* Makefile.in (refcard.dvi): Use srcdir where necessary.
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
CommitLineData
542e1629
RP
1/* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
355afbcd 3
a39116f1 4 This file is part of GAS.
355afbcd 5
a39116f1
RP
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
355afbcd 10
a39116f1
RP
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
355afbcd 15
a39116f1
RP
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
fecd2382 19
fecd2382
RP
20/* See comment on md_parse_option for 80960-specific invocation options. */
21
22/******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
8ae35e59
ILT
32 * ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
33 * FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
34 * USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
35 *
fecd2382
RP
36 ***************************************************************************** */
37
38/* There are 4 different lengths of (potentially) symbol-based displacements
39 * in the 80960 instruction set, each of which could require address fix-ups
40 * and (in the case of external symbols) emission of relocation directives:
41 *
42 * 32-bit (MEMB)
43 * This is a standard length for the base assembler and requires no
44 * special action.
45 *
46 * 13-bit (COBR)
47 * This is a non-standard length, but the base assembler has a hook for
48 * bit field address fixups: the fixS structure can point to a descriptor
49 * of the field, in which case our md_number_to_field() routine gets called
50 * to process it.
51 *
52 * I made the hook a little cleaner by having fix_new() (in the base
53 * assembler) return a pointer to the fixS in question. And I made it a
54 * little simpler by storing the field size (in this case 13) instead of
55 * of a pointer to another structure: 80960 displacements are ALWAYS
56 * stored in the low-order bits of a 4-byte word.
57 *
58 * Since the target of a COBR cannot be external, no relocation directives
59 * for this size displacement have to be generated. But the base assembler
60 * had to be modified to issue error messages if the symbol did turn out
61 * to be external.
62 *
63 * 24-bit (CTRL)
64 * Fixups are handled as for the 13-bit case (except that 24 is stored
65 * in the fixS).
66 *
67 * The relocation directive generated is the same as that for the 32-bit
68 * displacement, except that it's PC-relative (the 32-bit displacement
69 * never is). The i80960 version of the linker needs a mod to
70 * distinguish and handle the 24-bit case.
71 *
72 * 12-bit (MEMA)
73 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
74 * is based on a symbol, because it could be relocated at link time.
75 * The only time we use the 12-bit format is if an absolute value of
76 * less than 4096 is specified, in which case we need neither a fixup nor
77 * a relocation directive.
78 */
79
80#include <stdio.h>
81#include <ctype.h>
82
83#include "as.h"
84
85#include "obstack.h"
86
a39116f1 87#include "opcode/i960.h"
fecd2382
RP
88
89extern char *input_line_pointer;
90extern struct hash_control *po_hash;
fecd2382
RP
91extern char *next_object_file_charP;
92
93#ifdef OBJ_COFF
c47d388b 94const int md_reloc_size = sizeof (struct reloc);
fecd2382 95#else /* OBJ_COFF */
c47d388b 96const int md_reloc_size = sizeof (struct relocation_info);
fecd2382
RP
97#endif /* OBJ_COFF */
98
a39116f1
RP
99/***************************
100 * Local i80960 routines *
101 ************************** */
fecd2382 102
355afbcd
KR
103static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
104static char *brlab_next (); /* Return next branch local label */
105void brtab_emit (); /* Emit br-predict instrumentation table */
106static void cobr_fmt (); /* Generate COBR instruction */
107static void ctrl_fmt (); /* Generate CTRL instruction */
108static char *emit (); /* Emit (internally) binary */
109static int get_args (); /* Break arguments out of comma-separated list */
110static void get_cdisp (); /* Handle COBR or CTRL displacement */
111static char *get_ispec (); /* Find index specification string */
112static int get_regnum (); /* Translate text to register number */
113static int i_scan (); /* Lexical scan of instruction source */
114static void mem_fmt (); /* Generate MEMA or MEMB instruction */
115static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
116static segT parse_expr (); /* Parse an expression */
117static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
118static void parse_memop (); /* Parse a memory operand */
119static void parse_po (); /* Parse machine-dependent pseudo-op */
120static void parse_regop (); /* Parse a register operand */
121static void reg_fmt (); /* Generate a REG format instruction */
122void reloc_callj (); /* Relocate a 'callj' instruction */
123static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
124static void s_leafproc (); /* Process '.leafproc' pseudo-op */
125static void s_sysproc (); /* Process '.sysproc' pseudo-op */
126static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
127static void syntax (); /* Give syntax error */
128static int targ_has_sfr (); /* Target chip supports spec-func register? */
129static int targ_has_iclass (); /* Target chip supports instruction set? */
130/* static void unlink_sym(); *//* Remove a symbol from the symbol list */
fecd2382
RP
131
132/* See md_parse_option() for meanings of these options */
09952cd9 133static char norelax; /* True if -norelax switch seen */
355afbcd 134static char instrument_branches;/* True if -b switch seen */
fecd2382
RP
135
136/* Characters that always start a comment.
137 * If the pre-processor is disabled, these aren't very useful.
138 */
355afbcd 139const char comment_chars[] = "#";
fecd2382
RP
140
141/* Characters that only start a comment at the beginning of
142 * a line. If the line seems to have the form '# 123 filename'
143 * .line and .file directives will appear in the pre-processed output.
144 *
145 * Note that input_file.c hand checks for '#' at the beginning of the
146 * first line of the input file. This is because the compiler outputs
147 * #NO_APP at the beginning of its output.
148 */
149
150/* Also note that comments started like this one will always work. */
151
c47d388b 152const char line_comment_chars[1];
355afbcd 153
c47d388b 154const char line_separator_chars[1];
fecd2382
RP
155
156/* Chars that can be used to separate mant from exp in floating point nums */
355afbcd 157const char EXP_CHARS[] = "eE";
fecd2382
RP
158
159/* Chars that mean this number is a floating point constant,
160 * as in 0f12.456 or 0d1.2345e12
161 */
355afbcd 162const char FLT_CHARS[] = "fFdDtT";
fecd2382
RP
163
164
165/* Table used by base assembler to relax addresses based on varying length
166 * instructions. The fields are:
167 * 1) most positive reach of this state,
168 * 2) most negative reach of this state,
169 * 3) how many bytes this mode will add to the size of the current frag
170 * 4) which index into the table to try if we can't fit into this one.
171 *
172 * For i80960, the only application is the (de-)optimization of cobr
173 * instructions into separate compare and branch instructions when a 13-bit
174 * displacement won't hack it.
175 */
176const relax_typeS
355afbcd
KR
177 md_relax_table[] =
178{
179 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
180 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
181 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
182};
fecd2382
RP
183
184
185/* These are the machine dependent pseudo-ops.
186 *
187 * This table describes all the machine specific pseudo-ops the assembler
188 * has to support. The fields are:
189 * pseudo-op name without dot
190 * function to call to execute this pseudo-op
191 * integer arg to pass to the function
192 */
193#define S_LEAFPROC 1
194#define S_SYSPROC 2
195
355afbcd
KR
196const pseudo_typeS md_pseudo_table[] =
197{
198 {"bss", s_lcomm, 1},
199 {"extended", float_cons, 't'},
200 {"leafproc", parse_po, S_LEAFPROC},
201 {"sysproc", parse_po, S_SYSPROC},
09952cd9 202
355afbcd
KR
203 {"word", cons, 4},
204 {"quad", big_cons, 16},
09952cd9 205
355afbcd 206 {0, 0, 0}
09952cd9 207};
fecd2382
RP
208\f
209/* Macros to extract info from an 'expressionS' structure 'e' */
210#define adds(e) e.X_add_symbol
211#define subs(e) e.X_subtract_symbol
212#define offs(e) e.X_add_number
213#define segs(e) e.X_seg
355afbcd
KR
214
215
216/* Branch-prediction bits for CTRL/COBR format opcodes */
217#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
218#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
219#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
220
221
222/* Some instruction opcodes that we need explicitly */
fecd2382
RP
223#define BE 0x12000000
224#define BG 0x11000000
225#define BGE 0x13000000
226#define BL 0x14000000
227#define BLE 0x16000000
228#define BNE 0x15000000
229#define BNO 0x10000000
230#define BO 0x17000000
231#define CHKBIT 0x5a002700
232#define CMPI 0x5a002080
233#define CMPO 0x5a002000
355afbcd 234
fecd2382
RP
235#define B 0x08000000
236#define BAL 0x0b000000
237#define CALL 0x09000000
238#define CALLS 0x66003800
239#define RET 0x0a000000
355afbcd
KR
240
241
242/* These masks are used to build up a set of MEMB mode bits. */
fecd2382
RP
243#define A_BIT 0x0400
244#define I_BIT 0x0800
245#define MEMB_BIT 0x1000
246#define D_BIT 0x2000
355afbcd
KR
247
248
c47d388b
ME
249/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
250 used). */
fecd2382 251#define MEMA_ABASE 0x2000
355afbcd
KR
252
253/* Info from which a MEMA or MEMB format instruction can be generated */
254typedef struct
255 {
c47d388b
ME
256 /* (First) 32 bits of instruction */
257 long opcode;
258 /* 0-(none), 12- or, 32-bit displacement needed */
259 int disp;
260 /* The expression in the source instruction from which the
261 displacement should be determined. */
262 char *e;
355afbcd
KR
263 }
264
265memS;
fecd2382
RP
266
267
268/* The two pieces of info we need to generate a register operand */
355afbcd
KR
269struct regop
270 {
271 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
272 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
273 int n; /* Register number or literal value */
274 };
fecd2382
RP
275
276
277/* Number and assembler mnemonic for all registers that can appear in operands */
355afbcd
KR
278static struct
279 {
280 char *reg_name;
281 int reg_num;
282 }
283
284regnames[] =
285{
286 { "pfp", 0 },
287 { "sp", 1 },
288 { "rip", 2 },
289 { "r3", 3 },
290 { "r4", 4 },
291 { "r5", 5 },
292 { "r6", 6 },
293 { "r7", 7 },
294 { "r8", 8 },
295 { "r9", 9 },
296 { "r10", 10 },
297 { "r11", 11 },
298 { "r12", 12 },
299 { "r13", 13 },
300 { "r14", 14 },
301 { "r15", 15 },
302 { "g0", 16 },
303 { "g1", 17 },
304 { "g2", 18 },
305 { "g3", 19 },
306 { "g4", 20 },
307 { "g5", 21 },
308 { "g6", 22 },
309 { "g7", 23 },
310 { "g8", 24 },
311 { "g9", 25 },
312 { "g10", 26 },
313 { "g11", 27 },
314 { "g12", 28 },
315 { "g13", 29 },
316 { "g14", 30 },
317 { "fp", 31 },
318
319 /* Numbers for special-function registers are for assembler internal
320 use only: they are scaled back to range [0-31] for binary output. */
321#define SF0 32
322
323 { "sf0", 32 },
324 { "sf1", 33 },
325 { "sf2", 34 },
326 { "sf3", 35 },
327 { "sf4", 36 },
328 { "sf5", 37 },
329 { "sf6", 38 },
330 { "sf7", 39 },
331 { "sf8", 40 },
332 { "sf9", 41 },
333 { "sf10", 42 },
334 { "sf11", 43 },
335 { "sf12", 44 },
336 { "sf13", 45 },
337 { "sf14", 46 },
338 { "sf15", 47 },
339 { "sf16", 48 },
340 { "sf17", 49 },
341 { "sf18", 50 },
342 { "sf19", 51 },
343 { "sf20", 52 },
344 { "sf21", 53 },
345 { "sf22", 54 },
346 { "sf23", 55 },
347 { "sf24", 56 },
348 { "sf25", 57 },
349 { "sf26", 58 },
350 { "sf27", 59 },
351 { "sf28", 60 },
352 { "sf29", 61 },
353 { "sf30", 62 },
354 { "sf31", 63 },
355
356 /* Numbers for floating point registers are for assembler internal use
fecd2382
RP
357 * only: they are scaled back to [0-3] for binary output.
358 */
355afbcd
KR
359#define FP0 64
360
361 { "fp0", 64 },
362 { "fp1", 65 },
363 { "fp2", 66 },
364 { "fp3", 67 },
365
366 { NULL, 0 }, /* END OF LIST */
fecd2382
RP
367};
368
369#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
370#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
371#define IS_FP_REG(n) ((n) >= FP0)
372
373/* Number and assembler mnemonic for all registers that can appear as 'abase'
374 * (indirect addressing) registers.
