x86/Intel: issue diagnostics for redundant segment override prefixes
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
2571583a 2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
a65babc9
L
285 };
286
252b5132
RH
287struct _i386_insn
288 {
47926f60 289 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 290 insn_template tm;
252b5132 291
7d5e4556
L
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
252b5132
RH
294 char suffix;
295
47926f60 296 /* OPERANDS gives the number of given operands. */
252b5132
RH
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
47926f60 301 operands. */
252b5132
RH
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 305 use OP[i] for the corresponding operand. */
40fb9820 306 i386_operand_type types[MAX_OPERANDS];
252b5132 307
520dc8e8
AM
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
252b5132 311
3e73aa7c
JH
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314#define Operand_PCrel 1
315
252b5132 316 /* Relocation type for operand */
f86103b7 317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 318
252b5132
RH
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 326 explicit segment overrides are given. */
ce8a8b2f 327 const seg_entry *seg[2];
252b5132 328
8325cc63
JB
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
252b5132
RH
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 338 addressing modes of this insn are encoded. */
252b5132 339 modrm_byte rm;
3e73aa7c 340 rex_byte rex;
43234a1e 341 rex_byte vrex;
252b5132 342 sib_byte sib;
c0f3af97 343 vex_prefix vex;
b6169b20 344
43234a1e
L
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
86fa6981
L
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
891edac4 364
a501d77e
L
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
f8a5c266 372
86fa6981
L
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
d5de92cf
L
382 /* REP prefix. */
383 const char *rep_prefix;
384
165de32a
L
385 /* HLE prefix. */
386 const char *hle_prefix;
42164a71 387
7e8b059b
L
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
04ef582a
L
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
891edac4 394 /* Error message. */
a65babc9 395 enum i386_error error;
252b5132
RH
396 };
397
398typedef struct _i386_insn i386_insn;
399
43234a1e
L
400/* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402struct RC_name
403{
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407};
408
409static const struct RC_name RC_NamesTable[] =
410{
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416};
417
252b5132
RH
418/* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 420const char extra_symbol_chars[] = "*%-([{}"
252b5132 421#ifdef LEX_AT
32137342
NC
422 "@"
423#endif
424#ifdef LEX_QM
425 "?"
252b5132 426#endif
32137342 427 ;
252b5132 428
29b0f896
AM
429#if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 431 && !defined (TE_GNU) \
29b0f896 432 && !defined (TE_LINUX) \
8d63c93e
RM
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
29b0f896 435 && !defined (TE_FreeBSD) \
5b806d27 436 && !defined (TE_DragonFly) \
29b0f896 437 && !defined (TE_NetBSD)))
252b5132 438/* This array holds the chars that always start a comment. If the
b3b91714
AM
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441const char *i386_comment_chars = "#/";
442#define SVR4_COMMENT_CHARS 1
252b5132 443#define PREFIX_SEPARATOR '\\'
252b5132 444
b3b91714
AM
445#else
446const char *i386_comment_chars = "#";
447#define PREFIX_SEPARATOR '/'
448#endif
449
252b5132
RH
450/* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 454 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
252b5132 457 '/' isn't otherwise defined. */
b3b91714 458const char line_comment_chars[] = "#/";
252b5132 459
63a0b638 460const char line_separator_chars[] = ";";
252b5132 461
ce8a8b2f
AM
462/* Chars that can be used to separate mant from exp in floating point
463 nums. */
252b5132
RH
464const char EXP_CHARS[] = "eE";
465
ce8a8b2f
AM
466/* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
252b5132
RH
469const char FLT_CHARS[] = "fFdDxX";
470
ce8a8b2f 471/* Tables for lexical analysis. */
252b5132
RH
472static char mnemonic_chars[256];
473static char register_chars[256];
474static char operand_chars[256];
475static char identifier_chars[256];
476static char digit_chars[256];
477
ce8a8b2f 478/* Lexical macros. */
252b5132
RH
479#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480#define is_operand_char(x) (operand_chars[(unsigned char) x])
481#define is_register_char(x) (register_chars[(unsigned char) x])
482#define is_space_char(x) ((x) == ' ')
483#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484#define is_digit_char(x) (digit_chars[(unsigned char) x])
485
0234cb7c 486/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
487static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489/* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
47926f60 492 assembler instruction). */
252b5132 493static char save_stack[32];
ce8a8b2f 494static char *save_stack_p;
252b5132
RH
495#define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497#define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
47926f60 500/* The instruction we're assembling. */
252b5132
RH
501static i386_insn i;
502
503/* Possible templates for current insn. */
504static const templates *current_templates;
505
31b2323c
L
506/* Per instruction expressionS buffers: max displacements & immediates. */
507static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 509
47926f60 510/* Current operand we are working on. */
ee86248c 511static int this_operand = -1;
252b5132 512
3e73aa7c
JH
513/* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521static enum flag_code flag_code;
4fa24527 522static unsigned int object_64bit;
862be3fb 523static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
524static int use_rela_relocations = 0;
525
7af8ed2d
NC
526#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
351f65ca
L
530/* The ELF ABI to use. */
531enum x86_elf_abi
532{
533 I386_ABI,
7f56bc95
L
534 X86_64_ABI,
535 X86_64_X32_ABI
351f65ca
L
536};
537
538static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 539#endif
351f65ca 540
167ad85b
TG
541#if defined (TE_PE) || defined (TE_PEP)
542/* Use big object file format. */
543static int use_big_obj = 0;
544#endif
545
8dcea932
L
546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547/* 1 if generating code for a shared library. */
548static int shared = 0;
549#endif
550
47926f60
KH
551/* 1 for intel syntax,
552 0 if att syntax. */
553static int intel_syntax = 0;
252b5132 554
e89c5eaa
L
555/* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557static int intel64;
558
1efbbeb4
L
559/* 1 for intel mnemonic,
560 0 if att mnemonic. */
561static int intel_mnemonic = !SYSV386_COMPAT;
562
5209009a 563/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
564static int old_gcc = OLDGCC_COMPAT;
565
a60de03c
JB
566/* 1 if pseudo registers are permitted. */
567static int allow_pseudo_reg = 0;
568
47926f60
KH
569/* 1 if register prefix % not required. */
570static int allow_naked_reg = 0;
252b5132 571
33eaf5de 572/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575static int add_bnd_prefix = 0;
576
ba104c83 577/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
578static int allow_index_reg = 0;
579
d022bddd
IT
580/* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582static int omit_lock_prefix = 0;
583
e4e00185
AS
584/* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586static int avoid_fence = 0;
587
0cb4071e
L
588/* 1 if the assembler should generate relax relocations. */
589
590static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
7bab8ab5 593static enum check_kind
daf50ae7 594 {
7bab8ab5
JB
595 check_none = 0,
596 check_warning,
597 check_error
daf50ae7 598 }
7bab8ab5 599sse_check, operand_check = check_warning;
daf50ae7 600
2ca3ace5
L
601/* Register prefix used for error message. */
602static const char *register_prefix = "%";
603
47926f60
KH
604/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607static char stackop_size = '\0';
eecb386c 608
12b55ccc
L
609/* Non-zero to optimize code alignment. */
610int optimize_align_code = 1;
611
47926f60
KH
612/* Non-zero to quieten some warnings. */
613static int quiet_warnings = 0;
a38cf1db 614
47926f60
KH
615/* CPU name. */
616static const char *cpu_arch_name = NULL;
6305a203 617static char *cpu_sub_arch_name = NULL;
a38cf1db 618
47926f60 619/* CPU feature flags. */
40fb9820
L
620static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
ccc9c027
L
622/* If we have selected a cpu we are generating instructions for. */
623static int cpu_arch_tune_set = 0;
624
9103f4f4 625/* Cpu we are generating instructions for. */
fbf3f584 626enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
627
628/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 629static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 630
ccc9c027 631/* CPU instruction set architecture used. */
fbf3f584 632enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 633
9103f4f4 634/* CPU feature flags of instruction set architecture used. */
fbf3f584 635i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 636
fddf5b5b
AM
637/* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639static unsigned int no_cond_jump_promotion = 0;
640
c0f3af97
L
641/* Encode SSE instructions with VEX prefix. */
642static unsigned int sse2avx;
643
539f890d
L
644/* Encode scalar AVX instructions with specific vector length. */
645static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
43234a1e
L
651/* Encode scalar EVEX LIG instructions with specific vector length. */
652static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659/* Encode EVEX WIG instructions with specific evex.w. */
660static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
d3d3c6db
IT
666/* Value to encode in EVEX RC bits, for SAE-only instructions. */
667static enum rc_type evexrcig = rne;
668
29b0f896 669/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 670static symbolS *GOT_symbol;
29b0f896 671
a4447b93
RH
672/* The dwarf2 return column, adjusted for 32 or 64 bit. */
673unsigned int x86_dwarf2_return_column;
674
675/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676int x86_cie_data_alignment;
677
252b5132 678/* Interface to relax_segment.
fddf5b5b
AM
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
252b5132 682
47926f60 683/* Types. */
93c2a809
AM
684#define UNCOND_JUMP 0
685#define COND_JUMP 1
686#define COND_JUMP86 2
fddf5b5b 687
47926f60 688/* Sizes. */
252b5132
RH
689#define CODE16 1
690#define SMALL 0
29b0f896 691#define SMALL16 (SMALL | CODE16)
252b5132 692#define BIG 2
29b0f896 693#define BIG16 (BIG | CODE16)
252b5132
RH
694
695#ifndef INLINE
696#ifdef __GNUC__
697#define INLINE __inline__
698#else
699#define INLINE
700#endif
701#endif
702
fddf5b5b
AM
703#define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705#define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707#define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
709
710/* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718const relax_typeS md_relax_table[] =
719{
24eab124
AM
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
93c2a809 723 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 724 4) which index into the table to try if we can't fit into this one. */
252b5132 725
fddf5b5b 726 /* UNCOND_JUMP states. */
93c2a809
AM
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
252b5132 731 {0, 0, 4, 0},
93c2a809
AM
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
734 {0, 0, 2, 0},
735
93c2a809
AM
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
fddf5b5b 742 /* word conditionals add 3 bytes to frag:
93c2a809
AM
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
252b5132
RH
755};
756
9103f4f4
L
757static const arch_entry cpu_arch[] =
758{
89507696
JB
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
8a2c8fef 761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 762 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 764 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 766 CPU_NONE_FLAGS, 0 },
8a2c8fef 767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 768 CPU_I186_FLAGS, 0 },
8a2c8fef 769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 770 CPU_I286_FLAGS, 0 },
8a2c8fef 771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 772 CPU_I386_FLAGS, 0 },
8a2c8fef 773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 774 CPU_I486_FLAGS, 0 },
8a2c8fef 775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 776 CPU_I586_FLAGS, 0 },
8a2c8fef 777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 778 CPU_I686_FLAGS, 0 },
8a2c8fef 779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 780 CPU_I586_FLAGS, 0 },
8a2c8fef 781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 782 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 784 CPU_P2_FLAGS, 0 },
8a2c8fef 785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 786 CPU_P3_FLAGS, 0 },
8a2c8fef 787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 788 CPU_P4_FLAGS, 0 },
8a2c8fef 789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 790 CPU_CORE_FLAGS, 0 },
8a2c8fef 791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 792 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 794 CPU_CORE_FLAGS, 1 },
8a2c8fef 795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 796 CPU_CORE_FLAGS, 0 },
8a2c8fef 797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 798 CPU_CORE2_FLAGS, 1 },
8a2c8fef 799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 800 CPU_CORE2_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 802 CPU_COREI7_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 804 CPU_L1OM_FLAGS, 0 },
7a9068fe 805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 806 CPU_K1OM_FLAGS, 0 },
81486035 807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 808 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 810 CPU_K6_FLAGS, 0 },
8a2c8fef 811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 812 CPU_K6_2_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 814 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 816 CPU_K8_FLAGS, 1 },
8a2c8fef 817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 818 CPU_K8_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 820 CPU_K8_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 822 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 824 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 826 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 828 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 830 CPU_BDVER4_FLAGS, 0 },
029f3522 831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 832 CPU_ZNVER1_FLAGS, 0 },
7b458c12 833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 834 CPU_BTVER1_FLAGS, 0 },
7b458c12 835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 836 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 838 CPU_8087_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 840 CPU_287_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 842 CPU_387_FLAGS, 0 },
1848e567
L
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 846 CPU_MMX_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 848 CPU_SSE_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 850 CPU_SSE2_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 852 CPU_SSE3_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 854 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 856 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 858 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 860 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 862 CPU_AVX_FLAGS, 0 },
6c30d220 863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 864 CPU_AVX2_FLAGS, 0 },
43234a1e 865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 866 CPU_AVX512F_FLAGS, 0 },
43234a1e 867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 868 CPU_AVX512CD_FLAGS, 0 },
43234a1e 869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 870 CPU_AVX512ER_FLAGS, 0 },
43234a1e 871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 872 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 874 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_VMX_FLAGS, 0 },
8729a6f6 881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 882 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 884 CPU_SMX_FLAGS, 0 },
8a2c8fef 885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 886 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_AES_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_F16C_FLAGS, 0 },
6c30d220 905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_BMI2_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_FMA_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_FMA4_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_XOP_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_LWP_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_MOVBE_FLAGS, 0 },
60aa667e 917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_CX16_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_EPT_FLAGS, 0 },
6c30d220 921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_LZCNT_FLAGS, 0 },
42164a71 923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_HLE_FLAGS, 0 },
42164a71 925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_RTM_FLAGS, 0 },
6c30d220 927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_CLFLUSH_FLAGS, 0 },
22109423 931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_NOP_FLAGS, 0 },
8a2c8fef 933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SVME_FLAGS, 1 },
8a2c8fef 945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_SVME_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_ABM_FLAGS, 0 },
87973e9f 951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_BMI_FLAGS, 0 },
2a2a0f38 953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_TBM_FLAGS, 0 },
e2e1fcde 955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_ADX_FLAGS, 0 },
e2e1fcde 957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_PRFCHW_FLAGS, 0 },
5c111e37 961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_SMAP_FLAGS, 0 },
7e8b059b 963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_MPX_FLAGS, 0 },
a0046408 965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_SHA_FLAGS, 0 },
963f3586 967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_SE1_FLAGS, 0 },
c5e7287a 973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
985 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
987 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
989 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 991 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_CLZERO_FLAGS, 0 },
9916071f 993 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_MWAITX_FLAGS, 0 },
8eab4136 995 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_OSPKE_FLAGS, 0 },
8bc52696 997 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_RDPID_FLAGS, 0 },
6b40c462
L
999 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1000 CPU_PTWRITE_FLAGS, 0 },
603555e5
L
1001 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
1002 CPU_CET_FLAGS, 0 },
48521003
IT
1003 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1004 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1005 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1006 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1007 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1008 CPU_VPCLMULQDQ_FLAGS, 0 },
293f5f65
L
1009};
1010
1011static const noarch_entry cpu_noarch[] =
1012{
1013 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1014 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1015 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1016 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1017 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1018 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1019 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1020 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1021 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1022 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1023 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1024 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1025 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1026 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1027 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1028 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1029 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1036 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1037 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1038 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1039 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1040 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1041 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
e413e4e9
AM
1042};
1043
704209c0 1044#ifdef I386COFF
a6c24e68
NC
1045/* Like s_lcomm_internal in gas/read.c but the alignment string
1046 is allowed to be optional. */
1047
1048static symbolS *
1049pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1050{
1051 addressT align = 0;
1052
1053 SKIP_WHITESPACE ();
1054
7ab9ffdd 1055 if (needs_align
a6c24e68
NC
1056 && *input_line_pointer == ',')
1057 {
1058 align = parse_align (needs_align - 1);
7ab9ffdd 1059
a6c24e68
NC
1060 if (align == (addressT) -1)
1061 return NULL;
1062 }
1063 else
1064 {
1065 if (size >= 8)
1066 align = 3;
1067 else if (size >= 4)
1068 align = 2;
1069 else if (size >= 2)
1070 align = 1;
1071 else
1072 align = 0;
1073 }
1074
1075 bss_alloc (symbolP, size, align);
1076 return symbolP;
1077}
1078
704209c0 1079static void
a6c24e68
NC
1080pe_lcomm (int needs_align)
1081{
1082 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1083}
704209c0 1084#endif
a6c24e68 1085
29b0f896
AM
1086const pseudo_typeS md_pseudo_table[] =
1087{
1088#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1089 {"align", s_align_bytes, 0},
1090#else
1091 {"align", s_align_ptwo, 0},
1092#endif
1093 {"arch", set_cpu_arch, 0},
1094#ifndef I386COFF
1095 {"bss", s_bss, 0},
a6c24e68
NC
1096#else
1097 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1098#endif
1099 {"ffloat", float_cons, 'f'},
1100 {"dfloat", float_cons, 'd'},
1101 {"tfloat", float_cons, 'x'},
1102 {"value", cons, 2},
d182319b 1103 {"slong", signed_cons, 4},
29b0f896
AM
1104 {"noopt", s_ignore, 0},
1105 {"optim", s_ignore, 0},
1106 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1107 {"code16", set_code_flag, CODE_16BIT},
1108 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1109#ifdef BFD64
29b0f896 1110 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1111#endif
29b0f896
AM
1112 {"intel_syntax", set_intel_syntax, 1},
1113 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1114 {"intel_mnemonic", set_intel_mnemonic, 1},
1115 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1116 {"allow_index_reg", set_allow_index_reg, 1},
1117 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1118 {"sse_check", set_check, 0},
1119 {"operand_check", set_check, 1},
3b22753a
L
1120#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1121 {"largecomm", handle_large_common, 0},
07a53e5c 1122#else
e3bb37b5 1123 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
1124 {"loc", dwarf2_directive_loc, 0},
1125 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1126#endif
6482c264
NC
1127#ifdef TE_PE
1128 {"secrel32", pe_directive_secrel, 0},
1129#endif
29b0f896
AM
1130 {0, 0, 0}
1131};
1132
1133/* For interface with expression (). */
1134extern char *input_line_pointer;
1135
1136/* Hash table for instruction mnemonic lookup. */
1137static struct hash_control *op_hash;
1138
1139/* Hash table for register lookup. */
1140static struct hash_control *reg_hash;
1141\f
252b5132 1142void
e3bb37b5 1143i386_align_code (fragS *fragP, int count)
252b5132 1144{
ce8a8b2f
AM
1145 /* Various efficient no-op patterns for aligning code labels.
1146 Note: Don't try to assemble the instructions in the comments.
1147 0L and 0w are not legal. */
bad6e36d 1148 static const unsigned char f32_1[] =
252b5132 1149 {0x90}; /* nop */
bad6e36d 1150 static const unsigned char f32_2[] =
ccc9c027 1151 {0x66,0x90}; /* xchg %ax,%ax */
bad6e36d 1152 static const unsigned char f32_3[] =
252b5132 1153 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
bad6e36d 1154 static const unsigned char f32_4[] =
252b5132 1155 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1156 static const unsigned char f32_5[] =
252b5132
RH
1157 {0x90, /* nop */
1158 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1159 static const unsigned char f32_6[] =
252b5132 1160 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
bad6e36d 1161 static const unsigned char f32_7[] =
252b5132 1162 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1163 static const unsigned char f32_8[] =
252b5132
RH
1164 {0x90, /* nop */
1165 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1166 static const unsigned char f32_9[] =
252b5132
RH
1167 {0x89,0xf6, /* movl %esi,%esi */
1168 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1169 static const unsigned char f32_10[] =
252b5132
RH
1170 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1171 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1172 static const unsigned char f32_11[] =
252b5132
RH
1173 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1174 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1175 static const unsigned char f32_12[] =
252b5132
RH
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1177 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
bad6e36d 1178 static const unsigned char f32_13[] =
252b5132
RH
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1180 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1181 static const unsigned char f32_14[] =
252b5132
RH
1182 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1183 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1184 static const unsigned char f16_3[] =
c3332e24 1185 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
bad6e36d 1186 static const unsigned char f16_4[] =
252b5132 1187 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1188 static const unsigned char f16_5[] =
252b5132
RH
1189 {0x90, /* nop */
1190 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1191 static const unsigned char f16_6[] =
252b5132
RH
1192 {0x89,0xf6, /* mov %si,%si */
1193 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1194 static const unsigned char f16_7[] =
252b5132
RH
1195 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1196 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1197 static const unsigned char f16_8[] =
252b5132
RH
1198 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1199 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1200 static const unsigned char jump_31[] =
76bc74dc
L
1201 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1202 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1203 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1204 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
bad6e36d 1205 static const unsigned char *const f32_patt[] = {
252b5132 1206 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1207 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132 1208 };
bad6e36d 1209 static const unsigned char *const f16_patt[] = {
76bc74dc 1210 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1211 };
ccc9c027 1212 /* nopl (%[re]ax) */
bad6e36d 1213 static const unsigned char alt_3[] =
ccc9c027
L
1214 {0x0f,0x1f,0x00};
1215 /* nopl 0(%[re]ax) */
bad6e36d 1216 static const unsigned char alt_4[] =
ccc9c027
L
1217 {0x0f,0x1f,0x40,0x00};
1218 /* nopl 0(%[re]ax,%[re]ax,1) */
bad6e36d 1219 static const unsigned char alt_5[] =
ccc9c027
L
1220 {0x0f,0x1f,0x44,0x00,0x00};
1221 /* nopw 0(%[re]ax,%[re]ax,1) */
bad6e36d 1222 static const unsigned char alt_6[] =
ccc9c027
L
1223 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1224 /* nopl 0L(%[re]ax) */
bad6e36d 1225 static const unsigned char alt_7[] =
ccc9c027
L
1226 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1227 /* nopl 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1228 static const unsigned char alt_8[] =
ccc9c027
L
1229 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1230 /* nopw 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1231 static const unsigned char alt_9[] =
ccc9c027
L
1232 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1233 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
bad6e36d 1234 static const unsigned char alt_10[] =
ccc9c027 1235 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
bad6e36d 1236 static const unsigned char *const alt_patt[] = {
ccc9c027 1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
80b8656c 1238 alt_9, alt_10
ccc9c027 1239 };
252b5132 1240
76bc74dc
L
1241 /* Only align for at least a positive non-zero boundary. */
1242 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1243 return;
3e73aa7c 1244
ccc9c027
L
1245 /* We need to decide which NOP sequence to use for 32bit and
1246 64bit. When -mtune= is used:
4eed87de 1247
76bc74dc
L
1248 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1249 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1250 2. For the rest, alt_patt will be used.
1251
1252 When -mtune= isn't used, alt_patt will be used if
22109423 1253 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1254 be used.
ccc9c027
L
1255
1256 When -march= or .arch is used, we can't use anything beyond
1257 cpu_arch_isa_flags. */
1258
1259 if (flag_code == CODE_16BIT)
1260 {
ccc9c027 1261 if (count > 8)
33fef721 1262 {
76bc74dc
L
1263 memcpy (fragP->fr_literal + fragP->fr_fix,
1264 jump_31, count);
1265 /* Adjust jump offset. */
1266 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1267 }
76bc74dc
L
1268 else
1269 memcpy (fragP->fr_literal + fragP->fr_fix,
1270 f16_patt[count - 1], count);
252b5132 1271 }
33fef721 1272 else
ccc9c027 1273 {
bad6e36d 1274 const unsigned char *const *patt = NULL;
ccc9c027 1275
fbf3f584 1276 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1277 {
1278 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1279 switch (cpu_arch_tune)
1280 {
1281 case PROCESSOR_UNKNOWN:
1282 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1283 optimize with nops. */
1284 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1285 patt = alt_patt;
ccc9c027
L
1286 else
1287 patt = f32_patt;
1288 break;
ccc9c027
L
1289 case PROCESSOR_PENTIUM4:
1290 case PROCESSOR_NOCONA:
ef05d495 1291 case PROCESSOR_CORE:
76bc74dc 1292 case PROCESSOR_CORE2:
bd5295b2 1293 case PROCESSOR_COREI7:
3632d14b 1294 case PROCESSOR_L1OM:
7a9068fe 1295 case PROCESSOR_K1OM:
76bc74dc 1296 case PROCESSOR_GENERIC64:
ccc9c027
L
1297 case PROCESSOR_K6:
1298 case PROCESSOR_ATHLON:
1299 case PROCESSOR_K8:
4eed87de 1300 case PROCESSOR_AMDFAM10:
8aedb9fe 1301 case PROCESSOR_BD:
029f3522 1302 case PROCESSOR_ZNVER:
7b458c12 1303 case PROCESSOR_BT:
80b8656c 1304 patt = alt_patt;
ccc9c027 1305 break;
76bc74dc 1306 case PROCESSOR_I386:
ccc9c027
L
1307 case PROCESSOR_I486:
1308 case PROCESSOR_PENTIUM:
2dde1948 1309 case PROCESSOR_PENTIUMPRO:
81486035 1310 case PROCESSOR_IAMCU:
ccc9c027
L
1311 case PROCESSOR_GENERIC32:
1312 patt = f32_patt;
1313 break;
4eed87de 1314 }
ccc9c027
L
1315 }
1316 else
1317 {
fbf3f584 1318 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1319 {
1320 case PROCESSOR_UNKNOWN:
e6a14101 1321 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1322 PROCESSOR_UNKNOWN. */
1323 abort ();
1324 break;
1325
76bc74dc 1326 case PROCESSOR_I386:
ccc9c027
L
1327 case PROCESSOR_I486:
1328 case PROCESSOR_PENTIUM:
81486035 1329 case PROCESSOR_IAMCU:
ccc9c027
L
1330 case PROCESSOR_K6:
1331 case PROCESSOR_ATHLON:
1332 case PROCESSOR_K8:
4eed87de 1333 case PROCESSOR_AMDFAM10:
8aedb9fe 1334 case PROCESSOR_BD:
029f3522 1335 case PROCESSOR_ZNVER:
7b458c12 1336 case PROCESSOR_BT:
ccc9c027
L
1337 case PROCESSOR_GENERIC32:
1338 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1339 with nops. */
1340 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1341 patt = alt_patt;
ccc9c027
L
1342 else
1343 patt = f32_patt;
1344 break;
76bc74dc
L
1345 case PROCESSOR_PENTIUMPRO:
1346 case PROCESSOR_PENTIUM4:
1347 case PROCESSOR_NOCONA:
1348 case PROCESSOR_CORE:
ef05d495 1349 case PROCESSOR_CORE2:
bd5295b2 1350 case PROCESSOR_COREI7:
3632d14b 1351 case PROCESSOR_L1OM:
7a9068fe 1352 case PROCESSOR_K1OM:
22109423 1353 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1354 patt = alt_patt;
ccc9c027
L
1355 else
1356 patt = f32_patt;
1357 break;
1358 case PROCESSOR_GENERIC64:
80b8656c 1359 patt = alt_patt;
ccc9c027 1360 break;
4eed87de 1361 }
ccc9c027
L
1362 }
1363
76bc74dc
L
1364 if (patt == f32_patt)
1365 {
1366 /* If the padding is less than 15 bytes, we use the normal
1367 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1368 its offset. */
1369 int limit;
76ba9986 1370
711eedef
L
1371 /* For 64bit, the limit is 3 bytes. */
1372 if (flag_code == CODE_64BIT
1373 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1374 limit = 3;
1375 else
1376 limit = 15;
1377 if (count < limit)
76bc74dc
L
1378 memcpy (fragP->fr_literal + fragP->fr_fix,
1379 patt[count - 1], count);
1380 else
1381 {
1382 memcpy (fragP->fr_literal + fragP->fr_fix,
1383 jump_31, count);
1384 /* Adjust jump offset. */
1385 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1386 }
1387 }
1388 else
1389 {
80b8656c
L
1390 /* Maximum length of an instruction is 10 byte. If the
1391 padding is greater than 10 bytes and we don't use jump,
76bc74dc
L
1392 we have to break it into smaller pieces. */
1393 int padding = count;
80b8656c 1394 while (padding > 10)
76bc74dc 1395 {
80b8656c 1396 padding -= 10;
76bc74dc 1397 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
80b8656c 1398 patt [9], 10);
76bc74dc
L
1399 }
1400
1401 if (padding)
1402 memcpy (fragP->fr_literal + fragP->fr_fix,
1403 patt [padding - 1], padding);
1404 }
ccc9c027 1405 }
33fef721 1406 fragP->fr_var = count;
252b5132
RH
1407}
1408
c6fb90c8 1409static INLINE int
0dfbf9d7 1410operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1411{
0dfbf9d7 1412 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1413 {
1414 case 3:
0dfbf9d7 1415 if (x->array[2])
c6fb90c8 1416 return 0;
1a0670f3 1417 /* Fall through. */
c6fb90c8 1418 case 2:
0dfbf9d7 1419 if (x->array[1])
c6fb90c8 1420 return 0;
1a0670f3 1421 /* Fall through. */
c6fb90c8 1422 case 1:
0dfbf9d7 1423 return !x->array[0];
c6fb90c8
L
1424 default:
1425 abort ();
1426 }
40fb9820
L
1427}
1428
c6fb90c8 1429static INLINE void
0dfbf9d7 1430operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1431{
0dfbf9d7 1432 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1433 {
1434 case 3:
0dfbf9d7 1435 x->array[2] = v;
1a0670f3 1436 /* Fall through. */
c6fb90c8 1437 case 2:
0dfbf9d7 1438 x->array[1] = v;
1a0670f3 1439 /* Fall through. */
c6fb90c8 1440 case 1:
0dfbf9d7 1441 x->array[0] = v;
1a0670f3 1442 /* Fall through. */
c6fb90c8
L
1443 break;
1444 default:
1445 abort ();
1446 }
1447}
40fb9820 1448
c6fb90c8 1449static INLINE int
0dfbf9d7
L
1450operand_type_equal (const union i386_operand_type *x,
1451 const union i386_operand_type *y)
c6fb90c8 1452{
0dfbf9d7 1453 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1454 {
1455 case 3:
0dfbf9d7 1456 if (x->array[2] != y->array[2])
c6fb90c8 1457 return 0;
1a0670f3 1458 /* Fall through. */
c6fb90c8 1459 case 2:
0dfbf9d7 1460 if (x->array[1] != y->array[1])
c6fb90c8 1461 return 0;
1a0670f3 1462 /* Fall through. */
c6fb90c8 1463 case 1:
0dfbf9d7 1464 return x->array[0] == y->array[0];
c6fb90c8
L
1465 break;
1466 default:
1467 abort ();
1468 }
1469}
40fb9820 1470
0dfbf9d7
L
1471static INLINE int
1472cpu_flags_all_zero (const union i386_cpu_flags *x)
1473{
1474 switch (ARRAY_SIZE(x->array))
1475 {
53467f57
IT
1476 case 4:
1477 if (x->array[3])
1478 return 0;
1479 /* Fall through. */
0dfbf9d7
L
1480 case 3:
1481 if (x->array[2])
1482 return 0;
1a0670f3 1483 /* Fall through. */
0dfbf9d7
L
1484 case 2:
1485 if (x->array[1])
1486 return 0;
1a0670f3 1487 /* Fall through. */
0dfbf9d7
L
1488 case 1:
1489 return !x->array[0];
1490 default:
1491 abort ();
1492 }
1493}
1494
0dfbf9d7
L
1495static INLINE int
1496cpu_flags_equal (const union i386_cpu_flags *x,
1497 const union i386_cpu_flags *y)
1498{
1499 switch (ARRAY_SIZE(x->array))
1500 {
53467f57
IT
1501 case 4:
1502 if (x->array[3] != y->array[3])
1503 return 0;
1504 /* Fall through. */
0dfbf9d7
L
1505 case 3:
1506 if (x->array[2] != y->array[2])
1507 return 0;
1a0670f3 1508 /* Fall through. */
0dfbf9d7
L
1509 case 2:
1510 if (x->array[1] != y->array[1])
1511 return 0;
1a0670f3 1512 /* Fall through. */
0dfbf9d7
L
1513 case 1:
1514 return x->array[0] == y->array[0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519}
c6fb90c8
L
1520
1521static INLINE int
1522cpu_flags_check_cpu64 (i386_cpu_flags f)
1523{
1524 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1525 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1526}
1527
c6fb90c8
L
1528static INLINE i386_cpu_flags
1529cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1530{
c6fb90c8
L
1531 switch (ARRAY_SIZE (x.array))
1532 {
53467f57
IT
1533 case 4:
1534 x.array [3] &= y.array [3];
1535 /* Fall through. */
c6fb90c8
L
1536 case 3:
1537 x.array [2] &= y.array [2];
1a0670f3 1538 /* Fall through. */
c6fb90c8
L
1539 case 2:
1540 x.array [1] &= y.array [1];
1a0670f3 1541 /* Fall through. */
c6fb90c8
L
1542 case 1:
1543 x.array [0] &= y.array [0];
1544 break;
1545 default:
1546 abort ();
1547 }
1548 return x;
1549}
40fb9820 1550
c6fb90c8
L
1551static INLINE i386_cpu_flags
1552cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1553{
c6fb90c8 1554 switch (ARRAY_SIZE (x.array))
40fb9820 1555 {
53467f57
IT
1556 case 4:
1557 x.array [3] |= y.array [3];
1558 /* Fall through. */
c6fb90c8
L
1559 case 3:
1560 x.array [2] |= y.array [2];
1a0670f3 1561 /* Fall through. */
c6fb90c8
L
1562 case 2:
1563 x.array [1] |= y.array [1];
1a0670f3 1564 /* Fall through. */
c6fb90c8
L
1565 case 1:
1566 x.array [0] |= y.array [0];
40fb9820
L
1567 break;
1568 default:
1569 abort ();
1570 }
40fb9820
L
1571 return x;
1572}
1573
309d3373
JB
1574static INLINE i386_cpu_flags
1575cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1576{
1577 switch (ARRAY_SIZE (x.array))
1578 {
53467f57
IT
1579 case 4:
1580 x.array [3] &= ~y.array [3];
1581 /* Fall through. */
309d3373
JB
1582 case 3:
1583 x.array [2] &= ~y.array [2];
1a0670f3 1584 /* Fall through. */
309d3373
JB
1585 case 2:
1586 x.array [1] &= ~y.array [1];
1a0670f3 1587 /* Fall through. */
309d3373
JB
1588 case 1:
1589 x.array [0] &= ~y.array [0];
1590 break;
1591 default:
1592 abort ();
1593 }
1594 return x;
1595}
1596
c0f3af97
L
1597#define CPU_FLAGS_ARCH_MATCH 0x1
1598#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1599#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1600#define CPU_FLAGS_PCLMUL_MATCH 0x8
1601#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1602
a5ff0eb2 1603#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1604 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1605 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1606#define CPU_FLAGS_PERFECT_MATCH \
1607 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1608
1609/* Return CPU flags match bits. */
3629bb00 1610
40fb9820 1611static int
d3ce72d0 1612cpu_flags_match (const insn_template *t)
40fb9820 1613{
c0f3af97
L
1614 i386_cpu_flags x = t->cpu_flags;
1615 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1616
1617 x.bitfield.cpu64 = 0;
1618 x.bitfield.cpuno64 = 0;
1619
0dfbf9d7 1620 if (cpu_flags_all_zero (&x))
c0f3af97
L
1621 {
1622 /* This instruction is available on all archs. */
1623 match |= CPU_FLAGS_32BIT_MATCH;
1624 }
3629bb00
L
1625 else
1626 {
c0f3af97 1627 /* This instruction is available only on some archs. */
3629bb00
L
1628 i386_cpu_flags cpu = cpu_arch_flags;
1629
3629bb00 1630 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1631 if (!cpu_flags_all_zero (&cpu))
1632 {
a5ff0eb2
L
1633 if (x.bitfield.cpuavx)
1634 {
ce2f5b3c 1635 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1636 if (cpu.bitfield.cpuavx)
1637 {
1638 /* Check SSE2AVX. */
1639 if (!t->opcode_modifier.sse2avx|| sse2avx)
1640 {
1641 match |= (CPU_FLAGS_ARCH_MATCH
1642 | CPU_FLAGS_AVX_MATCH);
1643 /* Check AES. */
1644 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1645 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1646 /* Check PCLMUL. */
1647 if (!x.bitfield.cpupclmul
1648 || cpu.bitfield.cpupclmul)
1649 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1650 }
1651 }
1652 else
1653 match |= CPU_FLAGS_ARCH_MATCH;
1654 }
73b090a9
L
1655 else if (x.bitfield.cpuavx512vl)
1656 {
1657 /* Match AVX512VL. */
1658 if (cpu.bitfield.cpuavx512vl)
1659 {
1660 /* Need another match. */
1661 cpu.bitfield.cpuavx512vl = 0;
1662 if (!cpu_flags_all_zero (&cpu))
1663 match |= CPU_FLAGS_32BIT_MATCH;
1664 else
1665 match |= CPU_FLAGS_ARCH_MATCH;
1666 }
1667 else
1668 match |= CPU_FLAGS_ARCH_MATCH;
1669 }
a5ff0eb2 1670 else
c0f3af97
L
1671 match |= CPU_FLAGS_32BIT_MATCH;
1672 }
3629bb00 1673 }
c0f3af97 1674 return match;
40fb9820
L
1675}
1676
c6fb90c8
L
1677static INLINE i386_operand_type
1678operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1679{
c6fb90c8
L
1680 switch (ARRAY_SIZE (x.array))
1681 {
1682 case 3:
1683 x.array [2] &= y.array [2];
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 case 2:
1686 x.array [1] &= y.array [1];
1a0670f3 1687 /* Fall through. */
c6fb90c8
L
1688 case 1:
1689 x.array [0] &= y.array [0];
1690 break;
1691 default:
1692 abort ();
1693 }
1694 return x;
40fb9820
L
1695}
1696
c6fb90c8
L
1697static INLINE i386_operand_type
1698operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1699{
c6fb90c8 1700 switch (ARRAY_SIZE (x.array))
40fb9820 1701 {
c6fb90c8
L
1702 case 3:
1703 x.array [2] |= y.array [2];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 2:
1706 x.array [1] |= y.array [1];
1a0670f3 1707 /* Fall through. */
c6fb90c8
L
1708 case 1:
1709 x.array [0] |= y.array [0];
40fb9820
L
1710 break;
1711 default:
1712 abort ();
1713 }
c6fb90c8
L
1714 return x;
1715}
40fb9820 1716
c6fb90c8
L
1717static INLINE i386_operand_type
1718operand_type_xor (i386_operand_type x, i386_operand_type y)
1719{
1720 switch (ARRAY_SIZE (x.array))
1721 {
1722 case 3:
1723 x.array [2] ^= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] ^= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] ^= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
1737static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1738static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1739static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1740static const i386_operand_type inoutportreg
1741 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1742static const i386_operand_type reg16_inoutportreg
1743 = OPERAND_TYPE_REG16_INOUTPORTREG;
1744static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1745static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1746static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1747static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1748static const i386_operand_type anydisp
1749 = OPERAND_TYPE_ANYDISP;
40fb9820 1750static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1751static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1752static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1753static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1754static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1755static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1756static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1757static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1758static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1759static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1760static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1761static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1762static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1763static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1764
1765enum operand_type
1766{
1767 reg,
40fb9820
L
1768 imm,
1769 disp,
1770 anymem
1771};
1772
c6fb90c8 1773static INLINE int
40fb9820
L
1774operand_type_check (i386_operand_type t, enum operand_type c)
1775{
1776 switch (c)
1777 {
1778 case reg:
1779 return (t.bitfield.reg8
1780 || t.bitfield.reg16
1781 || t.bitfield.reg32
1782 || t.bitfield.reg64);
1783
40fb9820
L
1784 case imm:
1785 return (t.bitfield.imm8
1786 || t.bitfield.imm8s
1787 || t.bitfield.imm16
1788 || t.bitfield.imm32
1789 || t.bitfield.imm32s
1790 || t.bitfield.imm64);
1791
1792 case disp:
1793 return (t.bitfield.disp8
1794 || t.bitfield.disp16
1795 || t.bitfield.disp32
1796 || t.bitfield.disp32s
1797 || t.bitfield.disp64);
1798
1799 case anymem:
1800 return (t.bitfield.disp8
1801 || t.bitfield.disp16
1802 || t.bitfield.disp32
1803 || t.bitfield.disp32s
1804 || t.bitfield.disp64
1805 || t.bitfield.baseindex);
1806
1807 default:
1808 abort ();
1809 }
2cfe26b6
AM
1810
1811 return 0;
40fb9820
L
1812}
1813
5c07affc
L
1814/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1815 operand J for instruction template T. */
1816
1817static INLINE int
d3ce72d0 1818match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1819{
1820 return !((i.types[j].bitfield.byte
1821 && !t->operand_types[j].bitfield.byte)
1822 || (i.types[j].bitfield.word
1823 && !t->operand_types[j].bitfield.word)
1824 || (i.types[j].bitfield.dword
1825 && !t->operand_types[j].bitfield.dword)
1826 || (i.types[j].bitfield.qword
1827 && !t->operand_types[j].bitfield.qword));
1828}
1829
1830/* Return 1 if there is no conflict in any size on operand J for
1831 instruction template T. */
1832
1833static INLINE int
d3ce72d0 1834match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1835{
1836 return (match_reg_size (t, j)
1837 && !((i.types[j].bitfield.unspecified
af508cb9 1838 && !i.broadcast
5c07affc
L
1839 && !t->operand_types[j].bitfield.unspecified)
1840 || (i.types[j].bitfield.fword
1841 && !t->operand_types[j].bitfield.fword)
1842 || (i.types[j].bitfield.tbyte
1843 && !t->operand_types[j].bitfield.tbyte)
1844 || (i.types[j].bitfield.xmmword
c0f3af97
L
1845 && !t->operand_types[j].bitfield.xmmword)
1846 || (i.types[j].bitfield.ymmword
43234a1e
L
1847 && !t->operand_types[j].bitfield.ymmword)
1848 || (i.types[j].bitfield.zmmword
1849 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1850}
1851
1852/* Return 1 if there is no size conflict on any operands for
1853 instruction template T. */
1854
1855static INLINE int
d3ce72d0 1856operand_size_match (const insn_template *t)
5c07affc
L
1857{
1858 unsigned int j;
1859 int match = 1;
1860
1861 /* Don't check jump instructions. */
1862 if (t->opcode_modifier.jump
1863 || t->opcode_modifier.jumpbyte
1864 || t->opcode_modifier.jumpdword
1865 || t->opcode_modifier.jumpintersegment)
1866 return match;
1867
1868 /* Check memory and accumulator operand size. */
1869 for (j = 0; j < i.operands; j++)
1870 {
1871 if (t->operand_types[j].bitfield.anysize)
1872 continue;
1873
1874 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1875 {
1876 match = 0;
1877 break;
1878 }
1879
1880 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1881 {
1882 match = 0;
1883 break;
1884 }
1885 }
1886
891edac4 1887 if (match)
5c07affc 1888 return match;
891edac4
L
1889 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1890 {
1891mismatch:
86e026a4 1892 i.error = operand_size_mismatch;
891edac4
L
1893 return 0;
1894 }
5c07affc
L
1895
1896 /* Check reverse. */
9c2799c2 1897 gas_assert (i.operands == 2);
5c07affc
L
1898
1899 match = 1;
1900 for (j = 0; j < 2; j++)
1901 {
1902 if (t->operand_types[j].bitfield.acc
1903 && !match_reg_size (t, j ? 0 : 1))
891edac4 1904 goto mismatch;
5c07affc
L
1905
1906 if (i.types[j].bitfield.mem
1907 && !match_mem_size (t, j ? 0 : 1))
891edac4 1908 goto mismatch;
5c07affc
L
1909 }
1910
1911 return match;
1912}
1913
c6fb90c8 1914static INLINE int
40fb9820
L
1915operand_type_match (i386_operand_type overlap,
1916 i386_operand_type given)
1917{
1918 i386_operand_type temp = overlap;
1919
1920 temp.bitfield.jumpabsolute = 0;
7d5e4556 1921 temp.bitfield.unspecified = 0;
5c07affc
L
1922 temp.bitfield.byte = 0;
1923 temp.bitfield.word = 0;
1924 temp.bitfield.dword = 0;
1925 temp.bitfield.fword = 0;
1926 temp.bitfield.qword = 0;
1927 temp.bitfield.tbyte = 0;
1928 temp.bitfield.xmmword = 0;
c0f3af97 1929 temp.bitfield.ymmword = 0;
43234a1e 1930 temp.bitfield.zmmword = 0;
0dfbf9d7 1931 if (operand_type_all_zero (&temp))
891edac4 1932 goto mismatch;
40fb9820 1933
891edac4
L
1934 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1935 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1936 return 1;
1937
1938mismatch:
a65babc9 1939 i.error = operand_type_mismatch;
891edac4 1940 return 0;
40fb9820
L
1941}
1942
7d5e4556 1943/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1944 unless the expected operand type register overlap is null.
