x86: use D attribute also for SIMD templates
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
43234a1e
L
202/* This struct describes rounding control and SAE in the instruction. */
203struct RC_Operation
204{
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214};
215
216static struct RC_Operation rc_op;
217
218/* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221struct Mask_Operation
222{
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227};
228
229static struct Mask_Operation mask_op;
230
231/* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233struct Broadcast_Operation
234{
8e6e0792 235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
4a1b91ea
L
240
241 /* Number of bytes to broadcast. */
242 int bytes;
43234a1e
L
243};
244
245static struct Broadcast_Operation broadcast_op;
246
c0f3af97
L
247/* VEX prefix. */
248typedef struct
249{
43234a1e
L
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
c0f3af97
L
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255} vex_prefix;
256
252b5132 257/* 'md_assemble ()' gathers together information and puts it into a
47926f60 258 i386_insn. */
252b5132 259
520dc8e8
AM
260union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
a65babc9
L
267enum i386_error
268 {
86e026a4 269 operand_size_mismatch,
a65babc9
L
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
a65babc9
L
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
6c30d220
L
277 unsupported,
278 invalid_vsib_address,
7bab8ab5 279 invalid_vector_register_set,
43234a1e
L
280 unsupported_vector_index_register,
281 unsupported_broadcast,
43234a1e
L
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
a65babc9
L
289 };
290
252b5132
RH
291struct _i386_insn
292 {
47926f60 293 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 294 insn_template tm;
252b5132 295
7d5e4556
L
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
252b5132
RH
298 char suffix;
299
47926f60 300 /* OPERANDS gives the number of given operands. */
252b5132
RH
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
47926f60 305 operands. */
252b5132
RH
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 309 use OP[i] for the corresponding operand. */
40fb9820 310 i386_operand_type types[MAX_OPERANDS];
252b5132 311
520dc8e8
AM
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
252b5132 315
3e73aa7c
JH
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318#define Operand_PCrel 1
c48dadc9 319#define Operand_Mem 2
3e73aa7c 320
252b5132 321 /* Relocation type for operand */
f86103b7 322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 323
252b5132
RH
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 331 explicit segment overrides are given. */
ce8a8b2f 332 const seg_entry *seg[2];
252b5132 333
8325cc63
JB
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
252b5132
RH
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
b4a3a7b4
L
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
252b5132 354 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 355 addressing modes of this insn are encoded. */
252b5132 356 modrm_byte rm;
3e73aa7c 357 rex_byte rex;
43234a1e 358 rex_byte vrex;
252b5132 359 sib_byte sib;
c0f3af97 360 vex_prefix vex;
b6169b20 361
43234a1e
L
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
86fa6981
L
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
64c49ab3
JB
379 dir_encoding_store,
380 dir_encoding_swap
86fa6981 381 } dir_encoding;
891edac4 382
a501d77e
L
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
f8a5c266 390
6b6b6807
L
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
b6f8c7c4
L
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
86fa6981
L
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
d5de92cf
L
406 /* REP prefix. */
407 const char *rep_prefix;
408
165de32a
L
409 /* HLE prefix. */
410 const char *hle_prefix;
42164a71 411
7e8b059b
L
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
04ef582a
L
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
891edac4 418 /* Error message. */
a65babc9 419 enum i386_error error;
252b5132
RH
420 };
421
422typedef struct _i386_insn i386_insn;
423
43234a1e
L
424/* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426struct RC_name
427{
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431};
432
433static const struct RC_name RC_NamesTable[] =
434{
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440};
441
252b5132
RH
442/* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 444const char extra_symbol_chars[] = "*%-([{}"
252b5132 445#ifdef LEX_AT
32137342
NC
446 "@"
447#endif
448#ifdef LEX_QM
449 "?"
252b5132 450#endif
32137342 451 ;
252b5132 452
29b0f896
AM
453#if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 455 && !defined (TE_GNU) \
29b0f896 456 && !defined (TE_LINUX) \
8d63c93e 457 && !defined (TE_NACL) \
29b0f896 458 && !defined (TE_FreeBSD) \
5b806d27 459 && !defined (TE_DragonFly) \
29b0f896 460 && !defined (TE_NetBSD)))
252b5132 461/* This array holds the chars that always start a comment. If the
b3b91714
AM
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464const char *i386_comment_chars = "#/";
465#define SVR4_COMMENT_CHARS 1
252b5132 466#define PREFIX_SEPARATOR '\\'
252b5132 467
b3b91714
AM
468#else
469const char *i386_comment_chars = "#";
470#define PREFIX_SEPARATOR '/'
471#endif
472
252b5132
RH
473/* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 477 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
252b5132 480 '/' isn't otherwise defined. */
b3b91714 481const char line_comment_chars[] = "#/";
252b5132 482
63a0b638 483const char line_separator_chars[] = ";";
252b5132 484
ce8a8b2f
AM
485/* Chars that can be used to separate mant from exp in floating point
486 nums. */
252b5132
RH
487const char EXP_CHARS[] = "eE";
488
ce8a8b2f
AM
489/* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
252b5132
RH
492const char FLT_CHARS[] = "fFdDxX";
493
ce8a8b2f 494/* Tables for lexical analysis. */
252b5132
RH
495static char mnemonic_chars[256];
496static char register_chars[256];
497static char operand_chars[256];
498static char identifier_chars[256];
499static char digit_chars[256];
500
ce8a8b2f 501/* Lexical macros. */
252b5132
RH
502#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503#define is_operand_char(x) (operand_chars[(unsigned char) x])
504#define is_register_char(x) (register_chars[(unsigned char) x])
505#define is_space_char(x) ((x) == ' ')
506#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507#define is_digit_char(x) (digit_chars[(unsigned char) x])
508
0234cb7c 509/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
510static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512/* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
47926f60 515 assembler instruction). */
252b5132 516static char save_stack[32];
ce8a8b2f 517static char *save_stack_p;
252b5132
RH
518#define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520#define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
47926f60 523/* The instruction we're assembling. */
252b5132
RH
524static i386_insn i;
525
526/* Possible templates for current insn. */
527static const templates *current_templates;
528
31b2323c
L
529/* Per instruction expressionS buffers: max displacements & immediates. */
530static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 532
47926f60 533/* Current operand we are working on. */
ee86248c 534static int this_operand = -1;
252b5132 535
3e73aa7c
JH
536/* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544static enum flag_code flag_code;
4fa24527 545static unsigned int object_64bit;
862be3fb 546static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
547static int use_rela_relocations = 0;
548
7af8ed2d
NC
549#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
351f65ca
L
553/* The ELF ABI to use. */
554enum x86_elf_abi
555{
556 I386_ABI,
7f56bc95
L
557 X86_64_ABI,
558 X86_64_X32_ABI
351f65ca
L
559};
560
561static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 562#endif
351f65ca 563
167ad85b
TG
564#if defined (TE_PE) || defined (TE_PEP)
565/* Use big object file format. */
566static int use_big_obj = 0;
567#endif
568
8dcea932
L
569#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570/* 1 if generating code for a shared library. */
571static int shared = 0;
572#endif
573
47926f60
KH
574/* 1 for intel syntax,
575 0 if att syntax. */
576static int intel_syntax = 0;
252b5132 577
e89c5eaa
L
578/* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580static int intel64;
581
1efbbeb4
L
582/* 1 for intel mnemonic,
583 0 if att mnemonic. */
584static int intel_mnemonic = !SYSV386_COMPAT;
585
a60de03c
JB
586/* 1 if pseudo registers are permitted. */
587static int allow_pseudo_reg = 0;
588
47926f60
KH
589/* 1 if register prefix % not required. */
590static int allow_naked_reg = 0;
252b5132 591
33eaf5de 592/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595static int add_bnd_prefix = 0;
596
ba104c83 597/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
598static int allow_index_reg = 0;
599
d022bddd
IT
600/* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602static int omit_lock_prefix = 0;
603
e4e00185
AS
604/* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606static int avoid_fence = 0;
607
0cb4071e
L
608/* 1 if the assembler should generate relax relocations. */
609
610static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
7bab8ab5 613static enum check_kind
daf50ae7 614 {
7bab8ab5
JB
615 check_none = 0,
616 check_warning,
617 check_error
daf50ae7 618 }
7bab8ab5 619sse_check, operand_check = check_warning;
daf50ae7 620
b6f8c7c4
L
621/* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626static int optimize = 0;
627
628/* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635static int optimize_for_space = 0;
636
2ca3ace5
L
637/* Register prefix used for error message. */
638static const char *register_prefix = "%";
639
47926f60
KH
640/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643static char stackop_size = '\0';
eecb386c 644
12b55ccc
L
645/* Non-zero to optimize code alignment. */
646int optimize_align_code = 1;
647
47926f60
KH
648/* Non-zero to quieten some warnings. */
649static int quiet_warnings = 0;
a38cf1db 650
47926f60
KH
651/* CPU name. */
652static const char *cpu_arch_name = NULL;
6305a203 653static char *cpu_sub_arch_name = NULL;
a38cf1db 654
47926f60 655/* CPU feature flags. */
40fb9820
L
656static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
ccc9c027
L
658/* If we have selected a cpu we are generating instructions for. */
659static int cpu_arch_tune_set = 0;
660
9103f4f4 661/* Cpu we are generating instructions for. */
fbf3f584 662enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
663
664/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 665static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 666
ccc9c027 667/* CPU instruction set architecture used. */
fbf3f584 668enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 669
9103f4f4 670/* CPU feature flags of instruction set architecture used. */
fbf3f584 671i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 672
fddf5b5b
AM
673/* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675static unsigned int no_cond_jump_promotion = 0;
676
c0f3af97
L
677/* Encode SSE instructions with VEX prefix. */
678static unsigned int sse2avx;
679
539f890d
L
680/* Encode scalar AVX instructions with specific vector length. */
681static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
43234a1e
L
687/* Encode scalar EVEX LIG instructions with specific vector length. */
688static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695/* Encode EVEX WIG instructions with specific evex.w. */
696static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
d3d3c6db
IT
702/* Value to encode in EVEX RC bits, for SAE-only instructions. */
703static enum rc_type evexrcig = rne;
704
29b0f896 705/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 706static symbolS *GOT_symbol;
29b0f896 707
a4447b93
RH
708/* The dwarf2 return column, adjusted for 32 or 64 bit. */
709unsigned int x86_dwarf2_return_column;
710
711/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712int x86_cie_data_alignment;
713
252b5132 714/* Interface to relax_segment.
fddf5b5b
AM
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
252b5132 718
47926f60 719/* Types. */
93c2a809
AM
720#define UNCOND_JUMP 0
721#define COND_JUMP 1
722#define COND_JUMP86 2
fddf5b5b 723
47926f60 724/* Sizes. */
252b5132
RH
725#define CODE16 1
726#define SMALL 0
29b0f896 727#define SMALL16 (SMALL | CODE16)
252b5132 728#define BIG 2
29b0f896 729#define BIG16 (BIG | CODE16)
252b5132
RH
730
731#ifndef INLINE
732#ifdef __GNUC__
733#define INLINE __inline__
734#else
735#define INLINE
736#endif
737#endif
738
fddf5b5b
AM
739#define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741#define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743#define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
745
746/* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754const relax_typeS md_relax_table[] =
755{
24eab124
AM
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
93c2a809 759 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 760 4) which index into the table to try if we can't fit into this one. */
252b5132 761
fddf5b5b 762 /* UNCOND_JUMP states. */
93c2a809
AM
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
252b5132 767 {0, 0, 4, 0},
93c2a809
AM
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
770 {0, 0, 2, 0},
771
93c2a809
AM
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
fddf5b5b 778 /* word conditionals add 3 bytes to frag:
93c2a809
AM
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
252b5132
RH
791};
792
9103f4f4
L
793static const arch_entry cpu_arch[] =
794{
89507696
JB
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
8a2c8fef 797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 798 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 800 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 802 CPU_NONE_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 804 CPU_I186_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 806 CPU_I286_FLAGS, 0 },
8a2c8fef 807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 808 CPU_I386_FLAGS, 0 },
8a2c8fef 809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 810 CPU_I486_FLAGS, 0 },
8a2c8fef 811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 812 CPU_I586_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 814 CPU_I686_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 816 CPU_I586_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 818 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 820 CPU_P2_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 822 CPU_P3_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 824 CPU_P4_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 826 CPU_CORE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 828 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 830 CPU_CORE_FLAGS, 1 },
8a2c8fef 831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 832 CPU_CORE_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 834 CPU_CORE2_FLAGS, 1 },
8a2c8fef 835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 836 CPU_CORE2_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 838 CPU_COREI7_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 840 CPU_L1OM_FLAGS, 0 },
7a9068fe 841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 842 CPU_K1OM_FLAGS, 0 },
81486035 843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 844 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 846 CPU_K6_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 848 CPU_K6_2_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 850 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 852 CPU_K8_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 854 CPU_K8_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 856 CPU_K8_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 858 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 860 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 862 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 864 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 866 CPU_BDVER4_FLAGS, 0 },
029f3522 867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 868 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
7b458c12 871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 872 CPU_BTVER1_FLAGS, 0 },
7b458c12 873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 874 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_8087_FLAGS, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_287_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_387_FLAGS, 0 },
1848e567
L
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
d871f3f4
L
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_MMX_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_SSE_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_SSE2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_SSE3_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_AVX_FLAGS, 0 },
6c30d220 905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_AVX2_FLAGS, 0 },
43234a1e 907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_AVX512F_FLAGS, 0 },
43234a1e 909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_AVX512CD_FLAGS, 0 },
43234a1e 911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_AVX512ER_FLAGS, 0 },
43234a1e 913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_VMX_FLAGS, 0 },
8729a6f6 923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SMX_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AES_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_F16C_FLAGS, 0 },
6c30d220 947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_BMI2_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_FMA_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_FMA4_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XOP_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_LWP_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_MOVBE_FLAGS, 0 },
60aa667e 959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_CX16_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_EPT_FLAGS, 0 },
6c30d220 963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_LZCNT_FLAGS, 0 },
42164a71 965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_HLE_FLAGS, 0 },
42164a71 967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RTM_FLAGS, 0 },
6c30d220 969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_CLFLUSH_FLAGS, 0 },
22109423 973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_NOP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SVME_FLAGS, 1 },
8a2c8fef 987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SVME_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_ABM_FLAGS, 0 },
87973e9f 993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_BMI_FLAGS, 0 },
2a2a0f38 995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_TBM_FLAGS, 0 },
e2e1fcde 997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_ADX_FLAGS, 0 },
e2e1fcde 999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SMAP_FLAGS, 0 },
7e8b059b 1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_MPX_FLAGS, 0 },
a0046408 1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SHA_FLAGS, 0 },
963f3586 1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SE1_FLAGS, 0 },
c5e7287a 1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLZERO_FLAGS, 0 },
9916071f 1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_MWAITX_FLAGS, 0 },
8eab4136 1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_OSPKE_FLAGS, 0 },
8bc52696 1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1065};
1066
1067static const noarch_entry cpu_noarch[] =
1068{
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1104};
1105
704209c0 1106#ifdef I386COFF
a6c24e68
NC
1107/* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110static symbolS *
1111pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112{
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
7ab9ffdd 1117 if (needs_align
a6c24e68
NC
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
7ab9ffdd 1121
a6c24e68
NC
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139}
1140
704209c0 1141static void
a6c24e68
NC
1142pe_lcomm (int needs_align)
1143{
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145}
704209c0 1146#endif
a6c24e68 1147
29b0f896
AM
1148const pseudo_typeS md_pseudo_table[] =
1149{
1150#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152#else
1153 {"align", s_align_ptwo, 0},
1154#endif
1155 {"arch", set_cpu_arch, 0},
1156#ifndef I386COFF
1157 {"bss", s_bss, 0},
a6c24e68
NC
1158#else
1159 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1160#endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
d182319b 1165 {"slong", signed_cons, 4},
29b0f896
AM
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1171#ifdef BFD64
29b0f896 1172 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1173#endif
29b0f896
AM
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
3b22753a
L
1182#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
07a53e5c 1184#else
68d20676 1185 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1188#endif
6482c264
NC
1189#ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191#endif
29b0f896
AM
1192 {0, 0, 0}
1193};
1194
1195/* For interface with expression (). */
1196extern char *input_line_pointer;
1197
1198/* Hash table for instruction mnemonic lookup. */
1199static struct hash_control *op_hash;
1200
1201/* Hash table for register lookup. */
1202static struct hash_control *reg_hash;
1203\f
ce8a8b2f
AM
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
62a02d25
L
1207static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1215static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1219static const unsigned char f16_3[] =
3ae729d5 1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1221static const unsigned char f16_4[] =
3ae729d5
L
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1229/* 32-bit NOPs patterns. */
1230static const unsigned char *const f32_patt[] = {
3ae729d5 1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1232};
1233/* 16-bit NOPs patterns. */
1234static const unsigned char *const f16_patt[] = {
3ae729d5 1235 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1236};
1237/* nopl (%[re]ax) */
1238static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240/* nopl 0(%[re]ax) */
1241static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243/* nopl 0(%[re]ax,%[re]ax,1) */
1244static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246/* nopw 0(%[re]ax,%[re]ax,1) */
1247static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249/* nopl 0L(%[re]ax) */
1250static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252/* nopl 0L(%[re]ax,%[re]ax,1) */
1253static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255/* nopw 0L(%[re]ax,%[re]ax,1) */
1256static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1261/* data16 nopw %cs:0L(%eax,%eax,1) */
1262static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1264/* 32-bit and 64-bit NOPs patterns. */
1265static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1267 alt_9, alt_10, alt_11
62a02d25
L
1268};
1269
1270/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273static void
1274i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277{
3ae729d5
L
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
62a02d25 1285 {
3ae729d5
L
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
62a02d25
L
1288 }
1289
3ae729d5
L
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
62a02d25
L
1311}
1312
3ae729d5
L
1313static INLINE int
1314fits_in_imm7 (offsetT num)
1315{
1316 return (num & 0x7f) == num;
1317}
1318
1319static INLINE int
1320fits_in_imm31 (offsetT num)
1321{
1322 return (num & 0x7fffffff) == num;
1323}
62a02d25
L
1324
1325/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328void
3ae729d5 1329i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1330{
3ae729d5 1331 const unsigned char *const *patt = NULL;
62a02d25 1332 int max_single_nop_size;
3ae729d5
L
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
62a02d25 1335
3ae729d5 1336 switch (fragP->fr_type)
62a02d25 1337 {
3ae729d5
L
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
62a02d25
L
1342 return;
1343 }
1344
ccc9c027
L
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
4eed87de 1347
76bc74dc
L
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
22109423 1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1354 be used.
ccc9c027
L
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
3ae729d5
L
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
252b5132 1365 }
33fef721 1366 else
ccc9c027 1367 {
fbf3f584 1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1377 patt = alt_patt;
ccc9c027
L
1378 else
1379 patt = f32_patt;
1380 break;
ccc9c027
L
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
ef05d495 1383 case PROCESSOR_CORE:
76bc74dc 1384 case PROCESSOR_CORE2:
bd5295b2 1385 case PROCESSOR_COREI7:
3632d14b 1386 case PROCESSOR_L1OM:
7a9068fe 1387 case PROCESSOR_K1OM:
76bc74dc 1388 case PROCESSOR_GENERIC64:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
80b8656c 1396 patt = alt_patt;
ccc9c027 1397 break;
76bc74dc 1398 case PROCESSOR_I386:
ccc9c027
L
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
2dde1948 1401 case PROCESSOR_PENTIUMPRO:
81486035 1402 case PROCESSOR_IAMCU:
ccc9c027
L
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
4eed87de 1406 }
ccc9c027
L
1407 }
1408 else
1409 {
fbf3f584 1410 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1411 {
1412 case PROCESSOR_UNKNOWN:
e6a14101 1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
76bc74dc 1418 case PROCESSOR_I386:
ccc9c027
L
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
81486035 1421 case PROCESSOR_IAMCU:
ccc9c027
L
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
4eed87de 1425 case PROCESSOR_AMDFAM10:
8aedb9fe 1426 case PROCESSOR_BD:
029f3522 1427 case PROCESSOR_ZNVER:
7b458c12 1428 case PROCESSOR_BT:
ccc9c027
L
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1433 patt = alt_patt;
ccc9c027
L
1434 else
1435 patt = f32_patt;
1436 break;
76bc74dc
L
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
ef05d495 1441 case PROCESSOR_CORE2:
bd5295b2 1442 case PROCESSOR_COREI7:
3632d14b 1443 case PROCESSOR_L1OM:
7a9068fe 1444 case PROCESSOR_K1OM:
22109423 1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1446 patt = alt_patt;
ccc9c027
L
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
80b8656c 1451 patt = alt_patt;
ccc9c027 1452 break;
4eed87de 1453 }
ccc9c027
L
1454 }
1455
76bc74dc
L
1456 if (patt == f32_patt)
1457 {
3ae729d5
L
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
76bc74dc
L
1461 }
1462 else
1463 {
3ae729d5
L
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
76bc74dc 1526 }
ccc9c027 1527 }
3ae729d5
L
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
252b5132
RH
1531}
1532
c6fb90c8 1533static INLINE int
0dfbf9d7 1534operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1535{
0dfbf9d7 1536 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1537 {
1538 case 3:
0dfbf9d7 1539 if (x->array[2])
c6fb90c8 1540 return 0;
1a0670f3 1541 /* Fall through. */
c6fb90c8 1542 case 2:
0dfbf9d7 1543 if (x->array[1])
c6fb90c8 1544 return 0;
1a0670f3 1545 /* Fall through. */
c6fb90c8 1546 case 1:
0dfbf9d7 1547 return !x->array[0];
c6fb90c8
L
1548 default:
1549 abort ();
1550 }
40fb9820
L
1551}
1552
c6fb90c8 1553static INLINE void
0dfbf9d7 1554operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1555{
0dfbf9d7 1556 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1557 {
1558 case 3:
0dfbf9d7 1559 x->array[2] = v;
1a0670f3 1560 /* Fall through. */
c6fb90c8 1561 case 2:
0dfbf9d7 1562 x->array[1] = v;
1a0670f3 1563 /* Fall through. */
c6fb90c8 1564 case 1:
0dfbf9d7 1565 x->array[0] = v;
1a0670f3 1566 /* Fall through. */
c6fb90c8
L
1567 break;
1568 default:
1569 abort ();
1570 }
1571}
40fb9820 1572
c6fb90c8 1573static INLINE int
0dfbf9d7
L
1574operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
c6fb90c8 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 if (x->array[2] != y->array[2])
c6fb90c8 1581 return 0;
1a0670f3 1582 /* Fall through. */
c6fb90c8 1583 case 2:
0dfbf9d7 1584 if (x->array[1] != y->array[1])
c6fb90c8 1585 return 0;
1a0670f3 1586 /* Fall through. */
c6fb90c8 1587 case 1:
0dfbf9d7 1588 return x->array[0] == y->array[0];
c6fb90c8
L
1589 break;
1590 default:
1591 abort ();
1592 }
1593}
40fb9820 1594
0dfbf9d7
L
1595static INLINE int
1596cpu_flags_all_zero (const union i386_cpu_flags *x)
1597{
1598 switch (ARRAY_SIZE(x->array))
1599 {
53467f57
IT
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
0dfbf9d7
L
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1a0670f3 1607 /* Fall through. */
0dfbf9d7
L
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1a0670f3 1611 /* Fall through. */
0dfbf9d7
L
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617}
1618
0dfbf9d7
L
1619static INLINE int
1620cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622{
1623 switch (ARRAY_SIZE(x->array))
1624 {
53467f57
IT
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
0dfbf9d7
L
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1a0670f3 1636 /* Fall through. */
0dfbf9d7
L
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643}
c6fb90c8
L
1644
1645static INLINE int
1646cpu_flags_check_cpu64 (i386_cpu_flags f)
1647{
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1650}
1651
c6fb90c8
L
1652static INLINE i386_cpu_flags
1653cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1654{
c6fb90c8
L
1655 switch (ARRAY_SIZE (x.array))
1656 {
53467f57
IT
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
c6fb90c8
L
1660 case 3:
1661 x.array [2] &= y.array [2];
1a0670f3 1662 /* Fall through. */
c6fb90c8
L
1663 case 2:
1664 x.array [1] &= y.array [1];
1a0670f3 1665 /* Fall through. */
c6fb90c8
L
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673}
40fb9820 1674
c6fb90c8
L
1675static INLINE i386_cpu_flags
1676cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1677{
c6fb90c8 1678 switch (ARRAY_SIZE (x.array))
40fb9820 1679 {
53467f57
IT
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
c6fb90c8
L
1683 case 3:
1684 x.array [2] |= y.array [2];
1a0670f3 1685 /* Fall through. */
c6fb90c8
L
1686 case 2:
1687 x.array [1] |= y.array [1];
1a0670f3 1688 /* Fall through. */
c6fb90c8
L
1689 case 1:
1690 x.array [0] |= y.array [0];
40fb9820
L
1691 break;
1692 default:
1693 abort ();
1694 }
40fb9820
L
1695 return x;
1696}
1697
309d3373
JB
1698static INLINE i386_cpu_flags
1699cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700{
1701 switch (ARRAY_SIZE (x.array))
1702 {
53467f57
IT
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
309d3373
JB
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1a0670f3 1708 /* Fall through. */
309d3373
JB
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1a0670f3 1711 /* Fall through. */
309d3373
JB
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719}
1720
c0f3af97
L
1721#define CPU_FLAGS_ARCH_MATCH 0x1
1722#define CPU_FLAGS_64BIT_MATCH 0x2
1723
c0f3af97 1724#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1726
1727/* Return CPU flags match bits. */
3629bb00 1728
40fb9820 1729static int
d3ce72d0 1730cpu_flags_match (const insn_template *t)
40fb9820 1731{
c0f3af97
L
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
0dfbf9d7 1738 if (cpu_flags_all_zero (&x))
c0f3af97
L
1739 {
1740 /* This instruction is available on all archs. */
db12e14e 1741 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1742 }
3629bb00
L
1743 else
1744 {
c0f3af97 1745 /* This instruction is available only on some archs. */
3629bb00
L
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
ab592e75
JB
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
3629bb00 1753 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
a5ff0eb2
L
1756 if (x.bitfield.cpuavx)
1757 {
929f69fa 1758 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1765 }
929f69fa
JB
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
a5ff0eb2 1775 else
db12e14e 1776 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1777 }
3629bb00 1778 }
c0f3af97 1779 return match;
40fb9820
L
1780}
1781
c6fb90c8
L
1782static INLINE i386_operand_type
1783operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1784{
c6fb90c8
L
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1a0670f3 1789 /* Fall through. */
c6fb90c8
L
1790 case 2:
1791 x.array [1] &= y.array [1];
1a0670f3 1792 /* Fall through. */
c6fb90c8
L
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
40fb9820
L
1800}
1801
73053c1f
JB
1802static INLINE i386_operand_type
1803operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804{
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820}
1821
c6fb90c8
L
1822static INLINE i386_operand_type
1823operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1824{
c6fb90c8 1825 switch (ARRAY_SIZE (x.array))
40fb9820 1826 {
c6fb90c8
L
1827 case 3:
1828 x.array [2] |= y.array [2];
1a0670f3 1829 /* Fall through. */
c6fb90c8
L
1830 case 2:
1831 x.array [1] |= y.array [1];
1a0670f3 1832 /* Fall through. */
c6fb90c8
L
1833 case 1:
1834 x.array [0] |= y.array [0];
40fb9820
L
1835 break;
1836 default:
1837 abort ();
1838 }
c6fb90c8
L
1839 return x;
1840}
40fb9820 1841
c6fb90c8
L
1842static INLINE i386_operand_type
1843operand_type_xor (i386_operand_type x, i386_operand_type y)
1844{
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1a0670f3 1849 /* Fall through. */
c6fb90c8
L
1850 case 2:
1851 x.array [1] ^= y.array [1];
1a0670f3 1852 /* Fall through. */
c6fb90c8
L
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
40fb9820
L
1859 return x;
1860}
1861
1862static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1864static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
40fb9820 1870static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1871static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1872static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1881static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1882
1883enum operand_type
1884{
1885 reg,
40fb9820
L
1886 imm,
1887 disp,
1888 anymem
1889};
1890
c6fb90c8 1891static INLINE int
40fb9820
L
1892operand_type_check (i386_operand_type t, enum operand_type c)
1893{
1894 switch (c)
1895 {
1896 case reg:
dc821c5f 1897 return t.bitfield.reg;
40fb9820 1898
40fb9820
L
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
2cfe26b6
AM
1925
1926 return 0;
40fb9820
L
1927}
1928
7a54636a
L
1929/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1931
1932static INLINE int
7a54636a
L
1933match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
5c07affc 1935{
3ac21baa
JB
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1946}
1947
dd40ce22
L
1948/* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1950
1951static INLINE int
dd40ce22
L
1952match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1b54b8d7 1954{
3ac21baa
JB
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1961}
1962
7a54636a
L
1963/* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
5c07affc
L
1965
1966static INLINE int
dd40ce22
L
1967match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
5c07affc 1969{
7a54636a 1970 return (match_operand_size (t, wanted, given)
3ac21baa 1971 && !((i.types[given].bitfield.unspecified
af508cb9 1972 && !i.broadcast
3ac21baa
JB
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
d6793fa1
JB
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
3ac21baa 1980 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1981 && !t->opcode_modifier.broadcast
3ac21baa
JB
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
5c07affc
L
1990}
1991
3ac21baa
JB
1992/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
5c07affc 1996
3ac21baa
JB
1997#define MATCH_STRAIGHT 1
1998#define MATCH_REVERSE 2
1999
2000static INLINE unsigned int
d3ce72d0 2001operand_size_match (const insn_template *t)
5c07affc 2002{
3ac21baa 2003 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
1b54b8d7
JB
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2017 continue;
2018
1b54b8d7 2019 if (t->operand_types[j].bitfield.reg
7a54636a 2020 && !match_operand_size (t, j, j))
5c07affc
L
2021 {
2022 match = 0;
2023 break;
2024 }
2025
1b54b8d7 2026 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2027 && !match_simd_size (t, j, j))
1b54b8d7
JB
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
7a54636a 2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2035 {
2036 match = 0;
2037 break;
2038 }
2039
c48dadc9 2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
3ac21baa 2047 if (!t->opcode_modifier.d)
891edac4
L
2048 {
2049mismatch:
3ac21baa
JB
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
891edac4 2053 }
5c07affc
L
2054
2055 /* Check reverse. */
9c2799c2 2056 gas_assert (i.operands == 2);
5c07affc 2057
5c07affc
L
2058 for (j = 0; j < 2; j++)
2059 {
dbbc8b7e 2060 if (t->operand_types[j].bitfield.reg
7a54636a 2061 && !match_operand_size (t, j, !j))
891edac4 2062 goto mismatch;
5c07affc 2063
dbbc8b7e
JB
2064 if (t->operand_types[j].bitfield.regsimd
2065 && !match_simd_size (t, j, !j))
2066 goto mismatch;
2067
2068 if (t->operand_types[j].bitfield.acc
2069 && (!match_operand_size (t, j, !j) || !match_simd_size (t, j, !j)))
2070 goto mismatch;
2071
c48dadc9 2072 if ((i.flags[!j] & Operand_Mem) && !match_mem_size (t, j, !j))
891edac4 2073 goto mismatch;
5c07affc
L
2074 }
2075
3ac21baa 2076 return match | MATCH_REVERSE;
5c07affc
L
2077}
2078
c6fb90c8 2079static INLINE int
40fb9820
L
2080operand_type_match (i386_operand_type overlap,
2081 i386_operand_type given)
2082{
2083 i386_operand_type temp = overlap;
2084
2085 temp.bitfield.jumpabsolute = 0;
7d5e4556 2086 temp.bitfield.unspecified = 0;
5c07affc
L
2087 temp.bitfield.byte = 0;
2088 temp.bitfield.word = 0;
2089 temp.bitfield.dword = 0;
2090 temp.bitfield.fword = 0;
2091 temp.bitfield.qword = 0;
2092 temp.bitfield.tbyte = 0;
2093 temp.bitfield.xmmword = 0;
c0f3af97 2094 temp.bitfield.ymmword = 0;
43234a1e 2095 temp.bitfield.zmmword = 0;
0dfbf9d7 2096 if (operand_type_all_zero (&temp))
891edac4 2097 goto mismatch;
40fb9820 2098
891edac4
L
2099 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2100 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2101 return 1;
2102
2103mismatch:
a65babc9 2104 i.error = operand_type_mismatch;
891edac4 2105 return 0;
40fb9820
L
2106}
2107
7d5e4556 2108/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2109 unless the expected operand type register overlap is null.
2110 Memory operand size of certain SIMD instructions is also being checked
2111 here. */
40fb9820 2112
c6fb90c8 2113static INLINE int
dc821c5f 2114operand_type_register_match (i386_operand_type g0,
40fb9820 2115 i386_operand_type t0,
40fb9820
L
2116 i386_operand_type g1,
2117 i386_operand_type t1)
2118{
10c17abd
JB
2119 if (!g0.bitfield.reg
2120 && !g0.bitfield.regsimd
2121 && (!operand_type_check (g0, anymem)
2122 || g0.bitfield.unspecified
2123 || !t0.bitfield.regsimd))
40fb9820
L
2124 return 1;
2125
10c17abd
JB
2126 if (!g1.bitfield.reg
2127 && !g1.bitfield.regsimd
2128 && (!operand_type_check (g1, anymem)
2129 || g1.bitfield.unspecified
2130 || !t1.bitfield.regsimd))
40fb9820
L
2131 return 1;
2132
dc821c5f
JB
2133 if (g0.bitfield.byte == g1.bitfield.byte
2134 && g0.bitfield.word == g1.bitfield.word
2135 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2136 && g0.bitfield.qword == g1.bitfield.qword
2137 && g0.bitfield.xmmword == g1.bitfield.xmmword
2138 && g0.bitfield.ymmword == g1.bitfield.ymmword
2139 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2140 return 1;
2141
dc821c5f
JB
2142 if (!(t0.bitfield.byte & t1.bitfield.byte)
2143 && !(t0.bitfield.word & t1.bitfield.word)
2144 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2145 && !(t0.bitfield.qword & t1.bitfield.qword)
2146 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2147 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2148 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2149 return 1;
2150
a65babc9 2151 i.error = register_type_mismatch;
891edac4
L
2152
2153 return 0;
40fb9820
L
2154}
2155
4c692bc7
JB
2156static INLINE unsigned int
2157register_number (const reg_entry *r)
2158{
2159 unsigned int nr = r->reg_num;
2160
2161 if (r->reg_flags & RegRex)
2162 nr += 8;
2163
200cbe0f
L
2164 if (r->reg_flags & RegVRex)
2165 nr += 16;
2166
4c692bc7
JB
2167 return nr;
2168}
2169
252b5132 2170static INLINE unsigned int
40fb9820 2171mode_from_disp_size (i386_operand_type t)
252b5132 2172{
b5014f7a 2173 if (t.bitfield.disp8)
40fb9820
L
2174 return 1;
2175 else if (t.bitfield.disp16
2176 || t.bitfield.disp32
2177 || t.bitfield.disp32s)
2178 return 2;
2179 else
2180 return 0;
252b5132
RH
2181}
2182
2183static INLINE int
65879393 2184fits_in_signed_byte (addressT num)
252b5132 2185{
65879393 2186 return num + 0x80 <= 0xff;
47926f60 2187}
252b5132
RH
2188
2189static INLINE int
65879393 2190fits_in_unsigned_byte (addressT num)
252b5132 2191{
65879393 2192 return num <= 0xff;
47926f60 2193}
252b5132
RH
2194
2195static INLINE int
65879393 2196fits_in_unsigned_word (addressT num)
252b5132 2197{
65879393 2198 return num <= 0xffff;
47926f60 2199}
252b5132
RH
2200
2201static INLINE int
65879393 2202fits_in_signed_word (addressT num)
252b5132 2203{
65879393 2204 return num + 0x8000 <= 0xffff;
47926f60 2205}
2a962e6d 2206
3e73aa7c 2207static INLINE int
65879393 2208fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2209{
2210#ifndef BFD64
2211 return 1;
2212#else
65879393 2213 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2214#endif
2215} /* fits_in_signed_long() */
2a962e6d 2216
3e73aa7c 2217static INLINE int
65879393 2218fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2219{
2220#ifndef BFD64
2221 return 1;
2222#else
65879393 2223 return num <= 0xffffffff;
3e73aa7c
JH
2224#endif
2225} /* fits_in_unsigned_long() */
252b5132 2226
43234a1e 2227static INLINE int
b5014f7a 2228fits_in_disp8 (offsetT num)
43234a1e
L
2229{
2230 int shift = i.memshift;
2231 unsigned int mask;
2232
2233 if (shift == -1)
2234 abort ();
2235
2236 mask = (1 << shift) - 1;
2237
2238 /* Return 0 if NUM isn't properly aligned. */
2239 if ((num & mask))
2240 return 0;
2241
2242 /* Check if NUM will fit in 8bit after shift. */
2243 return fits_in_signed_byte (num >> shift);
2244}
2245
a683cc34
SP
2246static INLINE int
2247fits_in_imm4 (offsetT num)
2248{
2249 return (num & 0xf) == num;
2250}
2251
40fb9820 2252static i386_operand_type
e3bb37b5 2253smallest_imm_type (offsetT num)
252b5132 2254{
40fb9820 2255 i386_operand_type t;
7ab9ffdd 2256
0dfbf9d7 2257 operand_type_set (&t, 0);
40fb9820
L
2258 t.bitfield.imm64 = 1;
2259
2260 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2261 {
2262 /* This code is disabled on the 486 because all the Imm1 forms
2263 in the opcode table are slower on the i486. They're the
2264 versions with the implicitly specified single-position
2265 displacement, which has another syntax if you really want to
2266 use that form. */
40fb9820
L
2267 t.bitfield.imm1 = 1;
2268 t.bitfield.imm8 = 1;
2269 t.bitfield.imm8s = 1;
2270 t.bitfield.imm16 = 1;
2271 t.bitfield.imm32 = 1;
2272 t.bitfield.imm32s = 1;
2273 }
2274 else if (fits_in_signed_byte (num))
2275 {
2276 t.bitfield.imm8 = 1;
2277 t.bitfield.imm8s = 1;
2278 t.bitfield.imm16 = 1;
2279 t.bitfield.imm32 = 1;
2280 t.bitfield.imm32s = 1;
2281 }
2282 else if (fits_in_unsigned_byte (num))
2283 {
2284 t.bitfield.imm8 = 1;
2285 t.bitfield.imm16 = 1;
2286 t.bitfield.imm32 = 1;
2287 t.bitfield.imm32s = 1;
2288 }
2289 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2290 {
2291 t.bitfield.imm16 = 1;
2292 t.bitfield.imm32 = 1;
2293 t.bitfield.imm32s = 1;
2294 }
2295 else if (fits_in_signed_long (num))
2296 {
2297 t.bitfield.imm32 = 1;
2298 t.bitfield.imm32s = 1;
2299 }
2300 else if (fits_in_unsigned_long (num))
2301 t.bitfield.imm32 = 1;
2302
2303 return t;
47926f60 2304}
252b5132 2305
847f7ad4 2306static offsetT
e3bb37b5 2307offset_in_range (offsetT val, int size)
847f7ad4 2308{
508866be 2309 addressT mask;
ba2adb93 2310
847f7ad4
AM
2311 switch (size)
2312 {
508866be
L
2313 case 1: mask = ((addressT) 1 << 8) - 1; break;
2314 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2315 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2316#ifdef BFD64
2317 case 8: mask = ((addressT) 2 << 63) - 1; break;
2318#endif
47926f60 2319 default: abort ();
847f7ad4
AM
2320 }
2321
9de868bf
L
2322#ifdef BFD64
2323 /* If BFD64, sign extend val for 32bit address mode. */
2324 if (flag_code != CODE_64BIT
2325 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2326 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2327 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2328#endif
ba2adb93 2329
47926f60 2330 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2331 {
2332 char buf1[40], buf2[40];
2333
2334 sprint_value (buf1, val);
2335 sprint_value (buf2, val & mask);
2336 as_warn (_("%s shortened to %s"), buf1, buf2);
2337 }
2338 return val & mask;
2339}
2340
c32fa91d
L
2341enum PREFIX_GROUP
2342{
2343 PREFIX_EXIST = 0,
2344 PREFIX_LOCK,
2345 PREFIX_REP,
04ef582a 2346 PREFIX_DS,
c32fa91d
L
2347 PREFIX_OTHER
2348};
2349
2350/* Returns
2351 a. PREFIX_EXIST if attempting to add a prefix where one from the
2352 same class already exists.
2353 b. PREFIX_LOCK if lock prefix is added.
2354 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2355 d. PREFIX_DS if ds prefix is added.
2356 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2357 */
2358
2359static enum PREFIX_GROUP
e3bb37b5 2360add_prefix (unsigned int prefix)
252b5132 2361{
c32fa91d 2362 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2363 unsigned int q;
252b5132 2364
29b0f896
AM
2365 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2366 && flag_code == CODE_64BIT)
b1905489 2367 {
161a04f6 2368 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2369 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2370 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2371 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2372 ret = PREFIX_EXIST;
b1905489
JB
2373 q = REX_PREFIX;
2374 }
3e73aa7c 2375 else
b1905489
JB
2376 {
2377 switch (prefix)
2378 {
2379 default:
2380 abort ();
2381
b1905489 2382 case DS_PREFIX_OPCODE:
04ef582a
L
2383 ret = PREFIX_DS;
2384 /* Fall through. */
2385 case CS_PREFIX_OPCODE:
b1905489
JB
2386 case ES_PREFIX_OPCODE:
2387 case FS_PREFIX_OPCODE:
2388 case GS_PREFIX_OPCODE:
2389 case SS_PREFIX_OPCODE:
2390 q = SEG_PREFIX;
2391 break;
2392
2393 case REPNE_PREFIX_OPCODE:
2394 case REPE_PREFIX_OPCODE:
c32fa91d
L
2395 q = REP_PREFIX;
2396 ret = PREFIX_REP;
2397 break;
2398
b1905489 2399 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2400 q = LOCK_PREFIX;
2401 ret = PREFIX_LOCK;
b1905489
JB
2402 break;
2403
2404 case FWAIT_OPCODE:
2405 q = WAIT_PREFIX;
2406 break;
2407
2408 case ADDR_PREFIX_OPCODE:
2409 q = ADDR_PREFIX;
2410 break;
2411
2412 case DATA_PREFIX_OPCODE:
2413 q = DATA_PREFIX;
2414 break;
2415 }
2416 if (i.prefix[q] != 0)
c32fa91d 2417 ret = PREFIX_EXIST;
b1905489 2418 }
252b5132 2419
b1905489 2420 if (ret)
252b5132 2421 {
b1905489
JB
2422 if (!i.prefix[q])
2423 ++i.prefixes;
2424 i.prefix[q] |= prefix;
252b5132 2425 }
b1905489
JB
2426 else
2427 as_bad (_("same type of prefix used twice"));
252b5132 2428
252b5132
RH
2429 return ret;
2430}
2431
2432static void
78f12dd3 2433update_code_flag (int value, int check)
eecb386c 2434{
78f12dd3
L
2435 PRINTF_LIKE ((*as_error));
2436
1e9cc1c2 2437 flag_code = (enum flag_code) value;
40fb9820
L
2438 if (flag_code == CODE_64BIT)
2439 {
2440 cpu_arch_flags.bitfield.cpu64 = 1;
2441 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2442 }
2443 else
2444 {
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2447 }
2448 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2449 {
78f12dd3
L
2450 if (check)
2451 as_error = as_fatal;
2452 else
2453 as_error = as_bad;
2454 (*as_error) (_("64bit mode not supported on `%s'."),
2455 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2456 }
40fb9820 2457 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2458 {
78f12dd3
L
2459 if (check)
2460 as_error = as_fatal;
2461 else
2462 as_error = as_bad;
2463 (*as_error) (_("32bit mode not supported on `%s'."),
2464 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2465 }
eecb386c
AM
2466 stackop_size = '\0';
2467}
2468
78f12dd3
L
2469static void
2470set_code_flag (int value)
2471{
2472 update_code_flag (value, 0);
2473}
2474
eecb386c 2475static void
e3bb37b5 2476set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2477{
1e9cc1c2 2478 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2479 if (flag_code != CODE_16BIT)
2480 abort ();
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2483 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2484}
2485
2486static void
e3bb37b5 2487set_intel_syntax (int syntax_flag)
252b5132
RH
2488{
2489 /* Find out if register prefixing is specified. */
2490 int ask_naked_reg = 0;
2491
2492 SKIP_WHITESPACE ();
29b0f896 2493 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2494 {
d02603dc
NC
2495 char *string;
2496 int e = get_symbol_name (&string);
252b5132 2497
47926f60 2498 if (strcmp (string, "prefix") == 0)
252b5132 2499 ask_naked_reg = 1;
47926f60 2500 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2501 ask_naked_reg = -1;
2502 else
d0b47220 2503 as_bad (_("bad argument to syntax directive."));
d02603dc 2504 (void) restore_line_pointer (e);
252b5132
RH
2505 }
2506 demand_empty_rest_of_line ();
c3332e24 2507
252b5132
RH
2508 intel_syntax = syntax_flag;
2509
2510 if (ask_naked_reg == 0)
f86103b7
AM
2511 allow_naked_reg = (intel_syntax
2512 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2513 else
2514 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2515
ee86248c 2516 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2517
e4a3b5a4 2518 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2519 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2520 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2521}
2522
1efbbeb4
L
2523static void
2524set_intel_mnemonic (int mnemonic_flag)
2525{
e1d4d893 2526 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2527}
2528
db51cc60
L
2529static void
2530set_allow_index_reg (int flag)
2531{
2532 allow_index_reg = flag;
2533}
2534
cb19c032 2535static void
7bab8ab5 2536set_check (int what)
cb19c032 2537{
7bab8ab5
JB
2538 enum check_kind *kind;
2539 const char *str;
2540
2541 if (what)
2542 {
2543 kind = &operand_check;
2544 str = "operand";
2545 }
2546 else
2547 {
2548 kind = &sse_check;
2549 str = "sse";
2550 }
2551
cb19c032
L
2552 SKIP_WHITESPACE ();
2553
2554 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2555 {
d02603dc
NC
2556 char *string;
2557 int e = get_symbol_name (&string);
cb19c032
L
2558
2559 if (strcmp (string, "none") == 0)
7bab8ab5 2560 *kind = check_none;
cb19c032 2561 else if (strcmp (string, "warning") == 0)
7bab8ab5 2562 *kind = check_warning;
cb19c032 2563 else if (strcmp (string, "error") == 0)
7bab8ab5 2564 *kind = check_error;
cb19c032 2565 else
7bab8ab5 2566 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2567 (void) restore_line_pointer (e);
cb19c032
L
2568 }
2569 else
7bab8ab5 2570 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2571
2572 demand_empty_rest_of_line ();
2573}
2574
8a9036a4
L
2575static void
2576check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2577 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2578{
2579#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2580 static const char *arch;
2581
2582 /* Intel LIOM is only supported on ELF. */
2583 if (!IS_ELF)
2584 return;
2585
2586 if (!arch)
2587 {
2588 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2589 use default_arch. */
2590 arch = cpu_arch_name;
2591 if (!arch)
2592 arch = default_arch;
2593 }
2594
81486035
L
2595 /* If we are targeting Intel MCU, we must enable it. */
2596 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2597 || new_flag.bitfield.cpuiamcu)
2598 return;
2599
3632d14b 2600 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2601 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2602 || new_flag.bitfield.cpul1om)
8a9036a4 2603 return;
76ba9986 2604
7a9068fe
L
2605 /* If we are targeting Intel K1OM, we must enable it. */
2606 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2607 || new_flag.bitfield.cpuk1om)
2608 return;
2609
8a9036a4
L
2610 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2611#endif
2612}
2613
e413e4e9 2614static void
e3bb37b5 2615set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2616{
47926f60 2617 SKIP_WHITESPACE ();
e413e4e9 2618
29b0f896 2619 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2620 {
d02603dc
NC
2621 char *string;
2622 int e = get_symbol_name (&string);
91d6fa6a 2623 unsigned int j;
40fb9820 2624 i386_cpu_flags flags;
e413e4e9 2625
91d6fa6a 2626 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2627 {
91d6fa6a 2628 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2629 {
91d6fa6a 2630 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2631
5c6af06e
JB
2632 if (*string != '.')
