type t, enum operand_type c)
1957{
1958 switch (c)
1959 {
1960 case reg:
bab6aec1 1961 return t.bitfield.class == Reg;
40fb9820 1962
40fb9820
L
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
2cfe26b6
AM
1989
1990 return 0;
40fb9820
L
1991}
1992
7a54636a
L
1993/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1995
1996static INLINE int
7a54636a
L
1997match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
5c07affc 1999{
3ac21baa
JB
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2010}
2011
dd40ce22
L
2012/* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2014
2015static INLINE int
dd40ce22
L
2016match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
1b54b8d7 2018{
3ac21baa
JB
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2025}
2026
7a54636a
L
2027/* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
5c07affc
L
2029
2030static INLINE int
dd40ce22
L
2031match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
5c07affc 2033{
7a54636a 2034 return (match_operand_size (t, wanted, given)
3ac21baa 2035 && !((i.types[given].bitfield.unspecified
af508cb9 2036 && !i.broadcast
3ac21baa
JB
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
d6793fa1
JB
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
3528c362 2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2045 && !t->opcode_modifier.broadcast
3ac21baa
JB
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
5c07affc
L
2054}
2055
3ac21baa
JB
2056/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
5c07affc 2060
3ac21baa
JB
2061#define MATCH_STRAIGHT 1
2062#define MATCH_REVERSE 2
2063
2064static INLINE unsigned int
d3ce72d0 2065operand_size_match (const insn_template *t)
5c07affc 2066{
3ac21baa 2067 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2068
0cfa3eb3 2069 /* Don't check non-absolute jump instructions. */
5c07affc 2070 if (t->opcode_modifier.jump
0cfa3eb3 2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
3528c362
JB
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
601e8564 2079 && t->opcode_modifier.anysize)
5c07affc
L
2080 continue;
2081
bab6aec1 2082 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2083 && !match_operand_size (t, j, j))
5c07affc
L
2084 {
2085 match = 0;
2086 break;
2087 }
2088
3528c362 2089 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2090 && !match_simd_size (t, j, j))
1b54b8d7
JB
2091 {
2092 match = 0;
2093 break;
2094 }
2095
75e5731b 2096 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2098 {
2099 match = 0;
2100 break;
2101 }
2102
c48dadc9 2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
3ac21baa 2110 if (!t->opcode_modifier.d)
891edac4
L
2111 {
2112mismatch:
3ac21baa
JB
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
891edac4 2116 }
5c07affc
L
2117
2118 /* Check reverse. */
f5eb1d70 2119 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2120
f5eb1d70 2121 for (j = 0; j < i.operands; j++)
5c07affc 2122 {
f5eb1d70
JB
2123 unsigned int given = i.operands - j - 1;
2124
bab6aec1 2125 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2126 && !match_operand_size (t, j, given))
891edac4 2127 goto mismatch;
5c07affc 2128
3528c362 2129 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2130 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2131 goto mismatch;
2132
75e5731b 2133 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2136 goto mismatch;
2137
f5eb1d70 2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2139 goto mismatch;
5c07affc
L
2140 }
2141
3ac21baa 2142 return match | MATCH_REVERSE;
5c07affc
L
2143}
2144
c6fb90c8 2145static INLINE int
40fb9820
L
2146operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148{
2149 i386_operand_type temp = overlap;
2150
7d5e4556 2151 temp.bitfield.unspecified = 0;
5c07affc
L
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
c0f3af97 2159 temp.bitfield.ymmword = 0;
43234a1e 2160 temp.bitfield.zmmword = 0;
0dfbf9d7 2161 if (operand_type_all_zero (&temp))
891edac4 2162 goto mismatch;
40fb9820 2163
6f2f06be 2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2165 return 1;
2166
2167mismatch:
a65babc9 2168 i.error = operand_type_mismatch;
891edac4 2169 return 0;
40fb9820
L
2170}
2171
7d5e4556 2172/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
40fb9820 2176
c6fb90c8 2177static INLINE int
dc821c5f 2178operand_type_register_match (i386_operand_type g0,
40fb9820 2179 i386_operand_type t0,
40fb9820
L
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182{
bab6aec1 2183 if (g0.bitfield.class != Reg
3528c362 2184 && g0.bitfield.class != RegSIMD
10c17abd
JB
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
3528c362 2187 || t0.bitfield.class != RegSIMD))
40fb9820
L
2188 return 1;
2189
bab6aec1 2190 if (g1.bitfield.class != Reg
3528c362 2191 && g1.bitfield.class != RegSIMD
10c17abd
JB
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
3528c362 2194 || t1.bitfield.class != RegSIMD))
40fb9820
L
2195 return 1;
2196
dc821c5f
JB
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2204 return 1;
2205
dc821c5f
JB
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2213 return 1;
2214
a65babc9 2215 i.error = register_type_mismatch;
891edac4
L
2216
2217 return 0;
40fb9820
L
2218}
2219
4c692bc7
JB
2220static INLINE unsigned int
2221register_number (const reg_entry *r)
2222{
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
200cbe0f
L
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
4c692bc7
JB
2231 return nr;
2232}
2233
252b5132 2234static INLINE unsigned int
40fb9820 2235mode_from_disp_size (i386_operand_type t)
252b5132 2236{
b5014f7a 2237 if (t.bitfield.disp8)
40fb9820
L
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
252b5132
RH
2245}
2246
2247static INLINE int
65879393 2248fits_in_signed_byte (addressT num)
252b5132 2249{
65879393 2250 return num + 0x80 <= 0xff;
47926f60 2251}
252b5132
RH
2252
2253static INLINE int
65879393 2254fits_in_unsigned_byte (addressT num)
252b5132 2255{
65879393 2256 return num <= 0xff;
47926f60 2257}
252b5132
RH
2258
2259static INLINE int
65879393 2260fits_in_unsigned_word (addressT num)
252b5132 2261{
65879393 2262 return num <= 0xffff;
47926f60 2263}
252b5132
RH
2264
2265static INLINE int
65879393 2266fits_in_signed_word (addressT num)
252b5132 2267{
65879393 2268 return num + 0x8000 <= 0xffff;
47926f60 2269}
2a962e6d 2270
3e73aa7c 2271static INLINE int
65879393 2272fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2273{
2274#ifndef BFD64
2275 return 1;
2276#else
65879393 2277 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2278#endif
2279} /* fits_in_signed_long() */
2a962e6d 2280
3e73aa7c 2281static INLINE int
65879393 2282fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2283{
2284#ifndef BFD64
2285 return 1;
2286#else
65879393 2287 return num <= 0xffffffff;
3e73aa7c
JH
2288#endif
2289} /* fits_in_unsigned_long() */
252b5132 2290
43234a1e 2291static INLINE int
b5014f7a 2292fits_in_disp8 (offsetT num)
43234a1e
L
2293{
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308}
2309
a683cc34
SP
2310static INLINE int
2311fits_in_imm4 (offsetT num)
2312{
2313 return (num & 0xf) == num;
2314}
2315
40fb9820 2316static i386_operand_type
e3bb37b5 2317smallest_imm_type (offsetT num)
252b5132 2318{
40fb9820 2319 i386_operand_type t;
7ab9ffdd 2320
0dfbf9d7 2321 operand_type_set (&t, 0);
40fb9820
L
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
40fb9820
L
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
47926f60 2368}
252b5132 2369
847f7ad4 2370static offsetT
e3bb37b5 2371offset_in_range (offsetT val, int size)
847f7ad4 2372{
508866be 2373 addressT mask;
ba2adb93 2374
847f7ad4
AM
2375 switch (size)
2376 {
508866be
L
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2380#ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382#endif
47926f60 2383 default: abort ();
847f7ad4
AM
2384 }
2385
9de868bf
L
2386#ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2392#endif
ba2adb93 2393
47926f60 2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403}
2404
c32fa91d
L
2405enum PREFIX_GROUP
2406{
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
04ef582a 2410 PREFIX_DS,
c32fa91d
L
2411 PREFIX_OTHER
2412};
2413
2414/* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2421 */
2422
2423static enum PREFIX_GROUP
e3bb37b5 2424add_prefix (unsigned int prefix)
252b5132 2425{
c32fa91d 2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2427 unsigned int q;
252b5132 2428
29b0f896
AM
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
b1905489 2431 {
161a04f6 2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2436 ret = PREFIX_EXIST;
b1905489
JB
2437 q = REX_PREFIX;
2438 }
3e73aa7c 2439 else
b1905489
JB
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
b1905489 2446 case DS_PREFIX_OPCODE:
04ef582a
L
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
b1905489
JB
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
c32fa91d
L
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
b1905489 2463 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
b1905489
JB
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
c32fa91d 2481 ret = PREFIX_EXIST;
b1905489 2482 }
252b5132 2483
b1905489 2484 if (ret)
252b5132 2485 {
b1905489
JB
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
252b5132 2489 }
b1905489
JB
2490 else
2491 as_bad (_("same type of prefix used twice"));
252b5132 2492
252b5132
RH
2493 return ret;
2494}
2495
2496static void
78f12dd3 2497update_code_flag (int value, int check)
eecb386c 2498{
78f12dd3
L
2499 PRINTF_LIKE ((*as_error));
2500
1e9cc1c2 2501 flag_code = (enum flag_code) value;
40fb9820
L
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2513 {
78f12dd3
L
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2520 }
40fb9820 2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2522 {
78f12dd3
L
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2529 }
eecb386c
AM
2530 stackop_size = '\0';
2531}
2532
78f12dd3
L
2533static void
2534set_code_flag (int value)
2535{
2536 update_code_flag (value, 0);
2537}
2538
eecb386c 2539static void
e3bb37b5 2540set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2541{
1e9cc1c2 2542 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2547 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2548}
2549
2550static void
e3bb37b5 2551set_intel_syntax (int syntax_flag)
252b5132
RH
2552{
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
29b0f896 2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2558 {
d02603dc
NC
2559 char *string;
2560 int e = get_symbol_name (&string);
252b5132 2561
47926f60 2562 if (strcmp (string, "prefix") == 0)
252b5132 2563 ask_naked_reg = 1;
47926f60 2564 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2565 ask_naked_reg = -1;
2566 else
d0b47220 2567 as_bad (_("bad argument to syntax directive."));
d02603dc 2568 (void) restore_line_pointer (e);
252b5132
RH
2569 }
2570 demand_empty_rest_of_line ();
c3332e24 2571
252b5132
RH
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
f86103b7
AM
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2579
ee86248c 2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2581
e4a3b5a4 2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2584 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2585}
2586
1efbbeb4
L
2587static void
2588set_intel_mnemonic (int mnemonic_flag)
2589{
e1d4d893 2590 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2591}
2592
db51cc60
L
2593static void
2594set_allow_index_reg (int flag)
2595{
2596 allow_index_reg = flag;
2597}
2598
cb19c032 2599static void
7bab8ab5 2600set_check (int what)
cb19c032 2601{
7bab8ab5
JB
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
cb19c032
L
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
d02603dc
NC
2620 char *string;
2621 int e = get_symbol_name (&string);
cb19c032
L
2622
2623 if (strcmp (string, "none") == 0)
7bab8ab5 2624 *kind = check_none;
cb19c032 2625 else if (strcmp (string, "warning") == 0)
7bab8ab5 2626 *kind = check_warning;
cb19c032 2627 else if (strcmp (string, "error") == 0)
7bab8ab5 2628 *kind = check_error;
cb19c032 2629 else
7bab8ab5 2630 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2631 (void) restore_line_pointer (e);
cb19c032
L
2632 }
2633 else
7bab8ab5 2634 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2635
2636 demand_empty_rest_of_line ();
2637}
2638
8a9036a4
L
2639static void
2640check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2642{
2643#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
81486035
L
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
3632d14b 2664 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2666 || new_flag.bitfield.cpul1om)
8a9036a4 2667 return;
76ba9986 2668
7a9068fe
L
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
8a9036a4
L
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675#endif
2676}
2677
e413e4e9 2678static void
e3bb37b5 2679set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2680{
47926f60 2681 SKIP_WHITESPACE ();
e413e4e9 2682
29b0f896 2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2684 {
d02603dc
NC
2685 char *string;
2686 int e = get_symbol_name (&string);
91d6fa6a 2687 unsigned int j;
40fb9820 2688 i386_cpu_flags flags;
e413e4e9 2689
91d6fa6a 2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2691 {
91d6fa6a 2692 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2693 {
91d6fa6a 2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2695
5c6af06e
JB
2696 if (*string != '.')
2697 {
91d6fa6a 2698 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2699 cpu_sub_arch_name = NULL;
91d6fa6a 2700 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
91d6fa6a
NC
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
5c6af06e
JB
2718 break;
2719 }
40fb9820 2720
293f5f65
L
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
81486035 2723
5b64d091 2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2725 {
6305a203
L
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
91d6fa6a 2730 cpu_arch[j].name,
1bf57e9f 2731 (const char *) NULL);
6305a203
L
2732 free (name);
2733 }
2734 else
91d6fa6a 2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2736 cpu_arch_flags = flags;
a586129e 2737 cpu_arch_isa_flags = flags;
5c6af06e 2738 }
0089dace
L
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
d02603dc 2743 (void) restore_line_pointer (e);
5c6af06e
JB
2744 demand_empty_rest_of_line ();
2745 return;
e413e4e9
AM
2746 }
2747 }
293f5f65
L
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
33eaf5de 2751 /* Disable an ISA extension. */
293f5f65
L
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
91d6fa6a 2779 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
fddf5b5b
AM
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
29b0f896 2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2790 {
d02603dc
NC
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
fddf5b5b
AM
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
d02603dc 2804 (void) restore_line_pointer (e);
fddf5b5b
AM
2805 }
2806
e413e4e9
AM
2807 demand_empty_rest_of_line ();
2808}
2809
8a9036a4
L
2810enum bfd_architecture
2811i386_arch (void)
2812{
3632d14b 2813 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
7a9068fe
L
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
81486035
L
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
8a9036a4
L
2834 else
2835 return bfd_arch_i386;
2836}
2837
b9d79e03 2838unsigned long
7016a5d5 2839i386_mach (void)
b9d79e03 2840{
351f65ca 2841 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2842 {
3632d14b 2843 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2844 {
351f65ca
L
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
8a9036a4
L
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
7a9068fe
L
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
351f65ca 2857 else if (default_arch[6] == '\0')
8a9036a4 2858 return bfd_mach_x86_64;
351f65ca
L
2859 else
2860 return bfd_mach_x64_32;
8a9036a4 2861 }
5197d474
L
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
81486035
L
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
b9d79e03 2874 else
2b5d6a91 2875 as_fatal (_("unknown architecture"));
b9d79e03 2876}
b9d79e03 2877\f
252b5132 2878void
7016a5d5 2879md_begin (void)
252b5132
RH
2880{
2881 const char *hash_err;
2882
86fa6981
L
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
47926f60 2886 /* Initialize op_hash hash table. */
252b5132
RH
2887 op_hash = hash_new ();
2888
2889 {
d3ce72d0 2890 const insn_template *optab;
29b0f896 2891 templates *core_optab;
252b5132 2892
47926f60
KH
2893 /* Setup for loop. */
2894 optab = i386_optab;
add39d23 2895 core_optab = XNEW (templates);
252b5132
RH
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
47926f60 2905 add to hash table; & begin anew. */
252b5132
RH
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
5a49b8ac 2909 (void *) core_optab);
252b5132
RH
2910 if (hash_err)
2911 {
b37df7c4 2912 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
add39d23 2918 core_optab = XNEW (templates);
252b5132
RH
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
47926f60 2924 /* Initialize reg_hash hash table. */
252b5132
RH
2925 reg_hash = hash_new ();
2926 {
29b0f896 2927 const reg_entry *regtab;
c3fe08fa 2928 unsigned int regtab_size = i386_regtab_size;
252b5132 2929
c3fe08fa 2930 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2931 {
5a49b8ac 2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2933 if (hash_err)
b37df7c4 2934 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2935 regtab->reg_name,
2936 hash_err);
252b5132
RH
2937 }
2938 }
2939
47926f60 2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2941 {
29b0f896
AM
2942 int c;
2943 char *p;
252b5132
RH
2944
2945 for (c = 0; c < 256; c++)
2946 {
3882b010 2947 if (ISDIGIT (c))
252b5132
RH
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
3882b010 2954 else if (ISLOWER (c))
252b5132
RH
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
3882b010 2960 else if (ISUPPER (c))
252b5132 2961 {
3882b010 2962 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
43234a1e 2966 else if (c == '{' || c == '}')
86fa6981
L
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
252b5132 2971
3882b010 2972 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981#ifdef LEX_AT
2982 identifier_chars['@'] = '@';
32137342
NC
2983#endif
2984#ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
252b5132 2987#endif
252b5132 2988 digit_chars['-'] = '-';
c0f3af97 2989 mnemonic_chars['_'] = '_';
791fe849 2990 mnemonic_chars['-'] = '-';
0003779b 2991 mnemonic_chars['.'] = '.';
252b5132
RH
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
a4447b93
RH
2999 if (flag_code == CODE_64BIT)
3000 {
ca19b261
KT
3001#if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004#else
a4447b93 3005 x86_dwarf2_return_column = 16;
ca19b261 3006#endif
61ff971f 3007 x86_cie_data_alignment = -8;
a4447b93
RH
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
252b5132
RH
3014}
3015
3016void
e3bb37b5 3017i386_print_statistics (FILE *file)
252b5132
RH
3018{
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021}
3022\f
252b5132
RH
3023#ifdef DEBUG386
3024
ce8a8b2f 3025/* Debugging routines for md_assemble. */
d3ce72d0 3026static void pte (insn_template *);
40fb9820 3027static void pt (i386_operand_type);
e3bb37b5
L
3028static void pe (expressionS *);
3029static void ps (symbolS *);
252b5132
RH
3030
3031static void
2c703856 3032pi (const char *line, i386_insn *x)
252b5132 3033{
09137c09 3034 unsigned int j;
252b5132
RH
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
09f131f2
JH
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3043 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
09137c09 3051 for (j = 0; j < x->operands; j++)
252b5132 3052 {
09137c09
SP
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
252b5132 3055 fprintf (stdout, "\n");
bab6aec1 3056 if (x->types[j].bitfield.class == Reg
3528c362
JB
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
00cee14f 3059 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
252b5132
RH
3068 }
3069}
3070
3071static void
d3ce72d0 3072pte (insn_template *t)
252b5132 3073{
09137c09 3074 unsigned int j;
252b5132 3075 fprintf (stdout, " %d operands ", t->operands);
47926f60 3076 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3079 if (t->opcode_modifier.d)
252b5132 3080 fprintf (stdout, "D");
40fb9820 3081 if (t->opcode_modifier.w)
252b5132
RH
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
09137c09 3084 for (j = 0; j < t->operands; j++)
252b5132 3085 {
09137c09
SP
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
252b5132
RH
3088 fprintf (stdout, "\n");
3089 }
3090}
3091
3092static void
e3bb37b5 3093pe (expressionS *e)
252b5132 3094{
24eab124 3095 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110}
3111
3112static void
e3bb37b5 3113ps (symbolS *s)
252b5132
RH
3114{
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119}
3120
7b81dfbb 3121static struct type_name
252b5132 3122 {
40fb9820
L
3123 i386_operand_type mask;
3124 const char *name;
252b5132 3125 }
7b81dfbb 3126const type_names[] =
252b5132 3127{
40fb9820
L
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3156 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3159 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3162};
3163
3164static void
40fb9820 3165pt (i386_operand_type t)
252b5132 3166{
40fb9820 3167 unsigned int j;
c6fb90c8 3168 i386_operand_type a;
252b5132 3169
40fb9820 3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
2c703856 3173 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
252b5132
RH
3176 fflush (stdout);
3177}
3178
3179#endif /* DEBUG386 */
3180\f
252b5132 3181static bfd_reloc_code_real_type
3956db08 3182reloc (unsigned int size,
64e74474
AM
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
252b5132 3186{
47926f60 3187 if (other != NO_RELOC)
3956db08 3188 {
91d6fa6a 3189 reloc_howto_type *rel;
3956db08
JB
3190
3191 if (size == 8)
3192 switch (other)
3193 {
64e74474
AM
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
553d1284
L
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
64e74474
AM
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3956db08 3217 }
e05278af 3218
8ce3d284 3219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
1ab668bf 3223 other = BFD_RELOC_SIZE64;
8fd4256d 3224 if (pcrel)
1ab668bf
AM
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
8fd4256d 3229 }
8ce3d284 3230#endif
8fd4256d 3231
e05278af 3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3234 sign = -1;
3235
91d6fa6a
NC
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3956db08 3238 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3239 else if (size != bfd_get_reloc_size (rel))
3956db08 3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3241 bfd_get_reloc_size (rel),
3956db08 3242 size);
91d6fa6a 3243 else if (pcrel && !rel->pc_relative)
3956db08 3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3246 && !sign)
91d6fa6a 3247 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3248 && sign > 0))
3956db08
JB
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
252b5132
RH
3254
3255 if (pcrel)
3256 {
3e73aa7c 3257 if (!sign)
3956db08 3258 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
d258b828 3263 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3264 case 8: return BFD_RELOC_64_PCREL;
252b5132 3265 }
3956db08 3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3267 }
3268 else
3269 {
3956db08 3270 if (sign > 0)
e5cb08ac 3271 switch (size)
3e73aa7c
JH
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3956db08
JB
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3285 }
3286
0cc9e1d3 3287 return NO_RELOC;
252b5132
RH
3288}
3289
47926f60
KH
3290/* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
252b5132 3295int
e3bb37b5 3296tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3297{
6d249963 3298#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3299 if (!IS_ELF)
31312f95
AM
3300 return 1;
3301
a161fe53
AM
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
252b5132 3307 return 0;
31312f95 3308
8d01d9a9
AJ
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
8fd4256d
L
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
31312f95 3351#endif
252b5132
RH
3352 return 1;
3353}
252b5132 3354
b4cac588 3355static int
e3bb37b5 3356intel_float_operand (const char *mnemonic)
252b5132 3357{
9306ca4a
JB
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
252b5132 3404
9306ca4a 3405 return 1;
252b5132
RH
3406}
3407
c0f3af97
L
3408/* Build the VEX prefix. */
3409
3410static void
d3ce72d0 3411build_vex_prefix (const insn_template *t)
c0f3af97
L
3412{
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
03751133 3416 unsigned int w;
c0f3af97
L
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
43234a1e
L
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
c0f3af97
L
3425 else
3426 register_specifier = 0xf;
3427
79f0fa25
L
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
86fa6981 3432 && i.dir_encoding == dir_encoding_default
fa99fab2 3433 && i.operands == i.reg_operands
dbbc8b7e 3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3435 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
9c2799c2 3450 gas_assert (i.rm.mode == 3);
fa99fab2
L
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
dbbc8b7e
JB
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
fa99fab2
L
3462 }
3463
79dec6b7
JB
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
539f890d
L
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
10c17abd
JB
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
539f890d 3505 else
10c17abd 3506 {
56522fc5 3507 unsigned int op;
10c17abd 3508
c7213af9
L
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
10c17abd 3511 vector_length = 0;
56522fc5 3512 for (op = t->operands; op--;)
10c17abd
JB
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
c0f3af97
L
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
03751133
L
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
931d03b7 3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3547
c0f3af97 3548 /* Use 2-byte VEX prefix if possible. */
03751133
L
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
86fa6981 3551 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
03751133 3570 unsigned int m;
c0f3af97 3571
f88c9eb0 3572 i.vex.length = 3;
f88c9eb0 3573
7f399153 3574 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3575 {
7f399153
L
3576 case VEX0F:
3577 m = 0x1;
80de6e00 3578 i.vex.bytes[0] = 0xc4;
7f399153
L
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
80de6e00 3582 i.vex.bytes[0] = 0xc4;
7f399153
L
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
80de6e00 3586 i.vex.bytes[0] = 0xc4;
7f399153
L
3587 break;
3588 case XOP08:
5dd85c99
SP
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
7f399153
L
3591 break;
3592 case XOP09:
f88c9eb0
SP
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
7f399153
L
3595 break;
3596 case XOP0A:
f88c9eb0
SP
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
7f399153
L
3599 break;
3600 default:
3601 abort ();
f88c9eb0 3602 }
c0f3af97 3603
c0f3af97
L
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
c0f3af97
L
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613}
3614
e771e7c9
JB
3615static INLINE bfd_boolean
3616is_evex_encoding (const insn_template *t)
3617{
7091c612 3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3620 || t->opcode_modifier.sae;
e771e7c9
JB
3621}
3622
7a8655d2
JB
3623static INLINE bfd_boolean
3624is_any_vex_encoding (const insn_template *t)
3625{
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628}
3629
43234a1e
L
3630/* Build the EVEX prefix. */
3631
3632static void
3633build_evex_prefix (void)
3634{
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
6865c043
L
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
931d03b7 3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
e771e7c9
JB
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
56522fc5 3761 unsigned int op;
e771e7c9 3762
c7213af9
L
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
e771e7c9 3765 vec_length = 0;
56522fc5 3766 for (op = i.operands; op--;)
e771e7c9
JB
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
c7213af9
L
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
e771e7c9 3776 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
e771e7c9 3781 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
625cbd7a
JB
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
4a1b91ea 3788 switch (i.broadcast->bytes)
625cbd7a
JB
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
c7213af9 3800 abort ();
625cbd7a 3801 }
c7213af9 3802 break;
625cbd7a 3803 }
e771e7c9 3804 }
c7213af9 3805
56522fc5 3806 if (op >= MAX_OPERANDS)
c7213af9 3807 abort ();
e771e7c9
JB
3808 }
3809
43234a1e
L
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
d3d3c6db 3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843}
3844
65da13b5
L
3845static void
3846process_immext (void)
3847{
3848 expressionS *exp;
3849
c0f3af97 3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
c1e679ec 3855 AVX instructions also use this encoding, for some of
c0f3af97 3856 3 argument instructions. */
65da13b5 3857
43234a1e 3858 gas_assert (i.imm_operands <= 1
7ab9ffdd 3859 && (i.operands <= 2
7a8655d2 3860 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3861 && i.operands <= 4)));
65da13b5
L
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870}
3871
42164a71
L
3872
3873static int
3874check_hle (void)
3875{
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
82c2def5 3880 case HLEPrefixNone:
165de32a
L
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
42164a71 3883 return 0;
82c2def5 3884 case HLEPrefixLock:
42164a71
L
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
165de32a 3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3888 return 0;
82c2def5 3889 case HLEPrefixAny:
42164a71 3890 return 1;
82c2def5 3891 case HLEPrefixRelease:
42164a71
L
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
8dc0818e 3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906}
3907
b6f8c7c4
L
3908/* Try the shortest encoding by shortening operand size. */
3909
3910static void
3911optimize_encoding (void)
3912{
a0a1771e 3913 unsigned int j;
b6f8c7c4
L
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
d3d50934
L
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
b6f8c7c4
L
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
507916b8 3954 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
507916b8 3964 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 3982 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
507916b8 3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
507916b8 4004 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
507916b8 4009 i.tm.base_opcode = 0xb8;
b6f8c7c4 4010 i.tm.extension_opcode = None;
507916b8 4011 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
5641ec01
JB
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
99112332 4040 else if (i.reg_operands == 3
b6f8c7c4
L
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
7a69eac3 4044 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4045 && !i.rounding
e771e7c9 4046 && is_evex_encoding (&i.tm)
80c34c38 4047 && (i.vec_encoding != vex_encoding_evex
dd22218c 4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4050 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4051 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
8305403a
L
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4066 && i.tm.extension_opcode == None))
4067 {
99112332 4068 /* Optimize: -O1:
8305403a
L
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
b6f8c7c4
L
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4102 */
e771e7c9 4103 if (is_evex_encoding (&i.tm))
b6f8c7c4 4104 {
7b1d7ca1 4105 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
7b1d7ca1 4111 else if (optimize > 1)
dd22218c
L
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
b6f8c7c4 4115 }
f74a6307 4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
b6f8c7c4
L
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
392a5972 4131 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4132 && !i.types[0].bitfield.zmmword
392a5972 4133 && !i.types[1].bitfield.zmmword
97ed31ae 4134 && !i.mask
a0a1771e 4135 && !i.broadcast
97ed31ae 4136 && is_evex_encoding (&i.tm)
392a5972
L
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4168 */
a0a1771e 4169 for (j = 0; j < i.operands; j++)
392a5972
L
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
a0a1771e 4202 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
a0a1771e
JB
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4208 }
b6f8c7c4
L
4209}
4210
252b5132
RH
4211/* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215void
65da13b5 4216md_assemble (char *line)
252b5132 4217{
40fb9820 4218 unsigned int j;
83b16ac6 4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4220 const insn_template *t;
252b5132 4221
47926f60 4222 /* Initialize globals. */
252b5132
RH
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4225 i.reloc[j] = NO_RELOC;
252b5132
RH
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4228 save_stack_p = save_stack;
252b5132
RH
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4232 start of a (possibly prefixed) mnemonic. */
252b5132 4233
29b0f896
AM
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
83b16ac6 4237 mnem_suffix = i.suffix;
252b5132 4238
29b0f896 4239 line = parse_operands (line, mnemonic);
ee86248c 4240 this_operand = -1;
8325cc63
JB
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
29b0f896
AM
4243 if (line == NULL)
4244 return;
252b5132 4245
29b0f896
AM
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
050dfa73 4252 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4253 if (intel_syntax
4254 && i.operands > 1
29b0f896 4255 && (strcmp (mnemonic, "bound") != 0)
30123838 4256 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4259 swap_operands ();
4260
ec56d5c0
JB
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
29b0f896
AM
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
b300c311
L
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
a501d77e 4274 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
29b0f896
AM
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
252b5132 4282
83b16ac6 4283 if (!(t = match_template (mnem_suffix)))
29b0f896 4284 return;
252b5132 4285
7bab8ab5 4286 if (sse_check != check_none
81f8a913 4287 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4288 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4289 && (i.tm.cpu_flags.bitfield.cpusse
4290 || i.tm.cpu_flags.bitfield.cpusse2
4291 || i.tm.cpu_flags.bitfield.cpusse3
4292 || i.tm.cpu_flags.bitfield.cpussse3
4293 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4294 || i.tm.cpu_flags.bitfield.cpusse4_2
4295 || i.tm.cpu_flags.bitfield.cpupclmul
4296 || i.tm.cpu_flags.bitfield.cpuaes
4297 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4298 {
7bab8ab5 4299 (sse_check == check_warning
daf50ae7
L
4300 ? as_warn
4301 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4302 }
4303
321fd21e
L
4304 /* Zap movzx and movsx suffix. The suffix has been set from
4305 "word ptr" or "byte ptr" on the source operand in Intel syntax
4306 or extracted from mnemonic in AT&T syntax. But we'll use
4307 the destination register to choose the suffix for encoding. */
4308 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4309 {
321fd21e
L
4310 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4311 there is no suffix, the default will be byte extension. */
4312 if (i.reg_operands != 2
4313 && !i.suffix
7ab9ffdd 4314 && intel_syntax)
321fd21e
L
4315 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4316
4317 i.suffix = 0;
cd61ebfe 4318 }
24eab124 4319
40fb9820 4320 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4321 if (!add_prefix (FWAIT_OPCODE))
4322 return;
252b5132 4323
d5de92cf
L
4324 /* Check if REP prefix is OK. */
4325 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4326 {
4327 as_bad (_("invalid instruction `%s' after `%s'"),
4328 i.tm.name, i.rep_prefix);
4329 return;
4330 }
4331
c1ba0266
L
4332 /* Check for lock without a lockable instruction. Destination operand
4333 must be memory unless it is xchg (0x86). */
c32fa91d
L
4334 if (i.prefix[LOCK_PREFIX]
4335 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4336 || i.mem_operands == 0
4337 || (i.tm.base_opcode != 0x86
8dc0818e 4338 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4339 {
4340 as_bad (_("expecting lockable instruction after `lock'"));
4341 return;
4342 }
4343
7a8655d2
JB
4344 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4345 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4346 {
4347 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4348 return;
4349 }
4350
42164a71 4351 /* Check if HLE prefix is OK. */
165de32a 4352 if (i.hle_prefix && !check_hle ())
42164a71
L
4353 return;
4354
7e8b059b
L
4355 /* Check BND prefix. */
4356 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4357 as_bad (_("expecting valid branch instruction after `bnd'"));
4358
04ef582a 4359 /* Check NOTRACK prefix. */
9fef80d6
L
4360 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4361 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4362
327e8c42
JB
4363 if (i.tm.cpu_flags.bitfield.cpumpx)
4364 {
4365 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4366 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4367 else if (flag_code != CODE_16BIT
4368 ? i.prefix[ADDR_PREFIX]
4369 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4370 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4371 }
7e8b059b
L
4372
4373 /* Insert BND prefix. */
76d3a78a
JB
4374 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4375 {
4376 if (!i.prefix[BND_PREFIX])
4377 add_prefix (BND_PREFIX_OPCODE);
4378 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4379 {
4380 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4381 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4382 }
4383 }
7e8b059b 4384
29b0f896 4385 /* Check string instruction segment overrides. */
51c8edf6 4386 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4387 {
51c8edf6 4388 gas_assert (i.mem_operands);
29b0f896 4389 if (!check_string ())
5dd0794d 4390 return;
fc0763e6 4391 i.disp_operands = 0;
29b0f896 4392 }
5dd0794d 4393
b6f8c7c4
L
4394 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4395 optimize_encoding ();
4396
29b0f896
AM
4397 if (!process_suffix ())
4398 return;
e413e4e9 4399
bc0844ae
L
4400 /* Update operand types. */
4401 for (j = 0; j < i.operands; j++)
4402 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4403
29b0f896
AM
4404 /* Make still unresolved immediate matches conform to size of immediate
4405 given in i.suffix. */
4406 if (!finalize_imm ())
4407 return;
252b5132 4408
40fb9820 4409 if (i.types[0].bitfield.imm1)
29b0f896 4410 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4411
9afe6eb8
L
4412 /* We only need to check those implicit registers for instructions
4413 with 3 operands or less. */
4414 if (i.operands <= 3)
4415 for (j = 0; j < i.operands; j++)
75e5731b
JB
4416 if (i.types[j].bitfield.instance != InstanceNone
4417 && !i.types[j].bitfield.xmmword)
9afe6eb8 4418 i.reg_operands--;
40fb9820 4419
c0f3af97
L
4420 /* ImmExt should be processed after SSE2AVX. */
4421 if (!i.tm.opcode_modifier.sse2avx
4422 && i.tm.opcode_modifier.immext)
65da13b5 4423 process_immext ();
252b5132 4424
29b0f896
AM
4425 /* For insns with operands there are more diddles to do to the opcode. */
4426 if (i.operands)
4427 {
4428 if (!process_operands ())
4429 return;
4430 }
40fb9820 4431 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4432 {
4433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4434 as_warn (_("translating to `%sp'"), i.tm.name);
4435 }
252b5132 4436
7a8655d2 4437 if (is_any_vex_encoding (&i.tm))
9e5e5283 4438 {
c1dc7af5 4439 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4440 {
c1dc7af5 4441 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4442 i.tm.name);
4443 return;
4444 }
c0f3af97 4445
9e5e5283
L
4446 if (i.tm.opcode_modifier.vex)
4447 build_vex_prefix (t);
4448 else
4449 build_evex_prefix ();
4450 }
43234a1e 4451
5dd85c99
SP
4452 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4453 instructions may define INT_OPCODE as well, so avoid this corner
4454 case for those instructions that use MODRM. */
4455 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4456 && !i.tm.opcode_modifier.modrm
4457 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4458 {
4459 i.tm.base_opcode = INT3_OPCODE;
4460 i.imm_operands = 0;
4461 }
252b5132 4462
0cfa3eb3
JB
4463 if ((i.tm.opcode_modifier.jump == JUMP
4464 || i.tm.opcode_modifier.jump == JUMP_BYTE
4465 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4466 && i.op[0].disps->X_op == O_constant)
4467 {
4468 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4469 the absolute address given by the constant. Since ix86 jumps and
4470 calls are pc relative, we need to generate a reloc. */
4471 i.op[0].disps->X_add_symbol = &abs_symbol;
4472 i.op[0].disps->X_op = O_symbol;
4473 }
252b5132 4474
40fb9820 4475 if (i.tm.opcode_modifier.rex64)
161a04f6 4476 i.rex |= REX_W;
252b5132 4477
29b0f896
AM
4478 /* For 8 bit registers we need an empty rex prefix. Also if the
4479 instruction already has a prefix, we need to convert old
4480 registers to new ones. */
773f551c 4481
bab6aec1 4482 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4483 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4484 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4485 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4486 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4488 && i.rex != 0))
4489 {
4490 int x;
726c5dcd 4491
29b0f896
AM
4492 i.rex |= REX_OPCODE;
4493 for (x = 0; x < 2; x++)
4494 {
4495 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4496 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4497 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4498 {
29b0f896
AM
4499 /* In case it is "hi" register, give up. */
4500 if (i.op[x].regs->reg_num > 3)
a540244d 4501 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4502 "instruction requiring REX prefix."),
a540244d 4503 register_prefix, i.op[x].regs->reg_name);
773f551c 4504
29b0f896
AM
4505 /* Otherwise it is equivalent to the extended register.