1945 Note that Acc in a template matches every size of reg. */
1946
c6fb90c8 1947static INLINE int
40fb9820
L
1948operand_type_register_match (i386_operand_type m0,
1949 i386_operand_type g0,
1950 i386_operand_type t0,
1951 i386_operand_type m1,
1952 i386_operand_type g1,
1953 i386_operand_type t1)
1954{
1955 if (!operand_type_check (g0, reg))
1956 return 1;
1957
1958 if (!operand_type_check (g1, reg))
1959 return 1;
1960
1961 if (g0.bitfield.reg8 == g1.bitfield.reg8
1962 && g0.bitfield.reg16 == g1.bitfield.reg16
1963 && g0.bitfield.reg32 == g1.bitfield.reg32
1964 && g0.bitfield.reg64 == g1.bitfield.reg64)
1965 return 1;
1966
1967 if (m0.bitfield.acc)
1968 {
1969 t0.bitfield.reg8 = 1;
1970 t0.bitfield.reg16 = 1;
1971 t0.bitfield.reg32 = 1;
1972 t0.bitfield.reg64 = 1;
1973 }
1974
1975 if (m1.bitfield.acc)
1976 {
1977 t1.bitfield.reg8 = 1;
1978 t1.bitfield.reg16 = 1;
1979 t1.bitfield.reg32 = 1;
1980 t1.bitfield.reg64 = 1;
1981 }
1982
891edac4
L
1983 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1984 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1985 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1986 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1987 return 1;
1988
a65babc9 1989 i.error = register_type_mismatch;
891edac4
L
1990
1991 return 0;
40fb9820
L
1992}
1993
4c692bc7
JB
1994static INLINE unsigned int
1995register_number (const reg_entry *r)
1996{
1997 unsigned int nr = r->reg_num;
1998
1999 if (r->reg_flags & RegRex)
2000 nr += 8;
2001
200cbe0f
L
2002 if (r->reg_flags & RegVRex)
2003 nr += 16;
2004
4c692bc7
JB
2005 return nr;
2006}
2007
252b5132 2008static INLINE unsigned int
40fb9820 2009mode_from_disp_size (i386_operand_type t)
252b5132 2010{
43234a1e 2011 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
2012 return 1;
2013 else if (t.bitfield.disp16
2014 || t.bitfield.disp32
2015 || t.bitfield.disp32s)
2016 return 2;
2017 else
2018 return 0;
252b5132
RH
2019}
2020
2021static INLINE int
65879393 2022fits_in_signed_byte (addressT num)
252b5132 2023{
65879393 2024 return num + 0x80 <= 0xff;
47926f60 2025}
252b5132
RH
2026
2027static INLINE int
65879393 2028fits_in_unsigned_byte (addressT num)
252b5132 2029{
65879393 2030 return num <= 0xff;
47926f60 2031}
252b5132
RH
2032
2033static INLINE int
65879393 2034fits_in_unsigned_word (addressT num)
252b5132 2035{
65879393 2036 return num <= 0xffff;
47926f60 2037}
252b5132
RH
2038
2039static INLINE int
65879393 2040fits_in_signed_word (addressT num)
252b5132 2041{
65879393 2042 return num + 0x8000 <= 0xffff;
47926f60 2043}
2a962e6d 2044
3e73aa7c 2045static INLINE int
65879393 2046fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2047{
2048#ifndef BFD64
2049 return 1;
2050#else
65879393 2051 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2052#endif
2053} /* fits_in_signed_long() */
2a962e6d 2054
3e73aa7c 2055static INLINE int
65879393 2056fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2057{
2058#ifndef BFD64
2059 return 1;
2060#else
65879393 2061 return num <= 0xffffffff;
3e73aa7c
JH
2062#endif
2063} /* fits_in_unsigned_long() */
252b5132 2064
43234a1e
L
2065static INLINE int
2066fits_in_vec_disp8 (offsetT num)
2067{
2068 int shift = i.memshift;
2069 unsigned int mask;
2070
2071 if (shift == -1)
2072 abort ();
2073
2074 mask = (1 << shift) - 1;
2075
2076 /* Return 0 if NUM isn't properly aligned. */
2077 if ((num & mask))
2078 return 0;
2079
2080 /* Check if NUM will fit in 8bit after shift. */
2081 return fits_in_signed_byte (num >> shift);
2082}
2083
a683cc34
SP
2084static INLINE int
2085fits_in_imm4 (offsetT num)
2086{
2087 return (num & 0xf) == num;
2088}
2089
40fb9820 2090static i386_operand_type
e3bb37b5 2091smallest_imm_type (offsetT num)
252b5132 2092{
40fb9820 2093 i386_operand_type t;
7ab9ffdd 2094
0dfbf9d7 2095 operand_type_set (&t, 0);
40fb9820
L
2096 t.bitfield.imm64 = 1;
2097
2098 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2099 {
2100 /* This code is disabled on the 486 because all the Imm1 forms
2101 in the opcode table are slower on the i486. They're the
2102 versions with the implicitly specified single-position
2103 displacement, which has another syntax if you really want to
2104 use that form. */
40fb9820
L
2105 t.bitfield.imm1 = 1;
2106 t.bitfield.imm8 = 1;
2107 t.bitfield.imm8s = 1;
2108 t.bitfield.imm16 = 1;
2109 t.bitfield.imm32 = 1;
2110 t.bitfield.imm32s = 1;
2111 }
2112 else if (fits_in_signed_byte (num))
2113 {
2114 t.bitfield.imm8 = 1;
2115 t.bitfield.imm8s = 1;
2116 t.bitfield.imm16 = 1;
2117 t.bitfield.imm32 = 1;
2118 t.bitfield.imm32s = 1;
2119 }
2120 else if (fits_in_unsigned_byte (num))
2121 {
2122 t.bitfield.imm8 = 1;
2123 t.bitfield.imm16 = 1;
2124 t.bitfield.imm32 = 1;
2125 t.bitfield.imm32s = 1;
2126 }
2127 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2128 {
2129 t.bitfield.imm16 = 1;
2130 t.bitfield.imm32 = 1;
2131 t.bitfield.imm32s = 1;
2132 }
2133 else if (fits_in_signed_long (num))
2134 {
2135 t.bitfield.imm32 = 1;
2136 t.bitfield.imm32s = 1;
2137 }
2138 else if (fits_in_unsigned_long (num))
2139 t.bitfield.imm32 = 1;
2140
2141 return t;
47926f60 2142}
252b5132 2143
847f7ad4 2144static offsetT
e3bb37b5 2145offset_in_range (offsetT val, int size)
847f7ad4 2146{
508866be 2147 addressT mask;
ba2adb93 2148
847f7ad4
AM
2149 switch (size)
2150 {
508866be
L
2151 case 1: mask = ((addressT) 1 << 8) - 1; break;
2152 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2153 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2154#ifdef BFD64
2155 case 8: mask = ((addressT) 2 << 63) - 1; break;
2156#endif
47926f60 2157 default: abort ();
847f7ad4
AM
2158 }
2159
9de868bf
L
2160#ifdef BFD64
2161 /* If BFD64, sign extend val for 32bit address mode. */
2162 if (flag_code != CODE_64BIT
2163 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2164 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2165 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2166#endif
ba2adb93 2167
47926f60 2168 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2169 {
2170 char buf1[40], buf2[40];
2171
2172 sprint_value (buf1, val);
2173 sprint_value (buf2, val & mask);
2174 as_warn (_("%s shortened to %s"), buf1, buf2);
2175 }
2176 return val & mask;
2177}
2178
c32fa91d
L
2179enum PREFIX_GROUP
2180{
2181 PREFIX_EXIST = 0,
2182 PREFIX_LOCK,
2183 PREFIX_REP,
04ef582a 2184 PREFIX_DS,
c32fa91d
L
2185 PREFIX_OTHER
2186};
2187
2188/* Returns
2189 a. PREFIX_EXIST if attempting to add a prefix where one from the
2190 same class already exists.
2191 b. PREFIX_LOCK if lock prefix is added.
2192 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2193 d. PREFIX_DS if ds prefix is added.
2194 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2195 */
2196
2197static enum PREFIX_GROUP
e3bb37b5 2198add_prefix (unsigned int prefix)
252b5132 2199{
c32fa91d 2200 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2201 unsigned int q;
252b5132 2202
29b0f896
AM
2203 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2204 && flag_code == CODE_64BIT)
b1905489 2205 {
161a04f6
L
2206 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2207 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2208 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2209 ret = PREFIX_EXIST;
b1905489
JB
2210 q = REX_PREFIX;
2211 }
3e73aa7c 2212 else
b1905489
JB
2213 {
2214 switch (prefix)
2215 {
2216 default:
2217 abort ();
2218
b1905489 2219 case DS_PREFIX_OPCODE:
04ef582a
L
2220 ret = PREFIX_DS;
2221 /* Fall through. */
2222 case CS_PREFIX_OPCODE:
b1905489
JB
2223 case ES_PREFIX_OPCODE:
2224 case FS_PREFIX_OPCODE:
2225 case GS_PREFIX_OPCODE:
2226 case SS_PREFIX_OPCODE:
2227 q = SEG_PREFIX;
2228 break;
2229
2230 case REPNE_PREFIX_OPCODE:
2231 case REPE_PREFIX_OPCODE:
c32fa91d
L
2232 q = REP_PREFIX;
2233 ret = PREFIX_REP;
2234 break;
2235
b1905489 2236 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2237 q = LOCK_PREFIX;
2238 ret = PREFIX_LOCK;
b1905489
JB
2239 break;
2240
2241 case FWAIT_OPCODE:
2242 q = WAIT_PREFIX;
2243 break;
2244
2245 case ADDR_PREFIX_OPCODE:
2246 q = ADDR_PREFIX;
2247 break;
2248
2249 case DATA_PREFIX_OPCODE:
2250 q = DATA_PREFIX;
2251 break;
2252 }
2253 if (i.prefix[q] != 0)
c32fa91d 2254 ret = PREFIX_EXIST;
b1905489 2255 }
252b5132 2256
b1905489 2257 if (ret)
252b5132 2258 {
b1905489
JB
2259 if (!i.prefix[q])
2260 ++i.prefixes;
2261 i.prefix[q] |= prefix;
252b5132 2262 }
b1905489
JB
2263 else
2264 as_bad (_("same type of prefix used twice"));
252b5132 2265
252b5132
RH
2266 return ret;
2267}
2268
2269static void
78f12dd3 2270update_code_flag (int value, int check)
eecb386c 2271{
78f12dd3
L
2272 PRINTF_LIKE ((*as_error));
2273
1e9cc1c2 2274 flag_code = (enum flag_code) value;
40fb9820
L
2275 if (flag_code == CODE_64BIT)
2276 {
2277 cpu_arch_flags.bitfield.cpu64 = 1;
2278 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2279 }
2280 else
2281 {
2282 cpu_arch_flags.bitfield.cpu64 = 0;
2283 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2284 }
2285 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2286 {
78f12dd3
L
2287 if (check)
2288 as_error = as_fatal;
2289 else
2290 as_error = as_bad;
2291 (*as_error) (_("64bit mode not supported on `%s'."),
2292 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2293 }
40fb9820 2294 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2295 {
78f12dd3
L
2296 if (check)
2297 as_error = as_fatal;
2298 else
2299 as_error = as_bad;
2300 (*as_error) (_("32bit mode not supported on `%s'."),
2301 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2302 }
eecb386c
AM
2303 stackop_size = '\0';
2304}
2305
78f12dd3
L
2306static void
2307set_code_flag (int value)
2308{
2309 update_code_flag (value, 0);
2310}
2311
eecb386c 2312static void
e3bb37b5 2313set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2314{
1e9cc1c2 2315 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2316 if (flag_code != CODE_16BIT)
2317 abort ();
2318 cpu_arch_flags.bitfield.cpu64 = 0;
2319 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2320 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2321}
2322
2323static void
e3bb37b5 2324set_intel_syntax (int syntax_flag)
252b5132
RH
2325{
2326 /* Find out if register prefixing is specified. */
2327 int ask_naked_reg = 0;
2328
2329 SKIP_WHITESPACE ();
29b0f896 2330 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2331 {
d02603dc
NC
2332 char *string;
2333 int e = get_symbol_name (&string);
252b5132 2334
47926f60 2335 if (strcmp (string, "prefix") == 0)
252b5132 2336 ask_naked_reg = 1;
47926f60 2337 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2338 ask_naked_reg = -1;
2339 else
d0b47220 2340 as_bad (_("bad argument to syntax directive."));
d02603dc 2341 (void) restore_line_pointer (e);
252b5132
RH
2342 }
2343 demand_empty_rest_of_line ();
c3332e24 2344
252b5132
RH
2345 intel_syntax = syntax_flag;
2346
2347 if (ask_naked_reg == 0)
f86103b7
AM
2348 allow_naked_reg = (intel_syntax
2349 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2350 else
2351 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2352
ee86248c 2353 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2354
e4a3b5a4 2355 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2356 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2357 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2358}
2359
1efbbeb4
L
2360static void
2361set_intel_mnemonic (int mnemonic_flag)
2362{
e1d4d893 2363 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2364}
2365
db51cc60
L
2366static void
2367set_allow_index_reg (int flag)
2368{
2369 allow_index_reg = flag;
2370}
2371
cb19c032 2372static void
7bab8ab5 2373set_check (int what)
cb19c032 2374{
7bab8ab5
JB
2375 enum check_kind *kind;
2376 const char *str;
2377
2378 if (what)
2379 {
2380 kind = &operand_check;
2381 str = "operand";
2382 }
2383 else
2384 {
2385 kind = &sse_check;
2386 str = "sse";
2387 }
2388
cb19c032
L
2389 SKIP_WHITESPACE ();
2390
2391 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2392 {
d02603dc
NC
2393 char *string;
2394 int e = get_symbol_name (&string);
cb19c032
L
2395
2396 if (strcmp (string, "none") == 0)
7bab8ab5 2397 *kind = check_none;
cb19c032 2398 else if (strcmp (string, "warning") == 0)
7bab8ab5 2399 *kind = check_warning;
cb19c032 2400 else if (strcmp (string, "error") == 0)
7bab8ab5 2401 *kind = check_error;
cb19c032 2402 else
7bab8ab5 2403 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2404 (void) restore_line_pointer (e);
cb19c032
L
2405 }
2406 else
7bab8ab5 2407 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2408
2409 demand_empty_rest_of_line ();
2410}
2411
8a9036a4
L
2412static void
2413check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2414 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2415{
2416#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2417 static const char *arch;
2418
2419 /* Intel LIOM is only supported on ELF. */
2420 if (!IS_ELF)
2421 return;
2422
2423 if (!arch)
2424 {
2425 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2426 use default_arch. */
2427 arch = cpu_arch_name;
2428 if (!arch)
2429 arch = default_arch;
2430 }
2431
81486035
L
2432 /* If we are targeting Intel MCU, we must enable it. */
2433 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2434 || new_flag.bitfield.cpuiamcu)
2435 return;
2436
3632d14b 2437 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2438 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2439 || new_flag.bitfield.cpul1om)
8a9036a4 2440 return;
76ba9986 2441
7a9068fe
L
2442 /* If we are targeting Intel K1OM, we must enable it. */
2443 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2444 || new_flag.bitfield.cpuk1om)
2445 return;
2446
8a9036a4
L
2447 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2448#endif
2449}
2450
e413e4e9 2451static void
e3bb37b5 2452set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2453{
47926f60 2454 SKIP_WHITESPACE ();
e413e4e9 2455
29b0f896 2456 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2457 {
d02603dc
NC
2458 char *string;
2459 int e = get_symbol_name (&string);
91d6fa6a 2460 unsigned int j;
40fb9820 2461 i386_cpu_flags flags;
e413e4e9 2462
91d6fa6a 2463 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2464 {
91d6fa6a 2465 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2466 {
91d6fa6a 2467 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2468
5c6af06e
JB
2469 if (*string != '.')
2470 {
91d6fa6a 2471 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2472 cpu_sub_arch_name = NULL;
91d6fa6a 2473 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2474 if (flag_code == CODE_64BIT)
2475 {
2476 cpu_arch_flags.bitfield.cpu64 = 1;
2477 cpu_arch_flags.bitfield.cpuno64 = 0;
2478 }
2479 else
2480 {
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
2483 }
91d6fa6a
NC
2484 cpu_arch_isa = cpu_arch[j].type;
2485 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2486 if (!cpu_arch_tune_set)
2487 {
2488 cpu_arch_tune = cpu_arch_isa;
2489 cpu_arch_tune_flags = cpu_arch_isa_flags;
2490 }
5c6af06e
JB
2491 break;
2492 }
40fb9820 2493
293f5f65
L
2494 flags = cpu_flags_or (cpu_arch_flags,
2495 cpu_arch[j].flags);
81486035 2496
5b64d091 2497 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2498 {
6305a203
L
2499 if (cpu_sub_arch_name)
2500 {
2501 char *name = cpu_sub_arch_name;
2502 cpu_sub_arch_name = concat (name,
91d6fa6a 2503 cpu_arch[j].name,
1bf57e9f 2504 (const char *) NULL);
6305a203
L
2505 free (name);
2506 }
2507 else
91d6fa6a 2508 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2509 cpu_arch_flags = flags;
a586129e 2510 cpu_arch_isa_flags = flags;
5c6af06e 2511 }
d02603dc 2512 (void) restore_line_pointer (e);
5c6af06e
JB
2513 demand_empty_rest_of_line ();
2514 return;
e413e4e9
AM
2515 }
2516 }
293f5f65
L
2517
2518 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2519 {
33eaf5de 2520 /* Disable an ISA extension. */
293f5f65
L
2521 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2522 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2523 {
2524 flags = cpu_flags_and_not (cpu_arch_flags,
2525 cpu_noarch[j].flags);
2526 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2527 {
2528 if (cpu_sub_arch_name)
2529 {
2530 char *name = cpu_sub_arch_name;
2531 cpu_sub_arch_name = concat (name, string,
2532 (const char *) NULL);
2533 free (name);
2534 }
2535 else
2536 cpu_sub_arch_name = xstrdup (string);
2537 cpu_arch_flags = flags;
2538 cpu_arch_isa_flags = flags;
2539 }
2540 (void) restore_line_pointer (e);
2541 demand_empty_rest_of_line ();
2542 return;
2543 }
2544
2545 j = ARRAY_SIZE (cpu_arch);
2546 }
2547
91d6fa6a 2548 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2549 as_bad (_("no such architecture: `%s'"), string);
2550
2551 *input_line_pointer = e;
2552 }
2553 else
2554 as_bad (_("missing cpu architecture"));
2555
fddf5b5b
AM
2556 no_cond_jump_promotion = 0;
2557 if (*input_line_pointer == ','
29b0f896 2558 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2559 {
d02603dc
NC
2560 char *string;
2561 char e;
2562
2563 ++input_line_pointer;
2564 e = get_symbol_name (&string);
fddf5b5b
AM
2565
2566 if (strcmp (string, "nojumps") == 0)
2567 no_cond_jump_promotion = 1;
2568 else if (strcmp (string, "jumps") == 0)
2569 ;
2570 else
2571 as_bad (_("no such architecture modifier: `%s'"), string);
2572
d02603dc 2573 (void) restore_line_pointer (e);
fddf5b5b
AM
2574 }
2575
e413e4e9
AM
2576 demand_empty_rest_of_line ();
2577}
2578
8a9036a4
L
2579enum bfd_architecture
2580i386_arch (void)
2581{
3632d14b 2582 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2583 {
2584 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2585 || flag_code != CODE_64BIT)
2586 as_fatal (_("Intel L1OM is 64bit ELF only"));
2587 return bfd_arch_l1om;
2588 }
7a9068fe
L
2589 else if (cpu_arch_isa == PROCESSOR_K1OM)
2590 {
2591 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2592 || flag_code != CODE_64BIT)
2593 as_fatal (_("Intel K1OM is 64bit ELF only"));
2594 return bfd_arch_k1om;
2595 }
81486035
L
2596 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2597 {
2598 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2599 || flag_code == CODE_64BIT)
2600 as_fatal (_("Intel MCU is 32bit ELF only"));
2601 return bfd_arch_iamcu;
2602 }
8a9036a4
L
2603 else
2604 return bfd_arch_i386;
2605}
2606
b9d79e03 2607unsigned long
7016a5d5 2608i386_mach (void)
b9d79e03 2609{
351f65ca 2610 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2611 {
3632d14b 2612 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2613 {
351f65ca
L
2614 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2615 || default_arch[6] != '\0')
8a9036a4
L
2616 as_fatal (_("Intel L1OM is 64bit ELF only"));
2617 return bfd_mach_l1om;
2618 }
7a9068fe
L
2619 else if (cpu_arch_isa == PROCESSOR_K1OM)
2620 {
2621 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2622 || default_arch[6] != '\0')
2623 as_fatal (_("Intel K1OM is 64bit ELF only"));
2624 return bfd_mach_k1om;
2625 }
351f65ca 2626 else if (default_arch[6] == '\0')
8a9036a4 2627 return bfd_mach_x86_64;
351f65ca
L
2628 else
2629 return bfd_mach_x64_32;
8a9036a4 2630 }
5197d474
L
2631 else if (!strcmp (default_arch, "i386")
2632 || !strcmp (default_arch, "iamcu"))
81486035
L
2633 {
2634 if (cpu_arch_isa == PROCESSOR_IAMCU)
2635 {
2636 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2637 as_fatal (_("Intel MCU is 32bit ELF only"));
2638 return bfd_mach_i386_iamcu;
2639 }
2640 else
2641 return bfd_mach_i386_i386;
2642 }
b9d79e03 2643 else
2b5d6a91 2644 as_fatal (_("unknown architecture"));
b9d79e03 2645}
b9d79e03 2646\f
252b5132 2647void
7016a5d5 2648md_begin (void)
252b5132
RH
2649{
2650 const char *hash_err;
2651
86fa6981
L
2652 /* Support pseudo prefixes like {disp32}. */
2653 lex_type ['{'] = LEX_BEGIN_NAME;
2654
47926f60 2655 /* Initialize op_hash hash table. */
252b5132
RH
2656 op_hash = hash_new ();
2657
2658 {
d3ce72d0 2659 const insn_template *optab;
29b0f896 2660 templates *core_optab;
252b5132 2661
47926f60
KH
2662 /* Setup for loop. */
2663 optab = i386_optab;
add39d23 2664 core_optab = XNEW (templates);
252b5132
RH
2665 core_optab->start = optab;
2666
2667 while (1)
2668 {
2669 ++optab;
2670 if (optab->name == NULL
2671 || strcmp (optab->name, (optab - 1)->name) != 0)
2672 {
2673 /* different name --> ship out current template list;
47926f60 2674 add to hash table; & begin anew. */
252b5132
RH
2675 core_optab->end = optab;
2676 hash_err = hash_insert (op_hash,
2677 (optab - 1)->name,
5a49b8ac 2678 (void *) core_optab);
252b5132
RH
2679 if (hash_err)
2680 {
b37df7c4 2681 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2682 (optab - 1)->name,
2683 hash_err);
2684 }
2685 if (optab->name == NULL)
2686 break;
add39d23 2687 core_optab = XNEW (templates);
252b5132
RH
2688 core_optab->start = optab;
2689 }
2690 }
2691 }
2692
47926f60 2693 /* Initialize reg_hash hash table. */
252b5132
RH
2694 reg_hash = hash_new ();
2695 {
29b0f896 2696 const reg_entry *regtab;
c3fe08fa 2697 unsigned int regtab_size = i386_regtab_size;
252b5132 2698
c3fe08fa 2699 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2700 {
5a49b8ac 2701 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2702 if (hash_err)
b37df7c4 2703 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2704 regtab->reg_name,
2705 hash_err);
252b5132
RH
2706 }
2707 }
2708
47926f60 2709 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2710 {
29b0f896
AM
2711 int c;
2712 char *p;
252b5132
RH
2713
2714 for (c = 0; c < 256; c++)
2715 {
3882b010 2716 if (ISDIGIT (c))
252b5132
RH
2717 {
2718 digit_chars[c] = c;
2719 mnemonic_chars[c] = c;
2720 register_chars[c] = c;
2721 operand_chars[c] = c;
2722 }
3882b010 2723 else if (ISLOWER (c))
252b5132
RH
2724 {
2725 mnemonic_chars[c] = c;
2726 register_chars[c] = c;
2727 operand_chars[c] = c;
2728 }
3882b010 2729 else if (ISUPPER (c))
252b5132 2730 {
3882b010 2731 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2732 register_chars[c] = mnemonic_chars[c];
2733 operand_chars[c] = c;
2734 }
43234a1e 2735 else if (c == '{' || c == '}')
86fa6981
L
2736 {
2737 mnemonic_chars[c] = c;
2738 operand_chars[c] = c;
2739 }
252b5132 2740
3882b010 2741 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2742 identifier_chars[c] = c;
2743 else if (c >= 128)
2744 {
2745 identifier_chars[c] = c;
2746 operand_chars[c] = c;
2747 }
2748 }
2749
2750#ifdef LEX_AT
2751 identifier_chars['@'] = '@';
32137342
NC
2752#endif
2753#ifdef LEX_QM
2754 identifier_chars['?'] = '?';
2755 operand_chars['?'] = '?';
252b5132 2756#endif
252b5132 2757 digit_chars['-'] = '-';
c0f3af97 2758 mnemonic_chars['_'] = '_';
791fe849 2759 mnemonic_chars['-'] = '-';
0003779b 2760 mnemonic_chars['.'] = '.';
252b5132
RH
2761 identifier_chars['_'] = '_';
2762 identifier_chars['.'] = '.';
2763
2764 for (p = operand_special_chars; *p != '\0'; p++)
2765 operand_chars[(unsigned char) *p] = *p;
2766 }
2767
a4447b93
RH
2768 if (flag_code == CODE_64BIT)
2769 {
ca19b261
KT
2770#if defined (OBJ_COFF) && defined (TE_PE)
2771 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2772 ? 32 : 16);
2773#else
a4447b93 2774 x86_dwarf2_return_column = 16;
ca19b261 2775#endif
61ff971f 2776 x86_cie_data_alignment = -8;
a4447b93
RH
2777 }
2778 else
2779 {
2780 x86_dwarf2_return_column = 8;
2781 x86_cie_data_alignment = -4;
2782 }
252b5132
RH
2783}
2784
2785void
e3bb37b5 2786i386_print_statistics (FILE *file)
252b5132
RH
2787{
2788 hash_print_statistics (file, "i386 opcode", op_hash);
2789 hash_print_statistics (file, "i386 register", reg_hash);
2790}
2791\f
252b5132
RH
2792#ifdef DEBUG386
2793
ce8a8b2f 2794/* Debugging routines for md_assemble. */
d3ce72d0 2795static void pte (insn_template *);
40fb9820 2796static void pt (i386_operand_type);
e3bb37b5
L
2797static void pe (expressionS *);
2798static void ps (symbolS *);
252b5132
RH
2799
2800static void
e3bb37b5 2801pi (char *line, i386_insn *x)
252b5132 2802{
09137c09 2803 unsigned int j;
252b5132
RH
2804
2805 fprintf (stdout, "%s: template ", line);
2806 pte (&x->tm);
09f131f2
JH
2807 fprintf (stdout, " address: base %s index %s scale %x\n",
2808 x->base_reg ? x->base_reg->reg_name : "none",
2809 x->index_reg ? x->index_reg->reg_name : "none",
2810 x->log2_scale_factor);
2811 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2812 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2813 fprintf (stdout, " sib: base %x index %x scale %x\n",
2814 x->sib.base, x->sib.index, x->sib.scale);
2815 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2816 (x->rex & REX_W) != 0,
2817 (x->rex & REX_R) != 0,
2818 (x->rex & REX_X) != 0,
2819 (x->rex & REX_B) != 0);
09137c09 2820 for (j = 0; j < x->operands; j++)
252b5132 2821 {
09137c09
SP
2822 fprintf (stdout, " #%d: ", j + 1);
2823 pt (x->types[j]);
252b5132 2824 fprintf (stdout, "\n");
09137c09
SP
2825 if (x->types[j].bitfield.reg8
2826 || x->types[j].bitfield.reg16
2827 || x->types[j].bitfield.reg32
2828 || x->types[j].bitfield.reg64
2829 || x->types[j].bitfield.regmmx
2830 || x->types[j].bitfield.regxmm
2831 || x->types[j].bitfield.regymm
43234a1e 2832 || x->types[j].bitfield.regzmm
09137c09
SP
2833 || x->types[j].bitfield.sreg2
2834 || x->types[j].bitfield.sreg3
2835 || x->types[j].bitfield.control
2836 || x->types[j].bitfield.debug
2837 || x->types[j].bitfield.test)
2838 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2839 if (operand_type_check (x->types[j], imm))
2840 pe (x->op[j].imms);
2841 if (operand_type_check (x->types[j], disp))
2842 pe (x->op[j].disps);
252b5132
RH
2843 }
2844}
2845
2846static void
d3ce72d0 2847pte (insn_template *t)
252b5132 2848{
09137c09 2849 unsigned int j;
252b5132 2850 fprintf (stdout, " %d operands ", t->operands);
47926f60 2851 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2852 if (t->extension_opcode != None)
2853 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2854 if (t->opcode_modifier.d)
252b5132 2855 fprintf (stdout, "D");
40fb9820 2856 if (t->opcode_modifier.w)
252b5132
RH
2857 fprintf (stdout, "W");
2858 fprintf (stdout, "\n");
09137c09 2859 for (j = 0; j < t->operands; j++)
252b5132 2860 {
09137c09
SP
2861 fprintf (stdout, " #%d type ", j + 1);
2862 pt (t->operand_types[j]);
252b5132
RH
2863 fprintf (stdout, "\n");
2864 }
2865}
2866
2867static void
e3bb37b5 2868pe (expressionS *e)
252b5132 2869{
24eab124 2870 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2871 fprintf (stdout, " add_number %ld (%lx)\n",
2872 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2873 if (e->X_add_symbol)
2874 {
2875 fprintf (stdout, " add_symbol ");
2876 ps (e->X_add_symbol);
2877 fprintf (stdout, "\n");
2878 }
2879 if (e->X_op_symbol)
2880 {
2881 fprintf (stdout, " op_symbol ");
2882 ps (e->X_op_symbol);
2883 fprintf (stdout, "\n");
2884 }
2885}
2886
2887static void
e3bb37b5 2888ps (symbolS *s)
252b5132
RH
2889{
2890 fprintf (stdout, "%s type %s%s",
2891 S_GET_NAME (s),
2892 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2893 segment_name (S_GET_SEGMENT (s)));
2894}
2895
7b81dfbb 2896static struct type_name
252b5132 2897 {
40fb9820
L
2898 i386_operand_type mask;
2899 const char *name;
252b5132 2900 }
7b81dfbb 2901const type_names[] =
252b5132 2902{
40fb9820
L
2903 { OPERAND_TYPE_REG8, "r8" },
2904 { OPERAND_TYPE_REG16, "r16" },
2905 { OPERAND_TYPE_REG32, "r32" },
2906 { OPERAND_TYPE_REG64, "r64" },
2907 { OPERAND_TYPE_IMM8, "i8" },
2908 { OPERAND_TYPE_IMM8, "i8s" },
2909 { OPERAND_TYPE_IMM16, "i16" },
2910 { OPERAND_TYPE_IMM32, "i32" },
2911 { OPERAND_TYPE_IMM32S, "i32s" },
2912 { OPERAND_TYPE_IMM64, "i64" },
2913 { OPERAND_TYPE_IMM1, "i1" },
2914 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2915 { OPERAND_TYPE_DISP8, "d8" },
2916 { OPERAND_TYPE_DISP16, "d16" },
2917 { OPERAND_TYPE_DISP32, "d32" },
2918 { OPERAND_TYPE_DISP32S, "d32s" },
2919 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2920 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2921 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2922 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2923 { OPERAND_TYPE_CONTROL, "control reg" },
2924 { OPERAND_TYPE_TEST, "test reg" },
2925 { OPERAND_TYPE_DEBUG, "debug reg" },
2926 { OPERAND_TYPE_FLOATREG, "FReg" },
2927 { OPERAND_TYPE_FLOATACC, "FAcc" },
2928 { OPERAND_TYPE_SREG2, "SReg2" },
2929 { OPERAND_TYPE_SREG3, "SReg3" },
2930 { OPERAND_TYPE_ACC, "Acc" },
2931 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2932 { OPERAND_TYPE_REGMMX, "rMMX" },
2933 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2934 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2935 { OPERAND_TYPE_REGZMM, "rZMM" },
2936 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2937 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2938};
2939
2940static void
40fb9820 2941pt (i386_operand_type t)
252b5132 2942{
40fb9820 2943 unsigned int j;
c6fb90c8 2944 i386_operand_type a;
252b5132 2945
40fb9820 2946 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2947 {
2948 a = operand_type_and (t, type_names[j].mask);
0349dc08 2949 if (!operand_type_all_zero (&a))
c6fb90c8
L
2950 fprintf (stdout, "%s, ", type_names[j].name);
2951 }
252b5132
RH
2952 fflush (stdout);
2953}
2954
2955#endif /* DEBUG386 */
2956\f
252b5132 2957static bfd_reloc_code_real_type
3956db08 2958reloc (unsigned int size,
64e74474
AM
2959 int pcrel,
2960 int sign,
2961 bfd_reloc_code_real_type other)
252b5132 2962{
47926f60 2963 if (other != NO_RELOC)
3956db08 2964 {
91d6fa6a 2965 reloc_howto_type *rel;
3956db08
JB
2966
2967 if (size == 8)
2968 switch (other)
2969 {
64e74474
AM
2970 case BFD_RELOC_X86_64_GOT32:
2971 return BFD_RELOC_X86_64_GOT64;
2972 break;
553d1284
L
2973 case BFD_RELOC_X86_64_GOTPLT64:
2974 return BFD_RELOC_X86_64_GOTPLT64;
2975 break;
64e74474
AM
2976 case BFD_RELOC_X86_64_PLTOFF64:
2977 return BFD_RELOC_X86_64_PLTOFF64;
2978 break;
2979 case BFD_RELOC_X86_64_GOTPC32:
2980 other = BFD_RELOC_X86_64_GOTPC64;
2981 break;
2982 case BFD_RELOC_X86_64_GOTPCREL:
2983 other = BFD_RELOC_X86_64_GOTPCREL64;
2984 break;
2985 case BFD_RELOC_X86_64_TPOFF32:
2986 other = BFD_RELOC_X86_64_TPOFF64;
2987 break;
2988 case BFD_RELOC_X86_64_DTPOFF32:
2989 other = BFD_RELOC_X86_64_DTPOFF64;
2990 break;
2991 default:
2992 break;
3956db08 2993 }
e05278af 2994
8ce3d284 2995#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2996 if (other == BFD_RELOC_SIZE32)
2997 {
2998 if (size == 8)
1ab668bf 2999 other = BFD_RELOC_SIZE64;
8fd4256d 3000 if (pcrel)
1ab668bf
AM
3001 {
3002 as_bad (_("there are no pc-relative size relocations"));
3003 return NO_RELOC;
3004 }
8fd4256d 3005 }
8ce3d284 3006#endif
8fd4256d 3007
e05278af 3008 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3009 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3010 sign = -1;
3011
91d6fa6a
NC
3012 rel = bfd_reloc_type_lookup (stdoutput, other);
3013 if (!rel)
3956db08 3014 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3015 else if (size != bfd_get_reloc_size (rel))
3956db08 3016 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3017 bfd_get_reloc_size (rel),
3956db08 3018 size);
91d6fa6a 3019 else if (pcrel && !rel->pc_relative)
3956db08 3020 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3021 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3022 && !sign)
91d6fa6a 3023 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3024 && sign > 0))
3956db08
JB
3025 as_bad (_("relocated field and relocation type differ in signedness"));
3026 else
3027 return other;
3028 return NO_RELOC;
3029 }
252b5132
RH
3030
3031 if (pcrel)
3032 {
3e73aa7c 3033 if (!sign)
3956db08 3034 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3035 switch (size)
3036 {
3037 case 1: return BFD_RELOC_8_PCREL;
3038 case 2: return BFD_RELOC_16_PCREL;
d258b828 3039 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3040 case 8: return BFD_RELOC_64_PCREL;
252b5132 3041 }
3956db08 3042 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3043 }
3044 else
3045 {
3956db08 3046 if (sign > 0)
e5cb08ac 3047 switch (size)
3e73aa7c
JH
3048 {
3049 case 4: return BFD_RELOC_X86_64_32S;
3050 }
3051 else
3052 switch (size)
3053 {
3054 case 1: return BFD_RELOC_8;
3055 case 2: return BFD_RELOC_16;
3056 case 4: return BFD_RELOC_32;
3057 case 8: return BFD_RELOC_64;
3058 }
3956db08
JB
3059 as_bad (_("cannot do %s %u byte relocation"),
3060 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3061 }
3062
0cc9e1d3 3063 return NO_RELOC;
252b5132
RH
3064}
3065
47926f60
KH
3066/* Here we decide which fixups can be adjusted to make them relative to
3067 the beginning of the section instead of the symbol. Basically we need
3068 to make sure that the dynamic relocations are done correctly, so in
3069 some cases we force the original symbol to be used. */
3070
252b5132 3071int
e3bb37b5 3072tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3073{
6d249963 3074#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3075 if (!IS_ELF)
31312f95
AM
3076 return 1;
3077
a161fe53
AM
3078 /* Don't adjust pc-relative references to merge sections in 64-bit
3079 mode. */
3080 if (use_rela_relocations
3081 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3082 && fixP->fx_pcrel)
252b5132 3083 return 0;
31312f95 3084
8d01d9a9
AJ
3085 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3086 and changed later by validate_fix. */
3087 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3088 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3089 return 0;
3090
8fd4256d
L
3091 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3092 for size relocations. */
3093 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3094 || fixP->fx_r_type == BFD_RELOC_SIZE64
3095 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3096 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3097 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3098 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3099 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3100 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3101 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3102 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3103 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3104 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3105 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3106 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3107 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3108 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3109 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3110 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3111 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3112 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3113 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3114 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3115 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3116 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3117 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3118 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3119 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3120 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3121 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3122 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3123 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3124 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3125 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3126 return 0;
31312f95 3127#endif
252b5132
RH
3128 return 1;
3129}
252b5132 3130
b4cac588 3131static int
e3bb37b5 3132intel_float_operand (const char *mnemonic)
252b5132 3133{
9306ca4a
JB
3134 /* Note that the value returned is meaningful only for opcodes with (memory)
3135 operands, hence the code here is free to improperly handle opcodes that
3136 have no operands (for better performance and smaller code). */
3137
3138 if (mnemonic[0] != 'f')
3139 return 0; /* non-math */
3140
3141 switch (mnemonic[1])
3142 {
3143 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3144 the fs segment override prefix not currently handled because no
3145 call path can make opcodes without operands get here */
3146 case 'i':
3147 return 2 /* integer op */;
3148 case 'l':
3149 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3150 return 3; /* fldcw/fldenv */
3151 break;
3152 case 'n':
3153 if (mnemonic[2] != 'o' /* fnop */)
3154 return 3; /* non-waiting control op */
3155 break;
3156 case 'r':
3157 if (mnemonic[2] == 's')
3158 return 3; /* frstor/frstpm */
3159 break;
3160 case 's':
3161 if (mnemonic[2] == 'a')
3162 return 3; /* fsave */
3163 if (mnemonic[2] == 't')
3164 {
3165 switch (mnemonic[3])
3166 {
3167 case 'c': /* fstcw */
3168 case 'd': /* fstdw */
3169 case 'e': /* fstenv */
3170 case 's': /* fsts[gw] */
3171 return 3;
3172 }
3173 }
3174 break;
3175 case 'x':
3176 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3177 return 0; /* fxsave/fxrstor are not really math ops */
3178 break;
3179 }
252b5132 3180
9306ca4a 3181 return 1;
252b5132
RH
3182}
3183
c0f3af97
L
3184/* Build the VEX prefix. */
3185
3186static void
d3ce72d0 3187build_vex_prefix (const insn_template *t)
c0f3af97
L
3188{
3189 unsigned int register_specifier;
3190 unsigned int implied_prefix;
3191 unsigned int vector_length;
3192
3193 /* Check register specifier. */
3194 if (i.vex.register_specifier)
43234a1e
L
3195 {
3196 register_specifier =
3197 ~register_number (i.vex.register_specifier) & 0xf;
3198 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3199 }
c0f3af97
L
3200 else
3201 register_specifier = 0xf;
3202
33eaf5de 3203 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3204 operand. */
86fa6981
L
3205 if (i.vec_encoding != vex_encoding_vex3
3206 && i.dir_encoding == dir_encoding_default
fa99fab2 3207 && i.operands == i.reg_operands
7f399153 3208 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3209 && i.tm.opcode_modifier.load
fa99fab2
L
3210 && i.rex == REX_B)
3211 {
3212 unsigned int xchg = i.operands - 1;
3213 union i386_op temp_op;
3214 i386_operand_type temp_type;
3215
3216 temp_type = i.types[xchg];
3217 i.types[xchg] = i.types[0];
3218 i.types[0] = temp_type;
3219 temp_op = i.op[xchg];
3220 i.op[xchg] = i.op[0];
3221 i.op[0] = temp_op;
3222
9c2799c2 3223 gas_assert (i.rm.mode == 3);
fa99fab2
L
3224
3225 i.rex = REX_R;
3226 xchg = i.rm.regmem;
3227 i.rm.regmem = i.rm.reg;
3228 i.rm.reg = xchg;
3229
3230 /* Use the next insn. */
3231 i.tm = t[1];
3232 }
3233
539f890d
L
3234 if (i.tm.opcode_modifier.vex == VEXScalar)
3235 vector_length = avxscalar;
3236 else
3237 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3238
3239 switch ((i.tm.base_opcode >> 8) & 0xff)
3240 {
3241 case 0:
3242 implied_prefix = 0;
3243 break;
3244 case DATA_PREFIX_OPCODE:
3245 implied_prefix = 1;
3246 break;
3247 case REPE_PREFIX_OPCODE:
3248 implied_prefix = 2;
3249 break;
3250 case REPNE_PREFIX_OPCODE:
3251 implied_prefix = 3;
3252 break;
3253 default:
3254 abort ();
3255 }
3256
3257 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3258 if (i.vec_encoding != vex_encoding_vex3
3259 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3260 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3261 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3262 {
3263 /* 2-byte VEX prefix. */
3264 unsigned int r;
3265
3266 i.vex.length = 2;
3267 i.vex.bytes[0] = 0xc5;
3268
3269 /* Check the REX.R bit. */
3270 r = (i.rex & REX_R) ? 0 : 1;
3271 i.vex.bytes[1] = (r << 7
3272 | register_specifier << 3
3273 | vector_length << 2
3274 | implied_prefix);
3275 }
3276 else
3277 {
3278 /* 3-byte VEX prefix. */
3279 unsigned int m, w;
3280
f88c9eb0 3281 i.vex.length = 3;
f88c9eb0 3282
7f399153 3283 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3284 {
7f399153
L
3285 case VEX0F:
3286 m = 0x1;
80de6e00 3287 i.vex.bytes[0] = 0xc4;
7f399153
L
3288 break;
3289 case VEX0F38:
3290 m = 0x2;
80de6e00 3291 i.vex.bytes[0] = 0xc4;
7f399153
L
3292 break;
3293 case VEX0F3A:
3294 m = 0x3;
80de6e00 3295 i.vex.bytes[0] = 0xc4;
7f399153
L
3296 break;
3297 case XOP08:
5dd85c99
SP
3298 m = 0x8;
3299 i.vex.bytes[0] = 0x8f;
7f399153
L
3300 break;
3301 case XOP09:
f88c9eb0
SP
3302 m = 0x9;
3303 i.vex.bytes[0] = 0x8f;
7f399153
L
3304 break;
3305 case XOP0A:
f88c9eb0
SP
3306 m = 0xa;
3307 i.vex.bytes[0] = 0x8f;
7f399153
L
3308 break;
3309 default:
3310 abort ();
f88c9eb0 3311 }
c0f3af97 3312
c0f3af97
L
3313 /* The high 3 bits of the second VEX byte are 1's compliment
3314 of RXB bits from REX. */
3315 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3316
3317 /* Check the REX.W bit. */
3318 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3319 if (i.tm.opcode_modifier.vexw == VEXW1)
3320 w = 1;
c0f3af97
L
3321
3322 i.vex.bytes[2] = (w << 7
3323 | register_specifier << 3
3324 | vector_length << 2
3325 | implied_prefix);
3326 }
3327}
3328
43234a1e
L
3329/* Build the EVEX prefix. */
3330
3331static void
3332build_evex_prefix (void)
3333{
3334 unsigned int register_specifier;
3335 unsigned int implied_prefix;
3336 unsigned int m, w;
3337 rex_byte vrex_used = 0;
3338
3339 /* Check register specifier. */
3340 if (i.vex.register_specifier)
3341 {
3342 gas_assert ((i.vrex & REX_X) == 0);
3343
3344 register_specifier = i.vex.register_specifier->reg_num;
3345 if ((i.vex.register_specifier->reg_flags & RegRex))
3346 register_specifier += 8;
3347 /* The upper 16 registers are encoded in the fourth byte of the
3348 EVEX prefix. */
3349 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3350 i.vex.bytes[3] = 0x8;
3351 register_specifier = ~register_specifier & 0xf;
3352 }
3353 else
3354 {
3355 register_specifier = 0xf;
3356
3357 /* Encode upper 16 vector index register in the fourth byte of
3358 the EVEX prefix. */
3359 if (!(i.vrex & REX_X))
3360 i.vex.bytes[3] = 0x8;
3361 else
3362 vrex_used |= REX_X;
3363 }
3364
3365 switch ((i.tm.base_opcode >> 8) & 0xff)
3366 {
3367 case 0:
3368 implied_prefix = 0;
3369 break;
3370 case DATA_PREFIX_OPCODE:
3371 implied_prefix = 1;
3372 break;
3373 case REPE_PREFIX_OPCODE:
3374 implied_prefix = 2;
3375 break;
3376 case REPNE_PREFIX_OPCODE:
3377 implied_prefix = 3;
3378 break;
3379 default:
3380 abort ();
3381 }
3382
3383 /* 4 byte EVEX prefix. */
3384 i.vex.length = 4;
3385 i.vex.bytes[0] = 0x62;
3386
3387 /* mmmm bits. */
3388 switch (i.tm.opcode_modifier.vexopcode)
3389 {
3390 case VEX0F:
3391 m = 1;
3392 break;
3393 case VEX0F38:
3394 m = 2;
3395 break;
3396 case VEX0F3A:
3397 m = 3;
3398 break;
3399 default:
3400 abort ();
3401 break;
3402 }
3403
3404 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3405 bits from REX. */
3406 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3407
3408 /* The fifth bit of the second EVEX byte is 1's compliment of the
3409 REX_R bit in VREX. */
3410 if (!(i.vrex & REX_R))
3411 i.vex.bytes[1] |= 0x10;
3412 else
3413 vrex_used |= REX_R;
3414
3415 if ((i.reg_operands + i.imm_operands) == i.operands)
3416 {
3417 /* When all operands are registers, the REX_X bit in REX is not
3418 used. We reuse it to encode the upper 16 registers, which is
3419 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3420 as 1's compliment. */
3421 if ((i.vrex & REX_B))
3422 {
3423 vrex_used |= REX_B;
3424 i.vex.bytes[1] &= ~0x40;
3425 }
3426 }
3427
3428 /* EVEX instructions shouldn't need the REX prefix. */
3429 i.vrex &= ~vrex_used;
3430 gas_assert (i.vrex == 0);
3431
3432 /* Check the REX.W bit. */
3433 w = (i.rex & REX_W) ? 1 : 0;
3434 if (i.tm.opcode_modifier.vexw)
3435 {
3436 if (i.tm.opcode_modifier.vexw == VEXW1)
3437 w = 1;
3438 }
3439 /* If w is not set it means we are dealing with WIG instruction. */
3440 else if (!w)
3441 {
3442 if (evexwig == evexw1)
3443 w = 1;
3444 }
3445
3446 /* Encode the U bit. */
3447 implied_prefix |= 0x4;
3448
3449 /* The third byte of the EVEX prefix. */
3450 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3451
3452 /* The fourth byte of the EVEX prefix. */
3453 /* The zeroing-masking bit. */
3454 if (i.mask && i.mask->zeroing)
3455 i.vex.bytes[3] |= 0x80;
3456
3457 /* Don't always set the broadcast bit if there is no RC. */
3458 if (!i.rounding)
3459 {
3460 /* Encode the vector length. */
3461 unsigned int vec_length;
3462
3463 switch (i.tm.opcode_modifier.evex)
3464 {
3465 case EVEXLIG: /* LL' is ignored */
3466 vec_length = evexlig << 5;
3467 break;
3468 case EVEX128:
3469 vec_length = 0 << 5;
3470 break;
3471 case EVEX256:
3472 vec_length = 1 << 5;
3473 break;
3474 case EVEX512:
3475 vec_length = 2 << 5;
3476 break;
3477 default:
3478 abort ();
3479 break;
3480 }
3481 i.vex.bytes[3] |= vec_length;
3482 /* Encode the broadcast bit. */
3483 if (i.broadcast)
3484 i.vex.bytes[3] |= 0x10;
3485 }
3486 else
3487 {
3488 if (i.rounding->type != saeonly)
3489 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3490 else
d3d3c6db 3491 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3492 }
3493
3494 if (i.mask && i.mask->mask)
3495 i.vex.bytes[3] |= i.mask->mask->reg_num;
3496}
3497
65da13b5
L
3498static void
3499process_immext (void)
3500{
3501 expressionS *exp;
3502
4c692bc7
JB
3503 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3504 && i.operands > 0)
65da13b5 3505 {
4c692bc7
JB
3506 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3507 with an opcode suffix which is coded in the same place as an
3508 8-bit immediate field would be.