2633 {
91d6fa6a 2634 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2635 cpu_sub_arch_name = NULL;
91d6fa6a 2636 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2637 if (flag_code == CODE_64BIT)
2638 {
2639 cpu_arch_flags.bitfield.cpu64 = 1;
2640 cpu_arch_flags.bitfield.cpuno64 = 0;
2641 }
2642 else
2643 {
2644 cpu_arch_flags.bitfield.cpu64 = 0;
2645 cpu_arch_flags.bitfield.cpuno64 = 1;
2646 }
91d6fa6a
NC
2647 cpu_arch_isa = cpu_arch[j].type;
2648 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2649 if (!cpu_arch_tune_set)
2650 {
2651 cpu_arch_tune = cpu_arch_isa;
2652 cpu_arch_tune_flags = cpu_arch_isa_flags;
2653 }
5c6af06e
JB
2654 break;
2655 }
40fb9820 2656
293f5f65
L
2657 flags = cpu_flags_or (cpu_arch_flags,
2658 cpu_arch[j].flags);
81486035 2659
5b64d091 2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2661 {
6305a203
L
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name,
91d6fa6a 2666 cpu_arch[j].name,
1bf57e9f 2667 (const char *) NULL);
6305a203
L
2668 free (name);
2669 }
2670 else
91d6fa6a 2671 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2672 cpu_arch_flags = flags;
a586129e 2673 cpu_arch_isa_flags = flags;
5c6af06e 2674 }
0089dace
L
2675 else
2676 cpu_arch_isa_flags
2677 = cpu_flags_or (cpu_arch_isa_flags,
2678 cpu_arch[j].flags);
d02603dc 2679 (void) restore_line_pointer (e);
5c6af06e
JB
2680 demand_empty_rest_of_line ();
2681 return;
e413e4e9
AM
2682 }
2683 }
293f5f65
L
2684
2685 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2686 {
33eaf5de 2687 /* Disable an ISA extension. */
293f5f65
L
2688 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2689 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2690 {
2691 flags = cpu_flags_and_not (cpu_arch_flags,
2692 cpu_noarch[j].flags);
2693 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2694 {
2695 if (cpu_sub_arch_name)
2696 {
2697 char *name = cpu_sub_arch_name;
2698 cpu_sub_arch_name = concat (name, string,
2699 (const char *) NULL);
2700 free (name);
2701 }
2702 else
2703 cpu_sub_arch_name = xstrdup (string);
2704 cpu_arch_flags = flags;
2705 cpu_arch_isa_flags = flags;
2706 }
2707 (void) restore_line_pointer (e);
2708 demand_empty_rest_of_line ();
2709 return;
2710 }
2711
2712 j = ARRAY_SIZE (cpu_arch);
2713 }
2714
91d6fa6a 2715 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2716 as_bad (_("no such architecture: `%s'"), string);
2717
2718 *input_line_pointer = e;
2719 }
2720 else
2721 as_bad (_("missing cpu architecture"));
2722
fddf5b5b
AM
2723 no_cond_jump_promotion = 0;
2724 if (*input_line_pointer == ','
29b0f896 2725 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2726 {
d02603dc
NC
2727 char *string;
2728 char e;
2729
2730 ++input_line_pointer;
2731 e = get_symbol_name (&string);
fddf5b5b
AM
2732
2733 if (strcmp (string, "nojumps") == 0)
2734 no_cond_jump_promotion = 1;
2735 else if (strcmp (string, "jumps") == 0)
2736 ;
2737 else
2738 as_bad (_("no such architecture modifier: `%s'"), string);
2739
d02603dc 2740 (void) restore_line_pointer (e);
fddf5b5b
AM
2741 }
2742
e413e4e9
AM
2743 demand_empty_rest_of_line ();
2744}
2745
8a9036a4
L
2746enum bfd_architecture
2747i386_arch (void)
2748{
3632d14b 2749 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2750 {
2751 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2752 || flag_code != CODE_64BIT)
2753 as_fatal (_("Intel L1OM is 64bit ELF only"));
2754 return bfd_arch_l1om;
2755 }
7a9068fe
L
2756 else if (cpu_arch_isa == PROCESSOR_K1OM)
2757 {
2758 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2759 || flag_code != CODE_64BIT)
2760 as_fatal (_("Intel K1OM is 64bit ELF only"));
2761 return bfd_arch_k1om;
2762 }
81486035
L
2763 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2766 || flag_code == CODE_64BIT)
2767 as_fatal (_("Intel MCU is 32bit ELF only"));
2768 return bfd_arch_iamcu;
2769 }
8a9036a4
L
2770 else
2771 return bfd_arch_i386;
2772}
2773
b9d79e03 2774unsigned long
7016a5d5 2775i386_mach (void)
b9d79e03 2776{
351f65ca 2777 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2778 {
3632d14b 2779 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2780 {
351f65ca
L
2781 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2782 || default_arch[6] != '\0')
8a9036a4
L
2783 as_fatal (_("Intel L1OM is 64bit ELF only"));
2784 return bfd_mach_l1om;
2785 }
7a9068fe
L
2786 else if (cpu_arch_isa == PROCESSOR_K1OM)
2787 {
2788 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2789 || default_arch[6] != '\0')
2790 as_fatal (_("Intel K1OM is 64bit ELF only"));
2791 return bfd_mach_k1om;
2792 }
351f65ca 2793 else if (default_arch[6] == '\0')
8a9036a4 2794 return bfd_mach_x86_64;
351f65ca
L
2795 else
2796 return bfd_mach_x64_32;
8a9036a4 2797 }
5197d474
L
2798 else if (!strcmp (default_arch, "i386")
2799 || !strcmp (default_arch, "iamcu"))
81486035
L
2800 {
2801 if (cpu_arch_isa == PROCESSOR_IAMCU)
2802 {
2803 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2804 as_fatal (_("Intel MCU is 32bit ELF only"));
2805 return bfd_mach_i386_iamcu;
2806 }
2807 else
2808 return bfd_mach_i386_i386;
2809 }
b9d79e03 2810 else
2b5d6a91 2811 as_fatal (_("unknown architecture"));
b9d79e03 2812}
b9d79e03 2813\f
252b5132 2814void
7016a5d5 2815md_begin (void)
252b5132
RH
2816{
2817 const char *hash_err;
2818
86fa6981
L
2819 /* Support pseudo prefixes like {disp32}. */
2820 lex_type ['{'] = LEX_BEGIN_NAME;
2821
47926f60 2822 /* Initialize op_hash hash table. */
252b5132
RH
2823 op_hash = hash_new ();
2824
2825 {
d3ce72d0 2826 const insn_template *optab;
29b0f896 2827 templates *core_optab;
252b5132 2828
47926f60
KH
2829 /* Setup for loop. */
2830 optab = i386_optab;
add39d23 2831 core_optab = XNEW (templates);
252b5132
RH
2832 core_optab->start = optab;
2833
2834 while (1)
2835 {
2836 ++optab;
2837 if (optab->name == NULL
2838 || strcmp (optab->name, (optab - 1)->name) != 0)
2839 {
2840 /* different name --> ship out current template list;
47926f60 2841 add to hash table; & begin anew. */
252b5132
RH
2842 core_optab->end = optab;
2843 hash_err = hash_insert (op_hash,
2844 (optab - 1)->name,
5a49b8ac 2845 (void *) core_optab);
252b5132
RH
2846 if (hash_err)
2847 {
b37df7c4 2848 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2849 (optab - 1)->name,
2850 hash_err);
2851 }
2852 if (optab->name == NULL)
2853 break;
add39d23 2854 core_optab = XNEW (templates);
252b5132
RH
2855 core_optab->start = optab;
2856 }
2857 }
2858 }
2859
47926f60 2860 /* Initialize reg_hash hash table. */
252b5132
RH
2861 reg_hash = hash_new ();
2862 {
29b0f896 2863 const reg_entry *regtab;
c3fe08fa 2864 unsigned int regtab_size = i386_regtab_size;
252b5132 2865
c3fe08fa 2866 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2867 {
5a49b8ac 2868 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2869 if (hash_err)
b37df7c4 2870 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2871 regtab->reg_name,
2872 hash_err);
252b5132
RH
2873 }
2874 }
2875
47926f60 2876 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2877 {
29b0f896
AM
2878 int c;
2879 char *p;
252b5132
RH
2880
2881 for (c = 0; c < 256; c++)
2882 {
3882b010 2883 if (ISDIGIT (c))
252b5132
RH
2884 {
2885 digit_chars[c] = c;
2886 mnemonic_chars[c] = c;
2887 register_chars[c] = c;
2888 operand_chars[c] = c;
2889 }
3882b010 2890 else if (ISLOWER (c))
252b5132
RH
2891 {
2892 mnemonic_chars[c] = c;
2893 register_chars[c] = c;
2894 operand_chars[c] = c;
2895 }
3882b010 2896 else if (ISUPPER (c))
252b5132 2897 {
3882b010 2898 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2899 register_chars[c] = mnemonic_chars[c];
2900 operand_chars[c] = c;
2901 }
43234a1e 2902 else if (c == '{' || c == '}')
86fa6981
L
2903 {
2904 mnemonic_chars[c] = c;
2905 operand_chars[c] = c;
2906 }
252b5132 2907
3882b010 2908 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2909 identifier_chars[c] = c;
2910 else if (c >= 128)
2911 {
2912 identifier_chars[c] = c;
2913 operand_chars[c] = c;
2914 }
2915 }
2916
2917#ifdef LEX_AT
2918 identifier_chars['@'] = '@';
32137342
NC
2919#endif
2920#ifdef LEX_QM
2921 identifier_chars['?'] = '?';
2922 operand_chars['?'] = '?';
252b5132 2923#endif
252b5132 2924 digit_chars['-'] = '-';
c0f3af97 2925 mnemonic_chars['_'] = '_';
791fe849 2926 mnemonic_chars['-'] = '-';
0003779b 2927 mnemonic_chars['.'] = '.';
252b5132
RH
2928 identifier_chars['_'] = '_';
2929 identifier_chars['.'] = '.';
2930
2931 for (p = operand_special_chars; *p != '\0'; p++)
2932 operand_chars[(unsigned char) *p] = *p;
2933 }
2934
a4447b93
RH
2935 if (flag_code == CODE_64BIT)
2936 {
ca19b261
KT
2937#if defined (OBJ_COFF) && defined (TE_PE)
2938 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2939 ? 32 : 16);
2940#else
a4447b93 2941 x86_dwarf2_return_column = 16;
ca19b261 2942#endif
61ff971f 2943 x86_cie_data_alignment = -8;
a4447b93
RH
2944 }
2945 else
2946 {
2947 x86_dwarf2_return_column = 8;
2948 x86_cie_data_alignment = -4;
2949 }
252b5132
RH
2950}
2951
2952void
e3bb37b5 2953i386_print_statistics (FILE *file)
252b5132
RH
2954{
2955 hash_print_statistics (file, "i386 opcode", op_hash);
2956 hash_print_statistics (file, "i386 register", reg_hash);
2957}
2958\f
252b5132
RH
2959#ifdef DEBUG386
2960
ce8a8b2f 2961/* Debugging routines for md_assemble. */
d3ce72d0 2962static void pte (insn_template *);
40fb9820 2963static void pt (i386_operand_type);
e3bb37b5
L
2964static void pe (expressionS *);
2965static void ps (symbolS *);
252b5132
RH
2966
2967static void
e3bb37b5 2968pi (char *line, i386_insn *x)
252b5132 2969{
09137c09 2970 unsigned int j;
252b5132
RH
2971
2972 fprintf (stdout, "%s: template ", line);
2973 pte (&x->tm);
09f131f2
JH
2974 fprintf (stdout, " address: base %s index %s scale %x\n",
2975 x->base_reg ? x->base_reg->reg_name : "none",
2976 x->index_reg ? x->index_reg->reg_name : "none",
2977 x->log2_scale_factor);
2978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2979 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2980 fprintf (stdout, " sib: base %x index %x scale %x\n",
2981 x->sib.base, x->sib.index, x->sib.scale);
2982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2983 (x->rex & REX_W) != 0,
2984 (x->rex & REX_R) != 0,
2985 (x->rex & REX_X) != 0,
2986 (x->rex & REX_B) != 0);
09137c09 2987 for (j = 0; j < x->operands; j++)
252b5132 2988 {
09137c09
SP
2989 fprintf (stdout, " #%d: ", j + 1);
2990 pt (x->types[j]);
252b5132 2991 fprintf (stdout, "\n");
dc821c5f 2992 if (x->types[j].bitfield.reg
09137c09 2993 || x->types[j].bitfield.regmmx
1b54b8d7 2994 || x->types[j].bitfield.regsimd
09137c09
SP
2995 || x->types[j].bitfield.sreg2
2996 || x->types[j].bitfield.sreg3
2997 || x->types[j].bitfield.control
2998 || x->types[j].bitfield.debug
2999 || x->types[j].bitfield.test)
3000 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3001 if (operand_type_check (x->types[j], imm))
3002 pe (x->op[j].imms);
3003 if (operand_type_check (x->types[j], disp))
3004 pe (x->op[j].disps);
252b5132
RH
3005 }
3006}
3007
3008static void
d3ce72d0 3009pte (insn_template *t)
252b5132 3010{
09137c09 3011 unsigned int j;
252b5132 3012 fprintf (stdout, " %d operands ", t->operands);
47926f60 3013 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3014 if (t->extension_opcode != None)
3015 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3016 if (t->opcode_modifier.d)
252b5132 3017 fprintf (stdout, "D");
40fb9820 3018 if (t->opcode_modifier.w)
252b5132
RH
3019 fprintf (stdout, "W");
3020 fprintf (stdout, "\n");
09137c09 3021 for (j = 0; j < t->operands; j++)
252b5132 3022 {
09137c09
SP
3023 fprintf (stdout, " #%d type ", j + 1);
3024 pt (t->operand_types[j]);
252b5132
RH
3025 fprintf (stdout, "\n");
3026 }
3027}
3028
3029static void
e3bb37b5 3030pe (expressionS *e)
252b5132 3031{
24eab124 3032 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3033 fprintf (stdout, " add_number %ld (%lx)\n",
3034 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3035 if (e->X_add_symbol)
3036 {
3037 fprintf (stdout, " add_symbol ");
3038 ps (e->X_add_symbol);
3039 fprintf (stdout, "\n");
3040 }
3041 if (e->X_op_symbol)
3042 {
3043 fprintf (stdout, " op_symbol ");
3044 ps (e->X_op_symbol);
3045 fprintf (stdout, "\n");
3046 }
3047}
3048
3049static void
e3bb37b5 3050ps (symbolS *s)
252b5132
RH
3051{
3052 fprintf (stdout, "%s type %s%s",
3053 S_GET_NAME (s),
3054 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3055 segment_name (S_GET_SEGMENT (s)));
3056}
3057
7b81dfbb 3058static struct type_name
252b5132 3059 {
40fb9820
L
3060 i386_operand_type mask;
3061 const char *name;
252b5132 3062 }
7b81dfbb 3063const type_names[] =
252b5132 3064{
40fb9820
L
3065 { OPERAND_TYPE_REG8, "r8" },
3066 { OPERAND_TYPE_REG16, "r16" },
3067 { OPERAND_TYPE_REG32, "r32" },
3068 { OPERAND_TYPE_REG64, "r64" },
3069 { OPERAND_TYPE_IMM8, "i8" },
3070 { OPERAND_TYPE_IMM8, "i8s" },
3071 { OPERAND_TYPE_IMM16, "i16" },
3072 { OPERAND_TYPE_IMM32, "i32" },
3073 { OPERAND_TYPE_IMM32S, "i32s" },
3074 { OPERAND_TYPE_IMM64, "i64" },
3075 { OPERAND_TYPE_IMM1, "i1" },
3076 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3077 { OPERAND_TYPE_DISP8, "d8" },
3078 { OPERAND_TYPE_DISP16, "d16" },
3079 { OPERAND_TYPE_DISP32, "d32" },
3080 { OPERAND_TYPE_DISP32S, "d32s" },
3081 { OPERAND_TYPE_DISP64, "d64" },
3082 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3083 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3084 { OPERAND_TYPE_CONTROL, "control reg" },
3085 { OPERAND_TYPE_TEST, "test reg" },
3086 { OPERAND_TYPE_DEBUG, "debug reg" },
3087 { OPERAND_TYPE_FLOATREG, "FReg" },
3088 { OPERAND_TYPE_FLOATACC, "FAcc" },
3089 { OPERAND_TYPE_SREG2, "SReg2" },
3090 { OPERAND_TYPE_SREG3, "SReg3" },
3091 { OPERAND_TYPE_ACC, "Acc" },
3092 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3093 { OPERAND_TYPE_REGMMX, "rMMX" },
3094 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3095 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3096 { OPERAND_TYPE_REGZMM, "rZMM" },
3097 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3098 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3099};
3100
3101static void
40fb9820 3102pt (i386_operand_type t)
252b5132 3103{
40fb9820 3104 unsigned int j;
c6fb90c8 3105 i386_operand_type a;
252b5132 3106
40fb9820 3107 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3108 {
3109 a = operand_type_and (t, type_names[j].mask);
0349dc08 3110 if (!operand_type_all_zero (&a))
c6fb90c8
L
3111 fprintf (stdout, "%s, ", type_names[j].name);
3112 }
252b5132
RH
3113 fflush (stdout);
3114}
3115
3116#endif /* DEBUG386 */
3117\f
252b5132 3118static bfd_reloc_code_real_type
3956db08 3119reloc (unsigned int size,
64e74474
AM
3120 int pcrel,
3121 int sign,
3122 bfd_reloc_code_real_type other)
252b5132 3123{
47926f60 3124 if (other != NO_RELOC)
3956db08 3125 {
91d6fa6a 3126 reloc_howto_type *rel;
3956db08
JB
3127
3128 if (size == 8)
3129 switch (other)
3130 {
64e74474
AM
3131 case BFD_RELOC_X86_64_GOT32:
3132 return BFD_RELOC_X86_64_GOT64;
3133 break;
553d1284
L
3134 case BFD_RELOC_X86_64_GOTPLT64:
3135 return BFD_RELOC_X86_64_GOTPLT64;
3136 break;
64e74474
AM
3137 case BFD_RELOC_X86_64_PLTOFF64:
3138 return BFD_RELOC_X86_64_PLTOFF64;
3139 break;
3140 case BFD_RELOC_X86_64_GOTPC32:
3141 other = BFD_RELOC_X86_64_GOTPC64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPCREL:
3144 other = BFD_RELOC_X86_64_GOTPCREL64;
3145 break;
3146 case BFD_RELOC_X86_64_TPOFF32:
3147 other = BFD_RELOC_X86_64_TPOFF64;
3148 break;
3149 case BFD_RELOC_X86_64_DTPOFF32:
3150 other = BFD_RELOC_X86_64_DTPOFF64;
3151 break;
3152 default:
3153 break;
3956db08 3154 }
e05278af 3155
8ce3d284 3156#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3157 if (other == BFD_RELOC_SIZE32)
3158 {
3159 if (size == 8)
1ab668bf 3160 other = BFD_RELOC_SIZE64;
8fd4256d 3161 if (pcrel)
1ab668bf
AM
3162 {
3163 as_bad (_("there are no pc-relative size relocations"));
3164 return NO_RELOC;
3165 }
8fd4256d 3166 }
8ce3d284 3167#endif
8fd4256d 3168
e05278af 3169 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3170 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3171 sign = -1;
3172
91d6fa6a
NC
3173 rel = bfd_reloc_type_lookup (stdoutput, other);
3174 if (!rel)
3956db08 3175 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3176 else if (size != bfd_get_reloc_size (rel))
3956db08 3177 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3178 bfd_get_reloc_size (rel),
3956db08 3179 size);
91d6fa6a 3180 else if (pcrel && !rel->pc_relative)
3956db08 3181 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3182 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3183 && !sign)
91d6fa6a 3184 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3185 && sign > 0))
3956db08
JB
3186 as_bad (_("relocated field and relocation type differ in signedness"));
3187 else
3188 return other;
3189 return NO_RELOC;
3190 }
252b5132
RH
3191
3192 if (pcrel)
3193 {
3e73aa7c 3194 if (!sign)
3956db08 3195 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3196 switch (size)
3197 {
3198 case 1: return BFD_RELOC_8_PCREL;
3199 case 2: return BFD_RELOC_16_PCREL;
d258b828 3200 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3201 case 8: return BFD_RELOC_64_PCREL;
252b5132 3202 }
3956db08 3203 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3204 }
3205 else
3206 {
3956db08 3207 if (sign > 0)
e5cb08ac 3208 switch (size)
3e73aa7c
JH
3209 {
3210 case 4: return BFD_RELOC_X86_64_32S;
3211 }
3212 else
3213 switch (size)
3214 {
3215 case 1: return BFD_RELOC_8;
3216 case 2: return BFD_RELOC_16;
3217 case 4: return BFD_RELOC_32;
3218 case 8: return BFD_RELOC_64;
3219 }
3956db08
JB
3220 as_bad (_("cannot do %s %u byte relocation"),
3221 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3222 }
3223
0cc9e1d3 3224 return NO_RELOC;
252b5132
RH
3225}
3226
47926f60
KH
3227/* Here we decide which fixups can be adjusted to make them relative to
3228 the beginning of the section instead of the symbol. Basically we need
3229 to make sure that the dynamic relocations are done correctly, so in
3230 some cases we force the original symbol to be used. */
3231
252b5132 3232int
e3bb37b5 3233tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3234{
6d249963 3235#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3236 if (!IS_ELF)
31312f95
AM
3237 return 1;
3238
a161fe53
AM
3239 /* Don't adjust pc-relative references to merge sections in 64-bit
3240 mode. */
3241 if (use_rela_relocations
3242 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3243 && fixP->fx_pcrel)
252b5132 3244 return 0;
31312f95 3245
8d01d9a9
AJ
3246 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3247 and changed later by validate_fix. */
3248 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3249 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3250 return 0;
3251
8fd4256d
L
3252 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3253 for size relocations. */
3254 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3255 || fixP->fx_r_type == BFD_RELOC_SIZE64
3256 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3257 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3258 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3259 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3260 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3261 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3262 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3270 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3271 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3272 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3278 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3285 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3286 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3287 return 0;
31312f95 3288#endif
252b5132
RH
3289 return 1;
3290}
252b5132 3291
b4cac588 3292static int
e3bb37b5 3293intel_float_operand (const char *mnemonic)
252b5132 3294{
9306ca4a
JB
3295 /* Note that the value returned is meaningful only for opcodes with (memory)
3296 operands, hence the code here is free to improperly handle opcodes that
3297 have no operands (for better performance and smaller code). */
3298
3299 if (mnemonic[0] != 'f')
3300 return 0; /* non-math */
3301
3302 switch (mnemonic[1])
3303 {
3304 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3305 the fs segment override prefix not currently handled because no
3306 call path can make opcodes without operands get here */
3307 case 'i':
3308 return 2 /* integer op */;
3309 case 'l':
3310 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3311 return 3; /* fldcw/fldenv */
3312 break;
3313 case 'n':
3314 if (mnemonic[2] != 'o' /* fnop */)
3315 return 3; /* non-waiting control op */
3316 break;
3317 case 'r':
3318 if (mnemonic[2] == 's')
3319 return 3; /* frstor/frstpm */
3320 break;
3321 case 's':
3322 if (mnemonic[2] == 'a')
3323 return 3; /* fsave */
3324 if (mnemonic[2] == 't')
3325 {
3326 switch (mnemonic[3])
3327 {
3328 case 'c': /* fstcw */
3329 case 'd': /* fstdw */
3330 case 'e': /* fstenv */
3331 case 's': /* fsts[gw] */
3332 return 3;
3333 }
3334 }
3335 break;
3336 case 'x':
3337 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3338 return 0; /* fxsave/fxrstor are not really math ops */
3339 break;
3340 }
252b5132 3341
9306ca4a 3342 return 1;
252b5132
RH
3343}
3344
c0f3af97
L
3345/* Build the VEX prefix. */
3346
3347static void
d3ce72d0 3348build_vex_prefix (const insn_template *t)
c0f3af97
L
3349{
3350 unsigned int register_specifier;
3351 unsigned int implied_prefix;
3352 unsigned int vector_length;
3353
3354 /* Check register specifier. */
3355 if (i.vex.register_specifier)
43234a1e
L
3356 {
3357 register_specifier =
3358 ~register_number (i.vex.register_specifier) & 0xf;
3359 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3360 }
c0f3af97
L
3361 else
3362 register_specifier = 0xf;
3363
33eaf5de 3364 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3365 operand. */
86fa6981
L
3366 if (i.vec_encoding != vex_encoding_vex3
3367 && i.dir_encoding == dir_encoding_default
fa99fab2 3368 && i.operands == i.reg_operands
dbbc8b7e 3369 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3370 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3371 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3372 && i.rex == REX_B)
3373 {
3374 unsigned int xchg = i.operands - 1;
3375 union i386_op temp_op;
3376 i386_operand_type temp_type;
3377
3378 temp_type = i.types[xchg];
3379 i.types[xchg] = i.types[0];
3380 i.types[0] = temp_type;
3381 temp_op = i.op[xchg];
3382 i.op[xchg] = i.op[0];
3383 i.op[0] = temp_op;
3384
9c2799c2 3385 gas_assert (i.rm.mode == 3);
fa99fab2
L
3386
3387 i.rex = REX_R;
3388 xchg = i.rm.regmem;
3389 i.rm.regmem = i.rm.reg;
3390 i.rm.reg = xchg;
3391
dbbc8b7e
JB
3392 if (i.tm.opcode_modifier.d)
3393 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3394 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3395 else /* Use the next insn. */
3396 i.tm = t[1];
fa99fab2
L
3397 }
3398
539f890d
L
3399 if (i.tm.opcode_modifier.vex == VEXScalar)
3400 vector_length = avxscalar;
10c17abd
JB
3401 else if (i.tm.opcode_modifier.vex == VEX256)
3402 vector_length = 1;
539f890d 3403 else
10c17abd 3404 {
56522fc5 3405 unsigned int op;
10c17abd 3406
c7213af9
L
3407 /* Determine vector length from the last multi-length vector
3408 operand. */
10c17abd 3409 vector_length = 0;
56522fc5 3410 for (op = t->operands; op--;)
10c17abd
JB
3411 if (t->operand_types[op].bitfield.xmmword
3412 && t->operand_types[op].bitfield.ymmword
3413 && i.types[op].bitfield.ymmword)
3414 {
3415 vector_length = 1;
3416 break;
3417 }
3418 }
c0f3af97
L
3419
3420 switch ((i.tm.base_opcode >> 8) & 0xff)
3421 {
3422 case 0:
3423 implied_prefix = 0;
3424 break;
3425 case DATA_PREFIX_OPCODE:
3426 implied_prefix = 1;
3427 break;
3428 case REPE_PREFIX_OPCODE:
3429 implied_prefix = 2;
3430 break;
3431 case REPNE_PREFIX_OPCODE:
3432 implied_prefix = 3;
3433 break;
3434 default:
3435 abort ();
3436 }
3437
3438 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3439 if (i.vec_encoding != vex_encoding_vex3
3440 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3441 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3442 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3443 {
3444 /* 2-byte VEX prefix. */
3445 unsigned int r;
3446
3447 i.vex.length = 2;
3448 i.vex.bytes[0] = 0xc5;
3449
3450 /* Check the REX.R bit. */
3451 r = (i.rex & REX_R) ? 0 : 1;
3452 i.vex.bytes[1] = (r << 7
3453 | register_specifier << 3
3454 | vector_length << 2
3455 | implied_prefix);
3456 }
3457 else
3458 {
3459 /* 3-byte VEX prefix. */
3460 unsigned int m, w;
3461
f88c9eb0 3462 i.vex.length = 3;
f88c9eb0 3463
7f399153 3464 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3465 {
7f399153
L
3466 case VEX0F:
3467 m = 0x1;
80de6e00 3468 i.vex.bytes[0] = 0xc4;
7f399153
L
3469 break;
3470 case VEX0F38:
3471 m = 0x2;
80de6e00 3472 i.vex.bytes[0] = 0xc4;
7f399153
L
3473 break;
3474 case VEX0F3A:
3475 m = 0x3;
80de6e00 3476 i.vex.bytes[0] = 0xc4;
7f399153
L
3477 break;
3478 case XOP08:
5dd85c99
SP
3479 m = 0x8;
3480 i.vex.bytes[0] = 0x8f;
7f399153
L
3481 break;
3482 case XOP09:
f88c9eb0
SP
3483 m = 0x9;
3484 i.vex.bytes[0] = 0x8f;
7f399153
L
3485 break;
3486 case XOP0A:
f88c9eb0
SP
3487 m = 0xa;
3488 i.vex.bytes[0] = 0x8f;
7f399153
L
3489 break;
3490 default:
3491 abort ();
f88c9eb0 3492 }
c0f3af97 3493
c0f3af97
L
3494 /* The high 3 bits of the second VEX byte are 1's compliment
3495 of RXB bits from REX. */
3496 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3497
3498 /* Check the REX.W bit. */
3499 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3500 if (i.tm.opcode_modifier.vexw == VEXW1)
3501 w = 1;
c0f3af97
L
3502
3503 i.vex.bytes[2] = (w << 7
3504 | register_specifier << 3
3505 | vector_length << 2
3506 | implied_prefix);
3507 }
3508}
3509
e771e7c9
JB
3510static INLINE bfd_boolean
3511is_evex_encoding (const insn_template *t)
3512{
7091c612 3513 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3514 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3515 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3516}
3517
7a8655d2
JB
3518static INLINE bfd_boolean
3519is_any_vex_encoding (const insn_template *t)
3520{
3521 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3522 || is_evex_encoding (t);
3523}
3524
43234a1e
L
3525/* Build the EVEX prefix. */
3526
3527static void
3528build_evex_prefix (void)
3529{
3530 unsigned int register_specifier;
3531 unsigned int implied_prefix;
3532 unsigned int m, w;
3533 rex_byte vrex_used = 0;
3534
3535 /* Check register specifier. */
3536 if (i.vex.register_specifier)
3537 {
3538 gas_assert ((i.vrex & REX_X) == 0);
3539
3540 register_specifier = i.vex.register_specifier->reg_num;
3541 if ((i.vex.register_specifier->reg_flags & RegRex))
3542 register_specifier += 8;
3543 /* The upper 16 registers are encoded in the fourth byte of the
3544 EVEX prefix. */
3545 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3546 i.vex.bytes[3] = 0x8;
3547 register_specifier = ~register_specifier & 0xf;
3548 }
3549 else
3550 {
3551 register_specifier = 0xf;
3552
3553 /* Encode upper 16 vector index register in the fourth byte of
3554 the EVEX prefix. */
3555 if (!(i.vrex & REX_X))
3556 i.vex.bytes[3] = 0x8;
3557 else
3558 vrex_used |= REX_X;
3559 }
3560
3561 switch ((i.tm.base_opcode >> 8) & 0xff)
3562 {
3563 case 0:
3564 implied_prefix = 0;
3565 break;
3566 case DATA_PREFIX_OPCODE:
3567 implied_prefix = 1;
3568 break;
3569 case REPE_PREFIX_OPCODE:
3570 implied_prefix = 2;
3571 break;
3572 case REPNE_PREFIX_OPCODE:
3573 implied_prefix = 3;
3574 break;
3575 default:
3576 abort ();
3577 }
3578
3579 /* 4 byte EVEX prefix. */
3580 i.vex.length = 4;
3581 i.vex.bytes[0] = 0x62;
3582
3583 /* mmmm bits. */
3584 switch (i.tm.opcode_modifier.vexopcode)
3585 {
3586 case VEX0F:
3587 m = 1;
3588 break;
3589 case VEX0F38:
3590 m = 2;
3591 break;
3592 case VEX0F3A:
3593 m = 3;
3594 break;
3595 default:
3596 abort ();
3597 break;
3598 }
3599
3600 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3601 bits from REX. */
3602 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3603
3604 /* The fifth bit of the second EVEX byte is 1's compliment of the
3605 REX_R bit in VREX. */
3606 if (!(i.vrex & REX_R))
3607 i.vex.bytes[1] |= 0x10;
3608 else
3609 vrex_used |= REX_R;
3610
3611 if ((i.reg_operands + i.imm_operands) == i.operands)
3612 {
3613 /* When all operands are registers, the REX_X bit in REX is not
3614 used. We reuse it to encode the upper 16 registers, which is
3615 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3616 as 1's compliment. */
3617 if ((i.vrex & REX_B))
3618 {
3619 vrex_used |= REX_B;
3620 i.vex.bytes[1] &= ~0x40;
3621 }
3622 }
3623
3624 /* EVEX instructions shouldn't need the REX prefix. */
3625 i.vrex &= ~vrex_used;
3626 gas_assert (i.vrex == 0);
3627
3628 /* Check the REX.W bit. */
3629 w = (i.rex & REX_W) ? 1 : 0;
3630 if (i.tm.opcode_modifier.vexw)
3631 {
3632 if (i.tm.opcode_modifier.vexw == VEXW1)
3633 w = 1;
3634 }
3635 /* If w is not set it means we are dealing with WIG instruction. */
3636 else if (!w)
3637 {
3638 if (evexwig == evexw1)
3639 w = 1;
3640 }
3641
3642 /* Encode the U bit. */
3643 implied_prefix |= 0x4;
3644
3645 /* The third byte of the EVEX prefix. */
3646 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3647
3648 /* The fourth byte of the EVEX prefix. */
3649 /* The zeroing-masking bit. */
3650 if (i.mask && i.mask->zeroing)
3651 i.vex.bytes[3] |= 0x80;
3652
3653 /* Don't always set the broadcast bit if there is no RC. */
3654 if (!i.rounding)
3655 {
3656 /* Encode the vector length. */
3657 unsigned int vec_length;
3658
e771e7c9
JB
3659 if (!i.tm.opcode_modifier.evex
3660 || i.tm.opcode_modifier.evex == EVEXDYN)
3661 {
56522fc5 3662 unsigned int op;
e771e7c9 3663
c7213af9
L
3664 /* Determine vector length from the last multi-length vector
3665 operand. */
e771e7c9 3666 vec_length = 0;
56522fc5 3667 for (op = i.operands; op--;)
e771e7c9
JB
3668 if (i.tm.operand_types[op].bitfield.xmmword
3669 + i.tm.operand_types[op].bitfield.ymmword
3670 + i.tm.operand_types[op].bitfield.zmmword > 1)
3671 {
3672 if (i.types[op].bitfield.zmmword)
c7213af9
L
3673 {
3674 i.tm.opcode_modifier.evex = EVEX512;
3675 break;
3676 }
e771e7c9 3677 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3678 {
3679 i.tm.opcode_modifier.evex = EVEX256;
3680 break;
3681 }
e771e7c9 3682 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3683 {
3684 i.tm.opcode_modifier.evex = EVEX128;
3685 break;
3686 }
625cbd7a
JB
3687 else if (i.broadcast && (int) op == i.broadcast->operand)
3688 {
4a1b91ea 3689 switch (i.broadcast->bytes)
625cbd7a
JB
3690 {
3691 case 64:
3692 i.tm.opcode_modifier.evex = EVEX512;
3693 break;
3694 case 32:
3695 i.tm.opcode_modifier.evex = EVEX256;
3696 break;
3697 case 16:
3698 i.tm.opcode_modifier.evex = EVEX128;
3699 break;
3700 default:
c7213af9 3701 abort ();
625cbd7a 3702 }
c7213af9 3703 break;
625cbd7a 3704 }
e771e7c9 3705 }
c7213af9 3706
56522fc5 3707 if (op >= MAX_OPERANDS)
c7213af9 3708 abort ();
e771e7c9
JB
3709 }
3710
43234a1e
L
3711 switch (i.tm.opcode_modifier.evex)
3712 {
3713 case EVEXLIG: /* LL' is ignored */
3714 vec_length = evexlig << 5;
3715 break;
3716 case EVEX128:
3717 vec_length = 0 << 5;
3718 break;
3719 case EVEX256:
3720 vec_length = 1 << 5;
3721 break;
3722 case EVEX512:
3723 vec_length = 2 << 5;
3724 break;
3725 default:
3726 abort ();
3727 break;
3728 }
3729 i.vex.bytes[3] |= vec_length;
3730 /* Encode the broadcast bit. */
3731 if (i.broadcast)
3732 i.vex.bytes[3] |= 0x10;
3733 }
3734 else
3735 {
3736 if (i.rounding->type != saeonly)
3737 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3738 else
d3d3c6db 3739 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3740 }
3741
3742 if (i.mask && i.mask->mask)
3743 i.vex.bytes[3] |= i.mask->mask->reg_num;
3744}
3745
65da13b5
L
3746static void
3747process_immext (void)
3748{
3749 expressionS *exp;
3750
4c692bc7
JB
3751 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3752 && i.operands > 0)
65da13b5 3753 {
4c692bc7
JB
3754 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3755 with an opcode suffix which is coded in the same place as an
3756 8-bit immediate field would be.
3757 Here we check those operands and remove them afterwards. */
65da13b5
L
3758 unsigned int x;
3759
3760 for (x = 0; x < i.operands; x++)
4c692bc7 3761 if (register_number (i.op[x].regs) != x)
65da13b5 3762 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3763 register_prefix, i.op[x].regs->reg_name, x + 1,
3764 i.tm.name);
3765
3766 i.operands = 0;
65da13b5
L
3767 }
3768
9916071f
AP
3769 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3770 {
3771 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3772 suffix which is coded in the same place as an 8-bit immediate
3773 field would be.
3774 Here we check those operands and remove them afterwards. */
3775 unsigned int x;
3776
3777 if (i.operands != 3)
3778 abort();
3779
3780 for (x = 0; x < 2; x++)
3781 if (register_number (i.op[x].regs) != x)
3782 goto bad_register_operand;
3783
3784 /* Check for third operand for mwaitx/monitorx insn. */
3785 if (register_number (i.op[x].regs)
3786 != (x + (i.tm.extension_opcode == 0xfb)))
3787 {
3788bad_register_operand:
3789 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3790 register_prefix, i.op[x].regs->reg_name, x+1,
3791 i.tm.name);
3792 }
3793
3794 i.operands = 0;
3795 }
3796
c0f3af97 3797 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3798 which is coded in the same place as an 8-bit immediate field
3799 would be. Here we fake an 8-bit immediate operand from the
3800 opcode suffix stored in tm.extension_opcode.