375 */
355afbcd
KR
376static struct
377 {
378 char *areg_name;
379 int areg_num;
380 }
381
382aregs[] =
383{
384 { "(pfp)", 0 },
385 { "(sp)", 1 },
386 { "(rip)", 2 },
387 { "(r3)", 3 },
388 { "(r4)", 4 },
389 { "(r5)", 5 },
390 { "(r6)", 6 },
391 { "(r7)", 7 },
392 { "(r8)", 8 },
393 { "(r9)", 9 },
394 { "(r10)", 10 },
395 { "(r11)", 11 },
396 { "(r12)", 12 },
397 { "(r13)", 13 },
398 { "(r14)", 14 },
399 { "(r15)", 15 },
400 { "(g0)", 16 },
401 { "(g1)", 17 },
402 { "(g2)", 18 },
403 { "(g3)", 19 },
404 { "(g4)", 20 },
405 { "(g5)", 21 },
406 { "(g6)", 22 },
407 { "(g7)", 23 },
408 { "(g8)", 24 },
409 { "(g9)", 25 },
410 { "(g10)", 26 },
411 { "(g11)", 27 },
412 { "(g12)", 28 },
413 { "(g13)", 29 },
414 { "(g14)", 30 },
415 { "(fp)", 31 },
416
417#define IPREL 32
418 /* For assembler internal use only: this number never appears in binary
419 output. */
420 { "(ip)", IPREL },
421
422 { NULL, 0 }, /* END OF LIST */
fecd2382
RP
423};
424
425
426/* Hash tables */
c47d388b
ME
427static struct hash_control *op_hash; /* Opcode mnemonics */
428static struct hash_control *reg_hash; /* Register name hash table */
429static struct hash_control *areg_hash; /* Abase register hash table */
fecd2382
RP
430
431
432/* Architecture for which we are assembling */
433#define ARCH_ANY 0 /* Default: no architecture checking done */
434#define ARCH_KA 1
435#define ARCH_KB 2
436#define ARCH_MC 3
437#define ARCH_CA 4
438int architecture = ARCH_ANY; /* Architecture requested on invocation line */
c47d388b 439int iclasses_seen; /* OR of instruction classes (I_* constants)
fecd2382
RP
440 * for which we've actually assembled
441 * instructions.
442 */
443
444
445/* BRANCH-PREDICTION INSTRUMENTATION
446 *
447 * The following supports generation of branch-prediction instrumentation
448 * (turned on by -b switch). The instrumentation collects counts
449 * of branches taken/not-taken for later input to a utility that will
450 * set the branch prediction bits of the instructions in accordance with
451 * the behavior observed. (Note that the KX series does not have
452 * brach-prediction.)
453 *
454 * The instrumentation consists of:
455 *
456 * (1) before and after each conditional branch, a call to an external
457 * routine that increments and steps over an inline counter. The
458 * counter itself, initialized to 0, immediately follows the call
459 * instruction. For each branch, the counter following the branch
460 * is the number of times the branch was not taken, and the difference
461 * between the counters is the number of times it was taken. An
462 * example of an instrumented conditional branch:
463 *
464 * call BR_CNT_FUNC
465 * .word 0
466 * LBRANCH23: be label
467 * call BR_CNT_FUNC
468 * .word 0
469 *
470 * (2) a table of pointers to the instrumented branches, so that an
471 * external postprocessing routine can locate all of the counters.
472 * the table begins with a 2-word header: a pointer to the next in
473 * a linked list of such tables (initialized to 0); and a count
474 * of the number of entries in the table (exclusive of the header.
475 *
476 * Note that input source code is expected to already contain calls
477 * an external routine that will link the branch local table into a
478 * list of such tables.
479 */
480
c47d388b 481static int br_cnt; /* Number of branches instrumented so far.
fecd2382
RP
482 * Also used to generate unique local labels
483 * for each instrumented branch
484 */
485
486#define BR_LABEL_BASE "LBRANCH"
a39116f1
RP
487/* Basename of local labels on instrumented
488 * branches, to avoid conflict with compiler-
489 * generated local labels.
490 */
fecd2382
RP
491
492#define BR_CNT_FUNC "__inc_branch"
a39116f1
RP
493/* Name of the external routine that will
494 * increment (and step over) an inline counter.
495 */
fecd2382
RP
496
497#define BR_TAB_NAME "__BRANCH_TABLE__"
a39116f1
RP
498/* Name of the table of pointers to branches.
499 * A local (i.e., non-external) symbol.
500 */
fecd2382
RP
501\f
502/*****************************************************************************
503 * md_begin: One-time initialization.
504 *
505 * Set up hash tables.
506 *
507 **************************************************************************** */
508void
355afbcd 509md_begin ()
fecd2382 510{
355afbcd
KR
511 int i; /* Loop counter */
512 const struct i960_opcode *oP; /* Pointer into opcode table */
513 char *retval; /* Value returned by hash functions */
514
515 if (((op_hash = hash_new ()) == 0)
516 || ((reg_hash = hash_new ()) == 0)
517 || ((areg_hash = hash_new ()) == 0))
518 {
519 as_fatal ("virtual memory exceeded");
520 }
521
c47d388b
ME
522 /* For some reason, the base assembler uses an empty string for "no
523 error message", instead of a NULL pointer. */
524 retval = "";
355afbcd
KR
525
526 for (oP = i960_opcodes; oP->name && !*retval; oP++)
527 {
528 retval = hash_insert (op_hash, oP->name, oP);
529 }
530
531 for (i = 0; regnames[i].reg_name && !*retval; i++)
532 {
533 retval = hash_insert (reg_hash, regnames[i].reg_name,
534 &regnames[i].reg_num);
535 }
536
537 for (i = 0; aregs[i].areg_name && !*retval; i++)
538 {
539 retval = hash_insert (areg_hash, aregs[i].areg_name,
540 &aregs[i].areg_num);
541 }
542
543 if (*retval)
544 {
545 as_fatal ("Hashing returned \"%s\".", retval);
546 }
547} /* md_begin() */
fecd2382
RP
548
549/*****************************************************************************
550 * md_end: One-time final cleanup
551 *
552 * None necessary
553 *
554 **************************************************************************** */
555void
355afbcd 556md_end ()
fecd2382
RP
557{
558}
559
560/*****************************************************************************
561 * md_assemble: Assemble an instruction
562 *
563 * Assumptions about the passed-in text:
564 * - all comments, labels removed
565 * - text is an instruction
566 * - all white space compressed to single blanks
567 * - all character constants have been replaced with decimal
568 *
569 **************************************************************************** */
570void
355afbcd
KR
571md_assemble (textP)
572 char *textP; /* Source text of instruction */
fecd2382 573{
c47d388b
ME
574 /* Parsed instruction text, containing NO whitespace:
575 * arg[0]->opcode mnemonic
576 * arg[1-3]->operands, with char constants
577 * replaced by decimal numbers
578 */
579 char *args[4];
580
355afbcd
KR
581 int n_ops; /* Number of instruction operands */
582 int callx;
355afbcd 583 /* Pointer to instruction description */
c47d388b 584 struct i960_opcode *oP;
355afbcd 585 /* TRUE iff opcode mnemonic included branch-prediction
c47d388b
ME
586 * suffix (".f" or ".t")
587 */
588 int branch_predict;
589 /* Setting of branch-prediction bit(s) to be OR'd
590 * into instruction opcode of CTRL/COBR format
591 * instructions.
592 */
593 long bp_bits;
594
355afbcd
KR
595 int n; /* Offset of last character in opcode mnemonic */
596
597 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
598
599
600 /* Parse instruction into opcode and operands */
601 memset (args, '\0', sizeof (args));
602 n_ops = i_scan (textP, args);
603 if (n_ops == -1)
604 {
605 return; /* Error message already issued */
606 }
607
608 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
609 if (!strcmp (args[0], "ldconst"))
610 {
611 n_ops = parse_ldconst (args);
612 if (n_ops == -1)
613 {
614 return;
fecd2382 615 }
355afbcd 616 }
09952cd9
KR
617
618
355afbcd
KR
619
620 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
621 n = strlen (args[0]) - 1;
622 branch_predict = 0;
623 bp_bits = 0;
624 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
625 {
626 /* We could check here to see if the target architecture
c47d388b
ME
627 * supports branch prediction, but why bother? The bit
628 * will just be ignored by processors that don't use it.
629 */
355afbcd
KR
630 branch_predict = 1;
631 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
632 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
633 }
634
635 /* Look up opcode mnemonic in table and check number of operands.
c47d388b
ME
636 * Check that opcode is legal for the target architecture.
637 * If all looks good, assemble instruction.
638 */
355afbcd
KR
639 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
640 if (!oP || !targ_has_iclass (oP->iclass))
641 {
642 as_bad ("invalid opcode, \"%s\".", args[0]);
643
644 }
645 else if (n_ops != oP->num_ops)
646 {
c47d388b
ME
647 as_bad ("improper number of operands. expecting %d, got %d",
648 oP->num_ops, n_ops);
355afbcd
KR
649 }
650 else
651 {
652 switch (oP->format)
653 {
654 case FBRA:
655 case CTRL:
656 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
657 if (oP->format == FBRA)
658 {
659 /* Now generate a 'bno' to same arg */
660 ctrl_fmt (args[1], BNO | bp_bits, 1);
661 }
662 break;
663 case COBR:
664 case COJ:
665 cobr_fmt (args, oP->opcode | bp_bits, oP);
666 break;
667 case REG:
668 if (branch_predict)
669 {
670 as_warn (bp_error_msg);
671 }
672 reg_fmt (args, oP);
673 break;
674 case MEM1:
675 if (args[0][0] == 'c' && args[0][1] == 'a')
676 {
677 if (branch_predict)
678 {
679 as_warn (bp_error_msg);
680 }
681 mem_fmt (args, oP, 1);
682 break;
683 }
684 case MEM2:
685 case MEM4:
686 case MEM8:
687 case MEM12:
688 case MEM16:
689 if (branch_predict)
690 {
691 as_warn (bp_error_msg);
692 }
693 mem_fmt (args, oP, 0);
694 break;
695 case CALLJ:
696 if (branch_predict)
697 {
698 as_warn (bp_error_msg);
699 }
700 /* Output opcode & set up "fixup" (relocation);
fecd2382
RP
701 * flag relocation as 'callj' type.
702 */
355afbcd
KR
703 know (oP->num_ops == 1);
704 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
705 break;
706 default:
707 BAD_CASE (oP->format);
708 break;
fecd2382 709 }
355afbcd
KR
710 }
711} /* md_assemble() */
fecd2382
RP
712
713/*****************************************************************************
714 * md_number_to_chars: convert a number to target byte order
715 *
716 **************************************************************************** */
717void
355afbcd
KR
718md_number_to_chars (buf, value, n)
719 char *buf; /* Put output here */
c47d388b 720 valueT value; /* The integer to be converted */
355afbcd 721 int n; /* Number of bytes to output (significant bytes
a39116f1
RP
722 * in 'value')
723 */
fecd2382 724{
355afbcd
KR
725 while (n--)
726 {
727 *buf++ = value;
728 value >>= 8;
729 }
730
731 /* XXX line number probably botched for this warning message. */
732 if (value != 0 && value != -1)
733 {
734 as_bad ("Displacement too long for instruction field length.");
735 }
736
737 return;
738} /* md_number_to_chars() */
fecd2382
RP
739
740/*****************************************************************************
741 * md_chars_to_number: convert from target byte order to host byte order.
742 *
743 **************************************************************************** */
744int
355afbcd
KR
745md_chars_to_number (val, n)
746 unsigned char *val; /* Value in target byte order */
747 int n; /* Number of bytes in the input */
fecd2382 748{
355afbcd
KR
749 int retval;
750
751 for (retval = 0; n--;)
752 {
753 retval <<= 8;
754 retval |= val[n];
755 }
756 return retval;
fecd2382
RP
757}
758
759
760#define MAX_LITTLENUMS 6
761#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
762
763/*****************************************************************************
764 * md_atof: convert ascii to floating point
765 *
766 * Turn a string at input_line_pointer into a floating point constant of type
767 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
768 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
769 * to an empty message if OK.
770 *
771 * Note we call the i386 floating point routine, rather than complicating
772 * things with more files or symbolic links.
773 *
774 **************************************************************************** */
355afbcd
KR
775char *
776md_atof (type, litP, sizeP)
777 int type;
778 char *litP;
779 int *sizeP;
fecd2382 780{
355afbcd
KR
781 LITTLENUM_TYPE words[MAX_LITTLENUMS];
782 LITTLENUM_TYPE *wordP;
783 int prec;
784 char *t;
785 char *atof_ieee ();
786
787 switch (type)
788 {
789 case 'f':
790 case 'F':
791 prec = 2;
792 break;
793
794 case 'd':
795 case 'D':
796 prec = 4;
797 break;
798
799 case 't':
800 case 'T':
801 prec = 5;
802 type = 'x'; /* That's what atof_ieee() understands */
803 break;
804
805 default:
806 *sizeP = 0;
807 return "Bad call to md_atof()";
808 }
809
810 t = atof_ieee (input_line_pointer, type, words);
811 if (t)
812 {
813 input_line_pointer = t;
814 }
815
816 *sizeP = prec * LNUM_SIZE;
817
818 /* Output the LITTLENUMs in REVERSE order in accord with i80960
fecd2382
RP
819 * word-order. (Dunno why atof_ieee doesn't do it in the right
820 * order in the first place -- probably because it's a hack of
821 * atof_m68k.)
