bfd: xtensa: fix PR ld/25630
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
50128d0c
JB
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
e379e5f3
L
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
252b5132 374 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 375 addressing modes of this insn are encoded. */
252b5132 376 modrm_byte rm;
3e73aa7c 377 rex_byte rex;
43234a1e 378 rex_byte vrex;
252b5132 379 sib_byte sib;
c0f3af97 380 vex_prefix vex;
b6169b20 381
43234a1e
L
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
86fa6981
L
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
64c49ab3
JB
399 dir_encoding_store,
400 dir_encoding_swap
86fa6981 401 } dir_encoding;
891edac4 402
a501d77e
L
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
f8a5c266 410
6b6b6807
L
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
b6f8c7c4
L
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
86fa6981
L
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
42e04b36 421 vex_encoding_vex,
86fa6981
L
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
d5de92cf
L
426 /* REP prefix. */
427 const char *rep_prefix;
428
165de32a
L
429 /* HLE prefix. */
430 const char *hle_prefix;
42164a71 431
7e8b059b
L
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
04ef582a
L
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
891edac4 438 /* Error message. */
a65babc9 439 enum i386_error error;
252b5132
RH
440 };
441
442typedef struct _i386_insn i386_insn;
443
43234a1e
L
444/* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446struct RC_name
447{
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451};
452
453static const struct RC_name RC_NamesTable[] =
454{
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460};
461
252b5132
RH
462/* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 464const char extra_symbol_chars[] = "*%-([{}"
252b5132 465#ifdef LEX_AT
32137342
NC
466 "@"
467#endif
468#ifdef LEX_QM
469 "?"
252b5132 470#endif
32137342 471 ;
252b5132 472
29b0f896
AM
473#if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 475 && !defined (TE_GNU) \
29b0f896 476 && !defined (TE_LINUX) \
8d63c93e 477 && !defined (TE_NACL) \
29b0f896 478 && !defined (TE_FreeBSD) \
5b806d27 479 && !defined (TE_DragonFly) \
29b0f896 480 && !defined (TE_NetBSD)))
252b5132 481/* This array holds the chars that always start a comment. If the
b3b91714
AM
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484const char *i386_comment_chars = "#/";
485#define SVR4_COMMENT_CHARS 1
252b5132 486#define PREFIX_SEPARATOR '\\'
252b5132 487
b3b91714
AM
488#else
489const char *i386_comment_chars = "#";
490#define PREFIX_SEPARATOR '/'
491#endif
492
252b5132
RH
493/* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 497 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
252b5132 500 '/' isn't otherwise defined. */
b3b91714 501const char line_comment_chars[] = "#/";
252b5132 502
63a0b638 503const char line_separator_chars[] = ";";
252b5132 504
ce8a8b2f
AM
505/* Chars that can be used to separate mant from exp in floating point
506 nums. */
252b5132
RH
507const char EXP_CHARS[] = "eE";
508
ce8a8b2f
AM
509/* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
252b5132
RH
512const char FLT_CHARS[] = "fFdDxX";
513
ce8a8b2f 514/* Tables for lexical analysis. */
252b5132
RH
515static char mnemonic_chars[256];
516static char register_chars[256];
517static char operand_chars[256];
518static char identifier_chars[256];
519static char digit_chars[256];
520
ce8a8b2f 521/* Lexical macros. */
252b5132
RH
522#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523#define is_operand_char(x) (operand_chars[(unsigned char) x])
524#define is_register_char(x) (register_chars[(unsigned char) x])
525#define is_space_char(x) ((x) == ' ')
526#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527#define is_digit_char(x) (digit_chars[(unsigned char) x])
528
0234cb7c 529/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
530static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532/* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
47926f60 535 assembler instruction). */
252b5132 536static char save_stack[32];
ce8a8b2f 537static char *save_stack_p;
252b5132
RH
538#define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540#define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
47926f60 543/* The instruction we're assembling. */
252b5132
RH
544static i386_insn i;
545
546/* Possible templates for current insn. */
547static const templates *current_templates;
548
31b2323c
L
549/* Per instruction expressionS buffers: max displacements & immediates. */
550static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 552
47926f60 553/* Current operand we are working on. */
ee86248c 554static int this_operand = -1;
252b5132 555
3e73aa7c
JH
556/* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564static enum flag_code flag_code;
4fa24527 565static unsigned int object_64bit;
862be3fb 566static unsigned int disallow_64bit_reloc;
3e73aa7c 567static int use_rela_relocations = 0;
e379e5f3
L
568/* __tls_get_addr/___tls_get_addr symbol for TLS. */
569static const char *tls_get_addr;
3e73aa7c 570
7af8ed2d
NC
571#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
351f65ca
L
575/* The ELF ABI to use. */
576enum x86_elf_abi
577{
578 I386_ABI,
7f56bc95
L
579 X86_64_ABI,
580 X86_64_X32_ABI
351f65ca
L
581};
582
583static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 584#endif
351f65ca 585
167ad85b
TG
586#if defined (TE_PE) || defined (TE_PEP)
587/* Use big object file format. */
588static int use_big_obj = 0;
589#endif
590
8dcea932
L
591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592/* 1 if generating code for a shared library. */
593static int shared = 0;
594#endif
595
47926f60
KH
596/* 1 for intel syntax,
597 0 if att syntax. */
598static int intel_syntax = 0;
252b5132 599
4b5aaf5f
L
600static enum x86_64_isa
601{
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604} isa64;
e89c5eaa 605
1efbbeb4
L
606/* 1 for intel mnemonic,
607 0 if att mnemonic. */
608static int intel_mnemonic = !SYSV386_COMPAT;
609
a60de03c
JB
610/* 1 if pseudo registers are permitted. */
611static int allow_pseudo_reg = 0;
612
47926f60
KH
613/* 1 if register prefix % not required. */
614static int allow_naked_reg = 0;
252b5132 615
33eaf5de 616/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619static int add_bnd_prefix = 0;
620
ba104c83 621/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
622static int allow_index_reg = 0;
623
d022bddd
IT
624/* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626static int omit_lock_prefix = 0;
627
e4e00185
AS
628/* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630static int avoid_fence = 0;
631
e379e5f3
L
632/* Type of the previous instruction. */
633static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
0cb4071e
L
647/* 1 if the assembler should generate relax relocations. */
648
649static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
7bab8ab5 652static enum check_kind
daf50ae7 653 {
7bab8ab5
JB
654 check_none = 0,
655 check_warning,
656 check_error
daf50ae7 657 }
7bab8ab5 658sse_check, operand_check = check_warning;
daf50ae7 659
e379e5f3
L
660/* Non-zero if branches should be aligned within power of 2 boundary. */
661static int align_branch_power = 0;
662
663/* Types of branches to align. */
664enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675/* Type bits of branches to align. */
676enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
79d72f45
HL
690/* Types of condition jump used by macro-fusion. */
691enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703/* Types of compare flag-modifying insntructions used by macro-fusion. */
704enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
e379e5f3
L
711/* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714#define MAX_FUSED_JCC_PADDING_SIZE 20
715
716/* The maximum number of prefixes added for an instruction. */
717static unsigned int align_branch_prefix_size = 5;
718
b6f8c7c4
L
719/* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724static int optimize = 0;
725
726/* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733static int optimize_for_space = 0;
734
2ca3ace5
L
735/* Register prefix used for error message. */
736static const char *register_prefix = "%";
737
47926f60
KH
738/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741static char stackop_size = '\0';
eecb386c 742
12b55ccc
L
743/* Non-zero to optimize code alignment. */
744int optimize_align_code = 1;
745
47926f60
KH
746/* Non-zero to quieten some warnings. */
747static int quiet_warnings = 0;
a38cf1db 748
47926f60
KH
749/* CPU name. */
750static const char *cpu_arch_name = NULL;
6305a203 751static char *cpu_sub_arch_name = NULL;
a38cf1db 752
47926f60 753/* CPU feature flags. */
40fb9820
L
754static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
ccc9c027
L
756/* If we have selected a cpu we are generating instructions for. */
757static int cpu_arch_tune_set = 0;
758
9103f4f4 759/* Cpu we are generating instructions for. */
fbf3f584 760enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
761
762/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 763static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 764
ccc9c027 765/* CPU instruction set architecture used. */
fbf3f584 766enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 767
9103f4f4 768/* CPU feature flags of instruction set architecture used. */
fbf3f584 769i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 770
fddf5b5b
AM
771/* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773static unsigned int no_cond_jump_promotion = 0;
774
c0f3af97
L
775/* Encode SSE instructions with VEX prefix. */
776static unsigned int sse2avx;
777
539f890d
L
778/* Encode scalar AVX instructions with specific vector length. */
779static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
03751133
L
785/* Encode VEX WIG instructions with specific vex.w. */
786static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
43234a1e
L
792/* Encode scalar EVEX LIG instructions with specific vector length. */
793static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800/* Encode EVEX WIG instructions with specific evex.w. */
801static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
d3d3c6db
IT
807/* Value to encode in EVEX RC bits, for SAE-only instructions. */
808static enum rc_type evexrcig = rne;
809
29b0f896 810/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 811static symbolS *GOT_symbol;
29b0f896 812
a4447b93
RH
813/* The dwarf2 return column, adjusted for 32 or 64 bit. */
814unsigned int x86_dwarf2_return_column;
815
816/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817int x86_cie_data_alignment;
818
252b5132 819/* Interface to relax_segment.
fddf5b5b
AM
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
e379e5f3
L
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
252b5132 827
47926f60 828/* Types. */
93c2a809
AM
829#define UNCOND_JUMP 0
830#define COND_JUMP 1
831#define COND_JUMP86 2
e379e5f3
L
832#define BRANCH_PADDING 3
833#define BRANCH_PREFIX 4
834#define FUSED_JCC_PADDING 5
fddf5b5b 835
47926f60 836/* Sizes. */
252b5132
RH
837#define CODE16 1
838#define SMALL 0
29b0f896 839#define SMALL16 (SMALL | CODE16)
252b5132 840#define BIG 2
29b0f896 841#define BIG16 (BIG | CODE16)
252b5132
RH
842
843#ifndef INLINE
844#ifdef __GNUC__
845#define INLINE __inline__
846#else
847#define INLINE
848#endif
849#endif
850
fddf5b5b
AM
851#define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853#define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855#define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
857
858/* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866const relax_typeS md_relax_table[] =
867{
24eab124
AM
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
93c2a809 871 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 872 4) which index into the table to try if we can't fit into this one. */
252b5132 873
fddf5b5b 874 /* UNCOND_JUMP states. */
93c2a809
AM
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
252b5132 879 {0, 0, 4, 0},
93c2a809
AM
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
882 {0, 0, 2, 0},
883
93c2a809
AM
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
fddf5b5b 890 /* word conditionals add 3 bytes to frag:
93c2a809
AM
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
252b5132
RH
903};
904
9103f4f4
L
905static const arch_entry cpu_arch[] =
906{
89507696
JB
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
8a2c8fef 909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 910 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 912 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_NONE_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_I186_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_I286_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 920 CPU_I386_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 922 CPU_I486_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 924 CPU_I586_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 926 CPU_I686_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 928 CPU_I586_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 930 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 932 CPU_P2_FLAGS, 0 },
8a2c8fef 933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 934 CPU_P3_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 936 CPU_P4_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 938 CPU_CORE_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 940 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 942 CPU_CORE_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 944 CPU_CORE_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 946 CPU_CORE2_FLAGS, 1 },
8a2c8fef 947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 948 CPU_CORE2_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 950 CPU_COREI7_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 952 CPU_L1OM_FLAGS, 0 },
7a9068fe 953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 954 CPU_K1OM_FLAGS, 0 },
81486035 955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 956 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 958 CPU_K6_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 960 CPU_K6_2_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 962 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 964 CPU_K8_FLAGS, 1 },
8a2c8fef 965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 966 CPU_K8_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 968 CPU_K8_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 970 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 972 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 974 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 976 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 978 CPU_BDVER4_FLAGS, 0 },
029f3522 979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 980 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
7b458c12 983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 984 CPU_BTVER1_FLAGS, 0 },
7b458c12 985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 986 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_8087_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_287_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_387_FLAGS, 0 },
1848e567
L
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
d871f3f4
L
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_MMX_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_SSE_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SSE2_FLAGS, 0 },
8a2c8fef 1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SSE3_FLAGS, 0 },
af5c13b0
L
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_AVX_FLAGS, 0 },
6c30d220 1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_AVX2_FLAGS, 0 },
43234a1e 1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_AVX512F_FLAGS, 0 },
43234a1e 1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_VMX_FLAGS, 0 },
8729a6f6 1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_SMX_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_AES_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_F16C_FLAGS, 0 },
6c30d220 1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_FMA_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_XOP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_LWP_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_MOVBE_FLAGS, 0 },
60aa667e 1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_CX16_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_EPT_FLAGS, 0 },
6c30d220 1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_LZCNT_FLAGS, 0 },
272a84b1
L
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
42164a71 1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_HLE_FLAGS, 0 },
42164a71 1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_RTM_FLAGS, 0 },
6c30d220 1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_CLFLUSH_FLAGS, 0 },
22109423 1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_NOP_FLAGS, 0 },
8a2c8fef 1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_SVME_FLAGS, 1 },
8a2c8fef 1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SVME_FLAGS, 0 },
8a2c8fef 1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_ABM_FLAGS, 0 },
87973e9f 1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_BMI_FLAGS, 0 },
2a2a0f38 1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1112 CPU_TBM_FLAGS, 0 },
e2e1fcde 1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1114 CPU_ADX_FLAGS, 0 },
e2e1fcde 1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1116 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1118 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1120 CPU_SMAP_FLAGS, 0 },
7e8b059b 1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1122 CPU_MPX_FLAGS, 0 },
a0046408 1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_SHA_FLAGS, 0 },
963f3586 1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_SE1_FLAGS, 0 },
c5e7287a 1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1132 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1134 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1136 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1150 CPU_CLZERO_FLAGS, 0 },
9916071f 1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1152 CPU_MWAITX_FLAGS, 0 },
8eab4136 1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1154 CPU_OSPKE_FLAGS, 0 },
8bc52696 1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1156 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
a847e322
JB
1191 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1192 CPU_SEV_ES_FLAGS, 0 },
293f5f65
L
1193};
1194
1195static const noarch_entry cpu_noarch[] =
1196{
1197 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1198 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1199 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1200 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1201 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1202 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1203 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1204 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1205 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1206 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
af5c13b0 1207 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1848e567
L
1208 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
af5c13b0 1211 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1212 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1213 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1214 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1223 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1224 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1225 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1226 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1227 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1228 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1229 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1230 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1231 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1232 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1233 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1234 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1235 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1236};
1237
704209c0 1238#ifdef I386COFF
a6c24e68
NC
1239/* Like s_lcomm_internal in gas/read.c but the alignment string
1240 is allowed to be optional. */
1241
1242static symbolS *
1243pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1244{
1245 addressT align = 0;
1246
1247 SKIP_WHITESPACE ();
1248
7ab9ffdd 1249 if (needs_align
a6c24e68
NC
1250 && *input_line_pointer == ',')
1251 {
1252 align = parse_align (needs_align - 1);
7ab9ffdd 1253
a6c24e68
NC
1254 if (align == (addressT) -1)
1255 return NULL;
1256 }
1257 else
1258 {
1259 if (size >= 8)
1260 align = 3;
1261 else if (size >= 4)
1262 align = 2;
1263 else if (size >= 2)
1264 align = 1;
1265 else
1266 align = 0;
1267 }
1268
1269 bss_alloc (symbolP, size, align);
1270 return symbolP;
1271}
1272
704209c0 1273static void
a6c24e68
NC
1274pe_lcomm (int needs_align)
1275{
1276 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1277}
704209c0 1278#endif
a6c24e68 1279
29b0f896
AM
1280const pseudo_typeS md_pseudo_table[] =
1281{
1282#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1283 {"align", s_align_bytes, 0},
1284#else
1285 {"align", s_align_ptwo, 0},
1286#endif
1287 {"arch", set_cpu_arch, 0},
1288#ifndef I386COFF
1289 {"bss", s_bss, 0},
a6c24e68
NC
1290#else
1291 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1292#endif
1293 {"ffloat", float_cons, 'f'},
1294 {"dfloat", float_cons, 'd'},
1295 {"tfloat", float_cons, 'x'},
1296 {"value", cons, 2},
d182319b 1297 {"slong", signed_cons, 4},
29b0f896
AM
1298 {"noopt", s_ignore, 0},
1299 {"optim", s_ignore, 0},
1300 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1301 {"code16", set_code_flag, CODE_16BIT},
1302 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1303#ifdef BFD64
29b0f896 1304 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1305#endif
29b0f896
AM
1306 {"intel_syntax", set_intel_syntax, 1},
1307 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1308 {"intel_mnemonic", set_intel_mnemonic, 1},
1309 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1310 {"allow_index_reg", set_allow_index_reg, 1},
1311 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1312 {"sse_check", set_check, 0},
1313 {"operand_check", set_check, 1},
3b22753a
L
1314#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1315 {"largecomm", handle_large_common, 0},
07a53e5c 1316#else
68d20676 1317 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1318 {"loc", dwarf2_directive_loc, 0},
1319 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1320#endif
6482c264
NC
1321#ifdef TE_PE
1322 {"secrel32", pe_directive_secrel, 0},
1323#endif
29b0f896
AM
1324 {0, 0, 0}
1325};
1326
1327/* For interface with expression (). */
1328extern char *input_line_pointer;
1329
1330/* Hash table for instruction mnemonic lookup. */
1331static struct hash_control *op_hash;
1332
1333/* Hash table for register lookup. */
1334static struct hash_control *reg_hash;
1335\f
ce8a8b2f
AM
1336 /* Various efficient no-op patterns for aligning code labels.
1337 Note: Don't try to assemble the instructions in the comments.
1338 0L and 0w are not legal. */
62a02d25
L
1339static const unsigned char f32_1[] =
1340 {0x90}; /* nop */
1341static const unsigned char f32_2[] =
1342 {0x66,0x90}; /* xchg %ax,%ax */
1343static const unsigned char f32_3[] =
1344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1345static const unsigned char f32_4[] =
1346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1347static const unsigned char f32_6[] =
1348 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1349static const unsigned char f32_7[] =
1350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1351static const unsigned char f16_3[] =
3ae729d5 1352 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1353static const unsigned char f16_4[] =
3ae729d5
L
1354 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1355static const unsigned char jump_disp8[] =
1356 {0xeb}; /* jmp disp8 */
1357static const unsigned char jump32_disp32[] =
1358 {0xe9}; /* jmp disp32 */
1359static const unsigned char jump16_disp32[] =
1360 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1361/* 32-bit NOPs patterns. */
1362static const unsigned char *const f32_patt[] = {
3ae729d5 1363 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1364};
1365/* 16-bit NOPs patterns. */
1366static const unsigned char *const f16_patt[] = {
3ae729d5 1367 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1368};
1369/* nopl (%[re]ax) */
1370static const unsigned char alt_3[] =
1371 {0x0f,0x1f,0x00};
1372/* nopl 0(%[re]ax) */
1373static const unsigned char alt_4[] =
1374 {0x0f,0x1f,0x40,0x00};
1375/* nopl 0(%[re]ax,%[re]ax,1) */
1376static const unsigned char alt_5[] =
1377 {0x0f,0x1f,0x44,0x00,0x00};
1378/* nopw 0(%[re]ax,%[re]ax,1) */
1379static const unsigned char alt_6[] =
1380 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1381/* nopl 0L(%[re]ax) */
1382static const unsigned char alt_7[] =
1383 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1384/* nopl 0L(%[re]ax,%[re]ax,1) */
1385static const unsigned char alt_8[] =
1386 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1387/* nopw 0L(%[re]ax,%[re]ax,1) */
1388static const unsigned char alt_9[] =
1389 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1390/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1391static const unsigned char alt_10[] =
1392 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1393/* data16 nopw %cs:0L(%eax,%eax,1) */
1394static const unsigned char alt_11[] =
1395 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1396/* 32-bit and 64-bit NOPs patterns. */
1397static const unsigned char *const alt_patt[] = {
1398 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1399 alt_9, alt_10, alt_11
62a02d25
L
1400};
1401
1402/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1403 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1404
1405static void
1406i386_output_nops (char *where, const unsigned char *const *patt,
1407 int count, int max_single_nop_size)
1408
1409{
3ae729d5
L
1410 /* Place the longer NOP first. */
1411 int last;
1412 int offset;
3076e594
NC
1413 const unsigned char *nops;
1414
1415 if (max_single_nop_size < 1)
1416 {
1417 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1418 max_single_nop_size);
1419 return;
1420 }
1421
1422 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1423
1424 /* Use the smaller one if the requsted one isn't available. */
1425 if (nops == NULL)
62a02d25 1426 {
3ae729d5
L
1427 max_single_nop_size--;
1428 nops = patt[max_single_nop_size - 1];
62a02d25
L
1429 }
1430
3ae729d5
L
1431 last = count % max_single_nop_size;
1432
1433 count -= last;
1434 for (offset = 0; offset < count; offset += max_single_nop_size)
1435 memcpy (where + offset, nops, max_single_nop_size);
1436
1437 if (last)
1438 {
1439 nops = patt[last - 1];
1440 if (nops == NULL)
1441 {
1442 /* Use the smaller one plus one-byte NOP if the needed one
1443 isn't available. */
1444 last--;
1445 nops = patt[last - 1];
1446 memcpy (where + offset, nops, last);
1447 where[offset + last] = *patt[0];
1448 }
1449 else
1450 memcpy (where + offset, nops, last);
1451 }
62a02d25
L
1452}
1453
3ae729d5
L
1454static INLINE int
1455fits_in_imm7 (offsetT num)
1456{
1457 return (num & 0x7f) == num;
1458}
1459
1460static INLINE int
1461fits_in_imm31 (offsetT num)
1462{
1463 return (num & 0x7fffffff) == num;
1464}
62a02d25
L
1465
1466/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1467 single NOP instruction LIMIT. */
1468
1469void
3ae729d5 1470i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1471{
3ae729d5 1472 const unsigned char *const *patt = NULL;
62a02d25 1473 int max_single_nop_size;
3ae729d5
L
1474 /* Maximum number of NOPs before switching to jump over NOPs. */
1475 int max_number_of_nops;
62a02d25 1476
3ae729d5 1477 switch (fragP->fr_type)
62a02d25 1478 {
3ae729d5
L
1479 case rs_fill_nop:
1480 case rs_align_code:
1481 break;
e379e5f3
L
1482 case rs_machine_dependent:
1483 /* Allow NOP padding for jumps and calls. */
1484 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1485 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1486 break;
1487 /* Fall through. */
3ae729d5 1488 default:
62a02d25
L
1489 return;
1490 }
1491
ccc9c027
L
1492 /* We need to decide which NOP sequence to use for 32bit and
1493 64bit. When -mtune= is used:
4eed87de 1494
76bc74dc
L
1495 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1496 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1497 2. For the rest, alt_patt will be used.
1498
1499 When -mtune= isn't used, alt_patt will be used if
22109423 1500 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1501 be used.
ccc9c027
L
1502
1503 When -march= or .arch is used, we can't use anything beyond
1504 cpu_arch_isa_flags. */
1505
1506 if (flag_code == CODE_16BIT)
1507 {
3ae729d5
L
1508 patt = f16_patt;
1509 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1510 /* Limit number of NOPs to 2 in 16-bit mode. */
1511 max_number_of_nops = 2;
252b5132 1512 }
33fef721 1513 else
ccc9c027 1514 {
fbf3f584 1515 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1516 {
1517 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1518 switch (cpu_arch_tune)
1519 {
1520 case PROCESSOR_UNKNOWN:
1521 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1522 optimize with nops. */
1523 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1524 patt = alt_patt;
ccc9c027
L
1525 else
1526 patt = f32_patt;
1527 break;
ccc9c027
L
1528 case PROCESSOR_PENTIUM4:
1529 case PROCESSOR_NOCONA:
ef05d495 1530 case PROCESSOR_CORE:
76bc74dc 1531 case PROCESSOR_CORE2:
bd5295b2 1532 case PROCESSOR_COREI7:
3632d14b 1533 case PROCESSOR_L1OM:
7a9068fe 1534 case PROCESSOR_K1OM:
76bc74dc 1535 case PROCESSOR_GENERIC64:
ccc9c027
L
1536 case PROCESSOR_K6:
1537 case PROCESSOR_ATHLON:
1538 case PROCESSOR_K8:
4eed87de 1539 case PROCESSOR_AMDFAM10:
8aedb9fe 1540 case PROCESSOR_BD:
029f3522 1541 case PROCESSOR_ZNVER:
7b458c12 1542 case PROCESSOR_BT:
80b8656c 1543 patt = alt_patt;
ccc9c027 1544 break;
76bc74dc 1545 case PROCESSOR_I386:
ccc9c027
L
1546 case PROCESSOR_I486:
1547 case PROCESSOR_PENTIUM:
2dde1948 1548 case PROCESSOR_PENTIUMPRO:
81486035 1549 case PROCESSOR_IAMCU:
ccc9c027
L
1550 case PROCESSOR_GENERIC32:
1551 patt = f32_patt;
1552 break;
4eed87de 1553 }
ccc9c027
L
1554 }
1555 else
1556 {
fbf3f584 1557 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1558 {
1559 case PROCESSOR_UNKNOWN:
e6a14101 1560 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1561 PROCESSOR_UNKNOWN. */
1562 abort ();
1563 break;
1564
76bc74dc 1565 case PROCESSOR_I386:
ccc9c027
L
1566 case PROCESSOR_I486:
1567 case PROCESSOR_PENTIUM:
81486035 1568 case PROCESSOR_IAMCU:
ccc9c027
L
1569 case PROCESSOR_K6:
1570 case PROCESSOR_ATHLON:
1571 case PROCESSOR_K8:
4eed87de 1572 case PROCESSOR_AMDFAM10:
8aedb9fe 1573 case PROCESSOR_BD:
029f3522 1574 case PROCESSOR_ZNVER:
7b458c12 1575 case PROCESSOR_BT:
ccc9c027
L
1576 case PROCESSOR_GENERIC32:
1577 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1578 with nops. */
1579 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1580 patt = alt_patt;
ccc9c027
L
1581 else
1582 patt = f32_patt;
1583 break;
76bc74dc
L
1584 case PROCESSOR_PENTIUMPRO:
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
ef05d495 1588 case PROCESSOR_CORE2:
bd5295b2 1589 case PROCESSOR_COREI7:
3632d14b 1590 case PROCESSOR_L1OM:
7a9068fe 1591 case PROCESSOR_K1OM:
22109423 1592 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1593 patt = alt_patt;
ccc9c027
L
1594 else
1595 patt = f32_patt;
1596 break;
1597 case PROCESSOR_GENERIC64:
80b8656c 1598 patt = alt_patt;
ccc9c027 1599 break;
4eed87de 1600 }
ccc9c027
L
1601 }
1602
76bc74dc
L
1603 if (patt == f32_patt)
1604 {
3ae729d5
L
1605 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1606 /* Limit number of NOPs to 2 for older processors. */
1607 max_number_of_nops = 2;
76bc74dc
L
1608 }
1609 else
1610 {
3ae729d5
L
1611 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1612 /* Limit number of NOPs to 7 for newer processors. */
1613 max_number_of_nops = 7;
1614 }
1615 }
1616
1617 if (limit == 0)
1618 limit = max_single_nop_size;
1619
1620 if (fragP->fr_type == rs_fill_nop)
1621 {
1622 /* Output NOPs for .nop directive. */
1623 if (limit > max_single_nop_size)
1624 {
1625 as_bad_where (fragP->fr_file, fragP->fr_line,
1626 _("invalid single nop size: %d "
1627 "(expect within [0, %d])"),
1628 limit, max_single_nop_size);
1629 return;
1630 }
1631 }
e379e5f3 1632 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1633 fragP->fr_var = count;
1634
1635 if ((count / max_single_nop_size) > max_number_of_nops)
1636 {
1637 /* Generate jump over NOPs. */
1638 offsetT disp = count - 2;
1639 if (fits_in_imm7 (disp))
1640 {
1641 /* Use "jmp disp8" if possible. */
1642 count = disp;
1643 where[0] = jump_disp8[0];
1644 where[1] = count;
1645 where += 2;
1646 }
1647 else
1648 {
1649 unsigned int size_of_jump;
1650
1651 if (flag_code == CODE_16BIT)
1652 {
1653 where[0] = jump16_disp32[0];
1654 where[1] = jump16_disp32[1];
1655 size_of_jump = 2;
1656 }
1657 else
1658 {
1659 where[0] = jump32_disp32[0];
1660 size_of_jump = 1;
1661 }
1662
1663 count -= size_of_jump + 4;
1664 if (!fits_in_imm31 (count))
1665 {
1666 as_bad_where (fragP->fr_file, fragP->fr_line,
1667 _("jump over nop padding out of range"));
1668 return;
1669 }
1670
1671 md_number_to_chars (where + size_of_jump, count, 4);
1672 where += size_of_jump + 4;
76bc74dc 1673 }
ccc9c027 1674 }
3ae729d5
L
1675
1676 /* Generate multiple NOPs. */
1677 i386_output_nops (where, patt, count, limit);
252b5132
RH
1678}
1679
c6fb90c8 1680static INLINE int
0dfbf9d7 1681operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1682{
0dfbf9d7 1683 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1684 {
1685 case 3:
0dfbf9d7 1686 if (x->array[2])
c6fb90c8 1687 return 0;
1a0670f3 1688 /* Fall through. */
c6fb90c8 1689 case 2:
0dfbf9d7 1690 if (x->array[1])
c6fb90c8 1691 return 0;
1a0670f3 1692 /* Fall through. */
c6fb90c8 1693 case 1:
0dfbf9d7 1694 return !x->array[0];
c6fb90c8
L
1695 default:
1696 abort ();
1697 }
40fb9820
L
1698}
1699
c6fb90c8 1700static INLINE void
0dfbf9d7 1701operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1702{
0dfbf9d7 1703 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1704 {
1705 case 3:
0dfbf9d7 1706 x->array[2] = v;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 2:
0dfbf9d7 1709 x->array[1] = v;
1a0670f3 1710 /* Fall through. */
c6fb90c8 1711 case 1:
0dfbf9d7 1712 x->array[0] = v;
1a0670f3 1713 /* Fall through. */
c6fb90c8
L
1714 break;
1715 default:
1716 abort ();
1717 }
bab6aec1
JB
1718
1719 x->bitfield.class = ClassNone;
75e5731b 1720 x->bitfield.instance = InstanceNone;
c6fb90c8 1721}
40fb9820 1722
c6fb90c8 1723static INLINE int
0dfbf9d7
L
1724operand_type_equal (const union i386_operand_type *x,
1725 const union i386_operand_type *y)
c6fb90c8 1726{
0dfbf9d7 1727 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1728 {
1729 case 3:
0dfbf9d7 1730 if (x->array[2] != y->array[2])
c6fb90c8 1731 return 0;
1a0670f3 1732 /* Fall through. */
c6fb90c8 1733 case 2:
0dfbf9d7 1734 if (x->array[1] != y->array[1])
c6fb90c8 1735 return 0;
1a0670f3 1736 /* Fall through. */
c6fb90c8 1737 case 1:
0dfbf9d7 1738 return x->array[0] == y->array[0];
c6fb90c8
L
1739 break;
1740 default:
1741 abort ();
1742 }
1743}
40fb9820 1744
0dfbf9d7
L
1745static INLINE int
1746cpu_flags_all_zero (const union i386_cpu_flags *x)
1747{
1748 switch (ARRAY_SIZE(x->array))
1749 {
53467f57
IT
1750 case 4:
1751 if (x->array[3])
1752 return 0;
1753 /* Fall through. */
0dfbf9d7
L
1754 case 3:
1755 if (x->array[2])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 2:
1759 if (x->array[1])
1760 return 0;
1a0670f3 1761 /* Fall through. */
0dfbf9d7
L
1762 case 1:
1763 return !x->array[0];
1764 default:
1765 abort ();
1766 }
1767}
1768
0dfbf9d7
L
1769static INLINE int
1770cpu_flags_equal (const union i386_cpu_flags *x,
1771 const union i386_cpu_flags *y)
1772{
1773 switch (ARRAY_SIZE(x->array))
1774 {
53467f57
IT
1775 case 4:
1776 if (x->array[3] != y->array[3])
1777 return 0;
1778 /* Fall through. */
0dfbf9d7
L
1779 case 3:
1780 if (x->array[2] != y->array[2])
1781 return 0;
1a0670f3 1782 /* Fall through. */
0dfbf9d7
L
1783 case 2:
1784 if (x->array[1] != y->array[1])
1785 return 0;
1a0670f3 1786 /* Fall through. */
0dfbf9d7
L
1787 case 1:
1788 return x->array[0] == y->array[0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793}
c6fb90c8
L
1794
1795static INLINE int
1796cpu_flags_check_cpu64 (i386_cpu_flags f)
1797{
1798 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1799 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1800}
1801
c6fb90c8
L
1802static INLINE i386_cpu_flags
1803cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1804{
c6fb90c8
L
1805 switch (ARRAY_SIZE (x.array))
1806 {
53467f57
IT
1807 case 4:
1808 x.array [3] &= y.array [3];
1809 /* Fall through. */
c6fb90c8
L
1810 case 3:
1811 x.array [2] &= y.array [2];
1a0670f3 1812 /* Fall through. */
c6fb90c8
L
1813 case 2:
1814 x.array [1] &= y.array [1];
1a0670f3 1815 /* Fall through. */
c6fb90c8
L
1816 case 1:
1817 x.array [0] &= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823}
40fb9820 1824
c6fb90c8
L
1825static INLINE i386_cpu_flags
1826cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1827{
c6fb90c8 1828 switch (ARRAY_SIZE (x.array))
40fb9820 1829 {
53467f57
IT
1830 case 4:
1831 x.array [3] |= y.array [3];
1832 /* Fall through. */
c6fb90c8
L
1833 case 3:
1834 x.array [2] |= y.array [2];
1a0670f3 1835 /* Fall through. */
c6fb90c8
L
1836 case 2:
1837 x.array [1] |= y.array [1];
1a0670f3 1838 /* Fall through. */
c6fb90c8
L
1839 case 1:
1840 x.array [0] |= y.array [0];
40fb9820
L
1841 break;
1842 default:
1843 abort ();
1844 }
40fb9820
L
1845 return x;
1846}
1847
309d3373
JB
1848static INLINE i386_cpu_flags
1849cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1850{
1851 switch (ARRAY_SIZE (x.array))
1852 {
53467f57
IT
1853 case 4:
1854 x.array [3] &= ~y.array [3];
1855 /* Fall through. */
309d3373
JB
1856 case 3:
1857 x.array [2] &= ~y.array [2];
1a0670f3 1858 /* Fall through. */
309d3373
JB
1859 case 2:
1860 x.array [1] &= ~y.array [1];
1a0670f3 1861 /* Fall through. */
309d3373
JB
1862 case 1:
1863 x.array [0] &= ~y.array [0];
1864 break;
1865 default:
1866 abort ();
1867 }
1868 return x;
1869}
1870
6c0946d0
JB
1871static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1872
c0f3af97
L
1873#define CPU_FLAGS_ARCH_MATCH 0x1
1874#define CPU_FLAGS_64BIT_MATCH 0x2
1875
c0f3af97 1876#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1877 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1878
1879/* Return CPU flags match bits. */
3629bb00 1880
40fb9820 1881static int
d3ce72d0 1882cpu_flags_match (const insn_template *t)
40fb9820 1883{
c0f3af97
L
1884 i386_cpu_flags x = t->cpu_flags;
1885 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1886
1887 x.bitfield.cpu64 = 0;
1888 x.bitfield.cpuno64 = 0;
1889
0dfbf9d7 1890 if (cpu_flags_all_zero (&x))
c0f3af97
L
1891 {
1892 /* This instruction is available on all archs. */
db12e14e 1893 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1894 }
3629bb00
L
1895 else
1896 {
c0f3af97 1897 /* This instruction is available only on some archs. */
3629bb00
L
1898 i386_cpu_flags cpu = cpu_arch_flags;
1899
ab592e75
JB
1900 /* AVX512VL is no standalone feature - match it and then strip it. */
1901 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1902 return match;
1903 x.bitfield.cpuavx512vl = 0;
1904
3629bb00 1905 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1906 if (!cpu_flags_all_zero (&cpu))
1907 {
a5ff0eb2
L
1908 if (x.bitfield.cpuavx)
1909 {
929f69fa 1910 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1911 if (cpu.bitfield.cpuavx
1912 && (!t->opcode_modifier.sse2avx || sse2avx)
1913 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1914 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1915 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1916 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1917 }
929f69fa
JB
1918 else if (x.bitfield.cpuavx512f)
1919 {
1920 /* We need to check a few extra flags with AVX512F. */
1921 if (cpu.bitfield.cpuavx512f
1922 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1923 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1924 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1925 match |= CPU_FLAGS_ARCH_MATCH;
1926 }
a5ff0eb2 1927 else
db12e14e 1928 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1929 }
3629bb00 1930 }
c0f3af97 1931 return match;
40fb9820
L
1932}
1933
c6fb90c8
L
1934static INLINE i386_operand_type
1935operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1936{
bab6aec1
JB
1937 if (x.bitfield.class != y.bitfield.class)
1938 x.bitfield.class = ClassNone;
75e5731b
JB
1939 if (x.bitfield.instance != y.bitfield.instance)
1940 x.bitfield.instance = InstanceNone;
bab6aec1 1941
c6fb90c8
L
1942 switch (ARRAY_SIZE (x.array))
1943 {
1944 case 3:
1945 x.array [2] &= y.array [2];
1a0670f3 1946 /* Fall through. */
c6fb90c8
L
1947 case 2:
1948 x.array [1] &= y.array [1];
1a0670f3 1949 /* Fall through. */
c6fb90c8
L
1950 case 1:
1951 x.array [0] &= y.array [0];
1952 break;
1953 default:
1954 abort ();
1955 }
1956 return x;
40fb9820
L
1957}
1958
73053c1f
JB
1959static INLINE i386_operand_type
1960operand_type_and_not (i386_operand_type x, i386_operand_type y)
1961{
bab6aec1 1962 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1963 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1964
73053c1f
JB
1965 switch (ARRAY_SIZE (x.array))
1966 {
1967 case 3:
1968 x.array [2] &= ~y.array [2];
1969 /* Fall through. */
1970 case 2:
1971 x.array [1] &= ~y.array [1];
1972 /* Fall through. */
1973 case 1:
1974 x.array [0] &= ~y.array [0];
1975 break;
1976 default:
1977 abort ();
1978 }
1979 return x;
1980}
1981
c6fb90c8
L
1982static INLINE i386_operand_type
1983operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1984{
bab6aec1
JB
1985 gas_assert (x.bitfield.class == ClassNone ||
1986 y.bitfield.class == ClassNone ||
1987 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1988 gas_assert (x.bitfield.instance == InstanceNone ||
1989 y.bitfield.instance == InstanceNone ||
1990 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1991
c6fb90c8 1992 switch (ARRAY_SIZE (x.array))
40fb9820 1993 {
c6fb90c8
L
1994 case 3:
1995 x.array [2] |= y.array [2];
1a0670f3 1996 /* Fall through. */
c6fb90c8
L
1997 case 2:
1998 x.array [1] |= y.array [1];
1a0670f3 1999 /* Fall through. */
c6fb90c8
L
2000 case 1:
2001 x.array [0] |= y.array [0];
40fb9820
L
2002 break;
2003 default:
2004 abort ();
2005 }
c6fb90c8
L
2006 return x;
2007}
40fb9820 2008
c6fb90c8
L
2009static INLINE i386_operand_type
2010operand_type_xor (i386_operand_type x, i386_operand_type y)
2011{
bab6aec1 2012 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2013 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2014
c6fb90c8
L
2015 switch (ARRAY_SIZE (x.array))
2016 {
2017 case 3:
2018 x.array [2] ^= y.array [2];
1a0670f3 2019 /* Fall through. */
c6fb90c8
L
2020 case 2:
2021 x.array [1] ^= y.array [1];
1a0670f3 2022 /* Fall through. */
c6fb90c8
L
2023 case 1:
2024 x.array [0] ^= y.array [0];
2025 break;
2026 default:
2027 abort ();
2028 }
40fb9820
L
2029 return x;
2030}
2031
40fb9820
L
2032static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2033static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2034static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2035static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2036static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2037static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2038static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2039static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2040static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2041static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2042static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2043static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2044static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2045static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2046static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2047static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2048static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2049
2050enum operand_type
2051{
2052 reg,
40fb9820
L
2053 imm,
2054 disp,
2055 anymem
2056};
2057
c6fb90c8 2058static INLINE int
40fb9820
L
2059operand_type_check (i386_operand_type t, enum operand_type c)
2060{
2061 switch (c)
2062 {
2063 case reg:
bab6aec1 2064 return t.bitfield.class == Reg;
40fb9820 2065
40fb9820
L
2066 case imm:
2067 return (t.bitfield.imm8
2068 || t.bitfield.imm8s
2069 || t.bitfield.imm16
2070 || t.bitfield.imm32
2071 || t.bitfield.imm32s
2072 || t.bitfield.imm64);
2073
2074 case disp:
2075 return (t.bitfield.disp8
2076 || t.bitfield.disp16
2077 || t.bitfield.disp32
2078 || t.bitfield.disp32s
2079 || t.bitfield.disp64);
2080
2081 case anymem:
2082 return (t.bitfield.disp8
2083 || t.bitfield.disp16
2084 || t.bitfield.disp32
2085 || t.bitfield.disp32s
2086 || t.bitfield.disp64
2087 || t.bitfield.baseindex);
2088
2089 default:
2090 abort ();
2091 }
2cfe26b6
AM
2092
2093 return 0;
40fb9820
L
2094}
2095
7a54636a
L
2096/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2097 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2098
2099static INLINE int
7a54636a
L
2100match_operand_size (const insn_template *t, unsigned int wanted,
2101 unsigned int given)
5c07affc 2102{
3ac21baa
JB
2103 return !((i.types[given].bitfield.byte
2104 && !t->operand_types[wanted].bitfield.byte)
2105 || (i.types[given].bitfield.word
2106 && !t->operand_types[wanted].bitfield.word)
2107 || (i.types[given].bitfield.dword
2108 && !t->operand_types[wanted].bitfield.dword)
2109 || (i.types[given].bitfield.qword
2110 && !t->operand_types[wanted].bitfield.qword)
2111 || (i.types[given].bitfield.tbyte
2112 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2113}
2114
dd40ce22
L
2115/* Return 1 if there is no conflict in SIMD register between operand
2116 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2117
2118static INLINE int
dd40ce22
L
2119match_simd_size (const insn_template *t, unsigned int wanted,
2120 unsigned int given)
1b54b8d7 2121{
3ac21baa
JB
2122 return !((i.types[given].bitfield.xmmword
2123 && !t->operand_types[wanted].bitfield.xmmword)
2124 || (i.types[given].bitfield.ymmword
2125 && !t->operand_types[wanted].bitfield.ymmword)
2126 || (i.types[given].bitfield.zmmword
2127 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2128}
2129
7a54636a
L
2130/* Return 1 if there is no conflict in any size between operand GIVEN
2131 and opeand WANTED for instruction template T. */
5c07affc
L
2132
2133static INLINE int
dd40ce22
L
2134match_mem_size (const insn_template *t, unsigned int wanted,
2135 unsigned int given)
5c07affc 2136{
7a54636a 2137 return (match_operand_size (t, wanted, given)
3ac21baa 2138 && !((i.types[given].bitfield.unspecified
af508cb9 2139 && !i.broadcast
3ac21baa
JB
2140 && !t->operand_types[wanted].bitfield.unspecified)
2141 || (i.types[given].bitfield.fword
2142 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2143 /* For scalar opcode templates to allow register and memory
2144 operands at the same time, some special casing is needed
d6793fa1
JB
2145 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2146 down-conversion vpmov*. */
3528c362 2147 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2148 && !t->opcode_modifier.broadcast
3ac21baa
JB
2149 && (t->operand_types[wanted].bitfield.byte
2150 || t->operand_types[wanted].bitfield.word
2151 || t->operand_types[wanted].bitfield.dword
2152 || t->operand_types[wanted].bitfield.qword))
2153 ? (i.types[given].bitfield.xmmword
2154 || i.types[given].bitfield.ymmword
2155 || i.types[given].bitfield.zmmword)
2156 : !match_simd_size(t, wanted, given))));
5c07affc
L
2157}
2158
3ac21baa
JB
2159/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2160 operands for instruction template T, and it has MATCH_REVERSE set if there
2161 is no size conflict on any operands for the template with operands reversed
2162 (and the template allows for reversing in the first place). */
5c07affc 2163
3ac21baa
JB
2164#define MATCH_STRAIGHT 1
2165#define MATCH_REVERSE 2
2166
2167static INLINE unsigned int
d3ce72d0 2168operand_size_match (const insn_template *t)
5c07affc 2169{
3ac21baa 2170 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2171
0cfa3eb3 2172 /* Don't check non-absolute jump instructions. */
5c07affc 2173 if (t->opcode_modifier.jump
0cfa3eb3 2174 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2175 return match;
2176
2177 /* Check memory and accumulator operand size. */
2178 for (j = 0; j < i.operands; j++)
2179 {
3528c362
JB
2180 if (i.types[j].bitfield.class != Reg
2181 && i.types[j].bitfield.class != RegSIMD
601e8564 2182 && t->opcode_modifier.anysize)
5c07affc
L
2183 continue;
2184
bab6aec1 2185 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2186 && !match_operand_size (t, j, j))
5c07affc
L
2187 {
2188 match = 0;
2189 break;
2190 }
2191
3528c362 2192 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2193 && !match_simd_size (t, j, j))
1b54b8d7
JB
2194 {
2195 match = 0;
2196 break;
2197 }
2198
75e5731b 2199 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2200 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2201 {
2202 match = 0;
2203 break;
2204 }
2205
c48dadc9 2206 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2207 {
2208 match = 0;
2209 break;
2210 }
2211 }
2212
3ac21baa 2213 if (!t->opcode_modifier.d)
891edac4 2214 {
dc1e8a47 2215 mismatch:
3ac21baa
JB
2216 if (!match)
2217 i.error = operand_size_mismatch;
2218 return match;
891edac4 2219 }
5c07affc
L
2220
2221 /* Check reverse. */
f5eb1d70 2222 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2223
f5eb1d70 2224 for (j = 0; j < i.operands; j++)
5c07affc 2225 {
f5eb1d70
JB
2226 unsigned int given = i.operands - j - 1;
2227
bab6aec1 2228 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2229 && !match_operand_size (t, j, given))
891edac4 2230 goto mismatch;
5c07affc 2231
3528c362 2232 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2233 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2234 goto mismatch;
2235
75e5731b 2236 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2237 && (!match_operand_size (t, j, given)
2238 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2239 goto mismatch;
2240
f5eb1d70 2241 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2242 goto mismatch;
5c07affc
L
2243 }
2244
3ac21baa 2245 return match | MATCH_REVERSE;
5c07affc
L
2246}
2247
c6fb90c8 2248static INLINE int
40fb9820
L
2249operand_type_match (i386_operand_type overlap,
2250 i386_operand_type given)
2251{
2252 i386_operand_type temp = overlap;
2253
7d5e4556 2254 temp.bitfield.unspecified = 0;
5c07affc
L
2255 temp.bitfield.byte = 0;
2256 temp.bitfield.word = 0;
2257 temp.bitfield.dword = 0;
2258 temp.bitfield.fword = 0;
2259 temp.bitfield.qword = 0;
2260 temp.bitfield.tbyte = 0;
2261 temp.bitfield.xmmword = 0;
c0f3af97 2262 temp.bitfield.ymmword = 0;
43234a1e 2263 temp.bitfield.zmmword = 0;
0dfbf9d7 2264 if (operand_type_all_zero (&temp))
891edac4 2265 goto mismatch;
40fb9820 2266
6f2f06be 2267 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2268 return 1;
2269
dc1e8a47 2270 mismatch:
a65babc9 2271 i.error = operand_type_mismatch;
891edac4 2272 return 0;
40fb9820
L
2273}
2274
7d5e4556 2275/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2276 unless the expected operand type register overlap is null.
5de4d9ef 2277 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2278
c6fb90c8 2279static INLINE int
dc821c5f 2280operand_type_register_match (i386_operand_type g0,
40fb9820 2281 i386_operand_type t0,
40fb9820
L
2282 i386_operand_type g1,
2283 i386_operand_type t1)
2284{
bab6aec1 2285 if (g0.bitfield.class != Reg
3528c362 2286 && g0.bitfield.class != RegSIMD
10c17abd
JB
2287 && (!operand_type_check (g0, anymem)
2288 || g0.bitfield.unspecified
5de4d9ef
JB
2289 || (t0.bitfield.class != Reg
2290 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2291 return 1;
2292
bab6aec1 2293 if (g1.bitfield.class != Reg
3528c362 2294 && g1.bitfield.class != RegSIMD
10c17abd
JB
2295 && (!operand_type_check (g1, anymem)
2296 || g1.bitfield.unspecified
5de4d9ef
JB
2297 || (t1.bitfield.class != Reg
2298 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2299 return 1;
2300
dc821c5f
JB
2301 if (g0.bitfield.byte == g1.bitfield.byte
2302 && g0.bitfield.word == g1.bitfield.word
2303 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2304 && g0.bitfield.qword == g1.bitfield.qword
2305 && g0.bitfield.xmmword == g1.bitfield.xmmword
2306 && g0.bitfield.ymmword == g1.bitfield.ymmword
2307 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2308 return 1;
2309
dc821c5f
JB
2310 if (!(t0.bitfield.byte & t1.bitfield.byte)
2311 && !(t0.bitfield.word & t1.bitfield.word)
2312 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2313 && !(t0.bitfield.qword & t1.bitfield.qword)
2314 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2315 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2316 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2317 return 1;
2318
a65babc9 2319 i.error = register_type_mismatch;
891edac4
L
2320
2321 return 0;
40fb9820
L
2322}
2323
4c692bc7
JB
2324static INLINE unsigned int
2325register_number (const reg_entry *r)
2326{
2327 unsigned int nr = r->reg_num;
2328
2329 if (r->reg_flags & RegRex)
2330 nr += 8;
2331
200cbe0f
L
2332 if (r->reg_flags & RegVRex)
2333 nr += 16;
2334
4c692bc7
JB
2335 return nr;
2336}
2337
252b5132 2338static INLINE unsigned int
40fb9820 2339mode_from_disp_size (i386_operand_type t)
252b5132 2340{
b5014f7a 2341 if (t.bitfield.disp8)
40fb9820
L
2342 return 1;
2343 else if (t.bitfield.disp16
2344 || t.bitfield.disp32
2345 || t.bitfield.disp32s)
2346 return 2;
2347 else
2348 return 0;
252b5132
RH
2349}
2350
2351static INLINE int
65879393 2352fits_in_signed_byte (addressT num)
252b5132 2353{
65879393 2354 return num + 0x80 <= 0xff;
47926f60 2355}
252b5132
RH
2356
2357static INLINE int
65879393 2358fits_in_unsigned_byte (addressT num)
252b5132 2359{
65879393 2360 return num <= 0xff;
47926f60 2361}
252b5132
RH
2362
2363static INLINE int
65879393 2364fits_in_unsigned_word (addressT num)
252b5132 2365{
65879393 2366 return num <= 0xffff;
47926f60 2367}
252b5132
RH
2368
2369static INLINE int
65879393 2370fits_in_signed_word (addressT num)
252b5132 2371{
65879393 2372 return num + 0x8000 <= 0xffff;
47926f60 2373}
2a962e6d 2374
3e73aa7c 2375static INLINE int
65879393 2376fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2377{
2378#ifndef BFD64
2379 return 1;
2380#else
65879393 2381 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2382#endif
2383} /* fits_in_signed_long() */
2a962e6d 2384
3e73aa7c 2385static INLINE int
65879393 2386fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2387{
2388#ifndef BFD64
2389 return 1;
2390#else
65879393 2391 return num <= 0xffffffff;
3e73aa7c
JH
2392#endif
2393} /* fits_in_unsigned_long() */
252b5132 2394
43234a1e 2395static INLINE int
b5014f7a 2396fits_in_disp8 (offsetT num)
43234a1e
L
2397{
2398 int shift = i.memshift;
2399 unsigned int mask;
2400
2401 if (shift == -1)
2402 abort ();
2403
2404 mask = (1 << shift) - 1;
2405
2406 /* Return 0 if NUM isn't properly aligned. */
2407 if ((num & mask))
2408 return 0;
2409
2410 /* Check if NUM will fit in 8bit after shift. */
2411 return fits_in_signed_byte (num >> shift);
2412}
2413
a683cc34
SP
2414static INLINE int
2415fits_in_imm4 (offsetT num)
2416{
2417 return (num & 0xf) == num;
2418}
2419
40fb9820 2420static i386_operand_type
e3bb37b5 2421smallest_imm_type (offsetT num)
252b5132 2422{
40fb9820 2423 i386_operand_type t;
7ab9ffdd 2424
0dfbf9d7 2425 operand_type_set (&t, 0);
40fb9820
L
2426 t.bitfield.imm64 = 1;
2427
2428 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2429 {
2430 /* This code is disabled on the 486 because all the Imm1 forms
2431 in the opcode table are slower on the i486. They're the
2432 versions with the implicitly specified single-position
2433 displacement, which has another syntax if you really want to
2434 use that form. */
40fb9820
L
2435 t.bitfield.imm1 = 1;
2436 t.bitfield.imm8 = 1;
2437 t.bitfield.imm8s = 1;
2438 t.bitfield.imm16 = 1;
2439 t.bitfield.imm32 = 1;
2440 t.bitfield.imm32s = 1;
2441 }
2442 else if (fits_in_signed_byte (num))
2443 {
2444 t.bitfield.imm8 = 1;
2445 t.bitfield.imm8s = 1;
2446 t.bitfield.imm16 = 1;
2447 t.bitfield.imm32 = 1;
2448 t.bitfield.imm32s = 1;
2449 }
2450 else if (fits_in_unsigned_byte (num))
2451 {
2452 t.bitfield.imm8 = 1;
2453 t.bitfield.imm16 = 1;
2454 t.bitfield.imm32 = 1;
2455 t.bitfield.imm32s = 1;
2456 }
2457 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2458 {
2459 t.bitfield.imm16 = 1;
2460 t.bitfield.imm32 = 1;
2461 t.bitfield.imm32s = 1;
2462 }
2463 else if (fits_in_signed_long (num))
2464 {
2465 t.bitfield.imm32 = 1;
2466 t.bitfield.imm32s = 1;
2467 }
2468 else if (fits_in_unsigned_long (num))
2469 t.bitfield.imm32 = 1;
2470
2471 return t;
47926f60 2472}
252b5132 2473
847f7ad4 2474static offsetT
e3bb37b5 2475offset_in_range (offsetT val, int size)
847f7ad4 2476{
508866be 2477 addressT mask;
ba2adb93 2478
847f7ad4
AM
2479 switch (size)
2480 {
508866be
L
2481 case 1: mask = ((addressT) 1 << 8) - 1; break;
2482 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2483 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2484#ifdef BFD64
2485 case 8: mask = ((addressT) 2 << 63) - 1; break;
2486#endif
47926f60 2487 default: abort ();
847f7ad4
AM
2488 }
2489
9de868bf
L
2490#ifdef BFD64
2491 /* If BFD64, sign extend val for 32bit address mode. */
2492 if (flag_code != CODE_64BIT
2493 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2494 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2495 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2496#endif
ba2adb93 2497
47926f60 2498 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2499 {
2500 char buf1[40], buf2[40];
2501
2502 sprint_value (buf1, val);
2503 sprint_value (buf2, val & mask);
2504 as_warn (_("%s shortened to %s"), buf1, buf2);
2505 }
2506 return val & mask;
2507}
2508
c32fa91d
L
2509enum PREFIX_GROUP
2510{
2511 PREFIX_EXIST = 0,
2512 PREFIX_LOCK,
2513 PREFIX_REP,
04ef582a 2514 PREFIX_DS,
c32fa91d
L
2515 PREFIX_OTHER
2516};
2517
2518/* Returns
2519 a. PREFIX_EXIST if attempting to add a prefix where one from the
2520 same class already exists.