3801
c1e679ec 3802 AVX instructions also use this encoding, for some of
c0f3af97 3803 3 argument instructions. */
65da13b5 3804
43234a1e 3805 gas_assert (i.imm_operands <= 1
7ab9ffdd 3806 && (i.operands <= 2
7a8655d2 3807 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3808 && i.operands <= 4)));
65da13b5
L
3809
3810 exp = &im_expressions[i.imm_operands++];
3811 i.op[i.operands].imms = exp;
3812 i.types[i.operands] = imm8;
3813 i.operands++;
3814 exp->X_op = O_constant;
3815 exp->X_add_number = i.tm.extension_opcode;
3816 i.tm.extension_opcode = None;
3817}
3818
42164a71
L
3819
3820static int
3821check_hle (void)
3822{
3823 switch (i.tm.opcode_modifier.hleprefixok)
3824 {
3825 default:
3826 abort ();
82c2def5 3827 case HLEPrefixNone:
165de32a
L
3828 as_bad (_("invalid instruction `%s' after `%s'"),
3829 i.tm.name, i.hle_prefix);
42164a71 3830 return 0;
82c2def5 3831 case HLEPrefixLock:
42164a71
L
3832 if (i.prefix[LOCK_PREFIX])
3833 return 1;
165de32a 3834 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3835 return 0;
82c2def5 3836 case HLEPrefixAny:
42164a71 3837 return 1;
82c2def5 3838 case HLEPrefixRelease:
42164a71
L
3839 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3840 {
3841 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3842 i.tm.name);
3843 return 0;
3844 }
3845 if (i.mem_operands == 0
3846 || !operand_type_check (i.types[i.operands - 1], anymem))
3847 {
3848 as_bad (_("memory destination needed for instruction `%s'"
3849 " after `xrelease'"), i.tm.name);
3850 return 0;
3851 }
3852 return 1;
3853 }
3854}
3855
b6f8c7c4
L
3856/* Try the shortest encoding by shortening operand size. */
3857
3858static void
3859optimize_encoding (void)
3860{
3861 int j;
3862
3863 if (optimize_for_space
3864 && i.reg_operands == 1
3865 && i.imm_operands == 1
3866 && !i.types[1].bitfield.byte
3867 && i.op[0].imms->X_op == O_constant
3868 && fits_in_imm7 (i.op[0].imms->X_add_number)
3869 && ((i.tm.base_opcode == 0xa8
3870 && i.tm.extension_opcode == None)
3871 || (i.tm.base_opcode == 0xf6
3872 && i.tm.extension_opcode == 0x0)))
3873 {
3874 /* Optimize: -Os:
3875 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3876 */
3877 unsigned int base_regnum = i.op[1].regs->reg_num;
3878 if (flag_code == CODE_64BIT || base_regnum < 4)
3879 {
3880 i.types[1].bitfield.byte = 1;
3881 /* Ignore the suffix. */
3882 i.suffix = 0;
3883 if (base_regnum >= 4
3884 && !(i.op[1].regs->reg_flags & RegRex))
3885 {
3886 /* Handle SP, BP, SI and DI registers. */
3887 if (i.types[1].bitfield.word)
3888 j = 16;
3889 else if (i.types[1].bitfield.dword)
3890 j = 32;
3891 else
3892 j = 48;
3893 i.op[1].regs -= j;
3894 }
3895 }
3896 }
3897 else if (flag_code == CODE_64BIT
d3d50934
L
3898 && ((i.types[1].bitfield.qword
3899 && i.reg_operands == 1
b6f8c7c4
L
3900 && i.imm_operands == 1
3901 && i.op[0].imms->X_op == O_constant
3902 && ((i.tm.base_opcode == 0xb0
3903 && i.tm.extension_opcode == None
3904 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3905 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3906 && (((i.tm.base_opcode == 0x24
3907 || i.tm.base_opcode == 0xa8)
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0x80
3910 && i.tm.extension_opcode == 0x4)
3911 || ((i.tm.base_opcode == 0xf6
3912 || i.tm.base_opcode == 0xc6)
3913 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3914 || (i.types[0].bitfield.qword
3915 && ((i.reg_operands == 2
3916 && i.op[0].regs == i.op[1].regs
3917 && ((i.tm.base_opcode == 0x30
3918 || i.tm.base_opcode == 0x28)
3919 && i.tm.extension_opcode == None))
3920 || (i.reg_operands == 1
3921 && i.operands == 1
3922 && i.tm.base_opcode == 0x30
3923 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3924 {
3925 /* Optimize: -O:
3926 andq $imm31, %r64 -> andl $imm31, %r32
3927 testq $imm31, %r64 -> testl $imm31, %r32
3928 xorq %r64, %r64 -> xorl %r32, %r32
3929 subq %r64, %r64 -> subl %r32, %r32
3930 movq $imm31, %r64 -> movl $imm31, %r32
3931 movq $imm32, %r64 -> movl $imm32, %r32
3932 */
3933 i.tm.opcode_modifier.norex64 = 1;
3934 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3935 {
3936 /* Handle
3937 movq $imm31, %r64 -> movl $imm31, %r32
3938 movq $imm32, %r64 -> movl $imm32, %r32
3939 */
3940 i.tm.operand_types[0].bitfield.imm32 = 1;
3941 i.tm.operand_types[0].bitfield.imm32s = 0;
3942 i.tm.operand_types[0].bitfield.imm64 = 0;
3943 i.types[0].bitfield.imm32 = 1;
3944 i.types[0].bitfield.imm32s = 0;
3945 i.types[0].bitfield.imm64 = 0;
3946 i.types[1].bitfield.dword = 1;
3947 i.types[1].bitfield.qword = 0;
3948 if (i.tm.base_opcode == 0xc6)
3949 {
3950 /* Handle
3951 movq $imm31, %r64 -> movl $imm31, %r32
3952 */
3953 i.tm.base_opcode = 0xb0;
3954 i.tm.extension_opcode = None;
3955 i.tm.opcode_modifier.shortform = 1;
3956 i.tm.opcode_modifier.modrm = 0;
3957 }
3958 }
3959 }
3960 else if (optimize > 1
3961 && i.reg_operands == 3
3962 && i.op[0].regs == i.op[1].regs
3963 && !i.types[2].bitfield.xmmword
3964 && (i.tm.opcode_modifier.vex
7a69eac3 3965 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3966 && !i.rounding
e771e7c9 3967 && is_evex_encoding (&i.tm)
80c34c38
L
3968 && (i.vec_encoding != vex_encoding_evex
3969 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3970 || (i.tm.operand_types[2].bitfield.zmmword
3971 && i.types[2].bitfield.ymmword)
0089dace 3972 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3973 && ((i.tm.base_opcode == 0x55
3974 || i.tm.base_opcode == 0x6655
3975 || i.tm.base_opcode == 0x66df
3976 || i.tm.base_opcode == 0x57
3977 || i.tm.base_opcode == 0x6657
8305403a
L
3978 || i.tm.base_opcode == 0x66ef
3979 || i.tm.base_opcode == 0x66f8
3980 || i.tm.base_opcode == 0x66f9
3981 || i.tm.base_opcode == 0x66fa
1424ad86
JB
3982 || i.tm.base_opcode == 0x66fb
3983 || i.tm.base_opcode == 0x42
3984 || i.tm.base_opcode == 0x6642
3985 || i.tm.base_opcode == 0x47
3986 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
3987 && i.tm.extension_opcode == None))
3988 {
3989 /* Optimize: -O2:
8305403a
L
3990 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3991 vpsubq and vpsubw:
b6f8c7c4
L
3992 EVEX VOP %zmmM, %zmmM, %zmmN
3993 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3994 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3995 EVEX VOP %ymmM, %ymmM, %ymmN
3996 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3997 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3998 VEX VOP %ymmM, %ymmM, %ymmN
3999 -> VEX VOP %xmmM, %xmmM, %xmmN
4000 VOP, one of vpandn and vpxor:
4001 VEX VOP %ymmM, %ymmM, %ymmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN
4003 VOP, one of vpandnd and vpandnq:
4004 EVEX VOP %zmmM, %zmmM, %zmmN
4005 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4006 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4007 EVEX VOP %ymmM, %ymmM, %ymmN
4008 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4009 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4010 VOP, one of vpxord and vpxorq:
4011 EVEX VOP %zmmM, %zmmM, %zmmN
4012 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4013 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4014 EVEX VOP %ymmM, %ymmM, %ymmN
4015 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
1424ad86
JB
4017 VOP, one of kxord and kxorq:
4018 VEX VOP %kM, %kM, %kN
4019 -> VEX kxorw %kM, %kM, %kN
4020 VOP, one of kandnd and kandnq:
4021 VEX VOP %kM, %kM, %kN
4022 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4023 */
e771e7c9 4024 if (is_evex_encoding (&i.tm))
b6f8c7c4 4025 {
0089dace 4026 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
4027 i.tm.opcode_modifier.evex = EVEX128;
4028 else
4029 {
4030 i.tm.opcode_modifier.vex = VEX128;
4031 i.tm.opcode_modifier.vexw = VEXW0;
4032 i.tm.opcode_modifier.evex = 0;
4033 }
4034 }
1424ad86
JB
4035 else if (i.tm.operand_types[0].bitfield.regmask)
4036 {
4037 i.tm.base_opcode &= 0xff;
4038 i.tm.opcode_modifier.vexw = VEXW0;
4039 }
b6f8c7c4
L
4040 else
4041 i.tm.opcode_modifier.vex = VEX128;
4042
4043 if (i.tm.opcode_modifier.vex)
4044 for (j = 0; j < 3; j++)
4045 {
4046 i.types[j].bitfield.xmmword = 1;
4047 i.types[j].bitfield.ymmword = 0;
4048 }
4049 }
4050}
4051
252b5132
RH
4052/* This is the guts of the machine-dependent assembler. LINE points to a
4053 machine dependent instruction. This function is supposed to emit
4054 the frags/bytes it assembles to. */
4055
4056void
65da13b5 4057md_assemble (char *line)
252b5132 4058{
40fb9820 4059 unsigned int j;
83b16ac6 4060 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4061 const insn_template *t;
252b5132 4062
47926f60 4063 /* Initialize globals. */
252b5132
RH
4064 memset (&i, '\0', sizeof (i));
4065 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4066 i.reloc[j] = NO_RELOC;
252b5132
RH
4067 memset (disp_expressions, '\0', sizeof (disp_expressions));
4068 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4069 save_stack_p = save_stack;
252b5132
RH
4070
4071 /* First parse an instruction mnemonic & call i386_operand for the operands.
4072 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4073 start of a (possibly prefixed) mnemonic. */
252b5132 4074
29b0f896
AM
4075 line = parse_insn (line, mnemonic);
4076 if (line == NULL)
4077 return;
83b16ac6 4078 mnem_suffix = i.suffix;
252b5132 4079
29b0f896 4080 line = parse_operands (line, mnemonic);
ee86248c 4081 this_operand = -1;
8325cc63
JB
4082 xfree (i.memop1_string);
4083 i.memop1_string = NULL;
29b0f896
AM
4084 if (line == NULL)
4085 return;
252b5132 4086
29b0f896
AM
4087 /* Now we've parsed the mnemonic into a set of templates, and have the
4088 operands at hand. */
4089
4090 /* All intel opcodes have reversed operands except for "bound" and
4091 "enter". We also don't reverse intersegment "jmp" and "call"
4092 instructions with 2 immediate operands so that the immediate segment
050dfa73 4093 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4094 if (intel_syntax
4095 && i.operands > 1
29b0f896 4096 && (strcmp (mnemonic, "bound") != 0)
30123838 4097 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4098 && !(operand_type_check (i.types[0], imm)
4099 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4100 swap_operands ();
4101
ec56d5c0
JB
4102 /* The order of the immediates should be reversed
4103 for 2 immediates extrq and insertq instructions */
4104 if (i.imm_operands == 2
4105 && (strcmp (mnemonic, "extrq") == 0
4106 || strcmp (mnemonic, "insertq") == 0))
4107 swap_2_operands (0, 1);
4108
29b0f896
AM
4109 if (i.imm_operands)
4110 optimize_imm ();
4111
b300c311
L
4112 /* Don't optimize displacement for movabs since it only takes 64bit
4113 displacement. */
4114 if (i.disp_operands
a501d77e 4115 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4116 && (flag_code != CODE_64BIT
4117 || strcmp (mnemonic, "movabs") != 0))
4118 optimize_disp ();
29b0f896
AM
4119
4120 /* Next, we find a template that matches the given insn,
4121 making sure the overlap of the given operands types is consistent
4122 with the template operand types. */
252b5132 4123
83b16ac6 4124 if (!(t = match_template (mnem_suffix)))
29b0f896 4125 return;
252b5132 4126
7bab8ab5 4127 if (sse_check != check_none
81f8a913 4128 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4129 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4130 && (i.tm.cpu_flags.bitfield.cpusse
4131 || i.tm.cpu_flags.bitfield.cpusse2
4132 || i.tm.cpu_flags.bitfield.cpusse3
4133 || i.tm.cpu_flags.bitfield.cpussse3
4134 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4135 || i.tm.cpu_flags.bitfield.cpusse4_2
4136 || i.tm.cpu_flags.bitfield.cpupclmul
4137 || i.tm.cpu_flags.bitfield.cpuaes
4138 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4139 {
7bab8ab5 4140 (sse_check == check_warning
daf50ae7
L
4141 ? as_warn
4142 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4143 }
4144
321fd21e
L
4145 /* Zap movzx and movsx suffix. The suffix has been set from
4146 "word ptr" or "byte ptr" on the source operand in Intel syntax
4147 or extracted from mnemonic in AT&T syntax. But we'll use
4148 the destination register to choose the suffix for encoding. */
4149 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4150 {
321fd21e
L
4151 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4152 there is no suffix, the default will be byte extension. */
4153 if (i.reg_operands != 2
4154 && !i.suffix
7ab9ffdd 4155 && intel_syntax)
321fd21e
L
4156 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4157
4158 i.suffix = 0;
cd61ebfe 4159 }
24eab124 4160
40fb9820 4161 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4162 if (!add_prefix (FWAIT_OPCODE))
4163 return;
252b5132 4164
d5de92cf
L
4165 /* Check if REP prefix is OK. */
4166 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4167 {
4168 as_bad (_("invalid instruction `%s' after `%s'"),
4169 i.tm.name, i.rep_prefix);
4170 return;
4171 }
4172
c1ba0266
L
4173 /* Check for lock without a lockable instruction. Destination operand
4174 must be memory unless it is xchg (0x86). */
c32fa91d
L
4175 if (i.prefix[LOCK_PREFIX]
4176 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4177 || i.mem_operands == 0
4178 || (i.tm.base_opcode != 0x86
4179 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4180 {
4181 as_bad (_("expecting lockable instruction after `lock'"));
4182 return;
4183 }
4184
7a8655d2
JB
4185 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4186 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4187 {
4188 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4189 return;
4190 }
4191
42164a71 4192 /* Check if HLE prefix is OK. */
165de32a 4193 if (i.hle_prefix && !check_hle ())
42164a71
L
4194 return;
4195
7e8b059b
L
4196 /* Check BND prefix. */
4197 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4198 as_bad (_("expecting valid branch instruction after `bnd'"));
4199
04ef582a 4200 /* Check NOTRACK prefix. */
9fef80d6
L
4201 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4202 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4203
327e8c42
JB
4204 if (i.tm.cpu_flags.bitfield.cpumpx)
4205 {
4206 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4207 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4208 else if (flag_code != CODE_16BIT
4209 ? i.prefix[ADDR_PREFIX]
4210 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4211 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4212 }
7e8b059b
L
4213
4214 /* Insert BND prefix. */
76d3a78a
JB
4215 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4216 {
4217 if (!i.prefix[BND_PREFIX])
4218 add_prefix (BND_PREFIX_OPCODE);
4219 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4220 {
4221 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4222 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4223 }
4224 }
7e8b059b 4225
29b0f896 4226 /* Check string instruction segment overrides. */
40fb9820 4227 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4228 {
4229 if (!check_string ())
5dd0794d 4230 return;
fc0763e6 4231 i.disp_operands = 0;
29b0f896 4232 }
5dd0794d 4233
b6f8c7c4
L
4234 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4235 optimize_encoding ();
4236
29b0f896
AM
4237 if (!process_suffix ())
4238 return;
e413e4e9 4239
bc0844ae
L
4240 /* Update operand types. */
4241 for (j = 0; j < i.operands; j++)
4242 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4243
29b0f896
AM
4244 /* Make still unresolved immediate matches conform to size of immediate
4245 given in i.suffix. */
4246 if (!finalize_imm ())
4247 return;
252b5132 4248
40fb9820 4249 if (i.types[0].bitfield.imm1)
29b0f896 4250 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4251
9afe6eb8
L
4252 /* We only need to check those implicit registers for instructions
4253 with 3 operands or less. */
4254 if (i.operands <= 3)
4255 for (j = 0; j < i.operands; j++)
4256 if (i.types[j].bitfield.inoutportreg
4257 || i.types[j].bitfield.shiftcount
1b54b8d7 4258 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4259 i.reg_operands--;
40fb9820 4260
c0f3af97
L
4261 /* ImmExt should be processed after SSE2AVX. */
4262 if (!i.tm.opcode_modifier.sse2avx
4263 && i.tm.opcode_modifier.immext)
65da13b5 4264 process_immext ();
252b5132 4265
29b0f896
AM
4266 /* For insns with operands there are more diddles to do to the opcode. */
4267 if (i.operands)
4268 {
4269 if (!process_operands ())
4270 return;
4271 }
40fb9820 4272 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4273 {
4274 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4275 as_warn (_("translating to `%sp'"), i.tm.name);
4276 }
252b5132 4277
7a8655d2 4278 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4279 {
4280 if (flag_code == CODE_16BIT)
4281 {
4282 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4283 i.tm.name);
4284 return;
4285 }
c0f3af97 4286
9e5e5283
L
4287 if (i.tm.opcode_modifier.vex)
4288 build_vex_prefix (t);
4289 else
4290 build_evex_prefix ();
4291 }
43234a1e 4292
5dd85c99
SP
4293 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4294 instructions may define INT_OPCODE as well, so avoid this corner
4295 case for those instructions that use MODRM. */
4296 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4297 && !i.tm.opcode_modifier.modrm
4298 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4299 {
4300 i.tm.base_opcode = INT3_OPCODE;
4301 i.imm_operands = 0;
4302 }
252b5132 4303
40fb9820
L
4304 if ((i.tm.opcode_modifier.jump
4305 || i.tm.opcode_modifier.jumpbyte
4306 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4307 && i.op[0].disps->X_op == O_constant)
4308 {
4309 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4310 the absolute address given by the constant. Since ix86 jumps and
4311 calls are pc relative, we need to generate a reloc. */
4312 i.op[0].disps->X_add_symbol = &abs_symbol;
4313 i.op[0].disps->X_op = O_symbol;
4314 }
252b5132 4315
40fb9820 4316 if (i.tm.opcode_modifier.rex64)
161a04f6 4317 i.rex |= REX_W;
252b5132 4318
29b0f896
AM
4319 /* For 8 bit registers we need an empty rex prefix. Also if the
4320 instruction already has a prefix, we need to convert old
4321 registers to new ones. */
773f551c 4322
dc821c5f 4323 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4324 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4325 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4326 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4327 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4328 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4329 && i.rex != 0))
4330 {
4331 int x;
726c5dcd 4332
29b0f896
AM
4333 i.rex |= REX_OPCODE;
4334 for (x = 0; x < 2; x++)
4335 {
4336 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4337 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4338 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4339 {
29b0f896
AM
4340 /* In case it is "hi" register, give up. */
4341 if (i.op[x].regs->reg_num > 3)
a540244d 4342 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4343 "instruction requiring REX prefix."),
a540244d 4344 register_prefix, i.op[x].regs->reg_name);
773f551c 4345
29b0f896
AM
4346 /* Otherwise it is equivalent to the extended register.
4347 Since the encoding doesn't change this is merely
4348 cosmetic cleanup for debug output. */
4349
4350 i.op[x].regs = i.op[x].regs + 8;
773f551c 4351 }
29b0f896
AM
4352 }
4353 }
773f551c 4354
6b6b6807
L
4355 if (i.rex == 0 && i.rex_encoding)
4356 {
4357 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4358 that uses legacy register. If it is "hi" register, don't add
4359 the REX_OPCODE byte. */
4360 int x;
4361 for (x = 0; x < 2; x++)
4362 if (i.types[x].bitfield.reg
4363 && i.types[x].bitfield.byte
4364 && (i.op[x].regs->reg_flags & RegRex64) == 0
4365 && i.op[x].regs->reg_num > 3)
4366 {
4367 i.rex_encoding = FALSE;
4368 break;
4369 }
4370
4371 if (i.rex_encoding)
4372 i.rex = REX_OPCODE;
4373 }
4374
7ab9ffdd 4375 if (i.rex != 0)
29b0f896
AM
4376 add_prefix (REX_OPCODE | i.rex);
4377
4378 /* We are ready to output the insn. */
4379 output_insn ();
4380}
4381
4382static char *
e3bb37b5 4383parse_insn (char *line, char *mnemonic)
29b0f896
AM
4384{
4385 char *l = line;
4386 char *token_start = l;
4387 char *mnem_p;
5c6af06e 4388 int supported;
d3ce72d0 4389 const insn_template *t;
b6169b20 4390 char *dot_p = NULL;
29b0f896 4391
29b0f896
AM
4392 while (1)
4393 {
4394 mnem_p = mnemonic;
4395 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4396 {
b6169b20
L
4397 if (*mnem_p == '.')
4398 dot_p = mnem_p;
29b0f896
AM
4399 mnem_p++;
4400 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4401 {
29b0f896
AM
4402 as_bad (_("no such instruction: `%s'"), token_start);
4403 return NULL;
4404 }
4405 l++;
4406 }
4407 if (!is_space_char (*l)
4408 && *l != END_OF_INSN
e44823cf
JB
4409 && (intel_syntax
4410 || (*l != PREFIX_SEPARATOR
4411 && *l != ',')))
29b0f896
AM
4412 {
4413 as_bad (_("invalid character %s in mnemonic"),
4414 output_invalid (*l));
4415 return NULL;
4416 }
4417 if (token_start == l)
4418 {
e44823cf 4419 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4420 as_bad (_("expecting prefix; got nothing"));
4421 else
4422 as_bad (_("expecting mnemonic; got nothing"));
4423 return NULL;
4424 }
45288df1 4425
29b0f896 4426 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4427 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4428
29b0f896
AM
4429 if (*l != END_OF_INSN
4430 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4431 && current_templates
40fb9820 4432 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4433 {
c6fb90c8 4434 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4435 {
4436 as_bad ((flag_code != CODE_64BIT
4437 ? _("`%s' is only supported in 64-bit mode")
4438 : _("`%s' is not supported in 64-bit mode")),
4439 current_templates->start->name);
4440 return NULL;
4441 }
29b0f896
AM
4442 /* If we are in 16-bit mode, do not allow addr16 or data16.
4443 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4444 if ((current_templates->start->opcode_modifier.size16
4445 || current_templates->start->opcode_modifier.size32)
29b0f896 4446 && flag_code != CODE_64BIT
40fb9820 4447 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4448 ^ (flag_code == CODE_16BIT)))
4449 {
4450 as_bad (_("redundant %s prefix"),
4451 current_templates->start->name);
4452 return NULL;
45288df1 4453 }
86fa6981 4454 if (current_templates->start->opcode_length == 0)
29b0f896 4455 {
86fa6981
L
4456 /* Handle pseudo prefixes. */
4457 switch (current_templates->start->base_opcode)
4458 {
4459 case 0x0:
4460 /* {disp8} */
4461 i.disp_encoding = disp_encoding_8bit;
4462 break;
4463 case 0x1:
4464 /* {disp32} */
4465 i.disp_encoding = disp_encoding_32bit;
4466 break;
4467 case 0x2:
4468 /* {load} */
4469 i.dir_encoding = dir_encoding_load;
4470 break;
4471 case 0x3:
4472 /* {store} */
4473 i.dir_encoding = dir_encoding_store;
4474 break;
4475 case 0x4:
4476 /* {vex2} */
4477 i.vec_encoding = vex_encoding_vex2;
4478 break;
4479 case 0x5:
4480 /* {vex3} */
4481 i.vec_encoding = vex_encoding_vex3;
4482 break;
4483 case 0x6:
4484 /* {evex} */
4485 i.vec_encoding = vex_encoding_evex;
4486 break;
6b6b6807
L
4487 case 0x7:
4488 /* {rex} */
4489 i.rex_encoding = TRUE;
4490 break;
b6f8c7c4
L
4491 case 0x8:
4492 /* {nooptimize} */
4493 i.no_optimize = TRUE;
4494 break;
86fa6981
L
4495 default:
4496 abort ();
4497 }
4498 }
4499 else
4500 {
4501 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4502 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4503 {
4e9ac44a
L
4504 case PREFIX_EXIST:
4505 return NULL;
4506 case PREFIX_DS:
d777820b 4507 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4508 i.notrack_prefix = current_templates->start->name;
4509 break;
4510 case PREFIX_REP:
4511 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4512 i.hle_prefix = current_templates->start->name;
4513 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4514 i.bnd_prefix = current_templates->start->name;
4515 else
4516 i.rep_prefix = current_templates->start->name;
4517 break;
4518 default:
4519 break;
86fa6981 4520 }
29b0f896
AM
4521 }
4522 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4523 token_start = ++l;
4524 }
4525 else
4526 break;
4527 }
45288df1 4528
30a55f88 4529 if (!current_templates)
b6169b20 4530 {
07d5e953
JB
4531 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4532 Check if we should swap operand or force 32bit displacement in
f8a5c266 4533 encoding. */
30a55f88 4534 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4535 i.dir_encoding = dir_encoding_swap;
8d63c93e 4536 else if (mnem_p - 3 == dot_p
a501d77e
L
4537 && dot_p[1] == 'd'
4538 && dot_p[2] == '8')
4539 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4540 else if (mnem_p - 4 == dot_p
f8a5c266
L
4541 && dot_p[1] == 'd'
4542 && dot_p[2] == '3'
4543 && dot_p[3] == '2')
a501d77e 4544 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4545 else
4546 goto check_suffix;
4547 mnem_p = dot_p;
4548 *dot_p = '\0';
d3ce72d0 4549 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4550 }
4551
29b0f896
AM
4552 if (!current_templates)
4553 {
b6169b20 4554check_suffix:
29b0f896
AM
4555 /* See if we can get a match by trimming off a suffix. */
4556 switch (mnem_p[-1])
4557 {
4558 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4559 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4560 i.suffix = SHORT_MNEM_SUFFIX;
4561 else
1a0670f3 4562 /* Fall through. */
29b0f896
AM
4563 case BYTE_MNEM_SUFFIX:
4564 case QWORD_MNEM_SUFFIX:
4565 i.suffix = mnem_p[-1];
4566 mnem_p[-1] = '\0';
d3ce72d0
NC
4567 current_templates = (const templates *) hash_find (op_hash,
4568 mnemonic);
29b0f896
AM
4569 break;
4570 case SHORT_MNEM_SUFFIX:
4571 case LONG_MNEM_SUFFIX:
4572 if (!intel_syntax)
4573 {
4574 i.suffix = mnem_p[-1];
4575 mnem_p[-1] = '\0';
d3ce72d0
NC
4576 current_templates = (const templates *) hash_find (op_hash,
4577 mnemonic);
29b0f896
AM
4578 }
4579 break;
252b5132 4580
29b0f896
AM
4581 /* Intel Syntax. */
4582 case 'd':
4583 if (intel_syntax)
4584 {
9306ca4a 4585 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4586 i.suffix = SHORT_MNEM_SUFFIX;
4587 else
4588 i.suffix = LONG_MNEM_SUFFIX;
4589 mnem_p[-1] = '\0';
d3ce72d0
NC
4590 current_templates = (const templates *) hash_find (op_hash,
4591 mnemonic);
29b0f896
AM
4592 }
4593 break;
4594 }
4595 if (!current_templates)
4596 {
4597 as_bad (_("no such instruction: `%s'"), token_start);
4598 return NULL;
4599 }
4600 }
252b5132 4601
40fb9820
L
4602 if (current_templates->start->opcode_modifier.jump
4603 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4604 {
4605 /* Check for a branch hint. We allow ",pt" and ",pn" for
4606 predict taken and predict not taken respectively.
4607 I'm not sure that branch hints actually do anything on loop
4608 and jcxz insns (JumpByte) for current Pentium4 chips. They
4609 may work in the future and it doesn't hurt to accept them
4610 now. */
4611 if (l[0] == ',' && l[1] == 'p')
4612 {
4613 if (l[2] == 't')
4614 {
4615 if (!add_prefix (DS_PREFIX_OPCODE))
4616 return NULL;
4617 l += 3;
4618 }
4619 else if (l[2] == 'n')
4620 {
4621 if (!add_prefix (CS_PREFIX_OPCODE))
4622 return NULL;
4623 l += 3;
4624 }
4625 }
4626 }
4627 /* Any other comma loses. */
4628 if (*l == ',')
4629 {
4630 as_bad (_("invalid character %s in mnemonic"),
4631 output_invalid (*l));
4632 return NULL;
4633 }
252b5132 4634
29b0f896 4635 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4636 supported = 0;
4637 for (t = current_templates->start; t < current_templates->end; ++t)
4638 {
c0f3af97
L
4639 supported |= cpu_flags_match (t);
4640 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4641 {
4642 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4643 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4644
548d0ee6
JB
4645 return l;
4646 }
29b0f896 4647 }
3629bb00 4648
548d0ee6
JB
4649 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4650 as_bad (flag_code == CODE_64BIT
4651 ? _("`%s' is not supported in 64-bit mode")
4652 : _("`%s' is only supported in 64-bit mode"),
4653 current_templates->start->name);
4654 else
4655 as_bad (_("`%s' is not supported on `%s%s'"),
4656 current_templates->start->name,
4657 cpu_arch_name ? cpu_arch_name : default_arch,
4658 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4659
548d0ee6 4660 return NULL;
29b0f896 4661}
252b5132 4662
29b0f896 4663static char *
e3bb37b5 4664parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4665{
4666 char *token_start;
3138f287 4667
29b0f896
AM
4668 /* 1 if operand is pending after ','. */
4669 unsigned int expecting_operand = 0;
252b5132 4670
29b0f896
AM
4671 /* Non-zero if operand parens not balanced. */
4672 unsigned int paren_not_balanced;
4673
4674 while (*l != END_OF_INSN)
4675 {
4676 /* Skip optional white space before operand. */
4677 if (is_space_char (*l))
4678 ++l;
d02603dc 4679 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4680 {
4681 as_bad (_("invalid character %s before operand %d"),
4682 output_invalid (*l),
4683 i.operands + 1);
4684 return NULL;
4685 }
d02603dc 4686 token_start = l; /* After white space. */
29b0f896
AM
4687 paren_not_balanced = 0;
4688 while (paren_not_balanced || *l != ',')
4689 {
4690 if (*l == END_OF_INSN)
4691 {
4692 if (paren_not_balanced)
4693 {
4694 if (!intel_syntax)
4695 as_bad (_("unbalanced parenthesis in operand %d."),
4696 i.operands + 1);
4697 else
4698 as_bad (_("unbalanced brackets in operand %d."),
4699 i.operands + 1);
4700 return NULL;
4701 }
4702 else
4703 break; /* we are done */
4704 }
d02603dc 4705 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4706 {
4707 as_bad (_("invalid character %s in operand %d"),
4708 output_invalid (*l),
4709 i.operands + 1);
4710 return NULL;
4711 }
4712 if (!intel_syntax)
4713 {
4714 if (*l == '(')
4715 ++paren_not_balanced;
4716 if (*l == ')')
4717 --paren_not_balanced;
4718 }
4719 else
4720 {
4721 if (*l == '[')
4722 ++paren_not_balanced;
4723 if (*l == ']')
4724 --paren_not_balanced;
4725 }
4726 l++;
4727 }
4728 if (l != token_start)
4729 { /* Yes, we've read in another operand. */
4730 unsigned int operand_ok;
4731 this_operand = i.operands++;
4732 if (i.operands > MAX_OPERANDS)
4733 {
4734 as_bad (_("spurious operands; (%d operands/instruction max)"),
4735 MAX_OPERANDS);
4736 return NULL;
4737 }
9d46ce34 4738 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4739 /* Now parse operand adding info to 'i' as we go along. */
4740 END_STRING_AND_SAVE (l);
4741
1286ab78
L
4742 if (i.mem_operands > 1)
4743 {
4744 as_bad (_("too many memory references for `%s'"),
4745 mnemonic);
4746 return 0;
4747 }
4748
29b0f896
AM
4749 if (intel_syntax)
4750 operand_ok =
4751 i386_intel_operand (token_start,
4752 intel_float_operand (mnemonic));
4753 else
a7619375 4754 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4755
4756 RESTORE_END_STRING (l);
4757 if (!operand_ok)
4758 return NULL;
4759 }
4760 else
4761 {
4762 if (expecting_operand)
4763 {
4764 expecting_operand_after_comma:
4765 as_bad (_("expecting operand after ','; got nothing"));
4766 return NULL;
4767 }
4768 if (*l == ',')
4769 {
4770 as_bad (_("expecting operand before ','; got nothing"));
4771 return NULL;
4772 }
4773 }
7f3f1ea2 4774
29b0f896
AM
4775 /* Now *l must be either ',' or END_OF_INSN. */
4776 if (*l == ',')
4777 {
4778 if (*++l == END_OF_INSN)
4779 {
4780 /* Just skip it, if it's \n complain. */
4781 goto expecting_operand_after_comma;
4782 }
4783 expecting_operand = 1;
4784 }
4785 }
4786 return l;
4787}
7f3f1ea2 4788
050dfa73 4789static void
4d456e3d 4790swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4791{
4792 union i386_op temp_op;
40fb9820 4793 i386_operand_type temp_type;
c48dadc9 4794 unsigned int temp_flags;
050dfa73 4795 enum bfd_reloc_code_real temp_reloc;
4eed87de 4796
050dfa73
MM
4797 temp_type = i.types[xchg2];
4798 i.types[xchg2] = i.types[xchg1];
4799 i.types[xchg1] = temp_type;
c48dadc9
JB
4800
4801 temp_flags = i.flags[xchg2];
4802 i.flags[xchg2] = i.flags[xchg1];
4803 i.flags[xchg1] = temp_flags;
4804
050dfa73
MM
4805 temp_op = i.op[xchg2];
4806 i.op[xchg2] = i.op[xchg1];
4807 i.op[xchg1] = temp_op;
c48dadc9 4808
050dfa73
MM
4809 temp_reloc = i.reloc[xchg2];
4810 i.reloc[xchg2] = i.reloc[xchg1];
4811 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4812
4813 if (i.mask)
4814 {
4815 if (i.mask->operand == xchg1)
4816 i.mask->operand = xchg2;
4817 else if (i.mask->operand == xchg2)
4818 i.mask->operand = xchg1;
4819 }
4820 if (i.broadcast)
4821 {
4822 if (i.broadcast->operand == xchg1)
4823 i.broadcast->operand = xchg2;
4824 else if (i.broadcast->operand == xchg2)
4825 i.broadcast->operand = xchg1;
4826 }
4827 if (i.rounding)
4828 {
4829 if (i.rounding->operand == xchg1)
4830 i.rounding->operand = xchg2;
4831 else if (i.rounding->operand == xchg2)
4832 i.rounding->operand = xchg1;
4833 }
050dfa73
MM
4834}
4835
29b0f896 4836static void
e3bb37b5 4837swap_operands (void)
29b0f896 4838{
b7c61d9a 4839 switch (i.operands)
050dfa73 4840 {
c0f3af97 4841 case 5:
b7c61d9a 4842 case 4:
4d456e3d 4843 swap_2_operands (1, i.operands - 2);
1a0670f3 4844 /* Fall through. */
b7c61d9a
L
4845 case 3:
4846 case 2:
4d456e3d 4847 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4848 break;
4849 default:
4850 abort ();
29b0f896 4851 }
29b0f896
AM
4852
4853 if (i.mem_operands == 2)
4854 {
4855 const seg_entry *temp_seg;
4856 temp_seg = i.seg[0];
4857 i.seg[0] = i.seg[1];
4858 i.seg[1] = temp_seg;
4859 }
4860}
252b5132 4861
29b0f896
AM
4862/* Try to ensure constant immediates are represented in the smallest
4863 opcode possible. */
4864static void
e3bb37b5 4865optimize_imm (void)
29b0f896
AM
4866{
4867 char guess_suffix = 0;
4868 int op;
252b5132 4869
29b0f896
AM
4870 if (i.suffix)
4871 guess_suffix = i.suffix;
4872 else if (i.reg_operands)
4873 {
4874 /* Figure out a suffix from the last register operand specified.
4875 We can't do this properly yet, ie. excluding InOutPortReg,
4876 but the following works for instructions with immediates.
4877 In any case, we can't set i.suffix yet. */
4878 for (op = i.operands; --op >= 0;)
dc821c5f 4879 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4880 {
40fb9820
L
4881 guess_suffix = BYTE_MNEM_SUFFIX;
4882 break;
4883 }
dc821c5f 4884 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4885 {
40fb9820
L
4886 guess_suffix = WORD_MNEM_SUFFIX;
4887 break;
4888 }
dc821c5f 4889 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4890 {
4891 guess_suffix = LONG_MNEM_SUFFIX;
4892 break;
4893 }
dc821c5f 4894 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4895 {
4896 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4897 break;
252b5132 4898 }
29b0f896
AM
4899 }
4900 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4901 guess_suffix = WORD_MNEM_SUFFIX;
4902
4903 for (op = i.operands; --op >= 0;)
40fb9820 4904 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4905 {
4906 switch (i.op[op].imms->X_op)
252b5132 4907 {
29b0f896
AM
4908 case O_constant:
4909 /* If a suffix is given, this operand may be shortened. */
4910 switch (guess_suffix)
252b5132 4911 {
29b0f896 4912 case LONG_MNEM_SUFFIX:
40fb9820
L
4913 i.types[op].bitfield.imm32 = 1;
4914 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4915 break;
4916 case WORD_MNEM_SUFFIX:
40fb9820
L
4917 i.types[op].bitfield.imm16 = 1;
4918 i.types[op].bitfield.imm32 = 1;
4919 i.types[op].bitfield.imm32s = 1;
4920 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4921 break;
4922 case BYTE_MNEM_SUFFIX:
40fb9820
L
4923 i.types[op].bitfield.imm8 = 1;
4924 i.types[op].bitfield.imm8s = 1;
4925 i.types[op].bitfield.imm16 = 1;
4926 i.types[op].bitfield.imm32 = 1;
4927 i.types[op].bitfield.imm32s = 1;
4928 i.types[op].bitfield.imm64 = 1;
29b0f896 4929 break;
252b5132 4930 }
252b5132 4931
29b0f896
AM
4932 /* If this operand is at most 16 bits, convert it
4933 to a signed 16 bit number before trying to see
4934 whether it will fit in an even smaller size.
