* elf64-alpha.c (elf64_alpha_relocate_section): Soft fail
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132
RH
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 64static int add_prefix PARAMS ((unsigned int));
3e73aa7c 65static void set_code_flag PARAMS ((int));
47926f60 66static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 67static void set_intel_syntax PARAMS ((int));
e413e4e9 68static void set_cpu_arch PARAMS ((int));
252b5132
RH
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
3e73aa7c 72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
f3c180ae
AM
73#define RELOC_ENUM enum bfd_reloc_code_real
74#else
75#define RELOC_ENUM int
252b5132
RH
76#endif
77
3e73aa7c
JH
78#ifndef DEFAULT_ARCH
79#define DEFAULT_ARCH "i386"
80#endif
81static char *default_arch = DEFAULT_ARCH;
82
252b5132 83/* 'md_assemble ()' gathers together information and puts it into a
47926f60 84 i386_insn. */
252b5132 85
520dc8e8
AM
86union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
252b5132
RH
93struct _i386_insn
94 {
47926f60 95 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
47926f60 102 /* OPERANDS gives the number of given operands. */
252b5132
RH
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
47926f60 107 operands. */
252b5132
RH
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 111 use OP[i] for the corresponding operand. */
252b5132
RH
112 unsigned int types[MAX_OPERANDS];
113
520dc8e8
AM
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
252b5132 117
3e73aa7c
JH
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120#define Operand_PCrel 1
121
252b5132 122 /* Relocation type for operand */
f3c180ae 123 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 124
252b5132
RH
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 132 explicit segment overrides are given. */
ce8a8b2f 133 const seg_entry *seg[2];
252b5132
RH
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
3e73aa7c 144 rex_byte rex;
252b5132
RH
145 sib_byte sib;
146 };
147
148typedef struct _i386_insn i386_insn;
149
150/* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152#ifdef LEX_AT
153const char extra_symbol_chars[] = "*%-(@";
154#else
155const char extra_symbol_chars[] = "*%-(";
156#endif
157
158/* This array holds the chars that always start a comment. If the
ce8a8b2f 159 pre-processor is disabled, these aren't very useful. */
5bae9b28 160#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
161/* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163const char comment_chars[] = "#/";
164#define PREFIX_SEPARATOR '\\'
165#else
166const char comment_chars[] = "#";
167#define PREFIX_SEPARATOR '/'
168#endif
169
170/* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 174 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
252b5132 177 '/' isn't otherwise defined. */
5bae9b28 178#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
179const char line_comment_chars[] = "";
180#else
181const char line_comment_chars[] = "/";
182#endif
183
63a0b638 184const char line_separator_chars[] = ";";
252b5132 185
ce8a8b2f
AM
186/* Chars that can be used to separate mant from exp in floating point
187 nums. */
252b5132
RH
188const char EXP_CHARS[] = "eE";
189
ce8a8b2f
AM
190/* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
252b5132
RH
193const char FLT_CHARS[] = "fFdDxX";
194
ce8a8b2f 195/* Tables for lexical analysis. */
252b5132
RH
196static char mnemonic_chars[256];
197static char register_chars[256];
198static char operand_chars[256];
199static char identifier_chars[256];
200static char digit_chars[256];
201
ce8a8b2f 202/* Lexical macros. */
252b5132
RH
203#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204#define is_operand_char(x) (operand_chars[(unsigned char) x])
205#define is_register_char(x) (register_chars[(unsigned char) x])
206#define is_space_char(x) ((x) == ' ')
207#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208#define is_digit_char(x) (digit_chars[(unsigned char) x])
209
ce8a8b2f 210/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
211static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213/* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
47926f60 216 assembler instruction). */
252b5132 217static char save_stack[32];
ce8a8b2f 218static char *save_stack_p;
252b5132
RH
219#define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221#define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
47926f60 224/* The instruction we're assembling. */
252b5132
RH
225static i386_insn i;
226
227/* Possible templates for current insn. */
228static const templates *current_templates;
229
47926f60 230/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
231static expressionS disp_expressions[2], im_expressions[2];
232
47926f60
KH
233/* Current operand we are working on. */
234static int this_operand;
252b5132 235
3e73aa7c
JH
236/* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
f3c180ae 243#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
b77a7acd 249static const char *flag_code_names[] =
3e73aa7c
JH
250 {
251 "32",
252 "16",
253 "64"
254 };
252b5132 255
47926f60
KH
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
252b5132 259
47926f60
KH
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
252b5132 262
47926f60
KH
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
eecb386c 267
47926f60
KH
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
a38cf1db 270
47926f60
KH
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
a38cf1db 273
47926f60 274/* CPU feature flags. */
3e73aa7c 275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 276
fddf5b5b
AM
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
252b5132 281/* Interface to relax_segment.
fddf5b5b
AM
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
252b5132 285
47926f60 286/* Types. */
93c2a809
AM
287#define UNCOND_JUMP 0
288#define COND_JUMP 1
289#define COND_JUMP86 2
fddf5b5b 290
47926f60 291/* Sizes. */
252b5132
RH
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
fddf5b5b
AM
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
24eab124
AM
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
93c2a809 326 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 327 4) which index into the table to try if we can't fit into this one. */
252b5132 328
fddf5b5b 329 /* UNCOND_JUMP states. */
93c2a809
AM
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
331 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
332 /* dword jmp adds 4 bytes to frag:
333 0 extra opcode bytes, 4 displacement bytes. */
252b5132 334 {0, 0, 4, 0},
93c2a809
AM
335 /* word jmp adds 2 byte2 to frag:
336 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
337 {0, 0, 2, 0},
338
93c2a809
AM
339 /* COND_JUMP states. */
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
341 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
342 /* dword conditionals adds 5 bytes to frag:
343 1 extra opcode byte, 4 displacement bytes. */
344 {0, 0, 5, 0},
fddf5b5b 345 /* word conditionals add 3 bytes to frag:
93c2a809
AM
346 1 extra opcode byte, 2 displacement bytes. */
347 {0, 0, 3, 0},
348
349 /* COND_JUMP86 states. */
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
351 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
352 /* dword conditionals adds 5 bytes to frag:
353 1 extra opcode byte, 4 displacement bytes. */
354 {0, 0, 5, 0},
355 /* word conditionals add 4 bytes to frag:
356 1 displacement byte and a 3 byte long branch insn. */
357 {0, 0, 4, 0}
252b5132
RH
358};
359
e413e4e9
AM
360static const arch_entry cpu_arch[] = {
361 {"i8086", Cpu086 },
362 {"i186", Cpu086|Cpu186 },
363 {"i286", Cpu086|Cpu186|Cpu286 },
364 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
365 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
366 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
367 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
368 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
369 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 370 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
371 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
372 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 373 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
374 {NULL, 0 }
375};
376
252b5132
RH
377void
378i386_align_code (fragP, count)
379 fragS *fragP;
380 int count;
381{
ce8a8b2f
AM
382 /* Various efficient no-op patterns for aligning code labels.
383 Note: Don't try to assemble the instructions in the comments.
384 0L and 0w are not legal. */
252b5132
RH
385 static const char f32_1[] =
386 {0x90}; /* nop */
387 static const char f32_2[] =
388 {0x89,0xf6}; /* movl %esi,%esi */
389 static const char f32_3[] =
390 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
391 static const char f32_4[] =
392 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
393 static const char f32_5[] =
394 {0x90, /* nop */
395 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_6[] =
397 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
398 static const char f32_7[] =
399 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
400 static const char f32_8[] =
401 {0x90, /* nop */
402 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_9[] =
404 {0x89,0xf6, /* movl %esi,%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_10[] =
407 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_11[] =
410 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_12[] =
413 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
414 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
415 static const char f32_13[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
418 static const char f32_14[] =
419 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_15[] =
422 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
423 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
424 static const char f16_3[] =
425 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
426 static const char f16_4[] =
427 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
428 static const char f16_5[] =
429 {0x90, /* nop */
430 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_6[] =
432 {0x89,0xf6, /* mov %si,%si */
433 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
434 static const char f16_7[] =
435 {0x8d,0x74,0x00, /* lea 0(%si),%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_8[] =
438 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char *const f32_patt[] = {
441 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
442 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
443 };
444 static const char *const f16_patt[] = {
c3332e24 445 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
446 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
447 };
448
3e73aa7c
JH
449 /* ??? We can't use these fillers for x86_64, since they often kills the
450 upper halves. Solve later. */
451 if (flag_code == CODE_64BIT)
452 count = 1;
453
252b5132
RH
454 if (count > 0 && count <= 15)
455 {
3e73aa7c 456 if (flag_code == CODE_16BIT)
252b5132 457 {
47926f60
KH
458 memcpy (fragP->fr_literal + fragP->fr_fix,
459 f16_patt[count - 1], count);
460 if (count > 8)
461 /* Adjust jump offset. */
252b5132
RH
462 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
463 }
464 else
47926f60
KH
465 memcpy (fragP->fr_literal + fragP->fr_fix,
466 f32_patt[count - 1], count);
252b5132
RH
467 fragP->fr_var = count;
468 }
469}
470
471static char *output_invalid PARAMS ((int c));
472static int i386_operand PARAMS ((char *operand_string));
473static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
474static const reg_entry *parse_register PARAMS ((char *reg_string,
475 char **end_op));
476
477#ifndef I386COFF
478static void s_bss PARAMS ((int));
479#endif
480
ce8a8b2f 481symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
482
483static INLINE unsigned int
484mode_from_disp_size (t)
485 unsigned int t;
486{
3e73aa7c 487 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
488}
489
490static INLINE int
491fits_in_signed_byte (num)
847f7ad4 492 offsetT num;
252b5132
RH
493{
494 return (num >= -128) && (num <= 127);
47926f60 495}
252b5132
RH
496
497static INLINE int
498fits_in_unsigned_byte (num)
847f7ad4 499 offsetT num;
252b5132
RH
500{
501 return (num & 0xff) == num;
47926f60 502}
252b5132
RH
503
504static INLINE int
505fits_in_unsigned_word (num)
847f7ad4 506 offsetT num;
252b5132
RH
507{
508 return (num & 0xffff) == num;
47926f60 509}
252b5132
RH
510
511static INLINE int
512fits_in_signed_word (num)
847f7ad4 513 offsetT num;
252b5132
RH
514{
515 return (-32768 <= num) && (num <= 32767);
47926f60 516}
3e73aa7c
JH
517static INLINE int
518fits_in_signed_long (num)
519 offsetT num ATTRIBUTE_UNUSED;
520{
521#ifndef BFD64
522 return 1;
523#else
524 return (!(((offsetT) -1 << 31) & num)
525 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
526#endif
527} /* fits_in_signed_long() */
528static INLINE int
529fits_in_unsigned_long (num)
530 offsetT num ATTRIBUTE_UNUSED;
531{
532#ifndef BFD64
533 return 1;
534#else
535 return (num & (((offsetT) 2 << 31) - 1)) == num;
536#endif
537} /* fits_in_unsigned_long() */
252b5132
RH
538
539static int
540smallest_imm_type (num)
847f7ad4 541 offsetT num;
252b5132 542{
3e73aa7c
JH
543 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
544 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
545 {
546 /* This code is disabled on the 486 because all the Imm1 forms
547 in the opcode table are slower on the i486. They're the
548 versions with the implicitly specified single-position
549 displacement, which has another syntax if you really want to
550 use that form. */
551 if (num == 1)
3e73aa7c 552 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 553 }
252b5132 554 return (fits_in_signed_byte (num)
3e73aa7c 555 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 556 : fits_in_unsigned_byte (num)
3e73aa7c 557 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 558 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
559 ? (Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_signed_long (num)
561 ? (Imm32 | Imm32S | Imm64)
562 : fits_in_unsigned_long (num)
563 ? (Imm32 | Imm64)
564 : Imm64);
47926f60 565}
252b5132 566
847f7ad4
AM
567static offsetT
568offset_in_range (val, size)
569 offsetT val;
570 int size;
571{
508866be 572 addressT mask;
ba2adb93 573
847f7ad4
AM
574 switch (size)
575 {
508866be
L
576 case 1: mask = ((addressT) 1 << 8) - 1; break;
577 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 578 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
579#ifdef BFD64
580 case 8: mask = ((addressT) 2 << 63) - 1; break;
581#endif
47926f60 582 default: abort ();
847f7ad4
AM
583 }
584
ba2adb93 585 /* If BFD64, sign extend val. */
3e73aa7c
JH
586 if (!use_rela_relocations)
587 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
588 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 589
47926f60 590 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
591 {
592 char buf1[40], buf2[40];
593
594 sprint_value (buf1, val);
595 sprint_value (buf2, val & mask);
596 as_warn (_("%s shortened to %s"), buf1, buf2);
597 }
598 return val & mask;
599}
600
252b5132
RH
601/* Returns 0 if attempting to add a prefix where one from the same
602 class already exists, 1 if non rep/repne added, 2 if rep/repne
603 added. */
604static int
605add_prefix (prefix)
606 unsigned int prefix;
607{
608 int ret = 1;
609 int q;
610
3e73aa7c
JH
611 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
612 q = REX_PREFIX;
613 else
614 switch (prefix)
615 {
616 default:
617 abort ();
618
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 q = SEG_PREFIX;
626 break;
252b5132 627
3e73aa7c
JH
628 case REPNE_PREFIX_OPCODE:
629 case REPE_PREFIX_OPCODE:
630 ret = 2;
631 /* fall thru */
632 case LOCK_PREFIX_OPCODE:
633 q = LOCKREP_PREFIX;
634 break;
252b5132 635
3e73aa7c
JH
636 case FWAIT_OPCODE:
637 q = WAIT_PREFIX;
638 break;
252b5132 639
3e73aa7c
JH
640 case ADDR_PREFIX_OPCODE:
641 q = ADDR_PREFIX;
642 break;
252b5132 643
3e73aa7c
JH
644 case DATA_PREFIX_OPCODE:
645 q = DATA_PREFIX;
646 break;
647 }
252b5132
RH
648
649 if (i.prefix[q])
650 {
651 as_bad (_("same type of prefix used twice"));
652 return 0;
653 }
654
655 i.prefixes += 1;
656 i.prefix[q] = prefix;
657 return ret;
658}
659
660static void
3e73aa7c 661set_code_flag (value)
e5cb08ac 662 int value;
eecb386c 663{
3e73aa7c
JH
664 flag_code = value;
665 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
666 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
667 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
668 {
669 as_bad (_("64bit mode not supported on this CPU."));
670 }
671 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
672 {
673 as_bad (_("32bit mode not supported on this CPU."));
674 }
eecb386c
AM
675 stackop_size = '\0';
676}
677
678static void
3e73aa7c
JH
679set_16bit_gcc_code_flag (new_code_flag)
680 int new_code_flag;
252b5132 681{
3e73aa7c
JH
682 flag_code = new_code_flag;
683 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
684 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
685 stackop_size = 'l';
252b5132
RH
686}
687
688static void
689set_intel_syntax (syntax_flag)
eecb386c 690 int syntax_flag;
252b5132
RH
691{
692 /* Find out if register prefixing is specified. */
693 int ask_naked_reg = 0;
694
695 SKIP_WHITESPACE ();
696 if (! is_end_of_line[(unsigned char) *input_line_pointer])
697 {
698 char *string = input_line_pointer;
699 int e = get_symbol_end ();
700
47926f60 701 if (strcmp (string, "prefix") == 0)
252b5132 702 ask_naked_reg = 1;
47926f60 703 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
704 ask_naked_reg = -1;
705 else
d0b47220 706 as_bad (_("bad argument to syntax directive."));
252b5132
RH
707 *input_line_pointer = e;
708 }
709 demand_empty_rest_of_line ();
c3332e24 710
252b5132
RH
711 intel_syntax = syntax_flag;
712
713 if (ask_naked_reg == 0)
714 {
715#ifdef BFD_ASSEMBLER
716 allow_naked_reg = (intel_syntax
24eab124 717 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 718#else
47926f60
KH
719 /* Conservative default. */
720 allow_naked_reg = 0;
252b5132
RH
721#endif
722 }
723 else
724 allow_naked_reg = (ask_naked_reg < 0);
725}
726
e413e4e9
AM
727static void
728set_cpu_arch (dummy)
47926f60 729 int dummy ATTRIBUTE_UNUSED;
e413e4e9 730{
47926f60 731 SKIP_WHITESPACE ();
e413e4e9
AM
732
733 if (! is_end_of_line[(unsigned char) *input_line_pointer])
734 {
735 char *string = input_line_pointer;
736 int e = get_symbol_end ();
737 int i;
738
739 for (i = 0; cpu_arch[i].name; i++)
740 {
741 if (strcmp (string, cpu_arch[i].name) == 0)
742 {
743 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
744 cpu_arch_flags = (cpu_arch[i].flags
745 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
746 break;
747 }
748 }
749 if (!cpu_arch[i].name)
750 as_bad (_("no such architecture: `%s'"), string);
751
752 *input_line_pointer = e;
753 }
754 else
755 as_bad (_("missing cpu architecture"));
756
fddf5b5b
AM
757 no_cond_jump_promotion = 0;
758 if (*input_line_pointer == ','
759 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
760 {
761 char *string = ++input_line_pointer;
762 int e = get_symbol_end ();
763
764 if (strcmp (string, "nojumps") == 0)
765 no_cond_jump_promotion = 1;
766 else if (strcmp (string, "jumps") == 0)
767 ;
768 else
769 as_bad (_("no such architecture modifier: `%s'"), string);
770
771 *input_line_pointer = e;
772 }
773
e413e4e9
AM
774 demand_empty_rest_of_line ();
775}
776
252b5132
RH
777const pseudo_typeS md_pseudo_table[] =
778{
252b5132
RH
779#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
780 {"align", s_align_bytes, 0},
781#else
782 {"align", s_align_ptwo, 0},
e413e4e9
AM
783#endif
784 {"arch", set_cpu_arch, 0},
785#ifndef I386COFF
786 {"bss", s_bss, 0},
252b5132
RH
787#endif
788 {"ffloat", float_cons, 'f'},
789 {"dfloat", float_cons, 'd'},
790 {"tfloat", float_cons, 'x'},
791 {"value", cons, 2},
792 {"noopt", s_ignore, 0},
793 {"optim", s_ignore, 0},
3e73aa7c
JH
794 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
795 {"code16", set_code_flag, CODE_16BIT},
796 {"code32", set_code_flag, CODE_32BIT},
797 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
798 {"intel_syntax", set_intel_syntax, 1},
799 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
800 {"file", dwarf2_directive_file, 0},
801 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
802 {0, 0, 0}
803};
804
47926f60 805/* For interface with expression (). */
252b5132
RH
806extern char *input_line_pointer;
807
47926f60 808/* Hash table for instruction mnemonic lookup. */
252b5132 809static struct hash_control *op_hash;
47926f60
KH
810
811/* Hash table for register lookup. */
252b5132
RH
812static struct hash_control *reg_hash;
813\f
b9d79e03
JH
814#ifdef BFD_ASSEMBLER
815unsigned long
816i386_mach ()
817{
818 if (!strcmp (default_arch, "x86_64"))
819 return bfd_mach_x86_64;
820 else if (!strcmp (default_arch, "i386"))
821 return bfd_mach_i386_i386;
822 else
823 as_fatal (_("Unknown architecture"));
824}
825#endif
826\f
252b5132
RH
827void
828md_begin ()
829{
830 const char *hash_err;
831
47926f60 832 /* Initialize op_hash hash table. */
252b5132
RH
833 op_hash = hash_new ();
834
835 {
836 register const template *optab;
837 register templates *core_optab;
838
47926f60
KH
839 /* Setup for loop. */
840 optab = i386_optab;
252b5132
RH
841 core_optab = (templates *) xmalloc (sizeof (templates));
842 core_optab->start = optab;
843
844 while (1)
845 {
846 ++optab;
847 if (optab->name == NULL
848 || strcmp (optab->name, (optab - 1)->name) != 0)
849 {
850 /* different name --> ship out current template list;
47926f60 851 add to hash table; & begin anew. */