822 */
355afbcd
KR
823
824 for (wordP = words + prec - 1; prec--;)
825 {
826 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
827 litP += sizeof (LITTLENUM_TYPE);
828 }
829
830 return ""; /* Someone should teach Dean about null pointers */
fecd2382
RP
831}
832
833
834/*****************************************************************************
835 * md_number_to_imm
836 *
837 **************************************************************************** */
838void
355afbcd
KR
839md_number_to_imm (buf, val, n)
840 char *buf;
841 long val;
842 int n;
fecd2382 843{
355afbcd 844 md_number_to_chars (buf, val, n);
fecd2382
RP
845}
846
847
848/*****************************************************************************
849 * md_number_to_disp
850 *
851 **************************************************************************** */
852void
355afbcd
KR
853md_number_to_disp (buf, val, n)
854 char *buf;
855 long val;
856 int n;
fecd2382 857{
355afbcd 858 md_number_to_chars (buf, val, n);
fecd2382
RP
859}
860
861/*****************************************************************************
862 * md_number_to_field:
863 *
864 * Stick a value (an address fixup) into a bit field of
865 * previously-generated instruction.
866 *
867 **************************************************************************** */
868void
355afbcd
KR
869md_number_to_field (instrP, val, bfixP)
870 char *instrP; /* Pointer to instruction to be fixed */
871 long val; /* Address fixup value */
872 bit_fixS *bfixP; /* Description of bit field to be fixed up */
fecd2382 873{
355afbcd
KR
874 int numbits; /* Length of bit field to be fixed */
875 long instr; /* 32-bit instruction to be fixed-up */
876 long sign; /* 0 or -1, according to sign bit of 'val' */
877
878 /* Convert instruction back to host byte order
fecd2382 879 */
355afbcd
KR
880 instr = md_chars_to_number (instrP, 4);
881
882 /* Surprise! -- we stored the number of bits
fecd2382
RP
883 * to be modified rather than a pointer to a structure.
884 */
355afbcd
KR
885 numbits = (int) bfixP;
886 if (numbits == 1)
887 {
888 /* This is a no-op, stuck here by reloc_callj() */
889 return;
890 }
891
892 know ((numbits == 13) || (numbits == 24));
893
894 /* Propagate sign bit of 'val' for the given number of bits.
fecd2382
RP
895 * Result should be all 0 or all 1
896 */
355afbcd
KR
897 sign = val >> ((int) numbits - 1);
898 if (((val < 0) && (sign != -1))
899 || ((val > 0) && (sign != 0)))
900 {
901 as_bad ("Fixup of %d too large for field width of %d",
902 val, numbits);
903 }
904 else
905 {
906 /* Put bit field into instruction and write back in target
fecd2382
RP
907 * byte order.
908 */
355afbcd
KR
909 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
910 instr |= val;
911 md_number_to_chars (instrP, instr, 4);
912 }
913} /* md_number_to_field() */
fecd2382
RP
914
915
916/*****************************************************************************
917 * md_parse_option
918 * Invocation line includes a switch not recognized by the base assembler.
919 * See if it's a processor-specific option. For the 960, these are:
920 *
921 * -norelax:
922 * Conditional branch instructions that require displacements
923 * greater than 13 bits (or that have external targets) should
924 * generate errors. The default is to replace each such
925 * instruction with the corresponding compare (or chkbit) and
926 * branch instructions. Note that the Intel "j" cobr directives
927 * are ALWAYS "de-optimized" in this way when necessary,
928 * regardless of the setting of this option.
929 *
930 * -b:
931 * Add code to collect information about branches taken, for
932 * later optimization of branch prediction bits by a separate
933 * tool. COBR and CNTL format instructions have branch
934 * prediction bits (in the CX architecture); if "BR" represents
935 * an instruction in one of these classes, the following rep-
936 * resents the code generated by the assembler:
937 *
938 * call <increment routine>
939 * .word 0 # pre-counter
940 * Label: BR
941 * call <increment routine>
942 * .word 0 # post-counter
943 *
944 * A table of all such "Labels" is also generated.
945 *
946 *
947 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
948 * Select the 80960 architecture. Instructions or features not
949 * supported by the selected architecture cause fatal errors.
950 * The default is to generate code for any instruction or feature
951 * that is supported by SOME version of the 960 (even if this
952 * means mixing architectures!).
953 *
954 **************************************************************************** */
955int
355afbcd
KR
956md_parse_option (argP, cntP, vecP)
957 char **argP;
958 int *cntP;
959 char ***vecP;
fecd2382 960{
355afbcd
KR
961 char *p;
962 struct tabentry
963 {
964 char *flag;
965 int arch;
966 };
967 static struct tabentry arch_tab[] =
968 {
969 "KA", ARCH_KA,
970 "KB", ARCH_KB,
971 "SA", ARCH_KA, /* Synonym for KA */
972 "SB", ARCH_KB, /* Synonym for KB */
973 "KC", ARCH_MC, /* Synonym for MC */
974 "MC", ARCH_MC,
975 "CA", ARCH_CA,
976 NULL, 0
977 };
978 struct tabentry *tp;
979 if (!strcmp (*argP, "linkrelax"))
980 {
981 linkrelax = 1;
982 flagseen['L'] = 1;
983 }
984 else if (!strcmp (*argP, "norelax"))
985 {
986 norelax = 1;
987
988 }
989 else if (**argP == 'b')
990 {
991 instrument_branches = 1;
992
993 }
994 else if (**argP == 'A')
995 {
996 p = (*argP) + 1;
997
998 for (tp = arch_tab; tp->flag != NULL; tp++)
999 {
1000 if (!strcmp (p, tp->flag))
1001 {
1002 break;
1003 }
1004 }
1005
1006 if (tp->flag == NULL)
1007 {
1008 as_bad ("unknown architecture: %s", p);
fecd2382 1009 }
355afbcd
KR
1010 else
1011 {
1012 architecture = tp->arch;
1013 }
1014 }
1015 else
1016 {
1017 /* Unknown option */
1018 (*argP)++;
1019 return 0;
1020 }
1021 **argP = '\0'; /* Done parsing this switch */
1022 return 1;
fecd2382
RP
1023}
1024
1025/*****************************************************************************
1026 * md_convert_frag:
1027 * Called by base assembler after address relaxation is finished: modify
1028 * variable fragments according to how much relaxation was done.
1029 *
1030 * If the fragment substate is still 1, a 13-bit displacement was enough
1031 * to reach the symbol in question. Set up an address fixup, but otherwise
1032 * leave the cobr instruction alone.
1033 *
1034 * If the fragment substate is 2, a 13-bit displacement was not enough.
1035 * Replace the cobr with a two instructions (a compare and a branch).
1036 *
1037 **************************************************************************** */
1038void
355afbcd
KR
1039md_convert_frag (headers, fragP)
1040 object_headers *headers;
1041 fragS *fragP;
fecd2382 1042{
355afbcd
KR
1043 fixS *fixP; /* Structure describing needed address fix */
1044
1045 switch (fragP->fr_subtype)
1046 {
1047 case 1:
1048 /* LEAVE SINGLE COBR INSTRUCTION */
1049 fixP = fix_new (fragP,
1050 fragP->fr_opcode - fragP->fr_literal,
1051 4,
1052 fragP->fr_symbol,
1053 0,
1054 fragP->fr_offset,
1055 1,
1056 NO_RELOC);
1057
1058 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1059 break;
1060 case 2:
1061 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1062 relax_cobr (fragP);
1063 break;
1064 default:
1065 BAD_CASE (fragP->fr_subtype);
1066 break;
1067 }
fecd2382
RP
1068}
1069
1070/*****************************************************************************
1071 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
1072 *
1073 * Called by base assembler just before address relaxation.
1074 * Return the amount by which the fragment will grow.
1075 *
1076 * Any symbol that is now undefined will not become defined; cobr's
1077 * based on undefined symbols will have to be replaced with a compare
1078 * instruction and a branch instruction, and the code fragment will grow
1079 * by 4 bytes.
1080 *
1081 **************************************************************************** */
1082int
355afbcd
KR
1083md_estimate_size_before_relax (fragP, segment_type)
1084 register fragS *fragP;
1085 register segT segment_type;
fecd2382 1086{
355afbcd 1087 /* If symbol is undefined in this segment, go to "relaxed" state
fecd2382
RP
1088 * (compare and branch instructions instead of cobr) right now.
1089 */
355afbcd
KR
1090 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1091 {
1092 relax_cobr (fragP);
1093 return 4;
1094 }
1095 return 0;
1096} /* md_estimate_size_before_relax() */
fecd2382
RP
1097
1098
1099/*****************************************************************************
1100 * md_ri_to_chars:
1101 * This routine exists in order to overcome machine byte-order problems
1102 * when dealing with bit-field entries in the relocation_info struct.
1103 *
1104 * But relocation info will be used on the host machine only (only
1105 * executable code is actually downloaded to the i80960). Therefore,
1106 * we leave it in host byte order.
1107 *
8ae35e59
ILT
1108 * The above comment is no longer true. This routine now really
1109 * does do the reordering (Ian Taylor 28 Aug 92).
1110 *
fecd2382 1111 **************************************************************************** */
355afbcd
KR
1112void
1113md_ri_to_chars (where, ri)
1114 char *where;
1115 struct relocation_info *ri;
fecd2382 1116{
355afbcd
KR
1117 md_number_to_chars (where, ri->r_address,
1118 sizeof (ri->r_address));
1119 where[4] = ri->r_index & 0x0ff;
1120 where[5] = (ri->r_index >> 8) & 0x0ff;
1121 where[6] = (ri->r_index >> 16) & 0x0ff;
1122 where[7] = ((ri->r_pcrel << 0)
1123 | (ri->r_length << 1)
1124 | (ri->r_extern << 3)
1125 | (ri->r_bsr << 4)
1126 | (ri->r_disp << 5)
1127 | (ri->r_callj << 6));
1128} /* md_ri_to_chars() */
fecd2382 1129
fecd2382
RP
1130#ifndef WORKING_DOT_WORD
1131
1132int md_short_jump_size = 0;
1133int md_long_jump_size = 0;
1134
355afbcd
KR
1135void
1136md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
1137 char *ptr;
c47d388b
ME
1138 addressT from_addr;
1139 addressT to_addr;
355afbcd
KR
1140 fragS *frag;
1141 symbolS *to_symbol;
fecd2382 1142{
355afbcd 1143 as_fatal ("failed sanity check.");
fecd2382
RP
1144}
1145
1146void
355afbcd
KR
1147md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
1148 char *ptr;
c47d388b 1149 addressT from_addr, to_addr;
355afbcd
KR
1150 fragS *frag;
1151 symbolS *to_symbol;
fecd2382 1152{
355afbcd 1153 as_fatal ("failed sanity check.");
fecd2382 1154}
355afbcd 1155
fecd2382
RP
1156#endif
1157\f
a39116f1
RP
1158/*************************************************************
1159 * *
1160 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1161 * *
1162 ************************************************************ */
fecd2382
RP
1163
1164
1165
1166/*****************************************************************************
1167 * brcnt_emit: Emit code to increment inline branch counter.
1168 *
1169 * See the comments above the declaration of 'br_cnt' for details on
1170 * branch-prediction instrumentation.
1171 **************************************************************************** */
1172static void
355afbcd 1173brcnt_emit ()
fecd2382 1174{
355afbcd
KR
1175 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1176 emit (0); /* Emit inline counter to be incremented */
fecd2382
RP
1177}
1178
1179/*****************************************************************************
1180 * brlab_next: generate the next branch local label
1181 *
1182 * See the comments above the declaration of 'br_cnt' for details on
1183 * branch-prediction instrumentation.
1184 **************************************************************************** */
1185static char *
355afbcd 1186brlab_next ()
fecd2382 1187{
355afbcd
KR
1188 static char buf[20];
1189
1190 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1191 return buf;
fecd2382
RP
1192}
1193
1194/*****************************************************************************
1195 * brtab_emit: generate the fetch-prediction branch table.
1196 *
1197 * See the comments above the declaration of 'br_cnt' for details on
1198 * branch-prediction instrumentation.
1199 *
1200 * The code emitted here would be functionally equivalent to the following
1201 * example assembler source.