4935 This allows a 16-bit operand such as $0xffe0 to
4936 be recognised as within Imm8S range. */
40fb9820 4937 if ((i.types[op].bitfield.imm16)
29b0f896 4938 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4939 {
29b0f896
AM
4940 i.op[op].imms->X_add_number =
4941 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4942 }
a28def75
L
4943#ifdef BFD64
4944 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4945 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4946 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4947 == 0))
4948 {
4949 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4950 ^ ((offsetT) 1 << 31))
4951 - ((offsetT) 1 << 31));
4952 }
a28def75 4953#endif
40fb9820 4954 i.types[op]
c6fb90c8
L
4955 = operand_type_or (i.types[op],
4956 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4957
29b0f896
AM
4958 /* We must avoid matching of Imm32 templates when 64bit
4959 only immediate is available. */
4960 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4961 i.types[op].bitfield.imm32 = 0;
29b0f896 4962 break;
252b5132 4963
29b0f896
AM
4964 case O_absent:
4965 case O_register:
4966 abort ();
4967
4968 /* Symbols and expressions. */
4969 default:
9cd96992
JB
4970 /* Convert symbolic operand to proper sizes for matching, but don't
4971 prevent matching a set of insns that only supports sizes other
4972 than those matching the insn suffix. */
4973 {
40fb9820 4974 i386_operand_type mask, allowed;
d3ce72d0 4975 const insn_template *t;
9cd96992 4976
0dfbf9d7
L
4977 operand_type_set (&mask, 0);
4978 operand_type_set (&allowed, 0);
40fb9820 4979
4eed87de
AM
4980 for (t = current_templates->start;
4981 t < current_templates->end;
4982 ++t)
c6fb90c8
L
4983 allowed = operand_type_or (allowed,
4984 t->operand_types[op]);
9cd96992
JB
4985 switch (guess_suffix)
4986 {
4987 case QWORD_MNEM_SUFFIX:
40fb9820
L
4988 mask.bitfield.imm64 = 1;
4989 mask.bitfield.imm32s = 1;
9cd96992
JB
4990 break;
4991 case LONG_MNEM_SUFFIX:
40fb9820 4992 mask.bitfield.imm32 = 1;
9cd96992
JB
4993 break;
4994 case WORD_MNEM_SUFFIX:
40fb9820 4995 mask.bitfield.imm16 = 1;
9cd96992
JB
4996 break;
4997 case BYTE_MNEM_SUFFIX:
40fb9820 4998 mask.bitfield.imm8 = 1;
9cd96992
JB
4999 break;
5000 default:
9cd96992
JB
5001 break;
5002 }
c6fb90c8 5003 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5004 if (!operand_type_all_zero (&allowed))
c6fb90c8 5005 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5006 }
29b0f896 5007 break;
252b5132 5008 }
29b0f896
AM
5009 }
5010}
47926f60 5011
29b0f896
AM
5012/* Try to use the smallest displacement type too. */
5013static void
e3bb37b5 5014optimize_disp (void)
29b0f896
AM
5015{
5016 int op;
3e73aa7c 5017
29b0f896 5018 for (op = i.operands; --op >= 0;)
40fb9820 5019 if (operand_type_check (i.types[op], disp))
252b5132 5020 {
b300c311 5021 if (i.op[op].disps->X_op == O_constant)
252b5132 5022 {
91d6fa6a 5023 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5024
40fb9820 5025 if (i.types[op].bitfield.disp16
91d6fa6a 5026 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5027 {
5028 /* If this operand is at most 16 bits, convert
5029 to a signed 16 bit number and don't use 64bit
5030 displacement. */
91d6fa6a 5031 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5032 i.types[op].bitfield.disp64 = 0;
b300c311 5033 }
a28def75
L
5034#ifdef BFD64
5035 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5036 if (i.types[op].bitfield.disp32
91d6fa6a 5037 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5038 {
5039 /* If this operand is at most 32 bits, convert
5040 to a signed 32 bit number and don't use 64bit
5041 displacement. */
91d6fa6a
NC
5042 op_disp &= (((offsetT) 2 << 31) - 1);
5043 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5044 i.types[op].bitfield.disp64 = 0;
b300c311 5045 }
a28def75 5046#endif
91d6fa6a 5047 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5048 {
40fb9820
L
5049 i.types[op].bitfield.disp8 = 0;
5050 i.types[op].bitfield.disp16 = 0;
5051 i.types[op].bitfield.disp32 = 0;
5052 i.types[op].bitfield.disp32s = 0;
5053 i.types[op].bitfield.disp64 = 0;
b300c311
L
5054 i.op[op].disps = 0;
5055 i.disp_operands--;
5056 }
5057 else if (flag_code == CODE_64BIT)
5058 {
91d6fa6a 5059 if (fits_in_signed_long (op_disp))
28a9d8f5 5060 {
40fb9820
L
5061 i.types[op].bitfield.disp64 = 0;
5062 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5063 }
0e1147d9 5064 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5065 && fits_in_unsigned_long (op_disp))
40fb9820 5066 i.types[op].bitfield.disp32 = 1;
b300c311 5067 }
40fb9820
L
5068 if ((i.types[op].bitfield.disp32
5069 || i.types[op].bitfield.disp32s
5070 || i.types[op].bitfield.disp16)
b5014f7a 5071 && fits_in_disp8 (op_disp))
40fb9820 5072 i.types[op].bitfield.disp8 = 1;
252b5132 5073 }
67a4f2b7
AO
5074 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5075 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5076 {
5077 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5078 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5079 i.types[op].bitfield.disp8 = 0;
5080 i.types[op].bitfield.disp16 = 0;
5081 i.types[op].bitfield.disp32 = 0;
5082 i.types[op].bitfield.disp32s = 0;
5083 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5084 }
5085 else
b300c311 5086 /* We only support 64bit displacement on constants. */
40fb9820 5087 i.types[op].bitfield.disp64 = 0;
252b5132 5088 }
29b0f896
AM
5089}
5090
4a1b91ea
L
5091/* Return 1 if there is a match in broadcast bytes between operand
5092 GIVEN and instruction template T. */
5093
5094static INLINE int
5095match_broadcast_size (const insn_template *t, unsigned int given)
5096{
5097 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5098 && i.types[given].bitfield.byte)
5099 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5100 && i.types[given].bitfield.word)
5101 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5102 && i.types[given].bitfield.dword)
5103 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5104 && i.types[given].bitfield.qword));
5105}
5106
6c30d220
L
5107/* Check if operands are valid for the instruction. */
5108
5109static int
5110check_VecOperands (const insn_template *t)
5111{
43234a1e 5112 unsigned int op;
e2195274
JB
5113 i386_cpu_flags cpu;
5114 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5115
5116 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5117 any one operand are implicity requiring AVX512VL support if the actual
5118 operand size is YMMword or XMMword. Since this function runs after
5119 template matching, there's no need to check for YMMword/XMMword in
5120 the template. */
5121 cpu = cpu_flags_and (t->cpu_flags, avx512);
5122 if (!cpu_flags_all_zero (&cpu)
5123 && !t->cpu_flags.bitfield.cpuavx512vl
5124 && !cpu_arch_flags.bitfield.cpuavx512vl)
5125 {
5126 for (op = 0; op < t->operands; ++op)
5127 {
5128 if (t->operand_types[op].bitfield.zmmword
5129 && (i.types[op].bitfield.ymmword
5130 || i.types[op].bitfield.xmmword))
5131 {
5132 i.error = unsupported;
5133 return 1;
5134 }
5135 }
5136 }
43234a1e 5137
6c30d220
L
5138 /* Without VSIB byte, we can't have a vector register for index. */
5139 if (!t->opcode_modifier.vecsib
5140 && i.index_reg
1b54b8d7
JB
5141 && (i.index_reg->reg_type.bitfield.xmmword
5142 || i.index_reg->reg_type.bitfield.ymmword
5143 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5144 {
5145 i.error = unsupported_vector_index_register;
5146 return 1;
5147 }
5148
ad8ecc81
MZ
5149 /* Check if default mask is allowed. */
5150 if (t->opcode_modifier.nodefmask
5151 && (!i.mask || i.mask->mask->reg_num == 0))
5152 {
5153 i.error = no_default_mask;
5154 return 1;
5155 }
5156
7bab8ab5
JB
5157 /* For VSIB byte, we need a vector register for index, and all vector
5158 registers must be distinct. */
5159 if (t->opcode_modifier.vecsib)
5160 {
5161 if (!i.index_reg
6c30d220 5162 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5163 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5164 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5165 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5166 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5167 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5168 {
5169 i.error = invalid_vsib_address;
5170 return 1;
5171 }
5172
43234a1e
L
5173 gas_assert (i.reg_operands == 2 || i.mask);
5174 if (i.reg_operands == 2 && !i.mask)
5175 {
1b54b8d7
JB
5176 gas_assert (i.types[0].bitfield.regsimd);
5177 gas_assert (i.types[0].bitfield.xmmword
5178 || i.types[0].bitfield.ymmword);
5179 gas_assert (i.types[2].bitfield.regsimd);
5180 gas_assert (i.types[2].bitfield.xmmword
5181 || i.types[2].bitfield.ymmword);
43234a1e
L
5182 if (operand_check == check_none)
5183 return 0;
5184 if (register_number (i.op[0].regs)
5185 != register_number (i.index_reg)
5186 && register_number (i.op[2].regs)
5187 != register_number (i.index_reg)
5188 && register_number (i.op[0].regs)
5189 != register_number (i.op[2].regs))
5190 return 0;
5191 if (operand_check == check_error)
5192 {
5193 i.error = invalid_vector_register_set;
5194 return 1;
5195 }
5196 as_warn (_("mask, index, and destination registers should be distinct"));
5197 }
8444f82a
MZ
5198 else if (i.reg_operands == 1 && i.mask)
5199 {
1b54b8d7
JB
5200 if (i.types[1].bitfield.regsimd
5201 && (i.types[1].bitfield.xmmword
5202 || i.types[1].bitfield.ymmword
5203 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5204 && (register_number (i.op[1].regs)
5205 == register_number (i.index_reg)))
5206 {
5207 if (operand_check == check_error)
5208 {
5209 i.error = invalid_vector_register_set;
5210 return 1;
5211 }
5212 if (operand_check != check_none)
5213 as_warn (_("index and destination registers should be distinct"));
5214 }
5215 }
43234a1e 5216 }
7bab8ab5 5217
43234a1e
L
5218 /* Check if broadcast is supported by the instruction and is applied
5219 to the memory operand. */
5220 if (i.broadcast)
5221 {
8e6e0792 5222 i386_operand_type type, overlap;
43234a1e
L
5223
5224 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5225 and its broadcast bytes match the memory operand. */
32546502 5226 op = i.broadcast->operand;
8e6e0792 5227 if (!t->opcode_modifier.broadcast
c48dadc9 5228 || !(i.flags[op] & Operand_Mem)
c39e5b26 5229 || (!i.types[op].bitfield.unspecified
4a1b91ea 5230 && !match_broadcast_size (t, op)))
43234a1e
L
5231 {
5232 bad_broadcast:
5233 i.error = unsupported_broadcast;
5234 return 1;
5235 }
8e6e0792 5236
4a1b91ea
L
5237 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5238 * i.broadcast->type);
8e6e0792 5239 operand_type_set (&type, 0);
4a1b91ea 5240 switch (i.broadcast->bytes)
8e6e0792 5241 {
4a1b91ea
L
5242 case 2:
5243 type.bitfield.word = 1;
5244 break;
5245 case 4:
5246 type.bitfield.dword = 1;
5247 break;
8e6e0792
JB
5248 case 8:
5249 type.bitfield.qword = 1;
5250 break;
5251 case 16:
5252 type.bitfield.xmmword = 1;
5253 break;
5254 case 32:
5255 type.bitfield.ymmword = 1;
5256 break;
5257 case 64:
5258 type.bitfield.zmmword = 1;
5259 break;
5260 default:
5261 goto bad_broadcast;
5262 }
5263
5264 overlap = operand_type_and (type, t->operand_types[op]);
5265 if (operand_type_all_zero (&overlap))
5266 goto bad_broadcast;
5267
5268 if (t->opcode_modifier.checkregsize)
5269 {
5270 unsigned int j;
5271
e2195274 5272 type.bitfield.baseindex = 1;
8e6e0792
JB
5273 for (j = 0; j < i.operands; ++j)
5274 {
5275 if (j != op
5276 && !operand_type_register_match(i.types[j],
5277 t->operand_types[j],
5278 type,
5279 t->operand_types[op]))
5280 goto bad_broadcast;
5281 }
5282 }
43234a1e
L
5283 }
5284 /* If broadcast is supported in this instruction, we need to check if
5285 operand of one-element size isn't specified without broadcast. */
5286 else if (t->opcode_modifier.broadcast && i.mem_operands)
5287 {
5288 /* Find memory operand. */
5289 for (op = 0; op < i.operands; op++)
5290 if (operand_type_check (i.types[op], anymem))
5291 break;
5292 gas_assert (op < i.operands);
5293 /* Check size of the memory operand. */
4a1b91ea 5294 if (match_broadcast_size (t, op))
43234a1e
L
5295 {
5296 i.error = broadcast_needed;
5297 return 1;
5298 }
5299 }
c39e5b26
JB
5300 else
5301 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5302
5303 /* Check if requested masking is supported. */
ae2387fe 5304 if (i.mask)
43234a1e 5305 {
ae2387fe
JB
5306 switch (t->opcode_modifier.masking)
5307 {
5308 case BOTH_MASKING:
5309 break;
5310 case MERGING_MASKING:
5311 if (i.mask->zeroing)
5312 {
5313 case 0:
5314 i.error = unsupported_masking;
5315 return 1;
5316 }
5317 break;
5318 case DYNAMIC_MASKING:
5319 /* Memory destinations allow only merging masking. */
5320 if (i.mask->zeroing && i.mem_operands)
5321 {
5322 /* Find memory operand. */
5323 for (op = 0; op < i.operands; op++)
c48dadc9 5324 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5325 break;
5326 gas_assert (op < i.operands);
5327 if (op == i.operands - 1)
5328 {
5329 i.error = unsupported_masking;
5330 return 1;
5331 }
5332 }
5333 break;
5334 default:
5335 abort ();
5336 }
43234a1e
L
5337 }
5338
5339 /* Check if masking is applied to dest operand. */
5340 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5341 {
5342 i.error = mask_not_on_destination;
5343 return 1;
5344 }
5345
43234a1e
L
5346 /* Check RC/SAE. */
5347 if (i.rounding)
5348 {
5349 if ((i.rounding->type != saeonly
5350 && !t->opcode_modifier.staticrounding)
5351 || (i.rounding->type == saeonly
5352 && (t->opcode_modifier.staticrounding
5353 || !t->opcode_modifier.sae)))
5354 {
5355 i.error = unsupported_rc_sae;
5356 return 1;
5357 }
5358 /* If the instruction has several immediate operands and one of
5359 them is rounding, the rounding operand should be the last
5360 immediate operand. */
5361 if (i.imm_operands > 1
5362 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5363 {
43234a1e 5364 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5365 return 1;
5366 }
6c30d220
L
5367 }
5368
43234a1e 5369 /* Check vector Disp8 operand. */
b5014f7a
JB
5370 if (t->opcode_modifier.disp8memshift
5371 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5372 {
5373 if (i.broadcast)
4a1b91ea 5374 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5375 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5376 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5377 else
5378 {
5379 const i386_operand_type *type = NULL;
5380
5381 i.memshift = 0;
5382 for (op = 0; op < i.operands; op++)
5383 if (operand_type_check (i.types[op], anymem))
5384 {
4174bfff
JB
5385 if (t->opcode_modifier.evex == EVEXLIG)
5386 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5387 else if (t->operand_types[op].bitfield.xmmword
5388 + t->operand_types[op].bitfield.ymmword
5389 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5390 type = &t->operand_types[op];
5391 else if (!i.types[op].bitfield.unspecified)
5392 type = &i.types[op];
5393 }
4174bfff
JB
5394 else if (i.types[op].bitfield.regsimd
5395 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5396 {
5397 if (i.types[op].bitfield.zmmword)
5398 i.memshift = 6;
5399 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5400 i.memshift = 5;
5401 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5402 i.memshift = 4;
5403 }
5404
5405 if (type)
5406 {
5407 if (type->bitfield.zmmword)
5408 i.memshift = 6;
5409 else if (type->bitfield.ymmword)
5410 i.memshift = 5;
5411 else if (type->bitfield.xmmword)
5412 i.memshift = 4;
5413 }
5414
5415 /* For the check in fits_in_disp8(). */
5416 if (i.memshift == 0)
5417 i.memshift = -1;
5418 }
43234a1e
L
5419
5420 for (op = 0; op < i.operands; op++)
5421 if (operand_type_check (i.types[op], disp)
5422 && i.op[op].disps->X_op == O_constant)
5423 {
b5014f7a 5424 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5425 {
b5014f7a
JB
5426 i.types[op].bitfield.disp8 = 1;
5427 return 0;
43234a1e 5428 }
b5014f7a 5429 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5430 }
5431 }
b5014f7a
JB
5432
5433 i.memshift = 0;
43234a1e 5434
6c30d220
L
5435 return 0;
5436}
5437
43f3e2ee 5438/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5439 operand types. */
5440
5441static int
5442VEX_check_operands (const insn_template *t)
5443{
86fa6981 5444 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5445 {
86fa6981 5446 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5447 if (!is_evex_encoding (t))
86fa6981
L
5448 {
5449 i.error = unsupported;
5450 return 1;
5451 }
5452 return 0;
43234a1e
L
5453 }
5454
a683cc34 5455 if (!t->opcode_modifier.vex)
86fa6981
L
5456 {
5457 /* This instruction template doesn't have VEX prefix. */
5458 if (i.vec_encoding != vex_encoding_default)
5459 {
5460 i.error = unsupported;
5461 return 1;
5462 }
5463 return 0;
5464 }
a683cc34
SP
5465
5466 /* Only check VEX_Imm4, which must be the first operand. */
5467 if (t->operand_types[0].bitfield.vec_imm4)
5468 {
5469 if (i.op[0].imms->X_op != O_constant
5470 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5471 {
a65babc9 5472 i.error = bad_imm4;
891edac4
L
5473 return 1;
5474 }
a683cc34
SP
5475
5476 /* Turn off Imm8 so that update_imm won't complain. */
5477 i.types[0] = vec_imm4;
5478 }
5479
5480 return 0;
5481}
5482
d3ce72d0 5483static const insn_template *
83b16ac6 5484match_template (char mnem_suffix)
29b0f896
AM
5485{
5486 /* Points to template once we've found it. */
d3ce72d0 5487 const insn_template *t;
40fb9820 5488 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5489 i386_operand_type overlap4;
29b0f896 5490 unsigned int found_reverse_match;
83b16ac6 5491 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5492 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5493 int addr_prefix_disp;
a5c311ca 5494 unsigned int j;
3ac21baa 5495 unsigned int found_cpu_match, size_match;
45664ddb 5496 unsigned int check_register;
5614d22c 5497 enum i386_error specific_error = 0;
29b0f896 5498
c0f3af97
L
5499#if MAX_OPERANDS != 5
5500# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5501#endif
5502
29b0f896 5503 found_reverse_match = 0;
539e75ad 5504 addr_prefix_disp = -1;
40fb9820
L
5505
5506 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5507 if (intel_syntax && i.broadcast)
5508 /* nothing */;
5509 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5510 suffix_check.no_bsuf = 1;
5511 else if (i.suffix == WORD_MNEM_SUFFIX)
5512 suffix_check.no_wsuf = 1;
5513 else if (i.suffix == SHORT_MNEM_SUFFIX)
5514 suffix_check.no_ssuf = 1;
5515 else if (i.suffix == LONG_MNEM_SUFFIX)
5516 suffix_check.no_lsuf = 1;
5517 else if (i.suffix == QWORD_MNEM_SUFFIX)
5518 suffix_check.no_qsuf = 1;
5519 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5520 suffix_check.no_ldsuf = 1;
29b0f896 5521
83b16ac6
JB
5522 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5523 if (intel_syntax)
5524 {
5525 switch (mnem_suffix)
5526 {
5527 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5528 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5529 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5530 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5531 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5532 }
5533 }
5534
01559ecc
L
5535 /* Must have right number of operands. */
5536 i.error = number_of_operands_mismatch;
5537
45aa61fe 5538 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5539 {
539e75ad 5540 addr_prefix_disp = -1;
dbbc8b7e 5541 found_reverse_match = 0;
539e75ad 5542
29b0f896
AM
5543 if (i.operands != t->operands)
5544 continue;
5545
50aecf8c 5546 /* Check processor support. */
a65babc9 5547 i.error = unsupported;
c0f3af97
L
5548 found_cpu_match = (cpu_flags_match (t)
5549 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5550 if (!found_cpu_match)
5551 continue;
5552
e1d4d893 5553 /* Check AT&T mnemonic. */
a65babc9 5554 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5555 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5556 continue;
5557
e92bae62 5558 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5559 i.error = unsupported_syntax;
5c07affc 5560 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5561 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5562 || (intel64 && t->opcode_modifier.amd64)
5563 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5564 continue;
5565
20592a94 5566 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5567 i.error = invalid_instruction_suffix;
567e4e96
L
5568 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5569 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5570 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5571 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5572 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5573 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5574 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5575 continue;
83b16ac6
JB
5576 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5577 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5578 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5579 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5580 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5581 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5582 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5583 continue;
29b0f896 5584
3ac21baa
JB
5585 size_match = operand_size_match (t);
5586 if (!size_match)
7d5e4556 5587 continue;
539e75ad 5588
5c07affc
L
5589 for (j = 0; j < MAX_OPERANDS; j++)
5590 operand_types[j] = t->operand_types[j];
5591
45aa61fe
AM
5592 /* In general, don't allow 64-bit operands in 32-bit mode. */
5593 if (i.suffix == QWORD_MNEM_SUFFIX
5594 && flag_code != CODE_64BIT
5595 && (intel_syntax
40fb9820 5596 ? (!t->opcode_modifier.ignoresize
625cbd7a 5597 && !t->opcode_modifier.broadcast
45aa61fe
AM
5598 && !intel_float_operand (t->name))
5599 : intel_float_operand (t->name) != 2)
40fb9820 5600 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5601 && !operand_types[0].bitfield.regsimd)
40fb9820 5602 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5603 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5604 && (t->base_opcode != 0x0fc7
5605 || t->extension_opcode != 1 /* cmpxchg8b */))
5606 continue;
5607
192dc9c6
JB
5608 /* In general, don't allow 32-bit operands on pre-386. */
5609 else if (i.suffix == LONG_MNEM_SUFFIX
5610 && !cpu_arch_flags.bitfield.cpui386
5611 && (intel_syntax
5612 ? (!t->opcode_modifier.ignoresize
5613 && !intel_float_operand (t->name))
5614 : intel_float_operand (t->name) != 2)
5615 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5616 && !operand_types[0].bitfield.regsimd)
192dc9c6 5617 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5618 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5619 continue;
5620
29b0f896 5621 /* Do not verify operands when there are none. */
50aecf8c 5622 else
29b0f896 5623 {
c6fb90c8 5624 if (!t->operands)
2dbab7d5
L
5625 /* We've found a match; break out of loop. */
5626 break;
29b0f896 5627 }
252b5132 5628
539e75ad
L
5629 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5630 into Disp32/Disp16/Disp32 operand. */
5631 if (i.prefix[ADDR_PREFIX] != 0)
5632 {
40fb9820 5633 /* There should be only one Disp operand. */
539e75ad
L
5634 switch (flag_code)
5635 {
5636 case CODE_16BIT:
40fb9820
L
5637 for (j = 0; j < MAX_OPERANDS; j++)
5638 {
5639 if (operand_types[j].bitfield.disp16)
5640 {
5641 addr_prefix_disp = j;
5642 operand_types[j].bitfield.disp32 = 1;
5643 operand_types[j].bitfield.disp16 = 0;
5644 break;
5645 }
5646 }
539e75ad
L
5647 break;
5648 case CODE_32BIT:
40fb9820
L
5649 for (j = 0; j < MAX_OPERANDS; j++)
5650 {
5651 if (operand_types[j].bitfield.disp32)
5652 {
5653 addr_prefix_disp = j;
5654 operand_types[j].bitfield.disp32 = 0;
5655 operand_types[j].bitfield.disp16 = 1;
5656 break;
5657 }
5658 }
539e75ad
L
5659 break;
5660 case CODE_64BIT:
40fb9820
L
5661 for (j = 0; j < MAX_OPERANDS; j++)
5662 {
5663 if (operand_types[j].bitfield.disp64)
5664 {
5665 addr_prefix_disp = j;
5666 operand_types[j].bitfield.disp64 = 0;
5667 operand_types[j].bitfield.disp32 = 1;
5668 break;
5669 }
5670 }
539e75ad
L
5671 break;
5672 }
539e75ad
L
5673 }
5674
02a86693
L
5675 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5676 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5677 continue;
5678
56ffb741 5679 /* We check register size if needed. */
e2195274
JB
5680 if (t->opcode_modifier.checkregsize)
5681 {
5682 check_register = (1 << t->operands) - 1;
5683 if (i.broadcast)
5684 check_register &= ~(1 << i.broadcast->operand);
5685 }
5686 else
5687 check_register = 0;
5688
c6fb90c8 5689 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5690 switch (t->operands)
5691 {
5692 case 1:
40fb9820 5693 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5694 continue;
5695 break;
5696 case 2:
33eaf5de 5697 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5698 only in 32bit mode and we can use opcode 0x90. In 64bit
5699 mode, we can't use 0x90 for xchg %eax, %eax since it should
5700 zero-extend %eax to %rax. */
5701 if (flag_code == CODE_64BIT
5702 && t->base_opcode == 0x90
0dfbf9d7
L
5703 && operand_type_equal (&i.types [0], &acc32)
5704 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5705 continue;
1212781b
JB
5706 /* xrelease mov %eax, <disp> is another special case. It must not
5707 match the accumulator-only encoding of mov. */
5708 if (flag_code != CODE_64BIT
5709 && i.hle_prefix
5710 && t->base_opcode == 0xa0
5711 && i.types[0].bitfield.acc
5712 && operand_type_check (i.types[1], anymem))
5713 continue;
3ac21baa
JB
5714 if (!(size_match & MATCH_STRAIGHT))
5715 goto check_reverse;
64c49ab3
JB
5716 /* Reverse direction of operands if swapping is possible in the first
5717 place (operands need to be symmetric) and
5718 - the load form is requested, and the template is a store form,
5719 - the store form is requested, and the template is a load form,
5720 - the non-default (swapped) form is requested. */
5721 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5722 if (t->opcode_modifier.d && i.reg_operands == 2
5723 && !operand_type_all_zero (&overlap1))
5724 switch (i.dir_encoding)
5725 {
5726 case dir_encoding_load:
5727 if (operand_type_check (operand_types[i.operands - 1], anymem)
5728 || operand_types[i.operands - 1].bitfield.regmem)
5729 goto check_reverse;
5730 break;
5731
5732 case dir_encoding_store:
5733 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5734 && !operand_types[i.operands - 1].bitfield.regmem)
5735 goto check_reverse;
5736 break;
5737
5738 case dir_encoding_swap:
5739 goto check_reverse;
5740
5741 case dir_encoding_default:
5742 break;
5743 }
1a0670f3 5744 /* Fall through. */
b6169b20 5745
29b0f896 5746 case 3:
86fa6981 5747 /* If we want store form, we skip the current load. */
64c49ab3
JB
5748 if ((i.dir_encoding == dir_encoding_store
5749 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5750 && i.mem_operands == 0
5751 && t->opcode_modifier.load)
fa99fab2 5752 continue;
1a0670f3 5753 /* Fall through. */
f48ff2ae 5754 case 4:
c0f3af97 5755 case 5:
c6fb90c8 5756 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5757 if (!operand_type_match (overlap0, i.types[0])
5758 || !operand_type_match (overlap1, i.types[1])
e2195274 5759 || ((check_register & 3) == 3
dc821c5f 5760 && !operand_type_register_match (i.types[0],
40fb9820 5761 operand_types[0],
dc821c5f 5762 i.types[1],
40fb9820 5763 operand_types[1])))
29b0f896
AM
5764 {
5765 /* Check if other direction is valid ... */
38e314eb 5766 if (!t->opcode_modifier.d)
29b0f896
AM
5767 continue;
5768
b6169b20 5769check_reverse:
3ac21baa
JB
5770 if (!(size_match & MATCH_REVERSE))
5771 continue;
29b0f896 5772 /* Try reversing direction of operands. */
c6fb90c8
L
5773 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5774 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5775 if (!operand_type_match (overlap0, i.types[0])
5776 || !operand_type_match (overlap1, i.types[1])
45664ddb 5777 || (check_register
dc821c5f 5778 && !operand_type_register_match (i.types[0],
45664ddb 5779 operand_types[1],
45664ddb
L
5780 i.types[1],
5781 operand_types[0])))
29b0f896
AM
5782 {
5783 /* Does not match either direction. */
5784 continue;
5785 }
38e314eb 5786 /* found_reverse_match holds which of D or FloatR
29b0f896 5787 we've found. */
38e314eb
JB
5788 if (!t->opcode_modifier.d)
5789 found_reverse_match = 0;
5790 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5791 found_reverse_match = Opcode_FloatD;
dbbc8b7e
JB
5792 else if (operand_types[0].bitfield.xmmword
5793 || operand_types[1].bitfield.xmmword
5794 || operand_types[0].bitfield.regmmx
5795 || operand_types[1].bitfield.regmmx
5796 || is_any_vex_encoding(t))
5797 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5798 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5799 else
38e314eb 5800 found_reverse_match = Opcode_D;
40fb9820 5801 if (t->opcode_modifier.floatr)
8a2ed489 5802 found_reverse_match |= Opcode_FloatR;
29b0f896 5803 }
f48ff2ae 5804 else
29b0f896 5805 {
f48ff2ae 5806 /* Found a forward 2 operand match here. */
d1cbb4db
L
5807 switch (t->operands)
5808 {
c0f3af97
L
5809 case 5:
5810 overlap4 = operand_type_and (i.types[4],
5811 operand_types[4]);
1a0670f3 5812 /* Fall through. */
d1cbb4db 5813 case 4:
c6fb90c8
L
5814 overlap3 = operand_type_and (i.types[3],
5815 operand_types[3]);
1a0670f3 5816 /* Fall through. */
d1cbb4db 5817 case 3:
c6fb90c8
L
5818 overlap2 = operand_type_and (i.types[2],
5819 operand_types[2]);
d1cbb4db
L
5820 break;
5821 }
29b0f896 5822
f48ff2ae
L
5823 switch (t->operands)
5824 {
c0f3af97
L
5825 case 5:
5826 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5827 || !operand_type_register_match (i.types[3],
c0f3af97 5828 operand_types[3],
c0f3af97
L
5829 i.types[4],
5830 operand_types[4]))
5831 continue;
1a0670f3 5832 /* Fall through. */
f48ff2ae 5833 case 4:
40fb9820 5834 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5835 || ((check_register & 0xa) == 0xa
5836 && !operand_type_register_match (i.types[1],
f7768225
JB
5837 operand_types[1],
5838 i.types[3],
e2195274
JB
5839 operand_types[3]))
5840 || ((check_register & 0xc) == 0xc
5841 && !operand_type_register_match (i.types[2],
5842 operand_types[2],
5843 i.types[3],
5844 operand_types[3])))
f48ff2ae 5845 continue;
1a0670f3 5846 /* Fall through. */
f48ff2ae
L
5847 case 3:
5848 /* Here we make use of the fact that there are no
23e42951 5849 reverse match 3 operand instructions. */
40fb9820 5850 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5851 || ((check_register & 5) == 5
5852 && !operand_type_register_match (i.types[0],
23e42951
JB
5853 operand_types[0],
5854 i.types[2],
e2195274
JB
5855 operand_types[2]))
5856 || ((check_register & 6) == 6
5857 && !operand_type_register_match (i.types[1],
5858 operand_types[1],
5859 i.types[2],
5860 operand_types[2])))
f48ff2ae
L
5861 continue;
5862 break;
5863 }
29b0f896 5864 }
f48ff2ae 5865 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5866 slip through to break. */
5867 }
3629bb00 5868 if (!found_cpu_match)
dbbc8b7e 5869 continue;
c0f3af97 5870
5614d22c
JB
5871 /* Check if vector and VEX operands are valid. */
5872 if (check_VecOperands (t) || VEX_check_operands (t))
5873 {
5874 specific_error = i.error;
5875 continue;
5876 }
a683cc34 5877
29b0f896
AM
5878 /* We've found a match; break out of loop. */
5879 break;
5880 }
5881
5882 if (t == current_templates->end)
5883 {
5884 /* We found no match. */
a65babc9 5885 const char *err_msg;
5614d22c 5886 switch (specific_error ? specific_error : i.error)
a65babc9
L
5887 {
5888 default:
5889 abort ();
86e026a4 5890 case operand_size_mismatch:
a65babc9
L
5891 err_msg = _("operand size mismatch");
5892 break;
5893 case operand_type_mismatch:
5894 err_msg = _("operand type mismatch");
5895 break;
5896 case register_type_mismatch:
5897 err_msg = _("register type mismatch");
5898 break;
5899 case number_of_operands_mismatch:
5900 err_msg = _("number of operands mismatch");
5901 break;
5902 case invalid_instruction_suffix:
5903 err_msg = _("invalid instruction suffix");
5904 break;
5905 case bad_imm4:
4a2608e3 5906 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5907 break;
a65babc9
L
5908 case unsupported_with_intel_mnemonic:
5909 err_msg = _("unsupported with Intel mnemonic");
5910 break;
5911 case unsupported_syntax:
5912 err_msg = _("unsupported syntax");
5913 break;
5914 case unsupported:
35262a23 5915 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5916 current_templates->start->name);
5917 return NULL;
6c30d220
L
5918 case invalid_vsib_address:
5919 err_msg = _("invalid VSIB address");
5920 break;
7bab8ab5
JB
5921 case invalid_vector_register_set:
5922 err_msg = _("mask, index, and destination registers must be distinct");
5923 break;
6c30d220
L
5924 case unsupported_vector_index_register:
5925 err_msg = _("unsupported vector index register");
5926 break;
43234a1e
L
5927 case unsupported_broadcast:
5928 err_msg = _("unsupported broadcast");
5929 break;
43234a1e
L
5930 case broadcast_needed:
5931 err_msg = _("broadcast is needed for operand of such type");
5932 break;
5933 case unsupported_masking:
5934 err_msg = _("unsupported masking");
5935 break;
5936 case mask_not_on_destination:
5937 err_msg = _("mask not on destination operand");
5938 break;
5939 case no_default_mask:
5940 err_msg = _("default mask isn't allowed");
5941 break;
5942 case unsupported_rc_sae:
5943 err_msg = _("unsupported static rounding/sae");
5944 break;
5945 case rc_sae_operand_not_last_imm:
5946 if (intel_syntax)
5947 err_msg = _("RC/SAE operand must precede immediate operands");
5948 else
5949 err_msg = _("RC/SAE operand must follow immediate operands");
5950 break;
5951 case invalid_register_operand:
5952 err_msg = _("invalid register operand");
5953 break;
a65babc9
L
5954 }
5955 as_bad (_("%s for `%s'"), err_msg,
891edac4 5956 current_templates->start->name);
fa99fab2 5957 return NULL;
29b0f896 5958 }
252b5132 5959
29b0f896
AM
5960 if (!quiet_warnings)
5961 {
5962 if (!intel_syntax
40fb9820
L
5963 && (i.types[0].bitfield.jumpabsolute
5964 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5965 {
5966 as_warn (_("indirect %s without `*'"), t->name);
5967 }
5968
40fb9820
L
5969 if (t->opcode_modifier.isprefix
5970 && t->opcode_modifier.ignoresize)
29b0f896
AM
5971 {
5972 /* Warn them that a data or address size prefix doesn't
5973 affect assembly of the next line of code. */
5974 as_warn (_("stand-alone `%s' prefix"), t->name);
5975 }
5976 }
5977
5978 /* Copy the template we found. */
5979 i.tm = *t;
539e75ad
L
5980
5981 if (addr_prefix_disp != -1)
5982 i.tm.operand_types[addr_prefix_disp]
5983 = operand_types[addr_prefix_disp];
5984
29b0f896
AM
5985 if (found_reverse_match)
5986 {
5987 /* If we found a reverse match we must alter the opcode
5988 direction bit. found_reverse_match holds bits to change
5989 (different for int & float insns). */
5990
5991 i.tm.base_opcode ^= found_reverse_match;
5992
539e75ad
L
5993 i.tm.operand_types[0] = operand_types[1];
5994 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5995 }
5996
fa99fab2 5997 return t;
29b0f896
AM
5998}
5999
6000static int
e3bb37b5 6001check_string (void)
29b0f896 6002{
40fb9820
L
6003 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6004 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6005 {
6006 if (i.seg[0] != NULL && i.seg[0] != &es)
6007 {
a87af027 6008 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6009 i.tm.name,
a87af027
JB
6010 mem_op + 1,
6011 register_prefix);
29b0f896
AM
6012 return 0;
6013 }
6014 /* There's only ever one segment override allowed per instruction.
6015 This instruction possibly has a legal segment override on the
6016 second operand, so copy the segment to where non-string
6017 instructions store it, allowing common code. */
6018 i.seg[0] = i.seg[1];
6019 }
40fb9820 6020 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6021 {
6022 if (i.seg[1] != NULL && i.seg[1] != &es)
6023 {
a87af027 6024 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6025 i.tm.name,
a87af027
JB
6026 mem_op + 2,
6027 register_prefix);
29b0f896
AM
6028 return 0;
6029 }
6030 }
6031 return 1;
6032}
6033
6034static int
543613e9 6035process_suffix (void)
29b0f896
AM
6036{
6037 /* If matched instruction specifies an explicit instruction mnemonic
6038 suffix, use it. */
40fb9820
L
6039 if (i.tm.opcode_modifier.size16)
6040 i.suffix = WORD_MNEM_SUFFIX;
6041 else if (i.tm.opcode_modifier.size32)
6042 i.suffix = LONG_MNEM_SUFFIX;
6043 else if (i.tm.opcode_modifier.size64)
6044 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6045 else if (i.reg_operands)
6046 {
6047 /* If there's no instruction mnemonic suffix we try to invent one
6048 based on register operands. */
6049 if (!i.suffix)
6050 {
6051 /* We take i.suffix from the last register operand specified,
6052 Destination register type is more significant than source
381d071f
L
6053 register type. crc32 in SSE4.2 prefers source register
6054 type. */
6055 if (i.tm.base_opcode == 0xf20f38f1)
6056 {
dc821c5f 6057 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 6058 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 6059 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 6060 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 6061 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 6062 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 6063 }
9344ff29 6064 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 6065 {
dc821c5f 6066 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
6067 i.suffix = BYTE_MNEM_SUFFIX;
6068 }
381d071f
L
6069
6070 if (!i.suffix)
6071 {
6072 int op;
6073
20592a94
L
6074 if (i.tm.base_opcode == 0xf20f38f1
6075 || i.tm.base_opcode == 0xf20f38f0)
6076 {
6077 /* We have to know the operand size for crc32. */
6078 as_bad (_("ambiguous memory operand size for `%s`"),
6079 i.tm.name);
6080 return 0;
6081 }
6082
381d071f 6083 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6084 if (!i.tm.operand_types[op].bitfield.inoutportreg
6085 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6086 {
8819ada6
JB
6087 if (!i.types[op].bitfield.reg)
6088 continue;
6089 if (i.types[op].bitfield.byte)
6090 i.suffix = BYTE_MNEM_SUFFIX;
6091 else if (i.types[op].bitfield.word)
6092 i.suffix = WORD_MNEM_SUFFIX;
6093 else if (i.types[op].bitfield.dword)
6094 i.suffix = LONG_MNEM_SUFFIX;
6095 else if (i.types[op].bitfield.qword)
6096 i.suffix = QWORD_MNEM_SUFFIX;
6097 else
6098 continue;
6099 break;
381d071f
L
6100 }
6101 }
29b0f896
AM
6102 }
6103 else if (i.suffix == BYTE_MNEM_SUFFIX)
6104 {
2eb952a4
L
6105 if (intel_syntax
6106 && i.tm.opcode_modifier.ignoresize
6107 && i.tm.opcode_modifier.no_bsuf)
6108 i.suffix = 0;
6109 else if (!check_byte_reg ())
29b0f896
AM
6110 return 0;
6111 }
6112 else if (i.suffix == LONG_MNEM_SUFFIX)
6113 {
2eb952a4
L
6114 if (intel_syntax
6115 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6116 && i.tm.opcode_modifier.no_lsuf
6117 && !i.tm.opcode_modifier.todword
6118 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6119 i.suffix = 0;
6120 else if (!check_long_reg ())
29b0f896
AM
6121 return 0;
6122 }
6123 else if (i.suffix == QWORD_MNEM_SUFFIX)
6124 {
955e1e6a
L
6125 if (intel_syntax
6126 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6127 && i.tm.opcode_modifier.no_qsuf
6128 && !i.tm.opcode_modifier.todword
6129 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6130 i.suffix = 0;
6131 else if (!check_qword_reg ())
29b0f896
AM
6132 return 0;
6133 }
6134 else if (i.suffix == WORD_MNEM_SUFFIX)
6135 {
2eb952a4
L
6136 if (intel_syntax
6137 && i.tm.opcode_modifier.ignoresize
6138 && i.tm.opcode_modifier.no_wsuf)
6139 i.suffix = 0;
6140 else if (!check_word_reg ())
29b0f896
AM
6141 return 0;
6142 }
40fb9820 6143 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6144 /* Do nothing if the instruction is going to ignore the prefix. */
6145 ;
6146 else
6147 abort ();
6148 }
40fb9820 6149 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6150 && !i.suffix
6151 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6152 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6153 {
6154 i.suffix = stackop_size;
6155 }
9306ca4a
JB
6156 else if (intel_syntax
6157 && !i.suffix
40fb9820
L
6158 && (i.tm.operand_types[0].bitfield.jumpabsolute
6159 || i.tm.opcode_modifier.jumpbyte
6160 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6161 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6162 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6163 {
6164 switch (flag_code)
6165 {
6166 case CODE_64BIT:
40fb9820 6167 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6168 {
6169 i.suffix = QWORD_MNEM_SUFFIX;
6170 break;
6171 }
1a0670f3 6172 /* Fall through. */
9306ca4a 6173 case CODE_32BIT:
40fb9820 6174 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6175 i.suffix = LONG_MNEM_SUFFIX;
6176 break;
6177 case CODE_16BIT:
40fb9820 6178 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6179 i.suffix = WORD_MNEM_SUFFIX;
6180 break;
6181 }
6182 }
252b5132 6183
9306ca4a 6184 if (!i.suffix)
29b0f896 6185 {
9306ca4a
JB
6186 if (!intel_syntax)
6187 {
40fb9820 6188 if (i.tm.opcode_modifier.w)
9306ca4a 6189 {
4eed87de
AM
6190 as_bad (_("no instruction mnemonic suffix given and "
6191 "no register operands; can't size instruction"));
9306ca4a
JB
6192 return 0;
6193 }
6194 }
6195 else
6196 {
40fb9820 6197 unsigned int suffixes;
7ab9ffdd 6198
40fb9820
L
6199 suffixes = !i.tm.opcode_modifier.no_bsuf;
6200 if (!i.tm.opcode_modifier.no_wsuf)
6201 suffixes |= 1 << 1;
6202 if (!i.tm.opcode_modifier.no_lsuf)
6203 suffixes |= 1 << 2;
fc4adea1 6204 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6205 suffixes |= 1 << 3;
6206 if (!i.tm.opcode_modifier.no_ssuf)
6207 suffixes |= 1 << 4;
c2b9da16 6208 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6209 suffixes |= 1 << 5;
6210
6211 /* There are more than suffix matches. */
6212 if (i.tm.opcode_modifier.w
9306ca4a 6213 || ((suffixes & (suffixes - 1))
40fb9820
L
6214 && !i.tm.opcode_modifier.defaultsize
6215 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6216 {
6217 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6218 return 0;
6219 }
6220 }
29b0f896 6221 }
252b5132 6222
d2224064
JB
6223 /* Change the opcode based on the operand size given by i.suffix. */
6224 switch (i.suffix)
29b0f896 6225 {
d2224064
JB
6226 /* Size floating point instruction. */
6227 case LONG_MNEM_SUFFIX:
6228 if (i.tm.opcode_modifier.floatmf)
6229 {
6230 i.tm.base_opcode ^= 4;
6231 break;
6232 }
6233 /* fall through */
6234 case WORD_MNEM_SUFFIX:
6235 case QWORD_MNEM_SUFFIX:
29b0f896 6236 /* It's not a byte, select word/dword operation. */
40fb9820 6237 if (i.tm.opcode_modifier.w)
29b0f896 6238 {
40fb9820 6239 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6240 i.tm.base_opcode |= 8;
6241 else
6242 i.tm.base_opcode |= 1;
6243 }
d2224064
JB
6244 /* fall through */
6245 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6246 /* Now select between word & dword operations via the operand
6247 size prefix, except for instructions that will ignore this
6248 prefix anyway. */
75c0a438
L
6249 if (i.reg_operands > 0
6250 && i.types[0].bitfield.reg
6251 && i.tm.opcode_modifier.addrprefixopreg
6252 && (i.tm.opcode_modifier.immext
6253 || i.operands == 1))
cb712a9e 6254 {
ca61edf2
L
6255 /* The address size override prefix changes the size of the
6256 first operand. */
40fb9820 6257 if ((flag_code == CODE_32BIT
75c0a438 6258 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6259 || (flag_code != CODE_32BIT
75c0a438 6260 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6261 if (!add_prefix (ADDR_PREFIX_OPCODE))
6262 return 0;
6263 }
6264 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6265 && !i.tm.opcode_modifier.ignoresize
6266 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6267 && !i.tm.opcode_modifier.vex
6268 && !i.tm.opcode_modifier.vexopcode
6269 && !is_evex_encoding (&i.tm)
cb712a9e
L
6270 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6271 || (flag_code == CODE_64BIT
40fb9820 6272 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6273 {
6274 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6275
40fb9820 6276 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6277 prefix = ADDR_PREFIX_OPCODE;
252b5132 6278
29b0f896
AM
6279 if (!add_prefix (prefix))
6280 return 0;
24eab124 6281 }
252b5132 6282
29b0f896
AM
6283 /* Set mode64 for an operand. */
6284 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6285 && flag_code == CODE_64BIT
d2224064 6286 && !i.tm.opcode_modifier.norex64
46e883c5 6287 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6288 need rex64. */
6289 && ! (i.operands == 2
6290 && i.tm.base_opcode == 0x90
6291 && i.tm.extension_opcode == None
6292 && operand_type_equal (&i.types [0], &acc64)
6293 && operand_type_equal (&i.types [1], &acc64)))
6294 i.rex |= REX_W;
3e73aa7c 6295
d2224064 6296 break;
29b0f896 6297 }
7ecd2f8b 6298
c0a30a9f
L
6299 if (i.reg_operands != 0
6300 && i.operands > 1
6301 && i.tm.opcode_modifier.addrprefixopreg
6302 && !i.tm.opcode_modifier.immext)
6303 {
6304 /* Check invalid register operand when the address size override
6305 prefix changes the size of register operands. */
6306 unsigned int op;
6307 enum { need_word, need_dword, need_qword } need;
6308
6309 if (flag_code == CODE_32BIT)
6310 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6311 else
6312 {
6313 if (i.prefix[ADDR_PREFIX])
6314 need = need_dword;
6315 else
6316 need = flag_code == CODE_64BIT ? need_qword : need_word;
6317 }
6318
6319 for (op = 0; op < i.operands; op++)
6320 if (i.types[op].bitfield.reg
6321 && ((need == need_word
6322 && !i.op[op].regs->reg_type.bitfield.word)
6323 || (need == need_dword
6324 && !i.op[op].regs->reg_type.bitfield.dword)
6325 || (need == need_qword
6326 && !i.op[op].regs->reg_type.bitfield.qword)))
6327 {
6328 as_bad (_("invalid register operand size for `%s'"),
6329 i.tm.name);
6330 return 0;
6331 }
6332 }
6333
29b0f896
AM
6334 return 1;
6335}
3e73aa7c 6336
29b0f896 6337static int
543613e9 6338check_byte_reg (void)
29b0f896
AM
6339{
6340 int op;
543613e9 6341
29b0f896
AM
6342 for (op = i.operands; --op >= 0;)
6343 {
dc821c5f
JB
6344 /* Skip non-register operands. */
6345 if (!i.types[op].bitfield.reg)
6346 continue;
6347
29b0f896
AM
6348 /* If this is an eight bit register, it's OK. If it's the 16 or
6349 32 bit version of an eight bit register, we will just use the
6350 low portion, and that's OK too. */
dc821c5f 6351 if (i.types[op].bitfield.byte)
29b0f896
AM
6352 continue;
6353
5a819eb9
JB
6354 /* I/O port address operands are OK too. */
6355 if (i.tm.operand_types[op].bitfield.inoutportreg)
6356 continue;
6357
9344ff29
L
6358 /* crc32 doesn't generate this warning. */
6359 if (i.tm.base_opcode == 0xf20f38f0)
6360 continue;
6361
dc821c5f
JB
6362 if ((i.types[op].bitfield.word
6363 || i.types[op].bitfield.dword
6364 || i.types[op].bitfield.qword)
5a819eb9
JB
6365 && i.op[op].regs->reg_num < 4
6366 /* Prohibit these changes in 64bit mode, since the lowering
6367 would be more complicated. */
6368 && flag_code != CODE_64BIT)
29b0f896 6369 {
29b0f896 6370#if REGISTER_WARNINGS
5a819eb9 6371 if (!quiet_warnings)
a540244d
L
6372 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6373 register_prefix,
dc821c5f 6374 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6375 ? REGNAM_AL - REGNAM_AX
6376 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6377 register_prefix,
29b0f896
AM
6378 i.op[op].regs->reg_name,
6379 i.suffix);
6380#endif
6381 continue;
6382 }
6383 /* Any other register is bad. */
dc821c5f 6384 if (i.types[op].bitfield.reg
40fb9820 6385 || i.types[op].bitfield.regmmx
1b54b8d7 6386 || i.types[op].bitfield.regsimd
40fb9820
L
6387 || i.types[op].bitfield.sreg2
6388 || i.types[op].bitfield.sreg3
6389 || i.types[op].bitfield.control
6390 || i.types[op].bitfield.debug
ca0d63fe 6391 || i.types[op].bitfield.test)
29b0f896 6392 {
a540244d
L
6393 as_bad (_("`%s%s' not allowed with `%s%c'"),
6394 register_prefix,
29b0f896
AM
6395 i.op[op].regs->reg_name,
6396 i.tm.name,
6397 i.suffix);
6398 return 0;
6399 }
6400 }
6401 return 1;
6402}
6403
6404static int
e3bb37b5 6405check_long_reg (void)
29b0f896
AM
6406{
6407 int op;
6408
6409 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6410 /* Skip non-register operands. */
6411 if (!i.types[op].bitfield.reg)
6412 continue;
29b0f896
AM
6413 /* Reject eight bit registers, except where the template requires
6414 them. (eg. movzb) */
dc821c5f
JB
6415 else if (i.types[op].bitfield.byte
6416 && (i.tm.operand_types[op].bitfield.reg
6417 || i.tm.operand_types[op].bitfield.acc)
6418 && (i.tm.operand_types[op].bitfield.word
6419 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6420 {
a540244d
L
6421 as_bad (_("`%s%s' not allowed with `%s%c'"),
6422 register_prefix,
29b0f896
AM
6423 i.op[op].regs->reg_name,
6424 i.tm.name,
6425 i.suffix);
6426 return 0;
6427 }
e4630f71 6428 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6429 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6430 && i.types[op].bitfield.word
6431 && (i.tm.operand_types[op].bitfield.reg
6432 || i.tm.operand_types[op].bitfield.acc)
6433 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6434 {
6435 /* Prohibit these changes in the 64bit mode, since the
6436 lowering is more complicated. */
6437 if (flag_code == CODE_64BIT)
252b5132 6438 {
2b5d6a91 6439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6440 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6441 i.suffix);
6442 return 0;
252b5132 6443 }
29b0f896 6444#if REGISTER_WARNINGS
cecf1424
JB
6445 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6446 register_prefix,
6447 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6448 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6449#endif
252b5132 6450 }
e4630f71 6451 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6452 else if (i.types[op].bitfield.qword
6453 && (i.tm.operand_types[op].bitfield.reg
6454 || i.tm.operand_types[op].bitfield.acc)
6455 && i.tm.operand_types[op].bitfield.dword)
252b5132 6456 {
34828aad 6457 if (intel_syntax
ca61edf2 6458 && i.tm.opcode_modifier.toqword
1b54b8d7 6459 && !i.types[0].bitfield.regsimd)
34828aad 6460 {
ca61edf2 6461 /* Convert to QWORD. We want REX byte. */
34828aad
L
6462 i.suffix = QWORD_MNEM_SUFFIX;
6463 }
6464 else
6465 {
2b5d6a91 6466 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6467 register_prefix, i.op[op].regs->reg_name,
6468 i.suffix);
6469 return 0;
6470 }
29b0f896
AM
6471 }
6472 return 1;
6473}
252b5132 6474
29b0f896 6475static int
e3bb37b5 6476check_qword_reg (void)
29b0f896
AM
6477{
6478 int op;
252b5132 6479
29b0f896 6480 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6481 /* Skip non-register operands. */
6482 if (!i.types[op].bitfield.reg)
6483 continue;
29b0f896
AM
6484 /* Reject eight bit registers, except where the template requires
6485 them. (eg. movzb) */
dc821c5f
JB
6486 else if (i.types[op].bitfield.byte
6487 && (i.tm.operand_types[op].bitfield.reg
6488 || i.tm.operand_types[op].bitfield.acc)
6489 && (i.tm.operand_types[op].bitfield.word
6490 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6491 {
a540244d
L
6492 as_bad (_("`%s%s' not allowed with `%s%c'"),
6493 register_prefix,
29b0f896
AM
6494 i.op[op].regs->reg_name,
6495 i.tm.name,
6496 i.suffix);
6497 return 0;
6498 }
e4630f71 6499 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6500 else if ((i.types[op].bitfield.word
6501 || i.types[op].bitfield.dword)
6502 && (i.tm.operand_types[op].bitfield.reg
6503 || i.tm.operand_types[op].bitfield.acc)
6504 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6505 {
6506 /* Prohibit these changes in the 64bit mode, since the
6507 lowering is more complicated. */
34828aad 6508 if (intel_syntax
ca61edf2 6509 && i.tm.opcode_modifier.todword
1b54b8d7 6510 && !i.types[0].bitfield.regsimd)
34828aad 6511 {
ca61edf2 6512 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6513 i.suffix = LONG_MNEM_SUFFIX;
6514 }
6515 else
6516 {
2b5d6a91 6517 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6518 register_prefix, i.op[op].regs->reg_name,
6519 i.suffix);
6520 return 0;
6521 }
252b5132 6522 }
29b0f896
AM
6523 return 1;
6524}
252b5132 6525
29b0f896 6526static int
e3bb37b5 6527check_word_reg (void)
29b0f896
AM
6528{
6529 int op;
6530 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6531 /* Skip non-register operands. */
6532 if (!i.types[op].bitfield.reg)
6533 continue;
29b0f896
AM
6534 /* Reject eight bit registers, except where the template requires
6535 them. (eg. movzb) */
dc821c5f
JB
6536 else if (i.types[op].bitfield.byte
6537 && (i.tm.operand_types[op].bitfield.reg
6538 || i.tm.operand_types[op].bitfield.acc)
6539 && (i.tm.operand_types[op].bitfield.word
6540 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6541 {
a540244d
L
6542 as_bad (_("`%s%s' not allowed with `%s%c'"),
6543 register_prefix,
29b0f896
AM
6544 i.op[op].regs->reg_name,
6545 i.tm.name,
6546 i.suffix);
6547 return 0;
6548 }
e4630f71 6549 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6551 && (i.types[op].bitfield.dword
6552 || i.types[op].bitfield.qword)
6553 && (i.tm.operand_types[op].bitfield.reg
6554 || i.tm.operand_types[op].bitfield.acc)
6555 && i.tm.operand_types[op].bitfield.word)
252b5132 6556 {
29b0f896
AM
6557 /* Prohibit these changes in the 64bit mode, since the
6558 lowering is more complicated. */
6559 if (flag_code == CODE_64BIT)
252b5132 6560 {
2b5d6a91 6561 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6562 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6563 i.suffix);
6564 return 0;
252b5132 6565 }
29b0f896 6566#if REGISTER_WARNINGS
cecf1424
JB
6567 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6568 register_prefix,
6569 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6570 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6571#endif
6572 }
6573 return 1;
6574}
252b5132 6575
29b0f896 6576static int
40fb9820 6577update_imm (unsigned int j)
29b0f896 6578{
bc0844ae 6579 i386_operand_type overlap = i.types[j];
40fb9820
L
6580 if ((overlap.bitfield.imm8
6581 || overlap.bitfield.imm8s
6582 || overlap.bitfield.imm16
6583 || overlap.bitfield.imm32
6584 || overlap.bitfield.imm32s
6585 || overlap.bitfield.imm64)
0dfbf9d7
L
6586 && !operand_type_equal (&overlap, &imm8)
6587 && !operand_type_equal (&overlap, &imm8s)
6588 && !operand_type_equal (&overlap, &imm16)
6589 && !operand_type_equal (&overlap, &imm32)
6590 && !operand_type_equal (&overlap, &imm32s)
6591 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6592 {
6593 if (i.suffix)
6594 {
40fb9820
L
6595 i386_operand_type temp;
6596
0dfbf9d7 6597 operand_type_set (&temp, 0);
7ab9ffdd 6598 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6599 {
6600 temp.bitfield.imm8 = overlap.bitfield.imm8;
6601 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6602 }
6603 else if (i.suffix == WORD_MNEM_SUFFIX)
6604 temp.bitfield.imm16 = overlap.bitfield.imm16;
6605 else if (i.suffix == QWORD_MNEM_SUFFIX)
6606 {
6607 temp.bitfield.imm64 = overlap.bitfield.imm64;
6608 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6609 }
6610 else
6611 temp.bitfield.imm32 = overlap.bitfield.imm32;
6612 overlap = temp;
29b0f896 6613 }
0dfbf9d7
L
6614 else if (operand_type_equal (&overlap, &imm16_32_32s)
6615 || operand_type_equal (&overlap, &imm16_32)
6616 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6617 {
40fb9820 6618 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6619 overlap = imm16;
40fb9820 6620 else
65da13b5 6621 overlap = imm32s;
29b0f896 6622 }
0dfbf9d7
L
6623 if (!operand_type_equal (&overlap, &imm8)
6624 && !operand_type_equal (&overlap, &imm8s)
6625 && !operand_type_equal (&overlap, &imm16)
6626 && !operand_type_equal (&overlap, &imm32)
6627 && !operand_type_equal (&overlap, &imm32s)
6628 && !operand_type_equal (&overlap, &imm64))
29b0f896 6629 {
4eed87de
AM
6630 as_bad (_("no instruction mnemonic suffix given; "
6631 "can't determine immediate size"));
29b0f896
AM
6632 return 0;
6633 }
6634 }
40fb9820 6635 i.types[j] = overlap;
29b0f896 6636
40fb9820
L
6637 return 1;
6638}
6639
6640static int
6641finalize_imm (void)
6642{
bc0844ae 6643 unsigned int j, n;
29b0f896 6644
bc0844ae
L
6645 /* Update the first 2 immediate operands. */
6646 n = i.operands > 2 ? 2 : i.operands;
6647 if (n)
6648 {
6649 for (j = 0; j < n; j++)
6650 if (update_imm (j) == 0)
6651 return 0;
40fb9820 6652
bc0844ae
L
6653 /* The 3rd operand can't be immediate operand. */
6654 gas_assert (operand_type_check (i.types[2], imm) == 0);
6655 }
29b0f896
AM
6656
6657 return 1;
6658}
6659
6660static int
e3bb37b5 6661process_operands (void)
29b0f896
AM
6662{
6663 /* Default segment register this instruction will use for memory
6664 accesses. 0 means unknown. This is only for optimizing out
6665 unnecessary segment overrides. */
6666 const seg_entry *default_seg = 0;
6667
2426c15f 6668 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6669 {
91d6fa6a
NC
6670 unsigned int dupl = i.operands;
6671 unsigned int dest = dupl - 1;
9fcfb3d7
L
6672 unsigned int j;
6673
c0f3af97 6674 /* The destination must be an xmm register. */
9c2799c2 6675 gas_assert (i.reg_operands
91d6fa6a 6676 && MAX_OPERANDS > dupl
7ab9ffdd 6677 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6678
1b54b8d7
JB
6679 if (i.tm.operand_types[0].bitfield.acc
6680 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6681 {
8cd7925b 6682 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6683 {
6684 /* Keep xmm0 for instructions with VEX prefix and 3
6685 sources. */
1b54b8d7
JB
6686 i.tm.operand_types[0].bitfield.acc = 0;
6687 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6688 goto duplicate;
6689 }
e2ec9d29 6690 else
c0f3af97
L
6691 {
6692 /* We remove the first xmm0 and keep the number of
6693 operands unchanged, which in fact duplicates the
6694 destination. */
6695 for (j = 1; j < i.operands; j++)
6696 {
6697 i.op[j - 1] = i.op[j];
6698 i.types[j - 1] = i.types[j];
6699 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6700 }
6701 }
6702 }
6703 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6704 {
91d6fa6a 6705 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6706 && (i.tm.opcode_modifier.vexsources
6707 == VEX3SOURCES));
c0f3af97
L
6708
6709 /* Add the implicit xmm0 for instructions with VEX prefix
6710 and 3 sources. */
6711 for (j = i.operands; j > 0; j--)
6712 {
6713 i.op[j] = i.op[j - 1];
6714 i.types[j] = i.types[j - 1];
6715 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6716 }
6717 i.op[0].regs
6718 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6719 i.types[0] = regxmm;
c0f3af97
L
6720 i.tm.operand_types[0] = regxmm;
6721
6722 i.operands += 2;
6723 i.reg_operands += 2;
6724 i.tm.operands += 2;
6725
91d6fa6a 6726 dupl++;
c0f3af97 6727 dest++;
91d6fa6a
NC
6728 i.op[dupl] = i.op[dest];
6729 i.types[dupl] = i.types[dest];
6730 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6731 }
c0f3af97
L
6732 else
6733 {
6734duplicate:
6735 i.operands++;
6736 i.reg_operands++;
6737 i.tm.operands++;
6738
91d6fa6a
NC
6739 i.op[dupl] = i.op[dest];
6740 i.types[dupl] = i.types[dest];
6741 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6742 }
6743
6744 if (i.tm.opcode_modifier.immext)
6745 process_immext ();
6746 }
1b54b8d7
JB
6747 else if (i.tm.operand_types[0].bitfield.acc
6748 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6749 {
6750 unsigned int j;
6751
9fcfb3d7
L
6752 for (j = 1; j < i.operands; j++)
6753 {
6754 i.op[j - 1] = i.op[j];
6755 i.types[j - 1] = i.types[j];
6756
6757 /* We need to adjust fields in i.tm since they are used by
6758 build_modrm_byte. */
6759 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6760 }
6761
e2ec9d29
L
6762 i.operands--;
6763 i.reg_operands--;
e2ec9d29
L
6764 i.tm.operands--;
6765 }
920d2ddc
IT
6766 else if (i.tm.opcode_modifier.implicitquadgroup)
6767 {
a477a8c4
JB
6768 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6769
920d2ddc 6770 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6771 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6772 regnum = register_number (i.op[1].regs);
6773 first_reg_in_group = regnum & ~3;
6774 last_reg_in_group = first_reg_in_group + 3;
6775 if (regnum != first_reg_in_group)
6776 as_warn (_("source register `%s%s' implicitly denotes"
6777 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6778 register_prefix, i.op[1].regs->reg_name,
6779 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6780 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6781 i.tm.name);
6782 }
e2ec9d29
L
6783 else if (i.tm.opcode_modifier.regkludge)
6784 {
6785 /* The imul $imm, %reg instruction is converted into
6786 imul $imm, %reg, %reg, and the clr %reg instruction
6787 is converted into xor %reg, %reg. */
6788
6789 unsigned int first_reg_op;
6790
6791 if (operand_type_check (i.types[0], reg))
6792 first_reg_op = 0;
6793 else
6794 first_reg_op = 1;
6795 /* Pretend we saw the extra register operand. */
9c2799c2 6796 gas_assert (i.reg_operands == 1
7ab9ffdd 6797 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6798 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6799 i.types[first_reg_op + 1] = i.types[first_reg_op];
6800 i.operands++;
6801 i.reg_operands++;
29b0f896
AM
6802 }
6803
40fb9820 6804 if (i.tm.opcode_modifier.shortform)
29b0f896 6805 {
40fb9820
L
6806 if (i.types[0].bitfield.sreg2
6807 || i.types[0].bitfield.sreg3)
29b0f896 6808 {
4eed87de
AM
6809 if (i.tm.base_opcode == POP_SEG_SHORT
6810 && i.op[0].regs->reg_num == 1)
29b0f896 6811 {
a87af027 6812 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6813 return 0;
29b0f896 6814 }
4eed87de
AM
6815 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6816 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6817 i.rex |= REX_B;
4eed87de
AM
6818 }
6819 else
6820 {
7ab9ffdd 6821 /* The register or float register operand is in operand
85f10a01 6822 0 or 1. */
40fb9820 6823 unsigned int op;
7ab9ffdd 6824
ca0d63fe 6825 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6826 || operand_type_check (i.types[0], reg))
6827 op = 0;
6828 else
6829 op = 1;
4eed87de
AM
6830 /* Register goes in low 3 bits of opcode. */
6831 i.tm.base_opcode |= i.op[op].regs->reg_num;
6832 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6833 i.rex |= REX_B;
40fb9820 6834 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6835 {
4eed87de
AM
6836 /* Warn about some common errors, but press on regardless.