4506 Since the encoding doesn't change this is merely
4507 cosmetic cleanup for debug output. */
4508
4509 i.op[x].regs = i.op[x].regs + 8;
773f551c 4510 }
29b0f896
AM
4511 }
4512 }
773f551c 4513
6b6b6807
L
4514 if (i.rex == 0 && i.rex_encoding)
4515 {
4516 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4517 that uses legacy register. If it is "hi" register, don't add
4518 the REX_OPCODE byte. */
4519 int x;
4520 for (x = 0; x < 2; x++)
bab6aec1 4521 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4522 && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0
4524 && i.op[x].regs->reg_num > 3)
4525 {
4526 i.rex_encoding = FALSE;
4527 break;
4528 }
4529
4530 if (i.rex_encoding)
4531 i.rex = REX_OPCODE;
4532 }
4533
7ab9ffdd 4534 if (i.rex != 0)
29b0f896
AM
4535 add_prefix (REX_OPCODE | i.rex);
4536
4537 /* We are ready to output the insn. */
4538 output_insn ();
4539}
4540
4541static char *
e3bb37b5 4542parse_insn (char *line, char *mnemonic)
29b0f896
AM
4543{
4544 char *l = line;
4545 char *token_start = l;
4546 char *mnem_p;
5c6af06e 4547 int supported;
d3ce72d0 4548 const insn_template *t;
b6169b20 4549 char *dot_p = NULL;
29b0f896 4550
29b0f896
AM
4551 while (1)
4552 {
4553 mnem_p = mnemonic;
4554 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4555 {
b6169b20
L
4556 if (*mnem_p == '.')
4557 dot_p = mnem_p;
29b0f896
AM
4558 mnem_p++;
4559 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4560 {
29b0f896
AM
4561 as_bad (_("no such instruction: `%s'"), token_start);
4562 return NULL;
4563 }
4564 l++;
4565 }
4566 if (!is_space_char (*l)
4567 && *l != END_OF_INSN
e44823cf
JB
4568 && (intel_syntax
4569 || (*l != PREFIX_SEPARATOR
4570 && *l != ',')))
29b0f896
AM
4571 {
4572 as_bad (_("invalid character %s in mnemonic"),
4573 output_invalid (*l));
4574 return NULL;
4575 }
4576 if (token_start == l)
4577 {
e44823cf 4578 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4579 as_bad (_("expecting prefix; got nothing"));
4580 else
4581 as_bad (_("expecting mnemonic; got nothing"));
4582 return NULL;
4583 }
45288df1 4584
29b0f896 4585 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4586 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4587
29b0f896
AM
4588 if (*l != END_OF_INSN
4589 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4590 && current_templates
40fb9820 4591 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4592 {
c6fb90c8 4593 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4594 {
4595 as_bad ((flag_code != CODE_64BIT
4596 ? _("`%s' is only supported in 64-bit mode")
4597 : _("`%s' is not supported in 64-bit mode")),
4598 current_templates->start->name);
4599 return NULL;
4600 }
29b0f896
AM
4601 /* If we are in 16-bit mode, do not allow addr16 or data16.
4602 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4603 if ((current_templates->start->opcode_modifier.size == SIZE16
4604 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4605 && flag_code != CODE_64BIT
673fe0f0 4606 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4607 ^ (flag_code == CODE_16BIT)))
4608 {
4609 as_bad (_("redundant %s prefix"),
4610 current_templates->start->name);
4611 return NULL;
45288df1 4612 }
86fa6981 4613 if (current_templates->start->opcode_length == 0)
29b0f896 4614 {
86fa6981
L
4615 /* Handle pseudo prefixes. */
4616 switch (current_templates->start->base_opcode)
4617 {
4618 case 0x0:
4619 /* {disp8} */
4620 i.disp_encoding = disp_encoding_8bit;
4621 break;
4622 case 0x1:
4623 /* {disp32} */
4624 i.disp_encoding = disp_encoding_32bit;
4625 break;
4626 case 0x2:
4627 /* {load} */
4628 i.dir_encoding = dir_encoding_load;
4629 break;
4630 case 0x3:
4631 /* {store} */
4632 i.dir_encoding = dir_encoding_store;
4633 break;
4634 case 0x4:
4635 /* {vex2} */
4636 i.vec_encoding = vex_encoding_vex2;
4637 break;
4638 case 0x5:
4639 /* {vex3} */
4640 i.vec_encoding = vex_encoding_vex3;
4641 break;
4642 case 0x6:
4643 /* {evex} */
4644 i.vec_encoding = vex_encoding_evex;
4645 break;
6b6b6807
L
4646 case 0x7:
4647 /* {rex} */
4648 i.rex_encoding = TRUE;
4649 break;
b6f8c7c4
L
4650 case 0x8:
4651 /* {nooptimize} */
4652 i.no_optimize = TRUE;
4653 break;
86fa6981
L
4654 default:
4655 abort ();
4656 }
4657 }
4658 else
4659 {
4660 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4661 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4662 {
4e9ac44a
L
4663 case PREFIX_EXIST:
4664 return NULL;
4665 case PREFIX_DS:
d777820b 4666 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4667 i.notrack_prefix = current_templates->start->name;
4668 break;
4669 case PREFIX_REP:
4670 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4671 i.hle_prefix = current_templates->start->name;
4672 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4673 i.bnd_prefix = current_templates->start->name;
4674 else
4675 i.rep_prefix = current_templates->start->name;
4676 break;
4677 default:
4678 break;
86fa6981 4679 }
29b0f896
AM
4680 }
4681 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4682 token_start = ++l;
4683 }
4684 else
4685 break;
4686 }
45288df1 4687
30a55f88 4688 if (!current_templates)
b6169b20 4689 {
07d5e953
JB
4690 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4691 Check if we should swap operand or force 32bit displacement in
f8a5c266 4692 encoding. */
30a55f88 4693 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4694 i.dir_encoding = dir_encoding_swap;
8d63c93e 4695 else if (mnem_p - 3 == dot_p
a501d77e
L
4696 && dot_p[1] == 'd'
4697 && dot_p[2] == '8')
4698 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4699 else if (mnem_p - 4 == dot_p
f8a5c266
L
4700 && dot_p[1] == 'd'
4701 && dot_p[2] == '3'
4702 && dot_p[3] == '2')
a501d77e 4703 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4704 else
4705 goto check_suffix;
4706 mnem_p = dot_p;
4707 *dot_p = '\0';
d3ce72d0 4708 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4709 }
4710
29b0f896
AM
4711 if (!current_templates)
4712 {
b6169b20 4713check_suffix:
1c529385 4714 if (mnem_p > mnemonic)
29b0f896 4715 {
1c529385
LH
4716 /* See if we can get a match by trimming off a suffix. */
4717 switch (mnem_p[-1])
29b0f896 4718 {
1c529385
LH
4719 case WORD_MNEM_SUFFIX:
4720 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4721 i.suffix = SHORT_MNEM_SUFFIX;
4722 else
1c529385
LH
4723 /* Fall through. */
4724 case BYTE_MNEM_SUFFIX:
4725 case QWORD_MNEM_SUFFIX:
4726 i.suffix = mnem_p[-1];
29b0f896 4727 mnem_p[-1] = '\0';
d3ce72d0 4728 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4729 mnemonic);
4730 break;
4731 case SHORT_MNEM_SUFFIX:
4732 case LONG_MNEM_SUFFIX:
4733 if (!intel_syntax)
4734 {
4735 i.suffix = mnem_p[-1];
4736 mnem_p[-1] = '\0';
4737 current_templates = (const templates *) hash_find (op_hash,
4738 mnemonic);
4739 }
4740 break;
4741
4742 /* Intel Syntax. */
4743 case 'd':
4744 if (intel_syntax)
4745 {
4746 if (intel_float_operand (mnemonic) == 1)
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 i.suffix = LONG_MNEM_SUFFIX;
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 }
4754 break;
29b0f896 4755 }
29b0f896 4756 }
1c529385 4757
29b0f896
AM
4758 if (!current_templates)
4759 {
4760 as_bad (_("no such instruction: `%s'"), token_start);
4761 return NULL;
4762 }
4763 }
252b5132 4764
0cfa3eb3
JB
4765 if (current_templates->start->opcode_modifier.jump == JUMP
4766 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4767 {
4768 /* Check for a branch hint. We allow ",pt" and ",pn" for
4769 predict taken and predict not taken respectively.
4770 I'm not sure that branch hints actually do anything on loop
4771 and jcxz insns (JumpByte) for current Pentium4 chips. They
4772 may work in the future and it doesn't hurt to accept them
4773 now. */
4774 if (l[0] == ',' && l[1] == 'p')
4775 {
4776 if (l[2] == 't')
4777 {
4778 if (!add_prefix (DS_PREFIX_OPCODE))
4779 return NULL;
4780 l += 3;
4781 }
4782 else if (l[2] == 'n')
4783 {
4784 if (!add_prefix (CS_PREFIX_OPCODE))
4785 return NULL;
4786 l += 3;
4787 }
4788 }
4789 }
4790 /* Any other comma loses. */
4791 if (*l == ',')
4792 {
4793 as_bad (_("invalid character %s in mnemonic"),
4794 output_invalid (*l));
4795 return NULL;
4796 }
252b5132 4797
29b0f896 4798 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4799 supported = 0;
4800 for (t = current_templates->start; t < current_templates->end; ++t)
4801 {
c0f3af97
L
4802 supported |= cpu_flags_match (t);
4803 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4804 {
4805 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4806 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4807
548d0ee6
JB
4808 return l;
4809 }
29b0f896 4810 }
3629bb00 4811
548d0ee6
JB
4812 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4813 as_bad (flag_code == CODE_64BIT
4814 ? _("`%s' is not supported in 64-bit mode")
4815 : _("`%s' is only supported in 64-bit mode"),
4816 current_templates->start->name);
4817 else
4818 as_bad (_("`%s' is not supported on `%s%s'"),
4819 current_templates->start->name,
4820 cpu_arch_name ? cpu_arch_name : default_arch,
4821 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4822
548d0ee6 4823 return NULL;
29b0f896 4824}
252b5132 4825
29b0f896 4826static char *
e3bb37b5 4827parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4828{
4829 char *token_start;
3138f287 4830
29b0f896
AM
4831 /* 1 if operand is pending after ','. */
4832 unsigned int expecting_operand = 0;
252b5132 4833
29b0f896
AM
4834 /* Non-zero if operand parens not balanced. */
4835 unsigned int paren_not_balanced;
4836
4837 while (*l != END_OF_INSN)
4838 {
4839 /* Skip optional white space before operand. */
4840 if (is_space_char (*l))
4841 ++l;
d02603dc 4842 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4843 {
4844 as_bad (_("invalid character %s before operand %d"),
4845 output_invalid (*l),
4846 i.operands + 1);
4847 return NULL;
4848 }
d02603dc 4849 token_start = l; /* After white space. */
29b0f896
AM
4850 paren_not_balanced = 0;
4851 while (paren_not_balanced || *l != ',')
4852 {
4853 if (*l == END_OF_INSN)
4854 {
4855 if (paren_not_balanced)
4856 {
4857 if (!intel_syntax)
4858 as_bad (_("unbalanced parenthesis in operand %d."),
4859 i.operands + 1);
4860 else
4861 as_bad (_("unbalanced brackets in operand %d."),
4862 i.operands + 1);
4863 return NULL;
4864 }
4865 else
4866 break; /* we are done */
4867 }
d02603dc 4868 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4869 {
4870 as_bad (_("invalid character %s in operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 if (!intel_syntax)
4876 {
4877 if (*l == '(')
4878 ++paren_not_balanced;
4879 if (*l == ')')
4880 --paren_not_balanced;
4881 }
4882 else
4883 {
4884 if (*l == '[')
4885 ++paren_not_balanced;
4886 if (*l == ']')
4887 --paren_not_balanced;
4888 }
4889 l++;
4890 }
4891 if (l != token_start)
4892 { /* Yes, we've read in another operand. */
4893 unsigned int operand_ok;
4894 this_operand = i.operands++;
4895 if (i.operands > MAX_OPERANDS)
4896 {
4897 as_bad (_("spurious operands; (%d operands/instruction max)"),
4898 MAX_OPERANDS);
4899 return NULL;
4900 }
9d46ce34 4901 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4902 /* Now parse operand adding info to 'i' as we go along. */
4903 END_STRING_AND_SAVE (l);
4904
1286ab78
L
4905 if (i.mem_operands > 1)
4906 {
4907 as_bad (_("too many memory references for `%s'"),
4908 mnemonic);
4909 return 0;
4910 }
4911
29b0f896
AM
4912 if (intel_syntax)
4913 operand_ok =
4914 i386_intel_operand (token_start,
4915 intel_float_operand (mnemonic));
4916 else
a7619375 4917 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4918
4919 RESTORE_END_STRING (l);
4920 if (!operand_ok)
4921 return NULL;
4922 }
4923 else
4924 {
4925 if (expecting_operand)
4926 {
4927 expecting_operand_after_comma:
4928 as_bad (_("expecting operand after ','; got nothing"));
4929 return NULL;
4930 }
4931 if (*l == ',')
4932 {
4933 as_bad (_("expecting operand before ','; got nothing"));
4934 return NULL;
4935 }
4936 }
7f3f1ea2 4937
29b0f896
AM
4938 /* Now *l must be either ',' or END_OF_INSN. */
4939 if (*l == ',')
4940 {
4941 if (*++l == END_OF_INSN)
4942 {
4943 /* Just skip it, if it's \n complain. */
4944 goto expecting_operand_after_comma;
4945 }
4946 expecting_operand = 1;
4947 }
4948 }
4949 return l;
4950}
7f3f1ea2 4951
050dfa73 4952static void
4d456e3d 4953swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4954{
4955 union i386_op temp_op;
40fb9820 4956 i386_operand_type temp_type;
c48dadc9 4957 unsigned int temp_flags;
050dfa73 4958 enum bfd_reloc_code_real temp_reloc;
4eed87de 4959
050dfa73
MM
4960 temp_type = i.types[xchg2];
4961 i.types[xchg2] = i.types[xchg1];
4962 i.types[xchg1] = temp_type;
c48dadc9
JB
4963
4964 temp_flags = i.flags[xchg2];
4965 i.flags[xchg2] = i.flags[xchg1];
4966 i.flags[xchg1] = temp_flags;
4967
050dfa73
MM
4968 temp_op = i.op[xchg2];
4969 i.op[xchg2] = i.op[xchg1];
4970 i.op[xchg1] = temp_op;
c48dadc9 4971
050dfa73
MM
4972 temp_reloc = i.reloc[xchg2];
4973 i.reloc[xchg2] = i.reloc[xchg1];
4974 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4975
4976 if (i.mask)
4977 {
4978 if (i.mask->operand == xchg1)
4979 i.mask->operand = xchg2;
4980 else if (i.mask->operand == xchg2)
4981 i.mask->operand = xchg1;
4982 }
4983 if (i.broadcast)
4984 {
4985 if (i.broadcast->operand == xchg1)
4986 i.broadcast->operand = xchg2;
4987 else if (i.broadcast->operand == xchg2)
4988 i.broadcast->operand = xchg1;
4989 }
4990 if (i.rounding)
4991 {
4992 if (i.rounding->operand == xchg1)
4993 i.rounding->operand = xchg2;
4994 else if (i.rounding->operand == xchg2)
4995 i.rounding->operand = xchg1;
4996 }
050dfa73
MM
4997}
4998
29b0f896 4999static void
e3bb37b5 5000swap_operands (void)
29b0f896 5001{
b7c61d9a 5002 switch (i.operands)
050dfa73 5003 {
c0f3af97 5004 case 5:
b7c61d9a 5005 case 4:
4d456e3d 5006 swap_2_operands (1, i.operands - 2);
1a0670f3 5007 /* Fall through. */
b7c61d9a
L
5008 case 3:
5009 case 2:
4d456e3d 5010 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5011 break;
5012 default:
5013 abort ();
29b0f896 5014 }
29b0f896
AM
5015
5016 if (i.mem_operands == 2)
5017 {
5018 const seg_entry *temp_seg;
5019 temp_seg = i.seg[0];
5020 i.seg[0] = i.seg[1];
5021 i.seg[1] = temp_seg;
5022 }
5023}
252b5132 5024
29b0f896
AM
5025/* Try to ensure constant immediates are represented in the smallest
5026 opcode possible. */
5027static void
e3bb37b5 5028optimize_imm (void)
29b0f896
AM
5029{
5030 char guess_suffix = 0;
5031 int op;
252b5132 5032
29b0f896
AM
5033 if (i.suffix)
5034 guess_suffix = i.suffix;
5035 else if (i.reg_operands)
5036 {
5037 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5038 We can't do this properly yet, i.e. excluding special register
5039 instances, but the following works for instructions with
5040 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5041 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5042 if (i.types[op].bitfield.class != Reg)
5043 continue;
5044 else if (i.types[op].bitfield.byte)
7ab9ffdd 5045 {
40fb9820
L
5046 guess_suffix = BYTE_MNEM_SUFFIX;
5047 break;
5048 }
bab6aec1 5049 else if (i.types[op].bitfield.word)
252b5132 5050 {
40fb9820
L
5051 guess_suffix = WORD_MNEM_SUFFIX;
5052 break;
5053 }
bab6aec1 5054 else if (i.types[op].bitfield.dword)
40fb9820
L
5055 {
5056 guess_suffix = LONG_MNEM_SUFFIX;
5057 break;
5058 }
bab6aec1 5059 else if (i.types[op].bitfield.qword)
40fb9820
L
5060 {
5061 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5062 break;
252b5132 5063 }
29b0f896
AM
5064 }
5065 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5066 guess_suffix = WORD_MNEM_SUFFIX;
5067
5068 for (op = i.operands; --op >= 0;)
40fb9820 5069 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5070 {
5071 switch (i.op[op].imms->X_op)
252b5132 5072 {
29b0f896
AM
5073 case O_constant:
5074 /* If a suffix is given, this operand may be shortened. */
5075 switch (guess_suffix)
252b5132 5076 {
29b0f896 5077 case LONG_MNEM_SUFFIX:
40fb9820
L
5078 i.types[op].bitfield.imm32 = 1;
5079 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5080 break;
5081 case WORD_MNEM_SUFFIX:
40fb9820
L
5082 i.types[op].bitfield.imm16 = 1;
5083 i.types[op].bitfield.imm32 = 1;
5084 i.types[op].bitfield.imm32s = 1;
5085 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5086 break;
5087 case BYTE_MNEM_SUFFIX:
40fb9820
L
5088 i.types[op].bitfield.imm8 = 1;
5089 i.types[op].bitfield.imm8s = 1;
5090 i.types[op].bitfield.imm16 = 1;
5091 i.types[op].bitfield.imm32 = 1;
5092 i.types[op].bitfield.imm32s = 1;
5093 i.types[op].bitfield.imm64 = 1;
29b0f896 5094 break;
252b5132 5095 }
252b5132 5096
29b0f896
AM
5097 /* If this operand is at most 16 bits, convert it
5098 to a signed 16 bit number before trying to see
5099 whether it will fit in an even smaller size.
5100 This allows a 16-bit operand such as $0xffe0 to
5101 be recognised as within Imm8S range. */
40fb9820 5102 if ((i.types[op].bitfield.imm16)
29b0f896 5103 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5104 {
29b0f896
AM
5105 i.op[op].imms->X_add_number =
5106 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5107 }
a28def75
L
5108#ifdef BFD64
5109 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5110 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5111 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5112 == 0))
5113 {
5114 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5115 ^ ((offsetT) 1 << 31))
5116 - ((offsetT) 1 << 31));
5117 }
a28def75 5118#endif
40fb9820 5119 i.types[op]
c6fb90c8
L
5120 = operand_type_or (i.types[op],
5121 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5122
29b0f896
AM
5123 /* We must avoid matching of Imm32 templates when 64bit
5124 only immediate is available. */
5125 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5126 i.types[op].bitfield.imm32 = 0;
29b0f896 5127 break;
252b5132 5128
29b0f896
AM
5129 case O_absent:
5130 case O_register:
5131 abort ();
5132
5133 /* Symbols and expressions. */
5134 default:
9cd96992
JB
5135 /* Convert symbolic operand to proper sizes for matching, but don't
5136 prevent matching a set of insns that only supports sizes other
5137 than those matching the insn suffix. */
5138 {
40fb9820 5139 i386_operand_type mask, allowed;
d3ce72d0 5140 const insn_template *t;
9cd96992 5141
0dfbf9d7
L
5142 operand_type_set (&mask, 0);
5143 operand_type_set (&allowed, 0);
40fb9820 5144
4eed87de
AM
5145 for (t = current_templates->start;
5146 t < current_templates->end;
5147 ++t)
bab6aec1
JB
5148 {
5149 allowed = operand_type_or (allowed, t->operand_types[op]);
5150 allowed = operand_type_and (allowed, anyimm);
5151 }
9cd96992
JB
5152 switch (guess_suffix)
5153 {
5154 case QWORD_MNEM_SUFFIX:
40fb9820
L
5155 mask.bitfield.imm64 = 1;
5156 mask.bitfield.imm32s = 1;
9cd96992
JB
5157 break;
5158 case LONG_MNEM_SUFFIX:
40fb9820 5159 mask.bitfield.imm32 = 1;
9cd96992
JB
5160 break;
5161 case WORD_MNEM_SUFFIX:
40fb9820 5162 mask.bitfield.imm16 = 1;
9cd96992
JB
5163 break;
5164 case BYTE_MNEM_SUFFIX:
40fb9820 5165 mask.bitfield.imm8 = 1;
9cd96992
JB
5166 break;
5167 default:
9cd96992
JB
5168 break;
5169 }
c6fb90c8 5170 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5171 if (!operand_type_all_zero (&allowed))
c6fb90c8 5172 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5173 }
29b0f896 5174 break;
252b5132 5175 }
29b0f896
AM
5176 }
5177}
47926f60 5178
29b0f896
AM
5179/* Try to use the smallest displacement type too. */
5180static void
e3bb37b5 5181optimize_disp (void)
29b0f896
AM
5182{
5183 int op;
3e73aa7c 5184
29b0f896 5185 for (op = i.operands; --op >= 0;)
40fb9820 5186 if (operand_type_check (i.types[op], disp))
252b5132 5187 {
b300c311 5188 if (i.op[op].disps->X_op == O_constant)
252b5132 5189 {
91d6fa6a 5190 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5191
40fb9820 5192 if (i.types[op].bitfield.disp16
91d6fa6a 5193 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5194 {
5195 /* If this operand is at most 16 bits, convert
5196 to a signed 16 bit number and don't use 64bit
5197 displacement. */
91d6fa6a 5198 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5199 i.types[op].bitfield.disp64 = 0;
b300c311 5200 }
a28def75
L
5201#ifdef BFD64
5202 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5203 if (i.types[op].bitfield.disp32
91d6fa6a 5204 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5205 {
5206 /* If this operand is at most 32 bits, convert
5207 to a signed 32 bit number and don't use 64bit
5208 displacement. */
91d6fa6a
NC
5209 op_disp &= (((offsetT) 2 << 31) - 1);
5210 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5211 i.types[op].bitfield.disp64 = 0;
b300c311 5212 }
a28def75 5213#endif
91d6fa6a 5214 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5215 {
40fb9820
L
5216 i.types[op].bitfield.disp8 = 0;
5217 i.types[op].bitfield.disp16 = 0;
5218 i.types[op].bitfield.disp32 = 0;
5219 i.types[op].bitfield.disp32s = 0;
5220 i.types[op].bitfield.disp64 = 0;
b300c311
L
5221 i.op[op].disps = 0;
5222 i.disp_operands--;
5223 }
5224 else if (flag_code == CODE_64BIT)
5225 {
91d6fa6a 5226 if (fits_in_signed_long (op_disp))
28a9d8f5 5227 {
40fb9820
L
5228 i.types[op].bitfield.disp64 = 0;
5229 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5230 }
0e1147d9 5231 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5232 && fits_in_unsigned_long (op_disp))
40fb9820 5233 i.types[op].bitfield.disp32 = 1;
b300c311 5234 }
40fb9820
L
5235 if ((i.types[op].bitfield.disp32
5236 || i.types[op].bitfield.disp32s
5237 || i.types[op].bitfield.disp16)
b5014f7a 5238 && fits_in_disp8 (op_disp))
40fb9820 5239 i.types[op].bitfield.disp8 = 1;
252b5132 5240 }
67a4f2b7
AO
5241 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5242 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5243 {
5244 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5245 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5246 i.types[op].bitfield.disp8 = 0;
5247 i.types[op].bitfield.disp16 = 0;
5248 i.types[op].bitfield.disp32 = 0;
5249 i.types[op].bitfield.disp32s = 0;
5250 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5251 }
5252 else
b300c311 5253 /* We only support 64bit displacement on constants. */
40fb9820 5254 i.types[op].bitfield.disp64 = 0;
252b5132 5255 }
29b0f896
AM
5256}
5257
4a1b91ea
L
5258/* Return 1 if there is a match in broadcast bytes between operand
5259 GIVEN and instruction template T. */
5260
5261static INLINE int
5262match_broadcast_size (const insn_template *t, unsigned int given)
5263{
5264 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5265 && i.types[given].bitfield.byte)
5266 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5267 && i.types[given].bitfield.word)
5268 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5269 && i.types[given].bitfield.dword)
5270 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5271 && i.types[given].bitfield.qword));
5272}
5273
6c30d220
L
5274/* Check if operands are valid for the instruction. */
5275
5276static int
5277check_VecOperands (const insn_template *t)
5278{
43234a1e 5279 unsigned int op;
e2195274
JB
5280 i386_cpu_flags cpu;
5281 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5282
5283 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5284 any one operand are implicity requiring AVX512VL support if the actual
5285 operand size is YMMword or XMMword. Since this function runs after
5286 template matching, there's no need to check for YMMword/XMMword in
5287 the template. */
5288 cpu = cpu_flags_and (t->cpu_flags, avx512);
5289 if (!cpu_flags_all_zero (&cpu)
5290 && !t->cpu_flags.bitfield.cpuavx512vl
5291 && !cpu_arch_flags.bitfield.cpuavx512vl)
5292 {
5293 for (op = 0; op < t->operands; ++op)
5294 {
5295 if (t->operand_types[op].bitfield.zmmword
5296 && (i.types[op].bitfield.ymmword
5297 || i.types[op].bitfield.xmmword))
5298 {
5299 i.error = unsupported;
5300 return 1;
5301 }
5302 }
5303 }
43234a1e 5304
6c30d220
L
5305 /* Without VSIB byte, we can't have a vector register for index. */
5306 if (!t->opcode_modifier.vecsib
5307 && i.index_reg
1b54b8d7
JB
5308 && (i.index_reg->reg_type.bitfield.xmmword
5309 || i.index_reg->reg_type.bitfield.ymmword
5310 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5311 {
5312 i.error = unsupported_vector_index_register;
5313 return 1;
5314 }
5315
ad8ecc81
MZ
5316 /* Check if default mask is allowed. */
5317 if (t->opcode_modifier.nodefmask
5318 && (!i.mask || i.mask->mask->reg_num == 0))
5319 {
5320 i.error = no_default_mask;
5321 return 1;
5322 }
5323
7bab8ab5
JB
5324 /* For VSIB byte, we need a vector register for index, and all vector
5325 registers must be distinct. */
5326 if (t->opcode_modifier.vecsib)
5327 {
5328 if (!i.index_reg
6c30d220 5329 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5330 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5331 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5332 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5333 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5334 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5335 {
5336 i.error = invalid_vsib_address;
5337 return 1;
5338 }
5339
43234a1e
L
5340 gas_assert (i.reg_operands == 2 || i.mask);
5341 if (i.reg_operands == 2 && !i.mask)
5342 {
3528c362 5343 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5344 gas_assert (i.types[0].bitfield.xmmword
5345 || i.types[0].bitfield.ymmword);
3528c362 5346 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5347 gas_assert (i.types[2].bitfield.xmmword
5348 || i.types[2].bitfield.ymmword);
43234a1e
L
5349 if (operand_check == check_none)
5350 return 0;
5351 if (register_number (i.op[0].regs)
5352 != register_number (i.index_reg)
5353 && register_number (i.op[2].regs)
5354 != register_number (i.index_reg)
5355 && register_number (i.op[0].regs)
5356 != register_number (i.op[2].regs))
5357 return 0;
5358 if (operand_check == check_error)
5359 {
5360 i.error = invalid_vector_register_set;
5361 return 1;
5362 }
5363 as_warn (_("mask, index, and destination registers should be distinct"));
5364 }
8444f82a
MZ
5365 else if (i.reg_operands == 1 && i.mask)
5366 {
3528c362 5367 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5368 && (i.types[1].bitfield.xmmword
5369 || i.types[1].bitfield.ymmword
5370 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5371 && (register_number (i.op[1].regs)
5372 == register_number (i.index_reg)))
5373 {
5374 if (operand_check == check_error)
5375 {
5376 i.error = invalid_vector_register_set;
5377 return 1;
5378 }
5379 if (operand_check != check_none)
5380 as_warn (_("index and destination registers should be distinct"));
5381 }
5382 }
43234a1e 5383 }
7bab8ab5 5384
43234a1e
L
5385 /* Check if broadcast is supported by the instruction and is applied
5386 to the memory operand. */
5387 if (i.broadcast)
5388 {
8e6e0792 5389 i386_operand_type type, overlap;
43234a1e
L
5390
5391 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5392 and its broadcast bytes match the memory operand. */
32546502 5393 op = i.broadcast->operand;
8e6e0792 5394 if (!t->opcode_modifier.broadcast
c48dadc9 5395 || !(i.flags[op] & Operand_Mem)
c39e5b26 5396 || (!i.types[op].bitfield.unspecified
4a1b91ea 5397 && !match_broadcast_size (t, op)))
43234a1e
L
5398 {
5399 bad_broadcast:
5400 i.error = unsupported_broadcast;
5401 return 1;
5402 }
8e6e0792 5403
4a1b91ea
L
5404 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5405 * i.broadcast->type);
8e6e0792 5406 operand_type_set (&type, 0);
4a1b91ea 5407 switch (i.broadcast->bytes)
8e6e0792 5408 {
4a1b91ea
L
5409 case 2:
5410 type.bitfield.word = 1;
5411 break;
5412 case 4:
5413 type.bitfield.dword = 1;
5414 break;
8e6e0792
JB
5415 case 8:
5416 type.bitfield.qword = 1;
5417 break;
5418 case 16:
5419 type.bitfield.xmmword = 1;
5420 break;
5421 case 32:
5422 type.bitfield.ymmword = 1;
5423 break;
5424 case 64:
5425 type.bitfield.zmmword = 1;
5426 break;
5427 default:
5428 goto bad_broadcast;
5429 }
5430
5431 overlap = operand_type_and (type, t->operand_types[op]);
5432 if (operand_type_all_zero (&overlap))
5433 goto bad_broadcast;
5434
5435 if (t->opcode_modifier.checkregsize)
5436 {
5437 unsigned int j;
5438
e2195274 5439 type.bitfield.baseindex = 1;
8e6e0792
JB
5440 for (j = 0; j < i.operands; ++j)
5441 {
5442 if (j != op
5443 && !operand_type_register_match(i.types[j],
5444 t->operand_types[j],
5445 type,
5446 t->operand_types[op]))
5447 goto bad_broadcast;
5448 }
5449 }
43234a1e
L
5450 }
5451 /* If broadcast is supported in this instruction, we need to check if
5452 operand of one-element size isn't specified without broadcast. */
5453 else if (t->opcode_modifier.broadcast && i.mem_operands)
5454 {
5455 /* Find memory operand. */
5456 for (op = 0; op < i.operands; op++)
8dc0818e 5457 if (i.flags[op] & Operand_Mem)
43234a1e
L
5458 break;
5459 gas_assert (op < i.operands);
5460 /* Check size of the memory operand. */
4a1b91ea 5461 if (match_broadcast_size (t, op))
43234a1e
L
5462 {
5463 i.error = broadcast_needed;
5464 return 1;
5465 }
5466 }
c39e5b26
JB
5467 else
5468 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5469
5470 /* Check if requested masking is supported. */
ae2387fe 5471 if (i.mask)
43234a1e 5472 {
ae2387fe
JB
5473 switch (t->opcode_modifier.masking)
5474 {
5475 case BOTH_MASKING:
5476 break;
5477 case MERGING_MASKING:
5478 if (i.mask->zeroing)
5479 {
5480 case 0:
5481 i.error = unsupported_masking;
5482 return 1;
5483 }
5484 break;
5485 case DYNAMIC_MASKING:
5486 /* Memory destinations allow only merging masking. */
5487 if (i.mask->zeroing && i.mem_operands)
5488 {
5489 /* Find memory operand. */
5490 for (op = 0; op < i.operands; op++)
c48dadc9 5491 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5492 break;
5493 gas_assert (op < i.operands);
5494 if (op == i.operands - 1)
5495 {
5496 i.error = unsupported_masking;
5497 return 1;
5498 }
5499 }
5500 break;
5501 default:
5502 abort ();
5503 }
43234a1e
L
5504 }
5505
5506 /* Check if masking is applied to dest operand. */
5507 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5508 {
5509 i.error = mask_not_on_destination;
5510 return 1;
5511 }
5512
43234a1e
L
5513 /* Check RC/SAE. */
5514 if (i.rounding)
5515 {
a80195f1
JB
5516 if (!t->opcode_modifier.sae
5517 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5518 {
5519 i.error = unsupported_rc_sae;
5520 return 1;
5521 }
5522 /* If the instruction has several immediate operands and one of
5523 them is rounding, the rounding operand should be the last
5524 immediate operand. */
5525 if (i.imm_operands > 1
5526 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5527 {
43234a1e 5528 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5529 return 1;
5530 }
6c30d220
L
5531 }
5532
43234a1e 5533 /* Check vector Disp8 operand. */
b5014f7a
JB
5534 if (t->opcode_modifier.disp8memshift
5535 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5536 {
5537 if (i.broadcast)
4a1b91ea 5538 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5539 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5540 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5541 else
5542 {
5543 const i386_operand_type *type = NULL;
5544
5545 i.memshift = 0;
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
7091c612 5548 {
4174bfff
JB
5549 if (t->opcode_modifier.evex == EVEXLIG)
5550 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5551 else if (t->operand_types[op].bitfield.xmmword
5552 + t->operand_types[op].bitfield.ymmword
5553 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5554 type = &t->operand_types[op];
5555 else if (!i.types[op].bitfield.unspecified)
5556 type = &i.types[op];
5557 }
3528c362 5558 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5559 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5560 {
5561 if (i.types[op].bitfield.zmmword)
5562 i.memshift = 6;
5563 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5564 i.memshift = 5;
5565 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5566 i.memshift = 4;
5567 }
5568
5569 if (type)
5570 {
5571 if (type->bitfield.zmmword)
5572 i.memshift = 6;
5573 else if (type->bitfield.ymmword)
5574 i.memshift = 5;
5575 else if (type->bitfield.xmmword)
5576 i.memshift = 4;
5577 }
5578
5579 /* For the check in fits_in_disp8(). */
5580 if (i.memshift == 0)
5581 i.memshift = -1;
5582 }
43234a1e
L
5583
5584 for (op = 0; op < i.operands; op++)
5585 if (operand_type_check (i.types[op], disp)
5586 && i.op[op].disps->X_op == O_constant)
5587 {
b5014f7a 5588 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5589 {
b5014f7a
JB
5590 i.types[op].bitfield.disp8 = 1;
5591 return 0;
43234a1e 5592 }
b5014f7a 5593 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5594 }
5595 }
b5014f7a
JB
5596
5597 i.memshift = 0;
43234a1e 5598
6c30d220
L
5599 return 0;
5600}
5601
43f3e2ee 5602/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5603 operand types. */
5604
5605static int
5606VEX_check_operands (const insn_template *t)
5607{
86fa6981 5608 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5609 {
86fa6981 5610 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5611 if (!is_evex_encoding (t))
86fa6981
L
5612 {
5613 i.error = unsupported;
5614 return 1;
5615 }
5616 return 0;
43234a1e
L
5617 }
5618
a683cc34 5619 if (!t->opcode_modifier.vex)
86fa6981
L
5620 {
5621 /* This instruction template doesn't have VEX prefix. */
5622 if (i.vec_encoding != vex_encoding_default)
5623 {
5624 i.error = unsupported;
5625 return 1;
5626 }
5627 return 0;
5628 }
a683cc34 5629
9d3bf266
JB
5630 /* Check the special Imm4 cases; must be the first operand. */
5631 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5632 {
5633 if (i.op[0].imms->X_op != O_constant
5634 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5635 {
a65babc9 5636 i.error = bad_imm4;
891edac4
L
5637 return 1;
5638 }
a683cc34 5639
9d3bf266
JB
5640 /* Turn off Imm<N> so that update_imm won't complain. */
5641 operand_type_set (&i.types[0], 0);
a683cc34
SP
5642 }
5643
5644 return 0;
5645}
5646
d3ce72d0 5647static const insn_template *
83b16ac6 5648match_template (char mnem_suffix)
29b0f896
AM
5649{
5650 /* Points to template once we've found it. */
d3ce72d0 5651 const insn_template *t;
40fb9820 5652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5653 i386_operand_type overlap4;
29b0f896 5654 unsigned int found_reverse_match;
dc2be329 5655 i386_opcode_modifier suffix_check;
40fb9820 5656 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5657 int addr_prefix_disp;
a5c311ca 5658 unsigned int j;
3ac21baa 5659 unsigned int found_cpu_match, size_match;
45664ddb 5660 unsigned int check_register;
5614d22c 5661 enum i386_error specific_error = 0;
29b0f896 5662
c0f3af97
L
5663#if MAX_OPERANDS != 5
5664# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5665#endif
5666
29b0f896 5667 found_reverse_match = 0;
539e75ad 5668 addr_prefix_disp = -1;
40fb9820 5669
dc2be329 5670 /* Prepare for mnemonic suffix check. */
40fb9820 5671 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5672 switch (mnem_suffix)
5673 {
5674 case BYTE_MNEM_SUFFIX:
5675 suffix_check.no_bsuf = 1;
5676 break;
5677 case WORD_MNEM_SUFFIX:
5678 suffix_check.no_wsuf = 1;
5679 break;
5680 case SHORT_MNEM_SUFFIX:
5681 suffix_check.no_ssuf = 1;
5682 break;
5683 case LONG_MNEM_SUFFIX:
5684 suffix_check.no_lsuf = 1;
5685 break;
5686 case QWORD_MNEM_SUFFIX:
5687 suffix_check.no_qsuf = 1;
5688 break;
5689 default:
5690 /* NB: In Intel syntax, normally we can check for memory operand
5691 size when there is no mnemonic suffix. But jmp and call have
5692 2 different encodings with Dword memory operand size, one with
5693 No_ldSuf and the other without. i.suffix is set to
5694 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5695 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5696 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5697 }