2521 b. PREFIX_LOCK if lock prefix is added.
2522 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2523 d. PREFIX_DS if ds prefix is added.
2524 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2525 */
2526
2527static enum PREFIX_GROUP
e3bb37b5 2528add_prefix (unsigned int prefix)
252b5132 2529{
c32fa91d 2530 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2531 unsigned int q;
252b5132 2532
29b0f896
AM
2533 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2534 && flag_code == CODE_64BIT)
b1905489 2535 {
161a04f6 2536 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2537 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2538 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2539 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2540 ret = PREFIX_EXIST;
b1905489
JB
2541 q = REX_PREFIX;
2542 }
3e73aa7c 2543 else
b1905489
JB
2544 {
2545 switch (prefix)
2546 {
2547 default:
2548 abort ();
2549
b1905489 2550 case DS_PREFIX_OPCODE:
04ef582a
L
2551 ret = PREFIX_DS;
2552 /* Fall through. */
2553 case CS_PREFIX_OPCODE:
b1905489
JB
2554 case ES_PREFIX_OPCODE:
2555 case FS_PREFIX_OPCODE:
2556 case GS_PREFIX_OPCODE:
2557 case SS_PREFIX_OPCODE:
2558 q = SEG_PREFIX;
2559 break;
2560
2561 case REPNE_PREFIX_OPCODE:
2562 case REPE_PREFIX_OPCODE:
c32fa91d
L
2563 q = REP_PREFIX;
2564 ret = PREFIX_REP;
2565 break;
2566
b1905489 2567 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2568 q = LOCK_PREFIX;
2569 ret = PREFIX_LOCK;
b1905489
JB
2570 break;
2571
2572 case FWAIT_OPCODE:
2573 q = WAIT_PREFIX;
2574 break;
2575
2576 case ADDR_PREFIX_OPCODE:
2577 q = ADDR_PREFIX;
2578 break;
2579
2580 case DATA_PREFIX_OPCODE:
2581 q = DATA_PREFIX;
2582 break;
2583 }
2584 if (i.prefix[q] != 0)
c32fa91d 2585 ret = PREFIX_EXIST;
b1905489 2586 }
252b5132 2587
b1905489 2588 if (ret)
252b5132 2589 {
b1905489
JB
2590 if (!i.prefix[q])
2591 ++i.prefixes;
2592 i.prefix[q] |= prefix;
252b5132 2593 }
b1905489
JB
2594 else
2595 as_bad (_("same type of prefix used twice"));
252b5132 2596
252b5132
RH
2597 return ret;
2598}
2599
2600static void
78f12dd3 2601update_code_flag (int value, int check)
eecb386c 2602{
78f12dd3
L
2603 PRINTF_LIKE ((*as_error));
2604
1e9cc1c2 2605 flag_code = (enum flag_code) value;
40fb9820
L
2606 if (flag_code == CODE_64BIT)
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 1;
2609 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2610 }
2611 else
2612 {
2613 cpu_arch_flags.bitfield.cpu64 = 0;
2614 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2615 }
2616 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2617 {
78f12dd3
L
2618 if (check)
2619 as_error = as_fatal;
2620 else
2621 as_error = as_bad;
2622 (*as_error) (_("64bit mode not supported on `%s'."),
2623 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2624 }
40fb9820 2625 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2626 {
78f12dd3
L
2627 if (check)
2628 as_error = as_fatal;
2629 else
2630 as_error = as_bad;
2631 (*as_error) (_("32bit mode not supported on `%s'."),
2632 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2633 }
eecb386c
AM
2634 stackop_size = '\0';
2635}
2636
78f12dd3
L
2637static void
2638set_code_flag (int value)
2639{
2640 update_code_flag (value, 0);
2641}
2642
eecb386c 2643static void
e3bb37b5 2644set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2645{
1e9cc1c2 2646 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2647 if (flag_code != CODE_16BIT)
2648 abort ();
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2651 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2652}
2653
2654static void
e3bb37b5 2655set_intel_syntax (int syntax_flag)
252b5132
RH
2656{
2657 /* Find out if register prefixing is specified. */
2658 int ask_naked_reg = 0;
2659
2660 SKIP_WHITESPACE ();
29b0f896 2661 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2662 {
d02603dc
NC
2663 char *string;
2664 int e = get_symbol_name (&string);
252b5132 2665
47926f60 2666 if (strcmp (string, "prefix") == 0)
252b5132 2667 ask_naked_reg = 1;
47926f60 2668 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2669 ask_naked_reg = -1;
2670 else
d0b47220 2671 as_bad (_("bad argument to syntax directive."));
d02603dc 2672 (void) restore_line_pointer (e);
252b5132
RH
2673 }
2674 demand_empty_rest_of_line ();
c3332e24 2675
252b5132
RH
2676 intel_syntax = syntax_flag;
2677
2678 if (ask_naked_reg == 0)
f86103b7
AM
2679 allow_naked_reg = (intel_syntax
2680 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2681 else
2682 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2683
ee86248c 2684 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2685
e4a3b5a4 2686 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2687 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2688 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2689}
2690
1efbbeb4
L
2691static void
2692set_intel_mnemonic (int mnemonic_flag)
2693{
e1d4d893 2694 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2695}
2696
db51cc60
L
2697static void
2698set_allow_index_reg (int flag)
2699{
2700 allow_index_reg = flag;
2701}
2702
cb19c032 2703static void
7bab8ab5 2704set_check (int what)
cb19c032 2705{
7bab8ab5
JB
2706 enum check_kind *kind;
2707 const char *str;
2708
2709 if (what)
2710 {
2711 kind = &operand_check;
2712 str = "operand";
2713 }
2714 else
2715 {
2716 kind = &sse_check;
2717 str = "sse";
2718 }
2719
cb19c032
L
2720 SKIP_WHITESPACE ();
2721
2722 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2723 {
d02603dc
NC
2724 char *string;
2725 int e = get_symbol_name (&string);
cb19c032
L
2726
2727 if (strcmp (string, "none") == 0)
7bab8ab5 2728 *kind = check_none;
cb19c032 2729 else if (strcmp (string, "warning") == 0)
7bab8ab5 2730 *kind = check_warning;
cb19c032 2731 else if (strcmp (string, "error") == 0)
7bab8ab5 2732 *kind = check_error;
cb19c032 2733 else
7bab8ab5 2734 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2735 (void) restore_line_pointer (e);
cb19c032
L
2736 }
2737 else
7bab8ab5 2738 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2739
2740 demand_empty_rest_of_line ();
2741}
2742
8a9036a4
L
2743static void
2744check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2745 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2746{
2747#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2748 static const char *arch;
2749
2750 /* Intel LIOM is only supported on ELF. */
2751 if (!IS_ELF)
2752 return;
2753
2754 if (!arch)
2755 {
2756 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2757 use default_arch. */
2758 arch = cpu_arch_name;
2759 if (!arch)
2760 arch = default_arch;
2761 }
2762
81486035
L
2763 /* If we are targeting Intel MCU, we must enable it. */
2764 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2765 || new_flag.bitfield.cpuiamcu)
2766 return;
2767
3632d14b 2768 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2769 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2770 || new_flag.bitfield.cpul1om)
8a9036a4 2771 return;
76ba9986 2772
7a9068fe
L
2773 /* If we are targeting Intel K1OM, we must enable it. */
2774 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2775 || new_flag.bitfield.cpuk1om)
2776 return;
2777
8a9036a4
L
2778 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2779#endif
2780}
2781
e413e4e9 2782static void
e3bb37b5 2783set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2784{
47926f60 2785 SKIP_WHITESPACE ();
e413e4e9 2786
29b0f896 2787 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2788 {
d02603dc
NC
2789 char *string;
2790 int e = get_symbol_name (&string);
91d6fa6a 2791 unsigned int j;
40fb9820 2792 i386_cpu_flags flags;
e413e4e9 2793
91d6fa6a 2794 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2795 {
91d6fa6a 2796 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2797 {
91d6fa6a 2798 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2799
5c6af06e
JB
2800 if (*string != '.')
2801 {
91d6fa6a 2802 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2803 cpu_sub_arch_name = NULL;
91d6fa6a 2804 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2805 if (flag_code == CODE_64BIT)
2806 {
2807 cpu_arch_flags.bitfield.cpu64 = 1;
2808 cpu_arch_flags.bitfield.cpuno64 = 0;
2809 }
2810 else
2811 {
2812 cpu_arch_flags.bitfield.cpu64 = 0;
2813 cpu_arch_flags.bitfield.cpuno64 = 1;
2814 }
91d6fa6a
NC
2815 cpu_arch_isa = cpu_arch[j].type;
2816 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2817 if (!cpu_arch_tune_set)
2818 {
2819 cpu_arch_tune = cpu_arch_isa;
2820 cpu_arch_tune_flags = cpu_arch_isa_flags;
2821 }
5c6af06e
JB
2822 break;
2823 }
40fb9820 2824
293f5f65
L
2825 flags = cpu_flags_or (cpu_arch_flags,
2826 cpu_arch[j].flags);
81486035 2827
5b64d091 2828 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2829 {
6305a203
L
2830 if (cpu_sub_arch_name)
2831 {
2832 char *name = cpu_sub_arch_name;
2833 cpu_sub_arch_name = concat (name,
91d6fa6a 2834 cpu_arch[j].name,
1bf57e9f 2835 (const char *) NULL);
6305a203
L
2836 free (name);
2837 }
2838 else
91d6fa6a 2839 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2840 cpu_arch_flags = flags;
a586129e 2841 cpu_arch_isa_flags = flags;
5c6af06e 2842 }
0089dace
L
2843 else
2844 cpu_arch_isa_flags
2845 = cpu_flags_or (cpu_arch_isa_flags,
2846 cpu_arch[j].flags);
d02603dc 2847 (void) restore_line_pointer (e);
5c6af06e
JB
2848 demand_empty_rest_of_line ();
2849 return;
e413e4e9
AM
2850 }
2851 }
293f5f65
L
2852
2853 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2854 {
33eaf5de 2855 /* Disable an ISA extension. */
293f5f65
L
2856 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2857 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2858 {
2859 flags = cpu_flags_and_not (cpu_arch_flags,
2860 cpu_noarch[j].flags);
2861 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2862 {
2863 if (cpu_sub_arch_name)
2864 {
2865 char *name = cpu_sub_arch_name;
2866 cpu_sub_arch_name = concat (name, string,
2867 (const char *) NULL);
2868 free (name);
2869 }
2870 else
2871 cpu_sub_arch_name = xstrdup (string);
2872 cpu_arch_flags = flags;
2873 cpu_arch_isa_flags = flags;
2874 }
2875 (void) restore_line_pointer (e);
2876 demand_empty_rest_of_line ();
2877 return;
2878 }
2879
2880 j = ARRAY_SIZE (cpu_arch);
2881 }
2882
91d6fa6a 2883 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2884 as_bad (_("no such architecture: `%s'"), string);
2885
2886 *input_line_pointer = e;
2887 }
2888 else
2889 as_bad (_("missing cpu architecture"));
2890
fddf5b5b
AM
2891 no_cond_jump_promotion = 0;
2892 if (*input_line_pointer == ','
29b0f896 2893 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2894 {
d02603dc
NC
2895 char *string;
2896 char e;
2897
2898 ++input_line_pointer;
2899 e = get_symbol_name (&string);
fddf5b5b
AM
2900
2901 if (strcmp (string, "nojumps") == 0)
2902 no_cond_jump_promotion = 1;
2903 else if (strcmp (string, "jumps") == 0)
2904 ;
2905 else
2906 as_bad (_("no such architecture modifier: `%s'"), string);
2907
d02603dc 2908 (void) restore_line_pointer (e);
fddf5b5b
AM
2909 }
2910
e413e4e9
AM
2911 demand_empty_rest_of_line ();
2912}
2913
8a9036a4
L
2914enum bfd_architecture
2915i386_arch (void)
2916{
3632d14b 2917 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || flag_code != CODE_64BIT)
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_arch_l1om;
2923 }
7a9068fe
L
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || flag_code != CODE_64BIT)
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_arch_k1om;
2930 }
81486035
L
2931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2932 {
2933 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2934 || flag_code == CODE_64BIT)
2935 as_fatal (_("Intel MCU is 32bit ELF only"));
2936 return bfd_arch_iamcu;
2937 }
8a9036a4
L
2938 else
2939 return bfd_arch_i386;
2940}
2941
b9d79e03 2942unsigned long
7016a5d5 2943i386_mach (void)
b9d79e03 2944{
351f65ca 2945 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2946 {
3632d14b 2947 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2948 {
351f65ca
L
2949 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2950 || default_arch[6] != '\0')
8a9036a4
L
2951 as_fatal (_("Intel L1OM is 64bit ELF only"));
2952 return bfd_mach_l1om;
2953 }
7a9068fe
L
2954 else if (cpu_arch_isa == PROCESSOR_K1OM)
2955 {
2956 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2957 || default_arch[6] != '\0')
2958 as_fatal (_("Intel K1OM is 64bit ELF only"));
2959 return bfd_mach_k1om;
2960 }
351f65ca 2961 else if (default_arch[6] == '\0')
8a9036a4 2962 return bfd_mach_x86_64;
351f65ca
L
2963 else
2964 return bfd_mach_x64_32;
8a9036a4 2965 }
5197d474
L
2966 else if (!strcmp (default_arch, "i386")
2967 || !strcmp (default_arch, "iamcu"))
81486035
L
2968 {
2969 if (cpu_arch_isa == PROCESSOR_IAMCU)
2970 {
2971 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2972 as_fatal (_("Intel MCU is 32bit ELF only"));
2973 return bfd_mach_i386_iamcu;
2974 }
2975 else
2976 return bfd_mach_i386_i386;
2977 }
b9d79e03 2978 else
2b5d6a91 2979 as_fatal (_("unknown architecture"));
b9d79e03 2980}
b9d79e03 2981\f
252b5132 2982void
7016a5d5 2983md_begin (void)
252b5132
RH
2984{
2985 const char *hash_err;
2986
86fa6981
L
2987 /* Support pseudo prefixes like {disp32}. */
2988 lex_type ['{'] = LEX_BEGIN_NAME;
2989
47926f60 2990 /* Initialize op_hash hash table. */
252b5132
RH
2991 op_hash = hash_new ();
2992
2993 {
d3ce72d0 2994 const insn_template *optab;
29b0f896 2995 templates *core_optab;
252b5132 2996
47926f60
KH
2997 /* Setup for loop. */
2998 optab = i386_optab;
add39d23 2999 core_optab = XNEW (templates);
252b5132
RH
3000 core_optab->start = optab;
3001
3002 while (1)
3003 {
3004 ++optab;
3005 if (optab->name == NULL
3006 || strcmp (optab->name, (optab - 1)->name) != 0)
3007 {
3008 /* different name --> ship out current template list;
47926f60 3009 add to hash table; & begin anew. */
252b5132
RH
3010 core_optab->end = optab;
3011 hash_err = hash_insert (op_hash,
3012 (optab - 1)->name,
5a49b8ac 3013 (void *) core_optab);
252b5132
RH
3014 if (hash_err)
3015 {
b37df7c4 3016 as_fatal (_("can't hash %s: %s"),
252b5132
RH
3017 (optab - 1)->name,
3018 hash_err);
3019 }
3020 if (optab->name == NULL)
3021 break;
add39d23 3022 core_optab = XNEW (templates);
252b5132
RH
3023 core_optab->start = optab;
3024 }
3025 }
3026 }
3027
47926f60 3028 /* Initialize reg_hash hash table. */
252b5132
RH
3029 reg_hash = hash_new ();
3030 {
29b0f896 3031 const reg_entry *regtab;
c3fe08fa 3032 unsigned int regtab_size = i386_regtab_size;
252b5132 3033
c3fe08fa 3034 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3035 {
5a49b8ac 3036 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3037 if (hash_err)
b37df7c4 3038 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3039 regtab->reg_name,
3040 hash_err);
252b5132
RH
3041 }
3042 }
3043
47926f60 3044 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3045 {
29b0f896
AM
3046 int c;
3047 char *p;
252b5132
RH
3048
3049 for (c = 0; c < 256; c++)
3050 {
3882b010 3051 if (ISDIGIT (c))
252b5132
RH
3052 {
3053 digit_chars[c] = c;
3054 mnemonic_chars[c] = c;
3055 register_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3882b010 3058 else if (ISLOWER (c))
252b5132
RH
3059 {
3060 mnemonic_chars[c] = c;
3061 register_chars[c] = c;
3062 operand_chars[c] = c;
3063 }
3882b010 3064 else if (ISUPPER (c))
252b5132 3065 {
3882b010 3066 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3067 register_chars[c] = mnemonic_chars[c];
3068 operand_chars[c] = c;
3069 }
43234a1e 3070 else if (c == '{' || c == '}')
86fa6981
L
3071 {
3072 mnemonic_chars[c] = c;
3073 operand_chars[c] = c;
3074 }
252b5132 3075
3882b010 3076 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3077 identifier_chars[c] = c;
3078 else if (c >= 128)
3079 {
3080 identifier_chars[c] = c;
3081 operand_chars[c] = c;
3082 }
3083 }
3084
3085#ifdef LEX_AT
3086 identifier_chars['@'] = '@';
32137342
NC
3087#endif
3088#ifdef LEX_QM
3089 identifier_chars['?'] = '?';
3090 operand_chars['?'] = '?';
252b5132 3091#endif
252b5132 3092 digit_chars['-'] = '-';
c0f3af97 3093 mnemonic_chars['_'] = '_';
791fe849 3094 mnemonic_chars['-'] = '-';
0003779b 3095 mnemonic_chars['.'] = '.';
252b5132
RH
3096 identifier_chars['_'] = '_';
3097 identifier_chars['.'] = '.';
3098
3099 for (p = operand_special_chars; *p != '\0'; p++)
3100 operand_chars[(unsigned char) *p] = *p;
3101 }
3102
a4447b93
RH
3103 if (flag_code == CODE_64BIT)
3104 {
ca19b261
KT
3105#if defined (OBJ_COFF) && defined (TE_PE)
3106 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3107 ? 32 : 16);
3108#else
a4447b93 3109 x86_dwarf2_return_column = 16;
ca19b261 3110#endif
61ff971f 3111 x86_cie_data_alignment = -8;
a4447b93
RH
3112 }
3113 else
3114 {
3115 x86_dwarf2_return_column = 8;
3116 x86_cie_data_alignment = -4;
3117 }
e379e5f3
L
3118
3119 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3120 can be turned into BRANCH_PREFIX frag. */
3121 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3122 abort ();
252b5132
RH
3123}
3124
3125void
e3bb37b5 3126i386_print_statistics (FILE *file)
252b5132
RH
3127{
3128 hash_print_statistics (file, "i386 opcode", op_hash);
3129 hash_print_statistics (file, "i386 register", reg_hash);
3130}
3131\f
252b5132
RH
3132#ifdef DEBUG386
3133
ce8a8b2f 3134/* Debugging routines for md_assemble. */
d3ce72d0 3135static void pte (insn_template *);
40fb9820 3136static void pt (i386_operand_type);
e3bb37b5
L
3137static void pe (expressionS *);
3138static void ps (symbolS *);
252b5132
RH
3139
3140static void
2c703856 3141pi (const char *line, i386_insn *x)
252b5132 3142{
09137c09 3143 unsigned int j;
252b5132
RH
3144
3145 fprintf (stdout, "%s: template ", line);
3146 pte (&x->tm);
09f131f2
JH
3147 fprintf (stdout, " address: base %s index %s scale %x\n",
3148 x->base_reg ? x->base_reg->reg_name : "none",
3149 x->index_reg ? x->index_reg->reg_name : "none",
3150 x->log2_scale_factor);
3151 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3152 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3153 fprintf (stdout, " sib: base %x index %x scale %x\n",
3154 x->sib.base, x->sib.index, x->sib.scale);
3155 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3156 (x->rex & REX_W) != 0,
3157 (x->rex & REX_R) != 0,
3158 (x->rex & REX_X) != 0,
3159 (x->rex & REX_B) != 0);
09137c09 3160 for (j = 0; j < x->operands; j++)
252b5132 3161 {
09137c09
SP
3162 fprintf (stdout, " #%d: ", j + 1);
3163 pt (x->types[j]);
252b5132 3164 fprintf (stdout, "\n");
bab6aec1 3165 if (x->types[j].bitfield.class == Reg
3528c362
JB
3166 || x->types[j].bitfield.class == RegMMX
3167 || x->types[j].bitfield.class == RegSIMD
00cee14f 3168 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3169 || x->types[j].bitfield.class == RegCR
3170 || x->types[j].bitfield.class == RegDR
3171 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3172 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3173 if (operand_type_check (x->types[j], imm))
3174 pe (x->op[j].imms);
3175 if (operand_type_check (x->types[j], disp))
3176 pe (x->op[j].disps);
252b5132
RH
3177 }
3178}
3179
3180static void
d3ce72d0 3181pte (insn_template *t)
252b5132 3182{
09137c09 3183 unsigned int j;
252b5132 3184 fprintf (stdout, " %d operands ", t->operands);
47926f60 3185 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3186 if (t->extension_opcode != None)
3187 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3188 if (t->opcode_modifier.d)
252b5132 3189 fprintf (stdout, "D");
40fb9820 3190 if (t->opcode_modifier.w)
252b5132
RH
3191 fprintf (stdout, "W");
3192 fprintf (stdout, "\n");
09137c09 3193 for (j = 0; j < t->operands; j++)
252b5132 3194 {
09137c09
SP
3195 fprintf (stdout, " #%d type ", j + 1);
3196 pt (t->operand_types[j]);
252b5132
RH
3197 fprintf (stdout, "\n");
3198 }
3199}
3200
3201static void
e3bb37b5 3202pe (expressionS *e)
252b5132 3203{
24eab124 3204 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3205 fprintf (stdout, " add_number %ld (%lx)\n",
3206 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3207 if (e->X_add_symbol)
3208 {
3209 fprintf (stdout, " add_symbol ");
3210 ps (e->X_add_symbol);
3211 fprintf (stdout, "\n");
3212 }
3213 if (e->X_op_symbol)
3214 {
3215 fprintf (stdout, " op_symbol ");
3216 ps (e->X_op_symbol);
3217 fprintf (stdout, "\n");
3218 }
3219}
3220
3221static void
e3bb37b5 3222ps (symbolS *s)
252b5132
RH
3223{
3224 fprintf (stdout, "%s type %s%s",
3225 S_GET_NAME (s),
3226 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3227 segment_name (S_GET_SEGMENT (s)));
3228}
3229
7b81dfbb 3230static struct type_name
252b5132 3231 {
40fb9820
L
3232 i386_operand_type mask;
3233 const char *name;
252b5132 3234 }
7b81dfbb 3235const type_names[] =
252b5132 3236{
40fb9820
L
3237 { OPERAND_TYPE_REG8, "r8" },
3238 { OPERAND_TYPE_REG16, "r16" },
3239 { OPERAND_TYPE_REG32, "r32" },
3240 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3241 { OPERAND_TYPE_ACC8, "acc8" },
3242 { OPERAND_TYPE_ACC16, "acc16" },
3243 { OPERAND_TYPE_ACC32, "acc32" },
3244 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3245 { OPERAND_TYPE_IMM8, "i8" },
3246 { OPERAND_TYPE_IMM8, "i8s" },
3247 { OPERAND_TYPE_IMM16, "i16" },
3248 { OPERAND_TYPE_IMM32, "i32" },
3249 { OPERAND_TYPE_IMM32S, "i32s" },
3250 { OPERAND_TYPE_IMM64, "i64" },
3251 { OPERAND_TYPE_IMM1, "i1" },
3252 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3253 { OPERAND_TYPE_DISP8, "d8" },
3254 { OPERAND_TYPE_DISP16, "d16" },
3255 { OPERAND_TYPE_DISP32, "d32" },
3256 { OPERAND_TYPE_DISP32S, "d32s" },
3257 { OPERAND_TYPE_DISP64, "d64" },
3258 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3259 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3260 { OPERAND_TYPE_CONTROL, "control reg" },
3261 { OPERAND_TYPE_TEST, "test reg" },
3262 { OPERAND_TYPE_DEBUG, "debug reg" },
3263 { OPERAND_TYPE_FLOATREG, "FReg" },
3264 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3265 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3266 { OPERAND_TYPE_REGMMX, "rMMX" },
3267 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3268 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3269 { OPERAND_TYPE_REGZMM, "rZMM" },
3270 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3271};
3272
3273static void
40fb9820 3274pt (i386_operand_type t)
252b5132 3275{
40fb9820 3276 unsigned int j;
c6fb90c8 3277 i386_operand_type a;
252b5132 3278
40fb9820 3279 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3280 {
3281 a = operand_type_and (t, type_names[j].mask);
2c703856 3282 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3283 fprintf (stdout, "%s, ", type_names[j].name);
3284 }
252b5132
RH
3285 fflush (stdout);
3286}
3287
3288#endif /* DEBUG386 */
3289\f
252b5132 3290static bfd_reloc_code_real_type
3956db08 3291reloc (unsigned int size,
64e74474
AM
3292 int pcrel,
3293 int sign,
3294 bfd_reloc_code_real_type other)
252b5132 3295{
47926f60 3296 if (other != NO_RELOC)
3956db08 3297 {
91d6fa6a 3298 reloc_howto_type *rel;
3956db08
JB
3299
3300 if (size == 8)
3301 switch (other)
3302 {
64e74474
AM
3303 case BFD_RELOC_X86_64_GOT32:
3304 return BFD_RELOC_X86_64_GOT64;
3305 break;
553d1284
L
3306 case BFD_RELOC_X86_64_GOTPLT64:
3307 return BFD_RELOC_X86_64_GOTPLT64;
3308 break;
64e74474
AM
3309 case BFD_RELOC_X86_64_PLTOFF64:
3310 return BFD_RELOC_X86_64_PLTOFF64;
3311 break;
3312 case BFD_RELOC_X86_64_GOTPC32:
3313 other = BFD_RELOC_X86_64_GOTPC64;
3314 break;
3315 case BFD_RELOC_X86_64_GOTPCREL:
3316 other = BFD_RELOC_X86_64_GOTPCREL64;
3317 break;
3318 case BFD_RELOC_X86_64_TPOFF32:
3319 other = BFD_RELOC_X86_64_TPOFF64;
3320 break;
3321 case BFD_RELOC_X86_64_DTPOFF32:
3322 other = BFD_RELOC_X86_64_DTPOFF64;
3323 break;
3324 default:
3325 break;
3956db08 3326 }
e05278af 3327
8ce3d284 3328#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3329 if (other == BFD_RELOC_SIZE32)
3330 {
3331 if (size == 8)
1ab668bf 3332 other = BFD_RELOC_SIZE64;
8fd4256d 3333 if (pcrel)
1ab668bf
AM
3334 {
3335 as_bad (_("there are no pc-relative size relocations"));
3336 return NO_RELOC;
3337 }
8fd4256d 3338 }
8ce3d284 3339#endif
8fd4256d 3340
e05278af 3341 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3342 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3343 sign = -1;
3344
91d6fa6a
NC
3345 rel = bfd_reloc_type_lookup (stdoutput, other);
3346 if (!rel)
3956db08 3347 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3348 else if (size != bfd_get_reloc_size (rel))
3956db08 3349 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3350 bfd_get_reloc_size (rel),
3956db08 3351 size);
91d6fa6a 3352 else if (pcrel && !rel->pc_relative)
3956db08 3353 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3354 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3355 && !sign)
91d6fa6a 3356 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3357 && sign > 0))
3956db08
JB
3358 as_bad (_("relocated field and relocation type differ in signedness"));
3359 else
3360 return other;
3361 return NO_RELOC;
3362 }
252b5132
RH
3363
3364 if (pcrel)
3365 {
3e73aa7c 3366 if (!sign)
3956db08 3367 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3368 switch (size)
3369 {
3370 case 1: return BFD_RELOC_8_PCREL;
3371 case 2: return BFD_RELOC_16_PCREL;
d258b828 3372 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3373 case 8: return BFD_RELOC_64_PCREL;
252b5132 3374 }
3956db08 3375 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3376 }
3377 else
3378 {
3956db08 3379 if (sign > 0)
e5cb08ac 3380 switch (size)
3e73aa7c
JH
3381 {
3382 case 4: return BFD_RELOC_X86_64_32S;
3383 }
3384 else
3385 switch (size)
3386 {
3387 case 1: return BFD_RELOC_8;
3388 case 2: return BFD_RELOC_16;
3389 case 4: return BFD_RELOC_32;
3390 case 8: return BFD_RELOC_64;
3391 }
3956db08
JB
3392 as_bad (_("cannot do %s %u byte relocation"),
3393 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3394 }
3395
0cc9e1d3 3396 return NO_RELOC;
252b5132
RH
3397}
3398
47926f60
KH
3399/* Here we decide which fixups can be adjusted to make them relative to
3400 the beginning of the section instead of the symbol. Basically we need
3401 to make sure that the dynamic relocations are done correctly, so in
3402 some cases we force the original symbol to be used. */
3403
252b5132 3404int
e3bb37b5 3405tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3406{
6d249963 3407#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3408 if (!IS_ELF)
31312f95
AM
3409 return 1;
3410
a161fe53
AM
3411 /* Don't adjust pc-relative references to merge sections in 64-bit
3412 mode. */
3413 if (use_rela_relocations
3414 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3415 && fixP->fx_pcrel)
252b5132 3416 return 0;
31312f95 3417
8d01d9a9
AJ
3418 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3419 and changed later by validate_fix. */
3420 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3421 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3422 return 0;
3423
8fd4256d
L
3424 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3425 for size relocations. */
3426 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3427 || fixP->fx_r_type == BFD_RELOC_SIZE64
3428 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3429 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3430 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3439 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3440 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3442 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3448 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3455 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3456 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3457 return 0;
31312f95 3458#endif
252b5132
RH
3459 return 1;
3460}
252b5132 3461
b4cac588 3462static int
e3bb37b5 3463intel_float_operand (const char *mnemonic)
252b5132 3464{
9306ca4a
JB
3465 /* Note that the value returned is meaningful only for opcodes with (memory)
3466 operands, hence the code here is free to improperly handle opcodes that
3467 have no operands (for better performance and smaller code). */
3468
3469 if (mnemonic[0] != 'f')
3470 return 0; /* non-math */
3471
3472 switch (mnemonic[1])
3473 {
3474 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3475 the fs segment override prefix not currently handled because no
3476 call path can make opcodes without operands get here */
3477 case 'i':
3478 return 2 /* integer op */;
3479 case 'l':
3480 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3481 return 3; /* fldcw/fldenv */
3482 break;
3483 case 'n':
3484 if (mnemonic[2] != 'o' /* fnop */)
3485 return 3; /* non-waiting control op */
3486 break;
3487 case 'r':
3488 if (mnemonic[2] == 's')
3489 return 3; /* frstor/frstpm */
3490 break;
3491 case 's':
3492 if (mnemonic[2] == 'a')
3493 return 3; /* fsave */
3494 if (mnemonic[2] == 't')
3495 {
3496 switch (mnemonic[3])
3497 {
3498 case 'c': /* fstcw */
3499 case 'd': /* fstdw */
3500 case 'e': /* fstenv */
3501 case 's': /* fsts[gw] */
3502 return 3;
3503 }
3504 }
3505 break;
3506 case 'x':
3507 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3508 return 0; /* fxsave/fxrstor are not really math ops */
3509 break;
3510 }
252b5132 3511
9306ca4a 3512 return 1;
252b5132
RH
3513}
3514
c0f3af97
L
3515/* Build the VEX prefix. */
3516
3517static void
d3ce72d0 3518build_vex_prefix (const insn_template *t)
c0f3af97
L
3519{
3520 unsigned int register_specifier;
3521 unsigned int implied_prefix;
3522 unsigned int vector_length;
03751133 3523 unsigned int w;
c0f3af97
L
3524
3525 /* Check register specifier. */
3526 if (i.vex.register_specifier)
43234a1e
L
3527 {
3528 register_specifier =
3529 ~register_number (i.vex.register_specifier) & 0xf;
3530 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3531 }
c0f3af97
L
3532 else
3533 register_specifier = 0xf;
3534
79f0fa25
L
3535 /* Use 2-byte VEX prefix by swapping destination and source operand
3536 if there are more than 1 register operand. */
3537 if (i.reg_operands > 1
3538 && i.vec_encoding != vex_encoding_vex3
86fa6981 3539 && i.dir_encoding == dir_encoding_default
fa99fab2 3540 && i.operands == i.reg_operands
dbbc8b7e 3541 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3542 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3543 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3544 && i.rex == REX_B)
3545 {
3546 unsigned int xchg = i.operands - 1;
3547 union i386_op temp_op;
3548 i386_operand_type temp_type;
3549
3550 temp_type = i.types[xchg];
3551 i.types[xchg] = i.types[0];
3552 i.types[0] = temp_type;
3553 temp_op = i.op[xchg];
3554 i.op[xchg] = i.op[0];
3555 i.op[0] = temp_op;
3556
9c2799c2 3557 gas_assert (i.rm.mode == 3);
fa99fab2
L
3558
3559 i.rex = REX_R;
3560 xchg = i.rm.regmem;
3561 i.rm.regmem = i.rm.reg;
3562 i.rm.reg = xchg;
3563
dbbc8b7e
JB
3564 if (i.tm.opcode_modifier.d)
3565 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3566 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3567 else /* Use the next insn. */
3568 i.tm = t[1];
fa99fab2
L
3569 }
3570
79dec6b7
JB
3571 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3572 are no memory operands and at least 3 register ones. */
3573 if (i.reg_operands >= 3
3574 && i.vec_encoding != vex_encoding_vex3
3575 && i.reg_operands == i.operands - i.imm_operands
3576 && i.tm.opcode_modifier.vex
3577 && i.tm.opcode_modifier.commutative
3578 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3579 && i.rex == REX_B
3580 && i.vex.register_specifier
3581 && !(i.vex.register_specifier->reg_flags & RegRex))
3582 {
3583 unsigned int xchg = i.operands - i.reg_operands;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3588 gas_assert (!i.tm.opcode_modifier.sae);
3589 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3590 &i.types[i.operands - 3]));
3591 gas_assert (i.rm.mode == 3);
3592
3593 temp_type = i.types[xchg];
3594 i.types[xchg] = i.types[xchg + 1];
3595 i.types[xchg + 1] = temp_type;
3596 temp_op = i.op[xchg];
3597 i.op[xchg] = i.op[xchg + 1];
3598 i.op[xchg + 1] = temp_op;
3599
3600 i.rex = 0;
3601 xchg = i.rm.regmem | 8;
3602 i.rm.regmem = ~register_specifier & 0xf;
3603 gas_assert (!(i.rm.regmem & 8));
3604 i.vex.register_specifier += xchg - i.rm.regmem;
3605 register_specifier = ~xchg & 0xf;
3606 }
3607
539f890d
L
3608 if (i.tm.opcode_modifier.vex == VEXScalar)
3609 vector_length = avxscalar;
10c17abd
JB
3610 else if (i.tm.opcode_modifier.vex == VEX256)
3611 vector_length = 1;
539f890d 3612 else
10c17abd 3613 {
56522fc5 3614 unsigned int op;
10c17abd 3615
c7213af9
L
3616 /* Determine vector length from the last multi-length vector
3617 operand. */
10c17abd 3618 vector_length = 0;
56522fc5 3619 for (op = t->operands; op--;)
10c17abd
JB
3620 if (t->operand_types[op].bitfield.xmmword
3621 && t->operand_types[op].bitfield.ymmword
3622 && i.types[op].bitfield.ymmword)
3623 {
3624 vector_length = 1;
3625 break;
3626 }
3627 }
c0f3af97
L
3628
3629 switch ((i.tm.base_opcode >> 8) & 0xff)
3630 {
3631 case 0:
3632 implied_prefix = 0;
3633 break;
3634 case DATA_PREFIX_OPCODE:
3635 implied_prefix = 1;
3636 break;
3637 case REPE_PREFIX_OPCODE:
3638 implied_prefix = 2;
3639 break;
3640 case REPNE_PREFIX_OPCODE:
3641 implied_prefix = 3;
3642 break;
3643 default:
3644 abort ();
3645 }
3646
03751133
L
3647 /* Check the REX.W bit and VEXW. */
3648 if (i.tm.opcode_modifier.vexw == VEXWIG)
3649 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3650 else if (i.tm.opcode_modifier.vexw)
3651 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3652 else
931d03b7 3653 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3654
c0f3af97 3655 /* Use 2-byte VEX prefix if possible. */
03751133
L
3656 if (w == 0
3657 && i.vec_encoding != vex_encoding_vex3
86fa6981 3658 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3659 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3660 {
3661 /* 2-byte VEX prefix. */
3662 unsigned int r;
3663
3664 i.vex.length = 2;
3665 i.vex.bytes[0] = 0xc5;
3666
3667 /* Check the REX.R bit. */
3668 r = (i.rex & REX_R) ? 0 : 1;
3669 i.vex.bytes[1] = (r << 7
3670 | register_specifier << 3
3671 | vector_length << 2
3672 | implied_prefix);
3673 }
3674 else
3675 {
3676 /* 3-byte VEX prefix. */
03751133 3677 unsigned int m;
c0f3af97 3678
f88c9eb0 3679 i.vex.length = 3;
f88c9eb0 3680
7f399153 3681 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3682 {
7f399153
L
3683 case VEX0F:
3684 m = 0x1;
80de6e00 3685 i.vex.bytes[0] = 0xc4;
7f399153
L
3686 break;
3687 case VEX0F38:
3688 m = 0x2;
80de6e00 3689 i.vex.bytes[0] = 0xc4;
7f399153
L
3690 break;
3691 case VEX0F3A:
3692 m = 0x3;
80de6e00 3693 i.vex.bytes[0] = 0xc4;
7f399153
L
3694 break;
3695 case XOP08:
5dd85c99
SP
3696 m = 0x8;
3697 i.vex.bytes[0] = 0x8f;
7f399153
L
3698 break;
3699 case XOP09:
f88c9eb0
SP
3700 m = 0x9;
3701 i.vex.bytes[0] = 0x8f;
7f399153
L
3702 break;
3703 case XOP0A:
f88c9eb0
SP
3704 m = 0xa;
3705 i.vex.bytes[0] = 0x8f;
7f399153
L
3706 break;
3707 default:
3708 abort ();
f88c9eb0 3709 }
c0f3af97 3710
c0f3af97
L
3711 /* The high 3 bits of the second VEX byte are 1's compliment
3712 of RXB bits from REX. */
3713 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3714
c0f3af97
L
3715 i.vex.bytes[2] = (w << 7
3716 | register_specifier << 3
3717 | vector_length << 2
3718 | implied_prefix);
3719 }
3720}
3721
e771e7c9
JB
3722static INLINE bfd_boolean
3723is_evex_encoding (const insn_template *t)
3724{
7091c612 3725 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3726 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3727 || t->opcode_modifier.sae;
e771e7c9
JB
3728}
3729
7a8655d2
JB
3730static INLINE bfd_boolean
3731is_any_vex_encoding (const insn_template *t)
3732{
3733 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3734 || is_evex_encoding (t);
3735}
3736
43234a1e
L
3737/* Build the EVEX prefix. */
3738
3739static void
3740build_evex_prefix (void)
3741{
3742 unsigned int register_specifier;
3743 unsigned int implied_prefix;
3744 unsigned int m, w;
3745 rex_byte vrex_used = 0;
3746
3747 /* Check register specifier. */
3748 if (i.vex.register_specifier)
3749 {
3750 gas_assert ((i.vrex & REX_X) == 0);
3751
3752 register_specifier = i.vex.register_specifier->reg_num;
3753 if ((i.vex.register_specifier->reg_flags & RegRex))
3754 register_specifier += 8;
3755 /* The upper 16 registers are encoded in the fourth byte of the
3756 EVEX prefix. */
3757 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3758 i.vex.bytes[3] = 0x8;
3759 register_specifier = ~register_specifier & 0xf;
3760 }
3761 else
3762 {
3763 register_specifier = 0xf;
3764
3765 /* Encode upper 16 vector index register in the fourth byte of
3766 the EVEX prefix. */
3767 if (!(i.vrex & REX_X))
3768 i.vex.bytes[3] = 0x8;
3769 else
3770 vrex_used |= REX_X;
3771 }
3772
3773 switch ((i.tm.base_opcode >> 8) & 0xff)
3774 {
3775 case 0:
3776 implied_prefix = 0;
3777 break;
3778 case DATA_PREFIX_OPCODE:
3779 implied_prefix = 1;
3780 break;
3781 case REPE_PREFIX_OPCODE:
3782 implied_prefix = 2;
3783 break;
3784 case REPNE_PREFIX_OPCODE:
3785 implied_prefix = 3;
3786 break;
3787 default:
3788 abort ();
3789 }
3790
3791 /* 4 byte EVEX prefix. */
3792 i.vex.length = 4;
3793 i.vex.bytes[0] = 0x62;
3794
3795 /* mmmm bits. */
3796 switch (i.tm.opcode_modifier.vexopcode)
3797 {
3798 case VEX0F:
3799 m = 1;
3800 break;
3801 case VEX0F38:
3802 m = 2;
3803 break;
3804 case VEX0F3A:
3805 m = 3;
3806 break;
3807 default:
3808 abort ();
3809 break;
3810 }
3811
3812 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3813 bits from REX. */
3814 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3815
3816 /* The fifth bit of the second EVEX byte is 1's compliment of the
3817 REX_R bit in VREX. */
3818 if (!(i.vrex & REX_R))
3819 i.vex.bytes[1] |= 0x10;
3820 else
3821 vrex_used |= REX_R;
3822
3823 if ((i.reg_operands + i.imm_operands) == i.operands)
3824 {
3825 /* When all operands are registers, the REX_X bit in REX is not
3826 used. We reuse it to encode the upper 16 registers, which is
3827 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3828 as 1's compliment. */
3829 if ((i.vrex & REX_B))
3830 {
3831 vrex_used |= REX_B;
3832 i.vex.bytes[1] &= ~0x40;
3833 }
3834 }
3835
3836 /* EVEX instructions shouldn't need the REX prefix. */
3837 i.vrex &= ~vrex_used;
3838 gas_assert (i.vrex == 0);
3839
6865c043
L
3840 /* Check the REX.W bit and VEXW. */
3841 if (i.tm.opcode_modifier.vexw == VEXWIG)
3842 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3843 else if (i.tm.opcode_modifier.vexw)
3844 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3845 else
931d03b7 3846 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3847
3848 /* Encode the U bit. */
3849 implied_prefix |= 0x4;
3850
3851 /* The third byte of the EVEX prefix. */
3852 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3853
3854 /* The fourth byte of the EVEX prefix. */
3855 /* The zeroing-masking bit. */
3856 if (i.mask && i.mask->zeroing)
3857 i.vex.bytes[3] |= 0x80;
3858
3859 /* Don't always set the broadcast bit if there is no RC. */
3860 if (!i.rounding)
3861 {
3862 /* Encode the vector length. */
3863 unsigned int vec_length;
3864
e771e7c9
JB
3865 if (!i.tm.opcode_modifier.evex
3866 || i.tm.opcode_modifier.evex == EVEXDYN)
3867 {
56522fc5 3868 unsigned int op;
e771e7c9 3869
c7213af9
L
3870 /* Determine vector length from the last multi-length vector
3871 operand. */
e771e7c9 3872 vec_length = 0;
56522fc5 3873 for (op = i.operands; op--;)
e771e7c9
JB
3874 if (i.tm.operand_types[op].bitfield.xmmword
3875 + i.tm.operand_types[op].bitfield.ymmword
3876 + i.tm.operand_types[op].bitfield.zmmword > 1)
3877 {
3878 if (i.types[op].bitfield.zmmword)
c7213af9
L
3879 {
3880 i.tm.opcode_modifier.evex = EVEX512;
3881 break;
3882 }
e771e7c9 3883 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3884 {
3885 i.tm.opcode_modifier.evex = EVEX256;
3886 break;
3887 }
e771e7c9 3888 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3889 {
3890 i.tm.opcode_modifier.evex = EVEX128;
3891 break;
3892 }
625cbd7a
JB
3893 else if (i.broadcast && (int) op == i.broadcast->operand)
3894 {
4a1b91ea 3895 switch (i.broadcast->bytes)
625cbd7a
JB
3896 {
3897 case 64:
3898 i.tm.opcode_modifier.evex = EVEX512;
3899 break;
3900 case 32:
3901 i.tm.opcode_modifier.evex = EVEX256;
3902 break;
3903 case 16:
3904 i.tm.opcode_modifier.evex = EVEX128;
3905 break;
3906 default:
c7213af9 3907 abort ();
625cbd7a 3908 }
c7213af9 3909 break;
625cbd7a 3910 }
e771e7c9 3911 }
c7213af9 3912
56522fc5 3913 if (op >= MAX_OPERANDS)
c7213af9 3914 abort ();
e771e7c9
JB
3915 }
3916
43234a1e
L
3917 switch (i.tm.opcode_modifier.evex)
3918 {
3919 case EVEXLIG: /* LL' is ignored */
3920 vec_length = evexlig << 5;
3921 break;
3922 case EVEX128:
3923 vec_length = 0 << 5;
3924 break;
3925 case EVEX256:
3926 vec_length = 1 << 5;
3927 break;
3928 case EVEX512:
3929 vec_length = 2 << 5;
3930 break;
3931 default:
3932 abort ();
3933 break;
3934 }
3935 i.vex.bytes[3] |= vec_length;
3936 /* Encode the broadcast bit. */
3937 if (i.broadcast)
3938 i.vex.bytes[3] |= 0x10;
3939 }
3940 else
3941 {
3942 if (i.rounding->type != saeonly)
3943 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3944 else
d3d3c6db 3945 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3946 }
3947
3948 if (i.mask && i.mask->mask)
3949 i.vex.bytes[3] |= i.mask->mask->reg_num;
3950}
3951
65da13b5
L
3952static void
3953process_immext (void)
3954{
3955 expressionS *exp;
3956
c0f3af97 3957 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3958 which is coded in the same place as an 8-bit immediate field
3959 would be. Here we fake an 8-bit immediate operand from the
3960 opcode suffix stored in tm.extension_opcode.