252b5132
RH
852 core_optab->end = optab;
853 hash_err = hash_insert (op_hash,
854 (optab - 1)->name,
855 (PTR) core_optab);
856 if (hash_err)
857 {
252b5132
RH
858 as_fatal (_("Internal Error: Can't hash %s: %s"),
859 (optab - 1)->name,
860 hash_err);
861 }
862 if (optab->name == NULL)
863 break;
864 core_optab = (templates *) xmalloc (sizeof (templates));
865 core_optab->start = optab;
866 }
867 }
868 }
869
47926f60 870 /* Initialize reg_hash hash table. */
252b5132
RH
871 reg_hash = hash_new ();
872 {
873 register const reg_entry *regtab;
874
875 for (regtab = i386_regtab;
876 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
877 regtab++)
878 {
879 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
880 if (hash_err)
3e73aa7c
JH
881 as_fatal (_("Internal Error: Can't hash %s: %s"),
882 regtab->reg_name,
883 hash_err);
252b5132
RH
884 }
885 }
886
47926f60 887 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
888 {
889 register int c;
890 register char *p;
891
892 for (c = 0; c < 256; c++)
893 {
894 if (isdigit (c))
895 {
896 digit_chars[c] = c;
897 mnemonic_chars[c] = c;
898 register_chars[c] = c;
899 operand_chars[c] = c;
900 }
901 else if (islower (c))
902 {
903 mnemonic_chars[c] = c;
904 register_chars[c] = c;
905 operand_chars[c] = c;
906 }
907 else if (isupper (c))
908 {
909 mnemonic_chars[c] = tolower (c);
910 register_chars[c] = mnemonic_chars[c];
911 operand_chars[c] = c;
912 }
913
914 if (isalpha (c) || isdigit (c))
915 identifier_chars[c] = c;
916 else if (c >= 128)
917 {
918 identifier_chars[c] = c;
919 operand_chars[c] = c;
920 }
921 }
922
923#ifdef LEX_AT
924 identifier_chars['@'] = '@';
925#endif
252b5132
RH
926 digit_chars['-'] = '-';
927 identifier_chars['_'] = '_';
928 identifier_chars['.'] = '.';
929
930 for (p = operand_special_chars; *p != '\0'; p++)
931 operand_chars[(unsigned char) *p] = *p;
932 }
933
934#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
936 {
937 record_alignment (text_section, 2);
938 record_alignment (data_section, 2);
939 record_alignment (bss_section, 2);
940 }
941#endif
942}
943
944void
945i386_print_statistics (file)
946 FILE *file;
947{
948 hash_print_statistics (file, "i386 opcode", op_hash);
949 hash_print_statistics (file, "i386 register", reg_hash);
950}
951\f
252b5132
RH
952#ifdef DEBUG386
953
ce8a8b2f 954/* Debugging routines for md_assemble. */
252b5132
RH
955static void pi PARAMS ((char *, i386_insn *));
956static void pte PARAMS ((template *));
957static void pt PARAMS ((unsigned int));
958static void pe PARAMS ((expressionS *));
959static void ps PARAMS ((symbolS *));
960
961static void
962pi (line, x)
963 char *line;
964 i386_insn *x;
965{
09f131f2 966 unsigned int i;
252b5132
RH
967
968 fprintf (stdout, "%s: template ", line);
969 pte (&x->tm);
09f131f2
JH
970 fprintf (stdout, " address: base %s index %s scale %x\n",
971 x->base_reg ? x->base_reg->reg_name : "none",
972 x->index_reg ? x->index_reg->reg_name : "none",
973 x->log2_scale_factor);
974 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 975 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
976 fprintf (stdout, " sib: base %x index %x scale %x\n",
977 x->sib.base, x->sib.index, x->sib.scale);
978 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
979 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
980 for (i = 0; i < x->operands; i++)
981 {
982 fprintf (stdout, " #%d: ", i + 1);
983 pt (x->types[i]);
984 fprintf (stdout, "\n");
985 if (x->types[i]
3f4438ab 986 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 987 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 988 if (x->types[i] & Imm)
520dc8e8 989 pe (x->op[i].imms);
252b5132 990 if (x->types[i] & Disp)
520dc8e8 991 pe (x->op[i].disps);
252b5132
RH
992 }
993}
994
995static void
996pte (t)
997 template *t;
998{
09f131f2 999 unsigned int i;
252b5132 1000 fprintf (stdout, " %d operands ", t->operands);
47926f60 1001 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1002 if (t->extension_opcode != None)
1003 fprintf (stdout, "ext %x ", t->extension_opcode);
1004 if (t->opcode_modifier & D)
1005 fprintf (stdout, "D");
1006 if (t->opcode_modifier & W)
1007 fprintf (stdout, "W");
1008 fprintf (stdout, "\n");
1009 for (i = 0; i < t->operands; i++)
1010 {
1011 fprintf (stdout, " #%d type ", i + 1);
1012 pt (t->operand_types[i]);
1013 fprintf (stdout, "\n");
1014 }
1015}
1016
1017static void
1018pe (e)
1019 expressionS *e;
1020{
24eab124 1021 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1022 fprintf (stdout, " add_number %ld (%lx)\n",
1023 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1024 if (e->X_add_symbol)
1025 {
1026 fprintf (stdout, " add_symbol ");
1027 ps (e->X_add_symbol);
1028 fprintf (stdout, "\n");
1029 }
1030 if (e->X_op_symbol)
1031 {
1032 fprintf (stdout, " op_symbol ");
1033 ps (e->X_op_symbol);
1034 fprintf (stdout, "\n");
1035 }
1036}
1037
1038static void
1039ps (s)
1040 symbolS *s;
1041{
1042 fprintf (stdout, "%s type %s%s",
1043 S_GET_NAME (s),
1044 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1045 segment_name (S_GET_SEGMENT (s)));
1046}
1047
1048struct type_name
1049 {
1050 unsigned int mask;
1051 char *tname;
1052 }
1053
1054type_names[] =
1055{
1056 { Reg8, "r8" },
1057 { Reg16, "r16" },
1058 { Reg32, "r32" },
09f131f2 1059 { Reg64, "r64" },
252b5132
RH
1060 { Imm8, "i8" },
1061 { Imm8S, "i8s" },
1062 { Imm16, "i16" },
1063 { Imm32, "i32" },
09f131f2
JH
1064 { Imm32S, "i32s" },
1065 { Imm64, "i64" },
252b5132
RH
1066 { Imm1, "i1" },
1067 { BaseIndex, "BaseIndex" },
1068 { Disp8, "d8" },
1069 { Disp16, "d16" },
1070 { Disp32, "d32" },
09f131f2
JH
1071 { Disp32S, "d32s" },
1072 { Disp64, "d64" },
252b5132
RH
1073 { InOutPortReg, "InOutPortReg" },
1074 { ShiftCount, "ShiftCount" },
1075 { Control, "control reg" },
1076 { Test, "test reg" },
1077 { Debug, "debug reg" },
1078 { FloatReg, "FReg" },
1079 { FloatAcc, "FAcc" },
1080 { SReg2, "SReg2" },
1081 { SReg3, "SReg3" },
1082 { Acc, "Acc" },
1083 { JumpAbsolute, "Jump Absolute" },
1084 { RegMMX, "rMMX" },
3f4438ab 1085 { RegXMM, "rXMM" },
252b5132
RH
1086 { EsSeg, "es" },
1087 { 0, "" }
1088};
1089
1090static void
1091pt (t)
1092 unsigned int t;
1093{
1094 register struct type_name *ty;
1095
09f131f2
JH
1096 for (ty = type_names; ty->mask; ty++)
1097 if (t & ty->mask)
1098 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1099 fflush (stdout);
1100}
1101
1102#endif /* DEBUG386 */
1103\f
1104int
1105tc_i386_force_relocation (fixp)
1106 struct fix *fixp;
1107{
1108#ifdef BFD_ASSEMBLER
1109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1110 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1111 return 1;
1112 return 0;
1113#else
ce8a8b2f 1114 /* For COFF. */
f6af82bd 1115 return fixp->fx_r_type == 7;
252b5132
RH
1116#endif
1117}
1118
1119#ifdef BFD_ASSEMBLER
252b5132
RH
1120
1121static bfd_reloc_code_real_type
3e73aa7c 1122reloc (size, pcrel, sign, other)
252b5132
RH
1123 int size;
1124 int pcrel;
3e73aa7c 1125 int sign;
252b5132
RH
1126 bfd_reloc_code_real_type other;
1127{
47926f60
KH
1128 if (other != NO_RELOC)
1129 return other;
252b5132
RH
1130
1131 if (pcrel)
1132 {
3e73aa7c 1133 if (!sign)
e5cb08ac 1134 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1135 switch (size)
1136 {
1137 case 1: return BFD_RELOC_8_PCREL;
1138 case 2: return BFD_RELOC_16_PCREL;
1139 case 4: return BFD_RELOC_32_PCREL;
1140 }
d0b47220 1141 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1142 }
1143 else
1144 {
3e73aa7c 1145 if (sign)
e5cb08ac 1146 switch (size)
3e73aa7c
JH
1147 {
1148 case 4: return BFD_RELOC_X86_64_32S;
1149 }
1150 else
1151 switch (size)
1152 {
1153 case 1: return BFD_RELOC_8;
1154 case 2: return BFD_RELOC_16;
1155 case 4: return BFD_RELOC_32;
1156 case 8: return BFD_RELOC_64;
1157 }
1158 as_bad (_("can not do %s %d byte relocation"),
1159 sign ? "signed" : "unsigned", size);
252b5132
RH
1160 }
1161
bfb32b52 1162 abort ();
252b5132
RH
1163 return BFD_RELOC_NONE;
1164}
1165
47926f60
KH
1166/* Here we decide which fixups can be adjusted to make them relative to
1167 the beginning of the section instead of the symbol. Basically we need
1168 to make sure that the dynamic relocations are done correctly, so in
1169 some cases we force the original symbol to be used. */
1170
252b5132 1171int
c0c949c7 1172tc_i386_fix_adjustable (fixP)
47926f60 1173 fixS *fixP;
252b5132 1174{
6d249963 1175#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1176 /* Prevent all adjustments to global symbols, or else dynamic
1177 linking will not work correctly. */
b98ef147
AM
1178 if (S_IS_EXTERNAL (fixP->fx_addsy)
1179 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1180 return 0;
1181#endif
ce8a8b2f 1182 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1183 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1184 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1185 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1188 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1190 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1191 return 0;
1192 return 1;
1193}
1194#else
ec56dfb4
L
1195#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1196#define BFD_RELOC_16 0
1197#define BFD_RELOC_32 0
1198#define BFD_RELOC_16_PCREL 0
1199#define BFD_RELOC_32_PCREL 0
1200#define BFD_RELOC_386_PLT32 0
1201#define BFD_RELOC_386_GOT32 0
1202#define BFD_RELOC_386_GOTOFF 0
1203#define BFD_RELOC_X86_64_PLT32 0
1204#define BFD_RELOC_X86_64_GOT32 0
1205#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1206#endif
1207
47926f60 1208static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1209
1210static int
252b5132
RH
1211intel_float_operand (mnemonic)
1212 char *mnemonic;
1213{
47926f60 1214 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1215 return 2;
252b5132
RH
1216
1217 if (mnemonic[0] == 'f')
1218 return 1;
1219
1220 return 0;
1221}
1222
1223/* This is the guts of the machine-dependent assembler. LINE points to a
1224 machine dependent instruction. This function is supposed to emit
1225 the frags/bytes it assembles to. */
1226
1227void
1228md_assemble (line)
1229 char *line;
1230{
47926f60 1231 /* Points to template once we've found it. */
252b5132
RH
1232 const template *t;
1233
252b5132
RH
1234 int j;
1235
1236 char mnemonic[MAX_MNEM_SIZE];
1237
47926f60 1238 /* Initialize globals. */
252b5132
RH
1239 memset (&i, '\0', sizeof (i));
1240 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1241 i.reloc[j] = NO_RELOC;
252b5132
RH
1242 memset (disp_expressions, '\0', sizeof (disp_expressions));
1243 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1244 save_stack_p = save_stack;
252b5132
RH
1245
1246 /* First parse an instruction mnemonic & call i386_operand for the operands.
1247 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1248 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1249 {
1250 char *l = line;
1251 char *token_start = l;
1252 char *mnem_p;
1253
47926f60 1254 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1255 const char *expecting_string_instruction = NULL;
1256
1257 while (1)
1258 {
1259 mnem_p = mnemonic;
1260 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1261 {
1262 mnem_p++;
1263 if (mnem_p >= mnemonic + sizeof (mnemonic))
1264 {
e413e4e9 1265 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1266 return;
1267 }
1268 l++;
1269 }
1270 if (!is_space_char (*l)
1271 && *l != END_OF_INSN
5dd0794d
AM
1272 && *l != PREFIX_SEPARATOR
1273 && *l != ',')
252b5132
RH
1274 {
1275 as_bad (_("invalid character %s in mnemonic"),
1276 output_invalid (*l));
1277 return;
1278 }
1279 if (token_start == l)
1280 {
1281 if (*l == PREFIX_SEPARATOR)
1282 as_bad (_("expecting prefix; got nothing"));
1283 else
1284 as_bad (_("expecting mnemonic; got nothing"));
1285 return;
1286 }
1287
1288 /* Look up instruction (or prefix) via hash table. */
1289 current_templates = hash_find (op_hash, mnemonic);
1290
1291 if (*l != END_OF_INSN
1292 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1293 && current_templates
1294 && (current_templates->start->opcode_modifier & IsPrefix))
1295 {
1296 /* If we are in 16-bit mode, do not allow addr16 or data16.
1297 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1298 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1299 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1300 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1301 {
1302 as_bad (_("redundant %s prefix"),
1303 current_templates->start->name);
1304 return;
1305 }
1306 /* Add prefix, checking for repeated prefixes. */
1307 switch (add_prefix (current_templates->start->base_opcode))
1308 {
1309 case 0:
1310 return;
1311 case 2:
47926f60 1312 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1313 break;
1314 }
1315 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1316 token_start = ++l;
1317 }
1318 else
1319 break;
1320 }
1321
1322 if (!current_templates)
1323 {
24eab124 1324 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1325 switch (mnem_p[-1])
1326 {
252b5132
RH
1327 case WORD_MNEM_SUFFIX:
1328 case BYTE_MNEM_SUFFIX:
3e73aa7c 1329 case QWORD_MNEM_SUFFIX:
252b5132
RH
1330 i.suffix = mnem_p[-1];
1331 mnem_p[-1] = '\0';
1332 current_templates = hash_find (op_hash, mnemonic);
24eab124 1333 break;
f16b83df
JH
1334 case SHORT_MNEM_SUFFIX:
1335 case LONG_MNEM_SUFFIX:
1336 if (!intel_syntax)
1337 {
1338 i.suffix = mnem_p[-1];
1339 mnem_p[-1] = '\0';
1340 current_templates = hash_find (op_hash, mnemonic);
1341 }
1342 break;
24eab124 1343
ce8a8b2f 1344 /* Intel Syntax. */
f16b83df 1345 case 'd':
24eab124
AM
1346 if (intel_syntax)
1347 {
f16b83df
JH
1348 if (intel_float_operand (mnemonic))
1349 i.suffix = SHORT_MNEM_SUFFIX;
1350 else
1351 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1352 mnem_p[-1] = '\0';
1353 current_templates = hash_find (op_hash, mnemonic);
24eab124 1354 }
f16b83df 1355 break;
252b5132
RH
1356 }
1357 if (!current_templates)
1358 {
e413e4e9 1359 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1360 return;
1361 }
1362 }
1363
5dd0794d
AM
1364 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1365 {
1366 /* Check for a branch hint. We allow ",pt" and ",pn" for
1367 predict taken and predict not taken respectively.
1368 I'm not sure that branch hints actually do anything on loop
1369 and jcxz insns (JumpByte) for current Pentium4 chips. They
1370 may work in the future and it doesn't hurt to accept them
1371 now. */
1372 if (l[0] == ',' && l[1] == 'p')
1373 {
1374 if (l[2] == 't')
1375 {
1376 if (! add_prefix (DS_PREFIX_OPCODE))
1377 return;
1378 l += 3;
1379 }
1380 else if (l[2] == 'n')
1381 {
1382 if (! add_prefix (CS_PREFIX_OPCODE))
1383 return;
1384 l += 3;
1385 }
1386 }
1387 }
1388 /* Any other comma loses. */
1389 if (*l == ',')
1390 {
1391 as_bad (_("invalid character %s in mnemonic"),
1392 output_invalid (*l));
1393 return;
1394 }
1395
e413e4e9
AM
1396 /* Check if instruction is supported on specified architecture. */
1397 if (cpu_arch_flags != 0)
1398 {
3e73aa7c
JH
1399 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1400 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1401 {
1402 as_warn (_("`%s' is not supported on `%s'"),
1403 current_templates->start->name, cpu_arch_name);
1404 }
3e73aa7c 1405 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1406 {
1407 as_warn (_("use .code16 to ensure correct addressing mode"));
1408 }
1409 }
1410
ce8a8b2f 1411 /* Check for rep/repne without a string instruction. */
252b5132
RH
1412 if (expecting_string_instruction
1413 && !(current_templates->start->opcode_modifier & IsString))
1414 {
1415 as_bad (_("expecting string instruction after `%s'"),
1416 expecting_string_instruction);
1417 return;
1418 }
1419
47926f60 1420 /* There may be operands to parse. */
252b5132
RH
1421 if (*l != END_OF_INSN)
1422 {
47926f60 1423 /* 1 if operand is pending after ','. */
252b5132
RH
1424 unsigned int expecting_operand = 0;
1425
47926f60 1426 /* Non-zero if operand parens not balanced. */
252b5132
RH
1427 unsigned int paren_not_balanced;
1428
1429 do
1430 {
ce8a8b2f 1431 /* Skip optional white space before operand. */
252b5132
RH
1432 if (is_space_char (*l))
1433 ++l;
1434 if (!is_operand_char (*l) && *l != END_OF_INSN)
1435 {
1436 as_bad (_("invalid character %s before operand %d"),
1437 output_invalid (*l),
1438 i.operands + 1);
1439 return;
1440 }
1441 token_start = l; /* after white space */
1442 paren_not_balanced = 0;
1443 while (paren_not_balanced || *l != ',')
1444 {
1445 if (*l == END_OF_INSN)
1446 {
1447 if (paren_not_balanced)
1448 {
24eab124 1449 if (!intel_syntax)
252b5132
RH
1450 as_bad (_("unbalanced parenthesis in operand %d."),
1451 i.operands + 1);
24eab124 1452 else
252b5132
RH
1453 as_bad (_("unbalanced brackets in operand %d."),
1454 i.operands + 1);
1455 return;
1456 }
1457 else
1458 break; /* we are done */
1459 }
1460 else if (!is_operand_char (*l) && !is_space_char (*l))
1461 {
1462 as_bad (_("invalid character %s in operand %d"),
1463 output_invalid (*l),
1464 i.operands + 1);
1465 return;
1466 }
24eab124
AM
1467 if (!intel_syntax)
1468 {
252b5132
RH
1469 if (*l == '(')
1470 ++paren_not_balanced;
1471 if (*l == ')')
1472 --paren_not_balanced;
24eab124
AM
1473 }
1474 else
1475 {
252b5132
RH
1476 if (*l == '[')
1477 ++paren_not_balanced;
1478 if (*l == ']')
1479 --paren_not_balanced;
24eab124 1480 }
252b5132
RH
1481 l++;
1482 }
1483 if (l != token_start)
47926f60 1484 { /* Yes, we've read in another operand. */
252b5132
RH
1485 unsigned int operand_ok;
1486 this_operand = i.operands++;
1487 if (i.operands > MAX_OPERANDS)
1488 {
1489 as_bad (_("spurious operands; (%d operands/instruction max)"),
1490 MAX_OPERANDS);
1491 return;
1492 }
47926f60 1493 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1494 END_STRING_AND_SAVE (l);
1495
24eab124 1496 if (intel_syntax)
47926f60
KH
1497 operand_ok =
1498 i386_intel_operand (token_start,
1499 intel_float_operand (mnemonic));
24eab124
AM
1500 else
1501 operand_ok = i386_operand (token_start);
252b5132 1502
ce8a8b2f 1503 RESTORE_END_STRING (l);
252b5132
RH
1504 if (!operand_ok)
1505 return;
1506 }
1507 else
1508 {
1509 if (expecting_operand)
1510 {
1511 expecting_operand_after_comma:
1512 as_bad (_("expecting operand after ','; got nothing"));
1513 return;
1514 }
1515 if (*l == ',')
1516 {
1517 as_bad (_("expecting operand before ','; got nothing"));
1518 return;
1519 }
1520 }
1521
ce8a8b2f 1522 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1523 if (*l == ',')
1524 {
1525 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1526 {
1527 /* Just skip it, if it's \n complain. */
252b5132
RH
1528 goto expecting_operand_after_comma;
1529 }
1530 expecting_operand = 1;
1531 }
1532 }
ce8a8b2f 1533 while (*l != END_OF_INSN);
252b5132
RH
1534 }
1535 }
1536
1537 /* Now we've parsed the mnemonic into a set of templates, and have the
1538 operands at hand.
1539
1540 Next, we find a template that matches the given insn,
1541 making sure the overlap of the given operands types is consistent
47926f60 1542 with the template operand types. */
252b5132
RH
1543
1544#define MATCH(overlap, given, template) \
3138f287
AM
1545 ((overlap & ~JumpAbsolute) \
1546 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1547
1548 /* If given types r0 and r1 are registers they must be of the same type
1549 unless the expected operand type register overlap is null.
1550 Note that Acc in a template matches every size of reg. */
1551#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1552 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1553 ((g0) & Reg) == ((g1) & Reg) || \
1554 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1555
1556 {
1557 register unsigned int overlap0, overlap1;
252b5132
RH
1558 unsigned int overlap2;
1559 unsigned int found_reverse_match;
1560 int suffix_check;
1561
cc5ca5ce
AM
1562 /* All intel opcodes have reversed operands except for "bound" and
1563 "enter". We also don't reverse intersegment "jmp" and "call"
1564 instructions with 2 immediate operands so that the immediate segment
1565 precedes the offset, as it does when in AT&T mode. "enter" and the
1566 intersegment "jmp" and "call" instructions are the only ones that
1567 have two immediate operands. */
520dc8e8 1568 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1569 && (strcmp (mnemonic, "bound") != 0)
1570 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1571 {
520dc8e8 1572 union i386_op temp_op;
24eab124 1573 unsigned int temp_type;
f3c180ae 1574 RELOC_ENUM temp_reloc;
24eab124 1575 int xchg1 = 0;
ab9da554 1576 int xchg2 = 0;
252b5132 1577
24eab124
AM
1578 if (i.operands == 2)
1579 {
1580 xchg1 = 0;
1581 xchg2 = 1;
1582 }
1583 else if (i.operands == 3)
1584 {
1585 xchg1 = 0;
1586 xchg2 = 2;
1587 }
520dc8e8
AM
1588 temp_type = i.types[xchg2];
1589 i.types[xchg2] = i.types[xchg1];
1590 i.types[xchg1] = temp_type;
1591 temp_op = i.op[xchg2];
1592 i.op[xchg2] = i.op[xchg1];
1593 i.op[xchg1] = temp_op;
1ae12ab7
AM
1594 temp_reloc = i.reloc[xchg2];
1595 i.reloc[xchg2] = i.reloc[xchg1];
1596 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1597
1598 if (i.mem_operands == 2)
1599 {
1600 const seg_entry *temp_seg;
1601 temp_seg = i.seg[0];
1602 i.seg[0] = i.seg[1];
1603 i.seg[1] = temp_seg;
1604 }
24eab124 1605 }
773f551c
AM
1606
1607 if (i.imm_operands)
1608 {
1609 /* Try to ensure constant immediates are represented in the smallest
1610 opcode possible. */
1611 char guess_suffix = 0;
1612 int op;
1613
1614 if (i.suffix)
1615 guess_suffix = i.suffix;
1616 else if (i.reg_operands)
1617 {
1618 /* Figure out a suffix from the last register operand specified.
1619 We can't do this properly yet, ie. excluding InOutPortReg,
1620 but the following works for instructions with immediates.