1202 *
1203 * .data
1204 * .align 2
1205 * BR_TAB_NAME:
1206 * .word 0 # link to next table
1207 * .word 3 # length of table
1208 * .word LBRANCH0 # 1st entry in table proper
1209 * .word LBRANCH1
1210 * .word LBRANCH2
1211 ***************************************************************************** */
1212void
355afbcd 1213brtab_emit ()
fecd2382 1214{
355afbcd
KR
1215 int i;
1216 char buf[20];
1217 char *p; /* Where the binary was output to */
1218 fixS *fixP; /*->description of deferred address fixup */
1219
1220 if (!instrument_branches)
1221 {
1222 return;
1223 }
1224
1225 subseg_new (SEG_DATA, 0); /* .data */
1226 frag_align (2, 0); /* .align 2 */
1227 record_alignment (now_seg, 2);
1228 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1229 emit (0); /* .word 0 #link to next table */
1230 emit (br_cnt); /* .word n #length of table */
1231
1232 for (i = 0; i < br_cnt; i++)
1233 {
1234 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1235 p = emit (0);
1236 fixP = fix_new (frag_now,
1237 p - frag_now->fr_literal,
1238 4,
1239 symbol_find (buf),
1240 0,
1241 0,
1242 0,
1243 NO_RELOC);
1244 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1245 }
fecd2382
RP
1246}
1247
1248/*****************************************************************************
1249 * cobr_fmt: generate a COBR-format instruction
1250 *
1251 **************************************************************************** */
1252static
355afbcd
KR
1253void
1254cobr_fmt (arg, opcode, oP)
1255 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1256 long opcode; /* Opcode, with branch-prediction bits already set
a39116f1
RP
1257 * if necessary.
1258 */
355afbcd
KR
1259 struct i960_opcode *oP;
1260 /*->description of instruction */
fecd2382 1261{
355afbcd
KR
1262 long instr; /* 32-bit instruction */
1263 struct regop regop; /* Description of register operand */
1264 int n; /* Number of operands */
1265 int var_frag; /* 1 if varying length code fragment should
fecd2382
RP
1266 * be emitted; 0 if an address fix
1267 * should be emitted.
1268 */
355afbcd
KR
1269
1270 instr = opcode;
1271 n = oP->num_ops;
1272
1273 if (n >= 1)
1274 {
1275 /* First operand (if any) of a COBR is always a register
fecd2382
RP
1276 * operand. Parse it.
1277 */
355afbcd
KR
1278 parse_regop (&regop, arg[1], oP->operand[0]);
1279 instr |= (regop.n << 19) | (regop.mode << 13);
1280 }
1281 if (n >= 2)
1282 {
1283 /* Second operand (if any) of a COBR is always a register
fecd2382
RP
1284 * operand. Parse it.
1285 */
355afbcd
KR
1286 parse_regop (&regop, arg[2], oP->operand[1]);
1287 instr |= (regop.n << 14) | regop.special;
1288 }
1289
1290
1291 if (n < 3)
1292 {
1293 emit (instr);
1294
1295 }
1296 else
1297 {
1298 if (instrument_branches)
1299 {
1300 brcnt_emit ();
1301 colon (brlab_next ());
fecd2382 1302 }
355afbcd
KR
1303
1304 /* A third operand to a COBR is always a displacement.
fecd2382
RP
1305 * Parse it; if it's relaxable (a cobr "j" directive, or any
1306 * cobr other than bbs/bbc when the "-norelax" option is not in
1307 * use) set up a variable code fragment; otherwise set up an
1308 * address fix.
1309 */
355afbcd
KR
1310 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1311 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1312
1313 if (instrument_branches)
1314 {
1315 brcnt_emit ();
fecd2382 1316 }
355afbcd
KR
1317 }
1318} /* cobr_fmt() */
fecd2382
RP
1319
1320
1321/*****************************************************************************
1322 * ctrl_fmt: generate a CTRL-format instruction
1323 *
1324 **************************************************************************** */
1325static
355afbcd
KR
1326void
1327ctrl_fmt (targP, opcode, num_ops)
1328 char *targP; /* Pointer to text of lone operand (if any) */
1329 long opcode; /* Template of instruction */
1330 int num_ops; /* Number of operands */
fecd2382 1331{
355afbcd 1332 int instrument; /* TRUE iff we should add instrumentation to track
fecd2382
RP
1333 * how often the branch is taken
1334 */
355afbcd
KR
1335
1336
1337 if (num_ops == 0)
1338 {
1339 emit (opcode); /* Output opcode */
1340 }
1341 else
1342 {
1343
1344 instrument = instrument_branches && (opcode != CALL)
1345 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1346
1347 if (instrument)
1348 {
1349 brcnt_emit ();
1350 colon (brlab_next ());
1351 }
1352
1353 /* The operand MUST be an ip-relative displacment. Parse it
fecd2382
RP
1354 * and set up address fix for the instruction we just output.
1355 */
355afbcd
KR
1356 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1357
1358 if (instrument)
1359 {
1360 brcnt_emit ();
fecd2382 1361 }
355afbcd
KR
1362 }
1363
fecd2382
RP
1364}
1365
1366
1367/*****************************************************************************
1368 * emit: output instruction binary
1369 *
1370 * Output instruction binary, in target byte order, 4 bytes at a time.
1371 * Return pointer to where it was placed.
1372 *
1373 **************************************************************************** */
1374static
355afbcd
KR
1375char *
1376emit (instr)
1377 long instr; /* Word to be output, host byte order */
fecd2382 1378{
355afbcd
KR
1379 char *toP; /* Where to output it */
1380
1381 toP = frag_more (4); /* Allocate storage */
1382 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1383 return toP;
fecd2382
RP
1384}
1385
1386
1387/*****************************************************************************
1388 * get_args: break individual arguments out of comma-separated list
1389 *
1390 * Input assumptions:
1391 * - all comments and labels have been removed
1392 * - all strings of whitespace have been collapsed to a single blank.
1393 * - all character constants ('x') have been replaced with decimal
1394 *
1395 * Output:
1396 * args[0] is untouched. args[1] points to first operand, etc. All args:
1397 * - are NULL-terminated
1398 * - contain no whitespace
1399 *
1400 * Return value:
1401 * Number of operands (0,1,2, or 3) or -1 on error.
1402 *
1403 **************************************************************************** */
355afbcd
KR
1404static int
1405get_args (p, args)
1406 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1407 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
a39116f1
RP
1408 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1409 */
fecd2382 1410{
355afbcd
KR
1411 register int n; /* Number of operands */
1412 register char *to;
1413 /* char buf[4]; */
1414 /* int len; */
1415
1416
1417 /* Skip lead white space */
1418 while (*p == ' ')
1419 {
1420 p++;
1421 }
1422
1423 if (*p == '\0')
1424 {
1425 return 0;
1426 }
1427
1428 n = 1;
1429 args[1] = p;
1430
1431 /* Squeze blanks out by moving non-blanks toward start of string.
fecd2382
RP
1432 * Isolate operands, whenever comma is found.
1433 */
355afbcd
KR
1434 to = p;
1435 while (*p != '\0')
1436 {
1437
1438 if (*p == ' ')
1439 {
1440 p++;
1441
1442 }
1443 else if (*p == ',')
1444 {
1445
1446 /* Start of operand */
1447 if (n == 3)
1448 {
1449 as_bad ("too many operands");
1450 return -1;
1451 }
1452 *to++ = '\0'; /* Terminate argument */
1453 args[++n] = to; /* Start next argument */
1454 p++;
1455
fecd2382 1456 }
355afbcd
KR
1457 else
1458 {
1459 *to++ = *p++;
1460 }
1461 }
1462 *to = '\0';
1463 return n;
fecd2382
RP
1464}
1465
1466
1467/*****************************************************************************
1468 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1469 *
1470 * Parse displacement for a COBR or CTRL instruction.
1471 *
1472 * If successful, output the instruction opcode and set up for it,
1473 * depending on the arg 'var_frag', either:
1474 * o an address fixup to be done when all symbol values are known, or
1475 * o a varying length code fragment, with address fixup info. This
1476 * will be done for cobr instructions that may have to be relaxed
c47d388b
ME
1477 * in to compare/branch instructions (8 bytes) if the final
1478 * address displacement is greater than 13 bits.
fecd2382 1479 *
c47d388b 1480 *****************************************************************************/
fecd2382 1481static
355afbcd
KR
1482void
1483get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
c47d388b
ME
1484 /* displacement as specified in source instruction */
1485 char *dispP;
1486 /* "COBR" or "CTRL" (for use in error message) */
1487 char *ifmtP;
1488 /* Instruction needing the displacement */
1489 long instr;
1490 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1491 int numbits;
1492 /* 1 if varying length code fragment should be emitted;
1493 * 0 if an address fix should be emitted.
1494 */
1495 int var_frag;
1496 /* 1 if callj relocation should be done; else 0 */
1497 int callj;
fecd2382 1498{
355afbcd
KR
1499 expressionS e; /* Parsed expression */
1500 fixS *fixP; /* Structure describing needed address fix */
1501 char *outP; /* Where instruction binary is output to */
1502
1503 fixP = NULL;
1504
1505 switch (parse_expr (dispP, &e))
1506 {
1507
1508 case SEG_GOOF:
1509 as_bad ("expression syntax error");
1510 break;
1511
1512 case SEG_TEXT:
1513 case SEG_UNKNOWN:
1514 if (var_frag)
1515 {
1516 outP = frag_more (8); /* Allocate worst-case storage */
1517 md_number_to_chars (outP, instr, 4);
1518 frag_variant (rs_machine_dependent, 4, 4, 1,
1519 adds (e), offs (e), outP, 0, 0);
1520 }
1521 else
1522 {
1523 /* Set up a new fix structure, so address can be updated
c47d388b
ME
1524 * when all symbol values are known.
1525 */
355afbcd
KR
1526 outP = emit (instr);
1527 fixP = fix_new (frag_now,
1528 outP - frag_now->fr_literal,
1529 4,
1530 adds (e),
1531 0,
1532 offs (e),
1533 1,
1534 NO_RELOC);
1535
1536 fixP->fx_callj = callj;
1537
1538 /* We want to modify a bit field when the address is
c47d388b
ME
1539 * known. But we don't need all the garbage in the
1540 * bit_fix structure. So we're going to lie and store
1541 * the number of bits affected instead of a pointer.
1542 */
355afbcd 1543 fixP->fx_bit_fixP = (bit_fixS *) numbits;
fecd2382 1544 }
355afbcd
KR
1545 break;
1546
1547 case SEG_DATA:
1548 case SEG_BSS:
1549 as_bad ("attempt to branch into different segment");
1550 break;
1551
1552 default:
1553 as_bad ("target of %s instruction must be a label", ifmtP);
1554 break;
1555 }
fecd2382
RP
1556}
1557
1558
1559/*****************************************************************************
1560 * get_ispec: parse a memory operand for an index specification
1561 *
1562 * Here, an "index specification" is taken to be anything surrounded
1563 * by square brackets and NOT followed by anything else.
1564 *
1565 * If it's found, detach it from the input string, remove the surrounding
1566 * square brackets, and return a pointer to it. Otherwise, return NULL.
1567 *
1568 **************************************************************************** */
1569static
355afbcd
KR
1570char *
1571get_ispec (textP)
1572 char *textP; /*->memory operand from source instruction, no white space */
fecd2382 1573{
355afbcd
KR
1574 char *start; /*->start of index specification */
1575 char *end; /*->end of index specification */
1576
1577 /* Find opening square bracket, if any
fecd2382 1578 */
355afbcd
KR
1579 start = strchr (textP, '[');
1580
1581 if (start != NULL)
1582 {
1583
1584 /* Eliminate '[', detach from rest of operand */
1585 *start++ = '\0';
1586
1587 end = strchr (start, ']');
1588
1589 if (end == NULL)
1590 {
1591 as_bad ("unmatched '['");
1592
1593 }
1594 else
1595 {
1596 /* Eliminate ']' and make sure it was the last thing
fecd2382
RP
1597 * in the string.
1598 */
355afbcd
KR
1599 *end = '\0';
1600 if (*(end + 1) != '\0')
1601 {
1602 as_bad ("garbage after index spec ignored");
1603 }
fecd2382 1604 }
355afbcd
KR
1605 }
1606 return start;
fecd2382
RP
1607}
1608
1609/*****************************************************************************
1610 * get_regnum:
1611 *
1612 * Look up a (suspected) register name in the register table and return the
1613 * associated register number (or -1 if not found).
1614 *
1615 **************************************************************************** */
1616static
355afbcd
KR
1617int
1618get_regnum (regname)
1619 char *regname; /* Suspected register name */
fecd2382 1620{
355afbcd
KR
1621 int *rP;
1622
1623 rP = (int *) hash_find (reg_hash, regname);
1624 return (rP == NULL) ? -1 : *rP;
fecd2382
RP
1625}
1626
1627
1628/*****************************************************************************
1629 * i_scan: perform lexical scan of ascii assembler instruction.
1630 *
1631 * Input assumptions:
1632 * - input string is an i80960 instruction (not a pseudo-op)
1633 * - all comments and labels have been removed
1634 * - all strings of whitespace have been collapsed to a single blank.