3961
c1e679ec 3962 AVX instructions also use this encoding, for some of
c0f3af97 3963 3 argument instructions. */
65da13b5 3964
43234a1e 3965 gas_assert (i.imm_operands <= 1
7ab9ffdd 3966 && (i.operands <= 2
7a8655d2 3967 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3968 && i.operands <= 4)));
65da13b5
L
3969
3970 exp = &im_expressions[i.imm_operands++];
3971 i.op[i.operands].imms = exp;
3972 i.types[i.operands] = imm8;
3973 i.operands++;
3974 exp->X_op = O_constant;
3975 exp->X_add_number = i.tm.extension_opcode;
3976 i.tm.extension_opcode = None;
3977}
3978
42164a71
L
3979
3980static int
3981check_hle (void)
3982{
3983 switch (i.tm.opcode_modifier.hleprefixok)
3984 {
3985 default:
3986 abort ();
82c2def5 3987 case HLEPrefixNone:
165de32a
L
3988 as_bad (_("invalid instruction `%s' after `%s'"),
3989 i.tm.name, i.hle_prefix);
42164a71 3990 return 0;
82c2def5 3991 case HLEPrefixLock:
42164a71
L
3992 if (i.prefix[LOCK_PREFIX])
3993 return 1;
165de32a 3994 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3995 return 0;
82c2def5 3996 case HLEPrefixAny:
42164a71 3997 return 1;
82c2def5 3998 case HLEPrefixRelease:
42164a71
L
3999 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4000 {
4001 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4002 i.tm.name);
4003 return 0;
4004 }
8dc0818e 4005 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4006 {
4007 as_bad (_("memory destination needed for instruction `%s'"
4008 " after `xrelease'"), i.tm.name);
4009 return 0;
4010 }
4011 return 1;
4012 }
4013}
4014
b6f8c7c4
L
4015/* Try the shortest encoding by shortening operand size. */
4016
4017static void
4018optimize_encoding (void)
4019{
a0a1771e 4020 unsigned int j;
b6f8c7c4
L
4021
4022 if (optimize_for_space
72aea328 4023 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
4024 && i.reg_operands == 1
4025 && i.imm_operands == 1
4026 && !i.types[1].bitfield.byte
4027 && i.op[0].imms->X_op == O_constant
4028 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4029 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4030 || (i.tm.base_opcode == 0xf6
4031 && i.tm.extension_opcode == 0x0)))
4032 {
4033 /* Optimize: -Os:
4034 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4035 */
4036 unsigned int base_regnum = i.op[1].regs->reg_num;
4037 if (flag_code == CODE_64BIT || base_regnum < 4)
4038 {
4039 i.types[1].bitfield.byte = 1;
4040 /* Ignore the suffix. */
4041 i.suffix = 0;
7697afb6
JB
4042 /* Convert to byte registers. */
4043 if (i.types[1].bitfield.word)
4044 j = 16;
4045 else if (i.types[1].bitfield.dword)
4046 j = 32;
4047 else
4048 j = 48;
4049 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4050 j += 8;
4051 i.op[1].regs -= j;
b6f8c7c4
L
4052 }
4053 }
4054 else if (flag_code == CODE_64BIT
72aea328 4055 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4056 && ((i.types[1].bitfield.qword
4057 && i.reg_operands == 1
b6f8c7c4
L
4058 && i.imm_operands == 1
4059 && i.op[0].imms->X_op == O_constant
507916b8 4060 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4061 && i.tm.extension_opcode == None
4062 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4063 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4064 && ((i.tm.base_opcode == 0x24
4065 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4066 || (i.tm.base_opcode == 0x80
4067 && i.tm.extension_opcode == 0x4)
4068 || ((i.tm.base_opcode == 0xf6
507916b8 4069 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4070 && i.tm.extension_opcode == 0x0)))
4071 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4072 && i.tm.base_opcode == 0x83
4073 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4074 || (i.types[0].bitfield.qword
4075 && ((i.reg_operands == 2
4076 && i.op[0].regs == i.op[1].regs
72aea328
JB
4077 && (i.tm.base_opcode == 0x30
4078 || i.tm.base_opcode == 0x28))
d3d50934
L
4079 || (i.reg_operands == 1
4080 && i.operands == 1
72aea328 4081 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4082 {
4083 /* Optimize: -O:
4084 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4085 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4086 testq $imm31, %r64 -> testl $imm31, %r32
4087 xorq %r64, %r64 -> xorl %r32, %r32
4088 subq %r64, %r64 -> subl %r32, %r32
4089 movq $imm31, %r64 -> movl $imm31, %r32
4090 movq $imm32, %r64 -> movl $imm32, %r32
4091 */
4092 i.tm.opcode_modifier.norex64 = 1;
507916b8 4093 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4094 {
4095 /* Handle
4096 movq $imm31, %r64 -> movl $imm31, %r32
4097 movq $imm32, %r64 -> movl $imm32, %r32
4098 */
4099 i.tm.operand_types[0].bitfield.imm32 = 1;
4100 i.tm.operand_types[0].bitfield.imm32s = 0;
4101 i.tm.operand_types[0].bitfield.imm64 = 0;
4102 i.types[0].bitfield.imm32 = 1;
4103 i.types[0].bitfield.imm32s = 0;
4104 i.types[0].bitfield.imm64 = 0;
4105 i.types[1].bitfield.dword = 1;
4106 i.types[1].bitfield.qword = 0;
507916b8 4107 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4108 {
4109 /* Handle
4110 movq $imm31, %r64 -> movl $imm31, %r32
4111 */
507916b8 4112 i.tm.base_opcode = 0xb8;
b6f8c7c4 4113 i.tm.extension_opcode = None;
507916b8 4114 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4115 i.tm.opcode_modifier.modrm = 0;
4116 }
4117 }
4118 }
5641ec01
JB
4119 else if (optimize > 1
4120 && !optimize_for_space
72aea328 4121 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4122 && i.reg_operands == 2
4123 && i.op[0].regs == i.op[1].regs
4124 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4125 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4126 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4127 {
4128 /* Optimize: -O2:
4129 andb %rN, %rN -> testb %rN, %rN
4130 andw %rN, %rN -> testw %rN, %rN
4131 andq %rN, %rN -> testq %rN, %rN
4132 orb %rN, %rN -> testb %rN, %rN
4133 orw %rN, %rN -> testw %rN, %rN
4134 orq %rN, %rN -> testq %rN, %rN
4135
4136 and outside of 64-bit mode
4137
4138 andl %rN, %rN -> testl %rN, %rN
4139 orl %rN, %rN -> testl %rN, %rN
4140 */
4141 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4142 }
99112332 4143 else if (i.reg_operands == 3
b6f8c7c4
L
4144 && i.op[0].regs == i.op[1].regs
4145 && !i.types[2].bitfield.xmmword
4146 && (i.tm.opcode_modifier.vex
7a69eac3 4147 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4148 && !i.rounding
e771e7c9 4149 && is_evex_encoding (&i.tm)
80c34c38 4150 && (i.vec_encoding != vex_encoding_evex
dd22218c 4151 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4152 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4153 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4154 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4155 && ((i.tm.base_opcode == 0x55
4156 || i.tm.base_opcode == 0x6655
4157 || i.tm.base_opcode == 0x66df
4158 || i.tm.base_opcode == 0x57
4159 || i.tm.base_opcode == 0x6657
8305403a
L
4160 || i.tm.base_opcode == 0x66ef
4161 || i.tm.base_opcode == 0x66f8
4162 || i.tm.base_opcode == 0x66f9
4163 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4164 || i.tm.base_opcode == 0x66fb
4165 || i.tm.base_opcode == 0x42
4166 || i.tm.base_opcode == 0x6642
4167 || i.tm.base_opcode == 0x47
4168 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4169 && i.tm.extension_opcode == None))
4170 {
99112332 4171 /* Optimize: -O1:
8305403a
L
4172 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4173 vpsubq and vpsubw:
b6f8c7c4
L
4174 EVEX VOP %zmmM, %zmmM, %zmmN
4175 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4176 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4177 EVEX VOP %ymmM, %ymmM, %ymmN
4178 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4179 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4180 VEX VOP %ymmM, %ymmM, %ymmN
4181 -> VEX VOP %xmmM, %xmmM, %xmmN
4182 VOP, one of vpandn and vpxor:
4183 VEX VOP %ymmM, %ymmM, %ymmN
4184 -> VEX VOP %xmmM, %xmmM, %xmmN
4185 VOP, one of vpandnd and vpandnq:
4186 EVEX VOP %zmmM, %zmmM, %zmmN
4187 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4188 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4189 EVEX VOP %ymmM, %ymmM, %ymmN
4190 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4191 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4192 VOP, one of vpxord and vpxorq:
4193 EVEX VOP %zmmM, %zmmM, %zmmN
4194 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4195 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4196 EVEX VOP %ymmM, %ymmM, %ymmN
4197 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4198 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4199 VOP, one of kxord and kxorq:
4200 VEX VOP %kM, %kM, %kN
4201 -> VEX kxorw %kM, %kM, %kN
4202 VOP, one of kandnd and kandnq:
4203 VEX VOP %kM, %kM, %kN
4204 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4205 */
e771e7c9 4206 if (is_evex_encoding (&i.tm))
b6f8c7c4 4207 {
7b1d7ca1 4208 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4209 {
4210 i.tm.opcode_modifier.vex = VEX128;
4211 i.tm.opcode_modifier.vexw = VEXW0;
4212 i.tm.opcode_modifier.evex = 0;
4213 }
7b1d7ca1 4214 else if (optimize > 1)
dd22218c
L
4215 i.tm.opcode_modifier.evex = EVEX128;
4216 else
4217 return;
b6f8c7c4 4218 }
f74a6307 4219 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4220 {
4221 i.tm.base_opcode &= 0xff;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 }
b6f8c7c4
L
4224 else
4225 i.tm.opcode_modifier.vex = VEX128;
4226
4227 if (i.tm.opcode_modifier.vex)
4228 for (j = 0; j < 3; j++)
4229 {
4230 i.types[j].bitfield.xmmword = 1;
4231 i.types[j].bitfield.ymmword = 0;
4232 }
4233 }
392a5972 4234 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4235 && !i.types[0].bitfield.zmmword
392a5972 4236 && !i.types[1].bitfield.zmmword
97ed31ae 4237 && !i.mask
a0a1771e 4238 && !i.broadcast
97ed31ae 4239 && is_evex_encoding (&i.tm)
392a5972
L
4240 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4241 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4242 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4243 || (i.tm.base_opcode & ~4) == 0x66db
4244 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4245 && i.tm.extension_opcode == None)
4246 {
4247 /* Optimize: -O1:
4248 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4249 vmovdqu32 and vmovdqu64:
4250 EVEX VOP %xmmM, %xmmN
4251 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4252 EVEX VOP %ymmM, %ymmN
4253 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4254 EVEX VOP %xmmM, mem
4255 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4256 EVEX VOP %ymmM, mem
4257 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4258 EVEX VOP mem, %xmmN
4259 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4260 EVEX VOP mem, %ymmN
4261 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4262 VOP, one of vpand, vpandn, vpor, vpxor:
4263 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4264 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4265 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4266 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4267 EVEX VOP{d,q} mem, %xmmM, %xmmN
4268 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4269 EVEX VOP{d,q} mem, %ymmM, %ymmN
4270 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4271 */
a0a1771e 4272 for (j = 0; j < i.operands; j++)
392a5972
L
4273 if (operand_type_check (i.types[j], disp)
4274 && i.op[j].disps->X_op == O_constant)
4275 {
4276 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4277 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4278 bytes, we choose EVEX Disp8 over VEX Disp32. */
4279 int evex_disp8, vex_disp8;
4280 unsigned int memshift = i.memshift;
4281 offsetT n = i.op[j].disps->X_add_number;
4282
4283 evex_disp8 = fits_in_disp8 (n);
4284 i.memshift = 0;
4285 vex_disp8 = fits_in_disp8 (n);
4286 if (evex_disp8 != vex_disp8)
4287 {
4288 i.memshift = memshift;
4289 return;
4290 }
4291
4292 i.types[j].bitfield.disp8 = vex_disp8;
4293 break;
4294 }
4295 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4296 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4297 i.tm.opcode_modifier.vex
4298 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4299 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4300 /* VPAND, VPOR, and VPXOR are commutative. */
4301 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4302 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4303 i.tm.opcode_modifier.evex = 0;
4304 i.tm.opcode_modifier.masking = 0;
a0a1771e 4305 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4306 i.tm.opcode_modifier.disp8memshift = 0;
4307 i.memshift = 0;
a0a1771e
JB
4308 if (j < i.operands)
4309 i.types[j].bitfield.disp8
4310 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4311 }
b6f8c7c4
L
4312}
4313
252b5132
RH
4314/* This is the guts of the machine-dependent assembler. LINE points to a
4315 machine dependent instruction. This function is supposed to emit
4316 the frags/bytes it assembles to. */
4317
4318void
65da13b5 4319md_assemble (char *line)
252b5132 4320{
40fb9820 4321 unsigned int j;
83b16ac6 4322 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4323 const insn_template *t;
252b5132 4324
47926f60 4325 /* Initialize globals. */
252b5132
RH
4326 memset (&i, '\0', sizeof (i));
4327 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4328 i.reloc[j] = NO_RELOC;
252b5132
RH
4329 memset (disp_expressions, '\0', sizeof (disp_expressions));
4330 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4331 save_stack_p = save_stack;
252b5132
RH
4332
4333 /* First parse an instruction mnemonic & call i386_operand for the operands.
4334 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4335 start of a (possibly prefixed) mnemonic. */
252b5132 4336
29b0f896
AM
4337 line = parse_insn (line, mnemonic);
4338 if (line == NULL)
4339 return;
83b16ac6 4340 mnem_suffix = i.suffix;
252b5132 4341
29b0f896 4342 line = parse_operands (line, mnemonic);
ee86248c 4343 this_operand = -1;
8325cc63
JB
4344 xfree (i.memop1_string);
4345 i.memop1_string = NULL;
29b0f896
AM
4346 if (line == NULL)
4347 return;
252b5132 4348
29b0f896
AM
4349 /* Now we've parsed the mnemonic into a set of templates, and have the
4350 operands at hand. */
4351
eedb0f2c
JB
4352 /* All Intel opcodes have reversed operands except for "bound", "enter"
4353 "monitor*", and "mwait*". We also don't reverse intersegment "jmp"
4354 and "call" instructions with 2 immediate operands so that the immediate
4355 segment precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4356 if (intel_syntax
4357 && i.operands > 1
29b0f896 4358 && (strcmp (mnemonic, "bound") != 0)
30123838 4359 && (strcmp (mnemonic, "invlpga") != 0)
eedb0f2c
JB
4360 && (strncmp (mnemonic, "monitor", 7) != 0)
4361 && (strncmp (mnemonic, "mwait", 5) != 0)
40fb9820
L
4362 && !(operand_type_check (i.types[0], imm)
4363 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4364 swap_operands ();
4365
ec56d5c0
JB
4366 /* The order of the immediates should be reversed
4367 for 2 immediates extrq and insertq instructions */
4368 if (i.imm_operands == 2
4369 && (strcmp (mnemonic, "extrq") == 0
4370 || strcmp (mnemonic, "insertq") == 0))
4371 swap_2_operands (0, 1);
4372
29b0f896
AM
4373 if (i.imm_operands)
4374 optimize_imm ();
4375
b300c311
L
4376 /* Don't optimize displacement for movabs since it only takes 64bit
4377 displacement. */
4378 if (i.disp_operands
a501d77e 4379 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4380 && (flag_code != CODE_64BIT
4381 || strcmp (mnemonic, "movabs") != 0))
4382 optimize_disp ();
29b0f896
AM
4383
4384 /* Next, we find a template that matches the given insn,
4385 making sure the overlap of the given operands types is consistent
4386 with the template operand types. */
252b5132 4387
83b16ac6 4388 if (!(t = match_template (mnem_suffix)))
29b0f896 4389 return;
252b5132 4390
7bab8ab5 4391 if (sse_check != check_none
81f8a913 4392 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4393 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4394 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4395 && (i.tm.cpu_flags.bitfield.cpusse
4396 || i.tm.cpu_flags.bitfield.cpusse2
4397 || i.tm.cpu_flags.bitfield.cpusse3
4398 || i.tm.cpu_flags.bitfield.cpussse3
4399 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4400 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4401 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4402 || i.tm.cpu_flags.bitfield.cpupclmul
4403 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4404 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4405 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4406 {
7bab8ab5 4407 (sse_check == check_warning
daf50ae7
L
4408 ? as_warn
4409 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4410 }
4411
40fb9820 4412 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4413 if (!add_prefix (FWAIT_OPCODE))
4414 return;
252b5132 4415
d5de92cf
L
4416 /* Check if REP prefix is OK. */
4417 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4418 {
4419 as_bad (_("invalid instruction `%s' after `%s'"),
4420 i.tm.name, i.rep_prefix);
4421 return;
4422 }
4423
c1ba0266
L
4424 /* Check for lock without a lockable instruction. Destination operand
4425 must be memory unless it is xchg (0x86). */
c32fa91d
L
4426 if (i.prefix[LOCK_PREFIX]
4427 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4428 || i.mem_operands == 0
4429 || (i.tm.base_opcode != 0x86
8dc0818e 4430 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4431 {
4432 as_bad (_("expecting lockable instruction after `lock'"));
4433 return;
4434 }
4435
7a8655d2
JB
4436 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4437 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4438 {
4439 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4440 return;
4441 }
4442
42164a71 4443 /* Check if HLE prefix is OK. */
165de32a 4444 if (i.hle_prefix && !check_hle ())
42164a71
L
4445 return;
4446
7e8b059b
L
4447 /* Check BND prefix. */
4448 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4449 as_bad (_("expecting valid branch instruction after `bnd'"));
4450
04ef582a 4451 /* Check NOTRACK prefix. */
9fef80d6
L
4452 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4453 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4454
327e8c42
JB
4455 if (i.tm.cpu_flags.bitfield.cpumpx)
4456 {
4457 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4458 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4459 else if (flag_code != CODE_16BIT
4460 ? i.prefix[ADDR_PREFIX]
4461 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4462 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4463 }
7e8b059b
L
4464
4465 /* Insert BND prefix. */
76d3a78a
JB
4466 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4467 {
4468 if (!i.prefix[BND_PREFIX])
4469 add_prefix (BND_PREFIX_OPCODE);
4470 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4471 {
4472 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4473 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4474 }
4475 }
7e8b059b 4476
29b0f896 4477 /* Check string instruction segment overrides. */
51c8edf6 4478 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4479 {
51c8edf6 4480 gas_assert (i.mem_operands);
29b0f896 4481 if (!check_string ())
5dd0794d 4482 return;
fc0763e6 4483 i.disp_operands = 0;
29b0f896 4484 }
5dd0794d 4485
b6f8c7c4
L
4486 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4487 optimize_encoding ();
4488
29b0f896
AM
4489 if (!process_suffix ())
4490 return;
e413e4e9 4491
bc0844ae
L
4492 /* Update operand types. */
4493 for (j = 0; j < i.operands; j++)
4494 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4495
29b0f896
AM
4496 /* Make still unresolved immediate matches conform to size of immediate
4497 given in i.suffix. */
4498 if (!finalize_imm ())
4499 return;
252b5132 4500
40fb9820 4501 if (i.types[0].bitfield.imm1)
29b0f896 4502 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4503
9afe6eb8
L
4504 /* We only need to check those implicit registers for instructions
4505 with 3 operands or less. */
4506 if (i.operands <= 3)
4507 for (j = 0; j < i.operands; j++)
75e5731b
JB
4508 if (i.types[j].bitfield.instance != InstanceNone
4509 && !i.types[j].bitfield.xmmword)
9afe6eb8 4510 i.reg_operands--;
40fb9820 4511
c0f3af97
L
4512 /* ImmExt should be processed after SSE2AVX. */
4513 if (!i.tm.opcode_modifier.sse2avx
4514 && i.tm.opcode_modifier.immext)
65da13b5 4515 process_immext ();
252b5132 4516
29b0f896
AM
4517 /* For insns with operands there are more diddles to do to the opcode. */
4518 if (i.operands)
4519 {
4520 if (!process_operands ())
4521 return;
4522 }
40fb9820 4523 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4524 {
4525 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4526 as_warn (_("translating to `%sp'"), i.tm.name);
4527 }
252b5132 4528
7a8655d2 4529 if (is_any_vex_encoding (&i.tm))
9e5e5283 4530 {
c1dc7af5 4531 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4532 {
c1dc7af5 4533 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4534 i.tm.name);
4535 return;
4536 }
c0f3af97 4537
9e5e5283
L
4538 if (i.tm.opcode_modifier.vex)
4539 build_vex_prefix (t);
4540 else
4541 build_evex_prefix ();
4542 }
43234a1e 4543
5dd85c99
SP
4544 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4545 instructions may define INT_OPCODE as well, so avoid this corner
4546 case for those instructions that use MODRM. */
4547 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4548 && !i.tm.opcode_modifier.modrm
4549 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4550 {
4551 i.tm.base_opcode = INT3_OPCODE;
4552 i.imm_operands = 0;
4553 }
252b5132 4554
0cfa3eb3
JB
4555 if ((i.tm.opcode_modifier.jump == JUMP
4556 || i.tm.opcode_modifier.jump == JUMP_BYTE
4557 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4558 && i.op[0].disps->X_op == O_constant)
4559 {
4560 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4561 the absolute address given by the constant. Since ix86 jumps and
4562 calls are pc relative, we need to generate a reloc. */
4563 i.op[0].disps->X_add_symbol = &abs_symbol;
4564 i.op[0].disps->X_op = O_symbol;
4565 }
252b5132 4566
40fb9820 4567 if (i.tm.opcode_modifier.rex64)
161a04f6 4568 i.rex |= REX_W;
252b5132 4569
29b0f896
AM
4570 /* For 8 bit registers we need an empty rex prefix. Also if the
4571 instruction already has a prefix, we need to convert old
4572 registers to new ones. */
773f551c 4573
bab6aec1 4574 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4575 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4576 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4577 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4578 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4579 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4580 && i.rex != 0))
4581 {
4582 int x;
726c5dcd 4583
29b0f896
AM
4584 i.rex |= REX_OPCODE;
4585 for (x = 0; x < 2; x++)
4586 {
4587 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4588 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4589 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4590 {
3f93af61 4591 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4592 /* In case it is "hi" register, give up. */
4593 if (i.op[x].regs->reg_num > 3)
a540244d 4594 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4595 "instruction requiring REX prefix."),
a540244d 4596 register_prefix, i.op[x].regs->reg_name);
773f551c 4597
29b0f896
AM
4598 /* Otherwise it is equivalent to the extended register.
4599 Since the encoding doesn't change this is merely
4600 cosmetic cleanup for debug output. */
4601
4602 i.op[x].regs = i.op[x].regs + 8;
773f551c 4603 }
29b0f896
AM
4604 }
4605 }
773f551c 4606
6b6b6807
L
4607 if (i.rex == 0 && i.rex_encoding)
4608 {
4609 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4610 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4611 the REX_OPCODE byte. */
4612 int x;
4613 for (x = 0; x < 2; x++)
bab6aec1 4614 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4615 && i.types[x].bitfield.byte
4616 && (i.op[x].regs->reg_flags & RegRex64) == 0
4617 && i.op[x].regs->reg_num > 3)
4618 {
3f93af61 4619 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4620 i.rex_encoding = FALSE;
4621 break;
4622 }
4623
4624 if (i.rex_encoding)
4625 i.rex = REX_OPCODE;
4626 }
4627
7ab9ffdd 4628 if (i.rex != 0)
29b0f896
AM
4629 add_prefix (REX_OPCODE | i.rex);
4630
4631 /* We are ready to output the insn. */
4632 output_insn ();
e379e5f3
L
4633
4634 last_insn.seg = now_seg;
4635
4636 if (i.tm.opcode_modifier.isprefix)
4637 {
4638 last_insn.kind = last_insn_prefix;
4639 last_insn.name = i.tm.name;
4640 last_insn.file = as_where (&last_insn.line);
4641 }
4642 else
4643 last_insn.kind = last_insn_other;
29b0f896
AM
4644}
4645
4646static char *
e3bb37b5 4647parse_insn (char *line, char *mnemonic)
29b0f896
AM
4648{
4649 char *l = line;
4650 char *token_start = l;
4651 char *mnem_p;
5c6af06e 4652 int supported;
d3ce72d0 4653 const insn_template *t;
b6169b20 4654 char *dot_p = NULL;
29b0f896 4655
29b0f896
AM
4656 while (1)
4657 {
4658 mnem_p = mnemonic;
4659 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4660 {
b6169b20
L
4661 if (*mnem_p == '.')
4662 dot_p = mnem_p;
29b0f896
AM
4663 mnem_p++;
4664 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4665 {
29b0f896
AM
4666 as_bad (_("no such instruction: `%s'"), token_start);
4667 return NULL;
4668 }
4669 l++;
4670 }
4671 if (!is_space_char (*l)
4672 && *l != END_OF_INSN
e44823cf
JB
4673 && (intel_syntax
4674 || (*l != PREFIX_SEPARATOR
4675 && *l != ',')))
29b0f896
AM
4676 {
4677 as_bad (_("invalid character %s in mnemonic"),
4678 output_invalid (*l));
4679 return NULL;
4680 }
4681 if (token_start == l)
4682 {
e44823cf 4683 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4684 as_bad (_("expecting prefix; got nothing"));
4685 else
4686 as_bad (_("expecting mnemonic; got nothing"));
4687 return NULL;
4688 }
45288df1 4689
29b0f896 4690 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4691 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4692
29b0f896
AM
4693 if (*l != END_OF_INSN
4694 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4695 && current_templates
40fb9820 4696 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4697 {
c6fb90c8 4698 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4699 {
4700 as_bad ((flag_code != CODE_64BIT
4701 ? _("`%s' is only supported in 64-bit mode")
4702 : _("`%s' is not supported in 64-bit mode")),
4703 current_templates->start->name);
4704 return NULL;
4705 }
29b0f896
AM
4706 /* If we are in 16-bit mode, do not allow addr16 or data16.
4707 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4708 if ((current_templates->start->opcode_modifier.size == SIZE16
4709 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4710 && flag_code != CODE_64BIT
673fe0f0 4711 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4712 ^ (flag_code == CODE_16BIT)))
4713 {
4714 as_bad (_("redundant %s prefix"),
4715 current_templates->start->name);
4716 return NULL;
45288df1 4717 }
86fa6981 4718 if (current_templates->start->opcode_length == 0)
29b0f896 4719 {
86fa6981
L
4720 /* Handle pseudo prefixes. */
4721 switch (current_templates->start->base_opcode)
4722 {
4723 case 0x0:
4724 /* {disp8} */
4725 i.disp_encoding = disp_encoding_8bit;
4726 break;
4727 case 0x1:
4728 /* {disp32} */
4729 i.disp_encoding = disp_encoding_32bit;
4730 break;
4731 case 0x2:
4732 /* {load} */
4733 i.dir_encoding = dir_encoding_load;
4734 break;
4735 case 0x3:
4736 /* {store} */
4737 i.dir_encoding = dir_encoding_store;
4738 break;
4739 case 0x4:
42e04b36
L
4740 /* {vex} */
4741 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4742 break;
4743 case 0x5:
4744 /* {vex3} */
4745 i.vec_encoding = vex_encoding_vex3;
4746 break;
4747 case 0x6:
4748 /* {evex} */
4749 i.vec_encoding = vex_encoding_evex;
4750 break;
6b6b6807
L
4751 case 0x7:
4752 /* {rex} */
4753 i.rex_encoding = TRUE;
4754 break;
b6f8c7c4
L
4755 case 0x8:
4756 /* {nooptimize} */
4757 i.no_optimize = TRUE;
4758 break;
86fa6981
L
4759 default:
4760 abort ();
4761 }
4762 }
4763 else
4764 {
4765 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4766 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4767 {
4e9ac44a
L
4768 case PREFIX_EXIST:
4769 return NULL;
4770 case PREFIX_DS:
d777820b 4771 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4772 i.notrack_prefix = current_templates->start->name;
4773 break;
4774 case PREFIX_REP:
4775 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4776 i.hle_prefix = current_templates->start->name;
4777 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4778 i.bnd_prefix = current_templates->start->name;
4779 else
4780 i.rep_prefix = current_templates->start->name;
4781 break;
4782 default:
4783 break;
86fa6981 4784 }
29b0f896
AM
4785 }
4786 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4787 token_start = ++l;
4788 }
4789 else
4790 break;
4791 }
45288df1 4792
30a55f88 4793 if (!current_templates)
b6169b20 4794 {
07d5e953
JB
4795 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4796 Check if we should swap operand or force 32bit displacement in
f8a5c266 4797 encoding. */
30a55f88 4798 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4799 i.dir_encoding = dir_encoding_swap;
8d63c93e 4800 else if (mnem_p - 3 == dot_p
a501d77e
L
4801 && dot_p[1] == 'd'
4802 && dot_p[2] == '8')
4803 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4804 else if (mnem_p - 4 == dot_p
f8a5c266
L
4805 && dot_p[1] == 'd'
4806 && dot_p[2] == '3'
4807 && dot_p[3] == '2')
a501d77e 4808 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4809 else
4810 goto check_suffix;
4811 mnem_p = dot_p;
4812 *dot_p = '\0';
d3ce72d0 4813 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4814 }
4815
29b0f896
AM
4816 if (!current_templates)
4817 {
dc1e8a47 4818 check_suffix:
1c529385 4819 if (mnem_p > mnemonic)
29b0f896 4820 {
1c529385
LH
4821 /* See if we can get a match by trimming off a suffix. */
4822 switch (mnem_p[-1])
29b0f896 4823 {
1c529385
LH
4824 case WORD_MNEM_SUFFIX:
4825 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4826 i.suffix = SHORT_MNEM_SUFFIX;
4827 else
1c529385
LH
4828 /* Fall through. */
4829 case BYTE_MNEM_SUFFIX:
4830 case QWORD_MNEM_SUFFIX:
4831 i.suffix = mnem_p[-1];
29b0f896 4832 mnem_p[-1] = '\0';
d3ce72d0 4833 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4834 mnemonic);
4835 break;
4836 case SHORT_MNEM_SUFFIX:
4837 case LONG_MNEM_SUFFIX:
4838 if (!intel_syntax)
4839 {
4840 i.suffix = mnem_p[-1];
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846
4847 /* Intel Syntax. */
4848 case 'd':
4849 if (intel_syntax)
4850 {
4851 if (intel_float_operand (mnemonic) == 1)
4852 i.suffix = SHORT_MNEM_SUFFIX;
4853 else
4854 i.suffix = LONG_MNEM_SUFFIX;
4855 mnem_p[-1] = '\0';
4856 current_templates = (const templates *) hash_find (op_hash,
4857 mnemonic);
4858 }
4859 break;
29b0f896 4860 }
29b0f896 4861 }
1c529385 4862
29b0f896
AM
4863 if (!current_templates)
4864 {
4865 as_bad (_("no such instruction: `%s'"), token_start);
4866 return NULL;
4867 }
4868 }
252b5132 4869
0cfa3eb3
JB
4870 if (current_templates->start->opcode_modifier.jump == JUMP
4871 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4872 {
4873 /* Check for a branch hint. We allow ",pt" and ",pn" for
4874 predict taken and predict not taken respectively.
4875 I'm not sure that branch hints actually do anything on loop
4876 and jcxz insns (JumpByte) for current Pentium4 chips. They
4877 may work in the future and it doesn't hurt to accept them
4878 now. */
4879 if (l[0] == ',' && l[1] == 'p')
4880 {
4881 if (l[2] == 't')
4882 {
4883 if (!add_prefix (DS_PREFIX_OPCODE))
4884 return NULL;
4885 l += 3;
4886 }
4887 else if (l[2] == 'n')
4888 {
4889 if (!add_prefix (CS_PREFIX_OPCODE))
4890 return NULL;
4891 l += 3;
4892 }
4893 }
4894 }
4895 /* Any other comma loses. */
4896 if (*l == ',')
4897 {
4898 as_bad (_("invalid character %s in mnemonic"),
4899 output_invalid (*l));
4900 return NULL;
4901 }
252b5132 4902
29b0f896 4903 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4904 supported = 0;
4905 for (t = current_templates->start; t < current_templates->end; ++t)
4906 {
c0f3af97
L
4907 supported |= cpu_flags_match (t);
4908 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4909 {
4910 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4911 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4912
548d0ee6
JB
4913 return l;
4914 }
29b0f896 4915 }
3629bb00 4916
548d0ee6
JB
4917 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4918 as_bad (flag_code == CODE_64BIT
4919 ? _("`%s' is not supported in 64-bit mode")
4920 : _("`%s' is only supported in 64-bit mode"),
4921 current_templates->start->name);
4922 else
4923 as_bad (_("`%s' is not supported on `%s%s'"),
4924 current_templates->start->name,
4925 cpu_arch_name ? cpu_arch_name : default_arch,
4926 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4927
548d0ee6 4928 return NULL;
29b0f896 4929}
252b5132 4930
29b0f896 4931static char *
e3bb37b5 4932parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4933{
4934 char *token_start;
3138f287 4935
29b0f896
AM
4936 /* 1 if operand is pending after ','. */
4937 unsigned int expecting_operand = 0;
252b5132 4938
29b0f896
AM
4939 /* Non-zero if operand parens not balanced. */
4940 unsigned int paren_not_balanced;
4941
4942 while (*l != END_OF_INSN)
4943 {
4944 /* Skip optional white space before operand. */
4945 if (is_space_char (*l))
4946 ++l;
d02603dc 4947 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4948 {
4949 as_bad (_("invalid character %s before operand %d"),
4950 output_invalid (*l),
4951 i.operands + 1);
4952 return NULL;
4953 }
d02603dc 4954 token_start = l; /* After white space. */
29b0f896
AM
4955 paren_not_balanced = 0;
4956 while (paren_not_balanced || *l != ',')
4957 {
4958 if (*l == END_OF_INSN)
4959 {
4960 if (paren_not_balanced)
4961 {
4962 if (!intel_syntax)
4963 as_bad (_("unbalanced parenthesis in operand %d."),
4964 i.operands + 1);
4965 else
4966 as_bad (_("unbalanced brackets in operand %d."),
4967 i.operands + 1);
4968 return NULL;
4969 }
4970 else
4971 break; /* we are done */
4972 }
d02603dc 4973 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4974 {
4975 as_bad (_("invalid character %s in operand %d"),
4976 output_invalid (*l),
4977 i.operands + 1);
4978 return NULL;
4979 }
4980 if (!intel_syntax)
4981 {
4982 if (*l == '(')
4983 ++paren_not_balanced;
4984 if (*l == ')')
4985 --paren_not_balanced;
4986 }
4987 else
4988 {
4989 if (*l == '[')
4990 ++paren_not_balanced;
4991 if (*l == ']')
4992 --paren_not_balanced;
4993 }
4994 l++;
4995 }
4996 if (l != token_start)
4997 { /* Yes, we've read in another operand. */
4998 unsigned int operand_ok;
4999 this_operand = i.operands++;
5000 if (i.operands > MAX_OPERANDS)
5001 {
5002 as_bad (_("spurious operands; (%d operands/instruction max)"),
5003 MAX_OPERANDS);
5004 return NULL;
5005 }
9d46ce34 5006 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
5007 /* Now parse operand adding info to 'i' as we go along. */
5008 END_STRING_AND_SAVE (l);
5009
1286ab78
L
5010 if (i.mem_operands > 1)
5011 {
5012 as_bad (_("too many memory references for `%s'"),
5013 mnemonic);
5014 return 0;
5015 }
5016
29b0f896
AM
5017 if (intel_syntax)
5018 operand_ok =
5019 i386_intel_operand (token_start,
5020 intel_float_operand (mnemonic));
5021 else
a7619375 5022 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5023
5024 RESTORE_END_STRING (l);
5025 if (!operand_ok)
5026 return NULL;
5027 }
5028 else
5029 {
5030 if (expecting_operand)
5031 {
5032 expecting_operand_after_comma:
5033 as_bad (_("expecting operand after ','; got nothing"));
5034 return NULL;
5035 }
5036 if (*l == ',')
5037 {
5038 as_bad (_("expecting operand before ','; got nothing"));
5039 return NULL;
5040 }
5041 }
7f3f1ea2 5042
29b0f896
AM
5043 /* Now *l must be either ',' or END_OF_INSN. */
5044 if (*l == ',')
5045 {
5046 if (*++l == END_OF_INSN)
5047 {
5048 /* Just skip it, if it's \n complain. */
5049 goto expecting_operand_after_comma;
5050 }
5051 expecting_operand = 1;
5052 }
5053 }
5054 return l;
5055}
7f3f1ea2 5056
050dfa73 5057static void
4d456e3d 5058swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5059{
5060 union i386_op temp_op;
40fb9820 5061 i386_operand_type temp_type;
c48dadc9 5062 unsigned int temp_flags;
050dfa73 5063 enum bfd_reloc_code_real temp_reloc;
4eed87de 5064
050dfa73
MM
5065 temp_type = i.types[xchg2];
5066 i.types[xchg2] = i.types[xchg1];
5067 i.types[xchg1] = temp_type;
c48dadc9
JB
5068
5069 temp_flags = i.flags[xchg2];
5070 i.flags[xchg2] = i.flags[xchg1];
5071 i.flags[xchg1] = temp_flags;
5072
050dfa73
MM
5073 temp_op = i.op[xchg2];
5074 i.op[xchg2] = i.op[xchg1];
5075 i.op[xchg1] = temp_op;
c48dadc9 5076
050dfa73
MM
5077 temp_reloc = i.reloc[xchg2];
5078 i.reloc[xchg2] = i.reloc[xchg1];
5079 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5080
5081 if (i.mask)
5082 {
5083 if (i.mask->operand == xchg1)
5084 i.mask->operand = xchg2;
5085 else if (i.mask->operand == xchg2)
5086 i.mask->operand = xchg1;
5087 }
5088 if (i.broadcast)
5089 {
5090 if (i.broadcast->operand == xchg1)
5091 i.broadcast->operand = xchg2;
5092 else if (i.broadcast->operand == xchg2)
5093 i.broadcast->operand = xchg1;
5094 }
5095 if (i.rounding)
5096 {
5097 if (i.rounding->operand == xchg1)
5098 i.rounding->operand = xchg2;
5099 else if (i.rounding->operand == xchg2)
5100 i.rounding->operand = xchg1;
5101 }
050dfa73
MM
5102}
5103
29b0f896 5104static void
e3bb37b5 5105swap_operands (void)
29b0f896 5106{
b7c61d9a 5107 switch (i.operands)
050dfa73 5108 {
c0f3af97 5109 case 5:
b7c61d9a 5110 case 4:
4d456e3d 5111 swap_2_operands (1, i.operands - 2);
1a0670f3 5112 /* Fall through. */
b7c61d9a
L
5113 case 3:
5114 case 2:
4d456e3d 5115 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5116 break;
5117 default:
5118 abort ();
29b0f896 5119 }
29b0f896
AM
5120
5121 if (i.mem_operands == 2)
5122 {
5123 const seg_entry *temp_seg;
5124 temp_seg = i.seg[0];
5125 i.seg[0] = i.seg[1];
5126 i.seg[1] = temp_seg;
5127 }
5128}
252b5132 5129
29b0f896
AM
5130/* Try to ensure constant immediates are represented in the smallest
5131 opcode possible. */
5132static void
e3bb37b5 5133optimize_imm (void)
29b0f896
AM
5134{
5135 char guess_suffix = 0;
5136 int op;
252b5132 5137
29b0f896
AM
5138 if (i.suffix)
5139 guess_suffix = i.suffix;
5140 else if (i.reg_operands)
5141 {
5142 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5143 We can't do this properly yet, i.e. excluding special register
5144 instances, but the following works for instructions with
5145 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5146 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5147 if (i.types[op].bitfield.class != Reg)
5148 continue;
5149 else if (i.types[op].bitfield.byte)
7ab9ffdd 5150 {
40fb9820
L
5151 guess_suffix = BYTE_MNEM_SUFFIX;
5152 break;
5153 }
bab6aec1 5154 else if (i.types[op].bitfield.word)
252b5132 5155 {
40fb9820
L
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157 break;
5158 }
bab6aec1 5159 else if (i.types[op].bitfield.dword)
40fb9820
L
5160 {
5161 guess_suffix = LONG_MNEM_SUFFIX;
5162 break;
5163 }
bab6aec1 5164 else if (i.types[op].bitfield.qword)
40fb9820
L
5165 {
5166 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5167 break;
252b5132 5168 }
29b0f896
AM
5169 }
5170 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5171 guess_suffix = WORD_MNEM_SUFFIX;
5172
5173 for (op = i.operands; --op >= 0;)
40fb9820 5174 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5175 {
5176 switch (i.op[op].imms->X_op)
252b5132 5177 {
29b0f896
AM
5178 case O_constant:
5179 /* If a suffix is given, this operand may be shortened. */
5180 switch (guess_suffix)
252b5132 5181 {
29b0f896 5182 case LONG_MNEM_SUFFIX:
40fb9820
L
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5185 break;
5186 case WORD_MNEM_SUFFIX:
40fb9820
L
5187 i.types[op].bitfield.imm16 = 1;
5188 i.types[op].bitfield.imm32 = 1;
5189 i.types[op].bitfield.imm32s = 1;
5190 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5191 break;
5192 case BYTE_MNEM_SUFFIX:
40fb9820
L
5193 i.types[op].bitfield.imm8 = 1;
5194 i.types[op].bitfield.imm8s = 1;
5195 i.types[op].bitfield.imm16 = 1;
5196 i.types[op].bitfield.imm32 = 1;
5197 i.types[op].bitfield.imm32s = 1;
5198 i.types[op].bitfield.imm64 = 1;
29b0f896 5199 break;
252b5132 5200 }
252b5132 5201
29b0f896
AM
5202 /* If this operand is at most 16 bits, convert it
5203 to a signed 16 bit number before trying to see
5204 whether it will fit in an even smaller size.