5698
01559ecc
L
5699 /* Must have right number of operands. */
5700 i.error = number_of_operands_mismatch;
5701
45aa61fe 5702 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5703 {
539e75ad 5704 addr_prefix_disp = -1;
dbbc8b7e 5705 found_reverse_match = 0;
539e75ad 5706
29b0f896
AM
5707 if (i.operands != t->operands)
5708 continue;
5709
50aecf8c 5710 /* Check processor support. */
a65babc9 5711 i.error = unsupported;
c0f3af97
L
5712 found_cpu_match = (cpu_flags_match (t)
5713 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5714 if (!found_cpu_match)
5715 continue;
5716
e1d4d893 5717 /* Check AT&T mnemonic. */
a65babc9 5718 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5719 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5720 continue;
5721
e92bae62 5722 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5723 i.error = unsupported_syntax;
5c07affc 5724 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5725 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5726 || (intel64 && t->opcode_modifier.amd64)
5727 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5728 continue;
5729
dc2be329 5730 /* Check the suffix. */
a65babc9 5731 i.error = invalid_instruction_suffix;
dc2be329
L
5732 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5738 continue;
29b0f896 5739
3ac21baa
JB
5740 size_match = operand_size_match (t);
5741 if (!size_match)
7d5e4556 5742 continue;
539e75ad 5743
6f2f06be
JB
5744 /* This is intentionally not
5745
0cfa3eb3 5746 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5747
5748 as the case of a missing * on the operand is accepted (perhaps with
5749 a warning, issued further down). */
0cfa3eb3 5750 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5751 {
5752 i.error = operand_type_mismatch;
5753 continue;
5754 }
5755
5c07affc
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 operand_types[j] = t->operand_types[j];
5758
45aa61fe
AM
5759 /* In general, don't allow 64-bit operands in 32-bit mode. */
5760 if (i.suffix == QWORD_MNEM_SUFFIX
5761 && flag_code != CODE_64BIT
5762 && (intel_syntax
40fb9820 5763 ? (!t->opcode_modifier.ignoresize
625cbd7a 5764 && !t->opcode_modifier.broadcast
45aa61fe
AM
5765 && !intel_float_operand (t->name))
5766 : intel_float_operand (t->name) != 2)
3528c362
JB
5767 && ((operand_types[0].bitfield.class != RegMMX
5768 && operand_types[0].bitfield.class != RegSIMD)
5769 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5770 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5771 && (t->base_opcode != 0x0fc7
5772 || t->extension_opcode != 1 /* cmpxchg8b */))
5773 continue;
5774
192dc9c6
JB
5775 /* In general, don't allow 32-bit operands on pre-386. */
5776 else if (i.suffix == LONG_MNEM_SUFFIX
5777 && !cpu_arch_flags.bitfield.cpui386
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
3528c362
JB
5782 && ((operand_types[0].bitfield.class != RegMMX
5783 && operand_types[0].bitfield.class != RegSIMD)
5784 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5785 && operand_types[t->operands > 1].bitfield.class
5786 != RegSIMD)))
192dc9c6
JB
5787 continue;
5788
29b0f896 5789 /* Do not verify operands when there are none. */
50aecf8c 5790 else
29b0f896 5791 {
c6fb90c8 5792 if (!t->operands)
2dbab7d5
L
5793 /* We've found a match; break out of loop. */
5794 break;
29b0f896 5795 }
252b5132 5796
539e75ad
L
5797 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5798 into Disp32/Disp16/Disp32 operand. */
5799 if (i.prefix[ADDR_PREFIX] != 0)
5800 {
40fb9820 5801 /* There should be only one Disp operand. */
539e75ad
L
5802 switch (flag_code)
5803 {
5804 case CODE_16BIT:
40fb9820
L
5805 for (j = 0; j < MAX_OPERANDS; j++)
5806 {
5807 if (operand_types[j].bitfield.disp16)
5808 {
5809 addr_prefix_disp = j;
5810 operand_types[j].bitfield.disp32 = 1;
5811 operand_types[j].bitfield.disp16 = 0;
5812 break;
5813 }
5814 }
539e75ad
L
5815 break;
5816 case CODE_32BIT:
40fb9820
L
5817 for (j = 0; j < MAX_OPERANDS; j++)
5818 {
5819 if (operand_types[j].bitfield.disp32)
5820 {
5821 addr_prefix_disp = j;
5822 operand_types[j].bitfield.disp32 = 0;
5823 operand_types[j].bitfield.disp16 = 1;
5824 break;
5825 }
5826 }
539e75ad
L
5827 break;
5828 case CODE_64BIT:
40fb9820
L
5829 for (j = 0; j < MAX_OPERANDS; j++)
5830 {
5831 if (operand_types[j].bitfield.disp64)
5832 {
5833 addr_prefix_disp = j;
5834 operand_types[j].bitfield.disp64 = 0;
5835 operand_types[j].bitfield.disp32 = 1;
5836 break;
5837 }
5838 }
539e75ad
L
5839 break;
5840 }
539e75ad
L
5841 }
5842
02a86693
L
5843 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5844 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5845 continue;
5846
56ffb741 5847 /* We check register size if needed. */
e2195274
JB
5848 if (t->opcode_modifier.checkregsize)
5849 {
5850 check_register = (1 << t->operands) - 1;
5851 if (i.broadcast)
5852 check_register &= ~(1 << i.broadcast->operand);
5853 }
5854 else
5855 check_register = 0;
5856
c6fb90c8 5857 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5858 switch (t->operands)
5859 {
5860 case 1:
40fb9820 5861 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5862 continue;
5863 break;
5864 case 2:
33eaf5de 5865 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5866 only in 32bit mode and we can use opcode 0x90. In 64bit
5867 mode, we can't use 0x90 for xchg %eax, %eax since it should
5868 zero-extend %eax to %rax. */
5869 if (flag_code == CODE_64BIT
5870 && t->base_opcode == 0x90
75e5731b
JB
5871 && i.types[0].bitfield.instance == Accum
5872 && i.types[0].bitfield.dword
5873 && i.types[1].bitfield.instance == Accum
5874 && i.types[1].bitfield.dword)
8b38ad71 5875 continue;
1212781b
JB
5876 /* xrelease mov %eax, <disp> is another special case. It must not
5877 match the accumulator-only encoding of mov. */
5878 if (flag_code != CODE_64BIT
5879 && i.hle_prefix
5880 && t->base_opcode == 0xa0
75e5731b 5881 && i.types[0].bitfield.instance == Accum
8dc0818e 5882 && (i.flags[1] & Operand_Mem))
1212781b 5883 continue;
f5eb1d70
JB
5884 /* Fall through. */
5885
5886 case 3:
3ac21baa
JB
5887 if (!(size_match & MATCH_STRAIGHT))
5888 goto check_reverse;
64c49ab3
JB
5889 /* Reverse direction of operands if swapping is possible in the first
5890 place (operands need to be symmetric) and
5891 - the load form is requested, and the template is a store form,
5892 - the store form is requested, and the template is a load form,
5893 - the non-default (swapped) form is requested. */
5894 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5895 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5896 && !operand_type_all_zero (&overlap1))
5897 switch (i.dir_encoding)
5898 {
5899 case dir_encoding_load:
5900 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5901 || t->opcode_modifier.regmem)
64c49ab3
JB
5902 goto check_reverse;
5903 break;
5904
5905 case dir_encoding_store:
5906 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5907 && !t->opcode_modifier.regmem)
64c49ab3
JB
5908 goto check_reverse;
5909 break;
5910
5911 case dir_encoding_swap:
5912 goto check_reverse;
5913
5914 case dir_encoding_default:
5915 break;
5916 }
86fa6981 5917 /* If we want store form, we skip the current load. */
64c49ab3
JB
5918 if ((i.dir_encoding == dir_encoding_store
5919 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5920 && i.mem_operands == 0
5921 && t->opcode_modifier.load)
fa99fab2 5922 continue;
1a0670f3 5923 /* Fall through. */
f48ff2ae 5924 case 4:
c0f3af97 5925 case 5:
c6fb90c8 5926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5927 if (!operand_type_match (overlap0, i.types[0])
5928 || !operand_type_match (overlap1, i.types[1])
e2195274 5929 || ((check_register & 3) == 3
dc821c5f 5930 && !operand_type_register_match (i.types[0],
40fb9820 5931 operand_types[0],
dc821c5f 5932 i.types[1],
40fb9820 5933 operand_types[1])))
29b0f896
AM
5934 {
5935 /* Check if other direction is valid ... */
38e314eb 5936 if (!t->opcode_modifier.d)
29b0f896
AM
5937 continue;
5938
b6169b20 5939check_reverse:
3ac21baa
JB
5940 if (!(size_match & MATCH_REVERSE))
5941 continue;
29b0f896 5942 /* Try reversing direction of operands. */
f5eb1d70
JB
5943 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5944 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5945 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5946 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5947 || (check_register
dc821c5f 5948 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5949 operand_types[i.operands - 1],
5950 i.types[i.operands - 1],
45664ddb 5951 operand_types[0])))
29b0f896
AM
5952 {
5953 /* Does not match either direction. */
5954 continue;
5955 }
38e314eb 5956 /* found_reverse_match holds which of D or FloatR
29b0f896 5957 we've found. */
38e314eb
JB
5958 if (!t->opcode_modifier.d)
5959 found_reverse_match = 0;
5960 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5961 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5962 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5963 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
5964 || operand_types[0].bitfield.class == RegMMX
5965 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
5966 || is_any_vex_encoding(t))
5967 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5968 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5969 else
38e314eb 5970 found_reverse_match = Opcode_D;
40fb9820 5971 if (t->opcode_modifier.floatr)
8a2ed489 5972 found_reverse_match |= Opcode_FloatR;
29b0f896 5973 }
f48ff2ae 5974 else
29b0f896 5975 {
f48ff2ae 5976 /* Found a forward 2 operand match here. */
d1cbb4db
L
5977 switch (t->operands)
5978 {
c0f3af97
L
5979 case 5:
5980 overlap4 = operand_type_and (i.types[4],
5981 operand_types[4]);
1a0670f3 5982 /* Fall through. */
d1cbb4db 5983 case 4:
c6fb90c8
L
5984 overlap3 = operand_type_and (i.types[3],
5985 operand_types[3]);
1a0670f3 5986 /* Fall through. */
d1cbb4db 5987 case 3:
c6fb90c8
L
5988 overlap2 = operand_type_and (i.types[2],
5989 operand_types[2]);
d1cbb4db
L
5990 break;
5991 }
29b0f896 5992
f48ff2ae
L
5993 switch (t->operands)
5994 {
c0f3af97
L
5995 case 5:
5996 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5997 || !operand_type_register_match (i.types[3],
c0f3af97 5998 operand_types[3],
c0f3af97
L
5999 i.types[4],
6000 operand_types[4]))
6001 continue;
1a0670f3 6002 /* Fall through. */
f48ff2ae 6003 case 4:
40fb9820 6004 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6005 || ((check_register & 0xa) == 0xa
6006 && !operand_type_register_match (i.types[1],
f7768225
JB
6007 operand_types[1],
6008 i.types[3],
e2195274
JB
6009 operand_types[3]))
6010 || ((check_register & 0xc) == 0xc
6011 && !operand_type_register_match (i.types[2],
6012 operand_types[2],
6013 i.types[3],
6014 operand_types[3])))
f48ff2ae 6015 continue;
1a0670f3 6016 /* Fall through. */
f48ff2ae
L
6017 case 3:
6018 /* Here we make use of the fact that there are no
23e42951 6019 reverse match 3 operand instructions. */
40fb9820 6020 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6021 || ((check_register & 5) == 5
6022 && !operand_type_register_match (i.types[0],
23e42951
JB
6023 operand_types[0],
6024 i.types[2],
e2195274
JB
6025 operand_types[2]))
6026 || ((check_register & 6) == 6
6027 && !operand_type_register_match (i.types[1],
6028 operand_types[1],
6029 i.types[2],
6030 operand_types[2])))
f48ff2ae
L
6031 continue;
6032 break;
6033 }
29b0f896 6034 }
f48ff2ae 6035 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6036 slip through to break. */
6037 }
3629bb00 6038 if (!found_cpu_match)
dbbc8b7e 6039 continue;
c0f3af97 6040
5614d22c
JB
6041 /* Check if vector and VEX operands are valid. */
6042 if (check_VecOperands (t) || VEX_check_operands (t))
6043 {
6044 specific_error = i.error;
6045 continue;
6046 }
a683cc34 6047
29b0f896
AM
6048 /* We've found a match; break out of loop. */
6049 break;
6050 }
6051
6052 if (t == current_templates->end)
6053 {
6054 /* We found no match. */
a65babc9 6055 const char *err_msg;
5614d22c 6056 switch (specific_error ? specific_error : i.error)
a65babc9
L
6057 {
6058 default:
6059 abort ();
86e026a4 6060 case operand_size_mismatch:
a65babc9
L
6061 err_msg = _("operand size mismatch");
6062 break;
6063 case operand_type_mismatch:
6064 err_msg = _("operand type mismatch");
6065 break;
6066 case register_type_mismatch:
6067 err_msg = _("register type mismatch");
6068 break;
6069 case number_of_operands_mismatch:
6070 err_msg = _("number of operands mismatch");
6071 break;
6072 case invalid_instruction_suffix:
6073 err_msg = _("invalid instruction suffix");
6074 break;
6075 case bad_imm4:
4a2608e3 6076 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6077 break;
a65babc9
L
6078 case unsupported_with_intel_mnemonic:
6079 err_msg = _("unsupported with Intel mnemonic");
6080 break;
6081 case unsupported_syntax:
6082 err_msg = _("unsupported syntax");
6083 break;
6084 case unsupported:
35262a23 6085 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6086 current_templates->start->name);
6087 return NULL;
6c30d220
L
6088 case invalid_vsib_address:
6089 err_msg = _("invalid VSIB address");
6090 break;
7bab8ab5
JB
6091 case invalid_vector_register_set:
6092 err_msg = _("mask, index, and destination registers must be distinct");
6093 break;
6c30d220
L
6094 case unsupported_vector_index_register:
6095 err_msg = _("unsupported vector index register");
6096 break;
43234a1e
L
6097 case unsupported_broadcast:
6098 err_msg = _("unsupported broadcast");
6099 break;
43234a1e
L
6100 case broadcast_needed:
6101 err_msg = _("broadcast is needed for operand of such type");
6102 break;
6103 case unsupported_masking:
6104 err_msg = _("unsupported masking");
6105 break;
6106 case mask_not_on_destination:
6107 err_msg = _("mask not on destination operand");
6108 break;
6109 case no_default_mask:
6110 err_msg = _("default mask isn't allowed");
6111 break;
6112 case unsupported_rc_sae:
6113 err_msg = _("unsupported static rounding/sae");
6114 break;
6115 case rc_sae_operand_not_last_imm:
6116 if (intel_syntax)
6117 err_msg = _("RC/SAE operand must precede immediate operands");
6118 else
6119 err_msg = _("RC/SAE operand must follow immediate operands");
6120 break;
6121 case invalid_register_operand:
6122 err_msg = _("invalid register operand");
6123 break;
a65babc9
L
6124 }
6125 as_bad (_("%s for `%s'"), err_msg,
891edac4 6126 current_templates->start->name);
fa99fab2 6127 return NULL;
29b0f896 6128 }
252b5132 6129
29b0f896
AM
6130 if (!quiet_warnings)
6131 {
6132 if (!intel_syntax
0cfa3eb3 6133 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6134 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6135
40fb9820
L
6136 if (t->opcode_modifier.isprefix
6137 && t->opcode_modifier.ignoresize)
29b0f896
AM
6138 {
6139 /* Warn them that a data or address size prefix doesn't
6140 affect assembly of the next line of code. */
6141 as_warn (_("stand-alone `%s' prefix"), t->name);
6142 }
6143 }
6144
6145 /* Copy the template we found. */
6146 i.tm = *t;
539e75ad
L
6147
6148 if (addr_prefix_disp != -1)
6149 i.tm.operand_types[addr_prefix_disp]
6150 = operand_types[addr_prefix_disp];
6151
29b0f896
AM
6152 if (found_reverse_match)
6153 {
dfd69174
JB
6154 /* If we found a reverse match we must alter the opcode direction
6155 bit and clear/flip the regmem modifier one. found_reverse_match
6156 holds bits to change (different for int & float insns). */
29b0f896
AM
6157
6158 i.tm.base_opcode ^= found_reverse_match;
6159
f5eb1d70
JB
6160 i.tm.operand_types[0] = operand_types[i.operands - 1];
6161 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6162
6163 /* Certain SIMD insns have their load forms specified in the opcode
6164 table, and hence we need to _set_ RegMem instead of clearing it.
6165 We need to avoid setting the bit though on insns like KMOVW. */
6166 i.tm.opcode_modifier.regmem
6167 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6168 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6169 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6170 }
6171
fa99fab2 6172 return t;
29b0f896
AM
6173}
6174
6175static int
e3bb37b5 6176check_string (void)
29b0f896 6177{
51c8edf6
JB
6178 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6179 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6180
51c8edf6 6181 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6182 {
51c8edf6
JB
6183 as_bad (_("`%s' operand %u must use `%ses' segment"),
6184 i.tm.name,
6185 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6186 register_prefix);
6187 return 0;
29b0f896 6188 }
51c8edf6
JB
6189
6190 /* There's only ever one segment override allowed per instruction.
6191 This instruction possibly has a legal segment override on the
6192 second operand, so copy the segment to where non-string
6193 instructions store it, allowing common code. */
6194 i.seg[op] = i.seg[1];
6195
29b0f896
AM
6196 return 1;
6197}
6198
6199static int
543613e9 6200process_suffix (void)
29b0f896
AM
6201{
6202 /* If matched instruction specifies an explicit instruction mnemonic
6203 suffix, use it. */
673fe0f0 6204 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6205 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6206 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6207 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6208 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6209 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6210 else if (i.reg_operands
6211 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6212 {
6213 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6214 based on GPR operands. */
29b0f896
AM
6215 if (!i.suffix)
6216 {
6217 /* We take i.suffix from the last register operand specified,
6218 Destination register type is more significant than source
381d071f
L
6219 register type. crc32 in SSE4.2 prefers source register
6220 type. */
bab6aec1
JB
6221 if (i.tm.base_opcode == 0xf20f38f0
6222 && i.types[0].bitfield.class == Reg)
381d071f 6223 {
556059dd
JB
6224 if (i.types[0].bitfield.byte)
6225 i.suffix = BYTE_MNEM_SUFFIX;
6226 else if (i.types[0].bitfield.word)
40fb9820 6227 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6228 else if (i.types[0].bitfield.dword)
40fb9820 6229 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6230 else if (i.types[0].bitfield.qword)
40fb9820 6231 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6232 }
6233
6234 if (!i.suffix)
6235 {
6236 int op;
6237
556059dd 6238 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6239 {
6240 /* We have to know the operand size for crc32. */
6241 as_bad (_("ambiguous memory operand size for `%s`"),
6242 i.tm.name);
6243 return 0;
6244 }
6245
381d071f 6246 for (op = i.operands; --op >= 0;)
75e5731b
JB
6247 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6248 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6249 {
bab6aec1 6250 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6251 continue;
6252 if (i.types[op].bitfield.byte)
6253 i.suffix = BYTE_MNEM_SUFFIX;
6254 else if (i.types[op].bitfield.word)
6255 i.suffix = WORD_MNEM_SUFFIX;
6256 else if (i.types[op].bitfield.dword)
6257 i.suffix = LONG_MNEM_SUFFIX;
6258 else if (i.types[op].bitfield.qword)
6259 i.suffix = QWORD_MNEM_SUFFIX;
6260 else
6261 continue;
6262 break;
381d071f
L
6263 }
6264 }
29b0f896
AM
6265 }
6266 else if (i.suffix == BYTE_MNEM_SUFFIX)
6267 {
2eb952a4
L
6268 if (intel_syntax
6269 && i.tm.opcode_modifier.ignoresize
6270 && i.tm.opcode_modifier.no_bsuf)
6271 i.suffix = 0;
6272 else if (!check_byte_reg ())
29b0f896
AM
6273 return 0;
6274 }
6275 else if (i.suffix == LONG_MNEM_SUFFIX)
6276 {
2eb952a4
L
6277 if (intel_syntax
6278 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6279 && i.tm.opcode_modifier.no_lsuf
6280 && !i.tm.opcode_modifier.todword
6281 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6282 i.suffix = 0;
6283 else if (!check_long_reg ())
29b0f896
AM
6284 return 0;
6285 }
6286 else if (i.suffix == QWORD_MNEM_SUFFIX)
6287 {
955e1e6a
L
6288 if (intel_syntax
6289 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6290 && i.tm.opcode_modifier.no_qsuf
6291 && !i.tm.opcode_modifier.todword
6292 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6293 i.suffix = 0;
6294 else if (!check_qword_reg ())
29b0f896
AM
6295 return 0;
6296 }
6297 else if (i.suffix == WORD_MNEM_SUFFIX)
6298 {
2eb952a4
L
6299 if (intel_syntax
6300 && i.tm.opcode_modifier.ignoresize
6301 && i.tm.opcode_modifier.no_wsuf)
6302 i.suffix = 0;
6303 else if (!check_word_reg ())
29b0f896
AM
6304 return 0;
6305 }
40fb9820 6306 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6307 /* Do nothing if the instruction is going to ignore the prefix. */
6308 ;
6309 else
6310 abort ();
6311 }
40fb9820 6312 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6313 && !i.suffix
6314 /* exclude fldenv/frstor/fsave/fstenv */
3036c899
JB
6315 && i.tm.opcode_modifier.no_ssuf
6316 /* exclude sysret */
6317 && i.tm.base_opcode != 0x0f07)
29b0f896 6318 {
13e600d0
JB
6319 i.suffix = stackop_size;
6320 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6321 {
6322 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6323 .code16gcc directive to support 16-bit mode with
6324 32-bit address. For IRET without a suffix, generate
6325 16-bit IRET (opcode 0xcf) to return from an interrupt
6326 handler. */
13e600d0
JB
6327 if (i.tm.base_opcode == 0xcf)
6328 {
6329 i.suffix = WORD_MNEM_SUFFIX;
6330 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6331 }
6332 /* Warn about changed behavior for segment register push/pop. */
6333 else if ((i.tm.base_opcode | 1) == 0x07)
6334 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6335 i.tm.name);
06f74c5c 6336 }
29b0f896 6337 }
9306ca4a
JB
6338 else if (intel_syntax
6339 && !i.suffix
0cfa3eb3
JB
6340 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6341 || i.tm.opcode_modifier.jump == JUMP_BYTE
6342 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6343 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6344 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6345 {
6346 switch (flag_code)
6347 {
6348 case CODE_64BIT:
40fb9820 6349 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6350 {
6351 i.suffix = QWORD_MNEM_SUFFIX;
6352 break;
6353 }
1a0670f3 6354 /* Fall through. */
9306ca4a 6355 case CODE_32BIT:
40fb9820 6356 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6357 i.suffix = LONG_MNEM_SUFFIX;
6358 break;
6359 case CODE_16BIT:
40fb9820 6360 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6361 i.suffix = WORD_MNEM_SUFFIX;
6362 break;
6363 }
6364 }
252b5132 6365
9306ca4a 6366 if (!i.suffix)
29b0f896 6367 {
9306ca4a
JB
6368 if (!intel_syntax)
6369 {
40fb9820 6370 if (i.tm.opcode_modifier.w)
9306ca4a 6371 {
4eed87de
AM
6372 as_bad (_("no instruction mnemonic suffix given and "
6373 "no register operands; can't size instruction"));
9306ca4a
JB
6374 return 0;
6375 }
6376 }
6377 else
6378 {
40fb9820 6379 unsigned int suffixes;
7ab9ffdd 6380
40fb9820
L
6381 suffixes = !i.tm.opcode_modifier.no_bsuf;
6382 if (!i.tm.opcode_modifier.no_wsuf)
6383 suffixes |= 1 << 1;
6384 if (!i.tm.opcode_modifier.no_lsuf)
6385 suffixes |= 1 << 2;
fc4adea1 6386 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6387 suffixes |= 1 << 3;
6388 if (!i.tm.opcode_modifier.no_ssuf)
6389 suffixes |= 1 << 4;
c2b9da16 6390 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6391 suffixes |= 1 << 5;
6392
6393 /* There are more than suffix matches. */
6394 if (i.tm.opcode_modifier.w
9306ca4a 6395 || ((suffixes & (suffixes - 1))
40fb9820
L
6396 && !i.tm.opcode_modifier.defaultsize
6397 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6398 {
6399 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6400 return 0;
6401 }
6402 }
29b0f896 6403 }
252b5132 6404
d2224064
JB
6405 /* Change the opcode based on the operand size given by i.suffix. */
6406 switch (i.suffix)
29b0f896 6407 {
d2224064
JB
6408 /* Size floating point instruction. */
6409 case LONG_MNEM_SUFFIX:
6410 if (i.tm.opcode_modifier.floatmf)
6411 {
6412 i.tm.base_opcode ^= 4;
6413 break;
6414 }
6415 /* fall through */
6416 case WORD_MNEM_SUFFIX:
6417 case QWORD_MNEM_SUFFIX:
29b0f896 6418 /* It's not a byte, select word/dword operation. */
40fb9820 6419 if (i.tm.opcode_modifier.w)
29b0f896 6420 {
40fb9820 6421 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6422 i.tm.base_opcode |= 8;
6423 else
6424 i.tm.base_opcode |= 1;
6425 }
d2224064
JB
6426 /* fall through */
6427 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6428 /* Now select between word & dword operations via the operand
6429 size prefix, except for instructions that will ignore this
6430 prefix anyway. */
75c0a438 6431 if (i.reg_operands > 0
bab6aec1 6432 && i.types[0].bitfield.class == Reg
75c0a438 6433 && i.tm.opcode_modifier.addrprefixopreg
474da251 6434 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6435 || i.operands == 1))
cb712a9e 6436 {
ca61edf2
L
6437 /* The address size override prefix changes the size of the
6438 first operand. */
40fb9820 6439 if ((flag_code == CODE_32BIT
75c0a438 6440 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6441 || (flag_code != CODE_32BIT
75c0a438 6442 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6443 if (!add_prefix (ADDR_PREFIX_OPCODE))
6444 return 0;
6445 }
6446 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6447 && !i.tm.opcode_modifier.ignoresize
6448 && !i.tm.opcode_modifier.floatmf
a38d7118 6449 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6450 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6451 || (flag_code == CODE_64BIT
0cfa3eb3 6452 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6453 {
6454 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6455
0cfa3eb3 6456 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6457 prefix = ADDR_PREFIX_OPCODE;
252b5132 6458
29b0f896
AM
6459 if (!add_prefix (prefix))
6460 return 0;
24eab124 6461 }
252b5132 6462
29b0f896
AM
6463 /* Set mode64 for an operand. */
6464 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6465 && flag_code == CODE_64BIT
d2224064 6466 && !i.tm.opcode_modifier.norex64
46e883c5 6467 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6468 need rex64. */
6469 && ! (i.operands == 2
6470 && i.tm.base_opcode == 0x90
6471 && i.tm.extension_opcode == None
75e5731b
JB
6472 && i.types[0].bitfield.instance == Accum
6473 && i.types[0].bitfield.qword
6474 && i.types[1].bitfield.instance == Accum
6475 && i.types[1].bitfield.qword))
d2224064 6476 i.rex |= REX_W;
3e73aa7c 6477
d2224064 6478 break;
29b0f896 6479 }
7ecd2f8b 6480
c0a30a9f
L
6481 if (i.reg_operands != 0
6482 && i.operands > 1
6483 && i.tm.opcode_modifier.addrprefixopreg
474da251 6484 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6485 {
6486 /* Check invalid register operand when the address size override
6487 prefix changes the size of register operands. */
6488 unsigned int op;
6489 enum { need_word, need_dword, need_qword } need;
6490
6491 if (flag_code == CODE_32BIT)
6492 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6493 else
6494 {
6495 if (i.prefix[ADDR_PREFIX])
6496 need = need_dword;
6497 else
6498 need = flag_code == CODE_64BIT ? need_qword : need_word;
6499 }
6500
6501 for (op = 0; op < i.operands; op++)
bab6aec1 6502 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6503 && ((need == need_word
6504 && !i.op[op].regs->reg_type.bitfield.word)
6505 || (need == need_dword
6506 && !i.op[op].regs->reg_type.bitfield.dword)
6507 || (need == need_qword
6508 && !i.op[op].regs->reg_type.bitfield.qword)))
6509 {
6510 as_bad (_("invalid register operand size for `%s'"),
6511 i.tm.name);
6512 return 0;
6513 }
6514 }
6515
29b0f896
AM
6516 return 1;
6517}
3e73aa7c 6518
29b0f896 6519static int
543613e9 6520check_byte_reg (void)
29b0f896
AM
6521{
6522 int op;
543613e9 6523
29b0f896
AM
6524 for (op = i.operands; --op >= 0;)
6525 {
dc821c5f 6526 /* Skip non-register operands. */
bab6aec1 6527 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6528 continue;
6529
29b0f896
AM
6530 /* If this is an eight bit register, it's OK. If it's the 16 or
6531 32 bit version of an eight bit register, we will just use the
6532 low portion, and that's OK too. */
dc821c5f 6533 if (i.types[op].bitfield.byte)
29b0f896
AM
6534 continue;
6535
5a819eb9 6536 /* I/O port address operands are OK too. */
75e5731b
JB
6537 if (i.tm.operand_types[op].bitfield.instance == RegD
6538 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6539 continue;
6540
9344ff29
L
6541 /* crc32 doesn't generate this warning. */
6542 if (i.tm.base_opcode == 0xf20f38f0)
6543 continue;
6544
dc821c5f
JB
6545 if ((i.types[op].bitfield.word
6546 || i.types[op].bitfield.dword
6547 || i.types[op].bitfield.qword)
5a819eb9
JB
6548 && i.op[op].regs->reg_num < 4
6549 /* Prohibit these changes in 64bit mode, since the lowering
6550 would be more complicated. */
6551 && flag_code != CODE_64BIT)
29b0f896 6552 {
29b0f896 6553#if REGISTER_WARNINGS
5a819eb9 6554 if (!quiet_warnings)
a540244d
L
6555 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6556 register_prefix,
dc821c5f 6557 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6558 ? REGNAM_AL - REGNAM_AX
6559 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6560 register_prefix,
29b0f896
AM
6561 i.op[op].regs->reg_name,
6562 i.suffix);
6563#endif
6564 continue;
6565 }
6566 /* Any other register is bad. */
bab6aec1 6567 if (i.types[op].bitfield.class == Reg
3528c362
JB
6568 || i.types[op].bitfield.class == RegMMX
6569 || i.types[op].bitfield.class == RegSIMD
00cee14f 6570 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6571 || i.types[op].bitfield.class == RegCR
6572 || i.types[op].bitfield.class == RegDR
6573 || i.types[op].bitfield.class == RegTR)
29b0f896 6574 {
a540244d
L
6575 as_bad (_("`%s%s' not allowed with `%s%c'"),
6576 register_prefix,
29b0f896
AM
6577 i.op[op].regs->reg_name,
6578 i.tm.name,
6579 i.suffix);
6580 return 0;
6581 }
6582 }
6583 return 1;
6584}
6585
6586static int
e3bb37b5 6587check_long_reg (void)
29b0f896
AM
6588{
6589 int op;
6590
6591 for (op = i.operands; --op >= 0;)
dc821c5f 6592 /* Skip non-register operands. */
bab6aec1 6593 if (i.types[op].bitfield.class != Reg)
dc821c5f 6594 continue;
29b0f896
AM
6595 /* Reject eight bit registers, except where the template requires
6596 them. (eg. movzb) */
dc821c5f 6597 else if (i.types[op].bitfield.byte
bab6aec1 6598 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6599 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6600 && (i.tm.operand_types[op].bitfield.word
6601 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6602 {
a540244d
L
6603 as_bad (_("`%s%s' not allowed with `%s%c'"),
6604 register_prefix,
29b0f896
AM
6605 i.op[op].regs->reg_name,
6606 i.tm.name,
6607 i.suffix);
6608 return 0;
6609 }
e4630f71 6610 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6611 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6612 && i.types[op].bitfield.word
bab6aec1 6613 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6614 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6615 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6616 {
6617 /* Prohibit these changes in the 64bit mode, since the
6618 lowering is more complicated. */
6619 if (flag_code == CODE_64BIT)
252b5132 6620 {
2b5d6a91 6621 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6622 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6623 i.suffix);
6624 return 0;
252b5132 6625 }
29b0f896 6626#if REGISTER_WARNINGS
cecf1424
JB
6627 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6628 register_prefix,
6629 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6630 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6631#endif
252b5132 6632 }
e4630f71 6633 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6634 else if (i.types[op].bitfield.qword
bab6aec1 6635 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6636 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6637 && i.tm.operand_types[op].bitfield.dword)
252b5132 6638 {
34828aad 6639 if (intel_syntax
ca61edf2 6640 && i.tm.opcode_modifier.toqword
3528c362 6641 && i.types[0].bitfield.class != RegSIMD)
34828aad 6642 {
ca61edf2 6643 /* Convert to QWORD. We want REX byte. */
34828aad
L
6644 i.suffix = QWORD_MNEM_SUFFIX;
6645 }
6646 else
6647 {
2b5d6a91 6648 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6649 register_prefix, i.op[op].regs->reg_name,
6650 i.suffix);
6651 return 0;
6652 }
29b0f896
AM
6653 }
6654 return 1;
6655}
252b5132 6656
29b0f896 6657static int
e3bb37b5 6658check_qword_reg (void)
29b0f896
AM
6659{
6660 int op;
252b5132 6661
29b0f896 6662 for (op = i.operands; --op >= 0; )
dc821c5f 6663 /* Skip non-register operands. */
bab6aec1 6664 if (i.types[op].bitfield.class != Reg)
dc821c5f 6665 continue;
29b0f896
AM
6666 /* Reject eight bit registers, except where the template requires
6667 them. (eg. movzb) */
dc821c5f 6668 else if (i.types[op].bitfield.byte
bab6aec1 6669 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6670 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6671 && (i.tm.operand_types[op].bitfield.word
6672 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6673 {
a540244d
L
6674 as_bad (_("`%s%s' not allowed with `%s%c'"),
6675 register_prefix,
29b0f896
AM
6676 i.op[op].regs->reg_name,
6677 i.tm.name,
6678 i.suffix);
6679 return 0;
6680 }
e4630f71 6681 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6682 else if ((i.types[op].bitfield.word
6683 || i.types[op].bitfield.dword)
bab6aec1 6684 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6685 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6686 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6687 {
6688 /* Prohibit these changes in the 64bit mode, since the
6689 lowering is more complicated. */
34828aad 6690 if (intel_syntax
ca61edf2 6691 && i.tm.opcode_modifier.todword
3528c362 6692 && i.types[0].bitfield.class != RegSIMD)
34828aad 6693 {
ca61edf2 6694 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6695 i.suffix = LONG_MNEM_SUFFIX;
6696 }
6697 else
6698 {
2b5d6a91 6699 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6700 register_prefix, i.op[op].regs->reg_name,
6701 i.suffix);
6702 return 0;
6703 }
252b5132 6704 }
29b0f896
AM
6705 return 1;
6706}
252b5132 6707
29b0f896 6708static int
e3bb37b5 6709check_word_reg (void)
29b0f896
AM
6710{
6711 int op;
6712 for (op = i.operands; --op >= 0;)
dc821c5f 6713 /* Skip non-register operands. */
bab6aec1 6714 if (i.types[op].bitfield.class != Reg)
dc821c5f 6715 continue;
29b0f896
AM
6716 /* Reject eight bit registers, except where the template requires
6717 them. (eg. movzb) */
dc821c5f 6718 else if (i.types[op].bitfield.byte
bab6aec1 6719 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6720 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6721 && (i.tm.operand_types[op].bitfield.word
6722 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6723 {
a540244d
L
6724 as_bad (_("`%s%s' not allowed with `%s%c'"),
6725 register_prefix,
29b0f896
AM
6726 i.op[op].regs->reg_name,
6727 i.tm.name,
6728 i.suffix);
6729 return 0;
6730 }
e4630f71 6731 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6732 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6733 && (i.types[op].bitfield.dword
6734 || i.types[op].bitfield.qword)
bab6aec1 6735 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6736 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6737 && i.tm.operand_types[op].bitfield.word)
252b5132 6738 {
29b0f896
AM
6739 /* Prohibit these changes in the 64bit mode, since the
6740 lowering is more complicated. */
6741 if (flag_code == CODE_64BIT)
252b5132 6742 {
2b5d6a91 6743 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6744 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6745 i.suffix);