1635 *
1636 * Output:
1637 * args[0] points to opcode, other entries point to operands. All strings:
1638 * - are NULL-terminated
1639 * - contain no whitespace
1640 * - have character constants ('x') replaced with a decimal number
1641 *
1642 * Return value:
1643 * Number of operands (0,1,2, or 3) or -1 on error.
1644 *
1645 **************************************************************************** */
355afbcd
KR
1646static int
1647i_scan (iP, args)
1648 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1649 char *args[]; /* Output arg: pointers to opcode and operands placed
a39116f1
RP
1650 * here. MUST ACCOMMODATE 4 ENTRIES.
1651 */
fecd2382 1652{
355afbcd
KR
1653
1654 /* Isolate opcode */
1655 if (*(iP) == ' ')
1656 {
1657 iP++;
1658 } /* Skip lead space, if any */
1659 args[0] = iP;
1660 for (; *iP != ' '; iP++)
1661 {
1662 if (*iP == '\0')
1663 {
1664 /* There are no operands */
1665 if (args[0] == iP)
1666 {
1667 /* We never moved: there was no opcode either! */
1668 as_bad ("missing opcode");
1669 return -1;
1670 }
1671 return 0;
fecd2382 1672 }
355afbcd
KR
1673 }
1674 *iP++ = '\0'; /* Terminate opcode */
1675 return (get_args (iP, args));
1676} /* i_scan() */
fecd2382
RP
1677
1678
1679/*****************************************************************************
1680 * mem_fmt: generate a MEMA- or MEMB-format instruction
1681 *
1682 **************************************************************************** */
355afbcd
KR
1683static void
1684mem_fmt (args, oP, callx)
1685 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1686 struct i960_opcode *oP; /* Pointer to description of instruction */
1687 int callx; /* Is this a callx opcode */
fecd2382 1688{
355afbcd
KR
1689 int i; /* Loop counter */
1690 struct regop regop; /* Description of register operand */
1691 char opdesc; /* Operand descriptor byte */
1692 memS instr; /* Description of binary to be output */
1693 char *outP; /* Where the binary was output to */
1694 expressionS expr; /* Parsed expression */
1695 fixS *fixP; /*->description of deferred address fixup */
1696
1697 memset (&instr, '\0', sizeof (memS));
1698 instr.opcode = oP->opcode;
1699
1700 /* Process operands. */
1701 for (i = 1; i <= oP->num_ops; i++)
1702 {
1703 opdesc = oP->operand[i - 1];
1704
1705 if (MEMOP (opdesc))
1706 {
1707 parse_memop (&instr, args[i], oP->format);
fecd2382 1708 }
355afbcd
KR
1709 else
1710 {
1711 parse_regop (&regop, args[i], opdesc);
1712 instr.opcode |= regop.n << 19;
fecd2382 1713 }
355afbcd
KR
1714 }
1715
1716 /* Output opcode */
1717 outP = emit (instr.opcode);
1718
1719 if (instr.disp == 0)
1720 {
1721 return;
1722 }
1723
1724 /* Parse and process the displacement */
1725 switch (parse_expr (instr.e, &expr))
1726 {
1727
1728 case SEG_GOOF:
1729 as_bad ("expression syntax error");
1730 break;
1731
1732 case SEG_ABSOLUTE:
1733 if (instr.disp == 32)
1734 {
1735 (void) emit (offs (expr)); /* Output displacement */
1736 }
1737 else
1738 {
1739 /* 12-bit displacement */
1740 if (offs (expr) & ~0xfff)
1741 {
1742 /* Won't fit in 12 bits: convert already-output
1743 * instruction to MEMB format, output
1744 * displacement.
1745 */
1746 mema_to_memb (outP);
1747 (void) emit (offs (expr));
1748 }
1749 else
1750 {
1751 /* WILL fit in 12 bits: OR into opcode and
1752 * overwrite the binary we already put out
1753 */
1754 instr.opcode |= offs (expr);
1755 md_number_to_chars (outP, instr.opcode, 4);
1756 }
1757 }
1758 break;
1759
1760 case SEG_DIFFERENCE:
1761 case SEG_TEXT:
1762 case SEG_DATA:
1763 case SEG_BSS:
1764 case SEG_UNKNOWN:
1765 if (instr.disp == 12)
1766 {
1767 /* Displacement is dependent on a symbol, whose value
c47d388b
ME
1768 * may change at link time. We HAVE to reserve 32 bits.
1769 * Convert already-output opcode to MEMB format.
1770 */
355afbcd
KR
1771 mema_to_memb (outP);
1772 }
1773
1774 /* Output 0 displacement and set up address fixup for when
c47d388b
ME
1775 * this symbol's value becomes known.
1776 */
355afbcd
KR
1777 outP = emit ((long) 0);
1778 fixP = fix_new (frag_now,
1779 outP - frag_now->fr_literal,
1780 4,
1781 adds (expr),
1782 subs (expr),
1783 offs (expr),
1784 0,
1785 NO_RELOC);
1786 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1787 fixP->fx_bsr = callx; /*SAC LD RELAX HACK *//* Mark reloc as being in i stream */
1788 break;
1789
1790 default:
1791 BAD_CASE (segs (expr));
1792 break;
1793 }
1794} /* memfmt() */
fecd2382
RP
1795
1796
1797/*****************************************************************************
1798 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1799 *
1800 * There are 2 possible MEMA formats:
1801 * - displacement only
1802 * - displacement + abase
1803 *
1804 * They are distinguished by the setting of the MEMA_ABASE bit.
1805 *
1806 **************************************************************************** */
355afbcd
KR
1807static void
1808mema_to_memb (opcodeP)
1809 char *opcodeP; /* Where to find the opcode, in target byte order */
fecd2382 1810{
355afbcd
KR
1811 long opcode; /* Opcode in host byte order */
1812 long mode; /* Mode bits for MEMB instruction */
1813
1814 opcode = md_chars_to_number (opcodeP, 4);
1815 know (!(opcode & MEMB_BIT));
1816
1817 mode = MEMB_BIT | D_BIT;
1818 if (opcode & MEMA_ABASE)
1819 {
1820 mode |= A_BIT;
1821 }
1822
1823 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1824 opcode |= mode; /* Set MEMB mode bits */
1825
1826 md_number_to_chars (opcodeP, opcode, 4);
1827} /* mema_to_memb() */
fecd2382
RP
1828
1829
1830/*****************************************************************************
1831 * parse_expr: parse an expression
1832 *
1833 * Use base assembler's expression parser to parse an expression.
1834 * It, unfortunately, runs off a global which we have to save/restore
1835 * in order to make it work for us.
1836 *
1837 * An empty expression string is treated as an absolute 0.
1838 *
1839 * Return "segment" to which the expression evaluates.
1840 * Return SEG_GOOF regardless of expression evaluation if entire input
1841 * string is not consumed in the evaluation -- tolerate no dangling junk!
1842 *
1843 **************************************************************************** */
1844static
355afbcd
KR
1845 segT
1846parse_expr (textP, expP)
1847 char *textP; /* Text of expression to be parsed */
1848 expressionS *expP; /* Where to put the results of parsing */
fecd2382 1849{
355afbcd
KR
1850 char *save_in; /* Save global here */
1851 segT seg; /* Segment to which expression evaluates */
1852 symbolS *symP;
1853
1854 know (textP);
1855
1856 if (*textP == '\0')
1857 {
1858 /* Treat empty string as absolute 0 */
1859 expP->X_add_symbol = expP->X_subtract_symbol = NULL;
1860 expP->X_add_number = 0;
1861 seg = expP->X_seg = SEG_ABSOLUTE;
1862
1863 }
1864 else
1865 {
1866 save_in = input_line_pointer; /* Save global */
1867 input_line_pointer = textP; /* Make parser work for us */
1868
1869 seg = expression (expP);
1870 if (input_line_pointer - textP != strlen (textP))
1871 {
1872 /* Did not consume all of the input */
1873 seg = SEG_GOOF;
1874 }
1875 symP = expP->X_add_symbol;
1876 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1877 {
1878 /* Register name in an expression */
1879 seg = SEG_GOOF;
fecd2382 1880 }
355afbcd
KR
1881
1882 input_line_pointer = save_in; /* Restore global */
1883 }
1884 return seg;
fecd2382
RP
1885}
1886
1887
1888/*****************************************************************************
1889 * parse_ldcont:
1890 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1891 * i80960 instruction.
1892 *
1893 * Assumes the input consists of:
1894 * arg[0] opcode mnemonic ('ldconst')
1895 * arg[1] first operand (constant)
1896 * arg[2] name of register to be loaded
1897 *
1898 * Replaces opcode and/or operands as appropriate.
1899 *
1900 * Returns the new number of arguments, or -1 on failure.
1901 *
1902 **************************************************************************** */
1903static
355afbcd
KR
1904int
1905parse_ldconst (arg)
1906 char *arg[]; /* See above */
fecd2382 1907{
355afbcd
KR
1908 int n; /* Constant to be loaded */
1909 int shift; /* Shift count for "shlo" instruction */
1910 static char buf[5]; /* Literal for first operand */
1911 static char buf2[5]; /* Literal for second operand */
1912 expressionS e; /* Parsed expression */
1913
1914
1915 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1916
1917 switch (parse_expr (arg[1], &e))
1918 {
1919
1920 case SEG_TEXT:
1921 case SEG_DATA:
1922 case SEG_BSS:
1923 case SEG_UNKNOWN:
1924 case SEG_DIFFERENCE:
1925 /* We're dependent on one or more symbols -- use "lda" */
1926 arg[0] = "lda";
1927 break;
1928
1929 case SEG_ABSOLUTE:
1930 /* Try the following mappings:
fecd2382
RP
1931 * ldconst 0,<reg> ->mov 0,<reg>
1932 * ldconst 31,<reg> ->mov 31,<reg>
1933 * ldconst 32,<reg> ->addo 1,31,<reg>
1934 * ldconst 62,<reg> ->addo 31,31,<reg>
1935 * ldconst 64,<reg> ->shlo 8,3,<reg>
1936 * ldconst -1,<reg> ->subo 1,0,<reg>
1937 * ldconst -31,<reg>->subo 31,0,<reg>
1938 *
1939 * anthing else becomes:
1940 * lda xxx,<reg>
1941 */
355afbcd
KR
1942 n = offs (e);
1943 if ((0 <= n) && (n <= 31))
1944 {
1945 arg[0] = "mov";
1946
1947 }
1948 else if ((-31 <= n) && (n <= -1))
1949 {
1950 arg[0] = "subo";
1951 arg[3] = arg[2];
1952 sprintf (buf, "%d", -n);
1953 arg[1] = buf;
1954 arg[2] = "0";
1955
fecd2382 1956 }
355afbcd
KR
1957 else if ((32 <= n) && (n <= 62))
1958 {
1959 arg[0] = "addo";
1960 arg[3] = arg[2];
1961 arg[1] = "31";
1962 sprintf (buf, "%d", n - 31);
1963 arg[2] = buf;
1964
1965 }
1966 else if ((shift = shift_ok (n)) != 0)
1967 {
1968 arg[0] = "shlo";
1969 arg[3] = arg[2];
1970 sprintf (buf, "%d", shift);
1971 arg[1] = buf;
1972 sprintf (buf2, "%d", n >> shift);
1973 arg[2] = buf2;
1974
1975 }
1976 else
1977 {
1978 arg[0] = "lda";
1979 }
1980 break;
1981
1982 default:
1983 as_bad ("invalid constant");
1984 return -1;
1985 break;
1986 }
1987 return (arg[3] == 0) ? 2 : 3;
fecd2382
RP
1988}
1989
1990/*****************************************************************************
1991 * parse_memop: parse a memory operand
1992 *
1993 * This routine is based on the observation that the 4 mode bits of the
1994 * MEMB format, taken individually, have fairly consistent meaning:
1995 *
1996 * M3 (bit 13): 1 if displacement is present (D_BIT)
1997 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1998 * M1 (bit 11): 1 if index is present (I_BIT)
1999 * M0 (bit 10): 1 if abase is present (A_BIT)
2000 *
2001 * So we parse the memory operand and set bits in the mode as we find
2002 * things. Then at the end, if we go to MEMB format, we need only set
2003 * the MEMB bit (M2) and our mode is built for us.
2004 *
2005 * Unfortunately, I said "fairly consistent". The exceptions:
2006 *
2007 * DBIA
2008 * 0100 Would seem illegal, but means "abase-only".
2009 *
2010 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
2011 * Must be converted to 0100.
2012 *
2013 * 0110 Would seem to mean "index-only", but is reserved.
2014 * We turn on the D bit and provide a 0 displacement.
2015 *
2016 * The other thing to observe is that we parse from the right, peeling
2017 * things * off as we go: first any index spec, then any abase, then
2018 * the displacement.