5205 This allows a 16-bit operand such as $0xffe0 to
5206 be recognised as within Imm8S range. */
40fb9820 5207 if ((i.types[op].bitfield.imm16)
29b0f896 5208 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5209 {
29b0f896
AM
5210 i.op[op].imms->X_add_number =
5211 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5212 }
a28def75
L
5213#ifdef BFD64
5214 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5215 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5216 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5217 == 0))
5218 {
5219 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5220 ^ ((offsetT) 1 << 31))
5221 - ((offsetT) 1 << 31));
5222 }
a28def75 5223#endif
40fb9820 5224 i.types[op]
c6fb90c8
L
5225 = operand_type_or (i.types[op],
5226 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5227
29b0f896
AM
5228 /* We must avoid matching of Imm32 templates when 64bit
5229 only immediate is available. */
5230 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5231 i.types[op].bitfield.imm32 = 0;
29b0f896 5232 break;
252b5132 5233
29b0f896
AM
5234 case O_absent:
5235 case O_register:
5236 abort ();
5237
5238 /* Symbols and expressions. */
5239 default:
9cd96992
JB
5240 /* Convert symbolic operand to proper sizes for matching, but don't
5241 prevent matching a set of insns that only supports sizes other
5242 than those matching the insn suffix. */
5243 {
40fb9820 5244 i386_operand_type mask, allowed;
d3ce72d0 5245 const insn_template *t;
9cd96992 5246
0dfbf9d7
L
5247 operand_type_set (&mask, 0);
5248 operand_type_set (&allowed, 0);
40fb9820 5249
4eed87de
AM
5250 for (t = current_templates->start;
5251 t < current_templates->end;
5252 ++t)
bab6aec1
JB
5253 {
5254 allowed = operand_type_or (allowed, t->operand_types[op]);
5255 allowed = operand_type_and (allowed, anyimm);
5256 }
9cd96992
JB
5257 switch (guess_suffix)
5258 {
5259 case QWORD_MNEM_SUFFIX:
40fb9820
L
5260 mask.bitfield.imm64 = 1;
5261 mask.bitfield.imm32s = 1;
9cd96992
JB
5262 break;
5263 case LONG_MNEM_SUFFIX:
40fb9820 5264 mask.bitfield.imm32 = 1;
9cd96992
JB
5265 break;
5266 case WORD_MNEM_SUFFIX:
40fb9820 5267 mask.bitfield.imm16 = 1;
9cd96992
JB
5268 break;
5269 case BYTE_MNEM_SUFFIX:
40fb9820 5270 mask.bitfield.imm8 = 1;
9cd96992
JB
5271 break;
5272 default:
9cd96992
JB
5273 break;
5274 }
c6fb90c8 5275 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5276 if (!operand_type_all_zero (&allowed))
c6fb90c8 5277 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5278 }
29b0f896 5279 break;
252b5132 5280 }
29b0f896
AM
5281 }
5282}
47926f60 5283
29b0f896
AM
5284/* Try to use the smallest displacement type too. */
5285static void
e3bb37b5 5286optimize_disp (void)
29b0f896
AM
5287{
5288 int op;
3e73aa7c 5289
29b0f896 5290 for (op = i.operands; --op >= 0;)
40fb9820 5291 if (operand_type_check (i.types[op], disp))
252b5132 5292 {
b300c311 5293 if (i.op[op].disps->X_op == O_constant)
252b5132 5294 {
91d6fa6a 5295 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5296
40fb9820 5297 if (i.types[op].bitfield.disp16
91d6fa6a 5298 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5299 {
5300 /* If this operand is at most 16 bits, convert
5301 to a signed 16 bit number and don't use 64bit
5302 displacement. */
91d6fa6a 5303 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5304 i.types[op].bitfield.disp64 = 0;
b300c311 5305 }
a28def75
L
5306#ifdef BFD64
5307 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5308 if (i.types[op].bitfield.disp32
91d6fa6a 5309 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5310 {
5311 /* If this operand is at most 32 bits, convert
5312 to a signed 32 bit number and don't use 64bit
5313 displacement. */
91d6fa6a
NC
5314 op_disp &= (((offsetT) 2 << 31) - 1);
5315 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5316 i.types[op].bitfield.disp64 = 0;
b300c311 5317 }
a28def75 5318#endif
91d6fa6a 5319 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5320 {
40fb9820
L
5321 i.types[op].bitfield.disp8 = 0;
5322 i.types[op].bitfield.disp16 = 0;
5323 i.types[op].bitfield.disp32 = 0;
5324 i.types[op].bitfield.disp32s = 0;
5325 i.types[op].bitfield.disp64 = 0;
b300c311
L
5326 i.op[op].disps = 0;
5327 i.disp_operands--;
5328 }
5329 else if (flag_code == CODE_64BIT)
5330 {
91d6fa6a 5331 if (fits_in_signed_long (op_disp))
28a9d8f5 5332 {
40fb9820
L
5333 i.types[op].bitfield.disp64 = 0;
5334 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5335 }
0e1147d9 5336 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5337 && fits_in_unsigned_long (op_disp))
40fb9820 5338 i.types[op].bitfield.disp32 = 1;
b300c311 5339 }
40fb9820
L
5340 if ((i.types[op].bitfield.disp32
5341 || i.types[op].bitfield.disp32s
5342 || i.types[op].bitfield.disp16)
b5014f7a 5343 && fits_in_disp8 (op_disp))
40fb9820 5344 i.types[op].bitfield.disp8 = 1;
252b5132 5345 }
67a4f2b7
AO
5346 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5347 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5348 {
5349 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5350 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5351 i.types[op].bitfield.disp8 = 0;
5352 i.types[op].bitfield.disp16 = 0;
5353 i.types[op].bitfield.disp32 = 0;
5354 i.types[op].bitfield.disp32s = 0;
5355 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5356 }
5357 else
b300c311 5358 /* We only support 64bit displacement on constants. */
40fb9820 5359 i.types[op].bitfield.disp64 = 0;
252b5132 5360 }
29b0f896
AM
5361}
5362
4a1b91ea
L
5363/* Return 1 if there is a match in broadcast bytes between operand
5364 GIVEN and instruction template T. */
5365
5366static INLINE int
5367match_broadcast_size (const insn_template *t, unsigned int given)
5368{
5369 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5370 && i.types[given].bitfield.byte)
5371 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5372 && i.types[given].bitfield.word)
5373 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5374 && i.types[given].bitfield.dword)
5375 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5376 && i.types[given].bitfield.qword));
5377}
5378
6c30d220
L
5379/* Check if operands are valid for the instruction. */
5380
5381static int
5382check_VecOperands (const insn_template *t)
5383{
43234a1e 5384 unsigned int op;
e2195274 5385 i386_cpu_flags cpu;
e2195274
JB
5386
5387 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5388 any one operand are implicity requiring AVX512VL support if the actual
5389 operand size is YMMword or XMMword. Since this function runs after
5390 template matching, there's no need to check for YMMword/XMMword in
5391 the template. */
5392 cpu = cpu_flags_and (t->cpu_flags, avx512);
5393 if (!cpu_flags_all_zero (&cpu)
5394 && !t->cpu_flags.bitfield.cpuavx512vl
5395 && !cpu_arch_flags.bitfield.cpuavx512vl)
5396 {
5397 for (op = 0; op < t->operands; ++op)
5398 {
5399 if (t->operand_types[op].bitfield.zmmword
5400 && (i.types[op].bitfield.ymmword
5401 || i.types[op].bitfield.xmmword))
5402 {
5403 i.error = unsupported;
5404 return 1;
5405 }
5406 }
5407 }
43234a1e 5408
6c30d220
L
5409 /* Without VSIB byte, we can't have a vector register for index. */
5410 if (!t->opcode_modifier.vecsib
5411 && i.index_reg
1b54b8d7
JB
5412 && (i.index_reg->reg_type.bitfield.xmmword
5413 || i.index_reg->reg_type.bitfield.ymmword
5414 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5415 {
5416 i.error = unsupported_vector_index_register;
5417 return 1;
5418 }
5419
ad8ecc81
MZ
5420 /* Check if default mask is allowed. */
5421 if (t->opcode_modifier.nodefmask
5422 && (!i.mask || i.mask->mask->reg_num == 0))
5423 {
5424 i.error = no_default_mask;
5425 return 1;
5426 }
5427
7bab8ab5
JB
5428 /* For VSIB byte, we need a vector register for index, and all vector
5429 registers must be distinct. */
5430 if (t->opcode_modifier.vecsib)
5431 {
5432 if (!i.index_reg
6c30d220 5433 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5434 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5435 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5436 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5437 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5438 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5439 {
5440 i.error = invalid_vsib_address;
5441 return 1;
5442 }
5443
43234a1e
L
5444 gas_assert (i.reg_operands == 2 || i.mask);
5445 if (i.reg_operands == 2 && !i.mask)
5446 {
3528c362 5447 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5448 gas_assert (i.types[0].bitfield.xmmword
5449 || i.types[0].bitfield.ymmword);
3528c362 5450 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5451 gas_assert (i.types[2].bitfield.xmmword
5452 || i.types[2].bitfield.ymmword);
43234a1e
L
5453 if (operand_check == check_none)
5454 return 0;
5455 if (register_number (i.op[0].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[2].regs)
5458 != register_number (i.index_reg)
5459 && register_number (i.op[0].regs)
5460 != register_number (i.op[2].regs))
5461 return 0;
5462 if (operand_check == check_error)
5463 {
5464 i.error = invalid_vector_register_set;
5465 return 1;
5466 }
5467 as_warn (_("mask, index, and destination registers should be distinct"));
5468 }
8444f82a
MZ
5469 else if (i.reg_operands == 1 && i.mask)
5470 {
3528c362 5471 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5472 && (i.types[1].bitfield.xmmword
5473 || i.types[1].bitfield.ymmword
5474 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5475 && (register_number (i.op[1].regs)
5476 == register_number (i.index_reg)))
5477 {
5478 if (operand_check == check_error)
5479 {
5480 i.error = invalid_vector_register_set;
5481 return 1;
5482 }
5483 if (operand_check != check_none)
5484 as_warn (_("index and destination registers should be distinct"));
5485 }
5486 }
43234a1e 5487 }
7bab8ab5 5488
43234a1e
L
5489 /* Check if broadcast is supported by the instruction and is applied
5490 to the memory operand. */
5491 if (i.broadcast)
5492 {
8e6e0792 5493 i386_operand_type type, overlap;
43234a1e
L
5494
5495 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5496 and its broadcast bytes match the memory operand. */
32546502 5497 op = i.broadcast->operand;
8e6e0792 5498 if (!t->opcode_modifier.broadcast
c48dadc9 5499 || !(i.flags[op] & Operand_Mem)
c39e5b26 5500 || (!i.types[op].bitfield.unspecified
4a1b91ea 5501 && !match_broadcast_size (t, op)))
43234a1e
L
5502 {
5503 bad_broadcast:
5504 i.error = unsupported_broadcast;
5505 return 1;
5506 }
8e6e0792 5507
4a1b91ea
L
5508 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5509 * i.broadcast->type);
8e6e0792 5510 operand_type_set (&type, 0);
4a1b91ea 5511 switch (i.broadcast->bytes)
8e6e0792 5512 {
4a1b91ea
L
5513 case 2:
5514 type.bitfield.word = 1;
5515 break;
5516 case 4:
5517 type.bitfield.dword = 1;
5518 break;
8e6e0792
JB
5519 case 8:
5520 type.bitfield.qword = 1;
5521 break;
5522 case 16:
5523 type.bitfield.xmmword = 1;
5524 break;
5525 case 32:
5526 type.bitfield.ymmword = 1;
5527 break;
5528 case 64:
5529 type.bitfield.zmmword = 1;
5530 break;
5531 default:
5532 goto bad_broadcast;
5533 }
5534
5535 overlap = operand_type_and (type, t->operand_types[op]);
5536 if (operand_type_all_zero (&overlap))
5537 goto bad_broadcast;
5538
5539 if (t->opcode_modifier.checkregsize)
5540 {
5541 unsigned int j;
5542
e2195274 5543 type.bitfield.baseindex = 1;
8e6e0792
JB
5544 for (j = 0; j < i.operands; ++j)
5545 {
5546 if (j != op
5547 && !operand_type_register_match(i.types[j],
5548 t->operand_types[j],
5549 type,
5550 t->operand_types[op]))
5551 goto bad_broadcast;
5552 }
5553 }
43234a1e
L
5554 }
5555 /* If broadcast is supported in this instruction, we need to check if
5556 operand of one-element size isn't specified without broadcast. */
5557 else if (t->opcode_modifier.broadcast && i.mem_operands)
5558 {
5559 /* Find memory operand. */
5560 for (op = 0; op < i.operands; op++)
8dc0818e 5561 if (i.flags[op] & Operand_Mem)
43234a1e
L
5562 break;
5563 gas_assert (op < i.operands);
5564 /* Check size of the memory operand. */
4a1b91ea 5565 if (match_broadcast_size (t, op))
43234a1e
L
5566 {
5567 i.error = broadcast_needed;
5568 return 1;
5569 }
5570 }
c39e5b26
JB
5571 else
5572 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5573
5574 /* Check if requested masking is supported. */
ae2387fe 5575 if (i.mask)
43234a1e 5576 {
ae2387fe
JB
5577 switch (t->opcode_modifier.masking)
5578 {
5579 case BOTH_MASKING:
5580 break;
5581 case MERGING_MASKING:
5582 if (i.mask->zeroing)
5583 {
5584 case 0:
5585 i.error = unsupported_masking;
5586 return 1;
5587 }
5588 break;
5589 case DYNAMIC_MASKING:
5590 /* Memory destinations allow only merging masking. */
5591 if (i.mask->zeroing && i.mem_operands)
5592 {
5593 /* Find memory operand. */
5594 for (op = 0; op < i.operands; op++)
c48dadc9 5595 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5596 break;
5597 gas_assert (op < i.operands);
5598 if (op == i.operands - 1)
5599 {
5600 i.error = unsupported_masking;
5601 return 1;
5602 }
5603 }
5604 break;
5605 default:
5606 abort ();
5607 }
43234a1e
L
5608 }
5609
5610 /* Check if masking is applied to dest operand. */
5611 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5612 {
5613 i.error = mask_not_on_destination;
5614 return 1;
5615 }
5616
43234a1e
L
5617 /* Check RC/SAE. */
5618 if (i.rounding)
5619 {
a80195f1
JB
5620 if (!t->opcode_modifier.sae
5621 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5622 {
5623 i.error = unsupported_rc_sae;
5624 return 1;
5625 }
5626 /* If the instruction has several immediate operands and one of
5627 them is rounding, the rounding operand should be the last
5628 immediate operand. */
5629 if (i.imm_operands > 1
5630 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5631 {
43234a1e 5632 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5633 return 1;
5634 }
6c30d220
L
5635 }
5636
43234a1e 5637 /* Check vector Disp8 operand. */
b5014f7a
JB
5638 if (t->opcode_modifier.disp8memshift
5639 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5640 {
5641 if (i.broadcast)
4a1b91ea 5642 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5643 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5644 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5645 else
5646 {
5647 const i386_operand_type *type = NULL;
5648
5649 i.memshift = 0;
5650 for (op = 0; op < i.operands; op++)
8dc0818e 5651 if (i.flags[op] & Operand_Mem)
7091c612 5652 {
4174bfff
JB
5653 if (t->opcode_modifier.evex == EVEXLIG)
5654 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5655 else if (t->operand_types[op].bitfield.xmmword
5656 + t->operand_types[op].bitfield.ymmword
5657 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5658 type = &t->operand_types[op];
5659 else if (!i.types[op].bitfield.unspecified)
5660 type = &i.types[op];
5661 }
3528c362 5662 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5663 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5664 {
5665 if (i.types[op].bitfield.zmmword)
5666 i.memshift = 6;
5667 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5668 i.memshift = 5;
5669 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5670 i.memshift = 4;
5671 }
5672
5673 if (type)
5674 {
5675 if (type->bitfield.zmmword)
5676 i.memshift = 6;
5677 else if (type->bitfield.ymmword)
5678 i.memshift = 5;
5679 else if (type->bitfield.xmmword)
5680 i.memshift = 4;
5681 }
5682
5683 /* For the check in fits_in_disp8(). */
5684 if (i.memshift == 0)
5685 i.memshift = -1;
5686 }
43234a1e
L
5687
5688 for (op = 0; op < i.operands; op++)
5689 if (operand_type_check (i.types[op], disp)
5690 && i.op[op].disps->X_op == O_constant)
5691 {
b5014f7a 5692 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5693 {
b5014f7a
JB
5694 i.types[op].bitfield.disp8 = 1;
5695 return 0;
43234a1e 5696 }
b5014f7a 5697 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5698 }
5699 }
b5014f7a
JB
5700
5701 i.memshift = 0;
43234a1e 5702
6c30d220
L
5703 return 0;
5704}
5705
43f3e2ee 5706/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5707 operand types. */
5708
5709static int
5710VEX_check_operands (const insn_template *t)
5711{
86fa6981 5712 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5713 {
86fa6981 5714 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5715 if (!is_evex_encoding (t))
86fa6981
L
5716 {
5717 i.error = unsupported;
5718 return 1;
5719 }
5720 return 0;
43234a1e
L
5721 }
5722
a683cc34 5723 if (!t->opcode_modifier.vex)
86fa6981
L
5724 {
5725 /* This instruction template doesn't have VEX prefix. */
5726 if (i.vec_encoding != vex_encoding_default)
5727 {
5728 i.error = unsupported;
5729 return 1;
5730 }
5731 return 0;
5732 }
a683cc34 5733
9d3bf266
JB
5734 /* Check the special Imm4 cases; must be the first operand. */
5735 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5736 {
5737 if (i.op[0].imms->X_op != O_constant
5738 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5739 {
a65babc9 5740 i.error = bad_imm4;
891edac4
L
5741 return 1;
5742 }
a683cc34 5743
9d3bf266
JB
5744 /* Turn off Imm<N> so that update_imm won't complain. */
5745 operand_type_set (&i.types[0], 0);
a683cc34
SP
5746 }
5747
5748 return 0;
5749}
5750
d3ce72d0 5751static const insn_template *
83b16ac6 5752match_template (char mnem_suffix)
29b0f896
AM
5753{
5754 /* Points to template once we've found it. */
d3ce72d0 5755 const insn_template *t;
40fb9820 5756 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5757 i386_operand_type overlap4;
29b0f896 5758 unsigned int found_reverse_match;
dc2be329 5759 i386_opcode_modifier suffix_check;
40fb9820 5760 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5761 int addr_prefix_disp;
45a4bb20 5762 unsigned int j, size_match, check_register;
5614d22c 5763 enum i386_error specific_error = 0;
29b0f896 5764
c0f3af97
L
5765#if MAX_OPERANDS != 5
5766# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5767#endif
5768
29b0f896 5769 found_reverse_match = 0;
539e75ad 5770 addr_prefix_disp = -1;
40fb9820 5771
dc2be329 5772 /* Prepare for mnemonic suffix check. */
40fb9820 5773 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5774 switch (mnem_suffix)
5775 {
5776 case BYTE_MNEM_SUFFIX:
5777 suffix_check.no_bsuf = 1;
5778 break;
5779 case WORD_MNEM_SUFFIX:
5780 suffix_check.no_wsuf = 1;
5781 break;
5782 case SHORT_MNEM_SUFFIX:
5783 suffix_check.no_ssuf = 1;
5784 break;
5785 case LONG_MNEM_SUFFIX:
5786 suffix_check.no_lsuf = 1;
5787 break;
5788 case QWORD_MNEM_SUFFIX:
5789 suffix_check.no_qsuf = 1;
5790 break;
5791 default:
5792 /* NB: In Intel syntax, normally we can check for memory operand
5793 size when there is no mnemonic suffix. But jmp and call have
5794 2 different encodings with Dword memory operand size, one with
5795 No_ldSuf and the other without. i.suffix is set to
5796 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5797 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5798 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5799 }
5800
01559ecc
L
5801 /* Must have right number of operands. */
5802 i.error = number_of_operands_mismatch;
5803
45aa61fe 5804 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5805 {
539e75ad 5806 addr_prefix_disp = -1;
dbbc8b7e 5807 found_reverse_match = 0;
539e75ad 5808
29b0f896
AM
5809 if (i.operands != t->operands)
5810 continue;
5811
50aecf8c 5812 /* Check processor support. */
a65babc9 5813 i.error = unsupported;
45a4bb20 5814 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5815 continue;
5816
e1d4d893 5817 /* Check AT&T mnemonic. */
a65babc9 5818 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5819 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5820 continue;
5821
4b5aaf5f 5822 /* Check AT&T/Intel syntax. */
a65babc9 5823 i.error = unsupported_syntax;
5c07affc 5824 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 5825 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
5826 continue;
5827
4b5aaf5f
L
5828 /* Check Intel64/AMD64 ISA. */
5829 switch (isa64)
5830 {
5831 default:
5832 /* Default: Don't accept Intel64. */
5833 if (t->opcode_modifier.isa64 == INTEL64)
5834 continue;
5835 break;
5836 case amd64:
5837 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5838 if (t->opcode_modifier.isa64 >= INTEL64)
5839 continue;
5840 break;
5841 case intel64:
5842 /* -mintel64: Don't accept AMD64. */
5990e377 5843 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
5844 continue;
5845 break;
5846 }
5847
dc2be329 5848 /* Check the suffix. */
a65babc9 5849 i.error = invalid_instruction_suffix;
dc2be329
L
5850 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5851 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5852 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5853 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5854 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5855 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5856 continue;
29b0f896 5857
3ac21baa
JB
5858 size_match = operand_size_match (t);
5859 if (!size_match)
7d5e4556 5860 continue;
539e75ad 5861
6f2f06be
JB
5862 /* This is intentionally not
5863
0cfa3eb3 5864 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5865
5866 as the case of a missing * on the operand is accepted (perhaps with
5867 a warning, issued further down). */
0cfa3eb3 5868 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5869 {
5870 i.error = operand_type_mismatch;
5871 continue;
5872 }
5873
5c07affc
L
5874 for (j = 0; j < MAX_OPERANDS; j++)
5875 operand_types[j] = t->operand_types[j];
5876
45aa61fe
AM
5877 /* In general, don't allow 64-bit operands in 32-bit mode. */
5878 if (i.suffix == QWORD_MNEM_SUFFIX
5879 && flag_code != CODE_64BIT
5880 && (intel_syntax
3cd7f3e3 5881 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
625cbd7a 5882 && !t->opcode_modifier.broadcast
45aa61fe
AM
5883 && !intel_float_operand (t->name))
5884 : intel_float_operand (t->name) != 2)
3528c362
JB
5885 && ((operand_types[0].bitfield.class != RegMMX
5886 && operand_types[0].bitfield.class != RegSIMD)
5887 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5888 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5889 && (t->base_opcode != 0x0fc7
5890 || t->extension_opcode != 1 /* cmpxchg8b */))
5891 continue;
5892
192dc9c6
JB
5893 /* In general, don't allow 32-bit operands on pre-386. */
5894 else if (i.suffix == LONG_MNEM_SUFFIX
5895 && !cpu_arch_flags.bitfield.cpui386
5896 && (intel_syntax
3cd7f3e3 5897 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
192dc9c6
JB
5898 && !intel_float_operand (t->name))
5899 : intel_float_operand (t->name) != 2)
3528c362
JB
5900 && ((operand_types[0].bitfield.class != RegMMX
5901 && operand_types[0].bitfield.class != RegSIMD)
5902 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5903 && operand_types[t->operands > 1].bitfield.class
5904 != RegSIMD)))
192dc9c6
JB
5905 continue;
5906
29b0f896 5907 /* Do not verify operands when there are none. */
50aecf8c 5908 else
29b0f896 5909 {
c6fb90c8 5910 if (!t->operands)
2dbab7d5
L
5911 /* We've found a match; break out of loop. */
5912 break;
29b0f896 5913 }
252b5132 5914
48bcea9f
JB
5915 if (!t->opcode_modifier.jump
5916 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5917 {
5918 /* There should be only one Disp operand. */
5919 for (j = 0; j < MAX_OPERANDS; j++)
5920 if (operand_type_check (operand_types[j], disp))
539e75ad 5921 break;
48bcea9f
JB
5922 if (j < MAX_OPERANDS)
5923 {
5924 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5925
5926 addr_prefix_disp = j;
5927
5928 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5929 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5930 switch (flag_code)
40fb9820 5931 {
48bcea9f
JB
5932 case CODE_16BIT:
5933 override = !override;
5934 /* Fall through. */
5935 case CODE_32BIT:
5936 if (operand_types[j].bitfield.disp32
5937 && operand_types[j].bitfield.disp16)
40fb9820 5938 {
48bcea9f
JB
5939 operand_types[j].bitfield.disp16 = override;
5940 operand_types[j].bitfield.disp32 = !override;
40fb9820 5941 }
48bcea9f
JB
5942 operand_types[j].bitfield.disp32s = 0;
5943 operand_types[j].bitfield.disp64 = 0;
5944 break;
5945
5946 case CODE_64BIT:
5947 if (operand_types[j].bitfield.disp32s
5948 || operand_types[j].bitfield.disp64)
40fb9820 5949 {
48bcea9f
JB
5950 operand_types[j].bitfield.disp64 &= !override;
5951 operand_types[j].bitfield.disp32s &= !override;
5952 operand_types[j].bitfield.disp32 = override;
40fb9820 5953 }
48bcea9f
JB
5954 operand_types[j].bitfield.disp16 = 0;
5955 break;
40fb9820 5956 }
539e75ad 5957 }
48bcea9f 5958 }
539e75ad 5959
02a86693
L
5960 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5961 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5962 continue;
5963
56ffb741 5964 /* We check register size if needed. */
e2195274
JB
5965 if (t->opcode_modifier.checkregsize)
5966 {
5967 check_register = (1 << t->operands) - 1;
5968 if (i.broadcast)
5969 check_register &= ~(1 << i.broadcast->operand);
5970 }
5971 else
5972 check_register = 0;
5973
c6fb90c8 5974 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5975 switch (t->operands)
5976 {
5977 case 1:
40fb9820 5978 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5979 continue;
5980 break;
5981 case 2:
33eaf5de 5982 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5983 only in 32bit mode and we can use opcode 0x90. In 64bit
5984 mode, we can't use 0x90 for xchg %eax, %eax since it should
5985 zero-extend %eax to %rax. */
5986 if (flag_code == CODE_64BIT
5987 && t->base_opcode == 0x90
75e5731b
JB
5988 && i.types[0].bitfield.instance == Accum
5989 && i.types[0].bitfield.dword
5990 && i.types[1].bitfield.instance == Accum
5991 && i.types[1].bitfield.dword)
8b38ad71 5992 continue;
1212781b
JB
5993 /* xrelease mov %eax, <disp> is another special case. It must not
5994 match the accumulator-only encoding of mov. */
5995 if (flag_code != CODE_64BIT
5996 && i.hle_prefix
5997 && t->base_opcode == 0xa0
75e5731b 5998 && i.types[0].bitfield.instance == Accum
8dc0818e 5999 && (i.flags[1] & Operand_Mem))
1212781b 6000 continue;
f5eb1d70
JB
6001 /* Fall through. */
6002
6003 case 3:
3ac21baa
JB
6004 if (!(size_match & MATCH_STRAIGHT))
6005 goto check_reverse;
64c49ab3
JB
6006 /* Reverse direction of operands if swapping is possible in the first
6007 place (operands need to be symmetric) and
6008 - the load form is requested, and the template is a store form,
6009 - the store form is requested, and the template is a load form,
6010 - the non-default (swapped) form is requested. */
6011 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 6012 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
6013 && !operand_type_all_zero (&overlap1))
6014 switch (i.dir_encoding)
6015 {
6016 case dir_encoding_load:
6017 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6018 || t->opcode_modifier.regmem)
64c49ab3
JB
6019 goto check_reverse;
6020 break;
6021
6022 case dir_encoding_store:
6023 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6024 && !t->opcode_modifier.regmem)
64c49ab3
JB
6025 goto check_reverse;
6026 break;
6027
6028 case dir_encoding_swap:
6029 goto check_reverse;
6030
6031 case dir_encoding_default:
6032 break;
6033 }
86fa6981 6034 /* If we want store form, we skip the current load. */
64c49ab3
JB
6035 if ((i.dir_encoding == dir_encoding_store
6036 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6037 && i.mem_operands == 0
6038 && t->opcode_modifier.load)
fa99fab2 6039 continue;
1a0670f3 6040 /* Fall through. */
f48ff2ae 6041 case 4:
c0f3af97 6042 case 5:
c6fb90c8 6043 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6044 if (!operand_type_match (overlap0, i.types[0])
6045 || !operand_type_match (overlap1, i.types[1])
e2195274 6046 || ((check_register & 3) == 3
dc821c5f 6047 && !operand_type_register_match (i.types[0],
40fb9820 6048 operand_types[0],
dc821c5f 6049 i.types[1],
40fb9820 6050 operand_types[1])))
29b0f896
AM
6051 {
6052 /* Check if other direction is valid ... */
38e314eb 6053 if (!t->opcode_modifier.d)
29b0f896
AM
6054 continue;
6055
dc1e8a47 6056 check_reverse:
3ac21baa
JB
6057 if (!(size_match & MATCH_REVERSE))
6058 continue;
29b0f896 6059 /* Try reversing direction of operands. */
f5eb1d70
JB
6060 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6061 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6062 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6063 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6064 || (check_register
dc821c5f 6065 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6066 operand_types[i.operands - 1],
6067 i.types[i.operands - 1],
45664ddb 6068 operand_types[0])))
29b0f896
AM
6069 {
6070 /* Does not match either direction. */
6071 continue;
6072 }
38e314eb 6073 /* found_reverse_match holds which of D or FloatR
29b0f896 6074 we've found. */
38e314eb
JB
6075 if (!t->opcode_modifier.d)
6076 found_reverse_match = 0;
6077 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6078 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6079 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6080 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6081 || operand_types[0].bitfield.class == RegMMX
6082 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6083 || is_any_vex_encoding(t))
6084 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6085 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6086 else
38e314eb 6087 found_reverse_match = Opcode_D;
40fb9820 6088 if (t->opcode_modifier.floatr)
8a2ed489 6089 found_reverse_match |= Opcode_FloatR;
29b0f896 6090 }
f48ff2ae 6091 else
29b0f896 6092 {
f48ff2ae 6093 /* Found a forward 2 operand match here. */
d1cbb4db
L
6094 switch (t->operands)
6095 {
c0f3af97
L
6096 case 5:
6097 overlap4 = operand_type_and (i.types[4],
6098 operand_types[4]);
1a0670f3 6099 /* Fall through. */
d1cbb4db 6100 case 4:
c6fb90c8
L
6101 overlap3 = operand_type_and (i.types[3],
6102 operand_types[3]);
1a0670f3 6103 /* Fall through. */
d1cbb4db 6104 case 3:
c6fb90c8
L
6105 overlap2 = operand_type_and (i.types[2],
6106 operand_types[2]);
d1cbb4db
L
6107 break;
6108 }
29b0f896 6109
f48ff2ae
L
6110 switch (t->operands)
6111 {
c0f3af97
L
6112 case 5:
6113 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6114 || !operand_type_register_match (i.types[3],
c0f3af97 6115 operand_types[3],
c0f3af97
L
6116 i.types[4],
6117 operand_types[4]))
6118 continue;
1a0670f3 6119 /* Fall through. */
f48ff2ae 6120 case 4:
40fb9820 6121 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6122 || ((check_register & 0xa) == 0xa
6123 && !operand_type_register_match (i.types[1],
f7768225
JB
6124 operand_types[1],
6125 i.types[3],
e2195274
JB
6126 operand_types[3]))
6127 || ((check_register & 0xc) == 0xc
6128 && !operand_type_register_match (i.types[2],
6129 operand_types[2],
6130 i.types[3],
6131 operand_types[3])))
f48ff2ae 6132 continue;
1a0670f3 6133 /* Fall through. */
f48ff2ae
L
6134 case 3:
6135 /* Here we make use of the fact that there are no
23e42951 6136 reverse match 3 operand instructions. */
40fb9820 6137 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6138 || ((check_register & 5) == 5
6139 && !operand_type_register_match (i.types[0],
23e42951
JB
6140 operand_types[0],
6141 i.types[2],
e2195274
JB
6142 operand_types[2]))
6143 || ((check_register & 6) == 6
6144 && !operand_type_register_match (i.types[1],
6145 operand_types[1],
6146 i.types[2],
6147 operand_types[2])))
f48ff2ae
L
6148 continue;
6149 break;
6150 }
29b0f896 6151 }
f48ff2ae 6152 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6153 slip through to break. */
6154 }
c0f3af97 6155
5614d22c
JB
6156 /* Check if vector and VEX operands are valid. */
6157 if (check_VecOperands (t) || VEX_check_operands (t))
6158 {
6159 specific_error = i.error;
6160 continue;
6161 }
a683cc34 6162
29b0f896
AM
6163 /* We've found a match; break out of loop. */
6164 break;
6165 }
6166
6167 if (t == current_templates->end)
6168 {
6169 /* We found no match. */
a65babc9 6170 const char *err_msg;
5614d22c 6171 switch (specific_error ? specific_error : i.error)
a65babc9
L
6172 {
6173 default:
6174 abort ();
86e026a4 6175 case operand_size_mismatch:
a65babc9
L
6176 err_msg = _("operand size mismatch");
6177 break;
6178 case operand_type_mismatch:
6179 err_msg = _("operand type mismatch");
6180 break;
6181 case register_type_mismatch:
6182 err_msg = _("register type mismatch");
6183 break;
6184 case number_of_operands_mismatch:
6185 err_msg = _("number of operands mismatch");
6186 break;
6187 case invalid_instruction_suffix:
6188 err_msg = _("invalid instruction suffix");
6189 break;
6190 case bad_imm4:
4a2608e3 6191 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6192 break;
a65babc9
L
6193 case unsupported_with_intel_mnemonic:
6194 err_msg = _("unsupported with Intel mnemonic");
6195 break;
6196 case unsupported_syntax:
6197 err_msg = _("unsupported syntax");
6198 break;
6199 case unsupported:
35262a23 6200 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6201 current_templates->start->name);
6202 return NULL;
6c30d220
L
6203 case invalid_vsib_address:
6204 err_msg = _("invalid VSIB address");
6205 break;
7bab8ab5
JB
6206 case invalid_vector_register_set:
6207 err_msg = _("mask, index, and destination registers must be distinct");
6208 break;
6c30d220
L
6209 case unsupported_vector_index_register:
6210 err_msg = _("unsupported vector index register");
6211 break;
43234a1e
L
6212 case unsupported_broadcast:
6213 err_msg = _("unsupported broadcast");
6214 break;
43234a1e
L
6215 case broadcast_needed:
6216 err_msg = _("broadcast is needed for operand of such type");
6217 break;
6218 case unsupported_masking:
6219 err_msg = _("unsupported masking");
6220 break;
6221 case mask_not_on_destination:
6222 err_msg = _("mask not on destination operand");
6223 break;
6224 case no_default_mask:
6225 err_msg = _("default mask isn't allowed");
6226 break;
6227 case unsupported_rc_sae:
6228 err_msg = _("unsupported static rounding/sae");
6229 break;
6230 case rc_sae_operand_not_last_imm:
6231 if (intel_syntax)
6232 err_msg = _("RC/SAE operand must precede immediate operands");
6233 else
6234 err_msg = _("RC/SAE operand must follow immediate operands");
6235 break;
6236 case invalid_register_operand:
6237 err_msg = _("invalid register operand");
6238 break;
a65babc9
L
6239 }
6240 as_bad (_("%s for `%s'"), err_msg,
891edac4 6241 current_templates->start->name);
fa99fab2 6242 return NULL;
29b0f896 6243 }
252b5132 6244
29b0f896
AM
6245 if (!quiet_warnings)
6246 {
6247 if (!intel_syntax
0cfa3eb3 6248 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6249 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6250
40fb9820 6251 if (t->opcode_modifier.isprefix
3cd7f3e3 6252 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6253 {
6254 /* Warn them that a data or address size prefix doesn't
6255 affect assembly of the next line of code. */
6256 as_warn (_("stand-alone `%s' prefix"), t->name);
6257 }
6258 }
6259
6260 /* Copy the template we found. */
6261 i.tm = *t;
539e75ad
L
6262
6263 if (addr_prefix_disp != -1)
6264 i.tm.operand_types[addr_prefix_disp]
6265 = operand_types[addr_prefix_disp];
6266
29b0f896
AM
6267 if (found_reverse_match)
6268 {
dfd69174
JB
6269 /* If we found a reverse match we must alter the opcode direction
6270 bit and clear/flip the regmem modifier one. found_reverse_match
6271 holds bits to change (different for int & float insns). */
29b0f896
AM
6272
6273 i.tm.base_opcode ^= found_reverse_match;
6274
f5eb1d70
JB
6275 i.tm.operand_types[0] = operand_types[i.operands - 1];
6276 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6277
6278 /* Certain SIMD insns have their load forms specified in the opcode
6279 table, and hence we need to _set_ RegMem instead of clearing it.
6280 We need to avoid setting the bit though on insns like KMOVW. */
6281 i.tm.opcode_modifier.regmem
6282 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6283 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6284 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6285 }
6286
fa99fab2 6287 return t;
29b0f896
AM
6288}
6289
6290static int
e3bb37b5 6291check_string (void)
29b0f896 6292{
51c8edf6
JB
6293 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6294 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6295
51c8edf6 6296 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6297 {
51c8edf6
JB
6298 as_bad (_("`%s' operand %u must use `%ses' segment"),
6299 i.tm.name,
6300 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6301 register_prefix);
6302 return 0;
29b0f896 6303 }
51c8edf6
JB
6304
6305 /* There's only ever one segment override allowed per instruction.
6306 This instruction possibly has a legal segment override on the
6307 second operand, so copy the segment to where non-string
6308 instructions store it, allowing common code. */
6309 i.seg[op] = i.seg[1];
6310
29b0f896
AM
6311 return 1;
6312}
6313
6314static int
543613e9 6315process_suffix (void)
29b0f896
AM
6316{
6317 /* If matched instruction specifies an explicit instruction mnemonic
6318 suffix, use it. */
673fe0f0 6319 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6320 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6321 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6322 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6323 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6324 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 6325 else if (i.reg_operands
c8f8eebc
JB
6326 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6327 && !i.tm.opcode_modifier.addrprefixopreg)
29b0f896 6328 {
65fca059
JB
6329 unsigned int numop = i.operands;
6330
6331 /* movsx/movzx want only their source operand considered here, for the
6332 ambiguity checking below. The suffix will be replaced afterwards
6333 to represent the destination (register). */
6334 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6335 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6336 --i.operands;
6337
29b0f896 6338 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6339 based on GPR operands. */
29b0f896
AM
6340 if (!i.suffix)
6341 {
6342 /* We take i.suffix from the last register operand specified,
6343 Destination register type is more significant than source
381d071f
L
6344 register type. crc32 in SSE4.2 prefers source register
6345 type. */
1a035124 6346 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6347
1a035124
JB
6348 while (op--)
6349 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6350 || i.tm.operand_types[op].bitfield.instance == Accum)
6351 {
6352 if (i.types[op].bitfield.class != Reg)
6353 continue;
6354 if (i.types[op].bitfield.byte)
6355 i.suffix = BYTE_MNEM_SUFFIX;
6356 else if (i.types[op].bitfield.word)
6357 i.suffix = WORD_MNEM_SUFFIX;
6358 else if (i.types[op].bitfield.dword)
6359 i.suffix = LONG_MNEM_SUFFIX;
6360 else if (i.types[op].bitfield.qword)
6361 i.suffix = QWORD_MNEM_SUFFIX;
6362 else
6363 continue;
6364 break;
6365 }
65fca059
JB
6366
6367 /* As an exception, movsx/movzx silently default to a byte source
6368 in AT&T mode. */
6369 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6370 && !i.suffix && !intel_syntax)
6371 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
6372 }
6373 else if (i.suffix == BYTE_MNEM_SUFFIX)
6374 {
2eb952a4 6375 if (intel_syntax
3cd7f3e3 6376 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6377 && i.tm.opcode_modifier.no_bsuf)
6378 i.suffix = 0;
6379 else if (!check_byte_reg ())
29b0f896
AM
6380 return 0;
6381 }
6382 else if (i.suffix == LONG_MNEM_SUFFIX)
6383 {
2eb952a4 6384 if (intel_syntax
3cd7f3e3 6385 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6386 && i.tm.opcode_modifier.no_lsuf
6387 && !i.tm.opcode_modifier.todword
6388 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6389 i.suffix = 0;
6390 else if (!check_long_reg ())
29b0f896
AM
6391 return 0;
6392 }
6393 else if (i.suffix == QWORD_MNEM_SUFFIX)
6394 {
955e1e6a 6395 if (intel_syntax
3cd7f3e3 6396 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6397 && i.tm.opcode_modifier.no_qsuf
6398 && !i.tm.opcode_modifier.todword
6399 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6400 i.suffix = 0;
6401 else if (!check_qword_reg ())
29b0f896
AM
6402 return 0;
6403 }
6404 else if (i.suffix == WORD_MNEM_SUFFIX)
6405 {
2eb952a4 6406 if (intel_syntax
3cd7f3e3 6407 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6408 && i.tm.opcode_modifier.no_wsuf)
6409 i.suffix = 0;
6410 else if (!check_word_reg ())
29b0f896
AM
6411 return 0;
6412 }
3cd7f3e3
L
6413 else if (intel_syntax
6414 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6415 /* Do nothing if the instruction is going to ignore the prefix. */
6416 ;
6417 else
6418 abort ();
65fca059
JB
6419
6420 /* Undo the movsx/movzx change done above. */
6421 i.operands = numop;
29b0f896 6422 }
3cd7f3e3
L
6423 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6424 && !i.suffix)
29b0f896 6425 {
13e600d0
JB
6426 i.suffix = stackop_size;
6427 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6428 {
6429 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6430 .code16gcc directive to support 16-bit mode with
6431 32-bit address. For IRET without a suffix, generate
6432 16-bit IRET (opcode 0xcf) to return from an interrupt
6433 handler. */
13e600d0
JB
6434 if (i.tm.base_opcode == 0xcf)
6435 {
6436 i.suffix = WORD_MNEM_SUFFIX;
6437 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6438 }
6439 /* Warn about changed behavior for segment register push/pop. */
6440 else if ((i.tm.base_opcode | 1) == 0x07)
6441 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6442 i.tm.name);
06f74c5c 6443 }
29b0f896 6444 }
c006a730 6445 else if (!i.suffix
0cfa3eb3
JB
6446 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6447 || i.tm.opcode_modifier.jump == JUMP_BYTE
6448 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6449 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6450 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6451 {
6452 switch (flag_code)
6453 {
6454 case CODE_64BIT:
40fb9820 6455 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6456 {
6457 i.suffix = QWORD_MNEM_SUFFIX;
6458 break;
6459 }
1a0670f3 6460 /* Fall through. */
9306ca4a 6461 case CODE_32BIT:
40fb9820 6462 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6463 i.suffix = LONG_MNEM_SUFFIX;
6464 break;
6465 case CODE_16BIT:
40fb9820 6466 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6467 i.suffix = WORD_MNEM_SUFFIX;
6468 break;
6469 }
6470 }
252b5132 6471
c006a730 6472 if (!i.suffix
3cd7f3e3 6473 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
6474 /* Also cover lret/retf/iret in 64-bit mode. */
6475 || (flag_code == CODE_64BIT
6476 && !i.tm.opcode_modifier.no_lsuf
6477 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 6478 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
62b3f548
JB
6479 /* Accept FLDENV et al without suffix. */
6480 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6481 {
6c0946d0 6482 unsigned int suffixes, evex = 0;
c006a730
JB
6483
6484 suffixes = !i.tm.opcode_modifier.no_bsuf;
6485 if (!i.tm.opcode_modifier.no_wsuf)
6486 suffixes |= 1 << 1;
6487 if (!i.tm.opcode_modifier.no_lsuf)
6488 suffixes |= 1 << 2;
6489 if (!i.tm.opcode_modifier.no_ldsuf)
6490 suffixes |= 1 << 3;
6491 if (!i.tm.opcode_modifier.no_ssuf)
6492 suffixes |= 1 << 4;
6493 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6494 suffixes |= 1 << 5;
6495
6c0946d0
JB
6496 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6497 also suitable for AT&T syntax mode, it was requested that this be
6498 restricted to just Intel syntax. */
b9915cbc 6499 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6c0946d0 6500 {
b9915cbc 6501 unsigned int op;
6c0946d0 6502
b9915cbc 6503 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 6504 {
b9915cbc
JB
6505 if (is_evex_encoding (&i.tm)
6506 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 6507 {
b9915cbc
JB
6508 if (i.tm.operand_types[op].bitfield.ymmword)
6509 i.tm.operand_types[op].bitfield.xmmword = 0;
6510 if (i.tm.operand_types[op].bitfield.zmmword)
6511 i.tm.operand_types[op].bitfield.ymmword = 0;
6512 if (!i.tm.opcode_modifier.evex
6513 || i.tm.opcode_modifier.evex == EVEXDYN)
6514 i.tm.opcode_modifier.evex = EVEX512;
6515 }
6c0946d0 6516
b9915cbc
JB
6517 if (i.tm.operand_types[op].bitfield.xmmword
6518 + i.tm.operand_types[op].bitfield.ymmword
6519 + i.tm.operand_types[op].bitfield.zmmword < 2)
6520 continue;
6c0946d0 6521
b9915cbc
JB
6522 /* Any properly sized operand disambiguates the insn. */
6523 if (i.types[op].bitfield.xmmword
6524 || i.types[op].bitfield.ymmword
6525 || i.types[op].bitfield.zmmword)
6526 {
6527 suffixes &= ~(7 << 6);
6528 evex = 0;
6529 break;
6530 }
6c0946d0 6531
b9915cbc
JB
6532 if ((i.flags[op] & Operand_Mem)
6533 && i.tm.operand_types[op].bitfield.unspecified)
6534 {
6535 if (i.tm.operand_types[op].bitfield.xmmword)
6536 suffixes |= 1 << 6;
6537 if (i.tm.operand_types[op].bitfield.ymmword)
6538 suffixes |= 1 << 7;
6539 if (i.tm.operand_types[op].bitfield.zmmword)
6540 suffixes |= 1 << 8;
6541 if (is_evex_encoding (&i.tm))
6542 evex = EVEX512;
6c0946d0
JB
6543 }
6544 }
6545 }
6546
6547 /* Are multiple suffixes / operand sizes allowed? */
c006a730 6548 if (suffixes & (suffixes - 1))
9306ca4a 6549 {
873494c8 6550 if (intel_syntax
3cd7f3e3 6551 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 6552 || operand_check == check_error))
9306ca4a 6553 {
c006a730 6554 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6555 return 0;
6556 }
c006a730 6557 if (operand_check == check_error)
9306ca4a 6558 {
c006a730
JB
6559 as_bad (_("no instruction mnemonic suffix given and "
6560 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6561 return 0;
6562 }
c006a730 6563 if (operand_check == check_warning)
873494c8
JB
6564 as_warn (_("%s; using default for `%s'"),
6565 intel_syntax
6566 ? _("ambiguous operand size")
6567 : _("no instruction mnemonic suffix given and "
6568 "no register operands"),
6569 i.tm.name);
c006a730
JB
6570
6571 if (i.tm.opcode_modifier.floatmf)
6572 i.suffix = SHORT_MNEM_SUFFIX;
65fca059
JB
6573 else if ((i.tm.base_opcode | 8) == 0xfbe
6574 || (i.tm.base_opcode == 0x63
6575 && i.tm.cpu_flags.bitfield.cpu64))
6576 /* handled below */;
6c0946d0
JB
6577 else if (evex)
6578 i.tm.opcode_modifier.evex = evex;
c006a730
JB
6579 else if (flag_code == CODE_16BIT)
6580 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6581 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6582 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6583 else
6584 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6585 }
29b0f896 6586 }
252b5132 6587
65fca059
JB
6588 if ((i.tm.base_opcode | 8) == 0xfbe
6589 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6590 {
6591 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6592 In AT&T syntax, if there is no suffix (warned about above), the default
6593 will be byte extension. */
6594 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6595 i.tm.base_opcode |= 1;
6596
6597 /* For further processing, the suffix should represent the destination
6598 (register). This is already the case when one was used with
6599 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6600 no suffix to begin with. */
6601 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6602 {
6603 if (i.types[1].bitfield.word)
6604 i.suffix = WORD_MNEM_SUFFIX;
6605 else if (i.types[1].bitfield.qword)
6606 i.suffix = QWORD_MNEM_SUFFIX;
6607 else
6608 i.suffix = LONG_MNEM_SUFFIX;
6609
6610 i.tm.opcode_modifier.w = 0;
6611 }
6612 }
6613
50128d0c
JB
6614 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6615 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6616 != (i.tm.operand_types[1].bitfield.class == Reg);
6617
d2224064
JB
6618 /* Change the opcode based on the operand size given by i.suffix. */
6619 switch (i.suffix)
29b0f896 6620 {
d2224064
JB
6621 /* Size floating point instruction. */
6622 case LONG_MNEM_SUFFIX:
6623 if (i.tm.opcode_modifier.floatmf)
6624 {
6625 i.tm.base_opcode ^= 4;
6626 break;
6627 }
6628 /* fall through */
6629 case WORD_MNEM_SUFFIX:
6630 case QWORD_MNEM_SUFFIX:
29b0f896 6631 /* It's not a byte, select word/dword operation. */
40fb9820 6632 if (i.tm.opcode_modifier.w)
29b0f896 6633 {
50128d0c 6634 if (i.short_form)
29b0f896
AM
6635 i.tm.base_opcode |= 8;
6636 else
6637 i.tm.base_opcode |= 1;
6638 }
d2224064
JB
6639 /* fall through */
6640 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6641 /* Now select between word & dword operations via the operand
6642 size prefix, except for instructions that will ignore this
6643 prefix anyway. */
c8f8eebc 6644 if (i.suffix != QWORD_MNEM_SUFFIX
3cd7f3e3 6645 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc
JB
6646 && !i.tm.opcode_modifier.floatmf
6647 && !is_any_vex_encoding (&i.tm)
6648 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6649 || (flag_code == CODE_64BIT
6650 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6651 {
6652 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6653
0cfa3eb3 6654 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6655 prefix = ADDR_PREFIX_OPCODE;
252b5132 6656
29b0f896
AM
6657 if (!add_prefix (prefix))
6658 return 0;
24eab124 6659 }
252b5132 6660
29b0f896
AM
6661 /* Set mode64 for an operand. */
6662 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6663 && flag_code == CODE_64BIT
d2224064 6664 && !i.tm.opcode_modifier.norex64
46e883c5 6665 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6666 need rex64. */
6667 && ! (i.operands == 2
6668 && i.tm.base_opcode == 0x90
6669 && i.tm.extension_opcode == None
75e5731b
JB
6670 && i.types[0].bitfield.instance == Accum
6671 && i.types[0].bitfield.qword
6672 && i.types[1].bitfield.instance == Accum
6673 && i.types[1].bitfield.qword))
d2224064 6674 i.rex |= REX_W;
3e73aa7c 6675
d2224064 6676 break;
29b0f896 6677 }
7ecd2f8b 6678
c8f8eebc 6679 if (i.tm.opcode_modifier.addrprefixopreg)
c0a30a9f 6680 {
c8f8eebc
JB
6681 gas_assert (!i.suffix);
6682 gas_assert (i.reg_operands);
c0a30a9f 6683
c8f8eebc
JB
6684 if (i.tm.operand_types[0].bitfield.instance == Accum
6685 || i.operands == 1)
6686 {
6687 /* The address size override prefix changes the size of the
6688 first operand. */
6689 if (flag_code == CODE_64BIT
6690 && i.op[0].regs->reg_type.bitfield.word)
6691 {
6692 as_bad (_("16-bit addressing unavailable for `%s'"),
6693 i.tm.name);
6694 return 0;
6695 }
6696
6697 if ((flag_code == CODE_32BIT
6698 ? i.op[0].regs->reg_type.bitfield.word
6699 : i.op[0].regs->reg_type.bitfield.dword)
6700 && !add_prefix (ADDR_PREFIX_OPCODE))
6701 return 0;
6702 }
c0a30a9f
L
6703 else
6704 {
c8f8eebc
JB
6705 /* Check invalid register operand when the address size override
6706 prefix changes the size of register operands. */
6707 unsigned int op;
6708 enum { need_word, need_dword, need_qword } need;
6709
6710 if (flag_code == CODE_32BIT)
6711 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6712 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
6713 need = need_dword;
6714 else
6715 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 6716
c8f8eebc
JB
6717 for (op = 0; op < i.operands; op++)
6718 {
6719 if (i.types[op].bitfield.class != Reg)
6720 continue;
6721
6722 switch (need)
6723 {
6724 case need_word:
6725 if (i.op[op].regs->reg_type.bitfield.word)
6726 continue;
6727 break;
6728 case need_dword:
6729 if (i.op[op].regs->reg_type.bitfield.dword)
6730 continue;
6731 break;
6732 case need_qword:
6733 if (i.op[op].regs->reg_type.bitfield.qword)
6734 continue;
6735 break;
6736 }
6737
6738 as_bad (_("invalid register operand size for `%s'"),
6739 i.tm.name);
6740 return 0;
6741 }
6742 }
c0a30a9f
L
6743 }
6744
29b0f896
AM
6745 return 1;
6746}
3e73aa7c 6747
29b0f896 6748static int
543613e9 6749check_byte_reg (void)
29b0f896
AM
6750{
6751 int op;
543613e9 6752
29b0f896
AM
6753 for (op = i.operands; --op >= 0;)
6754 {
dc821c5f 6755 /* Skip non-register operands. */
bab6aec1 6756 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6757 continue;
6758
29b0f896
AM
6759 /* If this is an eight bit register, it's OK. If it's the 16 or
6760 32 bit version of an eight bit register, we will just use the
6761 low portion, and that's OK too. */
dc821c5f 6762 if (i.types[op].bitfield.byte)
29b0f896
AM
6763 continue;
6764
5a819eb9 6765 /* I/O port address operands are OK too. */
75e5731b
JB
6766 if (i.tm.operand_types[op].bitfield.instance == RegD
6767 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6768 continue;
6769
9706160a
JB
6770 /* crc32 only wants its source operand checked here. */
6771 if (i.tm.base_opcode == 0xf20f38f0 && op)
9344ff29
L
6772 continue;
6773
29b0f896 6774 /* Any other register is bad. */
bab6aec1 6775 if (i.types[op].bitfield.class == Reg
3528c362
JB
6776 || i.types[op].bitfield.class == RegMMX
6777 || i.types[op].bitfield.class == RegSIMD
00cee14f 6778 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6779 || i.types[op].bitfield.class == RegCR
6780 || i.types[op].bitfield.class == RegDR
6781 || i.types[op].bitfield.class == RegTR)
29b0f896 6782 {
a540244d
L
6783 as_bad (_("`%s%s' not allowed with `%s%c'"),
6784 register_prefix,
29b0f896
AM
6785 i.op[op].regs->reg_name,
6786 i.tm.name,
6787 i.suffix);
6788 return 0;
6789 }
6790 }
6791 return 1;
6792}
6793
6794static int
e3bb37b5 6795check_long_reg (void)
29b0f896
AM
6796{
6797 int op;
6798
6799 for (op = i.operands; --op >= 0;)
dc821c5f 6800 /* Skip non-register operands. */
bab6aec1 6801 if (i.types[op].bitfield.class != Reg)
dc821c5f 6802 continue;
29b0f896
AM
6803 /* Reject eight bit registers, except where the template requires
6804 them. (eg. movzb) */
dc821c5f 6805 else if (i.types[op].bitfield.byte
bab6aec1 6806 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6807 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6808 && (i.tm.operand_types[op].bitfield.word
6809 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6810 {
a540244d
L
6811 as_bad (_("`%s%s' not allowed with `%s%c'"),
6812 register_prefix,
29b0f896
AM
6813 i.op[op].regs->reg_name,
6814 i.tm.name,
6815 i.suffix);
6816 return 0;
6817 }
be4c5e58
L
6818 /* Error if the e prefix on a general reg is missing. */
6819 else if (i.types[op].bitfield.word
bab6aec1 6820 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6821 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6822 && i.tm.operand_types[op].bitfield.dword)
29b0f896 6823 {
be4c5e58
L
6824 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6825 register_prefix, i.op[op].regs->reg_name,
6826 i.suffix);
6827 return 0;
252b5132 6828 }
e4630f71 6829 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6830 else if (i.types[op].bitfield.qword
bab6aec1 6831 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6832 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6833 && i.tm.operand_types[op].bitfield.dword)
252b5132 6834 {
34828aad 6835 if (intel_syntax
65fca059 6836 && i.tm.opcode_modifier.toqword
3528c362 6837 && i.types[0].bitfield.class != RegSIMD)
34828aad 6838 {
ca61edf2 6839 /* Convert to QWORD. We want REX byte. */
34828aad
L
6840 i.suffix = QWORD_MNEM_SUFFIX;
6841 }
6842 else
6843 {
2b5d6a91 6844 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6845 register_prefix, i.op[op].regs->reg_name,
6846 i.suffix);
6847 return 0;
6848 }
29b0f896
AM
6849 }
6850 return 1;
6851}
252b5132 6852
29b0f896 6853static int
e3bb37b5 6854check_qword_reg (void)
29b0f896
AM
6855{
6856 int op;
252b5132 6857
29b0f896 6858 for (op = i.operands; --op >= 0; )
dc821c5f 6859 /* Skip non-register operands. */
bab6aec1 6860 if (i.types[op].bitfield.class != Reg)
dc821c5f 6861 continue;
29b0f896
AM
6862 /* Reject eight bit registers, except where the template requires
6863 them. (eg. movzb) */
dc821c5f 6864 else if (i.types[op].bitfield.byte
bab6aec1 6865 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6866 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6867 && (i.tm.operand_types[op].bitfield.word
6868 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6869 {
a540244d
L
6870 as_bad (_("`%s%s' not allowed with `%s%c'"),
6871 register_prefix,
29b0f896
AM
6872 i.op[op].regs->reg_name,
6873 i.tm.name,
6874 i.suffix);
6875 return 0;
6876 }
e4630f71 6877 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6878 else if ((i.types[op].bitfield.word
6879 || i.types[op].bitfield.dword)
bab6aec1 6880 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6881 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6882 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6883 {
6884 /* Prohibit these changes in the 64bit mode, since the
6885 lowering is more complicated. */
34828aad 6886 if (intel_syntax
ca61edf2 6887 && i.tm.opcode_modifier.todword
3528c362 6888 && i.types[0].bitfield.class != RegSIMD)
34828aad 6889 {
ca61edf2 6890 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6891 i.suffix = LONG_MNEM_SUFFIX;
6892 }
6893 else
6894 {
2b5d6a91 6895 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6896 register_prefix, i.op[op].regs->reg_name,
6897 i.suffix);
6898 return 0;
6899 }
252b5132 6900 }
29b0f896
AM
6901 return 1;
6902}
252b5132 6903
29b0f896 6904static int
e3bb37b5 6905check_word_reg (void)
29b0f896
AM
6906{
6907 int op;
6908 for (op = i.operands; --op >= 0;)
dc821c5f 6909 /* Skip non-register operands. */
bab6aec1 6910 if (i.types[op].bitfield.class != Reg)
dc821c5f 6911 continue;
29b0f896
AM
6912 /* Reject eight bit registers, except where the template requires
6913 them. (eg. movzb) */
dc821c5f 6914 else if (i.types[op].bitfield.byte
bab6aec1 6915 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6916 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6917 && (i.tm.operand_types[op].bitfield.word
6918 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6919 {
a540244d
L
6920 as_bad (_("`%s%s' not allowed with `%s%c'"),
6921 register_prefix,
29b0f896
AM
6922 i.op[op].regs->reg_name,
6923 i.tm.name,
6924 i.suffix);
6925 return 0;
6926 }
9706160a
JB
6927 /* Error if the e or r prefix on a general reg is present. */
6928 else if ((i.types[op].bitfield.dword
dc821c5f 6929 || i.types[op].bitfield.qword)
bab6aec1 6930 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6931 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6932 && i.tm.operand_types[op].bitfield.word)
252b5132 6933 {
9706160a
JB
6934 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6935 register_prefix, i.op[op].regs->reg_name,
6936 i.suffix);
6937 return 0;
29b0f896
AM
6938 }
6939 return 1;
6940}
252b5132 6941
29b0f896 6942static int
40fb9820 6943update_imm (unsigned int j)
29b0f896 6944{
bc0844ae 6945 i386_operand_type overlap = i.types[j];
40fb9820
L
6946 if ((overlap.bitfield.imm8
6947 || overlap.bitfield.imm8s
6948 || overlap.bitfield.imm16
6949 || overlap.bitfield.imm32
6950 || overlap.bitfield.imm32s
6951 || overlap.bitfield.imm64)
0dfbf9d7
L
6952 && !operand_type_equal (&overlap, &imm8)
6953 && !operand_type_equal (&overlap, &imm8s)
6954 && !operand_type_equal (&overlap, &imm16)
6955 && !operand_type_equal (&overlap, &imm32)
6956 && !operand_type_equal (&overlap, &imm32s)
6957 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6958 {
6959 if (i.suffix)
6960 {
40fb9820
L
6961 i386_operand_type temp;
6962
0dfbf9d7 6963 operand_type_set (&temp, 0);
7ab9ffdd 6964 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6965 {
6966 temp.bitfield.imm8 = overlap.bitfield.imm8;
6967 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6968 }
6969 else if (i.suffix == WORD_MNEM_SUFFIX)
6970 temp.bitfield.imm16 = overlap.bitfield.imm16;
6971 else if (i.suffix == QWORD_MNEM_SUFFIX)
6972 {
6973 temp.bitfield.imm64 = overlap.bitfield.imm64;
6974 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6975 }
6976 else
6977 temp.bitfield.imm32 = overlap.bitfield.imm32;
6978 overlap = temp;
29b0f896 6979 }
0dfbf9d7
L
6980 else if (operand_type_equal (&overlap, &imm16_32_32s)
6981 || operand_type_equal (&overlap, &imm16_32)
6982 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6983 {
40fb9820 6984 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6985 overlap = imm16;
40fb9820 6986 else
65da13b5 6987 overlap = imm32s;
29b0f896 6988 }
0dfbf9d7
L
6989 if (!operand_type_equal (&overlap, &imm8)
6990 && !operand_type_equal (&overlap, &imm8s)
6991 && !operand_type_equal (&overlap, &imm16)
6992 && !operand_type_equal (&overlap, &imm32)
6993 && !operand_type_equal (&overlap, &imm32s)
6994 && !operand_type_equal (&overlap, &imm64))
29b0f896 6995 {
4eed87de
AM
6996 as_bad (_("no instruction mnemonic suffix given; "
6997 "can't determine immediate size"));
29b0f896
AM
6998 return 0;
6999 }
7000 }
40fb9820 7001 i.types[j] = overlap;
29b0f896 7002
40fb9820
L
7003 return 1;
7004}
7005
7006static int
7007finalize_imm (void)
7008{
bc0844ae 7009 unsigned int j, n;
29b0f896 7010
bc0844ae
L
7011 /* Update the first 2 immediate operands. */
7012 n = i.operands > 2 ? 2 : i.operands;
7013 if (n)
7014 {
7015 for (j = 0; j < n; j++)
7016 if (update_imm (j) == 0)
7017 return 0;
40fb9820 7018
bc0844ae
L
7019 /* The 3rd operand can't be immediate operand. */
7020 gas_assert (operand_type_check (i.types[2], imm) == 0);
7021 }
29b0f896
AM
7022
7023 return 1;
7024}
7025
7026static int
e3bb37b5 7027process_operands (void)
29b0f896
AM
7028{
7029 /* Default segment register this instruction will use for memory
7030 accesses. 0 means unknown. This is only for optimizing out
7031 unnecessary segment overrides. */
7032 const seg_entry *default_seg = 0;
7033
2426c15f 7034 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 7035 {
91d6fa6a
NC
7036 unsigned int dupl = i.operands;
7037 unsigned int dest = dupl - 1;
9fcfb3d7
L
7038 unsigned int j;
7039
c0f3af97 7040 /* The destination must be an xmm register. */
9c2799c2 7041 gas_assert (i.reg_operands
91d6fa6a 7042 && MAX_OPERANDS > dupl
7ab9ffdd 7043 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 7044
75e5731b 7045 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7046 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 7047 {
8cd7925b 7048 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
7049 {
7050 /* Keep xmm0 for instructions with VEX prefix and 3
7051 sources. */
75e5731b 7052 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 7053 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
7054 goto duplicate;
7055 }
e2ec9d29 7056 else
c0f3af97
L
7057 {
7058 /* We remove the first xmm0 and keep the number of
7059 operands unchanged, which in fact duplicates the
7060 destination. */
7061 for (j = 1; j < i.operands; j++)
7062 {
7063 i.op[j - 1] = i.op[j];
7064 i.types[j - 1] = i.types[j];
7065 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 7066 i.flags[j - 1] = i.flags[j];
c0f3af97
L
7067 }
7068 }
7069 }
7070 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 7071 {
91d6fa6a 7072 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
7073 && (i.tm.opcode_modifier.vexsources
7074 == VEX3SOURCES));
c0f3af97
L
7075
7076 /* Add the implicit xmm0 for instructions with VEX prefix
7077 and 3 sources. */
7078 for (j = i.operands; j > 0; j--)
7079 {
7080 i.op[j] = i.op[j - 1];
7081 i.types[j] = i.types[j - 1];
7082 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7083 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7084 }
7085 i.op[0].regs
7086 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 7087 i.types[0] = regxmm;
c0f3af97
L
7088 i.tm.operand_types[0] = regxmm;
7089
7090 i.operands += 2;
7091 i.reg_operands += 2;
7092 i.tm.operands += 2;
7093
91d6fa6a 7094 dupl++;
c0f3af97 7095 dest++;
91d6fa6a
NC
7096 i.op[dupl] = i.op[dest];
7097 i.types[dupl] = i.types[dest];
7098 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7099 i.flags[dupl] = i.flags[dest];
e2ec9d29 7100 }
c0f3af97
L
7101 else
7102 {
dc1e8a47 7103 duplicate:
c0f3af97
L
7104 i.operands++;
7105 i.reg_operands++;
7106 i.tm.operands++;
7107
91d6fa6a
NC
7108 i.op[dupl] = i.op[dest];
7109 i.types[dupl] = i.types[dest];
7110 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7111 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7112 }
7113
7114 if (i.tm.opcode_modifier.immext)
7115 process_immext ();
7116 }
75e5731b 7117 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7118 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7119 {
7120 unsigned int j;
7121
9fcfb3d7
L
7122 for (j = 1; j < i.operands; j++)
7123 {
7124 i.op[j - 1] = i.op[j];
7125 i.types[j - 1] = i.types[j];
7126
7127 /* We need to adjust fields in i.tm since they are used by
7128 build_modrm_byte. */
7129 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7130
7131 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7132 }
7133
e2ec9d29
L
7134 i.operands--;
7135 i.reg_operands--;
e2ec9d29
L
7136 i.tm.operands--;
7137 }
920d2ddc
IT
7138 else if (i.tm.opcode_modifier.implicitquadgroup)
7139 {
a477a8c4
JB
7140 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7141
920d2ddc 7142 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7143 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7144 regnum = register_number (i.op[1].regs);
7145 first_reg_in_group = regnum & ~3;
7146 last_reg_in_group = first_reg_in_group + 3;
7147 if (regnum != first_reg_in_group)
7148 as_warn (_("source register `%s%s' implicitly denotes"
7149 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7150 register_prefix, i.op[1].regs->reg_name,
7151 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7152 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7153 i.tm.name);
7154 }
e2ec9d29
L
7155 else if (i.tm.opcode_modifier.regkludge)
7156 {
7157 /* The imul $imm, %reg instruction is converted into
7158 imul $imm, %reg, %reg, and the clr %reg instruction
7159 is converted into xor %reg, %reg. */
7160
7161 unsigned int first_reg_op;
7162
7163 if (operand_type_check (i.types[0], reg))
7164 first_reg_op = 0;
7165 else
7166 first_reg_op = 1;
7167 /* Pretend we saw the extra register operand. */
9c2799c2 7168 gas_assert (i.reg_operands == 1
7ab9ffdd 7169 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7170 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7171 i.types[first_reg_op + 1] = i.types[first_reg_op];
7172 i.operands++;
7173 i.reg_operands++;
29b0f896
AM
7174 }
7175
85b80b0f 7176 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7177 {
7178 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7179 must be put into the modrm byte). Now, we make the modrm and
7180 index base bytes based on all the info we've collected. */
29b0f896
AM
7181
7182 default_seg = build_modrm_byte ();
7183 }
00cee14f 7184 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7185 {
7186 if (flag_code != CODE_64BIT
7187 ? i.tm.base_opcode == POP_SEG_SHORT
7188 && i.op[0].regs->reg_num == 1
7189 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7190 && i.op[0].regs->reg_num < 4)
7191 {
7192 as_bad (_("you can't `%s %s%s'"),
7193 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7194 return 0;
7195 }
7196 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7197 {
7198 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7199 i.tm.opcode_length = 2;
7200 }
7201 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7202 }
8a2ed489 7203 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7204 {
7205 default_seg = &ds;
7206 }
40fb9820 7207 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7208 {
7209 /* For the string instructions that allow a segment override
7210 on one of their operands, the default segment is ds. */
7211 default_seg = &ds;
7212 }
50128d0c 7213 else if (i.short_form)
85b80b0f
JB
7214 {
7215 /* The register or float register operand is in operand
7216 0 or 1. */
bab6aec1 7217 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7218
7219 /* Register goes in low 3 bits of opcode. */
7220 i.tm.base_opcode |= i.op[op].regs->reg_num;
7221 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7222 i.rex |= REX_B;
7223 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7224 {
7225 /* Warn about some common errors, but press on regardless.