6746 return 0;
252b5132 6747 }
29b0f896 6748#if REGISTER_WARNINGS
cecf1424
JB
6749 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6750 register_prefix,
6751 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6752 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6753#endif
6754 }
6755 return 1;
6756}
252b5132 6757
29b0f896 6758static int
40fb9820 6759update_imm (unsigned int j)
29b0f896 6760{
bc0844ae 6761 i386_operand_type overlap = i.types[j];
40fb9820
L
6762 if ((overlap.bitfield.imm8
6763 || overlap.bitfield.imm8s
6764 || overlap.bitfield.imm16
6765 || overlap.bitfield.imm32
6766 || overlap.bitfield.imm32s
6767 || overlap.bitfield.imm64)
0dfbf9d7
L
6768 && !operand_type_equal (&overlap, &imm8)
6769 && !operand_type_equal (&overlap, &imm8s)
6770 && !operand_type_equal (&overlap, &imm16)
6771 && !operand_type_equal (&overlap, &imm32)
6772 && !operand_type_equal (&overlap, &imm32s)
6773 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6774 {
6775 if (i.suffix)
6776 {
40fb9820
L
6777 i386_operand_type temp;
6778
0dfbf9d7 6779 operand_type_set (&temp, 0);
7ab9ffdd 6780 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6781 {
6782 temp.bitfield.imm8 = overlap.bitfield.imm8;
6783 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6784 }
6785 else if (i.suffix == WORD_MNEM_SUFFIX)
6786 temp.bitfield.imm16 = overlap.bitfield.imm16;
6787 else if (i.suffix == QWORD_MNEM_SUFFIX)
6788 {
6789 temp.bitfield.imm64 = overlap.bitfield.imm64;
6790 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6791 }
6792 else
6793 temp.bitfield.imm32 = overlap.bitfield.imm32;
6794 overlap = temp;
29b0f896 6795 }
0dfbf9d7
L
6796 else if (operand_type_equal (&overlap, &imm16_32_32s)
6797 || operand_type_equal (&overlap, &imm16_32)
6798 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6799 {
40fb9820 6800 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6801 overlap = imm16;
40fb9820 6802 else
65da13b5 6803 overlap = imm32s;
29b0f896 6804 }
0dfbf9d7
L
6805 if (!operand_type_equal (&overlap, &imm8)
6806 && !operand_type_equal (&overlap, &imm8s)
6807 && !operand_type_equal (&overlap, &imm16)
6808 && !operand_type_equal (&overlap, &imm32)
6809 && !operand_type_equal (&overlap, &imm32s)
6810 && !operand_type_equal (&overlap, &imm64))
29b0f896 6811 {
4eed87de
AM
6812 as_bad (_("no instruction mnemonic suffix given; "
6813 "can't determine immediate size"));
29b0f896
AM
6814 return 0;
6815 }
6816 }
40fb9820 6817 i.types[j] = overlap;
29b0f896 6818
40fb9820
L
6819 return 1;
6820}
6821
6822static int
6823finalize_imm (void)
6824{
bc0844ae 6825 unsigned int j, n;
29b0f896 6826
bc0844ae
L
6827 /* Update the first 2 immediate operands. */
6828 n = i.operands > 2 ? 2 : i.operands;
6829 if (n)
6830 {
6831 for (j = 0; j < n; j++)
6832 if (update_imm (j) == 0)
6833 return 0;
40fb9820 6834
bc0844ae
L
6835 /* The 3rd operand can't be immediate operand. */
6836 gas_assert (operand_type_check (i.types[2], imm) == 0);
6837 }
29b0f896
AM
6838
6839 return 1;
6840}
6841
6842static int
e3bb37b5 6843process_operands (void)
29b0f896
AM
6844{
6845 /* Default segment register this instruction will use for memory
6846 accesses. 0 means unknown. This is only for optimizing out
6847 unnecessary segment overrides. */
6848 const seg_entry *default_seg = 0;
6849
2426c15f 6850 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6851 {
91d6fa6a
NC
6852 unsigned int dupl = i.operands;
6853 unsigned int dest = dupl - 1;
9fcfb3d7
L
6854 unsigned int j;
6855
c0f3af97 6856 /* The destination must be an xmm register. */
9c2799c2 6857 gas_assert (i.reg_operands
91d6fa6a 6858 && MAX_OPERANDS > dupl
7ab9ffdd 6859 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6860
75e5731b 6861 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6862 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6863 {
8cd7925b 6864 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6865 {
6866 /* Keep xmm0 for instructions with VEX prefix and 3
6867 sources. */
75e5731b 6868 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6869 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6870 goto duplicate;
6871 }
e2ec9d29 6872 else
c0f3af97
L
6873 {
6874 /* We remove the first xmm0 and keep the number of
6875 operands unchanged, which in fact duplicates the
6876 destination. */
6877 for (j = 1; j < i.operands; j++)
6878 {
6879 i.op[j - 1] = i.op[j];
6880 i.types[j - 1] = i.types[j];
6881 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6882 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6883 }
6884 }
6885 }
6886 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6887 {
91d6fa6a 6888 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6889 && (i.tm.opcode_modifier.vexsources
6890 == VEX3SOURCES));
c0f3af97
L
6891
6892 /* Add the implicit xmm0 for instructions with VEX prefix
6893 and 3 sources. */
6894 for (j = i.operands; j > 0; j--)
6895 {
6896 i.op[j] = i.op[j - 1];
6897 i.types[j] = i.types[j - 1];
6898 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6899 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6900 }
6901 i.op[0].regs
6902 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6903 i.types[0] = regxmm;
c0f3af97
L
6904 i.tm.operand_types[0] = regxmm;
6905
6906 i.operands += 2;
6907 i.reg_operands += 2;
6908 i.tm.operands += 2;
6909
91d6fa6a 6910 dupl++;
c0f3af97 6911 dest++;
91d6fa6a
NC
6912 i.op[dupl] = i.op[dest];
6913 i.types[dupl] = i.types[dest];
6914 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6915 i.flags[dupl] = i.flags[dest];
e2ec9d29 6916 }
c0f3af97
L
6917 else
6918 {
6919duplicate:
6920 i.operands++;
6921 i.reg_operands++;
6922 i.tm.operands++;
6923
91d6fa6a
NC
6924 i.op[dupl] = i.op[dest];
6925 i.types[dupl] = i.types[dest];
6926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6927 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6928 }
6929
6930 if (i.tm.opcode_modifier.immext)
6931 process_immext ();
6932 }
75e5731b 6933 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6934 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6935 {
6936 unsigned int j;
6937
9fcfb3d7
L
6938 for (j = 1; j < i.operands; j++)
6939 {
6940 i.op[j - 1] = i.op[j];
6941 i.types[j - 1] = i.types[j];
6942
6943 /* We need to adjust fields in i.tm since they are used by
6944 build_modrm_byte. */
6945 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6946
6947 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6948 }
6949
e2ec9d29
L
6950 i.operands--;
6951 i.reg_operands--;
e2ec9d29
L
6952 i.tm.operands--;
6953 }
920d2ddc
IT
6954 else if (i.tm.opcode_modifier.implicitquadgroup)
6955 {
a477a8c4
JB
6956 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6957
920d2ddc 6958 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 6959 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
6960 regnum = register_number (i.op[1].regs);
6961 first_reg_in_group = regnum & ~3;
6962 last_reg_in_group = first_reg_in_group + 3;
6963 if (regnum != first_reg_in_group)
6964 as_warn (_("source register `%s%s' implicitly denotes"
6965 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6966 register_prefix, i.op[1].regs->reg_name,
6967 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6968 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6969 i.tm.name);
6970 }
e2ec9d29
L
6971 else if (i.tm.opcode_modifier.regkludge)
6972 {
6973 /* The imul $imm, %reg instruction is converted into
6974 imul $imm, %reg, %reg, and the clr %reg instruction
6975 is converted into xor %reg, %reg. */
6976
6977 unsigned int first_reg_op;
6978
6979 if (operand_type_check (i.types[0], reg))
6980 first_reg_op = 0;
6981 else
6982 first_reg_op = 1;
6983 /* Pretend we saw the extra register operand. */
9c2799c2 6984 gas_assert (i.reg_operands == 1
7ab9ffdd 6985 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6986 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6987 i.types[first_reg_op + 1] = i.types[first_reg_op];
6988 i.operands++;
6989 i.reg_operands++;
29b0f896
AM
6990 }
6991
85b80b0f 6992 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6993 {
6994 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6995 must be put into the modrm byte). Now, we make the modrm and
6996 index base bytes based on all the info we've collected. */
29b0f896
AM
6997
6998 default_seg = build_modrm_byte ();
6999 }
00cee14f 7000 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7001 {
7002 if (flag_code != CODE_64BIT
7003 ? i.tm.base_opcode == POP_SEG_SHORT
7004 && i.op[0].regs->reg_num == 1
7005 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7006 && i.op[0].regs->reg_num < 4)
7007 {
7008 as_bad (_("you can't `%s %s%s'"),
7009 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7010 return 0;
7011 }
7012 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7013 {
7014 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7015 i.tm.opcode_length = 2;
7016 }
7017 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7018 }
8a2ed489 7019 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7020 {
7021 default_seg = &ds;
7022 }
40fb9820 7023 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7024 {
7025 /* For the string instructions that allow a segment override
7026 on one of their operands, the default segment is ds. */
7027 default_seg = &ds;
7028 }
85b80b0f
JB
7029 else if (i.tm.opcode_modifier.shortform)
7030 {
7031 /* The register or float register operand is in operand
7032 0 or 1. */
bab6aec1 7033 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7034
7035 /* Register goes in low 3 bits of opcode. */
7036 i.tm.base_opcode |= i.op[op].regs->reg_num;
7037 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7038 i.rex |= REX_B;
7039 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7040 {
7041 /* Warn about some common errors, but press on regardless.
7042 The first case can be generated by gcc (<= 2.8.1). */
7043 if (i.operands == 2)
7044 {
7045 /* Reversed arguments on faddp, fsubp, etc. */
7046 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7047 register_prefix, i.op[!intel_syntax].regs->reg_name,
7048 register_prefix, i.op[intel_syntax].regs->reg_name);
7049 }
7050 else
7051 {
7052 /* Extraneous `l' suffix on fp insn. */
7053 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7054 register_prefix, i.op[0].regs->reg_name);
7055 }
7056 }
7057 }
29b0f896 7058
75178d9d
L
7059 if (i.tm.base_opcode == 0x8d /* lea */
7060 && i.seg[0]
7061 && !quiet_warnings)
30123838 7062 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7063
7064 /* If a segment was explicitly specified, and the specified segment
7065 is not the default, use an opcode prefix to select it. If we
7066 never figured out what the default segment is, then default_seg
7067 will be zero at this point, and the specified segment prefix will
7068 always be used. */
29b0f896
AM
7069 if ((i.seg[0]) && (i.seg[0] != default_seg))
7070 {
7071 if (!add_prefix (i.seg[0]->seg_prefix))
7072 return 0;
7073 }
7074 return 1;
7075}
7076
7077static const seg_entry *
e3bb37b5 7078build_modrm_byte (void)
29b0f896
AM
7079{
7080 const seg_entry *default_seg = 0;
c0f3af97 7081 unsigned int source, dest;
8cd7925b 7082 int vex_3_sources;
c0f3af97 7083
8cd7925b 7084 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7085 if (vex_3_sources)
7086 {
91d6fa6a 7087 unsigned int nds, reg_slot;
4c2c6516 7088 expressionS *exp;
c0f3af97 7089
6b8d3588 7090 dest = i.operands - 1;
c0f3af97 7091 nds = dest - 1;
922d8de8 7092
a683cc34 7093 /* There are 2 kinds of instructions:
bed3d976 7094 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7095 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7096 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7097 ZMM register.
bed3d976 7098 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7099 plus 1 memory operand, with VexXDS. */
922d8de8 7100 gas_assert ((i.reg_operands == 4
bed3d976
JB
7101 || (i.reg_operands == 3 && i.mem_operands == 1))
7102 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7103 && i.tm.opcode_modifier.vexw
3528c362 7104 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7105
48db9223
JB
7106 /* If VexW1 is set, the first non-immediate operand is the source and
7107 the second non-immediate one is encoded in the immediate operand. */
7108 if (i.tm.opcode_modifier.vexw == VEXW1)
7109 {
7110 source = i.imm_operands;
7111 reg_slot = i.imm_operands + 1;
7112 }
7113 else
7114 {
7115 source = i.imm_operands + 1;
7116 reg_slot = i.imm_operands;
7117 }
7118
a683cc34 7119 if (i.imm_operands == 0)
bed3d976
JB
7120 {
7121 /* When there is no immediate operand, generate an 8bit
7122 immediate operand to encode the first operand. */
7123 exp = &im_expressions[i.imm_operands++];
7124 i.op[i.operands].imms = exp;
7125 i.types[i.operands] = imm8;
7126 i.operands++;
7127
3528c362 7128 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7129 exp->X_op = O_constant;
7130 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7131 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7132 }
922d8de8 7133 else
bed3d976 7134 {
9d3bf266
JB
7135 gas_assert (i.imm_operands == 1);
7136 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7137 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7138
9d3bf266
JB
7139 /* Turn on Imm8 again so that output_imm will generate it. */
7140 i.types[0].bitfield.imm8 = 1;
bed3d976 7141
3528c362 7142 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7143 i.op[0].imms->X_add_number
bed3d976 7144 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7145 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7146 }
a683cc34 7147
3528c362 7148 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7149 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7150 }
7151 else
7152 source = dest = 0;
29b0f896
AM
7153
7154 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7155 implicit registers do not count. If there are 3 register
7156 operands, it must be a instruction with VexNDS. For a
7157 instruction with VexNDD, the destination register is encoded
7158 in VEX prefix. If there are 4 register operands, it must be
7159 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7160 if (i.mem_operands == 0
7161 && ((i.reg_operands == 2
2426c15f 7162 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7163 || (i.reg_operands == 3
2426c15f 7164 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7165 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7166 {
cab737b9
L
7167 switch (i.operands)
7168 {
7169 case 2:
7170 source = 0;
7171 break;
7172 case 3:
c81128dc
L
7173 /* When there are 3 operands, one of them may be immediate,
7174 which may be the first or the last operand. Otherwise,
c0f3af97
L
7175 the first operand must be shift count register (cl) or it
7176 is an instruction with VexNDS. */
9c2799c2 7177 gas_assert (i.imm_operands == 1
7ab9ffdd 7178 || (i.imm_operands == 0
2426c15f 7179 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7180 || (i.types[0].bitfield.instance == RegC
7181 && i.types[0].bitfield.byte))));
40fb9820 7182 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7183 || (i.types[0].bitfield.instance == RegC
7184 && i.types[0].bitfield.byte))
40fb9820
L
7185 source = 1;
7186 else
7187 source = 0;
cab737b9
L
7188 break;
7189 case 4:
368d64cc
L
7190 /* When there are 4 operands, the first two must be 8bit
7191 immediate operands. The source operand will be the 3rd
c0f3af97
L
7192 one.
7193
7194 For instructions with VexNDS, if the first operand
7195 an imm8, the source operand is the 2nd one. If the last
7196 operand is imm8, the source operand is the first one. */
9c2799c2 7197 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7198 && i.types[0].bitfield.imm8
7199 && i.types[1].bitfield.imm8)
2426c15f 7200 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7201 && i.imm_operands == 1
7202 && (i.types[0].bitfield.imm8
43234a1e
L
7203 || i.types[i.operands - 1].bitfield.imm8
7204 || i.rounding)));
9f2670f2
L
7205 if (i.imm_operands == 2)
7206 source = 2;
7207 else
c0f3af97
L
7208 {
7209 if (i.types[0].bitfield.imm8)
7210 source = 1;
7211 else
7212 source = 0;
7213 }
c0f3af97
L
7214 break;
7215 case 5:
e771e7c9 7216 if (is_evex_encoding (&i.tm))
43234a1e
L
7217 {
7218 /* For EVEX instructions, when there are 5 operands, the
7219 first one must be immediate operand. If the second one
7220 is immediate operand, the source operand is the 3th
7221 one. If the last one is immediate operand, the source
7222 operand is the 2nd one. */
7223 gas_assert (i.imm_operands == 2
7224 && i.tm.opcode_modifier.sae
7225 && operand_type_check (i.types[0], imm));
7226 if (operand_type_check (i.types[1], imm))
7227 source = 2;
7228 else if (operand_type_check (i.types[4], imm))
7229 source = 1;
7230 else
7231 abort ();
7232 }
cab737b9
L
7233 break;
7234 default:
7235 abort ();
7236 }
7237
c0f3af97
L
7238 if (!vex_3_sources)
7239 {
7240 dest = source + 1;
7241
43234a1e
L
7242 /* RC/SAE operand could be between DEST and SRC. That happens
7243 when one operand is GPR and the other one is XMM/YMM/ZMM
7244 register. */
7245 if (i.rounding && i.rounding->operand == (int) dest)
7246 dest++;
7247
2426c15f 7248 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7249 {
43234a1e 7250 /* For instructions with VexNDS, the register-only source
c5d0745b 7251 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7252 register. It is encoded in VEX prefix. */
f12dc422
L
7253
7254 i386_operand_type op;
7255 unsigned int vvvv;
7256
7257 /* Check register-only source operand when two source
7258 operands are swapped. */
7259 if (!i.tm.operand_types[source].bitfield.baseindex
7260 && i.tm.operand_types[dest].bitfield.baseindex)
7261 {
7262 vvvv = source;
7263 source = dest;
7264 }
7265 else
7266 vvvv = dest;
7267
7268 op = i.tm.operand_types[vvvv];
c0f3af97 7269 if ((dest + 1) >= i.operands
bab6aec1 7270 || ((op.bitfield.class != Reg
dc821c5f 7271 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7272 && op.bitfield.class != RegSIMD
43234a1e 7273 && !operand_type_equal (&op, &regmask)))
c0f3af97 7274 abort ();
f12dc422 7275 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7276 dest++;
7277 }
7278 }
29b0f896
AM
7279
7280 i.rm.mode = 3;
dfd69174
JB
7281 /* One of the register operands will be encoded in the i.rm.reg
7282 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7283 fields. If no form of this instruction supports a memory
7284 destination operand, then we assume the source operand may
7285 sometimes be a memory operand and so we need to store the
7286 destination in the i.rm.reg field. */
dfd69174 7287 if (!i.tm.opcode_modifier.regmem
40fb9820 7288 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7289 {
7290 i.rm.reg = i.op[dest].regs->reg_num;
7291 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7292 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7293 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7294 i.has_regmmx = TRUE;
3528c362
JB
7295 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7296 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7297 {
7298 if (i.types[dest].bitfield.zmmword
7299 || i.types[source].bitfield.zmmword)
7300 i.has_regzmm = TRUE;
7301 else if (i.types[dest].bitfield.ymmword
7302 || i.types[source].bitfield.ymmword)
7303 i.has_regymm = TRUE;
7304 else
7305 i.has_regxmm = TRUE;
7306 }
29b0f896 7307 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7308 i.rex |= REX_R;
43234a1e
L
7309 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_R;
29b0f896 7311 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7312 i.rex |= REX_B;
43234a1e
L
7313 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7314 i.vrex |= REX_B;
29b0f896
AM
7315 }
7316 else
7317 {
7318 i.rm.reg = i.op[source].regs->reg_num;
7319 i.rm.regmem = i.op[dest].regs->reg_num;
7320 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7321 i.rex |= REX_B;
43234a1e
L
7322 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_B;
29b0f896 7324 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7325 i.rex |= REX_R;
43234a1e
L
7326 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_R;
29b0f896 7328 }
e0c7f900 7329 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7330 {
4a5c67ed 7331 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7332 abort ();
e0c7f900 7333 i.rex &= ~REX_R;
c4a530c5
JB
7334 add_prefix (LOCK_PREFIX_OPCODE);
7335 }
29b0f896
AM
7336 }
7337 else
7338 { /* If it's not 2 reg operands... */
c0f3af97
L
7339 unsigned int mem;
7340
29b0f896
AM
7341 if (i.mem_operands)
7342 {
7343 unsigned int fake_zero_displacement = 0;
99018f42 7344 unsigned int op;
4eed87de 7345
7ab9ffdd 7346 for (op = 0; op < i.operands; op++)
8dc0818e 7347 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7348 break;
7ab9ffdd 7349 gas_assert (op < i.operands);
29b0f896 7350
6c30d220
L
7351 if (i.tm.opcode_modifier.vecsib)
7352 {
e968fc9b 7353 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7354 abort ();
7355
7356 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7357 if (!i.base_reg)
7358 {
7359 i.sib.base = NO_BASE_REGISTER;
7360 i.sib.scale = i.log2_scale_factor;
7361 i.types[op].bitfield.disp8 = 0;
7362 i.types[op].bitfield.disp16 = 0;
7363 i.types[op].bitfield.disp64 = 0;
43083a50 7364 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7365 {
7366 /* Must be 32 bit */
7367 i.types[op].bitfield.disp32 = 1;
7368 i.types[op].bitfield.disp32s = 0;
7369 }
7370 else
7371 {
7372 i.types[op].bitfield.disp32 = 0;
7373 i.types[op].bitfield.disp32s = 1;
7374 }
7375 }
7376 i.sib.index = i.index_reg->reg_num;
7377 if ((i.index_reg->reg_flags & RegRex) != 0)
7378 i.rex |= REX_X;
43234a1e
L
7379 if ((i.index_reg->reg_flags & RegVRex) != 0)
7380 i.vrex |= REX_X;
6c30d220
L
7381 }
7382
29b0f896
AM
7383 default_seg = &ds;
7384
7385 if (i.base_reg == 0)
7386 {
7387 i.rm.mode = 0;
7388 if (!i.disp_operands)
9bb129e8 7389 fake_zero_displacement = 1;
29b0f896
AM
7390 if (i.index_reg == 0)
7391 {
73053c1f
JB
7392 i386_operand_type newdisp;
7393
6c30d220 7394 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7395 /* Operand is just <disp> */
20f0a1fc 7396 if (flag_code == CODE_64BIT)
29b0f896
AM
7397 {
7398 /* 64bit mode overwrites the 32bit absolute
7399 addressing by RIP relative addressing and
7400 absolute addressing is encoded by one of the
7401 redundant SIB forms. */
7402 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7403 i.sib.base = NO_BASE_REGISTER;
7404 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7405 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7406 }
fc225355
L
7407 else if ((flag_code == CODE_16BIT)
7408 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7409 {
7410 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7411 newdisp = disp16;
20f0a1fc
NC
7412 }
7413 else
7414 {
7415 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7416 newdisp = disp32;
29b0f896 7417 }
73053c1f
JB
7418 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7419 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7420 }
6c30d220 7421 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7422 {
6c30d220 7423 /* !i.base_reg && i.index_reg */
e968fc9b 7424 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7425 i.sib.index = NO_INDEX_REGISTER;
7426 else
7427 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7428 i.sib.base = NO_BASE_REGISTER;
7429 i.sib.scale = i.log2_scale_factor;
7430 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7431 i.types[op].bitfield.disp8 = 0;
7432 i.types[op].bitfield.disp16 = 0;
7433 i.types[op].bitfield.disp64 = 0;
43083a50 7434 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7435 {
7436 /* Must be 32 bit */
7437 i.types[op].bitfield.disp32 = 1;
7438 i.types[op].bitfield.disp32s = 0;
7439 }
29b0f896 7440 else
40fb9820
L
7441 {
7442 i.types[op].bitfield.disp32 = 0;
7443 i.types[op].bitfield.disp32s = 1;
7444 }
29b0f896 7445 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7446 i.rex |= REX_X;
29b0f896
AM
7447 }
7448 }
7449 /* RIP addressing for 64bit mode. */
e968fc9b 7450 else if (i.base_reg->reg_num == RegIP)
29b0f896 7451 {
6c30d220 7452 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7453 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7454 i.types[op].bitfield.disp8 = 0;
7455 i.types[op].bitfield.disp16 = 0;
7456 i.types[op].bitfield.disp32 = 0;
7457 i.types[op].bitfield.disp32s = 1;
7458 i.types[op].bitfield.disp64 = 0;
71903a11 7459 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7460 if (! i.disp_operands)
7461 fake_zero_displacement = 1;
29b0f896 7462 }
dc821c5f 7463 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7464 {
6c30d220 7465 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7466 switch (i.base_reg->reg_num)
7467 {
7468 case 3: /* (%bx) */
7469 if (i.index_reg == 0)
7470 i.rm.regmem = 7;
7471 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7472 i.rm.regmem = i.index_reg->reg_num - 6;
7473 break;
7474 case 5: /* (%bp) */
7475 default_seg = &ss;
7476 if (i.index_reg == 0)
7477 {
7478 i.rm.regmem = 6;
40fb9820 7479 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7480 {
7481 /* fake (%bp) into 0(%bp) */
b5014f7a 7482 i.types[op].bitfield.disp8 = 1;
252b5132 7483 fake_zero_displacement = 1;
29b0f896
AM
7484 }
7485 }
7486 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7487 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7488 break;
7489 default: /* (%si) -> 4 or (%di) -> 5 */
7490 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7491 }
7492 i.rm.mode = mode_from_disp_size (i.types[op]);
7493 }
7494 else /* i.base_reg and 32/64 bit mode */
7495 {
7496 if (flag_code == CODE_64BIT
40fb9820
L
7497 && operand_type_check (i.types[op], disp))
7498 {
73053c1f
JB
7499 i.types[op].bitfield.disp16 = 0;
7500 i.types[op].bitfield.disp64 = 0;
40fb9820 7501 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7502 {
7503 i.types[op].bitfield.disp32 = 0;
7504 i.types[op].bitfield.disp32s = 1;
7505 }
40fb9820 7506 else
73053c1f
JB
7507 {
7508 i.types[op].bitfield.disp32 = 1;
7509 i.types[op].bitfield.disp32s = 0;
7510 }
40fb9820 7511 }
20f0a1fc 7512
6c30d220
L
7513 if (!i.tm.opcode_modifier.vecsib)
7514 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7515 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7516 i.rex |= REX_B;
29b0f896
AM
7517 i.sib.base = i.base_reg->reg_num;
7518 /* x86-64 ignores REX prefix bit here to avoid decoder
7519 complications. */
848930b2
JB
7520 if (!(i.base_reg->reg_flags & RegRex)
7521 && (i.base_reg->reg_num == EBP_REG_NUM
7522 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7523 default_seg = &ss;
848930b2 7524 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7525 {
848930b2 7526 fake_zero_displacement = 1;
b5014f7a 7527 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7528 }
7529 i.sib.scale = i.log2_scale_factor;
7530 if (i.index_reg == 0)
7531 {
6c30d220 7532 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7533 /* <disp>(%esp) becomes two byte modrm with no index
7534 register. We've already stored the code for esp
7535 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7536 Any base register besides %esp will not use the
7537 extra modrm byte. */
7538 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7539 }
6c30d220 7540 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7541 {
e968fc9b 7542 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7543 i.sib.index = NO_INDEX_REGISTER;
7544 else
7545 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7546 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7547 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7548 i.rex |= REX_X;
29b0f896 7549 }
67a4f2b7
AO
7550
7551 if (i.disp_operands
7552 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7553 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7554 i.rm.mode = 0;
7555 else
a501d77e
L
7556 {
7557 if (!fake_zero_displacement
7558 && !i.disp_operands
7559 && i.disp_encoding)
7560 {
7561 fake_zero_displacement = 1;
7562 if (i.disp_encoding == disp_encoding_8bit)
7563 i.types[op].bitfield.disp8 = 1;
7564 else
7565 i.types[op].bitfield.disp32 = 1;
7566 }
7567 i.rm.mode = mode_from_disp_size (i.types[op]);
7568 }
29b0f896 7569 }
252b5132 7570
29b0f896
AM
7571 if (fake_zero_displacement)
7572 {
7573 /* Fakes a zero displacement assuming that i.types[op]
7574 holds the correct displacement size. */
7575 expressionS *exp;
7576
9c2799c2 7577 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7578 exp = &disp_expressions[i.disp_operands++];
7579 i.op[op].disps = exp;
7580 exp->X_op = O_constant;
7581 exp->X_add_number = 0;
7582 exp->X_add_symbol = (symbolS *) 0;
7583 exp->X_op_symbol = (symbolS *) 0;
7584 }
c0f3af97
L
7585
7586 mem = op;
29b0f896 7587 }
c0f3af97
L
7588 else
7589 mem = ~0;
252b5132 7590
8c43a48b 7591 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7592 {
7593 if (operand_type_check (i.types[0], imm))
7594 i.vex.register_specifier = NULL;
7595 else
7596 {
7597 /* VEX.vvvv encodes one of the sources when the first
7598 operand is not an immediate. */
1ef99a7b 7599 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7600 i.vex.register_specifier = i.op[0].regs;
7601 else
7602 i.vex.register_specifier = i.op[1].regs;
7603 }
7604
7605 /* Destination is a XMM register encoded in the ModRM.reg
7606 and VEX.R bit. */
7607 i.rm.reg = i.op[2].regs->reg_num;
7608 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7609 i.rex |= REX_R;
7610
7611 /* ModRM.rm and VEX.B encodes the other source. */
7612 if (!i.mem_operands)
7613 {
7614 i.rm.mode = 3;
7615
1ef99a7b 7616 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7617 i.rm.regmem = i.op[1].regs->reg_num;
7618 else
7619 i.rm.regmem = i.op[0].regs->reg_num;
7620
7621 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7622 i.rex |= REX_B;
7623 }
7624 }
2426c15f 7625 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7626 {
7627 i.vex.register_specifier = i.op[2].regs;
7628 if (!i.mem_operands)
7629 {
7630 i.rm.mode = 3;
7631 i.rm.regmem = i.op[1].regs->reg_num;
7632 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7633 i.rex |= REX_B;
7634 }
7635 }
29b0f896
AM
7636 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7637 (if any) based on i.tm.extension_opcode. Again, we must be
7638 careful to make sure that segment/control/debug/test/MMX
7639 registers are coded into the i.rm.reg field. */
f88c9eb0 7640 else if (i.reg_operands)
29b0f896 7641 {
99018f42 7642 unsigned int op;
7ab9ffdd
L
7643 unsigned int vex_reg = ~0;
7644
7645 for (op = 0; op < i.operands; op++)
b4a3a7b4 7646 {
bab6aec1 7647 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7648 || i.types[op].bitfield.class == RegBND
7649 || i.types[op].bitfield.class == RegMask
00cee14f 7650 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7651 || i.types[op].bitfield.class == RegCR
7652 || i.types[op].bitfield.class == RegDR
7653 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7654 break;
3528c362 7655 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7656 {
7657 if (i.types[op].bitfield.zmmword)
7658 i.has_regzmm = TRUE;
7659 else if (i.types[op].bitfield.ymmword)
7660 i.has_regymm = TRUE;
7661 else
7662 i.has_regxmm = TRUE;
7663 break;
7664 }
3528c362 7665 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7666 {
7667 i.has_regmmx = TRUE;
7668 break;
7669 }
7670 }
c0209578 7671
7ab9ffdd
L
7672 if (vex_3_sources)
7673 op = dest;
2426c15f 7674 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7675 {
7676 /* For instructions with VexNDS, the register-only
7677 source operand is encoded in VEX prefix. */
7678 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7679
7ab9ffdd 7680 if (op > mem)
c0f3af97 7681 {
7ab9ffdd
L
7682 vex_reg = op++;
7683 gas_assert (op < i.operands);
c0f3af97
L
7684 }
7685 else
c0f3af97 7686 {
f12dc422
L
7687 /* Check register-only source operand when two source
7688 operands are swapped. */
7689 if (!i.tm.operand_types[op].bitfield.baseindex
7690 && i.tm.operand_types[op + 1].bitfield.baseindex)
7691 {
7692 vex_reg = op;
7693 op += 2;
7694 gas_assert (mem == (vex_reg + 1)
7695 && op < i.operands);
7696 }
7697 else
7698 {
7699 vex_reg = op + 1;
7700 gas_assert (vex_reg < i.operands);
7701 }
c0f3af97 7702 }
7ab9ffdd 7703 }
2426c15f 7704 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7705 {
f12dc422 7706 /* For instructions with VexNDD, the register destination
7ab9ffdd 7707 is encoded in VEX prefix. */
f12dc422
L
7708 if (i.mem_operands == 0)
7709 {
7710 /* There is no memory operand. */
7711 gas_assert ((op + 2) == i.operands);
7712 vex_reg = op + 1;
7713 }
7714 else
8d63c93e 7715 {
ed438a93
JB
7716 /* There are only 2 non-immediate operands. */
7717 gas_assert (op < i.imm_operands + 2
7718 && i.operands == i.imm_operands + 2);
7719 vex_reg = i.imm_operands + 1;
f12dc422 7720 }
7ab9ffdd
L
7721 }
7722 else
7723 gas_assert (op < i.operands);
99018f42 7724
7ab9ffdd
L
7725 if (vex_reg != (unsigned int) ~0)
7726 {
f12dc422 7727 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7728
bab6aec1 7729 if ((type->bitfield.class != Reg
dc821c5f 7730 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7731 && type->bitfield.class != RegSIMD
43234a1e 7732 && !operand_type_equal (type, &regmask))
7ab9ffdd 7733 abort ();
f88c9eb0 7734
7ab9ffdd
L
7735 i.vex.register_specifier = i.op[vex_reg].regs;
7736 }
7737
1b9f0c97
L
7738 /* Don't set OP operand twice. */
7739 if (vex_reg != op)
7ab9ffdd 7740 {
1b9f0c97
L
7741 /* If there is an extension opcode to put here, the
7742 register number must be put into the regmem field. */
7743 if (i.tm.extension_opcode != None)
7744 {
7745 i.rm.regmem = i.op[op].regs->reg_num;
7746 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7747 i.rex |= REX_B;
43234a1e
L
7748 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7749 i.vrex |= REX_B;
1b9f0c97
L
7750 }
7751 else
7752 {
7753 i.rm.reg = i.op[op].regs->reg_num;
7754 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7755 i.rex |= REX_R;
43234a1e
L
7756 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7757 i.vrex |= REX_R;
1b9f0c97 7758 }
7ab9ffdd 7759 }
252b5132 7760
29b0f896
AM
7761 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7762 must set it to 3 to indicate this is a register operand
7763 in the regmem field. */
7764 if (!i.mem_operands)
7765 i.rm.mode = 3;
7766 }
252b5132 7767
29b0f896 7768 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7769 if (i.tm.extension_opcode != None)
29b0f896
AM
7770 i.rm.reg = i.tm.extension_opcode;
7771 }
7772 return default_seg;
7773}
252b5132 7774
29b0f896 7775static void
e3bb37b5 7776output_branch (void)
29b0f896
AM
7777{
7778 char *p;
f8a5c266 7779 int size;
29b0f896
AM
7780 int code16;
7781 int prefix;
7782 relax_substateT subtype;
7783 symbolS *sym;
7784 offsetT off;
7785
f8a5c266 7786 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7787 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7788
7789 prefix = 0;
7790 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7791 {
29b0f896
AM
7792 prefix = 1;
7793 i.prefixes -= 1;
7794 code16 ^= CODE16;
252b5132 7795 }
29b0f896
AM
7796 /* Pentium4 branch hints. */
7797 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7798 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7799 {
29b0f896
AM
7800 prefix++;
7801 i.prefixes--;
7802 }
7803 if (i.prefix[REX_PREFIX] != 0)
7804 {
7805 prefix++;
7806 i.prefixes--;
2f66722d
AM
7807 }
7808
7e8b059b
L
7809 /* BND prefixed jump. */
7810 if (i.prefix[BND_PREFIX] != 0)
7811 {
7812 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7813 i.prefixes -= 1;
7814 }
7815
29b0f896
AM
7816 if (i.prefixes != 0 && !intel_syntax)
7817 as_warn (_("skipping prefixes on this instruction"));
7818
7819 /* It's always a symbol; End frag & setup for relax.