2019 *
2020 **************************************************************************** */
2021static
355afbcd
KR
2022void
2023parse_memop (memP, argP, optype)
2024 memS *memP; /* Where to put the results */
2025 char *argP; /* Text of the operand to be parsed */
2026 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
fecd2382 2027{
355afbcd
KR
2028 char *indexP; /* Pointer to index specification with "[]" removed */
2029 char *p; /* Temp char pointer */
2030 char iprel_flag; /* True if this is an IP-relative operand */
2031 int regnum; /* Register number */
2032 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
fecd2382
RP
2033 * to internal format (0,1,2,3,4 respectively).
2034 */
355afbcd
KR
2035 int mode; /* MEMB mode bits */
2036 int *intP; /* Pointer to register number */
2037
2038 /* The following table contains the default scale factors for each
c47d388b
ME
2039 * type of memory instruction. It is accessed using (optype-MEM1)
2040 * as an index -- thus it assumes the 'optype' constants are assigned
2041 * consecutive values, in the order they appear in this table
2042 */
355afbcd
KR
2043 static int def_scale[] =
2044 {
2045 1, /* MEM1 */
2046 2, /* MEM2 */
2047 4, /* MEM4 */
2048 8, /* MEM8 */
2049 -1, /* MEM12 -- no valid default */
2050 16 /* MEM16 */
2051 };
2052
2053
2054 iprel_flag = mode = 0;
2055
2056 /* Any index present? */
2057 indexP = get_ispec (argP);
2058 if (indexP)
2059 {
2060 p = strchr (indexP, '*');
2061 if (p == NULL)
2062 {
2063 /* No explicit scale -- use default for this
fecd2382
RP
2064 *instruction type.
2065 */
355afbcd
KR
2066 scale = def_scale[optype - MEM1];
2067 }
2068 else
2069 {
2070 *p++ = '\0'; /* Eliminate '*' */
2071
2072 /* Now indexP->a '\0'-terminated register name,
fecd2382
RP
2073 * and p->a scale factor.
2074 */
355afbcd
KR
2075
2076 if (!strcmp (p, "16"))
2077 {
2078 scale = 16;
2079 }
2080 else if (strchr ("1248", *p) && (p[1] == '\0'))
2081 {
2082 scale = *p - '0';
2083 }
2084 else
2085 {
2086 scale = -1;
2087 }
2088 }
2089
2090 regnum = get_regnum (indexP); /* Get index reg. # */
2091 if (!IS_RG_REG (regnum))
2092 {
2093 as_bad ("invalid index register");
2094 return;
fecd2382 2095 }
355afbcd
KR
2096
2097 /* Convert scale to its binary encoding */
2098 switch (scale)
2099 {
2100 case 1:
2101 scale = 0 << 7;
2102 break;
2103 case 2:
2104 scale = 1 << 7;
2105 break;
2106 case 4:
2107 scale = 2 << 7;
2108 break;
2109 case 8:
2110 scale = 3 << 7;
2111 break;
2112 case 16:
2113 scale = 4 << 7;
2114 break;
2115 default:
2116 as_bad ("invalid scale factor");
2117 return;
2118 };
2119
2120 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2121 mode |= I_BIT; /* Found a valid index spec */
2122 }
2123
2124 /* Any abase (Register Indirect) specification present? */
2125 if ((p = strrchr (argP, '(')) != NULL)
2126 {
2127 /* "(" is there -- does it start a legal abase spec?
fecd2382
RP
2128 * (If not it could be part of a displacement expression.)
2129 */
355afbcd
KR
2130 intP = (int *) hash_find (areg_hash, p);
2131 if (intP != NULL)
2132 {
2133 /* Got an abase here */
2134 regnum = *intP;
2135 *p = '\0'; /* discard register spec */
2136 if (regnum == IPREL)
2137 {
2138 /* We have to specialcase ip-rel mode */
2139 iprel_flag = 1;
2140 }
2141 else
2142 {
2143 memP->opcode |= regnum << 14;
2144 mode |= A_BIT;
2145 }
fecd2382 2146 }
355afbcd
KR
2147 }
2148
2149 /* Any expression present? */
2150 memP->e = argP;
2151 if (*argP != '\0')
2152 {
2153 mode |= D_BIT;
2154 }
2155
2156 /* Special-case ip-relative addressing */
2157 if (iprel_flag)
2158 {
2159 if (mode & I_BIT)
2160 {
2161 syntax ();
fecd2382 2162 }
355afbcd
KR
2163 else
2164 {
2165 memP->opcode |= 5 << 10; /* IP-relative mode */
2166 memP->disp = 32;
fecd2382 2167 }
355afbcd
KR
2168 return;
2169 }
2170
2171 /* Handle all other modes */
2172 switch (mode)
2173 {
2174 case D_BIT | A_BIT:
2175 /* Go with MEMA instruction format for now (grow to MEMB later
fecd2382
RP
2176 * if 12 bits is not enough for the displacement).
2177 * MEMA format has a single mode bit: set it to indicate
2178 * that abase is present.
2179 */
355afbcd
KR
2180 memP->opcode |= MEMA_ABASE;
2181 memP->disp = 12;
2182 break;
2183
2184 case D_BIT:
2185 /* Go with MEMA instruction format for now (grow to MEMB later
fecd2382
RP
2186 * if 12 bits is not enough for the displacement).
2187 */
355afbcd
KR
2188 memP->disp = 12;
2189 break;
2190
2191 case A_BIT:
2192 /* For some reason, the bit string for this mode is not
fecd2382
RP
2193 * consistent: it should be 0 (exclusive of the MEMB bit),
2194 * so we set it "by hand" here.
2195 */
355afbcd
KR
2196 memP->opcode |= MEMB_BIT;
2197 break;
2198
2199 case A_BIT | I_BIT:
2200 /* set MEMB bit in mode, and OR in mode bits */
2201 memP->opcode |= mode | MEMB_BIT;
2202 break;
2203
2204 case I_BIT:
2205 /* Treat missing displacement as displacement of 0 */
2206 mode |= D_BIT;
2207 /***********************
fecd2382
RP
2208 * Fall into next case *
2209 ********************** */
355afbcd
KR
2210 case D_BIT | A_BIT | I_BIT:
2211 case D_BIT | I_BIT:
2212 /* set MEMB bit in mode, and OR in mode bits */
2213 memP->opcode |= mode | MEMB_BIT;
2214 memP->disp = 32;
2215 break;
2216
2217 default:
2218 syntax ();
2219 break;
2220 }
fecd2382
RP
2221}
2222
2223/*****************************************************************************
2224 * parse_po: parse machine-dependent pseudo-op
2225 *
2226 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
2227 * up the rest of the input line, breaks out the individual arguments,
2228 * and dispatches them to the correct handler.
2229 **************************************************************************** */
2230static
355afbcd
KR
2231void
2232parse_po (po_num)
2233 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
fecd2382 2234{
355afbcd 2235 char *args[4]; /* Pointers operands, with no embedded whitespace.
fecd2382
RP
2236 * arg[0] unused.
2237 * arg[1-3]->operands
2238 */
355afbcd
KR
2239 int n_ops; /* Number of operands */
2240 char *p; /* Pointer to beginning of unparsed argument string */
2241 char eol; /* Character that indicated end of line */
2242
2243 extern char is_end_of_line[];
2244
2245 /* Advance input pointer to end of line. */
2246 p = input_line_pointer;
2247 while (!is_end_of_line[*input_line_pointer])
2248 {
2249 input_line_pointer++;
2250 }
2251 eol = *input_line_pointer; /* Save end-of-line char */
2252 *input_line_pointer = '\0'; /* Terminate argument list */
2253
2254 /* Parse out operands */
2255 n_ops = get_args (p, args);
2256 if (n_ops == -1)
2257 {
2258 return;
2259 }
2260
2261 /* Dispatch to correct handler */
2262 switch (po_num)
2263 {
2264 case S_SYSPROC:
2265 s_sysproc (n_ops, args);
2266 break;
2267 case S_LEAFPROC:
2268 s_leafproc (n_ops, args);
2269 break;
2270 default:
2271 BAD_CASE (po_num);
2272 break;
2273 }
2274
2275 /* Restore eol, so line numbers get updated correctly. Base assembler
fecd2382
RP
2276 * assumes we leave input pointer pointing at char following the eol.
2277 */
355afbcd 2278 *input_line_pointer++ = eol;
fecd2382
RP
2279}
2280
2281/*****************************************************************************
2282 * parse_regop: parse a register operand.
2283 *
2284 * In case of illegal operand, issue a message and return some valid
2285 * information so instruction processing can continue.
2286 **************************************************************************** */
2287static
355afbcd
KR
2288void
2289parse_regop (regopP, optext, opdesc)
2290 struct regop *regopP; /* Where to put description of register operand */
2291 char *optext; /* Text of operand */
2292 char opdesc; /* Descriptor byte: what's legal for this operand */
fecd2382 2293{
355afbcd
KR
2294 int n; /* Register number */
2295 expressionS e; /* Parsed expression */
2296
2297 /* See if operand is a register */
2298 n = get_regnum (optext);
2299 if (n >= 0)
2300 {
2301 if (IS_RG_REG (n))
2302 {
2303 /* global or local register */
2304 if (!REG_ALIGN (opdesc, n))
2305 {
2306 as_bad ("unaligned register");
2307 }
2308 regopP->n = n;
2309 regopP->mode = 0;
2310 regopP->special = 0;
2311 return;
2312 }
2313 else if (IS_FP_REG (n) && FP_OK (opdesc))
2314 {
2315 /* Floating point register, and it's allowed */
2316 regopP->n = n - FP0;
2317 regopP->mode = 1;
2318 regopP->special = 0;
2319 return;
2320 }
2321 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2322 {
2323 /* Special-function register, and it's allowed */
2324 regopP->n = n - SF0;
2325 regopP->mode = 0;
2326 regopP->special = 1;
2327 if (!targ_has_sfr (regopP->n))
2328 {
2329 as_bad ("no such sfr in this architecture");
2330 }
2331 return;
2332 }
2333 }
2334 else if (LIT_OK (opdesc))
2335 {
2336 /*
fecd2382
RP
2337 * How about a literal?
2338 */
355afbcd
KR
2339 regopP->mode = 1;
2340 regopP->special = 0;
2341 if (FP_OK (opdesc))
2342 { /* floating point literal acceptable */
2343 /* Skip over 0f, 0d, or 0e prefix */
2344 if ((optext[0] == '0')
2345 && (optext[1] >= 'd')
2346 && (optext[1] <= 'f'))
2347 {
2348 optext += 2;
2349 }
2350
2351 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2352 {
2353 regopP->n = 0x10;
2354 return;
2355 }
2356 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2357 {
2358 regopP->n = 0x16;
2359 return;
2360 }
2361
fecd2382 2362 }
355afbcd
KR
2363 else
2364 { /* fixed point literal acceptable */
2365 if ((parse_expr (optext, &e) != SEG_ABSOLUTE)
2366 || (offs (e) < 0) || (offs (e) > 31))
2367 {
2368 as_bad ("illegal literal");
2369 offs (e) = 0;
2370 }
2371 regopP->n = offs (e);
2372 return;
2373 }
2374 }
2375
2376 /* Nothing worked */
2377 syntax ();
2378 regopP->mode = 0; /* Register r0 is always a good one */
2379 regopP->n = 0;
2380 regopP->special = 0;
2381} /* parse_regop() */
fecd2382
RP
2382
2383/*****************************************************************************
2384 * reg_fmt: generate a REG-format instruction
2385 *
2386 **************************************************************************** */
355afbcd
KR
2387static void
2388reg_fmt (args, oP)
2389 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2390 struct i960_opcode *oP; /* Pointer to description of instruction */
fecd2382 2391{
355afbcd
KR
2392 long instr; /* Binary to be output */
2393 struct regop regop; /* Description of register operand */
2394 int n_ops; /* Number of operands */
2395
2396
2397 instr = oP->opcode;
2398 n_ops = oP->num_ops;
2399
2400 if (n_ops >= 1)
2401 {
2402 parse_regop (&regop, args[1], oP->operand[0]);
2403
2404 if ((n_ops == 1) && !(instr & M3))
2405 {
2406 /* 1-operand instruction in which the dst field should
fecd2382
RP
2407 * be used (instead of src1).
2408 */
355afbcd
KR
2409 regop.n <<= 19;
2410 if (regop.special)
2411 {
2412 regop.mode = regop.special;
2413 }
2414 regop.mode <<= 13;
2415 regop.special = 0;
2416 }
2417 else
2418 {
2419 /* regop.n goes in bit 0, needs no shifting */
2420 regop.mode <<= 11;
2421 regop.special <<= 5;
fecd2382 2422 }
355afbcd
KR
2423 instr |= regop.n | regop.mode | regop.special;
2424 }
2425
2426 if (n_ops >= 2)
2427 {
2428 parse_regop (&regop, args[2], oP->operand[1]);
2429
2430 if ((n_ops == 2) && !(instr & M3))
2431 {
2432 /* 2-operand instruction in which the dst field should
fecd2382
RP
2433 * be used instead of src2).