7226 The first case can be generated by gcc (<= 2.8.1). */
7227 if (i.operands == 2)
7228 {
7229 /* Reversed arguments on faddp, fsubp, etc. */
7230 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7231 register_prefix, i.op[!intel_syntax].regs->reg_name,
7232 register_prefix, i.op[intel_syntax].regs->reg_name);
7233 }
7234 else
7235 {
7236 /* Extraneous `l' suffix on fp insn. */
7237 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7238 register_prefix, i.op[0].regs->reg_name);
7239 }
7240 }
7241 }
29b0f896 7242
514a8bb0 7243 if ((i.seg[0] || i.prefix[SEG_PREFIX])
514a8bb0
JB
7244 && i.tm.base_opcode == 0x8d /* lea */
7245 && !is_any_vex_encoding(&i.tm))
92334ad2
JB
7246 {
7247 if (!quiet_warnings)
7248 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7249 if (optimize)
7250 {
7251 i.seg[0] = NULL;
7252 i.prefix[SEG_PREFIX] = 0;
7253 }
7254 }
52271982
AM
7255
7256 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
7257 is neither the default nor the one already recorded from a prefix,
7258 use an opcode prefix to select it. If we never figured out what
7259 the default segment is, then default_seg will be zero at this
7260 point, and the specified segment prefix will always be used. */
7261 if (i.seg[0]
7262 && i.seg[0] != default_seg
7263 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
29b0f896
AM
7264 {
7265 if (!add_prefix (i.seg[0]->seg_prefix))
7266 return 0;
7267 }
7268 return 1;
7269}
7270
7271static const seg_entry *
e3bb37b5 7272build_modrm_byte (void)
29b0f896
AM
7273{
7274 const seg_entry *default_seg = 0;
c0f3af97 7275 unsigned int source, dest;
8cd7925b 7276 int vex_3_sources;
c0f3af97 7277
8cd7925b 7278 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7279 if (vex_3_sources)
7280 {
91d6fa6a 7281 unsigned int nds, reg_slot;
4c2c6516 7282 expressionS *exp;
c0f3af97 7283
6b8d3588 7284 dest = i.operands - 1;
c0f3af97 7285 nds = dest - 1;
922d8de8 7286
a683cc34 7287 /* There are 2 kinds of instructions:
bed3d976 7288 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7289 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7290 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7291 ZMM register.
bed3d976 7292 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7293 plus 1 memory operand, with VexXDS. */
922d8de8 7294 gas_assert ((i.reg_operands == 4
bed3d976
JB
7295 || (i.reg_operands == 3 && i.mem_operands == 1))
7296 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7297 && i.tm.opcode_modifier.vexw
3528c362 7298 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7299
48db9223
JB
7300 /* If VexW1 is set, the first non-immediate operand is the source and
7301 the second non-immediate one is encoded in the immediate operand. */
7302 if (i.tm.opcode_modifier.vexw == VEXW1)
7303 {
7304 source = i.imm_operands;
7305 reg_slot = i.imm_operands + 1;
7306 }
7307 else
7308 {
7309 source = i.imm_operands + 1;
7310 reg_slot = i.imm_operands;
7311 }
7312
a683cc34 7313 if (i.imm_operands == 0)
bed3d976
JB
7314 {
7315 /* When there is no immediate operand, generate an 8bit
7316 immediate operand to encode the first operand. */
7317 exp = &im_expressions[i.imm_operands++];
7318 i.op[i.operands].imms = exp;
7319 i.types[i.operands] = imm8;
7320 i.operands++;
7321
3528c362 7322 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7323 exp->X_op = O_constant;
7324 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7325 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7326 }
922d8de8 7327 else
bed3d976 7328 {
9d3bf266
JB
7329 gas_assert (i.imm_operands == 1);
7330 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7331 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7332
9d3bf266
JB
7333 /* Turn on Imm8 again so that output_imm will generate it. */
7334 i.types[0].bitfield.imm8 = 1;
bed3d976 7335
3528c362 7336 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7337 i.op[0].imms->X_add_number
bed3d976 7338 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7339 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7340 }
a683cc34 7341
3528c362 7342 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7343 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7344 }
7345 else
7346 source = dest = 0;
29b0f896
AM
7347
7348 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7349 implicit registers do not count. If there are 3 register
7350 operands, it must be a instruction with VexNDS. For a
7351 instruction with VexNDD, the destination register is encoded
7352 in VEX prefix. If there are 4 register operands, it must be
7353 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7354 if (i.mem_operands == 0
7355 && ((i.reg_operands == 2
2426c15f 7356 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7357 || (i.reg_operands == 3
2426c15f 7358 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7359 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7360 {
cab737b9
L
7361 switch (i.operands)
7362 {
7363 case 2:
7364 source = 0;
7365 break;
7366 case 3:
c81128dc
L
7367 /* When there are 3 operands, one of them may be immediate,
7368 which may be the first or the last operand. Otherwise,
c0f3af97
L
7369 the first operand must be shift count register (cl) or it
7370 is an instruction with VexNDS. */
9c2799c2 7371 gas_assert (i.imm_operands == 1
7ab9ffdd 7372 || (i.imm_operands == 0
2426c15f 7373 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7374 || (i.types[0].bitfield.instance == RegC
7375 && i.types[0].bitfield.byte))));
40fb9820 7376 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7377 || (i.types[0].bitfield.instance == RegC
7378 && i.types[0].bitfield.byte))
40fb9820
L
7379 source = 1;
7380 else
7381 source = 0;
cab737b9
L
7382 break;
7383 case 4:
368d64cc
L
7384 /* When there are 4 operands, the first two must be 8bit
7385 immediate operands. The source operand will be the 3rd
c0f3af97
L
7386 one.
7387
7388 For instructions with VexNDS, if the first operand
7389 an imm8, the source operand is the 2nd one. If the last
7390 operand is imm8, the source operand is the first one. */
9c2799c2 7391 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7392 && i.types[0].bitfield.imm8
7393 && i.types[1].bitfield.imm8)
2426c15f 7394 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7395 && i.imm_operands == 1
7396 && (i.types[0].bitfield.imm8
43234a1e
L
7397 || i.types[i.operands - 1].bitfield.imm8
7398 || i.rounding)));
9f2670f2
L
7399 if (i.imm_operands == 2)
7400 source = 2;
7401 else
c0f3af97
L
7402 {
7403 if (i.types[0].bitfield.imm8)
7404 source = 1;
7405 else
7406 source = 0;
7407 }
c0f3af97
L
7408 break;
7409 case 5:
e771e7c9 7410 if (is_evex_encoding (&i.tm))
43234a1e
L
7411 {
7412 /* For EVEX instructions, when there are 5 operands, the
7413 first one must be immediate operand. If the second one
7414 is immediate operand, the source operand is the 3th
7415 one. If the last one is immediate operand, the source
7416 operand is the 2nd one. */
7417 gas_assert (i.imm_operands == 2
7418 && i.tm.opcode_modifier.sae
7419 && operand_type_check (i.types[0], imm));
7420 if (operand_type_check (i.types[1], imm))
7421 source = 2;
7422 else if (operand_type_check (i.types[4], imm))
7423 source = 1;
7424 else
7425 abort ();
7426 }
cab737b9
L
7427 break;
7428 default:
7429 abort ();
7430 }
7431
c0f3af97
L
7432 if (!vex_3_sources)
7433 {
7434 dest = source + 1;
7435
43234a1e
L
7436 /* RC/SAE operand could be between DEST and SRC. That happens
7437 when one operand is GPR and the other one is XMM/YMM/ZMM
7438 register. */
7439 if (i.rounding && i.rounding->operand == (int) dest)
7440 dest++;
7441
2426c15f 7442 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7443 {
43234a1e 7444 /* For instructions with VexNDS, the register-only source
c5d0745b 7445 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7446 register. It is encoded in VEX prefix. */
f12dc422
L
7447
7448 i386_operand_type op;
7449 unsigned int vvvv;
7450
7451 /* Check register-only source operand when two source
7452 operands are swapped. */
7453 if (!i.tm.operand_types[source].bitfield.baseindex
7454 && i.tm.operand_types[dest].bitfield.baseindex)
7455 {
7456 vvvv = source;
7457 source = dest;
7458 }
7459 else
7460 vvvv = dest;
7461
7462 op = i.tm.operand_types[vvvv];
c0f3af97 7463 if ((dest + 1) >= i.operands
bab6aec1 7464 || ((op.bitfield.class != Reg
dc821c5f 7465 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7466 && op.bitfield.class != RegSIMD
43234a1e 7467 && !operand_type_equal (&op, &regmask)))
c0f3af97 7468 abort ();
f12dc422 7469 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7470 dest++;
7471 }
7472 }
29b0f896
AM
7473
7474 i.rm.mode = 3;
dfd69174
JB
7475 /* One of the register operands will be encoded in the i.rm.reg
7476 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7477 fields. If no form of this instruction supports a memory
7478 destination operand, then we assume the source operand may
7479 sometimes be a memory operand and so we need to store the
7480 destination in the i.rm.reg field. */
dfd69174 7481 if (!i.tm.opcode_modifier.regmem
40fb9820 7482 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7483 {
7484 i.rm.reg = i.op[dest].regs->reg_num;
7485 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7486 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7487 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7488 i.has_regmmx = TRUE;
3528c362
JB
7489 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7490 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7491 {
7492 if (i.types[dest].bitfield.zmmword
7493 || i.types[source].bitfield.zmmword)
7494 i.has_regzmm = TRUE;
7495 else if (i.types[dest].bitfield.ymmword
7496 || i.types[source].bitfield.ymmword)
7497 i.has_regymm = TRUE;
7498 else
7499 i.has_regxmm = TRUE;
7500 }
29b0f896 7501 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7502 i.rex |= REX_R;
43234a1e
L
7503 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7504 i.vrex |= REX_R;
29b0f896 7505 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7506 i.rex |= REX_B;
43234a1e
L
7507 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7508 i.vrex |= REX_B;
29b0f896
AM
7509 }
7510 else
7511 {
7512 i.rm.reg = i.op[source].regs->reg_num;
7513 i.rm.regmem = i.op[dest].regs->reg_num;
7514 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7515 i.rex |= REX_B;
43234a1e
L
7516 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7517 i.vrex |= REX_B;
29b0f896 7518 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7519 i.rex |= REX_R;
43234a1e
L
7520 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7521 i.vrex |= REX_R;
29b0f896 7522 }
e0c7f900 7523 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7524 {
4a5c67ed 7525 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7526 abort ();
e0c7f900 7527 i.rex &= ~REX_R;
c4a530c5
JB
7528 add_prefix (LOCK_PREFIX_OPCODE);
7529 }
29b0f896
AM
7530 }
7531 else
7532 { /* If it's not 2 reg operands... */
c0f3af97
L
7533 unsigned int mem;
7534
29b0f896
AM
7535 if (i.mem_operands)
7536 {
7537 unsigned int fake_zero_displacement = 0;
99018f42 7538 unsigned int op;
4eed87de 7539
7ab9ffdd 7540 for (op = 0; op < i.operands; op++)
8dc0818e 7541 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7542 break;
7ab9ffdd 7543 gas_assert (op < i.operands);
29b0f896 7544
6c30d220
L
7545 if (i.tm.opcode_modifier.vecsib)
7546 {
e968fc9b 7547 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7548 abort ();
7549
7550 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7551 if (!i.base_reg)
7552 {
7553 i.sib.base = NO_BASE_REGISTER;
7554 i.sib.scale = i.log2_scale_factor;
7555 i.types[op].bitfield.disp8 = 0;
7556 i.types[op].bitfield.disp16 = 0;
7557 i.types[op].bitfield.disp64 = 0;
43083a50 7558 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7559 {
7560 /* Must be 32 bit */
7561 i.types[op].bitfield.disp32 = 1;
7562 i.types[op].bitfield.disp32s = 0;
7563 }
7564 else
7565 {
7566 i.types[op].bitfield.disp32 = 0;
7567 i.types[op].bitfield.disp32s = 1;
7568 }
7569 }
7570 i.sib.index = i.index_reg->reg_num;
7571 if ((i.index_reg->reg_flags & RegRex) != 0)
7572 i.rex |= REX_X;
43234a1e
L
7573 if ((i.index_reg->reg_flags & RegVRex) != 0)
7574 i.vrex |= REX_X;
6c30d220
L
7575 }
7576
29b0f896
AM
7577 default_seg = &ds;
7578
7579 if (i.base_reg == 0)
7580 {
7581 i.rm.mode = 0;
7582 if (!i.disp_operands)
9bb129e8 7583 fake_zero_displacement = 1;
29b0f896
AM
7584 if (i.index_reg == 0)
7585 {
73053c1f
JB
7586 i386_operand_type newdisp;
7587
6c30d220 7588 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7589 /* Operand is just <disp> */
20f0a1fc 7590 if (flag_code == CODE_64BIT)
29b0f896
AM
7591 {
7592 /* 64bit mode overwrites the 32bit absolute
7593 addressing by RIP relative addressing and
7594 absolute addressing is encoded by one of the
7595 redundant SIB forms. */
7596 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7597 i.sib.base = NO_BASE_REGISTER;
7598 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7599 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7600 }
fc225355
L
7601 else if ((flag_code == CODE_16BIT)
7602 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7603 {
7604 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7605 newdisp = disp16;
20f0a1fc
NC
7606 }
7607 else
7608 {
7609 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7610 newdisp = disp32;
29b0f896 7611 }
73053c1f
JB
7612 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7613 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7614 }
6c30d220 7615 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7616 {
6c30d220 7617 /* !i.base_reg && i.index_reg */
e968fc9b 7618 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7619 i.sib.index = NO_INDEX_REGISTER;
7620 else
7621 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7622 i.sib.base = NO_BASE_REGISTER;
7623 i.sib.scale = i.log2_scale_factor;
7624 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7625 i.types[op].bitfield.disp8 = 0;
7626 i.types[op].bitfield.disp16 = 0;
7627 i.types[op].bitfield.disp64 = 0;
43083a50 7628 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7629 {
7630 /* Must be 32 bit */
7631 i.types[op].bitfield.disp32 = 1;
7632 i.types[op].bitfield.disp32s = 0;
7633 }
29b0f896 7634 else
40fb9820
L
7635 {
7636 i.types[op].bitfield.disp32 = 0;
7637 i.types[op].bitfield.disp32s = 1;
7638 }
29b0f896 7639 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7640 i.rex |= REX_X;
29b0f896
AM
7641 }
7642 }
7643 /* RIP addressing for 64bit mode. */
e968fc9b 7644 else if (i.base_reg->reg_num == RegIP)
29b0f896 7645 {
6c30d220 7646 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7647 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7648 i.types[op].bitfield.disp8 = 0;
7649 i.types[op].bitfield.disp16 = 0;
7650 i.types[op].bitfield.disp32 = 0;
7651 i.types[op].bitfield.disp32s = 1;
7652 i.types[op].bitfield.disp64 = 0;
71903a11 7653 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7654 if (! i.disp_operands)
7655 fake_zero_displacement = 1;
29b0f896 7656 }
dc821c5f 7657 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7658 {
6c30d220 7659 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7660 switch (i.base_reg->reg_num)
7661 {
7662 case 3: /* (%bx) */
7663 if (i.index_reg == 0)
7664 i.rm.regmem = 7;
7665 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7666 i.rm.regmem = i.index_reg->reg_num - 6;
7667 break;
7668 case 5: /* (%bp) */
7669 default_seg = &ss;
7670 if (i.index_reg == 0)
7671 {
7672 i.rm.regmem = 6;
40fb9820 7673 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7674 {
7675 /* fake (%bp) into 0(%bp) */
b5014f7a 7676 i.types[op].bitfield.disp8 = 1;
252b5132 7677 fake_zero_displacement = 1;
29b0f896
AM
7678 }
7679 }
7680 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7681 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7682 break;
7683 default: /* (%si) -> 4 or (%di) -> 5 */
7684 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7685 }
7686 i.rm.mode = mode_from_disp_size (i.types[op]);
7687 }
7688 else /* i.base_reg and 32/64 bit mode */
7689 {
7690 if (flag_code == CODE_64BIT
40fb9820
L
7691 && operand_type_check (i.types[op], disp))
7692 {
73053c1f
JB
7693 i.types[op].bitfield.disp16 = 0;
7694 i.types[op].bitfield.disp64 = 0;
40fb9820 7695 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7696 {
7697 i.types[op].bitfield.disp32 = 0;
7698 i.types[op].bitfield.disp32s = 1;
7699 }
40fb9820 7700 else
73053c1f
JB
7701 {
7702 i.types[op].bitfield.disp32 = 1;
7703 i.types[op].bitfield.disp32s = 0;
7704 }
40fb9820 7705 }
20f0a1fc 7706
6c30d220
L
7707 if (!i.tm.opcode_modifier.vecsib)
7708 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7709 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7710 i.rex |= REX_B;
29b0f896
AM
7711 i.sib.base = i.base_reg->reg_num;
7712 /* x86-64 ignores REX prefix bit here to avoid decoder
7713 complications. */
848930b2
JB
7714 if (!(i.base_reg->reg_flags & RegRex)
7715 && (i.base_reg->reg_num == EBP_REG_NUM
7716 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7717 default_seg = &ss;
848930b2 7718 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7719 {
848930b2 7720 fake_zero_displacement = 1;
b5014f7a 7721 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7722 }
7723 i.sib.scale = i.log2_scale_factor;
7724 if (i.index_reg == 0)
7725 {
6c30d220 7726 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7727 /* <disp>(%esp) becomes two byte modrm with no index
7728 register. We've already stored the code for esp
7729 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7730 Any base register besides %esp will not use the
7731 extra modrm byte. */
7732 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7733 }
6c30d220 7734 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7735 {
e968fc9b 7736 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7737 i.sib.index = NO_INDEX_REGISTER;
7738 else
7739 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7740 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7741 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7742 i.rex |= REX_X;
29b0f896 7743 }
67a4f2b7
AO
7744
7745 if (i.disp_operands
7746 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7747 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7748 i.rm.mode = 0;
7749 else
a501d77e
L
7750 {
7751 if (!fake_zero_displacement
7752 && !i.disp_operands
7753 && i.disp_encoding)
7754 {
7755 fake_zero_displacement = 1;
7756 if (i.disp_encoding == disp_encoding_8bit)
7757 i.types[op].bitfield.disp8 = 1;
7758 else
7759 i.types[op].bitfield.disp32 = 1;
7760 }
7761 i.rm.mode = mode_from_disp_size (i.types[op]);
7762 }
29b0f896 7763 }
252b5132 7764
29b0f896
AM
7765 if (fake_zero_displacement)
7766 {
7767 /* Fakes a zero displacement assuming that i.types[op]
7768 holds the correct displacement size. */
7769 expressionS *exp;
7770
9c2799c2 7771 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7772 exp = &disp_expressions[i.disp_operands++];
7773 i.op[op].disps = exp;
7774 exp->X_op = O_constant;
7775 exp->X_add_number = 0;
7776 exp->X_add_symbol = (symbolS *) 0;
7777 exp->X_op_symbol = (symbolS *) 0;
7778 }
c0f3af97
L
7779
7780 mem = op;
29b0f896 7781 }
c0f3af97
L
7782 else
7783 mem = ~0;
252b5132 7784
8c43a48b 7785 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7786 {
7787 if (operand_type_check (i.types[0], imm))
7788 i.vex.register_specifier = NULL;
7789 else
7790 {
7791 /* VEX.vvvv encodes one of the sources when the first
7792 operand is not an immediate. */
1ef99a7b 7793 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7794 i.vex.register_specifier = i.op[0].regs;
7795 else
7796 i.vex.register_specifier = i.op[1].regs;
7797 }
7798
7799 /* Destination is a XMM register encoded in the ModRM.reg
7800 and VEX.R bit. */
7801 i.rm.reg = i.op[2].regs->reg_num;
7802 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7803 i.rex |= REX_R;
7804
7805 /* ModRM.rm and VEX.B encodes the other source. */
7806 if (!i.mem_operands)
7807 {
7808 i.rm.mode = 3;
7809
1ef99a7b 7810 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7811 i.rm.regmem = i.op[1].regs->reg_num;
7812 else
7813 i.rm.regmem = i.op[0].regs->reg_num;
7814
7815 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7816 i.rex |= REX_B;
7817 }
7818 }
2426c15f 7819 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7820 {
7821 i.vex.register_specifier = i.op[2].regs;
7822 if (!i.mem_operands)
7823 {
7824 i.rm.mode = 3;
7825 i.rm.regmem = i.op[1].regs->reg_num;
7826 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7827 i.rex |= REX_B;
7828 }
7829 }
29b0f896
AM
7830 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7831 (if any) based on i.tm.extension_opcode. Again, we must be
7832 careful to make sure that segment/control/debug/test/MMX
7833 registers are coded into the i.rm.reg field. */
f88c9eb0 7834 else if (i.reg_operands)
29b0f896 7835 {
99018f42 7836 unsigned int op;
7ab9ffdd
L
7837 unsigned int vex_reg = ~0;
7838
7839 for (op = 0; op < i.operands; op++)
b4a3a7b4 7840 {
bab6aec1 7841 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7842 || i.types[op].bitfield.class == RegBND
7843 || i.types[op].bitfield.class == RegMask
00cee14f 7844 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7845 || i.types[op].bitfield.class == RegCR
7846 || i.types[op].bitfield.class == RegDR
7847 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7848 break;
3528c362 7849 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7850 {
7851 if (i.types[op].bitfield.zmmword)
7852 i.has_regzmm = TRUE;
7853 else if (i.types[op].bitfield.ymmword)
7854 i.has_regymm = TRUE;
7855 else
7856 i.has_regxmm = TRUE;
7857 break;
7858 }
3528c362 7859 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7860 {
7861 i.has_regmmx = TRUE;
7862 break;
7863 }
7864 }
c0209578 7865
7ab9ffdd
L
7866 if (vex_3_sources)
7867 op = dest;
2426c15f 7868 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7869 {
7870 /* For instructions with VexNDS, the register-only
7871 source operand is encoded in VEX prefix. */
7872 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7873
7ab9ffdd 7874 if (op > mem)
c0f3af97 7875 {
7ab9ffdd
L
7876 vex_reg = op++;
7877 gas_assert (op < i.operands);
c0f3af97
L
7878 }
7879 else
c0f3af97 7880 {
f12dc422
L
7881 /* Check register-only source operand when two source
7882 operands are swapped. */
7883 if (!i.tm.operand_types[op].bitfield.baseindex
7884 && i.tm.operand_types[op + 1].bitfield.baseindex)
7885 {
7886 vex_reg = op;
7887 op += 2;
7888 gas_assert (mem == (vex_reg + 1)
7889 && op < i.operands);
7890 }
7891 else
7892 {
7893 vex_reg = op + 1;
7894 gas_assert (vex_reg < i.operands);
7895 }
c0f3af97 7896 }
7ab9ffdd 7897 }
2426c15f 7898 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7899 {
f12dc422 7900 /* For instructions with VexNDD, the register destination
7ab9ffdd 7901 is encoded in VEX prefix. */
f12dc422
L
7902 if (i.mem_operands == 0)
7903 {
7904 /* There is no memory operand. */
7905 gas_assert ((op + 2) == i.operands);
7906 vex_reg = op + 1;
7907 }
7908 else
8d63c93e 7909 {
ed438a93
JB
7910 /* There are only 2 non-immediate operands. */
7911 gas_assert (op < i.imm_operands + 2
7912 && i.operands == i.imm_operands + 2);
7913 vex_reg = i.imm_operands + 1;
f12dc422 7914 }
7ab9ffdd
L
7915 }
7916 else
7917 gas_assert (op < i.operands);
99018f42 7918
7ab9ffdd
L
7919 if (vex_reg != (unsigned int) ~0)
7920 {
f12dc422 7921 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7922
bab6aec1 7923 if ((type->bitfield.class != Reg
dc821c5f 7924 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7925 && type->bitfield.class != RegSIMD
43234a1e 7926 && !operand_type_equal (type, &regmask))
7ab9ffdd 7927 abort ();
f88c9eb0 7928
7ab9ffdd
L
7929 i.vex.register_specifier = i.op[vex_reg].regs;
7930 }
7931
1b9f0c97
L
7932 /* Don't set OP operand twice. */
7933 if (vex_reg != op)
7ab9ffdd 7934 {
1b9f0c97
L
7935 /* If there is an extension opcode to put here, the
7936 register number must be put into the regmem field. */
7937 if (i.tm.extension_opcode != None)
7938 {
7939 i.rm.regmem = i.op[op].regs->reg_num;
7940 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7941 i.rex |= REX_B;
43234a1e
L
7942 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7943 i.vrex |= REX_B;
1b9f0c97
L
7944 }
7945 else
7946 {
7947 i.rm.reg = i.op[op].regs->reg_num;
7948 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7949 i.rex |= REX_R;
43234a1e
L
7950 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7951 i.vrex |= REX_R;
1b9f0c97 7952 }
7ab9ffdd 7953 }
252b5132 7954
29b0f896
AM
7955 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7956 must set it to 3 to indicate this is a register operand
7957 in the regmem field. */
7958 if (!i.mem_operands)
7959 i.rm.mode = 3;
7960 }
252b5132 7961
29b0f896 7962 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7963 if (i.tm.extension_opcode != None)
29b0f896
AM
7964 i.rm.reg = i.tm.extension_opcode;
7965 }
7966 return default_seg;
7967}
252b5132 7968
376cd056
JB
7969static unsigned int
7970flip_code16 (unsigned int code16)
7971{
7972 gas_assert (i.tm.operands == 1);
7973
7974 return !(i.prefix[REX_PREFIX] & REX_W)
7975 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7976 || i.tm.operand_types[0].bitfield.disp32s
7977 : i.tm.operand_types[0].bitfield.disp16)
7978 ? CODE16 : 0;
7979}
7980
29b0f896 7981static void
e3bb37b5 7982output_branch (void)
29b0f896
AM
7983{
7984 char *p;
f8a5c266 7985 int size;
29b0f896
AM
7986 int code16;
7987 int prefix;
7988 relax_substateT subtype;
7989 symbolS *sym;
7990 offsetT off;
7991
f8a5c266 7992 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7993 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7994
7995 prefix = 0;
7996 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7997 {
29b0f896
AM
7998 prefix = 1;
7999 i.prefixes -= 1;
376cd056 8000 code16 ^= flip_code16(code16);
252b5132 8001 }
29b0f896
AM
8002 /* Pentium4 branch hints. */
8003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 8005 {
29b0f896
AM
8006 prefix++;
8007 i.prefixes--;
8008 }
8009 if (i.prefix[REX_PREFIX] != 0)
8010 {
8011 prefix++;
8012 i.prefixes--;
2f66722d
AM
8013 }
8014
7e8b059b
L
8015 /* BND prefixed jump. */
8016 if (i.prefix[BND_PREFIX] != 0)
8017 {
6cb0a70e
JB
8018 prefix++;
8019 i.prefixes--;
7e8b059b
L
8020 }
8021
f2810fe0
JB
8022 if (i.prefixes != 0)
8023 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
8024
8025 /* It's always a symbol; End frag & setup for relax.
8026 Make sure there is enough room in this frag for the largest
8027 instruction we may generate in md_convert_frag. This is 2
8028 bytes for the opcode and room for the prefix and largest
8029 displacement. */
8030 frag_grow (prefix + 2 + 4);
8031 /* Prefix and 1 opcode byte go in fr_fix. */
8032 p = frag_more (prefix + 1);
8033 if (i.prefix[DATA_PREFIX] != 0)
8034 *p++ = DATA_PREFIX_OPCODE;
8035 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8036 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8037 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
8038 if (i.prefix[BND_PREFIX] != 0)
8039 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
8040 if (i.prefix[REX_PREFIX] != 0)
8041 *p++ = i.prefix[REX_PREFIX];
8042 *p = i.tm.base_opcode;
8043
8044 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 8045 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 8046 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 8047 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 8048 else
f8a5c266 8049 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 8050 subtype |= code16;
3e73aa7c 8051
29b0f896
AM
8052 sym = i.op[0].disps->X_add_symbol;
8053 off = i.op[0].disps->X_add_number;
3e73aa7c 8054
29b0f896
AM
8055 if (i.op[0].disps->X_op != O_constant
8056 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 8057 {
29b0f896
AM
8058 /* Handle complex expressions. */
8059 sym = make_expr_symbol (i.op[0].disps);
8060 off = 0;
8061 }
3e73aa7c 8062
29b0f896
AM
8063 /* 1 possible extra opcode + 4 byte displacement go in var part.
8064 Pass reloc in fr_var. */
d258b828 8065 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 8066}
3e73aa7c 8067
bd7ab16b
L
8068#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8069/* Return TRUE iff PLT32 relocation should be used for branching to
8070 symbol S. */
8071
8072static bfd_boolean
8073need_plt32_p (symbolS *s)
8074{
8075 /* PLT32 relocation is ELF only. */
8076 if (!IS_ELF)
8077 return FALSE;
8078
a5def729
RO
8079#ifdef TE_SOLARIS
8080 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8081 krtld support it. */
8082 return FALSE;
8083#endif
8084
bd7ab16b
L
8085 /* Since there is no need to prepare for PLT branch on x86-64, we
8086 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8087 be used as a marker for 32-bit PC-relative branches. */
8088 if (!object_64bit)
8089 return FALSE;
8090
8091 /* Weak or undefined symbol need PLT32 relocation. */
8092 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8093 return TRUE;
8094
8095 /* Non-global symbol doesn't need PLT32 relocation. */
8096 if (! S_IS_EXTERNAL (s))
8097 return FALSE;
8098
8099 /* Other global symbols need PLT32 relocation. NB: Symbol with
8100 non-default visibilities are treated as normal global symbol
8101 so that PLT32 relocation can be used as a marker for 32-bit
8102 PC-relative branches. It is useful for linker relaxation. */
8103 return TRUE;
8104}
8105#endif
8106
29b0f896 8107static void
e3bb37b5 8108output_jump (void)
29b0f896
AM
8109{
8110 char *p;
8111 int size;
3e02c1cc 8112 fixS *fixP;
bd7ab16b 8113 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8114
0cfa3eb3 8115 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8116 {
8117 /* This is a loop or jecxz type instruction. */
8118 size = 1;
8119 if (i.prefix[ADDR_PREFIX] != 0)
8120 {
8121 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8122 i.prefixes -= 1;
8123 }
8124 /* Pentium4 branch hints. */
8125 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8126 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8127 {
8128 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8129 i.prefixes--;
3e73aa7c
JH
8130 }
8131 }
29b0f896
AM
8132 else
8133 {
8134 int code16;
3e73aa7c 8135
29b0f896
AM
8136 code16 = 0;
8137 if (flag_code == CODE_16BIT)
8138 code16 = CODE16;
3e73aa7c 8139
29b0f896
AM
8140 if (i.prefix[DATA_PREFIX] != 0)
8141 {
8142 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8143 i.prefixes -= 1;
376cd056 8144 code16 ^= flip_code16(code16);
29b0f896 8145 }
252b5132 8146
29b0f896
AM
8147 size = 4;
8148 if (code16)
8149 size = 2;
8150 }
9fcc94b6 8151
6cb0a70e
JB
8152 /* BND prefixed jump. */
8153 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8154 {
6cb0a70e 8155 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8156 i.prefixes -= 1;
8157 }
252b5132 8158
6cb0a70e 8159 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8160 {
6cb0a70e 8161 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8162 i.prefixes -= 1;
8163 }
8164
f2810fe0
JB
8165 if (i.prefixes != 0)
8166 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8167
42164a71
L
8168 p = frag_more (i.tm.opcode_length + size);
8169 switch (i.tm.opcode_length)
8170 {
8171 case 2:
8172 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8173 /* Fall through. */
42164a71
L
8174 case 1:
8175 *p++ = i.tm.base_opcode;
8176 break;
8177 default:
8178 abort ();
8179 }
e0890092 8180
bd7ab16b
L
8181#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8182 if (size == 4
8183 && jump_reloc == NO_RELOC
8184 && need_plt32_p (i.op[0].disps->X_add_symbol))
8185 jump_reloc = BFD_RELOC_X86_64_PLT32;
8186#endif
8187
8188 jump_reloc = reloc (size, 1, 1, jump_reloc);
8189
3e02c1cc 8190 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8191 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8192
8193 /* All jumps handled here are signed, but don't use a signed limit
8194 check for 32 and 16 bit jumps as we want to allow wrap around at
8195 4G and 64k respectively. */
8196 if (size == 1)
8197 fixP->fx_signed = 1;
29b0f896 8198}
e0890092 8199
29b0f896 8200static void
e3bb37b5 8201output_interseg_jump (void)
29b0f896
AM
8202{
8203 char *p;
8204 int size;
8205 int prefix;
8206 int code16;
252b5132 8207
29b0f896
AM
8208 code16 = 0;
8209 if (flag_code == CODE_16BIT)
8210 code16 = CODE16;
a217f122 8211
29b0f896
AM
8212 prefix = 0;
8213 if (i.prefix[DATA_PREFIX] != 0)
8214 {
8215 prefix = 1;
8216 i.prefixes -= 1;
8217 code16 ^= CODE16;
8218 }
6cb0a70e
JB
8219
8220 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8221
29b0f896
AM
8222 size = 4;
8223 if (code16)
8224 size = 2;
252b5132 8225
f2810fe0
JB
8226 if (i.prefixes != 0)
8227 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8228
29b0f896
AM
8229 /* 1 opcode; 2 segment; offset */
8230 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8231
29b0f896
AM
8232 if (i.prefix[DATA_PREFIX] != 0)
8233 *p++ = DATA_PREFIX_OPCODE;
252b5132 8234
29b0f896
AM
8235 if (i.prefix[REX_PREFIX] != 0)
8236 *p++ = i.prefix[REX_PREFIX];
252b5132 8237
29b0f896
AM
8238 *p++ = i.tm.base_opcode;
8239 if (i.op[1].imms->X_op == O_constant)
8240 {
8241 offsetT n = i.op[1].imms->X_add_number;
252b5132 8242
29b0f896
AM
8243 if (size == 2
8244 && !fits_in_unsigned_word (n)
8245 && !fits_in_signed_word (n))
8246 {
8247 as_bad (_("16-bit jump out of range"));
8248 return;
8249 }
8250 md_number_to_chars (p, n, size);
8251 }
8252 else
8253 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8254 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8255 if (i.op[0].imms->X_op != O_constant)
8256 as_bad (_("can't handle non absolute segment in `%s'"),
8257 i.tm.name);
8258 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8259}
a217f122 8260
b4a3a7b4
L
8261#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8262void
8263x86_cleanup (void)
8264{
8265 char *p;
8266 asection *seg = now_seg;
8267 subsegT subseg = now_subseg;
8268 asection *sec;
8269 unsigned int alignment, align_size_1;
8270 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8271 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8272 unsigned int padding;
8273
8274 if (!IS_ELF || !x86_used_note)
8275 return;
8276
b4a3a7b4
L
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8278
8279 /* The .note.gnu.property section layout:
8280
8281 Field Length Contents
8282 ---- ---- ----
8283 n_namsz 4 4
8284 n_descsz 4 The note descriptor size
8285 n_type 4 NT_GNU_PROPERTY_TYPE_0
8286 n_name 4 "GNU"
8287 n_desc n_descsz The program property array
8288 .... .... ....
8289 */
8290
8291 /* Create the .note.gnu.property section. */
8292 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8293 bfd_set_section_flags (sec,
b4a3a7b4
L
8294 (SEC_ALLOC
8295 | SEC_LOAD
8296 | SEC_DATA
8297 | SEC_HAS_CONTENTS
8298 | SEC_READONLY));
8299
8300 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8301 {
8302 align_size_1 = 7;
8303 alignment = 3;
8304 }
8305 else
8306 {
8307 align_size_1 = 3;
8308 alignment = 2;
8309 }
8310
fd361982 8311 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8312 elf_section_type (sec) = SHT_NOTE;
8313
8314 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8315 + 4-byte data */
8316 isa_1_descsz_raw = 4 + 4 + 4;
8317 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8318 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8319
8320 feature_2_descsz_raw = isa_1_descsz;
8321 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8322 + 4-byte data */
8323 feature_2_descsz_raw += 4 + 4 + 4;
8324 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8325 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8326 & ~align_size_1);
8327
8328 descsz = feature_2_descsz;
8329 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8330 p = frag_more (4 + 4 + 4 + 4 + descsz);
8331
8332 /* Write n_namsz. */
8333 md_number_to_chars (p, (valueT) 4, 4);
8334
8335 /* Write n_descsz. */
8336 md_number_to_chars (p + 4, (valueT) descsz, 4);
8337
8338 /* Write n_type. */
8339 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8340
8341 /* Write n_name. */
8342 memcpy (p + 4 * 3, "GNU", 4);
8343
8344 /* Write 4-byte type. */
8345 md_number_to_chars (p + 4 * 4,
8346 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8347
8348 /* Write 4-byte data size. */
8349 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8350
8351 /* Write 4-byte data. */
8352 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8353
8354 /* Zero out paddings. */
8355 padding = isa_1_descsz - isa_1_descsz_raw;
8356 if (padding)
8357 memset (p + 4 * 7, 0, padding);
8358
8359 /* Write 4-byte type. */
8360 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8361 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8362
8363 /* Write 4-byte data size. */
8364 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8365
8366 /* Write 4-byte data. */
8367 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8368 (valueT) x86_feature_2_used, 4);
8369
8370 /* Zero out paddings. */
8371 padding = feature_2_descsz - feature_2_descsz_raw;
8372 if (padding)
8373 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8374
8375 /* We probably can't restore the current segment, for there likely
8376 isn't one yet... */
8377 if (seg && subseg)
8378 subseg_set (seg, subseg);
8379}
8380#endif
8381
9c33702b
JB
8382static unsigned int
8383encoding_length (const fragS *start_frag, offsetT start_off,
8384 const char *frag_now_ptr)
8385{
8386 unsigned int len = 0;
8387
8388 if (start_frag != frag_now)
8389 {
8390 const fragS *fr = start_frag;
8391
8392 do {
8393 len += fr->fr_fix;
8394 fr = fr->fr_next;
8395 } while (fr && fr != frag_now);
8396 }
8397
8398 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8399}
8400
e379e5f3 8401/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
8402 be macro-fused with conditional jumps.
8403 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8404 or is one of the following format:
8405
8406 cmp m, imm
8407 add m, imm
8408 sub m, imm
8409 test m, imm
8410 and m, imm
8411 inc m
8412 dec m
8413
8414 it is unfusible. */
e379e5f3
L
8415
8416static int
79d72f45 8417maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8418{
8419 /* No RIP address. */
8420 if (i.base_reg && i.base_reg->reg_num == RegIP)
8421 return 0;
8422
8423 /* No VEX/EVEX encoding. */
8424 if (is_any_vex_encoding (&i.tm))
8425 return 0;
8426
79d72f45
HL
8427 /* add, sub without add/sub m, imm. */
8428 if (i.tm.base_opcode <= 5
e379e5f3
L
8429 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8430 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 8431 && (i.tm.extension_opcode == 0x5
e379e5f3 8432 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
8433 {
8434 *mf_cmp_p = mf_cmp_alu_cmp;
8435 return !(i.mem_operands && i.imm_operands);
8436 }
e379e5f3 8437
79d72f45
HL
8438 /* and without and m, imm. */
8439 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8440 || ((i.tm.base_opcode | 3) == 0x83
8441 && i.tm.extension_opcode == 0x4))
8442 {
8443 *mf_cmp_p = mf_cmp_test_and;
8444 return !(i.mem_operands && i.imm_operands);
8445 }
8446
8447 /* test without test m imm. */
e379e5f3
L
8448 if ((i.tm.base_opcode | 1) == 0x85
8449 || (i.tm.base_opcode | 1) == 0xa9
8450 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
8451 && i.tm.extension_opcode == 0))
8452 {
8453 *mf_cmp_p = mf_cmp_test_and;
8454 return !(i.mem_operands && i.imm_operands);
8455 }
8456
8457 /* cmp without cmp m, imm. */
8458 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
8459 || ((i.tm.base_opcode | 3) == 0x83
8460 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
8461 {
8462 *mf_cmp_p = mf_cmp_alu_cmp;
8463 return !(i.mem_operands && i.imm_operands);
8464 }
e379e5f3 8465
79d72f45 8466 /* inc, dec without inc/dec m. */
e379e5f3
L
8467 if ((i.tm.cpu_flags.bitfield.cpuno64
8468 && (i.tm.base_opcode | 0xf) == 0x4f)
8469 || ((i.tm.base_opcode | 1) == 0xff
8470 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
8471 {
8472 *mf_cmp_p = mf_cmp_incdec;
8473 return !i.mem_operands;
8474 }
e379e5f3
L
8475
8476 return 0;
8477}
8478
8479/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8480
8481static int
79d72f45 8482add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8483{
8484 /* NB: Don't work with COND_JUMP86 without i386. */
8485 if (!align_branch_power
8486 || now_seg == absolute_section
8487 || !cpu_arch_flags.bitfield.cpui386
8488 || !(align_branch & align_branch_fused_bit))
8489 return 0;
8490
79d72f45 8491 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3
L
8492 {
8493 if (last_insn.kind == last_insn_other
8494 || last_insn.seg != now_seg)
8495 return 1;
8496 if (flag_debug)
8497 as_warn_where (last_insn.file, last_insn.line,
8498 _("`%s` skips -malign-branch-boundary on `%s`"),
8499 last_insn.name, i.tm.name);
8500 }
8501
8502 return 0;
8503}
8504
8505/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8506
8507static int
8508add_branch_prefix_frag_p (void)
8509{
8510 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8511 to PadLock instructions since they include prefixes in opcode. */
8512 if (!align_branch_power
8513 || !align_branch_prefix_size
8514 || now_seg == absolute_section
8515 || i.tm.cpu_flags.bitfield.cpupadlock
8516 || !cpu_arch_flags.bitfield.cpui386)
8517 return 0;
8518
8519 /* Don't add prefix if it is a prefix or there is no operand in case
8520 that segment prefix is special. */
8521 if (!i.operands || i.tm.opcode_modifier.isprefix)
8522 return 0;
8523
8524 if (last_insn.kind == last_insn_other
8525 || last_insn.seg != now_seg)
8526 return 1;
8527
8528 if (flag_debug)
8529 as_warn_where (last_insn.file, last_insn.line,
8530 _("`%s` skips -malign-branch-boundary on `%s`"),
8531 last_insn.name, i.tm.name);
8532
8533 return 0;
8534}
8535
8536/* Return 1 if a BRANCH_PADDING frag should be generated. */
8537
8538static int
79d72f45
HL
8539add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8540 enum mf_jcc_kind *mf_jcc_p)
e379e5f3
L
8541{
8542 int add_padding;
8543
8544 /* NB: Don't work with COND_JUMP86 without i386. */
8545 if (!align_branch_power
8546 || now_seg == absolute_section
8547 || !cpu_arch_flags.bitfield.cpui386)
8548 return 0;
8549
8550 add_padding = 0;
8551
8552 /* Check for jcc and direct jmp. */
8553 if (i.tm.opcode_modifier.jump == JUMP)
8554 {
8555 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8556 {
8557 *branch_p = align_branch_jmp;
8558 add_padding = align_branch & align_branch_jmp_bit;
8559 }
8560 else
8561 {
79d72f45
HL
8562 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8563 igore the lowest bit. */
8564 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
8565 *branch_p = align_branch_jcc;
8566 if ((align_branch & align_branch_jcc_bit))
8567 add_padding = 1;
8568 }
8569 }
8570 else if (is_any_vex_encoding (&i.tm))
8571 return 0;
8572 else if ((i.tm.base_opcode | 1) == 0xc3)
8573 {
8574 /* Near ret. */
8575 *branch_p = align_branch_ret;
8576 if ((align_branch & align_branch_ret_bit))
8577 add_padding = 1;
8578 }
8579 else
8580 {
8581 /* Check for indirect jmp, direct and indirect calls. */
8582 if (i.tm.base_opcode == 0xe8)
8583 {
8584 /* Direct call. */
8585 *branch_p = align_branch_call;
8586 if ((align_branch & align_branch_call_bit))
8587 add_padding = 1;
8588 }
8589 else if (i.tm.base_opcode == 0xff
8590 && (i.tm.extension_opcode == 2
8591 || i.tm.extension_opcode == 4))
8592 {
8593 /* Indirect call and jmp. */
8594 *branch_p = align_branch_indirect;
8595 if ((align_branch & align_branch_indirect_bit))
8596 add_padding = 1;
8597 }
8598
8599 if (add_padding
8600 && i.disp_operands
8601 && tls_get_addr
8602 && (i.op[0].disps->X_op == O_symbol
8603 || (i.op[0].disps->X_op == O_subtract
8604 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8605 {
8606 symbolS *s = i.op[0].disps->X_add_symbol;
8607 /* No padding to call to global or undefined tls_get_addr. */
8608 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8609 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8610 return 0;
8611 }
8612 }
8613
8614 if (add_padding
8615 && last_insn.kind != last_insn_other
8616 && last_insn.seg == now_seg)
8617 {
8618 if (flag_debug)
8619 as_warn_where (last_insn.file, last_insn.line,
8620 _("`%s` skips -malign-branch-boundary on `%s`"),
8621 last_insn.name, i.tm.name);
8622 return 0;
8623 }
8624
8625 return add_padding;
8626}
8627
29b0f896 8628static void
e3bb37b5 8629output_insn (void)
29b0f896 8630{
2bbd9c25
JJ
8631 fragS *insn_start_frag;
8632 offsetT insn_start_off;
e379e5f3
L
8633 fragS *fragP = NULL;
8634 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
8635 /* The initializer is arbitrary just to avoid uninitialized error.
8636 it's actually either assigned in add_branch_padding_frag_p
8637 or never be used. */
8638 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 8639
b4a3a7b4
L
8640#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8641 if (IS_ELF && x86_used_note)
8642 {
8643 if (i.tm.cpu_flags.bitfield.cpucmov)
8644 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8645 if (i.tm.cpu_flags.bitfield.cpusse)
8646 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8647 if (i.tm.cpu_flags.bitfield.cpusse2)
8648 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8649 if (i.tm.cpu_flags.bitfield.cpusse3)
8650 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8651 if (i.tm.cpu_flags.bitfield.cpussse3)
8652 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8653 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8654 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8655 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8656 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8657 if (i.tm.cpu_flags.bitfield.cpuavx)
8658 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8659 if (i.tm.cpu_flags.bitfield.cpuavx2)
8660 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8661 if (i.tm.cpu_flags.bitfield.cpufma)
8662 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8663 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8664 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8665 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8666 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8667 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8668 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8669 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8670 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8671 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8672 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8673 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8674 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8675 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8676 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8677 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8678 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8679 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8680 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8681 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8682 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8683 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8684 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8685 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8686 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8687 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8688 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8689 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8690 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8691 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8692 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8693
8694 if (i.tm.cpu_flags.bitfield.cpu8087
8695 || i.tm.cpu_flags.bitfield.cpu287
8696 || i.tm.cpu_flags.bitfield.cpu387
8697 || i.tm.cpu_flags.bitfield.cpu687
8698 || i.tm.cpu_flags.bitfield.cpufisttp)
8699 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8700 if (i.has_regmmx
8701 || i.tm.base_opcode == 0xf77 /* emms */
a7e12755
L
8702 || i.tm.base_opcode == 0xf0e /* femms */
8703 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8704 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
b4a3a7b4
L
8705 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8706 if (i.has_regxmm)
8707 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8708 if (i.has_regymm)
8709 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8710 if (i.has_regzmm)
8711 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8712 if (i.tm.cpu_flags.bitfield.cpufxsr)
8713 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8714 if (i.tm.cpu_flags.bitfield.cpuxsave)
8715 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8716 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8717 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8718 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8719 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8720 }
8721#endif
8722
29b0f896
AM
8723 /* Tie dwarf2 debug info to the address at the start of the insn.