1621 In any case, we can't set i.suffix yet. */
47926f60 1622 for (op = i.operands; --op >= 0;)
773f551c
AM
1623 if (i.types[op] & Reg)
1624 {
1625 if (i.types[op] & Reg8)
1626 guess_suffix = BYTE_MNEM_SUFFIX;
1627 else if (i.types[op] & Reg16)
1628 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1629 else if (i.types[op] & Reg32)
1630 guess_suffix = LONG_MNEM_SUFFIX;
1631 else if (i.types[op] & Reg64)
1632 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1633 break;
1634 }
1635 }
3e73aa7c 1636 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1637 guess_suffix = WORD_MNEM_SUFFIX;
1638
47926f60 1639 for (op = i.operands; --op >= 0;)
3e73aa7c 1640 if (i.types[op] & Imm)
773f551c 1641 {
3e73aa7c 1642 switch (i.op[op].imms->X_op)
e5cb08ac 1643 {
3e73aa7c
JH
1644 case O_constant:
1645 /* If a suffix is given, this operand may be shortened. */
1646 switch (guess_suffix)
1647 {
1648 case LONG_MNEM_SUFFIX:
1649 i.types[op] |= Imm32 | Imm64;
1650 break;
1651 case WORD_MNEM_SUFFIX:
1652 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1653 break;
1654 case BYTE_MNEM_SUFFIX:
1655 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1656 break;
1657 }
773f551c 1658
e5cb08ac
KH
1659 /* If this operand is at most 16 bits, convert it
1660 to a signed 16 bit number before trying to see
1661 whether it will fit in an even smaller size.
1662 This allows a 16-bit operand such as $0xffe0 to
1663 be recognised as within Imm8S range. */
3e73aa7c 1664 if ((i.types[op] & Imm16)
e5cb08ac 1665 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1666 {
1667 i.op[op].imms->X_add_number =
1668 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1669 }
1670 if ((i.types[op] & Imm32)
1671 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1672 {
1673 i.op[op].imms->X_add_number =
1674 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1675 }
1676 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1677 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1678 if (guess_suffix == QWORD_MNEM_SUFFIX)
1679 i.types[op] &= ~Imm32;
1680 break;
1681 case O_absent:
1682 case O_register:
bfb32b52 1683 abort ();
3e73aa7c
JH
1684 /* Symbols and expressions. */
1685 default:
1686 /* Convert symbolic operand to proper sizes for matching. */
1687 switch (guess_suffix)
1688 {
1689 case QWORD_MNEM_SUFFIX:
1690 i.types[op] = Imm64 | Imm32S;
1691 break;
1692 case LONG_MNEM_SUFFIX:
1693 i.types[op] = Imm32 | Imm64;
1694 break;
1695 case WORD_MNEM_SUFFIX:
1696 i.types[op] = Imm16 | Imm32 | Imm64;
1697 break;
1698 break;
1699 case BYTE_MNEM_SUFFIX:
1700 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1701 break;
1702 break;
1703 }
1704 break;
773f551c 1705 }
773f551c
AM
1706 }
1707 }
1708
45288df1
AM
1709 if (i.disp_operands)
1710 {
1711 /* Try to use the smallest displacement type too. */
1712 int op;
1713
47926f60 1714 for (op = i.operands; --op >= 0;)
45288df1 1715 if ((i.types[op] & Disp)
1ae12ab7 1716 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1717 {
1718 offsetT disp = i.op[op].disps->X_add_number;
1719
1720 if (i.types[op] & Disp16)
1721 {
1722 /* We know this operand is at most 16 bits, so
1723 convert to a signed 16 bit number before trying
1724 to see whether it will fit in an even smaller
1725 size. */
47926f60 1726
45288df1
AM
1727 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1728 }
3e73aa7c
JH
1729 else if (i.types[op] & Disp32)
1730 {
1731 /* We know this operand is at most 32 bits, so convert to a
1732 signed 32 bit number before trying to see whether it will
1733 fit in an even smaller size. */
1734 disp &= (((offsetT) 2 << 31) - 1);
1735 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1736 }
1737 if (flag_code == CODE_64BIT)
1738 {
1739 if (fits_in_signed_long (disp))
1740 i.types[op] |= Disp32S;
1741 if (fits_in_unsigned_long (disp))
1742 i.types[op] |= Disp32;
1743 }
1744 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1745 && fits_in_signed_byte (disp))
45288df1
AM
1746 i.types[op] |= Disp8;
1747 }
1748 }
1749
252b5132
RH
1750 overlap0 = 0;
1751 overlap1 = 0;
1752 overlap2 = 0;
1753 found_reverse_match = 0;
1754 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1755 ? No_bSuf
1756 : (i.suffix == WORD_MNEM_SUFFIX
1757 ? No_wSuf
1758 : (i.suffix == SHORT_MNEM_SUFFIX
1759 ? No_sSuf
1760 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1761 ? No_lSuf
3e73aa7c
JH
1762 : (i.suffix == QWORD_MNEM_SUFFIX
1763 ? No_qSuf
1764 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1765
1766 for (t = current_templates->start;
1767 t < current_templates->end;
1768 t++)
1769 {
47926f60 1770 /* Must have right number of operands. */
252b5132
RH
1771 if (i.operands != t->operands)
1772 continue;
1773
7f3f1ea2
AM
1774 /* Check the suffix, except for some instructions in intel mode. */
1775 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1776 && !(intel_syntax
1777 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1778 && !(intel_syntax
1779 && t->base_opcode == 0xd9
ce8a8b2f
AM
1780 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1781 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1782 continue;
252b5132 1783
e2914f48 1784 /* Do not verify operands when there are none. */
252b5132 1785 else if (!t->operands)
e2914f48
JH
1786 {
1787 if (t->cpu_flags & ~cpu_arch_flags)
1788 continue;
1789 /* We've found a match; break out of loop. */
1790 break;
e5cb08ac 1791 }
252b5132
RH
1792
1793 overlap0 = i.types[0] & t->operand_types[0];
1794 switch (t->operands)
1795 {
1796 case 1:
1797 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1798 continue;
1799 break;
1800 case 2:
1801 case 3:
1802 overlap1 = i.types[1] & t->operand_types[1];
1803 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1804 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1805 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1806 t->operand_types[0],
1807 overlap1, i.types[1],
1808 t->operand_types[1]))
1809 {
47926f60 1810 /* Check if other direction is valid ... */
252b5132
RH
1811 if ((t->opcode_modifier & (D|FloatD)) == 0)
1812 continue;
1813
47926f60 1814 /* Try reversing direction of operands. */
252b5132
RH
1815 overlap0 = i.types[0] & t->operand_types[1];
1816 overlap1 = i.types[1] & t->operand_types[0];
1817 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1818 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1819 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1820 t->operand_types[1],
1821 overlap1, i.types[1],
1822 t->operand_types[0]))
1823 {
47926f60 1824 /* Does not match either direction. */
252b5132
RH
1825 continue;
1826 }
1827 /* found_reverse_match holds which of D or FloatDR
1828 we've found. */
1829 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1830 }
47926f60 1831 /* Found a forward 2 operand match here. */
3e73aa7c 1832 else if (t->operands == 3)
252b5132
RH
1833 {
1834 /* Here we make use of the fact that there are no
1835 reverse match 3 operand instructions, and all 3
1836 operand instructions only need to be checked for
1837 register consistency between operands 2 and 3. */
1838 overlap2 = i.types[2] & t->operand_types[2];
1839 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1840 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1841 t->operand_types[1],
1842 overlap2, i.types[2],
24eab124 1843 t->operand_types[2]))
252b5132 1844
24eab124 1845 continue;
252b5132 1846 }
47926f60 1847 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1848 slip through to break. */
252b5132 1849 }
3e73aa7c
JH
1850 if (t->cpu_flags & ~cpu_arch_flags)
1851 {
1852 found_reverse_match = 0;
1853 continue;
1854 }
47926f60
KH
1855 /* We've found a match; break out of loop. */
1856 break;
ce8a8b2f 1857 }
252b5132 1858 if (t == current_templates->end)
47926f60
KH
1859 {
1860 /* We found no match. */
252b5132
RH
1861 as_bad (_("suffix or operands invalid for `%s'"),
1862 current_templates->start->name);
1863 return;
1864 }
1865
a38cf1db 1866 if (!quiet_warnings)
3138f287 1867 {
a38cf1db
AM
1868 if (!intel_syntax
1869 && ((i.types[0] & JumpAbsolute)
1870 != (t->operand_types[0] & JumpAbsolute)))
1871 {
1872 as_warn (_("indirect %s without `*'"), t->name);
1873 }
3138f287 1874
a38cf1db
AM
1875 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1876 == (IsPrefix|IgnoreSize))
1877 {
1878 /* Warn them that a data or address size prefix doesn't
1879 affect assembly of the next line of code. */
1880 as_warn (_("stand-alone `%s' prefix"), t->name);
1881 }
252b5132
RH
1882 }
1883
1884 /* Copy the template we found. */
1885 i.tm = *t;
1886 if (found_reverse_match)
1887 {
7f3f1ea2
AM
1888 /* If we found a reverse match we must alter the opcode
1889 direction bit. found_reverse_match holds bits to change
1890 (different for int & float insns). */
1891
1892 i.tm.base_opcode ^= found_reverse_match;
1893
252b5132
RH
1894 i.tm.operand_types[0] = t->operand_types[1];
1895 i.tm.operand_types[1] = t->operand_types[0];
1896 }
1897
d0b47220 1898 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1899 if (SYSV386_COMPAT
1900 && intel_syntax
1901 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1902 i.tm.base_opcode ^= FloatR;
252b5132
RH
1903
1904 if (i.tm.opcode_modifier & FWait)
1905 if (! add_prefix (FWAIT_OPCODE))
1906 return;
1907
ce8a8b2f 1908 /* Check string instruction segment overrides. */
252b5132
RH
1909 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1910 {
1911 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1912 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1913 {
1914 if (i.seg[0] != NULL && i.seg[0] != &es)
1915 {
1916 as_bad (_("`%s' operand %d must use `%%es' segment"),
1917 i.tm.name,
1918 mem_op + 1);
1919 return;
1920 }
1921 /* There's only ever one segment override allowed per instruction.
1922 This instruction possibly has a legal segment override on the
1923 second operand, so copy the segment to where non-string
1924 instructions store it, allowing common code. */
1925 i.seg[0] = i.seg[1];
1926 }
1927 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1928 {
1929 if (i.seg[1] != NULL && i.seg[1] != &es)
1930 {
1931 as_bad (_("`%s' operand %d must use `%%es' segment"),
1932 i.tm.name,
1933 mem_op + 2);
1934 return;
1935 }
1936 }
1937 }
1938
3e73aa7c
JH
1939 if (i.reg_operands && flag_code < CODE_64BIT)
1940 {
1941 int op;
e5cb08ac 1942 for (op = i.operands; --op >= 0;)
3e73aa7c
JH
1943 if ((i.types[op] & Reg)
1944 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1945 {
1946 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1947 i.op[op].regs->reg_name);
1948 return;
1949 }
3e73aa7c
JH
1950 }
1951
252b5132
RH
1952 /* If matched instruction specifies an explicit instruction mnemonic
1953 suffix, use it. */
3e73aa7c 1954 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1955 {
1956 if (i.tm.opcode_modifier & Size16)
1957 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1958 else if (i.tm.opcode_modifier & Size64)
1959 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1960 else
add0c677 1961 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1962 }
1963 else if (i.reg_operands)
1964 {
1965 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1966 based on register operands. */
252b5132
RH
1967 if (!i.suffix)
1968 {
1969 /* We take i.suffix from the last register operand specified,
1970 Destination register type is more significant than source
1971 register type. */
1972 int op;
47926f60 1973 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1974 if ((i.types[op] & Reg)
1975 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1976 {
1977 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1978 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1979 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1980 LONG_MNEM_SUFFIX);
252b5132
RH
1981 break;
1982 }
1983 }
1984 else if (i.suffix == BYTE_MNEM_SUFFIX)
1985 {
1986 int op;
47926f60 1987 for (op = i.operands; --op >= 0;)
252b5132
RH
1988 {
1989 /* If this is an eight bit register, it's OK. If it's
1990 the 16 or 32 bit version of an eight bit register,
47926f60 1991 we will just use the low portion, and that's OK too. */
252b5132
RH
1992 if (i.types[op] & Reg8)
1993 continue;
1994
47926f60 1995 /* movzx and movsx should not generate this warning. */
24eab124
AM
1996 if (intel_syntax
1997 && (i.tm.base_opcode == 0xfb7
1998 || i.tm.base_opcode == 0xfb6
3e73aa7c 1999 || i.tm.base_opcode == 0x63
24eab124
AM
2000 || i.tm.base_opcode == 0xfbe
2001 || i.tm.base_opcode == 0xfbf))
2002 continue;
252b5132 2003
520dc8e8 2004 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
2005#if 0
2006 /* Check that the template allows eight bit regs
2007 This kills insns such as `orb $1,%edx', which
2008 maybe should be allowed. */
2009 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2010#endif
2011 )
2012 {
3e73aa7c
JH
2013 /* Prohibit these changes in the 64bit mode, since
2014 the lowering is more complicated. */
2015 if (flag_code == CODE_64BIT
2016 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2017 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2018 i.op[op].regs->reg_name,
2019 i.suffix);
252b5132 2020#if REGISTER_WARNINGS
a38cf1db
AM
2021 if (!quiet_warnings
2022 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 2023 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de
AM
2024 (i.op[op].regs
2025 + (i.types[op] & Reg16
2026 ? REGNAM_AL - REGNAM_AX
2027 : REGNAM_AL - REGNAM_EAX))->reg_name,
520dc8e8 2028 i.op[op].regs->reg_name,
252b5132
RH
2029 i.suffix);
2030#endif
2031 continue;
2032 }
ce8a8b2f 2033 /* Any other register is bad. */
3f4438ab
AM
2034 if (i.types[op] & (Reg | RegMMX | RegXMM
2035 | SReg2 | SReg3
2036 | Control | Debug | Test
2037 | FloatReg | FloatAcc))
252b5132
RH
2038 {
2039 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2040 i.op[op].regs->reg_name,
252b5132
RH
2041 i.tm.name,
2042 i.suffix);
2043 return;
2044 }
2045 }
2046 }
add0c677 2047 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2048 {
2049 int op;
47926f60
KH
2050
2051 for (op = i.operands; --op >= 0;)
252b5132
RH
2052 /* Reject eight bit registers, except where the template
2053 requires them. (eg. movzb) */
2054 if ((i.types[op] & Reg8) != 0
47926f60 2055 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2056 {
2057 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2058 i.op[op].regs->reg_name,
252b5132
RH
2059 i.tm.name,
2060 i.suffix);
2061 return;
2062 }
252b5132 2063 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2064 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2065 && (i.types[op] & Reg16) != 0
252b5132
RH
2066 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2067 {
3e73aa7c
JH
2068 /* Prohibit these changes in the 64bit mode, since
2069 the lowering is more complicated. */
2070 if (flag_code == CODE_64BIT)
2071 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2072 i.op[op].regs->reg_name,
2073 i.suffix);
2074#if REGISTER_WARNINGS
2075 else
2076 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2077 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3e73aa7c
JH
2078 i.op[op].regs->reg_name,
2079 i.suffix);
252b5132 2080#endif
3e73aa7c
JH
2081 }
2082 /* Warn if the r prefix on a general reg is missing. */
2083 else if ((i.types[op] & Reg64) != 0
2084 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2085 {
2086 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2087 i.op[op].regs->reg_name,
2088 i.suffix);
2089 }
2090 }
2091 else if (i.suffix == QWORD_MNEM_SUFFIX)
2092 {
2093 int op;
3e73aa7c
JH
2094
2095 for (op = i.operands; --op >= 0; )
2096 /* Reject eight bit registers, except where the template
2097 requires them. (eg. movzb) */
2098 if ((i.types[op] & Reg8) != 0
2099 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2100 {
2101 as_bad (_("`%%%s' not allowed with `%s%c'"),
2102 i.op[op].regs->reg_name,
2103 i.tm.name,
2104 i.suffix);
2105 return;
2106 }
2107 /* Warn if the e prefix on a general reg is missing. */
2108 else if (((i.types[op] & Reg16) != 0
2109 || (i.types[op] & Reg32) != 0)
2110 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2111 {
2112 /* Prohibit these changes in the 64bit mode, since
2113 the lowering is more complicated. */
2114 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2115 i.op[op].regs->reg_name,
2116 i.suffix);
2117 }
252b5132
RH
2118 }
2119 else if (i.suffix == WORD_MNEM_SUFFIX)
2120 {
2121 int op;
47926f60 2122 for (op = i.operands; --op >= 0;)
252b5132
RH
2123 /* Reject eight bit registers, except where the template
2124 requires them. (eg. movzb) */
2125 if ((i.types[op] & Reg8) != 0
2126 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2127 {
2128 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2129 i.op[op].regs->reg_name,
252b5132
RH
2130 i.tm.name,
2131 i.suffix);
2132 return;
2133 }
252b5132 2134 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2135 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2136 && (i.types[op] & Reg32) != 0
252b5132
RH
2137 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2138 {
3e73aa7c
JH
2139 /* Prohibit these changes in the 64bit mode, since
2140 the lowering is more complicated. */
2141 if (flag_code == CODE_64BIT)
2142 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2143 i.op[op].regs->reg_name,
2144 i.suffix);
2145 else
2146#if REGISTER_WARNINGS
2147 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2148 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3e73aa7c
JH
2149 i.op[op].regs->reg_name,
2150 i.suffix);
252b5132 2151#endif
3e73aa7c 2152 }
252b5132 2153 }
fa2255cb
DN
2154 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2155 /* Do nothing if the instruction is going to ignore the prefix. */
2156 ;
252b5132 2157 else
47926f60 2158 abort ();
252b5132 2159 }
eecb386c
AM
2160 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2161 {
2162 i.suffix = stackop_size;
2163 }
252b5132
RH
2164 /* Make still unresolved immediate matches conform to size of immediate
2165 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2166 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2167 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2168 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2169 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2170 {
2171 if (i.suffix)
2172 {
24eab124 2173 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2174 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2175 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2176 }
3e73aa7c
JH
2177 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2178 || overlap0 == (Imm16 | Imm32)
2179 || overlap0 == (Imm16 | Imm32S))
252b5132 2180 {
24eab124 2181 overlap0 =
3e73aa7c 2182 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2183 }
3e73aa7c
JH
2184 if (overlap0 != Imm8 && overlap0 != Imm8S
2185 && overlap0 != Imm16 && overlap0 != Imm32S
2186 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2187 {
2188 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2189 return;
2190 }
2191 }
3e73aa7c 2192 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2193 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2194 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2195 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2196 {
2197 if (i.suffix)
2198 {
24eab124 2199 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2200 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2201 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2202 }
3e73aa7c
JH
2203 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2204 || overlap1 == (Imm16 | Imm32)
2205 || overlap1 == (Imm16 | Imm32S))
252b5132 2206 {
24eab124 2207 overlap1 =
3e73aa7c 2208 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2209 }
3e73aa7c
JH
2210 if (overlap1 != Imm8 && overlap1 != Imm8S
2211 && overlap1 != Imm16 && overlap1 != Imm32S
2212 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2213 {
3e73aa7c 2214 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2215 return;
2216 }
2217 }
2218 assert ((overlap2 & Imm) == 0);
2219
2220 i.types[0] = overlap0;
2221 if (overlap0 & ImplicitRegister)
2222 i.reg_operands--;
2223 if (overlap0 & Imm1)
ce8a8b2f 2224 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2225
2226 i.types[1] = overlap1;
2227 if (overlap1 & ImplicitRegister)
2228 i.reg_operands--;
2229
2230 i.types[2] = overlap2;
2231 if (overlap2 & ImplicitRegister)
2232 i.reg_operands--;
2233
2234 /* Finalize opcode. First, we change the opcode based on the operand
2235 size given by i.suffix: We need not change things for byte insns. */
2236
2237 if (!i.suffix && (i.tm.opcode_modifier & W))
2238 {
2239 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2240 return;
2241 }
2242
ce8a8b2f 2243 /* For movzx and movsx, need to check the register type. */
252b5132 2244 if (intel_syntax
24eab124 2245 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2246 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2249
520dc8e8 2250 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2251 if (!add_prefix (prefix))
2252 return;
2253 }
252b5132
RH
2254
2255 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2256 {
2257 /* It's not a byte, select word/dword operation. */
2258 if (i.tm.opcode_modifier & W)
2259 {
2260 if (i.tm.opcode_modifier & ShortForm)
2261 i.tm.base_opcode |= 8;
2262 else
2263 i.tm.base_opcode |= 1;
2264 }
2265 /* Now select between word & dword operations via the operand
2266 size prefix, except for instructions that will ignore this
2267 prefix anyway. */
3e73aa7c
JH
2268 if (i.suffix != QWORD_MNEM_SUFFIX
2269 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2270 && !(i.tm.opcode_modifier & IgnoreSize))
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
2275
2276 if (! add_prefix (prefix))
2277 return;
2278 }
3e73aa7c
JH
2279
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2283 {
3e73aa7c 2284 i.rex.mode64 = 1;
b96d3a20
JH
2285 if (flag_code < CODE_64BIT)
2286 {
e5cb08ac
KH
2287 as_bad (_("64bit operations available only in 64bit modes."));
2288 return;
b96d3a20
JH
2289 }
2290 }
3e73aa7c 2291
252b5132 2292 /* Size floating point instruction. */
f16b83df 2293 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2294 {
2295 if (i.tm.opcode_modifier & FloatMF)
2296 i.tm.base_opcode ^= 4;
2297 }
252b5132
RH
2298 }
2299
3f4438ab 2300 if (i.tm.opcode_modifier & ImmExt)
252b5132 2301 {
3f4438ab
AM
2302 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2303 opcode suffix which is coded in the same place as an 8-bit
2304 immediate field would be. Here we fake an 8-bit immediate
2305 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2306
2307 expressionS *exp;
2308
47926f60 2309 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2310
2311 exp = &im_expressions[i.imm_operands++];
520dc8e8 2312 i.op[i.operands].imms = exp;
252b5132
RH
2313 i.types[i.operands++] = Imm8;
2314 exp->X_op = O_constant;
2315 exp->X_add_number = i.tm.extension_opcode;
2316 i.tm.extension_opcode = None;
2317 }
2318
47926f60 2319 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2320 if (i.operands)
2321 {
24eab124 2322 /* Default segment register this instruction will use
252b5132
RH
2323 for memory accesses. 0 means unknown.
2324 This is only for optimizing out unnecessary segment overrides. */
2325 const seg_entry *default_seg = 0;
2326
252b5132
RH
2327 /* The imul $imm, %reg instruction is converted into
2328 imul $imm, %reg, %reg, and the clr %reg instruction
2329 is converted into xor %reg, %reg. */
2330 if (i.tm.opcode_modifier & regKludge)
2331 {
2332 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2333 /* Pretend we saw the extra register operand. */
2334 assert (i.op[first_reg_op + 1].regs == 0);
2335 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2336 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2337 i.reg_operands = 2;
2338 }
2339
2340 if (i.tm.opcode_modifier & ShortForm)
2341 {
47926f60 2342 /* The register or float register operand is in operand 0 or 1. */
252b5132 2343 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2344 /* Register goes in low 3 bits of opcode. */
520dc8e8 2345 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2346 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2347 i.rex.extZ = 1;
a38cf1db 2348 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2349 {
2350 /* Warn about some common errors, but press on regardless.