3509 Here we check those operands and remove them afterwards. */
65da13b5
L
3510 unsigned int x;
3511
3512 for (x = 0; x < i.operands; x++)
4c692bc7 3513 if (register_number (i.op[x].regs) != x)
65da13b5 3514 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3515 register_prefix, i.op[x].regs->reg_name, x + 1,
3516 i.tm.name);
3517
3518 i.operands = 0;
65da13b5
L
3519 }
3520
9916071f
AP
3521 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3522 {
3523 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3524 suffix which is coded in the same place as an 8-bit immediate
3525 field would be.
3526 Here we check those operands and remove them afterwards. */
3527 unsigned int x;
3528
3529 if (i.operands != 3)
3530 abort();
3531
3532 for (x = 0; x < 2; x++)
3533 if (register_number (i.op[x].regs) != x)
3534 goto bad_register_operand;
3535
3536 /* Check for third operand for mwaitx/monitorx insn. */
3537 if (register_number (i.op[x].regs)
3538 != (x + (i.tm.extension_opcode == 0xfb)))
3539 {
3540bad_register_operand:
3541 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3542 register_prefix, i.op[x].regs->reg_name, x+1,
3543 i.tm.name);
3544 }
3545
3546 i.operands = 0;
3547 }
3548
c0f3af97 3549 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3550 which is coded in the same place as an 8-bit immediate field
3551 would be. Here we fake an 8-bit immediate operand from the
3552 opcode suffix stored in tm.extension_opcode.
3553
c1e679ec 3554 AVX instructions also use this encoding, for some of
c0f3af97 3555 3 argument instructions. */
65da13b5 3556
43234a1e 3557 gas_assert (i.imm_operands <= 1
7ab9ffdd 3558 && (i.operands <= 2
43234a1e
L
3559 || ((i.tm.opcode_modifier.vex
3560 || i.tm.opcode_modifier.evex)
7ab9ffdd 3561 && i.operands <= 4)));
65da13b5
L
3562
3563 exp = &im_expressions[i.imm_operands++];
3564 i.op[i.operands].imms = exp;
3565 i.types[i.operands] = imm8;
3566 i.operands++;
3567 exp->X_op = O_constant;
3568 exp->X_add_number = i.tm.extension_opcode;
3569 i.tm.extension_opcode = None;
3570}
3571
42164a71
L
3572
3573static int
3574check_hle (void)
3575{
3576 switch (i.tm.opcode_modifier.hleprefixok)
3577 {
3578 default:
3579 abort ();
82c2def5 3580 case HLEPrefixNone:
165de32a
L
3581 as_bad (_("invalid instruction `%s' after `%s'"),
3582 i.tm.name, i.hle_prefix);
42164a71 3583 return 0;
82c2def5 3584 case HLEPrefixLock:
42164a71
L
3585 if (i.prefix[LOCK_PREFIX])
3586 return 1;
165de32a 3587 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3588 return 0;
82c2def5 3589 case HLEPrefixAny:
42164a71 3590 return 1;
82c2def5 3591 case HLEPrefixRelease:
42164a71
L
3592 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3593 {
3594 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3595 i.tm.name);
3596 return 0;
3597 }
3598 if (i.mem_operands == 0
3599 || !operand_type_check (i.types[i.operands - 1], anymem))
3600 {
3601 as_bad (_("memory destination needed for instruction `%s'"
3602 " after `xrelease'"), i.tm.name);
3603 return 0;
3604 }
3605 return 1;
3606 }
3607}
3608
252b5132
RH
3609/* This is the guts of the machine-dependent assembler. LINE points to a
3610 machine dependent instruction. This function is supposed to emit
3611 the frags/bytes it assembles to. */
3612
3613void
65da13b5 3614md_assemble (char *line)
252b5132 3615{
40fb9820 3616 unsigned int j;
83b16ac6 3617 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3618 const insn_template *t;
252b5132 3619
47926f60 3620 /* Initialize globals. */
252b5132
RH
3621 memset (&i, '\0', sizeof (i));
3622 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3623 i.reloc[j] = NO_RELOC;
252b5132
RH
3624 memset (disp_expressions, '\0', sizeof (disp_expressions));
3625 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3626 save_stack_p = save_stack;
252b5132
RH
3627
3628 /* First parse an instruction mnemonic & call i386_operand for the operands.
3629 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3630 start of a (possibly prefixed) mnemonic. */
252b5132 3631
29b0f896
AM
3632 line = parse_insn (line, mnemonic);
3633 if (line == NULL)
3634 return;
83b16ac6 3635 mnem_suffix = i.suffix;
252b5132 3636
29b0f896 3637 line = parse_operands (line, mnemonic);
ee86248c 3638 this_operand = -1;
8325cc63
JB
3639 xfree (i.memop1_string);
3640 i.memop1_string = NULL;
29b0f896
AM
3641 if (line == NULL)
3642 return;
252b5132 3643
29b0f896
AM
3644 /* Now we've parsed the mnemonic into a set of templates, and have the
3645 operands at hand. */
3646
3647 /* All intel opcodes have reversed operands except for "bound" and
3648 "enter". We also don't reverse intersegment "jmp" and "call"
3649 instructions with 2 immediate operands so that the immediate segment
050dfa73 3650 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3651 if (intel_syntax
3652 && i.operands > 1
29b0f896 3653 && (strcmp (mnemonic, "bound") != 0)
30123838 3654 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3655 && !(operand_type_check (i.types[0], imm)
3656 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3657 swap_operands ();
3658
ec56d5c0
JB
3659 /* The order of the immediates should be reversed
3660 for 2 immediates extrq and insertq instructions */
3661 if (i.imm_operands == 2
3662 && (strcmp (mnemonic, "extrq") == 0
3663 || strcmp (mnemonic, "insertq") == 0))
3664 swap_2_operands (0, 1);
3665
29b0f896
AM
3666 if (i.imm_operands)
3667 optimize_imm ();
3668
b300c311
L
3669 /* Don't optimize displacement for movabs since it only takes 64bit
3670 displacement. */
3671 if (i.disp_operands
a501d77e 3672 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3673 && (flag_code != CODE_64BIT
3674 || strcmp (mnemonic, "movabs") != 0))
3675 optimize_disp ();
29b0f896
AM
3676
3677 /* Next, we find a template that matches the given insn,
3678 making sure the overlap of the given operands types is consistent
3679 with the template operand types. */
252b5132 3680
83b16ac6 3681 if (!(t = match_template (mnem_suffix)))
29b0f896 3682 return;
252b5132 3683
7bab8ab5 3684 if (sse_check != check_none
81f8a913 3685 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3686 && (i.tm.cpu_flags.bitfield.cpusse
3687 || i.tm.cpu_flags.bitfield.cpusse2
3688 || i.tm.cpu_flags.bitfield.cpusse3
3689 || i.tm.cpu_flags.bitfield.cpussse3
3690 || i.tm.cpu_flags.bitfield.cpusse4_1
3691 || i.tm.cpu_flags.bitfield.cpusse4_2))
3692 {
7bab8ab5 3693 (sse_check == check_warning
daf50ae7
L
3694 ? as_warn
3695 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3696 }
3697
321fd21e
L
3698 /* Zap movzx and movsx suffix. The suffix has been set from
3699 "word ptr" or "byte ptr" on the source operand in Intel syntax
3700 or extracted from mnemonic in AT&T syntax. But we'll use
3701 the destination register to choose the suffix for encoding. */
3702 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3703 {
321fd21e
L
3704 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3705 there is no suffix, the default will be byte extension. */
3706 if (i.reg_operands != 2
3707 && !i.suffix
7ab9ffdd 3708 && intel_syntax)
321fd21e
L
3709 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3710
3711 i.suffix = 0;
cd61ebfe 3712 }
24eab124 3713
40fb9820 3714 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3715 if (!add_prefix (FWAIT_OPCODE))
3716 return;
252b5132 3717
d5de92cf
L
3718 /* Check if REP prefix is OK. */
3719 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3720 {
3721 as_bad (_("invalid instruction `%s' after `%s'"),
3722 i.tm.name, i.rep_prefix);
3723 return;
3724 }
3725
c1ba0266
L
3726 /* Check for lock without a lockable instruction. Destination operand
3727 must be memory unless it is xchg (0x86). */
c32fa91d
L
3728 if (i.prefix[LOCK_PREFIX]
3729 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3730 || i.mem_operands == 0
3731 || (i.tm.base_opcode != 0x86
3732 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3733 {
3734 as_bad (_("expecting lockable instruction after `lock'"));
3735 return;
3736 }
3737
42164a71 3738 /* Check if HLE prefix is OK. */
165de32a 3739 if (i.hle_prefix && !check_hle ())
42164a71
L
3740 return;
3741
7e8b059b
L
3742 /* Check BND prefix. */
3743 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3744 as_bad (_("expecting valid branch instruction after `bnd'"));
3745
04ef582a 3746 /* Check NOTRACK prefix. */
9fef80d6
L
3747 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3748 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 3749
327e8c42
JB
3750 if (i.tm.cpu_flags.bitfield.cpumpx)
3751 {
3752 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3753 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3754 else if (flag_code != CODE_16BIT
3755 ? i.prefix[ADDR_PREFIX]
3756 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3757 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3758 }
7e8b059b
L
3759
3760 /* Insert BND prefix. */
3761 if (add_bnd_prefix
3762 && i.tm.opcode_modifier.bndprefixok
3763 && !i.prefix[BND_PREFIX])
3764 add_prefix (BND_PREFIX_OPCODE);
3765
29b0f896 3766 /* Check string instruction segment overrides. */
40fb9820 3767 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3768 {
3769 if (!check_string ())
5dd0794d 3770 return;
fc0763e6 3771 i.disp_operands = 0;
29b0f896 3772 }
5dd0794d 3773
29b0f896
AM
3774 if (!process_suffix ())
3775 return;
e413e4e9 3776
bc0844ae
L
3777 /* Update operand types. */
3778 for (j = 0; j < i.operands; j++)
3779 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3780
29b0f896
AM
3781 /* Make still unresolved immediate matches conform to size of immediate
3782 given in i.suffix. */
3783 if (!finalize_imm ())
3784 return;
252b5132 3785
40fb9820 3786 if (i.types[0].bitfield.imm1)
29b0f896 3787 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3788
9afe6eb8
L
3789 /* We only need to check those implicit registers for instructions
3790 with 3 operands or less. */
3791 if (i.operands <= 3)
3792 for (j = 0; j < i.operands; j++)
3793 if (i.types[j].bitfield.inoutportreg
3794 || i.types[j].bitfield.shiftcount
3795 || i.types[j].bitfield.acc
3796 || i.types[j].bitfield.floatacc)
3797 i.reg_operands--;
40fb9820 3798
c0f3af97
L
3799 /* ImmExt should be processed after SSE2AVX. */
3800 if (!i.tm.opcode_modifier.sse2avx
3801 && i.tm.opcode_modifier.immext)
65da13b5 3802 process_immext ();
252b5132 3803
29b0f896
AM
3804 /* For insns with operands there are more diddles to do to the opcode. */
3805 if (i.operands)
3806 {
3807 if (!process_operands ())
3808 return;
3809 }
40fb9820 3810 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3811 {
3812 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3813 as_warn (_("translating to `%sp'"), i.tm.name);
3814 }
252b5132 3815
9e5e5283
L
3816 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3817 {
3818 if (flag_code == CODE_16BIT)
3819 {
3820 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3821 i.tm.name);
3822 return;
3823 }
c0f3af97 3824
9e5e5283
L
3825 if (i.tm.opcode_modifier.vex)
3826 build_vex_prefix (t);
3827 else
3828 build_evex_prefix ();
3829 }
43234a1e 3830
5dd85c99
SP
3831 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3832 instructions may define INT_OPCODE as well, so avoid this corner
3833 case for those instructions that use MODRM. */
3834 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3835 && !i.tm.opcode_modifier.modrm
3836 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3837 {
3838 i.tm.base_opcode = INT3_OPCODE;
3839 i.imm_operands = 0;
3840 }
252b5132 3841
40fb9820
L
3842 if ((i.tm.opcode_modifier.jump
3843 || i.tm.opcode_modifier.jumpbyte
3844 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3845 && i.op[0].disps->X_op == O_constant)
3846 {
3847 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3848 the absolute address given by the constant. Since ix86 jumps and
3849 calls are pc relative, we need to generate a reloc. */
3850 i.op[0].disps->X_add_symbol = &abs_symbol;
3851 i.op[0].disps->X_op = O_symbol;
3852 }
252b5132 3853
40fb9820 3854 if (i.tm.opcode_modifier.rex64)
161a04f6 3855 i.rex |= REX_W;
252b5132 3856
29b0f896
AM
3857 /* For 8 bit registers we need an empty rex prefix. Also if the
3858 instruction already has a prefix, we need to convert old
3859 registers to new ones. */
773f551c 3860
40fb9820 3861 if ((i.types[0].bitfield.reg8
29b0f896 3862 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3863 || (i.types[1].bitfield.reg8
29b0f896 3864 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3865 || ((i.types[0].bitfield.reg8
3866 || i.types[1].bitfield.reg8)
29b0f896
AM
3867 && i.rex != 0))
3868 {
3869 int x;
726c5dcd 3870
29b0f896
AM
3871 i.rex |= REX_OPCODE;
3872 for (x = 0; x < 2; x++)
3873 {
3874 /* Look for 8 bit operand that uses old registers. */
40fb9820 3875 if (i.types[x].bitfield.reg8
29b0f896 3876 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3877 {
29b0f896
AM
3878 /* In case it is "hi" register, give up. */
3879 if (i.op[x].regs->reg_num > 3)
a540244d 3880 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3881 "instruction requiring REX prefix."),
a540244d 3882 register_prefix, i.op[x].regs->reg_name);
773f551c 3883
29b0f896
AM
3884 /* Otherwise it is equivalent to the extended register.
3885 Since the encoding doesn't change this is merely
3886 cosmetic cleanup for debug output. */
3887
3888 i.op[x].regs = i.op[x].regs + 8;
773f551c 3889 }
29b0f896
AM
3890 }
3891 }
773f551c 3892
7ab9ffdd 3893 if (i.rex != 0)
29b0f896
AM
3894 add_prefix (REX_OPCODE | i.rex);
3895
3896 /* We are ready to output the insn. */
3897 output_insn ();
3898}
3899
3900static char *
e3bb37b5 3901parse_insn (char *line, char *mnemonic)
29b0f896
AM
3902{
3903 char *l = line;
3904 char *token_start = l;
3905 char *mnem_p;
5c6af06e 3906 int supported;
d3ce72d0 3907 const insn_template *t;
b6169b20 3908 char *dot_p = NULL;
29b0f896 3909
29b0f896
AM
3910 while (1)
3911 {
3912 mnem_p = mnemonic;
3913 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3914 {
b6169b20
L
3915 if (*mnem_p == '.')
3916 dot_p = mnem_p;
29b0f896
AM
3917 mnem_p++;
3918 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3919 {
29b0f896
AM
3920 as_bad (_("no such instruction: `%s'"), token_start);
3921 return NULL;
3922 }
3923 l++;
3924 }
3925 if (!is_space_char (*l)
3926 && *l != END_OF_INSN
e44823cf
JB
3927 && (intel_syntax
3928 || (*l != PREFIX_SEPARATOR
3929 && *l != ',')))
29b0f896
AM
3930 {
3931 as_bad (_("invalid character %s in mnemonic"),
3932 output_invalid (*l));
3933 return NULL;
3934 }
3935 if (token_start == l)
3936 {
e44823cf 3937 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3938 as_bad (_("expecting prefix; got nothing"));
3939 else
3940 as_bad (_("expecting mnemonic; got nothing"));
3941 return NULL;
3942 }
45288df1 3943
29b0f896 3944 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3945 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3946
29b0f896
AM
3947 if (*l != END_OF_INSN
3948 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3949 && current_templates
40fb9820 3950 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3951 {
c6fb90c8 3952 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3953 {
3954 as_bad ((flag_code != CODE_64BIT
3955 ? _("`%s' is only supported in 64-bit mode")
3956 : _("`%s' is not supported in 64-bit mode")),
3957 current_templates->start->name);
3958 return NULL;
3959 }
29b0f896
AM
3960 /* If we are in 16-bit mode, do not allow addr16 or data16.
3961 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3962 if ((current_templates->start->opcode_modifier.size16
3963 || current_templates->start->opcode_modifier.size32)
29b0f896 3964 && flag_code != CODE_64BIT
40fb9820 3965 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3966 ^ (flag_code == CODE_16BIT)))
3967 {
3968 as_bad (_("redundant %s prefix"),
3969 current_templates->start->name);
3970 return NULL;
45288df1 3971 }
86fa6981 3972 if (current_templates->start->opcode_length == 0)
29b0f896 3973 {
86fa6981
L
3974 /* Handle pseudo prefixes. */
3975 switch (current_templates->start->base_opcode)
3976 {
3977 case 0x0:
3978 /* {disp8} */
3979 i.disp_encoding = disp_encoding_8bit;
3980 break;
3981 case 0x1:
3982 /* {disp32} */
3983 i.disp_encoding = disp_encoding_32bit;
3984 break;
3985 case 0x2:
3986 /* {load} */
3987 i.dir_encoding = dir_encoding_load;
3988 break;
3989 case 0x3:
3990 /* {store} */
3991 i.dir_encoding = dir_encoding_store;
3992 break;
3993 case 0x4:
3994 /* {vex2} */
3995 i.vec_encoding = vex_encoding_vex2;
3996 break;
3997 case 0x5:
3998 /* {vex3} */
3999 i.vec_encoding = vex_encoding_vex3;
4000 break;
4001 case 0x6:
4002 /* {evex} */
4003 i.vec_encoding = vex_encoding_evex;
4004 break;
4005 default:
4006 abort ();
4007 }
4008 }
4009 else
4010 {
4011 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4012 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4013 {
4e9ac44a
L
4014 case PREFIX_EXIST:
4015 return NULL;
4016 case PREFIX_DS:
4017 if (current_templates->start->cpu_flags.bitfield.cpucet)
4018 i.notrack_prefix = current_templates->start->name;
4019 break;
4020 case PREFIX_REP:
4021 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4022 i.hle_prefix = current_templates->start->name;
4023 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4024 i.bnd_prefix = current_templates->start->name;
4025 else
4026 i.rep_prefix = current_templates->start->name;
4027 break;
4028 default:
4029 break;
86fa6981 4030 }
29b0f896
AM
4031 }
4032 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4033 token_start = ++l;
4034 }
4035 else
4036 break;
4037 }
45288df1 4038
30a55f88 4039 if (!current_templates)
b6169b20 4040 {
f8a5c266
L
4041 /* Check if we should swap operand or force 32bit displacement in
4042 encoding. */
30a55f88 4043 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4044 i.dir_encoding = dir_encoding_store;
8d63c93e 4045 else if (mnem_p - 3 == dot_p
a501d77e
L
4046 && dot_p[1] == 'd'
4047 && dot_p[2] == '8')
4048 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4049 else if (mnem_p - 4 == dot_p
f8a5c266
L
4050 && dot_p[1] == 'd'
4051 && dot_p[2] == '3'
4052 && dot_p[3] == '2')
a501d77e 4053 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4054 else
4055 goto check_suffix;
4056 mnem_p = dot_p;
4057 *dot_p = '\0';
d3ce72d0 4058 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4059 }
4060
29b0f896
AM
4061 if (!current_templates)
4062 {
b6169b20 4063check_suffix:
29b0f896
AM
4064 /* See if we can get a match by trimming off a suffix. */
4065 switch (mnem_p[-1])
4066 {
4067 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4068 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4069 i.suffix = SHORT_MNEM_SUFFIX;
4070 else
1a0670f3 4071 /* Fall through. */
29b0f896
AM
4072 case BYTE_MNEM_SUFFIX:
4073 case QWORD_MNEM_SUFFIX:
4074 i.suffix = mnem_p[-1];
4075 mnem_p[-1] = '\0';
d3ce72d0
NC
4076 current_templates = (const templates *) hash_find (op_hash,
4077 mnemonic);
29b0f896
AM
4078 break;
4079 case SHORT_MNEM_SUFFIX:
4080 case LONG_MNEM_SUFFIX:
4081 if (!intel_syntax)
4082 {
4083 i.suffix = mnem_p[-1];
4084 mnem_p[-1] = '\0';
d3ce72d0
NC
4085 current_templates = (const templates *) hash_find (op_hash,
4086 mnemonic);
29b0f896
AM
4087 }
4088 break;
252b5132 4089
29b0f896
AM
4090 /* Intel Syntax. */
4091 case 'd':
4092 if (intel_syntax)
4093 {
9306ca4a 4094 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4095 i.suffix = SHORT_MNEM_SUFFIX;
4096 else
4097 i.suffix = LONG_MNEM_SUFFIX;
4098 mnem_p[-1] = '\0';
d3ce72d0
NC
4099 current_templates = (const templates *) hash_find (op_hash,
4100 mnemonic);
29b0f896
AM
4101 }
4102 break;
4103 }
4104 if (!current_templates)
4105 {
4106 as_bad (_("no such instruction: `%s'"), token_start);
4107 return NULL;
4108 }
4109 }
252b5132 4110
40fb9820
L
4111 if (current_templates->start->opcode_modifier.jump
4112 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4113 {
4114 /* Check for a branch hint. We allow ",pt" and ",pn" for
4115 predict taken and predict not taken respectively.
4116 I'm not sure that branch hints actually do anything on loop
4117 and jcxz insns (JumpByte) for current Pentium4 chips. They
4118 may work in the future and it doesn't hurt to accept them
4119 now. */
4120 if (l[0] == ',' && l[1] == 'p')
4121 {
4122 if (l[2] == 't')
4123 {
4124 if (!add_prefix (DS_PREFIX_OPCODE))
4125 return NULL;
4126 l += 3;
4127 }
4128 else if (l[2] == 'n')
4129 {
4130 if (!add_prefix (CS_PREFIX_OPCODE))
4131 return NULL;
4132 l += 3;
4133 }
4134 }
4135 }
4136 /* Any other comma loses. */
4137 if (*l == ',')
4138 {
4139 as_bad (_("invalid character %s in mnemonic"),
4140 output_invalid (*l));
4141 return NULL;
4142 }
252b5132 4143
29b0f896 4144 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4145 supported = 0;
4146 for (t = current_templates->start; t < current_templates->end; ++t)
4147 {
c0f3af97
L
4148 supported |= cpu_flags_match (t);
4149 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4150 goto skip;
5c6af06e 4151 }
3629bb00 4152
c0f3af97 4153 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4154 {
4155 as_bad (flag_code == CODE_64BIT
4156 ? _("`%s' is not supported in 64-bit mode")
4157 : _("`%s' is only supported in 64-bit mode"),
4158 current_templates->start->name);
4159 return NULL;
4160 }
c0f3af97 4161 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4162 {
3629bb00 4163 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4164 current_templates->start->name,
41aacd83 4165 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4166 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4167 return NULL;
29b0f896 4168 }
3629bb00
L
4169
4170skip:
4171 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4172 && (flag_code != CODE_16BIT))
29b0f896
AM
4173 {
4174 as_warn (_("use .code16 to ensure correct addressing mode"));
4175 }
252b5132 4176
29b0f896
AM
4177 return l;
4178}
252b5132 4179
29b0f896 4180static char *
e3bb37b5 4181parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4182{
4183 char *token_start;
3138f287 4184
29b0f896
AM
4185 /* 1 if operand is pending after ','. */
4186 unsigned int expecting_operand = 0;
252b5132 4187
29b0f896
AM
4188 /* Non-zero if operand parens not balanced. */
4189 unsigned int paren_not_balanced;
4190
4191 while (*l != END_OF_INSN)
4192 {
4193 /* Skip optional white space before operand. */
4194 if (is_space_char (*l))
4195 ++l;
d02603dc 4196 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4197 {
4198 as_bad (_("invalid character %s before operand %d"),
4199 output_invalid (*l),
4200 i.operands + 1);
4201 return NULL;
4202 }
d02603dc 4203 token_start = l; /* After white space. */
29b0f896
AM
4204 paren_not_balanced = 0;
4205 while (paren_not_balanced || *l != ',')
4206 {
4207 if (*l == END_OF_INSN)
4208 {
4209 if (paren_not_balanced)
4210 {
4211 if (!intel_syntax)
4212 as_bad (_("unbalanced parenthesis in operand %d."),
4213 i.operands + 1);
4214 else
4215 as_bad (_("unbalanced brackets in operand %d."),
4216 i.operands + 1);
4217 return NULL;
4218 }
4219 else
4220 break; /* we are done */
4221 }
d02603dc 4222 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4223 {
4224 as_bad (_("invalid character %s in operand %d"),
4225 output_invalid (*l),
4226 i.operands + 1);
4227 return NULL;
4228 }
4229 if (!intel_syntax)
4230 {
4231 if (*l == '(')
4232 ++paren_not_balanced;
4233 if (*l == ')')
4234 --paren_not_balanced;
4235 }
4236 else
4237 {
4238 if (*l == '[')
4239 ++paren_not_balanced;
4240 if (*l == ']')
4241 --paren_not_balanced;
4242 }
4243 l++;
4244 }
4245 if (l != token_start)
4246 { /* Yes, we've read in another operand. */
4247 unsigned int operand_ok;
4248 this_operand = i.operands++;
4249 if (i.operands > MAX_OPERANDS)
4250 {
4251 as_bad (_("spurious operands; (%d operands/instruction max)"),
4252 MAX_OPERANDS);
4253 return NULL;
4254 }
9d46ce34 4255 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4256 /* Now parse operand adding info to 'i' as we go along. */
4257 END_STRING_AND_SAVE (l);
4258
4259 if (intel_syntax)
4260 operand_ok =
4261 i386_intel_operand (token_start,
4262 intel_float_operand (mnemonic));
4263 else
a7619375 4264 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4265
4266 RESTORE_END_STRING (l);
4267 if (!operand_ok)
4268 return NULL;
4269 }
4270 else
4271 {
4272 if (expecting_operand)
4273 {
4274 expecting_operand_after_comma:
4275 as_bad (_("expecting operand after ','; got nothing"));
4276 return NULL;
4277 }
4278 if (*l == ',')
4279 {
4280 as_bad (_("expecting operand before ','; got nothing"));
4281 return NULL;
4282 }
4283 }
7f3f1ea2 4284
29b0f896
AM
4285 /* Now *l must be either ',' or END_OF_INSN. */
4286 if (*l == ',')
4287 {
4288 if (*++l == END_OF_INSN)
4289 {
4290 /* Just skip it, if it's \n complain. */
4291 goto expecting_operand_after_comma;
4292 }
4293 expecting_operand = 1;
4294 }
4295 }
4296 return l;
4297}
7f3f1ea2 4298
050dfa73 4299static void
4d456e3d 4300swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4301{
4302 union i386_op temp_op;
40fb9820 4303 i386_operand_type temp_type;
050dfa73 4304 enum bfd_reloc_code_real temp_reloc;
4eed87de 4305
050dfa73
MM
4306 temp_type = i.types[xchg2];
4307 i.types[xchg2] = i.types[xchg1];
4308 i.types[xchg1] = temp_type;
4309 temp_op = i.op[xchg2];
4310 i.op[xchg2] = i.op[xchg1];
4311 i.op[xchg1] = temp_op;
4312 temp_reloc = i.reloc[xchg2];
4313 i.reloc[xchg2] = i.reloc[xchg1];
4314 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4315
4316 if (i.mask)
4317 {
4318 if (i.mask->operand == xchg1)
4319 i.mask->operand = xchg2;
4320 else if (i.mask->operand == xchg2)
4321 i.mask->operand = xchg1;
4322 }
4323 if (i.broadcast)
4324 {
4325 if (i.broadcast->operand == xchg1)
4326 i.broadcast->operand = xchg2;
4327 else if (i.broadcast->operand == xchg2)
4328 i.broadcast->operand = xchg1;
4329 }
4330 if (i.rounding)
4331 {
4332 if (i.rounding->operand == xchg1)
4333 i.rounding->operand = xchg2;
4334 else if (i.rounding->operand == xchg2)
4335 i.rounding->operand = xchg1;
4336 }
050dfa73
MM
4337}
4338
29b0f896 4339static void
e3bb37b5 4340swap_operands (void)
29b0f896 4341{
b7c61d9a 4342 switch (i.operands)
050dfa73 4343 {
c0f3af97 4344 case 5:
b7c61d9a 4345 case 4:
4d456e3d 4346 swap_2_operands (1, i.operands - 2);
1a0670f3 4347 /* Fall through. */
b7c61d9a
L
4348 case 3:
4349 case 2:
4d456e3d 4350 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4351 break;
4352 default:
4353 abort ();
29b0f896 4354 }
29b0f896
AM
4355
4356 if (i.mem_operands == 2)
4357 {
4358 const seg_entry *temp_seg;
4359 temp_seg = i.seg[0];
4360 i.seg[0] = i.seg[1];
4361 i.seg[1] = temp_seg;
4362 }
4363}
252b5132 4364
29b0f896
AM
4365/* Try to ensure constant immediates are represented in the smallest
4366 opcode possible. */
4367static void
e3bb37b5 4368optimize_imm (void)
29b0f896
AM
4369{
4370 char guess_suffix = 0;
4371 int op;
252b5132 4372
29b0f896
AM
4373 if (i.suffix)
4374 guess_suffix = i.suffix;
4375 else if (i.reg_operands)
4376 {
4377 /* Figure out a suffix from the last register operand specified.
4378 We can't do this properly yet, ie. excluding InOutPortReg,
4379 but the following works for instructions with immediates.
4380 In any case, we can't set i.suffix yet. */
4381 for (op = i.operands; --op >= 0;)
40fb9820 4382 if (i.types[op].bitfield.reg8)
7ab9ffdd 4383 {
40fb9820
L
4384 guess_suffix = BYTE_MNEM_SUFFIX;
4385 break;
4386 }
4387 else if (i.types[op].bitfield.reg16)
252b5132 4388 {
40fb9820
L
4389 guess_suffix = WORD_MNEM_SUFFIX;
4390 break;
4391 }
4392 else if (i.types[op].bitfield.reg32)
4393 {
4394 guess_suffix = LONG_MNEM_SUFFIX;
4395 break;
4396 }
4397 else if (i.types[op].bitfield.reg64)
4398 {
4399 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4400 break;
252b5132 4401 }
29b0f896
AM
4402 }
4403 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4404 guess_suffix = WORD_MNEM_SUFFIX;
4405
4406 for (op = i.operands; --op >= 0;)
40fb9820 4407 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4408 {
4409 switch (i.op[op].imms->X_op)
252b5132 4410 {
29b0f896
AM
4411 case O_constant:
4412 /* If a suffix is given, this operand may be shortened. */
4413 switch (guess_suffix)
252b5132 4414 {
29b0f896 4415 case LONG_MNEM_SUFFIX:
40fb9820
L
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4418 break;
4419 case WORD_MNEM_SUFFIX:
40fb9820
L
4420 i.types[op].bitfield.imm16 = 1;
4421 i.types[op].bitfield.imm32 = 1;
4422 i.types[op].bitfield.imm32s = 1;
4423 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4424 break;
4425 case BYTE_MNEM_SUFFIX:
40fb9820
L
4426 i.types[op].bitfield.imm8 = 1;
4427 i.types[op].bitfield.imm8s = 1;
4428 i.types[op].bitfield.imm16 = 1;
4429 i.types[op].bitfield.imm32 = 1;
4430 i.types[op].bitfield.imm32s = 1;
4431 i.types[op].bitfield.imm64 = 1;
29b0f896 4432 break;
252b5132 4433 }
252b5132 4434
29b0f896
AM
4435 /* If this operand is at most 16 bits, convert it
4436 to a signed 16 bit number before trying to see
4437 whether it will fit in an even smaller size.