8724 We can't do this after the insn has been output as the current
8725 frag may have been closed off. eg. by frag_var. */
8726 dwarf2_emit_insn (0);
8727
2bbd9c25
JJ
8728 insn_start_frag = frag_now;
8729 insn_start_off = frag_now_fix ();
8730
79d72f45 8731 if (add_branch_padding_frag_p (&branch, &mf_jcc))
e379e5f3
L
8732 {
8733 char *p;
8734 /* Branch can be 8 bytes. Leave some room for prefixes. */
8735 unsigned int max_branch_padding_size = 14;
8736
8737 /* Align section to boundary. */
8738 record_alignment (now_seg, align_branch_power);
8739
8740 /* Make room for padding. */
8741 frag_grow (max_branch_padding_size);
8742
8743 /* Start of the padding. */
8744 p = frag_more (0);
8745
8746 fragP = frag_now;
8747
8748 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8749 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8750 NULL, 0, p);
8751
79d72f45 8752 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
8753 fragP->tc_frag_data.branch_type = branch;
8754 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8755 }
8756
29b0f896 8757 /* Output jumps. */
0cfa3eb3 8758 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8759 output_branch ();
0cfa3eb3
JB
8760 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8761 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8762 output_jump ();
0cfa3eb3 8763 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8764 output_interseg_jump ();
8765 else
8766 {
8767 /* Output normal instructions here. */
8768 char *p;
8769 unsigned char *q;
47465058 8770 unsigned int j;
331d2d0d 8771 unsigned int prefix;
79d72f45 8772 enum mf_cmp_kind mf_cmp;
4dffcebc 8773
e4e00185 8774 if (avoid_fence
c3949f43
JB
8775 && (i.tm.base_opcode == 0xfaee8
8776 || i.tm.base_opcode == 0xfaef0
8777 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8778 {
8779 /* Encode lfence, mfence, and sfence as
8780 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8781 offsetT val = 0x240483f0ULL;
8782 p = frag_more (5);
8783 md_number_to_chars (p, val, 5);
8784 return;
8785 }
8786
d022bddd
IT
8787 /* Some processors fail on LOCK prefix. This options makes
8788 assembler ignore LOCK prefix and serves as a workaround. */
8789 if (omit_lock_prefix)
8790 {
8791 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8792 return;
8793 i.prefix[LOCK_PREFIX] = 0;
8794 }
8795
e379e5f3
L
8796 if (branch)
8797 /* Skip if this is a branch. */
8798 ;
79d72f45 8799 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
e379e5f3
L
8800 {
8801 /* Make room for padding. */
8802 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8803 p = frag_more (0);
8804
8805 fragP = frag_now;
8806
8807 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8808 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8809 NULL, 0, p);
8810
79d72f45 8811 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
8812 fragP->tc_frag_data.branch_type = align_branch_fused;
8813 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8814 }
8815 else if (add_branch_prefix_frag_p ())
8816 {
8817 unsigned int max_prefix_size = align_branch_prefix_size;
8818
8819 /* Make room for padding. */
8820 frag_grow (max_prefix_size);
8821 p = frag_more (0);
8822
8823 fragP = frag_now;
8824
8825 frag_var (rs_machine_dependent, max_prefix_size, 0,
8826 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8827 NULL, 0, p);
8828
8829 fragP->tc_frag_data.max_bytes = max_prefix_size;
8830 }
8831
43234a1e
L
8832 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8833 don't need the explicit prefix. */
8834 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8835 {
c0f3af97 8836 switch (i.tm.opcode_length)
bc4bd9ab 8837 {
c0f3af97
L
8838 case 3:
8839 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8840 {
c0f3af97 8841 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8842 if (!i.tm.cpu_flags.bitfield.cpupadlock
8843 || prefix != REPE_PREFIX_OPCODE
8844 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8845 add_prefix (prefix);
c0f3af97
L
8846 }
8847 break;
8848 case 2:
8849 if ((i.tm.base_opcode & 0xff0000) != 0)
8850 {
8851 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8852 add_prefix (prefix);
4dffcebc 8853 }
c0f3af97
L
8854 break;
8855 case 1:
8856 break;
390c91cf
L
8857 case 0:
8858 /* Check for pseudo prefixes. */
8859 as_bad_where (insn_start_frag->fr_file,
8860 insn_start_frag->fr_line,
8861 _("pseudo prefix without instruction"));
8862 return;
c0f3af97
L
8863 default:
8864 abort ();
bc4bd9ab 8865 }
c0f3af97 8866
6d19a37a 8867#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8868 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8869 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8870 perform IE->LE optimization. A dummy REX_OPCODE prefix
8871 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8872 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8873 if (x86_elf_abi == X86_64_X32_ABI
8874 && i.operands == 2
14470f07
L
8875 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8876 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8877 && i.prefix[REX_PREFIX] == 0)
8878 add_prefix (REX_OPCODE);
6d19a37a 8879#endif
cf61b747 8880
c0f3af97
L
8881 /* The prefix bytes. */
8882 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8883 if (*q)
8884 FRAG_APPEND_1_CHAR (*q);
0f10071e 8885 }
ae5c1c7b 8886 else
c0f3af97
L
8887 {
8888 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8889 if (*q)
8890 switch (j)
8891 {
8892 case REX_PREFIX:
8893 /* REX byte is encoded in VEX prefix. */
8894 break;
8895 case SEG_PREFIX:
8896 case ADDR_PREFIX:
8897 FRAG_APPEND_1_CHAR (*q);
8898 break;
8899 default:
8900 /* There should be no other prefixes for instructions
8901 with VEX prefix. */
8902 abort ();
8903 }
8904
43234a1e
L
8905 /* For EVEX instructions i.vrex should become 0 after
8906 build_evex_prefix. For VEX instructions upper 16 registers
8907 aren't available, so VREX should be 0. */
8908 if (i.vrex)
8909 abort ();
c0f3af97
L
8910 /* Now the VEX prefix. */
8911 p = frag_more (i.vex.length);
8912 for (j = 0; j < i.vex.length; j++)
8913 p[j] = i.vex.bytes[j];
8914 }
252b5132 8915
29b0f896 8916 /* Now the opcode; be careful about word order here! */
4dffcebc 8917 if (i.tm.opcode_length == 1)
29b0f896
AM
8918 {
8919 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8920 }
8921 else
8922 {
4dffcebc 8923 switch (i.tm.opcode_length)
331d2d0d 8924 {
43234a1e
L
8925 case 4:
8926 p = frag_more (4);
8927 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8928 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8929 break;
4dffcebc 8930 case 3:
331d2d0d
L
8931 p = frag_more (3);
8932 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8933 break;
8934 case 2:
8935 p = frag_more (2);
8936 break;
8937 default:
8938 abort ();
8939 break;
331d2d0d 8940 }
0f10071e 8941
29b0f896
AM
8942 /* Put out high byte first: can't use md_number_to_chars! */
8943 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8944 *p = i.tm.base_opcode & 0xff;
8945 }
3e73aa7c 8946
29b0f896 8947 /* Now the modrm byte and sib byte (if present). */
40fb9820 8948 if (i.tm.opcode_modifier.modrm)
29b0f896 8949 {
4a3523fa
L
8950 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8951 | i.rm.reg << 3
8952 | i.rm.mode << 6));
29b0f896
AM
8953 /* If i.rm.regmem == ESP (4)
8954 && i.rm.mode != (Register mode)
8955 && not 16 bit
8956 ==> need second modrm byte. */
8957 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8958 && i.rm.mode != 3
dc821c5f 8959 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8960 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8961 | i.sib.index << 3
8962 | i.sib.scale << 6));
29b0f896 8963 }
3e73aa7c 8964
29b0f896 8965 if (i.disp_operands)
2bbd9c25 8966 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8967
29b0f896 8968 if (i.imm_operands)
2bbd9c25 8969 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8970
8971 /*
8972 * frag_now_fix () returning plain abs_section_offset when we're in the
8973 * absolute section, and abs_section_offset not getting updated as data
8974 * gets added to the frag breaks the logic below.
8975 */
8976 if (now_seg != absolute_section)
8977 {
8978 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8979 if (j > 15)
8980 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8981 j);
e379e5f3
L
8982 else if (fragP)
8983 {
8984 /* NB: Don't add prefix with GOTPC relocation since
8985 output_disp() above depends on the fixed encoding
8986 length. Can't add prefix with TLS relocation since
8987 it breaks TLS linker optimization. */
8988 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8989 /* Prefix count on the current instruction. */
8990 unsigned int count = i.vex.length;
8991 unsigned int k;
8992 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8993 /* REX byte is encoded in VEX/EVEX prefix. */
8994 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8995 count++;
8996
8997 /* Count prefixes for extended opcode maps. */
8998 if (!i.vex.length)
8999 switch (i.tm.opcode_length)
9000 {
9001 case 3:
9002 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9003 {
9004 count++;
9005 switch ((i.tm.base_opcode >> 8) & 0xff)
9006 {
9007 case 0x38:
9008 case 0x3a:
9009 count++;
9010 break;
9011 default:
9012 break;
9013 }
9014 }
9015 break;
9016 case 2:
9017 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9018 count++;
9019 break;
9020 case 1:
9021 break;
9022 default:
9023 abort ();
9024 }
9025
9026 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9027 == BRANCH_PREFIX)
9028 {
9029 /* Set the maximum prefix size in BRANCH_PREFIX
9030 frag. */
9031 if (fragP->tc_frag_data.max_bytes > max)
9032 fragP->tc_frag_data.max_bytes = max;
9033 if (fragP->tc_frag_data.max_bytes > count)
9034 fragP->tc_frag_data.max_bytes -= count;
9035 else
9036 fragP->tc_frag_data.max_bytes = 0;
9037 }
9038 else
9039 {
9040 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9041 frag. */
9042 unsigned int max_prefix_size;
9043 if (align_branch_prefix_size > max)
9044 max_prefix_size = max;
9045 else
9046 max_prefix_size = align_branch_prefix_size;
9047 if (max_prefix_size > count)
9048 fragP->tc_frag_data.max_prefix_length
9049 = max_prefix_size - count;
9050 }
9051
9052 /* Use existing segment prefix if possible. Use CS
9053 segment prefix in 64-bit mode. In 32-bit mode, use SS
9054 segment prefix with ESP/EBP base register and use DS
9055 segment prefix without ESP/EBP base register. */
9056 if (i.prefix[SEG_PREFIX])
9057 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9058 else if (flag_code == CODE_64BIT)
9059 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9060 else if (i.base_reg
9061 && (i.base_reg->reg_num == 4
9062 || i.base_reg->reg_num == 5))
9063 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9064 else
9065 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9066 }
9c33702b 9067 }
29b0f896 9068 }
252b5132 9069
e379e5f3
L
9070 /* NB: Don't work with COND_JUMP86 without i386. */
9071 if (align_branch_power
9072 && now_seg != absolute_section
9073 && cpu_arch_flags.bitfield.cpui386)
9074 {
9075 /* Terminate each frag so that we can add prefix and check for
9076 fused jcc. */
9077 frag_wane (frag_now);
9078 frag_new (0);
9079 }
9080
29b0f896
AM
9081#ifdef DEBUG386
9082 if (flag_debug)
9083 {
7b81dfbb 9084 pi ("" /*line*/, &i);
29b0f896
AM
9085 }
9086#endif /* DEBUG386 */
9087}
252b5132 9088
e205caa7
L
9089/* Return the size of the displacement operand N. */
9090
9091static int
9092disp_size (unsigned int n)
9093{
9094 int size = 4;
43234a1e 9095
b5014f7a 9096 if (i.types[n].bitfield.disp64)
40fb9820
L
9097 size = 8;
9098 else if (i.types[n].bitfield.disp8)
9099 size = 1;
9100 else if (i.types[n].bitfield.disp16)
9101 size = 2;
e205caa7
L
9102 return size;
9103}
9104
9105/* Return the size of the immediate operand N. */
9106
9107static int
9108imm_size (unsigned int n)
9109{
9110 int size = 4;
40fb9820
L
9111 if (i.types[n].bitfield.imm64)
9112 size = 8;
9113 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9114 size = 1;
9115 else if (i.types[n].bitfield.imm16)
9116 size = 2;
e205caa7
L
9117 return size;
9118}
9119
29b0f896 9120static void
64e74474 9121output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9122{
9123 char *p;
9124 unsigned int n;
252b5132 9125
29b0f896
AM
9126 for (n = 0; n < i.operands; n++)
9127 {
b5014f7a 9128 if (operand_type_check (i.types[n], disp))
29b0f896
AM
9129 {
9130 if (i.op[n].disps->X_op == O_constant)
9131 {
e205caa7 9132 int size = disp_size (n);
43234a1e 9133 offsetT val = i.op[n].disps->X_add_number;
252b5132 9134
629cfaf1
JB
9135 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9136 size);
29b0f896
AM
9137 p = frag_more (size);
9138 md_number_to_chars (p, val, size);
9139 }
9140 else
9141 {
f86103b7 9142 enum bfd_reloc_code_real reloc_type;
e205caa7 9143 int size = disp_size (n);
40fb9820 9144 int sign = i.types[n].bitfield.disp32s;
29b0f896 9145 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9146 fixS *fixP;
29b0f896 9147
e205caa7 9148 /* We can't have 8 bit displacement here. */
9c2799c2 9149 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9150
29b0f896
AM
9151 /* The PC relative address is computed relative
9152 to the instruction boundary, so in case immediate
9153 fields follows, we need to adjust the value. */
9154 if (pcrel && i.imm_operands)
9155 {
29b0f896 9156 unsigned int n1;
e205caa7 9157 int sz = 0;
252b5132 9158
29b0f896 9159 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9160 if (operand_type_check (i.types[n1], imm))
252b5132 9161 {
e205caa7
L
9162 /* Only one immediate is allowed for PC
9163 relative address. */
9c2799c2 9164 gas_assert (sz == 0);
e205caa7
L
9165 sz = imm_size (n1);
9166 i.op[n].disps->X_add_number -= sz;
252b5132 9167 }
29b0f896 9168 /* We should find the immediate. */
9c2799c2 9169 gas_assert (sz != 0);
29b0f896 9170 }
520dc8e8 9171
29b0f896 9172 p = frag_more (size);
d258b828 9173 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9174 if (GOT_symbol
2bbd9c25 9175 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9176 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9177 || reloc_type == BFD_RELOC_X86_64_32S
9178 || (reloc_type == BFD_RELOC_64
9179 && object_64bit))
d6ab8113
JB
9180 && (i.op[n].disps->X_op == O_symbol
9181 || (i.op[n].disps->X_op == O_add
9182 && ((symbol_get_value_expression
9183 (i.op[n].disps->X_op_symbol)->X_op)
9184 == O_subtract))))
9185 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9186 {
4fa24527 9187 if (!object_64bit)
7b81dfbb
AJ
9188 {
9189 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9190 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9191 i.op[n].imms->X_add_number +=
9192 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9193 }
9194 else if (reloc_type == BFD_RELOC_64)
9195 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9196 else
7b81dfbb
AJ
9197 /* Don't do the adjustment for x86-64, as there
9198 the pcrel addressing is relative to the _next_
9199 insn, and that is taken care of in other code. */
d6ab8113 9200 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9201 }
e379e5f3
L
9202 else if (align_branch_power)
9203 {
9204 switch (reloc_type)
9205 {
9206 case BFD_RELOC_386_TLS_GD:
9207 case BFD_RELOC_386_TLS_LDM:
9208 case BFD_RELOC_386_TLS_IE:
9209 case BFD_RELOC_386_TLS_IE_32:
9210 case BFD_RELOC_386_TLS_GOTIE:
9211 case BFD_RELOC_386_TLS_GOTDESC:
9212 case BFD_RELOC_386_TLS_DESC_CALL:
9213 case BFD_RELOC_X86_64_TLSGD:
9214 case BFD_RELOC_X86_64_TLSLD:
9215 case BFD_RELOC_X86_64_GOTTPOFF:
9216 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9217 case BFD_RELOC_X86_64_TLSDESC_CALL:
9218 i.has_gotpc_tls_reloc = TRUE;
9219 default:
9220 break;
9221 }
9222 }
02a86693
L
9223 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9224 size, i.op[n].disps, pcrel,
9225 reloc_type);
9226 /* Check for "call/jmp *mem", "mov mem, %reg",
9227 "test %reg, mem" and "binop mem, %reg" where binop
9228 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9229 instructions without data prefix. Always generate
9230 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9231 if (i.prefix[DATA_PREFIX] == 0
9232 && (generate_relax_relocations
9233 || (!object_64bit
9234 && i.rm.mode == 0
9235 && i.rm.regmem == 5))
0cb4071e
L
9236 && (i.rm.mode == 2
9237 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9238 && !is_any_vex_encoding(&i.tm)
02a86693
L
9239 && ((i.operands == 1
9240 && i.tm.base_opcode == 0xff
9241 && (i.rm.reg == 2 || i.rm.reg == 4))
9242 || (i.operands == 2
9243 && (i.tm.base_opcode == 0x8b
9244 || i.tm.base_opcode == 0x85
2ae4c703 9245 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9246 {
9247 if (object_64bit)
9248 {
9249 fixP->fx_tcbit = i.rex != 0;
9250 if (i.base_reg
e968fc9b 9251 && (i.base_reg->reg_num == RegIP))
02a86693
L
9252 fixP->fx_tcbit2 = 1;
9253 }
9254 else
9255 fixP->fx_tcbit2 = 1;
9256 }
29b0f896
AM
9257 }
9258 }
9259 }
9260}
252b5132 9261
29b0f896 9262static void
64e74474 9263output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9264{
9265 char *p;
9266 unsigned int n;
252b5132 9267
29b0f896
AM
9268 for (n = 0; n < i.operands; n++)
9269 {
43234a1e
L
9270 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9271 if (i.rounding && (int) n == i.rounding->operand)
9272 continue;
9273
40fb9820 9274 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9275 {
9276 if (i.op[n].imms->X_op == O_constant)
9277 {
e205caa7 9278 int size = imm_size (n);
29b0f896 9279 offsetT val;
b4cac588 9280
29b0f896
AM
9281 val = offset_in_range (i.op[n].imms->X_add_number,
9282 size);
9283 p = frag_more (size);
9284 md_number_to_chars (p, val, size);
9285 }
9286 else
9287 {
9288 /* Not absolute_section.
9289 Need a 32-bit fixup (don't support 8bit
9290 non-absolute imms). Try to support other
9291 sizes ... */
f86103b7 9292 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9293 int size = imm_size (n);
9294 int sign;
29b0f896 9295
40fb9820 9296 if (i.types[n].bitfield.imm32s
a7d61044 9297 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9298 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9299 sign = 1;
e205caa7
L
9300 else
9301 sign = 0;
520dc8e8 9302
29b0f896 9303 p = frag_more (size);
d258b828 9304 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9305
2bbd9c25
JJ
9306 /* This is tough to explain. We end up with this one if we
9307 * have operands that look like
9308 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9309 * obtain the absolute address of the GOT, and it is strongly
9310 * preferable from a performance point of view to avoid using
9311 * a runtime relocation for this. The actual sequence of
9312 * instructions often look something like:
9313 *
9314 * call .L66
9315 * .L66:
9316 * popl %ebx
9317 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9318 *
9319 * The call and pop essentially return the absolute address
9320 * of the label .L66 and store it in %ebx. The linker itself
9321 * will ultimately change the first operand of the addl so
9322 * that %ebx points to the GOT, but to keep things simple, the
9323 * .o file must have this operand set so that it generates not
9324 * the absolute address of .L66, but the absolute address of
9325 * itself. This allows the linker itself simply treat a GOTPC
9326 * relocation as asking for a pcrel offset to the GOT to be
9327 * added in, and the addend of the relocation is stored in the
9328 * operand field for the instruction itself.
9329 *
9330 * Our job here is to fix the operand so that it would add
9331 * the correct offset so that %ebx would point to itself. The
9332 * thing that is tricky is that .-.L66 will point to the
9333 * beginning of the instruction, so we need to further modify
9334 * the operand so that it will point to itself. There are
9335 * other cases where you have something like:
9336 *
9337 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9338 *
9339 * and here no correction would be required. Internally in
9340 * the assembler we treat operands of this form as not being
9341 * pcrel since the '.' is explicitly mentioned, and I wonder
9342 * whether it would simplify matters to do it this way. Who
9343 * knows. In earlier versions of the PIC patches, the
9344 * pcrel_adjust field was used to store the correction, but
9345 * since the expression is not pcrel, I felt it would be
9346 * confusing to do it this way. */
9347
d6ab8113 9348 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9349 || reloc_type == BFD_RELOC_X86_64_32S
9350 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9351 && GOT_symbol
9352 && GOT_symbol == i.op[n].imms->X_add_symbol
9353 && (i.op[n].imms->X_op == O_symbol
9354 || (i.op[n].imms->X_op == O_add
9355 && ((symbol_get_value_expression
9356 (i.op[n].imms->X_op_symbol)->X_op)
9357 == O_subtract))))
9358 {
4fa24527 9359 if (!object_64bit)
d6ab8113 9360 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9361 else if (size == 4)
d6ab8113 9362 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9363 else if (size == 8)
9364 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9365 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9366 i.op[n].imms->X_add_number +=
9367 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9368 }
29b0f896
AM
9369 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9370 i.op[n].imms, 0, reloc_type);
9371 }
9372 }
9373 }
252b5132
RH
9374}
9375\f
d182319b
JB
9376/* x86_cons_fix_new is called via the expression parsing code when a
9377 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9378static int cons_sign = -1;
9379
9380void
e3bb37b5 9381x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9382 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9383{
d258b828 9384 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9385
9386#ifdef TE_PE
9387 if (exp->X_op == O_secrel)
9388 {
9389 exp->X_op = O_symbol;
9390 r = BFD_RELOC_32_SECREL;
9391 }
9392#endif
9393
9394 fix_new_exp (frag, off, len, exp, 0, r);
9395}
9396
357d1bd8
L
9397/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9398 purpose of the `.dc.a' internal pseudo-op. */
9399
9400int
9401x86_address_bytes (void)
9402{
9403 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9404 return 4;
9405 return stdoutput->arch_info->bits_per_address / 8;
9406}
9407
d382c579
TG
9408#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9409 || defined (LEX_AT)
d258b828 9410# define lex_got(reloc, adjust, types) NULL
718ddfc0 9411#else
f3c180ae
AM
9412/* Parse operands of the form
9413 <symbol>@GOTOFF+<nnn>
9414 and similar .plt or .got references.
9415
9416 If we find one, set up the correct relocation in RELOC and copy the
9417 input string, minus the `@GOTOFF' into a malloc'd buffer for
9418 parsing by the calling routine. Return this buffer, and if ADJUST
9419 is non-null set it to the length of the string we removed from the
9420 input line. Otherwise return NULL. */
9421static char *
91d6fa6a 9422lex_got (enum bfd_reloc_code_real *rel,
64e74474 9423 int *adjust,
d258b828 9424 i386_operand_type *types)
f3c180ae 9425{
7b81dfbb
AJ
9426 /* Some of the relocations depend on the size of what field is to
9427 be relocated. But in our callers i386_immediate and i386_displacement
9428 we don't yet know the operand size (this will be set by insn
9429 matching). Hence we record the word32 relocation here,
9430 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9431 static const struct {
9432 const char *str;
cff8d58a 9433 int len;
4fa24527 9434 const enum bfd_reloc_code_real rel[2];
40fb9820 9435 const i386_operand_type types64;
f3c180ae 9436 } gotrel[] = {
8ce3d284 9437#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9438 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9439 BFD_RELOC_SIZE32 },
9440 OPERAND_TYPE_IMM32_64 },
8ce3d284 9441#endif
cff8d58a
L
9442 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9443 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9444 OPERAND_TYPE_IMM64 },
cff8d58a
L
9445 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9446 BFD_RELOC_X86_64_PLT32 },
40fb9820 9447 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9448 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9449 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9450 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9451 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9452 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9453 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9454 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9455 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9456 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9457 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9458 BFD_RELOC_X86_64_TLSGD },
40fb9820 9459 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9460 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9461 _dummy_first_bfd_reloc_code_real },
40fb9820 9462 OPERAND_TYPE_NONE },
cff8d58a
L
9463 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9464 BFD_RELOC_X86_64_TLSLD },
40fb9820 9465 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9466 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9467 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9468 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9469 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9470 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9471 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9472 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9473 _dummy_first_bfd_reloc_code_real },
40fb9820 9474 OPERAND_TYPE_NONE },
cff8d58a
L
9475 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9476 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9477 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9478 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9479 _dummy_first_bfd_reloc_code_real },
40fb9820 9480 OPERAND_TYPE_NONE },
cff8d58a
L
9481 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9482 _dummy_first_bfd_reloc_code_real },
40fb9820 9483 OPERAND_TYPE_NONE },
cff8d58a
L
9484 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9485 BFD_RELOC_X86_64_GOT32 },
40fb9820 9486 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9487 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9488 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9489 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9490 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9491 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9492 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9493 };
9494 char *cp;
9495 unsigned int j;
9496
d382c579 9497#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9498 if (!IS_ELF)
9499 return NULL;
d382c579 9500#endif
718ddfc0 9501
f3c180ae 9502 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9503 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9504 return NULL;
9505
47465058 9506 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9507 {
cff8d58a 9508 int len = gotrel[j].len;
28f81592 9509 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9510 {
4fa24527 9511 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9512 {
28f81592
AM
9513 int first, second;
9514 char *tmpbuf, *past_reloc;
f3c180ae 9515
91d6fa6a 9516 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9517
3956db08
JB
9518 if (types)
9519 {
9520 if (flag_code != CODE_64BIT)
40fb9820
L
9521 {
9522 types->bitfield.imm32 = 1;
9523 types->bitfield.disp32 = 1;
9524 }
3956db08
JB
9525 else
9526 *types = gotrel[j].types64;
9527 }
9528
8fd4256d 9529 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9530 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9531
28f81592 9532 /* The length of the first part of our input line. */
f3c180ae 9533 first = cp - input_line_pointer;
28f81592
AM
9534
9535 /* The second part goes from after the reloc token until
67c11a9b 9536 (and including) an end_of_line char or comma. */
28f81592 9537 past_reloc = cp + 1 + len;
67c11a9b
AM
9538 cp = past_reloc;
9539 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9540 ++cp;
9541 second = cp + 1 - past_reloc;
28f81592
AM
9542
9543 /* Allocate and copy string. The trailing NUL shouldn't
9544 be necessary, but be safe. */
add39d23 9545 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9546 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9547 if (second != 0 && *past_reloc != ' ')
9548 /* Replace the relocation token with ' ', so that
9549 errors like foo@GOTOFF1 will be detected. */
9550 tmpbuf[first++] = ' ';
af89796a
L
9551 else
9552 /* Increment length by 1 if the relocation token is
9553 removed. */
9554 len++;
9555 if (adjust)
9556 *adjust = len;
0787a12d
AM
9557 memcpy (tmpbuf + first, past_reloc, second);
9558 tmpbuf[first + second] = '\0';
f3c180ae
AM
9559 return tmpbuf;
9560 }
9561
4fa24527
JB
9562 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9563 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9564 return NULL;
9565 }
9566 }
9567
9568 /* Might be a symbol version string. Don't as_bad here. */
9569 return NULL;
9570}
4e4f7c87 9571#endif
f3c180ae 9572
a988325c
NC
9573#ifdef TE_PE
9574#ifdef lex_got
9575#undef lex_got
9576#endif
9577/* Parse operands of the form
9578 <symbol>@SECREL32+<nnn>
9579
9580 If we find one, set up the correct relocation in RELOC and copy the
9581 input string, minus the `@SECREL32' into a malloc'd buffer for
9582 parsing by the calling routine. Return this buffer, and if ADJUST
9583 is non-null set it to the length of the string we removed from the
34bca508
L
9584 input line. Otherwise return NULL.
9585
a988325c
NC
9586 This function is copied from the ELF version above adjusted for PE targets. */
9587
9588static char *
9589lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9590 int *adjust ATTRIBUTE_UNUSED,
d258b828 9591 i386_operand_type *types)
a988325c
NC
9592{
9593 static const struct
9594 {
9595 const char *str;
9596 int len;
9597 const enum bfd_reloc_code_real rel[2];
9598 const i386_operand_type types64;
9599 }
9600 gotrel[] =
9601 {
9602 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9603 BFD_RELOC_32_SECREL },
9604 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9605 };
9606
9607 char *cp;
9608 unsigned j;
9609
9610 for (cp = input_line_pointer; *cp != '@'; cp++)
9611 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9612 return NULL;
9613
9614 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9615 {
9616 int len = gotrel[j].len;
9617
9618 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9619 {
9620 if (gotrel[j].rel[object_64bit] != 0)
9621 {
9622 int first, second;
9623 char *tmpbuf, *past_reloc;
9624
9625 *rel = gotrel[j].rel[object_64bit];
9626 if (adjust)
9627 *adjust = len;
9628
9629 if (types)
9630 {
9631 if (flag_code != CODE_64BIT)
9632 {
9633 types->bitfield.imm32 = 1;
9634 types->bitfield.disp32 = 1;
9635 }
9636 else
9637 *types = gotrel[j].types64;
9638 }
9639
9640 /* The length of the first part of our input line. */
9641 first = cp - input_line_pointer;
9642
9643 /* The second part goes from after the reloc token until
9644 (and including) an end_of_line char or comma. */
9645 past_reloc = cp + 1 + len;
9646 cp = past_reloc;
9647 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9648 ++cp;
9649 second = cp + 1 - past_reloc;
9650
9651 /* Allocate and copy string. The trailing NUL shouldn't
9652 be necessary, but be safe. */
add39d23 9653 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9654 memcpy (tmpbuf, input_line_pointer, first);
9655 if (second != 0 && *past_reloc != ' ')
9656 /* Replace the relocation token with ' ', so that
9657 errors like foo@SECLREL321 will be detected. */
9658 tmpbuf[first++] = ' ';
9659 memcpy (tmpbuf + first, past_reloc, second);
9660 tmpbuf[first + second] = '\0';
9661 return tmpbuf;
9662 }
9663
9664 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9665 gotrel[j].str, 1 << (5 + object_64bit));
9666 return NULL;
9667 }
9668 }
9669
9670 /* Might be a symbol version string. Don't as_bad here. */
9671 return NULL;
9672}
9673
9674#endif /* TE_PE */
9675
62ebcb5c 9676bfd_reloc_code_real_type
e3bb37b5 9677x86_cons (expressionS *exp, int size)
f3c180ae 9678{
62ebcb5c
AM
9679 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9680
ee86248c
JB
9681 intel_syntax = -intel_syntax;
9682
3c7b9c2c 9683 exp->X_md = 0;
4fa24527 9684 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9685 {
9686 /* Handle @GOTOFF and the like in an expression. */
9687 char *save;
9688 char *gotfree_input_line;
4a57f2cf 9689 int adjust = 0;
f3c180ae
AM
9690
9691 save = input_line_pointer;
d258b828 9692 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9693 if (gotfree_input_line)
9694 input_line_pointer = gotfree_input_line;
9695
9696 expression (exp);
9697
9698 if (gotfree_input_line)
9699 {
9700 /* expression () has merrily parsed up to the end of line,
9701 or a comma - in the wrong buffer. Transfer how far
9702 input_line_pointer has moved to the right buffer. */
9703 input_line_pointer = (save
9704 + (input_line_pointer - gotfree_input_line)
9705 + adjust);
9706 free (gotfree_input_line);
3992d3b7
AM
9707 if (exp->X_op == O_constant
9708 || exp->X_op == O_absent
9709 || exp->X_op == O_illegal
0398aac5 9710 || exp->X_op == O_register
3992d3b7
AM
9711 || exp->X_op == O_big)
9712 {
9713 char c = *input_line_pointer;
9714 *input_line_pointer = 0;
9715 as_bad (_("missing or invalid expression `%s'"), save);
9716 *input_line_pointer = c;
9717 }
b9519cfe
L
9718 else if ((got_reloc == BFD_RELOC_386_PLT32
9719 || got_reloc == BFD_RELOC_X86_64_PLT32)
9720 && exp->X_op != O_symbol)
9721 {
9722 char c = *input_line_pointer;
9723 *input_line_pointer = 0;
9724 as_bad (_("invalid PLT expression `%s'"), save);
9725 *input_line_pointer = c;
9726 }
f3c180ae
AM
9727 }
9728 }
9729 else
9730 expression (exp);
ee86248c
JB
9731
9732 intel_syntax = -intel_syntax;
9733
9734 if (intel_syntax)
9735 i386_intel_simplify (exp);
62ebcb5c
AM
9736
9737 return got_reloc;
f3c180ae 9738}
f3c180ae 9739
9f32dd5b
L
9740static void
9741signed_cons (int size)
6482c264 9742{
d182319b
JB
9743 if (flag_code == CODE_64BIT)
9744 cons_sign = 1;
9745 cons (size);
9746 cons_sign = -1;
6482c264
NC
9747}
9748
d182319b 9749#ifdef TE_PE
6482c264 9750static void
7016a5d5 9751pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9752{
9753 expressionS exp;
9754
9755 do
9756 {
9757 expression (&exp);
9758 if (exp.X_op == O_symbol)
9759 exp.X_op = O_secrel;
9760
9761 emit_expr (&exp, 4);
9762 }
9763 while (*input_line_pointer++ == ',');
9764
9765 input_line_pointer--;
9766 demand_empty_rest_of_line ();
9767}
6482c264
NC
9768#endif
9769
43234a1e
L
9770/* Handle Vector operations. */
9771
9772static char *
9773check_VecOperations (char *op_string, char *op_end)
9774{
9775 const reg_entry *mask;
9776 const char *saved;
9777 char *end_op;
9778
9779 while (*op_string
9780 && (op_end == NULL || op_string < op_end))
9781 {
9782 saved = op_string;
9783 if (*op_string == '{')
9784 {
9785 op_string++;
9786
9787 /* Check broadcasts. */
9788 if (strncmp (op_string, "1to", 3) == 0)
9789 {
9790 int bcst_type;
9791
9792 if (i.broadcast)
9793 goto duplicated_vec_op;
9794
9795 op_string += 3;
9796 if (*op_string == '8')
8e6e0792 9797 bcst_type = 8;
b28d1bda 9798 else if (*op_string == '4')
8e6e0792 9799 bcst_type = 4;
b28d1bda 9800 else if (*op_string == '2')
8e6e0792 9801 bcst_type = 2;
43234a1e
L
9802 else if (*op_string == '1'
9803 && *(op_string+1) == '6')
9804 {
8e6e0792 9805 bcst_type = 16;
43234a1e
L
9806 op_string++;
9807 }
9808 else
9809 {
9810 as_bad (_("Unsupported broadcast: `%s'"), saved);
9811 return NULL;
9812 }
9813 op_string++;
9814
9815 broadcast_op.type = bcst_type;
9816 broadcast_op.operand = this_operand;
1f75763a 9817 broadcast_op.bytes = 0;
43234a1e
L
9818 i.broadcast = &broadcast_op;
9819 }
9820 /* Check masking operation. */
9821 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9822 {
9823 /* k0 can't be used for write mask. */
f74a6307 9824 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9825 {
6d2cd6b2
JB
9826 as_bad (_("`%s%s' can't be used for write mask"),
9827 register_prefix, mask->reg_name);
43234a1e
L
9828 return NULL;
9829 }
9830
9831 if (!i.mask)
9832 {
9833 mask_op.mask = mask;
9834 mask_op.zeroing = 0;
9835 mask_op.operand = this_operand;
9836 i.mask = &mask_op;
9837 }
9838 else
9839 {
9840 if (i.mask->mask)
9841 goto duplicated_vec_op;
9842
9843 i.mask->mask = mask;
9844
9845 /* Only "{z}" is allowed here. No need to check
9846 zeroing mask explicitly. */
9847 if (i.mask->operand != this_operand)
9848 {
9849 as_bad (_("invalid write mask `%s'"), saved);
9850 return NULL;
9851 }
9852 }
9853
9854 op_string = end_op;
9855 }
9856 /* Check zeroing-flag for masking operation. */
9857 else if (*op_string == 'z')
9858 {
9859 if (!i.mask)
9860 {
9861 mask_op.mask = NULL;
9862 mask_op.zeroing = 1;
9863 mask_op.operand = this_operand;
9864 i.mask = &mask_op;
9865 }
9866 else
9867 {
9868 if (i.mask->zeroing)
9869 {
9870 duplicated_vec_op:
9871 as_bad (_("duplicated `%s'"), saved);
9872 return NULL;
9873 }
9874
9875 i.mask->zeroing = 1;
9876
9877 /* Only "{%k}" is allowed here. No need to check mask
9878 register explicitly. */
9879 if (i.mask->operand != this_operand)
9880 {
9881 as_bad (_("invalid zeroing-masking `%s'"),
9882 saved);
9883 return NULL;
9884 }
9885 }
9886
9887 op_string++;
9888 }
9889 else
9890 goto unknown_vec_op;
9891
9892 if (*op_string != '}')
9893 {
9894 as_bad (_("missing `}' in `%s'"), saved);
9895 return NULL;
9896 }
9897 op_string++;
0ba3a731
L
9898
9899 /* Strip whitespace since the addition of pseudo prefixes
9900 changed how the scrubber treats '{'. */
9901 if (is_space_char (*op_string))
9902 ++op_string;
9903
43234a1e
L
9904 continue;
9905 }
9906 unknown_vec_op:
9907 /* We don't know this one. */
9908 as_bad (_("unknown vector operation: `%s'"), saved);
9909 return NULL;
9910 }
9911
6d2cd6b2
JB
9912 if (i.mask && i.mask->zeroing && !i.mask->mask)
9913 {
9914 as_bad (_("zeroing-masking only allowed with write mask"));
9915 return NULL;
9916 }
9917
43234a1e
L
9918 return op_string;
9919}
9920
252b5132 9921static int
70e41ade 9922i386_immediate (char *imm_start)
252b5132
RH
9923{
9924 char *save_input_line_pointer;
f3c180ae 9925 char *gotfree_input_line;
252b5132 9926 segT exp_seg = 0;
47926f60 9927 expressionS *exp;
40fb9820
L
9928 i386_operand_type types;
9929
0dfbf9d7 9930 operand_type_set (&types, ~0);
252b5132
RH
9931
9932 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9933 {
31b2323c
L
9934 as_bad (_("at most %d immediate operands are allowed"),
9935 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9936 return 0;
9937 }
9938
9939 exp = &im_expressions[i.imm_operands++];
520dc8e8 9940 i.op[this_operand].imms = exp;
252b5132
RH
9941
9942 if (is_space_char (*imm_start))
9943 ++imm_start;
9944
9945 save_input_line_pointer = input_line_pointer;
9946 input_line_pointer = imm_start;
9947
d258b828 9948 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9949 if (gotfree_input_line)
9950 input_line_pointer = gotfree_input_line;
252b5132
RH
9951
9952 exp_seg = expression (exp);
9953
83183c0c 9954 SKIP_WHITESPACE ();
43234a1e
L
9955
9956 /* Handle vector operations. */
9957 if (*input_line_pointer == '{')
9958 {
9959 input_line_pointer = check_VecOperations (input_line_pointer,
9960 NULL);
9961 if (input_line_pointer == NULL)
9962 return 0;
9963 }
9964
252b5132 9965 if (*input_line_pointer)
f3c180ae 9966 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9967
9968 input_line_pointer = save_input_line_pointer;
f3c180ae 9969 if (gotfree_input_line)
ee86248c
JB
9970 {
9971 free (gotfree_input_line);
9972
9973 if (exp->X_op == O_constant || exp->X_op == O_register)
9974 exp->X_op = O_illegal;
9975 }
9976
9977 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9978}
252b5132 9979
ee86248c
JB
9980static int
9981i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9982 i386_operand_type types, const char *imm_start)
9983{
9984 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9985 {
313c53d1
L
9986 if (imm_start)
9987 as_bad (_("missing or invalid immediate expression `%s'"),
9988 imm_start);
3992d3b7 9989 return 0;
252b5132 9990 }
3e73aa7c 9991 else if (exp->X_op == O_constant)
252b5132 9992 {
47926f60 9993 /* Size it properly later. */
40fb9820 9994 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9995 /* If not 64bit, sign extend val. */
9996 if (flag_code != CODE_64BIT
4eed87de
AM
9997 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9998 exp->X_add_number
9999 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 10000 }
4c63da97 10001#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 10002 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 10003 && exp_seg != absolute_section
47926f60 10004 && exp_seg != text_section
24eab124
AM
10005 && exp_seg != data_section
10006 && exp_seg != bss_section
10007 && exp_seg != undefined_section
f86103b7 10008 && !bfd_is_com_section (exp_seg))
252b5132 10009 {
d0b47220 10010 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
10011 return 0;
10012 }
10013#endif
a841bdf5 10014 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 10015 {
313c53d1
L
10016 if (imm_start)
10017 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
10018 return 0;
10019 }
252b5132
RH
10020 else
10021 {
10022 /* This is an address. The size of the address will be
24eab124 10023 determined later, depending on destination register,
3e73aa7c 10024 suffix, or the default for the section. */
40fb9820
L
10025 i.types[this_operand].bitfield.imm8 = 1;
10026 i.types[this_operand].bitfield.imm16 = 1;
10027 i.types[this_operand].bitfield.imm32 = 1;
10028 i.types[this_operand].bitfield.imm32s = 1;
10029 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
10030 i.types[this_operand] = operand_type_and (i.types[this_operand],
10031 types);
252b5132
RH
10032 }
10033
10034 return 1;
10035}
10036
551c1ca1 10037static char *
e3bb37b5 10038i386_scale (char *scale)
252b5132 10039{
551c1ca1
AM
10040 offsetT val;
10041 char *save = input_line_pointer;
252b5132 10042
551c1ca1
AM
10043 input_line_pointer = scale;
10044 val = get_absolute_expression ();
10045
10046 switch (val)
252b5132 10047 {
551c1ca1 10048 case 1:
252b5132
RH
10049 i.log2_scale_factor = 0;
10050 break;
551c1ca1 10051 case 2:
252b5132
RH
10052 i.log2_scale_factor = 1;
10053 break;
551c1ca1 10054 case 4:
252b5132
RH
10055 i.log2_scale_factor = 2;
10056 break;
551c1ca1 10057 case 8:
252b5132
RH
10058 i.log2_scale_factor = 3;
10059 break;
10060 default:
a724f0f4
JB
10061 {
10062 char sep = *input_line_pointer;
10063
10064 *input_line_pointer = '\0';
10065 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10066 scale);
10067 *input_line_pointer = sep;
10068 input_line_pointer = save;
10069 return NULL;
10070 }
252b5132 10071 }
29b0f896 10072 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
10073 {
10074 as_warn (_("scale factor of %d without an index register"),
24eab124 10075 1 << i.log2_scale_factor);
252b5132 10076 i.log2_scale_factor = 0;
252b5132 10077 }
551c1ca1
AM
10078 scale = input_line_pointer;
10079 input_line_pointer = save;
10080 return scale;
252b5132
RH
10081}
10082
252b5132 10083static int
e3bb37b5 10084i386_displacement (char *disp_start, char *disp_end)
252b5132 10085{
29b0f896 10086 expressionS *exp;
252b5132
RH
10087 segT exp_seg = 0;
10088 char *save_input_line_pointer;
f3c180ae 10089 char *gotfree_input_line;
40fb9820
L
10090 int override;
10091 i386_operand_type bigdisp, types = anydisp;
3992d3b7 10092 int ret;
252b5132 10093
31b2323c
L
10094 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10095 {
10096 as_bad (_("at most %d displacement operands are allowed"),
10097 MAX_MEMORY_OPERANDS);
10098 return 0;
10099 }
10100
0dfbf9d7 10101 operand_type_set (&bigdisp, 0);
6f2f06be 10102 if (i.jumpabsolute
48bcea9f 10103 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
10104 || (current_templates->start->opcode_modifier.jump != JUMP
10105 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 10106 {
48bcea9f 10107 i386_addressing_mode ();
e05278af 10108 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
10109 if (flag_code == CODE_64BIT)
10110 {
10111 if (!override)
10112 {
10113 bigdisp.bitfield.disp32s = 1;
10114 bigdisp.bitfield.disp64 = 1;
10115 }
48bcea9f
JB
10116 else
10117 bigdisp.bitfield.disp32 = 1;
40fb9820
L
10118 }
10119 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 10120 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
10121 else
10122 bigdisp.bitfield.disp32 = 1;
e05278af
JB
10123 }
10124 else
10125 {
376cd056
JB
10126 /* For PC-relative branches, the width of the displacement may be
10127 dependent upon data size, but is never dependent upon address size.
10128 Also make sure to not unintentionally match against a non-PC-relative
10129 branch template. */
10130 static templates aux_templates;
10131 const insn_template *t = current_templates->start;
10132 bfd_boolean has_intel64 = FALSE;
10133
10134 aux_templates.start = t;
10135 while (++t < current_templates->end)
10136 {
10137 if (t->opcode_modifier.jump
10138 != current_templates->start->opcode_modifier.jump)
10139 break;
4b5aaf5f 10140 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10141 has_intel64 = TRUE;
10142 }
10143 if (t < current_templates->end)
10144 {
10145 aux_templates.end = t;
10146 current_templates = &aux_templates;
10147 }
10148
e05278af 10149 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10150 if (flag_code == CODE_64BIT)
10151 {
376cd056
JB
10152 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10153 && (!intel64 || !has_intel64))
40fb9820
L
10154 bigdisp.bitfield.disp16 = 1;
10155 else
48bcea9f 10156 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10157 }
10158 else
e05278af
JB
10159 {
10160 if (!override)
10161 override = (i.suffix == (flag_code != CODE_16BIT
10162 ? WORD_MNEM_SUFFIX
10163 : LONG_MNEM_SUFFIX));
40fb9820
L
10164 bigdisp.bitfield.disp32 = 1;
10165 if ((flag_code == CODE_16BIT) ^ override)
10166 {
10167 bigdisp.bitfield.disp32 = 0;
10168 bigdisp.bitfield.disp16 = 1;
10169 }
e05278af 10170 }
e05278af 10171 }
c6fb90c8
L
10172 i.types[this_operand] = operand_type_or (i.types[this_operand],
10173 bigdisp);
252b5132
RH
10174
10175 exp = &disp_expressions[i.disp_operands];
520dc8e8 10176 i.op[this_operand].disps = exp;
252b5132
RH
10177 i.disp_operands++;
10178 save_input_line_pointer = input_line_pointer;
10179 input_line_pointer = disp_start;
10180 END_STRING_AND_SAVE (disp_end);
10181
10182#ifndef GCC_ASM_O_HACK
10183#define GCC_ASM_O_HACK 0
10184#endif
10185#if GCC_ASM_O_HACK
10186 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10187 if (i.types[this_operand].bitfield.baseIndex
24eab124 10188 && displacement_string_end[-1] == '+')
252b5132
RH
10189 {
10190 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10191 constraint within gcc asm statements.
10192 For instance:
10193
10194 #define _set_tssldt_desc(n,addr,limit,type) \
10195 __asm__ __volatile__ ( \
10196 "movw %w2,%0\n\t" \
10197 "movw %w1,2+%0\n\t" \
10198 "rorl $16,%1\n\t" \
10199 "movb %b1,4+%0\n\t" \
10200 "movb %4,5+%0\n\t" \
10201 "movb $0,6+%0\n\t" \
10202 "movb %h1,7+%0\n\t" \
10203 "rorl $16,%1" \
10204 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10205
10206 This works great except that the output assembler ends
10207 up looking a bit weird if it turns out that there is
10208 no offset. You end up producing code that looks like:
10209
10210 #APP
10211 movw $235,(%eax)
10212 movw %dx,2+(%eax)
10213 rorl $16,%edx
10214 movb %dl,4+(%eax)
10215 movb $137,5+(%eax)
10216 movb $0,6+(%eax)
10217 movb %dh,7+(%eax)
10218 rorl $16,%edx
10219 #NO_APP
10220
47926f60 10221 So here we provide the missing zero. */
24eab124
AM
10222
10223 *displacement_string_end = '0';
252b5132
RH
10224 }
10225#endif
d258b828 10226 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10227 if (gotfree_input_line)
10228 input_line_pointer = gotfree_input_line;
252b5132 10229
24eab124 10230 exp_seg = expression (exp);
252b5132 10231
636c26b0
AM
10232 SKIP_WHITESPACE ();
10233 if (*input_line_pointer)
10234 as_bad (_("junk `%s' after expression"), input_line_pointer);
10235#if GCC_ASM_O_HACK
10236 RESTORE_END_STRING (disp_end + 1);
10237#endif
636c26b0 10238 input_line_pointer = save_input_line_pointer;
636c26b0 10239 if (gotfree_input_line)
ee86248c
JB
10240 {
10241 free (gotfree_input_line);
10242
10243 if (exp->X_op == O_constant || exp->X_op == O_register)
10244 exp->X_op = O_illegal;
10245 }
10246
10247 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10248
10249 RESTORE_END_STRING (disp_end);
10250
10251 return ret;
10252}
10253
10254static int
10255i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10256 i386_operand_type types, const char *disp_start)
10257{
10258 i386_operand_type bigdisp;
10259 int ret = 1;
636c26b0 10260
24eab124
AM
10261 /* We do this to make sure that the section symbol is in
10262 the symbol table. We will ultimately change the relocation
47926f60 10263 to be relative to the beginning of the section. */
1ae12ab7 10264 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10265 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10266 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10267 {
636c26b0 10268 if (exp->X_op != O_symbol)
3992d3b7 10269 goto inv_disp;
636c26b0 10270
e5cb08ac 10271 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10272 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10273 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10274 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10275 exp->X_op = O_subtract;
10276 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10277 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10278 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10279 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10280 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10281 else
29b0f896 10282 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10283 }
252b5132 10284
3992d3b7
AM
10285 else if (exp->X_op == O_absent
10286 || exp->X_op == O_illegal
ee86248c 10287 || exp->X_op == O_big)
2daf4fd8 10288 {
3992d3b7
AM
10289 inv_disp:
10290 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10291 disp_start);
3992d3b7 10292 ret = 0;
2daf4fd8
AM
10293 }
10294
0e1147d9
L
10295 else if (flag_code == CODE_64BIT
10296 && !i.prefix[ADDR_PREFIX]
10297 && exp->X_op == O_constant)
10298 {
10299 /* Since displacement is signed extended to 64bit, don't allow
10300 disp32 and turn off disp32s if they are out of range. */
10301 i.types[this_operand].bitfield.disp32 = 0;
10302 if (!fits_in_signed_long (exp->X_add_number))
10303 {
10304 i.types[this_operand].bitfield.disp32s = 0;
10305 if (i.types[this_operand].bitfield.baseindex)
10306 {
10307 as_bad (_("0x%lx out range of signed 32bit displacement"),
10308 (long) exp->X_add_number);
10309 ret = 0;
10310 }
10311 }
10312 }
10313
4c63da97 10314#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10315 else if (exp->X_op != O_constant
10316 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10317 && exp_seg != absolute_section
10318 && exp_seg != text_section
10319 && exp_seg != data_section
10320 && exp_seg != bss_section
10321 && exp_seg != undefined_section
10322 && !bfd_is_com_section (exp_seg))
24eab124 10323 {
d0b47220 10324 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10325 ret = 0;
24eab124 10326 }
252b5132 10327#endif
3956db08 10328
48bcea9f
JB
10329 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10330 /* Constants get taken care of by optimize_disp(). */
10331 && exp->X_op != O_constant)
10332 i.types[this_operand].bitfield.disp8 = 1;
10333
40fb9820
L
10334 /* Check if this is a displacement only operand. */
10335 bigdisp = i.types[this_operand];
10336 bigdisp.bitfield.disp8 = 0;
10337 bigdisp.bitfield.disp16 = 0;
10338 bigdisp.bitfield.disp32 = 0;
10339 bigdisp.bitfield.disp32s = 0;
10340 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10341 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10342 i.types[this_operand] = operand_type_and (i.types[this_operand],
10343 types);
3956db08 10344
3992d3b7 10345 return ret;
252b5132
RH
10346}
10347
2abc2bec
JB
10348/* Return the active addressing mode, taking address override and
10349 registers forming the address into consideration. Update the
10350 address override prefix if necessary. */
47926f60 10351
2abc2bec
JB
10352static enum flag_code
10353i386_addressing_mode (void)
252b5132 10354{
be05d201
L
10355 enum flag_code addr_mode;
10356
10357 if (i.prefix[ADDR_PREFIX])
10358 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10359 else
10360 {
10361 addr_mode = flag_code;
10362
24eab124 10363#if INFER_ADDR_PREFIX
be05d201
L
10364 if (i.mem_operands == 0)
10365 {
10366 /* Infer address prefix from the first memory operand. */
10367 const reg_entry *addr_reg = i.base_reg;
10368
10369 if (addr_reg == NULL)
10370 addr_reg = i.index_reg;
eecb386c 10371
be05d201
L
10372 if (addr_reg)
10373 {
e968fc9b 10374 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10375 addr_mode = CODE_32BIT;
10376 else if (flag_code != CODE_64BIT
dc821c5f 10377 && addr_reg->reg_type.bitfield.word)
be05d201
L
10378 addr_mode = CODE_16BIT;
10379
10380 if (addr_mode != flag_code)
10381 {
10382 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10383 i.prefixes += 1;
10384 /* Change the size of any displacement too. At most one
10385 of Disp16 or Disp32 is set.