6837 The first case can be generated by gcc (<= 2.8.1). */
6838 if (i.operands == 2)
6839 {
6840 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6841 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6842 register_prefix, i.op[!intel_syntax].regs->reg_name,
6843 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6844 }
6845 else
6846 {
6847 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6848 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6849 register_prefix, i.op[0].regs->reg_name);
4eed87de 6850 }
29b0f896
AM
6851 }
6852 }
6853 }
40fb9820 6854 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6855 {
6856 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6857 must be put into the modrm byte). Now, we make the modrm and
6858 index base bytes based on all the info we've collected. */
29b0f896
AM
6859
6860 default_seg = build_modrm_byte ();
6861 }
8a2ed489 6862 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6863 {
6864 default_seg = &ds;
6865 }
40fb9820 6866 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6867 {
6868 /* For the string instructions that allow a segment override
6869 on one of their operands, the default segment is ds. */
6870 default_seg = &ds;
6871 }
6872
75178d9d
L
6873 if (i.tm.base_opcode == 0x8d /* lea */
6874 && i.seg[0]
6875 && !quiet_warnings)
30123838 6876 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6877
6878 /* If a segment was explicitly specified, and the specified segment
6879 is not the default, use an opcode prefix to select it. If we
6880 never figured out what the default segment is, then default_seg
6881 will be zero at this point, and the specified segment prefix will
6882 always be used. */
29b0f896
AM
6883 if ((i.seg[0]) && (i.seg[0] != default_seg))
6884 {
6885 if (!add_prefix (i.seg[0]->seg_prefix))
6886 return 0;
6887 }
6888 return 1;
6889}
6890
6891static const seg_entry *
e3bb37b5 6892build_modrm_byte (void)
29b0f896
AM
6893{
6894 const seg_entry *default_seg = 0;
c0f3af97 6895 unsigned int source, dest;
8cd7925b 6896 int vex_3_sources;
c0f3af97 6897
8cd7925b 6898 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6899 if (vex_3_sources)
6900 {
91d6fa6a 6901 unsigned int nds, reg_slot;
4c2c6516 6902 expressionS *exp;
c0f3af97 6903
6b8d3588 6904 dest = i.operands - 1;
c0f3af97 6905 nds = dest - 1;
922d8de8 6906
a683cc34 6907 /* There are 2 kinds of instructions:
bed3d976
JB
6908 1. 5 operands: 4 register operands or 3 register operands
6909 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6910 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6911 ZMM register.
bed3d976 6912 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6913 plus 1 memory operand, with VexXDS. */
922d8de8 6914 gas_assert ((i.reg_operands == 4
bed3d976
JB
6915 || (i.reg_operands == 3 && i.mem_operands == 1))
6916 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6917 && i.tm.opcode_modifier.vexw
6918 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6919
48db9223
JB
6920 /* If VexW1 is set, the first non-immediate operand is the source and
6921 the second non-immediate one is encoded in the immediate operand. */
6922 if (i.tm.opcode_modifier.vexw == VEXW1)
6923 {
6924 source = i.imm_operands;
6925 reg_slot = i.imm_operands + 1;
6926 }
6927 else
6928 {
6929 source = i.imm_operands + 1;
6930 reg_slot = i.imm_operands;
6931 }
6932
a683cc34 6933 if (i.imm_operands == 0)
bed3d976
JB
6934 {
6935 /* When there is no immediate operand, generate an 8bit
6936 immediate operand to encode the first operand. */
6937 exp = &im_expressions[i.imm_operands++];
6938 i.op[i.operands].imms = exp;
6939 i.types[i.operands] = imm8;
6940 i.operands++;
6941
6942 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6943 exp->X_op = O_constant;
6944 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6945 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6946 }
922d8de8 6947 else
bed3d976
JB
6948 {
6949 unsigned int imm_slot;
a683cc34 6950
2f1bada2
JB
6951 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6952
bed3d976
JB
6953 if (i.tm.opcode_modifier.immext)
6954 {
6955 /* When ImmExt is set, the immediate byte is the last
6956 operand. */
6957 imm_slot = i.operands - 1;
6958 source--;
6959 reg_slot--;
6960 }
6961 else
6962 {
6963 imm_slot = 0;
6964
6965 /* Turn on Imm8 so that output_imm will generate it. */
6966 i.types[imm_slot].bitfield.imm8 = 1;
6967 }
6968
6969 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6970 i.op[imm_slot].imms->X_add_number
6971 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6972 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6973 }
a683cc34 6974
10c17abd 6975 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6976 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6977 }
6978 else
6979 source = dest = 0;
29b0f896
AM
6980
6981 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6982 implicit registers do not count. If there are 3 register
6983 operands, it must be a instruction with VexNDS. For a
6984 instruction with VexNDD, the destination register is encoded
6985 in VEX prefix. If there are 4 register operands, it must be
6986 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6987 if (i.mem_operands == 0
6988 && ((i.reg_operands == 2
2426c15f 6989 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6990 || (i.reg_operands == 3
2426c15f 6991 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6992 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6993 {
cab737b9
L
6994 switch (i.operands)
6995 {
6996 case 2:
6997 source = 0;
6998 break;
6999 case 3:
c81128dc
L
7000 /* When there are 3 operands, one of them may be immediate,
7001 which may be the first or the last operand. Otherwise,
c0f3af97
L
7002 the first operand must be shift count register (cl) or it
7003 is an instruction with VexNDS. */
9c2799c2 7004 gas_assert (i.imm_operands == 1
7ab9ffdd 7005 || (i.imm_operands == 0
2426c15f 7006 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7007 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7008 if (operand_type_check (i.types[0], imm)
7009 || i.types[0].bitfield.shiftcount)
7010 source = 1;
7011 else
7012 source = 0;
cab737b9
L
7013 break;
7014 case 4:
368d64cc
L
7015 /* When there are 4 operands, the first two must be 8bit
7016 immediate operands. The source operand will be the 3rd
c0f3af97
L
7017 one.
7018
7019 For instructions with VexNDS, if the first operand
7020 an imm8, the source operand is the 2nd one. If the last
7021 operand is imm8, the source operand is the first one. */
9c2799c2 7022 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7023 && i.types[0].bitfield.imm8
7024 && i.types[1].bitfield.imm8)
2426c15f 7025 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7026 && i.imm_operands == 1
7027 && (i.types[0].bitfield.imm8
43234a1e
L
7028 || i.types[i.operands - 1].bitfield.imm8
7029 || i.rounding)));
9f2670f2
L
7030 if (i.imm_operands == 2)
7031 source = 2;
7032 else
c0f3af97
L
7033 {
7034 if (i.types[0].bitfield.imm8)
7035 source = 1;
7036 else
7037 source = 0;
7038 }
c0f3af97
L
7039 break;
7040 case 5:
e771e7c9 7041 if (is_evex_encoding (&i.tm))
43234a1e
L
7042 {
7043 /* For EVEX instructions, when there are 5 operands, the
7044 first one must be immediate operand. If the second one
7045 is immediate operand, the source operand is the 3th
7046 one. If the last one is immediate operand, the source
7047 operand is the 2nd one. */
7048 gas_assert (i.imm_operands == 2
7049 && i.tm.opcode_modifier.sae
7050 && operand_type_check (i.types[0], imm));
7051 if (operand_type_check (i.types[1], imm))
7052 source = 2;
7053 else if (operand_type_check (i.types[4], imm))
7054 source = 1;
7055 else
7056 abort ();
7057 }
cab737b9
L
7058 break;
7059 default:
7060 abort ();
7061 }
7062
c0f3af97
L
7063 if (!vex_3_sources)
7064 {
7065 dest = source + 1;
7066
43234a1e
L
7067 /* RC/SAE operand could be between DEST and SRC. That happens
7068 when one operand is GPR and the other one is XMM/YMM/ZMM
7069 register. */
7070 if (i.rounding && i.rounding->operand == (int) dest)
7071 dest++;
7072
2426c15f 7073 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7074 {
43234a1e 7075 /* For instructions with VexNDS, the register-only source
c5d0745b 7076 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7077 register. It is encoded in VEX prefix. We need to
7078 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7079
7080 i386_operand_type op;
7081 unsigned int vvvv;
7082
7083 /* Check register-only source operand when two source
7084 operands are swapped. */
7085 if (!i.tm.operand_types[source].bitfield.baseindex
7086 && i.tm.operand_types[dest].bitfield.baseindex)
7087 {
7088 vvvv = source;
7089 source = dest;
7090 }
7091 else
7092 vvvv = dest;
7093
7094 op = i.tm.operand_types[vvvv];
fa99fab2 7095 op.bitfield.regmem = 0;
c0f3af97 7096 if ((dest + 1) >= i.operands
dc821c5f
JB
7097 || ((!op.bitfield.reg
7098 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7099 && !op.bitfield.regsimd
43234a1e 7100 && !operand_type_equal (&op, &regmask)))
c0f3af97 7101 abort ();
f12dc422 7102 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7103 dest++;
7104 }
7105 }
29b0f896
AM
7106
7107 i.rm.mode = 3;
7108 /* One of the register operands will be encoded in the i.tm.reg
7109 field, the other in the combined i.tm.mode and i.tm.regmem
7110 fields. If no form of this instruction supports a memory
7111 destination operand, then we assume the source operand may
7112 sometimes be a memory operand and so we need to store the
7113 destination in the i.rm.reg field. */
40fb9820
L
7114 if (!i.tm.operand_types[dest].bitfield.regmem
7115 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7116 {
7117 i.rm.reg = i.op[dest].regs->reg_num;
7118 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7119 if (i.op[dest].regs->reg_type.bitfield.regmmx
7120 || i.op[source].regs->reg_type.bitfield.regmmx)
7121 i.has_regmmx = TRUE;
7122 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7123 || i.op[source].regs->reg_type.bitfield.regsimd)
7124 {
7125 if (i.types[dest].bitfield.zmmword
7126 || i.types[source].bitfield.zmmword)
7127 i.has_regzmm = TRUE;
7128 else if (i.types[dest].bitfield.ymmword
7129 || i.types[source].bitfield.ymmword)
7130 i.has_regymm = TRUE;
7131 else
7132 i.has_regxmm = TRUE;
7133 }
29b0f896 7134 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7135 i.rex |= REX_R;
43234a1e
L
7136 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7137 i.vrex |= REX_R;
29b0f896 7138 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7139 i.rex |= REX_B;
43234a1e
L
7140 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7141 i.vrex |= REX_B;
29b0f896
AM
7142 }
7143 else
7144 {
7145 i.rm.reg = i.op[source].regs->reg_num;
7146 i.rm.regmem = i.op[dest].regs->reg_num;
7147 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7148 i.rex |= REX_B;
43234a1e
L
7149 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7150 i.vrex |= REX_B;
29b0f896 7151 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7152 i.rex |= REX_R;
43234a1e
L
7153 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7154 i.vrex |= REX_R;
29b0f896 7155 }
e0c7f900 7156 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7157 {
e0c7f900 7158 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7159 abort ();
e0c7f900 7160 i.rex &= ~REX_R;
c4a530c5
JB
7161 add_prefix (LOCK_PREFIX_OPCODE);
7162 }
29b0f896
AM
7163 }
7164 else
7165 { /* If it's not 2 reg operands... */
c0f3af97
L
7166 unsigned int mem;
7167
29b0f896
AM
7168 if (i.mem_operands)
7169 {
7170 unsigned int fake_zero_displacement = 0;
99018f42 7171 unsigned int op;
4eed87de 7172
7ab9ffdd
L
7173 for (op = 0; op < i.operands; op++)
7174 if (operand_type_check (i.types[op], anymem))
7175 break;
7ab9ffdd 7176 gas_assert (op < i.operands);
29b0f896 7177
6c30d220
L
7178 if (i.tm.opcode_modifier.vecsib)
7179 {
e968fc9b 7180 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7181 abort ();
7182
7183 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7184 if (!i.base_reg)
7185 {
7186 i.sib.base = NO_BASE_REGISTER;
7187 i.sib.scale = i.log2_scale_factor;
7188 i.types[op].bitfield.disp8 = 0;
7189 i.types[op].bitfield.disp16 = 0;
7190 i.types[op].bitfield.disp64 = 0;
43083a50 7191 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7192 {
7193 /* Must be 32 bit */
7194 i.types[op].bitfield.disp32 = 1;
7195 i.types[op].bitfield.disp32s = 0;
7196 }
7197 else
7198 {
7199 i.types[op].bitfield.disp32 = 0;
7200 i.types[op].bitfield.disp32s = 1;
7201 }
7202 }
7203 i.sib.index = i.index_reg->reg_num;
7204 if ((i.index_reg->reg_flags & RegRex) != 0)
7205 i.rex |= REX_X;
43234a1e
L
7206 if ((i.index_reg->reg_flags & RegVRex) != 0)
7207 i.vrex |= REX_X;
6c30d220
L
7208 }
7209
29b0f896
AM
7210 default_seg = &ds;
7211
7212 if (i.base_reg == 0)
7213 {
7214 i.rm.mode = 0;
7215 if (!i.disp_operands)
9bb129e8 7216 fake_zero_displacement = 1;
29b0f896
AM
7217 if (i.index_reg == 0)
7218 {
73053c1f
JB
7219 i386_operand_type newdisp;
7220
6c30d220 7221 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7222 /* Operand is just <disp> */
20f0a1fc 7223 if (flag_code == CODE_64BIT)
29b0f896
AM
7224 {
7225 /* 64bit mode overwrites the 32bit absolute
7226 addressing by RIP relative addressing and
7227 absolute addressing is encoded by one of the
7228 redundant SIB forms. */
7229 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7230 i.sib.base = NO_BASE_REGISTER;
7231 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7232 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7233 }
fc225355
L
7234 else if ((flag_code == CODE_16BIT)
7235 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7236 {
7237 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7238 newdisp = disp16;
20f0a1fc
NC
7239 }
7240 else
7241 {
7242 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7243 newdisp = disp32;
29b0f896 7244 }
73053c1f
JB
7245 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7246 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7247 }
6c30d220 7248 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7249 {
6c30d220 7250 /* !i.base_reg && i.index_reg */
e968fc9b 7251 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7252 i.sib.index = NO_INDEX_REGISTER;
7253 else
7254 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7255 i.sib.base = NO_BASE_REGISTER;
7256 i.sib.scale = i.log2_scale_factor;
7257 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7258 i.types[op].bitfield.disp8 = 0;
7259 i.types[op].bitfield.disp16 = 0;
7260 i.types[op].bitfield.disp64 = 0;
43083a50 7261 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7262 {
7263 /* Must be 32 bit */
7264 i.types[op].bitfield.disp32 = 1;
7265 i.types[op].bitfield.disp32s = 0;
7266 }
29b0f896 7267 else
40fb9820
L
7268 {
7269 i.types[op].bitfield.disp32 = 0;
7270 i.types[op].bitfield.disp32s = 1;
7271 }
29b0f896 7272 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7273 i.rex |= REX_X;
29b0f896
AM
7274 }
7275 }
7276 /* RIP addressing for 64bit mode. */
e968fc9b 7277 else if (i.base_reg->reg_num == RegIP)
29b0f896 7278 {
6c30d220 7279 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7280 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7281 i.types[op].bitfield.disp8 = 0;
7282 i.types[op].bitfield.disp16 = 0;
7283 i.types[op].bitfield.disp32 = 0;
7284 i.types[op].bitfield.disp32s = 1;
7285 i.types[op].bitfield.disp64 = 0;
71903a11 7286 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7287 if (! i.disp_operands)
7288 fake_zero_displacement = 1;
29b0f896 7289 }
dc821c5f 7290 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7291 {
6c30d220 7292 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7293 switch (i.base_reg->reg_num)
7294 {
7295 case 3: /* (%bx) */
7296 if (i.index_reg == 0)
7297 i.rm.regmem = 7;
7298 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7299 i.rm.regmem = i.index_reg->reg_num - 6;
7300 break;
7301 case 5: /* (%bp) */
7302 default_seg = &ss;
7303 if (i.index_reg == 0)
7304 {
7305 i.rm.regmem = 6;
40fb9820 7306 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7307 {
7308 /* fake (%bp) into 0(%bp) */
b5014f7a 7309 i.types[op].bitfield.disp8 = 1;
252b5132 7310 fake_zero_displacement = 1;
29b0f896
AM
7311 }
7312 }
7313 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7314 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7315 break;
7316 default: /* (%si) -> 4 or (%di) -> 5 */
7317 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7318 }
7319 i.rm.mode = mode_from_disp_size (i.types[op]);
7320 }
7321 else /* i.base_reg and 32/64 bit mode */
7322 {
7323 if (flag_code == CODE_64BIT
40fb9820
L
7324 && operand_type_check (i.types[op], disp))
7325 {
73053c1f
JB
7326 i.types[op].bitfield.disp16 = 0;
7327 i.types[op].bitfield.disp64 = 0;
40fb9820 7328 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7329 {
7330 i.types[op].bitfield.disp32 = 0;
7331 i.types[op].bitfield.disp32s = 1;
7332 }
40fb9820 7333 else
73053c1f
JB
7334 {
7335 i.types[op].bitfield.disp32 = 1;
7336 i.types[op].bitfield.disp32s = 0;
7337 }
40fb9820 7338 }
20f0a1fc 7339
6c30d220
L
7340 if (!i.tm.opcode_modifier.vecsib)
7341 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7342 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7343 i.rex |= REX_B;
29b0f896
AM
7344 i.sib.base = i.base_reg->reg_num;
7345 /* x86-64 ignores REX prefix bit here to avoid decoder
7346 complications. */
848930b2
JB
7347 if (!(i.base_reg->reg_flags & RegRex)
7348 && (i.base_reg->reg_num == EBP_REG_NUM
7349 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7350 default_seg = &ss;
848930b2 7351 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7352 {
848930b2 7353 fake_zero_displacement = 1;
b5014f7a 7354 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7355 }
7356 i.sib.scale = i.log2_scale_factor;
7357 if (i.index_reg == 0)
7358 {
6c30d220 7359 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7360 /* <disp>(%esp) becomes two byte modrm with no index
7361 register. We've already stored the code for esp
7362 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7363 Any base register besides %esp will not use the
7364 extra modrm byte. */
7365 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7366 }
6c30d220 7367 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7368 {
e968fc9b 7369 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7370 i.sib.index = NO_INDEX_REGISTER;
7371 else
7372 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7373 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7374 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7375 i.rex |= REX_X;
29b0f896 7376 }
67a4f2b7
AO
7377
7378 if (i.disp_operands
7379 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7380 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7381 i.rm.mode = 0;
7382 else
a501d77e
L
7383 {
7384 if (!fake_zero_displacement
7385 && !i.disp_operands
7386 && i.disp_encoding)
7387 {
7388 fake_zero_displacement = 1;
7389 if (i.disp_encoding == disp_encoding_8bit)
7390 i.types[op].bitfield.disp8 = 1;
7391 else
7392 i.types[op].bitfield.disp32 = 1;
7393 }
7394 i.rm.mode = mode_from_disp_size (i.types[op]);
7395 }
29b0f896 7396 }
252b5132 7397
29b0f896
AM
7398 if (fake_zero_displacement)
7399 {
7400 /* Fakes a zero displacement assuming that i.types[op]
7401 holds the correct displacement size. */
7402 expressionS *exp;
7403
9c2799c2 7404 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7405 exp = &disp_expressions[i.disp_operands++];
7406 i.op[op].disps = exp;
7407 exp->X_op = O_constant;
7408 exp->X_add_number = 0;
7409 exp->X_add_symbol = (symbolS *) 0;
7410 exp->X_op_symbol = (symbolS *) 0;
7411 }
c0f3af97
L
7412
7413 mem = op;
29b0f896 7414 }
c0f3af97
L
7415 else
7416 mem = ~0;
252b5132 7417
8c43a48b 7418 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7419 {
7420 if (operand_type_check (i.types[0], imm))
7421 i.vex.register_specifier = NULL;
7422 else
7423 {
7424 /* VEX.vvvv encodes one of the sources when the first
7425 operand is not an immediate. */
1ef99a7b 7426 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7427 i.vex.register_specifier = i.op[0].regs;
7428 else
7429 i.vex.register_specifier = i.op[1].regs;
7430 }
7431
7432 /* Destination is a XMM register encoded in the ModRM.reg
7433 and VEX.R bit. */
7434 i.rm.reg = i.op[2].regs->reg_num;
7435 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7436 i.rex |= REX_R;
7437
7438 /* ModRM.rm and VEX.B encodes the other source. */
7439 if (!i.mem_operands)
7440 {
7441 i.rm.mode = 3;
7442
1ef99a7b 7443 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7444 i.rm.regmem = i.op[1].regs->reg_num;
7445 else
7446 i.rm.regmem = i.op[0].regs->reg_num;
7447
7448 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7449 i.rex |= REX_B;
7450 }
7451 }
2426c15f 7452 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7453 {
7454 i.vex.register_specifier = i.op[2].regs;
7455 if (!i.mem_operands)
7456 {
7457 i.rm.mode = 3;
7458 i.rm.regmem = i.op[1].regs->reg_num;
7459 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7460 i.rex |= REX_B;
7461 }
7462 }
29b0f896
AM
7463 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7464 (if any) based on i.tm.extension_opcode. Again, we must be
7465 careful to make sure that segment/control/debug/test/MMX
7466 registers are coded into the i.rm.reg field. */
f88c9eb0 7467 else if (i.reg_operands)
29b0f896 7468 {
99018f42 7469 unsigned int op;
7ab9ffdd
L
7470 unsigned int vex_reg = ~0;
7471
7472 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7473 {
7474 if (i.types[op].bitfield.reg
7475 || i.types[op].bitfield.regbnd
7476 || i.types[op].bitfield.regmask
7477 || i.types[op].bitfield.sreg2
7478 || i.types[op].bitfield.sreg3
7479 || i.types[op].bitfield.control
7480 || i.types[op].bitfield.debug
7481 || i.types[op].bitfield.test)
7482 break;
7483 if (i.types[op].bitfield.regsimd)
7484 {
7485 if (i.types[op].bitfield.zmmword)
7486 i.has_regzmm = TRUE;
7487 else if (i.types[op].bitfield.ymmword)
7488 i.has_regymm = TRUE;
7489 else
7490 i.has_regxmm = TRUE;
7491 break;
7492 }
7493 if (i.types[op].bitfield.regmmx)
7494 {
7495 i.has_regmmx = TRUE;
7496 break;
7497 }
7498 }
c0209578 7499
7ab9ffdd
L
7500 if (vex_3_sources)
7501 op = dest;
2426c15f 7502 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7503 {
7504 /* For instructions with VexNDS, the register-only
7505 source operand is encoded in VEX prefix. */
7506 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7507
7ab9ffdd 7508 if (op > mem)
c0f3af97 7509 {
7ab9ffdd
L
7510 vex_reg = op++;
7511 gas_assert (op < i.operands);
c0f3af97
L
7512 }
7513 else
c0f3af97 7514 {
f12dc422
L
7515 /* Check register-only source operand when two source
7516 operands are swapped. */
7517 if (!i.tm.operand_types[op].bitfield.baseindex
7518 && i.tm.operand_types[op + 1].bitfield.baseindex)
7519 {
7520 vex_reg = op;
7521 op += 2;
7522 gas_assert (mem == (vex_reg + 1)
7523 && op < i.operands);
7524 }
7525 else
7526 {
7527 vex_reg = op + 1;
7528 gas_assert (vex_reg < i.operands);
7529 }
c0f3af97 7530 }
7ab9ffdd 7531 }
2426c15f 7532 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7533 {
f12dc422 7534 /* For instructions with VexNDD, the register destination
7ab9ffdd 7535 is encoded in VEX prefix. */
f12dc422
L
7536 if (i.mem_operands == 0)
7537 {
7538 /* There is no memory operand. */
7539 gas_assert ((op + 2) == i.operands);
7540 vex_reg = op + 1;
7541 }
7542 else
8d63c93e 7543 {
ed438a93
JB
7544 /* There are only 2 non-immediate operands. */
7545 gas_assert (op < i.imm_operands + 2
7546 && i.operands == i.imm_operands + 2);
7547 vex_reg = i.imm_operands + 1;
f12dc422 7548 }
7ab9ffdd
L
7549 }
7550 else
7551 gas_assert (op < i.operands);
99018f42 7552
7ab9ffdd
L
7553 if (vex_reg != (unsigned int) ~0)
7554 {
f12dc422 7555 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7556
dc821c5f
JB
7557 if ((!type->bitfield.reg
7558 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7559 && !type->bitfield.regsimd
43234a1e 7560 && !operand_type_equal (type, &regmask))
7ab9ffdd 7561 abort ();
f88c9eb0 7562
7ab9ffdd
L
7563 i.vex.register_specifier = i.op[vex_reg].regs;
7564 }
7565
1b9f0c97
L
7566 /* Don't set OP operand twice. */
7567 if (vex_reg != op)
7ab9ffdd 7568 {
1b9f0c97
L
7569 /* If there is an extension opcode to put here, the
7570 register number must be put into the regmem field. */
7571 if (i.tm.extension_opcode != None)
7572 {
7573 i.rm.regmem = i.op[op].regs->reg_num;
7574 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7575 i.rex |= REX_B;
43234a1e
L
7576 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7577 i.vrex |= REX_B;
1b9f0c97
L
7578 }
7579 else
7580 {
7581 i.rm.reg = i.op[op].regs->reg_num;
7582 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7583 i.rex |= REX_R;
43234a1e
L
7584 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7585 i.vrex |= REX_R;
1b9f0c97 7586 }
7ab9ffdd 7587 }
252b5132 7588
29b0f896
AM
7589 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7590 must set it to 3 to indicate this is a register operand
7591 in the regmem field. */
7592 if (!i.mem_operands)
7593 i.rm.mode = 3;
7594 }
252b5132 7595
29b0f896 7596 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7597 if (i.tm.extension_opcode != None)
29b0f896
AM
7598 i.rm.reg = i.tm.extension_opcode;
7599 }
7600 return default_seg;
7601}
252b5132 7602
29b0f896 7603static void
e3bb37b5 7604output_branch (void)
29b0f896
AM
7605{
7606 char *p;
f8a5c266 7607 int size;
29b0f896
AM
7608 int code16;
7609 int prefix;
7610 relax_substateT subtype;
7611 symbolS *sym;
7612 offsetT off;
7613
f8a5c266 7614 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7615 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7616
7617 prefix = 0;
7618 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7619 {
29b0f896
AM
7620 prefix = 1;
7621 i.prefixes -= 1;
7622 code16 ^= CODE16;
252b5132 7623 }
29b0f896
AM
7624 /* Pentium4 branch hints. */
7625 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7626 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7627 {
29b0f896
AM
7628 prefix++;
7629 i.prefixes--;
7630 }
7631 if (i.prefix[REX_PREFIX] != 0)
7632 {
7633 prefix++;
7634 i.prefixes--;
2f66722d
AM
7635 }
7636
7e8b059b
L
7637 /* BND prefixed jump. */
7638 if (i.prefix[BND_PREFIX] != 0)
7639 {
7640 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7641 i.prefixes -= 1;
7642 }
7643
29b0f896
AM
7644 if (i.prefixes != 0 && !intel_syntax)
7645 as_warn (_("skipping prefixes on this instruction"));
7646
7647 /* It's always a symbol; End frag & setup for relax.
7648 Make sure there is enough room in this frag for the largest
7649 instruction we may generate in md_convert_frag. This is 2
7650 bytes for the opcode and room for the prefix and largest
7651 displacement. */
7652 frag_grow (prefix + 2 + 4);
7653 /* Prefix and 1 opcode byte go in fr_fix. */
7654 p = frag_more (prefix + 1);
7655 if (i.prefix[DATA_PREFIX] != 0)
7656 *p++ = DATA_PREFIX_OPCODE;
7657 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7658 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7659 *p++ = i.prefix[SEG_PREFIX];
7660 if (i.prefix[REX_PREFIX] != 0)
7661 *p++ = i.prefix[REX_PREFIX];
7662 *p = i.tm.base_opcode;
7663
7664 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7665 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7666 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7667 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7668 else
f8a5c266 7669 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7670 subtype |= code16;
3e73aa7c 7671
29b0f896
AM
7672 sym = i.op[0].disps->X_add_symbol;
7673 off = i.op[0].disps->X_add_number;
3e73aa7c 7674
29b0f896
AM
7675 if (i.op[0].disps->X_op != O_constant
7676 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7677 {
29b0f896
AM
7678 /* Handle complex expressions. */
7679 sym = make_expr_symbol (i.op[0].disps);
7680 off = 0;
7681 }
3e73aa7c 7682
29b0f896
AM
7683 /* 1 possible extra opcode + 4 byte displacement go in var part.
7684 Pass reloc in fr_var. */
d258b828 7685 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7686}
3e73aa7c 7687
bd7ab16b
L
7688#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7689/* Return TRUE iff PLT32 relocation should be used for branching to
7690 symbol S. */
7691
7692static bfd_boolean
7693need_plt32_p (symbolS *s)
7694{
7695 /* PLT32 relocation is ELF only. */
7696 if (!IS_ELF)
7697 return FALSE;
7698
7699 /* Since there is no need to prepare for PLT branch on x86-64, we
7700 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7701 be used as a marker for 32-bit PC-relative branches. */
7702 if (!object_64bit)
7703 return FALSE;
7704
7705 /* Weak or undefined symbol need PLT32 relocation. */
7706 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7707 return TRUE;
7708
7709 /* Non-global symbol doesn't need PLT32 relocation. */
7710 if (! S_IS_EXTERNAL (s))
7711 return FALSE;
7712
7713 /* Other global symbols need PLT32 relocation. NB: Symbol with
7714 non-default visibilities are treated as normal global symbol
7715 so that PLT32 relocation can be used as a marker for 32-bit
7716 PC-relative branches. It is useful for linker relaxation. */
7717 return TRUE;
7718}
7719#endif
7720
29b0f896 7721static void
e3bb37b5 7722output_jump (void)
29b0f896
AM
7723{
7724 char *p;
7725 int size;
3e02c1cc 7726 fixS *fixP;
bd7ab16b 7727 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7728
40fb9820 7729 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7730 {
7731 /* This is a loop or jecxz type instruction. */
7732 size = 1;
7733 if (i.prefix[ADDR_PREFIX] != 0)
7734 {
7735 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7736 i.prefixes -= 1;
7737 }
7738 /* Pentium4 branch hints. */
7739 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7740 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7741 {
7742 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7743 i.prefixes--;
3e73aa7c
JH
7744 }
7745 }
29b0f896
AM
7746 else
7747 {
7748 int code16;
3e73aa7c 7749
29b0f896
AM
7750 code16 = 0;
7751 if (flag_code == CODE_16BIT)
7752 code16 = CODE16;
3e73aa7c 7753
29b0f896
AM
7754 if (i.prefix[DATA_PREFIX] != 0)
7755 {
7756 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7757 i.prefixes -= 1;
7758 code16 ^= CODE16;
7759 }
252b5132 7760
29b0f896
AM
7761 size = 4;
7762 if (code16)
7763 size = 2;
7764 }
9fcc94b6 7765
29b0f896
AM
7766 if (i.prefix[REX_PREFIX] != 0)
7767 {
7768 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7769 i.prefixes -= 1;
7770 }
252b5132 7771
7e8b059b
L
7772 /* BND prefixed jump. */
7773 if (i.prefix[BND_PREFIX] != 0)
7774 {
7775 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7776 i.prefixes -= 1;
7777 }
7778
29b0f896
AM
7779 if (i.prefixes != 0 && !intel_syntax)
7780 as_warn (_("skipping prefixes on this instruction"));
e0890092 7781
42164a71
L
7782 p = frag_more (i.tm.opcode_length + size);
7783 switch (i.tm.opcode_length)
7784 {
7785 case 2:
7786 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7787 /* Fall through. */
42164a71
L
7788 case 1:
7789 *p++ = i.tm.base_opcode;
7790 break;
7791 default:
7792 abort ();
7793 }
e0890092 7794
bd7ab16b
L
7795#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7796 if (size == 4
7797 && jump_reloc == NO_RELOC
7798 && need_plt32_p (i.op[0].disps->X_add_symbol))
7799 jump_reloc = BFD_RELOC_X86_64_PLT32;
7800#endif
7801
7802 jump_reloc = reloc (size, 1, 1, jump_reloc);
7803
3e02c1cc 7804 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7805 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7806
7807 /* All jumps handled here are signed, but don't use a signed limit
7808 check for 32 and 16 bit jumps as we want to allow wrap around at
7809 4G and 64k respectively. */
7810 if (size == 1)
7811 fixP->fx_signed = 1;
29b0f896 7812}
e0890092 7813
29b0f896 7814static void
e3bb37b5 7815output_interseg_jump (void)
29b0f896
AM
7816{
7817 char *p;
7818 int size;
7819 int prefix;
7820 int code16;
252b5132 7821
29b0f896
AM
7822 code16 = 0;
7823 if (flag_code == CODE_16BIT)
7824 code16 = CODE16;
a217f122 7825
29b0f896
AM
7826 prefix = 0;
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 {
7829 prefix = 1;
7830 i.prefixes -= 1;
7831 code16 ^= CODE16;
7832 }
7833 if (i.prefix[REX_PREFIX] != 0)
7834 {
7835 prefix++;
7836 i.prefixes -= 1;
7837 }
252b5132 7838
29b0f896
AM
7839 size = 4;
7840 if (code16)
7841 size = 2;
252b5132 7842
29b0f896
AM
7843 if (i.prefixes != 0 && !intel_syntax)
7844 as_warn (_("skipping prefixes on this instruction"));
252b5132 7845
29b0f896
AM
7846 /* 1 opcode; 2 segment; offset */
7847 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7848
29b0f896
AM
7849 if (i.prefix[DATA_PREFIX] != 0)
7850 *p++ = DATA_PREFIX_OPCODE;
252b5132 7851
29b0f896
AM
7852 if (i.prefix[REX_PREFIX] != 0)
7853 *p++ = i.prefix[REX_PREFIX];
252b5132 7854
29b0f896
AM
7855 *p++ = i.tm.base_opcode;
7856 if (i.op[1].imms->X_op == O_constant)
7857 {
7858 offsetT n = i.op[1].imms->X_add_number;
252b5132 7859
29b0f896
AM
7860 if (size == 2
7861 && !fits_in_unsigned_word (n)
7862 && !fits_in_signed_word (n))
7863 {
7864 as_bad (_("16-bit jump out of range"));
7865 return;
7866 }
7867 md_number_to_chars (p, n, size);
7868 }
7869 else
7870 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7871 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7872 if (i.op[0].imms->X_op != O_constant)
7873 as_bad (_("can't handle non absolute segment in `%s'"),
7874 i.tm.name);
7875 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7876}
a217f122 7877
b4a3a7b4
L
7878#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7879void
7880x86_cleanup (void)
7881{
7882 char *p;
7883 asection *seg = now_seg;
7884 subsegT subseg = now_subseg;
7885 asection *sec;
7886 unsigned int alignment, align_size_1;
7887 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7888 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7889 unsigned int padding;
7890
7891 if (!IS_ELF || !x86_used_note)
7892 return;
7893
7894 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7895 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7896
7897 /* The .note.gnu.property section layout:
7898
7899 Field Length Contents
7900 ---- ---- ----
7901 n_namsz 4 4
7902 n_descsz 4 The note descriptor size
7903 n_type 4 NT_GNU_PROPERTY_TYPE_0
7904 n_name 4 "GNU"
7905 n_desc n_descsz The program property array
7906 .... .... ....