2351 The first case can be generated by gcc (<= 2.8.1). */
2352 if (i.operands == 2)
2353 {
47926f60 2354 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2355 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2356 i.op[1].regs->reg_name,
2357 i.op[0].regs->reg_name);
252b5132
RH
2358 }
2359 else
2360 {
47926f60 2361 /* Extraneous `l' suffix on fp insn. */
252b5132 2362 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2363 i.op[0].regs->reg_name);
252b5132
RH
2364 }
2365 }
2366 }
2367 else if (i.tm.opcode_modifier & Modrm)
2368 {
2369 /* The opcode is completed (modulo i.tm.extension_opcode which
2370 must be put into the modrm byte).
2371 Now, we make the modrm & index base bytes based on all the
47926f60 2372 info we've collected. */
252b5132
RH
2373
2374 /* i.reg_operands MUST be the number of real register operands;
47926f60 2375 implicit registers do not count. */
252b5132
RH
2376 if (i.reg_operands == 2)
2377 {
2378 unsigned int source, dest;
2379 source = ((i.types[0]
3f4438ab
AM
2380 & (Reg | RegMMX | RegXMM
2381 | SReg2 | SReg3
2382 | Control | Debug | Test))
252b5132
RH
2383 ? 0 : 1);
2384 dest = source + 1;
2385
252b5132 2386 i.rm.mode = 3;
3f4438ab
AM
2387 /* One of the register operands will be encoded in the
2388 i.tm.reg field, the other in the combined i.tm.mode
2389 and i.tm.regmem fields. If no form of this
2390 instruction supports a memory destination operand,
2391 then we assume the source operand may sometimes be
2392 a memory operand and so we need to store the
2393 destination in the i.rm.reg field. */
2394 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2395 {
520dc8e8
AM
2396 i.rm.reg = i.op[dest].regs->reg_num;
2397 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2398 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2399 i.rex.extX = 1;
3e73aa7c 2400 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2401 i.rex.extZ = 1;
252b5132
RH
2402 }
2403 else
2404 {
520dc8e8
AM
2405 i.rm.reg = i.op[source].regs->reg_num;
2406 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2407 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2408 i.rex.extZ = 1;
3e73aa7c 2409 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2410 i.rex.extX = 1;
252b5132
RH
2411 }
2412 }
2413 else
47926f60 2414 { /* If it's not 2 reg operands... */
252b5132
RH
2415 if (i.mem_operands)
2416 {
2417 unsigned int fake_zero_displacement = 0;
2418 unsigned int op = ((i.types[0] & AnyMem)
2419 ? 0
2420 : (i.types[1] & AnyMem) ? 1 : 2);
2421
2422 default_seg = &ds;
2423
2424 if (! i.base_reg)
2425 {
2426 i.rm.mode = 0;
2427 if (! i.disp_operands)
2428 fake_zero_displacement = 1;
2429 if (! i.index_reg)
2430 {
47926f60 2431 /* Operand is just <disp> */
3e73aa7c 2432 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2433 {
2434 i.rm.regmem = NO_BASE_REGISTER_16;
2435 i.types[op] &= ~Disp;
2436 i.types[op] |= Disp16;
2437 }
3e73aa7c 2438 else if (flag_code != CODE_64BIT)
252b5132
RH
2439 {
2440 i.rm.regmem = NO_BASE_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32;
2443 }
3e73aa7c
JH
2444 else
2445 {
e5cb08ac
KH
2446 /* 64bit mode overwrites the 32bit
2447 absolute addressing by RIP relative
2448 addressing and absolute addressing
2449 is encoded by one of the redundant
2450 SIB forms. */
3e73aa7c
JH
2451
2452 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2453 i.sib.base = NO_BASE_REGISTER;
2454 i.sib.index = NO_INDEX_REGISTER;
2455 i.types[op] &= ~Disp;
2456 i.types[op] |= Disp32S;
2457 }
252b5132 2458 }
47926f60 2459 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2460 {
2461 i.sib.index = i.index_reg->reg_num;
2462 i.sib.base = NO_BASE_REGISTER;
2463 i.sib.scale = i.log2_scale_factor;
2464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2465 i.types[op] &= ~Disp;
3e73aa7c
JH
2466 if (flag_code != CODE_64BIT)
2467 i.types[op] |= Disp32; /* Must be 32 bit */
2468 else
2469 i.types[op] |= Disp32S;
2470 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2471 i.rex.extY = 1;
252b5132
RH
2472 }
2473 }
3e73aa7c
JH
2474 /* RIP addressing for 64bit mode. */
2475 else if (i.base_reg->reg_type == BaseIndex)
2476 {
2477 i.rm.regmem = NO_BASE_REGISTER;
2478 i.types[op] &= ~Disp;
2479 i.types[op] |= Disp32S;
2480 i.flags[op] = Operand_PCrel;
2481 }
252b5132
RH
2482 else if (i.base_reg->reg_type & Reg16)
2483 {
2484 switch (i.base_reg->reg_num)
2485 {
47926f60 2486 case 3: /* (%bx) */
252b5132
RH
2487 if (! i.index_reg)
2488 i.rm.regmem = 7;
47926f60 2489 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2490 i.rm.regmem = i.index_reg->reg_num - 6;
2491 break;
47926f60 2492 case 5: /* (%bp) */
252b5132
RH
2493 default_seg = &ss;
2494 if (! i.index_reg)
2495 {
2496 i.rm.regmem = 6;
2497 if ((i.types[op] & Disp) == 0)
2498 {
47926f60 2499 /* fake (%bp) into 0(%bp) */
252b5132
RH
2500 i.types[op] |= Disp8;
2501 fake_zero_displacement = 1;
2502 }
2503 }
47926f60 2504 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2505 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2506 break;
47926f60 2507 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2508 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2509 }
2510 i.rm.mode = mode_from_disp_size (i.types[op]);
2511 }
3e73aa7c 2512 else /* i.base_reg and 32/64 bit mode */
252b5132 2513 {
3e73aa7c
JH
2514 if (flag_code == CODE_64BIT
2515 && (i.types[op] & Disp))
2516 {
2517 if (i.types[op] & Disp8)
2518 i.types[op] = Disp8 | Disp32S;
2519 else
2520 i.types[op] = Disp32S;
2521 }
252b5132 2522 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2523 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2524 i.rex.extZ = 1;
252b5132 2525 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2526 /* x86-64 ignores REX prefix bit here to avoid
2527 decoder complications. */
2528 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2529 {
2530 default_seg = &ss;
2531 if (i.disp_operands == 0)
2532 {
2533 fake_zero_displacement = 1;
2534 i.types[op] |= Disp8;
2535 }
2536 }
2537 else if (i.base_reg->reg_num == ESP_REG_NUM)
2538 {
2539 default_seg = &ss;
2540 }
2541 i.sib.scale = i.log2_scale_factor;
2542 if (! i.index_reg)
2543 {
2544 /* <disp>(%esp) becomes two byte modrm
2545 with no index register. We've already
2546 stored the code for esp in i.rm.regmem
2547 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2548 base register besides %esp will not use
2549 the extra modrm byte. */
2550 i.sib.index = NO_INDEX_REGISTER;
2551#if ! SCALE1_WHEN_NO_INDEX
2552 /* Another case where we force the second
2553 modrm byte. */
2554 if (i.log2_scale_factor)
2555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2556#endif
2557 }
2558 else
2559 {
2560 i.sib.index = i.index_reg->reg_num;
2561 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2562 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2563 i.rex.extY = 1;
252b5132
RH
2564 }
2565 i.rm.mode = mode_from_disp_size (i.types[op]);
2566 }
2567
2568 if (fake_zero_displacement)
2569 {
2570 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2571 holds the correct displacement size. */
b4cac588
AM
2572 expressionS *exp;
2573
520dc8e8 2574 assert (i.op[op].disps == 0);
252b5132 2575 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2576 i.op[op].disps = exp;
252b5132
RH
2577 exp->X_op = O_constant;
2578 exp->X_add_number = 0;
2579 exp->X_add_symbol = (symbolS *) 0;
2580 exp->X_op_symbol = (symbolS *) 0;
2581 }
2582 }
2583
2584 /* Fill in i.rm.reg or i.rm.regmem field with register
2585 operand (if any) based on i.tm.extension_opcode.
2586 Again, we must be careful to make sure that
2587 segment/control/debug/test/MMX registers are coded
47926f60 2588 into the i.rm.reg field. */
252b5132
RH
2589 if (i.reg_operands)
2590 {
2591 unsigned int op =
2592 ((i.types[0]
3f4438ab
AM
2593 & (Reg | RegMMX | RegXMM
2594 | SReg2 | SReg3
2595 | Control | Debug | Test))
252b5132
RH
2596 ? 0
2597 : ((i.types[1]
3f4438ab
AM
2598 & (Reg | RegMMX | RegXMM
2599 | SReg2 | SReg3
2600 | Control | Debug | Test))
252b5132
RH
2601 ? 1
2602 : 2));
2603 /* If there is an extension opcode to put here, the
47926f60 2604 register number must be put into the regmem field. */
252b5132 2605 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2606 {
2607 i.rm.regmem = i.op[op].regs->reg_num;
2608 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2609 i.rex.extZ = 1;
3e73aa7c 2610 }
252b5132 2611 else
3e73aa7c
JH
2612 {
2613 i.rm.reg = i.op[op].regs->reg_num;
2614 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2615 i.rex.extX = 1;
3e73aa7c 2616 }
252b5132
RH
2617
2618 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2619 we must set it to 3 to indicate this is a register
2620 operand in the regmem field. */
2621 if (!i.mem_operands)
2622 i.rm.mode = 3;
2623 }
2624
47926f60 2625 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2626 if (i.tm.extension_opcode != None)
2627 i.rm.reg = i.tm.extension_opcode;
2628 }
2629 }
2630 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2631 {
47926f60
KH
2632 if (i.tm.base_opcode == POP_SEG_SHORT
2633 && i.op[0].regs->reg_num == 1)
252b5132
RH
2634 {
2635 as_bad (_("you can't `pop %%cs'"));
2636 return;
2637 }
520dc8e8 2638 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2639 if (i.op[0].regs->reg_flags & RegRex)
2640 i.rex.extZ = 1;
252b5132
RH
2641 }
2642 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2643 {
2644 default_seg = &ds;
2645 }
2646 else if ((i.tm.opcode_modifier & IsString) != 0)
2647 {
2648 /* For the string instructions that allow a segment override
2649 on one of their operands, the default segment is ds. */
2650 default_seg = &ds;
2651 }
2652
2653 /* If a segment was explicitly specified,
2654 and the specified segment is not the default,
2655 use an opcode prefix to select it.
2656 If we never figured out what the default segment is,
2657 then default_seg will be zero at this point,
2658 and the specified segment prefix will always be used. */
2659 if ((i.seg[0]) && (i.seg[0] != default_seg))
2660 {
2661 if (! add_prefix (i.seg[0]->seg_prefix))
2662 return;
2663 }
2664 }
a38cf1db 2665 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2666 {
24eab124
AM
2667 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2668 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2669 }
2670 }
2671
47926f60 2672 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2673 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2674 {
2675 i.tm.base_opcode = INT3_OPCODE;
2676 i.imm_operands = 0;
2677 }
2678
2f66722d 2679 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2680 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2681 {
2682 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2683 the absolute address given by the constant. Since ix86 jumps and
2684 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2685 i.op[0].disps->X_add_symbol = &abs_symbol;
2686 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2687 }
2688
3e73aa7c
JH
2689 if (i.tm.opcode_modifier & Rex64)
2690 i.rex.mode64 = 1;
2691
2692 /* For 8bit registers we would need an empty rex prefix.
2693 Also in the case instruction is already having prefix,
2694 we need to convert old registers to new ones. */
2695
2696 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2697 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2698 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2700 {
2701 int x;
e5cb08ac 2702 i.rex.empty = 1;
3e73aa7c
JH
2703 for (x = 0; x < 2; x++)
2704 {
2705 /* Look for 8bit operand that does use old registers. */
2706 if (i.types[x] & Reg8
2707 && !(i.op[x].regs->reg_flags & RegRex64))
2708 {
2709 /* In case it is "hi" register, give up. */
2710 if (i.op[x].regs->reg_num > 3)
2711 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2712 i.op[x].regs->reg_name);
2713
2714 /* Otherwise it is equivalent to the extended register.
2715 Since the encoding don't change this is merely cosmetical
2716 cleanup for debug output. */
2717
2718 i.op[x].regs = i.op[x].regs + 8;
2719 }
2720 }
2721 }
2722
2723 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2724 add_prefix (0x40
2725 | (i.rex.mode64 ? 8 : 0)
2726 | (i.rex.extX ? 4 : 0)
2727 | (i.rex.extY ? 2 : 0)
2728 | (i.rex.extZ ? 1 : 0));
2729
47926f60 2730 /* We are ready to output the insn. */
252b5132
RH
2731 {
2732 register char *p;
2733
9fcc94b6
AM
2734 /* Tie dwarf2 debug info to the address at the start of the insn.
2735 We can't do this after the insn has been output as the current
2736 frag may have been closed off. eg. by frag_var. */
2737 dwarf2_emit_insn (0);
2738
47926f60 2739 /* Output jumps. */
252b5132
RH
2740 if (i.tm.opcode_modifier & Jump)
2741 {
a217f122
AM
2742 int code16;
2743 int prefix;
252b5132 2744
a217f122 2745 code16 = 0;
3e73aa7c 2746 if (flag_code == CODE_16BIT)
a217f122
AM
2747 code16 = CODE16;
2748
2749 prefix = 0;
2750 if (i.prefix[DATA_PREFIX])
252b5132 2751 {
a217f122 2752 prefix = 1;
252b5132 2753 i.prefixes -= 1;
a217f122 2754 code16 ^= CODE16;
252b5132 2755 }
cb9401fc
AM
2756 /* Pentium4 branch hints. */
2757 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2758 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2759 {
2760 prefix++;
2761 i.prefixes--;
2762 }
3e73aa7c
JH
2763 if (i.prefix[REX_PREFIX])
2764 {
2765 prefix++;
e5cb08ac 2766 i.prefixes--;
3e73aa7c 2767 }
252b5132 2768
a217f122 2769 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2770 as_warn (_("skipping prefixes on this instruction"));
2771
2f66722d
AM
2772 /* It's always a symbol; End frag & setup for relax.
2773 Make sure there is enough room in this frag for the largest
2774 instruction we may generate in md_convert_frag. This is 2
2775 bytes for the opcode and room for the prefix and largest
2776 displacement. */
fddf5b5b 2777 frag_grow (prefix + 2 + 4);
2f66722d
AM
2778 /* Prefix and 1 opcode byte go in fr_fix. */
2779 p = frag_more (prefix + 1);
3e73aa7c 2780 if (i.prefix[DATA_PREFIX])
2f66722d 2781 *p++ = DATA_PREFIX_OPCODE;
cb9401fc
AM
2782 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2783 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2784 *p++ = i.prefix[SEG_PREFIX];
3e73aa7c
JH
2785 if (i.prefix[REX_PREFIX])
2786 *p++ = i.prefix[REX_PREFIX];
2f66722d 2787 *p = i.tm.base_opcode;
ee7fcc42
AM
2788 /* 1 possible extra opcode + displacement go in var part.
2789 Pass reloc in fr_var. */
2f66722d 2790 frag_var (rs_machine_dependent,
fddf5b5b 2791 1 + 4,
1ae12ab7 2792 i.reloc[0],
2f66722d
AM
2793 ((unsigned char) *p == JUMP_PC_RELATIVE
2794 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
fddf5b5b
AM
2795 : ((cpu_arch_flags & Cpu386) != 0
2796 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2797 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
520dc8e8
AM
2798 i.op[0].disps->X_add_symbol,
2799 i.op[0].disps->X_add_number,
2f66722d 2800 p);
252b5132
RH
2801 }
2802 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2803 {
a217f122 2804 int size;
252b5132 2805
a217f122 2806 if (i.tm.opcode_modifier & JumpByte)
252b5132 2807 {
a217f122
AM
2808 /* This is a loop or jecxz type instruction. */
2809 size = 1;
252b5132
RH
2810 if (i.prefix[ADDR_PREFIX])
2811 {
252b5132
RH
2812 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2813 i.prefixes -= 1;
2814 }
cb9401fc
AM
2815 /* Pentium4 branch hints. */
2816 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2817 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2818 {
2819 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2820 i.prefixes--;
2821 }
252b5132
RH
2822 }
2823 else
2824 {
a217f122
AM
2825 int code16;
2826
2827 code16 = 0;
3e73aa7c 2828 if (flag_code == CODE_16BIT)
a217f122 2829 code16 = CODE16;
252b5132
RH
2830
2831 if (i.prefix[DATA_PREFIX])
2832 {
252b5132
RH
2833 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2834 i.prefixes -= 1;
a217f122 2835 code16 ^= CODE16;
252b5132 2836 }
252b5132 2837
a217f122 2838 size = 4;
252b5132
RH
2839 if (code16)
2840 size = 2;
2841 }
2842
3e73aa7c
JH
2843 if (i.prefix[REX_PREFIX])
2844 {
2845 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3e73aa7c
JH
2846 i.prefixes -= 1;
2847 }
2848
a217f122 2849 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2850 as_warn (_("skipping prefixes on this instruction"));
2851
cb9401fc
AM
2852 p = frag_more (1 + size);
2853 *p++ = i.tm.base_opcode;
252b5132 2854
2f66722d 2855 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2856 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2857 }
2858 else if (i.tm.opcode_modifier & JumpInterSegment)
2859 {
2860 int size;
a217f122
AM
2861 int prefix;
2862 int code16;
252b5132 2863
a217f122 2864 code16 = 0;
3e73aa7c 2865 if (flag_code == CODE_16BIT)
a217f122
AM
2866 code16 = CODE16;
2867
2868 prefix = 0;
2869 if (i.prefix[DATA_PREFIX])
252b5132 2870 {
a217f122 2871 prefix = 1;
252b5132 2872 i.prefixes -= 1;
a217f122 2873 code16 ^= CODE16;
252b5132 2874 }
3e73aa7c
JH
2875 if (i.prefix[REX_PREFIX])
2876 {
2877 prefix++;
2878 i.prefixes -= 1;
2879 }
252b5132
RH
2880
2881 size = 4;
252b5132 2882 if (code16)
f6af82bd 2883 size = 2;
252b5132 2884
a217f122 2885 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2886 as_warn (_("skipping prefixes on this instruction"));
2887
47926f60 2888 /* 1 opcode; 2 segment; offset */
252b5132 2889 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2890
2891 if (i.prefix[DATA_PREFIX])
252b5132 2892 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2893
2894 if (i.prefix[REX_PREFIX])
2895 *p++ = i.prefix[REX_PREFIX];
2896
252b5132 2897 *p++ = i.tm.base_opcode;
520dc8e8 2898 if (i.op[1].imms->X_op == O_constant)
252b5132 2899 {
847f7ad4 2900 offsetT n = i.op[1].imms->X_add_number;
252b5132 2901
773f551c
AM
2902 if (size == 2
2903 && !fits_in_unsigned_word (n)
2904 && !fits_in_signed_word (n))
252b5132
RH
2905 {
2906 as_bad (_("16-bit jump out of range"));
2907 return;
2908 }
847f7ad4 2909 md_number_to_chars (p, n, size);
252b5132
RH
2910 }
2911 else
2912 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2913 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2914 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2915 as_bad (_("can't handle non absolute segment in `%s'"),
2916 i.tm.name);
520dc8e8 2917 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2918 }
2919 else
2920 {
47926f60 2921 /* Output normal instructions here. */
252b5132
RH
2922 unsigned char *q;
2923
7bc70a8e
JH
2924 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2925 byte for the SSE instructions to specify prefix they require. */
2926 if (i.tm.base_opcode & 0xff0000)
2927 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2928
47926f60 2929 /* The prefix bytes. */
252b5132
RH
2930 for (q = i.prefix;
2931 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2932 q++)
2933 {
2934 if (*q)
2935 {
252b5132
RH
2936 p = frag_more (1);
2937 md_number_to_chars (p, (valueT) *q, 1);
2938 }
2939 }
2940
47926f60 2941 /* Now the opcode; be careful about word order here! */
252b5132
RH
2942 if (fits_in_unsigned_byte (i.tm.base_opcode))
2943 {
252b5132
RH
2944 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2945 }
7bc70a8e 2946 else
252b5132 2947 {
252b5132 2948 p = frag_more (2);
47926f60 2949 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2950 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2951 *p = i.tm.base_opcode & 0xff;
2952 }
252b5132
RH
2953
2954 /* Now the modrm byte and sib byte (if present). */
2955 if (i.tm.opcode_modifier & Modrm)
2956 {
252b5132
RH
2957 p = frag_more (1);
2958 md_number_to_chars (p,
2959 (valueT) (i.rm.regmem << 0
2960 | i.rm.reg << 3
2961 | i.rm.mode << 6),
2962 1);
2963 /* If i.rm.regmem == ESP (4)
2964 && i.rm.mode != (Register mode)
2965 && not 16 bit
2966 ==> need second modrm byte. */
2967 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2968 && i.rm.mode != 3
2969 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2970 {
252b5132
RH
2971 p = frag_more (1);
2972 md_number_to_chars (p,
2973 (valueT) (i.sib.base << 0
2974 | i.sib.index << 3
2975 | i.sib.scale << 6),
2976 1);
2977 }
2978 }
2979
2980 if (i.disp_operands)
2981 {
2982 register unsigned int n;
2983
2984 for (n = 0; n < i.operands; n++)
2985 {
520dc8e8 2986 if (i.types[n] & Disp)
252b5132 2987 {
520dc8e8 2988 if (i.op[n].disps->X_op == O_constant)
252b5132 2989 {
847f7ad4
AM
2990 int size;
2991 offsetT val;
b4cac588 2992
847f7ad4 2993 size = 4;
3e73aa7c 2994 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2995 {
b4cac588 2996 size = 2;
b4cac588 2997 if (i.types[n] & Disp8)
847f7ad4 2998 size = 1;
3e73aa7c
JH
2999 if (i.types[n] & Disp64)
3000 size = 8;
252b5132 3001 }
847f7ad4
AM
3002 val = offset_in_range (i.op[n].disps->X_add_number,
3003 size);
b4cac588 3004 p = frag_more (size);
847f7ad4 3005 md_number_to_chars (p, val, size);
252b5132 3006 }
252b5132 3007 else
520dc8e8
AM
3008 {
3009 int size = 4;
3e73aa7c
JH
3010 int sign = 0;
3011 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3012
3013 /* The PC relative address is computed relative
3014 to the instruction boundary, so in case immediate
3015 fields follows, we need to adjust the value. */
3016 if (pcrel && i.imm_operands)
3017 {
3018 int imm_size = 4;
3019 register unsigned int n1;
3020
3021 for (n1 = 0; n1 < i.operands; n1++)
3022 if (i.types[n1] & Imm)
3023 {
3024 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3025 {
3026 imm_size = 2;
3027 if (i.types[n1] & (Imm8 | Imm8S))
3028 imm_size = 1;
3029 if (i.types[n1] & Imm64)
3030 imm_size = 8;
3031 }
3032 break;
3033 }
3034 /* We should find the immediate. */
3035 if (n1 == i.operands)
bfb32b52 3036 abort ();
3e73aa7c
JH
3037 i.op[n].disps->X_add_number -= imm_size;
3038 }
520dc8e8 3039
3e73aa7c
JH
3040 if (i.types[n] & Disp32S)
3041 sign = 1;
3042
e5cb08ac 3043 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3044 {
3045 size = 2;
3046 if (i.types[n] & Disp64)
3047 size = 8;
3048 }
520dc8e8 3049
520dc8e8
AM
3050 p = frag_more (size);
3051 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3052 i.op[n].disps, pcrel,
1ae12ab7 3053 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3054 }
3055 }
3056 }
ce8a8b2f 3057 }
252b5132 3058
47926f60 3059 /* Output immediate. */
252b5132
RH
3060 if (i.imm_operands)
3061 {
3062 register unsigned int n;
3063
3064 for (n = 0; n < i.operands; n++)
3065 {
520dc8e8 3066 if (i.types[n] & Imm)
252b5132 3067 {
520dc8e8 3068 if (i.op[n].imms->X_op == O_constant)
252b5132 3069 {
847f7ad4
AM
3070 int size;
3071 offsetT val;
b4cac588 3072
847f7ad4 3073 size = 4;
3e73aa7c 3074 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3075 {
b4cac588 3076 size = 2;
b4cac588 3077 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3078 size = 1;
3e73aa7c
JH
3079 else if (i.types[n] & Imm64)
3080 size = 8;
252b5132 3081 }
847f7ad4
AM
3082 val = offset_in_range (i.op[n].imms->X_add_number,
3083 size);
b4cac588 3084 p = frag_more (size);
847f7ad4 3085 md_number_to_chars (p, val, size);
252b5132
RH
3086 }
3087 else
ce8a8b2f
AM
3088 {
3089 /* Not absolute_section.