4438 This allows a 16-bit operand such as $0xffe0 to
4439 be recognised as within Imm8S range. */
40fb9820 4440 if ((i.types[op].bitfield.imm16)
29b0f896 4441 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4442 {
29b0f896
AM
4443 i.op[op].imms->X_add_number =
4444 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4445 }
a28def75
L
4446#ifdef BFD64
4447 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4448 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4449 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4450 == 0))
4451 {
4452 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4453 ^ ((offsetT) 1 << 31))
4454 - ((offsetT) 1 << 31));
4455 }
a28def75 4456#endif
40fb9820 4457 i.types[op]
c6fb90c8
L
4458 = operand_type_or (i.types[op],
4459 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4460
29b0f896
AM
4461 /* We must avoid matching of Imm32 templates when 64bit
4462 only immediate is available. */
4463 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4464 i.types[op].bitfield.imm32 = 0;
29b0f896 4465 break;
252b5132 4466
29b0f896
AM
4467 case O_absent:
4468 case O_register:
4469 abort ();
4470
4471 /* Symbols and expressions. */
4472 default:
9cd96992
JB
4473 /* Convert symbolic operand to proper sizes for matching, but don't
4474 prevent matching a set of insns that only supports sizes other
4475 than those matching the insn suffix. */
4476 {
40fb9820 4477 i386_operand_type mask, allowed;
d3ce72d0 4478 const insn_template *t;
9cd96992 4479
0dfbf9d7
L
4480 operand_type_set (&mask, 0);
4481 operand_type_set (&allowed, 0);
40fb9820 4482
4eed87de
AM
4483 for (t = current_templates->start;
4484 t < current_templates->end;
4485 ++t)
c6fb90c8
L
4486 allowed = operand_type_or (allowed,
4487 t->operand_types[op]);
9cd96992
JB
4488 switch (guess_suffix)
4489 {
4490 case QWORD_MNEM_SUFFIX:
40fb9820
L
4491 mask.bitfield.imm64 = 1;
4492 mask.bitfield.imm32s = 1;
9cd96992
JB
4493 break;
4494 case LONG_MNEM_SUFFIX:
40fb9820 4495 mask.bitfield.imm32 = 1;
9cd96992
JB
4496 break;
4497 case WORD_MNEM_SUFFIX:
40fb9820 4498 mask.bitfield.imm16 = 1;
9cd96992
JB
4499 break;
4500 case BYTE_MNEM_SUFFIX:
40fb9820 4501 mask.bitfield.imm8 = 1;
9cd96992
JB
4502 break;
4503 default:
9cd96992
JB
4504 break;
4505 }
c6fb90c8 4506 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4507 if (!operand_type_all_zero (&allowed))
c6fb90c8 4508 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4509 }
29b0f896 4510 break;
252b5132 4511 }
29b0f896
AM
4512 }
4513}
47926f60 4514
29b0f896
AM
4515/* Try to use the smallest displacement type too. */
4516static void
e3bb37b5 4517optimize_disp (void)
29b0f896
AM
4518{
4519 int op;
3e73aa7c 4520
29b0f896 4521 for (op = i.operands; --op >= 0;)
40fb9820 4522 if (operand_type_check (i.types[op], disp))
252b5132 4523 {
b300c311 4524 if (i.op[op].disps->X_op == O_constant)
252b5132 4525 {
91d6fa6a 4526 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4527
40fb9820 4528 if (i.types[op].bitfield.disp16
91d6fa6a 4529 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4530 {
4531 /* If this operand is at most 16 bits, convert
4532 to a signed 16 bit number and don't use 64bit
4533 displacement. */
91d6fa6a 4534 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4535 i.types[op].bitfield.disp64 = 0;
b300c311 4536 }
a28def75
L
4537#ifdef BFD64
4538 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4539 if (i.types[op].bitfield.disp32
91d6fa6a 4540 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4541 {
4542 /* If this operand is at most 32 bits, convert
4543 to a signed 32 bit number and don't use 64bit
4544 displacement. */
91d6fa6a
NC
4545 op_disp &= (((offsetT) 2 << 31) - 1);
4546 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4547 i.types[op].bitfield.disp64 = 0;
b300c311 4548 }
a28def75 4549#endif
91d6fa6a 4550 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4551 {
40fb9820
L
4552 i.types[op].bitfield.disp8 = 0;
4553 i.types[op].bitfield.disp16 = 0;
4554 i.types[op].bitfield.disp32 = 0;
4555 i.types[op].bitfield.disp32s = 0;
4556 i.types[op].bitfield.disp64 = 0;
b300c311
L
4557 i.op[op].disps = 0;
4558 i.disp_operands--;
4559 }
4560 else if (flag_code == CODE_64BIT)
4561 {
91d6fa6a 4562 if (fits_in_signed_long (op_disp))
28a9d8f5 4563 {
40fb9820
L
4564 i.types[op].bitfield.disp64 = 0;
4565 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4566 }
0e1147d9 4567 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4568 && fits_in_unsigned_long (op_disp))
40fb9820 4569 i.types[op].bitfield.disp32 = 1;
b300c311 4570 }
40fb9820
L
4571 if ((i.types[op].bitfield.disp32
4572 || i.types[op].bitfield.disp32s
4573 || i.types[op].bitfield.disp16)
91d6fa6a 4574 && fits_in_signed_byte (op_disp))
40fb9820 4575 i.types[op].bitfield.disp8 = 1;
252b5132 4576 }
67a4f2b7
AO
4577 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4578 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4579 {
4580 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4581 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4582 i.types[op].bitfield.disp8 = 0;
4583 i.types[op].bitfield.disp16 = 0;
4584 i.types[op].bitfield.disp32 = 0;
4585 i.types[op].bitfield.disp32s = 0;
4586 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4587 }
4588 else
b300c311 4589 /* We only support 64bit displacement on constants. */
40fb9820 4590 i.types[op].bitfield.disp64 = 0;
252b5132 4591 }
29b0f896
AM
4592}
4593
6c30d220
L
4594/* Check if operands are valid for the instruction. */
4595
4596static int
4597check_VecOperands (const insn_template *t)
4598{
43234a1e
L
4599 unsigned int op;
4600
6c30d220
L
4601 /* Without VSIB byte, we can't have a vector register for index. */
4602 if (!t->opcode_modifier.vecsib
4603 && i.index_reg
4604 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4605 || i.index_reg->reg_type.bitfield.regymm
4606 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4607 {
4608 i.error = unsupported_vector_index_register;
4609 return 1;
4610 }
4611
ad8ecc81
MZ
4612 /* Check if default mask is allowed. */
4613 if (t->opcode_modifier.nodefmask
4614 && (!i.mask || i.mask->mask->reg_num == 0))
4615 {
4616 i.error = no_default_mask;
4617 return 1;
4618 }
4619
7bab8ab5
JB
4620 /* For VSIB byte, we need a vector register for index, and all vector
4621 registers must be distinct. */
4622 if (t->opcode_modifier.vecsib)
4623 {
4624 if (!i.index_reg
6c30d220
L
4625 || !((t->opcode_modifier.vecsib == VecSIB128
4626 && i.index_reg->reg_type.bitfield.regxmm)
4627 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4628 && i.index_reg->reg_type.bitfield.regymm)
4629 || (t->opcode_modifier.vecsib == VecSIB512
4630 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4631 {
4632 i.error = invalid_vsib_address;
4633 return 1;
4634 }
4635
43234a1e
L
4636 gas_assert (i.reg_operands == 2 || i.mask);
4637 if (i.reg_operands == 2 && !i.mask)
4638 {
4639 gas_assert (i.types[0].bitfield.regxmm
7c84a0ca 4640 || i.types[0].bitfield.regymm);
43234a1e 4641 gas_assert (i.types[2].bitfield.regxmm
7c84a0ca 4642 || i.types[2].bitfield.regymm);
43234a1e
L
4643 if (operand_check == check_none)
4644 return 0;
4645 if (register_number (i.op[0].regs)
4646 != register_number (i.index_reg)
4647 && register_number (i.op[2].regs)
4648 != register_number (i.index_reg)
4649 && register_number (i.op[0].regs)
4650 != register_number (i.op[2].regs))
4651 return 0;
4652 if (operand_check == check_error)
4653 {
4654 i.error = invalid_vector_register_set;
4655 return 1;
4656 }
4657 as_warn (_("mask, index, and destination registers should be distinct"));
4658 }
8444f82a
MZ
4659 else if (i.reg_operands == 1 && i.mask)
4660 {
514f6023
L
4661 if ((i.types[1].bitfield.regxmm
4662 || i.types[1].bitfield.regymm
8444f82a
MZ
4663 || i.types[1].bitfield.regzmm)
4664 && (register_number (i.op[1].regs)
4665 == register_number (i.index_reg)))
4666 {
4667 if (operand_check == check_error)
4668 {
4669 i.error = invalid_vector_register_set;
4670 return 1;
4671 }
4672 if (operand_check != check_none)
4673 as_warn (_("index and destination registers should be distinct"));
4674 }
4675 }
43234a1e 4676 }
7bab8ab5 4677
43234a1e
L
4678 /* Check if broadcast is supported by the instruction and is applied
4679 to the memory operand. */
4680 if (i.broadcast)
4681 {
4682 int broadcasted_opnd_size;
4683
4684 /* Check if specified broadcast is supported in this instruction,
4685 and it's applied to memory operand of DWORD or QWORD type,
4686 depending on VecESize. */
4687 if (i.broadcast->type != t->opcode_modifier.broadcast
4688 || !i.types[i.broadcast->operand].bitfield.mem
4689 || (t->opcode_modifier.vecesize == 0
4690 && !i.types[i.broadcast->operand].bitfield.dword
4691 && !i.types[i.broadcast->operand].bitfield.unspecified)
4692 || (t->opcode_modifier.vecesize == 1
4693 && !i.types[i.broadcast->operand].bitfield.qword
4694 && !i.types[i.broadcast->operand].bitfield.unspecified))
4695 goto bad_broadcast;
4696
4697 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4698 if (i.broadcast->type == BROADCAST_1TO16)
4699 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4700 else if (i.broadcast->type == BROADCAST_1TO8)
4701 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4702 else if (i.broadcast->type == BROADCAST_1TO4)
4703 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4704 else if (i.broadcast->type == BROADCAST_1TO2)
4705 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4706 else
4707 goto bad_broadcast;
4708
4709 if ((broadcasted_opnd_size == 256
4710 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4711 || (broadcasted_opnd_size == 512
4712 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4713 {
4714 bad_broadcast:
4715 i.error = unsupported_broadcast;
4716 return 1;
4717 }
4718 }
4719 /* If broadcast is supported in this instruction, we need to check if
4720 operand of one-element size isn't specified without broadcast. */
4721 else if (t->opcode_modifier.broadcast && i.mem_operands)
4722 {
4723 /* Find memory operand. */
4724 for (op = 0; op < i.operands; op++)
4725 if (operand_type_check (i.types[op], anymem))
4726 break;
4727 gas_assert (op < i.operands);
4728 /* Check size of the memory operand. */
4729 if ((t->opcode_modifier.vecesize == 0
4730 && i.types[op].bitfield.dword)
4731 || (t->opcode_modifier.vecesize == 1
4732 && i.types[op].bitfield.qword))
4733 {
4734 i.error = broadcast_needed;
4735 return 1;
4736 }
4737 }
4738
4739 /* Check if requested masking is supported. */
4740 if (i.mask
4741 && (!t->opcode_modifier.masking
4742 || (i.mask->zeroing
4743 && t->opcode_modifier.masking == MERGING_MASKING)))
4744 {
4745 i.error = unsupported_masking;
4746 return 1;
4747 }
4748
4749 /* Check if masking is applied to dest operand. */
4750 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4751 {
4752 i.error = mask_not_on_destination;
4753 return 1;
4754 }
4755
43234a1e
L
4756 /* Check RC/SAE. */
4757 if (i.rounding)
4758 {
4759 if ((i.rounding->type != saeonly
4760 && !t->opcode_modifier.staticrounding)
4761 || (i.rounding->type == saeonly
4762 && (t->opcode_modifier.staticrounding
4763 || !t->opcode_modifier.sae)))
4764 {
4765 i.error = unsupported_rc_sae;
4766 return 1;
4767 }
4768 /* If the instruction has several immediate operands and one of
4769 them is rounding, the rounding operand should be the last
4770 immediate operand. */
4771 if (i.imm_operands > 1
4772 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4773 {
43234a1e 4774 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4775 return 1;
4776 }
6c30d220
L
4777 }
4778
43234a1e
L
4779 /* Check vector Disp8 operand. */
4780 if (t->opcode_modifier.disp8memshift)
4781 {
4782 if (i.broadcast)
4783 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4784 else
4785 i.memshift = t->opcode_modifier.disp8memshift;
4786
4787 for (op = 0; op < i.operands; op++)
4788 if (operand_type_check (i.types[op], disp)
4789 && i.op[op].disps->X_op == O_constant)
4790 {
4791 offsetT value = i.op[op].disps->X_add_number;
5be33403
L
4792 int vec_disp8_ok
4793 = (i.disp_encoding != disp_encoding_32bit
4794 && fits_in_vec_disp8 (value));
43234a1e
L
4795 if (t->operand_types [op].bitfield.vec_disp8)
4796 {
4797 if (vec_disp8_ok)
4798 i.types[op].bitfield.vec_disp8 = 1;
4799 else
4800 {
65f3ed04 4801 /* Vector insn doesn't allow plain Disp8. */
43234a1e 4802 i.types[op].bitfield.disp8 = 0;
43234a1e
L
4803 }
4804 }
4805 else if (flag_code != CODE_16BIT)
4806 {
4807 /* One form of this instruction supports vector Disp8.
4808 Try vector Disp8 if we need to use Disp32. */
4809 if (vec_disp8_ok && !fits_in_signed_byte (value))
4810 {
4811 i.error = try_vector_disp8;
4812 return 1;
4813 }
4814 }
4815 }
4816 }
4817 else
4818 i.memshift = -1;
4819
6c30d220
L
4820 return 0;
4821}
4822
43f3e2ee 4823/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4824 operand types. */
4825
4826static int
4827VEX_check_operands (const insn_template *t)
4828{
86fa6981 4829 if (i.vec_encoding == vex_encoding_evex)
43234a1e 4830 {
86fa6981
L
4831 /* This instruction must be encoded with EVEX prefix. */
4832 if (!t->opcode_modifier.evex)
4833 {
4834 i.error = unsupported;
4835 return 1;
4836 }
4837 return 0;
43234a1e
L
4838 }
4839
a683cc34 4840 if (!t->opcode_modifier.vex)
86fa6981
L
4841 {
4842 /* This instruction template doesn't have VEX prefix. */
4843 if (i.vec_encoding != vex_encoding_default)
4844 {
4845 i.error = unsupported;
4846 return 1;
4847 }
4848 return 0;
4849 }
a683cc34
SP
4850
4851 /* Only check VEX_Imm4, which must be the first operand. */
4852 if (t->operand_types[0].bitfield.vec_imm4)
4853 {
4854 if (i.op[0].imms->X_op != O_constant
4855 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4856 {
a65babc9 4857 i.error = bad_imm4;
891edac4
L
4858 return 1;
4859 }
a683cc34
SP
4860
4861 /* Turn off Imm8 so that update_imm won't complain. */
4862 i.types[0] = vec_imm4;
4863 }
4864
4865 return 0;
4866}
4867
d3ce72d0 4868static const insn_template *
83b16ac6 4869match_template (char mnem_suffix)
29b0f896
AM
4870{
4871 /* Points to template once we've found it. */
d3ce72d0 4872 const insn_template *t;
40fb9820 4873 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4874 i386_operand_type overlap4;
29b0f896 4875 unsigned int found_reverse_match;
83b16ac6 4876 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 4877 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4878 int addr_prefix_disp;
a5c311ca 4879 unsigned int j;
3629bb00 4880 unsigned int found_cpu_match;
45664ddb 4881 unsigned int check_register;
5614d22c 4882 enum i386_error specific_error = 0;
29b0f896 4883
c0f3af97
L
4884#if MAX_OPERANDS != 5
4885# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4886#endif
4887
29b0f896 4888 found_reverse_match = 0;
539e75ad 4889 addr_prefix_disp = -1;
40fb9820
L
4890
4891 memset (&suffix_check, 0, sizeof (suffix_check));
4892 if (i.suffix == BYTE_MNEM_SUFFIX)
4893 suffix_check.no_bsuf = 1;
4894 else if (i.suffix == WORD_MNEM_SUFFIX)
4895 suffix_check.no_wsuf = 1;
4896 else if (i.suffix == SHORT_MNEM_SUFFIX)
4897 suffix_check.no_ssuf = 1;
4898 else if (i.suffix == LONG_MNEM_SUFFIX)
4899 suffix_check.no_lsuf = 1;
4900 else if (i.suffix == QWORD_MNEM_SUFFIX)
4901 suffix_check.no_qsuf = 1;
4902 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4903 suffix_check.no_ldsuf = 1;
29b0f896 4904
83b16ac6
JB
4905 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4906 if (intel_syntax)
4907 {
4908 switch (mnem_suffix)
4909 {
4910 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4911 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4912 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4913 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4914 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4915 }
4916 }
4917
01559ecc
L
4918 /* Must have right number of operands. */
4919 i.error = number_of_operands_mismatch;
4920
45aa61fe 4921 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4922 {
539e75ad
L
4923 addr_prefix_disp = -1;
4924
29b0f896
AM
4925 if (i.operands != t->operands)
4926 continue;
4927
50aecf8c 4928 /* Check processor support. */
a65babc9 4929 i.error = unsupported;
c0f3af97
L
4930 found_cpu_match = (cpu_flags_match (t)
4931 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4932 if (!found_cpu_match)
4933 continue;
4934
e1d4d893 4935 /* Check old gcc support. */
a65babc9 4936 i.error = old_gcc_only;
e1d4d893
L
4937 if (!old_gcc && t->opcode_modifier.oldgcc)
4938 continue;
4939
4940 /* Check AT&T mnemonic. */
a65babc9 4941 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4942 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4943 continue;
4944
e92bae62 4945 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 4946 i.error = unsupported_syntax;
5c07affc 4947 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
4948 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4949 || (intel64 && t->opcode_modifier.amd64)
4950 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
4951 continue;
4952
20592a94 4953 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4954 i.error = invalid_instruction_suffix;
567e4e96
L
4955 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4956 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4957 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4958 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4959 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4960 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4961 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 4962 continue;
83b16ac6
JB
4963 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4964 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4965 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4966 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4967 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4968 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4969 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4970 continue;
29b0f896 4971
5c07affc 4972 if (!operand_size_match (t))
7d5e4556 4973 continue;
539e75ad 4974
5c07affc
L
4975 for (j = 0; j < MAX_OPERANDS; j++)
4976 operand_types[j] = t->operand_types[j];
4977
45aa61fe
AM
4978 /* In general, don't allow 64-bit operands in 32-bit mode. */
4979 if (i.suffix == QWORD_MNEM_SUFFIX
4980 && flag_code != CODE_64BIT
4981 && (intel_syntax
40fb9820 4982 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4983 && !intel_float_operand (t->name))
4984 : intel_float_operand (t->name) != 2)
40fb9820 4985 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4986 && !operand_types[0].bitfield.regxmm
43234a1e
L
4987 && !operand_types[0].bitfield.regymm
4988 && !operand_types[0].bitfield.regzmm)
40fb9820 4989 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736
AM
4990 && operand_types[t->operands > 1].bitfield.regxmm
4991 && operand_types[t->operands > 1].bitfield.regymm
4992 && operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4993 && (t->base_opcode != 0x0fc7
4994 || t->extension_opcode != 1 /* cmpxchg8b */))
4995 continue;
4996
192dc9c6
JB
4997 /* In general, don't allow 32-bit operands on pre-386. */
4998 else if (i.suffix == LONG_MNEM_SUFFIX
4999 && !cpu_arch_flags.bitfield.cpui386
5000 && (intel_syntax
5001 ? (!t->opcode_modifier.ignoresize
5002 && !intel_float_operand (t->name))
5003 : intel_float_operand (t->name) != 2)
5004 && ((!operand_types[0].bitfield.regmmx
5005 && !operand_types[0].bitfield.regxmm)
5006 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736 5007 && operand_types[t->operands > 1].bitfield.regxmm)))
192dc9c6
JB
5008 continue;
5009
29b0f896 5010 /* Do not verify operands when there are none. */
50aecf8c 5011 else
29b0f896 5012 {
c6fb90c8 5013 if (!t->operands)
2dbab7d5
L
5014 /* We've found a match; break out of loop. */
5015 break;
29b0f896 5016 }
252b5132 5017
539e75ad
L
5018 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5019 into Disp32/Disp16/Disp32 operand. */
5020 if (i.prefix[ADDR_PREFIX] != 0)
5021 {
40fb9820 5022 /* There should be only one Disp operand. */
539e75ad
L
5023 switch (flag_code)
5024 {
5025 case CODE_16BIT:
40fb9820
L
5026 for (j = 0; j < MAX_OPERANDS; j++)
5027 {
5028 if (operand_types[j].bitfield.disp16)
5029 {
5030 addr_prefix_disp = j;
5031 operand_types[j].bitfield.disp32 = 1;
5032 operand_types[j].bitfield.disp16 = 0;
5033 break;
5034 }
5035 }
539e75ad
L
5036 break;
5037 case CODE_32BIT:
40fb9820
L
5038 for (j = 0; j < MAX_OPERANDS; j++)
5039 {
5040 if (operand_types[j].bitfield.disp32)
5041 {
5042 addr_prefix_disp = j;
5043 operand_types[j].bitfield.disp32 = 0;
5044 operand_types[j].bitfield.disp16 = 1;
5045 break;
5046 }
5047 }
539e75ad
L
5048 break;
5049 case CODE_64BIT:
40fb9820
L
5050 for (j = 0; j < MAX_OPERANDS; j++)
5051 {
5052 if (operand_types[j].bitfield.disp64)
5053 {
5054 addr_prefix_disp = j;
5055 operand_types[j].bitfield.disp64 = 0;
5056 operand_types[j].bitfield.disp32 = 1;
5057 break;
5058 }
5059 }
539e75ad
L
5060 break;
5061 }
539e75ad
L
5062 }
5063
02a86693
L
5064 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5065 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5066 continue;
5067
56ffb741
L
5068 /* We check register size if needed. */
5069 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5070 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5071 switch (t->operands)
5072 {
5073 case 1:
40fb9820 5074 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5075 continue;
5076 break;
5077 case 2:
33eaf5de 5078 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5079 only in 32bit mode and we can use opcode 0x90. In 64bit
5080 mode, we can't use 0x90 for xchg %eax, %eax since it should
5081 zero-extend %eax to %rax. */
5082 if (flag_code == CODE_64BIT
5083 && t->base_opcode == 0x90
0dfbf9d7
L
5084 && operand_type_equal (&i.types [0], &acc32)
5085 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5086 continue;
86fa6981
L
5087 /* If we want store form, we reverse direction of operands. */
5088 if (i.dir_encoding == dir_encoding_store
5089 && t->opcode_modifier.d)
5090 goto check_reverse;
1a0670f3 5091 /* Fall through. */
b6169b20 5092
29b0f896 5093 case 3:
86fa6981
L
5094 /* If we want store form, we skip the current load. */
5095 if (i.dir_encoding == dir_encoding_store
5096 && i.mem_operands == 0
5097 && t->opcode_modifier.load)
fa99fab2 5098 continue;
1a0670f3 5099 /* Fall through. */
f48ff2ae 5100 case 4:
c0f3af97 5101 case 5:
c6fb90c8 5102 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5103 if (!operand_type_match (overlap0, i.types[0])
5104 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
5105 || (check_register
5106 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
5107 operand_types[0],
5108 overlap1, i.types[1],
5109 operand_types[1])))
29b0f896
AM
5110 {
5111 /* Check if other direction is valid ... */
40fb9820 5112 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
5113 continue;
5114
b6169b20 5115check_reverse:
29b0f896 5116 /* Try reversing direction of operands. */
c6fb90c8
L
5117 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5118 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5119 if (!operand_type_match (overlap0, i.types[0])
5120 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
5121 || (check_register
5122 && !operand_type_register_match (overlap0,
5123 i.types[0],
5124 operand_types[1],
5125 overlap1,
5126 i.types[1],
5127 operand_types[0])))
29b0f896
AM
5128 {
5129 /* Does not match either direction. */
5130 continue;
5131 }
5132 /* found_reverse_match holds which of D or FloatDR
5133 we've found. */
40fb9820 5134 if (t->opcode_modifier.d)
8a2ed489 5135 found_reverse_match = Opcode_D;
40fb9820 5136 else if (t->opcode_modifier.floatd)
8a2ed489
L
5137 found_reverse_match = Opcode_FloatD;
5138 else
5139 found_reverse_match = 0;
40fb9820 5140 if (t->opcode_modifier.floatr)
8a2ed489 5141 found_reverse_match |= Opcode_FloatR;
29b0f896 5142 }
f48ff2ae 5143 else
29b0f896 5144 {
f48ff2ae 5145 /* Found a forward 2 operand match here. */
d1cbb4db
L
5146 switch (t->operands)
5147 {
c0f3af97
L
5148 case 5:
5149 overlap4 = operand_type_and (i.types[4],
5150 operand_types[4]);
1a0670f3 5151 /* Fall through. */
d1cbb4db 5152 case 4:
c6fb90c8
L
5153 overlap3 = operand_type_and (i.types[3],
5154 operand_types[3]);
1a0670f3 5155 /* Fall through. */
d1cbb4db 5156 case 3:
c6fb90c8
L
5157 overlap2 = operand_type_and (i.types[2],
5158 operand_types[2]);
d1cbb4db
L
5159 break;
5160 }
29b0f896 5161
f48ff2ae
L
5162 switch (t->operands)
5163 {
c0f3af97
L
5164 case 5:
5165 if (!operand_type_match (overlap4, i.types[4])
5166 || !operand_type_register_match (overlap3,
5167 i.types[3],
5168 operand_types[3],
5169 overlap4,
5170 i.types[4],
5171 operand_types[4]))
5172 continue;
1a0670f3 5173 /* Fall through. */
f48ff2ae 5174 case 4:
40fb9820 5175 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
5176 || (check_register
5177 && !operand_type_register_match (overlap2,
5178 i.types[2],
5179 operand_types[2],
5180 overlap3,
5181 i.types[3],
5182 operand_types[3])))
f48ff2ae 5183 continue;
1a0670f3 5184 /* Fall through. */
f48ff2ae
L
5185 case 3:
5186 /* Here we make use of the fact that there are no
5187 reverse match 3 operand instructions, and all 3
5188 operand instructions only need to be checked for
5189 register consistency between operands 2 and 3. */
40fb9820 5190 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
5191 || (check_register
5192 && !operand_type_register_match (overlap1,
5193 i.types[1],
5194 operand_types[1],
5195 overlap2,
5196 i.types[2],
5197 operand_types[2])))
f48ff2ae
L
5198 continue;
5199 break;
5200 }
29b0f896 5201 }
f48ff2ae 5202 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5203 slip through to break. */
5204 }
3629bb00 5205 if (!found_cpu_match)
29b0f896
AM
5206 {
5207 found_reverse_match = 0;
5208 continue;
5209 }
c0f3af97 5210
5614d22c
JB
5211 /* Check if vector and VEX operands are valid. */
5212 if (check_VecOperands (t) || VEX_check_operands (t))
5213 {
5214 specific_error = i.error;
5215 continue;
5216 }
a683cc34 5217
29b0f896
AM
5218 /* We've found a match; break out of loop. */
5219 break;
5220 }
5221
5222 if (t == current_templates->end)
5223 {
5224 /* We found no match. */
a65babc9 5225 const char *err_msg;
5614d22c 5226 switch (specific_error ? specific_error : i.error)
a65babc9
L
5227 {
5228 default:
5229 abort ();
86e026a4 5230 case operand_size_mismatch:
a65babc9
L
5231 err_msg = _("operand size mismatch");
5232 break;
5233 case operand_type_mismatch:
5234 err_msg = _("operand type mismatch");
5235 break;
5236 case register_type_mismatch:
5237 err_msg = _("register type mismatch");
5238 break;
5239 case number_of_operands_mismatch:
5240 err_msg = _("number of operands mismatch");
5241 break;
5242 case invalid_instruction_suffix:
5243 err_msg = _("invalid instruction suffix");
5244 break;
5245 case bad_imm4:
4a2608e3 5246 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5247 break;
5248 case old_gcc_only:
5249 err_msg = _("only supported with old gcc");
5250 break;
5251 case unsupported_with_intel_mnemonic:
5252 err_msg = _("unsupported with Intel mnemonic");
5253 break;
5254 case unsupported_syntax:
5255 err_msg = _("unsupported syntax");
5256 break;
5257 case unsupported:
35262a23 5258 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5259 current_templates->start->name);
5260 return NULL;
6c30d220
L
5261 case invalid_vsib_address:
5262 err_msg = _("invalid VSIB address");
5263 break;
7bab8ab5
JB
5264 case invalid_vector_register_set:
5265 err_msg = _("mask, index, and destination registers must be distinct");
5266 break;
6c30d220
L
5267 case unsupported_vector_index_register:
5268 err_msg = _("unsupported vector index register");
5269 break;
43234a1e
L
5270 case unsupported_broadcast:
5271 err_msg = _("unsupported broadcast");
5272 break;
5273 case broadcast_not_on_src_operand:
5274 err_msg = _("broadcast not on source memory operand");
5275 break;
5276 case broadcast_needed:
5277 err_msg = _("broadcast is needed for operand of such type");
5278 break;
5279 case unsupported_masking:
5280 err_msg = _("unsupported masking");
5281 break;
5282 case mask_not_on_destination:
5283 err_msg = _("mask not on destination operand");
5284 break;
5285 case no_default_mask:
5286 err_msg = _("default mask isn't allowed");
5287 break;
5288 case unsupported_rc_sae:
5289 err_msg = _("unsupported static rounding/sae");
5290 break;
5291 case rc_sae_operand_not_last_imm:
5292 if (intel_syntax)
5293 err_msg = _("RC/SAE operand must precede immediate operands");
5294 else
5295 err_msg = _("RC/SAE operand must follow immediate operands");
5296 break;
5297 case invalid_register_operand:
5298 err_msg = _("invalid register operand");
5299 break;
a65babc9
L
5300 }
5301 as_bad (_("%s for `%s'"), err_msg,
891edac4 5302 current_templates->start->name);
fa99fab2 5303 return NULL;
29b0f896 5304 }
252b5132 5305
29b0f896
AM
5306 if (!quiet_warnings)
5307 {
5308 if (!intel_syntax
40fb9820
L
5309 && (i.types[0].bitfield.jumpabsolute
5310 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5311 {
5312 as_warn (_("indirect %s without `*'"), t->name);
5313 }
5314
40fb9820
L
5315 if (t->opcode_modifier.isprefix
5316 && t->opcode_modifier.ignoresize)
29b0f896
AM
5317 {
5318 /* Warn them that a data or address size prefix doesn't
5319 affect assembly of the next line of code. */
5320 as_warn (_("stand-alone `%s' prefix"), t->name);
5321 }
5322 }
5323
5324 /* Copy the template we found. */
5325 i.tm = *t;
539e75ad
L
5326
5327 if (addr_prefix_disp != -1)
5328 i.tm.operand_types[addr_prefix_disp]
5329 = operand_types[addr_prefix_disp];
5330
29b0f896
AM
5331 if (found_reverse_match)
5332 {
5333 /* If we found a reverse match we must alter the opcode
5334 direction bit. found_reverse_match holds bits to change
5335 (different for int & float insns). */
5336
5337 i.tm.base_opcode ^= found_reverse_match;
5338
539e75ad
L
5339 i.tm.operand_types[0] = operand_types[1];
5340 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5341 }
5342
fa99fab2 5343 return t;
29b0f896
AM
5344}
5345
5346static int
e3bb37b5 5347check_string (void)
29b0f896 5348{
40fb9820
L
5349 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5350 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5351 {
5352 if (i.seg[0] != NULL && i.seg[0] != &es)
5353 {
a87af027 5354 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5355 i.tm.name,
a87af027
JB
5356 mem_op + 1,
5357 register_prefix);
29b0f896
AM
5358 return 0;
5359 }
5360 /* There's only ever one segment override allowed per instruction.
5361 This instruction possibly has a legal segment override on the
5362 second operand, so copy the segment to where non-string
5363 instructions store it, allowing common code. */
5364 i.seg[0] = i.seg[1];
5365 }
40fb9820 5366 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5367 {
5368 if (i.seg[1] != NULL && i.seg[1] != &es)
5369 {
a87af027 5370 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5371 i.tm.name,
a87af027
JB
5372 mem_op + 2,
5373 register_prefix);
29b0f896
AM
5374 return 0;
5375 }
5376 }
5377 return 1;
5378}
5379
5380static int
543613e9 5381process_suffix (void)
29b0f896
AM
5382{
5383 /* If matched instruction specifies an explicit instruction mnemonic
5384 suffix, use it. */
40fb9820
L
5385 if (i.tm.opcode_modifier.size16)
5386 i.suffix = WORD_MNEM_SUFFIX;
5387 else if (i.tm.opcode_modifier.size32)
5388 i.suffix = LONG_MNEM_SUFFIX;
5389 else if (i.tm.opcode_modifier.size64)
5390 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5391 else if (i.reg_operands)
5392 {
5393 /* If there's no instruction mnemonic suffix we try to invent one
5394 based on register operands. */
5395 if (!i.suffix)
5396 {
5397 /* We take i.suffix from the last register operand specified,
5398 Destination register type is more significant than source
381d071f
L
5399 register type. crc32 in SSE4.2 prefers source register
5400 type. */
5401 if (i.tm.base_opcode == 0xf20f38f1)
5402 {
40fb9820
L
5403 if (i.types[0].bitfield.reg16)
5404 i.suffix = WORD_MNEM_SUFFIX;
5405 else if (i.types[0].bitfield.reg32)
5406 i.suffix = LONG_MNEM_SUFFIX;
5407 else if (i.types[0].bitfield.reg64)
5408 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5409 }
9344ff29 5410 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5411 {
40fb9820 5412 if (i.types[0].bitfield.reg8)
20592a94
L
5413 i.suffix = BYTE_MNEM_SUFFIX;
5414 }
381d071f
L
5415
5416 if (!i.suffix)
5417 {
5418 int op;
5419
20592a94
L
5420 if (i.tm.base_opcode == 0xf20f38f1
5421 || i.tm.base_opcode == 0xf20f38f0)
5422 {
5423 /* We have to know the operand size for crc32. */
5424 as_bad (_("ambiguous memory operand size for `%s`"),
5425 i.tm.name);
5426 return 0;
5427 }
5428
381d071f 5429 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5430 if (!i.tm.operand_types[op].bitfield.inoutportreg
5431 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5432 {
40fb9820
L
5433 if (i.types[op].bitfield.reg8)
5434 {
5435 i.suffix = BYTE_MNEM_SUFFIX;
5436 break;
5437 }
5438 else if (i.types[op].bitfield.reg16)
5439 {
5440 i.suffix = WORD_MNEM_SUFFIX;
5441 break;
5442 }
5443 else if (i.types[op].bitfield.reg32)
5444 {
5445 i.suffix = LONG_MNEM_SUFFIX;
5446 break;
5447 }
5448 else if (i.types[op].bitfield.reg64)
5449 {
5450 i.suffix = QWORD_MNEM_SUFFIX;
5451 break;
5452 }
381d071f
L
5453 }
5454 }
29b0f896
AM
5455 }
5456 else if (i.suffix == BYTE_MNEM_SUFFIX)
5457 {
2eb952a4
L
5458 if (intel_syntax
5459 && i.tm.opcode_modifier.ignoresize
5460 && i.tm.opcode_modifier.no_bsuf)
5461 i.suffix = 0;
5462 else if (!check_byte_reg ())
29b0f896
AM
5463 return 0;
5464 }
5465 else if (i.suffix == LONG_MNEM_SUFFIX)
5466 {
2eb952a4
L
5467 if (intel_syntax
5468 && i.tm.opcode_modifier.ignoresize
5469 && i.tm.opcode_modifier.no_lsuf)
5470 i.suffix = 0;
5471 else if (!check_long_reg ())
29b0f896
AM
5472 return 0;
5473 }
5474 else if (i.suffix == QWORD_MNEM_SUFFIX)
5475 {
955e1e6a
L
5476 if (intel_syntax
5477 && i.tm.opcode_modifier.ignoresize
5478 && i.tm.opcode_modifier.no_qsuf)
5479 i.suffix = 0;
5480 else if (!check_qword_reg ())
29b0f896
AM
5481 return 0;
5482 }
5483 else if (i.suffix == WORD_MNEM_SUFFIX)
5484 {
2eb952a4
L
5485 if (intel_syntax
5486 && i.tm.opcode_modifier.ignoresize
5487 && i.tm.opcode_modifier.no_wsuf)
5488 i.suffix = 0;
5489 else if (!check_word_reg ())
29b0f896
AM
5490 return 0;
5491 }
c0f3af97 5492 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5493 || i.suffix == YMMWORD_MNEM_SUFFIX
5494 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5495 {
43234a1e 5496 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5497 should check if it is a valid suffix. */
5498 }
40fb9820 5499 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5500 /* Do nothing if the instruction is going to ignore the prefix. */
5501 ;
5502 else
5503 abort ();
5504 }
40fb9820 5505 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5506 && !i.suffix
5507 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5508 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5509 {
5510 i.suffix = stackop_size;
5511 }
9306ca4a
JB
5512 else if (intel_syntax
5513 && !i.suffix
40fb9820
L
5514 && (i.tm.operand_types[0].bitfield.jumpabsolute
5515 || i.tm.opcode_modifier.jumpbyte
5516 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5517 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5518 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5519 {
5520 switch (flag_code)
5521 {
5522 case CODE_64BIT:
40fb9820 5523 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5524 {
5525 i.suffix = QWORD_MNEM_SUFFIX;
5526 break;
5527 }
1a0670f3 5528 /* Fall through. */
9306ca4a 5529 case CODE_32BIT:
40fb9820 5530 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5531 i.suffix = LONG_MNEM_SUFFIX;
5532 break;
5533 case CODE_16BIT:
40fb9820 5534 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5535 i.suffix = WORD_MNEM_SUFFIX;
5536 break;
5537 }
5538 }
252b5132 5539
9306ca4a 5540 if (!i.suffix)
29b0f896 5541 {
9306ca4a
JB
5542 if (!intel_syntax)
5543 {
40fb9820 5544 if (i.tm.opcode_modifier.w)
9306ca4a 5545 {
4eed87de
AM
5546 as_bad (_("no instruction mnemonic suffix given and "
5547 "no register operands; can't size instruction"));
9306ca4a
JB
5548 return 0;
5549 }
5550 }
5551 else
5552 {
40fb9820 5553 unsigned int suffixes;
7ab9ffdd 5554
40fb9820
L
5555 suffixes = !i.tm.opcode_modifier.no_bsuf;
5556 if (!i.tm.opcode_modifier.no_wsuf)
5557 suffixes |= 1 << 1;
5558 if (!i.tm.opcode_modifier.no_lsuf)
5559 suffixes |= 1 << 2;
fc4adea1 5560 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5561 suffixes |= 1 << 3;
5562 if (!i.tm.opcode_modifier.no_ssuf)
5563 suffixes |= 1 << 4;
c2b9da16 5564 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5565 suffixes |= 1 << 5;
5566
5567 /* There are more than suffix matches. */
5568 if (i.tm.opcode_modifier.w
9306ca4a 5569 || ((suffixes & (suffixes - 1))
40fb9820
L
5570 && !i.tm.opcode_modifier.defaultsize
5571 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5572 {
5573 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5574 return 0;
5575 }
5576 }
29b0f896 5577 }
252b5132 5578
9306ca4a
JB
5579 /* Change the opcode based on the operand size given by i.suffix;
5580 We don't need to change things for byte insns. */
5581
582d5edd
L
5582 if (i.suffix
5583 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5584 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5585 && i.suffix != YMMWORD_MNEM_SUFFIX
5586 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5587 {
5588 /* It's not a byte, select word/dword operation. */
40fb9820 5589 if (i.tm.opcode_modifier.w)
29b0f896 5590 {
40fb9820 5591 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5592 i.tm.base_opcode |= 8;
5593 else
5594 i.tm.base_opcode |= 1;
5595 }
0f3f3d8b 5596
29b0f896
AM
5597 /* Now select between word & dword operations via the operand
5598 size prefix, except for instructions that will ignore this
5599 prefix anyway. */
ca61edf2 5600 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5601 {
ca61edf2
L
5602 /* The address size override prefix changes the size of the
5603 first operand. */
40fb9820
L
5604 if ((flag_code == CODE_32BIT
5605 && i.op->regs[0].reg_type.bitfield.reg16)
5606 || (flag_code != CODE_32BIT
5607 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5608 if (!add_prefix (ADDR_PREFIX_OPCODE))
5609 return 0;
5610 }
5611 else if (i.suffix != QWORD_MNEM_SUFFIX
5612 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5613 && !i.tm.opcode_modifier.ignoresize
5614 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5615 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5616 || (flag_code == CODE_64BIT
40fb9820 5617 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5618 {
5619 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5620
40fb9820 5621 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5622 prefix = ADDR_PREFIX_OPCODE;
252b5132 5623
29b0f896
AM
5624 if (!add_prefix (prefix))
5625 return 0;
24eab124 5626 }
252b5132 5627
29b0f896
AM
5628 /* Set mode64 for an operand. */
5629 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5630 && flag_code == CODE_64BIT
40fb9820 5631 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5632 {
5633 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5634 need rex64. cmpxchg8b is also a special case. */
5635 if (! (i.operands == 2
5636 && i.tm.base_opcode == 0x90
5637 && i.tm.extension_opcode == None
0dfbf9d7
L
5638 && operand_type_equal (&i.types [0], &acc64)
5639 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5640 && ! (i.operands == 1
5641 && i.tm.base_opcode == 0xfc7
5642 && i.tm.extension_opcode == 1
40fb9820
L
5643 && !operand_type_check (i.types [0], reg)
5644 && operand_type_check (i.types [0], anymem)))
f6bee062 5645 i.rex |= REX_W;
46e883c5 5646 }
3e73aa7c 5647
29b0f896
AM
5648 /* Size floating point instruction. */
5649 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5650 if (i.tm.opcode_modifier.floatmf)
543613e9 5651 i.tm.base_opcode ^= 4;
29b0f896 5652 }
7ecd2f8b 5653
29b0f896
AM
5654 return 1;
5655}
3e73aa7c 5656
29b0f896 5657static int
543613e9 5658check_byte_reg (void)
29b0f896
AM
5659{
5660 int op;
543613e9 5661
29b0f896
AM
5662 for (op = i.operands; --op >= 0;)
5663 {
5664 /* If this is an eight bit register, it's OK. If it's the 16 or
5665 32 bit version of an eight bit register, we will just use the
5666 low portion, and that's OK too. */
40fb9820 5667 if (i.types[op].bitfield.reg8)
29b0f896
AM
5668 continue;
5669
5a819eb9
JB
5670 /* I/O port address operands are OK too. */
5671 if (i.tm.operand_types[op].bitfield.inoutportreg)
5672 continue;
5673
9344ff29
L
5674 /* crc32 doesn't generate this warning. */
5675 if (i.tm.base_opcode == 0xf20f38f0)
5676 continue;
5677
40fb9820
L
5678 if ((i.types[op].bitfield.reg16
5679 || i.types[op].bitfield.reg32
5680 || i.types[op].bitfield.reg64)
5a819eb9
JB
5681 && i.op[op].regs->reg_num < 4
5682 /* Prohibit these changes in 64bit mode, since the lowering
5683 would be more complicated. */
5684 && flag_code != CODE_64BIT)
29b0f896 5685 {
29b0f896 5686#if REGISTER_WARNINGS
5a819eb9 5687 if (!quiet_warnings)
a540244d
L
5688 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5689 register_prefix,
40fb9820 5690 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5691 ? REGNAM_AL - REGNAM_AX
5692 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5693 register_prefix,
29b0f896
AM
5694 i.op[op].regs->reg_name,
5695 i.suffix);
5696#endif
5697 continue;
5698 }
5699 /* Any other register is bad. */
40fb9820
L
5700 if (i.types[op].bitfield.reg16
5701 || i.types[op].bitfield.reg32
5702 || i.types[op].bitfield.reg64
5703 || i.types[op].bitfield.regmmx
5704 || i.types[op].bitfield.regxmm
c0f3af97 5705 || i.types[op].bitfield.regymm
43234a1e 5706 || i.types[op].bitfield.regzmm
40fb9820
L
5707 || i.types[op].bitfield.sreg2
5708 || i.types[op].bitfield.sreg3
5709 || i.types[op].bitfield.control
5710 || i.types[op].bitfield.debug
5711 || i.types[op].bitfield.test
5712 || i.types[op].bitfield.floatreg
5713 || i.types[op].bitfield.floatacc)
29b0f896 5714 {
a540244d
L
5715 as_bad (_("`%s%s' not allowed with `%s%c'"),
5716 register_prefix,
29b0f896
AM
5717 i.op[op].regs->reg_name,
5718 i.tm.name,
5719 i.suffix);
5720 return 0;
5721 }
5722 }
5723 return 1;
5724}
5725
5726static int
e3bb37b5 5727check_long_reg (void)
29b0f896
AM
5728{
5729 int op;
5730
5731 for (op = i.operands; --op >= 0;)
5732 /* Reject eight bit registers, except where the template requires
5733 them. (eg. movzb) */
40fb9820
L
5734 if (i.types[op].bitfield.reg8
5735 && (i.tm.operand_types[op].bitfield.reg16
5736 || i.tm.operand_types[op].bitfield.reg32
5737 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5738 {
a540244d
L
5739 as_bad (_("`%s%s' not allowed with `%s%c'"),
5740 register_prefix,
29b0f896
AM
5741 i.op[op].regs->reg_name,
5742 i.tm.name,
5743 i.suffix);
5744 return 0;
5745 }
e4630f71 5746 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5747 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5748 && i.types[op].bitfield.reg16
5749 && (i.tm.operand_types[op].bitfield.reg32
5750 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5751 {
5752 /* Prohibit these changes in the 64bit mode, since the
5753 lowering is more complicated. */
5754 if (flag_code == CODE_64BIT)
252b5132 5755 {
2b5d6a91 5756 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5757 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5758 i.suffix);
5759 return 0;
252b5132 5760 }
29b0f896 5761#if REGISTER_WARNINGS
cecf1424
JB
5762 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5763 register_prefix,
5764 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5765 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5766#endif
252b5132 5767 }
e4630f71 5768 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5769 else if (i.types[op].bitfield.reg64
5770 && (i.tm.operand_types[op].bitfield.reg32
5771 || i.tm.operand_types[op].bitfield.acc))
252b5132 5772 {
34828aad 5773 if (intel_syntax
ca61edf2 5774 && i.tm.opcode_modifier.toqword
40fb9820 5775 && !i.types[0].bitfield.regxmm)
34828aad 5776 {
ca61edf2 5777 /* Convert to QWORD. We want REX byte. */
34828aad
L
5778 i.suffix = QWORD_MNEM_SUFFIX;
5779 }
5780 else
5781 {
2b5d6a91 5782 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5783 register_prefix, i.op[op].regs->reg_name,
5784 i.suffix);
5785 return 0;
5786 }
29b0f896
AM
5787 }
5788 return 1;
5789}
252b5132 5790
29b0f896 5791static int
e3bb37b5 5792check_qword_reg (void)
29b0f896
AM
5793{
5794 int op;
252b5132 5795
29b0f896
AM
5796 for (op = i.operands; --op >= 0; )
5797 /* Reject eight bit registers, except where the template requires
5798 them. (eg. movzb) */
40fb9820
L
5799 if (i.types[op].bitfield.reg8
5800 && (i.tm.operand_types[op].bitfield.reg16
5801 || i.tm.operand_types[op].bitfield.reg32
5802 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5803 {
a540244d
L
5804 as_bad (_("`%s%s' not allowed with `%s%c'"),
5805 register_prefix,
29b0f896
AM
5806 i.op[op].regs->reg_name,
5807 i.tm.name,
5808 i.suffix);
5809 return 0;
5810 }
e4630f71 5811 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5812 else if ((i.types[op].bitfield.reg16
5813 || i.types[op].bitfield.reg32)
33d0ab95 5814 && (i.tm.operand_types[op].bitfield.reg64
40fb9820 5815 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5816 {
5817 /* Prohibit these changes in the 64bit mode, since the
5818 lowering is more complicated. */
34828aad 5819 if (intel_syntax
ca61edf2 5820 && i.tm.opcode_modifier.todword
40fb9820 5821 && !i.types[0].bitfield.regxmm)
34828aad 5822 {
ca61edf2 5823 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5824 i.suffix = LONG_MNEM_SUFFIX;
5825 }
5826 else
5827 {
2b5d6a91 5828 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5829 register_prefix, i.op[op].regs->reg_name,
5830 i.suffix);
5831 return 0;
5832 }
252b5132 5833 }
29b0f896
AM
5834 return 1;
5835}
252b5132 5836
29b0f896 5837static int
e3bb37b5 5838check_word_reg (void)
29b0f896
AM
5839{
5840 int op;
5841 for (op = i.operands; --op >= 0;)
5842 /* Reject eight bit registers, except where the template requires
5843 them. (eg. movzb) */
40fb9820
L
5844 if (i.types[op].bitfield.reg8
5845 && (i.tm.operand_types[op].bitfield.reg16
5846 || i.tm.operand_types[op].bitfield.reg32
5847 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5848 {
a540244d
L
5849 as_bad (_("`%s%s' not allowed with `%s%c'"),
5850 register_prefix,
29b0f896
AM
5851 i.op[op].regs->reg_name,
5852 i.tm.name,
5853 i.suffix);
5854 return 0;
5855 }
e4630f71 5856 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5857 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5858 && (i.types[op].bitfield.reg32
5859 || i.types[op].bitfield.reg64)
40fb9820
L
5860 && (i.tm.operand_types[op].bitfield.reg16
5861 || i.tm.operand_types[op].bitfield.acc))
252b5132 5862 {
29b0f896
AM
5863 /* Prohibit these changes in the 64bit mode, since the
5864 lowering is more complicated. */
5865 if (flag_code == CODE_64BIT)
252b5132 5866 {
2b5d6a91 5867 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5868 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5869 i.suffix);
5870 return 0;
252b5132 5871 }
29b0f896 5872#if REGISTER_WARNINGS
cecf1424
JB
5873 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5874 register_prefix,
5875 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5876 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5877#endif
5878 }
5879 return 1;
5880}
252b5132 5881
29b0f896 5882static int
40fb9820 5883update_imm (unsigned int j)
29b0f896 5884{
bc0844ae 5885 i386_operand_type overlap = i.types[j];
40fb9820
L
5886 if ((overlap.bitfield.imm8
5887 || overlap.bitfield.imm8s
5888 || overlap.bitfield.imm16
5889 || overlap.bitfield.imm32
5890 || overlap.bitfield.imm32s
5891 || overlap.bitfield.imm64)
0dfbf9d7
L
5892 && !operand_type_equal (&overlap, &imm8)
5893 && !operand_type_equal (&overlap, &imm8s)
5894 && !operand_type_equal (&overlap, &imm16)
5895 && !operand_type_equal (&overlap, &imm32)
5896 && !operand_type_equal (&overlap, &imm32s)
5897 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5898 {
5899 if (i.suffix)
5900 {
40fb9820
L
5901 i386_operand_type temp;
5902
0dfbf9d7 5903 operand_type_set (&temp, 0);
7ab9ffdd 5904 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5905 {
5906 temp.bitfield.imm8 = overlap.bitfield.imm8;
5907 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5908 }
5909 else if (i.suffix == WORD_MNEM_SUFFIX)
5910 temp.bitfield.imm16 = overlap.bitfield.imm16;
5911 else if (i.suffix == QWORD_MNEM_SUFFIX)
5912 {
5913 temp.bitfield.imm64 = overlap.bitfield.imm64;
5914 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5915 }
5916 else
5917 temp.bitfield.imm32 = overlap.bitfield.imm32;
5918 overlap = temp;
29b0f896 5919 }
0dfbf9d7
L
5920 else if (operand_type_equal (&overlap, &imm16_32_32s)
5921 || operand_type_equal (&overlap, &imm16_32)
5922 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5923 {
40fb9820 5924 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5925 overlap = imm16;
40fb9820 5926 else
65da13b5 5927 overlap = imm32s;
29b0f896 5928 }
0dfbf9d7
L
5929 if (!operand_type_equal (&overlap, &imm8)
5930 && !operand_type_equal (&overlap, &imm8s)
5931 && !operand_type_equal (&overlap, &imm16)
5932 && !operand_type_equal (&overlap, &imm32)
5933 && !operand_type_equal (&overlap, &imm32s)
5934 && !operand_type_equal (&overlap, &imm64))
29b0f896 5935 {
4eed87de
AM
5936 as_bad (_("no instruction mnemonic suffix given; "
5937 "can't determine immediate size"));
29b0f896
AM
5938 return 0;
5939 }
5940 }
40fb9820 5941 i.types[j] = overlap;
29b0f896 5942
40fb9820
L
5943 return 1;
5944}
5945
5946static int
5947finalize_imm (void)
5948{
bc0844ae 5949 unsigned int j, n;
29b0f896 5950
bc0844ae
L
5951 /* Update the first 2 immediate operands. */
5952 n = i.operands > 2 ? 2 : i.operands;
5953 if (n)
5954 {
5955 for (j = 0; j < n; j++)
5956 if (update_imm (j) == 0)
5957 return 0;
40fb9820 5958
bc0844ae
L
5959 /* The 3rd operand can't be immediate operand. */
5960 gas_assert (operand_type_check (i.types[2], imm) == 0);
5961 }
29b0f896
AM
5962
5963 return 1;
5964}
5965
c0f3af97
L
5966static int
5967bad_implicit_operand (int xmm)
5968{
91d6fa6a
NC
5969 const char *ireg = xmm ? "xmm0" : "ymm0";
5970
c0f3af97
L
5971 if (intel_syntax)
5972 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5973 i.tm.name, register_prefix, ireg);
c0f3af97
L
5974 else
5975 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5976 i.tm.name, register_prefix, ireg);
c0f3af97
L
5977 return 0;
5978}
5979
29b0f896 5980static int
e3bb37b5 5981process_operands (void)
29b0f896
AM
5982{
5983 /* Default segment register this instruction will use for memory
5984 accesses. 0 means unknown. This is only for optimizing out
5985 unnecessary segment overrides. */
5986 const seg_entry *default_seg = 0;
5987
2426c15f 5988 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5989 {
91d6fa6a
NC
5990 unsigned int dupl = i.operands;
5991 unsigned int dest = dupl - 1;
9fcfb3d7
L
5992 unsigned int j;
5993
c0f3af97 5994 /* The destination must be an xmm register. */
9c2799c2 5995 gas_assert (i.reg_operands
91d6fa6a 5996 && MAX_OPERANDS > dupl
7ab9ffdd 5997 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5998
5999 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 6000 {
c0f3af97 6001 /* The first operand is implicit and must be xmm0. */
9c2799c2 6002 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 6003 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
6004 return bad_implicit_operand (1);
6005
8cd7925b 6006 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6007 {
6008 /* Keep xmm0 for instructions with VEX prefix and 3
6009 sources. */
6010 goto duplicate;
6011 }
e2ec9d29 6012 else
c0f3af97
L
6013 {
6014 /* We remove the first xmm0 and keep the number of
6015 operands unchanged, which in fact duplicates the
6016 destination. */
6017 for (j = 1; j < i.operands; j++)
6018 {
6019 i.op[j - 1] = i.op[j];
6020 i.types[j - 1] = i.types[j];
6021 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6022 }
6023 }
6024 }
6025 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6026 {
91d6fa6a 6027 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6028 && (i.tm.opcode_modifier.vexsources
6029 == VEX3SOURCES));
c0f3af97
L
6030
6031 /* Add the implicit xmm0 for instructions with VEX prefix
6032 and 3 sources. */
6033 for (j = i.operands; j > 0; j--)
6034 {
6035 i.op[j] = i.op[j - 1];
6036 i.types[j] = i.types[j - 1];
6037 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6038 }
6039 i.op[0].regs
6040 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6041 i.types[0] = regxmm;
c0f3af97
L
6042 i.tm.operand_types[0] = regxmm;
6043
6044 i.operands += 2;
6045 i.reg_operands += 2;
6046 i.tm.operands += 2;
6047
91d6fa6a 6048 dupl++;
c0f3af97 6049 dest++;
91d6fa6a
NC
6050 i.op[dupl] = i.op[dest];
6051 i.types[dupl] = i.types[dest];
6052 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6053 }
c0f3af97
L
6054 else
6055 {
6056duplicate:
6057 i.operands++;
6058 i.reg_operands++;
6059 i.tm.operands++;
6060
91d6fa6a
NC
6061 i.op[dupl] = i.op[dest];
6062 i.types[dupl] = i.types[dest];
6063 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6064 }
6065
6066 if (i.tm.opcode_modifier.immext)
6067 process_immext ();
6068 }
6069 else if (i.tm.opcode_modifier.firstxmm0)
6070 {
6071 unsigned int j;
6072
43234a1e 6073 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 6074 gas_assert (i.reg_operands
7ab9ffdd 6075 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
6076 || operand_type_equal (&i.types[0], &regymm)
6077 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 6078 if (register_number (i.op[0].regs) != 0)
c0f3af97 6079 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
6080
6081 for (j = 1; j < i.operands; j++)
6082 {
6083 i.op[j - 1] = i.op[j];
6084 i.types[j - 1] = i.types[j];
6085
6086 /* We need to adjust fields in i.tm since they are used by
6087 build_modrm_byte. */
6088 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6089 }
6090
e2ec9d29
L
6091 i.operands--;
6092 i.reg_operands--;
e2ec9d29
L
6093 i.tm.operands--;
6094 }
920d2ddc
IT
6095 else if (i.tm.opcode_modifier.implicitquadgroup)
6096 {
6097 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6098 gas_assert (i.operands >= 2
6099 && (operand_type_equal (&i.types[1], &regxmm)
6100 || operand_type_equal (&i.types[1], &regymm)
6101 || operand_type_equal (&i.types[1], &regzmm)));
6102 unsigned int regnum = register_number (i.op[1].regs);
6103 unsigned int first_reg_in_group = regnum & ~3;
6104 unsigned int last_reg_in_group = first_reg_in_group + 3;
6105 if (regnum != first_reg_in_group) {
6106 as_warn (_("the second source register `%s%s' implicitly denotes"
6107 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6108 register_prefix, i.op[1].regs->reg_name,
6109 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6110 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6111 i.tm.name);
6112 }
6113 }
e2ec9d29
L
6114 else if (i.tm.opcode_modifier.regkludge)
6115 {
6116 /* The imul $imm, %reg instruction is converted into
6117 imul $imm, %reg, %reg, and the clr %reg instruction
6118 is converted into xor %reg, %reg. */
6119
6120 unsigned int first_reg_op;
6121
6122 if (operand_type_check (i.types[0], reg))
6123 first_reg_op = 0;
6124 else
6125 first_reg_op = 1;
6126 /* Pretend we saw the extra register operand. */
9c2799c2 6127 gas_assert (i.reg_operands == 1
7ab9ffdd 6128 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6129 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6130 i.types[first_reg_op + 1] = i.types[first_reg_op];
6131 i.operands++;
6132 i.reg_operands++;
29b0f896
AM
6133 }
6134
40fb9820 6135 if (i.tm.opcode_modifier.shortform)
29b0f896 6136 {
40fb9820
L
6137 if (i.types[0].bitfield.sreg2
6138 || i.types[0].bitfield.sreg3)
29b0f896 6139 {
4eed87de
AM
6140 if (i.tm.base_opcode == POP_SEG_SHORT
6141 && i.op[0].regs->reg_num == 1)
29b0f896 6142 {
a87af027 6143 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6144 return 0;
29b0f896 6145 }
4eed87de
AM
6146 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6147 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6148 i.rex |= REX_B;
4eed87de
AM
6149 }
6150 else
6151 {
7ab9ffdd 6152 /* The register or float register operand is in operand
85f10a01 6153 0 or 1. */
40fb9820 6154 unsigned int op;
7ab9ffdd
L
6155
6156 if (i.types[0].bitfield.floatreg
6157 || operand_type_check (i.types[0], reg))
6158 op = 0;
6159 else
6160 op = 1;
4eed87de
AM
6161 /* Register goes in low 3 bits of opcode. */
6162 i.tm.base_opcode |= i.op[op].regs->reg_num;
6163 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6164 i.rex |= REX_B;
40fb9820 6165 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6166 {
4eed87de
AM
6167 /* Warn about some common errors, but press on regardless.