2434 */
355afbcd
KR
2435 regop.n <<= 19;
2436 if (regop.special)
2437 {
2438 regop.mode = regop.special;
2439 }
2440 regop.mode <<= 13;
2441 regop.special = 0;
fecd2382 2442 }
355afbcd
KR
2443 else
2444 {
2445 regop.n <<= 14;
2446 regop.mode <<= 12;
2447 regop.special <<= 6;
fecd2382 2448 }
355afbcd
KR
2449 instr |= regop.n | regop.mode | regop.special;
2450 }
2451 if (n_ops == 3)
2452 {
2453 parse_regop (&regop, args[3], oP->operand[2]);
2454 if (regop.special)
2455 {
2456 regop.mode = regop.special;
2457 }
2458 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2459 }
2460 emit (instr);
fecd2382
RP
2461}
2462
2463
2464/*****************************************************************************
2465 * relax_cobr:
2466 * Replace cobr instruction in a code fragment with equivalent branch and
2467 * compare instructions, so it can reach beyond a 13-bit displacement.
2468 * Set up an address fix/relocation for the new branch instruction.
2469 *
2470 **************************************************************************** */
2471
2472/* This "conditional jump" table maps cobr instructions into equivalent
2473 * compare and branch opcodes.
2474 */
2475static
355afbcd
KR
2476struct
2477 {
2478 long compare;
2479 long branch;
2480 }
2481
2482coj[] =
2483{ /* COBR OPCODE: */
2484 CHKBIT, BNO, /* 0x30 - bbc */
2485 CMPO, BG, /* 0x31 - cmpobg */
2486 CMPO, BE, /* 0x32 - cmpobe */
2487 CMPO, BGE, /* 0x33 - cmpobge */
2488 CMPO, BL, /* 0x34 - cmpobl */
2489 CMPO, BNE, /* 0x35 - cmpobne */
2490 CMPO, BLE, /* 0x36 - cmpoble */
2491 CHKBIT, BO, /* 0x37 - bbs */
2492 CMPI, BNO, /* 0x38 - cmpibno */
2493 CMPI, BG, /* 0x39 - cmpibg */
2494 CMPI, BE, /* 0x3a - cmpibe */
2495 CMPI, BGE, /* 0x3b - cmpibge */
2496 CMPI, BL, /* 0x3c - cmpibl */
2497 CMPI, BNE, /* 0x3d - cmpibne */
2498 CMPI, BLE, /* 0x3e - cmpible */
2499 CMPI, BO, /* 0x3f - cmpibo */
2500};
fecd2382
RP
2501
2502static
355afbcd
KR
2503void
2504relax_cobr (fragP)
2505 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
c47d388b
ME
2506 * the cobr instruction, which comes at the
2507 * end of the code fragment.
2508 */
fecd2382 2509{
355afbcd
KR
2510 int opcode, src1, src2, m1, s2;
2511 /* Bit fields from cobr instruction */
2512 long bp_bits; /* Branch prediction bits from cobr instruction */
2513 long instr; /* A single i960 instruction */
2514 char *iP; /*->instruction to be replaced */
2515 fixS *fixP; /* Relocation that can be done at assembly time */
2516
2517 /* PICK UP & PARSE COBR INSTRUCTION */
2518 iP = fragP->fr_opcode;
2519 instr = md_chars_to_number (iP, 4);
2520 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2521 src1 = (instr >> 19) & 0x1f;
2522 m1 = (instr >> 13) & 1;
2523 s2 = instr & 1;
2524 src2 = (instr >> 14) & 0x1f;
2525 bp_bits = instr & BP_MASK;
2526
2527 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2528 instr = coj[opcode].compare
2529 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2530 md_number_to_chars (iP, instr, 4);
2531
2532 /* OUTPUT BRANCH INSTRUCTION */
2533 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2534
2535 /* SET UP ADDRESS FIXUP/RELOCATION */
2536 fixP = fix_new (fragP,
2537 iP + 4 - fragP->fr_literal,
2538 4,
2539 fragP->fr_symbol,
2540 0,
2541 fragP->fr_offset,
2542 1,
2543 NO_RELOC);
2544
2545 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2546
2547 fragP->fr_fix += 4;
2548 frag_wane (fragP);
fecd2382
RP
2549}
2550
2551
2552/*****************************************************************************
2553 * reloc_callj: Relocate a 'callj' instruction
2554 *
2555 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2556 * assembler calls it when it decides it can relocate an address at
2557 * assembly time instead of emitting a relocation directive.
2558 *
2559 * Check to see if the relocation involves a 'callj' instruction to a:
2560 * sysproc: Replace the default 'call' instruction with a 'calls'
2561 * leafproc: Replace the default 'call' instruction with a 'bal'.
2562 * other proc: Do nothing.
2563 *
2564 * See b.out.h for details on the 'n_other' field in a symbol structure.
2565 *
2566 * IMPORTANT!:
2567 * Assumes the caller has already figured out, in the case of a leafproc,
2568 * to use the 'bal' entry point, and has substituted that symbol into the
2569 * passed fixup structure.
2570 *
2571 **************************************************************************** */
355afbcd
KR
2572void
2573reloc_callj (fixP)
2574 fixS *fixP; /* Relocation that can be done at assembly time */
fecd2382 2575{
355afbcd
KR
2576 char *where; /*->the binary for the instruction being relocated */
2577
2578 if (!fixP->fx_callj)
2579 {
2580 return;
2581 } /* This wasn't a callj instruction in the first place */
2582
2583 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2584
2585 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2586 {
2587 /* Symbol is a .sysproc: replace 'call' with 'calls'.
fecd2382
RP
2588 * System procedure number is (other-1).
2589 */
355afbcd
KR
2590 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2591
2592 /* Nothing else needs to be done for this instruction.
fecd2382
RP
2593 * Make sure 'md_number_to_field()' will perform a no-op.
2594 */
355afbcd
KR
2595 fixP->fx_bit_fixP = (bit_fixS *) 1;
2596
2597 }
2598 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2599 {
2600 /* Should not happen: see block comment above */
2601 as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));
2602
2603 }
2604 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2605 {
2606 /* Replace 'call' with 'bal'; both instructions have
fecd2382
RP
2607 * the same format, so calling code should complete
2608 * relocation as if nothing happened here.
2609 */
355afbcd
KR
2610 md_number_to_chars (where, BAL, 4);
2611 }
2612 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2613 {
2614 as_bad ("Looks like a proc, but can't tell what kind.\n");
2615 } /* switch on proc type */
2616
2617 /* else Symbol is neither a sysproc nor a leafproc */
2618
2619 return;
2620} /* reloc_callj() */
fecd2382
RP
2621
2622
2623/*****************************************************************************
2624 * s_leafproc: process .leafproc pseudo-op
2625 *
2626 * .leafproc takes two arguments, the second one is optional:
2627 * arg[1]: name of 'call' entry point to leaf procedure
2628 * arg[2]: name of 'bal' entry point to leaf procedure
2629 *
2630 * If the two arguments are identical, or if the second one is missing,
2631 * the first argument is taken to be the 'bal' entry point.
2632 *
2633 * If there are 2 distinct arguments, we must make sure that the 'bal'
2634 * entry point immediately follows the 'call' entry point in the linked
2635 * list of symbols.
2636 *
2637 **************************************************************************** */
355afbcd
KR
2638static void
2639s_leafproc (n_ops, args)
2640 int n_ops; /* Number of operands */
2641 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
fecd2382 2642{
355afbcd
KR
2643 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2644 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2645
2646 if ((n_ops != 1) && (n_ops != 2))
2647 {
2648 as_bad ("should have 1 or 2 operands");
2649 return;
2650 } /* Check number of arguments */
2651
2652 /* Find or create symbol for 'call' entry point. */
2653 callP = symbol_find_or_make (args[1]);
2654
2655 if (TC_S_IS_CALLNAME (callP))
2656 {
2657 as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
2658 } /* is leafproc */
2659
2660 /* If that was the only argument, use it as the 'bal' entry point.
fecd2382
RP
2661 * Otherwise, mark it as the 'call' entry point and find or create
2662 * another symbol for the 'bal' entry point.
2663 */
355afbcd
KR
2664 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2665 {
2666 TC_S_FORCE_TO_BALNAME (callP);
2667
2668 }
2669 else
2670 {
2671 TC_S_FORCE_TO_CALLNAME (callP);
2672
2673 balP = symbol_find_or_make (args[2]);
2674 if (TC_S_IS_CALLNAME (balP))
2675 {
2676 as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
2677 }
2678 TC_S_FORCE_TO_BALNAME (balP);
2679
2680 tc_set_bal_of_call (callP, balP);
2681 } /* if only one arg, or the args are the same */
2682
2683 return;
2684} /* s_leafproc() */
fecd2382
RP
2685
2686
2687/*
2688 * s_sysproc: process .sysproc pseudo-op
2689 *
2690 * .sysproc takes two arguments:
2691 * arg[1]: name of entry point to system procedure
2692 * arg[2]: 'entry_num' (index) of system procedure in the range
2693 * [0,31] inclusive.
2694 *
2695 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2696 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2697 * by adding 1 to it. It must be unbiased before it is used.
2698 */
355afbcd
KR
2699static void
2700s_sysproc (n_ops, args)
2701 int n_ops; /* Number of operands */
2702 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
fecd2382 2703{
355afbcd
KR
2704 expressionS exp;
2705 symbolS *symP;
2706
2707 if (n_ops != 2)
2708 {
2709 as_bad ("should have two operands");
2710 return;
2711 } /* bad arg count */
2712
2713 /* Parse "entry_num" argument and check it for validity. */
2714 if ((parse_expr (args[2], &exp) != SEG_ABSOLUTE)
2715 || (offs (exp) < 0)
2716 || (offs (exp) > 31))
2717 {
2718 as_bad ("'entry_num' must be absolute number in [0,31]");
2719 return;
2720 }
2721
2722 /* Find/make symbol and stick entry number (biased by +1) into it */
2723 symP = symbol_find_or_make (args[1]);
2724
2725 if (TC_S_IS_SYSPROC (symP))
2726 {
2727 as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
2728 } /* redefining */
2729
2730 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2731 TC_S_FORCE_TO_SYSPROC (symP);
2732
2733 return;
2734} /* s_sysproc() */
fecd2382
RP
2735
2736
2737/*****************************************************************************
2738 * shift_ok:
2739 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2740 * This means that some number X < 32 can be shifted left to produce the
2741 * constant of interest.
2742 *
2743 * Return the shift count, or 0 if we can't do it.
2744 * Caller calculates X by shifting original constant right 'shift' places.
2745 *
2746 **************************************************************************** */
2747static
355afbcd
KR
2748int
2749shift_ok (n)
2750 int n; /* The constant of interest */
fecd2382 2751{
355afbcd
KR
2752 int shift; /* The shift count */
2753
2754 if (n <= 0)
2755 {
2756 /* Can't do it for negative numbers */
2757 return 0;
2758 }
2759
2760 /* Shift 'n' right until a 1 is about to be lost */
2761 for (shift = 0; (n & 1) == 0; shift++)
2762 {
2763 n >>= 1;
2764 }
2765
2766 if (n >= 32)
2767 {
2768 return 0;
2769 }
2770 return shift;
fecd2382
RP
2771}
2772
2773
2774/*****************************************************************************
2775 * syntax: issue syntax error
2776 *
2777 **************************************************************************** */
355afbcd
KR
2778static void
2779syntax ()
2780{
2781 as_bad ("syntax error");
2782} /* syntax() */
fecd2382
RP
2783
2784
2785/*****************************************************************************
2786 * targ_has_sfr:
2787 * Return TRUE iff the target architecture supports the specified
2788 * special-function register (sfr).
2789 *
2790 **************************************************************************** */
2791static
355afbcd
KR
2792int
2793targ_has_sfr (n)
2794 int n; /* Number (0-31) of sfr */
fecd2382 2795{
355afbcd
KR
2796 switch (architecture)
2797 {
2798 case ARCH_KA:
2799 case ARCH_KB:
2800 case ARCH_MC:
2801 return 0;
2802 case ARCH_CA:
2803 default:
2804 return ((0 <= n) && (n <= 2));
2805 }
fecd2382
RP
2806}
2807
2808
2809/*****************************************************************************
2810 * targ_has_iclass:
2811 * Return TRUE iff the target architecture supports the indicated
2812 * class of instructions.