3090 Need a 32-bit fixup (don't support 8bit
520dc8e8 3091 non-absolute imms). Try to support other
47926f60 3092 sizes ... */
f3c180ae 3093 RELOC_ENUM reloc_type;
520dc8e8 3094 int size = 4;
3e73aa7c 3095 int sign = 0;
252b5132 3096
3e73aa7c
JH
3097 if ((i.types[n] & (Imm32S))
3098 && i.suffix == QWORD_MNEM_SUFFIX)
3099 sign = 1;
3100 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3101 {
3102 size = 2;
3103 if (i.types[n] & (Imm8 | Imm8S))
3104 size = 1;
3105 if (i.types[n] & Imm64)
3106 size = 8;
3107 }
520dc8e8 3108
252b5132 3109 p = frag_more (size);
1ae12ab7 3110 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3111#ifdef BFD_ASSEMBLER
f6af82bd 3112 if (reloc_type == BFD_RELOC_32
252b5132 3113 && GOT_symbol
520dc8e8
AM
3114 && GOT_symbol == i.op[n].imms->X_add_symbol
3115 && (i.op[n].imms->X_op == O_symbol
3116 || (i.op[n].imms->X_op == O_add
49309057 3117 && ((symbol_get_value_expression
520dc8e8 3118 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3119 == O_subtract))))
3120 {
3e73aa7c
JH
3121 /* We don't support dynamic linking on x86-64 yet. */
3122 if (flag_code == CODE_64BIT)
bfb32b52 3123 abort ();
f6af82bd 3124 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3125 i.op[n].imms->X_add_number += 3;
252b5132
RH
3126 }
3127#endif
3128 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3129 i.op[n].imms, 0, reloc_type);
252b5132
RH
3130 }
3131 }
3132 }
ce8a8b2f 3133 }
252b5132
RH
3134 }
3135
3136#ifdef DEBUG386
3137 if (flag_debug)
3138 {
3139 pi (line, &i);
3140 }
47926f60 3141#endif /* DEBUG386 */
252b5132
RH
3142 }
3143}
3144\f
f3c180ae
AM
3145#ifndef LEX_AT
3146static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3147
3148/* Parse operands of the form
3149 <symbol>@GOTOFF+<nnn>
3150 and similar .plt or .got references.
3151
3152 If we find one, set up the correct relocation in RELOC and copy the
3153 input string, minus the `@GOTOFF' into a malloc'd buffer for
3154 parsing by the calling routine. Return this buffer, and if ADJUST
3155 is non-null set it to the length of the string we removed from the
3156 input line. Otherwise return NULL. */
3157static char *
3158lex_got (reloc, adjust)
3159 RELOC_ENUM *reloc;
3160 int *adjust;
3161{
3162 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3163 static const struct {
3164 const char *str;
3165 const RELOC_ENUM rel[NUM_FLAG_CODE];
3166 } gotrel[] = {
3167 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3168 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3169 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3170 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3171 };
3172 char *cp;
3173 unsigned int j;
3174
3175 for (cp = input_line_pointer; *cp != '@'; cp++)
3176 if (is_end_of_line[(unsigned char) *cp])
3177 return NULL;
3178
3179 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3180 {
3181 int len;
3182
3183 len = strlen (gotrel[j].str);
28f81592 3184 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3185 {
3186 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3187 {
28f81592
AM
3188 int first, second;
3189 char *tmpbuf, *past_reloc;
f3c180ae
AM
3190
3191 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3192 if (adjust)
3193 *adjust = len;
f3c180ae
AM
3194
3195 if (GOT_symbol == NULL)
3196 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3197
3198 /* Replace the relocation token with ' ', so that
3199 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3200
3201 /* The length of the first part of our input line. */
f3c180ae 3202 first = cp - input_line_pointer;
28f81592
AM
3203
3204 /* The second part goes from after the reloc token until
3205 (and including) an end_of_line char. Don't use strlen
3206 here as the end_of_line char may not be a NUL. */
3207 past_reloc = cp + 1 + len;
3208 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3209 ;
3210 second = cp - past_reloc;
3211
3212 /* Allocate and copy string. The trailing NUL shouldn't
3213 be necessary, but be safe. */
3214 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3215 memcpy (tmpbuf, input_line_pointer, first);
3216 tmpbuf[first] = ' ';
28f81592
AM
3217 memcpy (tmpbuf + first + 1, past_reloc, second);
3218 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3219 return tmpbuf;
3220 }
3221
3222 as_bad (_("@%s reloc is not supported in %s bit mode"),
3223 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3224 return NULL;
3225 }
3226 }
3227
3228 /* Might be a symbol version string. Don't as_bad here. */
3229 return NULL;
3230}
3231
3232/* x86_cons_fix_new is called via the expression parsing code when a
3233 reloc is needed. We use this hook to get the correct .got reloc. */
3234static RELOC_ENUM got_reloc = NO_RELOC;
3235
3236void
3237x86_cons_fix_new (frag, off, len, exp)
3238 fragS *frag;
3239 unsigned int off;
3240 unsigned int len;
3241 expressionS *exp;
3242{
3243 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3244 got_reloc = NO_RELOC;
3245 fix_new_exp (frag, off, len, exp, 0, r);
3246}
3247
3248void
3249x86_cons (exp, size)
3250 expressionS *exp;
3251 int size;
3252{
3253 if (size == 4)
3254 {
3255 /* Handle @GOTOFF and the like in an expression. */
3256 char *save;
3257 char *gotfree_input_line;
3258 int adjust;
3259
3260 save = input_line_pointer;
3261 gotfree_input_line = lex_got (&got_reloc, &adjust);
3262 if (gotfree_input_line)
3263 input_line_pointer = gotfree_input_line;
3264
3265 expression (exp);
3266
3267 if (gotfree_input_line)
3268 {
3269 /* expression () has merrily parsed up to the end of line,
3270 or a comma - in the wrong buffer. Transfer how far
3271 input_line_pointer has moved to the right buffer. */
3272 input_line_pointer = (save
3273 + (input_line_pointer - gotfree_input_line)
3274 + adjust);
3275 free (gotfree_input_line);
3276 }
3277 }
3278 else
3279 expression (exp);
3280}
3281#endif
3282
252b5132
RH
3283static int i386_immediate PARAMS ((char *));
3284
3285static int
3286i386_immediate (imm_start)
3287 char *imm_start;
3288{
3289 char *save_input_line_pointer;
f3c180ae
AM
3290#ifndef LEX_AT
3291 char *gotfree_input_line;
3292#endif
252b5132 3293 segT exp_seg = 0;
47926f60 3294 expressionS *exp;
252b5132
RH
3295
3296 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3297 {
d0b47220 3298 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3299 return 0;
3300 }
3301
3302 exp = &im_expressions[i.imm_operands++];
520dc8e8 3303 i.op[this_operand].imms = exp;
252b5132
RH
3304
3305 if (is_space_char (*imm_start))
3306 ++imm_start;
3307
3308 save_input_line_pointer = input_line_pointer;
3309 input_line_pointer = imm_start;
3310
3311#ifndef LEX_AT
f3c180ae
AM
3312 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3313 if (gotfree_input_line)
3314 input_line_pointer = gotfree_input_line;
252b5132
RH
3315#endif
3316
3317 exp_seg = expression (exp);
3318
83183c0c 3319 SKIP_WHITESPACE ();
252b5132 3320 if (*input_line_pointer)
f3c180ae 3321 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3322
3323 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3324#ifndef LEX_AT
3325 if (gotfree_input_line)
3326 free (gotfree_input_line);
3327#endif
252b5132 3328
2daf4fd8 3329 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3330 {
47926f60 3331 /* Missing or bad expr becomes absolute 0. */
d0b47220 3332 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3333 imm_start);
252b5132
RH
3334 exp->X_op = O_constant;
3335 exp->X_add_number = 0;
3336 exp->X_add_symbol = (symbolS *) 0;
3337 exp->X_op_symbol = (symbolS *) 0;
252b5132 3338 }
3e73aa7c 3339 else if (exp->X_op == O_constant)
252b5132 3340 {
47926f60 3341 /* Size it properly later. */
3e73aa7c
JH
3342 i.types[this_operand] |= Imm64;
3343 /* If BFD64, sign extend val. */
3344 if (!use_rela_relocations)
3345 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3346 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3347 }
4c63da97 3348#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3349 else if (1
4c63da97 3350#ifdef BFD_ASSEMBLER
47926f60 3351 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3352#endif
47926f60 3353 && exp_seg != text_section
24eab124
AM
3354 && exp_seg != data_section
3355 && exp_seg != bss_section
3356 && exp_seg != undefined_section
252b5132 3357#ifdef BFD_ASSEMBLER
24eab124 3358 && !bfd_is_com_section (exp_seg)
252b5132 3359#endif
24eab124 3360 )
252b5132 3361 {
4c63da97 3362#ifdef BFD_ASSEMBLER
d0b47220 3363 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3364#else
d0b47220 3365 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3366#endif
252b5132
RH
3367 return 0;
3368 }
3369#endif
3370 else
3371 {
3372 /* This is an address. The size of the address will be
24eab124 3373 determined later, depending on destination register,
3e73aa7c
JH
3374 suffix, or the default for the section. */
3375 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3376 }
3377
3378 return 1;
3379}
3380
551c1ca1 3381static char *i386_scale PARAMS ((char *));
252b5132 3382
551c1ca1 3383static char *
252b5132
RH
3384i386_scale (scale)
3385 char *scale;
3386{
551c1ca1
AM
3387 offsetT val;
3388 char *save = input_line_pointer;
252b5132 3389
551c1ca1
AM
3390 input_line_pointer = scale;
3391 val = get_absolute_expression ();
3392
3393 switch (val)
252b5132 3394 {
551c1ca1
AM
3395 case 0:
3396 case 1:
252b5132
RH
3397 i.log2_scale_factor = 0;
3398 break;
551c1ca1 3399 case 2:
252b5132
RH
3400 i.log2_scale_factor = 1;
3401 break;
551c1ca1 3402 case 4:
252b5132
RH
3403 i.log2_scale_factor = 2;
3404 break;
551c1ca1 3405 case 8:
252b5132
RH
3406 i.log2_scale_factor = 3;
3407 break;
3408 default:
252b5132 3409 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3410 scale);
551c1ca1
AM
3411 input_line_pointer = save;
3412 return NULL;
252b5132
RH
3413 }
3414 if (i.log2_scale_factor != 0 && ! i.index_reg)
3415 {
3416 as_warn (_("scale factor of %d without an index register"),
24eab124 3417 1 << i.log2_scale_factor);
252b5132
RH
3418#if SCALE1_WHEN_NO_INDEX
3419 i.log2_scale_factor = 0;
3420#endif
3421 }
551c1ca1
AM
3422 scale = input_line_pointer;
3423 input_line_pointer = save;
3424 return scale;
252b5132
RH
3425}
3426
3427static int i386_displacement PARAMS ((char *, char *));
3428
3429static int
3430i386_displacement (disp_start, disp_end)
3431 char *disp_start;
3432 char *disp_end;
3433{
3434 register expressionS *exp;
3435 segT exp_seg = 0;
3436 char *save_input_line_pointer;
f3c180ae
AM
3437#ifndef LEX_AT
3438 char *gotfree_input_line;
3439#endif
252b5132
RH
3440 int bigdisp = Disp32;
3441
3e73aa7c 3442 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3443 bigdisp = Disp16;
3e73aa7c
JH
3444 if (flag_code == CODE_64BIT)
3445 bigdisp = Disp64;
252b5132
RH
3446 i.types[this_operand] |= bigdisp;
3447
3448 exp = &disp_expressions[i.disp_operands];
520dc8e8 3449 i.op[this_operand].disps = exp;
252b5132
RH
3450 i.disp_operands++;
3451 save_input_line_pointer = input_line_pointer;
3452 input_line_pointer = disp_start;
3453 END_STRING_AND_SAVE (disp_end);
3454
3455#ifndef GCC_ASM_O_HACK
3456#define GCC_ASM_O_HACK 0
3457#endif
3458#if GCC_ASM_O_HACK
3459 END_STRING_AND_SAVE (disp_end + 1);
3460 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3461 && displacement_string_end[-1] == '+')
252b5132
RH
3462 {
3463 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3464 constraint within gcc asm statements.
3465 For instance:
3466
3467 #define _set_tssldt_desc(n,addr,limit,type) \
3468 __asm__ __volatile__ ( \
3469 "movw %w2,%0\n\t" \
3470 "movw %w1,2+%0\n\t" \
3471 "rorl $16,%1\n\t" \
3472 "movb %b1,4+%0\n\t" \
3473 "movb %4,5+%0\n\t" \
3474 "movb $0,6+%0\n\t" \
3475 "movb %h1,7+%0\n\t" \
3476 "rorl $16,%1" \
3477 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3478
3479 This works great except that the output assembler ends
3480 up looking a bit weird if it turns out that there is
3481 no offset. You end up producing code that looks like:
3482
3483 #APP
3484 movw $235,(%eax)
3485 movw %dx,2+(%eax)
3486 rorl $16,%edx
3487 movb %dl,4+(%eax)
3488 movb $137,5+(%eax)
3489 movb $0,6+(%eax)
3490 movb %dh,7+(%eax)
3491 rorl $16,%edx
3492 #NO_APP
3493
47926f60 3494 So here we provide the missing zero. */
24eab124
AM
3495
3496 *displacement_string_end = '0';
252b5132
RH
3497 }
3498#endif
3499#ifndef LEX_AT
f3c180ae
AM
3500 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3501 if (gotfree_input_line)
3502 input_line_pointer = gotfree_input_line;
252b5132
RH
3503#endif
3504
24eab124 3505 exp_seg = expression (exp);
252b5132 3506
636c26b0
AM
3507 SKIP_WHITESPACE ();
3508 if (*input_line_pointer)
3509 as_bad (_("junk `%s' after expression"), input_line_pointer);
3510#if GCC_ASM_O_HACK
3511 RESTORE_END_STRING (disp_end + 1);
3512#endif
3513 RESTORE_END_STRING (disp_end);
3514 input_line_pointer = save_input_line_pointer;
3515#ifndef LEX_AT
3516 if (gotfree_input_line)
3517 free (gotfree_input_line);
3518#endif
3519
252b5132 3520#ifdef BFD_ASSEMBLER
24eab124
AM
3521 /* We do this to make sure that the section symbol is in
3522 the symbol table. We will ultimately change the relocation
47926f60 3523 to be relative to the beginning of the section. */
1ae12ab7
AM
3524 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3525 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3526 {
636c26b0
AM
3527 if (exp->X_op != O_symbol)
3528 {
3529 as_bad (_("bad expression used with @%s"),
3530 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3531 ? "GOTPCREL"
3532 : "GOTOFF"));
3533 return 0;
3534 }
3535
e5cb08ac 3536 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3537 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3538 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3539 exp->X_op = O_subtract;
3540 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3541 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3542 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3543 else
1ae12ab7 3544 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3545 }
252b5132
RH
3546#endif
3547
2daf4fd8
AM
3548 if (exp->X_op == O_absent || exp->X_op == O_big)
3549 {
47926f60 3550 /* Missing or bad expr becomes absolute 0. */
d0b47220 3551 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3552 disp_start);
3553 exp->X_op = O_constant;
3554 exp->X_add_number = 0;
3555 exp->X_add_symbol = (symbolS *) 0;
3556 exp->X_op_symbol = (symbolS *) 0;
3557 }
3558
4c63da97 3559#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3560 if (exp->X_op != O_constant
4c63da97 3561#ifdef BFD_ASSEMBLER
45288df1 3562 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3563#endif
45288df1
AM
3564 && exp_seg != text_section
3565 && exp_seg != data_section
3566 && exp_seg != bss_section
3567 && exp_seg != undefined_section)
24eab124 3568 {
4c63da97 3569#ifdef BFD_ASSEMBLER
d0b47220 3570 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3571#else
d0b47220 3572 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3573#endif
24eab124
AM
3574 return 0;
3575 }
252b5132 3576#endif
3e73aa7c
JH
3577 else if (flag_code == CODE_64BIT)
3578 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3579 return 1;
3580}
3581
e5cb08ac 3582static int i386_index_check PARAMS ((const char *));
252b5132 3583
eecb386c 3584/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3585 Return 1 on success, 0 on a failure. */
3586
252b5132 3587static int
eecb386c
AM
3588i386_index_check (operand_string)
3589 const char *operand_string;
252b5132 3590{
3e73aa7c 3591 int ok;
24eab124 3592#if INFER_ADDR_PREFIX
eecb386c
AM
3593 int fudged = 0;
3594
24eab124
AM
3595 tryprefix:
3596#endif
3e73aa7c
JH
3597 ok = 1;
3598 if (flag_code == CODE_64BIT)
3599 {
3600 /* 64bit checks. */
3601 if ((i.base_reg
3602 && ((i.base_reg->reg_type & Reg64) == 0)
3603 && (i.base_reg->reg_type != BaseIndex
3604 || i.index_reg))
3605 || (i.index_reg
3606 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3607 != (Reg64|BaseIndex))))
3608 ok = 0;
3609 }
3610 else
3611 {
3612 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3613 {
3614 /* 16bit checks. */
3615 if ((i.base_reg
3616 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3617 != (Reg16|BaseIndex)))
3618 || (i.index_reg
3619 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3620 != (Reg16|BaseIndex))
3621 || ! (i.base_reg
3622 && i.base_reg->reg_num < 6
3623 && i.index_reg->reg_num >= 6
3624 && i.log2_scale_factor == 0))))
3625 ok = 0;
3626 }
3627 else
e5cb08ac 3628 {
3e73aa7c
JH
3629 /* 32bit checks. */
3630 if ((i.base_reg
3631 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3632 || (i.index_reg
3633 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3634 != (Reg32|BaseIndex))))
e5cb08ac 3635 ok = 0;
3e73aa7c
JH
3636 }
3637 }
3638 if (!ok)
24eab124
AM
3639 {
3640#if INFER_ADDR_PREFIX
3e73aa7c
JH
3641 if (flag_code != CODE_64BIT
3642 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3643 {
3644 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3645 i.prefixes += 1;