6168 The first case can be generated by gcc (<= 2.8.1). */
6169 if (i.operands == 2)
6170 {
6171 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6172 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6173 register_prefix, i.op[!intel_syntax].regs->reg_name,
6174 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6175 }
6176 else
6177 {
6178 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6179 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6180 register_prefix, i.op[0].regs->reg_name);
4eed87de 6181 }
29b0f896
AM
6182 }
6183 }
6184 }
40fb9820 6185 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6186 {
6187 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6188 must be put into the modrm byte). Now, we make the modrm and
6189 index base bytes based on all the info we've collected. */
29b0f896
AM
6190
6191 default_seg = build_modrm_byte ();
6192 }
8a2ed489 6193 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6194 {
6195 default_seg = &ds;
6196 }
40fb9820 6197 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6198 {
6199 /* For the string instructions that allow a segment override
6200 on one of their operands, the default segment is ds. */
6201 default_seg = &ds;
6202 }
6203
75178d9d
L
6204 if (i.tm.base_opcode == 0x8d /* lea */
6205 && i.seg[0]
6206 && !quiet_warnings)
30123838 6207 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6208
6209 /* If a segment was explicitly specified, and the specified segment
6210 is not the default, use an opcode prefix to select it. If we
6211 never figured out what the default segment is, then default_seg
6212 will be zero at this point, and the specified segment prefix will
6213 always be used. */
29b0f896
AM
6214 if ((i.seg[0]) && (i.seg[0] != default_seg))
6215 {
6216 if (!add_prefix (i.seg[0]->seg_prefix))
6217 return 0;
6218 }
6219 return 1;
6220}
6221
6222static const seg_entry *
e3bb37b5 6223build_modrm_byte (void)
29b0f896
AM
6224{
6225 const seg_entry *default_seg = 0;
c0f3af97 6226 unsigned int source, dest;
8cd7925b 6227 int vex_3_sources;
c0f3af97
L
6228
6229 /* The first operand of instructions with VEX prefix and 3 sources
6230 must be VEX_Imm4. */
8cd7925b 6231 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6232 if (vex_3_sources)
6233 {
91d6fa6a 6234 unsigned int nds, reg_slot;
4c2c6516 6235 expressionS *exp;
c0f3af97 6236
922d8de8 6237 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6238 && i.tm.opcode_modifier.immext)
6239 {
6240 dest = i.operands - 2;
6241 gas_assert (dest == 3);
6242 }
922d8de8 6243 else
a683cc34 6244 dest = i.operands - 1;
c0f3af97 6245 nds = dest - 1;
922d8de8 6246
a683cc34
SP
6247 /* There are 2 kinds of instructions:
6248 1. 5 operands: 4 register operands or 3 register operands
6249 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6250 VexW0 or VexW1. The destination must be either XMM, YMM or
6251 ZMM register.
a683cc34
SP
6252 2. 4 operands: 4 register operands or 3 register operands
6253 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6254 gas_assert ((i.reg_operands == 4
a683cc34
SP
6255 || (i.reg_operands == 3 && i.mem_operands == 1))
6256 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6257 && (i.tm.opcode_modifier.veximmext
6258 || (i.imm_operands == 1
6259 && i.types[0].bitfield.vec_imm4
6260 && (i.tm.opcode_modifier.vexw == VEXW0
6261 || i.tm.opcode_modifier.vexw == VEXW1)
6262 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
6263 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6264 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
6265
6266 if (i.imm_operands == 0)
6267 {
6268 /* When there is no immediate operand, generate an 8bit
6269 immediate operand to encode the first operand. */
6270 exp = &im_expressions[i.imm_operands++];
6271 i.op[i.operands].imms = exp;
6272 i.types[i.operands] = imm8;
6273 i.operands++;
6274 /* If VexW1 is set, the first operand is the source and
6275 the second operand is encoded in the immediate operand. */
6276 if (i.tm.opcode_modifier.vexw == VEXW1)
6277 {
6278 source = 0;
6279 reg_slot = 1;
6280 }
6281 else
6282 {
6283 source = 1;
6284 reg_slot = 0;
6285 }
6286
6287 /* FMA swaps REG and NDS. */
6288 if (i.tm.cpu_flags.bitfield.cpufma)
6289 {
6290 unsigned int tmp;
6291 tmp = reg_slot;
6292 reg_slot = nds;
6293 nds = tmp;
6294 }
6295
24981e7b
L
6296 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6297 &regxmm)
a683cc34 6298 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6299 &regymm)
6300 || operand_type_equal (&i.tm.operand_types[reg_slot],
6301 &regzmm));
a683cc34 6302 exp->X_op = O_constant;
4c692bc7 6303 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6304 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6305 }
922d8de8 6306 else
a683cc34
SP
6307 {
6308 unsigned int imm_slot;
6309
6310 if (i.tm.opcode_modifier.vexw == VEXW0)
6311 {
6312 /* If VexW0 is set, the third operand is the source and
6313 the second operand is encoded in the immediate
6314 operand. */
6315 source = 2;
6316 reg_slot = 1;
6317 }
6318 else
6319 {
6320 /* VexW1 is set, the second operand is the source and
6321 the third operand is encoded in the immediate
6322 operand. */
6323 source = 1;
6324 reg_slot = 2;
6325 }
6326
6327 if (i.tm.opcode_modifier.immext)
6328 {
33eaf5de 6329 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6330 operand. */
6331 imm_slot = i.operands - 1;
6332 source--;
6333 reg_slot--;
6334 }
6335 else
6336 {
6337 imm_slot = 0;
6338
6339 /* Turn on Imm8 so that output_imm will generate it. */
6340 i.types[imm_slot].bitfield.imm8 = 1;
6341 }
6342
24981e7b
L
6343 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6344 &regxmm)
6345 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6346 &regymm)
6347 || operand_type_equal (&i.tm.operand_types[reg_slot],
6348 &regzmm));
a683cc34 6349 i.op[imm_slot].imms->X_add_number
4c692bc7 6350 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6351 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6352 }
6353
6354 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6355 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6356 &regymm)
6357 || operand_type_equal (&i.tm.operand_types[nds],
6358 &regzmm));
dae39acc 6359 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6360 }
6361 else
6362 source = dest = 0;
29b0f896
AM
6363
6364 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6365 implicit registers do not count. If there are 3 register
6366 operands, it must be a instruction with VexNDS. For a
6367 instruction with VexNDD, the destination register is encoded
6368 in VEX prefix. If there are 4 register operands, it must be
6369 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6370 if (i.mem_operands == 0
6371 && ((i.reg_operands == 2
2426c15f 6372 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6373 || (i.reg_operands == 3
2426c15f 6374 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6375 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6376 {
cab737b9
L
6377 switch (i.operands)
6378 {
6379 case 2:
6380 source = 0;
6381 break;
6382 case 3:
c81128dc
L
6383 /* When there are 3 operands, one of them may be immediate,
6384 which may be the first or the last operand. Otherwise,
c0f3af97
L
6385 the first operand must be shift count register (cl) or it
6386 is an instruction with VexNDS. */
9c2799c2 6387 gas_assert (i.imm_operands == 1
7ab9ffdd 6388 || (i.imm_operands == 0
2426c15f 6389 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6390 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6391 if (operand_type_check (i.types[0], imm)
6392 || i.types[0].bitfield.shiftcount)
6393 source = 1;
6394 else
6395 source = 0;
cab737b9
L
6396 break;
6397 case 4:
368d64cc
L
6398 /* When there are 4 operands, the first two must be 8bit
6399 immediate operands. The source operand will be the 3rd
c0f3af97
L
6400 one.
6401
6402 For instructions with VexNDS, if the first operand
6403 an imm8, the source operand is the 2nd one. If the last
6404 operand is imm8, the source operand is the first one. */
9c2799c2 6405 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6406 && i.types[0].bitfield.imm8
6407 && i.types[1].bitfield.imm8)
2426c15f 6408 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6409 && i.imm_operands == 1
6410 && (i.types[0].bitfield.imm8
43234a1e
L
6411 || i.types[i.operands - 1].bitfield.imm8
6412 || i.rounding)));
9f2670f2
L
6413 if (i.imm_operands == 2)
6414 source = 2;
6415 else
c0f3af97
L
6416 {
6417 if (i.types[0].bitfield.imm8)
6418 source = 1;
6419 else
6420 source = 0;
6421 }
c0f3af97
L
6422 break;
6423 case 5:
43234a1e
L
6424 if (i.tm.opcode_modifier.evex)
6425 {
6426 /* For EVEX instructions, when there are 5 operands, the
6427 first one must be immediate operand. If the second one
6428 is immediate operand, the source operand is the 3th
6429 one. If the last one is immediate operand, the source
6430 operand is the 2nd one. */
6431 gas_assert (i.imm_operands == 2
6432 && i.tm.opcode_modifier.sae
6433 && operand_type_check (i.types[0], imm));
6434 if (operand_type_check (i.types[1], imm))
6435 source = 2;
6436 else if (operand_type_check (i.types[4], imm))
6437 source = 1;
6438 else
6439 abort ();
6440 }
cab737b9
L
6441 break;
6442 default:
6443 abort ();
6444 }
6445
c0f3af97
L
6446 if (!vex_3_sources)
6447 {
6448 dest = source + 1;
6449
43234a1e
L
6450 /* RC/SAE operand could be between DEST and SRC. That happens
6451 when one operand is GPR and the other one is XMM/YMM/ZMM
6452 register. */
6453 if (i.rounding && i.rounding->operand == (int) dest)
6454 dest++;
6455
2426c15f 6456 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6457 {
43234a1e
L
6458 /* For instructions with VexNDS, the register-only source
6459 operand must be 32/64bit integer, XMM, YMM or ZMM
6460 register. It is encoded in VEX prefix. We need to
6461 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6462
6463 i386_operand_type op;
6464 unsigned int vvvv;
6465
6466 /* Check register-only source operand when two source
6467 operands are swapped. */
6468 if (!i.tm.operand_types[source].bitfield.baseindex
6469 && i.tm.operand_types[dest].bitfield.baseindex)
6470 {
6471 vvvv = source;
6472 source = dest;
6473 }
6474 else
6475 vvvv = dest;
6476
6477 op = i.tm.operand_types[vvvv];
fa99fab2 6478 op.bitfield.regmem = 0;
c0f3af97 6479 if ((dest + 1) >= i.operands
ac4eb736
AM
6480 || (!op.bitfield.reg32
6481 && op.bitfield.reg64
f12dc422 6482 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6483 && !operand_type_equal (&op, &regymm)
6484 && !operand_type_equal (&op, &regzmm)
6485 && !operand_type_equal (&op, &regmask)))
c0f3af97 6486 abort ();
f12dc422 6487 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6488 dest++;
6489 }
6490 }
29b0f896
AM
6491
6492 i.rm.mode = 3;
6493 /* One of the register operands will be encoded in the i.tm.reg
6494 field, the other in the combined i.tm.mode and i.tm.regmem
6495 fields. If no form of this instruction supports a memory
6496 destination operand, then we assume the source operand may
6497 sometimes be a memory operand and so we need to store the
6498 destination in the i.rm.reg field. */
40fb9820
L
6499 if (!i.tm.operand_types[dest].bitfield.regmem
6500 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6501 {
6502 i.rm.reg = i.op[dest].regs->reg_num;
6503 i.rm.regmem = i.op[source].regs->reg_num;
6504 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6505 i.rex |= REX_R;
43234a1e
L
6506 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6507 i.vrex |= REX_R;
29b0f896 6508 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6509 i.rex |= REX_B;
43234a1e
L
6510 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6511 i.vrex |= REX_B;
29b0f896
AM
6512 }
6513 else
6514 {
6515 i.rm.reg = i.op[source].regs->reg_num;
6516 i.rm.regmem = i.op[dest].regs->reg_num;
6517 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6518 i.rex |= REX_B;
43234a1e
L
6519 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6520 i.vrex |= REX_B;
29b0f896 6521 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6522 i.rex |= REX_R;
43234a1e
L
6523 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6524 i.vrex |= REX_R;
29b0f896 6525 }
161a04f6 6526 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6527 {
40fb9820
L
6528 if (!i.types[0].bitfield.control
6529 && !i.types[1].bitfield.control)
c4a530c5 6530 abort ();
161a04f6 6531 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6532 add_prefix (LOCK_PREFIX_OPCODE);
6533 }
29b0f896
AM
6534 }
6535 else
6536 { /* If it's not 2 reg operands... */
c0f3af97
L
6537 unsigned int mem;
6538
29b0f896
AM
6539 if (i.mem_operands)
6540 {
6541 unsigned int fake_zero_displacement = 0;
99018f42 6542 unsigned int op;
4eed87de 6543
7ab9ffdd
L
6544 for (op = 0; op < i.operands; op++)
6545 if (operand_type_check (i.types[op], anymem))
6546 break;
7ab9ffdd 6547 gas_assert (op < i.operands);
29b0f896 6548
6c30d220
L
6549 if (i.tm.opcode_modifier.vecsib)
6550 {
6551 if (i.index_reg->reg_num == RegEiz
6552 || i.index_reg->reg_num == RegRiz)
6553 abort ();
6554
6555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6556 if (!i.base_reg)
6557 {
6558 i.sib.base = NO_BASE_REGISTER;
6559 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6560 /* No Vec_Disp8 if there is no base. */
6561 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6562 i.types[op].bitfield.disp8 = 0;
6563 i.types[op].bitfield.disp16 = 0;
6564 i.types[op].bitfield.disp64 = 0;
43083a50 6565 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6566 {
6567 /* Must be 32 bit */
6568 i.types[op].bitfield.disp32 = 1;
6569 i.types[op].bitfield.disp32s = 0;
6570 }
6571 else
6572 {
6573 i.types[op].bitfield.disp32 = 0;
6574 i.types[op].bitfield.disp32s = 1;
6575 }
6576 }
6577 i.sib.index = i.index_reg->reg_num;
6578 if ((i.index_reg->reg_flags & RegRex) != 0)
6579 i.rex |= REX_X;
43234a1e
L
6580 if ((i.index_reg->reg_flags & RegVRex) != 0)
6581 i.vrex |= REX_X;
6c30d220
L
6582 }
6583
29b0f896
AM
6584 default_seg = &ds;
6585
6586 if (i.base_reg == 0)
6587 {
6588 i.rm.mode = 0;
6589 if (!i.disp_operands)
9bb129e8 6590 fake_zero_displacement = 1;
29b0f896
AM
6591 if (i.index_reg == 0)
6592 {
6c30d220 6593 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6594 /* Operand is just <disp> */
20f0a1fc 6595 if (flag_code == CODE_64BIT)
29b0f896
AM
6596 {
6597 /* 64bit mode overwrites the 32bit absolute
6598 addressing by RIP relative addressing and
6599 absolute addressing is encoded by one of the
6600 redundant SIB forms. */
6601 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6602 i.sib.base = NO_BASE_REGISTER;
6603 i.sib.index = NO_INDEX_REGISTER;
fc225355 6604 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6605 ? disp32s : disp32);
20f0a1fc 6606 }
fc225355
L
6607 else if ((flag_code == CODE_16BIT)
6608 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6609 {
6610 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6611 i.types[op] = disp16;
20f0a1fc
NC
6612 }
6613 else
6614 {
6615 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6616 i.types[op] = disp32;
29b0f896
AM
6617 }
6618 }
6c30d220 6619 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6620 {
6c30d220 6621 /* !i.base_reg && i.index_reg */
db51cc60
L
6622 if (i.index_reg->reg_num == RegEiz
6623 || i.index_reg->reg_num == RegRiz)
6624 i.sib.index = NO_INDEX_REGISTER;
6625 else
6626 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6627 i.sib.base = NO_BASE_REGISTER;
6628 i.sib.scale = i.log2_scale_factor;
6629 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6630 /* No Vec_Disp8 if there is no base. */
6631 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6632 i.types[op].bitfield.disp8 = 0;
6633 i.types[op].bitfield.disp16 = 0;
6634 i.types[op].bitfield.disp64 = 0;
43083a50 6635 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6636 {
6637 /* Must be 32 bit */
6638 i.types[op].bitfield.disp32 = 1;
6639 i.types[op].bitfield.disp32s = 0;
6640 }
29b0f896 6641 else
40fb9820
L
6642 {
6643 i.types[op].bitfield.disp32 = 0;
6644 i.types[op].bitfield.disp32s = 1;
6645 }
29b0f896 6646 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6647 i.rex |= REX_X;
29b0f896
AM
6648 }
6649 }
6650 /* RIP addressing for 64bit mode. */
9a04903e
JB
6651 else if (i.base_reg->reg_num == RegRip ||
6652 i.base_reg->reg_num == RegEip)
29b0f896 6653 {
6c30d220 6654 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6655 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6656 i.types[op].bitfield.disp8 = 0;
6657 i.types[op].bitfield.disp16 = 0;
6658 i.types[op].bitfield.disp32 = 0;
6659 i.types[op].bitfield.disp32s = 1;
6660 i.types[op].bitfield.disp64 = 0;
43234a1e 6661 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6662 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6663 if (! i.disp_operands)
6664 fake_zero_displacement = 1;
29b0f896 6665 }
40fb9820 6666 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6667 {
6c30d220 6668 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6669 switch (i.base_reg->reg_num)
6670 {
6671 case 3: /* (%bx) */
6672 if (i.index_reg == 0)
6673 i.rm.regmem = 7;
6674 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6675 i.rm.regmem = i.index_reg->reg_num - 6;
6676 break;
6677 case 5: /* (%bp) */
6678 default_seg = &ss;
6679 if (i.index_reg == 0)
6680 {
6681 i.rm.regmem = 6;
40fb9820 6682 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6683 {
6684 /* fake (%bp) into 0(%bp) */
43234a1e
L
6685 if (i.tm.operand_types[op].bitfield.vec_disp8)
6686 i.types[op].bitfield.vec_disp8 = 1;
6687 else
6688 i.types[op].bitfield.disp8 = 1;
252b5132 6689 fake_zero_displacement = 1;
29b0f896
AM
6690 }
6691 }
6692 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6693 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6694 break;
6695 default: /* (%si) -> 4 or (%di) -> 5 */
6696 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6697 }
6698 i.rm.mode = mode_from_disp_size (i.types[op]);
6699 }
6700 else /* i.base_reg and 32/64 bit mode */
6701 {
6702 if (flag_code == CODE_64BIT
40fb9820
L
6703 && operand_type_check (i.types[op], disp))
6704 {
6705 i386_operand_type temp;
0dfbf9d7 6706 operand_type_set (&temp, 0);
40fb9820 6707 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6708 temp.bitfield.vec_disp8
6709 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6710 i.types[op] = temp;
6711 if (i.prefix[ADDR_PREFIX] == 0)
6712 i.types[op].bitfield.disp32s = 1;
6713 else
6714 i.types[op].bitfield.disp32 = 1;
6715 }
20f0a1fc 6716
6c30d220
L
6717 if (!i.tm.opcode_modifier.vecsib)
6718 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6719 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6720 i.rex |= REX_B;
29b0f896
AM
6721 i.sib.base = i.base_reg->reg_num;
6722 /* x86-64 ignores REX prefix bit here to avoid decoder
6723 complications. */
848930b2
JB
6724 if (!(i.base_reg->reg_flags & RegRex)
6725 && (i.base_reg->reg_num == EBP_REG_NUM
6726 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6727 default_seg = &ss;
848930b2 6728 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6729 {
848930b2 6730 fake_zero_displacement = 1;
43234a1e
L
6731 if (i.tm.operand_types [op].bitfield.vec_disp8)
6732 i.types[op].bitfield.vec_disp8 = 1;
6733 else
6734 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6735 }
6736 i.sib.scale = i.log2_scale_factor;
6737 if (i.index_reg == 0)
6738 {
6c30d220 6739 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6740 /* <disp>(%esp) becomes two byte modrm with no index
6741 register. We've already stored the code for esp
6742 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6743 Any base register besides %esp will not use the
6744 extra modrm byte. */
6745 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6746 }
6c30d220 6747 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6748 {
db51cc60
L
6749 if (i.index_reg->reg_num == RegEiz
6750 || i.index_reg->reg_num == RegRiz)
6751 i.sib.index = NO_INDEX_REGISTER;
6752 else
6753 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6754 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6755 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6756 i.rex |= REX_X;
29b0f896 6757 }
67a4f2b7
AO
6758
6759 if (i.disp_operands
6760 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6762 i.rm.mode = 0;
6763 else
a501d77e
L
6764 {
6765 if (!fake_zero_displacement
6766 && !i.disp_operands
6767 && i.disp_encoding)
6768 {
6769 fake_zero_displacement = 1;
6770 if (i.disp_encoding == disp_encoding_8bit)
6771 i.types[op].bitfield.disp8 = 1;
6772 else
6773 i.types[op].bitfield.disp32 = 1;
6774 }
6775 i.rm.mode = mode_from_disp_size (i.types[op]);
6776 }
29b0f896 6777 }
252b5132 6778
29b0f896
AM
6779 if (fake_zero_displacement)
6780 {
6781 /* Fakes a zero displacement assuming that i.types[op]
6782 holds the correct displacement size. */
6783 expressionS *exp;
6784
9c2799c2 6785 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6786 exp = &disp_expressions[i.disp_operands++];
6787 i.op[op].disps = exp;
6788 exp->X_op = O_constant;
6789 exp->X_add_number = 0;
6790 exp->X_add_symbol = (symbolS *) 0;
6791 exp->X_op_symbol = (symbolS *) 0;
6792 }
c0f3af97
L
6793
6794 mem = op;
29b0f896 6795 }
c0f3af97
L
6796 else
6797 mem = ~0;
252b5132 6798
8c43a48b 6799 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6800 {
6801 if (operand_type_check (i.types[0], imm))
6802 i.vex.register_specifier = NULL;
6803 else
6804 {
6805 /* VEX.vvvv encodes one of the sources when the first
6806 operand is not an immediate. */
1ef99a7b 6807 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6808 i.vex.register_specifier = i.op[0].regs;
6809 else
6810 i.vex.register_specifier = i.op[1].regs;
6811 }
6812
6813 /* Destination is a XMM register encoded in the ModRM.reg
6814 and VEX.R bit. */
6815 i.rm.reg = i.op[2].regs->reg_num;
6816 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6817 i.rex |= REX_R;
6818
6819 /* ModRM.rm and VEX.B encodes the other source. */
6820 if (!i.mem_operands)
6821 {
6822 i.rm.mode = 3;
6823
1ef99a7b 6824 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6825 i.rm.regmem = i.op[1].regs->reg_num;
6826 else
6827 i.rm.regmem = i.op[0].regs->reg_num;
6828
6829 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6830 i.rex |= REX_B;
6831 }
6832 }
2426c15f 6833 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6834 {
6835 i.vex.register_specifier = i.op[2].regs;
6836 if (!i.mem_operands)
6837 {
6838 i.rm.mode = 3;
6839 i.rm.regmem = i.op[1].regs->reg_num;
6840 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6841 i.rex |= REX_B;
6842 }
6843 }
29b0f896
AM
6844 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6845 (if any) based on i.tm.extension_opcode. Again, we must be
6846 careful to make sure that segment/control/debug/test/MMX
6847 registers are coded into the i.rm.reg field. */
f88c9eb0 6848 else if (i.reg_operands)
29b0f896 6849 {
99018f42 6850 unsigned int op;
7ab9ffdd
L
6851 unsigned int vex_reg = ~0;
6852
6853 for (op = 0; op < i.operands; op++)
6854 if (i.types[op].bitfield.reg8
6855 || i.types[op].bitfield.reg16
6856 || i.types[op].bitfield.reg32
6857 || i.types[op].bitfield.reg64
6858 || i.types[op].bitfield.regmmx
6859 || i.types[op].bitfield.regxmm
6860 || i.types[op].bitfield.regymm
7e8b059b 6861 || i.types[op].bitfield.regbnd
43234a1e
L
6862 || i.types[op].bitfield.regzmm
6863 || i.types[op].bitfield.regmask
7ab9ffdd
L
6864 || i.types[op].bitfield.sreg2
6865 || i.types[op].bitfield.sreg3
6866 || i.types[op].bitfield.control
6867 || i.types[op].bitfield.debug
6868 || i.types[op].bitfield.test)
6869 break;
c0209578 6870
7ab9ffdd
L
6871 if (vex_3_sources)
6872 op = dest;
2426c15f 6873 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6874 {
6875 /* For instructions with VexNDS, the register-only
6876 source operand is encoded in VEX prefix. */
6877 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6878
7ab9ffdd 6879 if (op > mem)
c0f3af97 6880 {
7ab9ffdd
L
6881 vex_reg = op++;
6882 gas_assert (op < i.operands);
c0f3af97
L
6883 }
6884 else
c0f3af97 6885 {
f12dc422
L
6886 /* Check register-only source operand when two source
6887 operands are swapped. */
6888 if (!i.tm.operand_types[op].bitfield.baseindex
6889 && i.tm.operand_types[op + 1].bitfield.baseindex)
6890 {
6891 vex_reg = op;
6892 op += 2;
6893 gas_assert (mem == (vex_reg + 1)
6894 && op < i.operands);
6895 }
6896 else
6897 {
6898 vex_reg = op + 1;
6899 gas_assert (vex_reg < i.operands);
6900 }
c0f3af97 6901 }
7ab9ffdd 6902 }
2426c15f 6903 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6904 {
f12dc422 6905 /* For instructions with VexNDD, the register destination
7ab9ffdd 6906 is encoded in VEX prefix. */
f12dc422
L
6907 if (i.mem_operands == 0)
6908 {
6909 /* There is no memory operand. */
6910 gas_assert ((op + 2) == i.operands);
6911 vex_reg = op + 1;
6912 }
6913 else
8d63c93e 6914 {
f12dc422
L
6915 /* There are only 2 operands. */
6916 gas_assert (op < 2 && i.operands == 2);
6917 vex_reg = 1;
6918 }
7ab9ffdd
L
6919 }
6920 else
6921 gas_assert (op < i.operands);
99018f42 6922
7ab9ffdd
L
6923 if (vex_reg != (unsigned int) ~0)
6924 {
f12dc422 6925 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6926
f12dc422
L
6927 if (type->bitfield.reg32 != 1
6928 && type->bitfield.reg64 != 1
6929 && !operand_type_equal (type, &regxmm)
43234a1e
L
6930 && !operand_type_equal (type, &regymm)
6931 && !operand_type_equal (type, &regzmm)
6932 && !operand_type_equal (type, &regmask))
7ab9ffdd 6933 abort ();
f88c9eb0 6934
7ab9ffdd
L
6935 i.vex.register_specifier = i.op[vex_reg].regs;
6936 }
6937
1b9f0c97
L
6938 /* Don't set OP operand twice. */
6939 if (vex_reg != op)
7ab9ffdd 6940 {
1b9f0c97
L
6941 /* If there is an extension opcode to put here, the
6942 register number must be put into the regmem field. */
6943 if (i.tm.extension_opcode != None)
6944 {
6945 i.rm.regmem = i.op[op].regs->reg_num;
6946 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6947 i.rex |= REX_B;
43234a1e
L
6948 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6949 i.vrex |= REX_B;
1b9f0c97
L
6950 }
6951 else
6952 {
6953 i.rm.reg = i.op[op].regs->reg_num;
6954 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6955 i.rex |= REX_R;
43234a1e
L
6956 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6957 i.vrex |= REX_R;
1b9f0c97 6958 }
7ab9ffdd 6959 }
252b5132 6960
29b0f896
AM
6961 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6962 must set it to 3 to indicate this is a register operand
6963 in the regmem field. */
6964 if (!i.mem_operands)
6965 i.rm.mode = 3;
6966 }
252b5132 6967
29b0f896 6968 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6969 if (i.tm.extension_opcode != None)
29b0f896
AM
6970 i.rm.reg = i.tm.extension_opcode;
6971 }
6972 return default_seg;
6973}
252b5132 6974
29b0f896 6975static void
e3bb37b5 6976output_branch (void)
29b0f896
AM
6977{
6978 char *p;
f8a5c266 6979 int size;
29b0f896
AM
6980 int code16;
6981 int prefix;
6982 relax_substateT subtype;
6983 symbolS *sym;
6984 offsetT off;
6985
f8a5c266 6986 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6987 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6988
6989 prefix = 0;
6990 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6991 {
29b0f896
AM
6992 prefix = 1;
6993 i.prefixes -= 1;
6994 code16 ^= CODE16;
252b5132 6995 }
29b0f896
AM
6996 /* Pentium4 branch hints. */
6997 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6998 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6999 {
29b0f896
AM
7000 prefix++;
7001 i.prefixes--;
7002 }
7003 if (i.prefix[REX_PREFIX] != 0)
7004 {
7005 prefix++;
7006 i.prefixes--;
2f66722d
AM
7007 }
7008
7e8b059b
L
7009 /* BND prefixed jump. */
7010 if (i.prefix[BND_PREFIX] != 0)
7011 {
7012 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7013 i.prefixes -= 1;
7014 }
7015
29b0f896
AM
7016 if (i.prefixes != 0 && !intel_syntax)
7017 as_warn (_("skipping prefixes on this instruction"));
7018
7019 /* It's always a symbol; End frag & setup for relax.
7020 Make sure there is enough room in this frag for the largest
7021 instruction we may generate in md_convert_frag. This is 2
7022 bytes for the opcode and room for the prefix and largest
7023 displacement. */
7024 frag_grow (prefix + 2 + 4);
7025 /* Prefix and 1 opcode byte go in fr_fix. */
7026 p = frag_more (prefix + 1);
7027 if (i.prefix[DATA_PREFIX] != 0)
7028 *p++ = DATA_PREFIX_OPCODE;
7029 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7030 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7031 *p++ = i.prefix[SEG_PREFIX];
7032 if (i.prefix[REX_PREFIX] != 0)
7033 *p++ = i.prefix[REX_PREFIX];
7034 *p = i.tm.base_opcode;
7035
7036 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7037 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7038 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7039 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7040 else
f8a5c266 7041 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7042 subtype |= code16;
3e73aa7c 7043
29b0f896
AM
7044 sym = i.op[0].disps->X_add_symbol;
7045 off = i.op[0].disps->X_add_number;
3e73aa7c 7046
29b0f896
AM
7047 if (i.op[0].disps->X_op != O_constant
7048 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7049 {
29b0f896
AM
7050 /* Handle complex expressions. */
7051 sym = make_expr_symbol (i.op[0].disps);
7052 off = 0;
7053 }
3e73aa7c 7054
29b0f896
AM
7055 /* 1 possible extra opcode + 4 byte displacement go in var part.
7056 Pass reloc in fr_var. */
d258b828 7057 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7058}
3e73aa7c 7059
29b0f896 7060static void
e3bb37b5 7061output_jump (void)
29b0f896
AM
7062{
7063 char *p;
7064 int size;
3e02c1cc 7065 fixS *fixP;
29b0f896 7066
40fb9820 7067 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7068 {
7069 /* This is a loop or jecxz type instruction. */
7070 size = 1;
7071 if (i.prefix[ADDR_PREFIX] != 0)
7072 {
7073 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7074 i.prefixes -= 1;
7075 }
7076 /* Pentium4 branch hints. */
7077 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7078 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7079 {
7080 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7081 i.prefixes--;
3e73aa7c
JH
7082 }
7083 }
29b0f896
AM
7084 else
7085 {
7086 int code16;
3e73aa7c 7087
29b0f896
AM
7088 code16 = 0;
7089 if (flag_code == CODE_16BIT)
7090 code16 = CODE16;
3e73aa7c 7091
29b0f896
AM
7092 if (i.prefix[DATA_PREFIX] != 0)
7093 {
7094 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7095 i.prefixes -= 1;
7096 code16 ^= CODE16;
7097 }
252b5132 7098
29b0f896
AM
7099 size = 4;
7100 if (code16)
7101 size = 2;
7102 }
9fcc94b6 7103
29b0f896
AM
7104 if (i.prefix[REX_PREFIX] != 0)
7105 {
7106 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7107 i.prefixes -= 1;
7108 }
252b5132 7109
7e8b059b
L
7110 /* BND prefixed jump. */
7111 if (i.prefix[BND_PREFIX] != 0)
7112 {
7113 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7114 i.prefixes -= 1;
7115 }
7116
29b0f896
AM
7117 if (i.prefixes != 0 && !intel_syntax)
7118 as_warn (_("skipping prefixes on this instruction"));
e0890092 7119
42164a71
L
7120 p = frag_more (i.tm.opcode_length + size);
7121 switch (i.tm.opcode_length)
7122 {
7123 case 2:
7124 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7125 /* Fall through. */
42164a71
L
7126 case 1:
7127 *p++ = i.tm.base_opcode;
7128 break;
7129 default:
7130 abort ();
7131 }
e0890092 7132
3e02c1cc 7133 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7134 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3e02c1cc
AM
7135
7136 /* All jumps handled here are signed, but don't use a signed limit
7137 check for 32 and 16 bit jumps as we want to allow wrap around at
7138 4G and 64k respectively. */
7139 if (size == 1)
7140 fixP->fx_signed = 1;
29b0f896 7141}
e0890092 7142
29b0f896 7143static void
e3bb37b5 7144output_interseg_jump (void)
29b0f896
AM
7145{
7146 char *p;
7147 int size;
7148 int prefix;
7149 int code16;
252b5132 7150
29b0f896
AM
7151 code16 = 0;
7152 if (flag_code == CODE_16BIT)
7153 code16 = CODE16;
a217f122 7154
29b0f896
AM
7155 prefix = 0;
7156 if (i.prefix[DATA_PREFIX] != 0)
7157 {
7158 prefix = 1;
7159 i.prefixes -= 1;
7160 code16 ^= CODE16;
7161 }
7162 if (i.prefix[REX_PREFIX] != 0)
7163 {
7164 prefix++;
7165 i.prefixes -= 1;
7166 }
252b5132 7167
29b0f896
AM
7168 size = 4;
7169 if (code16)
7170 size = 2;
252b5132 7171
29b0f896
AM
7172 if (i.prefixes != 0 && !intel_syntax)
7173 as_warn (_("skipping prefixes on this instruction"));
252b5132 7174
29b0f896
AM
7175 /* 1 opcode; 2 segment; offset */
7176 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7177
29b0f896
AM
7178 if (i.prefix[DATA_PREFIX] != 0)
7179 *p++ = DATA_PREFIX_OPCODE;
252b5132 7180
29b0f896
AM
7181 if (i.prefix[REX_PREFIX] != 0)
7182 *p++ = i.prefix[REX_PREFIX];
252b5132 7183
29b0f896
AM
7184 *p++ = i.tm.base_opcode;
7185 if (i.op[1].imms->X_op == O_constant)
7186 {
7187 offsetT n = i.op[1].imms->X_add_number;
252b5132 7188
29b0f896
AM
7189 if (size == 2
7190 && !fits_in_unsigned_word (n)
7191 && !fits_in_signed_word (n))
7192 {
7193 as_bad (_("16-bit jump out of range"));
7194 return;
7195 }
7196 md_number_to_chars (p, n, size);
7197 }
7198 else
7199 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7200 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7201 if (i.op[0].imms->X_op != O_constant)
7202 as_bad (_("can't handle non absolute segment in `%s'"),
7203 i.tm.name);
7204 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7205}
a217f122 7206
29b0f896 7207static void
e3bb37b5 7208output_insn (void)
29b0f896 7209{
2bbd9c25
JJ
7210 fragS *insn_start_frag;
7211 offsetT insn_start_off;
7212
29b0f896
AM
7213 /* Tie dwarf2 debug info to the address at the start of the insn.