7907 */
7908
7909 /* Create the .note.gnu.property section. */
7910 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7911 bfd_set_section_flags (stdoutput, sec,
7912 (SEC_ALLOC
7913 | SEC_LOAD
7914 | SEC_DATA
7915 | SEC_HAS_CONTENTS
7916 | SEC_READONLY));
7917
7918 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7919 {
7920 align_size_1 = 7;
7921 alignment = 3;
7922 }
7923 else
7924 {
7925 align_size_1 = 3;
7926 alignment = 2;
7927 }
7928
7929 bfd_set_section_alignment (stdoutput, sec, alignment);
7930 elf_section_type (sec) = SHT_NOTE;
7931
7932 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7933 + 4-byte data */
7934 isa_1_descsz_raw = 4 + 4 + 4;
7935 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7936 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7937
7938 feature_2_descsz_raw = isa_1_descsz;
7939 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7940 + 4-byte data */
7941 feature_2_descsz_raw += 4 + 4 + 4;
7942 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7943 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7944 & ~align_size_1);
7945
7946 descsz = feature_2_descsz;
7947 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7948 p = frag_more (4 + 4 + 4 + 4 + descsz);
7949
7950 /* Write n_namsz. */
7951 md_number_to_chars (p, (valueT) 4, 4);
7952
7953 /* Write n_descsz. */
7954 md_number_to_chars (p + 4, (valueT) descsz, 4);
7955
7956 /* Write n_type. */
7957 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7958
7959 /* Write n_name. */
7960 memcpy (p + 4 * 3, "GNU", 4);
7961
7962 /* Write 4-byte type. */
7963 md_number_to_chars (p + 4 * 4,
7964 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7965
7966 /* Write 4-byte data size. */
7967 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7968
7969 /* Write 4-byte data. */
7970 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7971
7972 /* Zero out paddings. */
7973 padding = isa_1_descsz - isa_1_descsz_raw;
7974 if (padding)
7975 memset (p + 4 * 7, 0, padding);
7976
7977 /* Write 4-byte type. */
7978 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7979 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7980
7981 /* Write 4-byte data size. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7983
7984 /* Write 4-byte data. */
7985 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7986 (valueT) x86_feature_2_used, 4);
7987
7988 /* Zero out paddings. */
7989 padding = feature_2_descsz - feature_2_descsz_raw;
7990 if (padding)
7991 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7992
7993 /* We probably can't restore the current segment, for there likely
7994 isn't one yet... */
7995 if (seg && subseg)
7996 subseg_set (seg, subseg);
7997}
7998#endif
7999
29b0f896 8000static void
e3bb37b5 8001output_insn (void)
29b0f896 8002{
2bbd9c25
JJ
8003 fragS *insn_start_frag;
8004 offsetT insn_start_off;
8005
b4a3a7b4
L
8006#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8007 if (IS_ELF && x86_used_note)
8008 {
8009 if (i.tm.cpu_flags.bitfield.cpucmov)
8010 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8011 if (i.tm.cpu_flags.bitfield.cpusse)
8012 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8013 if (i.tm.cpu_flags.bitfield.cpusse2)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8015 if (i.tm.cpu_flags.bitfield.cpusse3)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8017 if (i.tm.cpu_flags.bitfield.cpussse3)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8019 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8021 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8023 if (i.tm.cpu_flags.bitfield.cpuavx)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8025 if (i.tm.cpu_flags.bitfield.cpuavx2)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8027 if (i.tm.cpu_flags.bitfield.cpufma)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8029 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8031 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8057
8058 if (i.tm.cpu_flags.bitfield.cpu8087
8059 || i.tm.cpu_flags.bitfield.cpu287
8060 || i.tm.cpu_flags.bitfield.cpu387
8061 || i.tm.cpu_flags.bitfield.cpu687
8062 || i.tm.cpu_flags.bitfield.cpufisttp)
8063 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8064 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8065 Xfence instructions. */
8066 if (i.tm.base_opcode != 0xf18
8067 && i.tm.base_opcode != 0xf0d
8068 && i.tm.base_opcode != 0xfae
8069 && (i.has_regmmx
8070 || i.tm.cpu_flags.bitfield.cpummx
8071 || i.tm.cpu_flags.bitfield.cpua3dnow
8072 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8073 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8074 if (i.has_regxmm)
8075 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8076 if (i.has_regymm)
8077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8078 if (i.has_regzmm)
8079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8080 if (i.tm.cpu_flags.bitfield.cpufxsr)
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8082 if (i.tm.cpu_flags.bitfield.cpuxsave)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8084 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8086 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8088 }
8089#endif
8090
29b0f896
AM
8091 /* Tie dwarf2 debug info to the address at the start of the insn.
8092 We can't do this after the insn has been output as the current
8093 frag may have been closed off. eg. by frag_var. */
8094 dwarf2_emit_insn (0);
8095
2bbd9c25
JJ
8096 insn_start_frag = frag_now;
8097 insn_start_off = frag_now_fix ();
8098
29b0f896 8099 /* Output jumps. */
40fb9820 8100 if (i.tm.opcode_modifier.jump)
29b0f896 8101 output_branch ();
40fb9820
L
8102 else if (i.tm.opcode_modifier.jumpbyte
8103 || i.tm.opcode_modifier.jumpdword)
29b0f896 8104 output_jump ();
40fb9820 8105 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8106 output_interseg_jump ();
8107 else
8108 {
8109 /* Output normal instructions here. */
8110 char *p;
8111 unsigned char *q;
47465058 8112 unsigned int j;
331d2d0d 8113 unsigned int prefix;
4dffcebc 8114
e4e00185
AS
8115 if (avoid_fence
8116 && i.tm.base_opcode == 0xfae
8117 && i.operands == 1
8118 && i.imm_operands == 1
8119 && (i.op[0].imms->X_add_number == 0xe8
8120 || i.op[0].imms->X_add_number == 0xf0
8121 || i.op[0].imms->X_add_number == 0xf8))
8122 {
8123 /* Encode lfence, mfence, and sfence as
8124 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8125 offsetT val = 0x240483f0ULL;
8126 p = frag_more (5);
8127 md_number_to_chars (p, val, 5);
8128 return;
8129 }
8130
d022bddd
IT
8131 /* Some processors fail on LOCK prefix. This options makes
8132 assembler ignore LOCK prefix and serves as a workaround. */
8133 if (omit_lock_prefix)
8134 {
8135 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8136 return;
8137 i.prefix[LOCK_PREFIX] = 0;
8138 }
8139
43234a1e
L
8140 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8141 don't need the explicit prefix. */
8142 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8143 {
c0f3af97 8144 switch (i.tm.opcode_length)
bc4bd9ab 8145 {
c0f3af97
L
8146 case 3:
8147 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8148 {
c0f3af97 8149 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8150 add_prefix (prefix);
c0f3af97
L
8151 }
8152 break;
8153 case 2:
8154 if ((i.tm.base_opcode & 0xff0000) != 0)
8155 {
8156 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8157 if (!i.tm.cpu_flags.bitfield.cpupadlock
8158 || prefix != REPE_PREFIX_OPCODE
8159 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8160 add_prefix (prefix);
8161 }
c0f3af97
L
8162 break;
8163 case 1:
8164 break;
390c91cf
L
8165 case 0:
8166 /* Check for pseudo prefixes. */
8167 as_bad_where (insn_start_frag->fr_file,
8168 insn_start_frag->fr_line,
8169 _("pseudo prefix without instruction"));
8170 return;
c0f3af97
L
8171 default:
8172 abort ();
bc4bd9ab 8173 }
c0f3af97 8174
6d19a37a 8175#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8176 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8177 R_X86_64_GOTTPOFF relocation so that linker can safely
8178 perform IE->LE optimization. */
8179 if (x86_elf_abi == X86_64_X32_ABI
8180 && i.operands == 2
8181 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8182 && i.prefix[REX_PREFIX] == 0)
8183 add_prefix (REX_OPCODE);
6d19a37a 8184#endif
cf61b747 8185
c0f3af97
L
8186 /* The prefix bytes. */
8187 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8188 if (*q)
8189 FRAG_APPEND_1_CHAR (*q);
0f10071e 8190 }
ae5c1c7b 8191 else
c0f3af97
L
8192 {
8193 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8194 if (*q)
8195 switch (j)
8196 {
8197 case REX_PREFIX:
8198 /* REX byte is encoded in VEX prefix. */
8199 break;
8200 case SEG_PREFIX:
8201 case ADDR_PREFIX:
8202 FRAG_APPEND_1_CHAR (*q);
8203 break;
8204 default:
8205 /* There should be no other prefixes for instructions
8206 with VEX prefix. */
8207 abort ();
8208 }
8209
43234a1e
L
8210 /* For EVEX instructions i.vrex should become 0 after
8211 build_evex_prefix. For VEX instructions upper 16 registers
8212 aren't available, so VREX should be 0. */
8213 if (i.vrex)
8214 abort ();
c0f3af97
L
8215 /* Now the VEX prefix. */
8216 p = frag_more (i.vex.length);
8217 for (j = 0; j < i.vex.length; j++)
8218 p[j] = i.vex.bytes[j];
8219 }
252b5132 8220
29b0f896 8221 /* Now the opcode; be careful about word order here! */
4dffcebc 8222 if (i.tm.opcode_length == 1)
29b0f896
AM
8223 {
8224 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8225 }
8226 else
8227 {
4dffcebc 8228 switch (i.tm.opcode_length)
331d2d0d 8229 {
43234a1e
L
8230 case 4:
8231 p = frag_more (4);
8232 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8233 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8234 break;
4dffcebc 8235 case 3:
331d2d0d
L
8236 p = frag_more (3);
8237 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8238 break;
8239 case 2:
8240 p = frag_more (2);
8241 break;
8242 default:
8243 abort ();
8244 break;
331d2d0d 8245 }
0f10071e 8246
29b0f896
AM
8247 /* Put out high byte first: can't use md_number_to_chars! */
8248 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8249 *p = i.tm.base_opcode & 0xff;
8250 }
3e73aa7c 8251
29b0f896 8252 /* Now the modrm byte and sib byte (if present). */
40fb9820 8253 if (i.tm.opcode_modifier.modrm)
29b0f896 8254 {
4a3523fa
L
8255 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8256 | i.rm.reg << 3
8257 | i.rm.mode << 6));
29b0f896
AM
8258 /* If i.rm.regmem == ESP (4)
8259 && i.rm.mode != (Register mode)
8260 && not 16 bit
8261 ==> need second modrm byte. */
8262 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8263 && i.rm.mode != 3
dc821c5f 8264 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8265 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8266 | i.sib.index << 3
8267 | i.sib.scale << 6));
29b0f896 8268 }
3e73aa7c 8269
29b0f896 8270 if (i.disp_operands)
2bbd9c25 8271 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8272
29b0f896 8273 if (i.imm_operands)
2bbd9c25 8274 output_imm (insn_start_frag, insn_start_off);
29b0f896 8275 }
252b5132 8276
29b0f896
AM
8277#ifdef DEBUG386
8278 if (flag_debug)
8279 {
7b81dfbb 8280 pi ("" /*line*/, &i);
29b0f896
AM
8281 }
8282#endif /* DEBUG386 */
8283}
252b5132 8284
e205caa7
L
8285/* Return the size of the displacement operand N. */
8286
8287static int
8288disp_size (unsigned int n)
8289{
8290 int size = 4;
43234a1e 8291
b5014f7a 8292 if (i.types[n].bitfield.disp64)
40fb9820
L
8293 size = 8;
8294 else if (i.types[n].bitfield.disp8)
8295 size = 1;
8296 else if (i.types[n].bitfield.disp16)
8297 size = 2;
e205caa7
L
8298 return size;
8299}
8300
8301/* Return the size of the immediate operand N. */
8302
8303static int
8304imm_size (unsigned int n)
8305{
8306 int size = 4;
40fb9820
L
8307 if (i.types[n].bitfield.imm64)
8308 size = 8;
8309 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8310 size = 1;
8311 else if (i.types[n].bitfield.imm16)
8312 size = 2;
e205caa7
L
8313 return size;
8314}
8315
29b0f896 8316static void
64e74474 8317output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8318{
8319 char *p;
8320 unsigned int n;
252b5132 8321
29b0f896
AM
8322 for (n = 0; n < i.operands; n++)
8323 {
b5014f7a 8324 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8325 {
8326 if (i.op[n].disps->X_op == O_constant)
8327 {
e205caa7 8328 int size = disp_size (n);
43234a1e 8329 offsetT val = i.op[n].disps->X_add_number;
252b5132 8330
629cfaf1
JB
8331 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8332 size);
29b0f896
AM
8333 p = frag_more (size);
8334 md_number_to_chars (p, val, size);
8335 }
8336 else
8337 {
f86103b7 8338 enum bfd_reloc_code_real reloc_type;
e205caa7 8339 int size = disp_size (n);
40fb9820 8340 int sign = i.types[n].bitfield.disp32s;
29b0f896 8341 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8342 fixS *fixP;
29b0f896 8343
e205caa7 8344 /* We can't have 8 bit displacement here. */
9c2799c2 8345 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8346
29b0f896
AM
8347 /* The PC relative address is computed relative
8348 to the instruction boundary, so in case immediate
8349 fields follows, we need to adjust the value. */
8350 if (pcrel && i.imm_operands)
8351 {
29b0f896 8352 unsigned int n1;
e205caa7 8353 int sz = 0;
252b5132 8354
29b0f896 8355 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8356 if (operand_type_check (i.types[n1], imm))
252b5132 8357 {
e205caa7
L
8358 /* Only one immediate is allowed for PC
8359 relative address. */
9c2799c2 8360 gas_assert (sz == 0);
e205caa7
L
8361 sz = imm_size (n1);
8362 i.op[n].disps->X_add_number -= sz;
252b5132 8363 }
29b0f896 8364 /* We should find the immediate. */
9c2799c2 8365 gas_assert (sz != 0);
29b0f896 8366 }
520dc8e8 8367
29b0f896 8368 p = frag_more (size);
d258b828 8369 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8370 if (GOT_symbol
2bbd9c25 8371 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8372 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8373 || reloc_type == BFD_RELOC_X86_64_32S
8374 || (reloc_type == BFD_RELOC_64
8375 && object_64bit))
d6ab8113
JB
8376 && (i.op[n].disps->X_op == O_symbol
8377 || (i.op[n].disps->X_op == O_add
8378 && ((symbol_get_value_expression
8379 (i.op[n].disps->X_op_symbol)->X_op)
8380 == O_subtract))))
8381 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8382 {
8383 offsetT add;
8384
8385 if (insn_start_frag == frag_now)
8386 add = (p - frag_now->fr_literal) - insn_start_off;
8387 else
8388 {
8389 fragS *fr;
8390
8391 add = insn_start_frag->fr_fix - insn_start_off;
8392 for (fr = insn_start_frag->fr_next;
8393 fr && fr != frag_now; fr = fr->fr_next)
8394 add += fr->fr_fix;
8395 add += p - frag_now->fr_literal;
8396 }
8397
4fa24527 8398 if (!object_64bit)
7b81dfbb
AJ
8399 {
8400 reloc_type = BFD_RELOC_386_GOTPC;
8401 i.op[n].imms->X_add_number += add;
8402 }
8403 else if (reloc_type == BFD_RELOC_64)
8404 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8405 else
7b81dfbb
AJ
8406 /* Don't do the adjustment for x86-64, as there
8407 the pcrel addressing is relative to the _next_
8408 insn, and that is taken care of in other code. */
d6ab8113 8409 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8410 }
02a86693
L
8411 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8412 size, i.op[n].disps, pcrel,
8413 reloc_type);
8414 /* Check for "call/jmp *mem", "mov mem, %reg",
8415 "test %reg, mem" and "binop mem, %reg" where binop
8416 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8417 instructions. Always generate R_386_GOT32X for
8418 "sym*GOT" operand in 32-bit mode. */
8419 if ((generate_relax_relocations
8420 || (!object_64bit
8421 && i.rm.mode == 0
8422 && i.rm.regmem == 5))
8423 && (i.rm.mode == 2
8424 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8425 && ((i.operands == 1
8426 && i.tm.base_opcode == 0xff
8427 && (i.rm.reg == 2 || i.rm.reg == 4))
8428 || (i.operands == 2
8429 && (i.tm.base_opcode == 0x8b
8430 || i.tm.base_opcode == 0x85
8431 || (i.tm.base_opcode & 0xc7) == 0x03))))
8432 {
8433 if (object_64bit)
8434 {
8435 fixP->fx_tcbit = i.rex != 0;
8436 if (i.base_reg
e968fc9b 8437 && (i.base_reg->reg_num == RegIP))
02a86693
L
8438 fixP->fx_tcbit2 = 1;
8439 }
8440 else
8441 fixP->fx_tcbit2 = 1;
8442 }
29b0f896
AM
8443 }
8444 }
8445 }
8446}
252b5132 8447
29b0f896 8448static void
64e74474 8449output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8450{
8451 char *p;
8452 unsigned int n;
252b5132 8453
29b0f896
AM
8454 for (n = 0; n < i.operands; n++)
8455 {
43234a1e
L
8456 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8457 if (i.rounding && (int) n == i.rounding->operand)
8458 continue;
8459
40fb9820 8460 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8461 {
8462 if (i.op[n].imms->X_op == O_constant)
8463 {
e205caa7 8464 int size = imm_size (n);
29b0f896 8465 offsetT val;
b4cac588 8466
29b0f896
AM
8467 val = offset_in_range (i.op[n].imms->X_add_number,
8468 size);
8469 p = frag_more (size);
8470 md_number_to_chars (p, val, size);
8471 }
8472 else
8473 {
8474 /* Not absolute_section.
8475 Need a 32-bit fixup (don't support 8bit
8476 non-absolute imms). Try to support other
8477 sizes ... */
f86103b7 8478 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8479 int size = imm_size (n);
8480 int sign;
29b0f896 8481
40fb9820 8482 if (i.types[n].bitfield.imm32s
a7d61044 8483 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8484 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8485 sign = 1;
e205caa7
L
8486 else
8487 sign = 0;
520dc8e8 8488
29b0f896 8489 p = frag_more (size);
d258b828 8490 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8491
2bbd9c25
JJ
8492 /* This is tough to explain. We end up with this one if we
8493 * have operands that look like
8494 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8495 * obtain the absolute address of the GOT, and it is strongly
8496 * preferable from a performance point of view to avoid using
8497 * a runtime relocation for this. The actual sequence of
8498 * instructions often look something like:
8499 *
8500 * call .L66
8501 * .L66:
8502 * popl %ebx
8503 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8504 *
8505 * The call and pop essentially return the absolute address
8506 * of the label .L66 and store it in %ebx. The linker itself
8507 * will ultimately change the first operand of the addl so
8508 * that %ebx points to the GOT, but to keep things simple, the
8509 * .o file must have this operand set so that it generates not
8510 * the absolute address of .L66, but the absolute address of
8511 * itself. This allows the linker itself simply treat a GOTPC
8512 * relocation as asking for a pcrel offset to the GOT to be
8513 * added in, and the addend of the relocation is stored in the
8514 * operand field for the instruction itself.
8515 *
8516 * Our job here is to fix the operand so that it would add
8517 * the correct offset so that %ebx would point to itself. The
8518 * thing that is tricky is that .-.L66 will point to the
8519 * beginning of the instruction, so we need to further modify
8520 * the operand so that it will point to itself. There are
8521 * other cases where you have something like:
8522 *
8523 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8524 *
8525 * and here no correction would be required. Internally in
8526 * the assembler we treat operands of this form as not being
8527 * pcrel since the '.' is explicitly mentioned, and I wonder
8528 * whether it would simplify matters to do it this way. Who
8529 * knows. In earlier versions of the PIC patches, the
8530 * pcrel_adjust field was used to store the correction, but
8531 * since the expression is not pcrel, I felt it would be
8532 * confusing to do it this way. */
8533
d6ab8113 8534 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8535 || reloc_type == BFD_RELOC_X86_64_32S
8536 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8537 && GOT_symbol
8538 && GOT_symbol == i.op[n].imms->X_add_symbol
8539 && (i.op[n].imms->X_op == O_symbol
8540 || (i.op[n].imms->X_op == O_add
8541 && ((symbol_get_value_expression
8542 (i.op[n].imms->X_op_symbol)->X_op)
8543 == O_subtract))))
8544 {
2bbd9c25
JJ
8545 offsetT add;
8546
8547 if (insn_start_frag == frag_now)
8548 add = (p - frag_now->fr_literal) - insn_start_off;
8549 else
8550 {
8551 fragS *fr;
8552
8553 add = insn_start_frag->fr_fix - insn_start_off;
8554 for (fr = insn_start_frag->fr_next;
8555 fr && fr != frag_now; fr = fr->fr_next)
8556 add += fr->fr_fix;
8557 add += p - frag_now->fr_literal;
8558 }
8559
4fa24527 8560 if (!object_64bit)
d6ab8113 8561 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8562 else if (size == 4)
d6ab8113 8563 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8564 else if (size == 8)
8565 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8566 i.op[n].imms->X_add_number += add;
29b0f896 8567 }
29b0f896
AM
8568 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8569 i.op[n].imms, 0, reloc_type);
8570 }
8571 }
8572 }
252b5132
RH
8573}
8574\f
d182319b
JB
8575/* x86_cons_fix_new is called via the expression parsing code when a
8576 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8577static int cons_sign = -1;
8578
8579void
e3bb37b5 8580x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8581 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8582{
d258b828 8583 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8584
8585#ifdef TE_PE
8586 if (exp->X_op == O_secrel)
8587 {
8588 exp->X_op = O_symbol;
8589 r = BFD_RELOC_32_SECREL;
8590 }
8591#endif
8592
8593 fix_new_exp (frag, off, len, exp, 0, r);
8594}
8595
357d1bd8
L
8596/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8597 purpose of the `.dc.a' internal pseudo-op. */
8598
8599int
8600x86_address_bytes (void)
8601{
8602 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8603 return 4;
8604 return stdoutput->arch_info->bits_per_address / 8;
8605}
8606
d382c579
TG
8607#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8608 || defined (LEX_AT)
d258b828 8609# define lex_got(reloc, adjust, types) NULL
718ddfc0 8610#else
f3c180ae
AM
8611/* Parse operands of the form
8612 <symbol>@GOTOFF+<nnn>
8613 and similar .plt or .got references.
8614
8615 If we find one, set up the correct relocation in RELOC and copy the
8616 input string, minus the `@GOTOFF' into a malloc'd buffer for
8617 parsing by the calling routine. Return this buffer, and if ADJUST
8618 is non-null set it to the length of the string we removed from the
8619 input line. Otherwise return NULL. */
8620static char *
91d6fa6a 8621lex_got (enum bfd_reloc_code_real *rel,
64e74474 8622 int *adjust,
d258b828 8623 i386_operand_type *types)
f3c180ae 8624{
7b81dfbb
AJ
8625 /* Some of the relocations depend on the size of what field is to
8626 be relocated. But in our callers i386_immediate and i386_displacement
8627 we don't yet know the operand size (this will be set by insn
8628 matching). Hence we record the word32 relocation here,
8629 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8630 static const struct {
8631 const char *str;
cff8d58a 8632 int len;
4fa24527 8633 const enum bfd_reloc_code_real rel[2];
40fb9820 8634 const i386_operand_type types64;
f3c180ae 8635 } gotrel[] = {
8ce3d284 8636#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8637 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8638 BFD_RELOC_SIZE32 },
8639 OPERAND_TYPE_IMM32_64 },
8ce3d284 8640#endif
cff8d58a
L
8641 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8642 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8643 OPERAND_TYPE_IMM64 },
cff8d58a
L
8644 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8645 BFD_RELOC_X86_64_PLT32 },
40fb9820 8646 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8647 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8648 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8649 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8650 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8651 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8652 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8653 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8654 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8655 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8656 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8657 BFD_RELOC_X86_64_TLSGD },
40fb9820 8658 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8659 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8660 _dummy_first_bfd_reloc_code_real },
40fb9820 8661 OPERAND_TYPE_NONE },
cff8d58a
L
8662 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8663 BFD_RELOC_X86_64_TLSLD },
40fb9820 8664 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8665 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8666 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8667 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8668 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8669 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8670 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8671 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8672 _dummy_first_bfd_reloc_code_real },
40fb9820 8673 OPERAND_TYPE_NONE },
cff8d58a
L
8674 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8675 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8676 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8677 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8678 _dummy_first_bfd_reloc_code_real },
40fb9820 8679 OPERAND_TYPE_NONE },
cff8d58a
L
8680 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8681 _dummy_first_bfd_reloc_code_real },
40fb9820 8682 OPERAND_TYPE_NONE },
cff8d58a
L
8683 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8684 BFD_RELOC_X86_64_GOT32 },
40fb9820 8685 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8686 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8687 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8688 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8689 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8690 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8691 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8692 };
8693 char *cp;
8694 unsigned int j;
8695
d382c579 8696#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8697 if (!IS_ELF)
8698 return NULL;
d382c579 8699#endif
718ddfc0 8700
f3c180ae 8701 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8702 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8703 return NULL;
8704
47465058 8705 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8706 {
cff8d58a 8707 int len = gotrel[j].len;
28f81592 8708 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8709 {
4fa24527 8710 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8711 {
28f81592
AM
8712 int first, second;
8713 char *tmpbuf, *past_reloc;
f3c180ae 8714
91d6fa6a 8715 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8716
3956db08
JB
8717 if (types)
8718 {
8719 if (flag_code != CODE_64BIT)
40fb9820
L
8720 {
8721 types->bitfield.imm32 = 1;
8722 types->bitfield.disp32 = 1;
8723 }
3956db08
JB
8724 else
8725 *types = gotrel[j].types64;
8726 }
8727
8fd4256d 8728 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8729 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8730
28f81592 8731 /* The length of the first part of our input line. */
f3c180ae 8732 first = cp - input_line_pointer;
28f81592
AM
8733
8734 /* The second part goes from after the reloc token until
67c11a9b 8735 (and including) an end_of_line char or comma. */
28f81592 8736 past_reloc = cp + 1 + len;
67c11a9b
AM
8737 cp = past_reloc;
8738 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8739 ++cp;
8740 second = cp + 1 - past_reloc;
28f81592
AM
8741
8742 /* Allocate and copy string. The trailing NUL shouldn't
8743 be necessary, but be safe. */
add39d23 8744 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8745 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8746 if (second != 0 && *past_reloc != ' ')
8747 /* Replace the relocation token with ' ', so that
8748 errors like foo@GOTOFF1 will be detected. */
8749 tmpbuf[first++] = ' ';
af89796a
L
8750 else
8751 /* Increment length by 1 if the relocation token is
8752 removed. */
8753 len++;
8754 if (adjust)
8755 *adjust = len;
0787a12d
AM
8756 memcpy (tmpbuf + first, past_reloc, second);
8757 tmpbuf[first + second] = '\0';
f3c180ae
AM
8758 return tmpbuf;
8759 }
8760
4fa24527
JB
8761 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8762 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8763 return NULL;
8764 }
8765 }
8766
8767 /* Might be a symbol version string. Don't as_bad here. */
8768 return NULL;
8769}
4e4f7c87 8770#endif
f3c180ae 8771
a988325c
NC
8772#ifdef TE_PE
8773#ifdef lex_got
8774#undef lex_got
8775#endif
8776/* Parse operands of the form
8777 <symbol>@SECREL32+<nnn>
8778
8779 If we find one, set up the correct relocation in RELOC and copy the
8780 input string, minus the `@SECREL32' into a malloc'd buffer for
8781 parsing by the calling routine. Return this buffer, and if ADJUST
8782 is non-null set it to the length of the string we removed from the
34bca508
L
8783 input line. Otherwise return NULL.
8784
a988325c
NC
8785 This function is copied from the ELF version above adjusted for PE targets. */
8786
8787static char *
8788lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8789 int *adjust ATTRIBUTE_UNUSED,
d258b828 8790 i386_operand_type *types)
a988325c
NC
8791{
8792 static const struct
8793 {
8794 const char *str;
8795 int len;
8796 const enum bfd_reloc_code_real rel[2];
8797 const i386_operand_type types64;
8798 }
8799 gotrel[] =
8800 {
8801 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8802 BFD_RELOC_32_SECREL },
8803 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8804 };
8805
8806 char *cp;
8807 unsigned j;
8808
8809 for (cp = input_line_pointer; *cp != '@'; cp++)
8810 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8811 return NULL;
8812
8813 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8814 {
8815 int len = gotrel[j].len;
8816
8817 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8818 {
8819 if (gotrel[j].rel[object_64bit] != 0)
8820 {
8821 int first, second;
8822 char *tmpbuf, *past_reloc;
8823
8824 *rel = gotrel[j].rel[object_64bit];
8825 if (adjust)
8826 *adjust = len;
8827
8828 if (types)
8829 {
8830 if (flag_code != CODE_64BIT)
8831 {
8832 types->bitfield.imm32 = 1;
8833 types->bitfield.disp32 = 1;
8834 }
8835 else
8836 *types = gotrel[j].types64;
8837 }
8838
8839 /* The length of the first part of our input line. */
8840 first = cp - input_line_pointer;
8841
8842 /* The second part goes from after the reloc token until
8843 (and including) an end_of_line char or comma. */
8844 past_reloc = cp + 1 + len;
8845 cp = past_reloc;
8846 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8847 ++cp;
8848 second = cp + 1 - past_reloc;
8849
8850 /* Allocate and copy string. The trailing NUL shouldn't
8851 be necessary, but be safe. */
add39d23 8852 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8853 memcpy (tmpbuf, input_line_pointer, first);
8854 if (second != 0 && *past_reloc != ' ')
8855 /* Replace the relocation token with ' ', so that
8856 errors like foo@SECLREL321 will be detected. */
8857 tmpbuf[first++] = ' ';
8858 memcpy (tmpbuf + first, past_reloc, second);
8859 tmpbuf[first + second] = '\0';
8860 return tmpbuf;
8861 }
8862
8863 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8864 gotrel[j].str, 1 << (5 + object_64bit));
8865 return NULL;
8866 }
8867 }
8868
8869 /* Might be a symbol version string. Don't as_bad here. */
8870 return NULL;
8871}
8872
8873#endif /* TE_PE */
8874
62ebcb5c 8875bfd_reloc_code_real_type
e3bb37b5 8876x86_cons (expressionS *exp, int size)
f3c180ae 8877{
62ebcb5c
AM
8878 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8879
ee86248c
JB
8880 intel_syntax = -intel_syntax;
8881
3c7b9c2c 8882 exp->X_md = 0;
4fa24527 8883 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8884 {
8885 /* Handle @GOTOFF and the like in an expression. */
8886 char *save;
8887 char *gotfree_input_line;
4a57f2cf 8888 int adjust = 0;
f3c180ae
AM
8889
8890 save = input_line_pointer;
d258b828 8891 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8892 if (gotfree_input_line)
8893 input_line_pointer = gotfree_input_line;
8894
8895 expression (exp);
8896
8897 if (gotfree_input_line)
8898 {
8899 /* expression () has merrily parsed up to the end of line,
8900 or a comma - in the wrong buffer. Transfer how far
8901 input_line_pointer has moved to the right buffer. */
8902 input_line_pointer = (save
8903 + (input_line_pointer - gotfree_input_line)
8904 + adjust);
8905 free (gotfree_input_line);
3992d3b7
AM
8906 if (exp->X_op == O_constant
8907 || exp->X_op == O_absent
8908 || exp->X_op == O_illegal
0398aac5 8909 || exp->X_op == O_register
3992d3b7
AM
8910 || exp->X_op == O_big)
8911 {
8912 char c = *input_line_pointer;
8913 *input_line_pointer = 0;
8914 as_bad (_("missing or invalid expression `%s'"), save);
8915 *input_line_pointer = c;
8916 }
f3c180ae
AM
8917 }
8918 }
8919 else
8920 expression (exp);
ee86248c
JB
8921
8922 intel_syntax = -intel_syntax;
8923
8924 if (intel_syntax)
8925 i386_intel_simplify (exp);
62ebcb5c
AM
8926
8927 return got_reloc;
f3c180ae 8928}
f3c180ae 8929
9f32dd5b
L
8930static void
8931signed_cons (int size)
6482c264 8932{
d182319b
JB
8933 if (flag_code == CODE_64BIT)
8934 cons_sign = 1;
8935 cons (size);
8936 cons_sign = -1;
6482c264
NC
8937}
8938
d182319b 8939#ifdef TE_PE
6482c264 8940static void
7016a5d5 8941pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8942{
8943 expressionS exp;
8944
8945 do
8946 {
8947 expression (&exp);
8948 if (exp.X_op == O_symbol)
8949 exp.X_op = O_secrel;
8950
8951 emit_expr (&exp, 4);
8952 }
8953 while (*input_line_pointer++ == ',');
8954
8955 input_line_pointer--;
8956 demand_empty_rest_of_line ();
8957}
6482c264
NC
8958#endif
8959
43234a1e
L
8960/* Handle Vector operations. */
8961
8962static char *
8963check_VecOperations (char *op_string, char *op_end)
8964{
8965 const reg_entry *mask;
8966 const char *saved;
8967 char *end_op;
8968
8969 while (*op_string
8970 && (op_end == NULL || op_string < op_end))
8971 {
8972 saved = op_string;
8973 if (*op_string == '{')
8974 {
8975 op_string++;
8976
8977 /* Check broadcasts. */
8978 if (strncmp (op_string, "1to", 3) == 0)
8979 {
8980 int bcst_type;
8981
8982 if (i.broadcast)
8983 goto duplicated_vec_op;
8984
8985 op_string += 3;
8986 if (*op_string == '8')
8e6e0792 8987 bcst_type = 8;
b28d1bda 8988 else if (*op_string == '4')
8e6e0792 8989 bcst_type = 4;
b28d1bda 8990 else if (*op_string == '2')
8e6e0792 8991 bcst_type = 2;
43234a1e
L
8992 else if (*op_string == '1'
8993 && *(op_string+1) == '6')
8994 {
8e6e0792 8995 bcst_type = 16;
43234a1e
L
8996 op_string++;
8997 }
8998 else
8999 {
9000 as_bad (_("Unsupported broadcast: `%s'"), saved);
9001 return NULL;
9002 }
9003 op_string++;
9004
9005 broadcast_op.type = bcst_type;
9006 broadcast_op.operand = this_operand;
1f75763a 9007 broadcast_op.bytes = 0;
43234a1e
L
9008 i.broadcast = &broadcast_op;
9009 }
9010 /* Check masking operation. */
9011 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9012 {
9013 /* k0 can't be used for write mask. */
6d2cd6b2 9014 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9015 {
6d2cd6b2
JB
9016 as_bad (_("`%s%s' can't be used for write mask"),
9017 register_prefix, mask->reg_name);
43234a1e
L
9018 return NULL;
9019 }
9020
9021 if (!i.mask)
9022 {
9023 mask_op.mask = mask;
9024 mask_op.zeroing = 0;
9025 mask_op.operand = this_operand;
9026 i.mask = &mask_op;
9027 }
9028 else
9029 {
9030 if (i.mask->mask)
9031 goto duplicated_vec_op;
9032
9033 i.mask->mask = mask;
9034
9035 /* Only "{z}" is allowed here. No need to check
9036 zeroing mask explicitly. */
9037 if (i.mask->operand != this_operand)
9038 {
9039 as_bad (_("invalid write mask `%s'"), saved);
9040 return NULL;
9041 }
9042 }
9043
9044 op_string = end_op;
9045 }
9046 /* Check zeroing-flag for masking operation. */
9047 else if (*op_string == 'z')
9048 {
9049 if (!i.mask)
9050 {
9051 mask_op.mask = NULL;
9052 mask_op.zeroing = 1;
9053 mask_op.operand = this_operand;
9054 i.mask = &mask_op;
9055 }
9056 else
9057 {
9058 if (i.mask->zeroing)
9059 {
9060 duplicated_vec_op:
9061 as_bad (_("duplicated `%s'"), saved);
9062 return NULL;
9063 }
9064
9065 i.mask->zeroing = 1;
9066
9067 /* Only "{%k}" is allowed here. No need to check mask
9068 register explicitly. */
9069 if (i.mask->operand != this_operand)
9070 {
9071 as_bad (_("invalid zeroing-masking `%s'"),
9072 saved);
9073 return NULL;
9074 }
9075 }
9076
9077 op_string++;
9078 }
9079 else
9080 goto unknown_vec_op;
9081
9082 if (*op_string != '}')
9083 {
9084 as_bad (_("missing `}' in `%s'"), saved);
9085 return NULL;
9086 }
9087 op_string++;
0ba3a731
L
9088
9089 /* Strip whitespace since the addition of pseudo prefixes
9090 changed how the scrubber treats '{'. */
9091 if (is_space_char (*op_string))
9092 ++op_string;
9093
43234a1e
L
9094 continue;
9095 }
9096 unknown_vec_op:
9097 /* We don't know this one. */
9098 as_bad (_("unknown vector operation: `%s'"), saved);
9099 return NULL;
9100 }
9101
6d2cd6b2
JB
9102 if (i.mask && i.mask->zeroing && !i.mask->mask)
9103 {
9104 as_bad (_("zeroing-masking only allowed with write mask"));
9105 return NULL;
9106 }
9107
43234a1e
L
9108 return op_string;
9109}
9110
252b5132 9111static int
70e41ade 9112i386_immediate (char *imm_start)
252b5132
RH
9113{
9114 char *save_input_line_pointer;
f3c180ae 9115 char *gotfree_input_line;
252b5132 9116 segT exp_seg = 0;
47926f60 9117 expressionS *exp;
40fb9820
L
9118 i386_operand_type types;
9119
0dfbf9d7 9120 operand_type_set (&types, ~0);
252b5132
RH
9121
9122 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9123 {
31b2323c
L
9124 as_bad (_("at most %d immediate operands are allowed"),
9125 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9126 return 0;
9127 }
9128
9129 exp = &im_expressions[i.imm_operands++];
520dc8e8 9130 i.op[this_operand].imms = exp;
252b5132
RH
9131
9132 if (is_space_char (*imm_start))
9133 ++imm_start;
9134
9135 save_input_line_pointer = input_line_pointer;
9136 input_line_pointer = imm_start;
9137
d258b828 9138 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9139 if (gotfree_input_line)
9140 input_line_pointer = gotfree_input_line;
252b5132
RH
9141
9142 exp_seg = expression (exp);
9143
83183c0c 9144 SKIP_WHITESPACE ();
43234a1e
L
9145
9146 /* Handle vector operations. */
9147 if (*input_line_pointer == '{')
9148 {
9149 input_line_pointer = check_VecOperations (input_line_pointer,
9150 NULL);
9151 if (input_line_pointer == NULL)
9152 return 0;
9153 }
9154
252b5132 9155 if (*input_line_pointer)
f3c180ae 9156 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9157
9158 input_line_pointer = save_input_line_pointer;
f3c180ae 9159 if (gotfree_input_line)
ee86248c
JB
9160 {
9161 free (gotfree_input_line);
9162
9163 if (exp->X_op == O_constant || exp->X_op == O_register)
9164 exp->X_op = O_illegal;
9165 }
9166
9167 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9168}
252b5132 9169
ee86248c
JB
9170static int
9171i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9172 i386_operand_type types, const char *imm_start)
9173{
9174 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9175 {
313c53d1
L
9176 if (imm_start)
9177 as_bad (_("missing or invalid immediate expression `%s'"),
9178 imm_start);
3992d3b7 9179 return 0;
252b5132 9180 }
3e73aa7c 9181 else if (exp->X_op == O_constant)
252b5132 9182 {
47926f60 9183 /* Size it properly later. */
40fb9820 9184 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9185 /* If not 64bit, sign extend val. */
9186 if (flag_code != CODE_64BIT
4eed87de
AM
9187 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9188 exp->X_add_number
9189 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9190 }
4c63da97 9191#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9192 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9193 && exp_seg != absolute_section
47926f60 9194 && exp_seg != text_section
24eab124
AM
9195 && exp_seg != data_section
9196 && exp_seg != bss_section
9197 && exp_seg != undefined_section
f86103b7 9198 && !bfd_is_com_section (exp_seg))
252b5132 9199 {
d0b47220 9200 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9201 return 0;
9202 }
9203#endif
a841bdf5 9204 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9205 {
313c53d1
L
9206 if (imm_start)
9207 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9208 return 0;
9209 }
252b5132
RH
9210 else
9211 {
9212 /* This is an address. The size of the address will be
24eab124 9213 determined later, depending on destination register,
3e73aa7c 9214 suffix, or the default for the section. */
40fb9820
L
9215 i.types[this_operand].bitfield.imm8 = 1;
9216 i.types[this_operand].bitfield.imm16 = 1;
9217 i.types[this_operand].bitfield.imm32 = 1;
9218 i.types[this_operand].bitfield.imm32s = 1;
9219 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9220 i.types[this_operand] = operand_type_and (i.types[this_operand],
9221 types);
252b5132
RH
9222 }
9223
9224 return 1;
9225}
9226
551c1ca1 9227static char *
e3bb37b5 9228i386_scale (char *scale)
252b5132 9229{
551c1ca1
AM
9230 offsetT val;
9231 char *save = input_line_pointer;
252b5132 9232
551c1ca1
AM
9233 input_line_pointer = scale;
9234 val = get_absolute_expression ();
9235
9236 switch (val)
252b5132 9237 {
551c1ca1 9238 case 1:
252b5132
RH
9239 i.log2_scale_factor = 0;
9240 break;
551c1ca1 9241 case 2:
252b5132
RH
9242 i.log2_scale_factor = 1;
9243 break;
551c1ca1 9244 case 4:
252b5132
RH
9245 i.log2_scale_factor = 2;
9246 break;
551c1ca1 9247 case 8:
252b5132
RH
9248 i.log2_scale_factor = 3;
9249 break;
9250 default:
a724f0f4
JB
9251 {
9252 char sep = *input_line_pointer;
9253
9254 *input_line_pointer = '\0';
9255 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9256 scale);
9257 *input_line_pointer = sep;
9258 input_line_pointer = save;
9259 return NULL;
9260 }
252b5132 9261 }
29b0f896 9262 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9263 {
9264 as_warn (_("scale factor of %d without an index register"),
24eab124 9265 1 << i.log2_scale_factor);
252b5132 9266 i.log2_scale_factor = 0;
252b5132 9267 }
551c1ca1
AM
9268 scale = input_line_pointer;
9269 input_line_pointer = save;
9270 return scale;
252b5132
RH
9271}
9272
252b5132 9273static int
e3bb37b5 9274i386_displacement (char *disp_start, char *disp_end)
252b5132 9275{
29b0f896 9276 expressionS *exp;
252b5132
RH
9277 segT exp_seg = 0;
9278 char *save_input_line_pointer;
f3c180ae 9279 char *gotfree_input_line;
40fb9820
L
9280 int override;
9281 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9282 int ret;
252b5132 9283
31b2323c
L
9284 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9285 {
9286 as_bad (_("at most %d displacement operands are allowed"),
9287 MAX_MEMORY_OPERANDS);
9288 return 0;
9289 }
9290
0dfbf9d7 9291 operand_type_set (&bigdisp, 0);
40fb9820
L
9292 if ((i.types[this_operand].bitfield.jumpabsolute)
9293 || (!current_templates->start->opcode_modifier.jump
9294 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9295 {
40fb9820 9296 bigdisp.bitfield.disp32 = 1;
e05278af 9297 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9298 if (flag_code == CODE_64BIT)
9299 {
9300 if (!override)
9301 {
9302 bigdisp.bitfield.disp32s = 1;
9303 bigdisp.bitfield.disp64 = 1;
9304 }
9305 }
9306 else if ((flag_code == CODE_16BIT) ^ override)
9307 {
9308 bigdisp.bitfield.disp32 = 0;
9309 bigdisp.bitfield.disp16 = 1;
9310 }
e05278af
JB
9311 }
9312 else
9313 {
9314 /* For PC-relative branches, the width of the displacement
9315 is dependent upon data size, not address size. */
e05278af 9316 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9317 if (flag_code == CODE_64BIT)
9318 {
9319 if (override || i.suffix == WORD_MNEM_SUFFIX)
9320 bigdisp.bitfield.disp16 = 1;
9321 else
9322 {
9323 bigdisp.bitfield.disp32 = 1;
9324 bigdisp.bitfield.disp32s = 1;
9325 }
9326 }
9327 else
e05278af
JB
9328 {
9329 if (!override)
9330 override = (i.suffix == (flag_code != CODE_16BIT
9331 ? WORD_MNEM_SUFFIX
9332 : LONG_MNEM_SUFFIX));
40fb9820
L
9333 bigdisp.bitfield.disp32 = 1;
9334 if ((flag_code == CODE_16BIT) ^ override)
9335 {
9336 bigdisp.bitfield.disp32 = 0;
9337 bigdisp.bitfield.disp16 = 1;
9338 }
e05278af 9339 }
e05278af 9340 }
c6fb90c8
L
9341 i.types[this_operand] = operand_type_or (i.types[this_operand],
9342 bigdisp);
252b5132
RH
9343
9344 exp = &disp_expressions[i.disp_operands];
520dc8e8 9345 i.op[this_operand].disps = exp;
252b5132
RH
9346 i.disp_operands++;
9347 save_input_line_pointer = input_line_pointer;
9348 input_line_pointer = disp_start;
9349 END_STRING_AND_SAVE (disp_end);
9350
9351#ifndef GCC_ASM_O_HACK
9352#define GCC_ASM_O_HACK 0
9353#endif
9354#if GCC_ASM_O_HACK
9355 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9356 if (i.types[this_operand].bitfield.baseIndex
24eab124 9357 && displacement_string_end[-1] == '+')
252b5132
RH
9358 {
9359 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9360 constraint within gcc asm statements.