b23bac36
AM
3646 /* Change the size of any displacement too. At most one of
3647 Disp16 or Disp32 is set.
3648 FIXME. There doesn't seem to be any real need for separate
3649 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3650 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3651 if (i.types[this_operand] & (Disp16|Disp32))
3652 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3653 fudged = 1;
24eab124
AM
3654 goto tryprefix;
3655 }
eecb386c
AM
3656 if (fudged)
3657 as_bad (_("`%s' is not a valid base/index expression"),
3658 operand_string);
3659 else
c388dee8 3660#endif
eecb386c
AM
3661 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3662 operand_string,
3e73aa7c 3663 flag_code_names[flag_code]);
eecb386c 3664 return 0;
24eab124
AM
3665 }
3666 return 1;
3667}
252b5132 3668
252b5132 3669/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3670 on error. */
252b5132 3671
252b5132
RH
3672static int
3673i386_operand (operand_string)
3674 char *operand_string;
3675{
af6bdddf
AM
3676 const reg_entry *r;
3677 char *end_op;
24eab124 3678 char *op_string = operand_string;
252b5132 3679
24eab124 3680 if (is_space_char (*op_string))
252b5132
RH
3681 ++op_string;
3682
24eab124 3683 /* We check for an absolute prefix (differentiating,
47926f60 3684 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3685 if (*op_string == ABSOLUTE_PREFIX)
3686 {
3687 ++op_string;
3688 if (is_space_char (*op_string))
3689 ++op_string;
3690 i.types[this_operand] |= JumpAbsolute;
3691 }
252b5132 3692
47926f60 3693 /* Check if operand is a register. */
af6bdddf
AM
3694 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3695 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3696 {
24eab124
AM
3697 /* Check for a segment override by searching for ':' after a
3698 segment register. */
3699 op_string = end_op;
3700 if (is_space_char (*op_string))
3701 ++op_string;
3702 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3703 {
3704 switch (r->reg_num)
3705 {
3706 case 0:
3707 i.seg[i.mem_operands] = &es;
3708 break;
3709 case 1:
3710 i.seg[i.mem_operands] = &cs;
3711 break;
3712 case 2:
3713 i.seg[i.mem_operands] = &ss;
3714 break;
3715 case 3:
3716 i.seg[i.mem_operands] = &ds;
3717 break;
3718 case 4:
3719 i.seg[i.mem_operands] = &fs;
3720 break;
3721 case 5:
3722 i.seg[i.mem_operands] = &gs;
3723 break;
3724 }
252b5132 3725
24eab124 3726 /* Skip the ':' and whitespace. */
252b5132
RH
3727 ++op_string;
3728 if (is_space_char (*op_string))
24eab124 3729 ++op_string;
252b5132 3730
24eab124
AM
3731 if (!is_digit_char (*op_string)
3732 && !is_identifier_char (*op_string)
3733 && *op_string != '('
3734 && *op_string != ABSOLUTE_PREFIX)
3735 {
3736 as_bad (_("bad memory operand `%s'"), op_string);
3737 return 0;
3738 }
47926f60 3739 /* Handle case of %es:*foo. */
24eab124
AM
3740 if (*op_string == ABSOLUTE_PREFIX)
3741 {
3742 ++op_string;
3743 if (is_space_char (*op_string))
3744 ++op_string;
3745 i.types[this_operand] |= JumpAbsolute;
3746 }
3747 goto do_memory_reference;
3748 }
3749 if (*op_string)
3750 {
d0b47220 3751 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3752 return 0;
3753 }
3754 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3755 i.op[this_operand].regs = r;
24eab124
AM
3756 i.reg_operands++;
3757 }
af6bdddf
AM
3758 else if (*op_string == REGISTER_PREFIX)
3759 {
3760 as_bad (_("bad register name `%s'"), op_string);
3761 return 0;
3762 }
24eab124 3763 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3764 {
24eab124
AM
3765 ++op_string;
3766 if (i.types[this_operand] & JumpAbsolute)
3767 {
d0b47220 3768 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3769 return 0;
3770 }
3771 if (!i386_immediate (op_string))
3772 return 0;
3773 }
3774 else if (is_digit_char (*op_string)
3775 || is_identifier_char (*op_string)
e5cb08ac 3776 || *op_string == '(')
24eab124 3777 {
47926f60 3778 /* This is a memory reference of some sort. */
af6bdddf 3779 char *base_string;
252b5132 3780
47926f60 3781 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3782 char *displacement_string_start;
3783 char *displacement_string_end;
252b5132 3784
24eab124 3785 do_memory_reference:
24eab124
AM
3786 if ((i.mem_operands == 1
3787 && (current_templates->start->opcode_modifier & IsString) == 0)
3788 || i.mem_operands == 2)
3789 {
3790 as_bad (_("too many memory references for `%s'"),
3791 current_templates->start->name);
3792 return 0;
3793 }
252b5132 3794
24eab124
AM
3795 /* Check for base index form. We detect the base index form by
3796 looking for an ')' at the end of the operand, searching
3797 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3798 after the '('. */
af6bdddf 3799 base_string = op_string + strlen (op_string);
c3332e24 3800
af6bdddf
AM
3801 --base_string;
3802 if (is_space_char (*base_string))
3803 --base_string;
252b5132 3804
47926f60 3805 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3806 displacement_string_start = op_string;
3807 displacement_string_end = base_string + 1;
252b5132 3808
24eab124
AM
3809 if (*base_string == ')')
3810 {
af6bdddf 3811 char *temp_string;
24eab124
AM
3812 unsigned int parens_balanced = 1;
3813 /* We've already checked that the number of left & right ()'s are
47926f60 3814 equal, so this loop will not be infinite. */
24eab124
AM
3815 do
3816 {
3817 base_string--;
3818 if (*base_string == ')')
3819 parens_balanced++;
3820 if (*base_string == '(')
3821 parens_balanced--;
3822 }
3823 while (parens_balanced);
c3332e24 3824
af6bdddf 3825 temp_string = base_string;
c3332e24 3826
24eab124 3827 /* Skip past '(' and whitespace. */
252b5132
RH
3828 ++base_string;
3829 if (is_space_char (*base_string))
24eab124 3830 ++base_string;
252b5132 3831
af6bdddf
AM
3832 if (*base_string == ','
3833 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3834 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3835 {
af6bdddf 3836 displacement_string_end = temp_string;
252b5132 3837
af6bdddf 3838 i.types[this_operand] |= BaseIndex;
252b5132 3839
af6bdddf 3840 if (i.base_reg)
24eab124 3841 {
24eab124
AM
3842 base_string = end_op;
3843 if (is_space_char (*base_string))
3844 ++base_string;
af6bdddf
AM
3845 }
3846
3847 /* There may be an index reg or scale factor here. */
3848 if (*base_string == ',')
3849 {
3850 ++base_string;
3851 if (is_space_char (*base_string))
3852 ++base_string;
3853
3854 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3855 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3856 {
af6bdddf 3857 base_string = end_op;
24eab124
AM
3858 if (is_space_char (*base_string))
3859 ++base_string;
af6bdddf
AM
3860 if (*base_string == ',')
3861 {
3862 ++base_string;
3863 if (is_space_char (*base_string))
3864 ++base_string;
3865 }
e5cb08ac 3866 else if (*base_string != ')')
af6bdddf
AM
3867 {
3868 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3869 operand_string);
3870 return 0;
3871 }
24eab124 3872 }
af6bdddf 3873 else if (*base_string == REGISTER_PREFIX)
24eab124 3874 {
af6bdddf 3875 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3876 return 0;
3877 }
252b5132 3878
47926f60 3879 /* Check for scale factor. */
551c1ca1 3880 if (*base_string != ')')
af6bdddf 3881 {
551c1ca1
AM
3882 char *end_scale = i386_scale (base_string);
3883
3884 if (!end_scale)
af6bdddf 3885 return 0;
24eab124 3886
551c1ca1 3887 base_string = end_scale;
af6bdddf
AM
3888 if (is_space_char (*base_string))
3889 ++base_string;
3890 if (*base_string != ')')
3891 {
3892 as_bad (_("expecting `)' after scale factor in `%s'"),
3893 operand_string);
3894 return 0;
3895 }
3896 }
3897 else if (!i.index_reg)
24eab124 3898 {
af6bdddf
AM
3899 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3900 *base_string);
24eab124
AM
3901 return 0;
3902 }
3903 }
af6bdddf 3904 else if (*base_string != ')')
24eab124 3905 {
af6bdddf
AM
3906 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3907 operand_string);
24eab124
AM
3908 return 0;
3909 }
c3332e24 3910 }
af6bdddf 3911 else if (*base_string == REGISTER_PREFIX)
c3332e24 3912 {
af6bdddf 3913 as_bad (_("bad register name `%s'"), base_string);
24eab124 3914 return 0;
c3332e24 3915 }
24eab124
AM
3916 }
3917
3918 /* If there's an expression beginning the operand, parse it,
3919 assuming displacement_string_start and
3920 displacement_string_end are meaningful. */
3921 if (displacement_string_start != displacement_string_end)
3922 {
3923 if (!i386_displacement (displacement_string_start,
3924 displacement_string_end))
3925 return 0;
3926 }
3927
3928 /* Special case for (%dx) while doing input/output op. */
3929 if (i.base_reg
3930 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3931 && i.index_reg == 0
3932 && i.log2_scale_factor == 0
3933 && i.seg[i.mem_operands] == 0
3934 && (i.types[this_operand] & Disp) == 0)
3935 {
3936 i.types[this_operand] = InOutPortReg;
3937 return 1;
3938 }
3939
eecb386c
AM
3940 if (i386_index_check (operand_string) == 0)
3941 return 0;
24eab124
AM
3942 i.mem_operands++;
3943 }
3944 else
ce8a8b2f
AM
3945 {
3946 /* It's not a memory operand; argh! */
24eab124
AM
3947 as_bad (_("invalid char %s beginning operand %d `%s'"),
3948 output_invalid (*op_string),
3949 this_operand + 1,
3950 op_string);
3951 return 0;
3952 }
47926f60 3953 return 1; /* Normal return. */
252b5132
RH
3954}
3955\f
ee7fcc42
AM
3956/* md_estimate_size_before_relax()
3957
3958 Called just before relax() for rs_machine_dependent frags. The x86
3959 assembler uses these frags to handle variable size jump
3960 instructions.
3961
3962 Any symbol that is now undefined will not become defined.
3963 Return the correct fr_subtype in the frag.
3964 Return the initial "guess for variable size of frag" to caller.
3965 The guess is actually the growth beyond the fixed part. Whatever
3966 we do to grow the fixed or variable part contributes to our
3967 returned value. */
3968
252b5132
RH
3969int
3970md_estimate_size_before_relax (fragP, segment)
3971 register fragS *fragP;
3972 register segT segment;
3973{
252b5132 3974 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3975 check for un-relaxable symbols. On an ELF system, we can't relax
3976 an externally visible symbol, because it may be overridden by a
3977 shared library. */
3978 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3979#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3980 || S_IS_EXTERNAL (fragP->fr_symbol)
3981 || S_IS_WEAK (fragP->fr_symbol)
3982#endif
3983 )
252b5132 3984 {
b98ef147
AM
3985 /* Symbol is undefined in this segment, or we need to keep a
3986 reloc so that weak symbols can be overridden. */
3987 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 3988 RELOC_ENUM reloc_type;
ee7fcc42
AM
3989 unsigned char *opcode;
3990 int old_fr_fix;
f6af82bd 3991
ee7fcc42
AM
3992 if (fragP->fr_var != NO_RELOC)
3993 reloc_type = fragP->fr_var;
b98ef147 3994 else if (size == 2)
f6af82bd
AM
3995 reloc_type = BFD_RELOC_16_PCREL;
3996 else
3997 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3998
ee7fcc42
AM
3999 old_fr_fix = fragP->fr_fix;
4000 opcode = (unsigned char *) fragP->fr_opcode;
4001
fddf5b5b 4002 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4003 {
fddf5b5b
AM
4004 case UNCOND_JUMP:
4005 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4006 opcode[0] = 0xe9;
252b5132
RH
4007 fragP->fr_fix += size;
4008 fix_new (fragP, old_fr_fix, size,
4009 fragP->fr_symbol,
4010 fragP->fr_offset, 1,
f6af82bd 4011 reloc_type);
252b5132
RH
4012 break;
4013
fddf5b5b
AM
4014 case COND_JUMP86:
4015 if (no_cond_jump_promotion)
93c2a809
AM
4016 goto relax_guess;
4017
fddf5b5b
AM
4018 if (size == 2)
4019 {
4020 /* Negate the condition, and branch past an
4021 unconditional jump. */
4022 opcode[0] ^= 1;
4023 opcode[1] = 3;
4024 /* Insert an unconditional jump. */
4025 opcode[2] = 0xe9;
4026 /* We added two extra opcode bytes, and have a two byte
4027 offset. */
4028 fragP->fr_fix += 2 + 2;
4029 fix_new (fragP, old_fr_fix + 2, 2,
4030 fragP->fr_symbol,
4031 fragP->fr_offset, 1,
4032 reloc_type);
4033 break;
4034 }
4035 /* Fall through. */
4036
4037 case COND_JUMP:
4038 if (no_cond_jump_promotion)
93c2a809
AM
4039 goto relax_guess;
4040
24eab124 4041 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4042 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4043 opcode[1] = opcode[0] + 0x10;
f6af82bd 4044 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4045 /* We've added an opcode byte. */
4046 fragP->fr_fix += 1 + size;
252b5132
RH
4047 fix_new (fragP, old_fr_fix + 1, size,
4048 fragP->fr_symbol,
4049 fragP->fr_offset, 1,
f6af82bd 4050 reloc_type);
252b5132 4051 break;
fddf5b5b
AM
4052
4053 default:
4054 BAD_CASE (fragP->fr_subtype);
4055 break;
252b5132
RH
4056 }
4057 frag_wane (fragP);
ee7fcc42 4058 return fragP->fr_fix - old_fr_fix;
252b5132 4059 }
93c2a809
AM
4060
4061 relax_guess:
4062 /* Guess size depending on current relax state. Initially the relax
4063 state will correspond to a short jump and we return 1, because
4064 the variable part of the frag (the branch offset) is one byte
4065 long. However, we can relax a section more than once and in that
4066 case we must either set fr_subtype back to the unrelaxed state,
4067 or return the value for the appropriate branch. */
4068 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4069}
4070
47926f60
KH
4071/* Called after relax() is finished.
4072
4073 In: Address of frag.
4074 fr_type == rs_machine_dependent.
4075 fr_subtype is what the address relaxed to.
4076
4077 Out: Any fixSs and constants are set up.
4078 Caller will turn frag into a ".space 0". */
4079
252b5132
RH
4080#ifndef BFD_ASSEMBLER
4081void
4082md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4083 object_headers *headers ATTRIBUTE_UNUSED;
4084 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4085 register fragS *fragP;
4086#else
4087void
4088md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4089 bfd *abfd ATTRIBUTE_UNUSED;
4090 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4091 register fragS *fragP;
4092#endif
4093{
4094 register unsigned char *opcode;
4095 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4096 offsetT target_address;
4097 offsetT opcode_address;
252b5132 4098 unsigned int extension = 0;
847f7ad4 4099 offsetT displacement_from_opcode_start;
252b5132
RH
4100
4101 opcode = (unsigned char *) fragP->fr_opcode;
4102
47926f60 4103 /* Address we want to reach in file space. */
252b5132 4104 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4105
47926f60 4106 /* Address opcode resides at in file space. */
252b5132
RH
4107 opcode_address = fragP->fr_address + fragP->fr_fix;
4108
47926f60 4109 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4110 displacement_from_opcode_start = target_address - opcode_address;
4111
fddf5b5b 4112 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4113 {
47926f60
KH
4114 /* Don't have to change opcode. */
4115 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4116 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4117 }
4118 else
4119 {
4120 if (no_cond_jump_promotion
4121 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4122 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4123
fddf5b5b
AM
4124 switch (fragP->fr_subtype)
4125 {
4126 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4127 extension = 4; /* 1 opcode + 4 displacement */
4128 opcode[0] = 0xe9;
4129 where_to_put_displacement = &opcode[1];
4130 break;
252b5132 4131
fddf5b5b
AM
4132 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4133 extension = 2; /* 1 opcode + 2 displacement */
4134 opcode[0] = 0xe9;
4135 where_to_put_displacement = &opcode[1];
4136 break;
252b5132 4137
fddf5b5b
AM
4138 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4139 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4140 extension = 5; /* 2 opcode + 4 displacement */
4141 opcode[1] = opcode[0] + 0x10;
4142 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4143 where_to_put_displacement = &opcode[2];
4144 break;
252b5132 4145
fddf5b5b
AM
4146 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4147 extension = 3; /* 2 opcode + 2 displacement */
4148 opcode[1] = opcode[0] + 0x10;
4149 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4150 where_to_put_displacement = &opcode[2];
4151 break;
252b5132 4152
fddf5b5b
AM
4153 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4154 extension = 4;
4155 opcode[0] ^= 1;
4156 opcode[1] = 3;
4157 opcode[2] = 0xe9;
4158 where_to_put_displacement = &opcode[3];
4159 break;
4160
4161 default:
4162 BAD_CASE (fragP->fr_subtype);
4163 break;
4164 }
252b5132 4165 }
fddf5b5b 4166
47926f60 4167 /* Now put displacement after opcode. */
252b5132
RH
4168 md_number_to_chars ((char *) where_to_put_displacement,
4169 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4170 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4171 fragP->fr_fix += extension;
4172}
4173\f
47926f60
KH
4174/* Size of byte displacement jmp. */
4175int md_short_jump_size = 2;
4176
4177/* Size of dword displacement jmp. */
4178int md_long_jump_size = 5;
252b5132 4179
47926f60
KH
4180/* Size of relocation record. */
4181const int md_reloc_size = 8;
252b5132
RH
4182
4183void
4184md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4185 char *ptr;
4186 addressT from_addr, to_addr;
ab9da554
ILT
4187 fragS *frag ATTRIBUTE_UNUSED;
4188 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4189{
847f7ad4 4190 offsetT offset;
252b5132
RH
4191
4192 offset = to_addr - (from_addr + 2);
47926f60
KH
4193 /* Opcode for byte-disp jump. */
4194 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4195 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4196}
4197
4198void
4199md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4200 char *ptr;
4201 addressT from_addr, to_addr;
a38cf1db
AM
4202 fragS *frag ATTRIBUTE_UNUSED;
4203 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4204{
847f7ad4 4205 offsetT offset;
252b5132 4206
a38cf1db
AM
4207 offset = to_addr - (from_addr + 5);
4208 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4209 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4210}
4211\f
4212/* Apply a fixup (fixS) to segment data, once it has been determined
4213 by our caller that we have all the info we need to fix it up.
4214
4215 On the 386, immediates, displacements, and data pointers are all in
4216 the same (little-endian) format, so we don't need to care about which
4217 we are handling. */
4218
4219int
4220md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4221 /* The fix we're to put in. */
4222 fixS *fixP;
4223
4224 /* Pointer to the value of the bits. */
4225 valueT *valp;
4226
4227 /* Segment fix is from. */
4228 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4229{
4230 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4231 valueT value = *valp;
4232
e1b283bb 4233#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4234 if (fixP->fx_pcrel)
4235 {
4236 switch (fixP->fx_r_type)
4237 {
5865bb77
ILT
4238 default:
4239 break;
4240
93382f6d
AM
4241 case BFD_RELOC_32:
4242 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4243 break;
4244 case BFD_RELOC_16:
4245 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4246 break;
4247 case BFD_RELOC_8:
4248 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4249 break;
4250 }
4251 }
252b5132 4252
0723899b
ILT
4253 /* This is a hack. There should be a better way to handle this.
4254 This covers for the fact that bfd_install_relocation will
4255 subtract the current location (for partial_inplace, PC relative
4256 relocations); see more below. */
93382f6d
AM
4257 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4258 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4259 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4260 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4261 {
4262#ifndef OBJ_AOUT
4263 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4264#ifdef TE_PE
4265 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4266#endif
4267 )
4268 value += fixP->fx_where + fixP->fx_frag->fr_address;
4269#endif
4270#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4271 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4272 {
2f66722d
AM
4273 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4274
4275 if ((fseg == seg
4276 || (symbol_section_p (fixP->fx_addsy)
4277 && fseg != absolute_section))
4278 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4279 && ! S_IS_WEAK (fixP->fx_addsy)
4280 && S_IS_DEFINED (fixP->fx_addsy)
4281 && ! S_IS_COMMON (fixP->fx_addsy))
4282 {
4283 /* Yes, we add the values in twice. This is because
4284 bfd_perform_relocation subtracts them out again. I think
4285 bfd_perform_relocation is broken, but I don't dare change
4286 it. FIXME. */
4287 value += fixP->fx_where + fixP->fx_frag->fr_address;
4288 }
252b5132
RH
4289 }
4290#endif
4291#if defined (OBJ_COFF) && defined (TE_PE)
4292 /* For some reason, the PE format does not store a section
24eab124 4293 address offset for a PC relative symbol. */
252b5132
RH
4294 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4295 value += md_pcrel_from (fixP);
4296#endif
4297 }
4298
4299 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4300 and we must not dissappoint it. */
252b5132
RH
4301#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4302 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4303 && fixP->fx_addsy)
47926f60
KH
4304 switch (fixP->fx_r_type)
4305 {
4306 case BFD_RELOC_386_PLT32:
3e73aa7c 4307 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4308 /* Make the jump instruction point to the address of the operand. At
4309 runtime we merely add the offset to the actual PLT entry. */
4310 value = -4;
4311 break;
4312 case BFD_RELOC_386_GOTPC:
4313
4314/* This is tough to explain. We end up with this one if we have
252b5132
RH
4315 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4316 * here is to obtain the absolute address of the GOT, and it is strongly
4317 * preferable from a performance point of view to avoid using a runtime
c3332e24 4318 * relocation for this. The actual sequence of instructions often look
252b5132 4319 * something like:
c3332e24 4320 *
24eab124 4321 * call .L66
252b5132 4322 * .L66:
24eab124
AM
4323 * popl %ebx
4324 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4325 *
24eab124 4326 * The call and pop essentially return the absolute address of
252b5132
RH
4327 * the label .L66 and store it in %ebx. The linker itself will
4328 * ultimately change the first operand of the addl so that %ebx points to
4329 * the GOT, but to keep things simple, the .o file must have this operand
4330 * set so that it generates not the absolute address of .L66, but the
4331 * absolute address of itself. This allows the linker itself simply
4332 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4333 * added in, and the addend of the relocation is stored in the operand
4334 * field for the instruction itself.
c3332e24 4335 *
24eab124 4336 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4337 * offset so that %ebx would point to itself. The thing that is tricky is
4338 * that .-.L66 will point to the beginning of the instruction, so we need
4339 * to further modify the operand so that it will point to itself.