10386 FIXME. There doesn't seem to be any real need for
10387 separate Disp16 and Disp32 flags. The same goes for
10388 Imm16 and Imm32. Removing them would probably clean
10389 up the code quite a lot. */
10390 if (flag_code != CODE_64BIT
10391 && (i.types[this_operand].bitfield.disp16
10392 || i.types[this_operand].bitfield.disp32))
10393 i.types[this_operand]
10394 = operand_type_xor (i.types[this_operand], disp16_32);
10395 }
10396 }
10397 }
24eab124 10398#endif
be05d201
L
10399 }
10400
2abc2bec
JB
10401 return addr_mode;
10402}
10403
10404/* Make sure the memory operand we've been dealt is valid.
10405 Return 1 on success, 0 on a failure. */
10406
10407static int
10408i386_index_check (const char *operand_string)
10409{
10410 const char *kind = "base/index";
10411 enum flag_code addr_mode = i386_addressing_mode ();
10412
fc0763e6 10413 if (current_templates->start->opcode_modifier.isstring
c3949f43 10414 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10415 && (current_templates->end[-1].opcode_modifier.isstring
10416 || i.mem_operands))
10417 {
10418 /* Memory operands of string insns are special in that they only allow
10419 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10420 const reg_entry *expected_reg;
10421 static const char *di_si[][2] =
10422 {
10423 { "esi", "edi" },
10424 { "si", "di" },
10425 { "rsi", "rdi" }
10426 };
10427 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10428
10429 kind = "string address";
10430
8325cc63 10431 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10432 {
51c8edf6
JB
10433 int es_op = current_templates->end[-1].opcode_modifier.isstring
10434 - IS_STRING_ES_OP0;
10435 int op = 0;
fc0763e6 10436
51c8edf6 10437 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10438 || ((!i.mem_operands != !intel_syntax)
10439 && current_templates->end[-1].operand_types[1]
10440 .bitfield.baseindex))
51c8edf6
JB
10441 op = 1;
10442 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10443 }
10444 else
be05d201 10445 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10446
be05d201
L
10447 if (i.base_reg != expected_reg
10448 || i.index_reg
fc0763e6 10449 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10450 {
be05d201
L
10451 /* The second memory operand must have the same size as
10452 the first one. */
10453 if (i.mem_operands
10454 && i.base_reg
10455 && !((addr_mode == CODE_64BIT
dc821c5f 10456 && i.base_reg->reg_type.bitfield.qword)
be05d201 10457 || (addr_mode == CODE_32BIT
dc821c5f
JB
10458 ? i.base_reg->reg_type.bitfield.dword
10459 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10460 goto bad_address;
10461
fc0763e6
JB
10462 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10463 operand_string,
10464 intel_syntax ? '[' : '(',
10465 register_prefix,
be05d201 10466 expected_reg->reg_name,
fc0763e6 10467 intel_syntax ? ']' : ')');
be05d201 10468 return 1;
fc0763e6 10469 }
be05d201
L
10470 else
10471 return 1;
10472
dc1e8a47 10473 bad_address:
be05d201
L
10474 as_bad (_("`%s' is not a valid %s expression"),
10475 operand_string, kind);
10476 return 0;
3e73aa7c
JH
10477 }
10478 else
10479 {
be05d201
L
10480 if (addr_mode != CODE_16BIT)
10481 {
10482 /* 32-bit/64-bit checks. */
10483 if ((i.base_reg
e968fc9b
JB
10484 && ((addr_mode == CODE_64BIT
10485 ? !i.base_reg->reg_type.bitfield.qword
10486 : !i.base_reg->reg_type.bitfield.dword)
10487 || (i.index_reg && i.base_reg->reg_num == RegIP)
10488 || i.base_reg->reg_num == RegIZ))
be05d201 10489 || (i.index_reg
1b54b8d7
JB
10490 && !i.index_reg->reg_type.bitfield.xmmword
10491 && !i.index_reg->reg_type.bitfield.ymmword
10492 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10493 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10494 ? !i.index_reg->reg_type.bitfield.qword
10495 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10496 || !i.index_reg->reg_type.bitfield.baseindex)))
10497 goto bad_address;
8178be5b
JB
10498
10499 /* bndmk, bndldx, and bndstx have special restrictions. */
10500 if (current_templates->start->base_opcode == 0xf30f1b
10501 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10502 {
10503 /* They cannot use RIP-relative addressing. */
e968fc9b 10504 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10505 {
10506 as_bad (_("`%s' cannot be used here"), operand_string);
10507 return 0;
10508 }
10509
10510 /* bndldx and bndstx ignore their scale factor. */
10511 if (current_templates->start->base_opcode != 0xf30f1b
10512 && i.log2_scale_factor)
10513 as_warn (_("register scaling is being ignored here"));
10514 }
be05d201
L
10515 }
10516 else
3e73aa7c 10517 {
be05d201 10518 /* 16-bit checks. */
3e73aa7c 10519 if ((i.base_reg
dc821c5f 10520 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10521 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10522 || (i.index_reg
dc821c5f 10523 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10524 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10525 || !(i.base_reg
10526 && i.base_reg->reg_num < 6
10527 && i.index_reg->reg_num >= 6
10528 && i.log2_scale_factor == 0))))
be05d201 10529 goto bad_address;
3e73aa7c
JH
10530 }
10531 }
be05d201 10532 return 1;
24eab124 10533}
252b5132 10534
43234a1e
L
10535/* Handle vector immediates. */
10536
10537static int
10538RC_SAE_immediate (const char *imm_start)
10539{
10540 unsigned int match_found, j;
10541 const char *pstr = imm_start;
10542 expressionS *exp;
10543
10544 if (*pstr != '{')
10545 return 0;
10546
10547 pstr++;
10548 match_found = 0;
10549 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10550 {
10551 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10552 {
10553 if (!i.rounding)
10554 {
10555 rc_op.type = RC_NamesTable[j].type;
10556 rc_op.operand = this_operand;
10557 i.rounding = &rc_op;
10558 }
10559 else
10560 {
10561 as_bad (_("duplicated `%s'"), imm_start);
10562 return 0;
10563 }
10564 pstr += RC_NamesTable[j].len;
10565 match_found = 1;
10566 break;
10567 }
10568 }
10569 if (!match_found)
10570 return 0;
10571
10572 if (*pstr++ != '}')
10573 {
10574 as_bad (_("Missing '}': '%s'"), imm_start);
10575 return 0;
10576 }
10577 /* RC/SAE immediate string should contain nothing more. */;
10578 if (*pstr != 0)
10579 {
10580 as_bad (_("Junk after '}': '%s'"), imm_start);
10581 return 0;
10582 }
10583
10584 exp = &im_expressions[i.imm_operands++];
10585 i.op[this_operand].imms = exp;
10586
10587 exp->X_op = O_constant;
10588 exp->X_add_number = 0;
10589 exp->X_add_symbol = (symbolS *) 0;
10590 exp->X_op_symbol = (symbolS *) 0;
10591
10592 i.types[this_operand].bitfield.imm8 = 1;
10593 return 1;
10594}
10595
8325cc63
JB
10596/* Only string instructions can have a second memory operand, so
10597 reduce current_templates to just those if it contains any. */
10598static int
10599maybe_adjust_templates (void)
10600{
10601 const insn_template *t;
10602
10603 gas_assert (i.mem_operands == 1);
10604
10605 for (t = current_templates->start; t < current_templates->end; ++t)
10606 if (t->opcode_modifier.isstring)
10607 break;
10608
10609 if (t < current_templates->end)
10610 {
10611 static templates aux_templates;
10612 bfd_boolean recheck;
10613
10614 aux_templates.start = t;
10615 for (; t < current_templates->end; ++t)
10616 if (!t->opcode_modifier.isstring)
10617 break;
10618 aux_templates.end = t;
10619
10620 /* Determine whether to re-check the first memory operand. */
10621 recheck = (aux_templates.start != current_templates->start
10622 || t != current_templates->end);
10623
10624 current_templates = &aux_templates;
10625
10626 if (recheck)
10627 {
10628 i.mem_operands = 0;
10629 if (i.memop1_string != NULL
10630 && i386_index_check (i.memop1_string) == 0)
10631 return 0;
10632 i.mem_operands = 1;
10633 }
10634 }
10635
10636 return 1;
10637}
10638
fc0763e6 10639/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10640 on error. */
252b5132 10641
252b5132 10642static int
a7619375 10643i386_att_operand (char *operand_string)
252b5132 10644{
af6bdddf
AM
10645 const reg_entry *r;
10646 char *end_op;
24eab124 10647 char *op_string = operand_string;
252b5132 10648
24eab124 10649 if (is_space_char (*op_string))
252b5132
RH
10650 ++op_string;
10651
24eab124 10652 /* We check for an absolute prefix (differentiating,
47926f60 10653 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10654 if (*op_string == ABSOLUTE_PREFIX)
10655 {
10656 ++op_string;
10657 if (is_space_char (*op_string))
10658 ++op_string;
6f2f06be 10659 i.jumpabsolute = TRUE;
24eab124 10660 }
252b5132 10661
47926f60 10662 /* Check if operand is a register. */
4d1bb795 10663 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10664 {
40fb9820
L
10665 i386_operand_type temp;
10666
24eab124
AM
10667 /* Check for a segment override by searching for ':' after a
10668 segment register. */
10669 op_string = end_op;
10670 if (is_space_char (*op_string))
10671 ++op_string;
00cee14f 10672 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10673 {
10674 switch (r->reg_num)
10675 {
10676 case 0:
10677 i.seg[i.mem_operands] = &es;
10678 break;
10679 case 1:
10680 i.seg[i.mem_operands] = &cs;
10681 break;
10682 case 2:
10683 i.seg[i.mem_operands] = &ss;
10684 break;
10685 case 3:
10686 i.seg[i.mem_operands] = &ds;
10687 break;
10688 case 4:
10689 i.seg[i.mem_operands] = &fs;
10690 break;
10691 case 5:
10692 i.seg[i.mem_operands] = &gs;
10693 break;
10694 }
252b5132 10695
24eab124 10696 /* Skip the ':' and whitespace. */
252b5132
RH
10697 ++op_string;
10698 if (is_space_char (*op_string))
24eab124 10699 ++op_string;
252b5132 10700
24eab124
AM
10701 if (!is_digit_char (*op_string)
10702 && !is_identifier_char (*op_string)
10703 && *op_string != '('
10704 && *op_string != ABSOLUTE_PREFIX)
10705 {
10706 as_bad (_("bad memory operand `%s'"), op_string);
10707 return 0;
10708 }
47926f60 10709 /* Handle case of %es:*foo. */
24eab124
AM
10710 if (*op_string == ABSOLUTE_PREFIX)
10711 {
10712 ++op_string;
10713 if (is_space_char (*op_string))
10714 ++op_string;
6f2f06be 10715 i.jumpabsolute = TRUE;
24eab124
AM
10716 }
10717 goto do_memory_reference;
10718 }
43234a1e
L
10719
10720 /* Handle vector operations. */
10721 if (*op_string == '{')
10722 {
10723 op_string = check_VecOperations (op_string, NULL);
10724 if (op_string == NULL)
10725 return 0;
10726 }
10727
24eab124
AM
10728 if (*op_string)
10729 {
d0b47220 10730 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10731 return 0;
10732 }
40fb9820
L
10733 temp = r->reg_type;
10734 temp.bitfield.baseindex = 0;
c6fb90c8
L
10735 i.types[this_operand] = operand_type_or (i.types[this_operand],
10736 temp);
7d5e4556 10737 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10738 i.op[this_operand].regs = r;
24eab124
AM
10739 i.reg_operands++;
10740 }
af6bdddf
AM
10741 else if (*op_string == REGISTER_PREFIX)
10742 {
10743 as_bad (_("bad register name `%s'"), op_string);
10744 return 0;
10745 }
24eab124 10746 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10747 {
24eab124 10748 ++op_string;
6f2f06be 10749 if (i.jumpabsolute)
24eab124 10750 {
d0b47220 10751 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10752 return 0;
10753 }
10754 if (!i386_immediate (op_string))
10755 return 0;
10756 }
43234a1e
L
10757 else if (RC_SAE_immediate (operand_string))
10758 {
10759 /* If it is a RC or SAE immediate, do nothing. */
10760 ;
10761 }
24eab124
AM
10762 else if (is_digit_char (*op_string)
10763 || is_identifier_char (*op_string)
d02603dc 10764 || *op_string == '"'
e5cb08ac 10765 || *op_string == '(')
24eab124 10766 {
47926f60 10767 /* This is a memory reference of some sort. */
af6bdddf 10768 char *base_string;
252b5132 10769
47926f60 10770 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10771 char *displacement_string_start;
10772 char *displacement_string_end;
43234a1e 10773 char *vop_start;
252b5132 10774
24eab124 10775 do_memory_reference:
8325cc63
JB
10776 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10777 return 0;
24eab124 10778 if ((i.mem_operands == 1
40fb9820 10779 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10780 || i.mem_operands == 2)
10781 {
10782 as_bad (_("too many memory references for `%s'"),
10783 current_templates->start->name);
10784 return 0;
10785 }
252b5132 10786
24eab124
AM
10787 /* Check for base index form. We detect the base index form by
10788 looking for an ')' at the end of the operand, searching
10789 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10790 after the '('. */
af6bdddf 10791 base_string = op_string + strlen (op_string);
c3332e24 10792
43234a1e
L
10793 /* Handle vector operations. */
10794 vop_start = strchr (op_string, '{');
10795 if (vop_start && vop_start < base_string)
10796 {
10797 if (check_VecOperations (vop_start, base_string) == NULL)
10798 return 0;
10799 base_string = vop_start;
10800 }
10801
af6bdddf
AM
10802 --base_string;
10803 if (is_space_char (*base_string))
10804 --base_string;
252b5132 10805
47926f60 10806 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10807 displacement_string_start = op_string;
10808 displacement_string_end = base_string + 1;
252b5132 10809
24eab124
AM
10810 if (*base_string == ')')
10811 {
af6bdddf 10812 char *temp_string;
24eab124
AM
10813 unsigned int parens_balanced = 1;
10814 /* We've already checked that the number of left & right ()'s are
47926f60 10815 equal, so this loop will not be infinite. */
24eab124
AM
10816 do
10817 {
10818 base_string--;
10819 if (*base_string == ')')
10820 parens_balanced++;
10821 if (*base_string == '(')
10822 parens_balanced--;
10823 }
10824 while (parens_balanced);
c3332e24 10825
af6bdddf 10826 temp_string = base_string;
c3332e24 10827
24eab124 10828 /* Skip past '(' and whitespace. */
252b5132
RH
10829 ++base_string;
10830 if (is_space_char (*base_string))
24eab124 10831 ++base_string;
252b5132 10832
af6bdddf 10833 if (*base_string == ','
4eed87de
AM
10834 || ((i.base_reg = parse_register (base_string, &end_op))
10835 != NULL))
252b5132 10836 {
af6bdddf 10837 displacement_string_end = temp_string;
252b5132 10838
40fb9820 10839 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10840
af6bdddf 10841 if (i.base_reg)
24eab124 10842 {
24eab124
AM
10843 base_string = end_op;
10844 if (is_space_char (*base_string))
10845 ++base_string;
af6bdddf
AM
10846 }
10847
10848 /* There may be an index reg or scale factor here. */
10849 if (*base_string == ',')
10850 {
10851 ++base_string;
10852 if (is_space_char (*base_string))
10853 ++base_string;
10854
4eed87de
AM
10855 if ((i.index_reg = parse_register (base_string, &end_op))
10856 != NULL)
24eab124 10857 {
af6bdddf 10858 base_string = end_op;
24eab124
AM
10859 if (is_space_char (*base_string))
10860 ++base_string;
af6bdddf
AM
10861 if (*base_string == ',')
10862 {
10863 ++base_string;
10864 if (is_space_char (*base_string))
10865 ++base_string;
10866 }
e5cb08ac 10867 else if (*base_string != ')')
af6bdddf 10868 {
4eed87de
AM
10869 as_bad (_("expecting `,' or `)' "
10870 "after index register in `%s'"),
af6bdddf
AM
10871 operand_string);
10872 return 0;
10873 }
24eab124 10874 }
af6bdddf 10875 else if (*base_string == REGISTER_PREFIX)
24eab124 10876 {
f76bf5e0
L
10877 end_op = strchr (base_string, ',');
10878 if (end_op)
10879 *end_op = '\0';
af6bdddf 10880 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10881 return 0;
10882 }
252b5132 10883
47926f60 10884 /* Check for scale factor. */
551c1ca1 10885 if (*base_string != ')')
af6bdddf 10886 {
551c1ca1
AM
10887 char *end_scale = i386_scale (base_string);
10888
10889 if (!end_scale)
af6bdddf 10890 return 0;
24eab124 10891
551c1ca1 10892 base_string = end_scale;
af6bdddf
AM
10893 if (is_space_char (*base_string))
10894 ++base_string;
10895 if (*base_string != ')')
10896 {
4eed87de
AM
10897 as_bad (_("expecting `)' "
10898 "after scale factor in `%s'"),
af6bdddf
AM
10899 operand_string);
10900 return 0;
10901 }
10902 }
10903 else if (!i.index_reg)
24eab124 10904 {
4eed87de
AM
10905 as_bad (_("expecting index register or scale factor "
10906 "after `,'; got '%c'"),
af6bdddf 10907 *base_string);
24eab124
AM
10908 return 0;
10909 }
10910 }
af6bdddf 10911 else if (*base_string != ')')
24eab124 10912 {
4eed87de
AM
10913 as_bad (_("expecting `,' or `)' "
10914 "after base register in `%s'"),
af6bdddf 10915 operand_string);
24eab124
AM
10916 return 0;
10917 }
c3332e24 10918 }
af6bdddf 10919 else if (*base_string == REGISTER_PREFIX)
c3332e24 10920 {
f76bf5e0
L
10921 end_op = strchr (base_string, ',');
10922 if (end_op)
10923 *end_op = '\0';
af6bdddf 10924 as_bad (_("bad register name `%s'"), base_string);
24eab124 10925 return 0;
c3332e24 10926 }
24eab124
AM
10927 }
10928
10929 /* If there's an expression beginning the operand, parse it,
10930 assuming displacement_string_start and
10931 displacement_string_end are meaningful. */
10932 if (displacement_string_start != displacement_string_end)
10933 {
10934 if (!i386_displacement (displacement_string_start,
10935 displacement_string_end))
10936 return 0;
10937 }
10938
10939 /* Special case for (%dx) while doing input/output op. */
10940 if (i.base_reg
75e5731b
JB
10941 && i.base_reg->reg_type.bitfield.instance == RegD
10942 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10943 && i.index_reg == 0
10944 && i.log2_scale_factor == 0
10945 && i.seg[i.mem_operands] == 0
40fb9820 10946 && !operand_type_check (i.types[this_operand], disp))
24eab124 10947 {
2fb5be8d 10948 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10949 return 1;
10950 }
10951
eecb386c
AM
10952 if (i386_index_check (operand_string) == 0)
10953 return 0;
c48dadc9 10954 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10955 if (i.mem_operands == 0)
10956 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10957 i.mem_operands++;
10958 }
10959 else
ce8a8b2f
AM
10960 {
10961 /* It's not a memory operand; argh! */
24eab124
AM
10962 as_bad (_("invalid char %s beginning operand %d `%s'"),
10963 output_invalid (*op_string),
10964 this_operand + 1,
10965 op_string);
10966 return 0;
10967 }
47926f60 10968 return 1; /* Normal return. */
252b5132
RH
10969}
10970\f
fa94de6b
RM
10971/* Calculate the maximum variable size (i.e., excluding fr_fix)
10972 that an rs_machine_dependent frag may reach. */
10973
10974unsigned int
10975i386_frag_max_var (fragS *frag)
10976{
10977 /* The only relaxable frags are for jumps.
10978 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10979 gas_assert (frag->fr_type == rs_machine_dependent);
10980 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10981}
10982
b084df0b
L
10983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10984static int
8dcea932 10985elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10986{
10987 /* STT_GNU_IFUNC symbol must go through PLT. */
10988 if ((symbol_get_bfdsym (fr_symbol)->flags
10989 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10990 return 0;
10991
10992 if (!S_IS_EXTERNAL (fr_symbol))
10993 /* Symbol may be weak or local. */
10994 return !S_IS_WEAK (fr_symbol);
10995
8dcea932
L
10996 /* Global symbols with non-default visibility can't be preempted. */
10997 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10998 return 1;
10999
11000 if (fr_var != NO_RELOC)
11001 switch ((enum bfd_reloc_code_real) fr_var)
11002 {
11003 case BFD_RELOC_386_PLT32:
11004 case BFD_RELOC_X86_64_PLT32:
33eaf5de 11005 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
11006 return 0;
11007 default:
11008 abort ();
11009 }
11010
b084df0b
L
11011 /* Global symbols with default visibility in a shared library may be
11012 preempted by another definition. */
8dcea932 11013 return !shared;
b084df0b
L
11014}
11015#endif
11016
79d72f45
HL
11017/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11018 Note also work for Skylake and Cascadelake.
11019---------------------------------------------------------------------
11020| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11021| ------ | ----------- | ------- | -------- |
11022| Jo | N | N | Y |
11023| Jno | N | N | Y |
11024| Jc/Jb | Y | N | Y |
11025| Jae/Jnb | Y | N | Y |
11026| Je/Jz | Y | Y | Y |
11027| Jne/Jnz | Y | Y | Y |
11028| Jna/Jbe | Y | N | Y |
11029| Ja/Jnbe | Y | N | Y |
11030| Js | N | N | Y |
11031| Jns | N | N | Y |
11032| Jp/Jpe | N | N | Y |
11033| Jnp/Jpo | N | N | Y |
11034| Jl/Jnge | Y | Y | Y |
11035| Jge/Jnl | Y | Y | Y |
11036| Jle/Jng | Y | Y | Y |
11037| Jg/Jnle | Y | Y | Y |
11038--------------------------------------------------------------------- */
11039static int
11040i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11041{
11042 if (mf_cmp == mf_cmp_alu_cmp)
11043 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11044 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11045 if (mf_cmp == mf_cmp_incdec)
11046 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11047 || mf_jcc == mf_jcc_jle);
11048 if (mf_cmp == mf_cmp_test_and)
11049 return 1;
11050 return 0;
11051}
11052
e379e5f3
L
11053/* Return the next non-empty frag. */
11054
11055static fragS *
11056i386_next_non_empty_frag (fragS *fragP)
11057{
11058 /* There may be a frag with a ".fill 0" when there is no room in
11059 the current frag for frag_grow in output_insn. */
11060 for (fragP = fragP->fr_next;
11061 (fragP != NULL
11062 && fragP->fr_type == rs_fill
11063 && fragP->fr_fix == 0);
11064 fragP = fragP->fr_next)
11065 ;
11066 return fragP;
11067}
11068
11069/* Return the next jcc frag after BRANCH_PADDING. */
11070
11071static fragS *
79d72f45 11072i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 11073{
79d72f45
HL
11074 fragS *branch_fragP;
11075 if (!pad_fragP)
e379e5f3
L
11076 return NULL;
11077
79d72f45
HL
11078 if (pad_fragP->fr_type == rs_machine_dependent
11079 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
11080 == BRANCH_PADDING))
11081 {
79d72f45
HL
11082 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11083 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 11084 return NULL;
79d72f45
HL
11085 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11086 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11087 pad_fragP->tc_frag_data.mf_type))
11088 return branch_fragP;
e379e5f3
L
11089 }
11090
11091 return NULL;
11092}
11093
11094/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11095
11096static void
11097i386_classify_machine_dependent_frag (fragS *fragP)
11098{
11099 fragS *cmp_fragP;
11100 fragS *pad_fragP;
11101 fragS *branch_fragP;
11102 fragS *next_fragP;
11103 unsigned int max_prefix_length;
11104
11105 if (fragP->tc_frag_data.classified)
11106 return;
11107
11108 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11109 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11110 for (next_fragP = fragP;
11111 next_fragP != NULL;
11112 next_fragP = next_fragP->fr_next)
11113 {
11114 next_fragP->tc_frag_data.classified = 1;
11115 if (next_fragP->fr_type == rs_machine_dependent)
11116 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11117 {
11118 case BRANCH_PADDING:
11119 /* The BRANCH_PADDING frag must be followed by a branch
11120 frag. */
11121 branch_fragP = i386_next_non_empty_frag (next_fragP);
11122 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11123 break;
11124 case FUSED_JCC_PADDING:
11125 /* Check if this is a fused jcc:
11126 FUSED_JCC_PADDING
11127 CMP like instruction
11128 BRANCH_PADDING
11129 COND_JUMP
11130 */
11131 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11132 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 11133 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
11134 if (branch_fragP)
11135 {
11136 /* The BRANCH_PADDING frag is merged with the
11137 FUSED_JCC_PADDING frag. */
11138 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11139 /* CMP like instruction size. */
11140 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11141 frag_wane (pad_fragP);
11142 /* Skip to branch_fragP. */
11143 next_fragP = branch_fragP;
11144 }
11145 else if (next_fragP->tc_frag_data.max_prefix_length)
11146 {
11147 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11148 a fused jcc. */
11149 next_fragP->fr_subtype
11150 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11151 next_fragP->tc_frag_data.max_bytes
11152 = next_fragP->tc_frag_data.max_prefix_length;
11153 /* This will be updated in the BRANCH_PREFIX scan. */
11154 next_fragP->tc_frag_data.max_prefix_length = 0;
11155 }
11156 else
11157 frag_wane (next_fragP);
11158 break;
11159 }
11160 }
11161
11162 /* Stop if there is no BRANCH_PREFIX. */
11163 if (!align_branch_prefix_size)
11164 return;
11165
11166 /* Scan for BRANCH_PREFIX. */
11167 for (; fragP != NULL; fragP = fragP->fr_next)
11168 {
11169 if (fragP->fr_type != rs_machine_dependent
11170 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11171 != BRANCH_PREFIX))
11172 continue;
11173
11174 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11175 COND_JUMP_PREFIX. */
11176 max_prefix_length = 0;
11177 for (next_fragP = fragP;
11178 next_fragP != NULL;
11179 next_fragP = next_fragP->fr_next)
11180 {
11181 if (next_fragP->fr_type == rs_fill)
11182 /* Skip rs_fill frags. */
11183 continue;
11184 else if (next_fragP->fr_type != rs_machine_dependent)
11185 /* Stop for all other frags. */
11186 break;
11187
11188 /* rs_machine_dependent frags. */
11189 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11190 == BRANCH_PREFIX)
11191 {
11192 /* Count BRANCH_PREFIX frags. */
11193 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11194 {
11195 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11196 frag_wane (next_fragP);
11197 }
11198 else
11199 max_prefix_length
11200 += next_fragP->tc_frag_data.max_bytes;
11201 }
11202 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11203 == BRANCH_PADDING)
11204 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11205 == FUSED_JCC_PADDING))
11206 {
11207 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11208 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11209 break;
11210 }
11211 else
11212 /* Stop for other rs_machine_dependent frags. */
11213 break;
11214 }
11215
11216 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11217
11218 /* Skip to the next frag. */
11219 fragP = next_fragP;
11220 }
11221}
11222
11223/* Compute padding size for
11224
11225 FUSED_JCC_PADDING
11226 CMP like instruction
11227 BRANCH_PADDING
11228 COND_JUMP/UNCOND_JUMP
11229
11230 or
11231
11232 BRANCH_PADDING
11233 COND_JUMP/UNCOND_JUMP
11234 */
11235
11236static int
11237i386_branch_padding_size (fragS *fragP, offsetT address)
11238{
11239 unsigned int offset, size, padding_size;
11240 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11241
11242 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11243 if (!address)
11244 address = fragP->fr_address;
11245 address += fragP->fr_fix;
11246
11247 /* CMP like instrunction size. */
11248 size = fragP->tc_frag_data.cmp_size;
11249
11250 /* The base size of the branch frag. */
11251 size += branch_fragP->fr_fix;
11252
11253 /* Add opcode and displacement bytes for the rs_machine_dependent
11254 branch frag. */
11255 if (branch_fragP->fr_type == rs_machine_dependent)
11256 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11257
11258 /* Check if branch is within boundary and doesn't end at the last
11259 byte. */
11260 offset = address & ((1U << align_branch_power) - 1);
11261 if ((offset + size) >= (1U << align_branch_power))
11262 /* Padding needed to avoid crossing boundary. */
11263 padding_size = (1U << align_branch_power) - offset;
11264 else
11265 /* No padding needed. */
11266 padding_size = 0;
11267
11268 /* The return value may be saved in tc_frag_data.length which is
11269 unsigned byte. */
11270 if (!fits_in_unsigned_byte (padding_size))
11271 abort ();
11272
11273 return padding_size;
11274}
11275
11276/* i386_generic_table_relax_frag()
11277
11278 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11279 grow/shrink padding to align branch frags. Hand others to
11280 relax_frag(). */
11281
11282long
11283i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11284{
11285 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11286 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11287 {
11288 long padding_size = i386_branch_padding_size (fragP, 0);
11289 long grow = padding_size - fragP->tc_frag_data.length;
11290
11291 /* When the BRANCH_PREFIX frag is used, the computed address
11292 must match the actual address and there should be no padding. */
11293 if (fragP->tc_frag_data.padding_address
11294 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11295 || padding_size))
11296 abort ();
11297
11298 /* Update the padding size. */
11299 if (grow)
11300 fragP->tc_frag_data.length = padding_size;
11301
11302 return grow;
11303 }
11304 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11305 {
11306 fragS *padding_fragP, *next_fragP;
11307 long padding_size, left_size, last_size;
11308
11309 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11310 if (!padding_fragP)
11311 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11312 return (fragP->tc_frag_data.length
11313 - fragP->tc_frag_data.last_length);
11314
11315 /* Compute the relative address of the padding frag in the very
11316 first time where the BRANCH_PREFIX frag sizes are zero. */
11317 if (!fragP->tc_frag_data.padding_address)
11318 fragP->tc_frag_data.padding_address
11319 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11320
11321 /* First update the last length from the previous interation. */
11322 left_size = fragP->tc_frag_data.prefix_length;
11323 for (next_fragP = fragP;
11324 next_fragP != padding_fragP;
11325 next_fragP = next_fragP->fr_next)
11326 if (next_fragP->fr_type == rs_machine_dependent
11327 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11328 == BRANCH_PREFIX))
11329 {
11330 if (left_size)
11331 {
11332 int max = next_fragP->tc_frag_data.max_bytes;
11333 if (max)
11334 {
11335 int size;
11336 if (max > left_size)
11337 size = left_size;
11338 else
11339 size = max;
11340 left_size -= size;
11341 next_fragP->tc_frag_data.last_length = size;
11342 }
11343 }
11344 else
11345 next_fragP->tc_frag_data.last_length = 0;
11346 }
11347
11348 /* Check the padding size for the padding frag. */
11349 padding_size = i386_branch_padding_size
11350 (padding_fragP, (fragP->fr_address
11351 + fragP->tc_frag_data.padding_address));
11352
11353 last_size = fragP->tc_frag_data.prefix_length;
11354 /* Check if there is change from the last interation. */
11355 if (padding_size == last_size)
11356 {
11357 /* Update the expected address of the padding frag. */
11358 padding_fragP->tc_frag_data.padding_address
11359 = (fragP->fr_address + padding_size
11360 + fragP->tc_frag_data.padding_address);
11361 return 0;
11362 }
11363
11364 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11365 {
11366 /* No padding if there is no sufficient room. Clear the
11367 expected address of the padding frag. */
11368 padding_fragP->tc_frag_data.padding_address = 0;
11369 padding_size = 0;
11370 }
11371 else
11372 /* Store the expected address of the padding frag. */
11373 padding_fragP->tc_frag_data.padding_address
11374 = (fragP->fr_address + padding_size
11375 + fragP->tc_frag_data.padding_address);
11376
11377 fragP->tc_frag_data.prefix_length = padding_size;
11378
11379 /* Update the length for the current interation. */
11380 left_size = padding_size;
11381 for (next_fragP = fragP;
11382 next_fragP != padding_fragP;
11383 next_fragP = next_fragP->fr_next)
11384 if (next_fragP->fr_type == rs_machine_dependent
11385 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11386 == BRANCH_PREFIX))
11387 {
11388 if (left_size)
11389 {
11390 int max = next_fragP->tc_frag_data.max_bytes;
11391 if (max)
11392 {
11393 int size;
11394 if (max > left_size)
11395 size = left_size;
11396 else
11397 size = max;
11398 left_size -= size;
11399 next_fragP->tc_frag_data.length = size;
11400 }
11401 }
11402 else
11403 next_fragP->tc_frag_data.length = 0;
11404 }
11405
11406 return (fragP->tc_frag_data.length
11407 - fragP->tc_frag_data.last_length);
11408 }
11409 return relax_frag (segment, fragP, stretch);
11410}
11411
ee7fcc42
AM
11412/* md_estimate_size_before_relax()
11413
11414 Called just before relax() for rs_machine_dependent frags. The x86
11415 assembler uses these frags to handle variable size jump
11416 instructions.
11417
11418 Any symbol that is now undefined will not become defined.
11419 Return the correct fr_subtype in the frag.
11420 Return the initial "guess for variable size of frag" to caller.
11421 The guess is actually the growth beyond the fixed part. Whatever
11422 we do to grow the fixed or variable part contributes to our
11423 returned value. */
11424
252b5132 11425int
7016a5d5 11426md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11427{
e379e5f3
L
11428 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11429 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11430 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11431 {
11432 i386_classify_machine_dependent_frag (fragP);
11433 return fragP->tc_frag_data.length;
11434 }
11435
252b5132 11436 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11437 check for un-relaxable symbols. On an ELF system, we can't relax
11438 an externally visible symbol, because it may be overridden by a
11439 shared library. */
11440 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11441#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11442 || (IS_ELF
8dcea932
L
11443 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11444 fragP->fr_var))
fbeb56a4
DK
11445#endif
11446#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11447 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11448 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11449#endif
11450 )
252b5132 11451 {
b98ef147
AM
11452 /* Symbol is undefined in this segment, or we need to keep a
11453 reloc so that weak symbols can be overridden. */
11454 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11455 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11456 unsigned char *opcode;
11457 int old_fr_fix;
f6af82bd 11458
ee7fcc42 11459 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11460 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11461 else if (size == 2)
f6af82bd 11462 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11463#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11464 else if (need_plt32_p (fragP->fr_symbol))
11465 reloc_type = BFD_RELOC_X86_64_PLT32;
11466#endif
f6af82bd
AM
11467 else
11468 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11469
ee7fcc42
AM
11470 old_fr_fix = fragP->fr_fix;
11471 opcode = (unsigned char *) fragP->fr_opcode;
11472
fddf5b5b 11473 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11474 {
fddf5b5b
AM
11475 case UNCOND_JUMP:
11476 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11477 opcode[0] = 0xe9;
252b5132 11478 fragP->fr_fix += size;
062cd5e7
AS
11479 fix_new (fragP, old_fr_fix, size,
11480 fragP->fr_symbol,
11481 fragP->fr_offset, 1,
11482 reloc_type);
252b5132
RH
11483 break;
11484
fddf5b5b 11485 case COND_JUMP86:
412167cb
AM
11486 if (size == 2
11487 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11488 {
11489 /* Negate the condition, and branch past an
11490 unconditional jump. */
11491 opcode[0] ^= 1;
11492 opcode[1] = 3;
11493 /* Insert an unconditional jump. */
11494 opcode[2] = 0xe9;
11495 /* We added two extra opcode bytes, and have a two byte
11496 offset. */
11497 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11498 fix_new (fragP, old_fr_fix + 2, 2,
11499 fragP->fr_symbol,
11500 fragP->fr_offset, 1,
11501 reloc_type);
fddf5b5b
AM
11502 break;
11503 }
11504 /* Fall through. */
11505
11506 case COND_JUMP:
412167cb
AM
11507 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11508 {
3e02c1cc
AM
11509 fixS *fixP;
11510
412167cb 11511 fragP->fr_fix += 1;
3e02c1cc
AM
11512 fixP = fix_new (fragP, old_fr_fix, 1,
11513 fragP->fr_symbol,
11514 fragP->fr_offset, 1,
11515 BFD_RELOC_8_PCREL);
11516 fixP->fx_signed = 1;
412167cb
AM
11517 break;
11518 }
93c2a809 11519
24eab124 11520 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11521 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11522 opcode[1] = opcode[0] + 0x10;
f6af82bd 11523 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11524 /* We've added an opcode byte. */
11525 fragP->fr_fix += 1 + size;
062cd5e7
AS
11526 fix_new (fragP, old_fr_fix + 1, size,
11527 fragP->fr_symbol,
11528 fragP->fr_offset, 1,
11529 reloc_type);
252b5132 11530 break;
fddf5b5b
AM
11531
11532 default:
11533 BAD_CASE (fragP->fr_subtype);
11534 break;
252b5132
RH
11535 }
11536 frag_wane (fragP);
ee7fcc42 11537 return fragP->fr_fix - old_fr_fix;
252b5132 11538 }
93c2a809 11539
93c2a809
AM
11540 /* Guess size depending on current relax state. Initially the relax
11541 state will correspond to a short jump and we return 1, because
11542 the variable part of the frag (the branch offset) is one byte
11543 long. However, we can relax a section more than once and in that
11544 case we must either set fr_subtype back to the unrelaxed state,
11545 or return the value for the appropriate branch. */
11546 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11547}
11548
47926f60
KH
11549/* Called after relax() is finished.
11550
11551 In: Address of frag.
11552 fr_type == rs_machine_dependent.
11553 fr_subtype is what the address relaxed to.
11554
11555 Out: Any fixSs and constants are set up.
11556 Caller will turn frag into a ".space 0". */
11557
252b5132 11558void
7016a5d5
TG
11559md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11560 fragS *fragP)
252b5132 11561{
29b0f896 11562 unsigned char *opcode;
252b5132 11563 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11564 offsetT target_address;
11565 offsetT opcode_address;
252b5132 11566 unsigned int extension = 0;
847f7ad4 11567 offsetT displacement_from_opcode_start;
252b5132 11568
e379e5f3
L
11569 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11570 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11571 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11572 {
11573 /* Generate nop padding. */
11574 unsigned int size = fragP->tc_frag_data.length;
11575 if (size)
11576 {
11577 if (size > fragP->tc_frag_data.max_bytes)
11578 abort ();
11579
11580 if (flag_debug)
11581 {
11582 const char *msg;
11583 const char *branch = "branch";
11584 const char *prefix = "";
11585 fragS *padding_fragP;
11586 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11587 == BRANCH_PREFIX)
11588 {
11589 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11590 switch (fragP->tc_frag_data.default_prefix)
11591 {
11592 default:
11593 abort ();
11594 break;
11595 case CS_PREFIX_OPCODE:
11596 prefix = " cs";
11597 break;
11598 case DS_PREFIX_OPCODE:
11599 prefix = " ds";
11600 break;
11601 case ES_PREFIX_OPCODE:
11602 prefix = " es";
11603 break;
11604 case FS_PREFIX_OPCODE:
11605 prefix = " fs";
11606 break;
11607 case GS_PREFIX_OPCODE:
11608 prefix = " gs";
11609 break;
11610 case SS_PREFIX_OPCODE:
11611 prefix = " ss";
11612 break;
11613 }
11614 if (padding_fragP)
11615 msg = _("%s:%u: add %d%s at 0x%llx to align "
11616 "%s within %d-byte boundary\n");
11617 else
11618 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11619 "align %s within %d-byte boundary\n");
11620 }
11621 else
11622 {
11623 padding_fragP = fragP;
11624 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11625 "%s within %d-byte boundary\n");
11626 }
11627
11628 if (padding_fragP)
11629 switch (padding_fragP->tc_frag_data.branch_type)
11630 {
11631 case align_branch_jcc:
11632 branch = "jcc";
11633 break;
11634 case align_branch_fused:
11635 branch = "fused jcc";
11636 break;
11637 case align_branch_jmp:
11638 branch = "jmp";
11639 break;
11640 case align_branch_call:
11641 branch = "call";
11642 break;
11643 case align_branch_indirect:
11644 branch = "indiret branch";
11645 break;
11646 case align_branch_ret:
11647 branch = "ret";
11648 break;
11649 default:
11650 break;
11651 }
11652
11653 fprintf (stdout, msg,
11654 fragP->fr_file, fragP->fr_line, size, prefix,
11655 (long long) fragP->fr_address, branch,
11656 1 << align_branch_power);
11657 }
11658 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11659 memset (fragP->fr_opcode,
11660 fragP->tc_frag_data.default_prefix, size);
11661 else
11662 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11663 size, 0);
11664 fragP->fr_fix += size;
11665 }
11666 return;
11667 }
11668
252b5132
RH
11669 opcode = (unsigned char *) fragP->fr_opcode;
11670
47926f60 11671 /* Address we want to reach in file space. */
252b5132 11672 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11673
47926f60 11674 /* Address opcode resides at in file space. */
252b5132
RH
11675 opcode_address = fragP->fr_address + fragP->fr_fix;
11676
47926f60 11677 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11678 displacement_from_opcode_start = target_address - opcode_address;
11679
fddf5b5b 11680 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11681 {
47926f60
KH
11682 /* Don't have to change opcode. */
11683 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11684 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11685 }
11686 else
11687 {
11688 if (no_cond_jump_promotion
11689 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11690 as_warn_where (fragP->fr_file, fragP->fr_line,
11691 _("long jump required"));
252b5132 11692
fddf5b5b
AM
11693 switch (fragP->fr_subtype)
11694 {
11695 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11696 extension = 4; /* 1 opcode + 4 displacement */
11697 opcode[0] = 0xe9;
11698 where_to_put_displacement = &opcode[1];
11699 break;
252b5132 11700
fddf5b5b
AM
11701 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11702 extension = 2; /* 1 opcode + 2 displacement */
11703 opcode[0] = 0xe9;
11704 where_to_put_displacement = &opcode[1];
11705 break;
252b5132 11706
fddf5b5b
AM
11707 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11708 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11709 extension = 5; /* 2 opcode + 4 displacement */
11710 opcode[1] = opcode[0] + 0x10;
11711 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11712 where_to_put_displacement = &opcode[2];
11713 break;
252b5132 11714
fddf5b5b
AM
11715 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11716 extension = 3; /* 2 opcode + 2 displacement */
11717 opcode[1] = opcode[0] + 0x10;
11718 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11719 where_to_put_displacement = &opcode[2];
11720 break;
252b5132 11721
fddf5b5b
AM
11722 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11723 extension = 4;
11724 opcode[0] ^= 1;
11725 opcode[1] = 3;
11726 opcode[2] = 0xe9;
11727 where_to_put_displacement = &opcode[3];
11728 break;
11729
11730 default:
11731 BAD_CASE (fragP->fr_subtype);
11732 break;
11733 }
252b5132 11734 }
fddf5b5b 11735
7b81dfbb
AJ
11736 /* If size if less then four we are sure that the operand fits,
11737 but if it's 4, then it could be that the displacement is larger
11738 then -/+ 2GB. */
11739 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11740 && object_64bit
11741 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11742 + ((addressT) 1 << 31))
11743 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11744 {
11745 as_bad_where (fragP->fr_file, fragP->fr_line,
11746 _("jump target out of range"));
11747 /* Make us emit 0. */
11748 displacement_from_opcode_start = extension;
11749 }
47926f60 11750 /* Now put displacement after opcode. */
252b5132
RH
11751 md_number_to_chars ((char *) where_to_put_displacement,
11752 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11753 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11754 fragP->fr_fix += extension;
11755}
11756\f
7016a5d5 11757/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11758 by our caller that we have all the info we need to fix it up.
11759
7016a5d5
TG
11760 Parameter valP is the pointer to the value of the bits.
11761
252b5132
RH
11762 On the 386, immediates, displacements, and data pointers are all in
11763 the same (little-endian) format, so we don't need to care about which
11764 we are handling. */
11765
94f592af 11766void
7016a5d5 11767md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11768{
94f592af 11769 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11770 valueT value = *valP;
252b5132 11771
f86103b7 11772#if !defined (TE_Mach)
93382f6d
AM
11773 if (fixP->fx_pcrel)
11774 {
11775 switch (fixP->fx_r_type)
11776 {
5865bb77
ILT
11777 default:
11778 break;
11779
d6ab8113
JB
11780 case BFD_RELOC_64:
11781 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11782 break;
93382f6d 11783 case BFD_RELOC_32:
ae8887b5 11784 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11785 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11786 break;
11787 case BFD_RELOC_16:
11788 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11789 break;
11790 case BFD_RELOC_8:
11791 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11792 break;
11793 }
11794 }
252b5132 11795
a161fe53 11796 if (fixP->fx_addsy != NULL
31312f95 11797 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11798 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11799 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11800 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11801 && !use_rela_relocations)
252b5132 11802 {
31312f95
AM
11803 /* This is a hack. There should be a better way to handle this.
11804 This covers for the fact that bfd_install_relocation will
11805 subtract the current location (for partial_inplace, PC relative
11806 relocations); see more below. */
252b5132 11807#ifndef OBJ_AOUT
718ddfc0 11808 if (IS_ELF
252b5132
RH
11809#ifdef TE_PE
11810 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11811#endif
11812 )
11813 value += fixP->fx_where + fixP->fx_frag->fr_address;
11814#endif
11815#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11816 if (IS_ELF)
252b5132 11817 {
6539b54b 11818 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11819
6539b54b 11820 if ((sym_seg == seg
2f66722d 11821 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11822 && sym_seg != absolute_section))
af65af87 11823 && !generic_force_reloc (fixP))
2f66722d
AM
11824 {
11825 /* Yes, we add the values in twice. This is because
6539b54b
AM
11826 bfd_install_relocation subtracts them out again. I think
11827 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11828 it. FIXME. */
11829 value += fixP->fx_where + fixP->fx_frag->fr_address;
11830 }
252b5132
RH
11831 }
11832#endif
11833#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11834 /* For some reason, the PE format does not store a
11835 section address offset for a PC relative symbol. */
11836 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11837 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11838 value += md_pcrel_from (fixP);
11839#endif
11840 }
fbeb56a4 11841#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11842 if (fixP->fx_addsy != NULL
11843 && S_IS_WEAK (fixP->fx_addsy)
11844 /* PR 16858: Do not modify weak function references. */
11845 && ! fixP->fx_pcrel)
fbeb56a4 11846 {
296a8689
NC
11847#if !defined (TE_PEP)
11848 /* For x86 PE weak function symbols are neither PC-relative
11849 nor do they set S_IS_FUNCTION. So the only reliable way
11850 to detect them is to check the flags of their containing
11851 section. */
11852 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11853 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11854 ;
11855 else
11856#endif
fbeb56a4
DK
11857 value -= S_GET_VALUE (fixP->fx_addsy);
11858 }
11859#endif
252b5132
RH
11860
11861 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11862 and we must not disappoint it. */
252b5132 11863#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11864 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11865 switch (fixP->fx_r_type)
11866 {
11867 case BFD_RELOC_386_PLT32:
3e73aa7c 11868 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11869 /* Make the jump instruction point to the address of the operand.
11870 At runtime we merely add the offset to the actual PLT entry.
11871 NB: Subtract the offset size only for jump instructions. */
11872 if (fixP->fx_pcrel)
11873 value = -4;
47926f60 11874 break;
31312f95 11875
13ae64f3
JJ
11876 case BFD_RELOC_386_TLS_GD:
11877 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11878 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11879 case BFD_RELOC_386_TLS_IE:
11880 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11881 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11882 case BFD_RELOC_X86_64_TLSGD:
11883 case BFD_RELOC_X86_64_TLSLD:
11884 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11885 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11886 value = 0; /* Fully resolved at runtime. No addend. */
11887 /* Fallthrough */
11888 case BFD_RELOC_386_TLS_LE:
11889 case BFD_RELOC_386_TLS_LDO_32:
11890 case BFD_RELOC_386_TLS_LE_32:
11891 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11892 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11893 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11894 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11895 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11896 break;
11897
67a4f2b7
AO
11898 case BFD_RELOC_386_TLS_DESC_CALL:
11899 case BFD_RELOC_X86_64_TLSDESC_CALL:
11900 value = 0; /* Fully resolved at runtime. No addend. */
11901 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11902 fixP->fx_done = 0;
11903 return;
11904
47926f60
KH
11905 case BFD_RELOC_VTABLE_INHERIT:
11906 case BFD_RELOC_VTABLE_ENTRY:
11907 fixP->fx_done = 0;
94f592af 11908 return;
47926f60
KH
11909
11910 default:
11911 break;
11912 }
11913#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11914 *valP = value;
f86103b7 11915#endif /* !defined (TE_Mach) */
3e73aa7c 11916
3e73aa7c 11917 /* Are we finished with this relocation now? */
c6682705 11918 if (fixP->fx_addsy == NULL)
3e73aa7c 11919 fixP->fx_done = 1;
fbeb56a4
DK
11920#if defined (OBJ_COFF) && defined (TE_PE)
11921 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11922 {
11923 fixP->fx_done = 0;
11924 /* Remember value for tc_gen_reloc. */
11925 fixP->fx_addnumber = value;
11926 /* Clear out the frag for now. */
11927 value = 0;
11928 }
11929#endif
3e73aa7c
JH
11930 else if (use_rela_relocations)
11931 {
11932 fixP->fx_no_overflow = 1;
062cd5e7
AS
11933 /* Remember value for tc_gen_reloc. */
11934 fixP->fx_addnumber = value;
3e73aa7c
JH
11935 value = 0;
11936 }
f86103b7 11937
94f592af 11938 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11939}
252b5132 11940\f
6d4af3c2 11941const char *
499ac353 11942md_atof (int type, char *litP, int *sizeP)
252b5132 11943{
499ac353
NC
11944 /* This outputs the LITTLENUMs in REVERSE order;
11945 in accord with the bigendian 386. */
11946 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11947}
11948\f
2d545b82 11949static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11950
252b5132 11951static char *
e3bb37b5 11952output_invalid (int c)
252b5132 11953{
3882b010 11954 if (ISPRINT (c))
f9f21a03
L
11955 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11956 "'%c'", c);
252b5132 11957 else
f9f21a03 11958 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11959 "(0x%x)", (unsigned char) c);
252b5132
RH
11960 return output_invalid_buf;
11961}
11962
af6bdddf 11963/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11964
11965static const reg_entry *
4d1bb795 11966parse_real_register (char *reg_string, char **end_op)
252b5132 11967{
af6bdddf
AM
11968 char *s = reg_string;
11969 char *p;
252b5132
RH
11970 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11971 const reg_entry *r;
11972
11973 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11974 if (*s == REGISTER_PREFIX)
11975 ++s;
11976
11977 if (is_space_char (*s))
11978 ++s;
11979
11980 p = reg_name_given;
af6bdddf 11981 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11982 {
11983 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11984 return (const reg_entry *) NULL;
11985 s++;
252b5132
RH
11986 }
11987
6588847e
DN
11988 /* For naked regs, make sure that we are not dealing with an identifier.