7214 We can't do this after the insn has been output as the current
7215 frag may have been closed off. eg. by frag_var. */
7216 dwarf2_emit_insn (0);
7217
2bbd9c25
JJ
7218 insn_start_frag = frag_now;
7219 insn_start_off = frag_now_fix ();
7220
29b0f896 7221 /* Output jumps. */
40fb9820 7222 if (i.tm.opcode_modifier.jump)
29b0f896 7223 output_branch ();
40fb9820
L
7224 else if (i.tm.opcode_modifier.jumpbyte
7225 || i.tm.opcode_modifier.jumpdword)
29b0f896 7226 output_jump ();
40fb9820 7227 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7228 output_interseg_jump ();
7229 else
7230 {
7231 /* Output normal instructions here. */
7232 char *p;
7233 unsigned char *q;
47465058 7234 unsigned int j;
331d2d0d 7235 unsigned int prefix;
4dffcebc 7236
e4e00185
AS
7237 if (avoid_fence
7238 && i.tm.base_opcode == 0xfae
7239 && i.operands == 1
7240 && i.imm_operands == 1
7241 && (i.op[0].imms->X_add_number == 0xe8
7242 || i.op[0].imms->X_add_number == 0xf0
7243 || i.op[0].imms->X_add_number == 0xf8))
7244 {
7245 /* Encode lfence, mfence, and sfence as
7246 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7247 offsetT val = 0x240483f0ULL;
7248 p = frag_more (5);
7249 md_number_to_chars (p, val, 5);
7250 return;
7251 }
7252
d022bddd
IT
7253 /* Some processors fail on LOCK prefix. This options makes
7254 assembler ignore LOCK prefix and serves as a workaround. */
7255 if (omit_lock_prefix)
7256 {
7257 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7258 return;
7259 i.prefix[LOCK_PREFIX] = 0;
7260 }
7261
43234a1e
L
7262 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7263 don't need the explicit prefix. */
7264 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7265 {
c0f3af97 7266 switch (i.tm.opcode_length)
bc4bd9ab 7267 {
c0f3af97
L
7268 case 3:
7269 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7270 {
c0f3af97
L
7271 prefix = (i.tm.base_opcode >> 24) & 0xff;
7272 goto check_prefix;
7273 }
7274 break;
7275 case 2:
7276 if ((i.tm.base_opcode & 0xff0000) != 0)
7277 {
7278 prefix = (i.tm.base_opcode >> 16) & 0xff;
7279 if (i.tm.cpu_flags.bitfield.cpupadlock)
7280 {
4dffcebc 7281check_prefix:
c0f3af97 7282 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7283 || (i.prefix[REP_PREFIX]
c0f3af97
L
7284 != REPE_PREFIX_OPCODE))
7285 add_prefix (prefix);
7286 }
7287 else
4dffcebc
L
7288 add_prefix (prefix);
7289 }
c0f3af97
L
7290 break;
7291 case 1:
7292 break;
7293 default:
7294 abort ();
bc4bd9ab 7295 }
c0f3af97 7296
6d19a37a 7297#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7298 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7299 R_X86_64_GOTTPOFF relocation so that linker can safely
7300 perform IE->LE optimization. */
7301 if (x86_elf_abi == X86_64_X32_ABI
7302 && i.operands == 2
7303 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7304 && i.prefix[REX_PREFIX] == 0)
7305 add_prefix (REX_OPCODE);
6d19a37a 7306#endif
cf61b747 7307
c0f3af97
L
7308 /* The prefix bytes. */
7309 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7310 if (*q)
7311 FRAG_APPEND_1_CHAR (*q);
0f10071e 7312 }
ae5c1c7b 7313 else
c0f3af97
L
7314 {
7315 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7316 if (*q)
7317 switch (j)
7318 {
7319 case REX_PREFIX:
7320 /* REX byte is encoded in VEX prefix. */
7321 break;
7322 case SEG_PREFIX:
7323 case ADDR_PREFIX:
7324 FRAG_APPEND_1_CHAR (*q);
7325 break;
7326 default:
7327 /* There should be no other prefixes for instructions
7328 with VEX prefix. */
7329 abort ();
7330 }
7331
43234a1e
L
7332 /* For EVEX instructions i.vrex should become 0 after
7333 build_evex_prefix. For VEX instructions upper 16 registers
7334 aren't available, so VREX should be 0. */
7335 if (i.vrex)
7336 abort ();
c0f3af97
L
7337 /* Now the VEX prefix. */
7338 p = frag_more (i.vex.length);
7339 for (j = 0; j < i.vex.length; j++)
7340 p[j] = i.vex.bytes[j];
7341 }
252b5132 7342
29b0f896 7343 /* Now the opcode; be careful about word order here! */
4dffcebc 7344 if (i.tm.opcode_length == 1)
29b0f896
AM
7345 {
7346 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7347 }
7348 else
7349 {
4dffcebc 7350 switch (i.tm.opcode_length)
331d2d0d 7351 {
43234a1e
L
7352 case 4:
7353 p = frag_more (4);
7354 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7355 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7356 break;
4dffcebc 7357 case 3:
331d2d0d
L
7358 p = frag_more (3);
7359 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7360 break;
7361 case 2:
7362 p = frag_more (2);
7363 break;
7364 default:
7365 abort ();
7366 break;
331d2d0d 7367 }
0f10071e 7368
29b0f896
AM
7369 /* Put out high byte first: can't use md_number_to_chars! */
7370 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7371 *p = i.tm.base_opcode & 0xff;
7372 }
3e73aa7c 7373
29b0f896 7374 /* Now the modrm byte and sib byte (if present). */
40fb9820 7375 if (i.tm.opcode_modifier.modrm)
29b0f896 7376 {
4a3523fa
L
7377 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7378 | i.rm.reg << 3
7379 | i.rm.mode << 6));
29b0f896
AM
7380 /* If i.rm.regmem == ESP (4)
7381 && i.rm.mode != (Register mode)
7382 && not 16 bit
7383 ==> need second modrm byte. */
7384 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7385 && i.rm.mode != 3
40fb9820 7386 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7387 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7388 | i.sib.index << 3
7389 | i.sib.scale << 6));
29b0f896 7390 }
3e73aa7c 7391
29b0f896 7392 if (i.disp_operands)
2bbd9c25 7393 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7394
29b0f896 7395 if (i.imm_operands)
2bbd9c25 7396 output_imm (insn_start_frag, insn_start_off);
29b0f896 7397 }
252b5132 7398
29b0f896
AM
7399#ifdef DEBUG386
7400 if (flag_debug)
7401 {
7b81dfbb 7402 pi ("" /*line*/, &i);
29b0f896
AM
7403 }
7404#endif /* DEBUG386 */
7405}
252b5132 7406
e205caa7
L
7407/* Return the size of the displacement operand N. */
7408
7409static int
7410disp_size (unsigned int n)
7411{
7412 int size = 4;
43234a1e
L
7413
7414 /* Vec_Disp8 has to be 8bit. */
7415 if (i.types[n].bitfield.vec_disp8)
7416 size = 1;
7417 else if (i.types[n].bitfield.disp64)
40fb9820
L
7418 size = 8;
7419 else if (i.types[n].bitfield.disp8)
7420 size = 1;
7421 else if (i.types[n].bitfield.disp16)
7422 size = 2;
e205caa7
L
7423 return size;
7424}
7425
7426/* Return the size of the immediate operand N. */
7427
7428static int
7429imm_size (unsigned int n)
7430{
7431 int size = 4;
40fb9820
L
7432 if (i.types[n].bitfield.imm64)
7433 size = 8;
7434 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7435 size = 1;
7436 else if (i.types[n].bitfield.imm16)
7437 size = 2;
e205caa7
L
7438 return size;
7439}
7440
29b0f896 7441static void
64e74474 7442output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7443{
7444 char *p;
7445 unsigned int n;
252b5132 7446
29b0f896
AM
7447 for (n = 0; n < i.operands; n++)
7448 {
43234a1e
L
7449 if (i.types[n].bitfield.vec_disp8
7450 || operand_type_check (i.types[n], disp))
29b0f896
AM
7451 {
7452 if (i.op[n].disps->X_op == O_constant)
7453 {
e205caa7 7454 int size = disp_size (n);
43234a1e 7455 offsetT val = i.op[n].disps->X_add_number;
252b5132 7456
43234a1e
L
7457 if (i.types[n].bitfield.vec_disp8)
7458 val >>= i.memshift;
7459 val = offset_in_range (val, size);
29b0f896
AM
7460 p = frag_more (size);
7461 md_number_to_chars (p, val, size);
7462 }
7463 else
7464 {
f86103b7 7465 enum bfd_reloc_code_real reloc_type;
e205caa7 7466 int size = disp_size (n);
40fb9820 7467 int sign = i.types[n].bitfield.disp32s;
29b0f896 7468 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7469 fixS *fixP;
29b0f896 7470
e205caa7 7471 /* We can't have 8 bit displacement here. */
9c2799c2 7472 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7473
29b0f896
AM
7474 /* The PC relative address is computed relative
7475 to the instruction boundary, so in case immediate
7476 fields follows, we need to adjust the value. */
7477 if (pcrel && i.imm_operands)
7478 {
29b0f896 7479 unsigned int n1;
e205caa7 7480 int sz = 0;
252b5132 7481
29b0f896 7482 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7483 if (operand_type_check (i.types[n1], imm))
252b5132 7484 {
e205caa7
L
7485 /* Only one immediate is allowed for PC
7486 relative address. */
9c2799c2 7487 gas_assert (sz == 0);
e205caa7
L
7488 sz = imm_size (n1);
7489 i.op[n].disps->X_add_number -= sz;
252b5132 7490 }
29b0f896 7491 /* We should find the immediate. */
9c2799c2 7492 gas_assert (sz != 0);
29b0f896 7493 }
520dc8e8 7494
29b0f896 7495 p = frag_more (size);
d258b828 7496 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7497 if (GOT_symbol
2bbd9c25 7498 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7499 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7500 || reloc_type == BFD_RELOC_X86_64_32S
7501 || (reloc_type == BFD_RELOC_64
7502 && object_64bit))
d6ab8113
JB
7503 && (i.op[n].disps->X_op == O_symbol
7504 || (i.op[n].disps->X_op == O_add
7505 && ((symbol_get_value_expression
7506 (i.op[n].disps->X_op_symbol)->X_op)
7507 == O_subtract))))
7508 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7509 {
7510 offsetT add;
7511
7512 if (insn_start_frag == frag_now)
7513 add = (p - frag_now->fr_literal) - insn_start_off;
7514 else
7515 {
7516 fragS *fr;
7517
7518 add = insn_start_frag->fr_fix - insn_start_off;
7519 for (fr = insn_start_frag->fr_next;
7520 fr && fr != frag_now; fr = fr->fr_next)
7521 add += fr->fr_fix;
7522 add += p - frag_now->fr_literal;
7523 }
7524
4fa24527 7525 if (!object_64bit)
7b81dfbb
AJ
7526 {
7527 reloc_type = BFD_RELOC_386_GOTPC;
7528 i.op[n].imms->X_add_number += add;
7529 }
7530 else if (reloc_type == BFD_RELOC_64)
7531 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7532 else
7b81dfbb
AJ
7533 /* Don't do the adjustment for x86-64, as there
7534 the pcrel addressing is relative to the _next_
7535 insn, and that is taken care of in other code. */
d6ab8113 7536 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7537 }
02a86693
L
7538 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7539 size, i.op[n].disps, pcrel,
7540 reloc_type);
7541 /* Check for "call/jmp *mem", "mov mem, %reg",
7542 "test %reg, mem" and "binop mem, %reg" where binop
7543 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7544 instructions. Always generate R_386_GOT32X for
7545 "sym*GOT" operand in 32-bit mode. */
7546 if ((generate_relax_relocations
7547 || (!object_64bit
7548 && i.rm.mode == 0
7549 && i.rm.regmem == 5))
7550 && (i.rm.mode == 2
7551 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7552 && ((i.operands == 1
7553 && i.tm.base_opcode == 0xff
7554 && (i.rm.reg == 2 || i.rm.reg == 4))
7555 || (i.operands == 2
7556 && (i.tm.base_opcode == 0x8b
7557 || i.tm.base_opcode == 0x85
7558 || (i.tm.base_opcode & 0xc7) == 0x03))))
7559 {
7560 if (object_64bit)
7561 {
7562 fixP->fx_tcbit = i.rex != 0;
7563 if (i.base_reg
7564 && (i.base_reg->reg_num == RegRip
7565 || i.base_reg->reg_num == RegEip))
7566 fixP->fx_tcbit2 = 1;
7567 }
7568 else
7569 fixP->fx_tcbit2 = 1;
7570 }
29b0f896
AM
7571 }
7572 }
7573 }
7574}
252b5132 7575
29b0f896 7576static void
64e74474 7577output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7578{
7579 char *p;
7580 unsigned int n;
252b5132 7581
29b0f896
AM
7582 for (n = 0; n < i.operands; n++)
7583 {
43234a1e
L
7584 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7585 if (i.rounding && (int) n == i.rounding->operand)
7586 continue;
7587
40fb9820 7588 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7589 {
7590 if (i.op[n].imms->X_op == O_constant)
7591 {
e205caa7 7592 int size = imm_size (n);
29b0f896 7593 offsetT val;
b4cac588 7594
29b0f896
AM
7595 val = offset_in_range (i.op[n].imms->X_add_number,
7596 size);
7597 p = frag_more (size);
7598 md_number_to_chars (p, val, size);
7599 }
7600 else
7601 {
7602 /* Not absolute_section.
7603 Need a 32-bit fixup (don't support 8bit
7604 non-absolute imms). Try to support other
7605 sizes ... */
f86103b7 7606 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7607 int size = imm_size (n);
7608 int sign;
29b0f896 7609
40fb9820 7610 if (i.types[n].bitfield.imm32s
a7d61044 7611 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7612 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7613 sign = 1;
e205caa7
L
7614 else
7615 sign = 0;
520dc8e8 7616
29b0f896 7617 p = frag_more (size);
d258b828 7618 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7619
2bbd9c25
JJ
7620 /* This is tough to explain. We end up with this one if we
7621 * have operands that look like
7622 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7623 * obtain the absolute address of the GOT, and it is strongly
7624 * preferable from a performance point of view to avoid using
7625 * a runtime relocation for this. The actual sequence of
7626 * instructions often look something like:
7627 *
7628 * call .L66
7629 * .L66:
7630 * popl %ebx
7631 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7632 *
7633 * The call and pop essentially return the absolute address
7634 * of the label .L66 and store it in %ebx. The linker itself
7635 * will ultimately change the first operand of the addl so
7636 * that %ebx points to the GOT, but to keep things simple, the
7637 * .o file must have this operand set so that it generates not
7638 * the absolute address of .L66, but the absolute address of
7639 * itself. This allows the linker itself simply treat a GOTPC
7640 * relocation as asking for a pcrel offset to the GOT to be
7641 * added in, and the addend of the relocation is stored in the
7642 * operand field for the instruction itself.
7643 *
7644 * Our job here is to fix the operand so that it would add
7645 * the correct offset so that %ebx would point to itself. The
7646 * thing that is tricky is that .-.L66 will point to the
7647 * beginning of the instruction, so we need to further modify
7648 * the operand so that it will point to itself. There are
7649 * other cases where you have something like:
7650 *
7651 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7652 *
7653 * and here no correction would be required. Internally in
7654 * the assembler we treat operands of this form as not being
7655 * pcrel since the '.' is explicitly mentioned, and I wonder
7656 * whether it would simplify matters to do it this way. Who
7657 * knows. In earlier versions of the PIC patches, the
7658 * pcrel_adjust field was used to store the correction, but
7659 * since the expression is not pcrel, I felt it would be
7660 * confusing to do it this way. */
7661
d6ab8113 7662 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7663 || reloc_type == BFD_RELOC_X86_64_32S
7664 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7665 && GOT_symbol
7666 && GOT_symbol == i.op[n].imms->X_add_symbol
7667 && (i.op[n].imms->X_op == O_symbol
7668 || (i.op[n].imms->X_op == O_add
7669 && ((symbol_get_value_expression
7670 (i.op[n].imms->X_op_symbol)->X_op)
7671 == O_subtract))))
7672 {
2bbd9c25
JJ
7673 offsetT add;
7674
7675 if (insn_start_frag == frag_now)
7676 add = (p - frag_now->fr_literal) - insn_start_off;
7677 else
7678 {
7679 fragS *fr;
7680
7681 add = insn_start_frag->fr_fix - insn_start_off;
7682 for (fr = insn_start_frag->fr_next;
7683 fr && fr != frag_now; fr = fr->fr_next)
7684 add += fr->fr_fix;
7685 add += p - frag_now->fr_literal;
7686 }
7687
4fa24527 7688 if (!object_64bit)
d6ab8113 7689 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7690 else if (size == 4)
d6ab8113 7691 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7692 else if (size == 8)
7693 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7694 i.op[n].imms->X_add_number += add;
29b0f896 7695 }
29b0f896
AM
7696 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7697 i.op[n].imms, 0, reloc_type);
7698 }
7699 }
7700 }
252b5132
RH
7701}
7702\f
d182319b
JB
7703/* x86_cons_fix_new is called via the expression parsing code when a
7704 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7705static int cons_sign = -1;
7706
7707void
e3bb37b5 7708x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7709 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7710{
d258b828 7711 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7712
7713#ifdef TE_PE
7714 if (exp->X_op == O_secrel)
7715 {
7716 exp->X_op = O_symbol;
7717 r = BFD_RELOC_32_SECREL;
7718 }
7719#endif
7720
7721 fix_new_exp (frag, off, len, exp, 0, r);
7722}
7723
357d1bd8
L
7724/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7725 purpose of the `.dc.a' internal pseudo-op. */
7726
7727int
7728x86_address_bytes (void)
7729{
7730 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7731 return 4;
7732 return stdoutput->arch_info->bits_per_address / 8;
7733}
7734
d382c579
TG
7735#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7736 || defined (LEX_AT)
d258b828 7737# define lex_got(reloc, adjust, types) NULL
718ddfc0 7738#else
f3c180ae
AM
7739/* Parse operands of the form
7740 <symbol>@GOTOFF+<nnn>
7741 and similar .plt or .got references.
7742
7743 If we find one, set up the correct relocation in RELOC and copy the
7744 input string, minus the `@GOTOFF' into a malloc'd buffer for
7745 parsing by the calling routine. Return this buffer, and if ADJUST
7746 is non-null set it to the length of the string we removed from the
7747 input line. Otherwise return NULL. */
7748static char *
91d6fa6a 7749lex_got (enum bfd_reloc_code_real *rel,
64e74474 7750 int *adjust,
d258b828 7751 i386_operand_type *types)
f3c180ae 7752{
7b81dfbb
AJ
7753 /* Some of the relocations depend on the size of what field is to
7754 be relocated. But in our callers i386_immediate and i386_displacement
7755 we don't yet know the operand size (this will be set by insn
7756 matching). Hence we record the word32 relocation here,
7757 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7758 static const struct {
7759 const char *str;
cff8d58a 7760 int len;
4fa24527 7761 const enum bfd_reloc_code_real rel[2];
40fb9820 7762 const i386_operand_type types64;
f3c180ae 7763 } gotrel[] = {
8ce3d284 7764#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7765 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7766 BFD_RELOC_SIZE32 },
7767 OPERAND_TYPE_IMM32_64 },
8ce3d284 7768#endif
cff8d58a
L
7769 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7770 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7771 OPERAND_TYPE_IMM64 },
cff8d58a
L
7772 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7773 BFD_RELOC_X86_64_PLT32 },
40fb9820 7774 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7775 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7776 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7777 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7778 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7779 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7780 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7781 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7782 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7783 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7784 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7785 BFD_RELOC_X86_64_TLSGD },
40fb9820 7786 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7787 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7788 _dummy_first_bfd_reloc_code_real },
40fb9820 7789 OPERAND_TYPE_NONE },
cff8d58a
L
7790 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7791 BFD_RELOC_X86_64_TLSLD },
40fb9820 7792 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7793 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7794 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7795 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7796 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7797 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7798 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7799 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7800 _dummy_first_bfd_reloc_code_real },
40fb9820 7801 OPERAND_TYPE_NONE },
cff8d58a
L
7802 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7803 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7804 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7805 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7806 _dummy_first_bfd_reloc_code_real },
40fb9820 7807 OPERAND_TYPE_NONE },
cff8d58a
L
7808 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7809 _dummy_first_bfd_reloc_code_real },
40fb9820 7810 OPERAND_TYPE_NONE },
cff8d58a
L
7811 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7812 BFD_RELOC_X86_64_GOT32 },
40fb9820 7813 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7814 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7815 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7816 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7817 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7818 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7819 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7820 };
7821 char *cp;
7822 unsigned int j;
7823
d382c579 7824#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7825 if (!IS_ELF)
7826 return NULL;
d382c579 7827#endif
718ddfc0 7828
f3c180ae 7829 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7830 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7831 return NULL;
7832
47465058 7833 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7834 {
cff8d58a 7835 int len = gotrel[j].len;
28f81592 7836 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7837 {
4fa24527 7838 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7839 {
28f81592
AM
7840 int first, second;
7841 char *tmpbuf, *past_reloc;
f3c180ae 7842
91d6fa6a 7843 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7844
3956db08
JB
7845 if (types)
7846 {
7847 if (flag_code != CODE_64BIT)
40fb9820
L
7848 {
7849 types->bitfield.imm32 = 1;
7850 types->bitfield.disp32 = 1;
7851 }
3956db08
JB
7852 else
7853 *types = gotrel[j].types64;
7854 }
7855
8fd4256d 7856 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7857 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7858
28f81592 7859 /* The length of the first part of our input line. */
f3c180ae 7860 first = cp - input_line_pointer;
28f81592
AM
7861
7862 /* The second part goes from after the reloc token until
67c11a9b 7863 (and including) an end_of_line char or comma. */
28f81592 7864 past_reloc = cp + 1 + len;
67c11a9b
AM
7865 cp = past_reloc;
7866 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7867 ++cp;
7868 second = cp + 1 - past_reloc;
28f81592
AM
7869
7870 /* Allocate and copy string. The trailing NUL shouldn't
7871 be necessary, but be safe. */
add39d23 7872 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 7873 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7874 if (second != 0 && *past_reloc != ' ')
7875 /* Replace the relocation token with ' ', so that
7876 errors like foo@GOTOFF1 will be detected. */
7877 tmpbuf[first++] = ' ';
af89796a
L
7878 else
7879 /* Increment length by 1 if the relocation token is
7880 removed. */
7881 len++;
7882 if (adjust)
7883 *adjust = len;
0787a12d
AM
7884 memcpy (tmpbuf + first, past_reloc, second);
7885 tmpbuf[first + second] = '\0';
f3c180ae
AM
7886 return tmpbuf;
7887 }
7888
4fa24527
JB
7889 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7890 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7891 return NULL;
7892 }
7893 }
7894
7895 /* Might be a symbol version string. Don't as_bad here. */
7896 return NULL;
7897}
4e4f7c87 7898#endif
f3c180ae 7899
a988325c
NC
7900#ifdef TE_PE
7901#ifdef lex_got
7902#undef lex_got
7903#endif
7904/* Parse operands of the form
7905 <symbol>@SECREL32+<nnn>
7906
7907 If we find one, set up the correct relocation in RELOC and copy the
7908 input string, minus the `@SECREL32' into a malloc'd buffer for
7909 parsing by the calling routine. Return this buffer, and if ADJUST
7910 is non-null set it to the length of the string we removed from the
34bca508
L
7911 input line. Otherwise return NULL.
7912
a988325c
NC
7913 This function is copied from the ELF version above adjusted for PE targets. */
7914
7915static char *
7916lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7917 int *adjust ATTRIBUTE_UNUSED,
d258b828 7918 i386_operand_type *types)
a988325c
NC
7919{
7920 static const struct
7921 {
7922 const char *str;
7923 int len;
7924 const enum bfd_reloc_code_real rel[2];
7925 const i386_operand_type types64;
7926 }
7927 gotrel[] =
7928 {
7929 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7930 BFD_RELOC_32_SECREL },
7931 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7932 };
7933
7934 char *cp;
7935 unsigned j;
7936
7937 for (cp = input_line_pointer; *cp != '@'; cp++)
7938 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7939 return NULL;
7940
7941 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7942 {
7943 int len = gotrel[j].len;
7944
7945 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7946 {
7947 if (gotrel[j].rel[object_64bit] != 0)
7948 {
7949 int first, second;
7950 char *tmpbuf, *past_reloc;
7951
7952 *rel = gotrel[j].rel[object_64bit];
7953 if (adjust)
7954 *adjust = len;
7955
7956 if (types)
7957 {
7958 if (flag_code != CODE_64BIT)
7959 {
7960 types->bitfield.imm32 = 1;
7961 types->bitfield.disp32 = 1;
7962 }
7963 else
7964 *types = gotrel[j].types64;
7965 }
7966
7967 /* The length of the first part of our input line. */
7968 first = cp - input_line_pointer;
7969
7970 /* The second part goes from after the reloc token until
7971 (and including) an end_of_line char or comma. */
7972 past_reloc = cp + 1 + len;
7973 cp = past_reloc;
7974 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7975 ++cp;
7976 second = cp + 1 - past_reloc;
7977
7978 /* Allocate and copy string. The trailing NUL shouldn't
7979 be necessary, but be safe. */
add39d23 7980 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
7981 memcpy (tmpbuf, input_line_pointer, first);
7982 if (second != 0 && *past_reloc != ' ')
7983 /* Replace the relocation token with ' ', so that
7984 errors like foo@SECLREL321 will be detected. */
7985 tmpbuf[first++] = ' ';
7986 memcpy (tmpbuf + first, past_reloc, second);
7987 tmpbuf[first + second] = '\0';
7988 return tmpbuf;
7989 }
7990
7991 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7992 gotrel[j].str, 1 << (5 + object_64bit));
7993 return NULL;
7994 }
7995 }
7996
7997 /* Might be a symbol version string. Don't as_bad here. */
7998 return NULL;
7999}
8000
8001#endif /* TE_PE */
8002
62ebcb5c 8003bfd_reloc_code_real_type
e3bb37b5 8004x86_cons (expressionS *exp, int size)
f3c180ae 8005{
62ebcb5c
AM
8006 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8007
ee86248c
JB
8008 intel_syntax = -intel_syntax;
8009
3c7b9c2c 8010 exp->X_md = 0;
4fa24527 8011 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8012 {
8013 /* Handle @GOTOFF and the like in an expression. */
8014 char *save;
8015 char *gotfree_input_line;
4a57f2cf 8016 int adjust = 0;
f3c180ae
AM
8017
8018 save = input_line_pointer;
d258b828 8019 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8020 if (gotfree_input_line)
8021 input_line_pointer = gotfree_input_line;
8022
8023 expression (exp);
8024
8025 if (gotfree_input_line)
8026 {
8027 /* expression () has merrily parsed up to the end of line,
8028 or a comma - in the wrong buffer. Transfer how far
8029 input_line_pointer has moved to the right buffer. */
8030 input_line_pointer = (save
8031 + (input_line_pointer - gotfree_input_line)
8032 + adjust);
8033 free (gotfree_input_line);
3992d3b7
AM
8034 if (exp->X_op == O_constant
8035 || exp->X_op == O_absent
8036 || exp->X_op == O_illegal
0398aac5 8037 || exp->X_op == O_register
3992d3b7
AM
8038 || exp->X_op == O_big)
8039 {
8040 char c = *input_line_pointer;
8041 *input_line_pointer = 0;
8042 as_bad (_("missing or invalid expression `%s'"), save);
8043 *input_line_pointer = c;
8044 }
f3c180ae
AM
8045 }
8046 }
8047 else
8048 expression (exp);
ee86248c
JB
8049
8050 intel_syntax = -intel_syntax;
8051
8052 if (intel_syntax)
8053 i386_intel_simplify (exp);
62ebcb5c
AM
8054
8055 return got_reloc;
f3c180ae 8056}
f3c180ae 8057
9f32dd5b
L
8058static void
8059signed_cons (int size)
6482c264 8060{
d182319b
JB
8061 if (flag_code == CODE_64BIT)
8062 cons_sign = 1;
8063 cons (size);
8064 cons_sign = -1;
6482c264
NC
8065}
8066
d182319b 8067#ifdef TE_PE
6482c264 8068static void
7016a5d5 8069pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8070{
8071 expressionS exp;
8072
8073 do
8074 {
8075 expression (&exp);
8076 if (exp.X_op == O_symbol)
8077 exp.X_op = O_secrel;
8078
8079 emit_expr (&exp, 4);
8080 }
8081 while (*input_line_pointer++ == ',');
8082
8083 input_line_pointer--;
8084 demand_empty_rest_of_line ();
8085}
6482c264
NC
8086#endif
8087
43234a1e
L
8088/* Handle Vector operations. */
8089
8090static char *
8091check_VecOperations (char *op_string, char *op_end)
8092{
8093 const reg_entry *mask;
8094 const char *saved;
8095 char *end_op;
8096
8097 while (*op_string
8098 && (op_end == NULL || op_string < op_end))
8099 {
8100 saved = op_string;
8101 if (*op_string == '{')
8102 {
8103 op_string++;
8104
8105 /* Check broadcasts. */
8106 if (strncmp (op_string, "1to", 3) == 0)
8107 {
8108 int bcst_type;
8109
8110 if (i.broadcast)
8111 goto duplicated_vec_op;
8112
8113 op_string += 3;
8114 if (*op_string == '8')
8115 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8116 else if (*op_string == '4')
8117 bcst_type = BROADCAST_1TO4;
8118 else if (*op_string == '2')
8119 bcst_type = BROADCAST_1TO2;
43234a1e
L
8120 else if (*op_string == '1'
8121 && *(op_string+1) == '6')
8122 {
8123 bcst_type = BROADCAST_1TO16;
8124 op_string++;
8125 }
8126 else
8127 {
8128 as_bad (_("Unsupported broadcast: `%s'"), saved);
8129 return NULL;
8130 }
8131 op_string++;
8132
8133 broadcast_op.type = bcst_type;
8134 broadcast_op.operand = this_operand;
8135 i.broadcast = &broadcast_op;
8136 }
8137 /* Check masking operation. */
8138 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8139 {
8140 /* k0 can't be used for write mask. */
6d2cd6b2 8141 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8142 {
6d2cd6b2
JB
8143 as_bad (_("`%s%s' can't be used for write mask"),
8144 register_prefix, mask->reg_name);
43234a1e
L
8145 return NULL;
8146 }
8147
8148 if (!i.mask)
8149 {
8150 mask_op.mask = mask;
8151 mask_op.zeroing = 0;
8152 mask_op.operand = this_operand;
8153 i.mask = &mask_op;
8154 }
8155 else
8156 {
8157 if (i.mask->mask)
8158 goto duplicated_vec_op;
8159
8160 i.mask->mask = mask;
8161
8162 /* Only "{z}" is allowed here. No need to check
8163 zeroing mask explicitly. */
8164 if (i.mask->operand != this_operand)
8165 {
8166 as_bad (_("invalid write mask `%s'"), saved);
8167 return NULL;
8168 }
8169 }
8170
8171 op_string = end_op;
8172 }
8173 /* Check zeroing-flag for masking operation. */
8174 else if (*op_string == 'z')
8175 {
8176 if (!i.mask)
8177 {
8178 mask_op.mask = NULL;
8179 mask_op.zeroing = 1;
8180 mask_op.operand = this_operand;
8181 i.mask = &mask_op;
8182 }
8183 else
8184 {
8185 if (i.mask->zeroing)
8186 {
8187 duplicated_vec_op:
8188 as_bad (_("duplicated `%s'"), saved);
8189 return NULL;
8190 }
8191
8192 i.mask->zeroing = 1;
8193
8194 /* Only "{%k}" is allowed here. No need to check mask
8195 register explicitly. */
8196 if (i.mask->operand != this_operand)
8197 {
8198 as_bad (_("invalid zeroing-masking `%s'"),
8199 saved);
8200 return NULL;
8201 }
8202 }
8203
8204 op_string++;
8205 }
8206 else
8207 goto unknown_vec_op;
8208
8209 if (*op_string != '}')
8210 {
8211 as_bad (_("missing `}' in `%s'"), saved);
8212 return NULL;
8213 }
8214 op_string++;
8215 continue;
8216 }
8217 unknown_vec_op:
8218 /* We don't know this one. */
8219 as_bad (_("unknown vector operation: `%s'"), saved);
8220 return NULL;
8221 }
8222
6d2cd6b2
JB
8223 if (i.mask && i.mask->zeroing && !i.mask->mask)
8224 {
8225 as_bad (_("zeroing-masking only allowed with write mask"));
8226 return NULL;
8227 }
8228
43234a1e
L
8229 return op_string;
8230}
8231
252b5132 8232static int
70e41ade 8233i386_immediate (char *imm_start)
252b5132
RH
8234{
8235 char *save_input_line_pointer;
f3c180ae 8236 char *gotfree_input_line;
252b5132 8237 segT exp_seg = 0;
47926f60 8238 expressionS *exp;
40fb9820
L
8239 i386_operand_type types;
8240
0dfbf9d7 8241 operand_type_set (&types, ~0);
252b5132
RH
8242
8243 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8244 {
31b2323c
L
8245 as_bad (_("at most %d immediate operands are allowed"),
8246 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8247 return 0;
8248 }
8249
8250 exp = &im_expressions[i.imm_operands++];
520dc8e8 8251 i.op[this_operand].imms = exp;
252b5132
RH
8252
8253 if (is_space_char (*imm_start))
8254 ++imm_start;
8255
8256 save_input_line_pointer = input_line_pointer;
8257 input_line_pointer = imm_start;
8258
d258b828 8259 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8260 if (gotfree_input_line)
8261 input_line_pointer = gotfree_input_line;
252b5132
RH
8262
8263 exp_seg = expression (exp);
8264
83183c0c 8265 SKIP_WHITESPACE ();
43234a1e
L
8266
8267 /* Handle vector operations. */
8268 if (*input_line_pointer == '{')
8269 {
8270 input_line_pointer = check_VecOperations (input_line_pointer,
8271 NULL);
8272 if (input_line_pointer == NULL)
8273 return 0;
8274 }
8275
252b5132 8276 if (*input_line_pointer)
f3c180ae 8277 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8278
8279 input_line_pointer = save_input_line_pointer;
f3c180ae 8280 if (gotfree_input_line)
ee86248c
JB
8281 {
8282 free (gotfree_input_line);
8283
8284 if (exp->X_op == O_constant || exp->X_op == O_register)
8285 exp->X_op = O_illegal;
8286 }
8287
8288 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8289}
252b5132 8290
ee86248c
JB
8291static int
8292i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8293 i386_operand_type types, const char *imm_start)
8294{
8295 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8296 {
313c53d1
L
8297 if (imm_start)
8298 as_bad (_("missing or invalid immediate expression `%s'"),
8299 imm_start);
3992d3b7 8300 return 0;
252b5132 8301 }
3e73aa7c 8302 else if (exp->X_op == O_constant)
252b5132 8303 {
47926f60 8304 /* Size it properly later. */
40fb9820 8305 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8306 /* If not 64bit, sign extend val. */
8307 if (flag_code != CODE_64BIT
4eed87de
AM
8308 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8309 exp->X_add_number
8310 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8311 }
4c63da97 8312#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8313 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8314 && exp_seg != absolute_section
47926f60 8315 && exp_seg != text_section
24eab124
AM
8316 && exp_seg != data_section
8317 && exp_seg != bss_section
8318 && exp_seg != undefined_section
f86103b7 8319 && !bfd_is_com_section (exp_seg))
252b5132 8320 {
d0b47220 8321 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8322 return 0;
8323 }
8324#endif
a841bdf5 8325 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8326 {
313c53d1
L
8327 if (imm_start)
8328 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8329 return 0;
8330 }
252b5132
RH
8331 else
8332 {
8333 /* This is an address. The size of the address will be
24eab124 8334 determined later, depending on destination register,
3e73aa7c 8335 suffix, or the default for the section. */
40fb9820
L
8336 i.types[this_operand].bitfield.imm8 = 1;
8337 i.types[this_operand].bitfield.imm16 = 1;
8338 i.types[this_operand].bitfield.imm32 = 1;
8339 i.types[this_operand].bitfield.imm32s = 1;
8340 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8341 i.types[this_operand] = operand_type_and (i.types[this_operand],
8342 types);
252b5132
RH
8343 }
8344
8345 return 1;
8346}
8347
551c1ca1 8348static char *
e3bb37b5 8349i386_scale (char *scale)
252b5132 8350{
551c1ca1
AM
8351 offsetT val;
8352 char *save = input_line_pointer;
252b5132 8353
551c1ca1
AM
8354 input_line_pointer = scale;
8355 val = get_absolute_expression ();
8356
8357 switch (val)
252b5132 8358 {
551c1ca1 8359 case 1:
252b5132
RH
8360 i.log2_scale_factor = 0;
8361 break;
551c1ca1 8362 case 2:
252b5132
RH
8363 i.log2_scale_factor = 1;
8364 break;
551c1ca1 8365 case 4:
252b5132
RH
8366 i.log2_scale_factor = 2;
8367 break;
551c1ca1 8368 case 8:
252b5132
RH
8369 i.log2_scale_factor = 3;
8370 break;
8371 default:
a724f0f4
JB
8372 {
8373 char sep = *input_line_pointer;
8374
8375 *input_line_pointer = '\0';
8376 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8377 scale);
8378 *input_line_pointer = sep;
8379 input_line_pointer = save;
8380 return NULL;
8381 }
252b5132 8382 }
29b0f896 8383 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8384 {
8385 as_warn (_("scale factor of %d without an index register"),
24eab124 8386 1 << i.log2_scale_factor);
252b5132 8387 i.log2_scale_factor = 0;
252b5132 8388 }
551c1ca1
AM
8389 scale = input_line_pointer;
8390 input_line_pointer = save;
8391 return scale;
252b5132
RH
8392}
8393
252b5132 8394static int
e3bb37b5 8395i386_displacement (char *disp_start, char *disp_end)
252b5132 8396{
29b0f896 8397 expressionS *exp;
252b5132
RH
8398 segT exp_seg = 0;
8399 char *save_input_line_pointer;
f3c180ae 8400 char *gotfree_input_line;
40fb9820
L
8401 int override;
8402 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8403 int ret;
252b5132 8404
31b2323c
L
8405 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8406 {
8407 as_bad (_("at most %d displacement operands are allowed"),
8408 MAX_MEMORY_OPERANDS);
8409 return 0;
8410 }
8411
0dfbf9d7 8412 operand_type_set (&bigdisp, 0);
40fb9820
L
8413 if ((i.types[this_operand].bitfield.jumpabsolute)
8414 || (!current_templates->start->opcode_modifier.jump
8415 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8416 {
40fb9820 8417 bigdisp.bitfield.disp32 = 1;
e05278af 8418 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8419 if (flag_code == CODE_64BIT)
8420 {
8421 if (!override)
8422 {
8423 bigdisp.bitfield.disp32s = 1;
8424 bigdisp.bitfield.disp64 = 1;
8425 }
8426 }
8427 else if ((flag_code == CODE_16BIT) ^ override)
8428 {
8429 bigdisp.bitfield.disp32 = 0;
8430 bigdisp.bitfield.disp16 = 1;
8431 }
e05278af
JB
8432 }
8433 else
8434 {
8435 /* For PC-relative branches, the width of the displacement
8436 is dependent upon data size, not address size. */
e05278af 8437 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8438 if (flag_code == CODE_64BIT)
8439 {
8440 if (override || i.suffix == WORD_MNEM_SUFFIX)
8441 bigdisp.bitfield.disp16 = 1;
8442 else
8443 {
8444 bigdisp.bitfield.disp32 = 1;
8445 bigdisp.bitfield.disp32s = 1;
8446 }
8447 }
8448 else
e05278af
JB
8449 {
8450 if (!override)
8451 override = (i.suffix == (flag_code != CODE_16BIT
8452 ? WORD_MNEM_SUFFIX
8453 : LONG_MNEM_SUFFIX));
40fb9820
L
8454 bigdisp.bitfield.disp32 = 1;
8455 if ((flag_code == CODE_16BIT) ^ override)
8456 {
8457 bigdisp.bitfield.disp32 = 0;
8458 bigdisp.bitfield.disp16 = 1;
8459 }
e05278af 8460 }
e05278af 8461 }
c6fb90c8
L
8462 i.types[this_operand] = operand_type_or (i.types[this_operand],
8463 bigdisp);
252b5132
RH
8464
8465 exp = &disp_expressions[i.disp_operands];
520dc8e8 8466 i.op[this_operand].disps = exp;
252b5132
RH
8467 i.disp_operands++;
8468 save_input_line_pointer = input_line_pointer;
8469 input_line_pointer = disp_start;
8470 END_STRING_AND_SAVE (disp_end);
8471
8472#ifndef GCC_ASM_O_HACK
8473#define GCC_ASM_O_HACK 0
8474#endif
8475#if GCC_ASM_O_HACK
8476 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8477 if (i.types[this_operand].bitfield.baseIndex
24eab124 8478 && displacement_string_end[-1] == '+')
252b5132
RH
8479 {
8480 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8481 constraint within gcc asm statements.