4340 * There are other cases where you have something like:
c3332e24 4341 *
24eab124 4342 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4343 *
252b5132 4344 * and here no correction would be required. Internally in the assembler
c3332e24 4345 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4346 * explicitly mentioned, and I wonder whether it would simplify matters
4347 * to do it this way. Who knows. In earlier versions of the PIC patches,
4348 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4349 * expression is not pcrel, I felt it would be confusing to do it this
4350 * way. */
4351
4352 value -= 1;
4353 break;
4354 case BFD_RELOC_386_GOT32:
3e73aa7c 4355 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4356 value = 0; /* Fully resolved at runtime. No addend. */
4357 break;
4358 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4359 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4360 break;
4361
4362 case BFD_RELOC_VTABLE_INHERIT:
4363 case BFD_RELOC_VTABLE_ENTRY:
4364 fixP->fx_done = 0;
4365 return 1;
4366
4367 default:
4368 break;
4369 }
4370#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4371 *valp = value;
47926f60 4372#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4373
4374#ifndef BFD_ASSEMBLER
252b5132 4375 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4376#else
4377 /* Are we finished with this relocation now? */
4378 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4379 fixP->fx_done = 1;
4380 else if (use_rela_relocations)
4381 {
4382 fixP->fx_no_overflow = 1;
4383 value = 0;
4384 }
4385 md_number_to_chars (p, value, fixP->fx_size);
4386#endif
252b5132
RH
4387
4388 return 1;
4389}
252b5132 4390\f
252b5132
RH
4391#define MAX_LITTLENUMS 6
4392
47926f60
KH
4393/* Turn the string pointed to by litP into a floating point constant
4394 of type TYPE, and emit the appropriate bytes. The number of
4395 LITTLENUMS emitted is stored in *SIZEP. An error message is
4396 returned, or NULL on OK. */
4397
252b5132
RH
4398char *
4399md_atof (type, litP, sizeP)
2ab9b79e 4400 int type;
252b5132
RH
4401 char *litP;
4402 int *sizeP;
4403{
4404 int prec;
4405 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4406 LITTLENUM_TYPE *wordP;
4407 char *t;
4408
4409 switch (type)
4410 {
4411 case 'f':
4412 case 'F':
4413 prec = 2;
4414 break;
4415
4416 case 'd':
4417 case 'D':
4418 prec = 4;
4419 break;
4420
4421 case 'x':
4422 case 'X':
4423 prec = 5;
4424 break;
4425
4426 default:
4427 *sizeP = 0;
4428 return _("Bad call to md_atof ()");
4429 }
4430 t = atof_ieee (input_line_pointer, type, words);
4431 if (t)
4432 input_line_pointer = t;
4433
4434 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4435 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4436 the bigendian 386. */
4437 for (wordP = words + prec - 1; prec--;)
4438 {
4439 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4440 litP += sizeof (LITTLENUM_TYPE);
4441 }
4442 return 0;
4443}
4444\f
4445char output_invalid_buf[8];
4446
252b5132
RH
4447static char *
4448output_invalid (c)
4449 int c;
4450{
4451 if (isprint (c))
4452 sprintf (output_invalid_buf, "'%c'", c);
4453 else
4454 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4455 return output_invalid_buf;
4456}
4457
af6bdddf 4458/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4459
4460static const reg_entry *
4461parse_register (reg_string, end_op)
4462 char *reg_string;
4463 char **end_op;
4464{
af6bdddf
AM
4465 char *s = reg_string;
4466 char *p;
252b5132
RH
4467 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4468 const reg_entry *r;
4469
4470 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4471 if (*s == REGISTER_PREFIX)
4472 ++s;
4473
4474 if (is_space_char (*s))
4475 ++s;
4476
4477 p = reg_name_given;
af6bdddf 4478 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4479 {
4480 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4481 return (const reg_entry *) NULL;
4482 s++;
252b5132
RH
4483 }
4484
6588847e
DN
4485 /* For naked regs, make sure that we are not dealing with an identifier.
4486 This prevents confusing an identifier like `eax_var' with register
4487 `eax'. */
4488 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4489 return (const reg_entry *) NULL;
4490
af6bdddf 4491 *end_op = s;
252b5132
RH
4492
4493 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4494
5f47d35b 4495 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4496 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4497 {
5f47d35b
AM
4498 if (is_space_char (*s))
4499 ++s;
4500 if (*s == '(')
4501 {
af6bdddf 4502 ++s;
5f47d35b
AM
4503 if (is_space_char (*s))
4504 ++s;
4505 if (*s >= '0' && *s <= '7')
4506 {
4507 r = &i386_float_regtab[*s - '0'];
af6bdddf 4508 ++s;
5f47d35b
AM
4509 if (is_space_char (*s))
4510 ++s;
4511 if (*s == ')')
4512 {
4513 *end_op = s + 1;
4514 return r;
4515 }
5f47d35b 4516 }
47926f60 4517 /* We have "%st(" then garbage. */
5f47d35b
AM
4518 return (const reg_entry *) NULL;
4519 }
4520 }
4521
252b5132
RH
4522 return r;
4523}
4524\f
4cc782b5 4525#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4526const char *md_shortopts = "kVQ:sq";
252b5132 4527#else
65172ab8 4528const char *md_shortopts = "q";
252b5132 4529#endif
6e0b89ee 4530
252b5132 4531struct option md_longopts[] = {
3e73aa7c
JH
4532#define OPTION_32 (OPTION_MD_BASE + 0)
4533 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4534#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4535#define OPTION_64 (OPTION_MD_BASE + 1)
4536 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4537#endif
252b5132
RH
4538 {NULL, no_argument, NULL, 0}
4539};
4540size_t md_longopts_size = sizeof (md_longopts);
4541
4542int
4543md_parse_option (c, arg)
4544 int c;
ab9da554 4545 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4546{
4547 switch (c)
4548 {
a38cf1db
AM
4549 case 'q':
4550 quiet_warnings = 1;
252b5132
RH
4551 break;
4552
4553#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4554 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4555 should be emitted or not. FIXME: Not implemented. */
4556 case 'Q':
252b5132
RH
4557 break;
4558
4559 /* -V: SVR4 argument to print version ID. */
4560 case 'V':
4561 print_version_id ();
4562 break;
4563
a38cf1db
AM
4564 /* -k: Ignore for FreeBSD compatibility. */
4565 case 'k':
252b5132 4566 break;
4cc782b5
ILT
4567
4568 case 's':
4569 /* -s: On i386 Solaris, this tells the native assembler to use
4570 .stab instead of .stab.excl. We always use .stab anyhow. */
4571 break;
6e0b89ee 4572
3e73aa7c
JH
4573 case OPTION_64:
4574 {
4575 const char **list, **l;
4576
3e73aa7c
JH
4577 list = bfd_target_list ();
4578 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4579 if (strcmp (*l, "elf64-x86-64") == 0)
4580 {
4581 default_arch = "x86_64";
4582 break;
4583 }
3e73aa7c 4584 if (*l == NULL)
6e0b89ee 4585 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4586 free (list);
4587 }
4588 break;
4589#endif
252b5132 4590
6e0b89ee
AM
4591 case OPTION_32:
4592 default_arch = "i386";
4593 break;
4594
252b5132
RH
4595 default:
4596 return 0;
4597 }
4598 return 1;
4599}
4600
4601void
4602md_show_usage (stream)
4603 FILE *stream;
4604{
4cc782b5
ILT
4605#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4606 fprintf (stream, _("\
a38cf1db
AM
4607 -Q ignored\n\
4608 -V print assembler version number\n\
4609 -k ignored\n\
4610 -q quieten some warnings\n\
4611 -s ignored\n"));
4612#else
4613 fprintf (stream, _("\
4614 -q quieten some warnings\n"));
4cc782b5 4615#endif
252b5132
RH
4616}
4617
4618#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4619#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4620 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4621
4622/* Pick the target format to use. */
4623
47926f60 4624const char *
252b5132
RH
4625i386_target_format ()
4626{
3e73aa7c
JH
4627 if (!strcmp (default_arch, "x86_64"))
4628 set_code_flag (CODE_64BIT);
4629 else if (!strcmp (default_arch, "i386"))
4630 set_code_flag (CODE_32BIT);
4631 else
4632 as_fatal (_("Unknown architecture"));
252b5132
RH
4633 switch (OUTPUT_FLAVOR)
4634 {
4c63da97
AM
4635#ifdef OBJ_MAYBE_AOUT
4636 case bfd_target_aout_flavour:
47926f60 4637 return AOUT_TARGET_FORMAT;
4c63da97
AM
4638#endif
4639#ifdef OBJ_MAYBE_COFF
252b5132
RH
4640 case bfd_target_coff_flavour:
4641 return "coff-i386";
4c63da97 4642#endif
3e73aa7c 4643#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4644 case bfd_target_elf_flavour:
3e73aa7c 4645 {
e5cb08ac
KH
4646 if (flag_code == CODE_64BIT)
4647 use_rela_relocations = 1;
4648 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4649 }
4c63da97 4650#endif
252b5132
RH
4651 default:
4652 abort ();
4653 return NULL;
4654 }
4655}
4656
47926f60
KH
4657#endif /* OBJ_MAYBE_ more than one */
4658#endif /* BFD_ASSEMBLER */
252b5132 4659\f
252b5132
RH
4660symbolS *
4661md_undefined_symbol (name)
4662 char *name;
4663{
18dc2407
ILT
4664 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4665 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4666 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4667 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4668 {
4669 if (!GOT_symbol)
4670 {
4671 if (symbol_find (name))
4672 as_bad (_("GOT already in symbol table"));
4673 GOT_symbol = symbol_new (name, undefined_section,
4674 (valueT) 0, &zero_address_frag);
4675 };
4676 return GOT_symbol;
4677 }
252b5132
RH
4678 return 0;
4679}
4680
4681/* Round up a section size to the appropriate boundary. */
47926f60 4682
252b5132
RH
4683valueT
4684md_section_align (segment, size)
ab9da554 4685 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4686 valueT size;
4687{
252b5132 4688#ifdef BFD_ASSEMBLER
4c63da97
AM
4689#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4690 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4691 {
4692 /* For a.out, force the section size to be aligned. If we don't do
4693 this, BFD will align it for us, but it will not write out the
4694 final bytes of the section. This may be a bug in BFD, but it is
4695 easier to fix it here since that is how the other a.out targets
4696 work. */
4697 int align;
4698
4699 align = bfd_get_section_alignment (stdoutput, segment);
4700 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4701 }
252b5132
RH
4702#endif
4703#endif
4704
4705 return size;
4706}
4707
4708/* On the i386, PC-relative offsets are relative to the start of the
4709 next instruction. That is, the address of the offset, plus its
4710 size, since the offset is always the last part of the insn. */
4711
4712long
4713md_pcrel_from (fixP)
4714 fixS *fixP;
4715{
4716 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4717}
4718
4719#ifndef I386COFF
4720
4721static void
4722s_bss (ignore)
ab9da554 4723 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4724{
4725 register int temp;
4726
4727 temp = get_absolute_expression ();
4728 subseg_set (bss_section, (subsegT) temp);
4729 demand_empty_rest_of_line ();
4730}
4731
4732#endif
4733
252b5132
RH
4734#ifdef BFD_ASSEMBLER
4735
4736void
4737i386_validate_fix (fixp)
4738 fixS *fixp;
4739{
4740 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4741 {
3e73aa7c 4742 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4743 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4744 {
4745 if (flag_code != CODE_64BIT)
4746 abort ();
4747 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4748 }
4749 else
4750 {
4751 if (flag_code == CODE_64BIT)
4752 abort ();
4753 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4754 }
252b5132
RH
4755 fixp->fx_subsy = 0;
4756 }
4757}
4758
252b5132
RH
4759arelent *
4760tc_gen_reloc (section, fixp)
ab9da554 4761 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4762 fixS *fixp;
4763{
4764 arelent *rel;
4765 bfd_reloc_code_real_type code;
4766
4767 switch (fixp->fx_r_type)
4768 {
3e73aa7c
JH
4769 case BFD_RELOC_X86_64_PLT32:
4770 case BFD_RELOC_X86_64_GOT32:
4771 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4772 case BFD_RELOC_386_PLT32:
4773 case BFD_RELOC_386_GOT32:
4774 case BFD_RELOC_386_GOTOFF:
4775 case BFD_RELOC_386_GOTPC:
3e73aa7c 4776 case BFD_RELOC_X86_64_32S:
252b5132
RH
4777 case BFD_RELOC_RVA:
4778 case BFD_RELOC_VTABLE_ENTRY:
4779 case BFD_RELOC_VTABLE_INHERIT:
4780 code = fixp->fx_r_type;
4781 break;
4782 default:
93382f6d 4783 if (fixp->fx_pcrel)
252b5132 4784 {
93382f6d
AM
4785 switch (fixp->fx_size)
4786 {
4787 default:
b091f402
AM
4788 as_bad_where (fixp->fx_file, fixp->fx_line,
4789 _("can not do %d byte pc-relative relocation"),
4790 fixp->fx_size);
93382f6d
AM
4791 code = BFD_RELOC_32_PCREL;
4792 break;
4793 case 1: code = BFD_RELOC_8_PCREL; break;
4794 case 2: code = BFD_RELOC_16_PCREL; break;
4795 case 4: code = BFD_RELOC_32_PCREL; break;
4796 }
4797 }
4798 else
4799 {
4800 switch (fixp->fx_size)
4801 {
4802 default:
b091f402
AM
4803 as_bad_where (fixp->fx_file, fixp->fx_line,
4804 _("can not do %d byte relocation"),
4805 fixp->fx_size);
93382f6d
AM
4806 code = BFD_RELOC_32;
4807 break;
4808 case 1: code = BFD_RELOC_8; break;
4809 case 2: code = BFD_RELOC_16; break;
4810 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4811 case 8: code = BFD_RELOC_64; break;
93382f6d 4812 }
252b5132
RH
4813 }
4814 break;
4815 }
252b5132
RH
4816
4817 if (code == BFD_RELOC_32
4818 && GOT_symbol
4819 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4820 {
4821 /* We don't support GOTPC on 64bit targets. */
4822 if (flag_code == CODE_64BIT)
bfb32b52 4823 abort ();
3e73aa7c
JH
4824 code = BFD_RELOC_386_GOTPC;
4825 }
252b5132
RH
4826
4827 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4828 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4829 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4830
4831 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4832 if (!use_rela_relocations)
4833 {
4834 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4835 vtable entry to be used in the relocation's section offset. */
4836 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4837 rel->address = fixp->fx_offset;
252b5132 4838
3e73aa7c
JH
4839 if (fixp->fx_pcrel)
4840 rel->addend = fixp->fx_addnumber;
4841 else
4842 rel->addend = 0;
4843 }
4844 /* Use the rela in 64bit mode. */
252b5132 4845 else
3e73aa7c
JH
4846 {
4847 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4848 if (fixp->fx_pcrel)
4849 rel->addend -= fixp->fx_size;
4850 }
4851
252b5132
RH
4852 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4853 if (rel->howto == NULL)
4854 {
4855 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4856 _("cannot represent relocation type %s"),
252b5132
RH
4857 bfd_get_reloc_code_name (code));
4858 /* Set howto to a garbage value so that we can keep going. */
4859 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4860 assert (rel->howto != NULL);
4861 }
4862
4863 return rel;
4864}
4865
47926f60 4866#else /* ! BFD_ASSEMBLER */
252b5132
RH
4867
4868#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4869void
4870tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4871 char *where;
4872 fixS *fixP;
4873 relax_addressT segment_address_in_file;
4874{
47926f60
KH
4875 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4876 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4877
47926f60 4878 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4879 long r_symbolnum;
4880
4881 know (fixP->fx_addsy != NULL);
4882
4883 md_number_to_chars (where,
4884 (valueT) (fixP->fx_frag->fr_address
4885 + fixP->fx_where - segment_address_in_file),
4886 4);
4887
4888 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4889 ? S_GET_TYPE (fixP->fx_addsy)
4890 : fixP->fx_addsy->sy_number);
4891
4892 where[6] = (r_symbolnum >> 16) & 0x0ff;
4893 where[5] = (r_symbolnum >> 8) & 0x0ff;
4894 where[4] = r_symbolnum & 0x0ff;
4895 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4896 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4897 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4898}
4899
47926f60 4900#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4901
4902#if defined (I386COFF)
4903
4904short
4905tc_coff_fix2rtype (fixP)
4906 fixS *fixP;
4907{
4908 if (fixP->fx_r_type == R_IMAGEBASE)
4909 return R_IMAGEBASE;
4910
4911 return (fixP->fx_pcrel ?
4912 (fixP->fx_size == 1 ? R_PCRBYTE :
4913 fixP->fx_size == 2 ? R_PCRWORD :
4914 R_PCRLONG) :
4915 (fixP->fx_size == 1 ? R_RELBYTE :
4916 fixP->fx_size == 2 ? R_RELWORD :
4917 R_DIR32));
4918}
4919
4920int
4921tc_coff_sizemachdep (frag)
4922 fragS *frag;
4923{
4924 if (frag->fr_next)
4925 return (frag->fr_next->fr_address - frag->fr_address);
4926 else
4927 return 0;
4928}
4929
47926f60 4930#endif /* I386COFF */
252b5132 4931
47926f60 4932#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4933\f
4934/* Parse operands using Intel syntax. This implements a recursive descent
4935 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4936 Programmer's Guide.
4937
4938 FIXME: We do not recognize the full operand grammar defined in the MASM
4939 documentation. In particular, all the structure/union and
4940 high-level macro operands are missing.
4941
4942 Uppercase words are terminals, lower case words are non-terminals.
4943 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4944 bars '|' denote choices. Most grammar productions are implemented in
4945 functions called 'intel_<production>'.
4946
4947 Initial production is 'expr'.
4948
64a0c779
DN
4949 addOp + | -
4950
4951 alpha [a-zA-Z]
4952
4953 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4954
4955 constant digits [[ radixOverride ]]
4956
4957 dataType BYTE | WORD | DWORD | QWORD | XWORD
4958
4959 digits decdigit
b77a7acd
AJ
4960 | digits decdigit
4961 | digits hexdigit
64a0c779
DN
4962
4963 decdigit [0-9]
4964
4965 e05 e05 addOp e06
b77a7acd 4966 | e06
64a0c779
DN
4967
4968 e06 e06 mulOp e09
b77a7acd 4969 | e09
64a0c779
DN
4970
4971 e09 OFFSET e10
4972 | e09 PTR e10
4973 | e09 : e10
4974 | e10
4975
4976 e10 e10 [ expr ]
b77a7acd 4977 | e11
64a0c779
DN
4978
4979 e11 ( expr )
b77a7acd 4980 | [ expr ]
64a0c779
DN
4981 | constant
4982 | dataType
4983 | id
4984 | $
4985 | register
4986
4987 => expr SHORT e05
b77a7acd 4988 | e05
64a0c779
DN
4989
4990 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 4991 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
4992
4993 hexdigit a | b | c | d | e | f
b77a7acd 4994 | A | B | C | D | E | F
64a0c779
DN
4995
4996 id alpha
b77a7acd 4997 | id alpha
64a0c779
DN
4998 | id decdigit
4999
5000 mulOp * | / | MOD
5001
5002 quote " | '
5003
5004 register specialRegister
b77a7acd 5005 | gpRegister
64a0c779
DN
5006 | byteRegister
5007
5008 segmentRegister CS | DS | ES | FS | GS | SS
5009
5010 specialRegister CR0 | CR2 | CR3
b77a7acd 5011 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5012 | TR3 | TR4 | TR5 | TR6 | TR7
5013
64a0c779
DN
5014 We simplify the grammar in obvious places (e.g., register parsing is
5015 done by calling parse_register) and eliminate immediate left recursion
5016 to implement a recursive-descent parser.
5017
5018 expr SHORT e05
b77a7acd 5019 | e05
64a0c779
DN
5020
5021 e05 e06 e05'
5022
5023 e05' addOp e06 e05'
b77a7acd 5024 | Empty
64a0c779
DN
5025
5026 e06 e09 e06'
5027
5028 e06' mulOp e09 e06'
b77a7acd 5029 | Empty
64a0c779
DN
5030
5031 e09 OFFSET e10 e09'
b77a7acd 5032 | e10 e09'
64a0c779
DN
5033
5034 e09' PTR e10 e09'
b77a7acd 5035 | : e10 e09'
64a0c779
DN
5036 | Empty
5037
5038 e10 e11 e10'
5039
5040 e10' [ expr ] e10'
b77a7acd 5041 | Empty
64a0c779
DN
5042
5043 e11 ( expr )
b77a7acd 5044 | [ expr ]
64a0c779
DN
5045 | BYTE
5046 | WORD
5047 | DWORD
5048 | QWORD
5049 | XWORD
5050 | .