7820 Make sure there is enough room in this frag for the largest
7821 instruction we may generate in md_convert_frag. This is 2
7822 bytes for the opcode and room for the prefix and largest
7823 displacement. */
7824 frag_grow (prefix + 2 + 4);
7825 /* Prefix and 1 opcode byte go in fr_fix. */
7826 p = frag_more (prefix + 1);
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 *p++ = DATA_PREFIX_OPCODE;
7829 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7830 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7831 *p++ = i.prefix[SEG_PREFIX];
7832 if (i.prefix[REX_PREFIX] != 0)
7833 *p++ = i.prefix[REX_PREFIX];
7834 *p = i.tm.base_opcode;
7835
7836 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7837 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7838 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7839 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7840 else
f8a5c266 7841 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7842 subtype |= code16;
3e73aa7c 7843
29b0f896
AM
7844 sym = i.op[0].disps->X_add_symbol;
7845 off = i.op[0].disps->X_add_number;
3e73aa7c 7846
29b0f896
AM
7847 if (i.op[0].disps->X_op != O_constant
7848 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7849 {
29b0f896
AM
7850 /* Handle complex expressions. */
7851 sym = make_expr_symbol (i.op[0].disps);
7852 off = 0;
7853 }
3e73aa7c 7854
29b0f896
AM
7855 /* 1 possible extra opcode + 4 byte displacement go in var part.
7856 Pass reloc in fr_var. */
d258b828 7857 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7858}
3e73aa7c 7859
bd7ab16b
L
7860#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7861/* Return TRUE iff PLT32 relocation should be used for branching to
7862 symbol S. */
7863
7864static bfd_boolean
7865need_plt32_p (symbolS *s)
7866{
7867 /* PLT32 relocation is ELF only. */
7868 if (!IS_ELF)
7869 return FALSE;
7870
a5def729
RO
7871#ifdef TE_SOLARIS
7872 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7873 krtld support it. */
7874 return FALSE;
7875#endif
7876
bd7ab16b
L
7877 /* Since there is no need to prepare for PLT branch on x86-64, we
7878 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7879 be used as a marker for 32-bit PC-relative branches. */
7880 if (!object_64bit)
7881 return FALSE;
7882
7883 /* Weak or undefined symbol need PLT32 relocation. */
7884 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7885 return TRUE;
7886
7887 /* Non-global symbol doesn't need PLT32 relocation. */
7888 if (! S_IS_EXTERNAL (s))
7889 return FALSE;
7890
7891 /* Other global symbols need PLT32 relocation. NB: Symbol with
7892 non-default visibilities are treated as normal global symbol
7893 so that PLT32 relocation can be used as a marker for 32-bit
7894 PC-relative branches. It is useful for linker relaxation. */
7895 return TRUE;
7896}
7897#endif
7898
29b0f896 7899static void
e3bb37b5 7900output_jump (void)
29b0f896
AM
7901{
7902 char *p;
7903 int size;
3e02c1cc 7904 fixS *fixP;
bd7ab16b 7905 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7906
0cfa3eb3 7907 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7908 {
7909 /* This is a loop or jecxz type instruction. */
7910 size = 1;
7911 if (i.prefix[ADDR_PREFIX] != 0)
7912 {
7913 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7914 i.prefixes -= 1;
7915 }
7916 /* Pentium4 branch hints. */
7917 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7918 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7919 {
7920 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7921 i.prefixes--;
3e73aa7c
JH
7922 }
7923 }
29b0f896
AM
7924 else
7925 {
7926 int code16;
3e73aa7c 7927
29b0f896
AM
7928 code16 = 0;
7929 if (flag_code == CODE_16BIT)
7930 code16 = CODE16;
3e73aa7c 7931
29b0f896
AM
7932 if (i.prefix[DATA_PREFIX] != 0)
7933 {
7934 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7935 i.prefixes -= 1;
7936 code16 ^= CODE16;
7937 }
252b5132 7938
29b0f896
AM
7939 size = 4;
7940 if (code16)
7941 size = 2;
7942 }
9fcc94b6 7943
29b0f896
AM
7944 if (i.prefix[REX_PREFIX] != 0)
7945 {
7946 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7947 i.prefixes -= 1;
7948 }
252b5132 7949
7e8b059b
L
7950 /* BND prefixed jump. */
7951 if (i.prefix[BND_PREFIX] != 0)
7952 {
7953 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7954 i.prefixes -= 1;
7955 }
7956
29b0f896
AM
7957 if (i.prefixes != 0 && !intel_syntax)
7958 as_warn (_("skipping prefixes on this instruction"));
e0890092 7959
42164a71
L
7960 p = frag_more (i.tm.opcode_length + size);
7961 switch (i.tm.opcode_length)
7962 {
7963 case 2:
7964 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7965 /* Fall through. */
42164a71
L
7966 case 1:
7967 *p++ = i.tm.base_opcode;
7968 break;
7969 default:
7970 abort ();
7971 }
e0890092 7972
bd7ab16b
L
7973#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7974 if (size == 4
7975 && jump_reloc == NO_RELOC
7976 && need_plt32_p (i.op[0].disps->X_add_symbol))
7977 jump_reloc = BFD_RELOC_X86_64_PLT32;
7978#endif
7979
7980 jump_reloc = reloc (size, 1, 1, jump_reloc);
7981
3e02c1cc 7982 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7983 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7984
7985 /* All jumps handled here are signed, but don't use a signed limit
7986 check for 32 and 16 bit jumps as we want to allow wrap around at
7987 4G and 64k respectively. */
7988 if (size == 1)
7989 fixP->fx_signed = 1;
29b0f896 7990}
e0890092 7991
29b0f896 7992static void
e3bb37b5 7993output_interseg_jump (void)
29b0f896
AM
7994{
7995 char *p;
7996 int size;
7997 int prefix;
7998 int code16;
252b5132 7999
29b0f896
AM
8000 code16 = 0;
8001 if (flag_code == CODE_16BIT)
8002 code16 = CODE16;
a217f122 8003
29b0f896
AM
8004 prefix = 0;
8005 if (i.prefix[DATA_PREFIX] != 0)
8006 {
8007 prefix = 1;
8008 i.prefixes -= 1;
8009 code16 ^= CODE16;
8010 }
8011 if (i.prefix[REX_PREFIX] != 0)
8012 {
8013 prefix++;
8014 i.prefixes -= 1;
8015 }
252b5132 8016
29b0f896
AM
8017 size = 4;
8018 if (code16)
8019 size = 2;
252b5132 8020
29b0f896
AM
8021 if (i.prefixes != 0 && !intel_syntax)
8022 as_warn (_("skipping prefixes on this instruction"));
252b5132 8023
29b0f896
AM
8024 /* 1 opcode; 2 segment; offset */
8025 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8026
29b0f896
AM
8027 if (i.prefix[DATA_PREFIX] != 0)
8028 *p++ = DATA_PREFIX_OPCODE;
252b5132 8029
29b0f896
AM
8030 if (i.prefix[REX_PREFIX] != 0)
8031 *p++ = i.prefix[REX_PREFIX];
252b5132 8032
29b0f896
AM
8033 *p++ = i.tm.base_opcode;
8034 if (i.op[1].imms->X_op == O_constant)
8035 {
8036 offsetT n = i.op[1].imms->X_add_number;
252b5132 8037
29b0f896
AM
8038 if (size == 2
8039 && !fits_in_unsigned_word (n)
8040 && !fits_in_signed_word (n))
8041 {
8042 as_bad (_("16-bit jump out of range"));
8043 return;
8044 }
8045 md_number_to_chars (p, n, size);
8046 }
8047 else
8048 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8049 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8050 if (i.op[0].imms->X_op != O_constant)
8051 as_bad (_("can't handle non absolute segment in `%s'"),
8052 i.tm.name);
8053 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8054}
a217f122 8055
b4a3a7b4
L
8056#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8057void
8058x86_cleanup (void)
8059{
8060 char *p;
8061 asection *seg = now_seg;
8062 subsegT subseg = now_subseg;
8063 asection *sec;
8064 unsigned int alignment, align_size_1;
8065 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8066 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8067 unsigned int padding;
8068
8069 if (!IS_ELF || !x86_used_note)
8070 return;
8071
b4a3a7b4
L
8072 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8073
8074 /* The .note.gnu.property section layout:
8075
8076 Field Length Contents
8077 ---- ---- ----
8078 n_namsz 4 4
8079 n_descsz 4 The note descriptor size
8080 n_type 4 NT_GNU_PROPERTY_TYPE_0
8081 n_name 4 "GNU"
8082 n_desc n_descsz The program property array
8083 .... .... ....
8084 */
8085
8086 /* Create the .note.gnu.property section. */
8087 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8088 bfd_set_section_flags (sec,
b4a3a7b4
L
8089 (SEC_ALLOC
8090 | SEC_LOAD
8091 | SEC_DATA
8092 | SEC_HAS_CONTENTS
8093 | SEC_READONLY));
8094
8095 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8096 {
8097 align_size_1 = 7;
8098 alignment = 3;
8099 }
8100 else
8101 {
8102 align_size_1 = 3;
8103 alignment = 2;
8104 }
8105
fd361982 8106 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8107 elf_section_type (sec) = SHT_NOTE;
8108
8109 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8110 + 4-byte data */
8111 isa_1_descsz_raw = 4 + 4 + 4;
8112 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8113 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8114
8115 feature_2_descsz_raw = isa_1_descsz;
8116 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8117 + 4-byte data */
8118 feature_2_descsz_raw += 4 + 4 + 4;
8119 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8120 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8121 & ~align_size_1);
8122
8123 descsz = feature_2_descsz;
8124 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8125 p = frag_more (4 + 4 + 4 + 4 + descsz);
8126
8127 /* Write n_namsz. */
8128 md_number_to_chars (p, (valueT) 4, 4);
8129
8130 /* Write n_descsz. */
8131 md_number_to_chars (p + 4, (valueT) descsz, 4);
8132
8133 /* Write n_type. */
8134 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8135
8136 /* Write n_name. */
8137 memcpy (p + 4 * 3, "GNU", 4);
8138
8139 /* Write 4-byte type. */
8140 md_number_to_chars (p + 4 * 4,
8141 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8142
8143 /* Write 4-byte data size. */
8144 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8145
8146 /* Write 4-byte data. */
8147 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8148
8149 /* Zero out paddings. */
8150 padding = isa_1_descsz - isa_1_descsz_raw;
8151 if (padding)
8152 memset (p + 4 * 7, 0, padding);
8153
8154 /* Write 4-byte type. */
8155 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8156 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8157
8158 /* Write 4-byte data size. */
8159 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8160
8161 /* Write 4-byte data. */
8162 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8163 (valueT) x86_feature_2_used, 4);
8164
8165 /* Zero out paddings. */
8166 padding = feature_2_descsz - feature_2_descsz_raw;
8167 if (padding)
8168 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8169
8170 /* We probably can't restore the current segment, for there likely
8171 isn't one yet... */
8172 if (seg && subseg)
8173 subseg_set (seg, subseg);
8174}
8175#endif
8176
9c33702b
JB
8177static unsigned int
8178encoding_length (const fragS *start_frag, offsetT start_off,
8179 const char *frag_now_ptr)
8180{
8181 unsigned int len = 0;
8182
8183 if (start_frag != frag_now)
8184 {
8185 const fragS *fr = start_frag;
8186
8187 do {
8188 len += fr->fr_fix;
8189 fr = fr->fr_next;
8190 } while (fr && fr != frag_now);
8191 }
8192
8193 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8194}
8195
29b0f896 8196static void
e3bb37b5 8197output_insn (void)
29b0f896 8198{
2bbd9c25
JJ
8199 fragS *insn_start_frag;
8200 offsetT insn_start_off;
8201
b4a3a7b4
L
8202#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8203 if (IS_ELF && x86_used_note)
8204 {
8205 if (i.tm.cpu_flags.bitfield.cpucmov)
8206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8207 if (i.tm.cpu_flags.bitfield.cpusse)
8208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8209 if (i.tm.cpu_flags.bitfield.cpusse2)
8210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8211 if (i.tm.cpu_flags.bitfield.cpusse3)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8213 if (i.tm.cpu_flags.bitfield.cpussse3)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8215 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8217 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8219 if (i.tm.cpu_flags.bitfield.cpuavx)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8221 if (i.tm.cpu_flags.bitfield.cpuavx2)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8223 if (i.tm.cpu_flags.bitfield.cpufma)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8225 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8227 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8229 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8253 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8255
8256 if (i.tm.cpu_flags.bitfield.cpu8087
8257 || i.tm.cpu_flags.bitfield.cpu287
8258 || i.tm.cpu_flags.bitfield.cpu387
8259 || i.tm.cpu_flags.bitfield.cpu687
8260 || i.tm.cpu_flags.bitfield.cpufisttp)
8261 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8262 if (i.has_regmmx
8263 || i.tm.base_opcode == 0xf77 /* emms */
8264 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8265 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8266 if (i.has_regxmm)
8267 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8268 if (i.has_regymm)
8269 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8270 if (i.has_regzmm)
8271 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8272 if (i.tm.cpu_flags.bitfield.cpufxsr)
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8274 if (i.tm.cpu_flags.bitfield.cpuxsave)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8276 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8278 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8279 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8280 }
8281#endif
8282
29b0f896
AM
8283 /* Tie dwarf2 debug info to the address at the start of the insn.
8284 We can't do this after the insn has been output as the current
8285 frag may have been closed off. eg. by frag_var. */
8286 dwarf2_emit_insn (0);
8287
2bbd9c25
JJ
8288 insn_start_frag = frag_now;
8289 insn_start_off = frag_now_fix ();
8290
29b0f896 8291 /* Output jumps. */
0cfa3eb3 8292 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8293 output_branch ();
0cfa3eb3
JB
8294 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8295 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8296 output_jump ();
0cfa3eb3 8297 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8298 output_interseg_jump ();
8299 else
8300 {
8301 /* Output normal instructions here. */
8302 char *p;
8303 unsigned char *q;
47465058 8304 unsigned int j;
331d2d0d 8305 unsigned int prefix;
4dffcebc 8306
e4e00185 8307 if (avoid_fence
c3949f43
JB
8308 && (i.tm.base_opcode == 0xfaee8
8309 || i.tm.base_opcode == 0xfaef0
8310 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8311 {
8312 /* Encode lfence, mfence, and sfence as
8313 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8314 offsetT val = 0x240483f0ULL;
8315 p = frag_more (5);
8316 md_number_to_chars (p, val, 5);
8317 return;
8318 }
8319
d022bddd
IT
8320 /* Some processors fail on LOCK prefix. This options makes
8321 assembler ignore LOCK prefix and serves as a workaround. */
8322 if (omit_lock_prefix)
8323 {
8324 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8325 return;
8326 i.prefix[LOCK_PREFIX] = 0;
8327 }
8328
43234a1e
L
8329 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8330 don't need the explicit prefix. */
8331 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8332 {
c0f3af97 8333 switch (i.tm.opcode_length)
bc4bd9ab 8334 {
c0f3af97
L
8335 case 3:
8336 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8337 {
c0f3af97 8338 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8339 if (!i.tm.cpu_flags.bitfield.cpupadlock
8340 || prefix != REPE_PREFIX_OPCODE
8341 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8342 add_prefix (prefix);
c0f3af97
L
8343 }
8344 break;
8345 case 2:
8346 if ((i.tm.base_opcode & 0xff0000) != 0)
8347 {
8348 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8349 add_prefix (prefix);
4dffcebc 8350 }
c0f3af97
L
8351 break;
8352 case 1:
8353 break;
390c91cf
L
8354 case 0:
8355 /* Check for pseudo prefixes. */
8356 as_bad_where (insn_start_frag->fr_file,
8357 insn_start_frag->fr_line,
8358 _("pseudo prefix without instruction"));
8359 return;
c0f3af97
L
8360 default:
8361 abort ();
bc4bd9ab 8362 }
c0f3af97 8363
6d19a37a 8364#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8365 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8366 R_X86_64_GOTTPOFF relocation so that linker can safely
8367 perform IE->LE optimization. */
8368 if (x86_elf_abi == X86_64_X32_ABI
8369 && i.operands == 2
8370 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8371 && i.prefix[REX_PREFIX] == 0)
8372 add_prefix (REX_OPCODE);
6d19a37a 8373#endif
cf61b747 8374
c0f3af97
L
8375 /* The prefix bytes. */
8376 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8377 if (*q)
8378 FRAG_APPEND_1_CHAR (*q);
0f10071e 8379 }
ae5c1c7b 8380 else
c0f3af97
L
8381 {
8382 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8383 if (*q)
8384 switch (j)
8385 {
8386 case REX_PREFIX:
8387 /* REX byte is encoded in VEX prefix. */
8388 break;
8389 case SEG_PREFIX:
8390 case ADDR_PREFIX:
8391 FRAG_APPEND_1_CHAR (*q);
8392 break;
8393 default:
8394 /* There should be no other prefixes for instructions
8395 with VEX prefix. */
8396 abort ();
8397 }
8398
43234a1e
L
8399 /* For EVEX instructions i.vrex should become 0 after
8400 build_evex_prefix. For VEX instructions upper 16 registers
8401 aren't available, so VREX should be 0. */
8402 if (i.vrex)
8403 abort ();
c0f3af97
L
8404 /* Now the VEX prefix. */
8405 p = frag_more (i.vex.length);
8406 for (j = 0; j < i.vex.length; j++)
8407 p[j] = i.vex.bytes[j];
8408 }
252b5132 8409
29b0f896 8410 /* Now the opcode; be careful about word order here! */
4dffcebc 8411 if (i.tm.opcode_length == 1)
29b0f896
AM
8412 {
8413 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8414 }
8415 else
8416 {
4dffcebc 8417 switch (i.tm.opcode_length)
331d2d0d 8418 {
43234a1e
L
8419 case 4:
8420 p = frag_more (4);
8421 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8422 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8423 break;
4dffcebc 8424 case 3:
331d2d0d
L
8425 p = frag_more (3);
8426 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8427 break;
8428 case 2:
8429 p = frag_more (2);
8430 break;
8431 default:
8432 abort ();
8433 break;
331d2d0d 8434 }
0f10071e 8435
29b0f896
AM
8436 /* Put out high byte first: can't use md_number_to_chars! */
8437 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8438 *p = i.tm.base_opcode & 0xff;
8439 }
3e73aa7c 8440
29b0f896 8441 /* Now the modrm byte and sib byte (if present). */
40fb9820 8442 if (i.tm.opcode_modifier.modrm)
29b0f896 8443 {
4a3523fa
L
8444 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8445 | i.rm.reg << 3
8446 | i.rm.mode << 6));
29b0f896
AM
8447 /* If i.rm.regmem == ESP (4)
8448 && i.rm.mode != (Register mode)
8449 && not 16 bit
8450 ==> need second modrm byte. */
8451 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8452 && i.rm.mode != 3
dc821c5f 8453 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8454 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8455 | i.sib.index << 3
8456 | i.sib.scale << 6));
29b0f896 8457 }
3e73aa7c 8458
29b0f896 8459 if (i.disp_operands)
2bbd9c25 8460 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8461
29b0f896 8462 if (i.imm_operands)
2bbd9c25 8463 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8464
8465 /*
8466 * frag_now_fix () returning plain abs_section_offset when we're in the
8467 * absolute section, and abs_section_offset not getting updated as data
8468 * gets added to the frag breaks the logic below.
8469 */
8470 if (now_seg != absolute_section)
8471 {
8472 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8473 if (j > 15)
8474 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8475 j);
8476 }
29b0f896 8477 }
252b5132 8478
29b0f896
AM
8479#ifdef DEBUG386
8480 if (flag_debug)
8481 {
7b81dfbb 8482 pi ("" /*line*/, &i);
29b0f896
AM
8483 }
8484#endif /* DEBUG386 */
8485}
252b5132 8486
e205caa7
L
8487/* Return the size of the displacement operand N. */
8488
8489static int
8490disp_size (unsigned int n)
8491{
8492 int size = 4;
43234a1e 8493
b5014f7a 8494 if (i.types[n].bitfield.disp64)
40fb9820
L
8495 size = 8;
8496 else if (i.types[n].bitfield.disp8)
8497 size = 1;
8498 else if (i.types[n].bitfield.disp16)
8499 size = 2;
e205caa7
L
8500 return size;
8501}
8502
8503/* Return the size of the immediate operand N. */
8504
8505static int
8506imm_size (unsigned int n)
8507{
8508 int size = 4;
40fb9820
L
8509 if (i.types[n].bitfield.imm64)
8510 size = 8;
8511 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8512 size = 1;
8513 else if (i.types[n].bitfield.imm16)
8514 size = 2;
e205caa7
L
8515 return size;
8516}
8517
29b0f896 8518static void
64e74474 8519output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8520{
8521 char *p;
8522 unsigned int n;
252b5132 8523
29b0f896
AM
8524 for (n = 0; n < i.operands; n++)
8525 {
b5014f7a 8526 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8527 {
8528 if (i.op[n].disps->X_op == O_constant)
8529 {
e205caa7 8530 int size = disp_size (n);
43234a1e 8531 offsetT val = i.op[n].disps->X_add_number;
252b5132 8532
629cfaf1
JB
8533 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8534 size);
29b0f896
AM
8535 p = frag_more (size);
8536 md_number_to_chars (p, val, size);
8537 }
8538 else
8539 {
f86103b7 8540 enum bfd_reloc_code_real reloc_type;
e205caa7 8541 int size = disp_size (n);
40fb9820 8542 int sign = i.types[n].bitfield.disp32s;
29b0f896 8543 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8544 fixS *fixP;
29b0f896 8545
e205caa7 8546 /* We can't have 8 bit displacement here. */
9c2799c2 8547 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8548
29b0f896
AM
8549 /* The PC relative address is computed relative
8550 to the instruction boundary, so in case immediate
8551 fields follows, we need to adjust the value. */
8552 if (pcrel && i.imm_operands)
8553 {
29b0f896 8554 unsigned int n1;
e205caa7 8555 int sz = 0;
252b5132 8556
29b0f896 8557 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8558 if (operand_type_check (i.types[n1], imm))
252b5132 8559 {
e205caa7
L
8560 /* Only one immediate is allowed for PC
8561 relative address. */
9c2799c2 8562 gas_assert (sz == 0);
e205caa7
L
8563 sz = imm_size (n1);
8564 i.op[n].disps->X_add_number -= sz;
252b5132 8565 }
29b0f896 8566 /* We should find the immediate. */
9c2799c2 8567 gas_assert (sz != 0);
29b0f896 8568 }
520dc8e8 8569
29b0f896 8570 p = frag_more (size);
d258b828 8571 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8572 if (GOT_symbol
2bbd9c25 8573 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8574 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8575 || reloc_type == BFD_RELOC_X86_64_32S
8576 || (reloc_type == BFD_RELOC_64
8577 && object_64bit))
d6ab8113
JB
8578 && (i.op[n].disps->X_op == O_symbol
8579 || (i.op[n].disps->X_op == O_add
8580 && ((symbol_get_value_expression
8581 (i.op[n].disps->X_op_symbol)->X_op)
8582 == O_subtract))))
8583 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8584 {
4fa24527 8585 if (!object_64bit)
7b81dfbb
AJ
8586 {
8587 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8588 i.op[n].imms->X_add_number +=
8589 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8590 }
8591 else if (reloc_type == BFD_RELOC_64)
8592 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8593 else
7b81dfbb
AJ
8594 /* Don't do the adjustment for x86-64, as there
8595 the pcrel addressing is relative to the _next_
8596 insn, and that is taken care of in other code. */
d6ab8113 8597 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8598 }
02a86693
L
8599 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8600 size, i.op[n].disps, pcrel,
8601 reloc_type);
8602 /* Check for "call/jmp *mem", "mov mem, %reg",
8603 "test %reg, mem" and "binop mem, %reg" where binop
8604 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8605 instructions without data prefix. Always generate
8606 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8607 if (i.prefix[DATA_PREFIX] == 0
8608 && (generate_relax_relocations
8609 || (!object_64bit
8610 && i.rm.mode == 0
8611 && i.rm.regmem == 5))
0cb4071e
L
8612 && (i.rm.mode == 2
8613 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8614 && ((i.operands == 1
8615 && i.tm.base_opcode == 0xff
8616 && (i.rm.reg == 2 || i.rm.reg == 4))
8617 || (i.operands == 2
8618 && (i.tm.base_opcode == 0x8b
8619 || i.tm.base_opcode == 0x85
8620 || (i.tm.base_opcode & 0xc7) == 0x03))))
8621 {
8622 if (object_64bit)
8623 {
8624 fixP->fx_tcbit = i.rex != 0;
8625 if (i.base_reg
e968fc9b 8626 && (i.base_reg->reg_num == RegIP))
02a86693
L
8627 fixP->fx_tcbit2 = 1;
8628 }
8629 else
8630 fixP->fx_tcbit2 = 1;
8631 }
29b0f896
AM
8632 }
8633 }
8634 }
8635}
252b5132 8636
29b0f896 8637static void
64e74474 8638output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8639{
8640 char *p;
8641 unsigned int n;
252b5132 8642
29b0f896
AM
8643 for (n = 0; n < i.operands; n++)
8644 {
43234a1e
L
8645 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8646 if (i.rounding && (int) n == i.rounding->operand)
8647 continue;
8648
40fb9820 8649 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8650 {
8651 if (i.op[n].imms->X_op == O_constant)
8652 {
e205caa7 8653 int size = imm_size (n);
29b0f896 8654 offsetT val;
b4cac588 8655
29b0f896
AM
8656 val = offset_in_range (i.op[n].imms->X_add_number,
8657 size);
8658 p = frag_more (size);
8659 md_number_to_chars (p, val, size);
8660 }
8661 else
8662 {
8663 /* Not absolute_section.
8664 Need a 32-bit fixup (don't support 8bit
8665 non-absolute imms). Try to support other
8666 sizes ... */
f86103b7 8667 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8668 int size = imm_size (n);
8669 int sign;
29b0f896 8670
40fb9820 8671 if (i.types[n].bitfield.imm32s
a7d61044 8672 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8673 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8674 sign = 1;
e205caa7
L
8675 else
8676 sign = 0;
520dc8e8 8677
29b0f896 8678 p = frag_more (size);
d258b828 8679 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8680
2bbd9c25
JJ
8681 /* This is tough to explain. We end up with this one if we
8682 * have operands that look like
8683 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8684 * obtain the absolute address of the GOT, and it is strongly
8685 * preferable from a performance point of view to avoid using
8686 * a runtime relocation for this. The actual sequence of
8687 * instructions often look something like:
8688 *
8689 * call .L66
8690 * .L66:
8691 * popl %ebx
8692 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8693 *
8694 * The call and pop essentially return the absolute address
8695 * of the label .L66 and store it in %ebx. The linker itself
8696 * will ultimately change the first operand of the addl so
8697 * that %ebx points to the GOT, but to keep things simple, the
8698 * .o file must have this operand set so that it generates not
8699 * the absolute address of .L66, but the absolute address of
8700 * itself. This allows the linker itself simply treat a GOTPC
8701 * relocation as asking for a pcrel offset to the GOT to be
8702 * added in, and the addend of the relocation is stored in the
8703 * operand field for the instruction itself.
8704 *
8705 * Our job here is to fix the operand so that it would add
8706 * the correct offset so that %ebx would point to itself. The
8707 * thing that is tricky is that .-.L66 will point to the
8708 * beginning of the instruction, so we need to further modify
8709 * the operand so that it will point to itself. There are
8710 * other cases where you have something like:
8711 *
8712 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8713 *
8714 * and here no correction would be required. Internally in
8715 * the assembler we treat operands of this form as not being
8716 * pcrel since the '.' is explicitly mentioned, and I wonder
8717 * whether it would simplify matters to do it this way. Who
8718 * knows. In earlier versions of the PIC patches, the
8719 * pcrel_adjust field was used to store the correction, but
8720 * since the expression is not pcrel, I felt it would be
8721 * confusing to do it this way. */
8722
d6ab8113 8723 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8724 || reloc_type == BFD_RELOC_X86_64_32S
8725 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8726 && GOT_symbol
8727 && GOT_symbol == i.op[n].imms->X_add_symbol
8728 && (i.op[n].imms->X_op == O_symbol
8729 || (i.op[n].imms->X_op == O_add
8730 && ((symbol_get_value_expression
8731 (i.op[n].imms->X_op_symbol)->X_op)
8732 == O_subtract))))
8733 {
4fa24527 8734 if (!object_64bit)
d6ab8113 8735 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8736 else if (size == 4)
d6ab8113 8737 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8738 else if (size == 8)
8739 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8740 i.op[n].imms->X_add_number +=
8741 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8742 }
29b0f896
AM
8743 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8744 i.op[n].imms, 0, reloc_type);
8745 }
8746 }
8747 }
252b5132
RH
8748}
8749\f
d182319b
JB
8750/* x86_cons_fix_new is called via the expression parsing code when a
8751 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8752static int cons_sign = -1;
8753
8754void
e3bb37b5 8755x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8756 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8757{
d258b828 8758 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8759
8760#ifdef TE_PE
8761 if (exp->X_op == O_secrel)
8762 {
8763 exp->X_op = O_symbol;
8764 r = BFD_RELOC_32_SECREL;
8765 }
8766#endif
8767
8768 fix_new_exp (frag, off, len, exp, 0, r);
8769}
8770
357d1bd8
L
8771/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8772 purpose of the `.dc.a' internal pseudo-op. */
8773
8774int
8775x86_address_bytes (void)
8776{
8777 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8778 return 4;
8779 return stdoutput->arch_info->bits_per_address / 8;
8780}
8781
d382c579
TG
8782#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8783 || defined (LEX_AT)
d258b828 8784# define lex_got(reloc, adjust, types) NULL
718ddfc0 8785#else
f3c180ae
AM
8786/* Parse operands of the form
8787 <symbol>@GOTOFF+<nnn>
8788 and similar .plt or .got references.
8789
8790 If we find one, set up the correct relocation in RELOC and copy the
8791 input string, minus the `@GOTOFF' into a malloc'd buffer for
8792 parsing by the calling routine. Return this buffer, and if ADJUST
8793 is non-null set it to the length of the string we removed from the
8794 input line. Otherwise return NULL. */
8795static char *
91d6fa6a 8796lex_got (enum bfd_reloc_code_real *rel,
64e74474 8797 int *adjust,
d258b828 8798 i386_operand_type *types)
f3c180ae 8799{
7b81dfbb
AJ
8800 /* Some of the relocations depend on the size of what field is to
8801 be relocated. But in our callers i386_immediate and i386_displacement
8802 we don't yet know the operand size (this will be set by insn
8803 matching). Hence we record the word32 relocation here,
8804 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8805 static const struct {
8806 const char *str;
cff8d58a 8807 int len;
4fa24527 8808 const enum bfd_reloc_code_real rel[2];
40fb9820 8809 const i386_operand_type types64;
f3c180ae 8810 } gotrel[] = {
8ce3d284 8811#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8812 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8813 BFD_RELOC_SIZE32 },
8814 OPERAND_TYPE_IMM32_64 },
8ce3d284 8815#endif
cff8d58a
L
8816 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8817 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8818 OPERAND_TYPE_IMM64 },
cff8d58a
L
8819 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8820 BFD_RELOC_X86_64_PLT32 },
40fb9820 8821 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8822 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8823 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8824 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8825 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8826 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8827 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8828 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8830 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8831 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8832 BFD_RELOC_X86_64_TLSGD },
40fb9820 8833 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8834 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8835 _dummy_first_bfd_reloc_code_real },
40fb9820 8836 OPERAND_TYPE_NONE },
cff8d58a
L
8837 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8838 BFD_RELOC_X86_64_TLSLD },
40fb9820 8839 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8840 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8841 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8842 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8843 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8844 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8845 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8846 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8847 _dummy_first_bfd_reloc_code_real },
40fb9820 8848 OPERAND_TYPE_NONE },
cff8d58a
L
8849 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8850 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8851 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8852 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8853 _dummy_first_bfd_reloc_code_real },
40fb9820 8854 OPERAND_TYPE_NONE },
cff8d58a
L
8855 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8856 _dummy_first_bfd_reloc_code_real },
40fb9820 8857 OPERAND_TYPE_NONE },
cff8d58a
L
8858 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8859 BFD_RELOC_X86_64_GOT32 },
40fb9820 8860 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8861 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8862 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8863 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8864 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8865 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8866 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8867 };
8868 char *cp;
8869 unsigned int j;
8870
d382c579 8871#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8872 if (!IS_ELF)
8873 return NULL;
d382c579 8874#endif
718ddfc0 8875
f3c180ae 8876 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8877 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8878 return NULL;
8879
47465058 8880 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8881 {
cff8d58a 8882 int len = gotrel[j].len;
28f81592 8883 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8884 {
4fa24527 8885 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8886 {
28f81592
AM
8887 int first, second;
8888 char *tmpbuf, *past_reloc;
f3c180ae 8889
91d6fa6a 8890 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8891
3956db08
JB
8892 if (types)
8893 {
8894 if (flag_code != CODE_64BIT)
40fb9820
L
8895 {
8896 types->bitfield.imm32 = 1;
8897 types->bitfield.disp32 = 1;
8898 }
3956db08
JB
8899 else
8900 *types = gotrel[j].types64;
8901 }
8902
8fd4256d 8903 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8904 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8905
28f81592 8906 /* The length of the first part of our input line. */
f3c180ae 8907 first = cp - input_line_pointer;
28f81592
AM
8908
8909 /* The second part goes from after the reloc token until
67c11a9b 8910 (and including) an end_of_line char or comma. */
28f81592 8911 past_reloc = cp + 1 + len;
67c11a9b
AM
8912 cp = past_reloc;
8913 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8914 ++cp;
8915 second = cp + 1 - past_reloc;
28f81592
AM
8916
8917 /* Allocate and copy string. The trailing NUL shouldn't
8918 be necessary, but be safe. */
add39d23 8919 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8920 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8921 if (second != 0 && *past_reloc != ' ')
8922 /* Replace the relocation token with ' ', so that
8923 errors like foo@GOTOFF1 will be detected. */
8924 tmpbuf[first++] = ' ';
af89796a
L
8925 else
8926 /* Increment length by 1 if the relocation token is
8927 removed. */
8928 len++;
8929 if (adjust)
8930 *adjust = len;
0787a12d
AM
8931 memcpy (tmpbuf + first, past_reloc, second);
8932 tmpbuf[first + second] = '\0';
f3c180ae
AM
8933 return tmpbuf;
8934 }
8935
4fa24527
JB
8936 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8937 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8938 return NULL;
8939 }
8940 }
8941
8942 /* Might be a symbol version string. Don't as_bad here. */
8943 return NULL;
8944}
4e4f7c87 8945#endif
f3c180ae 8946
a988325c
NC
8947#ifdef TE_PE
8948#ifdef lex_got
8949#undef lex_got
8950#endif
8951/* Parse operands of the form
8952 <symbol>@SECREL32+<nnn>
8953
8954 If we find one, set up the correct relocation in RELOC and copy the
8955 input string, minus the `@SECREL32' into a malloc'd buffer for
8956 parsing by the calling routine. Return this buffer, and if ADJUST
8957 is non-null set it to the length of the string we removed from the
34bca508
L
8958 input line. Otherwise return NULL.