11989 This prevents confusing an identifier like `eax_var' with register
11990 `eax'. */
11991 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11992 return (const reg_entry *) NULL;
11993
af6bdddf 11994 *end_op = s;
252b5132
RH
11995
11996 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11997
5f47d35b 11998 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11999 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 12000 {
0e0eea78
JB
12001 if (!cpu_arch_flags.bitfield.cpu8087
12002 && !cpu_arch_flags.bitfield.cpu287
12003 && !cpu_arch_flags.bitfield.cpu387)
12004 return (const reg_entry *) NULL;
12005
5f47d35b
AM
12006 if (is_space_char (*s))
12007 ++s;
12008 if (*s == '(')
12009 {
af6bdddf 12010 ++s;
5f47d35b
AM
12011 if (is_space_char (*s))
12012 ++s;
12013 if (*s >= '0' && *s <= '7')
12014 {
db557034 12015 int fpr = *s - '0';
af6bdddf 12016 ++s;
5f47d35b
AM
12017 if (is_space_char (*s))
12018 ++s;
12019 if (*s == ')')
12020 {
12021 *end_op = s + 1;
1e9cc1c2 12022 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
12023 know (r);
12024 return r + fpr;
5f47d35b 12025 }
5f47d35b 12026 }
47926f60 12027 /* We have "%st(" then garbage. */
5f47d35b
AM
12028 return (const reg_entry *) NULL;
12029 }
12030 }
12031
a60de03c
JB
12032 if (r == NULL || allow_pseudo_reg)
12033 return r;
12034
0dfbf9d7 12035 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
12036 return (const reg_entry *) NULL;
12037
dc821c5f 12038 if ((r->reg_type.bitfield.dword
00cee14f 12039 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
12040 || r->reg_type.bitfield.class == RegCR
12041 || r->reg_type.bitfield.class == RegDR
12042 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
12043 && !cpu_arch_flags.bitfield.cpui386)
12044 return (const reg_entry *) NULL;
12045
3528c362 12046 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
12047 return (const reg_entry *) NULL;
12048
6e041cf4
JB
12049 if (!cpu_arch_flags.bitfield.cpuavx512f)
12050 {
f74a6307
JB
12051 if (r->reg_type.bitfield.zmmword
12052 || r->reg_type.bitfield.class == RegMask)
6e041cf4 12053 return (const reg_entry *) NULL;
40f12533 12054
6e041cf4
JB
12055 if (!cpu_arch_flags.bitfield.cpuavx)
12056 {
12057 if (r->reg_type.bitfield.ymmword)
12058 return (const reg_entry *) NULL;
1848e567 12059
6e041cf4
JB
12060 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12061 return (const reg_entry *) NULL;
12062 }
12063 }
43234a1e 12064
f74a6307 12065 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
12066 return (const reg_entry *) NULL;
12067
db51cc60 12068 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 12069 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
12070 return (const reg_entry *) NULL;
12071
1d3f8286
JB
12072 /* Upper 16 vector registers are only available with VREX in 64bit
12073 mode, and require EVEX encoding. */
12074 if (r->reg_flags & RegVRex)
43234a1e 12075 {
e951d5ca 12076 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
12077 || flag_code != CODE_64BIT)
12078 return (const reg_entry *) NULL;
1d3f8286
JB
12079
12080 i.vec_encoding = vex_encoding_evex;
43234a1e
L
12081 }
12082
4787f4a5 12083 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 12084 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 12085 && flag_code != CODE_64BIT)
20f0a1fc 12086 return (const reg_entry *) NULL;
1ae00879 12087
00cee14f
JB
12088 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12089 && !intel_syntax)
b7240065
JB
12090 return (const reg_entry *) NULL;
12091
252b5132
RH
12092 return r;
12093}
4d1bb795
JB
12094
12095/* REG_STRING starts *before* REGISTER_PREFIX. */
12096
12097static const reg_entry *
12098parse_register (char *reg_string, char **end_op)
12099{
12100 const reg_entry *r;
12101
12102 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12103 r = parse_real_register (reg_string, end_op);
12104 else
12105 r = NULL;
12106 if (!r)
12107 {
12108 char *save = input_line_pointer;
12109 char c;
12110 symbolS *symbolP;
12111
12112 input_line_pointer = reg_string;
d02603dc 12113 c = get_symbol_name (&reg_string);
4d1bb795
JB
12114 symbolP = symbol_find (reg_string);
12115 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12116 {
12117 const expressionS *e = symbol_get_value_expression (symbolP);
12118
0398aac5 12119 know (e->X_op == O_register);
4eed87de 12120 know (e->X_add_number >= 0
c3fe08fa 12121 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 12122 r = i386_regtab + e->X_add_number;
d3bb6b49 12123 if ((r->reg_flags & RegVRex))
86fa6981 12124 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
12125 *end_op = input_line_pointer;
12126 }
12127 *input_line_pointer = c;
12128 input_line_pointer = save;
12129 }
12130 return r;
12131}
12132
12133int
12134i386_parse_name (char *name, expressionS *e, char *nextcharP)
12135{
12136 const reg_entry *r;
12137 char *end = input_line_pointer;
12138
12139 *end = *nextcharP;
12140 r = parse_register (name, &input_line_pointer);
12141 if (r && end <= input_line_pointer)
12142 {
12143 *nextcharP = *input_line_pointer;
12144 *input_line_pointer = 0;
12145 e->X_op = O_register;
12146 e->X_add_number = r - i386_regtab;
12147 return 1;
12148 }
12149 input_line_pointer = end;
12150 *end = 0;
ee86248c 12151 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
12152}
12153
12154void
12155md_operand (expressionS *e)
12156{
ee86248c
JB
12157 char *end;
12158 const reg_entry *r;
4d1bb795 12159
ee86248c
JB
12160 switch (*input_line_pointer)
12161 {
12162 case REGISTER_PREFIX:
12163 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
12164 if (r)
12165 {
12166 e->X_op = O_register;
12167 e->X_add_number = r - i386_regtab;
12168 input_line_pointer = end;
12169 }
ee86248c
JB
12170 break;
12171
12172 case '[':
9c2799c2 12173 gas_assert (intel_syntax);
ee86248c
JB
12174 end = input_line_pointer++;
12175 expression (e);
12176 if (*input_line_pointer == ']')
12177 {
12178 ++input_line_pointer;
12179 e->X_op_symbol = make_expr_symbol (e);
12180 e->X_add_symbol = NULL;
12181 e->X_add_number = 0;
12182 e->X_op = O_index;
12183 }
12184 else
12185 {
12186 e->X_op = O_absent;
12187 input_line_pointer = end;
12188 }
12189 break;
4d1bb795
JB
12190 }
12191}
12192
252b5132 12193\f
4cc782b5 12194#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12195const char *md_shortopts = "kVQ:sqnO::";
252b5132 12196#else
b6f8c7c4 12197const char *md_shortopts = "qnO::";
252b5132 12198#endif
6e0b89ee 12199
3e73aa7c 12200#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12201#define OPTION_64 (OPTION_MD_BASE + 1)
12202#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12203#define OPTION_MARCH (OPTION_MD_BASE + 3)
12204#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12205#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12206#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12207#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12208#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12209#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12210#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12211#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12212#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12213#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12214#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12215#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12216#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12217#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12218#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12219#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12220#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12221#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12222#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12223#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12224#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12225#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12226#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12227#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12228#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12229#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12230#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12231
99ad8390
NC
12232struct option md_longopts[] =
12233{
3e73aa7c 12234 {"32", no_argument, NULL, OPTION_32},
321098a5 12235#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12236 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12237 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12238#endif
12239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12240 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12241 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12242 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12243#endif
b3b91714 12244 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12245 {"march", required_argument, NULL, OPTION_MARCH},
12246 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12247 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12248 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12249 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12250 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12251 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12252 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12253 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12254 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12255 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12256 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12257 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12258 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12259# if defined (TE_PE) || defined (TE_PEP)
12260 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12261#endif
d1982f93 12262 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12263 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12264 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12265 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12266 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12267 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12268 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12269 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12270 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12271 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12272 {NULL, no_argument, NULL, 0}
12273};
12274size_t md_longopts_size = sizeof (md_longopts);
12275
12276int
17b9d67d 12277md_parse_option (int c, const char *arg)
252b5132 12278{
91d6fa6a 12279 unsigned int j;
e379e5f3 12280 char *arch, *next, *saved, *type;
9103f4f4 12281
252b5132
RH
12282 switch (c)
12283 {
12b55ccc
L
12284 case 'n':
12285 optimize_align_code = 0;
12286 break;
12287
a38cf1db
AM
12288 case 'q':
12289 quiet_warnings = 1;
252b5132
RH
12290 break;
12291
12292#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12293 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12294 should be emitted or not. FIXME: Not implemented. */
12295 case 'Q':
d4693039
JB
12296 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12297 return 0;
252b5132
RH
12298 break;
12299
12300 /* -V: SVR4 argument to print version ID. */
12301 case 'V':
12302 print_version_id ();
12303 break;
12304
a38cf1db
AM
12305 /* -k: Ignore for FreeBSD compatibility. */
12306 case 'k':
252b5132 12307 break;
4cc782b5
ILT
12308
12309 case 's':
12310 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12311 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12312 break;
8dcea932
L
12313
12314 case OPTION_MSHARED:
12315 shared = 1;
12316 break;
b4a3a7b4
L
12317
12318 case OPTION_X86_USED_NOTE:
12319 if (strcasecmp (arg, "yes") == 0)
12320 x86_used_note = 1;
12321 else if (strcasecmp (arg, "no") == 0)
12322 x86_used_note = 0;
12323 else
12324 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12325 break;
12326
12327
99ad8390 12328#endif
321098a5 12329#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12330 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12331 case OPTION_64:
12332 {
12333 const char **list, **l;
12334
3e73aa7c
JH
12335 list = bfd_target_list ();
12336 for (l = list; *l != NULL; l++)
8620418b 12337 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12338 || strcmp (*l, "coff-x86-64") == 0
12339 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12340 || strcmp (*l, "pei-x86-64") == 0
12341 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12342 {
12343 default_arch = "x86_64";
12344 break;
12345 }
3e73aa7c 12346 if (*l == NULL)
2b5d6a91 12347 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12348 free (list);
12349 }
12350 break;
12351#endif
252b5132 12352
351f65ca 12353#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12354 case OPTION_X32:
351f65ca
L
12355 if (IS_ELF)
12356 {
12357 const char **list, **l;
12358
12359 list = bfd_target_list ();
12360 for (l = list; *l != NULL; l++)
12361 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12362 {
12363 default_arch = "x86_64:32";
12364 break;
12365 }
12366 if (*l == NULL)
2b5d6a91 12367 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12368 free (list);
12369 }
12370 else
12371 as_fatal (_("32bit x86_64 is only supported for ELF"));
12372 break;
12373#endif
12374
6e0b89ee
AM
12375 case OPTION_32:
12376 default_arch = "i386";
12377 break;
12378
b3b91714
AM
12379 case OPTION_DIVIDE:
12380#ifdef SVR4_COMMENT_CHARS
12381 {
12382 char *n, *t;
12383 const char *s;
12384
add39d23 12385 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12386 t = n;
12387 for (s = i386_comment_chars; *s != '\0'; s++)
12388 if (*s != '/')
12389 *t++ = *s;
12390 *t = '\0';
12391 i386_comment_chars = n;
12392 }
12393#endif
12394 break;
12395
9103f4f4 12396 case OPTION_MARCH:
293f5f65
L
12397 saved = xstrdup (arg);
12398 arch = saved;
12399 /* Allow -march=+nosse. */
12400 if (*arch == '+')
12401 arch++;
6305a203 12402 do
9103f4f4 12403 {
6305a203 12404 if (*arch == '.')
2b5d6a91 12405 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12406 next = strchr (arch, '+');
12407 if (next)
12408 *next++ = '\0';
91d6fa6a 12409 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12410 {
91d6fa6a 12411 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12412 {
6305a203 12413 /* Processor. */
1ded5609
JB
12414 if (! cpu_arch[j].flags.bitfield.cpui386)
12415 continue;
12416
91d6fa6a 12417 cpu_arch_name = cpu_arch[j].name;
6305a203 12418 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12419 cpu_arch_flags = cpu_arch[j].flags;
12420 cpu_arch_isa = cpu_arch[j].type;
12421 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12422 if (!cpu_arch_tune_set)
12423 {
12424 cpu_arch_tune = cpu_arch_isa;
12425 cpu_arch_tune_flags = cpu_arch_isa_flags;
12426 }
12427 break;
12428 }
91d6fa6a
NC
12429 else if (*cpu_arch [j].name == '.'
12430 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12431 {
33eaf5de 12432 /* ISA extension. */
6305a203 12433 i386_cpu_flags flags;
309d3373 12434
293f5f65
L
12435 flags = cpu_flags_or (cpu_arch_flags,
12436 cpu_arch[j].flags);
81486035 12437
5b64d091 12438 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12439 {
12440 if (cpu_sub_arch_name)
12441 {
12442 char *name = cpu_sub_arch_name;
12443 cpu_sub_arch_name = concat (name,
91d6fa6a 12444 cpu_arch[j].name,
1bf57e9f 12445 (const char *) NULL);
6305a203
L
12446 free (name);
12447 }
12448 else
91d6fa6a 12449 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12450 cpu_arch_flags = flags;
a586129e 12451 cpu_arch_isa_flags = flags;
6305a203 12452 }
0089dace
L
12453 else
12454 cpu_arch_isa_flags
12455 = cpu_flags_or (cpu_arch_isa_flags,
12456 cpu_arch[j].flags);
6305a203 12457 break;
ccc9c027 12458 }
9103f4f4 12459 }
6305a203 12460
293f5f65
L
12461 if (j >= ARRAY_SIZE (cpu_arch))
12462 {
33eaf5de 12463 /* Disable an ISA extension. */
293f5f65
L
12464 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12465 if (strcmp (arch, cpu_noarch [j].name) == 0)
12466 {
12467 i386_cpu_flags flags;
12468
12469 flags = cpu_flags_and_not (cpu_arch_flags,
12470 cpu_noarch[j].flags);
12471 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12472 {
12473 if (cpu_sub_arch_name)
12474 {
12475 char *name = cpu_sub_arch_name;
12476 cpu_sub_arch_name = concat (arch,
12477 (const char *) NULL);
12478 free (name);
12479 }
12480 else
12481 cpu_sub_arch_name = xstrdup (arch);
12482 cpu_arch_flags = flags;
12483 cpu_arch_isa_flags = flags;
12484 }
12485 break;
12486 }
12487
12488 if (j >= ARRAY_SIZE (cpu_noarch))
12489 j = ARRAY_SIZE (cpu_arch);
12490 }
12491
91d6fa6a 12492 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12493 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12494
12495 arch = next;
9103f4f4 12496 }
293f5f65
L
12497 while (next != NULL);
12498 free (saved);
9103f4f4
L
12499 break;
12500
12501 case OPTION_MTUNE:
12502 if (*arg == '.')
2b5d6a91 12503 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12504 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12505 {
91d6fa6a 12506 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12507 {
ccc9c027 12508 cpu_arch_tune_set = 1;
91d6fa6a
NC
12509 cpu_arch_tune = cpu_arch [j].type;
12510 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12511 break;
12512 }
12513 }
91d6fa6a 12514 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12515 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12516 break;
12517
1efbbeb4
L
12518 case OPTION_MMNEMONIC:
12519 if (strcasecmp (arg, "att") == 0)
12520 intel_mnemonic = 0;
12521 else if (strcasecmp (arg, "intel") == 0)
12522 intel_mnemonic = 1;
12523 else
2b5d6a91 12524 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12525 break;
12526
12527 case OPTION_MSYNTAX:
12528 if (strcasecmp (arg, "att") == 0)
12529 intel_syntax = 0;
12530 else if (strcasecmp (arg, "intel") == 0)
12531 intel_syntax = 1;
12532 else
2b5d6a91 12533 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12534 break;
12535
12536 case OPTION_MINDEX_REG:
12537 allow_index_reg = 1;
12538 break;
12539
12540 case OPTION_MNAKED_REG:
12541 allow_naked_reg = 1;
12542 break;
12543
c0f3af97
L
12544 case OPTION_MSSE2AVX:
12545 sse2avx = 1;
12546 break;
12547
daf50ae7
L
12548 case OPTION_MSSE_CHECK:
12549 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12550 sse_check = check_error;
daf50ae7 12551 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12552 sse_check = check_warning;
daf50ae7 12553 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12554 sse_check = check_none;
daf50ae7 12555 else
2b5d6a91 12556 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12557 break;
12558
7bab8ab5
JB
12559 case OPTION_MOPERAND_CHECK:
12560 if (strcasecmp (arg, "error") == 0)
12561 operand_check = check_error;
12562 else if (strcasecmp (arg, "warning") == 0)
12563 operand_check = check_warning;
12564 else if (strcasecmp (arg, "none") == 0)
12565 operand_check = check_none;
12566 else
12567 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12568 break;
12569
539f890d
L
12570 case OPTION_MAVXSCALAR:
12571 if (strcasecmp (arg, "128") == 0)
12572 avxscalar = vex128;
12573 else if (strcasecmp (arg, "256") == 0)
12574 avxscalar = vex256;
12575 else
2b5d6a91 12576 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12577 break;
12578
03751133
L
12579 case OPTION_MVEXWIG:
12580 if (strcmp (arg, "0") == 0)
40c9c8de 12581 vexwig = vexw0;
03751133 12582 else if (strcmp (arg, "1") == 0)
40c9c8de 12583 vexwig = vexw1;
03751133
L
12584 else
12585 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12586 break;
12587
7e8b059b
L
12588 case OPTION_MADD_BND_PREFIX:
12589 add_bnd_prefix = 1;
12590 break;
12591
43234a1e
L
12592 case OPTION_MEVEXLIG:
12593 if (strcmp (arg, "128") == 0)
12594 evexlig = evexl128;
12595 else if (strcmp (arg, "256") == 0)
12596 evexlig = evexl256;
12597 else if (strcmp (arg, "512") == 0)
12598 evexlig = evexl512;
12599 else
12600 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12601 break;
12602
d3d3c6db
IT
12603 case OPTION_MEVEXRCIG:
12604 if (strcmp (arg, "rne") == 0)
12605 evexrcig = rne;
12606 else if (strcmp (arg, "rd") == 0)
12607 evexrcig = rd;
12608 else if (strcmp (arg, "ru") == 0)
12609 evexrcig = ru;
12610 else if (strcmp (arg, "rz") == 0)
12611 evexrcig = rz;
12612 else
12613 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12614 break;
12615
43234a1e
L
12616 case OPTION_MEVEXWIG:
12617 if (strcmp (arg, "0") == 0)
12618 evexwig = evexw0;
12619 else if (strcmp (arg, "1") == 0)
12620 evexwig = evexw1;
12621 else
12622 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12623 break;
12624
167ad85b
TG
12625# if defined (TE_PE) || defined (TE_PEP)
12626 case OPTION_MBIG_OBJ:
12627 use_big_obj = 1;
12628 break;
12629#endif
12630
d1982f93 12631 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12632 if (strcasecmp (arg, "yes") == 0)
12633 omit_lock_prefix = 1;
12634 else if (strcasecmp (arg, "no") == 0)
12635 omit_lock_prefix = 0;
12636 else
12637 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12638 break;
12639
e4e00185
AS
12640 case OPTION_MFENCE_AS_LOCK_ADD:
12641 if (strcasecmp (arg, "yes") == 0)
12642 avoid_fence = 1;
12643 else if (strcasecmp (arg, "no") == 0)
12644 avoid_fence = 0;
12645 else
12646 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12647 break;
12648
0cb4071e
L
12649 case OPTION_MRELAX_RELOCATIONS:
12650 if (strcasecmp (arg, "yes") == 0)
12651 generate_relax_relocations = 1;
12652 else if (strcasecmp (arg, "no") == 0)
12653 generate_relax_relocations = 0;
12654 else
12655 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12656 break;
12657
e379e5f3
L
12658 case OPTION_MALIGN_BRANCH_BOUNDARY:
12659 {
12660 char *end;
12661 long int align = strtoul (arg, &end, 0);
12662 if (*end == '\0')
12663 {
12664 if (align == 0)
12665 {
12666 align_branch_power = 0;
12667 break;
12668 }
12669 else if (align >= 16)
12670 {
12671 int align_power;
12672 for (align_power = 0;
12673 (align & 1) == 0;
12674 align >>= 1, align_power++)
12675 continue;
12676 /* Limit alignment power to 31. */
12677 if (align == 1 && align_power < 32)
12678 {
12679 align_branch_power = align_power;
12680 break;
12681 }
12682 }
12683 }
12684 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12685 }
12686 break;
12687
12688 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12689 {
12690 char *end;
12691 int align = strtoul (arg, &end, 0);
12692 /* Some processors only support 5 prefixes. */
12693 if (*end == '\0' && align >= 0 && align < 6)
12694 {
12695 align_branch_prefix_size = align;
12696 break;
12697 }
12698 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12699 arg);
12700 }
12701 break;
12702
12703 case OPTION_MALIGN_BRANCH:
12704 align_branch = 0;
12705 saved = xstrdup (arg);
12706 type = saved;
12707 do
12708 {
12709 next = strchr (type, '+');
12710 if (next)
12711 *next++ = '\0';
12712 if (strcasecmp (type, "jcc") == 0)
12713 align_branch |= align_branch_jcc_bit;
12714 else if (strcasecmp (type, "fused") == 0)
12715 align_branch |= align_branch_fused_bit;
12716 else if (strcasecmp (type, "jmp") == 0)
12717 align_branch |= align_branch_jmp_bit;
12718 else if (strcasecmp (type, "call") == 0)
12719 align_branch |= align_branch_call_bit;
12720 else if (strcasecmp (type, "ret") == 0)
12721 align_branch |= align_branch_ret_bit;
12722 else if (strcasecmp (type, "indirect") == 0)
12723 align_branch |= align_branch_indirect_bit;
12724 else
12725 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12726 type = next;
12727 }
12728 while (next != NULL);
12729 free (saved);
12730 break;
12731
76cf450b
L
12732 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12733 align_branch_power = 5;
12734 align_branch_prefix_size = 5;
12735 align_branch = (align_branch_jcc_bit
12736 | align_branch_fused_bit
12737 | align_branch_jmp_bit);
12738 break;
12739
5db04b09 12740 case OPTION_MAMD64:
4b5aaf5f 12741 isa64 = amd64;
5db04b09
L
12742 break;
12743
12744 case OPTION_MINTEL64:
4b5aaf5f 12745 isa64 = intel64;
5db04b09
L
12746 break;
12747
b6f8c7c4
L
12748 case 'O':
12749 if (arg == NULL)
12750 {
12751 optimize = 1;
12752 /* Turn off -Os. */
12753 optimize_for_space = 0;
12754 }
12755 else if (*arg == 's')
12756 {
12757 optimize_for_space = 1;
12758 /* Turn on all encoding optimizations. */
41fd2579 12759 optimize = INT_MAX;
b6f8c7c4
L
12760 }
12761 else
12762 {
12763 optimize = atoi (arg);
12764 /* Turn off -Os. */
12765 optimize_for_space = 0;
12766 }
12767 break;
12768
252b5132
RH
12769 default:
12770 return 0;
12771 }
12772 return 1;
12773}
12774
8a2c8fef
L
12775#define MESSAGE_TEMPLATE \
12776" "
12777
293f5f65
L
12778static char *
12779output_message (FILE *stream, char *p, char *message, char *start,
12780 int *left_p, const char *name, int len)
12781{
12782 int size = sizeof (MESSAGE_TEMPLATE);
12783 int left = *left_p;
12784
12785 /* Reserve 2 spaces for ", " or ",\0" */
12786 left -= len + 2;
12787
12788 /* Check if there is any room. */
12789 if (left >= 0)
12790 {
12791 if (p != start)
12792 {
12793 *p++ = ',';
12794 *p++ = ' ';
12795 }
12796 p = mempcpy (p, name, len);
12797 }
12798 else
12799 {
12800 /* Output the current message now and start a new one. */
12801 *p++ = ',';
12802 *p = '\0';
12803 fprintf (stream, "%s\n", message);
12804 p = start;
12805 left = size - (start - message) - len - 2;
12806
12807 gas_assert (left >= 0);
12808
12809 p = mempcpy (p, name, len);
12810 }
12811
12812 *left_p = left;
12813 return p;
12814}
12815
8a2c8fef 12816static void
1ded5609 12817show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12818{
12819 static char message[] = MESSAGE_TEMPLATE;
12820 char *start = message + 27;
12821 char *p;
12822 int size = sizeof (MESSAGE_TEMPLATE);
12823 int left;
12824 const char *name;
12825 int len;
12826 unsigned int j;
12827
12828 p = start;
12829 left = size - (start - message);
12830 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12831 {
12832 /* Should it be skipped? */
12833 if (cpu_arch [j].skip)
12834 continue;
12835
12836 name = cpu_arch [j].name;
12837 len = cpu_arch [j].len;
12838 if (*name == '.')
12839 {
12840 /* It is an extension. Skip if we aren't asked to show it. */
12841 if (ext)
12842 {
12843 name++;
12844 len--;
12845 }
12846 else
12847 continue;
12848 }
12849 else if (ext)
12850 {
12851 /* It is an processor. Skip if we show only extension. */
12852 continue;
12853 }
1ded5609
JB
12854 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12855 {
12856 /* It is an impossible processor - skip. */
12857 continue;
12858 }
8a2c8fef 12859
293f5f65 12860 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12861 }
12862
293f5f65
L
12863 /* Display disabled extensions. */
12864 if (ext)
12865 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12866 {
12867 name = cpu_noarch [j].name;
12868 len = cpu_noarch [j].len;
12869 p = output_message (stream, p, message, start, &left, name,
12870 len);
12871 }
12872
8a2c8fef
L
12873 *p = '\0';
12874 fprintf (stream, "%s\n", message);
12875}
12876
252b5132 12877void
8a2c8fef 12878md_show_usage (FILE *stream)
252b5132 12879{
4cc782b5
ILT
12880#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12881 fprintf (stream, _("\
d4693039 12882 -Qy, -Qn ignored\n\
a38cf1db 12883 -V print assembler version number\n\
b3b91714
AM
12884 -k ignored\n"));
12885#endif
12886 fprintf (stream, _("\
12b55ccc 12887 -n Do not optimize code alignment\n\
b3b91714
AM
12888 -q quieten some warnings\n"));
12889#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12890 fprintf (stream, _("\
a38cf1db 12891 -s ignored\n"));
b3b91714 12892#endif
d7f449c0
L
12893#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12894 || defined (TE_PE) || defined (TE_PEP))
751d281c 12895 fprintf (stream, _("\
570561f7 12896 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12897#endif
b3b91714
AM
12898#ifdef SVR4_COMMENT_CHARS
12899 fprintf (stream, _("\
12900 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12901#else
12902 fprintf (stream, _("\
b3b91714 12903 --divide ignored\n"));
4cc782b5 12904#endif
9103f4f4 12905 fprintf (stream, _("\
6305a203 12906 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12907 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12908 show_arch (stream, 0, 1);
8a2c8fef
L
12909 fprintf (stream, _("\
12910 EXTENSION is combination of:\n"));
1ded5609 12911 show_arch (stream, 1, 0);
6305a203 12912 fprintf (stream, _("\
8a2c8fef 12913 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12914 show_arch (stream, 0, 0);
ba104c83 12915 fprintf (stream, _("\
c0f3af97
L
12916 -msse2avx encode SSE instructions with VEX prefix\n"));
12917 fprintf (stream, _("\
7c5c05ef 12918 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12919 check SSE instructions\n"));
12920 fprintf (stream, _("\
7c5c05ef 12921 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12922 check operand combinations for validity\n"));
12923 fprintf (stream, _("\
7c5c05ef
L
12924 -mavxscalar=[128|256] (default: 128)\n\
12925 encode scalar AVX instructions with specific vector\n\
539f890d
L
12926 length\n"));
12927 fprintf (stream, _("\
03751133
L
12928 -mvexwig=[0|1] (default: 0)\n\
12929 encode VEX instructions with specific VEX.W value\n\
12930 for VEX.W bit ignored instructions\n"));
12931 fprintf (stream, _("\
7c5c05ef
L
12932 -mevexlig=[128|256|512] (default: 128)\n\
12933 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12934 length\n"));
12935 fprintf (stream, _("\
7c5c05ef
L
12936 -mevexwig=[0|1] (default: 0)\n\
12937 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12938 for EVEX.W bit ignored instructions\n"));
12939 fprintf (stream, _("\
7c5c05ef 12940 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12941 encode EVEX instructions with specific EVEX.RC value\n\
12942 for SAE-only ignored instructions\n"));
12943 fprintf (stream, _("\
7c5c05ef
L
12944 -mmnemonic=[att|intel] "));
12945 if (SYSV386_COMPAT)
12946 fprintf (stream, _("(default: att)\n"));
12947 else
12948 fprintf (stream, _("(default: intel)\n"));
12949 fprintf (stream, _("\
12950 use AT&T/Intel mnemonic\n"));
ba104c83 12951 fprintf (stream, _("\
7c5c05ef
L
12952 -msyntax=[att|intel] (default: att)\n\
12953 use AT&T/Intel syntax\n"));
ba104c83
L
12954 fprintf (stream, _("\
12955 -mindex-reg support pseudo index registers\n"));
12956 fprintf (stream, _("\
12957 -mnaked-reg don't require `%%' prefix for registers\n"));
12958 fprintf (stream, _("\
7e8b059b 12959 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12960#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12961 fprintf (stream, _("\
12962 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12963 fprintf (stream, _("\
12964 -mx86-used-note=[no|yes] "));
12965 if (DEFAULT_X86_USED_NOTE)
12966 fprintf (stream, _("(default: yes)\n"));
12967 else
12968 fprintf (stream, _("(default: no)\n"));
12969 fprintf (stream, _("\
12970 generate x86 used ISA and feature properties\n"));
12971#endif
12972#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12973 fprintf (stream, _("\
12974 -mbig-obj generate big object files\n"));
12975#endif
d022bddd 12976 fprintf (stream, _("\
7c5c05ef 12977 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12978 strip all lock prefixes\n"));
5db04b09 12979 fprintf (stream, _("\
7c5c05ef 12980 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12981 encode lfence, mfence and sfence as\n\
12982 lock addl $0x0, (%%{re}sp)\n"));
12983 fprintf (stream, _("\
7c5c05ef
L
12984 -mrelax-relocations=[no|yes] "));
12985 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12986 fprintf (stream, _("(default: yes)\n"));
12987 else
12988 fprintf (stream, _("(default: no)\n"));
12989 fprintf (stream, _("\
0cb4071e
L
12990 generate relax relocations\n"));
12991 fprintf (stream, _("\
e379e5f3
L
12992 -malign-branch-boundary=NUM (default: 0)\n\
12993 align branches within NUM byte boundary\n"));
12994 fprintf (stream, _("\
12995 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12996 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12997 indirect\n\
12998 specify types of branches to align\n"));
12999 fprintf (stream, _("\
13000 -malign-branch-prefix-size=NUM (default: 5)\n\
13001 align branches with NUM prefixes per instruction\n"));
13002 fprintf (stream, _("\
76cf450b
L
13003 -mbranches-within-32B-boundaries\n\
13004 align branches within 32 byte boundary\n"));
13005 fprintf (stream, _("\
7c5c05ef 13006 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
13007 fprintf (stream, _("\
13008 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
13009}
13010
3e73aa7c 13011#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 13012 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 13013 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
13014
13015/* Pick the target format to use. */
13016
47926f60 13017const char *
e3bb37b5 13018i386_target_format (void)
252b5132 13019{
351f65ca
L
13020 if (!strncmp (default_arch, "x86_64", 6))
13021 {
13022 update_code_flag (CODE_64BIT, 1);
13023 if (default_arch[6] == '\0')
7f56bc95 13024 x86_elf_abi = X86_64_ABI;
351f65ca 13025 else
7f56bc95 13026 x86_elf_abi = X86_64_X32_ABI;
351f65ca 13027 }
3e73aa7c 13028 else if (!strcmp (default_arch, "i386"))
78f12dd3 13029 update_code_flag (CODE_32BIT, 1);
5197d474
L
13030 else if (!strcmp (default_arch, "iamcu"))
13031 {
13032 update_code_flag (CODE_32BIT, 1);
13033 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13034 {
13035 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13036 cpu_arch_name = "iamcu";
13037 cpu_sub_arch_name = NULL;
13038 cpu_arch_flags = iamcu_flags;
13039 cpu_arch_isa = PROCESSOR_IAMCU;
13040 cpu_arch_isa_flags = iamcu_flags;
13041 if (!cpu_arch_tune_set)
13042 {
13043 cpu_arch_tune = cpu_arch_isa;
13044 cpu_arch_tune_flags = cpu_arch_isa_flags;
13045 }
13046 }
8d471ec1 13047 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
13048 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13049 cpu_arch_name);
13050 }
3e73aa7c 13051 else
2b5d6a91 13052 as_fatal (_("unknown architecture"));
89507696
JB
13053
13054 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13055 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13056 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13057 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13058
252b5132
RH
13059 switch (OUTPUT_FLAVOR)
13060 {
9384f2ff 13061#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 13062 case bfd_target_aout_flavour:
47926f60 13063 return AOUT_TARGET_FORMAT;
4c63da97 13064#endif
9384f2ff
AM
13065#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13066# if defined (TE_PE) || defined (TE_PEP)
13067 case bfd_target_coff_flavour:
167ad85b
TG
13068 if (flag_code == CODE_64BIT)
13069 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13070 else
13071 return "pe-i386";
9384f2ff 13072# elif defined (TE_GO32)
0561d57c
JK
13073 case bfd_target_coff_flavour:
13074 return "coff-go32";
9384f2ff 13075# else
252b5132
RH
13076 case bfd_target_coff_flavour:
13077 return "coff-i386";
9384f2ff 13078# endif
4c63da97 13079#endif
3e73aa7c 13080#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 13081 case bfd_target_elf_flavour:
3e73aa7c 13082 {
351f65ca
L
13083 const char *format;
13084
13085 switch (x86_elf_abi)
4fa24527 13086 {
351f65ca
L
13087 default:
13088 format = ELF_TARGET_FORMAT;
e379e5f3
L
13089#ifndef TE_SOLARIS
13090 tls_get_addr = "___tls_get_addr";
13091#endif
351f65ca 13092 break;
7f56bc95 13093 case X86_64_ABI:
351f65ca 13094 use_rela_relocations = 1;
4fa24527 13095 object_64bit = 1;
e379e5f3
L
13096#ifndef TE_SOLARIS
13097 tls_get_addr = "__tls_get_addr";
13098#endif
351f65ca
L
13099 format = ELF_TARGET_FORMAT64;
13100 break;
7f56bc95 13101 case X86_64_X32_ABI:
4fa24527 13102 use_rela_relocations = 1;
351f65ca 13103 object_64bit = 1;
e379e5f3
L
13104#ifndef TE_SOLARIS
13105 tls_get_addr = "__tls_get_addr";
13106#endif
862be3fb 13107 disallow_64bit_reloc = 1;
351f65ca
L
13108 format = ELF_TARGET_FORMAT32;
13109 break;
4fa24527 13110 }
3632d14b 13111 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 13112 {
7f56bc95 13113 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
13114 as_fatal (_("Intel L1OM is 64bit only"));
13115 return ELF_TARGET_L1OM_FORMAT;
13116 }
b49f93f6 13117 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
13118 {
13119 if (x86_elf_abi != X86_64_ABI)
13120 as_fatal (_("Intel K1OM is 64bit only"));
13121 return ELF_TARGET_K1OM_FORMAT;
13122 }
81486035
L
13123 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13124 {
13125 if (x86_elf_abi != I386_ABI)
13126 as_fatal (_("Intel MCU is 32bit only"));
13127 return ELF_TARGET_IAMCU_FORMAT;
13128 }
8a9036a4 13129 else
351f65ca 13130 return format;
3e73aa7c 13131 }
e57f8c65
TG
13132#endif
13133#if defined (OBJ_MACH_O)
13134 case bfd_target_mach_o_flavour:
d382c579
TG
13135 if (flag_code == CODE_64BIT)
13136 {
13137 use_rela_relocations = 1;
13138 object_64bit = 1;
13139 return "mach-o-x86-64";
13140 }
13141 else
13142 return "mach-o-i386";
4c63da97 13143#endif
252b5132
RH
13144 default:
13145 abort ();
13146 return NULL;
13147 }
13148}
13149
47926f60 13150#endif /* OBJ_MAYBE_ more than one */
252b5132 13151\f
252b5132 13152symbolS *
7016a5d5 13153md_undefined_symbol (char *name)
252b5132 13154{
18dc2407
ILT
13155 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13156 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13157 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13158 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
13159 {
13160 if (!GOT_symbol)
13161 {
13162 if (symbol_find (name))
13163 as_bad (_("GOT already in symbol table"));
13164 GOT_symbol = symbol_new (name, undefined_section,
13165 (valueT) 0, &zero_address_frag);
13166 };
13167 return GOT_symbol;
13168 }
252b5132
RH
13169 return 0;
13170}
13171
13172/* Round up a section size to the appropriate boundary. */
47926f60 13173
252b5132 13174valueT
7016a5d5 13175md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13176{
4c63da97
AM
13177#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13178 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13179 {
13180 /* For a.out, force the section size to be aligned. If we don't do
13181 this, BFD will align it for us, but it will not write out the
13182 final bytes of the section. This may be a bug in BFD, but it is
13183 easier to fix it here since that is how the other a.out targets
13184 work. */
13185 int align;
13186
fd361982 13187 align = bfd_section_alignment (segment);
8d3842cd 13188 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13189 }
252b5132
RH
13190#endif
13191
13192 return size;
13193}
13194
13195/* On the i386, PC-relative offsets are relative to the start of the
13196 next instruction. That is, the address of the offset, plus its
13197 size, since the offset is always the last part of the insn. */
13198
13199long
e3bb37b5 13200md_pcrel_from (fixS *fixP)
252b5132
RH
13201{
13202 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13203}
13204
13205#ifndef I386COFF
13206
13207static void
e3bb37b5 13208s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13209{
29b0f896 13210 int temp;
252b5132 13211
8a75718c
JB
13212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13213 if (IS_ELF)
13214 obj_elf_section_change_hook ();
13215#endif
252b5132
RH
13216 temp = get_absolute_expression ();
13217 subseg_set (bss_section, (subsegT) temp);
13218 demand_empty_rest_of_line ();
13219}
13220
13221#endif
13222
e379e5f3
L
13223/* Remember constant directive. */
13224
13225void
13226i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13227{
13228 if (last_insn.kind != last_insn_directive
13229 && (bfd_section_flags (now_seg) & SEC_CODE))
13230 {
13231 last_insn.seg = now_seg;
13232 last_insn.kind = last_insn_directive;
13233 last_insn.name = "constant directive";
13234 last_insn.file = as_where (&last_insn.line);
13235 }
13236}
13237
252b5132 13238void
e3bb37b5 13239i386_validate_fix (fixS *fixp)
252b5132 13240{
02a86693 13241 if (fixp->fx_subsy)
252b5132 13242 {
02a86693 13243 if (fixp->fx_subsy == GOT_symbol)
23df1078 13244 {
02a86693
L
13245 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13246 {
13247 if (!object_64bit)
13248 abort ();
13249#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13250 if (fixp->fx_tcbit2)
56ceb5b5
L
13251 fixp->fx_r_type = (fixp->fx_tcbit
13252 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13253 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13254 else
13255#endif
13256 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13257 }
d6ab8113 13258 else
02a86693
L
13259 {
13260 if (!object_64bit)
13261 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13262 else
13263 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13264 }
13265 fixp->fx_subsy = 0;
23df1078 13266 }
252b5132 13267 }
02a86693
L
13268#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13269 else if (!object_64bit)
13270 {
13271 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13272 && fixp->fx_tcbit2)
13273 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13274 }
13275#endif
252b5132
RH
13276}
13277
252b5132 13278arelent *
7016a5d5 13279tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13280{
13281 arelent *rel;
13282 bfd_reloc_code_real_type code;
13283
13284 switch (fixp->fx_r_type)
13285 {
8ce3d284 13286#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13287 case BFD_RELOC_SIZE32:
13288 case BFD_RELOC_SIZE64:
13289 if (S_IS_DEFINED (fixp->fx_addsy)
13290 && !S_IS_EXTERNAL (fixp->fx_addsy))
13291 {
13292 /* Resolve size relocation against local symbol to size of
13293 the symbol plus addend. */
13294 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13295 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13296 && !fits_in_unsigned_long (value))
13297 as_bad_where (fixp->fx_file, fixp->fx_line,
13298 _("symbol size computation overflow"));
13299 fixp->fx_addsy = NULL;
13300 fixp->fx_subsy = NULL;
13301 md_apply_fix (fixp, (valueT *) &value, NULL);
13302 return NULL;
13303 }
8ce3d284 13304#endif
1a0670f3 13305 /* Fall through. */
8fd4256d 13306
3e73aa7c
JH
13307 case BFD_RELOC_X86_64_PLT32:
13308 case BFD_RELOC_X86_64_GOT32:
13309 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13310 case BFD_RELOC_X86_64_GOTPCRELX:
13311 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13312 case BFD_RELOC_386_PLT32:
13313 case BFD_RELOC_386_GOT32:
02a86693 13314 case BFD_RELOC_386_GOT32X:
252b5132
RH
13315 case BFD_RELOC_386_GOTOFF:
13316 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13317 case BFD_RELOC_386_TLS_GD:
13318 case BFD_RELOC_386_TLS_LDM:
13319 case BFD_RELOC_386_TLS_LDO_32:
13320 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13321 case BFD_RELOC_386_TLS_IE:
13322 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13323 case BFD_RELOC_386_TLS_LE_32:
13324 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13325 case BFD_RELOC_386_TLS_GOTDESC:
13326 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13327 case BFD_RELOC_X86_64_TLSGD:
13328 case BFD_RELOC_X86_64_TLSLD:
13329 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13330 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13331 case BFD_RELOC_X86_64_GOTTPOFF:
13332 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13333 case BFD_RELOC_X86_64_TPOFF64:
13334 case BFD_RELOC_X86_64_GOTOFF64:
13335 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13336 case BFD_RELOC_X86_64_GOT64:
13337 case BFD_RELOC_X86_64_GOTPCREL64:
13338 case BFD_RELOC_X86_64_GOTPC64:
13339 case BFD_RELOC_X86_64_GOTPLT64:
13340 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13341 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13342 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13343 case BFD_RELOC_RVA:
13344 case BFD_RELOC_VTABLE_ENTRY:
13345 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13346#ifdef TE_PE
13347 case BFD_RELOC_32_SECREL:
13348#endif
252b5132
RH
13349 code = fixp->fx_r_type;
13350 break;
dbbaec26
L
13351 case BFD_RELOC_X86_64_32S:
13352 if (!fixp->fx_pcrel)
13353 {
13354 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13355 code = fixp->fx_r_type;
13356 break;
13357 }
1a0670f3 13358 /* Fall through. */
252b5132 13359 default:
93382f6d 13360 if (fixp->fx_pcrel)
252b5132 13361 {
93382f6d
AM
13362 switch (fixp->fx_size)
13363 {
13364 default:
b091f402
AM
13365 as_bad_where (fixp->fx_file, fixp->fx_line,
13366 _("can not do %d byte pc-relative relocation"),
13367 fixp->fx_size);
93382f6d
AM
13368 code = BFD_RELOC_32_PCREL;
13369 break;
13370 case 1: code = BFD_RELOC_8_PCREL; break;
13371 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13372 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13373#ifdef BFD64
13374 case 8: code = BFD_RELOC_64_PCREL; break;
13375#endif
93382f6d
AM
13376 }
13377 }
13378 else
13379 {
13380 switch (fixp->fx_size)
13381 {
13382 default:
b091f402
AM
13383 as_bad_where (fixp->fx_file, fixp->fx_line,
13384 _("can not do %d byte relocation"),
13385 fixp->fx_size);
93382f6d
AM
13386 code = BFD_RELOC_32;
13387 break;
13388 case 1: code = BFD_RELOC_8; break;
13389 case 2: code = BFD_RELOC_16; break;
13390 case 4: code = BFD_RELOC_32; break;
937149dd 13391#ifdef BFD64
3e73aa7c 13392 case 8: code = BFD_RELOC_64; break;
937149dd 13393#endif
93382f6d 13394 }
252b5132
RH
13395 }
13396 break;
13397 }
252b5132 13398
d182319b
JB
13399 if ((code == BFD_RELOC_32
13400 || code == BFD_RELOC_32_PCREL
13401 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13402 && GOT_symbol
13403 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13404 {
4fa24527 13405 if (!object_64bit)
d6ab8113
JB
13406 code = BFD_RELOC_386_GOTPC;
13407 else
13408 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13409 }
7b81dfbb
AJ
13410 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13411 && GOT_symbol
13412 && fixp->fx_addsy == GOT_symbol)
13413 {
13414 code = BFD_RELOC_X86_64_GOTPC64;
13415 }
252b5132 13416
add39d23
TS
13417 rel = XNEW (arelent);
13418 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13419 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13420
13421 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13422
3e73aa7c
JH
13423 if (!use_rela_relocations)
13424 {
13425 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13426 vtable entry to be used in the relocation's section offset. */
13427 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13428 rel->address = fixp->fx_offset;
fbeb56a4
DK
13429#if defined (OBJ_COFF) && defined (TE_PE)
13430 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13431 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13432 else
13433#endif
c6682705 13434 rel->addend = 0;
3e73aa7c
JH
13435 }
13436 /* Use the rela in 64bit mode. */
252b5132 13437 else
3e73aa7c 13438 {
862be3fb
L
13439 if (disallow_64bit_reloc)
13440 switch (code)
13441 {
862be3fb
L
13442 case BFD_RELOC_X86_64_DTPOFF64:
13443 case BFD_RELOC_X86_64_TPOFF64:
13444 case BFD_RELOC_64_PCREL:
13445 case BFD_RELOC_X86_64_GOTOFF64:
13446 case BFD_RELOC_X86_64_GOT64:
13447 case BFD_RELOC_X86_64_GOTPCREL64:
13448 case BFD_RELOC_X86_64_GOTPC64:
13449 case BFD_RELOC_X86_64_GOTPLT64:
13450 case BFD_RELOC_X86_64_PLTOFF64:
13451 as_bad_where (fixp->fx_file, fixp->fx_line,
13452 _("cannot represent relocation type %s in x32 mode"),
13453 bfd_get_reloc_code_name (code));
13454 break;
13455 default:
13456 break;
13457 }
13458
062cd5e7
AS
13459 if (!fixp->fx_pcrel)
13460 rel->addend = fixp->fx_offset;
13461 else
13462 switch (code)
13463 {
13464 case BFD_RELOC_X86_64_PLT32:
13465 case BFD_RELOC_X86_64_GOT32:
13466 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13467 case BFD_RELOC_X86_64_GOTPCRELX:
13468 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13469 case BFD_RELOC_X86_64_TLSGD:
13470 case BFD_RELOC_X86_64_TLSLD:
13471 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13472 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13473 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13474 rel->addend = fixp->fx_offset - fixp->fx_size;
13475 break;
13476 default:
13477 rel->addend = (section->vma
13478 - fixp->fx_size
13479 + fixp->fx_addnumber
13480 + md_pcrel_from (fixp));
13481 break;
13482 }
3e73aa7c
JH
13483 }
13484
252b5132
RH
13485 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13486 if (rel->howto == NULL)
13487 {
13488 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13489 _("cannot represent relocation type %s"),
252b5132
RH
13490 bfd_get_reloc_code_name (code));
13491 /* Set howto to a garbage value so that we can keep going. */
13492 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13493 gas_assert (rel->howto != NULL);
252b5132
RH
13494 }
13495
13496 return rel;
13497}
13498
ee86248c 13499#include "tc-i386-intel.c"
54cfded0 13500
a60de03c
JB
13501void
13502tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13503{
a60de03c
JB
13504 int saved_naked_reg;
13505 char saved_register_dot;
54cfded0 13506
a60de03c
JB
13507 saved_naked_reg = allow_naked_reg;
13508 allow_naked_reg = 1;
13509 saved_register_dot = register_chars['.'];
13510 register_chars['.'] = '.';
13511 allow_pseudo_reg = 1;
13512 expression_and_evaluate (exp);
13513 allow_pseudo_reg = 0;
13514 register_chars['.'] = saved_register_dot;
13515 allow_naked_reg = saved_naked_reg;
13516
e96d56a1 13517 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13518 {
a60de03c
JB
13519 if ((addressT) exp->X_add_number < i386_regtab_size)
13520 {
13521 exp->X_op = O_constant;
13522 exp->X_add_number = i386_regtab[exp->X_add_number]
13523 .dw2_regnum[flag_code >> 1];
13524 }
13525 else
13526 exp->X_op = O_illegal;
54cfded0 13527 }
54cfded0
AM
13528}
13529
13530void
13531tc_x86_frame_initial_instructions (void)
13532{
a60de03c
JB
13533 static unsigned int sp_regno[2];
13534
13535 if (!sp_regno[flag_code >> 1])
13536 {
13537 char *saved_input = input_line_pointer;
13538 char sp[][4] = {"esp", "rsp"};
13539 expressionS exp;
a4447b93 13540
a60de03c
JB
13541 input_line_pointer = sp[flag_code >> 1];
13542 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13543 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13544 sp_regno[flag_code >> 1] = exp.X_add_number;
13545 input_line_pointer = saved_input;
13546 }
a4447b93 13547
61ff971f
L
13548 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13549 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13550}
d2b2c203 13551
d7921315
L
13552int
13553x86_dwarf2_addr_size (void)
13554{
13555#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13556 if (x86_elf_abi == X86_64_X32_ABI)
13557 return 4;
13558#endif
13559 return bfd_arch_bits_per_address (stdoutput) / 8;
13560}
13561
d2b2c203
DJ
13562int
13563i386_elf_section_type (const char *str, size_t len)
13564{
13565 if (flag_code == CODE_64BIT
13566 && len == sizeof ("unwind") - 1
13567 && strncmp (str, "unwind", 6) == 0)
13568 return SHT_X86_64_UNWIND;
13569
13570 return -1;
13571}
bb41ade5 13572
ad5fec3b
EB
13573#ifdef TE_SOLARIS
13574void
13575i386_solaris_fix_up_eh_frame (segT sec)
13576{
13577 if (flag_code == CODE_64BIT)
13578 elf_section_type (sec) = SHT_X86_64_UNWIND;
13579}
13580#endif
13581
bb41ade5
AM
13582#ifdef TE_PE
13583void
13584tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13585{
91d6fa6a 13586 expressionS exp;
bb41ade5 13587
91d6fa6a
NC
13588 exp.X_op = O_secrel;
13589 exp.X_add_symbol = symbol;
13590 exp.X_add_number = 0;
13591 emit_expr (&exp, size);
bb41ade5
AM
13592}
13593#endif
3b22753a
L
13594
13595#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13596/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13597
01e1a5bc 13598bfd_vma
6d4af3c2 13599x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13600{
13601 if (flag_code == CODE_64BIT)
13602 {
13603 if (letter == 'l')
13604 return SHF_X86_64_LARGE;
13605
8f3bae45 13606 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13607 }
3b22753a 13608 else
8f3bae45 13609 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13610 return -1;
13611}
13612
01e1a5bc 13613bfd_vma
3b22753a
L
13614x86_64_section_word (char *str, size_t len)
13615{
8620418b 13616 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13617 return SHF_X86_64_LARGE;
13618
13619 return -1;
13620}
13621
13622static void
13623handle_large_common (int small ATTRIBUTE_UNUSED)
13624{
13625 if (flag_code != CODE_64BIT)
13626 {
13627 s_comm_internal (0, elf_common_parse);
13628 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13629 }
13630 else
13631 {
13632 static segT lbss_section;
13633 asection *saved_com_section_ptr = elf_com_section_ptr;
13634 asection *saved_bss_section = bss_section;
13635
13636 if (lbss_section == NULL)
13637 {
13638 flagword applicable;
13639 segT seg = now_seg;
13640 subsegT subseg = now_subseg;
13641
13642 /* The .lbss section is for local .largecomm symbols. */
13643 lbss_section = subseg_new (".lbss", 0);
13644 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13645 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13646 seg_info (lbss_section)->bss = 1;
13647
13648 subseg_set (seg, subseg);
13649 }
13650
13651 elf_com_section_ptr = &_bfd_elf_large_com_section;
13652 bss_section = lbss_section;
13653
13654 s_comm_internal (0, elf_common_parse);
13655
13656 elf_com_section_ptr = saved_com_section_ptr;
13657 bss_section = saved_bss_section;
13658 }
13659}
13660#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.278109 seconds and 4 git commands to generate.