5051 | $
5052 | register
5053 | id
5054 | constant */
5055
5056/* Parsing structure for the intel syntax parser. Used to implement the
5057 semantic actions for the operand grammar. */
5058struct intel_parser_s
5059 {
5060 char *op_string; /* The string being parsed. */
5061 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5062 int op_modifier; /* Operand modifier. */
64a0c779
DN
5063 int is_mem; /* 1 if operand is memory reference. */
5064 const reg_entry *reg; /* Last register reference found. */
5065 char *disp; /* Displacement string being built. */
5066 };
5067
5068static struct intel_parser_s intel_parser;
5069
5070/* Token structure for parsing intel syntax. */
5071struct intel_token
5072 {
5073 int code; /* Token code. */
5074 const reg_entry *reg; /* Register entry for register tokens. */
5075 char *str; /* String representation. */
5076 };
5077
5078static struct intel_token cur_token, prev_token;
5079
50705ef4
AM
5080/* Token codes for the intel parser. Since T_SHORT is already used
5081 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5082#define T_NIL -1
5083#define T_CONST 1
5084#define T_REG 2
5085#define T_BYTE 3
5086#define T_WORD 4
5087#define T_DWORD 5
5088#define T_QWORD 6
5089#define T_XWORD 7
50705ef4 5090#undef T_SHORT
64a0c779
DN
5091#define T_SHORT 8
5092#define T_OFFSET 9
5093#define T_PTR 10
5094#define T_ID 11
5095
5096/* Prototypes for intel parser functions. */
5097static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5098static void intel_get_token PARAMS ((void));
5099static void intel_putback_token PARAMS ((void));
5100static int intel_expr PARAMS ((void));
5101static int intel_e05 PARAMS ((void));
5102static int intel_e05_1 PARAMS ((void));
5103static int intel_e06 PARAMS ((void));
5104static int intel_e06_1 PARAMS ((void));
5105static int intel_e09 PARAMS ((void));
5106static int intel_e09_1 PARAMS ((void));
5107static int intel_e10 PARAMS ((void));
5108static int intel_e10_1 PARAMS ((void));
5109static int intel_e11 PARAMS ((void));
64a0c779 5110
64a0c779
DN
5111static int
5112i386_intel_operand (operand_string, got_a_float)
5113 char *operand_string;
5114 int got_a_float;
5115{
5116 int ret;
5117 char *p;
5118
5119 /* Initialize token holders. */
5120 cur_token.code = prev_token.code = T_NIL;
5121 cur_token.reg = prev_token.reg = NULL;
5122 cur_token.str = prev_token.str = NULL;
5123
5124 /* Initialize parser structure. */
e5cb08ac 5125 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5126 if (p == NULL)
5127 abort ();
5128 strcpy (intel_parser.op_string, operand_string);
5129 intel_parser.got_a_float = got_a_float;
5130 intel_parser.op_modifier = -1;
5131 intel_parser.is_mem = 0;
5132 intel_parser.reg = NULL;
e5cb08ac 5133 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5134 if (intel_parser.disp == NULL)
5135 abort ();
5136 intel_parser.disp[0] = '\0';
5137
5138 /* Read the first token and start the parser. */
5139 intel_get_token ();
5140 ret = intel_expr ();
5141
5142 if (ret)
5143 {
5144 /* If we found a memory reference, hand it over to i386_displacement
5145 to fill in the rest of the operand fields. */
5146 if (intel_parser.is_mem)
5147 {
5148 if ((i.mem_operands == 1
5149 && (current_templates->start->opcode_modifier & IsString) == 0)
5150 || i.mem_operands == 2)
5151 {
5152 as_bad (_("too many memory references for '%s'"),
5153 current_templates->start->name);
5154 ret = 0;
5155 }
5156 else
5157 {
5158 char *s = intel_parser.disp;
5159 i.mem_operands++;
5160
5161 /* Add the displacement expression. */
5162 if (*s != '\0')
5163 ret = i386_displacement (s, s + strlen (s))
5164 && i386_index_check (s);
5165 }
5166 }
5167
5168 /* Constant and OFFSET expressions are handled by i386_immediate. */
5169 else if (intel_parser.op_modifier == OFFSET_FLAT
5170 || intel_parser.reg == NULL)
5171 ret = i386_immediate (intel_parser.disp);
5172 }
5173
5174 free (p);
5175 free (intel_parser.disp);
5176
5177 return ret;
5178}
5179
64a0c779 5180/* expr SHORT e05
b77a7acd 5181 | e05 */
64a0c779
DN
5182static int
5183intel_expr ()
5184{
5185 /* expr SHORT e05 */
5186 if (cur_token.code == T_SHORT)
5187 {
5188 intel_parser.op_modifier = SHORT;
5189 intel_match_token (T_SHORT);
5190
5191 return (intel_e05 ());
5192 }
5193
5194 /* expr e05 */
5195 else
5196 return intel_e05 ();
5197}
5198
64a0c779
DN
5199/* e05 e06 e05'
5200
4a1805b1 5201 e05' addOp e06 e05'
64a0c779
DN
5202 | Empty */
5203static int
5204intel_e05 ()
5205{
5206 return (intel_e06 () && intel_e05_1 ());
5207}
5208
5209static int
5210intel_e05_1 ()
5211{
5212 /* e05' addOp e06 e05' */
5213 if (cur_token.code == '+' || cur_token.code == '-')
5214 {
5215 strcat (intel_parser.disp, cur_token.str);
5216 intel_match_token (cur_token.code);
5217
5218 return (intel_e06 () && intel_e05_1 ());
5219 }
5220
5221 /* e05' Empty */
5222 else
5223 return 1;
4a1805b1 5224}
64a0c779
DN
5225
5226/* e06 e09 e06'
5227
5228 e06' mulOp e09 e06'
b77a7acd 5229 | Empty */
64a0c779
DN
5230static int
5231intel_e06 ()
5232{
5233 return (intel_e09 () && intel_e06_1 ());
5234}
5235
5236static int
5237intel_e06_1 ()
5238{
5239 /* e06' mulOp e09 e06' */
5240 if (cur_token.code == '*' || cur_token.code == '/')
5241 {
5242 strcat (intel_parser.disp, cur_token.str);
5243 intel_match_token (cur_token.code);
5244
5245 return (intel_e09 () && intel_e06_1 ());
5246 }
4a1805b1 5247
64a0c779 5248 /* e06' Empty */
4a1805b1 5249 else
64a0c779
DN
5250 return 1;
5251}
5252
64a0c779 5253/* e09 OFFSET e10 e09'
b77a7acd 5254 | e10 e09'
64a0c779
DN
5255
5256 e09' PTR e10 e09'
b77a7acd 5257 | : e10 e09'
64a0c779
DN
5258 | Empty */
5259static int
5260intel_e09 ()
5261{
5262 /* e09 OFFSET e10 e09' */
5263 if (cur_token.code == T_OFFSET)
5264 {
5265 intel_parser.is_mem = 0;
5266 intel_parser.op_modifier = OFFSET_FLAT;
5267 intel_match_token (T_OFFSET);
5268
5269 return (intel_e10 () && intel_e09_1 ());
5270 }
5271
5272 /* e09 e10 e09' */
5273 else
5274 return (intel_e10 () && intel_e09_1 ());
5275}
5276
5277static int
5278intel_e09_1 ()
5279{
5280 /* e09' PTR e10 e09' */
5281 if (cur_token.code == T_PTR)
5282 {
5283 if (prev_token.code == T_BYTE)
5284 i.suffix = BYTE_MNEM_SUFFIX;
5285
5286 else if (prev_token.code == T_WORD)
5287 {
5288 if (intel_parser.got_a_float == 2) /* "fi..." */
5289 i.suffix = SHORT_MNEM_SUFFIX;
5290 else
5291 i.suffix = WORD_MNEM_SUFFIX;
5292 }
5293
5294 else if (prev_token.code == T_DWORD)
5295 {
5296 if (intel_parser.got_a_float == 1) /* "f..." */
5297 i.suffix = SHORT_MNEM_SUFFIX;
5298 else
5299 i.suffix = LONG_MNEM_SUFFIX;
5300 }
5301
5302 else if (prev_token.code == T_QWORD)
f16b83df
JH
5303 {
5304 if (intel_parser.got_a_float == 1) /* "f..." */
5305 i.suffix = LONG_MNEM_SUFFIX;
5306 else
3e73aa7c 5307 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5308 }
64a0c779
DN
5309
5310 else if (prev_token.code == T_XWORD)
5311 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5312
5313 else
5314 {
5315 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5316 return 0;
5317 }
5318
5319 intel_match_token (T_PTR);
5320
5321 return (intel_e10 () && intel_e09_1 ());
5322 }
5323
5324 /* e09 : e10 e09' */
5325 else if (cur_token.code == ':')
5326 {
21d6c4af
DN
5327 /* Mark as a memory operand only if it's not already known to be an
5328 offset expression. */
5329 if (intel_parser.op_modifier != OFFSET_FLAT)
5330 intel_parser.is_mem = 1;
64a0c779
DN
5331
5332 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5333 }
5334
5335 /* e09' Empty */
5336 else
5337 return 1;
5338}
5339
5340/* e10 e11 e10'
5341
5342 e10' [ expr ] e10'
b77a7acd 5343 | Empty */
64a0c779
DN
5344static int
5345intel_e10 ()
5346{
5347 return (intel_e11 () && intel_e10_1 ());
5348}
5349
5350static int
5351intel_e10_1 ()
5352{
5353 /* e10' [ expr ] e10' */
5354 if (cur_token.code == '[')
5355 {
5356 intel_match_token ('[');
21d6c4af
DN
5357
5358 /* Mark as a memory operand only if it's not already known to be an
5359 offset expression. If it's an offset expression, we need to keep
5360 the brace in. */
5361 if (intel_parser.op_modifier != OFFSET_FLAT)
5362 intel_parser.is_mem = 1;
5363 else
5364 strcat (intel_parser.disp, "[");
4a1805b1 5365
64a0c779 5366 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5367 if (*intel_parser.disp != '\0'
5368 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5369 strcat (intel_parser.disp, "+");
5370
21d6c4af
DN
5371 if (intel_expr () && intel_match_token (']'))
5372 {
5373 /* Preserve brackets when the operand is an offset expression. */
5374 if (intel_parser.op_modifier == OFFSET_FLAT)
5375 strcat (intel_parser.disp, "]");
5376
5377 return intel_e10_1 ();
5378 }
5379 else
5380 return 0;
64a0c779
DN
5381 }
5382
5383 /* e10' Empty */
5384 else
5385 return 1;
5386}
5387
64a0c779 5388/* e11 ( expr )
b77a7acd 5389 | [ expr ]
64a0c779
DN
5390 | BYTE
5391 | WORD
5392 | DWORD
5393 | QWORD
5394 | XWORD
4a1805b1 5395 | $
64a0c779
DN
5396 | .
5397 | register
5398 | id
5399 | constant */
5400static int
5401intel_e11 ()
5402{
5403 /* e11 ( expr ) */
5404 if (cur_token.code == '(')
5405 {
5406 intel_match_token ('(');
5407 strcat (intel_parser.disp, "(");
5408
5409 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5410 {
5411 strcat (intel_parser.disp, ")");
5412 return 1;
5413 }
64a0c779
DN
5414 else
5415 return 0;
5416 }
5417
5418 /* e11 [ expr ] */
5419 else if (cur_token.code == '[')
5420 {
5421 intel_match_token ('[');
21d6c4af
DN
5422
5423 /* Mark as a memory operand only if it's not already known to be an
5424 offset expression. If it's an offset expression, we need to keep
5425 the brace in. */
5426 if (intel_parser.op_modifier != OFFSET_FLAT)
5427 intel_parser.is_mem = 1;
5428 else
5429 strcat (intel_parser.disp, "[");
4a1805b1 5430
64a0c779
DN
5431 /* Operands for jump/call inside brackets denote absolute addresses. */
5432 if (current_templates->start->opcode_modifier & Jump
5433 || current_templates->start->opcode_modifier & JumpDword
5434 || current_templates->start->opcode_modifier & JumpByte
5435 || current_templates->start->opcode_modifier & JumpInterSegment)
5436 i.types[this_operand] |= JumpAbsolute;
5437
5438 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5439 if (*intel_parser.disp != '\0'
5440 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5441 strcat (intel_parser.disp, "+");
5442
21d6c4af
DN
5443 if (intel_expr () && intel_match_token (']'))
5444 {
5445 /* Preserve brackets when the operand is an offset expression. */
5446 if (intel_parser.op_modifier == OFFSET_FLAT)
5447 strcat (intel_parser.disp, "]");
5448
5449 return 1;
5450 }
5451 else
5452 return 0;
64a0c779
DN
5453 }
5454
4a1805b1 5455 /* e11 BYTE
64a0c779
DN
5456 | WORD
5457 | DWORD
5458 | QWORD
5459 | XWORD */
5460 else if (cur_token.code == T_BYTE
5461 || cur_token.code == T_WORD
5462 || cur_token.code == T_DWORD
5463 || cur_token.code == T_QWORD
5464 || cur_token.code == T_XWORD)
5465 {
5466 intel_match_token (cur_token.code);
5467
5468 return 1;
5469 }
5470
5471 /* e11 $
5472 | . */
5473 else if (cur_token.code == '$' || cur_token.code == '.')
5474 {
5475 strcat (intel_parser.disp, cur_token.str);
5476 intel_match_token (cur_token.code);
21d6c4af
DN
5477
5478 /* Mark as a memory operand only if it's not already known to be an
5479 offset expression. */
5480 if (intel_parser.op_modifier != OFFSET_FLAT)
5481 intel_parser.is_mem = 1;
64a0c779
DN
5482
5483 return 1;
5484 }
5485
5486 /* e11 register */
5487 else if (cur_token.code == T_REG)
5488 {
5489 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5490
5491 intel_match_token (T_REG);
5492
5493 /* Check for segment change. */
5494 if (cur_token.code == ':')
5495 {
5496 if (reg->reg_type & (SReg2 | SReg3))
5497 {
5498 switch (reg->reg_num)
5499 {
5500 case 0:
5501 i.seg[i.mem_operands] = &es;
5502 break;
5503 case 1:
5504 i.seg[i.mem_operands] = &cs;
5505 break;
5506 case 2:
5507 i.seg[i.mem_operands] = &ss;
5508 break;
5509 case 3:
5510 i.seg[i.mem_operands] = &ds;
5511 break;
5512 case 4:
5513 i.seg[i.mem_operands] = &fs;
5514 break;
5515 case 5:
5516 i.seg[i.mem_operands] = &gs;
5517 break;
5518 }
5519 }
5520 else
5521 {
5522 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5523 return 0;
5524 }
5525 }
5526
5527 /* Not a segment register. Check for register scaling. */
5528 else if (cur_token.code == '*')
5529 {
5530 if (!intel_parser.is_mem)
5531 {
5532 as_bad (_("Register scaling only allowed in memory operands."));
5533 return 0;
5534 }
5535
4a1805b1 5536 /* What follows must be a valid scale. */
64a0c779
DN
5537 if (intel_match_token ('*')
5538 && strchr ("01248", *cur_token.str))
5539 {
5540 i.index_reg = reg;
5541 i.types[this_operand] |= BaseIndex;
5542
5543 /* Set the scale after setting the register (otherwise,
5544 i386_scale will complain) */
5545 i386_scale (cur_token.str);
5546 intel_match_token (T_CONST);
5547 }
5548 else
5549 {
5550 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5551 cur_token.str);
5552 return 0;
5553 }
5554 }
5555
5556 /* No scaling. If this is a memory operand, the register is either a
5557 base register (first occurrence) or an index register (second
5558 occurrence). */
5559 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5560 {
5561 if (i.base_reg && i.index_reg)
5562 {
5563 as_bad (_("Too many register references in memory operand.\n"));
5564 return 0;
5565 }
5566
5567 if (i.base_reg == NULL)
5568 i.base_reg = reg;
5569 else
5570 i.index_reg = reg;
5571
5572 i.types[this_operand] |= BaseIndex;
5573 }
5574
5575 /* Offset modifier. Add the register to the displacement string to be
5576 parsed as an immediate expression after we're done. */
5577 else if (intel_parser.op_modifier == OFFSET_FLAT)
5578 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5579
64a0c779
DN
5580 /* It's neither base nor index nor offset. */
5581 else
5582 {
5583 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5584 i.op[this_operand].regs = reg;
5585 i.reg_operands++;
5586 }
5587
5588 /* Since registers are not part of the displacement string (except
5589 when we're parsing offset operands), we may need to remove any
5590 preceding '+' from the displacement string. */
5591 if (*intel_parser.disp != '\0'
5592 && intel_parser.op_modifier != OFFSET_FLAT)
5593 {
5594 char *s = intel_parser.disp;
5595 s += strlen (s) - 1;
5596 if (*s == '+')
5597 *s = '\0';
5598 }
5599
5600 return 1;
5601 }
4a1805b1 5602
64a0c779
DN
5603 /* e11 id */
5604 else if (cur_token.code == T_ID)
5605 {
5606 /* Add the identifier to the displacement string. */
5607 strcat (intel_parser.disp, cur_token.str);
5608 intel_match_token (T_ID);
5609
5610 /* The identifier represents a memory reference only if it's not
5611 preceded by an offset modifier. */
21d6c4af 5612 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5613 intel_parser.is_mem = 1;
5614
5615 return 1;
5616 }
5617
5618 /* e11 constant */
5619 else if (cur_token.code == T_CONST
e5cb08ac 5620 || cur_token.code == '-'
64a0c779
DN
5621 || cur_token.code == '+')
5622 {
5623 char *save_str;
5624
5625 /* Allow constants that start with `+' or `-'. */
5626 if (cur_token.code == '-' || cur_token.code == '+')
5627 {
5628 strcat (intel_parser.disp, cur_token.str);
5629 intel_match_token (cur_token.code);
5630 if (cur_token.code != T_CONST)
5631 {
5632 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5633 cur_token.str);
5634 return 0;
5635 }
5636 }
5637
e5cb08ac 5638 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5639 if (save_str == NULL)
bc805888 5640 abort ();
64a0c779
DN
5641 strcpy (save_str, cur_token.str);
5642
5643 /* Get the next token to check for register scaling. */
5644 intel_match_token (cur_token.code);
5645
5646 /* Check if this constant is a scaling factor for an index register. */
5647 if (cur_token.code == '*')
5648 {
5649 if (intel_match_token ('*') && cur_token.code == T_REG)
5650 {
5651 if (!intel_parser.is_mem)
5652 {
5653 as_bad (_("Register scaling only allowed in memory operands."));
5654 return 0;
5655 }
5656
4a1805b1 5657 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5658 a valid scale. */
5659 if (strchr ("01248", *save_str))
5660 {
5661 i.index_reg = cur_token.reg;
5662 i.types[this_operand] |= BaseIndex;
5663
5664 /* Set the scale after setting the register (otherwise,
5665 i386_scale will complain) */
5666 i386_scale (save_str);
5667 intel_match_token (T_REG);
5668
5669 /* Since registers are not part of the displacement
5670 string, we may need to remove any preceding '+' from
5671 the displacement string. */
5672 if (*intel_parser.disp != '\0')
5673 {
5674 char *s = intel_parser.disp;
5675 s += strlen (s) - 1;
5676 if (*s == '+')
5677 *s = '\0';
5678 }
5679
5680 free (save_str);
5681
5682 return 1;
5683 }
5684 else
5685 return 0;
5686 }
5687
5688 /* The constant was not used for register scaling. Since we have
5689 already consumed the token following `*' we now need to put it
5690 back in the stream. */
5691 else
5692 intel_putback_token ();
5693 }
5694
5695 /* Add the constant to the displacement string. */
5696 strcat (intel_parser.disp, save_str);
5697 free (save_str);
5698
5699 return 1;
5700 }
5701
64a0c779
DN
5702 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5703 return 0;
5704}
5705
64a0c779
DN
5706/* Match the given token against cur_token. If they match, read the next
5707 token from the operand string. */
5708static int
5709intel_match_token (code)
e5cb08ac 5710 int code;
64a0c779
DN
5711{
5712 if (cur_token.code == code)
5713 {
5714 intel_get_token ();
5715 return 1;
5716 }
5717 else
5718 {
5719 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5720 return 0;
5721 }
5722}
5723
64a0c779
DN
5724/* Read a new token from intel_parser.op_string and store it in cur_token. */
5725static void
5726intel_get_token ()
5727{
5728 char *end_op;
5729 const reg_entry *reg;
5730 struct intel_token new_token;
5731
5732 new_token.code = T_NIL;
5733 new_token.reg = NULL;
5734 new_token.str = NULL;
5735
4a1805b1 5736 /* Free the memory allocated to the previous token and move
64a0c779
DN
5737 cur_token to prev_token. */
5738 if (prev_token.str)
5739 free (prev_token.str);
5740
5741 prev_token = cur_token;
5742
5743 /* Skip whitespace. */
5744 while (is_space_char (*intel_parser.op_string))
5745 intel_parser.op_string++;
5746
5747 /* Return an empty token if we find nothing else on the line. */
5748 if (*intel_parser.op_string == '\0')
5749 {
5750 cur_token = new_token;
5751 return;
5752 }
5753
5754 /* The new token cannot be larger than the remainder of the operand
5755 string. */
e5cb08ac 5756 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5757 if (new_token.str == NULL)
bc805888 5758 abort ();
64a0c779
DN
5759 new_token.str[0] = '\0';
5760
5761 if (strchr ("0123456789", *intel_parser.op_string))
5762 {
5763 char *p = new_token.str;
5764 char *q = intel_parser.op_string;
5765 new_token.code = T_CONST;
5766
5767 /* Allow any kind of identifier char to encompass floating point and
5768 hexadecimal numbers. */
5769 while (is_identifier_char (*q))
5770 *p++ = *q++;
5771 *p = '\0';
5772
5773 /* Recognize special symbol names [0-9][bf]. */
5774 if (strlen (intel_parser.op_string) == 2
4a1805b1 5775 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5776 || intel_parser.op_string[1] == 'f'))
5777 new_token.code = T_ID;
5778 }
5779
5780 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5781 {
5782 new_token.code = *intel_parser.op_string;
5783 new_token.str[0] = *intel_parser.op_string;
5784 new_token.str[1] = '\0';
5785 }
5786
5787 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5788 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5789 {
5790 new_token.code = T_REG;
5791 new_token.reg = reg;
5792
5793 if (*intel_parser.op_string == REGISTER_PREFIX)
5794 {
5795 new_token.str[0] = REGISTER_PREFIX;
5796 new_token.str[1] = '\0';
5797 }
5798
5799 strcat (new_token.str, reg->reg_name);
5800 }
5801
5802 else if (is_identifier_char (*intel_parser.op_string))
5803 {
5804 char *p = new_token.str;
5805 char *q = intel_parser.op_string;
5806
5807 /* A '.' or '$' followed by an identifier char is an identifier.
5808 Otherwise, it's operator '.' followed by an expression. */
5809 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5810 {
5811 new_token.code = *q;
5812 new_token.str[0] = *q;
5813 new_token.str[1] = '\0';
5814 }
5815 else
5816 {
5817 while (is_identifier_char (*q) || *q == '@')
5818 *p++ = *q++;
5819 *p = '\0';
5820
5821 if (strcasecmp (new_token.str, "BYTE") == 0)
5822 new_token.code = T_BYTE;
5823
5824 else if (strcasecmp (new_token.str, "WORD") == 0)
5825 new_token.code = T_WORD;
5826
5827 else if (strcasecmp (new_token.str, "DWORD") == 0)
5828 new_token.code = T_DWORD;
5829
5830 else if (strcasecmp (new_token.str, "QWORD") == 0)
5831 new_token.code = T_QWORD;
5832
5833 else if (strcasecmp (new_token.str, "XWORD") == 0)
5834 new_token.code = T_XWORD;
5835
5836 else if (strcasecmp (new_token.str, "PTR") == 0)
5837 new_token.code = T_PTR;
5838
5839 else if (strcasecmp (new_token.str, "SHORT") == 0)
5840 new_token.code = T_SHORT;
5841
5842 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5843 {
5844 new_token.code = T_OFFSET;
5845
5846 /* ??? This is not mentioned in the MASM grammar but gcc
5847 makes use of it with -mintel-syntax. OFFSET may be
5848 followed by FLAT: */
5849 if (strncasecmp (q, " FLAT:", 6) == 0)
5850 strcat (new_token.str, " FLAT:");
5851 }
5852
5853 /* ??? This is not mentioned in the MASM grammar. */
5854 else if (strcasecmp (new_token.str, "FLAT") == 0)
5855 new_token.code = T_OFFSET;
5856
5857 else
5858 new_token.code = T_ID;
5859 }
5860 }
5861
5862 else
5863 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5864
5865 intel_parser.op_string += strlen (new_token.str);
5866 cur_token = new_token;
5867}
5868
64a0c779
DN
5869/* Put cur_token back into the token stream and make cur_token point to
5870 prev_token. */
5871static void
5872intel_putback_token ()
5873{
5874 intel_parser.op_string -= strlen (cur_token.str);
5875 free (cur_token.str);
5876 cur_token = prev_token;
4a1805b1 5877
64a0c779
DN
5878 /* Forget prev_token. */
5879 prev_token.code = T_NIL;
5880 prev_token.reg = NULL;
5881 prev_token.str = NULL;
5882}
This page took 0.425107 seconds and 4 git commands to generate.