9361 For instance:
9362
9363 #define _set_tssldt_desc(n,addr,limit,type) \
9364 __asm__ __volatile__ ( \
9365 "movw %w2,%0\n\t" \
9366 "movw %w1,2+%0\n\t" \
9367 "rorl $16,%1\n\t" \
9368 "movb %b1,4+%0\n\t" \
9369 "movb %4,5+%0\n\t" \
9370 "movb $0,6+%0\n\t" \
9371 "movb %h1,7+%0\n\t" \
9372 "rorl $16,%1" \
9373 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9374
9375 This works great except that the output assembler ends
9376 up looking a bit weird if it turns out that there is
9377 no offset. You end up producing code that looks like:
9378
9379 #APP
9380 movw $235,(%eax)
9381 movw %dx,2+(%eax)
9382 rorl $16,%edx
9383 movb %dl,4+(%eax)
9384 movb $137,5+(%eax)
9385 movb $0,6+(%eax)
9386 movb %dh,7+(%eax)
9387 rorl $16,%edx
9388 #NO_APP
9389
47926f60 9390 So here we provide the missing zero. */
24eab124
AM
9391
9392 *displacement_string_end = '0';
252b5132
RH
9393 }
9394#endif
d258b828 9395 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9396 if (gotfree_input_line)
9397 input_line_pointer = gotfree_input_line;
252b5132 9398
24eab124 9399 exp_seg = expression (exp);
252b5132 9400
636c26b0
AM
9401 SKIP_WHITESPACE ();
9402 if (*input_line_pointer)
9403 as_bad (_("junk `%s' after expression"), input_line_pointer);
9404#if GCC_ASM_O_HACK
9405 RESTORE_END_STRING (disp_end + 1);
9406#endif
636c26b0 9407 input_line_pointer = save_input_line_pointer;
636c26b0 9408 if (gotfree_input_line)
ee86248c
JB
9409 {
9410 free (gotfree_input_line);
9411
9412 if (exp->X_op == O_constant || exp->X_op == O_register)
9413 exp->X_op = O_illegal;
9414 }
9415
9416 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9417
9418 RESTORE_END_STRING (disp_end);
9419
9420 return ret;
9421}
9422
9423static int
9424i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9425 i386_operand_type types, const char *disp_start)
9426{
9427 i386_operand_type bigdisp;
9428 int ret = 1;
636c26b0 9429
24eab124
AM
9430 /* We do this to make sure that the section symbol is in
9431 the symbol table. We will ultimately change the relocation
47926f60 9432 to be relative to the beginning of the section. */
1ae12ab7 9433 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9434 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9435 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9436 {
636c26b0 9437 if (exp->X_op != O_symbol)
3992d3b7 9438 goto inv_disp;
636c26b0 9439
e5cb08ac 9440 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9441 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9442 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9443 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9444 exp->X_op = O_subtract;
9445 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9446 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9447 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9448 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9449 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9450 else
29b0f896 9451 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9452 }
252b5132 9453
3992d3b7
AM
9454 else if (exp->X_op == O_absent
9455 || exp->X_op == O_illegal
ee86248c 9456 || exp->X_op == O_big)
2daf4fd8 9457 {
3992d3b7
AM
9458 inv_disp:
9459 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9460 disp_start);
3992d3b7 9461 ret = 0;
2daf4fd8
AM
9462 }
9463
0e1147d9
L
9464 else if (flag_code == CODE_64BIT
9465 && !i.prefix[ADDR_PREFIX]
9466 && exp->X_op == O_constant)
9467 {
9468 /* Since displacement is signed extended to 64bit, don't allow
9469 disp32 and turn off disp32s if they are out of range. */
9470 i.types[this_operand].bitfield.disp32 = 0;
9471 if (!fits_in_signed_long (exp->X_add_number))
9472 {
9473 i.types[this_operand].bitfield.disp32s = 0;
9474 if (i.types[this_operand].bitfield.baseindex)
9475 {
9476 as_bad (_("0x%lx out range of signed 32bit displacement"),
9477 (long) exp->X_add_number);
9478 ret = 0;
9479 }
9480 }
9481 }
9482
4c63da97 9483#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9484 else if (exp->X_op != O_constant
9485 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9486 && exp_seg != absolute_section
9487 && exp_seg != text_section
9488 && exp_seg != data_section
9489 && exp_seg != bss_section
9490 && exp_seg != undefined_section
9491 && !bfd_is_com_section (exp_seg))
24eab124 9492 {
d0b47220 9493 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9494 ret = 0;
24eab124 9495 }
252b5132 9496#endif
3956db08 9497
40fb9820
L
9498 /* Check if this is a displacement only operand. */
9499 bigdisp = i.types[this_operand];
9500 bigdisp.bitfield.disp8 = 0;
9501 bigdisp.bitfield.disp16 = 0;
9502 bigdisp.bitfield.disp32 = 0;
9503 bigdisp.bitfield.disp32s = 0;
9504 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9505 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9506 i.types[this_operand] = operand_type_and (i.types[this_operand],
9507 types);
3956db08 9508
3992d3b7 9509 return ret;
252b5132
RH
9510}
9511
2abc2bec
JB
9512/* Return the active addressing mode, taking address override and
9513 registers forming the address into consideration. Update the
9514 address override prefix if necessary. */
47926f60 9515
2abc2bec
JB
9516static enum flag_code
9517i386_addressing_mode (void)
252b5132 9518{
be05d201
L
9519 enum flag_code addr_mode;
9520
9521 if (i.prefix[ADDR_PREFIX])
9522 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9523 else
9524 {
9525 addr_mode = flag_code;
9526
24eab124 9527#if INFER_ADDR_PREFIX
be05d201
L
9528 if (i.mem_operands == 0)
9529 {
9530 /* Infer address prefix from the first memory operand. */
9531 const reg_entry *addr_reg = i.base_reg;
9532
9533 if (addr_reg == NULL)
9534 addr_reg = i.index_reg;
eecb386c 9535
be05d201
L
9536 if (addr_reg)
9537 {
e968fc9b 9538 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9539 addr_mode = CODE_32BIT;
9540 else if (flag_code != CODE_64BIT
dc821c5f 9541 && addr_reg->reg_type.bitfield.word)
be05d201
L
9542 addr_mode = CODE_16BIT;
9543
9544 if (addr_mode != flag_code)
9545 {
9546 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9547 i.prefixes += 1;
9548 /* Change the size of any displacement too. At most one
9549 of Disp16 or Disp32 is set.
9550 FIXME. There doesn't seem to be any real need for
9551 separate Disp16 and Disp32 flags. The same goes for
9552 Imm16 and Imm32. Removing them would probably clean
9553 up the code quite a lot. */
9554 if (flag_code != CODE_64BIT
9555 && (i.types[this_operand].bitfield.disp16
9556 || i.types[this_operand].bitfield.disp32))
9557 i.types[this_operand]
9558 = operand_type_xor (i.types[this_operand], disp16_32);
9559 }
9560 }
9561 }
24eab124 9562#endif
be05d201
L
9563 }
9564
2abc2bec
JB
9565 return addr_mode;
9566}
9567
9568/* Make sure the memory operand we've been dealt is valid.
9569 Return 1 on success, 0 on a failure. */
9570
9571static int
9572i386_index_check (const char *operand_string)
9573{
9574 const char *kind = "base/index";
9575 enum flag_code addr_mode = i386_addressing_mode ();
9576
fc0763e6
JB
9577 if (current_templates->start->opcode_modifier.isstring
9578 && !current_templates->start->opcode_modifier.immext
9579 && (current_templates->end[-1].opcode_modifier.isstring
9580 || i.mem_operands))
9581 {
9582 /* Memory operands of string insns are special in that they only allow
9583 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9584 const reg_entry *expected_reg;
9585 static const char *di_si[][2] =
9586 {
9587 { "esi", "edi" },
9588 { "si", "di" },
9589 { "rsi", "rdi" }
9590 };
9591 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9592
9593 kind = "string address";
9594
8325cc63 9595 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9596 {
9597 i386_operand_type type = current_templates->end[-1].operand_types[0];
9598
9599 if (!type.bitfield.baseindex
9600 || ((!i.mem_operands != !intel_syntax)
9601 && current_templates->end[-1].operand_types[1]
9602 .bitfield.baseindex))
9603 type = current_templates->end[-1].operand_types[1];
be05d201
L
9604 expected_reg = hash_find (reg_hash,
9605 di_si[addr_mode][type.bitfield.esseg]);
9606
fc0763e6
JB
9607 }
9608 else
be05d201 9609 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9610
be05d201
L
9611 if (i.base_reg != expected_reg
9612 || i.index_reg
fc0763e6 9613 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9614 {
be05d201
L
9615 /* The second memory operand must have the same size as
9616 the first one. */
9617 if (i.mem_operands
9618 && i.base_reg
9619 && !((addr_mode == CODE_64BIT
dc821c5f 9620 && i.base_reg->reg_type.bitfield.qword)
be05d201 9621 || (addr_mode == CODE_32BIT
dc821c5f
JB
9622 ? i.base_reg->reg_type.bitfield.dword
9623 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9624 goto bad_address;
9625
fc0763e6
JB
9626 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9627 operand_string,
9628 intel_syntax ? '[' : '(',
9629 register_prefix,
be05d201 9630 expected_reg->reg_name,
fc0763e6 9631 intel_syntax ? ']' : ')');
be05d201 9632 return 1;
fc0763e6 9633 }
be05d201
L
9634 else
9635 return 1;
9636
9637bad_address:
9638 as_bad (_("`%s' is not a valid %s expression"),
9639 operand_string, kind);
9640 return 0;
3e73aa7c
JH
9641 }
9642 else
9643 {
be05d201
L
9644 if (addr_mode != CODE_16BIT)
9645 {
9646 /* 32-bit/64-bit checks. */
9647 if ((i.base_reg
e968fc9b
JB
9648 && ((addr_mode == CODE_64BIT
9649 ? !i.base_reg->reg_type.bitfield.qword
9650 : !i.base_reg->reg_type.bitfield.dword)
9651 || (i.index_reg && i.base_reg->reg_num == RegIP)
9652 || i.base_reg->reg_num == RegIZ))
be05d201 9653 || (i.index_reg
1b54b8d7
JB
9654 && !i.index_reg->reg_type.bitfield.xmmword
9655 && !i.index_reg->reg_type.bitfield.ymmword
9656 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9657 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9658 ? !i.index_reg->reg_type.bitfield.qword
9659 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9660 || !i.index_reg->reg_type.bitfield.baseindex)))
9661 goto bad_address;
8178be5b
JB
9662
9663 /* bndmk, bndldx, and bndstx have special restrictions. */
9664 if (current_templates->start->base_opcode == 0xf30f1b
9665 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9666 {
9667 /* They cannot use RIP-relative addressing. */
e968fc9b 9668 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9669 {
9670 as_bad (_("`%s' cannot be used here"), operand_string);
9671 return 0;
9672 }
9673
9674 /* bndldx and bndstx ignore their scale factor. */
9675 if (current_templates->start->base_opcode != 0xf30f1b
9676 && i.log2_scale_factor)
9677 as_warn (_("register scaling is being ignored here"));
9678 }
be05d201
L
9679 }
9680 else
3e73aa7c 9681 {
be05d201 9682 /* 16-bit checks. */
3e73aa7c 9683 if ((i.base_reg
dc821c5f 9684 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9685 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9686 || (i.index_reg
dc821c5f 9687 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9688 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9689 || !(i.base_reg
9690 && i.base_reg->reg_num < 6
9691 && i.index_reg->reg_num >= 6
9692 && i.log2_scale_factor == 0))))
be05d201 9693 goto bad_address;
3e73aa7c
JH
9694 }
9695 }
be05d201 9696 return 1;
24eab124 9697}
252b5132 9698
43234a1e
L
9699/* Handle vector immediates. */
9700
9701static int
9702RC_SAE_immediate (const char *imm_start)
9703{
9704 unsigned int match_found, j;
9705 const char *pstr = imm_start;
9706 expressionS *exp;
9707
9708 if (*pstr != '{')
9709 return 0;
9710
9711 pstr++;
9712 match_found = 0;
9713 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9714 {
9715 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9716 {
9717 if (!i.rounding)
9718 {
9719 rc_op.type = RC_NamesTable[j].type;
9720 rc_op.operand = this_operand;
9721 i.rounding = &rc_op;
9722 }
9723 else
9724 {
9725 as_bad (_("duplicated `%s'"), imm_start);
9726 return 0;
9727 }
9728 pstr += RC_NamesTable[j].len;
9729 match_found = 1;
9730 break;
9731 }
9732 }
9733 if (!match_found)
9734 return 0;
9735
9736 if (*pstr++ != '}')
9737 {
9738 as_bad (_("Missing '}': '%s'"), imm_start);
9739 return 0;
9740 }
9741 /* RC/SAE immediate string should contain nothing more. */;
9742 if (*pstr != 0)
9743 {
9744 as_bad (_("Junk after '}': '%s'"), imm_start);
9745 return 0;
9746 }
9747
9748 exp = &im_expressions[i.imm_operands++];
9749 i.op[this_operand].imms = exp;
9750
9751 exp->X_op = O_constant;
9752 exp->X_add_number = 0;
9753 exp->X_add_symbol = (symbolS *) 0;
9754 exp->X_op_symbol = (symbolS *) 0;
9755
9756 i.types[this_operand].bitfield.imm8 = 1;
9757 return 1;
9758}
9759
8325cc63
JB
9760/* Only string instructions can have a second memory operand, so
9761 reduce current_templates to just those if it contains any. */
9762static int
9763maybe_adjust_templates (void)
9764{
9765 const insn_template *t;
9766
9767 gas_assert (i.mem_operands == 1);
9768
9769 for (t = current_templates->start; t < current_templates->end; ++t)
9770 if (t->opcode_modifier.isstring)
9771 break;
9772
9773 if (t < current_templates->end)
9774 {
9775 static templates aux_templates;
9776 bfd_boolean recheck;
9777
9778 aux_templates.start = t;
9779 for (; t < current_templates->end; ++t)
9780 if (!t->opcode_modifier.isstring)
9781 break;
9782 aux_templates.end = t;
9783
9784 /* Determine whether to re-check the first memory operand. */
9785 recheck = (aux_templates.start != current_templates->start
9786 || t != current_templates->end);
9787
9788 current_templates = &aux_templates;
9789
9790 if (recheck)
9791 {
9792 i.mem_operands = 0;
9793 if (i.memop1_string != NULL
9794 && i386_index_check (i.memop1_string) == 0)
9795 return 0;
9796 i.mem_operands = 1;
9797 }
9798 }
9799
9800 return 1;
9801}
9802
fc0763e6 9803/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9804 on error. */
252b5132 9805
252b5132 9806static int
a7619375 9807i386_att_operand (char *operand_string)
252b5132 9808{
af6bdddf
AM
9809 const reg_entry *r;
9810 char *end_op;
24eab124 9811 char *op_string = operand_string;
252b5132 9812
24eab124 9813 if (is_space_char (*op_string))
252b5132
RH
9814 ++op_string;
9815
24eab124 9816 /* We check for an absolute prefix (differentiating,
47926f60 9817 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9818 if (*op_string == ABSOLUTE_PREFIX)
9819 {
9820 ++op_string;
9821 if (is_space_char (*op_string))
9822 ++op_string;
40fb9820 9823 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9824 }
252b5132 9825
47926f60 9826 /* Check if operand is a register. */
4d1bb795 9827 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9828 {
40fb9820
L
9829 i386_operand_type temp;
9830
24eab124
AM
9831 /* Check for a segment override by searching for ':' after a
9832 segment register. */
9833 op_string = end_op;
9834 if (is_space_char (*op_string))
9835 ++op_string;
40fb9820
L
9836 if (*op_string == ':'
9837 && (r->reg_type.bitfield.sreg2
9838 || r->reg_type.bitfield.sreg3))
24eab124
AM
9839 {
9840 switch (r->reg_num)
9841 {
9842 case 0:
9843 i.seg[i.mem_operands] = &es;
9844 break;
9845 case 1:
9846 i.seg[i.mem_operands] = &cs;
9847 break;
9848 case 2:
9849 i.seg[i.mem_operands] = &ss;
9850 break;
9851 case 3:
9852 i.seg[i.mem_operands] = &ds;
9853 break;
9854 case 4:
9855 i.seg[i.mem_operands] = &fs;
9856 break;
9857 case 5:
9858 i.seg[i.mem_operands] = &gs;
9859 break;
9860 }
252b5132 9861
24eab124 9862 /* Skip the ':' and whitespace. */
252b5132
RH
9863 ++op_string;
9864 if (is_space_char (*op_string))
24eab124 9865 ++op_string;
252b5132 9866
24eab124
AM
9867 if (!is_digit_char (*op_string)
9868 && !is_identifier_char (*op_string)
9869 && *op_string != '('
9870 && *op_string != ABSOLUTE_PREFIX)
9871 {
9872 as_bad (_("bad memory operand `%s'"), op_string);
9873 return 0;
9874 }
47926f60 9875 /* Handle case of %es:*foo. */
24eab124
AM
9876 if (*op_string == ABSOLUTE_PREFIX)
9877 {
9878 ++op_string;
9879 if (is_space_char (*op_string))
9880 ++op_string;
40fb9820 9881 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9882 }
9883 goto do_memory_reference;
9884 }
43234a1e
L
9885
9886 /* Handle vector operations. */
9887 if (*op_string == '{')
9888 {
9889 op_string = check_VecOperations (op_string, NULL);
9890 if (op_string == NULL)
9891 return 0;
9892 }
9893
24eab124
AM
9894 if (*op_string)
9895 {
d0b47220 9896 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9897 return 0;
9898 }
40fb9820
L
9899 temp = r->reg_type;
9900 temp.bitfield.baseindex = 0;
c6fb90c8
L
9901 i.types[this_operand] = operand_type_or (i.types[this_operand],
9902 temp);
7d5e4556 9903 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9904 i.op[this_operand].regs = r;
24eab124
AM
9905 i.reg_operands++;
9906 }
af6bdddf
AM
9907 else if (*op_string == REGISTER_PREFIX)
9908 {
9909 as_bad (_("bad register name `%s'"), op_string);
9910 return 0;
9911 }
24eab124 9912 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9913 {
24eab124 9914 ++op_string;
40fb9820 9915 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9916 {
d0b47220 9917 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9918 return 0;
9919 }
9920 if (!i386_immediate (op_string))
9921 return 0;
9922 }
43234a1e
L
9923 else if (RC_SAE_immediate (operand_string))
9924 {
9925 /* If it is a RC or SAE immediate, do nothing. */
9926 ;
9927 }
24eab124
AM
9928 else if (is_digit_char (*op_string)
9929 || is_identifier_char (*op_string)
d02603dc 9930 || *op_string == '"'
e5cb08ac 9931 || *op_string == '(')
24eab124 9932 {
47926f60 9933 /* This is a memory reference of some sort. */
af6bdddf 9934 char *base_string;
252b5132 9935
47926f60 9936 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9937 char *displacement_string_start;
9938 char *displacement_string_end;
43234a1e 9939 char *vop_start;
252b5132 9940
24eab124 9941 do_memory_reference:
8325cc63
JB
9942 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9943 return 0;
24eab124 9944 if ((i.mem_operands == 1
40fb9820 9945 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9946 || i.mem_operands == 2)
9947 {
9948 as_bad (_("too many memory references for `%s'"),
9949 current_templates->start->name);
9950 return 0;
9951 }
252b5132 9952
24eab124
AM
9953 /* Check for base index form. We detect the base index form by
9954 looking for an ')' at the end of the operand, searching
9955 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9956 after the '('. */
af6bdddf 9957 base_string = op_string + strlen (op_string);
c3332e24 9958
43234a1e
L
9959 /* Handle vector operations. */
9960 vop_start = strchr (op_string, '{');
9961 if (vop_start && vop_start < base_string)
9962 {
9963 if (check_VecOperations (vop_start, base_string) == NULL)
9964 return 0;
9965 base_string = vop_start;
9966 }
9967
af6bdddf
AM
9968 --base_string;
9969 if (is_space_char (*base_string))
9970 --base_string;
252b5132 9971
47926f60 9972 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9973 displacement_string_start = op_string;
9974 displacement_string_end = base_string + 1;
252b5132 9975
24eab124
AM
9976 if (*base_string == ')')
9977 {
af6bdddf 9978 char *temp_string;
24eab124
AM
9979 unsigned int parens_balanced = 1;
9980 /* We've already checked that the number of left & right ()'s are
47926f60 9981 equal, so this loop will not be infinite. */
24eab124
AM
9982 do
9983 {
9984 base_string--;
9985 if (*base_string == ')')
9986 parens_balanced++;
9987 if (*base_string == '(')
9988 parens_balanced--;
9989 }
9990 while (parens_balanced);
c3332e24 9991
af6bdddf 9992 temp_string = base_string;
c3332e24 9993
24eab124 9994 /* Skip past '(' and whitespace. */
252b5132
RH
9995 ++base_string;
9996 if (is_space_char (*base_string))
24eab124 9997 ++base_string;
252b5132 9998
af6bdddf 9999 if (*base_string == ','
4eed87de
AM
10000 || ((i.base_reg = parse_register (base_string, &end_op))
10001 != NULL))
252b5132 10002 {
af6bdddf 10003 displacement_string_end = temp_string;
252b5132 10004
40fb9820 10005 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10006
af6bdddf 10007 if (i.base_reg)
24eab124 10008 {
24eab124
AM
10009 base_string = end_op;
10010 if (is_space_char (*base_string))
10011 ++base_string;
af6bdddf
AM
10012 }
10013
10014 /* There may be an index reg or scale factor here. */
10015 if (*base_string == ',')
10016 {
10017 ++base_string;
10018 if (is_space_char (*base_string))
10019 ++base_string;
10020
4eed87de
AM
10021 if ((i.index_reg = parse_register (base_string, &end_op))
10022 != NULL)
24eab124 10023 {
af6bdddf 10024 base_string = end_op;
24eab124
AM
10025 if (is_space_char (*base_string))
10026 ++base_string;
af6bdddf
AM
10027 if (*base_string == ',')
10028 {
10029 ++base_string;
10030 if (is_space_char (*base_string))
10031 ++base_string;
10032 }
e5cb08ac 10033 else if (*base_string != ')')
af6bdddf 10034 {
4eed87de
AM
10035 as_bad (_("expecting `,' or `)' "
10036 "after index register in `%s'"),
af6bdddf
AM
10037 operand_string);
10038 return 0;
10039 }
24eab124 10040 }
af6bdddf 10041 else if (*base_string == REGISTER_PREFIX)
24eab124 10042 {
f76bf5e0
L
10043 end_op = strchr (base_string, ',');
10044 if (end_op)
10045 *end_op = '\0';
af6bdddf 10046 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10047 return 0;
10048 }
252b5132 10049
47926f60 10050 /* Check for scale factor. */
551c1ca1 10051 if (*base_string != ')')
af6bdddf 10052 {
551c1ca1
AM
10053 char *end_scale = i386_scale (base_string);
10054
10055 if (!end_scale)
af6bdddf 10056 return 0;
24eab124 10057
551c1ca1 10058 base_string = end_scale;
af6bdddf
AM
10059 if (is_space_char (*base_string))
10060 ++base_string;
10061 if (*base_string != ')')
10062 {
4eed87de
AM
10063 as_bad (_("expecting `)' "
10064 "after scale factor in `%s'"),
af6bdddf
AM
10065 operand_string);
10066 return 0;
10067 }
10068 }
10069 else if (!i.index_reg)
24eab124 10070 {
4eed87de
AM
10071 as_bad (_("expecting index register or scale factor "
10072 "after `,'; got '%c'"),
af6bdddf 10073 *base_string);
24eab124
AM
10074 return 0;
10075 }
10076 }
af6bdddf 10077 else if (*base_string != ')')
24eab124 10078 {
4eed87de
AM
10079 as_bad (_("expecting `,' or `)' "
10080 "after base register in `%s'"),
af6bdddf 10081 operand_string);
24eab124
AM
10082 return 0;
10083 }
c3332e24 10084 }
af6bdddf 10085 else if (*base_string == REGISTER_PREFIX)
c3332e24 10086 {
f76bf5e0
L
10087 end_op = strchr (base_string, ',');
10088 if (end_op)
10089 *end_op = '\0';
af6bdddf 10090 as_bad (_("bad register name `%s'"), base_string);
24eab124 10091 return 0;
c3332e24 10092 }
24eab124
AM
10093 }
10094
10095 /* If there's an expression beginning the operand, parse it,
10096 assuming displacement_string_start and
10097 displacement_string_end are meaningful. */
10098 if (displacement_string_start != displacement_string_end)
10099 {
10100 if (!i386_displacement (displacement_string_start,
10101 displacement_string_end))
10102 return 0;
10103 }
10104
10105 /* Special case for (%dx) while doing input/output op. */
10106 if (i.base_reg
2fb5be8d 10107 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10108 && i.index_reg == 0
10109 && i.log2_scale_factor == 0
10110 && i.seg[i.mem_operands] == 0
40fb9820 10111 && !operand_type_check (i.types[this_operand], disp))
24eab124 10112 {
2fb5be8d 10113 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10114 return 1;
10115 }
10116
eecb386c
AM
10117 if (i386_index_check (operand_string) == 0)
10118 return 0;
c48dadc9 10119 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10120 if (i.mem_operands == 0)
10121 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10122 i.mem_operands++;
10123 }
10124 else
ce8a8b2f
AM
10125 {
10126 /* It's not a memory operand; argh! */
24eab124
AM
10127 as_bad (_("invalid char %s beginning operand %d `%s'"),
10128 output_invalid (*op_string),
10129 this_operand + 1,
10130 op_string);
10131 return 0;
10132 }
47926f60 10133 return 1; /* Normal return. */
252b5132
RH
10134}
10135\f
fa94de6b
RM
10136/* Calculate the maximum variable size (i.e., excluding fr_fix)
10137 that an rs_machine_dependent frag may reach. */
10138
10139unsigned int
10140i386_frag_max_var (fragS *frag)
10141{
10142 /* The only relaxable frags are for jumps.
10143 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10144 gas_assert (frag->fr_type == rs_machine_dependent);
10145 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10146}
10147
b084df0b
L
10148#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10149static int
8dcea932 10150elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10151{
10152 /* STT_GNU_IFUNC symbol must go through PLT. */
10153 if ((symbol_get_bfdsym (fr_symbol)->flags
10154 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10155 return 0;
10156
10157 if (!S_IS_EXTERNAL (fr_symbol))
10158 /* Symbol may be weak or local. */
10159 return !S_IS_WEAK (fr_symbol);
10160
8dcea932
L
10161 /* Global symbols with non-default visibility can't be preempted. */
10162 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10163 return 1;
10164
10165 if (fr_var != NO_RELOC)
10166 switch ((enum bfd_reloc_code_real) fr_var)
10167 {
10168 case BFD_RELOC_386_PLT32:
10169 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10170 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10171 return 0;
10172 default:
10173 abort ();
10174 }
10175
b084df0b
L
10176 /* Global symbols with default visibility in a shared library may be
10177 preempted by another definition. */
8dcea932 10178 return !shared;
b084df0b
L
10179}
10180#endif
10181
ee7fcc42
AM
10182/* md_estimate_size_before_relax()
10183
10184 Called just before relax() for rs_machine_dependent frags. The x86
10185 assembler uses these frags to handle variable size jump
10186 instructions.
10187
10188 Any symbol that is now undefined will not become defined.
10189 Return the correct fr_subtype in the frag.
10190 Return the initial "guess for variable size of frag" to caller.
10191 The guess is actually the growth beyond the fixed part. Whatever
10192 we do to grow the fixed or variable part contributes to our
10193 returned value. */
10194
252b5132 10195int
7016a5d5 10196md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10197{
252b5132 10198 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10199 check for un-relaxable symbols. On an ELF system, we can't relax
10200 an externally visible symbol, because it may be overridden by a
10201 shared library. */
10202 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10204 || (IS_ELF
8dcea932
L
10205 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10206 fragP->fr_var))
fbeb56a4
DK
10207#endif
10208#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10209 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10210 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10211#endif
10212 )
252b5132 10213 {
b98ef147
AM
10214 /* Symbol is undefined in this segment, or we need to keep a
10215 reloc so that weak symbols can be overridden. */
10216 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10217 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10218 unsigned char *opcode;
10219 int old_fr_fix;
f6af82bd 10220
ee7fcc42 10221 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10222 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10223 else if (size == 2)
f6af82bd 10224 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10225#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10226 else if (need_plt32_p (fragP->fr_symbol))
10227 reloc_type = BFD_RELOC_X86_64_PLT32;
10228#endif
f6af82bd
AM
10229 else
10230 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10231
ee7fcc42
AM
10232 old_fr_fix = fragP->fr_fix;
10233 opcode = (unsigned char *) fragP->fr_opcode;
10234
fddf5b5b 10235 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10236 {
fddf5b5b
AM
10237 case UNCOND_JUMP:
10238 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10239 opcode[0] = 0xe9;
252b5132 10240 fragP->fr_fix += size;
062cd5e7
AS
10241 fix_new (fragP, old_fr_fix, size,
10242 fragP->fr_symbol,
10243 fragP->fr_offset, 1,
10244 reloc_type);
252b5132
RH
10245 break;
10246
fddf5b5b 10247 case COND_JUMP86:
412167cb
AM
10248 if (size == 2
10249 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10250 {
10251 /* Negate the condition, and branch past an
10252 unconditional jump. */
10253 opcode[0] ^= 1;
10254 opcode[1] = 3;
10255 /* Insert an unconditional jump. */
10256 opcode[2] = 0xe9;
10257 /* We added two extra opcode bytes, and have a two byte
10258 offset. */
10259 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10260 fix_new (fragP, old_fr_fix + 2, 2,
10261 fragP->fr_symbol,
10262 fragP->fr_offset, 1,
10263 reloc_type);
fddf5b5b
AM
10264 break;
10265 }
10266 /* Fall through. */
10267
10268 case COND_JUMP:
412167cb
AM
10269 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10270 {
3e02c1cc
AM
10271 fixS *fixP;
10272
412167cb 10273 fragP->fr_fix += 1;
3e02c1cc
AM
10274 fixP = fix_new (fragP, old_fr_fix, 1,
10275 fragP->fr_symbol,
10276 fragP->fr_offset, 1,
10277 BFD_RELOC_8_PCREL);
10278 fixP->fx_signed = 1;
412167cb
AM
10279 break;
10280 }
93c2a809 10281
24eab124 10282 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10283 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10284 opcode[1] = opcode[0] + 0x10;
f6af82bd 10285 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10286 /* We've added an opcode byte. */
10287 fragP->fr_fix += 1 + size;
062cd5e7
AS
10288 fix_new (fragP, old_fr_fix + 1, size,
10289 fragP->fr_symbol,
10290 fragP->fr_offset, 1,
10291 reloc_type);
252b5132 10292 break;
fddf5b5b
AM
10293
10294 default:
10295 BAD_CASE (fragP->fr_subtype);
10296 break;
252b5132
RH
10297 }
10298 frag_wane (fragP);
ee7fcc42 10299 return fragP->fr_fix - old_fr_fix;
252b5132 10300 }
93c2a809 10301
93c2a809
AM
10302 /* Guess size depending on current relax state. Initially the relax
10303 state will correspond to a short jump and we return 1, because
10304 the variable part of the frag (the branch offset) is one byte
10305 long. However, we can relax a section more than once and in that
10306 case we must either set fr_subtype back to the unrelaxed state,
10307 or return the value for the appropriate branch. */
10308 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10309}
10310
47926f60
KH
10311/* Called after relax() is finished.
10312
10313 In: Address of frag.
10314 fr_type == rs_machine_dependent.
10315 fr_subtype is what the address relaxed to.
10316
10317 Out: Any fixSs and constants are set up.
10318 Caller will turn frag into a ".space 0". */
10319
252b5132 10320void
7016a5d5
TG
10321md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10322 fragS *fragP)
252b5132 10323{
29b0f896 10324 unsigned char *opcode;
252b5132 10325 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10326 offsetT target_address;
10327 offsetT opcode_address;
252b5132 10328 unsigned int extension = 0;
847f7ad4 10329 offsetT displacement_from_opcode_start;
252b5132
RH
10330
10331 opcode = (unsigned char *) fragP->fr_opcode;
10332
47926f60 10333 /* Address we want to reach in file space. */
252b5132 10334 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10335
47926f60 10336 /* Address opcode resides at in file space. */
252b5132
RH
10337 opcode_address = fragP->fr_address + fragP->fr_fix;
10338
47926f60 10339 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10340 displacement_from_opcode_start = target_address - opcode_address;
10341
fddf5b5b 10342 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10343 {
47926f60
KH
10344 /* Don't have to change opcode. */
10345 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10346 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10347 }
10348 else
10349 {
10350 if (no_cond_jump_promotion
10351 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10352 as_warn_where (fragP->fr_file, fragP->fr_line,
10353 _("long jump required"));
252b5132 10354
fddf5b5b
AM
10355 switch (fragP->fr_subtype)
10356 {
10357 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10358 extension = 4; /* 1 opcode + 4 displacement */
10359 opcode[0] = 0xe9;
10360 where_to_put_displacement = &opcode[1];
10361 break;
252b5132 10362
fddf5b5b
AM
10363 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10364 extension = 2; /* 1 opcode + 2 displacement */
10365 opcode[0] = 0xe9;
10366 where_to_put_displacement = &opcode[1];
10367 break;
252b5132 10368
fddf5b5b
AM
10369 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10370 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10371 extension = 5; /* 2 opcode + 4 displacement */
10372 opcode[1] = opcode[0] + 0x10;
10373 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10374 where_to_put_displacement = &opcode[2];
10375 break;
252b5132 10376
fddf5b5b
AM
10377 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10378 extension = 3; /* 2 opcode + 2 displacement */
10379 opcode[1] = opcode[0] + 0x10;
10380 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10381 where_to_put_displacement = &opcode[2];
10382 break;
252b5132 10383
fddf5b5b
AM
10384 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10385 extension = 4;
10386 opcode[0] ^= 1;
10387 opcode[1] = 3;
10388 opcode[2] = 0xe9;
10389 where_to_put_displacement = &opcode[3];
10390 break;
10391
10392 default:
10393 BAD_CASE (fragP->fr_subtype);
10394 break;
10395 }
252b5132 10396 }
fddf5b5b 10397
7b81dfbb
AJ
10398 /* If size if less then four we are sure that the operand fits,
10399 but if it's 4, then it could be that the displacement is larger
10400 then -/+ 2GB. */
10401 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10402 && object_64bit
10403 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10404 + ((addressT) 1 << 31))
10405 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10406 {
10407 as_bad_where (fragP->fr_file, fragP->fr_line,
10408 _("jump target out of range"));
10409 /* Make us emit 0. */
10410 displacement_from_opcode_start = extension;
10411 }
47926f60 10412 /* Now put displacement after opcode. */
252b5132
RH
10413 md_number_to_chars ((char *) where_to_put_displacement,
10414 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10415 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10416 fragP->fr_fix += extension;
10417}
10418\f
7016a5d5 10419/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10420 by our caller that we have all the info we need to fix it up.
10421
7016a5d5
TG
10422 Parameter valP is the pointer to the value of the bits.
10423
252b5132
RH
10424 On the 386, immediates, displacements, and data pointers are all in
10425 the same (little-endian) format, so we don't need to care about which
10426 we are handling. */
10427
94f592af 10428void
7016a5d5 10429md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10430{
94f592af 10431 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10432 valueT value = *valP;
252b5132 10433
f86103b7 10434#if !defined (TE_Mach)
93382f6d
AM
10435 if (fixP->fx_pcrel)
10436 {
10437 switch (fixP->fx_r_type)
10438 {
5865bb77
ILT
10439 default:
10440 break;
10441
d6ab8113
JB
10442 case BFD_RELOC_64:
10443 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10444 break;
93382f6d 10445 case BFD_RELOC_32:
ae8887b5 10446 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10447 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10448 break;
10449 case BFD_RELOC_16:
10450 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10451 break;
10452 case BFD_RELOC_8:
10453 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10454 break;
10455 }
10456 }
252b5132 10457
a161fe53 10458 if (fixP->fx_addsy != NULL
31312f95 10459 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10460 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10461 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10462 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10463 && !use_rela_relocations)
252b5132 10464 {
31312f95
AM
10465 /* This is a hack. There should be a better way to handle this.
10466 This covers for the fact that bfd_install_relocation will
10467 subtract the current location (for partial_inplace, PC relative
10468 relocations); see more below. */
252b5132 10469#ifndef OBJ_AOUT
718ddfc0 10470 if (IS_ELF
252b5132
RH
10471#ifdef TE_PE
10472 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10473#endif
10474 )
10475 value += fixP->fx_where + fixP->fx_frag->fr_address;
10476#endif
10477#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10478 if (IS_ELF)
252b5132 10479 {
6539b54b 10480 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10481
6539b54b 10482 if ((sym_seg == seg
2f66722d 10483 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10484 && sym_seg != absolute_section))
af65af87 10485 && !generic_force_reloc (fixP))
2f66722d
AM
10486 {
10487 /* Yes, we add the values in twice. This is because
6539b54b
AM
10488 bfd_install_relocation subtracts them out again. I think
10489 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10490 it. FIXME. */
10491 value += fixP->fx_where + fixP->fx_frag->fr_address;
10492 }
252b5132
RH
10493 }
10494#endif
10495#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10496 /* For some reason, the PE format does not store a
10497 section address offset for a PC relative symbol. */
10498 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10499 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10500 value += md_pcrel_from (fixP);
10501#endif
10502 }
fbeb56a4 10503#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10504 if (fixP->fx_addsy != NULL
10505 && S_IS_WEAK (fixP->fx_addsy)
10506 /* PR 16858: Do not modify weak function references. */
10507 && ! fixP->fx_pcrel)
fbeb56a4 10508 {
296a8689
NC
10509#if !defined (TE_PEP)
10510 /* For x86 PE weak function symbols are neither PC-relative
10511 nor do they set S_IS_FUNCTION. So the only reliable way
10512 to detect them is to check the flags of their containing
10513 section. */
10514 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10515 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10516 ;
10517 else
10518#endif
fbeb56a4
DK
10519 value -= S_GET_VALUE (fixP->fx_addsy);
10520 }
10521#endif
252b5132
RH
10522
10523 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10524 and we must not disappoint it. */
252b5132 10525#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10526 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10527 switch (fixP->fx_r_type)
10528 {
10529 case BFD_RELOC_386_PLT32:
3e73aa7c 10530 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10531 /* Make the jump instruction point to the address of the operand. At
10532 runtime we merely add the offset to the actual PLT entry. */
10533 value = -4;
10534 break;
31312f95 10535
13ae64f3
JJ
10536 case BFD_RELOC_386_TLS_GD:
10537 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10538 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10539 case BFD_RELOC_386_TLS_IE:
10540 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10541 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10542 case BFD_RELOC_X86_64_TLSGD:
10543 case BFD_RELOC_X86_64_TLSLD:
10544 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10545 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10546 value = 0; /* Fully resolved at runtime. No addend. */
10547 /* Fallthrough */
10548 case BFD_RELOC_386_TLS_LE:
10549 case BFD_RELOC_386_TLS_LDO_32:
10550 case BFD_RELOC_386_TLS_LE_32:
10551 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10552 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10553 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10554 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10555 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10556 break;
10557
67a4f2b7
AO
10558 case BFD_RELOC_386_TLS_DESC_CALL:
10559 case BFD_RELOC_X86_64_TLSDESC_CALL:
10560 value = 0; /* Fully resolved at runtime. No addend. */
10561 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10562 fixP->fx_done = 0;
10563 return;
10564
47926f60
KH
10565 case BFD_RELOC_VTABLE_INHERIT:
10566 case BFD_RELOC_VTABLE_ENTRY:
10567 fixP->fx_done = 0;
94f592af 10568 return;
47926f60
KH
10569
10570 default:
10571 break;
10572 }
10573#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10574 *valP = value;
f86103b7 10575#endif /* !defined (TE_Mach) */
3e73aa7c 10576
3e73aa7c 10577 /* Are we finished with this relocation now? */
c6682705 10578 if (fixP->fx_addsy == NULL)
3e73aa7c 10579 fixP->fx_done = 1;
fbeb56a4
DK
10580#if defined (OBJ_COFF) && defined (TE_PE)
10581 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10582 {
10583 fixP->fx_done = 0;
10584 /* Remember value for tc_gen_reloc. */
10585 fixP->fx_addnumber = value;
10586 /* Clear out the frag for now. */
10587 value = 0;
10588 }
10589#endif
3e73aa7c
JH
10590 else if (use_rela_relocations)
10591 {
10592 fixP->fx_no_overflow = 1;
062cd5e7
AS
10593 /* Remember value for tc_gen_reloc. */
10594 fixP->fx_addnumber = value;
3e73aa7c
JH
10595 value = 0;
10596 }
f86103b7 10597
94f592af 10598 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10599}
252b5132 10600\f
6d4af3c2 10601const char *
499ac353 10602md_atof (int type, char *litP, int *sizeP)
252b5132 10603{
499ac353
NC
10604 /* This outputs the LITTLENUMs in REVERSE order;
10605 in accord with the bigendian 386. */
10606 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10607}
10608\f
2d545b82 10609static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10610
252b5132 10611static char *
e3bb37b5 10612output_invalid (int c)
252b5132 10613{
3882b010 10614 if (ISPRINT (c))
f9f21a03
L
10615 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10616 "'%c'", c);
252b5132 10617 else
f9f21a03 10618 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10619 "(0x%x)", (unsigned char) c);
252b5132
RH
10620 return output_invalid_buf;
10621}
10622
af6bdddf 10623/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10624
10625static const reg_entry *
4d1bb795 10626parse_real_register (char *reg_string, char **end_op)
252b5132 10627{
af6bdddf
AM
10628 char *s = reg_string;
10629 char *p;
252b5132
RH
10630 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10631 const reg_entry *r;
10632
10633 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10634 if (*s == REGISTER_PREFIX)
10635 ++s;
10636
10637 if (is_space_char (*s))
10638 ++s;
10639
10640 p = reg_name_given;
af6bdddf 10641 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10642 {
10643 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10644 return (const reg_entry *) NULL;
10645 s++;
252b5132
RH
10646 }
10647
6588847e
DN
10648 /* For naked regs, make sure that we are not dealing with an identifier.