8959
a988325c
NC
8960 This function is copied from the ELF version above adjusted for PE targets. */
8961
8962static char *
8963lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8964 int *adjust ATTRIBUTE_UNUSED,
d258b828 8965 i386_operand_type *types)
a988325c
NC
8966{
8967 static const struct
8968 {
8969 const char *str;
8970 int len;
8971 const enum bfd_reloc_code_real rel[2];
8972 const i386_operand_type types64;
8973 }
8974 gotrel[] =
8975 {
8976 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8977 BFD_RELOC_32_SECREL },
8978 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8979 };
8980
8981 char *cp;
8982 unsigned j;
8983
8984 for (cp = input_line_pointer; *cp != '@'; cp++)
8985 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8986 return NULL;
8987
8988 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8989 {
8990 int len = gotrel[j].len;
8991
8992 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8993 {
8994 if (gotrel[j].rel[object_64bit] != 0)
8995 {
8996 int first, second;
8997 char *tmpbuf, *past_reloc;
8998
8999 *rel = gotrel[j].rel[object_64bit];
9000 if (adjust)
9001 *adjust = len;
9002
9003 if (types)
9004 {
9005 if (flag_code != CODE_64BIT)
9006 {
9007 types->bitfield.imm32 = 1;
9008 types->bitfield.disp32 = 1;
9009 }
9010 else
9011 *types = gotrel[j].types64;
9012 }
9013
9014 /* The length of the first part of our input line. */
9015 first = cp - input_line_pointer;
9016
9017 /* The second part goes from after the reloc token until
9018 (and including) an end_of_line char or comma. */
9019 past_reloc = cp + 1 + len;
9020 cp = past_reloc;
9021 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9022 ++cp;
9023 second = cp + 1 - past_reloc;
9024
9025 /* Allocate and copy string. The trailing NUL shouldn't
9026 be necessary, but be safe. */
add39d23 9027 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9028 memcpy (tmpbuf, input_line_pointer, first);
9029 if (second != 0 && *past_reloc != ' ')
9030 /* Replace the relocation token with ' ', so that
9031 errors like foo@SECLREL321 will be detected. */
9032 tmpbuf[first++] = ' ';
9033 memcpy (tmpbuf + first, past_reloc, second);
9034 tmpbuf[first + second] = '\0';
9035 return tmpbuf;
9036 }
9037
9038 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9039 gotrel[j].str, 1 << (5 + object_64bit));
9040 return NULL;
9041 }
9042 }
9043
9044 /* Might be a symbol version string. Don't as_bad here. */
9045 return NULL;
9046}
9047
9048#endif /* TE_PE */
9049
62ebcb5c 9050bfd_reloc_code_real_type
e3bb37b5 9051x86_cons (expressionS *exp, int size)
f3c180ae 9052{
62ebcb5c
AM
9053 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9054
ee86248c
JB
9055 intel_syntax = -intel_syntax;
9056
3c7b9c2c 9057 exp->X_md = 0;
4fa24527 9058 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9059 {
9060 /* Handle @GOTOFF and the like in an expression. */
9061 char *save;
9062 char *gotfree_input_line;
4a57f2cf 9063 int adjust = 0;
f3c180ae
AM
9064
9065 save = input_line_pointer;
d258b828 9066 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9067 if (gotfree_input_line)
9068 input_line_pointer = gotfree_input_line;
9069
9070 expression (exp);
9071
9072 if (gotfree_input_line)
9073 {
9074 /* expression () has merrily parsed up to the end of line,
9075 or a comma - in the wrong buffer. Transfer how far
9076 input_line_pointer has moved to the right buffer. */
9077 input_line_pointer = (save
9078 + (input_line_pointer - gotfree_input_line)
9079 + adjust);
9080 free (gotfree_input_line);
3992d3b7
AM
9081 if (exp->X_op == O_constant
9082 || exp->X_op == O_absent
9083 || exp->X_op == O_illegal
0398aac5 9084 || exp->X_op == O_register
3992d3b7
AM
9085 || exp->X_op == O_big)
9086 {
9087 char c = *input_line_pointer;
9088 *input_line_pointer = 0;
9089 as_bad (_("missing or invalid expression `%s'"), save);
9090 *input_line_pointer = c;
9091 }
b9519cfe
L
9092 else if ((got_reloc == BFD_RELOC_386_PLT32
9093 || got_reloc == BFD_RELOC_X86_64_PLT32)
9094 && exp->X_op != O_symbol)
9095 {
9096 char c = *input_line_pointer;
9097 *input_line_pointer = 0;
9098 as_bad (_("invalid PLT expression `%s'"), save);
9099 *input_line_pointer = c;
9100 }
f3c180ae
AM
9101 }
9102 }
9103 else
9104 expression (exp);
ee86248c
JB
9105
9106 intel_syntax = -intel_syntax;
9107
9108 if (intel_syntax)
9109 i386_intel_simplify (exp);
62ebcb5c
AM
9110
9111 return got_reloc;
f3c180ae 9112}
f3c180ae 9113
9f32dd5b
L
9114static void
9115signed_cons (int size)
6482c264 9116{
d182319b
JB
9117 if (flag_code == CODE_64BIT)
9118 cons_sign = 1;
9119 cons (size);
9120 cons_sign = -1;
6482c264
NC
9121}
9122
d182319b 9123#ifdef TE_PE
6482c264 9124static void
7016a5d5 9125pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9126{
9127 expressionS exp;
9128
9129 do
9130 {
9131 expression (&exp);
9132 if (exp.X_op == O_symbol)
9133 exp.X_op = O_secrel;
9134
9135 emit_expr (&exp, 4);
9136 }
9137 while (*input_line_pointer++ == ',');
9138
9139 input_line_pointer--;
9140 demand_empty_rest_of_line ();
9141}
6482c264
NC
9142#endif
9143
43234a1e
L
9144/* Handle Vector operations. */
9145
9146static char *
9147check_VecOperations (char *op_string, char *op_end)
9148{
9149 const reg_entry *mask;
9150 const char *saved;
9151 char *end_op;
9152
9153 while (*op_string
9154 && (op_end == NULL || op_string < op_end))
9155 {
9156 saved = op_string;
9157 if (*op_string == '{')
9158 {
9159 op_string++;
9160
9161 /* Check broadcasts. */
9162 if (strncmp (op_string, "1to", 3) == 0)
9163 {
9164 int bcst_type;
9165
9166 if (i.broadcast)
9167 goto duplicated_vec_op;
9168
9169 op_string += 3;
9170 if (*op_string == '8')
8e6e0792 9171 bcst_type = 8;
b28d1bda 9172 else if (*op_string == '4')
8e6e0792 9173 bcst_type = 4;
b28d1bda 9174 else if (*op_string == '2')
8e6e0792 9175 bcst_type = 2;
43234a1e
L
9176 else if (*op_string == '1'
9177 && *(op_string+1) == '6')
9178 {
8e6e0792 9179 bcst_type = 16;
43234a1e
L
9180 op_string++;
9181 }
9182 else
9183 {
9184 as_bad (_("Unsupported broadcast: `%s'"), saved);
9185 return NULL;
9186 }
9187 op_string++;
9188
9189 broadcast_op.type = bcst_type;
9190 broadcast_op.operand = this_operand;
1f75763a 9191 broadcast_op.bytes = 0;
43234a1e
L
9192 i.broadcast = &broadcast_op;
9193 }
9194 /* Check masking operation. */
9195 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9196 {
9197 /* k0 can't be used for write mask. */
f74a6307 9198 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9199 {
6d2cd6b2
JB
9200 as_bad (_("`%s%s' can't be used for write mask"),
9201 register_prefix, mask->reg_name);
43234a1e
L
9202 return NULL;
9203 }
9204
9205 if (!i.mask)
9206 {
9207 mask_op.mask = mask;
9208 mask_op.zeroing = 0;
9209 mask_op.operand = this_operand;
9210 i.mask = &mask_op;
9211 }
9212 else
9213 {
9214 if (i.mask->mask)
9215 goto duplicated_vec_op;
9216
9217 i.mask->mask = mask;
9218
9219 /* Only "{z}" is allowed here. No need to check
9220 zeroing mask explicitly. */
9221 if (i.mask->operand != this_operand)
9222 {
9223 as_bad (_("invalid write mask `%s'"), saved);
9224 return NULL;
9225 }
9226 }
9227
9228 op_string = end_op;
9229 }
9230 /* Check zeroing-flag for masking operation. */
9231 else if (*op_string == 'z')
9232 {
9233 if (!i.mask)
9234 {
9235 mask_op.mask = NULL;
9236 mask_op.zeroing = 1;
9237 mask_op.operand = this_operand;
9238 i.mask = &mask_op;
9239 }
9240 else
9241 {
9242 if (i.mask->zeroing)
9243 {
9244 duplicated_vec_op:
9245 as_bad (_("duplicated `%s'"), saved);
9246 return NULL;
9247 }
9248
9249 i.mask->zeroing = 1;
9250
9251 /* Only "{%k}" is allowed here. No need to check mask
9252 register explicitly. */
9253 if (i.mask->operand != this_operand)
9254 {
9255 as_bad (_("invalid zeroing-masking `%s'"),
9256 saved);
9257 return NULL;
9258 }
9259 }
9260
9261 op_string++;
9262 }
9263 else
9264 goto unknown_vec_op;
9265
9266 if (*op_string != '}')
9267 {
9268 as_bad (_("missing `}' in `%s'"), saved);
9269 return NULL;
9270 }
9271 op_string++;
0ba3a731
L
9272
9273 /* Strip whitespace since the addition of pseudo prefixes
9274 changed how the scrubber treats '{'. */
9275 if (is_space_char (*op_string))
9276 ++op_string;
9277
43234a1e
L
9278 continue;
9279 }
9280 unknown_vec_op:
9281 /* We don't know this one. */
9282 as_bad (_("unknown vector operation: `%s'"), saved);
9283 return NULL;
9284 }
9285
6d2cd6b2
JB
9286 if (i.mask && i.mask->zeroing && !i.mask->mask)
9287 {
9288 as_bad (_("zeroing-masking only allowed with write mask"));
9289 return NULL;
9290 }
9291
43234a1e
L
9292 return op_string;
9293}
9294
252b5132 9295static int
70e41ade 9296i386_immediate (char *imm_start)
252b5132
RH
9297{
9298 char *save_input_line_pointer;
f3c180ae 9299 char *gotfree_input_line;
252b5132 9300 segT exp_seg = 0;
47926f60 9301 expressionS *exp;
40fb9820
L
9302 i386_operand_type types;
9303
0dfbf9d7 9304 operand_type_set (&types, ~0);
252b5132
RH
9305
9306 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9307 {
31b2323c
L
9308 as_bad (_("at most %d immediate operands are allowed"),
9309 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9310 return 0;
9311 }
9312
9313 exp = &im_expressions[i.imm_operands++];
520dc8e8 9314 i.op[this_operand].imms = exp;
252b5132
RH
9315
9316 if (is_space_char (*imm_start))
9317 ++imm_start;
9318
9319 save_input_line_pointer = input_line_pointer;
9320 input_line_pointer = imm_start;
9321
d258b828 9322 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9323 if (gotfree_input_line)
9324 input_line_pointer = gotfree_input_line;
252b5132
RH
9325
9326 exp_seg = expression (exp);
9327
83183c0c 9328 SKIP_WHITESPACE ();
43234a1e
L
9329
9330 /* Handle vector operations. */
9331 if (*input_line_pointer == '{')
9332 {
9333 input_line_pointer = check_VecOperations (input_line_pointer,
9334 NULL);
9335 if (input_line_pointer == NULL)
9336 return 0;
9337 }
9338
252b5132 9339 if (*input_line_pointer)
f3c180ae 9340 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9341
9342 input_line_pointer = save_input_line_pointer;
f3c180ae 9343 if (gotfree_input_line)
ee86248c
JB
9344 {
9345 free (gotfree_input_line);
9346
9347 if (exp->X_op == O_constant || exp->X_op == O_register)
9348 exp->X_op = O_illegal;
9349 }
9350
9351 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9352}
252b5132 9353
ee86248c
JB
9354static int
9355i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9356 i386_operand_type types, const char *imm_start)
9357{
9358 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9359 {
313c53d1
L
9360 if (imm_start)
9361 as_bad (_("missing or invalid immediate expression `%s'"),
9362 imm_start);
3992d3b7 9363 return 0;
252b5132 9364 }
3e73aa7c 9365 else if (exp->X_op == O_constant)
252b5132 9366 {
47926f60 9367 /* Size it properly later. */
40fb9820 9368 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9369 /* If not 64bit, sign extend val. */
9370 if (flag_code != CODE_64BIT
4eed87de
AM
9371 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9372 exp->X_add_number
9373 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9374 }
4c63da97 9375#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9376 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9377 && exp_seg != absolute_section
47926f60 9378 && exp_seg != text_section
24eab124
AM
9379 && exp_seg != data_section
9380 && exp_seg != bss_section
9381 && exp_seg != undefined_section
f86103b7 9382 && !bfd_is_com_section (exp_seg))
252b5132 9383 {
d0b47220 9384 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9385 return 0;
9386 }
9387#endif
a841bdf5 9388 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9389 {
313c53d1
L
9390 if (imm_start)
9391 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9392 return 0;
9393 }
252b5132
RH
9394 else
9395 {
9396 /* This is an address. The size of the address will be
24eab124 9397 determined later, depending on destination register,
3e73aa7c 9398 suffix, or the default for the section. */
40fb9820
L
9399 i.types[this_operand].bitfield.imm8 = 1;
9400 i.types[this_operand].bitfield.imm16 = 1;
9401 i.types[this_operand].bitfield.imm32 = 1;
9402 i.types[this_operand].bitfield.imm32s = 1;
9403 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9404 i.types[this_operand] = operand_type_and (i.types[this_operand],
9405 types);
252b5132
RH
9406 }
9407
9408 return 1;
9409}
9410
551c1ca1 9411static char *
e3bb37b5 9412i386_scale (char *scale)
252b5132 9413{
551c1ca1
AM
9414 offsetT val;
9415 char *save = input_line_pointer;
252b5132 9416
551c1ca1
AM
9417 input_line_pointer = scale;
9418 val = get_absolute_expression ();
9419
9420 switch (val)
252b5132 9421 {
551c1ca1 9422 case 1:
252b5132
RH
9423 i.log2_scale_factor = 0;
9424 break;
551c1ca1 9425 case 2:
252b5132
RH
9426 i.log2_scale_factor = 1;
9427 break;
551c1ca1 9428 case 4:
252b5132
RH
9429 i.log2_scale_factor = 2;
9430 break;
551c1ca1 9431 case 8:
252b5132
RH
9432 i.log2_scale_factor = 3;
9433 break;
9434 default:
a724f0f4
JB
9435 {
9436 char sep = *input_line_pointer;
9437
9438 *input_line_pointer = '\0';
9439 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9440 scale);
9441 *input_line_pointer = sep;
9442 input_line_pointer = save;
9443 return NULL;
9444 }
252b5132 9445 }
29b0f896 9446 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9447 {
9448 as_warn (_("scale factor of %d without an index register"),
24eab124 9449 1 << i.log2_scale_factor);
252b5132 9450 i.log2_scale_factor = 0;
252b5132 9451 }
551c1ca1
AM
9452 scale = input_line_pointer;
9453 input_line_pointer = save;
9454 return scale;
252b5132
RH
9455}
9456
252b5132 9457static int
e3bb37b5 9458i386_displacement (char *disp_start, char *disp_end)
252b5132 9459{
29b0f896 9460 expressionS *exp;
252b5132
RH
9461 segT exp_seg = 0;
9462 char *save_input_line_pointer;
f3c180ae 9463 char *gotfree_input_line;
40fb9820
L
9464 int override;
9465 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9466 int ret;
252b5132 9467
31b2323c
L
9468 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9469 {
9470 as_bad (_("at most %d displacement operands are allowed"),
9471 MAX_MEMORY_OPERANDS);
9472 return 0;
9473 }
9474
0dfbf9d7 9475 operand_type_set (&bigdisp, 0);
6f2f06be 9476 if (i.jumpabsolute
0cfa3eb3
JB
9477 || (current_templates->start->opcode_modifier.jump != JUMP
9478 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9479 {
40fb9820 9480 bigdisp.bitfield.disp32 = 1;
e05278af 9481 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9482 if (flag_code == CODE_64BIT)
9483 {
9484 if (!override)
9485 {
9486 bigdisp.bitfield.disp32s = 1;
9487 bigdisp.bitfield.disp64 = 1;
9488 }
9489 }
9490 else if ((flag_code == CODE_16BIT) ^ override)
9491 {
9492 bigdisp.bitfield.disp32 = 0;
9493 bigdisp.bitfield.disp16 = 1;
9494 }
e05278af
JB
9495 }
9496 else
9497 {
9498 /* For PC-relative branches, the width of the displacement
9499 is dependent upon data size, not address size. */
e05278af 9500 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9501 if (flag_code == CODE_64BIT)
9502 {
9503 if (override || i.suffix == WORD_MNEM_SUFFIX)
9504 bigdisp.bitfield.disp16 = 1;
9505 else
9506 {
9507 bigdisp.bitfield.disp32 = 1;
9508 bigdisp.bitfield.disp32s = 1;
9509 }
9510 }
9511 else
e05278af
JB
9512 {
9513 if (!override)
9514 override = (i.suffix == (flag_code != CODE_16BIT
9515 ? WORD_MNEM_SUFFIX
9516 : LONG_MNEM_SUFFIX));
40fb9820
L
9517 bigdisp.bitfield.disp32 = 1;
9518 if ((flag_code == CODE_16BIT) ^ override)
9519 {
9520 bigdisp.bitfield.disp32 = 0;
9521 bigdisp.bitfield.disp16 = 1;
9522 }
e05278af 9523 }
e05278af 9524 }
c6fb90c8
L
9525 i.types[this_operand] = operand_type_or (i.types[this_operand],
9526 bigdisp);
252b5132
RH
9527
9528 exp = &disp_expressions[i.disp_operands];
520dc8e8 9529 i.op[this_operand].disps = exp;
252b5132
RH
9530 i.disp_operands++;
9531 save_input_line_pointer = input_line_pointer;
9532 input_line_pointer = disp_start;
9533 END_STRING_AND_SAVE (disp_end);
9534
9535#ifndef GCC_ASM_O_HACK
9536#define GCC_ASM_O_HACK 0
9537#endif
9538#if GCC_ASM_O_HACK
9539 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9540 if (i.types[this_operand].bitfield.baseIndex
24eab124 9541 && displacement_string_end[-1] == '+')
252b5132
RH
9542 {
9543 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9544 constraint within gcc asm statements.
9545 For instance:
9546
9547 #define _set_tssldt_desc(n,addr,limit,type) \
9548 __asm__ __volatile__ ( \
9549 "movw %w2,%0\n\t" \
9550 "movw %w1,2+%0\n\t" \
9551 "rorl $16,%1\n\t" \
9552 "movb %b1,4+%0\n\t" \
9553 "movb %4,5+%0\n\t" \
9554 "movb $0,6+%0\n\t" \
9555 "movb %h1,7+%0\n\t" \
9556 "rorl $16,%1" \
9557 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9558
9559 This works great except that the output assembler ends
9560 up looking a bit weird if it turns out that there is
9561 no offset. You end up producing code that looks like:
9562
9563 #APP
9564 movw $235,(%eax)
9565 movw %dx,2+(%eax)
9566 rorl $16,%edx
9567 movb %dl,4+(%eax)
9568 movb $137,5+(%eax)
9569 movb $0,6+(%eax)
9570 movb %dh,7+(%eax)
9571 rorl $16,%edx
9572 #NO_APP
9573
47926f60 9574 So here we provide the missing zero. */
24eab124
AM
9575
9576 *displacement_string_end = '0';
252b5132
RH
9577 }
9578#endif
d258b828 9579 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9580 if (gotfree_input_line)
9581 input_line_pointer = gotfree_input_line;
252b5132 9582
24eab124 9583 exp_seg = expression (exp);
252b5132 9584
636c26b0
AM
9585 SKIP_WHITESPACE ();
9586 if (*input_line_pointer)
9587 as_bad (_("junk `%s' after expression"), input_line_pointer);
9588#if GCC_ASM_O_HACK
9589 RESTORE_END_STRING (disp_end + 1);
9590#endif
636c26b0 9591 input_line_pointer = save_input_line_pointer;
636c26b0 9592 if (gotfree_input_line)
ee86248c
JB
9593 {
9594 free (gotfree_input_line);
9595
9596 if (exp->X_op == O_constant || exp->X_op == O_register)
9597 exp->X_op = O_illegal;
9598 }
9599
9600 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9601
9602 RESTORE_END_STRING (disp_end);
9603
9604 return ret;
9605}
9606
9607static int
9608i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9609 i386_operand_type types, const char *disp_start)
9610{
9611 i386_operand_type bigdisp;
9612 int ret = 1;
636c26b0 9613
24eab124
AM
9614 /* We do this to make sure that the section symbol is in
9615 the symbol table. We will ultimately change the relocation
47926f60 9616 to be relative to the beginning of the section. */
1ae12ab7 9617 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9618 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9619 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9620 {
636c26b0 9621 if (exp->X_op != O_symbol)
3992d3b7 9622 goto inv_disp;
636c26b0 9623
e5cb08ac 9624 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9625 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9626 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9627 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9628 exp->X_op = O_subtract;
9629 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9630 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9631 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9632 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9633 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9634 else
29b0f896 9635 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9636 }
252b5132 9637
3992d3b7
AM
9638 else if (exp->X_op == O_absent
9639 || exp->X_op == O_illegal
ee86248c 9640 || exp->X_op == O_big)
2daf4fd8 9641 {
3992d3b7
AM
9642 inv_disp:
9643 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9644 disp_start);
3992d3b7 9645 ret = 0;
2daf4fd8
AM
9646 }
9647
0e1147d9
L
9648 else if (flag_code == CODE_64BIT
9649 && !i.prefix[ADDR_PREFIX]
9650 && exp->X_op == O_constant)
9651 {
9652 /* Since displacement is signed extended to 64bit, don't allow
9653 disp32 and turn off disp32s if they are out of range. */
9654 i.types[this_operand].bitfield.disp32 = 0;
9655 if (!fits_in_signed_long (exp->X_add_number))
9656 {
9657 i.types[this_operand].bitfield.disp32s = 0;
9658 if (i.types[this_operand].bitfield.baseindex)
9659 {
9660 as_bad (_("0x%lx out range of signed 32bit displacement"),
9661 (long) exp->X_add_number);
9662 ret = 0;
9663 }
9664 }
9665 }
9666
4c63da97 9667#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9668 else if (exp->X_op != O_constant
9669 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9670 && exp_seg != absolute_section
9671 && exp_seg != text_section
9672 && exp_seg != data_section
9673 && exp_seg != bss_section
9674 && exp_seg != undefined_section
9675 && !bfd_is_com_section (exp_seg))
24eab124 9676 {
d0b47220 9677 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9678 ret = 0;
24eab124 9679 }
252b5132 9680#endif
3956db08 9681
40fb9820
L
9682 /* Check if this is a displacement only operand. */
9683 bigdisp = i.types[this_operand];
9684 bigdisp.bitfield.disp8 = 0;
9685 bigdisp.bitfield.disp16 = 0;
9686 bigdisp.bitfield.disp32 = 0;
9687 bigdisp.bitfield.disp32s = 0;
9688 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9689 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9690 i.types[this_operand] = operand_type_and (i.types[this_operand],
9691 types);
3956db08 9692
3992d3b7 9693 return ret;
252b5132
RH
9694}
9695
2abc2bec
JB
9696/* Return the active addressing mode, taking address override and
9697 registers forming the address into consideration. Update the
9698 address override prefix if necessary. */
47926f60 9699
2abc2bec
JB
9700static enum flag_code
9701i386_addressing_mode (void)
252b5132 9702{
be05d201
L
9703 enum flag_code addr_mode;
9704
9705 if (i.prefix[ADDR_PREFIX])
9706 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9707 else
9708 {
9709 addr_mode = flag_code;
9710
24eab124 9711#if INFER_ADDR_PREFIX
be05d201
L
9712 if (i.mem_operands == 0)
9713 {
9714 /* Infer address prefix from the first memory operand. */
9715 const reg_entry *addr_reg = i.base_reg;
9716
9717 if (addr_reg == NULL)
9718 addr_reg = i.index_reg;
eecb386c 9719
be05d201
L
9720 if (addr_reg)
9721 {
e968fc9b 9722 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9723 addr_mode = CODE_32BIT;
9724 else if (flag_code != CODE_64BIT
dc821c5f 9725 && addr_reg->reg_type.bitfield.word)
be05d201
L
9726 addr_mode = CODE_16BIT;
9727
9728 if (addr_mode != flag_code)
9729 {
9730 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9731 i.prefixes += 1;
9732 /* Change the size of any displacement too. At most one
9733 of Disp16 or Disp32 is set.
9734 FIXME. There doesn't seem to be any real need for
9735 separate Disp16 and Disp32 flags. The same goes for
9736 Imm16 and Imm32. Removing them would probably clean
9737 up the code quite a lot. */
9738 if (flag_code != CODE_64BIT
9739 && (i.types[this_operand].bitfield.disp16
9740 || i.types[this_operand].bitfield.disp32))
9741 i.types[this_operand]
9742 = operand_type_xor (i.types[this_operand], disp16_32);
9743 }
9744 }
9745 }
24eab124 9746#endif
be05d201
L
9747 }
9748
2abc2bec
JB
9749 return addr_mode;
9750}
9751
9752/* Make sure the memory operand we've been dealt is valid.
9753 Return 1 on success, 0 on a failure. */
9754
9755static int
9756i386_index_check (const char *operand_string)
9757{
9758 const char *kind = "base/index";
9759 enum flag_code addr_mode = i386_addressing_mode ();
9760
fc0763e6 9761 if (current_templates->start->opcode_modifier.isstring
c3949f43 9762 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9763 && (current_templates->end[-1].opcode_modifier.isstring
9764 || i.mem_operands))
9765 {
9766 /* Memory operands of string insns are special in that they only allow
9767 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9768 const reg_entry *expected_reg;
9769 static const char *di_si[][2] =
9770 {
9771 { "esi", "edi" },
9772 { "si", "di" },
9773 { "rsi", "rdi" }
9774 };
9775 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9776
9777 kind = "string address";
9778
8325cc63 9779 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 9780 {
51c8edf6
JB
9781 int es_op = current_templates->end[-1].opcode_modifier.isstring
9782 - IS_STRING_ES_OP0;
9783 int op = 0;
fc0763e6 9784
51c8edf6 9785 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
9786 || ((!i.mem_operands != !intel_syntax)
9787 && current_templates->end[-1].operand_types[1]
9788 .bitfield.baseindex))
51c8edf6
JB
9789 op = 1;
9790 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
9791 }
9792 else
be05d201 9793 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9794
be05d201
L
9795 if (i.base_reg != expected_reg
9796 || i.index_reg
fc0763e6 9797 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9798 {
be05d201
L
9799 /* The second memory operand must have the same size as
9800 the first one. */
9801 if (i.mem_operands
9802 && i.base_reg
9803 && !((addr_mode == CODE_64BIT
dc821c5f 9804 && i.base_reg->reg_type.bitfield.qword)
be05d201 9805 || (addr_mode == CODE_32BIT
dc821c5f
JB
9806 ? i.base_reg->reg_type.bitfield.dword
9807 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9808 goto bad_address;
9809
fc0763e6
JB
9810 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9811 operand_string,
9812 intel_syntax ? '[' : '(',
9813 register_prefix,
be05d201 9814 expected_reg->reg_name,
fc0763e6 9815 intel_syntax ? ']' : ')');
be05d201 9816 return 1;
fc0763e6 9817 }
be05d201
L
9818 else
9819 return 1;
9820
9821bad_address:
9822 as_bad (_("`%s' is not a valid %s expression"),
9823 operand_string, kind);
9824 return 0;
3e73aa7c
JH
9825 }
9826 else
9827 {
be05d201
L
9828 if (addr_mode != CODE_16BIT)
9829 {
9830 /* 32-bit/64-bit checks. */
9831 if ((i.base_reg
e968fc9b
JB
9832 && ((addr_mode == CODE_64BIT
9833 ? !i.base_reg->reg_type.bitfield.qword
9834 : !i.base_reg->reg_type.bitfield.dword)
9835 || (i.index_reg && i.base_reg->reg_num == RegIP)
9836 || i.base_reg->reg_num == RegIZ))
be05d201 9837 || (i.index_reg
1b54b8d7
JB
9838 && !i.index_reg->reg_type.bitfield.xmmword
9839 && !i.index_reg->reg_type.bitfield.ymmword
9840 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9841 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9842 ? !i.index_reg->reg_type.bitfield.qword
9843 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9844 || !i.index_reg->reg_type.bitfield.baseindex)))
9845 goto bad_address;
8178be5b
JB
9846
9847 /* bndmk, bndldx, and bndstx have special restrictions. */
9848 if (current_templates->start->base_opcode == 0xf30f1b
9849 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9850 {
9851 /* They cannot use RIP-relative addressing. */
e968fc9b 9852 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9853 {
9854 as_bad (_("`%s' cannot be used here"), operand_string);
9855 return 0;
9856 }
9857
9858 /* bndldx and bndstx ignore their scale factor. */
9859 if (current_templates->start->base_opcode != 0xf30f1b
9860 && i.log2_scale_factor)
9861 as_warn (_("register scaling is being ignored here"));
9862 }
be05d201
L
9863 }
9864 else
3e73aa7c 9865 {
be05d201 9866 /* 16-bit checks. */
3e73aa7c 9867 if ((i.base_reg
dc821c5f 9868 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9869 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9870 || (i.index_reg
dc821c5f 9871 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9872 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9873 || !(i.base_reg
9874 && i.base_reg->reg_num < 6
9875 && i.index_reg->reg_num >= 6
9876 && i.log2_scale_factor == 0))))
be05d201 9877 goto bad_address;
3e73aa7c
JH
9878 }
9879 }
be05d201 9880 return 1;
24eab124 9881}
252b5132 9882
43234a1e
L
9883/* Handle vector immediates. */
9884
9885static int
9886RC_SAE_immediate (const char *imm_start)
9887{
9888 unsigned int match_found, j;
9889 const char *pstr = imm_start;
9890 expressionS *exp;
9891
9892 if (*pstr != '{')
9893 return 0;
9894
9895 pstr++;
9896 match_found = 0;
9897 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9898 {
9899 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9900 {
9901 if (!i.rounding)
9902 {
9903 rc_op.type = RC_NamesTable[j].type;
9904 rc_op.operand = this_operand;
9905 i.rounding = &rc_op;
9906 }
9907 else
9908 {
9909 as_bad (_("duplicated `%s'"), imm_start);
9910 return 0;
9911 }
9912 pstr += RC_NamesTable[j].len;
9913 match_found = 1;
9914 break;
9915 }
9916 }
9917 if (!match_found)
9918 return 0;
9919
9920 if (*pstr++ != '}')
9921 {
9922 as_bad (_("Missing '}': '%s'"), imm_start);
9923 return 0;
9924 }
9925 /* RC/SAE immediate string should contain nothing more. */;
9926 if (*pstr != 0)
9927 {
9928 as_bad (_("Junk after '}': '%s'"), imm_start);
9929 return 0;
9930 }
9931
9932 exp = &im_expressions[i.imm_operands++];
9933 i.op[this_operand].imms = exp;
9934
9935 exp->X_op = O_constant;
9936 exp->X_add_number = 0;
9937 exp->X_add_symbol = (symbolS *) 0;
9938 exp->X_op_symbol = (symbolS *) 0;
9939
9940 i.types[this_operand].bitfield.imm8 = 1;
9941 return 1;
9942}
9943
8325cc63
JB
9944/* Only string instructions can have a second memory operand, so
9945 reduce current_templates to just those if it contains any. */
9946static int
9947maybe_adjust_templates (void)
9948{
9949 const insn_template *t;
9950
9951 gas_assert (i.mem_operands == 1);
9952
9953 for (t = current_templates->start; t < current_templates->end; ++t)
9954 if (t->opcode_modifier.isstring)
9955 break;
9956
9957 if (t < current_templates->end)
9958 {
9959 static templates aux_templates;
9960 bfd_boolean recheck;
9961
9962 aux_templates.start = t;
9963 for (; t < current_templates->end; ++t)
9964 if (!t->opcode_modifier.isstring)
9965 break;
9966 aux_templates.end = t;
9967
9968 /* Determine whether to re-check the first memory operand. */
9969 recheck = (aux_templates.start != current_templates->start
9970 || t != current_templates->end);
9971
9972 current_templates = &aux_templates;
9973
9974 if (recheck)
9975 {
9976 i.mem_operands = 0;
9977 if (i.memop1_string != NULL
9978 && i386_index_check (i.memop1_string) == 0)
9979 return 0;
9980 i.mem_operands = 1;
9981 }
9982 }
9983
9984 return 1;
9985}
9986
fc0763e6 9987/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9988 on error. */
252b5132 9989
252b5132 9990static int
a7619375 9991i386_att_operand (char *operand_string)
252b5132 9992{
af6bdddf
AM
9993 const reg_entry *r;
9994 char *end_op;
24eab124 9995 char *op_string = operand_string;
252b5132 9996
24eab124 9997 if (is_space_char (*op_string))
252b5132
RH
9998 ++op_string;
9999
24eab124 10000 /* We check for an absolute prefix (differentiating,
47926f60 10001 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10002 if (*op_string == ABSOLUTE_PREFIX)
10003 {
10004 ++op_string;
10005 if (is_space_char (*op_string))
10006 ++op_string;
6f2f06be 10007 i.jumpabsolute = TRUE;
24eab124 10008 }
252b5132 10009
47926f60 10010 /* Check if operand is a register. */
4d1bb795 10011 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10012 {
40fb9820
L
10013 i386_operand_type temp;
10014
24eab124
AM
10015 /* Check for a segment override by searching for ':' after a
10016 segment register. */
10017 op_string = end_op;
10018 if (is_space_char (*op_string))
10019 ++op_string;
00cee14f 10020 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10021 {
10022 switch (r->reg_num)
10023 {
10024 case 0:
10025 i.seg[i.mem_operands] = &es;
10026 break;
10027 case 1:
10028 i.seg[i.mem_operands] = &cs;
10029 break;
10030 case 2:
10031 i.seg[i.mem_operands] = &ss;
10032 break;
10033 case 3:
10034 i.seg[i.mem_operands] = &ds;
10035 break;
10036 case 4:
10037 i.seg[i.mem_operands] = &fs;
10038 break;
10039 case 5:
10040 i.seg[i.mem_operands] = &gs;
10041 break;
10042 }
252b5132 10043
24eab124 10044 /* Skip the ':' and whitespace. */
252b5132
RH
10045 ++op_string;
10046 if (is_space_char (*op_string))
24eab124 10047 ++op_string;
252b5132 10048
24eab124
AM
10049 if (!is_digit_char (*op_string)
10050 && !is_identifier_char (*op_string)
10051 && *op_string != '('
10052 && *op_string != ABSOLUTE_PREFIX)
10053 {
10054 as_bad (_("bad memory operand `%s'"), op_string);
10055 return 0;
10056 }
47926f60 10057 /* Handle case of %es:*foo. */
24eab124
AM
10058 if (*op_string == ABSOLUTE_PREFIX)
10059 {
10060 ++op_string;
10061 if (is_space_char (*op_string))
10062 ++op_string;
6f2f06be 10063 i.jumpabsolute = TRUE;
24eab124
AM
10064 }
10065 goto do_memory_reference;
10066 }
43234a1e
L
10067
10068 /* Handle vector operations. */
10069 if (*op_string == '{')
10070 {
10071 op_string = check_VecOperations (op_string, NULL);
10072 if (op_string == NULL)
10073 return 0;
10074 }
10075
24eab124
AM
10076 if (*op_string)
10077 {
d0b47220 10078 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10079 return 0;
10080 }
40fb9820
L
10081 temp = r->reg_type;
10082 temp.bitfield.baseindex = 0;
c6fb90c8
L
10083 i.types[this_operand] = operand_type_or (i.types[this_operand],
10084 temp);
7d5e4556 10085 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10086 i.op[this_operand].regs = r;
24eab124
AM
10087 i.reg_operands++;
10088 }
af6bdddf
AM
10089 else if (*op_string == REGISTER_PREFIX)
10090 {
10091 as_bad (_("bad register name `%s'"), op_string);
10092 return 0;
10093 }
24eab124 10094 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10095 {
24eab124 10096 ++op_string;
6f2f06be 10097 if (i.jumpabsolute)
24eab124 10098 {
d0b47220 10099 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10100 return 0;
10101 }
10102 if (!i386_immediate (op_string))
10103 return 0;
10104 }
43234a1e
L
10105 else if (RC_SAE_immediate (operand_string))
10106 {
10107 /* If it is a RC or SAE immediate, do nothing. */
10108 ;
10109 }
24eab124
AM
10110 else if (is_digit_char (*op_string)
10111 || is_identifier_char (*op_string)
d02603dc 10112 || *op_string == '"'
e5cb08ac 10113 || *op_string == '(')
24eab124 10114 {
47926f60 10115 /* This is a memory reference of some sort. */
af6bdddf 10116 char *base_string;
252b5132 10117
47926f60 10118 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10119 char *displacement_string_start;
10120 char *displacement_string_end;
43234a1e 10121 char *vop_start;
252b5132 10122
24eab124 10123 do_memory_reference:
8325cc63
JB
10124 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10125 return 0;
24eab124 10126 if ((i.mem_operands == 1
40fb9820 10127 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10128 || i.mem_operands == 2)
10129 {
10130 as_bad (_("too many memory references for `%s'"),
10131 current_templates->start->name);
10132 return 0;
10133 }
252b5132 10134
24eab124
AM
10135 /* Check for base index form. We detect the base index form by
10136 looking for an ')' at the end of the operand, searching
10137 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10138 after the '('. */
af6bdddf 10139 base_string = op_string + strlen (op_string);
c3332e24 10140
43234a1e
L
10141 /* Handle vector operations. */
10142 vop_start = strchr (op_string, '{');
10143 if (vop_start && vop_start < base_string)
10144 {
10145 if (check_VecOperations (vop_start, base_string) == NULL)
10146 return 0;
10147 base_string = vop_start;
10148 }
10149
af6bdddf
AM
10150 --base_string;
10151 if (is_space_char (*base_string))
10152 --base_string;
252b5132 10153
47926f60 10154 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10155 displacement_string_start = op_string;
10156 displacement_string_end = base_string + 1;
252b5132 10157
24eab124
AM
10158 if (*base_string == ')')
10159 {
af6bdddf 10160 char *temp_string;
24eab124
AM
10161 unsigned int parens_balanced = 1;
10162 /* We've already checked that the number of left & right ()'s are
47926f60 10163 equal, so this loop will not be infinite. */
24eab124
AM
10164 do
10165 {
10166 base_string--;
10167 if (*base_string == ')')
10168 parens_balanced++;
10169 if (*base_string == '(')
10170 parens_balanced--;
10171 }
10172 while (parens_balanced);
c3332e24 10173
af6bdddf 10174 temp_string = base_string;
c3332e24 10175
24eab124 10176 /* Skip past '(' and whitespace. */
252b5132
RH
10177 ++base_string;
10178 if (is_space_char (*base_string))
24eab124 10179 ++base_string;
252b5132 10180
af6bdddf 10181 if (*base_string == ','
4eed87de
AM
10182 || ((i.base_reg = parse_register (base_string, &end_op))
10183 != NULL))
252b5132 10184 {
af6bdddf 10185 displacement_string_end = temp_string;
252b5132 10186
40fb9820 10187 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10188
af6bdddf 10189 if (i.base_reg)
24eab124 10190 {
24eab124
AM
10191 base_string = end_op;
10192 if (is_space_char (*base_string))
10193 ++base_string;
af6bdddf
AM
10194 }
10195
10196 /* There may be an index reg or scale factor here. */
10197 if (*base_string == ',')
10198 {
10199 ++base_string;
10200 if (is_space_char (*base_string))
10201 ++base_string;
10202
4eed87de
AM
10203 if ((i.index_reg = parse_register (base_string, &end_op))
10204 != NULL)
24eab124 10205 {
af6bdddf 10206 base_string = end_op;
24eab124
AM
10207 if (is_space_char (*base_string))
10208 ++base_string;
af6bdddf
AM
10209 if (*base_string == ',')
10210 {
10211 ++base_string;
10212 if (is_space_char (*base_string))
10213 ++base_string;
10214 }
e5cb08ac 10215 else if (*base_string != ')')
af6bdddf 10216 {
4eed87de
AM
10217 as_bad (_("expecting `,' or `)' "
10218 "after index register in `%s'"),
af6bdddf
AM
10219 operand_string);
10220 return 0;
10221 }
24eab124 10222 }
af6bdddf 10223 else if (*base_string == REGISTER_PREFIX)
24eab124 10224 {
f76bf5e0
L
10225 end_op = strchr (base_string, ',');
10226 if (end_op)
10227 *end_op = '\0';
af6bdddf 10228 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10229 return 0;
10230 }
252b5132 10231
47926f60 10232 /* Check for scale factor. */
551c1ca1 10233 if (*base_string != ')')
af6bdddf 10234 {
551c1ca1
AM
10235 char *end_scale = i386_scale (base_string);
10236
10237 if (!end_scale)
af6bdddf 10238 return 0;
24eab124 10239
551c1ca1 10240 base_string = end_scale;
af6bdddf
AM
10241 if (is_space_char (*base_string))
10242 ++base_string;
10243 if (*base_string != ')')
10244 {
4eed87de
AM
10245 as_bad (_("expecting `)' "
10246 "after scale factor in `%s'"),
af6bdddf
AM
10247 operand_string);
10248 return 0;
10249 }
10250 }
10251 else if (!i.index_reg)
24eab124 10252 {
4eed87de
AM
10253 as_bad (_("expecting index register or scale factor "
10254 "after `,'; got '%c'"),
af6bdddf 10255 *base_string);
24eab124
AM
10256 return 0;
10257 }
10258 }
af6bdddf 10259 else if (*base_string != ')')
24eab124 10260 {
4eed87de
AM
10261 as_bad (_("expecting `,' or `)' "
10262 "after base register in `%s'"),
af6bdddf 10263 operand_string);
24eab124
AM
10264 return 0;
10265 }
c3332e24 10266 }
af6bdddf 10267 else if (*base_string == REGISTER_PREFIX)
c3332e24 10268 {
f76bf5e0
L
10269 end_op = strchr (base_string, ',');
10270 if (end_op)
10271 *end_op = '\0';
af6bdddf 10272 as_bad (_("bad register name `%s'"), base_string);
24eab124 10273 return 0;
c3332e24 10274 }
24eab124
AM
10275 }
10276
10277 /* If there's an expression beginning the operand, parse it,
10278 assuming displacement_string_start and
10279 displacement_string_end are meaningful. */
10280 if (displacement_string_start != displacement_string_end)
10281 {
10282 if (!i386_displacement (displacement_string_start,
10283 displacement_string_end))
10284 return 0;
10285 }
10286
10287 /* Special case for (%dx) while doing input/output op. */
10288 if (i.base_reg
75e5731b
JB
10289 && i.base_reg->reg_type.bitfield.instance == RegD
10290 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10291 && i.index_reg == 0
10292 && i.log2_scale_factor == 0
10293 && i.seg[i.mem_operands] == 0
40fb9820 10294 && !operand_type_check (i.types[this_operand], disp))
24eab124 10295 {
2fb5be8d 10296 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10297 return 1;
10298 }
10299
eecb386c
AM
10300 if (i386_index_check (operand_string) == 0)
10301 return 0;
c48dadc9 10302 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10303 if (i.mem_operands == 0)
10304 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10305 i.mem_operands++;
10306 }
10307 else
ce8a8b2f
AM
10308 {
10309 /* It's not a memory operand; argh! */
24eab124
AM
10310 as_bad (_("invalid char %s beginning operand %d `%s'"),
10311 output_invalid (*op_string),
10312 this_operand + 1,
10313 op_string);
10314 return 0;
10315 }
47926f60 10316 return 1; /* Normal return. */
252b5132
RH
10317}
10318\f
fa94de6b
RM
10319/* Calculate the maximum variable size (i.e., excluding fr_fix)
10320 that an rs_machine_dependent frag may reach. */
10321
10322unsigned int
10323i386_frag_max_var (fragS *frag)
10324{
10325 /* The only relaxable frags are for jumps.