8482 For instance:
8483
8484 #define _set_tssldt_desc(n,addr,limit,type) \
8485 __asm__ __volatile__ ( \
8486 "movw %w2,%0\n\t" \
8487 "movw %w1,2+%0\n\t" \
8488 "rorl $16,%1\n\t" \
8489 "movb %b1,4+%0\n\t" \
8490 "movb %4,5+%0\n\t" \
8491 "movb $0,6+%0\n\t" \
8492 "movb %h1,7+%0\n\t" \
8493 "rorl $16,%1" \
8494 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8495
8496 This works great except that the output assembler ends
8497 up looking a bit weird if it turns out that there is
8498 no offset. You end up producing code that looks like:
8499
8500 #APP
8501 movw $235,(%eax)
8502 movw %dx,2+(%eax)
8503 rorl $16,%edx
8504 movb %dl,4+(%eax)
8505 movb $137,5+(%eax)
8506 movb $0,6+(%eax)
8507 movb %dh,7+(%eax)
8508 rorl $16,%edx
8509 #NO_APP
8510
47926f60 8511 So here we provide the missing zero. */
24eab124
AM
8512
8513 *displacement_string_end = '0';
252b5132
RH
8514 }
8515#endif
d258b828 8516 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8517 if (gotfree_input_line)
8518 input_line_pointer = gotfree_input_line;
252b5132 8519
24eab124 8520 exp_seg = expression (exp);
252b5132 8521
636c26b0
AM
8522 SKIP_WHITESPACE ();
8523 if (*input_line_pointer)
8524 as_bad (_("junk `%s' after expression"), input_line_pointer);
8525#if GCC_ASM_O_HACK
8526 RESTORE_END_STRING (disp_end + 1);
8527#endif
636c26b0 8528 input_line_pointer = save_input_line_pointer;
636c26b0 8529 if (gotfree_input_line)
ee86248c
JB
8530 {
8531 free (gotfree_input_line);
8532
8533 if (exp->X_op == O_constant || exp->X_op == O_register)
8534 exp->X_op = O_illegal;
8535 }
8536
8537 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8538
8539 RESTORE_END_STRING (disp_end);
8540
8541 return ret;
8542}
8543
8544static int
8545i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8546 i386_operand_type types, const char *disp_start)
8547{
8548 i386_operand_type bigdisp;
8549 int ret = 1;
636c26b0 8550
24eab124
AM
8551 /* We do this to make sure that the section symbol is in
8552 the symbol table. We will ultimately change the relocation
47926f60 8553 to be relative to the beginning of the section. */
1ae12ab7 8554 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8555 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8556 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8557 {
636c26b0 8558 if (exp->X_op != O_symbol)
3992d3b7 8559 goto inv_disp;
636c26b0 8560
e5cb08ac 8561 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8562 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8563 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8564 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8565 exp->X_op = O_subtract;
8566 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8567 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8568 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8569 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8570 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8571 else
29b0f896 8572 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8573 }
252b5132 8574
3992d3b7
AM
8575 else if (exp->X_op == O_absent
8576 || exp->X_op == O_illegal
ee86248c 8577 || exp->X_op == O_big)
2daf4fd8 8578 {
3992d3b7
AM
8579 inv_disp:
8580 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8581 disp_start);
3992d3b7 8582 ret = 0;
2daf4fd8
AM
8583 }
8584
0e1147d9
L
8585 else if (flag_code == CODE_64BIT
8586 && !i.prefix[ADDR_PREFIX]
8587 && exp->X_op == O_constant)
8588 {
8589 /* Since displacement is signed extended to 64bit, don't allow
8590 disp32 and turn off disp32s if they are out of range. */
8591 i.types[this_operand].bitfield.disp32 = 0;
8592 if (!fits_in_signed_long (exp->X_add_number))
8593 {
8594 i.types[this_operand].bitfield.disp32s = 0;
8595 if (i.types[this_operand].bitfield.baseindex)
8596 {
8597 as_bad (_("0x%lx out range of signed 32bit displacement"),
8598 (long) exp->X_add_number);
8599 ret = 0;
8600 }
8601 }
8602 }
8603
4c63da97 8604#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8605 else if (exp->X_op != O_constant
8606 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8607 && exp_seg != absolute_section
8608 && exp_seg != text_section
8609 && exp_seg != data_section
8610 && exp_seg != bss_section
8611 && exp_seg != undefined_section
8612 && !bfd_is_com_section (exp_seg))
24eab124 8613 {
d0b47220 8614 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8615 ret = 0;
24eab124 8616 }
252b5132 8617#endif
3956db08 8618
40fb9820
L
8619 /* Check if this is a displacement only operand. */
8620 bigdisp = i.types[this_operand];
8621 bigdisp.bitfield.disp8 = 0;
8622 bigdisp.bitfield.disp16 = 0;
8623 bigdisp.bitfield.disp32 = 0;
8624 bigdisp.bitfield.disp32s = 0;
8625 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8626 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8627 i.types[this_operand] = operand_type_and (i.types[this_operand],
8628 types);
3956db08 8629
3992d3b7 8630 return ret;
252b5132
RH
8631}
8632
2abc2bec
JB
8633/* Return the active addressing mode, taking address override and
8634 registers forming the address into consideration. Update the
8635 address override prefix if necessary. */
47926f60 8636
2abc2bec
JB
8637static enum flag_code
8638i386_addressing_mode (void)
252b5132 8639{
be05d201
L
8640 enum flag_code addr_mode;
8641
8642 if (i.prefix[ADDR_PREFIX])
8643 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8644 else
8645 {
8646 addr_mode = flag_code;
8647
24eab124 8648#if INFER_ADDR_PREFIX
be05d201
L
8649 if (i.mem_operands == 0)
8650 {
8651 /* Infer address prefix from the first memory operand. */
8652 const reg_entry *addr_reg = i.base_reg;
8653
8654 if (addr_reg == NULL)
8655 addr_reg = i.index_reg;
eecb386c 8656
be05d201
L
8657 if (addr_reg)
8658 {
8659 if (addr_reg->reg_num == RegEip
8660 || addr_reg->reg_num == RegEiz
8661 || addr_reg->reg_type.bitfield.reg32)
8662 addr_mode = CODE_32BIT;
8663 else if (flag_code != CODE_64BIT
8664 && addr_reg->reg_type.bitfield.reg16)
8665 addr_mode = CODE_16BIT;
8666
8667 if (addr_mode != flag_code)
8668 {
8669 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8670 i.prefixes += 1;
8671 /* Change the size of any displacement too. At most one
8672 of Disp16 or Disp32 is set.
8673 FIXME. There doesn't seem to be any real need for
8674 separate Disp16 and Disp32 flags. The same goes for
8675 Imm16 and Imm32. Removing them would probably clean
8676 up the code quite a lot. */
8677 if (flag_code != CODE_64BIT
8678 && (i.types[this_operand].bitfield.disp16
8679 || i.types[this_operand].bitfield.disp32))
8680 i.types[this_operand]
8681 = operand_type_xor (i.types[this_operand], disp16_32);
8682 }
8683 }
8684 }
24eab124 8685#endif
be05d201
L
8686 }
8687
2abc2bec
JB
8688 return addr_mode;
8689}
8690
8691/* Make sure the memory operand we've been dealt is valid.
8692 Return 1 on success, 0 on a failure. */
8693
8694static int
8695i386_index_check (const char *operand_string)
8696{
8697 const char *kind = "base/index";
8698 enum flag_code addr_mode = i386_addressing_mode ();
8699
fc0763e6
JB
8700 if (current_templates->start->opcode_modifier.isstring
8701 && !current_templates->start->opcode_modifier.immext
8702 && (current_templates->end[-1].opcode_modifier.isstring
8703 || i.mem_operands))
8704 {
8705 /* Memory operands of string insns are special in that they only allow
8706 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8707 const reg_entry *expected_reg;
8708 static const char *di_si[][2] =
8709 {
8710 { "esi", "edi" },
8711 { "si", "di" },
8712 { "rsi", "rdi" }
8713 };
8714 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8715
8716 kind = "string address";
8717
8325cc63 8718 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
8719 {
8720 i386_operand_type type = current_templates->end[-1].operand_types[0];
8721
8722 if (!type.bitfield.baseindex
8723 || ((!i.mem_operands != !intel_syntax)
8724 && current_templates->end[-1].operand_types[1]
8725 .bitfield.baseindex))
8726 type = current_templates->end[-1].operand_types[1];
be05d201
L
8727 expected_reg = hash_find (reg_hash,
8728 di_si[addr_mode][type.bitfield.esseg]);
8729
fc0763e6
JB
8730 }
8731 else
be05d201 8732 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8733
be05d201
L
8734 if (i.base_reg != expected_reg
8735 || i.index_reg
fc0763e6 8736 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8737 {
be05d201
L
8738 /* The second memory operand must have the same size as
8739 the first one. */
8740 if (i.mem_operands
8741 && i.base_reg
8742 && !((addr_mode == CODE_64BIT
8743 && i.base_reg->reg_type.bitfield.reg64)
8744 || (addr_mode == CODE_32BIT
8745 ? i.base_reg->reg_type.bitfield.reg32
8746 : i.base_reg->reg_type.bitfield.reg16)))
8747 goto bad_address;
8748
fc0763e6
JB
8749 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8750 operand_string,
8751 intel_syntax ? '[' : '(',
8752 register_prefix,
be05d201 8753 expected_reg->reg_name,
fc0763e6 8754 intel_syntax ? ']' : ')');
be05d201 8755 return 1;
fc0763e6 8756 }
be05d201
L
8757 else
8758 return 1;
8759
8760bad_address:
8761 as_bad (_("`%s' is not a valid %s expression"),
8762 operand_string, kind);
8763 return 0;
3e73aa7c
JH
8764 }
8765 else
8766 {
be05d201
L
8767 if (addr_mode != CODE_16BIT)
8768 {
8769 /* 32-bit/64-bit checks. */
8770 if ((i.base_reg
8771 && (addr_mode == CODE_64BIT
8772 ? !i.base_reg->reg_type.bitfield.reg64
8773 : !i.base_reg->reg_type.bitfield.reg32)
8774 && (i.index_reg
8775 || (i.base_reg->reg_num
8776 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8777 || (i.index_reg
8778 && !i.index_reg->reg_type.bitfield.regxmm
8779 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8780 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8781 && ((addr_mode == CODE_64BIT
8782 ? !(i.index_reg->reg_type.bitfield.reg64
8783 || i.index_reg->reg_num == RegRiz)
8784 : !(i.index_reg->reg_type.bitfield.reg32
8785 || i.index_reg->reg_num == RegEiz))
8786 || !i.index_reg->reg_type.bitfield.baseindex)))
8787 goto bad_address;
8178be5b
JB
8788
8789 /* bndmk, bndldx, and bndstx have special restrictions. */
8790 if (current_templates->start->base_opcode == 0xf30f1b
8791 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8792 {
8793 /* They cannot use RIP-relative addressing. */
8794 if (i.base_reg && i.base_reg->reg_num == RegRip)
8795 {
8796 as_bad (_("`%s' cannot be used here"), operand_string);
8797 return 0;
8798 }
8799
8800 /* bndldx and bndstx ignore their scale factor. */
8801 if (current_templates->start->base_opcode != 0xf30f1b
8802 && i.log2_scale_factor)
8803 as_warn (_("register scaling is being ignored here"));
8804 }
be05d201
L
8805 }
8806 else
3e73aa7c 8807 {
be05d201 8808 /* 16-bit checks. */
3e73aa7c 8809 if ((i.base_reg
40fb9820
L
8810 && (!i.base_reg->reg_type.bitfield.reg16
8811 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8812 || (i.index_reg
40fb9820
L
8813 && (!i.index_reg->reg_type.bitfield.reg16
8814 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8815 || !(i.base_reg
8816 && i.base_reg->reg_num < 6
8817 && i.index_reg->reg_num >= 6
8818 && i.log2_scale_factor == 0))))
be05d201 8819 goto bad_address;
3e73aa7c
JH
8820 }
8821 }
be05d201 8822 return 1;
24eab124 8823}
252b5132 8824
43234a1e
L
8825/* Handle vector immediates. */
8826
8827static int
8828RC_SAE_immediate (const char *imm_start)
8829{
8830 unsigned int match_found, j;
8831 const char *pstr = imm_start;
8832 expressionS *exp;
8833
8834 if (*pstr != '{')
8835 return 0;
8836
8837 pstr++;
8838 match_found = 0;
8839 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8840 {
8841 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8842 {
8843 if (!i.rounding)
8844 {
8845 rc_op.type = RC_NamesTable[j].type;
8846 rc_op.operand = this_operand;
8847 i.rounding = &rc_op;
8848 }
8849 else
8850 {
8851 as_bad (_("duplicated `%s'"), imm_start);
8852 return 0;
8853 }
8854 pstr += RC_NamesTable[j].len;
8855 match_found = 1;
8856 break;
8857 }
8858 }
8859 if (!match_found)
8860 return 0;
8861
8862 if (*pstr++ != '}')
8863 {
8864 as_bad (_("Missing '}': '%s'"), imm_start);
8865 return 0;
8866 }
8867 /* RC/SAE immediate string should contain nothing more. */;
8868 if (*pstr != 0)
8869 {
8870 as_bad (_("Junk after '}': '%s'"), imm_start);
8871 return 0;
8872 }
8873
8874 exp = &im_expressions[i.imm_operands++];
8875 i.op[this_operand].imms = exp;
8876
8877 exp->X_op = O_constant;
8878 exp->X_add_number = 0;
8879 exp->X_add_symbol = (symbolS *) 0;
8880 exp->X_op_symbol = (symbolS *) 0;
8881
8882 i.types[this_operand].bitfield.imm8 = 1;
8883 return 1;
8884}
8885
8325cc63
JB
8886/* Only string instructions can have a second memory operand, so
8887 reduce current_templates to just those if it contains any. */
8888static int
8889maybe_adjust_templates (void)
8890{
8891 const insn_template *t;
8892
8893 gas_assert (i.mem_operands == 1);
8894
8895 for (t = current_templates->start; t < current_templates->end; ++t)
8896 if (t->opcode_modifier.isstring)
8897 break;
8898
8899 if (t < current_templates->end)
8900 {
8901 static templates aux_templates;
8902 bfd_boolean recheck;
8903
8904 aux_templates.start = t;
8905 for (; t < current_templates->end; ++t)
8906 if (!t->opcode_modifier.isstring)
8907 break;
8908 aux_templates.end = t;
8909
8910 /* Determine whether to re-check the first memory operand. */
8911 recheck = (aux_templates.start != current_templates->start
8912 || t != current_templates->end);
8913
8914 current_templates = &aux_templates;
8915
8916 if (recheck)
8917 {
8918 i.mem_operands = 0;
8919 if (i.memop1_string != NULL
8920 && i386_index_check (i.memop1_string) == 0)
8921 return 0;
8922 i.mem_operands = 1;
8923 }
8924 }
8925
8926 return 1;
8927}
8928
fc0763e6 8929/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8930 on error. */
252b5132 8931
252b5132 8932static int
a7619375 8933i386_att_operand (char *operand_string)
252b5132 8934{
af6bdddf
AM
8935 const reg_entry *r;
8936 char *end_op;
24eab124 8937 char *op_string = operand_string;
252b5132 8938
24eab124 8939 if (is_space_char (*op_string))
252b5132
RH
8940 ++op_string;
8941
24eab124 8942 /* We check for an absolute prefix (differentiating,
47926f60 8943 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8944 if (*op_string == ABSOLUTE_PREFIX)
8945 {
8946 ++op_string;
8947 if (is_space_char (*op_string))
8948 ++op_string;
40fb9820 8949 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8950 }
252b5132 8951
47926f60 8952 /* Check if operand is a register. */
4d1bb795 8953 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8954 {
40fb9820
L
8955 i386_operand_type temp;
8956
24eab124
AM
8957 /* Check for a segment override by searching for ':' after a
8958 segment register. */
8959 op_string = end_op;
8960 if (is_space_char (*op_string))
8961 ++op_string;
40fb9820
L
8962 if (*op_string == ':'
8963 && (r->reg_type.bitfield.sreg2
8964 || r->reg_type.bitfield.sreg3))
24eab124
AM
8965 {
8966 switch (r->reg_num)
8967 {
8968 case 0:
8969 i.seg[i.mem_operands] = &es;
8970 break;
8971 case 1:
8972 i.seg[i.mem_operands] = &cs;
8973 break;
8974 case 2:
8975 i.seg[i.mem_operands] = &ss;
8976 break;
8977 case 3:
8978 i.seg[i.mem_operands] = &ds;
8979 break;
8980 case 4:
8981 i.seg[i.mem_operands] = &fs;
8982 break;
8983 case 5:
8984 i.seg[i.mem_operands] = &gs;
8985 break;
8986 }
252b5132 8987
24eab124 8988 /* Skip the ':' and whitespace. */
252b5132
RH
8989 ++op_string;
8990 if (is_space_char (*op_string))
24eab124 8991 ++op_string;
252b5132 8992
24eab124
AM
8993 if (!is_digit_char (*op_string)
8994 && !is_identifier_char (*op_string)
8995 && *op_string != '('
8996 && *op_string != ABSOLUTE_PREFIX)
8997 {
8998 as_bad (_("bad memory operand `%s'"), op_string);
8999 return 0;
9000 }
47926f60 9001 /* Handle case of %es:*foo. */
24eab124
AM
9002 if (*op_string == ABSOLUTE_PREFIX)
9003 {
9004 ++op_string;
9005 if (is_space_char (*op_string))
9006 ++op_string;
40fb9820 9007 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9008 }
9009 goto do_memory_reference;
9010 }
43234a1e
L
9011
9012 /* Handle vector operations. */
9013 if (*op_string == '{')
9014 {
9015 op_string = check_VecOperations (op_string, NULL);
9016 if (op_string == NULL)
9017 return 0;
9018 }
9019
24eab124
AM
9020 if (*op_string)
9021 {
d0b47220 9022 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9023 return 0;
9024 }
40fb9820
L
9025 temp = r->reg_type;
9026 temp.bitfield.baseindex = 0;
c6fb90c8
L
9027 i.types[this_operand] = operand_type_or (i.types[this_operand],
9028 temp);
7d5e4556 9029 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9030 i.op[this_operand].regs = r;
24eab124
AM
9031 i.reg_operands++;
9032 }
af6bdddf
AM
9033 else if (*op_string == REGISTER_PREFIX)
9034 {
9035 as_bad (_("bad register name `%s'"), op_string);
9036 return 0;
9037 }
24eab124 9038 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9039 {
24eab124 9040 ++op_string;
40fb9820 9041 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9042 {
d0b47220 9043 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9044 return 0;
9045 }
9046 if (!i386_immediate (op_string))
9047 return 0;
9048 }
43234a1e
L
9049 else if (RC_SAE_immediate (operand_string))
9050 {
9051 /* If it is a RC or SAE immediate, do nothing. */
9052 ;
9053 }
24eab124
AM
9054 else if (is_digit_char (*op_string)
9055 || is_identifier_char (*op_string)
d02603dc 9056 || *op_string == '"'
e5cb08ac 9057 || *op_string == '(')
24eab124 9058 {
47926f60 9059 /* This is a memory reference of some sort. */
af6bdddf 9060 char *base_string;
252b5132 9061
47926f60 9062 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9063 char *displacement_string_start;
9064 char *displacement_string_end;
43234a1e 9065 char *vop_start;
252b5132 9066
24eab124 9067 do_memory_reference:
8325cc63
JB
9068 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9069 return 0;
24eab124 9070 if ((i.mem_operands == 1
40fb9820 9071 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9072 || i.mem_operands == 2)
9073 {
9074 as_bad (_("too many memory references for `%s'"),
9075 current_templates->start->name);
9076 return 0;
9077 }
252b5132 9078
24eab124
AM
9079 /* Check for base index form. We detect the base index form by
9080 looking for an ')' at the end of the operand, searching
9081 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9082 after the '('. */
af6bdddf 9083 base_string = op_string + strlen (op_string);
c3332e24 9084
43234a1e
L
9085 /* Handle vector operations. */
9086 vop_start = strchr (op_string, '{');
9087 if (vop_start && vop_start < base_string)
9088 {
9089 if (check_VecOperations (vop_start, base_string) == NULL)
9090 return 0;
9091 base_string = vop_start;
9092 }
9093
af6bdddf
AM
9094 --base_string;
9095 if (is_space_char (*base_string))
9096 --base_string;
252b5132 9097
47926f60 9098 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9099 displacement_string_start = op_string;
9100 displacement_string_end = base_string + 1;
252b5132 9101
24eab124
AM
9102 if (*base_string == ')')
9103 {
af6bdddf 9104 char *temp_string;
24eab124
AM
9105 unsigned int parens_balanced = 1;
9106 /* We've already checked that the number of left & right ()'s are
47926f60 9107 equal, so this loop will not be infinite. */
24eab124
AM
9108 do
9109 {
9110 base_string--;
9111 if (*base_string == ')')
9112 parens_balanced++;
9113 if (*base_string == '(')
9114 parens_balanced--;
9115 }
9116 while (parens_balanced);
c3332e24 9117
af6bdddf 9118 temp_string = base_string;
c3332e24 9119
24eab124 9120 /* Skip past '(' and whitespace. */
252b5132
RH
9121 ++base_string;
9122 if (is_space_char (*base_string))
24eab124 9123 ++base_string;
252b5132 9124
af6bdddf 9125 if (*base_string == ','
4eed87de
AM
9126 || ((i.base_reg = parse_register (base_string, &end_op))
9127 != NULL))
252b5132 9128 {
af6bdddf 9129 displacement_string_end = temp_string;
252b5132 9130
40fb9820 9131 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9132
af6bdddf 9133 if (i.base_reg)
24eab124 9134 {
24eab124
AM
9135 base_string = end_op;
9136 if (is_space_char (*base_string))
9137 ++base_string;
af6bdddf
AM
9138 }
9139
9140 /* There may be an index reg or scale factor here. */
9141 if (*base_string == ',')
9142 {
9143 ++base_string;
9144 if (is_space_char (*base_string))
9145 ++base_string;
9146
4eed87de
AM
9147 if ((i.index_reg = parse_register (base_string, &end_op))
9148 != NULL)
24eab124 9149 {
af6bdddf 9150 base_string = end_op;
24eab124
AM
9151 if (is_space_char (*base_string))
9152 ++base_string;
af6bdddf
AM
9153 if (*base_string == ',')
9154 {
9155 ++base_string;
9156 if (is_space_char (*base_string))
9157 ++base_string;
9158 }
e5cb08ac 9159 else if (*base_string != ')')
af6bdddf 9160 {
4eed87de
AM
9161 as_bad (_("expecting `,' or `)' "
9162 "after index register in `%s'"),
af6bdddf
AM
9163 operand_string);
9164 return 0;
9165 }
24eab124 9166 }
af6bdddf 9167 else if (*base_string == REGISTER_PREFIX)
24eab124 9168 {
f76bf5e0
L
9169 end_op = strchr (base_string, ',');
9170 if (end_op)
9171 *end_op = '\0';
af6bdddf 9172 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9173 return 0;
9174 }
252b5132 9175
47926f60 9176 /* Check for scale factor. */
551c1ca1 9177 if (*base_string != ')')
af6bdddf 9178 {
551c1ca1
AM
9179 char *end_scale = i386_scale (base_string);
9180
9181 if (!end_scale)
af6bdddf 9182 return 0;
24eab124 9183
551c1ca1 9184 base_string = end_scale;
af6bdddf
AM
9185 if (is_space_char (*base_string))
9186 ++base_string;
9187 if (*base_string != ')')
9188 {
4eed87de
AM
9189 as_bad (_("expecting `)' "
9190 "after scale factor in `%s'"),
af6bdddf
AM
9191 operand_string);
9192 return 0;
9193 }
9194 }
9195 else if (!i.index_reg)
24eab124 9196 {
4eed87de
AM
9197 as_bad (_("expecting index register or scale factor "
9198 "after `,'; got '%c'"),
af6bdddf 9199 *base_string);
24eab124
AM
9200 return 0;
9201 }
9202 }
af6bdddf 9203 else if (*base_string != ')')
24eab124 9204 {
4eed87de
AM
9205 as_bad (_("expecting `,' or `)' "
9206 "after base register in `%s'"),
af6bdddf 9207 operand_string);
24eab124
AM
9208 return 0;
9209 }
c3332e24 9210 }
af6bdddf 9211 else if (*base_string == REGISTER_PREFIX)
c3332e24 9212 {
f76bf5e0
L
9213 end_op = strchr (base_string, ',');
9214 if (end_op)
9215 *end_op = '\0';
af6bdddf 9216 as_bad (_("bad register name `%s'"), base_string);
24eab124 9217 return 0;
c3332e24 9218 }
24eab124
AM
9219 }
9220
9221 /* If there's an expression beginning the operand, parse it,
9222 assuming displacement_string_start and
9223 displacement_string_end are meaningful. */
9224 if (displacement_string_start != displacement_string_end)
9225 {
9226 if (!i386_displacement (displacement_string_start,
9227 displacement_string_end))
9228 return 0;
9229 }
9230
9231 /* Special case for (%dx) while doing input/output op. */
9232 if (i.base_reg
0dfbf9d7
L
9233 && operand_type_equal (&i.base_reg->reg_type,
9234 &reg16_inoutportreg)
24eab124
AM
9235 && i.index_reg == 0
9236 && i.log2_scale_factor == 0
9237 && i.seg[i.mem_operands] == 0
40fb9820 9238 && !operand_type_check (i.types[this_operand], disp))
24eab124 9239 {
65da13b5 9240 i.types[this_operand] = inoutportreg;
24eab124
AM
9241 return 1;
9242 }
9243
eecb386c
AM
9244 if (i386_index_check (operand_string) == 0)
9245 return 0;
5c07affc 9246 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9247 if (i.mem_operands == 0)
9248 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9249 i.mem_operands++;
9250 }
9251 else
ce8a8b2f
AM
9252 {
9253 /* It's not a memory operand; argh! */
24eab124
AM
9254 as_bad (_("invalid char %s beginning operand %d `%s'"),
9255 output_invalid (*op_string),
9256 this_operand + 1,
9257 op_string);
9258 return 0;
9259 }
47926f60 9260 return 1; /* Normal return. */
252b5132
RH
9261}
9262\f
fa94de6b
RM
9263/* Calculate the maximum variable size (i.e., excluding fr_fix)
9264 that an rs_machine_dependent frag may reach. */
9265
9266unsigned int
9267i386_frag_max_var (fragS *frag)
9268{
9269 /* The only relaxable frags are for jumps.
9270 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9271 gas_assert (frag->fr_type == rs_machine_dependent);
9272 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9273}
9274
b084df0b
L
9275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9276static int
8dcea932 9277elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9278{
9279 /* STT_GNU_IFUNC symbol must go through PLT. */
9280 if ((symbol_get_bfdsym (fr_symbol)->flags
9281 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9282 return 0;
9283
9284 if (!S_IS_EXTERNAL (fr_symbol))
9285 /* Symbol may be weak or local. */
9286 return !S_IS_WEAK (fr_symbol);
9287
8dcea932
L
9288 /* Global symbols with non-default visibility can't be preempted. */
9289 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9290 return 1;
9291
9292 if (fr_var != NO_RELOC)
9293 switch ((enum bfd_reloc_code_real) fr_var)
9294 {
9295 case BFD_RELOC_386_PLT32:
9296 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9297 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9298 return 0;
9299 default:
9300 abort ();
9301 }
9302
b084df0b
L
9303 /* Global symbols with default visibility in a shared library may be
9304 preempted by another definition. */
8dcea932 9305 return !shared;
b084df0b
L
9306}
9307#endif
9308
ee7fcc42
AM
9309/* md_estimate_size_before_relax()
9310
9311 Called just before relax() for rs_machine_dependent frags. The x86
9312 assembler uses these frags to handle variable size jump
9313 instructions.
9314
9315 Any symbol that is now undefined will not become defined.
9316 Return the correct fr_subtype in the frag.
9317 Return the initial "guess for variable size of frag" to caller.
9318 The guess is actually the growth beyond the fixed part. Whatever
9319 we do to grow the fixed or variable part contributes to our
9320 returned value. */
9321
252b5132 9322int
7016a5d5 9323md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9324{
252b5132 9325 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9326 check for un-relaxable symbols. On an ELF system, we can't relax
9327 an externally visible symbol, because it may be overridden by a
9328 shared library. */
9329 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9330#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9331 || (IS_ELF
8dcea932
L
9332 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9333 fragP->fr_var))
fbeb56a4
DK
9334#endif
9335#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9336 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9337 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9338#endif
9339 )
252b5132 9340 {
b98ef147
AM
9341 /* Symbol is undefined in this segment, or we need to keep a
9342 reloc so that weak symbols can be overridden. */
9343 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9344 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9345 unsigned char *opcode;
9346 int old_fr_fix;
f6af82bd 9347
ee7fcc42 9348 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9349 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9350 else if (size == 2)
f6af82bd
AM
9351 reloc_type = BFD_RELOC_16_PCREL;
9352 else
9353 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9354
ee7fcc42
AM
9355 old_fr_fix = fragP->fr_fix;
9356 opcode = (unsigned char *) fragP->fr_opcode;
9357
fddf5b5b 9358 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9359 {
fddf5b5b
AM
9360 case UNCOND_JUMP:
9361 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9362 opcode[0] = 0xe9;
252b5132 9363 fragP->fr_fix += size;
062cd5e7
AS
9364 fix_new (fragP, old_fr_fix, size,
9365 fragP->fr_symbol,
9366 fragP->fr_offset, 1,
9367 reloc_type);
252b5132
RH
9368 break;
9369
fddf5b5b 9370 case COND_JUMP86:
412167cb
AM
9371 if (size == 2
9372 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9373 {
9374 /* Negate the condition, and branch past an
9375 unconditional jump. */
9376 opcode[0] ^= 1;
9377 opcode[1] = 3;
9378 /* Insert an unconditional jump. */
9379 opcode[2] = 0xe9;
9380 /* We added two extra opcode bytes, and have a two byte
9381 offset. */
9382 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9383 fix_new (fragP, old_fr_fix + 2, 2,
9384 fragP->fr_symbol,
9385 fragP->fr_offset, 1,
9386 reloc_type);
fddf5b5b
AM
9387 break;
9388 }
9389 /* Fall through. */
9390
9391 case COND_JUMP:
412167cb
AM
9392 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9393 {
3e02c1cc
AM
9394 fixS *fixP;
9395
412167cb 9396 fragP->fr_fix += 1;
3e02c1cc
AM
9397 fixP = fix_new (fragP, old_fr_fix, 1,
9398 fragP->fr_symbol,
9399 fragP->fr_offset, 1,
9400 BFD_RELOC_8_PCREL);
9401 fixP->fx_signed = 1;
412167cb
AM
9402 break;
9403 }
93c2a809 9404
24eab124 9405 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9406 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9407 opcode[1] = opcode[0] + 0x10;
f6af82bd 9408 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9409 /* We've added an opcode byte. */
9410 fragP->fr_fix += 1 + size;
062cd5e7
AS
9411 fix_new (fragP, old_fr_fix + 1, size,
9412 fragP->fr_symbol,
9413 fragP->fr_offset, 1,
9414 reloc_type);
252b5132 9415 break;
fddf5b5b
AM
9416
9417 default:
9418 BAD_CASE (fragP->fr_subtype);
9419 break;
252b5132
RH
9420 }
9421 frag_wane (fragP);
ee7fcc42 9422 return fragP->fr_fix - old_fr_fix;
252b5132 9423 }
93c2a809 9424
93c2a809
AM
9425 /* Guess size depending on current relax state. Initially the relax
9426 state will correspond to a short jump and we return 1, because
9427 the variable part of the frag (the branch offset) is one byte
9428 long. However, we can relax a section more than once and in that
9429 case we must either set fr_subtype back to the unrelaxed state,
9430 or return the value for the appropriate branch. */
9431 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9432}
9433
47926f60
KH
9434/* Called after relax() is finished.
9435
9436 In: Address of frag.
9437 fr_type == rs_machine_dependent.
9438 fr_subtype is what the address relaxed to.
9439
9440 Out: Any fixSs and constants are set up.
9441 Caller will turn frag into a ".space 0". */
9442
252b5132 9443void
7016a5d5
TG
9444md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9445 fragS *fragP)
252b5132 9446{
29b0f896 9447 unsigned char *opcode;
252b5132 9448 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9449 offsetT target_address;
9450 offsetT opcode_address;
252b5132 9451 unsigned int extension = 0;
847f7ad4 9452 offsetT displacement_from_opcode_start;
252b5132
RH
9453
9454 opcode = (unsigned char *) fragP->fr_opcode;
9455
47926f60 9456 /* Address we want to reach in file space. */
252b5132 9457 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9458
47926f60 9459 /* Address opcode resides at in file space. */
252b5132
RH
9460 opcode_address = fragP->fr_address + fragP->fr_fix;
9461
47926f60 9462 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9463 displacement_from_opcode_start = target_address - opcode_address;
9464
fddf5b5b 9465 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9466 {
47926f60
KH
9467 /* Don't have to change opcode. */
9468 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9469 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9470 }
9471 else
9472 {
9473 if (no_cond_jump_promotion
9474 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9475 as_warn_where (fragP->fr_file, fragP->fr_line,
9476 _("long jump required"));
252b5132 9477
fddf5b5b
AM
9478 switch (fragP->fr_subtype)
9479 {
9480 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9481 extension = 4; /* 1 opcode + 4 displacement */
9482 opcode[0] = 0xe9;
9483 where_to_put_displacement = &opcode[1];
9484 break;
252b5132 9485
fddf5b5b
AM
9486 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9487 extension = 2; /* 1 opcode + 2 displacement */
9488 opcode[0] = 0xe9;
9489 where_to_put_displacement = &opcode[1];
9490 break;
252b5132 9491
fddf5b5b
AM
9492 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9493 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9494 extension = 5; /* 2 opcode + 4 displacement */
9495 opcode[1] = opcode[0] + 0x10;
9496 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9497 where_to_put_displacement = &opcode[2];
9498 break;
252b5132 9499
fddf5b5b
AM
9500 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9501 extension = 3; /* 2 opcode + 2 displacement */
9502 opcode[1] = opcode[0] + 0x10;
9503 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9504 where_to_put_displacement = &opcode[2];
9505 break;
252b5132 9506
fddf5b5b
AM
9507 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9508 extension = 4;
9509 opcode[0] ^= 1;
9510 opcode[1] = 3;
9511 opcode[2] = 0xe9;
9512 where_to_put_displacement = &opcode[3];
9513 break;
9514
9515 default:
9516 BAD_CASE (fragP->fr_subtype);
9517 break;
9518 }
252b5132 9519 }
fddf5b5b 9520
7b81dfbb
AJ
9521 /* If size if less then four we are sure that the operand fits,
9522 but if it's 4, then it could be that the displacement is larger
9523 then -/+ 2GB. */
9524 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9525 && object_64bit
9526 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9527 + ((addressT) 1 << 31))
9528 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9529 {
9530 as_bad_where (fragP->fr_file, fragP->fr_line,
9531 _("jump target out of range"));
9532 /* Make us emit 0. */
9533 displacement_from_opcode_start = extension;
9534 }
47926f60 9535 /* Now put displacement after opcode. */
252b5132
RH
9536 md_number_to_chars ((char *) where_to_put_displacement,
9537 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9538 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9539 fragP->fr_fix += extension;
9540}
9541\f
7016a5d5 9542/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9543 by our caller that we have all the info we need to fix it up.
9544
7016a5d5
TG
9545 Parameter valP is the pointer to the value of the bits.
9546
252b5132
RH
9547 On the 386, immediates, displacements, and data pointers are all in
9548 the same (little-endian) format, so we don't need to care about which
9549 we are handling. */
9550
94f592af 9551void
7016a5d5 9552md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9553{
94f592af 9554 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9555 valueT value = *valP;
252b5132 9556
f86103b7 9557#if !defined (TE_Mach)
93382f6d
AM
9558 if (fixP->fx_pcrel)
9559 {
9560 switch (fixP->fx_r_type)
9561 {
5865bb77
ILT
9562 default:
9563 break;
9564
d6ab8113
JB
9565 case BFD_RELOC_64:
9566 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9567 break;
93382f6d 9568 case BFD_RELOC_32:
ae8887b5 9569 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9570 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9571 break;
9572 case BFD_RELOC_16:
9573 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9574 break;
9575 case BFD_RELOC_8:
9576 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9577 break;
9578 }
9579 }
252b5132 9580
a161fe53 9581 if (fixP->fx_addsy != NULL
31312f95 9582 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9583 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9584 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9585 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9586 && !use_rela_relocations)
252b5132 9587 {
31312f95
AM
9588 /* This is a hack. There should be a better way to handle this.
9589 This covers for the fact that bfd_install_relocation will
9590 subtract the current location (for partial_inplace, PC relative
9591 relocations); see more below. */
252b5132 9592#ifndef OBJ_AOUT
718ddfc0 9593 if (IS_ELF
252b5132
RH
9594#ifdef TE_PE
9595 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9596#endif
9597 )
9598 value += fixP->fx_where + fixP->fx_frag->fr_address;
9599#endif
9600#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9601 if (IS_ELF)
252b5132 9602 {
6539b54b 9603 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9604
6539b54b 9605 if ((sym_seg == seg
2f66722d 9606 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9607 && sym_seg != absolute_section))
af65af87 9608 && !generic_force_reloc (fixP))
2f66722d
AM
9609 {
9610 /* Yes, we add the values in twice. This is because
6539b54b
AM
9611 bfd_install_relocation subtracts them out again. I think
9612 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9613 it. FIXME. */
9614 value += fixP->fx_where + fixP->fx_frag->fr_address;
9615 }
252b5132
RH
9616 }
9617#endif
9618#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9619 /* For some reason, the PE format does not store a
9620 section address offset for a PC relative symbol. */
9621 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9622 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9623 value += md_pcrel_from (fixP);
9624#endif
9625 }
fbeb56a4 9626#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9627 if (fixP->fx_addsy != NULL
9628 && S_IS_WEAK (fixP->fx_addsy)
9629 /* PR 16858: Do not modify weak function references. */
9630 && ! fixP->fx_pcrel)
fbeb56a4 9631 {
296a8689
NC
9632#if !defined (TE_PEP)
9633 /* For x86 PE weak function symbols are neither PC-relative
9634 nor do they set S_IS_FUNCTION. So the only reliable way
9635 to detect them is to check the flags of their containing
9636 section. */
9637 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9638 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9639 ;
9640 else
9641#endif
fbeb56a4
DK
9642 value -= S_GET_VALUE (fixP->fx_addsy);
9643 }
9644#endif
252b5132
RH
9645
9646 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9647 and we must not disappoint it. */
252b5132 9648#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9649 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9650 switch (fixP->fx_r_type)
9651 {
9652 case BFD_RELOC_386_PLT32:
3e73aa7c 9653 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9654 /* Make the jump instruction point to the address of the operand. At
9655 runtime we merely add the offset to the actual PLT entry. */
9656 value = -4;
9657 break;
31312f95 9658
13ae64f3
JJ
9659 case BFD_RELOC_386_TLS_GD:
9660 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9661 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9662 case BFD_RELOC_386_TLS_IE:
9663 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9664 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9665 case BFD_RELOC_X86_64_TLSGD:
9666 case BFD_RELOC_X86_64_TLSLD:
9667 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9668 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9669 value = 0; /* Fully resolved at runtime. No addend. */
9670 /* Fallthrough */
9671 case BFD_RELOC_386_TLS_LE:
9672 case BFD_RELOC_386_TLS_LDO_32:
9673 case BFD_RELOC_386_TLS_LE_32:
9674 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9675 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9676 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9677 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9679 break;
9680
67a4f2b7
AO
9681 case BFD_RELOC_386_TLS_DESC_CALL:
9682 case BFD_RELOC_X86_64_TLSDESC_CALL:
9683 value = 0; /* Fully resolved at runtime. No addend. */
9684 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9685 fixP->fx_done = 0;
9686 return;
9687
47926f60
KH
9688 case BFD_RELOC_VTABLE_INHERIT:
9689 case BFD_RELOC_VTABLE_ENTRY:
9690 fixP->fx_done = 0;
94f592af 9691 return;
47926f60
KH
9692
9693 default:
9694 break;
9695 }
9696#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9697 *valP = value;
f86103b7 9698#endif /* !defined (TE_Mach) */
3e73aa7c 9699
3e73aa7c 9700 /* Are we finished with this relocation now? */
c6682705 9701 if (fixP->fx_addsy == NULL)
3e73aa7c 9702 fixP->fx_done = 1;
fbeb56a4
DK
9703#if defined (OBJ_COFF) && defined (TE_PE)
9704 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9705 {
9706 fixP->fx_done = 0;
9707 /* Remember value for tc_gen_reloc. */
9708 fixP->fx_addnumber = value;
9709 /* Clear out the frag for now. */
9710 value = 0;
9711 }
9712#endif
3e73aa7c
JH
9713 else if (use_rela_relocations)
9714 {
9715 fixP->fx_no_overflow = 1;
062cd5e7
AS
9716 /* Remember value for tc_gen_reloc. */
9717 fixP->fx_addnumber = value;
3e73aa7c
JH
9718 value = 0;
9719 }
f86103b7 9720
94f592af 9721 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9722}
252b5132 9723\f
6d4af3c2 9724const char *
499ac353 9725md_atof (int type, char *litP, int *sizeP)
252b5132 9726{
499ac353
NC
9727 /* This outputs the LITTLENUMs in REVERSE order;
9728 in accord with the bigendian 386. */
9729 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9730}
9731\f
2d545b82 9732static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9733
252b5132 9734static char *
e3bb37b5 9735output_invalid (int c)
252b5132 9736{
3882b010 9737 if (ISPRINT (c))
f9f21a03
L
9738 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9739 "'%c'", c);
252b5132 9740 else
f9f21a03 9741 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9742 "(0x%x)", (unsigned char) c);
252b5132
RH
9743 return output_invalid_buf;
9744}
9745
af6bdddf 9746/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9747
9748static const reg_entry *
4d1bb795 9749parse_real_register (char *reg_string, char **end_op)
252b5132 9750{
af6bdddf
AM
9751 char *s = reg_string;
9752 char *p;
252b5132
RH
9753 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9754 const reg_entry *r;
9755
9756 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9757 if (*s == REGISTER_PREFIX)
9758 ++s;
9759
9760 if (is_space_char (*s))
9761 ++s;
9762
9763 p = reg_name_given;
af6bdddf 9764 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9765 {
9766 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9767 return (const reg_entry *) NULL;
9768 s++;
252b5132
RH
9769 }
9770
6588847e
DN
9771 /* For naked regs, make sure that we are not dealing with an identifier.