10649 This prevents confusing an identifier like `eax_var' with register
10650 `eax'. */
10651 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10652 return (const reg_entry *) NULL;
10653
af6bdddf 10654 *end_op = s;
252b5132
RH
10655
10656 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10657
5f47d35b 10658 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10659 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10660 {
0e0eea78
JB
10661 if (!cpu_arch_flags.bitfield.cpu8087
10662 && !cpu_arch_flags.bitfield.cpu287
10663 && !cpu_arch_flags.bitfield.cpu387)
10664 return (const reg_entry *) NULL;
10665
5f47d35b
AM
10666 if (is_space_char (*s))
10667 ++s;
10668 if (*s == '(')
10669 {
af6bdddf 10670 ++s;
5f47d35b
AM
10671 if (is_space_char (*s))
10672 ++s;
10673 if (*s >= '0' && *s <= '7')
10674 {
db557034 10675 int fpr = *s - '0';
af6bdddf 10676 ++s;
5f47d35b
AM
10677 if (is_space_char (*s))
10678 ++s;
10679 if (*s == ')')
10680 {
10681 *end_op = s + 1;
1e9cc1c2 10682 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10683 know (r);
10684 return r + fpr;
5f47d35b 10685 }
5f47d35b 10686 }
47926f60 10687 /* We have "%st(" then garbage. */
5f47d35b
AM
10688 return (const reg_entry *) NULL;
10689 }
10690 }
10691
a60de03c
JB
10692 if (r == NULL || allow_pseudo_reg)
10693 return r;
10694
0dfbf9d7 10695 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10696 return (const reg_entry *) NULL;
10697
dc821c5f 10698 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10699 || r->reg_type.bitfield.sreg3
10700 || r->reg_type.bitfield.control
10701 || r->reg_type.bitfield.debug
10702 || r->reg_type.bitfield.test)
10703 && !cpu_arch_flags.bitfield.cpui386)
10704 return (const reg_entry *) NULL;
10705
6e041cf4 10706 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10707 return (const reg_entry *) NULL;
10708
6e041cf4
JB
10709 if (!cpu_arch_flags.bitfield.cpuavx512f)
10710 {
10711 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10712 return (const reg_entry *) NULL;
40f12533 10713
6e041cf4
JB
10714 if (!cpu_arch_flags.bitfield.cpuavx)
10715 {
10716 if (r->reg_type.bitfield.ymmword)
10717 return (const reg_entry *) NULL;
1848e567 10718
6e041cf4
JB
10719 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10720 return (const reg_entry *) NULL;
10721 }
10722 }
43234a1e 10723
1adf7f56
JB
10724 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10725 return (const reg_entry *) NULL;
10726
db51cc60 10727 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10728 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10729 return (const reg_entry *) NULL;
10730
1d3f8286
JB
10731 /* Upper 16 vector registers are only available with VREX in 64bit
10732 mode, and require EVEX encoding. */
10733 if (r->reg_flags & RegVRex)
43234a1e 10734 {
e951d5ca 10735 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10736 || flag_code != CODE_64BIT)
10737 return (const reg_entry *) NULL;
1d3f8286
JB
10738
10739 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10740 }
10741
4787f4a5
JB
10742 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10743 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10744 && flag_code != CODE_64BIT)
20f0a1fc 10745 return (const reg_entry *) NULL;
1ae00879 10746
b7240065
JB
10747 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10748 return (const reg_entry *) NULL;
10749
252b5132
RH
10750 return r;
10751}
4d1bb795
JB
10752
10753/* REG_STRING starts *before* REGISTER_PREFIX. */
10754
10755static const reg_entry *
10756parse_register (char *reg_string, char **end_op)
10757{
10758 const reg_entry *r;
10759
10760 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10761 r = parse_real_register (reg_string, end_op);
10762 else
10763 r = NULL;
10764 if (!r)
10765 {
10766 char *save = input_line_pointer;
10767 char c;
10768 symbolS *symbolP;
10769
10770 input_line_pointer = reg_string;
d02603dc 10771 c = get_symbol_name (&reg_string);
4d1bb795
JB
10772 symbolP = symbol_find (reg_string);
10773 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10774 {
10775 const expressionS *e = symbol_get_value_expression (symbolP);
10776
0398aac5 10777 know (e->X_op == O_register);
4eed87de 10778 know (e->X_add_number >= 0
c3fe08fa 10779 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10780 r = i386_regtab + e->X_add_number;
d3bb6b49 10781 if ((r->reg_flags & RegVRex))
86fa6981 10782 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10783 *end_op = input_line_pointer;
10784 }
10785 *input_line_pointer = c;
10786 input_line_pointer = save;
10787 }
10788 return r;
10789}
10790
10791int
10792i386_parse_name (char *name, expressionS *e, char *nextcharP)
10793{
10794 const reg_entry *r;
10795 char *end = input_line_pointer;
10796
10797 *end = *nextcharP;
10798 r = parse_register (name, &input_line_pointer);
10799 if (r && end <= input_line_pointer)
10800 {
10801 *nextcharP = *input_line_pointer;
10802 *input_line_pointer = 0;
10803 e->X_op = O_register;
10804 e->X_add_number = r - i386_regtab;
10805 return 1;
10806 }
10807 input_line_pointer = end;
10808 *end = 0;
ee86248c 10809 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10810}
10811
10812void
10813md_operand (expressionS *e)
10814{
ee86248c
JB
10815 char *end;
10816 const reg_entry *r;
4d1bb795 10817
ee86248c
JB
10818 switch (*input_line_pointer)
10819 {
10820 case REGISTER_PREFIX:
10821 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10822 if (r)
10823 {
10824 e->X_op = O_register;
10825 e->X_add_number = r - i386_regtab;
10826 input_line_pointer = end;
10827 }
ee86248c
JB
10828 break;
10829
10830 case '[':
9c2799c2 10831 gas_assert (intel_syntax);
ee86248c
JB
10832 end = input_line_pointer++;
10833 expression (e);
10834 if (*input_line_pointer == ']')
10835 {
10836 ++input_line_pointer;
10837 e->X_op_symbol = make_expr_symbol (e);
10838 e->X_add_symbol = NULL;
10839 e->X_add_number = 0;
10840 e->X_op = O_index;
10841 }
10842 else
10843 {
10844 e->X_op = O_absent;
10845 input_line_pointer = end;
10846 }
10847 break;
4d1bb795
JB
10848 }
10849}
10850
252b5132 10851\f
4cc782b5 10852#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10853const char *md_shortopts = "kVQ:sqnO::";
252b5132 10854#else
b6f8c7c4 10855const char *md_shortopts = "qnO::";
252b5132 10856#endif
6e0b89ee 10857
3e73aa7c 10858#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10859#define OPTION_64 (OPTION_MD_BASE + 1)
10860#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10861#define OPTION_MARCH (OPTION_MD_BASE + 3)
10862#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10863#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10864#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10865#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10866#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10867#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10868#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10869#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10870#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10871#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10872#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10873#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10874#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10875#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10876#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10877#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10878#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10879#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10880#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10881#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10882#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10883#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
b3b91714 10884
99ad8390
NC
10885struct option md_longopts[] =
10886{
3e73aa7c 10887 {"32", no_argument, NULL, OPTION_32},
321098a5 10888#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10889 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10890 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10891#endif
10892#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10893 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10894 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 10895 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 10896#endif
b3b91714 10897 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10898 {"march", required_argument, NULL, OPTION_MARCH},
10899 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10900 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10901 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10902 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10903 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10904 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10905 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10906 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10907 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10908 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10909 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10910 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10911# if defined (TE_PE) || defined (TE_PEP)
10912 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10913#endif
d1982f93 10914 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10915 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10916 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10917 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10918 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10919 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10920 {NULL, no_argument, NULL, 0}
10921};
10922size_t md_longopts_size = sizeof (md_longopts);
10923
10924int
17b9d67d 10925md_parse_option (int c, const char *arg)
252b5132 10926{
91d6fa6a 10927 unsigned int j;
293f5f65 10928 char *arch, *next, *saved;
9103f4f4 10929
252b5132
RH
10930 switch (c)
10931 {
12b55ccc
L
10932 case 'n':
10933 optimize_align_code = 0;
10934 break;
10935
a38cf1db
AM
10936 case 'q':
10937 quiet_warnings = 1;
252b5132
RH
10938 break;
10939
10940#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10941 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10942 should be emitted or not. FIXME: Not implemented. */
10943 case 'Q':
252b5132
RH
10944 break;
10945
10946 /* -V: SVR4 argument to print version ID. */
10947 case 'V':
10948 print_version_id ();
10949 break;
10950
a38cf1db
AM
10951 /* -k: Ignore for FreeBSD compatibility. */
10952 case 'k':
252b5132 10953 break;
4cc782b5
ILT
10954
10955 case 's':
10956 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10957 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10958 break;
8dcea932
L
10959
10960 case OPTION_MSHARED:
10961 shared = 1;
10962 break;
b4a3a7b4
L
10963
10964 case OPTION_X86_USED_NOTE:
10965 if (strcasecmp (arg, "yes") == 0)
10966 x86_used_note = 1;
10967 else if (strcasecmp (arg, "no") == 0)
10968 x86_used_note = 0;
10969 else
10970 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10971 break;
10972
10973
99ad8390 10974#endif
321098a5 10975#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10976 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10977 case OPTION_64:
10978 {
10979 const char **list, **l;
10980
3e73aa7c
JH
10981 list = bfd_target_list ();
10982 for (l = list; *l != NULL; l++)
8620418b 10983 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10984 || strcmp (*l, "coff-x86-64") == 0
10985 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10986 || strcmp (*l, "pei-x86-64") == 0
10987 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10988 {
10989 default_arch = "x86_64";
10990 break;
10991 }
3e73aa7c 10992 if (*l == NULL)
2b5d6a91 10993 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10994 free (list);
10995 }
10996 break;
10997#endif
252b5132 10998
351f65ca 10999#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11000 case OPTION_X32:
351f65ca
L
11001 if (IS_ELF)
11002 {
11003 const char **list, **l;
11004
11005 list = bfd_target_list ();
11006 for (l = list; *l != NULL; l++)
11007 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11008 {
11009 default_arch = "x86_64:32";
11010 break;
11011 }
11012 if (*l == NULL)
2b5d6a91 11013 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11014 free (list);
11015 }
11016 else
11017 as_fatal (_("32bit x86_64 is only supported for ELF"));
11018 break;
11019#endif
11020
6e0b89ee
AM
11021 case OPTION_32:
11022 default_arch = "i386";
11023 break;
11024
b3b91714
AM
11025 case OPTION_DIVIDE:
11026#ifdef SVR4_COMMENT_CHARS
11027 {
11028 char *n, *t;
11029 const char *s;
11030
add39d23 11031 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11032 t = n;
11033 for (s = i386_comment_chars; *s != '\0'; s++)
11034 if (*s != '/')
11035 *t++ = *s;
11036 *t = '\0';
11037 i386_comment_chars = n;
11038 }
11039#endif
11040 break;
11041
9103f4f4 11042 case OPTION_MARCH:
293f5f65
L
11043 saved = xstrdup (arg);
11044 arch = saved;
11045 /* Allow -march=+nosse. */
11046 if (*arch == '+')
11047 arch++;
6305a203 11048 do
9103f4f4 11049 {
6305a203 11050 if (*arch == '.')
2b5d6a91 11051 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11052 next = strchr (arch, '+');
11053 if (next)
11054 *next++ = '\0';
91d6fa6a 11055 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11056 {
91d6fa6a 11057 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11058 {
6305a203 11059 /* Processor. */
1ded5609
JB
11060 if (! cpu_arch[j].flags.bitfield.cpui386)
11061 continue;
11062
91d6fa6a 11063 cpu_arch_name = cpu_arch[j].name;
6305a203 11064 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11065 cpu_arch_flags = cpu_arch[j].flags;
11066 cpu_arch_isa = cpu_arch[j].type;
11067 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11068 if (!cpu_arch_tune_set)
11069 {
11070 cpu_arch_tune = cpu_arch_isa;
11071 cpu_arch_tune_flags = cpu_arch_isa_flags;
11072 }
11073 break;
11074 }
91d6fa6a
NC
11075 else if (*cpu_arch [j].name == '.'
11076 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11077 {
33eaf5de 11078 /* ISA extension. */
6305a203 11079 i386_cpu_flags flags;
309d3373 11080
293f5f65
L
11081 flags = cpu_flags_or (cpu_arch_flags,
11082 cpu_arch[j].flags);
81486035 11083
5b64d091 11084 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11085 {
11086 if (cpu_sub_arch_name)
11087 {
11088 char *name = cpu_sub_arch_name;
11089 cpu_sub_arch_name = concat (name,
91d6fa6a 11090 cpu_arch[j].name,
1bf57e9f 11091 (const char *) NULL);
6305a203
L
11092 free (name);
11093 }
11094 else
91d6fa6a 11095 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11096 cpu_arch_flags = flags;
a586129e 11097 cpu_arch_isa_flags = flags;
6305a203 11098 }
0089dace
L
11099 else
11100 cpu_arch_isa_flags
11101 = cpu_flags_or (cpu_arch_isa_flags,
11102 cpu_arch[j].flags);
6305a203 11103 break;
ccc9c027 11104 }
9103f4f4 11105 }
6305a203 11106
293f5f65
L
11107 if (j >= ARRAY_SIZE (cpu_arch))
11108 {
33eaf5de 11109 /* Disable an ISA extension. */
293f5f65
L
11110 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11111 if (strcmp (arch, cpu_noarch [j].name) == 0)
11112 {
11113 i386_cpu_flags flags;
11114
11115 flags = cpu_flags_and_not (cpu_arch_flags,
11116 cpu_noarch[j].flags);
11117 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11118 {
11119 if (cpu_sub_arch_name)
11120 {
11121 char *name = cpu_sub_arch_name;
11122 cpu_sub_arch_name = concat (arch,
11123 (const char *) NULL);
11124 free (name);
11125 }
11126 else
11127 cpu_sub_arch_name = xstrdup (arch);
11128 cpu_arch_flags = flags;
11129 cpu_arch_isa_flags = flags;
11130 }
11131 break;
11132 }
11133
11134 if (j >= ARRAY_SIZE (cpu_noarch))
11135 j = ARRAY_SIZE (cpu_arch);
11136 }
11137
91d6fa6a 11138 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11139 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11140
11141 arch = next;
9103f4f4 11142 }
293f5f65
L
11143 while (next != NULL);
11144 free (saved);
9103f4f4
L
11145 break;
11146
11147 case OPTION_MTUNE:
11148 if (*arg == '.')
2b5d6a91 11149 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11150 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11151 {
91d6fa6a 11152 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11153 {
ccc9c027 11154 cpu_arch_tune_set = 1;
91d6fa6a
NC
11155 cpu_arch_tune = cpu_arch [j].type;
11156 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11157 break;
11158 }
11159 }
91d6fa6a 11160 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11161 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11162 break;
11163
1efbbeb4
L
11164 case OPTION_MMNEMONIC:
11165 if (strcasecmp (arg, "att") == 0)
11166 intel_mnemonic = 0;
11167 else if (strcasecmp (arg, "intel") == 0)
11168 intel_mnemonic = 1;
11169 else
2b5d6a91 11170 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11171 break;
11172
11173 case OPTION_MSYNTAX:
11174 if (strcasecmp (arg, "att") == 0)
11175 intel_syntax = 0;
11176 else if (strcasecmp (arg, "intel") == 0)
11177 intel_syntax = 1;
11178 else
2b5d6a91 11179 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11180 break;
11181
11182 case OPTION_MINDEX_REG:
11183 allow_index_reg = 1;
11184 break;
11185
11186 case OPTION_MNAKED_REG:
11187 allow_naked_reg = 1;
11188 break;
11189
c0f3af97
L
11190 case OPTION_MSSE2AVX:
11191 sse2avx = 1;
11192 break;
11193
daf50ae7
L
11194 case OPTION_MSSE_CHECK:
11195 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11196 sse_check = check_error;
daf50ae7 11197 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11198 sse_check = check_warning;
daf50ae7 11199 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11200 sse_check = check_none;
daf50ae7 11201 else
2b5d6a91 11202 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11203 break;
11204
7bab8ab5
JB
11205 case OPTION_MOPERAND_CHECK:
11206 if (strcasecmp (arg, "error") == 0)
11207 operand_check = check_error;
11208 else if (strcasecmp (arg, "warning") == 0)
11209 operand_check = check_warning;
11210 else if (strcasecmp (arg, "none") == 0)
11211 operand_check = check_none;
11212 else
11213 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11214 break;
11215
539f890d
L
11216 case OPTION_MAVXSCALAR:
11217 if (strcasecmp (arg, "128") == 0)
11218 avxscalar = vex128;
11219 else if (strcasecmp (arg, "256") == 0)
11220 avxscalar = vex256;
11221 else
2b5d6a91 11222 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11223 break;
11224
7e8b059b
L
11225 case OPTION_MADD_BND_PREFIX:
11226 add_bnd_prefix = 1;
11227 break;
11228
43234a1e
L
11229 case OPTION_MEVEXLIG:
11230 if (strcmp (arg, "128") == 0)
11231 evexlig = evexl128;
11232 else if (strcmp (arg, "256") == 0)
11233 evexlig = evexl256;
11234 else if (strcmp (arg, "512") == 0)
11235 evexlig = evexl512;
11236 else
11237 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11238 break;
11239
d3d3c6db
IT
11240 case OPTION_MEVEXRCIG:
11241 if (strcmp (arg, "rne") == 0)
11242 evexrcig = rne;
11243 else if (strcmp (arg, "rd") == 0)
11244 evexrcig = rd;
11245 else if (strcmp (arg, "ru") == 0)
11246 evexrcig = ru;
11247 else if (strcmp (arg, "rz") == 0)
11248 evexrcig = rz;
11249 else
11250 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11251 break;
11252
43234a1e
L
11253 case OPTION_MEVEXWIG:
11254 if (strcmp (arg, "0") == 0)
11255 evexwig = evexw0;
11256 else if (strcmp (arg, "1") == 0)
11257 evexwig = evexw1;
11258 else
11259 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11260 break;
11261
167ad85b
TG
11262# if defined (TE_PE) || defined (TE_PEP)
11263 case OPTION_MBIG_OBJ:
11264 use_big_obj = 1;
11265 break;
11266#endif
11267
d1982f93 11268 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11269 if (strcasecmp (arg, "yes") == 0)
11270 omit_lock_prefix = 1;
11271 else if (strcasecmp (arg, "no") == 0)
11272 omit_lock_prefix = 0;
11273 else
11274 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11275 break;
11276
e4e00185
AS
11277 case OPTION_MFENCE_AS_LOCK_ADD:
11278 if (strcasecmp (arg, "yes") == 0)
11279 avoid_fence = 1;
11280 else if (strcasecmp (arg, "no") == 0)
11281 avoid_fence = 0;
11282 else
11283 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11284 break;
11285
0cb4071e
L
11286 case OPTION_MRELAX_RELOCATIONS:
11287 if (strcasecmp (arg, "yes") == 0)
11288 generate_relax_relocations = 1;
11289 else if (strcasecmp (arg, "no") == 0)
11290 generate_relax_relocations = 0;
11291 else
11292 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11293 break;
11294
5db04b09 11295 case OPTION_MAMD64:
e89c5eaa 11296 intel64 = 0;
5db04b09
L
11297 break;
11298
11299 case OPTION_MINTEL64:
e89c5eaa 11300 intel64 = 1;
5db04b09
L
11301 break;
11302
b6f8c7c4
L
11303 case 'O':
11304 if (arg == NULL)
11305 {
11306 optimize = 1;
11307 /* Turn off -Os. */
11308 optimize_for_space = 0;
11309 }
11310 else if (*arg == 's')
11311 {
11312 optimize_for_space = 1;
11313 /* Turn on all encoding optimizations. */
11314 optimize = -1;
11315 }
11316 else
11317 {
11318 optimize = atoi (arg);
11319 /* Turn off -Os. */
11320 optimize_for_space = 0;
11321 }
11322 break;
11323
252b5132
RH
11324 default:
11325 return 0;
11326 }
11327 return 1;
11328}
11329
8a2c8fef
L
11330#define MESSAGE_TEMPLATE \
11331" "
11332
293f5f65
L
11333static char *
11334output_message (FILE *stream, char *p, char *message, char *start,
11335 int *left_p, const char *name, int len)
11336{
11337 int size = sizeof (MESSAGE_TEMPLATE);
11338 int left = *left_p;
11339
11340 /* Reserve 2 spaces for ", " or ",\0" */
11341 left -= len + 2;
11342
11343 /* Check if there is any room. */
11344 if (left >= 0)
11345 {
11346 if (p != start)
11347 {
11348 *p++ = ',';
11349 *p++ = ' ';
11350 }
11351 p = mempcpy (p, name, len);
11352 }
11353 else
11354 {
11355 /* Output the current message now and start a new one. */
11356 *p++ = ',';
11357 *p = '\0';
11358 fprintf (stream, "%s\n", message);
11359 p = start;
11360 left = size - (start - message) - len - 2;
11361
11362 gas_assert (left >= 0);
11363
11364 p = mempcpy (p, name, len);
11365 }
11366
11367 *left_p = left;
11368 return p;
11369}
11370
8a2c8fef 11371static void
1ded5609 11372show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11373{
11374 static char message[] = MESSAGE_TEMPLATE;
11375 char *start = message + 27;
11376 char *p;
11377 int size = sizeof (MESSAGE_TEMPLATE);
11378 int left;
11379 const char *name;
11380 int len;
11381 unsigned int j;
11382
11383 p = start;
11384 left = size - (start - message);
11385 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11386 {
11387 /* Should it be skipped? */
11388 if (cpu_arch [j].skip)
11389 continue;
11390
11391 name = cpu_arch [j].name;
11392 len = cpu_arch [j].len;
11393 if (*name == '.')
11394 {
11395 /* It is an extension. Skip if we aren't asked to show it. */
11396 if (ext)
11397 {
11398 name++;
11399 len--;
11400 }
11401 else
11402 continue;
11403 }
11404 else if (ext)
11405 {
11406 /* It is an processor. Skip if we show only extension. */
11407 continue;
11408 }
1ded5609
JB
11409 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11410 {
11411 /* It is an impossible processor - skip. */
11412 continue;
11413 }
8a2c8fef 11414
293f5f65 11415 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11416 }
11417
293f5f65
L
11418 /* Display disabled extensions. */
11419 if (ext)
11420 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11421 {
11422 name = cpu_noarch [j].name;
11423 len = cpu_noarch [j].len;
11424 p = output_message (stream, p, message, start, &left, name,
11425 len);
11426 }
11427
8a2c8fef
L
11428 *p = '\0';
11429 fprintf (stream, "%s\n", message);
11430}
11431
252b5132 11432void
8a2c8fef 11433md_show_usage (FILE *stream)
252b5132 11434{
4cc782b5
ILT
11435#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11436 fprintf (stream, _("\
a38cf1db
AM
11437 -Q ignored\n\
11438 -V print assembler version number\n\
b3b91714
AM
11439 -k ignored\n"));
11440#endif
11441 fprintf (stream, _("\
12b55ccc 11442 -n Do not optimize code alignment\n\
b3b91714
AM
11443 -q quieten some warnings\n"));
11444#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11445 fprintf (stream, _("\
a38cf1db 11446 -s ignored\n"));
b3b91714 11447#endif
d7f449c0
L
11448#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11449 || defined (TE_PE) || defined (TE_PEP))
751d281c 11450 fprintf (stream, _("\
570561f7 11451 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11452#endif
b3b91714
AM
11453#ifdef SVR4_COMMENT_CHARS
11454 fprintf (stream, _("\
11455 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11456#else
11457 fprintf (stream, _("\
b3b91714 11458 --divide ignored\n"));
4cc782b5 11459#endif
9103f4f4 11460 fprintf (stream, _("\
6305a203 11461 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11462 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11463 show_arch (stream, 0, 1);
8a2c8fef
L
11464 fprintf (stream, _("\
11465 EXTENSION is combination of:\n"));
1ded5609 11466 show_arch (stream, 1, 0);
6305a203 11467 fprintf (stream, _("\
8a2c8fef 11468 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11469 show_arch (stream, 0, 0);
ba104c83 11470 fprintf (stream, _("\
c0f3af97
L
11471 -msse2avx encode SSE instructions with VEX prefix\n"));
11472 fprintf (stream, _("\
7c5c05ef 11473 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11474 check SSE instructions\n"));
11475 fprintf (stream, _("\
7c5c05ef 11476 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11477 check operand combinations for validity\n"));
11478 fprintf (stream, _("\
7c5c05ef
L
11479 -mavxscalar=[128|256] (default: 128)\n\
11480 encode scalar AVX instructions with specific vector\n\
539f890d
L
11481 length\n"));
11482 fprintf (stream, _("\
7c5c05ef
L
11483 -mevexlig=[128|256|512] (default: 128)\n\
11484 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11485 length\n"));
11486 fprintf (stream, _("\
7c5c05ef
L
11487 -mevexwig=[0|1] (default: 0)\n\
11488 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11489 for EVEX.W bit ignored instructions\n"));
11490 fprintf (stream, _("\
7c5c05ef 11491 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11492 encode EVEX instructions with specific EVEX.RC value\n\
11493 for SAE-only ignored instructions\n"));
11494 fprintf (stream, _("\
7c5c05ef
L
11495 -mmnemonic=[att|intel] "));
11496 if (SYSV386_COMPAT)
11497 fprintf (stream, _("(default: att)\n"));
11498 else
11499 fprintf (stream, _("(default: intel)\n"));
11500 fprintf (stream, _("\
11501 use AT&T/Intel mnemonic\n"));
ba104c83 11502 fprintf (stream, _("\
7c5c05ef
L
11503 -msyntax=[att|intel] (default: att)\n\
11504 use AT&T/Intel syntax\n"));
ba104c83
L
11505 fprintf (stream, _("\
11506 -mindex-reg support pseudo index registers\n"));
11507 fprintf (stream, _("\
11508 -mnaked-reg don't require `%%' prefix for registers\n"));
11509 fprintf (stream, _("\
7e8b059b 11510 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11511#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11512 fprintf (stream, _("\
11513 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11514 fprintf (stream, _("\
11515 -mx86-used-note=[no|yes] "));
11516 if (DEFAULT_X86_USED_NOTE)
11517 fprintf (stream, _("(default: yes)\n"));
11518 else
11519 fprintf (stream, _("(default: no)\n"));
11520 fprintf (stream, _("\
11521 generate x86 used ISA and feature properties\n"));
11522#endif
11523#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11524 fprintf (stream, _("\
11525 -mbig-obj generate big object files\n"));
11526#endif
d022bddd 11527 fprintf (stream, _("\
7c5c05ef 11528 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11529 strip all lock prefixes\n"));
5db04b09 11530 fprintf (stream, _("\
7c5c05ef 11531 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11532 encode lfence, mfence and sfence as\n\
11533 lock addl $0x0, (%%{re}sp)\n"));
11534 fprintf (stream, _("\
7c5c05ef
L
11535 -mrelax-relocations=[no|yes] "));
11536 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11537 fprintf (stream, _("(default: yes)\n"));
11538 else
11539 fprintf (stream, _("(default: no)\n"));
11540 fprintf (stream, _("\
0cb4071e
L
11541 generate relax relocations\n"));
11542 fprintf (stream, _("\
7c5c05ef 11543 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11544 fprintf (stream, _("\
11545 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11546}
11547
3e73aa7c 11548#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11549 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11550 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11551
11552/* Pick the target format to use. */
11553
47926f60 11554const char *
e3bb37b5 11555i386_target_format (void)
252b5132 11556{
351f65ca
L
11557 if (!strncmp (default_arch, "x86_64", 6))
11558 {
11559 update_code_flag (CODE_64BIT, 1);
11560 if (default_arch[6] == '\0')
7f56bc95 11561 x86_elf_abi = X86_64_ABI;
351f65ca 11562 else
7f56bc95 11563 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11564 }
3e73aa7c 11565 else if (!strcmp (default_arch, "i386"))
78f12dd3 11566 update_code_flag (CODE_32BIT, 1);
5197d474
L
11567 else if (!strcmp (default_arch, "iamcu"))
11568 {
11569 update_code_flag (CODE_32BIT, 1);
11570 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11571 {
11572 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11573 cpu_arch_name = "iamcu";
11574 cpu_sub_arch_name = NULL;
11575 cpu_arch_flags = iamcu_flags;
11576 cpu_arch_isa = PROCESSOR_IAMCU;
11577 cpu_arch_isa_flags = iamcu_flags;
11578 if (!cpu_arch_tune_set)
11579 {
11580 cpu_arch_tune = cpu_arch_isa;
11581 cpu_arch_tune_flags = cpu_arch_isa_flags;
11582 }
11583 }
8d471ec1 11584 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11585 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11586 cpu_arch_name);
11587 }
3e73aa7c 11588 else
2b5d6a91 11589 as_fatal (_("unknown architecture"));
89507696
JB
11590
11591 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11592 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11593 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11594 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11595
252b5132
RH
11596 switch (OUTPUT_FLAVOR)
11597 {
9384f2ff 11598#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11599 case bfd_target_aout_flavour:
47926f60 11600 return AOUT_TARGET_FORMAT;
4c63da97 11601#endif
9384f2ff
AM
11602#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11603# if defined (TE_PE) || defined (TE_PEP)
11604 case bfd_target_coff_flavour:
167ad85b
TG
11605 if (flag_code == CODE_64BIT)
11606 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11607 else
11608 return "pe-i386";
9384f2ff 11609# elif defined (TE_GO32)
0561d57c
JK
11610 case bfd_target_coff_flavour:
11611 return "coff-go32";
9384f2ff 11612# else
252b5132
RH
11613 case bfd_target_coff_flavour:
11614 return "coff-i386";
9384f2ff 11615# endif
4c63da97 11616#endif
3e73aa7c 11617#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11618 case bfd_target_elf_flavour:
3e73aa7c 11619 {
351f65ca
L
11620 const char *format;
11621
11622 switch (x86_elf_abi)
4fa24527 11623 {
351f65ca
L
11624 default:
11625 format = ELF_TARGET_FORMAT;
11626 break;
7f56bc95 11627 case X86_64_ABI:
351f65ca 11628 use_rela_relocations = 1;
4fa24527 11629 object_64bit = 1;
351f65ca
L
11630 format = ELF_TARGET_FORMAT64;
11631 break;
7f56bc95 11632 case X86_64_X32_ABI:
4fa24527 11633 use_rela_relocations = 1;
351f65ca 11634 object_64bit = 1;
862be3fb 11635 disallow_64bit_reloc = 1;
351f65ca
L
11636 format = ELF_TARGET_FORMAT32;
11637 break;
4fa24527 11638 }
3632d14b 11639 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11640 {
7f56bc95 11641 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11642 as_fatal (_("Intel L1OM is 64bit only"));
11643 return ELF_TARGET_L1OM_FORMAT;
11644 }
b49f93f6 11645 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11646 {
11647 if (x86_elf_abi != X86_64_ABI)
11648 as_fatal (_("Intel K1OM is 64bit only"));
11649 return ELF_TARGET_K1OM_FORMAT;
11650 }
81486035
L
11651 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11652 {
11653 if (x86_elf_abi != I386_ABI)
11654 as_fatal (_("Intel MCU is 32bit only"));
11655 return ELF_TARGET_IAMCU_FORMAT;
11656 }
8a9036a4 11657 else
351f65ca 11658 return format;
3e73aa7c 11659 }
e57f8c65
TG
11660#endif
11661#if defined (OBJ_MACH_O)
11662 case bfd_target_mach_o_flavour:
d382c579
TG
11663 if (flag_code == CODE_64BIT)
11664 {
11665 use_rela_relocations = 1;
11666 object_64bit = 1;
11667 return "mach-o-x86-64";
11668 }
11669 else
11670 return "mach-o-i386";
4c63da97 11671#endif
252b5132
RH
11672 default:
11673 abort ();
11674 return NULL;
11675 }
11676}
11677
47926f60 11678#endif /* OBJ_MAYBE_ more than one */
252b5132 11679\f
252b5132 11680symbolS *
7016a5d5 11681md_undefined_symbol (char *name)
252b5132 11682{
18dc2407
ILT
11683 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11684 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11685 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11686 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11687 {
11688 if (!GOT_symbol)
11689 {
11690 if (symbol_find (name))
11691 as_bad (_("GOT already in symbol table"));
11692 GOT_symbol = symbol_new (name, undefined_section,
11693 (valueT) 0, &zero_address_frag);
11694 };
11695 return GOT_symbol;
11696 }
252b5132
RH
11697 return 0;
11698}
11699
11700/* Round up a section size to the appropriate boundary. */
47926f60 11701
252b5132 11702valueT
7016a5d5 11703md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11704{
4c63da97
AM
11705#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11706 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11707 {
11708 /* For a.out, force the section size to be aligned. If we don't do
11709 this, BFD will align it for us, but it will not write out the
11710 final bytes of the section. This may be a bug in BFD, but it is
11711 easier to fix it here since that is how the other a.out targets
11712 work. */
11713 int align;
11714
11715 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11716 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11717 }
252b5132
RH
11718#endif
11719
11720 return size;
11721}
11722
11723/* On the i386, PC-relative offsets are relative to the start of the
11724 next instruction. That is, the address of the offset, plus its
11725 size, since the offset is always the last part of the insn. */
11726
11727long
e3bb37b5 11728md_pcrel_from (fixS *fixP)
252b5132
RH
11729{
11730 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11731}
11732
11733#ifndef I386COFF
11734
11735static void
e3bb37b5 11736s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11737{
29b0f896 11738 int temp;
252b5132 11739
8a75718c
JB
11740#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11741 if (IS_ELF)
11742 obj_elf_section_change_hook ();
11743#endif
252b5132
RH
11744 temp = get_absolute_expression ();
11745 subseg_set (bss_section, (subsegT) temp);
11746 demand_empty_rest_of_line ();
11747}
11748
11749#endif
11750
252b5132 11751void
e3bb37b5 11752i386_validate_fix (fixS *fixp)
252b5132 11753{
02a86693 11754 if (fixp->fx_subsy)
252b5132 11755 {
02a86693 11756 if (fixp->fx_subsy == GOT_symbol)
23df1078 11757 {
02a86693
L
11758 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11759 {
11760 if (!object_64bit)
11761 abort ();
11762#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11763 if (fixp->fx_tcbit2)
56ceb5b5
L
11764 fixp->fx_r_type = (fixp->fx_tcbit
11765 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11766 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11767 else
11768#endif
11769 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11770 }
d6ab8113 11771 else
02a86693
L
11772 {
11773 if (!object_64bit)
11774 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11775 else
11776 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11777 }
11778 fixp->fx_subsy = 0;
23df1078 11779 }
252b5132 11780 }
02a86693
L
11781#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11782 else if (!object_64bit)
11783 {
11784 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11785 && fixp->fx_tcbit2)
11786 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11787 }
11788#endif
252b5132
RH
11789}
11790
252b5132 11791arelent *
7016a5d5 11792tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11793{
11794 arelent *rel;
11795 bfd_reloc_code_real_type code;
11796
11797 switch (fixp->fx_r_type)
11798 {
8ce3d284 11799#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11800 case BFD_RELOC_SIZE32:
11801 case BFD_RELOC_SIZE64:
11802 if (S_IS_DEFINED (fixp->fx_addsy)
11803 && !S_IS_EXTERNAL (fixp->fx_addsy))
11804 {
11805 /* Resolve size relocation against local symbol to size of
11806 the symbol plus addend. */
11807 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11808 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11809 && !fits_in_unsigned_long (value))
11810 as_bad_where (fixp->fx_file, fixp->fx_line,
11811 _("symbol size computation overflow"));
11812 fixp->fx_addsy = NULL;
11813 fixp->fx_subsy = NULL;
11814 md_apply_fix (fixp, (valueT *) &value, NULL);
11815 return NULL;
11816 }
8ce3d284 11817#endif
1a0670f3 11818 /* Fall through. */
8fd4256d 11819
3e73aa7c
JH
11820 case BFD_RELOC_X86_64_PLT32:
11821 case BFD_RELOC_X86_64_GOT32:
11822 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11823 case BFD_RELOC_X86_64_GOTPCRELX:
11824 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11825 case BFD_RELOC_386_PLT32:
11826 case BFD_RELOC_386_GOT32:
02a86693 11827 case BFD_RELOC_386_GOT32X:
252b5132
RH
11828 case BFD_RELOC_386_GOTOFF:
11829 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11830 case BFD_RELOC_386_TLS_GD:
11831 case BFD_RELOC_386_TLS_LDM:
11832 case BFD_RELOC_386_TLS_LDO_32:
11833 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11834 case BFD_RELOC_386_TLS_IE:
11835 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11836 case BFD_RELOC_386_TLS_LE_32:
11837 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11838 case BFD_RELOC_386_TLS_GOTDESC:
11839 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11840 case BFD_RELOC_X86_64_TLSGD:
11841 case BFD_RELOC_X86_64_TLSLD:
11842 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11843 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11844 case BFD_RELOC_X86_64_GOTTPOFF:
11845 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11846 case BFD_RELOC_X86_64_TPOFF64:
11847 case BFD_RELOC_X86_64_GOTOFF64:
11848 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11849 case BFD_RELOC_X86_64_GOT64:
11850 case BFD_RELOC_X86_64_GOTPCREL64:
11851 case BFD_RELOC_X86_64_GOTPC64:
11852 case BFD_RELOC_X86_64_GOTPLT64:
11853 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11854 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11855 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11856 case BFD_RELOC_RVA:
11857 case BFD_RELOC_VTABLE_ENTRY:
11858 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11859#ifdef TE_PE
11860 case BFD_RELOC_32_SECREL:
11861#endif
252b5132
RH
11862 code = fixp->fx_r_type;
11863 break;
dbbaec26
L
11864 case BFD_RELOC_X86_64_32S:
11865 if (!fixp->fx_pcrel)
11866 {
11867 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11868 code = fixp->fx_r_type;
11869 break;
11870 }
1a0670f3 11871 /* Fall through. */
252b5132 11872 default:
93382f6d 11873 if (fixp->fx_pcrel)
252b5132 11874 {
93382f6d
AM
11875 switch (fixp->fx_size)
11876 {
11877 default:
b091f402
AM
11878 as_bad_where (fixp->fx_file, fixp->fx_line,
11879 _("can not do %d byte pc-relative relocation"),
11880 fixp->fx_size);
93382f6d
AM
11881 code = BFD_RELOC_32_PCREL;
11882 break;
11883 case 1: code = BFD_RELOC_8_PCREL; break;
11884 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11885 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11886#ifdef BFD64
11887 case 8: code = BFD_RELOC_64_PCREL; break;
11888#endif
93382f6d
AM
11889 }
11890 }
11891 else
11892 {
11893 switch (fixp->fx_size)
11894 {
11895 default:
b091f402
AM
11896 as_bad_where (fixp->fx_file, fixp->fx_line,
11897 _("can not do %d byte relocation"),
11898 fixp->fx_size);
93382f6d
AM
11899 code = BFD_RELOC_32;
11900 break;
11901 case 1: code = BFD_RELOC_8; break;
11902 case 2: code = BFD_RELOC_16; break;
11903 case 4: code = BFD_RELOC_32; break;
937149dd 11904#ifdef BFD64
3e73aa7c 11905 case 8: code = BFD_RELOC_64; break;
937149dd 11906#endif
93382f6d 11907 }
252b5132
RH
11908 }
11909 break;
11910 }
252b5132 11911
d182319b
JB
11912 if ((code == BFD_RELOC_32
11913 || code == BFD_RELOC_32_PCREL
11914 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11915 && GOT_symbol
11916 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11917 {
4fa24527 11918 if (!object_64bit)
d6ab8113
JB
11919 code = BFD_RELOC_386_GOTPC;
11920 else
11921 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11922 }
7b81dfbb
AJ
11923 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11924 && GOT_symbol
11925 && fixp->fx_addsy == GOT_symbol)
11926 {
11927 code = BFD_RELOC_X86_64_GOTPC64;
11928 }
252b5132 11929
add39d23
TS
11930 rel = XNEW (arelent);
11931 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11932 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11933
11934 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11935
3e73aa7c
JH
11936 if (!use_rela_relocations)
11937 {
11938 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11939 vtable entry to be used in the relocation's section offset. */
11940 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11941 rel->address = fixp->fx_offset;
fbeb56a4
DK
11942#if defined (OBJ_COFF) && defined (TE_PE)
11943 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11944 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11945 else
11946#endif
c6682705 11947 rel->addend = 0;
3e73aa7c
JH
11948 }
11949 /* Use the rela in 64bit mode. */
252b5132 11950 else
3e73aa7c 11951 {
862be3fb
L
11952 if (disallow_64bit_reloc)
11953 switch (code)
11954 {
862be3fb
L
11955 case BFD_RELOC_X86_64_DTPOFF64:
11956 case BFD_RELOC_X86_64_TPOFF64:
11957 case BFD_RELOC_64_PCREL:
11958 case BFD_RELOC_X86_64_GOTOFF64:
11959 case BFD_RELOC_X86_64_GOT64:
11960 case BFD_RELOC_X86_64_GOTPCREL64:
11961 case BFD_RELOC_X86_64_GOTPC64:
11962 case BFD_RELOC_X86_64_GOTPLT64:
11963 case BFD_RELOC_X86_64_PLTOFF64:
11964 as_bad_where (fixp->fx_file, fixp->fx_line,
11965 _("cannot represent relocation type %s in x32 mode"),
11966 bfd_get_reloc_code_name (code));
11967 break;
11968 default:
11969 break;
11970 }
11971
062cd5e7
AS
11972 if (!fixp->fx_pcrel)
11973 rel->addend = fixp->fx_offset;
11974 else
11975 switch (code)
11976 {
11977 case BFD_RELOC_X86_64_PLT32:
11978 case BFD_RELOC_X86_64_GOT32:
11979 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11980 case BFD_RELOC_X86_64_GOTPCRELX:
11981 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11982 case BFD_RELOC_X86_64_TLSGD:
11983 case BFD_RELOC_X86_64_TLSLD:
11984 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11985 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11986 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11987 rel->addend = fixp->fx_offset - fixp->fx_size;
11988 break;
11989 default:
11990 rel->addend = (section->vma
11991 - fixp->fx_size
11992 + fixp->fx_addnumber
11993 + md_pcrel_from (fixp));
11994 break;
11995 }
3e73aa7c
JH
11996 }
11997
252b5132
RH
11998 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11999 if (rel->howto == NULL)
12000 {
12001 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12002 _("cannot represent relocation type %s"),
252b5132
RH
12003 bfd_get_reloc_code_name (code));
12004 /* Set howto to a garbage value so that we can keep going. */
12005 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12006 gas_assert (rel->howto != NULL);
252b5132
RH
12007 }
12008
12009 return rel;
12010}
12011
ee86248c 12012#include "tc-i386-intel.c"
54cfded0 12013
a60de03c
JB
12014void
12015tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12016{
a60de03c
JB
12017 int saved_naked_reg;
12018 char saved_register_dot;
54cfded0 12019
a60de03c
JB
12020 saved_naked_reg = allow_naked_reg;
12021 allow_naked_reg = 1;
12022 saved_register_dot = register_chars['.'];
12023 register_chars['.'] = '.';
12024 allow_pseudo_reg = 1;
12025 expression_and_evaluate (exp);
12026 allow_pseudo_reg = 0;
12027 register_chars['.'] = saved_register_dot;
12028 allow_naked_reg = saved_naked_reg;
12029
e96d56a1 12030 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12031 {
a60de03c
JB
12032 if ((addressT) exp->X_add_number < i386_regtab_size)
12033 {
12034 exp->X_op = O_constant;
12035 exp->X_add_number = i386_regtab[exp->X_add_number]
12036 .dw2_regnum[flag_code >> 1];
12037 }
12038 else
12039 exp->X_op = O_illegal;
54cfded0 12040 }
54cfded0
AM
12041}
12042
12043void
12044tc_x86_frame_initial_instructions (void)
12045{
a60de03c
JB
12046 static unsigned int sp_regno[2];
12047
12048 if (!sp_regno[flag_code >> 1])
12049 {
12050 char *saved_input = input_line_pointer;
12051 char sp[][4] = {"esp", "rsp"};
12052 expressionS exp;
a4447b93 12053
a60de03c
JB
12054 input_line_pointer = sp[flag_code >> 1];
12055 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12056 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12057 sp_regno[flag_code >> 1] = exp.X_add_number;
12058 input_line_pointer = saved_input;
12059 }
a4447b93 12060
61ff971f
L
12061 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12062 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12063}
d2b2c203 12064
d7921315
L
12065int
12066x86_dwarf2_addr_size (void)
12067{
12068#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12069 if (x86_elf_abi == X86_64_X32_ABI)
12070 return 4;
12071#endif
12072 return bfd_arch_bits_per_address (stdoutput) / 8;
12073}
12074
d2b2c203
DJ
12075int
12076i386_elf_section_type (const char *str, size_t len)
12077{
12078 if (flag_code == CODE_64BIT
12079 && len == sizeof ("unwind") - 1
12080 && strncmp (str, "unwind", 6) == 0)
12081 return SHT_X86_64_UNWIND;
12082
12083 return -1;
12084}
bb41ade5 12085
ad5fec3b
EB
12086#ifdef TE_SOLARIS
12087void
12088i386_solaris_fix_up_eh_frame (segT sec)
12089{
12090 if (flag_code == CODE_64BIT)
12091 elf_section_type (sec) = SHT_X86_64_UNWIND;
12092}
12093#endif
12094
bb41ade5
AM
12095#ifdef TE_PE
12096void
12097tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12098{
91d6fa6a 12099 expressionS exp;
bb41ade5 12100
91d6fa6a
NC
12101 exp.X_op = O_secrel;
12102 exp.X_add_symbol = symbol;
12103 exp.X_add_number = 0;
12104 emit_expr (&exp, size);
bb41ade5
AM
12105}
12106#endif
3b22753a
L
12107
12108#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12109/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12110
01e1a5bc 12111bfd_vma
6d4af3c2 12112x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12113{
12114 if (flag_code == CODE_64BIT)
12115 {
12116 if (letter == 'l')
12117 return SHF_X86_64_LARGE;
12118
8f3bae45 12119 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12120 }
3b22753a 12121 else
8f3bae45 12122 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12123 return -1;
12124}
12125
01e1a5bc 12126bfd_vma
3b22753a
L
12127x86_64_section_word (char *str, size_t len)
12128{
8620418b 12129 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12130 return SHF_X86_64_LARGE;
12131
12132 return -1;
12133}
12134
12135static void
12136handle_large_common (int small ATTRIBUTE_UNUSED)
12137{
12138 if (flag_code != CODE_64BIT)
12139 {
12140 s_comm_internal (0, elf_common_parse);
12141 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12142 }
12143 else
12144 {
12145 static segT lbss_section;
12146 asection *saved_com_section_ptr = elf_com_section_ptr;
12147 asection *saved_bss_section = bss_section;
12148
12149 if (lbss_section == NULL)
12150 {
12151 flagword applicable;
12152 segT seg = now_seg;
12153 subsegT subseg = now_subseg;
12154
12155 /* The .lbss section is for local .largecomm symbols. */
12156 lbss_section = subseg_new (".lbss", 0);
12157 applicable = bfd_applicable_section_flags (stdoutput);
12158 bfd_set_section_flags (stdoutput, lbss_section,
12159 applicable & SEC_ALLOC);
12160 seg_info (lbss_section)->bss = 1;
12161
12162 subseg_set (seg, subseg);
12163 }
12164
12165 elf_com_section_ptr = &_bfd_elf_large_com_section;
12166 bss_section = lbss_section;
12167
12168 s_comm_internal (0, elf_common_parse);
12169
12170 elf_com_section_ptr = saved_com_section_ptr;
12171 bss_section = saved_bss_section;
12172 }
12173}
12174#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.022153 seconds and 4 git commands to generate.