10326 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10327 gas_assert (frag->fr_type == rs_machine_dependent);
10328 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10329}
10330
b084df0b
L
10331#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10332static int
8dcea932 10333elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10334{
10335 /* STT_GNU_IFUNC symbol must go through PLT. */
10336 if ((symbol_get_bfdsym (fr_symbol)->flags
10337 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10338 return 0;
10339
10340 if (!S_IS_EXTERNAL (fr_symbol))
10341 /* Symbol may be weak or local. */
10342 return !S_IS_WEAK (fr_symbol);
10343
8dcea932
L
10344 /* Global symbols with non-default visibility can't be preempted. */
10345 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10346 return 1;
10347
10348 if (fr_var != NO_RELOC)
10349 switch ((enum bfd_reloc_code_real) fr_var)
10350 {
10351 case BFD_RELOC_386_PLT32:
10352 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10353 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10354 return 0;
10355 default:
10356 abort ();
10357 }
10358
b084df0b
L
10359 /* Global symbols with default visibility in a shared library may be
10360 preempted by another definition. */
8dcea932 10361 return !shared;
b084df0b
L
10362}
10363#endif
10364
ee7fcc42
AM
10365/* md_estimate_size_before_relax()
10366
10367 Called just before relax() for rs_machine_dependent frags. The x86
10368 assembler uses these frags to handle variable size jump
10369 instructions.
10370
10371 Any symbol that is now undefined will not become defined.
10372 Return the correct fr_subtype in the frag.
10373 Return the initial "guess for variable size of frag" to caller.
10374 The guess is actually the growth beyond the fixed part. Whatever
10375 we do to grow the fixed or variable part contributes to our
10376 returned value. */
10377
252b5132 10378int
7016a5d5 10379md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10380{
252b5132 10381 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10382 check for un-relaxable symbols. On an ELF system, we can't relax
10383 an externally visible symbol, because it may be overridden by a
10384 shared library. */
10385 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10386#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10387 || (IS_ELF
8dcea932
L
10388 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10389 fragP->fr_var))
fbeb56a4
DK
10390#endif
10391#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10392 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10393 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10394#endif
10395 )
252b5132 10396 {
b98ef147
AM
10397 /* Symbol is undefined in this segment, or we need to keep a
10398 reloc so that weak symbols can be overridden. */
10399 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10400 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10401 unsigned char *opcode;
10402 int old_fr_fix;
f6af82bd 10403
ee7fcc42 10404 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10405 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10406 else if (size == 2)
f6af82bd 10407 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10408#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10409 else if (need_plt32_p (fragP->fr_symbol))
10410 reloc_type = BFD_RELOC_X86_64_PLT32;
10411#endif
f6af82bd
AM
10412 else
10413 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10414
ee7fcc42
AM
10415 old_fr_fix = fragP->fr_fix;
10416 opcode = (unsigned char *) fragP->fr_opcode;
10417
fddf5b5b 10418 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10419 {
fddf5b5b
AM
10420 case UNCOND_JUMP:
10421 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10422 opcode[0] = 0xe9;
252b5132 10423 fragP->fr_fix += size;
062cd5e7
AS
10424 fix_new (fragP, old_fr_fix, size,
10425 fragP->fr_symbol,
10426 fragP->fr_offset, 1,
10427 reloc_type);
252b5132
RH
10428 break;
10429
fddf5b5b 10430 case COND_JUMP86:
412167cb
AM
10431 if (size == 2
10432 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10433 {
10434 /* Negate the condition, and branch past an
10435 unconditional jump. */
10436 opcode[0] ^= 1;
10437 opcode[1] = 3;
10438 /* Insert an unconditional jump. */
10439 opcode[2] = 0xe9;
10440 /* We added two extra opcode bytes, and have a two byte
10441 offset. */
10442 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10443 fix_new (fragP, old_fr_fix + 2, 2,
10444 fragP->fr_symbol,
10445 fragP->fr_offset, 1,
10446 reloc_type);
fddf5b5b
AM
10447 break;
10448 }
10449 /* Fall through. */
10450
10451 case COND_JUMP:
412167cb
AM
10452 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10453 {
3e02c1cc
AM
10454 fixS *fixP;
10455
412167cb 10456 fragP->fr_fix += 1;
3e02c1cc
AM
10457 fixP = fix_new (fragP, old_fr_fix, 1,
10458 fragP->fr_symbol,
10459 fragP->fr_offset, 1,
10460 BFD_RELOC_8_PCREL);
10461 fixP->fx_signed = 1;
412167cb
AM
10462 break;
10463 }
93c2a809 10464
24eab124 10465 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10466 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10467 opcode[1] = opcode[0] + 0x10;
f6af82bd 10468 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10469 /* We've added an opcode byte. */
10470 fragP->fr_fix += 1 + size;
062cd5e7
AS
10471 fix_new (fragP, old_fr_fix + 1, size,
10472 fragP->fr_symbol,
10473 fragP->fr_offset, 1,
10474 reloc_type);
252b5132 10475 break;
fddf5b5b
AM
10476
10477 default:
10478 BAD_CASE (fragP->fr_subtype);
10479 break;
252b5132
RH
10480 }
10481 frag_wane (fragP);
ee7fcc42 10482 return fragP->fr_fix - old_fr_fix;
252b5132 10483 }
93c2a809 10484
93c2a809
AM
10485 /* Guess size depending on current relax state. Initially the relax
10486 state will correspond to a short jump and we return 1, because
10487 the variable part of the frag (the branch offset) is one byte
10488 long. However, we can relax a section more than once and in that
10489 case we must either set fr_subtype back to the unrelaxed state,
10490 or return the value for the appropriate branch. */
10491 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10492}
10493
47926f60
KH
10494/* Called after relax() is finished.
10495
10496 In: Address of frag.
10497 fr_type == rs_machine_dependent.
10498 fr_subtype is what the address relaxed to.
10499
10500 Out: Any fixSs and constants are set up.
10501 Caller will turn frag into a ".space 0". */
10502
252b5132 10503void
7016a5d5
TG
10504md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10505 fragS *fragP)
252b5132 10506{
29b0f896 10507 unsigned char *opcode;
252b5132 10508 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10509 offsetT target_address;
10510 offsetT opcode_address;
252b5132 10511 unsigned int extension = 0;
847f7ad4 10512 offsetT displacement_from_opcode_start;
252b5132
RH
10513
10514 opcode = (unsigned char *) fragP->fr_opcode;
10515
47926f60 10516 /* Address we want to reach in file space. */
252b5132 10517 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10518
47926f60 10519 /* Address opcode resides at in file space. */
252b5132
RH
10520 opcode_address = fragP->fr_address + fragP->fr_fix;
10521
47926f60 10522 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10523 displacement_from_opcode_start = target_address - opcode_address;
10524
fddf5b5b 10525 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10526 {
47926f60
KH
10527 /* Don't have to change opcode. */
10528 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10529 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10530 }
10531 else
10532 {
10533 if (no_cond_jump_promotion
10534 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10535 as_warn_where (fragP->fr_file, fragP->fr_line,
10536 _("long jump required"));
252b5132 10537
fddf5b5b
AM
10538 switch (fragP->fr_subtype)
10539 {
10540 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10541 extension = 4; /* 1 opcode + 4 displacement */
10542 opcode[0] = 0xe9;
10543 where_to_put_displacement = &opcode[1];
10544 break;
252b5132 10545
fddf5b5b
AM
10546 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10547 extension = 2; /* 1 opcode + 2 displacement */
10548 opcode[0] = 0xe9;
10549 where_to_put_displacement = &opcode[1];
10550 break;
252b5132 10551
fddf5b5b
AM
10552 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10553 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10554 extension = 5; /* 2 opcode + 4 displacement */
10555 opcode[1] = opcode[0] + 0x10;
10556 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10557 where_to_put_displacement = &opcode[2];
10558 break;
252b5132 10559
fddf5b5b
AM
10560 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10561 extension = 3; /* 2 opcode + 2 displacement */
10562 opcode[1] = opcode[0] + 0x10;
10563 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10564 where_to_put_displacement = &opcode[2];
10565 break;
252b5132 10566
fddf5b5b
AM
10567 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10568 extension = 4;
10569 opcode[0] ^= 1;
10570 opcode[1] = 3;
10571 opcode[2] = 0xe9;
10572 where_to_put_displacement = &opcode[3];
10573 break;
10574
10575 default:
10576 BAD_CASE (fragP->fr_subtype);
10577 break;
10578 }
252b5132 10579 }
fddf5b5b 10580
7b81dfbb
AJ
10581 /* If size if less then four we are sure that the operand fits,
10582 but if it's 4, then it could be that the displacement is larger
10583 then -/+ 2GB. */
10584 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10585 && object_64bit
10586 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10587 + ((addressT) 1 << 31))
10588 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10589 {
10590 as_bad_where (fragP->fr_file, fragP->fr_line,
10591 _("jump target out of range"));
10592 /* Make us emit 0. */
10593 displacement_from_opcode_start = extension;
10594 }
47926f60 10595 /* Now put displacement after opcode. */
252b5132
RH
10596 md_number_to_chars ((char *) where_to_put_displacement,
10597 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10598 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10599 fragP->fr_fix += extension;
10600}
10601\f
7016a5d5 10602/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10603 by our caller that we have all the info we need to fix it up.
10604
7016a5d5
TG
10605 Parameter valP is the pointer to the value of the bits.
10606
252b5132
RH
10607 On the 386, immediates, displacements, and data pointers are all in
10608 the same (little-endian) format, so we don't need to care about which
10609 we are handling. */
10610
94f592af 10611void
7016a5d5 10612md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10613{
94f592af 10614 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10615 valueT value = *valP;
252b5132 10616
f86103b7 10617#if !defined (TE_Mach)
93382f6d
AM
10618 if (fixP->fx_pcrel)
10619 {
10620 switch (fixP->fx_r_type)
10621 {
5865bb77
ILT
10622 default:
10623 break;
10624
d6ab8113
JB
10625 case BFD_RELOC_64:
10626 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10627 break;
93382f6d 10628 case BFD_RELOC_32:
ae8887b5 10629 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10630 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10631 break;
10632 case BFD_RELOC_16:
10633 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10634 break;
10635 case BFD_RELOC_8:
10636 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10637 break;
10638 }
10639 }
252b5132 10640
a161fe53 10641 if (fixP->fx_addsy != NULL
31312f95 10642 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10643 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10644 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10645 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10646 && !use_rela_relocations)
252b5132 10647 {
31312f95
AM
10648 /* This is a hack. There should be a better way to handle this.
10649 This covers for the fact that bfd_install_relocation will
10650 subtract the current location (for partial_inplace, PC relative
10651 relocations); see more below. */
252b5132 10652#ifndef OBJ_AOUT
718ddfc0 10653 if (IS_ELF
252b5132
RH
10654#ifdef TE_PE
10655 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10656#endif
10657 )
10658 value += fixP->fx_where + fixP->fx_frag->fr_address;
10659#endif
10660#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10661 if (IS_ELF)
252b5132 10662 {
6539b54b 10663 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10664
6539b54b 10665 if ((sym_seg == seg
2f66722d 10666 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10667 && sym_seg != absolute_section))
af65af87 10668 && !generic_force_reloc (fixP))
2f66722d
AM
10669 {
10670 /* Yes, we add the values in twice. This is because
6539b54b
AM
10671 bfd_install_relocation subtracts them out again. I think
10672 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10673 it. FIXME. */
10674 value += fixP->fx_where + fixP->fx_frag->fr_address;
10675 }
252b5132
RH
10676 }
10677#endif
10678#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10679 /* For some reason, the PE format does not store a
10680 section address offset for a PC relative symbol. */
10681 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10682 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10683 value += md_pcrel_from (fixP);
10684#endif
10685 }
fbeb56a4 10686#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10687 if (fixP->fx_addsy != NULL
10688 && S_IS_WEAK (fixP->fx_addsy)
10689 /* PR 16858: Do not modify weak function references. */
10690 && ! fixP->fx_pcrel)
fbeb56a4 10691 {
296a8689
NC
10692#if !defined (TE_PEP)
10693 /* For x86 PE weak function symbols are neither PC-relative
10694 nor do they set S_IS_FUNCTION. So the only reliable way
10695 to detect them is to check the flags of their containing
10696 section. */
10697 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10698 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10699 ;
10700 else
10701#endif
fbeb56a4
DK
10702 value -= S_GET_VALUE (fixP->fx_addsy);
10703 }
10704#endif
252b5132
RH
10705
10706 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10707 and we must not disappoint it. */
252b5132 10708#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10709 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10710 switch (fixP->fx_r_type)
10711 {
10712 case BFD_RELOC_386_PLT32:
3e73aa7c 10713 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10714 /* Make the jump instruction point to the address of the operand.
10715 At runtime we merely add the offset to the actual PLT entry.
10716 NB: Subtract the offset size only for jump instructions. */
10717 if (fixP->fx_pcrel)
10718 value = -4;
47926f60 10719 break;
31312f95 10720
13ae64f3
JJ
10721 case BFD_RELOC_386_TLS_GD:
10722 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10723 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10724 case BFD_RELOC_386_TLS_IE:
10725 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10726 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10727 case BFD_RELOC_X86_64_TLSGD:
10728 case BFD_RELOC_X86_64_TLSLD:
10729 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10730 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10731 value = 0; /* Fully resolved at runtime. No addend. */
10732 /* Fallthrough */
10733 case BFD_RELOC_386_TLS_LE:
10734 case BFD_RELOC_386_TLS_LDO_32:
10735 case BFD_RELOC_386_TLS_LE_32:
10736 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10737 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10738 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10739 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10740 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10741 break;
10742
67a4f2b7
AO
10743 case BFD_RELOC_386_TLS_DESC_CALL:
10744 case BFD_RELOC_X86_64_TLSDESC_CALL:
10745 value = 0; /* Fully resolved at runtime. No addend. */
10746 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10747 fixP->fx_done = 0;
10748 return;
10749
47926f60
KH
10750 case BFD_RELOC_VTABLE_INHERIT:
10751 case BFD_RELOC_VTABLE_ENTRY:
10752 fixP->fx_done = 0;
94f592af 10753 return;
47926f60
KH
10754
10755 default:
10756 break;
10757 }
10758#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10759 *valP = value;
f86103b7 10760#endif /* !defined (TE_Mach) */
3e73aa7c 10761
3e73aa7c 10762 /* Are we finished with this relocation now? */
c6682705 10763 if (fixP->fx_addsy == NULL)
3e73aa7c 10764 fixP->fx_done = 1;
fbeb56a4
DK
10765#if defined (OBJ_COFF) && defined (TE_PE)
10766 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10767 {
10768 fixP->fx_done = 0;
10769 /* Remember value for tc_gen_reloc. */
10770 fixP->fx_addnumber = value;
10771 /* Clear out the frag for now. */
10772 value = 0;
10773 }
10774#endif
3e73aa7c
JH
10775 else if (use_rela_relocations)
10776 {
10777 fixP->fx_no_overflow = 1;
062cd5e7
AS
10778 /* Remember value for tc_gen_reloc. */
10779 fixP->fx_addnumber = value;
3e73aa7c
JH
10780 value = 0;
10781 }
f86103b7 10782
94f592af 10783 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10784}
252b5132 10785\f
6d4af3c2 10786const char *
499ac353 10787md_atof (int type, char *litP, int *sizeP)
252b5132 10788{
499ac353
NC
10789 /* This outputs the LITTLENUMs in REVERSE order;
10790 in accord with the bigendian 386. */
10791 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10792}
10793\f
2d545b82 10794static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10795
252b5132 10796static char *
e3bb37b5 10797output_invalid (int c)
252b5132 10798{
3882b010 10799 if (ISPRINT (c))
f9f21a03
L
10800 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10801 "'%c'", c);
252b5132 10802 else
f9f21a03 10803 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10804 "(0x%x)", (unsigned char) c);
252b5132
RH
10805 return output_invalid_buf;
10806}
10807
af6bdddf 10808/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10809
10810static const reg_entry *
4d1bb795 10811parse_real_register (char *reg_string, char **end_op)
252b5132 10812{
af6bdddf
AM
10813 char *s = reg_string;
10814 char *p;
252b5132
RH
10815 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10816 const reg_entry *r;
10817
10818 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10819 if (*s == REGISTER_PREFIX)
10820 ++s;
10821
10822 if (is_space_char (*s))
10823 ++s;
10824
10825 p = reg_name_given;
af6bdddf 10826 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10827 {
10828 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10829 return (const reg_entry *) NULL;
10830 s++;
252b5132
RH
10831 }
10832
6588847e
DN
10833 /* For naked regs, make sure that we are not dealing with an identifier.
10834 This prevents confusing an identifier like `eax_var' with register
10835 `eax'. */
10836 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10837 return (const reg_entry *) NULL;
10838
af6bdddf 10839 *end_op = s;
252b5132
RH
10840
10841 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10842
5f47d35b 10843 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10844 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10845 {
0e0eea78
JB
10846 if (!cpu_arch_flags.bitfield.cpu8087
10847 && !cpu_arch_flags.bitfield.cpu287
10848 && !cpu_arch_flags.bitfield.cpu387)
10849 return (const reg_entry *) NULL;
10850
5f47d35b
AM
10851 if (is_space_char (*s))
10852 ++s;
10853 if (*s == '(')
10854 {
af6bdddf 10855 ++s;
5f47d35b
AM
10856 if (is_space_char (*s))
10857 ++s;
10858 if (*s >= '0' && *s <= '7')
10859 {
db557034 10860 int fpr = *s - '0';
af6bdddf 10861 ++s;
5f47d35b
AM
10862 if (is_space_char (*s))
10863 ++s;
10864 if (*s == ')')
10865 {
10866 *end_op = s + 1;
1e9cc1c2 10867 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10868 know (r);
10869 return r + fpr;
5f47d35b 10870 }
5f47d35b 10871 }
47926f60 10872 /* We have "%st(" then garbage. */
5f47d35b
AM
10873 return (const reg_entry *) NULL;
10874 }
10875 }
10876
a60de03c
JB
10877 if (r == NULL || allow_pseudo_reg)
10878 return r;
10879
0dfbf9d7 10880 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10881 return (const reg_entry *) NULL;
10882
dc821c5f 10883 if ((r->reg_type.bitfield.dword
00cee14f 10884 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
10885 || r->reg_type.bitfield.class == RegCR
10886 || r->reg_type.bitfield.class == RegDR
10887 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
10888 && !cpu_arch_flags.bitfield.cpui386)
10889 return (const reg_entry *) NULL;
10890
3528c362 10891 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10892 return (const reg_entry *) NULL;
10893
6e041cf4
JB
10894 if (!cpu_arch_flags.bitfield.cpuavx512f)
10895 {
f74a6307
JB
10896 if (r->reg_type.bitfield.zmmword
10897 || r->reg_type.bitfield.class == RegMask)
6e041cf4 10898 return (const reg_entry *) NULL;
40f12533 10899
6e041cf4
JB
10900 if (!cpu_arch_flags.bitfield.cpuavx)
10901 {
10902 if (r->reg_type.bitfield.ymmword)
10903 return (const reg_entry *) NULL;
1848e567 10904
6e041cf4
JB
10905 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10906 return (const reg_entry *) NULL;
10907 }
10908 }
43234a1e 10909
f74a6307 10910 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
10911 return (const reg_entry *) NULL;
10912
db51cc60 10913 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10914 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10915 return (const reg_entry *) NULL;
10916
1d3f8286
JB
10917 /* Upper 16 vector registers are only available with VREX in 64bit
10918 mode, and require EVEX encoding. */
10919 if (r->reg_flags & RegVRex)
43234a1e 10920 {
e951d5ca 10921 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10922 || flag_code != CODE_64BIT)
10923 return (const reg_entry *) NULL;
1d3f8286
JB
10924
10925 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10926 }
10927
4787f4a5 10928 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 10929 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 10930 && flag_code != CODE_64BIT)
20f0a1fc 10931 return (const reg_entry *) NULL;
1ae00879 10932
00cee14f
JB
10933 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10934 && !intel_syntax)
b7240065
JB
10935 return (const reg_entry *) NULL;
10936
252b5132
RH
10937 return r;
10938}
4d1bb795
JB
10939
10940/* REG_STRING starts *before* REGISTER_PREFIX. */
10941
10942static const reg_entry *
10943parse_register (char *reg_string, char **end_op)
10944{
10945 const reg_entry *r;
10946
10947 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10948 r = parse_real_register (reg_string, end_op);
10949 else
10950 r = NULL;
10951 if (!r)
10952 {
10953 char *save = input_line_pointer;
10954 char c;
10955 symbolS *symbolP;
10956
10957 input_line_pointer = reg_string;
d02603dc 10958 c = get_symbol_name (&reg_string);
4d1bb795
JB
10959 symbolP = symbol_find (reg_string);
10960 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10961 {
10962 const expressionS *e = symbol_get_value_expression (symbolP);
10963
0398aac5 10964 know (e->X_op == O_register);
4eed87de 10965 know (e->X_add_number >= 0
c3fe08fa 10966 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10967 r = i386_regtab + e->X_add_number;
d3bb6b49 10968 if ((r->reg_flags & RegVRex))
86fa6981 10969 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10970 *end_op = input_line_pointer;
10971 }
10972 *input_line_pointer = c;
10973 input_line_pointer = save;
10974 }
10975 return r;
10976}
10977
10978int
10979i386_parse_name (char *name, expressionS *e, char *nextcharP)
10980{
10981 const reg_entry *r;
10982 char *end = input_line_pointer;
10983
10984 *end = *nextcharP;
10985 r = parse_register (name, &input_line_pointer);
10986 if (r && end <= input_line_pointer)
10987 {
10988 *nextcharP = *input_line_pointer;
10989 *input_line_pointer = 0;
10990 e->X_op = O_register;
10991 e->X_add_number = r - i386_regtab;
10992 return 1;
10993 }
10994 input_line_pointer = end;
10995 *end = 0;
ee86248c 10996 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10997}
10998
10999void
11000md_operand (expressionS *e)
11001{
ee86248c
JB
11002 char *end;
11003 const reg_entry *r;
4d1bb795 11004
ee86248c
JB
11005 switch (*input_line_pointer)
11006 {
11007 case REGISTER_PREFIX:
11008 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11009 if (r)
11010 {
11011 e->X_op = O_register;
11012 e->X_add_number = r - i386_regtab;
11013 input_line_pointer = end;
11014 }
ee86248c
JB
11015 break;
11016
11017 case '[':
9c2799c2 11018 gas_assert (intel_syntax);
ee86248c
JB
11019 end = input_line_pointer++;
11020 expression (e);
11021 if (*input_line_pointer == ']')
11022 {
11023 ++input_line_pointer;
11024 e->X_op_symbol = make_expr_symbol (e);
11025 e->X_add_symbol = NULL;
11026 e->X_add_number = 0;
11027 e->X_op = O_index;
11028 }
11029 else
11030 {
11031 e->X_op = O_absent;
11032 input_line_pointer = end;
11033 }
11034 break;
4d1bb795
JB
11035 }
11036}
11037
252b5132 11038\f
4cc782b5 11039#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11040const char *md_shortopts = "kVQ:sqnO::";
252b5132 11041#else
b6f8c7c4 11042const char *md_shortopts = "qnO::";
252b5132 11043#endif
6e0b89ee 11044
3e73aa7c 11045#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11046#define OPTION_64 (OPTION_MD_BASE + 1)
11047#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11048#define OPTION_MARCH (OPTION_MD_BASE + 3)
11049#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11050#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11051#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11052#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11053#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11054#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11055#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11056#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11057#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11058#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11059#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11060#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11061#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11062#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11063#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11064#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11065#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11066#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11067#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11068#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11069#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11070#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11071#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11072
99ad8390
NC
11073struct option md_longopts[] =
11074{
3e73aa7c 11075 {"32", no_argument, NULL, OPTION_32},
321098a5 11076#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11077 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11078 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11079#endif
11080#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11081 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11082 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11083 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11084#endif
b3b91714 11085 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11086 {"march", required_argument, NULL, OPTION_MARCH},
11087 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11088 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11089 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11090 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11091 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11092 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11093 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11094 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11095 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11096 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11097 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11098 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11099 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11100# if defined (TE_PE) || defined (TE_PEP)
11101 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11102#endif
d1982f93 11103 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11104 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11105 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11106 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11107 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11108 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11109 {NULL, no_argument, NULL, 0}
11110};
11111size_t md_longopts_size = sizeof (md_longopts);
11112
11113int
17b9d67d 11114md_parse_option (int c, const char *arg)
252b5132 11115{
91d6fa6a 11116 unsigned int j;
293f5f65 11117 char *arch, *next, *saved;
9103f4f4 11118
252b5132
RH
11119 switch (c)
11120 {
12b55ccc
L
11121 case 'n':
11122 optimize_align_code = 0;
11123 break;
11124
a38cf1db
AM
11125 case 'q':
11126 quiet_warnings = 1;
252b5132
RH
11127 break;
11128
11129#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11130 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11131 should be emitted or not. FIXME: Not implemented. */
11132 case 'Q':
d4693039
JB
11133 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11134 return 0;
252b5132
RH
11135 break;
11136
11137 /* -V: SVR4 argument to print version ID. */
11138 case 'V':
11139 print_version_id ();
11140 break;
11141
a38cf1db
AM
11142 /* -k: Ignore for FreeBSD compatibility. */
11143 case 'k':
252b5132 11144 break;
4cc782b5
ILT
11145
11146 case 's':
11147 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11148 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11149 break;
8dcea932
L
11150
11151 case OPTION_MSHARED:
11152 shared = 1;
11153 break;
b4a3a7b4
L
11154
11155 case OPTION_X86_USED_NOTE:
11156 if (strcasecmp (arg, "yes") == 0)
11157 x86_used_note = 1;
11158 else if (strcasecmp (arg, "no") == 0)
11159 x86_used_note = 0;
11160 else
11161 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11162 break;
11163
11164
99ad8390 11165#endif
321098a5 11166#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11167 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11168 case OPTION_64:
11169 {
11170 const char **list, **l;
11171
3e73aa7c
JH
11172 list = bfd_target_list ();
11173 for (l = list; *l != NULL; l++)
8620418b 11174 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11175 || strcmp (*l, "coff-x86-64") == 0
11176 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11177 || strcmp (*l, "pei-x86-64") == 0
11178 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11179 {
11180 default_arch = "x86_64";
11181 break;
11182 }
3e73aa7c 11183 if (*l == NULL)
2b5d6a91 11184 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11185 free (list);
11186 }
11187 break;
11188#endif
252b5132 11189
351f65ca 11190#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11191 case OPTION_X32:
351f65ca
L
11192 if (IS_ELF)
11193 {
11194 const char **list, **l;
11195
11196 list = bfd_target_list ();
11197 for (l = list; *l != NULL; l++)
11198 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11199 {
11200 default_arch = "x86_64:32";
11201 break;
11202 }
11203 if (*l == NULL)
2b5d6a91 11204 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11205 free (list);
11206 }
11207 else
11208 as_fatal (_("32bit x86_64 is only supported for ELF"));
11209 break;
11210#endif
11211
6e0b89ee
AM
11212 case OPTION_32:
11213 default_arch = "i386";
11214 break;
11215
b3b91714
AM
11216 case OPTION_DIVIDE:
11217#ifdef SVR4_COMMENT_CHARS
11218 {
11219 char *n, *t;
11220 const char *s;
11221
add39d23 11222 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11223 t = n;
11224 for (s = i386_comment_chars; *s != '\0'; s++)
11225 if (*s != '/')
11226 *t++ = *s;
11227 *t = '\0';
11228 i386_comment_chars = n;
11229 }
11230#endif
11231 break;
11232
9103f4f4 11233 case OPTION_MARCH:
293f5f65
L
11234 saved = xstrdup (arg);
11235 arch = saved;
11236 /* Allow -march=+nosse. */
11237 if (*arch == '+')
11238 arch++;
6305a203 11239 do
9103f4f4 11240 {
6305a203 11241 if (*arch == '.')
2b5d6a91 11242 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11243 next = strchr (arch, '+');
11244 if (next)
11245 *next++ = '\0';
91d6fa6a 11246 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11247 {
91d6fa6a 11248 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11249 {
6305a203 11250 /* Processor. */
1ded5609
JB
11251 if (! cpu_arch[j].flags.bitfield.cpui386)
11252 continue;
11253
91d6fa6a 11254 cpu_arch_name = cpu_arch[j].name;
6305a203 11255 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11256 cpu_arch_flags = cpu_arch[j].flags;
11257 cpu_arch_isa = cpu_arch[j].type;
11258 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11259 if (!cpu_arch_tune_set)
11260 {
11261 cpu_arch_tune = cpu_arch_isa;
11262 cpu_arch_tune_flags = cpu_arch_isa_flags;
11263 }
11264 break;
11265 }
91d6fa6a
NC
11266 else if (*cpu_arch [j].name == '.'