9772 This prevents confusing an identifier like `eax_var' with register
9773 `eax'. */
9774 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9775 return (const reg_entry *) NULL;
9776
af6bdddf 9777 *end_op = s;
252b5132
RH
9778
9779 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9780
5f47d35b 9781 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9782 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9783 {
5f47d35b
AM
9784 if (is_space_char (*s))
9785 ++s;
9786 if (*s == '(')
9787 {
af6bdddf 9788 ++s;
5f47d35b
AM
9789 if (is_space_char (*s))
9790 ++s;
9791 if (*s >= '0' && *s <= '7')
9792 {
db557034 9793 int fpr = *s - '0';
af6bdddf 9794 ++s;
5f47d35b
AM
9795 if (is_space_char (*s))
9796 ++s;
9797 if (*s == ')')
9798 {
9799 *end_op = s + 1;
1e9cc1c2 9800 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9801 know (r);
9802 return r + fpr;
5f47d35b 9803 }
5f47d35b 9804 }
47926f60 9805 /* We have "%st(" then garbage. */
5f47d35b
AM
9806 return (const reg_entry *) NULL;
9807 }
9808 }
9809
a60de03c
JB
9810 if (r == NULL || allow_pseudo_reg)
9811 return r;
9812
0dfbf9d7 9813 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9814 return (const reg_entry *) NULL;
9815
192dc9c6
JB
9816 if ((r->reg_type.bitfield.reg32
9817 || r->reg_type.bitfield.sreg3
9818 || r->reg_type.bitfield.control
9819 || r->reg_type.bitfield.debug
9820 || r->reg_type.bitfield.test)
9821 && !cpu_arch_flags.bitfield.cpui386)
9822 return (const reg_entry *) NULL;
9823
309d3373
JB
9824 if (r->reg_type.bitfield.floatreg
9825 && !cpu_arch_flags.bitfield.cpu8087
9826 && !cpu_arch_flags.bitfield.cpu287
9827 && !cpu_arch_flags.bitfield.cpu387)
9828 return (const reg_entry *) NULL;
9829
1848e567 9830 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
9831 return (const reg_entry *) NULL;
9832
1848e567 9833 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
9834 return (const reg_entry *) NULL;
9835
1848e567 9836 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
9837 return (const reg_entry *) NULL;
9838
1848e567
L
9839 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9840 return (const reg_entry *) NULL;
9841
9842 if (r->reg_type.bitfield.regmask
9843 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
9844 return (const reg_entry *) NULL;
9845
db51cc60 9846 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9847 if (!allow_index_reg
db51cc60
L
9848 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9849 return (const reg_entry *) NULL;
9850
43234a1e
L
9851 /* Upper 16 vector register is only available with VREX in 64bit
9852 mode. */
9853 if ((r->reg_flags & RegVRex))
9854 {
86fa6981
L
9855 if (i.vec_encoding == vex_encoding_default)
9856 i.vec_encoding = vex_encoding_evex;
9857
43234a1e 9858 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 9859 || i.vec_encoding != vex_encoding_evex
43234a1e
L
9860 || flag_code != CODE_64BIT)
9861 return (const reg_entry *) NULL;
43234a1e
L
9862 }
9863
a60de03c
JB
9864 if (((r->reg_flags & (RegRex64 | RegRex))
9865 || r->reg_type.bitfield.reg64)
40fb9820 9866 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9867 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9868 && flag_code != CODE_64BIT)
20f0a1fc 9869 return (const reg_entry *) NULL;
1ae00879 9870
b7240065
JB
9871 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9872 return (const reg_entry *) NULL;
9873
252b5132
RH
9874 return r;
9875}
4d1bb795
JB
9876
9877/* REG_STRING starts *before* REGISTER_PREFIX. */
9878
9879static const reg_entry *
9880parse_register (char *reg_string, char **end_op)
9881{
9882 const reg_entry *r;
9883
9884 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9885 r = parse_real_register (reg_string, end_op);
9886 else
9887 r = NULL;
9888 if (!r)
9889 {
9890 char *save = input_line_pointer;
9891 char c;
9892 symbolS *symbolP;
9893
9894 input_line_pointer = reg_string;
d02603dc 9895 c = get_symbol_name (&reg_string);
4d1bb795
JB
9896 symbolP = symbol_find (reg_string);
9897 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9898 {
9899 const expressionS *e = symbol_get_value_expression (symbolP);
9900
0398aac5 9901 know (e->X_op == O_register);
4eed87de 9902 know (e->X_add_number >= 0
c3fe08fa 9903 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9904 r = i386_regtab + e->X_add_number;
d3bb6b49 9905 if ((r->reg_flags & RegVRex))
86fa6981 9906 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
9907 *end_op = input_line_pointer;
9908 }
9909 *input_line_pointer = c;
9910 input_line_pointer = save;
9911 }
9912 return r;
9913}
9914
9915int
9916i386_parse_name (char *name, expressionS *e, char *nextcharP)
9917{
9918 const reg_entry *r;
9919 char *end = input_line_pointer;
9920
9921 *end = *nextcharP;
9922 r = parse_register (name, &input_line_pointer);
9923 if (r && end <= input_line_pointer)
9924 {
9925 *nextcharP = *input_line_pointer;
9926 *input_line_pointer = 0;
9927 e->X_op = O_register;
9928 e->X_add_number = r - i386_regtab;
9929 return 1;
9930 }
9931 input_line_pointer = end;
9932 *end = 0;
ee86248c 9933 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9934}
9935
9936void
9937md_operand (expressionS *e)
9938{
ee86248c
JB
9939 char *end;
9940 const reg_entry *r;
4d1bb795 9941
ee86248c
JB
9942 switch (*input_line_pointer)
9943 {
9944 case REGISTER_PREFIX:
9945 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9946 if (r)
9947 {
9948 e->X_op = O_register;
9949 e->X_add_number = r - i386_regtab;
9950 input_line_pointer = end;
9951 }
ee86248c
JB
9952 break;
9953
9954 case '[':
9c2799c2 9955 gas_assert (intel_syntax);
ee86248c
JB
9956 end = input_line_pointer++;
9957 expression (e);
9958 if (*input_line_pointer == ']')
9959 {
9960 ++input_line_pointer;
9961 e->X_op_symbol = make_expr_symbol (e);
9962 e->X_add_symbol = NULL;
9963 e->X_add_number = 0;
9964 e->X_op = O_index;
9965 }
9966 else
9967 {
9968 e->X_op = O_absent;
9969 input_line_pointer = end;
9970 }
9971 break;
4d1bb795
JB
9972 }
9973}
9974
252b5132 9975\f
4cc782b5 9976#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9977const char *md_shortopts = "kVQ:sqn";
252b5132 9978#else
12b55ccc 9979const char *md_shortopts = "qn";
252b5132 9980#endif
6e0b89ee 9981
3e73aa7c 9982#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9983#define OPTION_64 (OPTION_MD_BASE + 1)
9984#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9985#define OPTION_MARCH (OPTION_MD_BASE + 3)
9986#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9987#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9988#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9989#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9990#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9991#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9992#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9993#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9994#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9995#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9996#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9997#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9998#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9999#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10000#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10001#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10002#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10003#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10004#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10005#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10006#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10007#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10008
99ad8390
NC
10009struct option md_longopts[] =
10010{
3e73aa7c 10011 {"32", no_argument, NULL, OPTION_32},
321098a5 10012#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10013 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10014 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10015#endif
10016#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10017 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10018 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10019#endif
b3b91714 10020 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10021 {"march", required_argument, NULL, OPTION_MARCH},
10022 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10023 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10024 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10025 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10026 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10027 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10028 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10029 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10030 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10031 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10032 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10033 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10034 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10035# if defined (TE_PE) || defined (TE_PEP)
10036 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10037#endif
d1982f93 10038 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10039 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10040 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10041 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10042 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10043 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10044 {NULL, no_argument, NULL, 0}
10045};
10046size_t md_longopts_size = sizeof (md_longopts);
10047
10048int
17b9d67d 10049md_parse_option (int c, const char *arg)
252b5132 10050{
91d6fa6a 10051 unsigned int j;
293f5f65 10052 char *arch, *next, *saved;
9103f4f4 10053
252b5132
RH
10054 switch (c)
10055 {
12b55ccc
L
10056 case 'n':
10057 optimize_align_code = 0;
10058 break;
10059
a38cf1db
AM
10060 case 'q':
10061 quiet_warnings = 1;
252b5132
RH
10062 break;
10063
10064#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10065 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10066 should be emitted or not. FIXME: Not implemented. */
10067 case 'Q':
252b5132
RH
10068 break;
10069
10070 /* -V: SVR4 argument to print version ID. */
10071 case 'V':
10072 print_version_id ();
10073 break;
10074
a38cf1db
AM
10075 /* -k: Ignore for FreeBSD compatibility. */
10076 case 'k':
252b5132 10077 break;
4cc782b5
ILT
10078
10079 case 's':
10080 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10081 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10082 break;
8dcea932
L
10083
10084 case OPTION_MSHARED:
10085 shared = 1;
10086 break;
99ad8390 10087#endif
321098a5 10088#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10089 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10090 case OPTION_64:
10091 {
10092 const char **list, **l;
10093
3e73aa7c
JH
10094 list = bfd_target_list ();
10095 for (l = list; *l != NULL; l++)
8620418b 10096 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10097 || strcmp (*l, "coff-x86-64") == 0
10098 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10099 || strcmp (*l, "pei-x86-64") == 0
10100 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10101 {
10102 default_arch = "x86_64";
10103 break;
10104 }
3e73aa7c 10105 if (*l == NULL)
2b5d6a91 10106 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10107 free (list);
10108 }
10109 break;
10110#endif
252b5132 10111
351f65ca 10112#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10113 case OPTION_X32:
351f65ca
L
10114 if (IS_ELF)
10115 {
10116 const char **list, **l;
10117
10118 list = bfd_target_list ();
10119 for (l = list; *l != NULL; l++)
10120 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10121 {
10122 default_arch = "x86_64:32";
10123 break;
10124 }
10125 if (*l == NULL)
2b5d6a91 10126 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10127 free (list);
10128 }
10129 else
10130 as_fatal (_("32bit x86_64 is only supported for ELF"));
10131 break;
10132#endif
10133
6e0b89ee
AM
10134 case OPTION_32:
10135 default_arch = "i386";
10136 break;
10137
b3b91714
AM
10138 case OPTION_DIVIDE:
10139#ifdef SVR4_COMMENT_CHARS
10140 {
10141 char *n, *t;
10142 const char *s;
10143
add39d23 10144 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10145 t = n;
10146 for (s = i386_comment_chars; *s != '\0'; s++)
10147 if (*s != '/')
10148 *t++ = *s;
10149 *t = '\0';
10150 i386_comment_chars = n;
10151 }
10152#endif
10153 break;
10154
9103f4f4 10155 case OPTION_MARCH:
293f5f65
L
10156 saved = xstrdup (arg);
10157 arch = saved;
10158 /* Allow -march=+nosse. */
10159 if (*arch == '+')
10160 arch++;
6305a203 10161 do
9103f4f4 10162 {
6305a203 10163 if (*arch == '.')
2b5d6a91 10164 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10165 next = strchr (arch, '+');
10166 if (next)
10167 *next++ = '\0';
91d6fa6a 10168 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10169 {
91d6fa6a 10170 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10171 {
6305a203 10172 /* Processor. */
1ded5609
JB
10173 if (! cpu_arch[j].flags.bitfield.cpui386)
10174 continue;
10175
91d6fa6a 10176 cpu_arch_name = cpu_arch[j].name;
6305a203 10177 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10178 cpu_arch_flags = cpu_arch[j].flags;
10179 cpu_arch_isa = cpu_arch[j].type;
10180 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10181 if (!cpu_arch_tune_set)
10182 {
10183 cpu_arch_tune = cpu_arch_isa;
10184 cpu_arch_tune_flags = cpu_arch_isa_flags;
10185 }
10186 break;
10187 }
91d6fa6a
NC
10188 else if (*cpu_arch [j].name == '.'
10189 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10190 {
33eaf5de 10191 /* ISA extension. */
6305a203 10192 i386_cpu_flags flags;
309d3373 10193
293f5f65
L
10194 flags = cpu_flags_or (cpu_arch_flags,
10195 cpu_arch[j].flags);
81486035 10196
5b64d091 10197 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10198 {
10199 if (cpu_sub_arch_name)
10200 {
10201 char *name = cpu_sub_arch_name;
10202 cpu_sub_arch_name = concat (name,
91d6fa6a 10203 cpu_arch[j].name,
1bf57e9f 10204 (const char *) NULL);
6305a203
L
10205 free (name);
10206 }
10207 else
91d6fa6a 10208 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10209 cpu_arch_flags = flags;
a586129e 10210 cpu_arch_isa_flags = flags;
6305a203
L
10211 }
10212 break;
ccc9c027 10213 }
9103f4f4 10214 }
6305a203 10215
293f5f65
L
10216 if (j >= ARRAY_SIZE (cpu_arch))
10217 {
33eaf5de 10218 /* Disable an ISA extension. */
293f5f65
L
10219 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10220 if (strcmp (arch, cpu_noarch [j].name) == 0)
10221 {
10222 i386_cpu_flags flags;
10223
10224 flags = cpu_flags_and_not (cpu_arch_flags,
10225 cpu_noarch[j].flags);
10226 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10227 {
10228 if (cpu_sub_arch_name)
10229 {
10230 char *name = cpu_sub_arch_name;
10231 cpu_sub_arch_name = concat (arch,
10232 (const char *) NULL);
10233 free (name);
10234 }
10235 else
10236 cpu_sub_arch_name = xstrdup (arch);
10237 cpu_arch_flags = flags;
10238 cpu_arch_isa_flags = flags;
10239 }
10240 break;
10241 }
10242
10243 if (j >= ARRAY_SIZE (cpu_noarch))
10244 j = ARRAY_SIZE (cpu_arch);
10245 }
10246
91d6fa6a 10247 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10248 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10249
10250 arch = next;
9103f4f4 10251 }
293f5f65
L
10252 while (next != NULL);
10253 free (saved);
9103f4f4
L
10254 break;
10255
10256 case OPTION_MTUNE:
10257 if (*arg == '.')
2b5d6a91 10258 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10259 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10260 {
91d6fa6a 10261 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10262 {
ccc9c027 10263 cpu_arch_tune_set = 1;
91d6fa6a
NC
10264 cpu_arch_tune = cpu_arch [j].type;
10265 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10266 break;
10267 }
10268 }
91d6fa6a 10269 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10270 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10271 break;
10272
1efbbeb4
L
10273 case OPTION_MMNEMONIC:
10274 if (strcasecmp (arg, "att") == 0)
10275 intel_mnemonic = 0;
10276 else if (strcasecmp (arg, "intel") == 0)
10277 intel_mnemonic = 1;
10278 else
2b5d6a91 10279 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10280 break;
10281
10282 case OPTION_MSYNTAX:
10283 if (strcasecmp (arg, "att") == 0)
10284 intel_syntax = 0;
10285 else if (strcasecmp (arg, "intel") == 0)
10286 intel_syntax = 1;
10287 else
2b5d6a91 10288 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10289 break;
10290
10291 case OPTION_MINDEX_REG:
10292 allow_index_reg = 1;
10293 break;
10294
10295 case OPTION_MNAKED_REG:
10296 allow_naked_reg = 1;
10297 break;
10298
10299 case OPTION_MOLD_GCC:
10300 old_gcc = 1;
1efbbeb4
L
10301 break;
10302
c0f3af97
L
10303 case OPTION_MSSE2AVX:
10304 sse2avx = 1;
10305 break;
10306
daf50ae7
L
10307 case OPTION_MSSE_CHECK:
10308 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10309 sse_check = check_error;
daf50ae7 10310 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10311 sse_check = check_warning;
daf50ae7 10312 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10313 sse_check = check_none;
daf50ae7 10314 else
2b5d6a91 10315 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10316 break;
10317
7bab8ab5
JB
10318 case OPTION_MOPERAND_CHECK:
10319 if (strcasecmp (arg, "error") == 0)
10320 operand_check = check_error;
10321 else if (strcasecmp (arg, "warning") == 0)
10322 operand_check = check_warning;
10323 else if (strcasecmp (arg, "none") == 0)
10324 operand_check = check_none;
10325 else
10326 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10327 break;
10328
539f890d
L
10329 case OPTION_MAVXSCALAR:
10330 if (strcasecmp (arg, "128") == 0)
10331 avxscalar = vex128;
10332 else if (strcasecmp (arg, "256") == 0)
10333 avxscalar = vex256;
10334 else
2b5d6a91 10335 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10336 break;
10337
7e8b059b
L
10338 case OPTION_MADD_BND_PREFIX:
10339 add_bnd_prefix = 1;
10340 break;
10341
43234a1e
L
10342 case OPTION_MEVEXLIG:
10343 if (strcmp (arg, "128") == 0)
10344 evexlig = evexl128;
10345 else if (strcmp (arg, "256") == 0)
10346 evexlig = evexl256;
10347 else if (strcmp (arg, "512") == 0)
10348 evexlig = evexl512;
10349 else
10350 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10351 break;
10352
d3d3c6db
IT
10353 case OPTION_MEVEXRCIG:
10354 if (strcmp (arg, "rne") == 0)
10355 evexrcig = rne;
10356 else if (strcmp (arg, "rd") == 0)
10357 evexrcig = rd;
10358 else if (strcmp (arg, "ru") == 0)
10359 evexrcig = ru;
10360 else if (strcmp (arg, "rz") == 0)
10361 evexrcig = rz;
10362 else
10363 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10364 break;
10365
43234a1e
L
10366 case OPTION_MEVEXWIG:
10367 if (strcmp (arg, "0") == 0)
10368 evexwig = evexw0;
10369 else if (strcmp (arg, "1") == 0)
10370 evexwig = evexw1;
10371 else
10372 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10373 break;
10374
167ad85b
TG
10375# if defined (TE_PE) || defined (TE_PEP)
10376 case OPTION_MBIG_OBJ:
10377 use_big_obj = 1;
10378 break;
10379#endif
10380
d1982f93 10381 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10382 if (strcasecmp (arg, "yes") == 0)
10383 omit_lock_prefix = 1;
10384 else if (strcasecmp (arg, "no") == 0)
10385 omit_lock_prefix = 0;
10386 else
10387 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10388 break;
10389
e4e00185
AS
10390 case OPTION_MFENCE_AS_LOCK_ADD:
10391 if (strcasecmp (arg, "yes") == 0)
10392 avoid_fence = 1;
10393 else if (strcasecmp (arg, "no") == 0)
10394 avoid_fence = 0;
10395 else
10396 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10397 break;
10398
0cb4071e
L
10399 case OPTION_MRELAX_RELOCATIONS:
10400 if (strcasecmp (arg, "yes") == 0)
10401 generate_relax_relocations = 1;
10402 else if (strcasecmp (arg, "no") == 0)
10403 generate_relax_relocations = 0;
10404 else
10405 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10406 break;
10407
5db04b09 10408 case OPTION_MAMD64:
e89c5eaa 10409 intel64 = 0;
5db04b09
L
10410 break;
10411
10412 case OPTION_MINTEL64:
e89c5eaa 10413 intel64 = 1;
5db04b09
L
10414 break;
10415
252b5132
RH
10416 default:
10417 return 0;
10418 }
10419 return 1;
10420}
10421
8a2c8fef
L
10422#define MESSAGE_TEMPLATE \
10423" "
10424
293f5f65
L
10425static char *
10426output_message (FILE *stream, char *p, char *message, char *start,
10427 int *left_p, const char *name, int len)
10428{
10429 int size = sizeof (MESSAGE_TEMPLATE);
10430 int left = *left_p;
10431
10432 /* Reserve 2 spaces for ", " or ",\0" */
10433 left -= len + 2;
10434
10435 /* Check if there is any room. */
10436 if (left >= 0)
10437 {
10438 if (p != start)
10439 {
10440 *p++ = ',';
10441 *p++ = ' ';
10442 }
10443 p = mempcpy (p, name, len);
10444 }
10445 else
10446 {
10447 /* Output the current message now and start a new one. */
10448 *p++ = ',';
10449 *p = '\0';
10450 fprintf (stream, "%s\n", message);
10451 p = start;
10452 left = size - (start - message) - len - 2;
10453
10454 gas_assert (left >= 0);
10455
10456 p = mempcpy (p, name, len);
10457 }
10458
10459 *left_p = left;
10460 return p;
10461}
10462
8a2c8fef 10463static void
1ded5609 10464show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10465{
10466 static char message[] = MESSAGE_TEMPLATE;
10467 char *start = message + 27;
10468 char *p;
10469 int size = sizeof (MESSAGE_TEMPLATE);
10470 int left;
10471 const char *name;
10472 int len;
10473 unsigned int j;
10474
10475 p = start;
10476 left = size - (start - message);
10477 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10478 {
10479 /* Should it be skipped? */
10480 if (cpu_arch [j].skip)
10481 continue;
10482
10483 name = cpu_arch [j].name;
10484 len = cpu_arch [j].len;
10485 if (*name == '.')
10486 {
10487 /* It is an extension. Skip if we aren't asked to show it. */
10488 if (ext)
10489 {
10490 name++;
10491 len--;
10492 }
10493 else
10494 continue;
10495 }
10496 else if (ext)
10497 {
10498 /* It is an processor. Skip if we show only extension. */
10499 continue;
10500 }
1ded5609
JB
10501 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10502 {
10503 /* It is an impossible processor - skip. */
10504 continue;
10505 }
8a2c8fef 10506
293f5f65 10507 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10508 }
10509
293f5f65
L
10510 /* Display disabled extensions. */
10511 if (ext)
10512 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10513 {
10514 name = cpu_noarch [j].name;
10515 len = cpu_noarch [j].len;
10516 p = output_message (stream, p, message, start, &left, name,
10517 len);
10518 }
10519
8a2c8fef
L
10520 *p = '\0';
10521 fprintf (stream, "%s\n", message);
10522}
10523
252b5132 10524void
8a2c8fef 10525md_show_usage (FILE *stream)
252b5132 10526{
4cc782b5
ILT
10527#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10528 fprintf (stream, _("\
a38cf1db
AM
10529 -Q ignored\n\
10530 -V print assembler version number\n\
b3b91714
AM
10531 -k ignored\n"));
10532#endif
10533 fprintf (stream, _("\
12b55ccc 10534 -n Do not optimize code alignment\n\
b3b91714
AM
10535 -q quieten some warnings\n"));
10536#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10537 fprintf (stream, _("\
a38cf1db 10538 -s ignored\n"));
b3b91714 10539#endif
321098a5
L
10540#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10541 || defined (TE_PE) || defined (TE_PEP))
751d281c 10542 fprintf (stream, _("\
570561f7 10543 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10544#endif
b3b91714
AM
10545#ifdef SVR4_COMMENT_CHARS
10546 fprintf (stream, _("\
10547 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10548#else
10549 fprintf (stream, _("\
b3b91714 10550 --divide ignored\n"));
4cc782b5 10551#endif
9103f4f4 10552 fprintf (stream, _("\
6305a203 10553 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10554 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10555 show_arch (stream, 0, 1);
8a2c8fef
L
10556 fprintf (stream, _("\
10557 EXTENSION is combination of:\n"));
1ded5609 10558 show_arch (stream, 1, 0);
6305a203 10559 fprintf (stream, _("\
8a2c8fef 10560 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10561 show_arch (stream, 0, 0);
ba104c83 10562 fprintf (stream, _("\
c0f3af97
L
10563 -msse2avx encode SSE instructions with VEX prefix\n"));
10564 fprintf (stream, _("\
daf50ae7
L
10565 -msse-check=[none|error|warning]\n\
10566 check SSE instructions\n"));
10567 fprintf (stream, _("\
7bab8ab5
JB
10568 -moperand-check=[none|error|warning]\n\
10569 check operand combinations for validity\n"));
10570 fprintf (stream, _("\
539f890d
L
10571 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10572 length\n"));
10573 fprintf (stream, _("\
43234a1e
L
10574 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10575 length\n"));
10576 fprintf (stream, _("\
10577 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10578 for EVEX.W bit ignored instructions\n"));
10579 fprintf (stream, _("\
d3d3c6db
IT
10580 -mevexrcig=[rne|rd|ru|rz]\n\
10581 encode EVEX instructions with specific EVEX.RC value\n\
10582 for SAE-only ignored instructions\n"));
10583 fprintf (stream, _("\
ba104c83
L
10584 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10585 fprintf (stream, _("\
10586 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10587 fprintf (stream, _("\
10588 -mindex-reg support pseudo index registers\n"));
10589 fprintf (stream, _("\
10590 -mnaked-reg don't require `%%' prefix for registers\n"));
10591 fprintf (stream, _("\
10592 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10593 fprintf (stream, _("\
10594 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10595 fprintf (stream, _("\
10596 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10597# if defined (TE_PE) || defined (TE_PEP)
10598 fprintf (stream, _("\
10599 -mbig-obj generate big object files\n"));
10600#endif
d022bddd
IT
10601 fprintf (stream, _("\
10602 -momit-lock-prefix=[no|yes]\n\
10603 strip all lock prefixes\n"));
5db04b09 10604 fprintf (stream, _("\
e4e00185
AS
10605 -mfence-as-lock-add=[no|yes]\n\
10606 encode lfence, mfence and sfence as\n\
10607 lock addl $0x0, (%%{re}sp)\n"));
10608 fprintf (stream, _("\
0cb4071e
L
10609 -mrelax-relocations=[no|yes]\n\
10610 generate relax relocations\n"));
10611 fprintf (stream, _("\
5db04b09
L
10612 -mamd64 accept only AMD64 ISA\n"));
10613 fprintf (stream, _("\
10614 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10615}
10616
3e73aa7c 10617#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10618 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10619 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10620
10621/* Pick the target format to use. */
10622
47926f60 10623const char *
e3bb37b5 10624i386_target_format (void)
252b5132 10625{
351f65ca
L
10626 if (!strncmp (default_arch, "x86_64", 6))
10627 {
10628 update_code_flag (CODE_64BIT, 1);
10629 if (default_arch[6] == '\0')
7f56bc95 10630 x86_elf_abi = X86_64_ABI;
351f65ca 10631 else
7f56bc95 10632 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10633 }
3e73aa7c 10634 else if (!strcmp (default_arch, "i386"))
78f12dd3 10635 update_code_flag (CODE_32BIT, 1);
5197d474
L
10636 else if (!strcmp (default_arch, "iamcu"))
10637 {
10638 update_code_flag (CODE_32BIT, 1);
10639 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10640 {
10641 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10642 cpu_arch_name = "iamcu";
10643 cpu_sub_arch_name = NULL;
10644 cpu_arch_flags = iamcu_flags;
10645 cpu_arch_isa = PROCESSOR_IAMCU;
10646 cpu_arch_isa_flags = iamcu_flags;
10647 if (!cpu_arch_tune_set)
10648 {
10649 cpu_arch_tune = cpu_arch_isa;
10650 cpu_arch_tune_flags = cpu_arch_isa_flags;
10651 }
10652 }
8d471ec1 10653 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10654 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10655 cpu_arch_name);
10656 }
3e73aa7c 10657 else
2b5d6a91 10658 as_fatal (_("unknown architecture"));
89507696
JB
10659
10660 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10661 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10662 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10663 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10664
252b5132
RH
10665 switch (OUTPUT_FLAVOR)
10666 {
9384f2ff 10667#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10668 case bfd_target_aout_flavour:
47926f60 10669 return AOUT_TARGET_FORMAT;
4c63da97 10670#endif
9384f2ff
AM
10671#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10672# if defined (TE_PE) || defined (TE_PEP)
10673 case bfd_target_coff_flavour:
167ad85b
TG
10674 if (flag_code == CODE_64BIT)
10675 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10676 else
10677 return "pe-i386";
9384f2ff 10678# elif defined (TE_GO32)
0561d57c
JK
10679 case bfd_target_coff_flavour:
10680 return "coff-go32";
9384f2ff 10681# else
252b5132
RH
10682 case bfd_target_coff_flavour:
10683 return "coff-i386";
9384f2ff 10684# endif
4c63da97 10685#endif
3e73aa7c 10686#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10687 case bfd_target_elf_flavour:
3e73aa7c 10688 {
351f65ca
L
10689 const char *format;
10690
10691 switch (x86_elf_abi)
4fa24527 10692 {
351f65ca
L
10693 default:
10694 format = ELF_TARGET_FORMAT;
10695 break;
7f56bc95 10696 case X86_64_ABI:
351f65ca 10697 use_rela_relocations = 1;
4fa24527 10698 object_64bit = 1;
351f65ca
L
10699 format = ELF_TARGET_FORMAT64;
10700 break;
7f56bc95 10701 case X86_64_X32_ABI:
4fa24527 10702 use_rela_relocations = 1;
351f65ca 10703 object_64bit = 1;
862be3fb 10704 disallow_64bit_reloc = 1;
351f65ca
L
10705 format = ELF_TARGET_FORMAT32;
10706 break;
4fa24527 10707 }
3632d14b 10708 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10709 {
7f56bc95 10710 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10711 as_fatal (_("Intel L1OM is 64bit only"));
10712 return ELF_TARGET_L1OM_FORMAT;
10713 }
b49f93f6 10714 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10715 {
10716 if (x86_elf_abi != X86_64_ABI)
10717 as_fatal (_("Intel K1OM is 64bit only"));
10718 return ELF_TARGET_K1OM_FORMAT;
10719 }
81486035
L
10720 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10721 {
10722 if (x86_elf_abi != I386_ABI)
10723 as_fatal (_("Intel MCU is 32bit only"));
10724 return ELF_TARGET_IAMCU_FORMAT;
10725 }
8a9036a4 10726 else
351f65ca 10727 return format;
3e73aa7c 10728 }
e57f8c65
TG
10729#endif
10730#if defined (OBJ_MACH_O)
10731 case bfd_target_mach_o_flavour:
d382c579
TG
10732 if (flag_code == CODE_64BIT)
10733 {
10734 use_rela_relocations = 1;
10735 object_64bit = 1;
10736 return "mach-o-x86-64";
10737 }
10738 else
10739 return "mach-o-i386";
4c63da97 10740#endif
252b5132
RH
10741 default:
10742 abort ();
10743 return NULL;
10744 }
10745}
10746
47926f60 10747#endif /* OBJ_MAYBE_ more than one */
252b5132 10748\f
252b5132 10749symbolS *
7016a5d5 10750md_undefined_symbol (char *name)
252b5132 10751{
18dc2407
ILT
10752 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10753 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10754 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10755 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10756 {
10757 if (!GOT_symbol)
10758 {
10759 if (symbol_find (name))
10760 as_bad (_("GOT already in symbol table"));
10761 GOT_symbol = symbol_new (name, undefined_section,
10762 (valueT) 0, &zero_address_frag);
10763 };
10764 return GOT_symbol;
10765 }
252b5132
RH
10766 return 0;
10767}
10768
10769/* Round up a section size to the appropriate boundary. */
47926f60 10770
252b5132 10771valueT
7016a5d5 10772md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10773{
4c63da97
AM
10774#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10775 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10776 {
10777 /* For a.out, force the section size to be aligned. If we don't do
10778 this, BFD will align it for us, but it will not write out the
10779 final bytes of the section. This may be a bug in BFD, but it is
10780 easier to fix it here since that is how the other a.out targets
10781 work. */
10782 int align;
10783
10784 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10785 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10786 }
252b5132
RH
10787#endif
10788
10789 return size;
10790}
10791
10792/* On the i386, PC-relative offsets are relative to the start of the
10793 next instruction. That is, the address of the offset, plus its
10794 size, since the offset is always the last part of the insn. */
10795
10796long
e3bb37b5 10797md_pcrel_from (fixS *fixP)
252b5132
RH
10798{
10799 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10800}
10801
10802#ifndef I386COFF
10803
10804static void
e3bb37b5 10805s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10806{
29b0f896 10807 int temp;
252b5132 10808
8a75718c
JB
10809#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10810 if (IS_ELF)
10811 obj_elf_section_change_hook ();
10812#endif
252b5132
RH
10813 temp = get_absolute_expression ();
10814 subseg_set (bss_section, (subsegT) temp);
10815 demand_empty_rest_of_line ();
10816}
10817
10818#endif
10819
252b5132 10820void
e3bb37b5 10821i386_validate_fix (fixS *fixp)
252b5132 10822{
02a86693 10823 if (fixp->fx_subsy)
252b5132 10824 {
02a86693 10825 if (fixp->fx_subsy == GOT_symbol)
23df1078 10826 {
02a86693
L
10827 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10828 {
10829 if (!object_64bit)
10830 abort ();
10831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10832 if (fixp->fx_tcbit2)
56ceb5b5
L
10833 fixp->fx_r_type = (fixp->fx_tcbit
10834 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10835 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10836 else
10837#endif
10838 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10839 }
d6ab8113 10840 else
02a86693
L
10841 {
10842 if (!object_64bit)
10843 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10844 else
10845 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10846 }
10847 fixp->fx_subsy = 0;
23df1078 10848 }
252b5132 10849 }
02a86693
L
10850#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10851 else if (!object_64bit)
10852 {
10853 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10854 && fixp->fx_tcbit2)
10855 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10856 }
10857#endif
252b5132
RH
10858}
10859
252b5132 10860arelent *
7016a5d5 10861tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10862{
10863 arelent *rel;
10864 bfd_reloc_code_real_type code;
10865
10866 switch (fixp->fx_r_type)
10867 {
8ce3d284 10868#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10869 case BFD_RELOC_SIZE32:
10870 case BFD_RELOC_SIZE64:
10871 if (S_IS_DEFINED (fixp->fx_addsy)
10872 && !S_IS_EXTERNAL (fixp->fx_addsy))
10873 {
10874 /* Resolve size relocation against local symbol to size of
10875 the symbol plus addend. */
10876 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10877 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10878 && !fits_in_unsigned_long (value))
10879 as_bad_where (fixp->fx_file, fixp->fx_line,
10880 _("symbol size computation overflow"));
10881 fixp->fx_addsy = NULL;
10882 fixp->fx_subsy = NULL;
10883 md_apply_fix (fixp, (valueT *) &value, NULL);
10884 return NULL;
10885 }
8ce3d284 10886#endif
1a0670f3 10887 /* Fall through. */
8fd4256d 10888
3e73aa7c
JH
10889 case BFD_RELOC_X86_64_PLT32:
10890 case BFD_RELOC_X86_64_GOT32:
10891 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10892 case BFD_RELOC_X86_64_GOTPCRELX:
10893 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10894 case BFD_RELOC_386_PLT32:
10895 case BFD_RELOC_386_GOT32:
02a86693 10896 case BFD_RELOC_386_GOT32X:
252b5132
RH
10897 case BFD_RELOC_386_GOTOFF:
10898 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10899 case BFD_RELOC_386_TLS_GD:
10900 case BFD_RELOC_386_TLS_LDM:
10901 case BFD_RELOC_386_TLS_LDO_32:
10902 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10903 case BFD_RELOC_386_TLS_IE:
10904 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10905 case BFD_RELOC_386_TLS_LE_32:
10906 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10907 case BFD_RELOC_386_TLS_GOTDESC:
10908 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10909 case BFD_RELOC_X86_64_TLSGD:
10910 case BFD_RELOC_X86_64_TLSLD:
10911 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10912 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10913 case BFD_RELOC_X86_64_GOTTPOFF:
10914 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10915 case BFD_RELOC_X86_64_TPOFF64:
10916 case BFD_RELOC_X86_64_GOTOFF64:
10917 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10918 case BFD_RELOC_X86_64_GOT64:
10919 case BFD_RELOC_X86_64_GOTPCREL64:
10920 case BFD_RELOC_X86_64_GOTPC64:
10921 case BFD_RELOC_X86_64_GOTPLT64:
10922 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10923 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10924 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10925 case BFD_RELOC_RVA:
10926 case BFD_RELOC_VTABLE_ENTRY:
10927 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10928#ifdef TE_PE
10929 case BFD_RELOC_32_SECREL:
10930#endif
252b5132
RH
10931 code = fixp->fx_r_type;
10932 break;
dbbaec26
L
10933 case BFD_RELOC_X86_64_32S:
10934 if (!fixp->fx_pcrel)
10935 {
10936 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10937 code = fixp->fx_r_type;
10938 break;
10939 }
1a0670f3 10940 /* Fall through. */
252b5132 10941 default:
93382f6d 10942 if (fixp->fx_pcrel)
252b5132 10943 {
93382f6d
AM
10944 switch (fixp->fx_size)
10945 {
10946 default:
b091f402
AM
10947 as_bad_where (fixp->fx_file, fixp->fx_line,
10948 _("can not do %d byte pc-relative relocation"),
10949 fixp->fx_size);
93382f6d
AM
10950 code = BFD_RELOC_32_PCREL;
10951 break;
10952 case 1: code = BFD_RELOC_8_PCREL; break;
10953 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 10954 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10955#ifdef BFD64
10956 case 8: code = BFD_RELOC_64_PCREL; break;
10957#endif
93382f6d
AM
10958 }
10959 }
10960 else
10961 {
10962 switch (fixp->fx_size)
10963 {
10964 default:
b091f402
AM
10965 as_bad_where (fixp->fx_file, fixp->fx_line,
10966 _("can not do %d byte relocation"),
10967 fixp->fx_size);
93382f6d
AM
10968 code = BFD_RELOC_32;
10969 break;
10970 case 1: code = BFD_RELOC_8; break;
10971 case 2: code = BFD_RELOC_16; break;
10972 case 4: code = BFD_RELOC_32; break;
937149dd 10973#ifdef BFD64
3e73aa7c 10974 case 8: code = BFD_RELOC_64; break;
937149dd 10975#endif
93382f6d 10976 }
252b5132
RH
10977 }
10978 break;
10979 }
252b5132 10980
d182319b
JB
10981 if ((code == BFD_RELOC_32
10982 || code == BFD_RELOC_32_PCREL
10983 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10984 && GOT_symbol
10985 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10986 {
4fa24527 10987 if (!object_64bit)
d6ab8113
JB
10988 code = BFD_RELOC_386_GOTPC;
10989 else
10990 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10991 }
7b81dfbb
AJ
10992 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10993 && GOT_symbol
10994 && fixp->fx_addsy == GOT_symbol)
10995 {
10996 code = BFD_RELOC_X86_64_GOTPC64;
10997 }
252b5132 10998
add39d23
TS
10999 rel = XNEW (arelent);
11000 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11001 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11002
11003 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11004
3e73aa7c
JH
11005 if (!use_rela_relocations)
11006 {
11007 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11008 vtable entry to be used in the relocation's section offset. */
11009 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11010 rel->address = fixp->fx_offset;
fbeb56a4
DK
11011#if defined (OBJ_COFF) && defined (TE_PE)
11012 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11013 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11014 else
11015#endif
c6682705 11016 rel->addend = 0;
3e73aa7c
JH
11017 }
11018 /* Use the rela in 64bit mode. */
252b5132 11019 else
3e73aa7c 11020 {
862be3fb
L
11021 if (disallow_64bit_reloc)
11022 switch (code)
11023 {
862be3fb
L
11024 case BFD_RELOC_X86_64_DTPOFF64:
11025 case BFD_RELOC_X86_64_TPOFF64:
11026 case BFD_RELOC_64_PCREL:
11027 case BFD_RELOC_X86_64_GOTOFF64:
11028 case BFD_RELOC_X86_64_GOT64:
11029 case BFD_RELOC_X86_64_GOTPCREL64:
11030 case BFD_RELOC_X86_64_GOTPC64:
11031 case BFD_RELOC_X86_64_GOTPLT64:
11032 case BFD_RELOC_X86_64_PLTOFF64:
11033 as_bad_where (fixp->fx_file, fixp->fx_line,
11034 _("cannot represent relocation type %s in x32 mode"),
11035 bfd_get_reloc_code_name (code));
11036 break;
11037 default:
11038 break;
11039 }
11040
062cd5e7
AS
11041 if (!fixp->fx_pcrel)
11042 rel->addend = fixp->fx_offset;
11043 else
11044 switch (code)
11045 {
11046 case BFD_RELOC_X86_64_PLT32:
11047 case BFD_RELOC_X86_64_GOT32:
11048 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11049 case BFD_RELOC_X86_64_GOTPCRELX:
11050 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11051 case BFD_RELOC_X86_64_TLSGD:
11052 case BFD_RELOC_X86_64_TLSLD:
11053 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11054 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11055 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11056 rel->addend = fixp->fx_offset - fixp->fx_size;
11057 break;
11058 default:
11059 rel->addend = (section->vma
11060 - fixp->fx_size
11061 + fixp->fx_addnumber
11062 + md_pcrel_from (fixp));
11063 break;
11064 }
3e73aa7c
JH
11065 }
11066
252b5132
RH
11067 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11068 if (rel->howto == NULL)
11069 {
11070 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11071 _("cannot represent relocation type %s"),
252b5132
RH
11072 bfd_get_reloc_code_name (code));
11073 /* Set howto to a garbage value so that we can keep going. */
11074 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11075 gas_assert (rel->howto != NULL);
252b5132
RH
11076 }
11077
11078 return rel;
11079}
11080
ee86248c 11081#include "tc-i386-intel.c"
54cfded0 11082
a60de03c
JB
11083void
11084tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11085{
a60de03c
JB
11086 int saved_naked_reg;
11087 char saved_register_dot;
54cfded0 11088
a60de03c
JB
11089 saved_naked_reg = allow_naked_reg;
11090 allow_naked_reg = 1;
11091 saved_register_dot = register_chars['.'];
11092 register_chars['.'] = '.';
11093 allow_pseudo_reg = 1;
11094 expression_and_evaluate (exp);
11095 allow_pseudo_reg = 0;
11096 register_chars['.'] = saved_register_dot;
11097 allow_naked_reg = saved_naked_reg;
11098
e96d56a1 11099 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11100 {
a60de03c
JB
11101 if ((addressT) exp->X_add_number < i386_regtab_size)
11102 {
11103 exp->X_op = O_constant;
11104 exp->X_add_number = i386_regtab[exp->X_add_number]
11105 .dw2_regnum[flag_code >> 1];
11106 }
11107 else
11108 exp->X_op = O_illegal;
54cfded0 11109 }
54cfded0
AM
11110}
11111
11112void
11113tc_x86_frame_initial_instructions (void)
11114{
a60de03c
JB
11115 static unsigned int sp_regno[2];
11116
11117 if (!sp_regno[flag_code >> 1])
11118 {
11119 char *saved_input = input_line_pointer;
11120 char sp[][4] = {"esp", "rsp"};
11121 expressionS exp;
a4447b93 11122
a60de03c
JB
11123 input_line_pointer = sp[flag_code >> 1];
11124 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11125 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11126 sp_regno[flag_code >> 1] = exp.X_add_number;
11127 input_line_pointer = saved_input;
11128 }
a4447b93 11129
61ff971f
L
11130 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11131 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11132}
d2b2c203 11133
d7921315
L
11134int
11135x86_dwarf2_addr_size (void)
11136{
11137#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11138 if (x86_elf_abi == X86_64_X32_ABI)
11139 return 4;
11140#endif
11141 return bfd_arch_bits_per_address (stdoutput) / 8;
11142}
11143
d2b2c203
DJ
11144int
11145i386_elf_section_type (const char *str, size_t len)
11146{
11147 if (flag_code == CODE_64BIT
11148 && len == sizeof ("unwind") - 1
11149 && strncmp (str, "unwind", 6) == 0)
11150 return SHT_X86_64_UNWIND;
11151
11152 return -1;
11153}
bb41ade5 11154
ad5fec3b
EB
11155#ifdef TE_SOLARIS
11156void
11157i386_solaris_fix_up_eh_frame (segT sec)
11158{
11159 if (flag_code == CODE_64BIT)
11160 elf_section_type (sec) = SHT_X86_64_UNWIND;
11161}
11162#endif
11163
bb41ade5
AM
11164#ifdef TE_PE
11165void
11166tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11167{
91d6fa6a 11168 expressionS exp;
bb41ade5 11169
91d6fa6a
NC
11170 exp.X_op = O_secrel;
11171 exp.X_add_symbol = symbol;
11172 exp.X_add_number = 0;
11173 emit_expr (&exp, size);
bb41ade5
AM
11174}
11175#endif
3b22753a
L
11176
11177#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11178/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11179
01e1a5bc 11180bfd_vma
6d4af3c2 11181x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11182{
11183 if (flag_code == CODE_64BIT)
11184 {
11185 if (letter == 'l')
11186 return SHF_X86_64_LARGE;
11187
8f3bae45 11188 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11189 }
3b22753a 11190 else
8f3bae45 11191 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11192 return -1;
11193}
11194
01e1a5bc 11195bfd_vma
3b22753a
L
11196x86_64_section_word (char *str, size_t len)
11197{
8620418b 11198 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11199 return SHF_X86_64_LARGE;
11200
11201 return -1;
11202}
11203
11204static void
11205handle_large_common (int small ATTRIBUTE_UNUSED)
11206{
11207 if (flag_code != CODE_64BIT)
11208 {
11209 s_comm_internal (0, elf_common_parse);
11210 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11211 }
11212 else
11213 {
11214 static segT lbss_section;
11215 asection *saved_com_section_ptr = elf_com_section_ptr;
11216 asection *saved_bss_section = bss_section;
11217
11218 if (lbss_section == NULL)
11219 {
11220 flagword applicable;
11221 segT seg = now_seg;
11222 subsegT subseg = now_subseg;
11223
11224 /* The .lbss section is for local .largecomm symbols. */
11225 lbss_section = subseg_new (".lbss", 0);
11226 applicable = bfd_applicable_section_flags (stdoutput);
11227 bfd_set_section_flags (stdoutput, lbss_section,
11228 applicable & SEC_ALLOC);
11229 seg_info (lbss_section)->bss = 1;
11230
11231 subseg_set (seg, subseg);
11232 }
11233
11234 elf_com_section_ptr = &_bfd_elf_large_com_section;
11235 bss_section = lbss_section;
11236
11237 s_comm_internal (0, elf_common_parse);
11238
11239 elf_com_section_ptr = saved_com_section_ptr;
11240 bss_section = saved_bss_section;
11241 }
11242}
11243#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.900634 seconds and 4 git commands to generate.