2813 *
2814 **************************************************************************** */
2815static
355afbcd
KR
2816int
2817targ_has_iclass (ic)
2818 int ic; /* Instruction class; one of:
a39116f1
RP
2819 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2820 */
fecd2382 2821{
355afbcd
KR
2822 iclasses_seen |= ic;
2823 switch (architecture)
2824 {
2825 case ARCH_KA:
2826 return ic & (I_BASE | I_KX);
2827 case ARCH_KB:
2828 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2829 case ARCH_MC:
2830 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2831 case ARCH_CA:
2832 return ic & (I_BASE | I_CX | I_CASIM);
2833 default:
2834 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2835 && (iclasses_seen & I_CX))
2836 {
2837 as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
2838 iclasses_seen &= ~ic;
fecd2382 2839 }
355afbcd
KR
2840 return 1;
2841 }
fecd2382
RP
2842}
2843
2844
2845/* Parse an operand that is machine-specific.
2846 We just return without modifying the expression if we have nothing
2847 to do. */
2848
2849/* ARGSUSED */
2850void
355afbcd
KR
2851md_operand (expressionP)
2852 expressionS *expressionP;
fecd2382
RP
2853{
2854}
2855
2856/* We have no need to default values of symbols. */
2857
2858/* ARGSUSED */
355afbcd
KR
2859symbolS *
2860md_undefined_symbol (name)
2861 char *name;
fecd2382 2862{
355afbcd
KR
2863 return 0;
2864} /* md_undefined_symbol() */
fecd2382
RP
2865
2866/* Exactly what point is a PC-relative offset relative TO?
2867 On the i960, they're relative to the address of the instruction,
2868 which we have set up as the address of the fixup too. */
2869long
355afbcd
KR
2870md_pcrel_from (fixP)
2871 fixS *fixP;
fecd2382 2872{
355afbcd 2873 return fixP->fx_where + fixP->fx_frag->fr_address;
fecd2382
RP
2874}
2875
2876void
355afbcd
KR
2877md_apply_fix (fixP, val)
2878 fixS *fixP;
2879 long val;
fecd2382 2880{
355afbcd
KR
2881 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2882
2883 if (!fixP->fx_bit_fixP)
2884 {
2885
2886 switch (fixP->fx_im_disp)
2887 {
2888 case 0:
2889 fixP->fx_addnumber = val;
2890 md_number_to_imm (place, val, fixP->fx_size, fixP);
2891 break;
2892 case 1:
2893 md_number_to_disp (place,
c47d388b
ME
2894 (fixP->fx_pcrel
2895 ? val + fixP->fx_pcrel_adjust
2896 : val),
355afbcd
KR
2897 fixP->fx_size);
2898 break;
2899 case 2: /* fix requested for .long .word etc */
2900 md_number_to_chars (place, val, fixP->fx_size);
2901 break;
2902 default:
c47d388b
ME
2903 as_fatal ("Internal error in md_apply_fix() in file \"%s\"",
2904 __FILE__);
2905 }
355afbcd
KR
2906 }
2907 else
2908 {
2909 md_number_to_field (place, val, fixP->fx_bit_fixP);
2910 }
2911
2912 return;
2913} /* md_apply_fix() */
fecd2382
RP
2914
2915#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
355afbcd
KR
2916void
2917tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2918 char *where;
2919 fixS *fixP;
2920 relax_addressT segment_address_in_file;
fecd2382 2921{
355afbcd
KR
2922 static unsigned char nbytes_r_length[] =
2923 {42, 0, 1, 42, 2};
2924 struct relocation_info ri;
2925 symbolS *symbolP;
2926
2927 /* JF this is for paranoia */
2928 memset ((char *) &ri, '\0', sizeof (ri));
2929 symbolP = fixP->fx_addsy;
2930 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2931 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2932 /* These two 'cuz of NS32K */
2933 ri.r_callj = fixP->fx_callj;
2934 if (fixP->fx_bit_fixP)
2935 {
2936 ri.r_length = 2;
2937 }
2938 else
2939 {
2940 ri.r_length = nbytes_r_length[fixP->fx_size];
2941 }
2942 ri.r_pcrel = fixP->fx_pcrel;
2943 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2944
2945 if (fixP->fx_r_type != NO_RELOC)
2946 {
2947 switch (fixP->fx_r_type)
2948 {
2949 case rs_align:
2950 ri.r_index = -2;
2951 ri.r_pcrel = 1;
2952 ri.r_length = fixP->fx_size - 1;
2953 break;
2954 case rs_org:
2955 ri.r_index = -2;
2956 ri.r_pcrel = 0;
2957 break;
2958 case rs_fill:
2959 ri.r_index = -1;
2960 break;
2961 default:
2962 abort ();
fecd2382 2963 }
355afbcd
KR
2964 ri.r_extern = 0;
2965 }
2966 else if (linkrelax || !S_IS_DEFINED (symbolP))
2967 {
2968 ri.r_extern = 1;
2969 ri.r_index = symbolP->sy_number;
2970 }
2971 else
2972 {
2973 ri.r_extern = 0;
2974 ri.r_index = S_GET_TYPE (symbolP);
2975 }
2976
2977 /* Output the relocation information in machine-dependent form. */
2978 md_ri_to_chars (where, &ri);
2979
2980 return;
2981} /* tc_bout_fix_to_chars() */
fecd2382 2982
fecd2382
RP
2983#endif /* OBJ_AOUT or OBJ_BOUT */
2984
2985/* Align an address by rounding it up to the specified boundary.
2986 */
c47d388b 2987valueT
355afbcd
KR
2988md_section_align (seg, addr)
2989 segT seg;
c47d388b 2990 valueT addr; /* Address to be rounded up */
fecd2382 2991{
355afbcd
KR
2992 return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2993} /* md_section_align() */
fecd2382
RP
2994
2995#ifdef OBJ_COFF
355afbcd
KR
2996void
2997tc_headers_hook (headers)
2998 object_headers *headers;
fecd2382 2999{
355afbcd
KR
3000 /* FIXME: remove this line *//* unsigned short arch_flag = 0; */
3001
3002 if (iclasses_seen == I_BASE)
3003 {
3004 headers->filehdr.f_flags |= F_I960CORE;
3005 }
3006 else if (iclasses_seen & I_CX)
3007 {
3008 headers->filehdr.f_flags |= F_I960CA;
3009 }
3010 else if (iclasses_seen & I_MIL)
3011 {
3012 headers->filehdr.f_flags |= F_I960MC;
3013 }
3014 else if (iclasses_seen & (I_DEC | I_FP))
3015 {
3016 headers->filehdr.f_flags |= F_I960KB;
3017 }
3018 else
3019 {
3020 headers->filehdr.f_flags |= F_I960KA;
3021 } /* set arch flag */
3022
3023 if (flagseen['R'])
3024 {
3025 headers->filehdr.f_magic = I960RWMAGIC;
3026 headers->aouthdr.magic = OMAGIC;
3027 }
3028 else
3029 {
3030 headers->filehdr.f_magic = I960ROMAGIC;
3031 headers->aouthdr.magic = NMAGIC;
3032 } /* set magic numbers */
3033
3034 return;
3035} /* tc_headers_hook() */
3036
fecd2382
RP
3037#endif /* OBJ_COFF */
3038
3039/*
3040 * Things going on here:
3041 *
3042 * For bout, We need to assure a couple of simplifying
3043 * assumptions about leafprocs for the linker: the leafproc
3044 * entry symbols will be defined in the same assembly in
3045 * which they're declared with the '.leafproc' directive;
3046 * and if a leafproc has both 'call' and 'bal' entry points
3047 * they are both global or both local.
3048 *
3049 * For coff, the call symbol has a second aux entry that
3050 * contains the bal entry point. The bal symbol becomes a
3051 * label.
3052 *
3053 * For coff representation, the call symbol has a second aux entry that
3054 * contains the bal entry point. The bal symbol becomes a label.
3055 *
3056 */
3057
355afbcd
KR
3058void
3059tc_crawl_symbol_chain (headers)
3060 object_headers *headers;
fecd2382 3061{
355afbcd
KR
3062 symbolS *symbolP;
3063
3064 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3065 {
fecd2382 3066#ifdef OBJ_COFF
355afbcd
KR
3067 if (TC_S_IS_SYSPROC (symbolP))
3068 {
3069 /* second aux entry already contains the sysproc number */
3070 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3071 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3072 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3073 continue;
3074 } /* rewrite sysproc */
fecd2382 3075#endif /* OBJ_COFF */
355afbcd
KR
3076
3077 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3078 {
3079 continue;
3080 } /* Not a leafproc symbol */
3081
3082 if (!S_IS_DEFINED (symbolP))
3083 {
3084 as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
3085 } /* undefined leaf */
3086
3087 if (TC_S_IS_CALLNAME (symbolP))
3088 {
3089 symbolS *balP = tc_get_bal_of_call (symbolP);
3090 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3091 {
3092 S_SET_EXTERNAL (symbolP);
3093 S_SET_EXTERNAL (balP);
3094 as_warn ("Warning: making leafproc entries %s and %s both global\n",
3095 S_GET_NAME (symbolP), S_GET_NAME (balP));
3096 } /* externality mismatch */
3097 } /* if callname */
3098 } /* walk the symbol chain */
3099
3100 return;
3101} /* tc_crawl_symbol_chain() */
fecd2382
RP
3102
3103/*
3104 * For aout or bout, the bal immediately follows the call.
3105 *
3106 * For coff, we cheat and store a pointer to the bal symbol
3107 * in the second aux entry of the call.
3108 */
3109
355afbcd
KR
3110#undef OBJ_ABOUT
3111#ifdef OBJ_AOUT
3112#define OBJ_ABOUT
3113#endif
3114#ifdef OBJ_BOUT
3115#define OBJ_ABOUT
3116#endif
3117
3118void
3119tc_set_bal_of_call (callP, balP)
3120 symbolS *callP;
3121 symbolS *balP;
fecd2382 3122{
355afbcd
KR
3123 know (TC_S_IS_CALLNAME (callP));
3124 know (TC_S_IS_BALNAME (balP));
3125
fecd2382 3126#ifdef OBJ_COFF
355afbcd
KR
3127
3128 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
3129 S_SET_NUMBER_AUXILIARY (callP, 2);
3130
3131#else /* ! OBJ_COFF */
3132#ifdef OBJ_ABOUT
3133
3134 /* If the 'bal' entry doesn't immediately follow the 'call'
fecd2382
RP
3135 * symbol, unlink it from the symbol list and re-insert it.
3136 */
355afbcd
KR
3137 if (symbol_next (callP) != balP)
3138 {
3139 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3140 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3141 } /* if not in order */
3142
3143#else /* ! OBJ_ABOUT */
3144 (as yet unwritten.);
3145#endif /* ! OBJ_ABOUT */
3146#endif /* ! OBJ_COFF */
3147
3148 return;
3149} /* tc_set_bal_of_call() */
3150
3151char *
3152_tc_get_bal_of_call (callP)
3153 symbolS *callP;
fecd2382 3154{
355afbcd
KR
3155 symbolS *retval;
3156
3157 know (TC_S_IS_CALLNAME (callP));
3158
fecd2382 3159#ifdef OBJ_COFF
355afbcd 3160 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
fecd2382 3161#else
355afbcd
KR
3162#ifdef OBJ_ABOUT
3163 retval = symbol_next (callP);
3164#else
3165 (as yet unwritten.);
3166#endif /* ! OBJ_ABOUT */
3167#endif /* ! OBJ_COFF */
3168
3169 know (TC_S_IS_BALNAME (retval));
3170 return ((char *) retval);
3171} /* _tc_get_bal_of_call() */
3172
3173void
3174tc_coff_symbol_emit_hook (symbolP)
3175 symbolS *symbolP;
fecd2382 3176{
355afbcd
KR
3177 if (TC_S_IS_CALLNAME (symbolP))
3178 {
fecd2382 3179#ifdef OBJ_COFF
355afbcd
KR
3180 symbolS *balP = tc_get_bal_of_call (symbolP);
3181
3182 /* second aux entry contains the bal entry point */
3183 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
3184 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3185 S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
3186 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3187 /* fix up the bal symbol */
3188 S_SET_STORAGE_CLASS (balP, C_LABEL);
fecd2382 3189#endif /* OBJ_COFF */
355afbcd
KR
3190 } /* only on calls */
3191
3192 return;
3193} /* tc_coff_symbol_emit_hook() */
fecd2382 3194
09952cd9
KR
3195void
3196i960_handle_align (fragp)
3197 fragS *fragp;
3198{
3199 fixS *fixp;
3200 segT old_seg = now_seg, this_seg;
3201 int old_subseg = now_subseg;
3202 int pad_size;
3203 extern struct frag *text_last_frag, *data_last_frag;
3204
3205 if (!linkrelax)
3206 return;
3207
3208 /* The text section "ends" with another alignment reloc, to which we
3209 aren't adding padding. */
3210 if (fragp->fr_next == text_last_frag
3211 || fragp->fr_next == data_last_frag)
3212 {
3213 return;
3214 }
3215
3216 /* alignment directive */
3217 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, 0,
3218 (int) fragp->fr_type);
3219}
3220
8b228fe9 3221/* end of tc-i960.c */
This page took 0.217871 seconds and 4 git commands to generate.