11267 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11268 {
33eaf5de 11269 /* ISA extension. */
6305a203 11270 i386_cpu_flags flags;
309d3373 11271
293f5f65
L
11272 flags = cpu_flags_or (cpu_arch_flags,
11273 cpu_arch[j].flags);
81486035 11274
5b64d091 11275 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11276 {
11277 if (cpu_sub_arch_name)
11278 {
11279 char *name = cpu_sub_arch_name;
11280 cpu_sub_arch_name = concat (name,
91d6fa6a 11281 cpu_arch[j].name,
1bf57e9f 11282 (const char *) NULL);
6305a203
L
11283 free (name);
11284 }
11285 else
91d6fa6a 11286 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11287 cpu_arch_flags = flags;
a586129e 11288 cpu_arch_isa_flags = flags;
6305a203 11289 }
0089dace
L
11290 else
11291 cpu_arch_isa_flags
11292 = cpu_flags_or (cpu_arch_isa_flags,
11293 cpu_arch[j].flags);
6305a203 11294 break;
ccc9c027 11295 }
9103f4f4 11296 }
6305a203 11297
293f5f65
L
11298 if (j >= ARRAY_SIZE (cpu_arch))
11299 {
33eaf5de 11300 /* Disable an ISA extension. */
293f5f65
L
11301 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11302 if (strcmp (arch, cpu_noarch [j].name) == 0)
11303 {
11304 i386_cpu_flags flags;
11305
11306 flags = cpu_flags_and_not (cpu_arch_flags,
11307 cpu_noarch[j].flags);
11308 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11309 {
11310 if (cpu_sub_arch_name)
11311 {
11312 char *name = cpu_sub_arch_name;
11313 cpu_sub_arch_name = concat (arch,
11314 (const char *) NULL);
11315 free (name);
11316 }
11317 else
11318 cpu_sub_arch_name = xstrdup (arch);
11319 cpu_arch_flags = flags;
11320 cpu_arch_isa_flags = flags;
11321 }
11322 break;
11323 }
11324
11325 if (j >= ARRAY_SIZE (cpu_noarch))
11326 j = ARRAY_SIZE (cpu_arch);
11327 }
11328
91d6fa6a 11329 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11330 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11331
11332 arch = next;
9103f4f4 11333 }
293f5f65
L
11334 while (next != NULL);
11335 free (saved);
9103f4f4
L
11336 break;
11337
11338 case OPTION_MTUNE:
11339 if (*arg == '.')
2b5d6a91 11340 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11341 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11342 {
91d6fa6a 11343 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11344 {
ccc9c027 11345 cpu_arch_tune_set = 1;
91d6fa6a
NC
11346 cpu_arch_tune = cpu_arch [j].type;
11347 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11348 break;
11349 }
11350 }
91d6fa6a 11351 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11352 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11353 break;
11354
1efbbeb4
L
11355 case OPTION_MMNEMONIC:
11356 if (strcasecmp (arg, "att") == 0)
11357 intel_mnemonic = 0;
11358 else if (strcasecmp (arg, "intel") == 0)
11359 intel_mnemonic = 1;
11360 else
2b5d6a91 11361 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11362 break;
11363
11364 case OPTION_MSYNTAX:
11365 if (strcasecmp (arg, "att") == 0)
11366 intel_syntax = 0;
11367 else if (strcasecmp (arg, "intel") == 0)
11368 intel_syntax = 1;
11369 else
2b5d6a91 11370 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11371 break;
11372
11373 case OPTION_MINDEX_REG:
11374 allow_index_reg = 1;
11375 break;
11376
11377 case OPTION_MNAKED_REG:
11378 allow_naked_reg = 1;
11379 break;
11380
c0f3af97
L
11381 case OPTION_MSSE2AVX:
11382 sse2avx = 1;
11383 break;
11384
daf50ae7
L
11385 case OPTION_MSSE_CHECK:
11386 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11387 sse_check = check_error;
daf50ae7 11388 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11389 sse_check = check_warning;
daf50ae7 11390 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11391 sse_check = check_none;
daf50ae7 11392 else
2b5d6a91 11393 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11394 break;
11395
7bab8ab5
JB
11396 case OPTION_MOPERAND_CHECK:
11397 if (strcasecmp (arg, "error") == 0)
11398 operand_check = check_error;
11399 else if (strcasecmp (arg, "warning") == 0)
11400 operand_check = check_warning;
11401 else if (strcasecmp (arg, "none") == 0)
11402 operand_check = check_none;
11403 else
11404 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11405 break;
11406
539f890d
L
11407 case OPTION_MAVXSCALAR:
11408 if (strcasecmp (arg, "128") == 0)
11409 avxscalar = vex128;
11410 else if (strcasecmp (arg, "256") == 0)
11411 avxscalar = vex256;
11412 else
2b5d6a91 11413 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11414 break;
11415
03751133
L
11416 case OPTION_MVEXWIG:
11417 if (strcmp (arg, "0") == 0)
40c9c8de 11418 vexwig = vexw0;
03751133 11419 else if (strcmp (arg, "1") == 0)
40c9c8de 11420 vexwig = vexw1;
03751133
L
11421 else
11422 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11423 break;
11424
7e8b059b
L
11425 case OPTION_MADD_BND_PREFIX:
11426 add_bnd_prefix = 1;
11427 break;
11428
43234a1e
L
11429 case OPTION_MEVEXLIG:
11430 if (strcmp (arg, "128") == 0)
11431 evexlig = evexl128;
11432 else if (strcmp (arg, "256") == 0)
11433 evexlig = evexl256;
11434 else if (strcmp (arg, "512") == 0)
11435 evexlig = evexl512;
11436 else
11437 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11438 break;
11439
d3d3c6db
IT
11440 case OPTION_MEVEXRCIG:
11441 if (strcmp (arg, "rne") == 0)
11442 evexrcig = rne;
11443 else if (strcmp (arg, "rd") == 0)
11444 evexrcig = rd;
11445 else if (strcmp (arg, "ru") == 0)
11446 evexrcig = ru;
11447 else if (strcmp (arg, "rz") == 0)
11448 evexrcig = rz;
11449 else
11450 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11451 break;
11452
43234a1e
L
11453 case OPTION_MEVEXWIG:
11454 if (strcmp (arg, "0") == 0)
11455 evexwig = evexw0;
11456 else if (strcmp (arg, "1") == 0)
11457 evexwig = evexw1;
11458 else
11459 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11460 break;
11461
167ad85b
TG
11462# if defined (TE_PE) || defined (TE_PEP)
11463 case OPTION_MBIG_OBJ:
11464 use_big_obj = 1;
11465 break;
11466#endif
11467
d1982f93 11468 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11469 if (strcasecmp (arg, "yes") == 0)
11470 omit_lock_prefix = 1;
11471 else if (strcasecmp (arg, "no") == 0)
11472 omit_lock_prefix = 0;
11473 else
11474 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11475 break;
11476
e4e00185
AS
11477 case OPTION_MFENCE_AS_LOCK_ADD:
11478 if (strcasecmp (arg, "yes") == 0)
11479 avoid_fence = 1;
11480 else if (strcasecmp (arg, "no") == 0)
11481 avoid_fence = 0;
11482 else
11483 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11484 break;
11485
0cb4071e
L
11486 case OPTION_MRELAX_RELOCATIONS:
11487 if (strcasecmp (arg, "yes") == 0)
11488 generate_relax_relocations = 1;
11489 else if (strcasecmp (arg, "no") == 0)
11490 generate_relax_relocations = 0;
11491 else
11492 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11493 break;
11494
5db04b09 11495 case OPTION_MAMD64:
e89c5eaa 11496 intel64 = 0;
5db04b09
L
11497 break;
11498
11499 case OPTION_MINTEL64:
e89c5eaa 11500 intel64 = 1;
5db04b09
L
11501 break;
11502
b6f8c7c4
L
11503 case 'O':
11504 if (arg == NULL)
11505 {
11506 optimize = 1;
11507 /* Turn off -Os. */
11508 optimize_for_space = 0;
11509 }
11510 else if (*arg == 's')
11511 {
11512 optimize_for_space = 1;
11513 /* Turn on all encoding optimizations. */
41fd2579 11514 optimize = INT_MAX;
b6f8c7c4
L
11515 }
11516 else
11517 {
11518 optimize = atoi (arg);
11519 /* Turn off -Os. */
11520 optimize_for_space = 0;
11521 }
11522 break;
11523
252b5132
RH
11524 default:
11525 return 0;
11526 }
11527 return 1;
11528}
11529
8a2c8fef
L
11530#define MESSAGE_TEMPLATE \
11531" "
11532
293f5f65
L
11533static char *
11534output_message (FILE *stream, char *p, char *message, char *start,
11535 int *left_p, const char *name, int len)
11536{
11537 int size = sizeof (MESSAGE_TEMPLATE);
11538 int left = *left_p;
11539
11540 /* Reserve 2 spaces for ", " or ",\0" */
11541 left -= len + 2;
11542
11543 /* Check if there is any room. */
11544 if (left >= 0)
11545 {
11546 if (p != start)
11547 {
11548 *p++ = ',';
11549 *p++ = ' ';
11550 }
11551 p = mempcpy (p, name, len);
11552 }
11553 else
11554 {
11555 /* Output the current message now and start a new one. */
11556 *p++ = ',';
11557 *p = '\0';
11558 fprintf (stream, "%s\n", message);
11559 p = start;
11560 left = size - (start - message) - len - 2;
11561
11562 gas_assert (left >= 0);
11563
11564 p = mempcpy (p, name, len);
11565 }
11566
11567 *left_p = left;
11568 return p;
11569}
11570
8a2c8fef 11571static void
1ded5609 11572show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11573{
11574 static char message[] = MESSAGE_TEMPLATE;
11575 char *start = message + 27;
11576 char *p;
11577 int size = sizeof (MESSAGE_TEMPLATE);
11578 int left;
11579 const char *name;
11580 int len;
11581 unsigned int j;
11582
11583 p = start;
11584 left = size - (start - message);
11585 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11586 {
11587 /* Should it be skipped? */
11588 if (cpu_arch [j].skip)
11589 continue;
11590
11591 name = cpu_arch [j].name;
11592 len = cpu_arch [j].len;
11593 if (*name == '.')
11594 {
11595 /* It is an extension. Skip if we aren't asked to show it. */
11596 if (ext)
11597 {
11598 name++;
11599 len--;
11600 }
11601 else
11602 continue;
11603 }
11604 else if (ext)
11605 {
11606 /* It is an processor. Skip if we show only extension. */
11607 continue;
11608 }
1ded5609
JB
11609 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11610 {
11611 /* It is an impossible processor - skip. */
11612 continue;
11613 }
8a2c8fef 11614
293f5f65 11615 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11616 }
11617
293f5f65
L
11618 /* Display disabled extensions. */
11619 if (ext)
11620 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11621 {
11622 name = cpu_noarch [j].name;
11623 len = cpu_noarch [j].len;
11624 p = output_message (stream, p, message, start, &left, name,
11625 len);
11626 }
11627
8a2c8fef
L
11628 *p = '\0';
11629 fprintf (stream, "%s\n", message);
11630}
11631
252b5132 11632void
8a2c8fef 11633md_show_usage (FILE *stream)
252b5132 11634{
4cc782b5
ILT
11635#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11636 fprintf (stream, _("\
d4693039 11637 -Qy, -Qn ignored\n\
a38cf1db 11638 -V print assembler version number\n\
b3b91714
AM
11639 -k ignored\n"));
11640#endif
11641 fprintf (stream, _("\
12b55ccc 11642 -n Do not optimize code alignment\n\
b3b91714
AM
11643 -q quieten some warnings\n"));
11644#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11645 fprintf (stream, _("\
a38cf1db 11646 -s ignored\n"));
b3b91714 11647#endif
d7f449c0
L
11648#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11649 || defined (TE_PE) || defined (TE_PEP))
751d281c 11650 fprintf (stream, _("\
570561f7 11651 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11652#endif
b3b91714
AM
11653#ifdef SVR4_COMMENT_CHARS
11654 fprintf (stream, _("\
11655 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11656#else
11657 fprintf (stream, _("\
b3b91714 11658 --divide ignored\n"));
4cc782b5 11659#endif
9103f4f4 11660 fprintf (stream, _("\
6305a203 11661 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11662 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11663 show_arch (stream, 0, 1);
8a2c8fef
L
11664 fprintf (stream, _("\
11665 EXTENSION is combination of:\n"));
1ded5609 11666 show_arch (stream, 1, 0);
6305a203 11667 fprintf (stream, _("\
8a2c8fef 11668 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11669 show_arch (stream, 0, 0);
ba104c83 11670 fprintf (stream, _("\
c0f3af97
L
11671 -msse2avx encode SSE instructions with VEX prefix\n"));
11672 fprintf (stream, _("\
7c5c05ef 11673 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11674 check SSE instructions\n"));
11675 fprintf (stream, _("\
7c5c05ef 11676 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11677 check operand combinations for validity\n"));
11678 fprintf (stream, _("\
7c5c05ef
L
11679 -mavxscalar=[128|256] (default: 128)\n\
11680 encode scalar AVX instructions with specific vector\n\
539f890d
L
11681 length\n"));
11682 fprintf (stream, _("\
03751133
L
11683 -mvexwig=[0|1] (default: 0)\n\
11684 encode VEX instructions with specific VEX.W value\n\
11685 for VEX.W bit ignored instructions\n"));
11686 fprintf (stream, _("\
7c5c05ef
L
11687 -mevexlig=[128|256|512] (default: 128)\n\
11688 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11689 length\n"));
11690 fprintf (stream, _("\
7c5c05ef
L
11691 -mevexwig=[0|1] (default: 0)\n\
11692 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11693 for EVEX.W bit ignored instructions\n"));
11694 fprintf (stream, _("\
7c5c05ef 11695 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11696 encode EVEX instructions with specific EVEX.RC value\n\
11697 for SAE-only ignored instructions\n"));
11698 fprintf (stream, _("\
7c5c05ef
L
11699 -mmnemonic=[att|intel] "));
11700 if (SYSV386_COMPAT)
11701 fprintf (stream, _("(default: att)\n"));
11702 else
11703 fprintf (stream, _("(default: intel)\n"));
11704 fprintf (stream, _("\
11705 use AT&T/Intel mnemonic\n"));
ba104c83 11706 fprintf (stream, _("\
7c5c05ef
L
11707 -msyntax=[att|intel] (default: att)\n\
11708 use AT&T/Intel syntax\n"));
ba104c83
L
11709 fprintf (stream, _("\
11710 -mindex-reg support pseudo index registers\n"));
11711 fprintf (stream, _("\
11712 -mnaked-reg don't require `%%' prefix for registers\n"));
11713 fprintf (stream, _("\
7e8b059b 11714 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11716 fprintf (stream, _("\
11717 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11718 fprintf (stream, _("\
11719 -mx86-used-note=[no|yes] "));
11720 if (DEFAULT_X86_USED_NOTE)
11721 fprintf (stream, _("(default: yes)\n"));
11722 else
11723 fprintf (stream, _("(default: no)\n"));
11724 fprintf (stream, _("\
11725 generate x86 used ISA and feature properties\n"));
11726#endif
11727#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11728 fprintf (stream, _("\
11729 -mbig-obj generate big object files\n"));
11730#endif
d022bddd 11731 fprintf (stream, _("\
7c5c05ef 11732 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11733 strip all lock prefixes\n"));
5db04b09 11734 fprintf (stream, _("\
7c5c05ef 11735 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11736 encode lfence, mfence and sfence as\n\
11737 lock addl $0x0, (%%{re}sp)\n"));
11738 fprintf (stream, _("\
7c5c05ef
L
11739 -mrelax-relocations=[no|yes] "));
11740 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11741 fprintf (stream, _("(default: yes)\n"));
11742 else
11743 fprintf (stream, _("(default: no)\n"));
11744 fprintf (stream, _("\
0cb4071e
L
11745 generate relax relocations\n"));
11746 fprintf (stream, _("\
7c5c05ef 11747 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11748 fprintf (stream, _("\
11749 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11750}
11751
3e73aa7c 11752#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11753 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11754 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11755
11756/* Pick the target format to use. */
11757
47926f60 11758const char *
e3bb37b5 11759i386_target_format (void)
252b5132 11760{
351f65ca
L
11761 if (!strncmp (default_arch, "x86_64", 6))
11762 {
11763 update_code_flag (CODE_64BIT, 1);
11764 if (default_arch[6] == '\0')
7f56bc95 11765 x86_elf_abi = X86_64_ABI;
351f65ca 11766 else
7f56bc95 11767 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11768 }
3e73aa7c 11769 else if (!strcmp (default_arch, "i386"))
78f12dd3 11770 update_code_flag (CODE_32BIT, 1);
5197d474
L
11771 else if (!strcmp (default_arch, "iamcu"))
11772 {
11773 update_code_flag (CODE_32BIT, 1);
11774 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11775 {
11776 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11777 cpu_arch_name = "iamcu";
11778 cpu_sub_arch_name = NULL;
11779 cpu_arch_flags = iamcu_flags;
11780 cpu_arch_isa = PROCESSOR_IAMCU;
11781 cpu_arch_isa_flags = iamcu_flags;
11782 if (!cpu_arch_tune_set)
11783 {
11784 cpu_arch_tune = cpu_arch_isa;
11785 cpu_arch_tune_flags = cpu_arch_isa_flags;
11786 }
11787 }
8d471ec1 11788 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11789 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11790 cpu_arch_name);
11791 }
3e73aa7c 11792 else
2b5d6a91 11793 as_fatal (_("unknown architecture"));
89507696
JB
11794
11795 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11796 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11797 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11798 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11799
252b5132
RH
11800 switch (OUTPUT_FLAVOR)
11801 {
9384f2ff 11802#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11803 case bfd_target_aout_flavour:
47926f60 11804 return AOUT_TARGET_FORMAT;
4c63da97 11805#endif
9384f2ff
AM
11806#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11807# if defined (TE_PE) || defined (TE_PEP)
11808 case bfd_target_coff_flavour:
167ad85b
TG
11809 if (flag_code == CODE_64BIT)
11810 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11811 else
11812 return "pe-i386";
9384f2ff 11813# elif defined (TE_GO32)
0561d57c
JK
11814 case bfd_target_coff_flavour:
11815 return "coff-go32";
9384f2ff 11816# else
252b5132
RH
11817 case bfd_target_coff_flavour:
11818 return "coff-i386";
9384f2ff 11819# endif
4c63da97 11820#endif
3e73aa7c 11821#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11822 case bfd_target_elf_flavour:
3e73aa7c 11823 {
351f65ca
L
11824 const char *format;
11825
11826 switch (x86_elf_abi)
4fa24527 11827 {
351f65ca
L
11828 default:
11829 format = ELF_TARGET_FORMAT;
11830 break;
7f56bc95 11831 case X86_64_ABI:
351f65ca 11832 use_rela_relocations = 1;
4fa24527 11833 object_64bit = 1;
351f65ca
L
11834 format = ELF_TARGET_FORMAT64;
11835 break;
7f56bc95 11836 case X86_64_X32_ABI:
4fa24527 11837 use_rela_relocations = 1;
351f65ca 11838 object_64bit = 1;
862be3fb 11839 disallow_64bit_reloc = 1;
351f65ca
L
11840 format = ELF_TARGET_FORMAT32;
11841 break;
4fa24527 11842 }
3632d14b 11843 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11844 {
7f56bc95 11845 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11846 as_fatal (_("Intel L1OM is 64bit only"));
11847 return ELF_TARGET_L1OM_FORMAT;
11848 }
b49f93f6 11849 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11850 {
11851 if (x86_elf_abi != X86_64_ABI)
11852 as_fatal (_("Intel K1OM is 64bit only"));
11853 return ELF_TARGET_K1OM_FORMAT;
11854 }
81486035
L
11855 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11856 {
11857 if (x86_elf_abi != I386_ABI)
11858 as_fatal (_("Intel MCU is 32bit only"));
11859 return ELF_TARGET_IAMCU_FORMAT;
11860 }
8a9036a4 11861 else
351f65ca 11862 return format;
3e73aa7c 11863 }
e57f8c65
TG
11864#endif
11865#if defined (OBJ_MACH_O)
11866 case bfd_target_mach_o_flavour:
d382c579
TG
11867 if (flag_code == CODE_64BIT)
11868 {
11869 use_rela_relocations = 1;
11870 object_64bit = 1;
11871 return "mach-o-x86-64";
11872 }
11873 else
11874 return "mach-o-i386";
4c63da97 11875#endif
252b5132
RH
11876 default:
11877 abort ();
11878 return NULL;
11879 }
11880}
11881
47926f60 11882#endif /* OBJ_MAYBE_ more than one */
252b5132 11883\f
252b5132 11884symbolS *
7016a5d5 11885md_undefined_symbol (char *name)
252b5132 11886{
18dc2407
ILT
11887 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11888 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11889 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11890 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11891 {
11892 if (!GOT_symbol)
11893 {
11894 if (symbol_find (name))
11895 as_bad (_("GOT already in symbol table"));
11896 GOT_symbol = symbol_new (name, undefined_section,
11897 (valueT) 0, &zero_address_frag);
11898 };
11899 return GOT_symbol;
11900 }
252b5132
RH
11901 return 0;
11902}
11903
11904/* Round up a section size to the appropriate boundary. */
47926f60 11905
252b5132 11906valueT
7016a5d5 11907md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11908{
4c63da97
AM
11909#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11910 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11911 {
11912 /* For a.out, force the section size to be aligned. If we don't do
11913 this, BFD will align it for us, but it will not write out the
11914 final bytes of the section. This may be a bug in BFD, but it is
11915 easier to fix it here since that is how the other a.out targets
11916 work. */
11917 int align;
11918
fd361982 11919 align = bfd_section_alignment (segment);
8d3842cd 11920 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11921 }
252b5132
RH
11922#endif
11923
11924 return size;
11925}
11926
11927/* On the i386, PC-relative offsets are relative to the start of the
11928 next instruction. That is, the address of the offset, plus its
11929 size, since the offset is always the last part of the insn. */
11930
11931long
e3bb37b5 11932md_pcrel_from (fixS *fixP)
252b5132
RH
11933{
11934 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11935}
11936
11937#ifndef I386COFF
11938
11939static void
e3bb37b5 11940s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11941{
29b0f896 11942 int temp;
252b5132 11943
8a75718c
JB
11944#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11945 if (IS_ELF)
11946 obj_elf_section_change_hook ();
11947#endif
252b5132
RH
11948 temp = get_absolute_expression ();
11949 subseg_set (bss_section, (subsegT) temp);
11950 demand_empty_rest_of_line ();
11951}
11952
11953#endif
11954
252b5132 11955void
e3bb37b5 11956i386_validate_fix (fixS *fixp)
252b5132 11957{
02a86693 11958 if (fixp->fx_subsy)
252b5132 11959 {
02a86693 11960 if (fixp->fx_subsy == GOT_symbol)
23df1078 11961 {
02a86693
L
11962 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11963 {
11964 if (!object_64bit)
11965 abort ();
11966#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11967 if (fixp->fx_tcbit2)
56ceb5b5
L
11968 fixp->fx_r_type = (fixp->fx_tcbit
11969 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11970 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11971 else
11972#endif
11973 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11974 }
d6ab8113 11975 else
02a86693
L
11976 {
11977 if (!object_64bit)
11978 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11979 else
11980 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11981 }
11982 fixp->fx_subsy = 0;
23df1078 11983 }
252b5132 11984 }
02a86693
L
11985#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11986 else if (!object_64bit)
11987 {
11988 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11989 && fixp->fx_tcbit2)
11990 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11991 }
11992#endif
252b5132
RH
11993}
11994
252b5132 11995arelent *
7016a5d5 11996tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11997{
11998 arelent *rel;
11999 bfd_reloc_code_real_type code;
12000
12001 switch (fixp->fx_r_type)
12002 {
8ce3d284 12003#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12004 case BFD_RELOC_SIZE32:
12005 case BFD_RELOC_SIZE64:
12006 if (S_IS_DEFINED (fixp->fx_addsy)
12007 && !S_IS_EXTERNAL (fixp->fx_addsy))
12008 {
12009 /* Resolve size relocation against local symbol to size of
12010 the symbol plus addend. */
12011 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12012 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12013 && !fits_in_unsigned_long (value))
12014 as_bad_where (fixp->fx_file, fixp->fx_line,
12015 _("symbol size computation overflow"));
12016 fixp->fx_addsy = NULL;
12017 fixp->fx_subsy = NULL;
12018 md_apply_fix (fixp, (valueT *) &value, NULL);
12019 return NULL;
12020 }
8ce3d284 12021#endif
1a0670f3 12022 /* Fall through. */
8fd4256d 12023
3e73aa7c
JH
12024 case BFD_RELOC_X86_64_PLT32:
12025 case BFD_RELOC_X86_64_GOT32:
12026 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12027 case BFD_RELOC_X86_64_GOTPCRELX:
12028 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12029 case BFD_RELOC_386_PLT32:
12030 case BFD_RELOC_386_GOT32:
02a86693 12031 case BFD_RELOC_386_GOT32X:
252b5132
RH
12032 case BFD_RELOC_386_GOTOFF:
12033 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12034 case BFD_RELOC_386_TLS_GD:
12035 case BFD_RELOC_386_TLS_LDM:
12036 case BFD_RELOC_386_TLS_LDO_32:
12037 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12038 case BFD_RELOC_386_TLS_IE:
12039 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12040 case BFD_RELOC_386_TLS_LE_32:
12041 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12042 case BFD_RELOC_386_TLS_GOTDESC:
12043 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12044 case BFD_RELOC_X86_64_TLSGD:
12045 case BFD_RELOC_X86_64_TLSLD:
12046 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12047 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12048 case BFD_RELOC_X86_64_GOTTPOFF:
12049 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12050 case BFD_RELOC_X86_64_TPOFF64:
12051 case BFD_RELOC_X86_64_GOTOFF64:
12052 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12053 case BFD_RELOC_X86_64_GOT64:
12054 case BFD_RELOC_X86_64_GOTPCREL64:
12055 case BFD_RELOC_X86_64_GOTPC64:
12056 case BFD_RELOC_X86_64_GOTPLT64:
12057 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12058 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12059 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12060 case BFD_RELOC_RVA:
12061 case BFD_RELOC_VTABLE_ENTRY:
12062 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12063#ifdef TE_PE
12064 case BFD_RELOC_32_SECREL:
12065#endif
252b5132
RH
12066 code = fixp->fx_r_type;
12067 break;
dbbaec26
L
12068 case BFD_RELOC_X86_64_32S:
12069 if (!fixp->fx_pcrel)
12070 {
12071 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12072 code = fixp->fx_r_type;
12073 break;
12074 }
1a0670f3 12075 /* Fall through. */
252b5132 12076 default:
93382f6d 12077 if (fixp->fx_pcrel)
252b5132 12078 {
93382f6d
AM
12079 switch (fixp->fx_size)
12080 {
12081 default:
b091f402
AM
12082 as_bad_where (fixp->fx_file, fixp->fx_line,
12083 _("can not do %d byte pc-relative relocation"),
12084 fixp->fx_size);
93382f6d
AM
12085 code = BFD_RELOC_32_PCREL;
12086 break;
12087 case 1: code = BFD_RELOC_8_PCREL; break;
12088 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12089 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12090#ifdef BFD64
12091 case 8: code = BFD_RELOC_64_PCREL; break;
12092#endif
93382f6d
AM
12093 }
12094 }
12095 else
12096 {
12097 switch (fixp->fx_size)
12098 {
12099 default:
b091f402
AM
12100 as_bad_where (fixp->fx_file, fixp->fx_line,
12101 _("can not do %d byte relocation"),
12102 fixp->fx_size);
93382f6d
AM
12103 code = BFD_RELOC_32;
12104 break;
12105 case 1: code = BFD_RELOC_8; break;
12106 case 2: code = BFD_RELOC_16; break;
12107 case 4: code = BFD_RELOC_32; break;
937149dd 12108#ifdef BFD64
3e73aa7c 12109 case 8: code = BFD_RELOC_64; break;
937149dd 12110#endif
93382f6d 12111 }
252b5132
RH
12112 }
12113 break;
12114 }
252b5132 12115
d182319b
JB
12116 if ((code == BFD_RELOC_32
12117 || code == BFD_RELOC_32_PCREL
12118 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12119 && GOT_symbol
12120 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12121 {
4fa24527 12122 if (!object_64bit)
d6ab8113
JB
12123 code = BFD_RELOC_386_GOTPC;
12124 else
12125 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12126 }
7b81dfbb
AJ
12127 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12128 && GOT_symbol
12129 && fixp->fx_addsy == GOT_symbol)
12130 {
12131 code = BFD_RELOC_X86_64_GOTPC64;
12132 }
252b5132 12133
add39d23
TS
12134 rel = XNEW (arelent);
12135 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12136 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12137
12138 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12139
3e73aa7c
JH
12140 if (!use_rela_relocations)
12141 {
12142 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12143 vtable entry to be used in the relocation's section offset. */
12144 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12145 rel->address = fixp->fx_offset;
fbeb56a4
DK
12146#if defined (OBJ_COFF) && defined (TE_PE)
12147 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12148 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12149 else
12150#endif
c6682705 12151 rel->addend = 0;
3e73aa7c
JH
12152 }
12153 /* Use the rela in 64bit mode. */
252b5132 12154 else
3e73aa7c 12155 {
862be3fb
L
12156 if (disallow_64bit_reloc)
12157 switch (code)
12158 {
862be3fb
L
12159 case BFD_RELOC_X86_64_DTPOFF64:
12160 case BFD_RELOC_X86_64_TPOFF64:
12161 case BFD_RELOC_64_PCREL:
12162 case BFD_RELOC_X86_64_GOTOFF64:
12163 case BFD_RELOC_X86_64_GOT64:
12164 case BFD_RELOC_X86_64_GOTPCREL64:
12165 case BFD_RELOC_X86_64_GOTPC64:
12166 case BFD_RELOC_X86_64_GOTPLT64:
12167 case BFD_RELOC_X86_64_PLTOFF64:
12168 as_bad_where (fixp->fx_file, fixp->fx_line,
12169 _("cannot represent relocation type %s in x32 mode"),
12170 bfd_get_reloc_code_name (code));
12171 break;
12172 default:
12173 break;
12174 }
12175
062cd5e7
AS
12176 if (!fixp->fx_pcrel)
12177 rel->addend = fixp->fx_offset;
12178 else
12179 switch (code)
12180 {
12181 case BFD_RELOC_X86_64_PLT32:
12182 case BFD_RELOC_X86_64_GOT32:
12183 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12184 case BFD_RELOC_X86_64_GOTPCRELX:
12185 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12186 case BFD_RELOC_X86_64_TLSGD:
12187 case BFD_RELOC_X86_64_TLSLD:
12188 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12189 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12190 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12191 rel->addend = fixp->fx_offset - fixp->fx_size;
12192 break;
12193 default:
12194 rel->addend = (section->vma
12195 - fixp->fx_size
12196 + fixp->fx_addnumber
12197 + md_pcrel_from (fixp));
12198 break;
12199 }
3e73aa7c
JH
12200 }
12201
252b5132
RH
12202 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12203 if (rel->howto == NULL)
12204 {
12205 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12206 _("cannot represent relocation type %s"),
252b5132
RH
12207 bfd_get_reloc_code_name (code));
12208 /* Set howto to a garbage value so that we can keep going. */
12209 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12210 gas_assert (rel->howto != NULL);
252b5132
RH
12211 }
12212
12213 return rel;
12214}
12215
ee86248c 12216#include "tc-i386-intel.c"
54cfded0 12217
a60de03c
JB
12218void
12219tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12220{
a60de03c
JB
12221 int saved_naked_reg;
12222 char saved_register_dot;
54cfded0 12223
a60de03c
JB
12224 saved_naked_reg = allow_naked_reg;
12225 allow_naked_reg = 1;
12226 saved_register_dot = register_chars['.'];
12227 register_chars['.'] = '.';
12228 allow_pseudo_reg = 1;
12229 expression_and_evaluate (exp);
12230 allow_pseudo_reg = 0;
12231 register_chars['.'] = saved_register_dot;
12232 allow_naked_reg = saved_naked_reg;
12233
e96d56a1 12234 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12235 {
a60de03c
JB
12236 if ((addressT) exp->X_add_number < i386_regtab_size)
12237 {
12238 exp->X_op = O_constant;
12239 exp->X_add_number = i386_regtab[exp->X_add_number]
12240 .dw2_regnum[flag_code >> 1];
12241 }
12242 else
12243 exp->X_op = O_illegal;
54cfded0 12244 }
54cfded0
AM
12245}
12246
12247void
12248tc_x86_frame_initial_instructions (void)
12249{
a60de03c
JB
12250 static unsigned int sp_regno[2];
12251
12252 if (!sp_regno[flag_code >> 1])
12253 {
12254 char *saved_input = input_line_pointer;
12255 char sp[][4] = {"esp", "rsp"};
12256 expressionS exp;
a4447b93 12257
a60de03c
JB
12258 input_line_pointer = sp[flag_code >> 1];
12259 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12260 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12261 sp_regno[flag_code >> 1] = exp.X_add_number;
12262 input_line_pointer = saved_input;
12263 }
a4447b93 12264
61ff971f
L
12265 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12266 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12267}
d2b2c203 12268
d7921315
L
12269int
12270x86_dwarf2_addr_size (void)
12271{
12272#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12273 if (x86_elf_abi == X86_64_X32_ABI)
12274 return 4;
12275#endif
12276 return bfd_arch_bits_per_address (stdoutput) / 8;
12277}
12278
d2b2c203
DJ
12279int
12280i386_elf_section_type (const char *str, size_t len)
12281{
12282 if (flag_code == CODE_64BIT
12283 && len == sizeof ("unwind") - 1
12284 && strncmp (str, "unwind", 6) == 0)
12285 return SHT_X86_64_UNWIND;
12286
12287 return -1;
12288}
bb41ade5 12289
ad5fec3b
EB
12290#ifdef TE_SOLARIS
12291void
12292i386_solaris_fix_up_eh_frame (segT sec)
12293{
12294 if (flag_code == CODE_64BIT)
12295 elf_section_type (sec) = SHT_X86_64_UNWIND;
12296}
12297#endif
12298
bb41ade5
AM
12299#ifdef TE_PE
12300void
12301tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12302{
91d6fa6a 12303 expressionS exp;
bb41ade5 12304
91d6fa6a
NC
12305 exp.X_op = O_secrel;
12306 exp.X_add_symbol = symbol;
12307 exp.X_add_number = 0;
12308 emit_expr (&exp, size);
bb41ade5
AM
12309}
12310#endif
3b22753a
L
12311
12312#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12313/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12314
01e1a5bc 12315bfd_vma
6d4af3c2 12316x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12317{
12318 if (flag_code == CODE_64BIT)
12319 {
12320 if (letter == 'l')
12321 return SHF_X86_64_LARGE;
12322
8f3bae45 12323 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12324 }
3b22753a 12325 else
8f3bae45 12326 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12327 return -1;
12328}
12329
01e1a5bc 12330bfd_vma
3b22753a
L
12331x86_64_section_word (char *str, size_t len)
12332{
8620418b 12333 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12334 return SHF_X86_64_LARGE;
12335
12336 return -1;
12337}
12338
12339static void
12340handle_large_common (int small ATTRIBUTE_UNUSED)
12341{
12342 if (flag_code != CODE_64BIT)
12343 {
12344 s_comm_internal (0, elf_common_parse);
12345 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12346 }
12347 else
12348 {
12349 static segT lbss_section;
12350 asection *saved_com_section_ptr = elf_com_section_ptr;
12351 asection *saved_bss_section = bss_section;
12352
12353 if (lbss_section == NULL)
12354 {
12355 flagword applicable;
12356 segT seg = now_seg;
12357 subsegT subseg = now_subseg;
12358
12359 /* The .lbss section is for local .largecomm symbols. */
12360 lbss_section = subseg_new (".lbss", 0);
12361 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12362 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12363 seg_info (lbss_section)->bss = 1;
12364
12365 subseg_set (seg, subseg);
12366 }
12367
12368 elf_com_section_ptr = &_bfd_elf_large_com_section;
12369 bss_section = lbss_section;
12370
12371 s_comm_internal (0, elf_common_parse);
12372
12373 elf_com_section_ptr = saved_com_section_ptr;
12374 bss_section = saved_bss_section;
12375 }
12376}
12377#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.154264 seconds and 4 git commands to generate.